WorldWideScience

Sample records for ontario hydro nuclear

  1. Ontario Hydro's nuclear program

    McCredie, J.

    1984-01-01

    This report briefly describes Ontario Hydro's nuclear program, examining the design and construction status, and the future from Ontario Hydro's perspective. Ontario Hydro relies heavily on nuclear power. Nuclear fuel was responsible for approximately 34% of Ontario Hydro's energy production in 1983. The nuclear proportion was supplied by twelve operating units located: NPD, Douglas Point, Pickering A and B. It is expected that by approximately 1992, 65% of the total energy needs will be generated through nuclear power

  2. Ontario Hydro's nuclear program

    Jackson, H.A.

    1982-06-01

    In 1981 Ontario Hydro generated over 100 billion KWh of electrical energy. Approximately one third of this was from nuclear units. There are ten CANDU units (5 250 MW) currently in operation, and another twelve (8 600 MW) are under construction. The presently committed nuclear expansion program is estimated to involve expenditures of 16 billion dollars over the next 10 years. About 10 000 people are employed in the nuclear design and construction program. All projects are generally on schedule, with the stations coming into service during the following time periods: Pickering B, 1983-85; Bruce B, 1984-87; Darlington, 1988-90. The status of each project is reviewed. Planning is underway for some retubing projects, as early as 1985 for Pickering A

  3. Nuclear power at Ontario Hydro

    Tapon, F.; Osborne, T.J.

    1980-01-01

    This case study shows that the diffusion of nuclear power in the electric public utility industry in Canada approximates the logistic growth curve, in agreement with previous results on technological innovation diffusion in the U.S. private sector. Many of the economic variables that affect this diffusion in the private sectors in the U.S. and Canada are also significant in the public sector in Canada. Too few utilities have adopted nuclear technology to permit using regression analysis to study the effect of environmental and regulatory factors on the growth of Ontario Hydro. Thus, cost-benefit analysis for each province might be more effective

  4. Revitalizing the nuclear business at Ontario Hydro

    Talbot, K.

    1994-01-01

    Ontario Hydro, North America's largest electric power utility, with an installed capacity of 34,000 MW, has under gone a major restructuring over the past year to better align itself with a changing electricity market and evolving customer needs. The single largest new business unit within the new Ontario Hydro is Ontario Hydro Nuclear (OHN), responsible for engineering, operation and maintenance of the Corporation's 20 large nuclear units at three generating sites, OHN faces a significant challenge in returning Ontario's nuclear units to the world-leading performance levels they enjoyed in the past, particularly the older Pickering A and Bruce A plants. However, steady progress is being made as evidenced by improving peer reviews and overall capacity and financial performance

  5. Ontario Hydro's plan for used nuclear fuel

    Stevens-Guille, P.D.; Howes, H.A.; Freire-Canosa, J.

    1992-01-01

    A comprehensive plan for the management of used nuclear fuel has been published by Ontario Hydro. In this paper current practices are discussed and actions leading to disposal in a repository are outlined. Extended storage options are discussed should disposal be delayed

  6. Ontario Hydro nuclear - challenges of the future

    Field, R.

    1996-01-01

    The challenges facing Ontario Hydro Nuclear (OHN), as understood at the time of the conference, are discussed. OHN had many strengths to build on in preparing for the competition ahead, including: extremely competitive production costs, strong technical capabilities, advantages of multiple units, environmental advantages favoring nuclear, strong public support, and improving station performance. Even with these advantages, OHN faced the difficult challenge of improving overall performance in the face of a large debt burden, coupled with the reinvestment demands of aging units at Pickering A and Bruce A. At the time of the conference, Bruce 2 had already been shut down, because the cost of retubing it and replacing its boilers could not be justified. The ''drive to nuclear excellence'' involves the simultaneous achievement of top performance in safety, reliability and cost; and to this end, changes were being made to reverse the trends indicated by disappointing ''peer reviews''

  7. New directions in nuclear waste disposal in Ontario Hydro

    Nash, K.

    1996-01-01

    Ontario Hydro Nuclear has financial, environmental, safety and public acceptance business objectives which must be met to achieve long term sustainable success. Short term objectives of achieving nuclear excellence in safety, cost and production are vital to this success. Ontario Hydro's nuclear waste and decommissioning liabilities must be managed within these objectives. This paper outlines the financial environmental and societal considerations and responsibility framework for managing these liabilities. (author)

  8. Ontario Hydro CANDU operating experience

    Jackson, H.A.; Woodhead, L.W.; Fanjoy, G.R.

    1984-03-01

    The CANDU Pressurized Heavy Water (CANDU-PHW) type of nuclear-electric generating station has been developed jointly by Atomic Energy of Canada Limited and Ontario Hydro. This report highlights Ontario Hydro's operating experience using the CANDU-PHW system, with a focus on the operating performance and costs, reliability of system components and nuclear safety considerations for the workers and the public

  9. Ontario Hydro decontamination experience

    Lacy, C S; Patterson, R W; Upton, M S [Chemistry and Metallurgy Department, Central Production Services, Ontario Hydro, ON (Canada)

    1991-04-01

    Ontario Hydro currently operates 18 nuclear electric generating units of the CANDU design with a net capacity of 12,402 MW(e). An additional 1,762 MW(e) is under construction. The operation of these facilities has underlined the need to have decontamination capability both to reduce radiation fields, as well as to control and reduce contamination during component maintenance. This paper presents Ontario Hydro decontamination experience in two key areas - full heat transport decontamination to reduce system radiation fields, and component decontamination to reduce loose contamination particularly as practised in maintenance and decontamination centres. (author)

  10. Ontario Hydro decontamination experience

    Lacy, C.S.; Patterson, R.W.; Upton, M.S.

    1991-01-01

    Ontario Hydro currently operates 18 nuclear electric generating units of the CANDU design with a net capacity of 12,402 MW(e). An additional 1,762 MW(e) is under construction. The operation of these facilities has underlined the need to have decontamination capability both to reduce radiation fields, as well as to control and reduce contamination during component maintenance. This paper presents Ontario Hydro decontamination experience in two key areas - full heat transport decontamination to reduce system radiation fields, and component decontamination to reduce loose contamination particularly as practised in maintenance and decontamination centres. (author)

  11. Ontario Hydro CANDU operating experience

    Bartholomew, R.W.; Woodhead, L.W.; Horton, E.P.; Nichols, M.J.; Daly, I.N.

    1987-01-01

    The CANDU Pressurized Heavy Water (CANDU-PHW) type of nuclear-electric generating station has been developed jointly by Atomic Energy of Canada Limited and Ontario Hydro. This report highlights Ontario Hydro's operating experience using the CANDU-PHW system, with a focus on worker and public safety, operating performance and costs, and reliability of system components

  12. Steam generator management at Ontario Hydro Nuclear Stations

    Nickerson, J.; Maruska, C.C.

    1998-01-01

    Managing ageing steam generators involves costly decisions for the utility, both in terms of the cost of the maintenance activities and in terms of having the unit shutdown and consequent power loss while performing these activities. The benefits of these activities are seldom guaranteed and are sometimes very intangible. For nuclear utilities the most pertinent questions that arise are have we identified all the problem(s), can we predict the risk due to these problems? Can we implement corrective and preventive activities to manage the problem and what is the optimum timing of implementation? Is the money spent worthwhile, i.e. has it given us a return in production and safety? Can we avoid surprises? How can we tangibly measure success? This paper touches briefly on all the questions mentioned above but it mainly addresses the last question: 'how can we tangibly measure success?' by using several success indicators proposed by EPRI and by applying them to actual Ontario Hydro experience. The appropriateness of these success indicators as the means to assess the success of these programs, to feed back the results, and to enhance or revise the programs will be discussed. (author)

  13. Steam generator management at Ontario Hydro Nuclear Stations

    Nickerson, J. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada); Maruska, C.C. [Ontario Hydro, Toronto, Ontario (Canada)

    1998-07-01

    Managing ageing steam generators involves costly decisions for the utility, both in terms of the cost of the maintenance activities andin terms of having the unit shutdown and consequent power loss while performing these activities. The benefits of these activities are seldom guaranteed and are sometimes very intangible. For nuclear utilities the most pertinent questions that arise are have we identified all the problem(s), can we predict the risk due to these problems? Can we implement corrective and preventive activities to manage the problem and what is the optimum timing of implementation? Is the money spent worthwhile, i.e. has it given us a return in production and safety? Can we avoid surprises? How can we tangibly measure success? This paper touches briefly on all the questions mentioned above but it mainly addresses the last question: 'how can we tangibly measure success?' by using several success indicators proposed by EPRI and by applying them to actual Ontario Hydro experience. The appropriateness of these success indicators as the means to assess the success of these programs, to feed back the results, and to enhance or revise the programs will be discussed. (author)

  14. Ontario Hydro's DSP update

    Anon.

    1992-01-01

    Ontario Hydro's Demand/Supply Plan (DSP), the 25 year plan which was submitted in December 1989, is currently being reviewed by the Environmental Assessment Board (EAB). Since 1989 there have been several changes which have led Ontario Hydro to update the original Demand/Supply Plan. This information sheet gives a quick overview of what has changed and how Ontario Hydro is adapting to that change

  15. Ontario Hydro annual report 1985

    1986-04-01

    Ontario Hydro is a corporation without share capital created by a special statute of the Province of Ontario in 1906. It now operates under the authority of the Power Corporation Act, R.S.O. 1980, Chapter 384, as amended, with broad powers to generate, supply and deliver electric power throughout the province. It is also authorized to produce and sell steam and hot water as primary products. The Corporation's prime objective is to supply the people of Ontario with electricity at the lowest feasible cost consistent with high safety and quality of service standards. Ontario Hydro's main activity is wholesaling electric power to municipal utilities in urban areas who, in turn, retail it to customers in their service areas. In 1985, approximately 3,166,000 customers were served by Ontario Hydro and the municipal utilities in the province. Ontario Hydro operates 81 hydraulic, fossil and nuclear generating stations and an extensive power grid across Ontario to meet the province's demands for electric energy. Interconnections with other systems place the Corporation in an extensive electrical grid that covers a large segment of the North American continent. Ontario Hydro is a financially self-sustaining corporation. The Province of Ontario guarantees bonds and notes issued to the public by the Corporation

  16. Ontario Hydro annual report 1975

    A financial report and statistics on Ontario energy demand are presented. Efforts to secure a reliable supply of coal and uranium are described. Ontario Hydro's expansion is now controlled by capital availability and not power demand, and this has affected 11 construction projects, including heavy water plants and nuclear generating stations. (E.C.B.)

  17. A plan for research by the atmospheric research section in support of Ontario Hydro's nuclear activities

    Ogram, G.L.; Melo, O.T.

    1984-01-01

    A plan for nuclear studies by the Atmospheric Research Section is presented. The need for research is discussed and research objectives are established. Recommended research activities include the study of fundamental processes governing the fate of emissions released to the atmosphere by Hydro's nuclear facilities and the development of improved transport models describing the fate of these emissions. A Sectional goal of providing technical expertise in the atmospheric sciences in support of Ontario Hydro's present and future nuclear activities is proposed. The plan covers a five-year time frame (1984-1988)

  18. [Ontario Hydro International Inc.]. Annual report 1993

    1994-01-01

    Ontario Hydro International Inc. is the international representative of Ontario Hydro. OHII operates as a global utility that markets Ontario Hydro's services and products. Its mission is to be the leader in energy efficiency and sustainable development in the international marketplace. This report describes the year's activities in the following areas: Energy management and environment, hydroelectric generation, nuclear products and services, fossil generation, grid (transmission) business, utility management, Asia Power Group Inc. The document also includes financial highlights and international and customer contracts

  19. Ontario Hydro Research Division annual report 1988

    1988-01-01

    The Research Division of Ontario Hydro conducts research in the fields of chemistry, civil engineering, electrical engineering, mechanical engineering, metallurgy, and operations. Much of the research has a bearing on the safe, environmentally benign operation of Ontario Hydro's nuclear power plants. Particular emphasis has been placed on nuclear plant component aging and plant life assurance

  20. Operating experiences with Neutron Overpower Trip Systems in Ontario Hydro's CANDU nuclear plants

    Hnik, J.; Kozak, J.

    1991-01-01

    Operating experiences with Neutron Over Power Trip (NOP) Systems in different Ontario Hydro CANDU nuclear power plants are discussed. Lessons learned from the system operation and their impact on design improvements are presented. Retrofitting of additional tools, such as Shutdown System Monitoring computers, to improve operator interaction with the system is described. Experiences with the reliability of some of the NOP system components is also discussed. Options for future enhancements of system performance and operability are identified. (author)

  1. The safety of Ontario's nuclear power reactors. A scientific and technical review. Ontario Hydro Submission to the Ontario Nuclear Safety Review

    1987-01-01

    Ontario Hydro is responsible for the safety of its nuclear stations: safety analysis, design and construction, training of operators, operating practices, and maintenance procedures. The utility must demonstrate to the regulatory body and the public that it is capable of operating nuclear stations safely. the dedicated attention of management and workers alike has been given to the achievement of an excellent safety record. Safety begins with well understood corporate goals, objectives and policies, and the clear assignment of responsibilities to well-trained, competent people who have the relevant experience and the right information and equipment. A prime cause of both the Chernobyl and the Three Mile Island accidents was a breakdown in operational procedures and human factors. On the contrary, the pressure tube failure at Pickering unit 2 in 1983 was understood almost immediately by the operators, who took the correct steps to shut down the reactor. This success is related to well-designed control room information systems and good understanding of fundamentals by the operators. Increasingly, in the design of nuclear plant control and instrumentation systems and in training in Ontario Hydro, the well-being, capabilities and limitations of humans are being taken into account. This report describes the series of barriers between the radioactive material in the fuel and the series of barriers between the radioactive material in the fuel and the environment, and the stringent quality control and technical measures taken to make the likelihood of malfunctions very small. Defence in depth protection for the public is a feature of all Ontario Hydro nuclear stations. As safety-related systems are updated in new stations, improvements are in some cases being backfitted to older stations

  2. Ontario Hydro Research Division, 1980

    The work of the Research Division of Ontario Hydro provides technical and scientific support for the engineering and operation of a power system that includes hydraulic, fossil-fired, and nuclear generation. It also relates to the transmission and distribution of electricity and to the need to help customers use electricity with safety and economy. Among the examples of projects given are qualification of CANDU heat transport system components, pressure tube replacement, steam generator integrity, testing for earthquake resistance, and radioactive waste disposal

  3. Electrical system design and reliability at Ontario Hydro nuclear generating stations

    Royce, C. J. [Ontario Hydro, 700 University Avenue, Toronto, Ontario M5G 1X6 (Canada)

    1986-02-15

    This paper provides an overview of design practice and the predicted and actual reliability of electrical station service Systems at Ontario Nuclear Generating Stations. Operational experience and licensing changes have indicated the desirability of improving reliability in certain instances. For example, the requirement to start large emergency coolant injection pumps resulted in the turbine generator units in a multi-unit station being used as a back-up power supply. Results of reliability analyses are discussed. To mitigate the effects of common mode events Ontario Hydro adopted a 'two group' approach to the design of safety related Systems. This 'two group' approach is reviewed and a single fully environmentally qualified standby power supply is proposed for future use. (author)

  4. Recent experience related to neutronic transients in Ontario Hydro CANDU nuclear generating stations

    Frescura, G.M.; Smith, A.J.; Lau, J.H.

    1991-01-01

    Ontario Hydro presently operates 18 CANDU reactors in the province of Ontario, Canada. All of these reactors are of the CANDU Pressurized Heavy Water design, although their design features differ somewhat reflecting the evolution that has taken place from 1971 when the first Pickering unit started operation to the present as the Darlington units are being placed in service. Over the last three years, two significant neutronic transients took place at the Pickering Nuclear Generating Station 'A' (NGS A) one of which resulted in a number of fuel failures. Both events provided valuable lessons in the areas of operational safety, fuel performance And accident analysis. The events and the lessons learned are discussed in this paper

  5. Volume reduction/solidification of liquid radioactive waste using bitumen at Ontario Hydro's Bruce Nuclear Generating Station 'A'

    Day, J.E.; Baker, R.L.

    1995-01-01

    Ontario Hydro at the Bruce Nuclear Generating Station 'A' has undertaken a program to render the station's liquid radioactive waste suitable for discharge to Lake Huron by removing sufficient radiological and chemical contaminants to satisfy regulatory requirements for emissions. The system will remove radionuclide and chemical contaminants from five different plant waste streams. The contaminants will be immobilized and stored at on-site radioactive waste storage facilities and the purified streams will be discharged. The discharge targets established by Ontario Hydro are set well below the limits established by the Ontario Ministry of Environment (MOE) and are based on the Best Available Technology Economically Achievable Approach (B.A.T.E.A.). ADTECHS Corporation has been selected by Ontario Hydro to provide volume reduction/solidification technology for one of the five waste streams. The system will dry and immobilize the contaminants from a liquid waste stream in emulsified asphalt using thin film evaporation technology

  6. The quality control program for an Ontario Hydro operated thermoluminescence dosimetry service at nuclear generating stations

    Orr, B.H.; Walsh, M.L.

    1975-11-01

    An essential aspect of the Ontario Hydro TLD service is the operation of an acceptable quality control (QC) program. The QC program which has been generally accepted by the A.E.C.B. is presented in this document. The aims of the program are as follows: (1) to ensure that Ontario Hydro maintains an acceptable standard of dosimetry; (2) to be able to demonstrate to any interested party that the dose measurements for individual workers have a high degree of credibility. (author)

  7. Ontario Hydro statistical yearbook 1990

    1990-01-01

    Ontario Hydro was created in 1906 by a special statute of the Province of Ontario. It is a financially self-sustaining corporation without share capital. The yearbook is a compilation of financial data detailed by financial statements and sales and revenue figures for the year 1990. It is broken down by municipalities served in Ontario

  8. Ontario Hydro statistical yearbook 1990

    NONE

    1991-12-31

    Ontario Hydro was created in 1906 by a special statute of the Province of Ontario. It is a financially self-sustaining corporation without share capital. The yearbook is a compilation of financial data detailed by financial statements and sales and revenue figures for the year 1990. It is broken down by municipalities served in Ontario.

  9. Calibration of thermoluminescence skin dosemeter response to beta emitters found in Ontario Hydro nuclear power stations

    Walsh, M.L.; Agnew, D.A.; Donnelly, K.E.

    1984-01-01

    The response of the Ontario Hydro Thermoluminescence Dosimetry System to beta radiation in nuclear power station environments was evaluated. Synthetic beta spectra were constructed, based on activity samples from heat transport systems and fuelling machine contamination smears at nuclear power stations. Using these spectra and dosemeter energy response functions, an overall response factor for the skin dosemeter relative to skin dose at 7 mg.cm -2 was calculated. This calculation was done assuming three specific geometries: (1) an infinite uniformly contaminated plane source at a distance of 33 cm (50 mg.cm -2 total shielding) from the receptor; (2) an infinite cloud surrounding the receptor; (3) a point source at 33 cm. Based on these calculations, a conservative response factor of 0.7 has been chosen. This provides an equation for skin dose assignment, i.e. Skin Dose = 1.4 x Skin Dosemeter Reading when the skin dosemeter is directly calibrated in mGy(gamma). (author)

  10. Ontario Hydro annual report 1986

    1987-04-01

    Ontario Hydro`s annual report of the financial position and activities for the year 1986 consists of their financial highlights; corporate profile; customer service and satisfaction; message from Chairman; message from President; 1986 in review; financial section; management report; five-year summary of financial statistics; and comparative statistics.

  11. Application of reliability methods in Ontario Hydro

    Jeppesen, R.; Ravishankar, T.J.

    1985-01-01

    Ontario Hydro have established a reliability program in support of its substantial nuclear program. Application of the reliability program to achieve both production and safety goals is described. The value of such a reliability program is evident in the record of Ontario Hydro's operating nuclear stations. The factors which have contributed to the success of the reliability program are identified as line management's commitment to reliability; selective and judicious application of reliability methods; establishing performance goals and monitoring the in-service performance; and collection, distribution, review and utilization of performance information to facilitate cost-effective achievement of goals and improvements. (orig.)

  12. Ontario Hydro looks at security

    Green, B.J.; Kee, B.

    1995-01-01

    Ontario Hydro operates 20 CANDU reactors on three different sites. Since 1984, a review of security arrangements on all the sites has taken place on a five-yearly basis. The review process for 1995 is outlined. The three objectives were as follows: to assess current security threats and risks to the stations; to assess the adequacy of the existing programme to protect against current threats; by comparing the security programme against those of comparable entities to establish benchmarks for good practice as a basis for improvements at Ontario Hydro. Valuable insights gained through the review are listed. These could be useful to other utilities. (UK)

  13. Ontario Hydro annual report 1986

    1987-04-01

    Ontario Hydro's annual report of the financial position and activities for the year 1986 consists of their financial highlights; corporate profile; customer service and satisfaction; message from Chairman; message from President; 1986 in review; financial section; management report; five-year summary of financial statistics; and comparative statistics

  14. [Ontario Hydro]. Corporate performance report, 1994

    1995-01-01

    Summarizes Ontario Hydro's corporate performance for the year, with actual results being compared against planned values. Also includes additional indicators that illustrate noteworthy trends in corporate performance. Corporate results are reported under the new organizational structure implemented in 1993, beginning with overall results in such areas as customer service, environmental stewardship, human resources, and finance. This is followed by reports from the Generation Business Group, Customer Services Group, Corporate Business Group, General Counsel and Secretary, Ontario Hydro Audit, Strategic Planning, Environment and Communication Group, and Ontario Hydro enterprises (Ontario Hydro Technologies, Ontario Hydro International). The appendix includes summary financial statements

  15. The Ontario Hydro approach to assuring quality in nuclear heat exchanger tubing

    Maka, E.P.

    1982-01-01

    Ontario Hydro utilizes the CANDU PHWR reactor system. The heat transport system circulates pressurized heavy water through the reactor fuel channels to remove heat produced by the fission of uranium fuel. Heavy water is used for the heat transport medium because it is the most efficient liquid from the standpoint of neutron economy. The heat is carried by the reactor coolant to the steam generators where it is transferred to the light water side to form steam which drives the turbine generators. Many heat exchangers are incorporated in the heat transfer cycle. Their integrity is of prime importance both for the reliability of the power plant and for economic reasons since the loss of heavy water at $300/kg is a substantial penalty. This integrity depends largely on the quality of the heat exchanger tubing and where major heat exchangers are involved, it has been the Ontario Hydro policy to supply tubing to heat exchanger manufacturers on a ''free issue'' basis. This allows better control over the level of inspection perform

  16. Volume reduction/solidification of liquid radioactive waste using bitumen at Ontario hydro's Bruce nuclear generating station open-quotes Aclose quotes

    Day, J.E.; Baker, R.L.

    1994-01-01

    Ontario Hydro at the Bruce Nuclear Generating Station open-quotes Aclose quotes has undertaken a program to render the station's liquid radioactive waste suitable for discharge to Lake Huron by removing sufficient radiological and chemical contaminants from five different plant waste streams. The contaminants will be immobilized and stored at on-site radioactive waste storage facilities and the purified streams will be discharged. The discharge targets established by Ontario Hydro are set well below the limits established by the Ontario Ministry of Environment (MOE) and are based on the Best Available Technology Economically Achievable Approach (B.A.T.E.A.). ADTECHS Corporation has been selected by Ontario Hydro to provide volume reduction/solidification technology for one of the five waste streams. The system will dry and immobilize the contaminants from a liquid waste stream in emulsified asphalt using thin film evaporation technology

  17. [Ontario Hydro]. Corporate performance report, 1993

    1994-01-01

    Summarizes Ontario Hydro's corporate performance for the year, with actual results being compared against planned values established in the approved corporate financial plan and work program budget. Also includes additional indicators that illustrate noteworthy trends in corporate performance. Corporate results are reported under the new organizational structure implemented in mid-1993, beginning with overall results in such areas as customer satisfaction, electricity sales, human resources, and environmental protection. This is followed by reports from the Electricity Group (supply, generation, transmission), the Energy Services and Environment Group (load saved and shifted, non-utility generation, retail distribution), and Ontario Hydro enterprises (Ontario Hydro Technologies, Ontario Hydro International). The appendix contains summary financial statements

  18. Design, construction and operation of Ontario Hydro's CANDU plants

    Campbell, P.G.

    1981-06-01

    Ontario Hydro has been producing electricity commercially from nuclear power since 1968, using CANDU reactors which have proved enormously successful. The 206-MW Douglas Point station, nearly 10 times larger than the first Canadian power reactor, NPD-2, resulted from a cooperative effort between Atomic Energy of Canada Ltd., the provincial government of Ontario, and Ontario Hydro. This approach led to a basic working relationship between the parties, with Ontario Hydro acting as project manager and builder, and AECL acting as consultant with respect to the nuclear components. Before Douglas Point was fully commissioned Ontario Hydro was ready to commit itself to more nuclear stations, and work was started on the four-unit Pickering nuclear generating station. Multi-unit stations were adopted to achieve economies of scale, and the concept has been retained for all subsequent nuclear power plants constructed in the province. The organization of Ontario Hydro's project management, construction, and operation of nuclear generating stations is described. Performance of the existing stations and cost of the power they produce have been entirely acceptable

  19. Ontario hydro radioactive material transportation field guide

    Howe, W.

    1987-01-01

    The recent introduction of both the AECB Transport Packaging of Radioactive Material Regulations and Transport Canada's Transportation of Dangerous Goods Regulations have significantly altered the requirements for transporting radioactive material in Canada. Extensive additional training as well as certification of several hundred Ontario Hydro employees has been necessary to ensure compliance with the additional and revised regulatory requirements. To assist in the training of personnel, an 'active' corporate Ontario Hydro Field Guide for Radioactive Material Transport document has been developed and published. The contents of this Field Guide identify current Ontario Hydro equipment and procedures as well as the updated relevant regulatory requirements within Canada. In addition, to satisfying Ontario Hydro requirements for this type of information over two thousand of these Field Guides have been provided to key emergency response personnel throughout the province of Ontario to assist in their transportation accident response training

  20. Ontario hydro waste storage concepts and facilities

    Carter, T.J.; Mentes, G.A.

    1976-01-01

    Ontario Hydro presently operates 2,200 MWe of CANDU heavy water reactors with a further 11,000 MWe under design or construction. The annual quantities of low and medium level solid wastes expected to be produced at these stations are tabulated. In order to manage these wastes, Ontario Hydro established a Radioactive Waste Operations Site within the Bruce Nuclear Power Development located on Lake Huron about 250 km northwest of Toronto. The Waste Operations Site includes a 19-acre Storage Site plus a Radioactive Waste Volume Reduction Facility consisting of an incinerator and waste compactor. Ontario has in use or under construction both in-ground and above-ground storage facilities. In-ground facilities have been used for a number of years while the above-ground facilities are a more recent approach. Water, either in the form of precipitation, surface or subsurface water, presents the greatest concern with respect to confinement integrity and safe waste handling and storage operations

  1. Annual report 1993 (Ontario Hydro, Toronto)

    NONE

    1994-12-31

    Ontario Hydro`s prime objective is to supply the people of Ontario with electricity at cost while maintaining high standards of safety and service. The annual report presents energy efficiency and competitiveness, operations in review, the environmental performance of the Corporation, the future, and choices for a sustainable future. A financial review and analysis is also provided, along with an auditor`s report and financial statements.

  2. Ontario Hydro at the millennium : has monopoly's moment passed?

    Daniels, R.J.

    1996-01-01

    This volume is a collection of 10 papers presented at a conference in which the challenges of restructuring the electric power industry in Ontario were discussed. Legal experts, policy makers, economists and stakeholders in the industry presented their views regarding the future of the industry in Ontario. The implications of privatization were discussed. There was general agreement on the need for some industry de-integration and privatization. However, agreement on the exact nature of the approach to take was more divided. For example, opinion was divided on what the logical endpoint of industry restructuring should be i.e. wholesale or retail competition. Also contentious was the question of what portion of Hydro's generating assets should be sold off to private enterprise if Hydro's generation and transmission assets are unbundled. Opinions were also divided about the environmental consequences of nuclear energy. Significant differences of opinion were evident concerning the privatization of Ontario Hydro's nuclear assets. refs., tabs., figs

  3. Fifteen years of radioactive waste management at Ontario Hydro

    Carter, T.J.; Rao, P.K.M.

    1985-01-01

    Ontario Hydro is a large Canadian utility producing 84% (7394 MWe) of the Nuclear Electricity generated in Canada. The low- and intermediate-level radioactive wastes generated by the Ontario Hydro program are currently being managed at the Bruce Nuclear Power Development with various volume reduction, packaging and interim storage systems. Ontario Hydro also owns and operates a radioactive waste transportation system. Studies are in progress for final disposal of these wastes in a suitable geology in Ontario. Since its inception in 1971, Ontario Hydro's radioactive waste management program has evolved into providing a full fledged radioactive waste management capability to the utility's two nuclear generation centres at Pickering and Bruce, and later in the decade, to Darlington. This paper summarizes the various developments in this program; highlights the major facilities both in-service and planned to be built; reviews the experiences gained over fifteen years of in-house waste management; and discusses the proposed reorientation towards ultimate disposal of these wastes. 2 refs., 8 figs., 1 tab

  4. Ontario Hydro annual report, 1988

    1989-04-01

    Ontario continues a strong growth in electricity consumption; over the past five years consumption has risen an average of 5 percent a year. In 1988 consumption rose by 6.5 percent to 133.1 billion kilowatt-hours. Peak demand was 23 million kilowatts. The top priority for the 1990s will be improving the energy efficiency of customers and the operating efficiency of the Corporation, with a target saving of 4500 megawatts through demand management and energy efficiency by the year 2000. A new environmental division has been formed, as well as a division for non-utility generation. Safety is of particular importance to the Nuclear Generating Division; in all nuclear operations, after 143 million hours worked from 1955 to 1988, there has never been a work-related fatality or a detectable injury due to radiation. The average radiation dose per worker continues to decline and is now under 10 percent of the legal dose limit. Retubing of Pickering Nuclear Generating Station unit 2 has been completed. Retubing of unit 1 is under way, and work on units 3 and 4 has been approved. Construction continues on the Darlington Nuclear Generating Station, where the first unit is expected to go into service in 1989. The Darlington Tritium Removal Facility was completed

  5. Ontario Hydro 1982 annual report

    1983-05-01

    Due to the economic recession, primary electrical energy demand for the year failed to exceed that of the previous year for the first time since 1944. Actual demand was 100.8 billion kWh, 0.8 per cent below 1981. However, annual peak demand reached 18.1 million kW on January 18, an all-time high, and 5.4 per cent over January 1981. There were 104.1 billion kWh of electricity generated during the year, nearly equally from nuclear, coal, and water power. Nuclear generating units continued their outstanding performance. Bruce-3 completed a 494-day run at continuous power. NPD Generating Station celebrated 20 years of operation. Pickering B unit 5 started up and produced its first power. At Bruce A, a remote-controlled vehicle was used to remove damaged fuel to a shielded flask, completing the job in a short time with low staff radiation exposure. Bruce B construction progressed on schedule; while at Darlington, design and construction continued at a high level, with 1700 workers on site at year-end. Actual net income was $348 million, $38 million below forecast. Coal deliveries were 13.4 million Mg (23 per cent over 1981). Nuclear fuel deliveries to generating stations were 996 Mg (3 per cent over 1981). Agreements were negotiated for the supply of 5200 Mg of uranium concentrates during 1985-93. Nuclear fuel manufacturing contracts were awarded at lower prices than previously attained. Income totalling $163 million from electricity exports to the U.S.A. reduced overall cost of providing electricity to Ontario customers by 5.1 per cent. The Residential Energy Advisory Program surveyed 16,000 homeowners wishing to improve home energy efficiency. There were 20,000 residential customers who received grants to convert from oil to electric heating. Additional consumption resulting from these conversions is estimated at 280 million kWh

  6. More than energy: Ontario Hydro final annual report, January 1998 - March 1999

    1999-01-01

    Ontario Hydro ceased operations on March 31, 1999 and its assets and functions were transferred by provincial statute to two successor corporations: Ontario Power Generation Corp. (OPG) and Ontario Hydro Services Inc. Its functions were also transferred to the Independent Electricity Market Operator and the Electrical Safety Authority, two not-for-profit agencies. The original act defining Ontario Hydro was replaced by the Energy Competition Act, 1998. Until the demerger of the company on April 1, 1999, Ontario Hydro served 108 direct industrial clients, almost one million retail clients and 255 municipal utilities. Ontario Power Generation inherited Ontario Hydro's generating portfolio, making it one of the largest power producers in North America in terms of installed capacity. The OPG system includes 69 hydroelectric stations, three nuclear sites, and six operating fossil fueled stations. Total installed system capacity is approximately 31,000 megawatts, and Ontario Hydro's total sales in 1998 were almost 139 terawatt hours. Ontario Hydro Services Company is an energy services-based transmission and distribution company. It owns and maintains 29,000 km of transmission lines, 114,700 km of distribution lines, 245 km of high-voltage underground cable, 256 transformer stations, 928 distribution and regulation stations, and 250 microwave stations. It also retains the retail business held by Ontario Hydro, which serves over 950,000 clients, and the transmission and generating business for 23 remote communities in Northern Ontario

  7. Post Chernobyl safety review at Ontario Hydro

    Frescura, G.M.; Luxat, J.C.; Jobe, C.

    1991-01-01

    It is generally recognized that the Chernobyl Unit 4 accident did not reveal any new phenomena which had not been previously identified in safety analyses. However, the accident provided a tragic reminder of the potential consequences of reactivity initiated accidents (RIAs) and stimulated nuclear plant operators to review their safety analyses, operating procedures and various operational and management aspects of nuclear safety. Concerning Ontario Hydro, the review of the accident performed by the corporate body responsible for nuclear safety policy and by the Atomic Energy Control Board (the Regulatory Body) led to a number of specific recommendations for further action by various design, analysis and operation groups. These recommendations are very comprehensive in terms of reactor safety issues considered. The general conclusion of the various studies carried out in response to the recommendations, is that the CANDU safety design and the procedures in place to identify and mitigate the consequences of accidents are adequate. Improvements to the reliability of the Pickering NGSA shutdown system and to some aspects of safety management and staff training, although not essential, are possible and would be pursued. In support of this conclusion, the paper describes some of the studies that were carried out and discusses the findings. The first part of the paper deals with safety design aspects. While the second is concerned with operational aspects

  8. Review of Ontario Hydro Pickering 'A' and Bruce 'A' nuclear generating stations' accident analyses

    Serdula, K.J.

    1988-01-01

    Deterministic safety analysis for the Pickering 'A' and Bruce 'A' nuclear generating stations were reviewed. The methodology used in the evaluation and assessment was based on the concept of 'N' critical parameters defining an N-dimensional safety parameter space. The reviewed accident analyses were evaluated and assessed based on their demonstrated safety coverage for credible values and trajectories of the critical parameters within this N-dimensional safety parameter space. The reported assessment did not consider probability of occurrence of event. The reviewed analyses were extensive for potential occurrence of accidents under normal steady-state operating conditions. These analyses demonstrated an adequate assurance of safety for the analyzed conditions. However, even for these reactor conditions, items have been identified for consideration of review and/or further study, which would provide a greater assurance of safety in the event of an accident. Accident analyses based on a plant in a normal transient operating state or in an off-normal condition but within the allowable operating envelope are not as extensive. Improvements in demonstrations and/or justifications of safety upon potential occurrence of accidents would provide further assurance of adequacy of safety under these conditions. Some events under these conditions have not been analyzed because of their judged low probability; however, accident analyses in this area should be considered. Recommendations are presented relating to these items; it is also recommended that further study is needed of the Pickering 'A' special safety systems

  9. Optimizing the use of operating experience at Ontario Hydro's Bruce Nuclear Generating Station 'A'

    Williams, E.L.

    1991-01-01

    One of the most significant lessons learned from the Three Mile Island event (March 1979), and again with the Chernobyl disaster - (April 1986) was the ongoing requirement to learn from our mistakes and near misses, and those of our fellow utilities around the world: so that as an industry we do not repeat the same mistakes. The very future of our industry will depend on how well each one of us accomplishes this important ask. This paper describes in detail the challenges encountered by one station when incorporating a comprehensive 'Operating Program'. It begins with the Corporate Office's directives to its stations for such a program; and follows up with the details of the actual station implementation of the program, and day to day operating experiences. The paper describes in detail the following Operating Experience programs: - Root Cause Determination process. The Institute of Nuclear Power Operations, Human Performance Enhancement System (HPES) as an integral component of the Root Cause process. Finding solutions for our station for problems identified elsewhere is covered herein; - Significant Event Recommendation Tracking System: - Commitment Tracking System; - Operating Experience (Sharing Lessons Learned) System. The paper will show all the above processes tie closely together and complement each other. The paper discusses the staff required for such processes and their training requirements. It recommends process time lines, reporting mechanisms, and sign off requirements. It will describe the equipment utilized to carry out this work effectively, and with a minimum of staff. One unique feature of the Bruce 'A' system is an 'Effectiveness Follow-Up', usually three to six months after the event recommendations have been completed. By rechecking the finished actions and reviewing them with the personnel involved with the originating event we ensure that the real root causes have been identified and resolved. (author)

  10. Optimizing the use of operating experience at Ontario Hydro's Bruce Nuclear Generating Station 'A'

    Williams, E L [Operating Experience Reactor Safety, Bruce Nuclear Generating Station ' A' , Ontario Hydro, Tiverton, Ontario (Canada)

    1991-04-01

    One of the most significant lessons learned from the Three Mile Island event (March 1979), and again with the Chernobyl disaster - (April 1986) was the ongoing requirement to learn from our mistakes and near misses, and those of our fellow utilities around the world: so that as an industry we do not repeat the same mistakes. The very future of our industry will depend on how well each one of us accomplishes this important ask. This paper describes in detail the challenges encountered by one station when incorporating a comprehensive 'Operating Program'. It begins with the Corporate Office's directives to its stations for such a program; and follows up with the details of the actual station implementation of the program, and day to day operating experiences. The paper describes in detail the following Operating Experience programs: - Root Cause Determination process. The Institute of Nuclear Power Operations, Human Performance Enhancement System (HPES) as an integral component of the Root Cause process. Finding solutions for our station for problems identified elsewhere is covered herein; - Significant Event Recommendation Tracking System: - Commitment Tracking System; - Operating Experience (Sharing Lessons Learned) System. The paper will show all the above processes tie closely together and complement each other. The paper discusses the staff required for such processes and their training requirements. It recommends process time lines, reporting mechanisms, and sign off requirements. It will describe the equipment utilized to carry out this work effectively, and with a minimum of staff. One unique feature of the Bruce 'A' system is an 'Effectiveness Follow-Up', usually three to six months after the event recommendations have been completed. By rechecking the finished actions and reviewing them with the personnel involved with the originating event we ensure that the real root causes have been identified and resolved. (author)

  11. Comparison of Ontario Hydro's performance with world power reactors - 1981

    Dumka, B.R.

    1982-04-01

    The performance of Ontario Hydro's CANDU reactors in 1981 is compared with that of 123 world nuclear power reactors rated at 500 MW(e) or greater. The report is based on data extracted from publications, as well as correspondence with a number of utilities. The basis used is the gross capacity factor, which is defined as gross unit generation divided by the perfect gross output for the period of interest. The lowest of the published turbine and generator design ratings is used to determine the perfect gross output, unless the unit has been proven capable of consistently exceeding this value. The first six reactors in the rankings were CANDU reactors operated by Ontario Hydro

  12. The safety of Ontario's nuclear reactors

    1980-06-01

    A Select Committee of the Legislature of Ontario was established to examine the affairs of Ontario Hydro, the provincial electrical utility. Extensive public hearings were held on several topics including the safety of nuclear power reactors operating in Ontario. The Committee found that these reactors are acceptably safe. Many of the 24 recommendations in this report deal with the licensing process and public access to information. (O.T.)

  13. Main coolant pump testing at Ontario Hydro

    Hartlen, R.

    1991-01-01

    This article describes Ontario Hydro Research Division's experience with a computerized data acquisition and analysis system for monitoring mechanical vibration in reactor coolant pumps. The topics covered include bench-marking of the computer system and the coolant pumps, signatures of normal and malfunctioning pumps, analysis of data collected by the monitoring system, simulation of faults, and concerns that have been expressed about data interpretation, sensor types and locations, alarm/shutdown limits and confirmation of nondestructive examination testing. This presentation consists of overheads only

  14. The Ontario Hydro mortality surveillance programme

    Anderson, T.W.

    1985-01-01

    The Ontario Hydro mortality surveillance programme was the first such study established in any group of radiation workers. Copies of annual reports are available to senior officials of both management and union and to members of the general public. Apart from an elevated Standardized Mortality Ratio in the 15.0 - 19.9 cSv range, there is no suggestion of any rising cancer death rate with increased lifetime radiation dose. It should be noted that employees who had left before pensionable age were not included in the study. Results of the study are presented in tabular form

  15. Ultrasonic inspection experience of steam generator tubes at Ontario Hydro and the TRUSTIE inspection system

    Choi, E.I.; Jansen, D.

    1998-01-01

    Ontario Hydro have been using ultrasonic test (UT) technique to inspect steam generator (SG) tubes since 1993. The UT technique has higher sensitivity in detecting flaws in SG tubes and can characterize the flaws with higher accuracy. Although an outside contractor was used initially, Ontario Hydro has been using a self-developed system since 1995. The TRUSTIE system (Tiny Rotating UltraSonic Tube Inspection Equipment) was developed by Ontario Hydro Technologies specifically for 12.7 mm outside diameter (OD) tubes, and later expanded to larger tubes. To date TRUSTIE has been used in all of Ontario Hydro's nuclear generating stations inspecting for flaws such as pitting, denting, and cracks at top-of-tubesheet to the U-bend region. (author)

  16. Ontario Hydro's integrated air management plan

    Kalvins, A.K.; Brown, D.; Camacho, F.; Howes, H.; Jantzi, B.; Lin, X.; Lui, P.; Melo, O.T.; Mortimer, W.P.; Reuber, B.

    1992-01-01

    Ontario Hydro is developing an integrated air management plan as a tool for comparing the environmental impacts of fossil-fuel power generation options. The goal is to relate equipment, location, emissions, and impacts and to identify the optimum way to manage the utility's fossil generation system in view of upcoming environmental regulations and public expectations. The eight steps of the plan are briefly described: definition of power generation scenarios (upgrading, conversion to natural gas, non-utility generation, alternative technologies); estimation of emissions for each generation and fuel option studied; identification of impact of air emissions on building materials, agriculture, forests, lakes, and fisheries; modelling of air emissions dispersion; quantification of damage to pollution receptors; quantification of full fuel cycle effects; and comparison of the scenarios. The scenario having the lowest overall environmental impact involved upgrading the existing fossil-fuel system with additional air emissions controls and two integrated gasification combined cycle plants. 9 refs., 3 figs., 3 tabs

  17. Full cost accounting for decision making at Ontario Hydro

    Plagiannakos, T.

    1996-01-01

    Ontario Hydro's approach to full cost accounting (FCA) was outlined in response to questions raised earlier, in another forum, regarding Ontario Hydro's views on FCA. FCA was defined as an evaluation framework (as opposed to an accounting system) which tries to account for the internal (private) as well as the external (environment and human health) costs and benefits and integrate them into business decisions. When the external impacts cannot be monetized, qualitative evaluations are used based on the damage costing approach, which Ontario Hydro prefers to the cost of control method recommended by its critics. In general, however, Ontario Hydro is not opposed to FCA in so far as it puts the Utility in a better position to make more informed decisions, improve environmental cost management, avoid future costs, enhance revenue, improve environmental quality, contribute to environmental policy, and contribute to sustainable development. 1 fig

  18. Ontario Hydro's experience in implementing on-the-job training for chemical technicians

    Cooper, G.A.

    1996-01-01

    Since 1989, Ontario Hydro Nuclear has been developing and implementing formalized On-the-Job Training for qualifying its nuclear power plant chemical laboratory staff. This paper focuses on the process followed in designing, developing and implementing this training, with emphasis on the strengths and weaknesses of the program. 7 refs, 3 figs

  19. The radiation safety self-assessment program of Ontario Hydro

    Armitage, G.; Chase, W.J.

    1987-01-01

    Ontario Hydro has developed a self-assessment program to ensure that high quality in its radiation safety program is maintained. The self-assessment program has three major components: routine ongoing assessment, accident/incident investigation, and detailed assessments of particular radiation safety subsystems or of the total radiation safety program. The operation of each of these components is described

  20. Ontario hydro's aqueous discharge monitoring program

    Mehdi, S.H.; Booth, M.R.; Massey, R.; Herrmann, O.

    1992-01-01

    The Province of Ontario has legislated a comprehensive monitoring program for waterborne trace contaminants called MISA - Municipal Industrial Strategy for Abatement. The electric power sector regulation applies to all generating stations (Thermal, Nuclear, Hydraulic). The program commenced in June, 1990. The current phase of the regulation requires the operators of the plants to measure the detailed composition of the direct discharges to water for a one year period. Samples are to be taken from about 350 identified streams at frequencies varying from continuous and daily to quarterly. The data from this program will be used to determine the scope of the ongoing monitoring program and control. This paper discusses the preparation and planning, commissioning, training and early operations phase of the MISA program. In response, the central Analytical Laboratory and Environmental staff worked to develop a sampling and analytical approach which uses the plant laboratories, the central analytical laboratory and a variety of external laboratories. The approach considered analytical frequency, sample stability, presence of radioactivity, suitability of staff, laboratory qualifications, need for long term internal capabilities, availability of equipment, difficulty of analysis, relationship to other work and problems, capital and operating costs. The complexity of the sampling program required the development of a computer based schedule to ensure that all required samples were taken as required with phase shifts between major sampling events at different plants to prevent swamping the capability of the central or external laboratories. New equipment has been purchased and installed at each plant to collect 24 hour composite samples. Analytical equipment has been purchased for each plant for analysis of perishable analytes or of samples requiring daily or thrice weekly analysis. Training programs and surveys have been implemented to assure production of valid data

  1. Ontario Hydro's transportation of radioactive material and emergency response plan

    Karmali, N.

    1993-01-01

    Ontario Hydro has been transporting radioactive material for almost 30 years without any exposure to the public or release to the environment. However, there have been three accidents involving Hydro's shipments of radioactive material. In addition to the quality packaging and shipping program, Ontario Hydro has an Emergency Response Plan and capability to deal with an accident involving a shipment of radioactive material. The Corporation's ability to respond, to effectively control and contain the situation, site remediation, and to provide emergency public information in the event of a road accident minimizes the risk to the public and the environment. This emphasizes their commitment to worker safety, public safety and impact to the environment. Response capability is mandated under various legislation and regulations in Canada

  2. Summary of Ontario Hydro's 1990-91 zebra mussel research program

    Claudi, R.; Wiancko, P.M.

    1992-01-01

    Ontario Hydro is the principal supplier of electricity to the Province of Ontario. It serves 3.6 million customers, with an inservice capacity of 28,200 MW. Ontario Hydro has seven fossil, five nuclear, and four hydraulic stations in the Great Lakes Basin and surrounding watershed. In addition, there are another 60 inland hydraulic stations and numerous dams. As the largest single user of raw water from the Great Lakes Basin, Ontario Hydro recognized the need to control zebra mussels early in 1989. At that time, very little was known in North America about the zebra mussel life cycle and potential impact. European utilities were consulted, but as we now know, zebra mussels are not perceived to be a problem in Europe at this time. To satisfy the immediate need for control, chlorination was identified as the most effective interim measure to prevent the fouling of systems which draw water from the aquatic environment. Due to the current regulatory environment, this solution is considered short term and Ontario Hydro was compelled to initiate a comprehensive research effort aimed at providing alternative methods of control. Most of the research effort during 1990, was methods of control. Most of the research effort during 1990, was directed towards this goal. Many alternative control measures, both chemical and nonchemical were considered. Also considered were the potential effects of the control measures and zebra mussels on station operations. A multidisciplinary team involving aquatic biologists, chemists, corrosion specialists, and civil and mechanical engineers from the various departments of Ontario Hydro was asked to address the problem. Some of the research also involved collaborative studies with universities, US utilities, American Water Works Association, and Canadian industries. Following is a summary of the research effort in 1990, and a preview of the research underway in 1991

  3. Schedule and cost reduction of nuclear generating facilities in Ontario study overview

    Huterer, J.

    1991-01-01

    During the five year period 1985 to 1990, Ontario Hydro conducted a major study with the objective to reduce the cost and construction duration for future nuclear generating facilities in Ontario. This paper reports on the study called Major Projects: Schedule and Cost Reduction Study (SCRS). Ontario Hydro is a public utility with the responsibility for meeting electricity need for the province of Ontario with a population of 9.6 million. In order to adequately address future electricity needs, Ontario Hydro has developed and submitted a demand/supply plan which covers the next 25 years. The SCRS for major projects contributed to this demand/supply plan

  4. Ontario hydro development program for steam generator waterlancing applications

    Malaugh, J.

    1992-01-01

    In the early 1980s, Ontario Hydro's main focus on waterlancing applications was in the development of technology for cleaning tubesheet sludge piles. In 1988, when Unit 2 at the Bruce Nuclear Generating Station (BNGS) was derated to 70% of full power due to severely blocked broach plates, high pressure waterlancing was proposed as a short-term solution. Due to the tight geometry that exist in the BNGS SGs (Steam Generator), an innovative approach was needed to deliver high pressure water to the broach hole locations. The initial lances and guides were modelled after a fiber-optic inspection system used for visual measurements of the broach openings. The waterlancing technology that was first developed for cleaning BNGS Unit 2 has evolved considerably since 1988. Both Units 1 and 2 upper broach plates have been successfully cleaned by waterlancing. At Pickering NGS, this technology is being further developed for use in cleaning broach plates and for tubesheet sludge lancing. This paper describes the development of the waterlance from the initial low pressure stainless steel lances to the current high pressure 'kevlar' lances. The major advances in this technology were borne out of a need to overcome the challenges presented by the SG geometry restrictions and the tenacity of the deposits that were encountered

  5. New avenues in cobalt-60 production at Ontario Hydro

    Mylvaganam, C.K.; Ronchka, R.A.

    1990-01-01

    Ontario Hydro produces cobalt-60 in the control rods of twelve power reactors. These reactors have a typical flux of 2 x 10 14 neutrons/cm 2 /s, making them efficient producers of cobalt-60. Current annual production is 45 million curies. Since the primary function of these reactors is the production of electricity, their flexibility to meet the needs of commercial cobalt production by the control rod route is limited. Ontario Hydro is therefore developing innovative production techniques, making use of the CANDU reactor's unique ability to be fuelled on-power. These techniques will enable production to better respond to the market's requirements for quantity and specific activity. As it is supplementary to control rod production, annual supply could potentially reach 165 million curies. (author)

  6. Brief on nuclear emergency planning and preparedness in Ontario

    1987-01-01

    Ontario has an excellent conceptual plan to ensure the safety of its inhabitants in the event of a nuclear accident anywhere in the world. This plan still needs to be translated into tangible preparedness to deal with such an emergency. The province is confident that, with the assistance of Ontario Hydro, a high level of nuclear emergency preparedness will soon be established for the people of the province

  7. Experience with a mobile whole body counting screening program at Ontario Hydro

    Wong, K.Y.

    1976-01-01

    A whole-body counting program using a trailer-mounted counter has been in service in Ontario Hydro since 1972 to monitor routinely internal uptakes of radionuclides by nuclear station employees. The philosophy and objectives of the program are discussed; equipment and calibration procedures are described, and experience over the past two and a half years is reviewed. The procedures to minimize the effects of external contamination, a problem commonly encountered in whole-body counting, are described. (auth)

  8. Expanding exports, increasing smog : Ontario Power Generation's and Hydro One's strategies to continue coal-fired electricity generation in Ontario

    Gibbons, J.

    2002-06-01

    The production of coal-fired electricity increased by approximately 150 per cent in Ontario between 1995 and 2000. As a result, the smog-causing emissions generated by the five coal-fired power plants operated by Ontario Power Generation caused an increase in smog and worsened air quality in the province as well as affecting air quality as far afield as the Atlantic provinces. Between 2002 and 2005, it is expected that the Pickering and Bruce nuclear plants will be returned to service, making the electricity generated by the coal plants surplus to Ontario's needs. Increasing this surplus are the planned natural gas generating stations. Ontario Power Generation is planning on using this surplus to export it to the United States rather than phasing out its reliance on coal. The increase in exports to the United States Northeast and Midwest is planned with Hydro One, already busy increasing its transmission capacity to the United States by 1,000 megawatt (MW). This plan involves laying 975 MW submarine cable from the Nanticoke Generating Station (operated by Ontario Power Generation) under Lake Erie to Pennsylvania, Ohio, or both states. At the moment, the exports are constrained by the government emissions limits imposed by the Ontario government on sulphur dioxide and nitrogen oxides. This constraint could be removed if Ontario Power Generation decides to pay further for pollution controls for sulphur dioxide and nitrogen oxides at its coal stations. Unfortunately, increasing the exports would also result in emissions increases for 28 other uncapped pollutants such as lead, mercury and arsenic. The author recommended that the Ontario government ban non-emergency coal-fired electricity exports to improve air quality in the province. refs., 8 figs

  9. Ontario Hydro's operating experience with steam generators with specifics on Bruce A and Bruce B problems

    Eatock, J W; Patterson, R W [Ontario Hydro, Toronto, ON (Canada); Dyck, R W [Ontario Hydro, Central Production Services Division, Toronto, ON (Canada)

    1991-04-01

    The performance of the steam generators in Ontario Hydro nuclear power stations is reviewed. This performance has generally been outstanding compared to world averages, with very low tube failure and plugging rates. Steam generator problems have made only minor contributions to Ontario Hydro nuclear station incapability factors. The mechanisms responsible for the the observed tube degradation and failures are described. The majority of the leaks have been due fatigue in the U-bend of the Bruce 'A' steam generators. There have been very few failures attributed to corrosion of the three tube materials used in Ontario Hydro steam generators. Recent performance has been deteriorating primarily due to deposit accumulation in the steam generators. Plugging of the broached holes in the upper support plates at Bruce 'A' has caused some derating of two units. Increases have been observed in the primary heat transport system reactor inlet temperature of several units. These increases may be attributed to steam generator tube surface fouling. In addition, several units have accumulated deep, hard sludge piles on the tube sheet, although little damage been observed. Recently some fretting of tubes has been observed at BNGSB in the U-bend support region. Remedial measures are being taken to address the current problems. Solutions are being evaluated to reduce the generation of corrosion products in the feedtrain and their subsequent transport to the steam generators. (author)

  10. Ontario Hydro's operating experience with steam generators with specifics on Bruce A and Bruce B problems

    Eatock, J.W.; Patterson, R.W.; Dyck, R.W.

    1991-01-01

    The performance of the steam generators in Ontario Hydro nuclear power stations is reviewed. This performance has generally been outstanding compared to world averages, with very low tube failure and plugging rates. Steam generator problems have made only minor contributions to Ontario Hydro nuclear station incapability factors. The mechanisms responsible for the the observed tube degradation and failures are described. The majority of the leaks have been due fatigue in the U-bend of the Bruce 'A' steam generators. There have been very few failures attributed to corrosion of the three tube materials used in Ontario Hydro steam generators. Recent performance has been deteriorating primarily due to deposit accumulation in the steam generators. Plugging of the broached holes in the upper support plates at Bruce 'A' has caused some derating of two units. Increases have been observed in the primary heat transport system reactor inlet temperature of several units. These increases may be attributed to steam generator tube surface fouling. In addition, several units have accumulated deep, hard sludge piles on the tube sheet, although little damage been observed. Recently some fretting of tubes has been observed at BNGSB in the U-bend support region. Remedial measures are being taken to address the current problems. Solutions are being evaluated to reduce the generation of corrosion products in the feedtrain and their subsequent transport to the steam generators. (author)

  11. Groundwater impact studies at three Ontario Hydro coal ash landfills

    Johnston, H.M.; Vorauer, A.G.; Chan, H.T.

    1992-01-01

    Ontario Hydro has produced on the order of 21 million Mg of coal fly ash over the past 40 years, of which, 80% has gone to various landfill sites in the province of Ontario. Hydrogeologic investigations have been performed in the vicinity of three Ontario Hydro coal ash landfill sites to assess the environmental impact of fly ash landfilling on the local groundwater regime. Two of the waste management facilities are associated with thermal generating stations (Lambton TGS and Nanticoke TGS) and are founded on relatively impermeable clay deposits. The third site, Birchwood Park, is a former sand and gravel pit for which the landfill design did not incorporate the use of a liner material. The rates of groundwater flow through the overburden materials a the three sites vary from less than 1 cm/a at the Lambton TGS site, to between 3.45 cm/a and 115 cm/a at contaminant transport at these sites also varies from being controlled by molecular diffusion to advection. This paper discusses the migration rates of contaminants from fly ash leachate at each of the three sites with implications to landfill containment and design

  12. Naturalization of landscaped parkland at Ontario Hydro's Nanticoke generating station

    McKenna, G.R.

    1998-01-01

    The implementation of a program for the naturalization of Nanticoke Park, a 30 hectare area located on the property of Ontario Hydro's Nanticoke Generating Station was discussed. The station, which is located in southern Ontario very near to noted wildlife areas, is the largest coal-fired generating station in North America. Naturalization of Nanticoke Park began with passive naturalization of interior areas. An active naturalization program involving four to five hectare size areas annually was begun in 1997, to be completed over a five -year period. This presentation described the site preparation, planting methods, post-planting tending methods, survival assessment of planted areas, and scientific research initiatives including mulch trials with zebra mussel shells to increase soil moisture. The lessons learned from the two year experiment in determining the optimum planting strategy and methods were described. 7 refs., 1 tab

  13. Cobalt-60 control in Ontario Hydro reactors

    Lacy, C.S.

    1988-01-01

    This paper discusses the impact of specifying reduced Cobalt-59 in the primary heat transport circuit materials of construction on the radiation fields developed around the primary circuit. An eight-fold reduction in steam generator radiation fields due to Cobalt-60 has been observed for two identical sets of reactors, one with and one without Cobalt-59 control. The comparison is between eight reactors at the Pickering Nuclear Generating Station (PNGS). Units 5 to 8 (PNGS-B) are identical to Units 1 to 4 (PNGS-A) except that PNGS-B has reduced impurity Cobalt-59 in the alloys of construction and a reduced use of stellite. The effects of chemistry control are also discussed

  14. Financial treatment of demand management expenditures at Ontario Hydro

    Ariss, D.G.

    1990-01-01

    Ontario Hydro's demand side management (DSM) plan comprises reduction of load, load shifting, and peak shaving. It includes an accounting policy applied only to measures which reduce demand by the increase in the efficiency of electricity of utilization or by the shifting of load from peak periods to off-peak periods. In order to choose the pertinent periods for which the DSM expenditures should be recovered, the utility has considered three accounting options: expensing all DSM expenditures as incurred; deferring all DSM expenditures; or deferring only those DSM expenditures that meet specified criteria. Ontario Hydro has chosen the last option, since it is in conformity with generally accepted accounting principles. This option is based on the matching principle, under which costs and revenues that are linked to each other in a cause-and-effect relationship should be recognized in the same accounting period. It has also been judged advantageous to amortize the deferred expenses corresponding to each measure over appropriate periods. It has also been established that the amortization period should begin immediately after each measure has been put into operation. This accounting policy ensures that expenses relating to DSM are accounted in a pertinent and uniform manner. 6 refs

  15. Development and applications of reactor noise analysis at Ontario Hydro`s CANDU reactors

    Gloeckler, O [Ontario Hydro, Toronto, ON (Canada); Tulett, M V [Ontario Hydro, Pickering, ON (Canada). Pickering Generating Station

    1996-12-31

    In 1992 a program was initiated to establish reactor noise analysis as a practical tool for plant performance monitoring and system diagnostics in Ontario Hydro`s CANDU reactors. Since then, various CANDU-specific noise analysis applications have been developed and validated. The noise-based statistical techniques are being successfully applied as powerful troubleshooting and diagnostic tools to a wide variety of actual operational I and C problems. The dynamic characteristics of critical plant components, instrumentation and processes are monitored on a regular basis. Recent applications of noise analysis include (1) validating the dynamics of in-core flux detectors (ICFDS) and ion chambers, (2) estimating the prompt fraction ICFDs in noise measurements at full power and in power rundown tests, (3) identifying the cause of excessive signal fluctuations in certain flux detectors, (4) validating the dynamic coupling between liquid zone control signals, (5) detecting and monitoring mechanical vibrations of detector tubes induced by moderator flow, (6) estimating the dynamics and response time of RTD (Resistance Temperature Detector) temperature signals, (7) isolating the cause of RTD signal anomalies, (8) investigating the source of abnormal flow signal behaviour, (9) estimating the overall response time of flow and pressure signals, (10) detecting coolant boiling in fully instrumented fuel channels, (11) monitoring moderator circulation via temperature noise, and (12) predicting the performance of shut-off rods. Some of these applications are performed on an as-needed basis. The noise analysis program, in the Pickering-B station alone, has saved Ontario Hydro millions of dollars during its first three years. The results of the noise analysis program have been also reviewed by the regulator (Atomic Energy Control Board of Canada) with favorable results. The AECB have expressed interest in Ontario Hydro further exploiting the use of noise analysis technology. (author

  16. The Ontario hydro low pressure turbine disc inspection program automated ultrasonic inspection systems - an overview

    Huggins, J.W.; Chopcian, M.; Grabish, M.

    1990-01-01

    An overview of the Ontario Hydro Low Pressure Turbine Disc Inspection Program is presented. The ultrasonic inspection systems developed in-house to inspect low pressure turbine discs at Pickering and Bruce Nuclear Generating stations are described. Three aspects of the program are covered: PART I - Background to inspection program, disc cracking experience, and development of an in-house inspection capability: PART II - System development requirements; ultrasonic equipment, electromechanical subsystems and instrumentation console: PART III - Customized software for flaw detection, sizing, data acquisition/storage, advanced signal processing, reports, documentation and software based diagnostics

  17. Developments in steam generator leak detection at Ontario Hydro

    Maynard, K.J.; Singh, V.P. [Ontario Hydro Technologies, Toronto, Ontario (Canada)

    1998-07-01

    A method for locating small tube leaks in steam generators has been developed and implemented at Ontario Hydro. The technique utilizes both helium leak detection and moisture leak detection. The combination of these two methods allows tube leaks to be detected in any part of the tube bundle, including those submerged below water near the tubesheet. The estimated detection limits for the helium and moisture leak detection systems are 0.001 kg/hr and 0.05 kg/hr respectively, expressed as leak rates measured at typical boiler operating conditions. This technology is best utilized in situations where the leak rate under operating conditions is smaller than the practical limit for fluorescein dye techniques ({approx}2 kg/hour). Other novel techniques have been utilized to increase the reliability and speed of the boiler leak search process. These include the use of argon carrier gas to stabilize the buoyant helium gas in the boiler secondary. (author)

  18. Developments in steam generator leak detection at Ontario Hydro

    Maynard, K.J.; Singh, V.P.

    1998-01-01

    A method for locating small tube leaks in steam generators has been developed and implemented at Ontario Hydro. The technique utilizes both helium leak detection and moisture leak detection. The combination of these two methods allows tube leaks to be detected in any part of the tube bundle, including those submerged below water near the tubesheet. The estimated detection limits for the helium and moisture leak detection systems are 0.001 kg/hr and 0.05 kg/hr respectively, expressed as leak rates measured at typical boiler operating conditions. This technology is best utilized in situations where the leak rate under operating conditions is smaller than the practical limit for fluorescein dye techniques (∼2 kg/hour). Other novel techniques have been utilized to increase the reliability and speed of the boiler leak search process. These include the use of argon carrier gas to stabilize the buoyant helium gas in the boiler secondary. (author)

  19. Service water electrochemical monitoring development at Ontario Hydro

    Brennenstuhl, A.M.

    1994-01-01

    Ontario Hydro (OH) is currently investigating the feasibility of using electrochemical techniques for the corrosion monitoring of service water systems. To date all evaluations have been carried out in a field simulator. The studies include examining the effects of; system startup after periods of stagnation, sodium hypochlorite injection, and zebra mussel settlement on metallic surfaces. Carbon steel and Type 304L stainless steel have been evaluated. Electrochemical potential noise (EPN), electrochemical current noise (ECN) potential and coupling current were semi-continuously monitored over a period of up to one year. Data obtained from the electrochemical noise monitoring has given OH valuable insights into the mechanisms of degradation in service water systems. The high sensitivity of the electrochemical noise technique, particularly to localized corrosion has proved to be the major attraction of the system

  20. Current issues in the management of low- and intermediate-level radioactive wastes from Ontario Hydro's CANDU reactors

    Krasznai, J.P.; Vaughan, B.R.; Williamson, A.S.

    1990-01-01

    Nuclear generating stations (NGSs) in Canada are operated by utilities in Ontario, Quebec, and New Brunswick. Ontario Hydro, with a committed nuclear program of 13,600 MW(electric) is the major producer of CANDU pressurized heavy-water reactor (PHWR) low- and intermediate-level radioactive wastes. All radioactive wastes with the exception of irradiated fuel are processed and retrievably stored at a centralized facility at the Bruce Nuclear Power Development site. Solid-waste classifications and annual production levels are given. Solid-waste management practices at the site as well as the physical, chemical, and radiochemical characteristics of the wastes are well documented. The paper summarizes types, current inventory, and estimated annual production rate of liquid waste. Operation of the tritium recovery facility at Darlington NGS, which removes tritium from heavy water and produces tritium gas in the process, gives rise to secondary streams of tritiated solid and liquid wastes, which will receive special treatment and packaging. In addition to the treatment of radioactive liquid wastes, there are a number of other important issues in low- and intermediate-level radioactive waste management that Ontario Hydro will be addressing over the next few years. The most pressing of these is the reduction of radioactive wastes through in-station material control, employee awareness, and improved waste characterization and segregation programs. Since Ontario Hydro intends to store retrievable wastes for > 50 yr, it is necessary to determine the behavior of wastes under long-term storage conditions

  1. [Ontario Hydro]. 1995 corporate budget and 1995--1997 business plan

    1995-01-01

    Ontario Hydro's corporate mission is to make Ontario Hydro a leader in energy efficiency and sustainable development, and to provide its customers with safe and reliable energy services at competitive prices. This document summarizes the corporation's work and financial results planned for the previous year and forecast for the two following years. It represents a consolidation of business plans prepared by the various business units

  2. [Ontario Hydro]. 1994 corporate budget and 1994--1996 business plan

    1994-01-01

    Ontario Hydro's Corporate mission is to make Ontario Hydro a leader in energy efficiency and sustainable development, and to provide its customers with safe and reliable energy services at competitive prices. This document summarizes the Corporation's work and financial results planned for the previous year and forecast for the two following years. It represents a consolidation of business plans prepared by the various Business Units

  3. Ontario Hydro experience in the identification and mitigation of potential failures in safety critical software systems

    Huget, R.G.; Viola, M.; Froebel, P.A.

    1995-01-01

    Ontario Hydro has had experience in designing and qualifying safety critical software used in the reactor shutdown systems of its nuclear generating stations. During software design, an analysis of system level hazards and potential hardware failure effects provide input to determining what safeguards will be needed. One form of safeguard, called software self checks, continually monitor the health of the computer on line. The design of self checks usually is a trade off between the amount of computing resources required, the software complexity, and the level of safeguarding provided. As part of the software verification activity, a software hazards analysis is performed, which identifiers any failure modes that could lead to the software causing an unsafe state, and which recommends changes to mitigate that potential. These recommendations may involve a re-structuring of the software to be more resistant to failure, or the introduction of other safeguarding measures. This paper discusses how Ontario Hydro has implemented these aspects of software design and verification into safety critical software used in reactor shutdown systems

  4. Development of organic tritium light technology at Ontario Hydro

    Mullins, D.F.; Krasznai, J.P.; Mueller, D.A.

    1992-01-01

    Tritium is a by-product of CANDU heavy water reactor operations and is the major contributor to internal dose for plant workers. The Darlington Tritium Removal Facility (DTRF) is decontaminating heavy water by removing tritium and storing it as a metal hydride. In view of the large tritium separation capacity, (24 MCi/a, 888 PBq/a). This paper reports that Ontario Hydro is interested in pursuing markets for the peaceful uses of tritium. One of these peaceful uses is in self-luminous lighting. The state of the art at present is a phosphor coated tube filled with tritium gas. However, safety considerations have restricted the use of these lights to outdoor or essential safety applications. Binding the tritium to a solid non-volatile matrix would increase the safety of tritium lights and allow the use of other phosphors, matrices and construction geometries. Solid, organic based tritium lights were produced using two different polymer matrices. While both these materials produced visible light, the intensity was low and radiolytic damage to the polymers was evident

  5. Zebra mussels mitigation at Ontario Hydro's hydroelectric generating facilities

    Dorneanu, A.M.

    1992-01-01

    The Great Lakes and their connecting channels have recently been invaded by a tiny freshwater mollusc that has already cost Ontario Hydro millions of dollars. Dreissena polymorpha, commonly known as the zebra mussel, entered the great lakes in ballast water carried by a ship from Europe in 1985. These mussels threaten to reduce or totally block the flow of water in auxiliary systems of any generating station, water treatment plant or municipal water facility that uses raw lake water and to cause accelerated corrosion of the metallic substrate to which they attach themselves. To satisfy the immediate need for control, chlorination was identified as the most effective interim measure to prevent the biofouling of the raw water systems. Detection and monitoring of mussels and the installation, operation, environmental constraints, benefits and deficiencies of the chemical treatment system are presented. Long term objectives for control of the mussels are to develop alternatives to chlorination (ozone, hydrogen peroxide, protective coatings, thermal shock, mechanical filtration, etc.) for application at existing facilities and for incorporation into the design of new facilities and rehabilitation programs. 3 refs., 5 figs

  6. Facing the challenges of nuclear power at Ontario Power Generation

    Howes, H.

    1999-01-01

    Nuclear power represents a major portion of Ontario Power Generation's generation mix and it will be the bedrock upon which we build a successful, competitive company. Our nuclear units offer many environmental and economic benefits, the one most relevant to this meeting is their significant contribution to the relatively low carbon intensity of Ontario's and Canada's electricity supply. In recent weeks, we have listened with great interest to the endorsement by our federal Minister of the Environment of nuclear technology as a means of reducing global warming. But endorsements of this type alone are not sufficient to ensure that nuclear remains an acceptable option for managing greenhouse gas emissions. Without public acceptance and support, the entire nuclear investment is endangered. At OPG we face three challenges to building this public support: we must continue to improve our safety margins and operating performance; we must continue to improve the environmental performance at our stations; and we must increase our community outreach. Today I would like to focus on the last two challenges and the actions that we are taking to maintain our social and environmental 'licence to operate.' But before I describe these initiatives, I will tell you about: the new company - Ontario Power Generation; the changes in store for Ontario's electricity sector; and our greenhouse gas emissions - the legacy from Ontario Hydro. (author)

  7. An artificial intelligence (AI) NOx/heat rate optimization system for Ontario Hydro`s fossil generating stations

    Luk, J.; Frank, A.; Bodach, P. [Ontario Hydro, Toronto, ON (Canada); Warriner, G. [Radian International, Tucker, GA (United States); Noblett, J. [Radian International, Austin, TX (United States); Slatsky, M. [Southern Company, Birmingham, AL (United States)

    1999-08-01

    Artificial intelligence (AI)-based software packages which can optimize power plant operations that improves heat rate and also reduces nitrogen oxide emissions are now commonly available for commercial use. This paper discusses the implementation of the AI-based NOx and Heat Rate Optimization System at Ontario Hydro`s generation stations, emphasizing the current AI Optimization Project at Units 5 and 6 of the Lakeview Generating Station. These demonstration programs are showing promising results in NOx reduction and plant performance improvement. The availability of the plant Digital Control System (DCS) in implementing AI optimization in a closed-loop system was shown to be an important criterion for success. Implementation of AI technology at other Ontario Hydro fossil generating units as part of the overall NOx emission reduction system is envisaged to coincide with the retrofit of the original plant control system with the latest DCS systems. 14 refs., 3 figs.

  8. Comments on nuclear reactor safety in Ontario

    1987-08-01

    The Chalk River Technicians and Technologists Union representing 500 technical employees at the Chalk River Nuclear Laboratories of AECL submit comments on nuclear reactor safety to the Ontario Nuclear Safety Review. Issues identified by the Review Commissioner are addressed from the perspective of both a labour organization and experience in the nuclear R and D field. In general, Local 1568 believes Ontario's CANDU nuclear reactors are not only safe but also essential to the continued economic prosperity of the province

  9. MEA [Municipal Electric Association] declares opposition to 1991 Ontario Hydro rate increase

    Anon.

    1991-01-01

    In hearings before the Ontario Energy Board, the Municipal Electric Association (MEA) called for an average 1992 rate increase of 10.3%, lower than Ontario Hydro's revised figure of 10.4%, and a $129 million reduction in its operations, maintenance and administration budget. As it has been noted that Hydro pays considerably higher wages than the surrounding reference community, MEA recommended that the utility reduce and eventually eliminate the premium paid to employees, and also called for staff reductions and layoffs for 1991 and 1992. In the area of transmission reliability, MEA stated that Ontario Hydro's transmission maintenance is suffering at the expense of other priorities, and called for reorganizing its transmission plan to achieve target performance by 1996 rather than 1999. In 1991, only 65-70% of maintenance targets were being achieved. MEA also accused Hydro of deferring operational expenditures into deferment and capitalization, creating a false picture of the utility's financial condition. Also discussed at the hearing were the possible overestimating of the effects of Ontario Hydro's demand management programs, the possibility that a shift to time-of-use rates for industrial customers may increase demand, a downgrading of the province's and the utility's credit rating, and the unpleasant side effects of the non-utility generation program

  10. The safety of Ontario's nuclear power reactor. A scientific and technical review. Report to the Minister

    Hare, F.K.

    1988-01-01

    In December 1986 a study of the safety of the design, operating procedures and emergency plans associated with Ontario Hydro's nuclear generating plants was commissioned by the government of the province of Ontario. After receiving briefs from many interested groups and individuals, visiting the power plants, and consulting with nuclear industry and regulatory representatives in Canada and other countries, the commissioner presented this report to the Minister of Energy for Ontario. His major conclusion is that Ontario Hydro reactors are being operated safely and at high standards of technical performance. No significant adverse impact has been detected in either the work force or the public. The risk of accidents serious enough to affect the public adversely can never be zero, but is very remote. Major recommendations are that: Ontario Hydro re-examine its operational organization closely and commission a study of factors affecting human performance; and, that priority be given to finding a solution to pressure tube performance problems and to improving in-reactor monitoring. Sixteen other recommendations are presented relating to research and development, information exchange with other organizations, reactor performance, training, severe accident analysis, the provincial nuclear emergency plan, epidemiological studies, the Atomic Energy Control Board, public hearings, and women in the nuclear industry

  11. Interim report on nuclear power in Ontario

    1978-01-01

    An exhaustive report is presented on the implications of nuclear electric generation for Ontario's energy future. Such aspects as electrical demand and power planning, the CANDU fuel cycle, the nuclear debate, health, environmental and safety concerns, economics, social impacts and the status of the nuclear industry, uranium resources, ethical and political issues, nuclear weapons proliferation and plant security, and the regulation of nuclear power are dealt with in detail. (E.C.B.)

  12. Notes for remarks by William A. Farlinger, chairman of Ontario Hydro

    Farlinger, W.A.

    1997-01-01

    The advantages of convergence for gas and electric companies were discussed. Both utilities possess transmission lines, rights of way, billing systems and long-term customer relationships. The speaker, Chairman of Ontario Hydro, suggested that within a few years, customers may be in a position to choose their power supplier. Ontario Hydro's vision for convergence and the recent restructuring of the Corporation into three new signature companies (generation, transmission, retail) were described. In this process Ontario Hydro has taken steps toward open access to the grid by all producers, competition among many sellers and buyers, and choice of supplier by consumers for lower cost power. One of the basic driving forces for convergence in the energy field is the interchangeability of electricity or gas. Some municipalities have already implemented joint gas and electricity meter reading, and there are many other ways in which converge can provide cheaper power and better service to the consumer. Ultimately, convergence would mean that monopolies would disappear, as would the boundaries between the gas and electricity industries

  13. Nuclear cluster strategy Carolinas - Ontario - Saskatchewan

    Oberth, R.

    2012-01-01

    Organization of Candu Industries (OCI) is an industry association representing the interests of 170 private sector suppliers of products and services to the Canadian and offshore nuclear industries. OCI member companies, mainly in Ontario, employ over 30,000 highly specialized workers with over 12,000 working in nuclear area. OCI's objectives are to sustain the domestic nuclear program by building support among political leaders, the public and local communities, assist OCI member companies in becoming the preferred suppliers for domestic nuclear projects (competitive), assist OCI member companies in international nuclear markets - trade missions and vendor workshops. OCI is at the heart of an 'Ontario nuclear cluster'. The Carolinas have shown what can be achieved when industry, academia, S&T centers and governments collaborate with a shared vision to achieve a common goals. Ontario has the assets to become a stronger center for nuclear excellence. OCI is working to bring the pieces together. Saskatchewan has the assets to become a center of excellence in Small Modular Reactors (SMR) by licensing and constructing the first SMR in Canada.

  14. An artificial intelligence heat rate/NOx optimization system for Ontario Hydro`s Lambton Generating Station

    Luk, J.; Bachalo, K.; Henrikson, J. [Ontario Hydro, Toronto, ON (Canada); Roland, W.; Booth, R.C.; Parikh, N.; Radl, B. [Pegasus Technologies Ltd., Painesville, OH (United States)

    1998-12-01

    The utilization of artificial Intelligence (AI)-based software programs to optimize power plant operations by simultaneously improving heat rate performance and reducing NOx emissions was discussed. While many AI programs were initially used for demonstration purposes, they are now available for commercial use due to their promising results. In 1996, the Fossil Business Unit of Ontario Hydro initiated a study to evaluate AI technology as a tool for optimizing heat rate and NOx reduction in coal fired stations. Tests were conducted at Units 3 and 4 of the Lambton Generation Station, located just south of Sarnia, Ontario. The tests were conducted to examine three desirable options: (1) achieve at least 0.5 per cent improvement in heat rate concurrently with a NOx reduction of at least 5 per cent, (2) optimize on `heat rate` only with minimum improvement of 2 per cent, and optimize `minimal NOx` only with reduction target of 20 per cent or more, and (3) reach a collaborative agreement with a supplier to further explore and develop AI optimization applications for other advanced and more complex plant processes. Results indicated that NOx reduction and heat rate improvement are not contradictory goals. 15 refs., 1 fig.

  15. Ontario Hydro Pickering Generating Station fuel handling system performance

    Underhill, H.J.

    1986-01-01

    The report briefly describes the Pickering Nuclear Generating Station (PNGS) on-power fuel handling system and refuelling cycle. Lifetime performance parameters of the fuelling system are presented, including station incapability charged to the fuel handling system, cost of operating and maintenance, dose expenditure, events causing system unavailability, maintenance and refuelling strategy. It is concluded that the 'CANDU' on-power fuelling system, by consistently contributing less than 1% to the PNGS incapability, has been credited with a 6 to 20% increase in reactor capacity factor, compared to off-power fuelling schemes. (author)

  16. Development and applications of reactor noise analysis at Ontario Hydro's CANDU reactors

    Gloeckler, O.; Tulett, M.V.

    1995-01-01

    In 1992 a program was initiated to establish reactor noise analysis as a practical tool for plant performance monitoring and system diagnostics in Ontario Hydro's CANDU reactors. Since then, various CANDU-specific noise analysis applications have been developed and validated. The noise-based statistical techniques are being successfully applied as powerful troubleshooting and diagnostic tools to a wide variety of actual operational I and C problems. The dynamic characteristics of critical plant components, instrumentation and processes are monitored on a regular basis. Recent applications of noise analysis include (1) validating the dynamics of in-core flux detectors (ICFDS) and ion chambers, (2) estimating the prompt fraction ICFDs in noise measurements at full power and in power rundown tests, (3) identifying the cause of excessive signal fluctuations in certain flux detectors, (4) validating the dynamic coupling between liquid zone control signals, (5) detecting and monitoring mechanical vibrations of detector tubes induced by moderator flow, (6) estimating the dynamics and response time of RTD (Resistance Temperature Detector) temperature signals, (7) isolating the cause of RTD signal anomalies, (8) investigating the source of abnormal flow signal behaviour, (9) estimating the overall response time of flow and pressure signals, (10) detecting coolant boiling in fully instrumented fuel channels, (11) monitoring moderator circulation via temperature noise, and (12) predicting the performance of shut-off rods. Some of these applications are performed on an as-needed basis. The noise analysis program, in the Pickering-B station alone, has saved Ontario Hydro millions of dollars during its first three years. The results of the noise analysis program have been also reviewed by the regulator (Atomic Energy Control Board of Canada) with favorable results. The AECB have expressed interest in Ontario Hydro further exploiting the use of noise analysis technology. (author

  17. AUTOSORO: A fuel management study program for Ontario Hydro CANDU reactors

    Wilk, L.

    1988-01-01

    A computer program, AUTOSORO, has been developed to automatically simulate an Ontario Hydro CANDU reactor core for any time duration according to user-defined on-power refuelling criteria. It is a three-dimensional two-group diffusion code coupled to refuelling decision logic at three screening levels: burnup, coupled neighbor, full-core. A central feature is a projected local-iteration scheme for predicting fuelling-induced local neutron flux changes. Comparisons of AUTOSORO results with actual histories demonstrate that it will be an excellent productivity tool for future in-core fuel management studies, reducing several man-months of effort to several man-hours

  18. Ontario Power Generation Nuclear: results and opportunities

    Dermarkar, F.

    2006-01-01

    This paper describes the accomplishments of Ontario Power Generation (OPG) Nuclear and outlines future opportunities. OPG's mandate is to cost effectively produce electricity, while operating in a safe, open and environmentally responsible manner. OPG's nuclear production has been increasing over the past three years - partly from the addition of newly refurbished Pickering A Units 1 and 4, and partly from the increased production from Darlington and Pickering B. OPG will demonstrate its proficiency and capability in nuclear by continuing to enhance the performance and cost effectiveness of its existing operations. Its priorities are to focus on performance excellence, commercial success, openness, accountability and transparency

  19. Design considerations, operating and maintenance experience with wet storage of Ontario Hydro's used fuel

    Frost, C.R.

    1989-01-01

    The characteristics of Ontario Hydro's fuel and at-reactor used fuel storage water pools (or used fuel bays) are described. There are two types of bay, known respectively as primary bays and auxiliary bays, used for at- reactor used fuel storage. Used fuel is discharged remotely from Ontario Hydro's reactors to the primary bays for initial storage and cooling. The auxiliary bays are used to receive and store fuel after its initial cooling in the primary bay, and provide additional storage capacity as needed. With on- power fueling of reactors, each reactor of greater than 500 MW(e) net discharges an average of 10 or more used fuel bundles to bay storage every full power day. The logistics of handling such large quantities of used fuel bundles (corresponding to about 300 te/year of uranium for a 4 unit station) present a challenge to designers and operators. The major considerations in used fuel bay design, including site- specific requirements, reliability and quality assurance, are discussed

  20. The dual hydro x nuclear power plants

    Borges, J.C.

    1984-01-01

    An our daily life in modern society becomes more and more dependent on electricity, supply of this kind of energy should not only be a part of a global energy policy, but also lay down rigorous criteria to garanty the market supply. Planning actions of the electrical sector are more sensitive to unforseen events, either to brief interruptions in energy supply or to non-equilibrium at any time of the excess of supply over demand. In this way, the cost factor although basic, does not lead to optimal solutions in decisions which involve options between different technologies and energy sources to generate electricity. In this paper, we analyse the above situation in the case of deciding between utilization of nuclear or hydro power plants to supply the Brazilian demande for electricity. Our final objective was the search for parameters which could lead us to better identify and understand the adroitness and mistakes of the Brazilian Nuclear Program. (Author) [pt

  1. Ontario Hydro's environmental monitoring program for HV [high voltage] transmission line projects

    Braekevelt, P.N.

    1991-01-01

    Responsible monitoring and control of environmental impacts is key to obtaining future needed approvals for new high voltage (HV) transmission line projects. Ontario Hydro's environmental monitoring program was developed as a highly structured, self-imposed monitoring system to relieve government agencies of the responsibility of developing a similar external program. The goal was to be self-policing. The historical development, program structure, standards, priority ratings, documentation, communication and computerization of the program is described. The most effective way to minimize environmental impacts is to avoid sensitive features at the route selection stage, well before any construction takes place. The environmental monitoring program is based on the following blueprint: each crew member is responsible for environmental protection; environmental problems are to be resolved at the lowest level possible; potential concerns should be resolved before they become problems; known problems should be dealt with quickly to minimize impacts; team members should work cooperatively; and formal and regular communication is emphasized

  2. Ontario Hydro Research Division's program for treatment of spent ion-exchange resins

    Nott, B.R.; Dodd, D.J.R.

    1981-09-01

    A brief review of the evolution of work programmes for chemical treatment of spent ion-exchange resins in Ontario Hydro's Research Division is presented. Attention has been focussed on pre-treatment processes for the treatment of the spent resins prior to encapsulation of the products in solid matrices. Spent Resin Regeneration and Acid Stripping processes were considered in some detail. Particular attention was paid to carbon-14 on spent resins, its determination in and removal from the spent resins (with the acid stripping technique). The use of separate cation and anion resin beds instead of mixed bed resins was examined with a view to reducing the volume of resin usage and consequently the volume of waste radioactive ion-exchange resin generated. (author)

  3. Design considerations and operating experience with wet storage of Ontario Hydro's irradiated fuel

    Frost, C.R.; Naqvi, S.J.; McEachran, R.A.

    1987-01-01

    The characteristics of Ontario Hydro's fuel and at-reactor irradiated fuel storage water pools (or irradiated fuel bays) are described. There are two types of bay known respectively as primary bays and auxiliary bays, used for at-reactor irradiated fuel storage. Irradiated fuel is discharged remotely from Ontario Hydro's reactors to the primary bays for initial storage and cooling. The auxiliary bays are used to receive and store fuel after its initial cooling in the primary bay, and provide additional storage capacity as needed. The major considerations in irradiated fuel bay design, including site-specific requirements, reliability and quality assurance, are discussed. The monitoring of critical fuel bay components, such as bay liners, the development of high storage density fuel containers, and the use of several irradiated fuel bays at each reactor site have all contributed to the safe handling of the large quantities of irradiated fuel over a period of about 25 years. Routine operation of the irradiated fuel bays and some unusual bay operational events are described. For safety considerations, the irradiated fuel in storage must retain its integrity. Also, as fuel storage is an interim process, likely for 50 years or more, the irradiated fuel should be retrievable for downstream fuel management phases such as reprocessing or disposal. A long-term experimental program is being used to monitor the integrity of irradiated fuel in long-term wet storage. The well characterized fuel, some of which has been in wet storage since 1962 is periodically examined for possible deterioration. The evidence from this program indicates that there will be no significant change in irradiated fuel integrity (and retrievability) over a 50 year wet storage period

  4. Province of Ontario nuclear emergency plan. Pt. 1

    1986-06-01

    The Province of Ontario Nuclear Emergency Plan has been developed pursuant to Section 8 of the Emergency Plans Act, 1983. This plan replaces the Province of Ontario Nuclear Contingency Off-Site Plan (June 1980) which is no longer applicable. The wastes plan includes planning, preparation, emergency organization and operational responsibilities and policy

  5. The safety of Ontario's nuclear power reactors. A scientific and tecnical review. Vol. 1: Report to the Minister, technical report and annexes

    Hare, F.K.

    1988-01-01

    In December 1986 a study of the safety of the design, operating procedures and emergency plans associated with Ontario Hydro's nuclear generating plants was commissioned by the government of the province of Ontario. After receiving briefs from many interested groups and individuals, visiting the power plants, and consulting with nuclear industry and regulatory representatives in Canada and other countries, the commissioner presented this report to the Minister of Energy for Ontario. His major conclusion is that Ontario Hydro reactors are being operated safely and at high standards of technical performance. No significant adverse impact has been detected in either the work force or the public. The risk of accidents serious enough to affect the public adversely can never be zero, but is very remote. Major recommendations are that: Ontario Hydro re-examine its operational organization closely and commission a study of factors affecting human performance; and, that priority be given to finding a solution to pressure tube performance problems and to improving in-reactor monitoring. Sixteen other recommendations are presented relating to research and development, information exchange with other organizations, reactor performance, training, severe accident analysis, the provincial nuclear emergency plan, epidemiological studies, the Atomic Energy Control Board, public hearings, and women in the nuclear industry. This volume contains a detailed technical analysis of the CANDU system, its associated safety procedures, emergency measures required in the case of a nuclear accident, and regulation of the Canadian nuclear industry. Annexes provide further details on the operation of the Ontario Nuclear Safety Review

  6. The deregulation of the electricity industry : a commercial and industrial perspective from Ontario Hydro's point of view

    Bojovski, T.

    2000-01-01

    A summary of how consumers will be affected by the newly opened competitive electricity market in Ontario was presented. Consumers will be able to choose their suppliers of electricity and will have the option to buy packages which may include natural gas and long distance telephone service. Licensed wholesalers will purchase the lowest-cost electricity from power generators anywhere in North America and will have the freedom to charge spot market prices. Ontario Hydro, which has been operating as a monopoly has now been separated into three separate entities including power generation, transmission and distribution, and wholesale market administration through the Ontario Power Generation Inc., Hydro One, and the Independent Market Operator (IMO) respectively. The main objective of this unbundling of services was to bring electricity prices down. An agreement entitled Market Power Mitigation ensures that when competition officially begins, Ontario Power Generation will have to observe a revenue cap on a fixed amount of energy and allow new suppliers to act as providers of electricity. As electrical power demand increases there are concerns over power reliability and costly power outages. 2 figs

  7. Fuel string supporting shield plug (f3sp) for Ontario Hydro - Bruce NGSA

    Henry, P T [Canadian General Electric Co. Ltd., Peterborough, ON (Canada)

    1997-12-31

    A reactor `power pulse` problem was identified for the Ontario Hydro Bruce generating stations. On a postulated inlet header break, the fuel strings in a large number of channels could relocate toward the upstream end, resulting in a power pulse. The solution adopted for Bruce GSA is to change the direction of fuelling, from against the flow, to fuelling with the flow. In this revised fuelling scheme, given a postulated inlet header failure, the fuel bundle with the highest burnup would relocate into the reactor core and introduce a negative reactivity during the accident. However, this fuelling configuration results in a highly irradiated fuel bundle residing in the most downstream position against the latch. The latch supports only the outer ring of elements, not the end plate. A resulting high stress on the end plate coupled with high levels of hydrogen and deuterium may result in Zr hydride assisted cracking in the end plate during hot shutdown conditions. (In fuelling against flow, this is not a problem, since the latch supported bundle is not irradiated and has only low levels of hydrogen and deuterium.) A fuel string supporting shield plug (f3sp) which supports the bundle end plate has been developed as a solution to the fuel bundle end plate cracking problem. It would replace the existing outlet shield plug in all channels. This paper will describe the f3sp design, associated fuel handling, operation and qualification for reactor use. (author). 8 figs.

  8. Fuel string supporting shield plug (f3sp) for Ontario Hydro - Bruce NGSA

    Henry, P.T.

    1996-01-01

    A reactor 'power pulse' problem was identified for the Ontario Hydro Bruce generating stations. On a postulated inlet header break, the fuel strings in a large number of channels could relocate toward the upstream end, resulting in a power pulse. The solution adopted for Bruce GSA is to change the direction of fuelling, from against the flow, to fuelling with the flow. In this revised fuelling scheme, given a postulated inlet header failure, the fuel bundle with the highest burnup would relocate into the reactor core and introduce a negative reactivity during the accident. However, this fuelling configuration results in a highly irradiated fuel bundle residing in the most downstream position against the latch. The latch supports only the outer ring of elements, not the end plate. A resulting high stress on the end plate coupled with high levels of hydrogen and deuterium may result in Zr hydride assisted cracking in the end plate during hot shutdown conditions. (In fuelling against flow, this is not a problem, since the latch supported bundle is not irradiated and has only low levels of hydrogen and deuterium.) A fuel string supporting shield plug (f3sp) which supports the bundle end plate has been developed as a solution to the fuel bundle end plate cracking problem. It would replace the existing outlet shield plug in all channels. This paper will describe the f3sp design, associated fuel handling, operation and qualification for reactor use. (author). 8 figs

  9. Statement to the Select Committee of the Legislature by the Minister of Energy on Ontario Hydro's uranium supply contracts with Denison Mines Ltd. and Preston Mines Ltd

    1978-01-01

    Contracts between Ontario Hydro and two uranium suppliers, Denison Mines and Preston Mines, provide the utility with an assured supply of uranium from 1980 to 2011 at below world price, and give the suppliers financial aid in expanding their facilities. The total value of these contracts in 1978 dollars is $6.3 billion. Ontario Hydro decided to seek long-term supply contracts because there is expected to be continuing pressure on available uranium supplies wth steadily rising prices. The government of Ontario believes the contracts to be in the public interest. (LL)

  10. The long-term outlook for nuclear capacity in Ontario

    Archinoff, G.H.

    1979-04-01

    This report derives three estimates of long-term nuclear growth in Ontario for use in strategy studies of alternate nuclear fuel cycles. The low and high estimates encompass the full range of possible long-term nuclear growth rates. The middle, or base growth, estimate represents the nuclear growth pattern which seems at the present time most likely to occur. For the base growth estimate, nuclear capacity in Ontario reaches 31 GWe in 2000, grows to 175 GWe by 2060, and then remains constant. For the high growth estimate, the capacity in 2000 is 33 GWe, and climbs continuously to 833 GWe by the year 2100. (auth)

  11. Activities in support of licensing Ontario Hydro's Dry Storage Container for radioactive waste transportation

    Boag, J.M.; Lee, H.P.; Nadeau, E.; Taralis, D.; Sauve, R.G.

    1993-01-01

    The Dry Storage Container (DSC) is being developed by Ontario Hydro for the on-site storage and possible future transportation of used fuel. The DSC is essentially rectangular in shape with outer dimensions being approximately 3.5 m (H) x 2.1 m (W) x 2.2 m (L) and has a total weight of approximately 68 Mg when loaded with used fuel. The container cavity is designed to accommodate four standard fuel modules (each module contains 96 CANDU fuel bundles). The space between inner and outer steel linear (each about 12.7 mm thick) is filled with high-density reinforced shielding concrete (approximately 500 mm thick). Foam-core steel-lined impact limiters will be fitted around the container during transportation to provide impact protection. In addition, an armour ring will be installed around the flanged closure weld (inside the impact limiter) to provide protection from accidental pin impact. Testing and impact analyses have demonstrated that the DSC was able to withstand a 9 m top corner drop and a 1 m drop onto a cylindrical pin (at the welded containment flange) without compromising the structural integrity of the DSC. Thermal analysis of the DSC during simulated fire accident conditions has shown that at the end of the fire, the exterior wall and interior cavity wall temperatures were 503degC and 78degC, respectively. The maximum fuel sheath temperature predicted was 137degC which was below the maximum allowable temperature for the fuel. The FD-HEAT code used for this analysis was validated through a heat conduction test of an actual DSC wall section. (J.P.N.)

  12. Report of the advisory committee on the management and disposition of Ontario Hydro's contracts with non-utility generators

    Anon.

    1999-01-01

    The report from the advisory committee on the management and disposition of Ontario Hydro's contracts with non-utility generators on the future management and disposition of the power purchase agreements entered into by Ontario Hydro with each non-utility generator (a NUG) is discussed. The integration of NUG contracts into a restructured competitive electricity market, the complexity of the contracts and the disparity of size, resources and approach to the integration exercise of the NUGs produces to an array of challenging issues. The committee identified three alternative strategies for dealing with NUG contracts in Ontario. The first is to use the independent Electricity Market Operator as a purely passive contract holder and above-market cost collection agent. The second is to make the Ontario Electricity Financial Corporation (OEFC) the contract holder and use a commercially oriented manager to administer the NUG contracts. This would minimize above-market costs and to advise on buyouts, compute above-market costs as an amount based on the difference between estimated future contract payments and estimated future market revenues for NUG power and recover them from domestic customers as a part of a single pooled Competition Transfer Charge. The third is to make the OEFC the contract holder, use a commercially oriented manager to administer the NUG contracts, to minimize above-market costs and to advise on buyouts. The OEFC would compute above-market costs as an amount based on the difference between estimated future contract payments and estimated future market revenues for NUG power and recover them from domestic customers as a part of a pooled CTC. The IMO would be used to collect the above-market NUG contract part of the pooled CTC as agent of the contract holder, in a contract uplift that would, like the levy in the first strategy, be charged to wholesale market participants and be included in rates paid by domestic end-use customers.1

  13. Nuclear generation cost management and economic benefits

    Horton, E.P.; Sepa, T.R.

    1989-01-01

    The CANDU-Pressurized Heavy Water (CANDU-PHW) type of nuclear generating station has been developed jointly by Atomic Energy of Canada Limited and Ontario Hydro. This report discusses the cost management principles used for Ontario Hydro's CANDU-PHW program, current cost management initiatives, and the economic benefits of nuclear power to the provinces of Ontario and New Brunswick, in Canada

  14. Operating experience and corrective action program at Ontario Hydro Nuclear

    Collingwood, Barry; Turner, David

    1998-01-01

    This is a slide-based talk given at the COG/IAEA: 5. Technical Committee Meeting on 'Exchange of operating experience of pressurized heavy water reactors'. In the introduction there are presented the operating experience (OPEX) program of OHN, and the OPEX Program Mission, ensuring that the right information gets to the right staff at the right time. The OPEX Processes are analysed. These are: - Internal Corrective Action; - Inter-site Lesson Transfer; - External Lesson Transfer; - External Posting of OHN Events; - Internalizing Operating Experience. Steps in solving the Corrective Action Program are described: - Identify the Problem; - Notify Immediate Supervision/Manager; - Evaluate the Problem; - Correct the Problem; Monitor/Report Status. The Internal Corrective Action is then presented as a flowchart. The internalizing operating experience is presented under three aspects: - Communication; - Interface; - Training. The following items are discussed, respectively: peer meetings, department/section meetings, safety meetings, e-mail folders, newsletters and bulletin boards; work planning, pre-job briefings, supervisors' briefing cards; classroom initial and refresher (case studies), simulator, management courses. A diagram is presented showing the flow and treatment of information within OHN, centered on the weekly screening meetings. Finally, the corrective action processes are depicted in a flowchart and analysed in details

  15. A review of current knowledge on the effects of hydrogen on the pressure tubes of Ontario Hydro operating reactors

    Leger, M.

    1982-01-01

    Since the occurrence of cracking in Zr-2.5 wt% Nb pressure tubes in Pickering 'A' units 3 and 4 in 1974/75 a great deal of information on the behaviour of hydrogen in pressure tube materials has been generated through research effort by both AECL and Ontario Hydro. In order to use this information effectively and to provide direction and co-ordination for ongoing research, a review of available information and current concerns on hydrogen in pressure tubes was undertaken. The review was divided into two main areas of interest: hydrogen ingress and hydride effects. The uncertainties in the rates of hydrogen ingress into the pressure tubes have been found to be very large. On the basis of current knowledge, predictions of the future behaviour of pressure tubes due to hydride effects are extremely difficult

  16. Economic impact of Hydro-Quebec's nuclear activities

    Emard, R.

    1994-01-01

    Gentilly 2 nuclear power plant has benefited the regions of Becancour and Trois Rivieres, with spin-off at the provincial level. Gentilly 2 is Hydro Quebec's only nuclear plant. Its 675 MW provide nearly 3% of Hydro Quebec's production. Over 664 permanent jobs were created, 70% of them highly specialized and multi-skilled. In 1993, out of C$99 spent, 57.3 were for wages, 16.3 for equipment and supplies (including fuel and heavy water), 18 for professional services provided by AECL and others, and the remainder included fees, permits, contract work, and miscellaneous. Gentilly 2 has fostered technological development and inventions which are used at other CANDU stations. 7 ills

  17. Union innovation in Ontario's nuclear industry

    MacKinnon, D.

    2003-01-01

    Over the last decade the Power Worker's Union (PWU) has embarked on a number of innovative approaches that have provided significant benefit to the nuclear industry. These include advanced labour relations approaches, equity participation and groundbreaking skills training initiatives. This presentation outlines these and other initiatives in the context of the union's view of the nuclear generation industry's future. (author)

  18. Ontario's new electricity market and the future of OPG

    Howes, H.

    2002-01-01

    The recent measures taken by Ontario Power Generation since 1998 to deregulate the electricity market in the province of Ontario are reviewed. The opening of Ontario's power market in May 2002 will oblige Ontario Power Generation to reduce its market share. The author reviewed the current status of the energy market in Ontario and noted a modest growth in demand. A significant portion of the energy supply is being provided by nuclear, fossil fuels and hydro energy. The challenge facing Ontario Power Generation is to stay competitive in the new deregulated market and to participate in the energy market in the United States. 6 figs

  19. Hydro and nuclear power for African less-carbon development

    El-Gazzar, Mohamed; Ibrahim, Yassin Mohamed; Bedrous, Maher Aziz

    2007-07-01

    Though the overall picture reveal availability of enormous energy resources which far exceed energy requirements of Africa, most of these resources are grossly underutilized, particularly hydro and nuclear resources. It suggests that Africa's problem is not lack of energy resources but its development and utilization. The region will remain a major net exporter of energy for several decades to com. In dealing with its energy problems Africa faces a unique set of initial conditions, defined mainly by its level and pattern of economic growth, social and demographic characteristics, energy resource endowment, location distances between supply sources and consumption areas, technological underdevelopment, and poverty-driven energy-environment conflict. A key challenge is the optimal utilization of the Africa's energy resources to facilitate both individual country and regional energy and economic development. Stronger emphasis on a more integrated energy supply network based on more widespread regional initiatives, particularly in electricity is essential to sustainable energy development in Africa. This paper discusses the prospects for hydro and nuclear power in Africa. The continent is the poorest in the world. The lack of reliable, accessible and affordable energy hinders its development. Hydro and nuclear power promises to be the least-carbon energy sources, while being the cheapest and most reliable among all. The role the hydropower can play in securing a sustainable energy future for Africa is highly emphasized. Also, nuclear power has many advantages to Africa. Opportunities for hydropower and nuclear power in Africa are all considered. Advantages and disadvantages are also all discussed. (auth)

  20. A departmental brief to the Ontario Nuclear Safety Review

    1987-09-01

    The major nuclear activity in Canada is that associated with the generation of electricity by nuclear power stations. This area is in part subject to federal jurisdiction under the authority of the Atomic Energy Control Board. Environment Canada can play a significant role in influencing decisions regarding environmental aspects of nuclear energy development. The Department believes that the best way to preserve the quality of the environment is to anticipate and prevent problems before they arise. However, even if all precautionary measures were taken in the design and operating procedures of nuclear power stations, accidents can occur and radionuclides and toxic pollutants may escape and disperse into the environment. This brief outlines the rationale for Environment Canada's involvement and role in the nuclear area, and the major programs and activities of the Department with respect to environmental protection and emergency preparedness. The brief also makes recommendations for consideration of environmental protection technologies for nuclear power stations, for improved measurement and modelling capabilities relating to release and dispersion of radionuclides during accident conditions, and for improved communication with the public following a nuclear emergency. Environment Canada recommends that an appropriate environmental review process be undertaken for new or expanded nuclear facilities in Ontario

  1. A hydrological prediction system based on the SVS land-surface scheme: efficient calibration of GEM-Hydro for streamflow simulation over the Lake Ontario basin

    É. Gaborit

    2017-09-01

    Full Text Available This work explores the potential of the distributed GEM-Hydro runoff modeling platform, developed at Environment and Climate Change Canada (ECCC over the last decade. More precisely, the aim is to develop a robust implementation methodology to perform reliable streamflow simulations with a distributed model over large and partly ungauged basins, in an efficient manner. The latest version of GEM-Hydro combines the SVS (Soil, Vegetation and Snow land-surface scheme and the WATROUTE routing scheme. SVS has never been evaluated from a hydrological point of view, which is done here for all major rivers flowing into Lake Ontario. Two established hydrological models are confronted to GEM-Hydro, namely MESH and WATFLOOD, which share the same routing scheme (WATROUTE but rely on different land-surface schemes. All models are calibrated using the same meteorological forcings, objective function, calibration algorithm, and basin delineation. GEM-Hydro is shown to be competitive with MESH and WATFLOOD: the NSE  √  (Nash–Sutcliffe criterion computed on the square root of the flows is for example equal to 0.83 for MESH and GEM-Hydro in validation on the Moira River basin, and to 0.68 for WATFLOOD. A computationally efficient strategy is proposed to calibrate SVS: a simple unit hydrograph is used for routing instead of WATROUTE. Global and local calibration strategies are compared in order to estimate runoff for ungauged portions of the Lake Ontario basin. Overall, streamflow predictions obtained using a global calibration strategy, in which a single parameter set is identified for the whole basin of Lake Ontario, show accuracy comparable to the predictions based on local calibration: the average NSE  √  in validation and over seven subbasins is 0.73 and 0.61, respectively for local and global calibrations. Hence, global calibration provides spatially consistent parameter values, robust performance at gauged locations, and reduces the

  2. A hydrological prediction system based on the SVS land-surface scheme: efficient calibration of GEM-Hydro for streamflow simulation over the Lake Ontario basin

    Gaborit, Étienne; Fortin, Vincent; Xu, Xiaoyong; Seglenieks, Frank; Tolson, Bryan; Fry, Lauren M.; Hunter, Tim; Anctil, François; Gronewold, Andrew D.

    2017-09-01

    This work explores the potential of the distributed GEM-Hydro runoff modeling platform, developed at Environment and Climate Change Canada (ECCC) over the last decade. More precisely, the aim is to develop a robust implementation methodology to perform reliable streamflow simulations with a distributed model over large and partly ungauged basins, in an efficient manner. The latest version of GEM-Hydro combines the SVS (Soil, Vegetation and Snow) land-surface scheme and the WATROUTE routing scheme. SVS has never been evaluated from a hydrological point of view, which is done here for all major rivers flowing into Lake Ontario. Two established hydrological models are confronted to GEM-Hydro, namely MESH and WATFLOOD, which share the same routing scheme (WATROUTE) but rely on different land-surface schemes. All models are calibrated using the same meteorological forcings, objective function, calibration algorithm, and basin delineation. GEM-Hydro is shown to be competitive with MESH and WATFLOOD: the NSE √ (Nash-Sutcliffe criterion computed on the square root of the flows) is for example equal to 0.83 for MESH and GEM-Hydro in validation on the Moira River basin, and to 0.68 for WATFLOOD. A computationally efficient strategy is proposed to calibrate SVS: a simple unit hydrograph is used for routing instead of WATROUTE. Global and local calibration strategies are compared in order to estimate runoff for ungauged portions of the Lake Ontario basin. Overall, streamflow predictions obtained using a global calibration strategy, in which a single parameter set is identified for the whole basin of Lake Ontario, show accuracy comparable to the predictions based on local calibration: the average NSE √ in validation and over seven subbasins is 0.73 and 0.61, respectively for local and global calibrations. Hence, global calibration provides spatially consistent parameter values, robust performance at gauged locations, and reduces the complexity and computation burden of the

  3. Secured electrical supply at least cost: Coal, gas, nuclear, hydro

    Gavor, J. [ENA Ltd., Prague (Czechoslovakia); Stary, O.; Vasicek, J. [Czech Technical Univ., Prague (Czechoslovakia)

    1995-12-01

    Electric power sector in East Central European countries finds in a difficult period. In the situation of demand stagnation, enormous investments must be realized in a very short time. Today`s decisions in the development strategy will influence the long term future of the industry. The optimal structure of the sources is one of the most important problem to be solved. Paper describes the current structure of the sources in electric power sector in the Czech Republic. The importance of coal, oil and gas, nuclear and hydro in electric power generation is compared. Taking into account the different position in the load coverage, economy of individual sources is evaluated and basic results of discounted cash flow calculations are presented. Information on specific investment programs and projects are included and further trends are estimated.

  4. Nuclear electrolytic hydrogen

    Barnstaple, A.G.; Petrella, A.J.

    1982-05-01

    An extensive study of hydrogen supply has recently been carried out by Ontario Hydro which indicates that electrolytic hydrogen produced from nuclear electricity could offer the lowest cost option for any future large scale hydrogen supply in the Province of Ontario, Canada. This paper provides a synopsis of the Ontario Hydro study, a brief overview of the economic factors supporting the study conclusion and discussion of a number of issues concerning the supply of electrolytic hydrogen by electric power utilities

  5. The safety of Ontario's nuclear power reactors. A scientific and technical review. Selected consultants' reports

    Hare, F.K.

    1988-01-01

    The Review commissioned 31 consultants to prepare detailed analyses of specific safety-related questions raised by the design and operation of Ontario Hydro's CANDU reactors. This volume presents 10 of these reports, which I judge to be of sufficient general importance to justify the cost of wide circulation. They have been reproduced precisely as they were submitted. They do not express the Review's own judgements, but do contain a major part of the evidence that influenced those judgements. In several cases the consultants have presented formal recommendations. Some of these have been incorporated, often in modified form, as Review recommendations, in the Minister's Report. Others remain simply as recommendations from the individual consultants. I agree with most of them, but have not seen them as central to the Review's conclusions. I suggest that appropriate institutions--most notably Ontario Hydro and Atomic Energy Control Board--study them, and act as they see fit

  6. AECB staff annual assessment of the Darlington Nuclear Generating Station for the year 1995

    1996-06-01

    This report is the Atomic ENergy Control Board staff assessment of safety at the Darlington Nuclear Generating Station for 1995. The report is based on observations made by our staff, and on information submitted to us by Ontario Hydro. Performance was satisfactory for all four special safety systems. In 1995, Ontario Hydro complied with the regulations made under the Atomic Energy Control Act, except for two instances of non-compliance with the Transport Packaging of Radioactive Materials Regulations. Radiation doses received by Ontario Hydro station staff were below the regulatory limits. In general Ontario Hydro's maintenance program was found satisfactory. 9 tabs

  7. A recipe for nuclear operation success

    McConnell, L.G.

    1987-01-01

    Ontario, one of ten Canadian provinces, receives the majority of its electrical service from one utility called Ontario Hydro. Today, Ontario Hydro generates more than 50% of its electricity from nuclear stations of the CANDU type. The CANDU station performance, in respect to worker safety, public safety, environmental protection, reliability and cost, has been out-standing. Operations and maintenance is one of the several functions essential to high performance. This paper discusses some of the major considerations important to successful operations. (author)

  8. Assessing the financial positions of Ontario`s new electricity companies

    Connell, T. [Standard and Poor`s, Toronto, ON (Canada)

    1999-11-01

    This paper describes the methodology, including the criteria factors, comparable ratings and key credit issues used in assessing the financial positions of Ontario Power Generation Inc., and the Ontario Hydro Services Company. The rating criteria factors include both business factors (such as ownership structure, regulation, service area, operations, management, etc.,) and financial factors (e.g. financial policies and guidelines, recent financial performance, margin analysis, capital structure and borrowing plans, financial projections and sensitivities). Key credit issues include considerations of competitive dynamics, nuclear portfolio performance (for Genco), regulatory changes, cost control, capital spending program, retail business exposure, future financial performance. Comparisons are made with corresponding positions of comparable entities in Australia, Finland, New Zealand, the UK, and the USA. In the case of Ontario Power Generation Inc., the company is assessed to have significant advantages initially, but various uncertainties over the medium term warrant a more cautious view of the credit profile. For the Ontario Hydro Services Company the business risks appear to be low and moderate leverage entails a strong, stable credit profile. The overall assessment of the two companies is that while certain questions such as the workability and credibility of the new industry structure, the problem of stranded debt and questions about the liquidity of market participants remain unsolved, Ontario Power Generation Inc., and the Ontario Hydro Services Company ratings compare favorably with ratings of global industry peers.

  9. Transferability of geodata from European to Canadian (Ontario) sedimentary rocks to study gas transport from nuclear wastes repositories

    Fall, M.; Ghafari, H.; Evgin, E.; Nguyen, T.S.

    2010-01-01

    Document available in extended abstract form only. A deep geological repository (DGR) for low and intermediate level waste in southern Ontario is currently proposed, at a depth of approximately 680 m in an argillaceous limestone formation (Cobourg Limestone) overlain by 200 m of low permeability shale (Ordovician Shale). Significant quantities of gas could be generated in the aforementioned DGR from several processes (e.g., degradation of waste forms, corrosion of waste containers). The accumulation and release of such gases from the repository system may affect a number of processes that influence its long-term safety. Consequently, safety assessments of the proposed DGR need to be supported by a solid understanding of the main mechanisms associated with gas generation and migration and the capability to mathematically model those mechanisms. The development of those mathematical models would usually require the consideration of complex coupled thermo-hydro-mechanical- chemical (THMC) processes. A research program is being conducted in the Department of Civil Engineering of the University of Ottawa in collaboration with the Canadian Nuclear Safety Commission (CNSC) to model the coupled THMC processes associated with gas migration and their impacts on the safety of DGR in southern Ontario. The development and validation of such model as well as the assessment of the impact of gas migration need the acquisition of sufficient amount of (good quality) data on the geomechanical, geochemical, hydraulic, thermal properties of the sedimentary rocks in Southern Ontario as well as relevant gas transport parameters, such as gas entry pressure, Klinkenberg effect, intrinsic permeability, capillary pressure-water saturation relationship. During the past fifteen years, several laboratory and field investigations have been conducted in several countries to acquire geo-data to study and model the THMC processes associated with gas migration in DGR in sedimentary rocks. However

  10. Ontario is not ready to face a large-scale nuclear accident

    2017-07-01

    On paper, in Japan as elsewhere, nuclear emergency plans are based on international standards and all look similar. The counter measures are sheltering, potassium iodate prophylaxis, evacuation and control of foodstuffs. With 18 nuclear reactors to produce electricity and a research reactor, Ontario should be especially well prepared. Moreover, in USA, there are six power plants located at less than 100 km from the Canadian border. Would Ontario do better than Japan in case of a severe nuclear disaster? Ontario is not ready to face a severe nuclear accident and the population surrounding nuclear power stations are at risk. The large number of inhabitants will hamper protective response actions. Consequently, Canadian authorities keep lax protective action levels. Using more stringent levels would mean to extend the protection zone that would include a too large number of persons. Canadian authorities should openly acknowledge that a severe nuclear accident could happen in Ontario like in any other country and trigger a complete reorganisation of emergency preparedness and response (EP and R) to cope with such a possibility. New response plans should be defined with the involvement of stakeholders

  11. Joint submission of the Canadian Nuclear Association and the Organization of CANDU Industries to the Ontario Nuclear Safety Review

    1987-08-01

    The manufacturing company members of the Canadian Nuclear Association and the Organization of CANDU Industries are proud to have played their part in the development of the peaceful application of nuclear technology in Ontario, and the achievement of the very real benefits discussed in this paper, which greatly outweigh the hypothetical risks

  12. Recommendations and comments on the report of the Ontario Nuclear Safety Review

    1988-12-01

    The report of the Ontario Nuclear Safety Review (ONSR) prepared by Dr. F. Kenneth Hare in March 1988, is reviewed by the Advisory Committee on Nuclear Safety (ACNS) to assess for the Atomic Energy Control Board the relevance and importance of the ONSR recommendations and comments. The ACNS conclusions from this study are embodied in nineteen recommendations, as well as several suggestions and some specific comments

  13. Perceived risk of nuclear and hydro electrical power generation in Colombia

    Munera, H.A.

    1982-12-01

    This report deals with the estimation of risk factors of hydro plants and the perception of risks and benefits of nuclear, hydropower and coal by a selected part of the public. Historical data (1922 - 1979) on occurrence of earthquakes in Colombia demonstrate high seismicity (3,489 incidents) for the country in total and also for areas where the majority of hydro projects are to be located. Model-based calculations of regional probabilities for earthquakes at prospective dam-sites with a magnitude of 7 (Richter scale) or larger resulted in p=0.038/year for a 50 year recurrence period for high and p=0.0004/year for low seismicity areas. Attitudes towards three energy systems were elicited from 130 university students and graduates with a questionnaire based on a psychometric model. Generally attitudes were most favourable towards hydro, less favourable towards coal and more critical towards nuclear. Nuclear is perceived to have economic advantages, but to pose environmental, individual and societal risks. Respondents PRO and CON nuclear agree on the lack of risk from hydropower

  14. The safety of Ontario's nuclear power reactors. A scientific and technical review. Vol. 2: Appendices

    Hare, F.K.

    1988-01-01

    These appendices contain seven detailed elaborations of matters covered more superficially in the Technical Report. They have been written by well-known authorities, or by the professional staff of the Review. They are essential supplements to the condensed material of the Technical Report. Several of the appendices contain detailed recommendations. Some of these have been incorporated into the Review's overall conclusions and recommendations. Others stand alone, as the opinions of the appendices' authors. I am in broad agreement with most of them, but have preferred to leave them within the authors' material. I hope that they will be given detailed study by appropriate bodies, especially Ontario Hydro and the Atomic Energy Control Board

  15. Computer Security for Commercial Nuclear Power Plants - Literature Review for Korea Hydro Nuclear Power Central Research Institute

    Duran, Felicia Angelica [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Security Systems Analysis Dept.; Waymire, Russell L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Security Systems Analysis Dept.

    2013-10-01

    Sandia National Laboratories (SNL) is providing training and consultation activities on security planning and design for the Korea Hydro and Nuclear Power Central Research Institute (KHNPCRI). As part of this effort, SNL performed a literature review on computer security requirements, guidance and best practices that are applicable to an advanced nuclear power plant. This report documents the review of reports generated by SNL and other organizations [U.S. Nuclear Regulatory Commission, Nuclear Energy Institute, and International Atomic Energy Agency] related to protection of information technology resources, primarily digital controls and computer resources and their data networks. Copies of the key documents have also been provided to KHNP-CRI.

  16. Computer Security for Commercial Nuclear Power Plants - Literature Review for Korea Hydro Nuclear Power Central Research Institute

    Duran, Felicia Angelica; Waymire, Russell L.

    2013-01-01

    Sandia National Laboratories (SNL) is providing training and consultation activities on security planning and design for the Korea Hydro and Nuclear Power Central Research Institute (KHNPCRI). As part of this effort, SNL performed a literature review on computer security requirements, guidance and best practices that are applicable to an advanced nuclear power plant. This report documents the review of reports generated by SNL and other organizations [U.S. Nuclear Regulatory Commission, Nuclear Energy Institute, and International Atomic Energy Agency] related to protection of information technology resources, primarily digital controls and computer resources and their data networks. Copies of the key documents have also been provided to KHNP-CRI.

  17. Nuclear power

    Porter, Arthur.

    1980-01-01

    This chapter of the final report of the Royal Commission on Electric Power Planning in Ontario updates its interim report on nuclear power in Ontario (1978) in the light of the Three Mile Island accident and presents the commission's general conclusions and recommendations relating to nuclear power. The risks of nuclear power, reactor safety with special reference to Three Mile Island and incidents at the Bruce generating station, the environmental effects of uranium mining and milling, waste management, nuclear power economics, uranium supplies, socio-political issues, and the regulation of nuclear power are discussed. Specific recommendations are made concerning the organization and public control of Ontario Hydro, but the commission concluded that nuclear power is acceptable in Ontario as long as satisfactory progress is made in the disposal of uranium mill tailings and spent fuel wastes. (LL)

  18. Hydro to market green power at special prices

    McArthur, D.; Salaff, S.

    1996-01-01

    A 600 kW grid-connected demonstration wind turbine at Ontario Place will provide green power to Toronto residents early in 1997. The joint venture project partners include publicly owned Ontario Hydro, Toronto Hydro and Natural Resources Canada. The power will be sold at a premium under arrangements yet to be announced. The green power pricing initiative would allow some customers to buy their electricity at a green price. The project could be a self-financing model for future renewable energy development. The Ontario Place turbine project will determine whether Toronto electricity customers want green power or electricity from nuclear and fossil stations, and could determine which type of generation should be built in the future

  19. Province of Ontario nuclear emergency plan part V - Chalk River

    NONE

    1991-10-01

    The aim of Part 5 of the Provincial Nuclear Emergency Plan is to describe the measures that shall be undertaken to deal with a nuclear emergency caused by the Chalk River Laboratories. This plan deals mainly with actions at the Provincial level and shall by supplemented by the appropriate Municipal Plan. The Townships of Rolph, Buchanan, Wylie, and McKay, the Town of Deep River and the Village of Chalk River are the designated municipalities with respect to CRL. 2 tabs., 5 figs.

  20. Province of Ontario nuclear emergency plan part V - Chalk River

    1991-10-01

    The aim of Part 5 of the Provincial Nuclear Emergency Plan is to describe the measures that shall be undertaken to deal with a nuclear emergency caused by the Chalk River Laboratories. This plan deals mainly with actions at the Provincial level and shall by supplemented by the appropriate Municipal Plan. The Townships of Rolph, Buchanan, Wylie, and McKay, the Town of Deep River and the Village of Chalk River are the designated municipalities with respect to CRL. 2 tabs., 5 figs

  1. Electricity is the real target - nuclear energy the scapegoat. Comparison between nuclear energy and hydro power voting behaviour

    Aegerter, Irene

    1993-01-01

    As nuclear community sometimes feel desperate because the nuclear energy is a very special subject triggering so much controversy among women and young persons especially it has been found that the battle against nuclear energy is just a pretext. Comparing the campaign on a referendum against hydropower - voted in Switzerland in may 1992 it was found astonishingly that exactly the same arguments were applied as during the campaign for the phase out of nuclear energy in 1990. The results were presented at PIME 1991. Voting behaviour for nuclear energy and hydro power are comparable: the gender gap (32% acceptance by men versus 48% by women) found in the 1992 vote about stopping hydropower plants in Switzerland was bigger than the one found in the 1990 vote about nuclear energy. A detailed analysis of these data is presented

  2. Status of the reliability centered maintenance program at Ontario Hydro's Bruce 'A' Nuclear Division

    Khan, I.

    1995-01-01

    Bruce A started a preventive maintenance (PM) quality improvement program in August of 1991. This initiative was taken to address the concerns expressed by the AECB and the Peer Audits finding. The concerns were on the quality of the Bruce A PM Program and its execution in the field. Reliability Centered Maintenance (RCM) analysis was selected as the PM program quality improvement and optimization technique. Therefore, RCM became a key component of Bruce A's Integrated PM program and maintenance strategy. As a result of RCM implementation, and improvements in the work planning and scheduling process, Bruce A is seeing downward trends in the corrective maintenance work load, maintenance preventable forced outages, overdue/missed PM tasks and corrective maintenance backlog. Control Room Operators have reported observing an improvement in systems and equipment response to transients. Other benefits include a documented, controlled and traceable PM program. In addition, the team approach required by RCM has started to improve staff confidence in the PM program which, in turn, is improving the compliance with the PM program. (author)

  3. Major heat exchanger performance in Ontario Hydro-operated CANDU nuclear generating stations

    Dueck, D.G.

    1980-01-01

    The performance of heat exchangers is described in terms of their impact on the unit in the form of forced outages and deratings as well as incapability due to scheduled outages. Some major problems with heat exchangers are highlighted. (auth)

  4. A progress review of Ontario Hydro's nuclear generation and heavy water production programs

    Kee, F.J.; Woodhead, L.W.

    Performance and economics of CANDU reactors in service are described. Progress of commissioning, construction and planning of reactors at Pickering, Bruce, and Darlington is outlined. Heavy water production is reviewed. (E.C.B.)

  5. Fission-gas release in fuel performing to extended burnups in Ontario Hydro nuclear generating stations

    Floyd, M.R.; Novak, J.; Truant, P.T.

    1992-06-01

    The average discharge burnup of CANDU fuel is about 200 MWh/kgU. A significant number of 37-element bundles have achieved burnups in excess of 400 MWh/kgU. Some of these bundles have experienced failures related to their extended operation. To date, hot-cell examinations have been performed on fuel elements from nine 37-element bundles irradiated in Bruce NGS-A that have burnups in the range of 300-800 MWh/kgU. 1 Most of these have declining power histories from peak powers of up to 59 kW/m. Fission-gas releases of up to 26% have been observed and exhibit a strong dependence on fuel power. This obscures any dependence on burnup. The extent of fission-gas release at extended burnups was not predicted by low-burnup code extrapolations. This is attributed primarily to a reduction in fuel thermal conductivity which results in elevated operating temperatures. Reduced conductivity is due, at least in part, to the buildup of fission products in the fuel matrix. Some evidence of hyperstoichiometry exists, although this needs to be further investigated along with any possible relation to CANLUB graphite coating behaviour and sheath oxidation. Residual tensile sheath strains of up to 2% have been observed and can be correlated with fuel power/fission-gas release. SCC 2 -related defects have been observed in the sheath and endcaps of elements from bundles experiencing declining power histories to burnups in excess of 500 MWh/kgU. This indicates that the current recommended burnup limit of 450 MWh/kgU is justified. SCC-related defects have also been observed in ramped bundles having burnups < 450 MWh/kgU. Hence, additional guidelines are in place for power ramping extended-burnup fuel

  6. A combined hydro-nuclear-solar project for electric power production

    Yiftah, S.

    1985-01-01

    Some of the main, general-perspective themes of Dr. Alvin Weinberg's leadership and long and varied work are: the effect of present and future nuclear energy projects on society, not only in the United States but throughout the world; analysis, comparison, and combination of various sources of energy; extensive multiple use of nuclear energy complexes (so-called NUPLEX, for nuclear complex) for various areas of the world; and use of ''Big Technology'' and ''Big Science'' for solving, or helping to solve, political problems. A combined hydro-nuclear-solar project for electric power production is discussed, as well as two other energy-related engineering projects. Some of the projects originated or were inspired by work done at the Oak Ridge National Laboratory under the leadership of Dr. Alvin Weinberg. Also reported are the technical characteristics and interrelationships of the three components of the envisaged hydronuclear-solar project

  7. Restructuring in Ontario : electricity sector reform

    Pospisil, S.

    2004-01-01

    Ontario's electricity reform strategy was outlined along with challenge facing Ontario's electricity supply and demand with particular focus on the issue of replacing coal-fired generation. According to reports by the Independent Electricity Market Operator, short-term reserve margins were higher in 2004 than they were in 2003 due to the return to service of some nuclear generating units and planned capacity additions. Ontario's long-term supply and demand situation was also examined. It was noted that lenders hesitate to finance the expansion of generation companies selling into the spot market. Many lenders are requiring that half of the project's output be sold in advance on contract. Other challenges include Ontario's aging generation infrastructure and rising energy prices. The presentation included graphs that compared electricity costs for residential and small business customers across various provinces and states. The main supply and conservation challenges revolve around the large investments required by 2020 to replace coal plants, retire nuclear plants and projected load growth. Ontario's current generation capacity is 154 TWh and the mix is represented by 40 per cent nuclear, 25 per cent coal, 25 per cent hydro, 8 per cent natural gas, 1 per cent oil, and 1 per cent biomass and other renewable energy sources. This paper also addressed the issue of coal generation and air pollution and emphasized the importance of looking at the broad externalities associated with air emissions. tabs., figs

  8. Review of the nuclear fuel waste management program

    Hatcher, S.R.

    1980-06-01

    Progress over the previous year in the nuclear fuel waste management program is reviewed. Universities, industry and consultants have become increasingly involved, and the work is being overseen by a Technical Advisory Committee. The program has also been investigated by Ontario's Porter Commission and Select Committe on Ontario Hydro Affairs. A public information program has been extended to cover most of the Canadian Shield region of Ontario. Ontario Hydro is studying spent fuel storage and transportation, while AECL is covering immobilization of spent fuel or processing wastes, geotechnical and geochemical research in the laboratory and in the field, design of disposal facilities, and environmental and safety assessments. (L.L.)

  9. Implications of using alternate fuel cycles to meet Ontario's nuclear power demand

    Lau, J.H.K.

    1978-08-01

    The use of alternate fuel cycles to meet an assumed nuclear capacity growth rate in Ontario is examined. Two criteria are used: the ability of the alternate fuel cycles to lessen the uranium demand; and the ease of commercialization. The nuclear strategies considered assume the use of the natural uranium cycle and, starting in the year 2000, the gradual introduction of an alternate fuel cycle. The alternate fuel cycles reviewed are enriched uranium, mixed oxides, and a variety of thorium cycles. The cumulative uranium requirement to the year 2070, and the growth and size of the reprocessing and fuel fabrication industries are discussed in detail. Sensitivity analyses on nuclear capacity growth rate, recycling loss and delay time are also described. (auth)

  10. An overview of the regulation of the activities of Eldorado Nuclear Limited in Port Hope, Ontario

    Smythe, W.D.

    1980-09-01

    Eldorado Nuclear Limited's operations at Port Hope, Ontario include both chemical and metallurgical processes involved in processing uranium in various forms. The plant processes natural uranium for both the domestic and export markets, and processes enriched uranium for the fuel in Canada's research reactors and for booster fuel for Candu reactors. The plant receives wastes from fuel fabrication plants and recycles them to recover uranium, and also produces wastes of its own. The Atomic Energy Control Board (AECB) is involved at all stages of this operation, as the agency responsible for nuclear materials management, safeguards, occupational health and safety, and safe disposal of wastes in all Canada's nuclear facilities. The AECB has also been involved in the clean up of contamination from the early days of operations in Port Hope

  11. A short history of the CANDU nuclear power system

    Brooks, G L

    1993-04-01

    This paper provides a short historical summary of the evolution of the CANDU nuclear power system with emphasis on the roles played by Ontario Hydro and private sector companies in Ontario in collaboration with Atomic Energy of Canada Limited (AECL). (author). 1 fig., 61 refs.

  12. A short history of the CANDU nuclear power system

    Brooks, G.L.

    1993-04-01

    This paper provides a short historical summary of the evolution of the CANDU nuclear power system with emphasis on the roles played by Ontario Hydro and private sector companies in Ontario in collaboration with Atomic Energy of Canada Limited (AECL). (author). 1 fig., 61 refs

  13. Training of nuclear power plant personnel in Canada

    Tennant, D.

    1993-01-01

    All of the utilities, Ontario Hydro, Hydro Quebec and New Brunswick Power, operating Nuclear Power Plants in Canada have Training Centres which provide training for all of their plant personnel whose job activities could affect plant and personnel safety. This report points out the methods used for training, which generally conform to that described by the IAEA as a Systematic Approach to Training (SAT)

  14. Ontario Hydro diversifies into tritium

    Anon.

    1983-01-01

    A report is given on a plant which is to be built at the Darlington Candu reactor site in Canada for the extraction of tritium from heavy water. As tritium is used as a fuel in fusion research the market for it is expected to grow. The design of the system is outlined with the help of a flow diagram. (U.K.)

  15. Reliability database development and plant performance improvement effort at Korea Hydro and Nuclear Power Co

    Oh, S. J.; Hwang, S. W.; Na, J. H.; Lim, H. S.

    2008-01-01

    Nuclear utilities in recent years have focused on improved plant performance and equipment reliability. In U.S., there is a movement toward process integration. Examples are INPO AP-913 equipment reliability program and the standard nuclear performance model developed by NEI. Synergistic effect from an integrated approach can be far greater than as compared to individual effects from each program. In Korea, PSA for all Korean NPPs (Nuclear Power Plants) has been completed. Plant performance monitoring and improvement is an important goal for KHNP (Korea Hydro and Nuclear Power Company) and a risk monitoring system called RIMS has been developed for all nuclear plants. KHNP is in the process of voluntarily implementing maintenance rule program similar to that in U.S. In the future, KHNP would like to expand the effort to equipment reliability program and to achieve highest equipment reliability and improved plant performance. For improving equipment reliability, the current trend is moving toward preventive/predictive maintenance from corrective maintenance. With the emphasis on preventive maintenance, the failure cause and operation history and environment are important. Hence, the development of accurate reliability database is necessary. Furthermore, the database should be updated regularly and maintained as a living program to reflect the current status of equipment reliability. This paper examines the development of reliability database system and its application of maintenance optimization or Risk Informed Application (RIA). (authors)

  16. Assessing the financial positions of Ontario's new electricity companies

    Connell, T. (Standard and Poor' s, Toronto, ON (Canada))

    1999-01-01

    This paper describes the methodology, including the criteria factors, comparable ratings and key credit issues used in assessing the financial positions of Ontario Power Generation Inc., and the Ontario Hydro Services Company. The rating criteria factors include both business factors (such as ownership structure, regulation, service area, operations, management, etc.,) and financial factors (e.g. financial policies and guidelines, recent financial performance, margin analysis, capital structure and borrowing plans, financial projections and sensitivities). Key credit issues include considerations of competitive dynamics, nuclear portfolio performance (for Genco), regulatory changes, cost control, capital spending program, retail business exposure, future financial performance. Comparisons are made with corresponding positions of comparable entities in Australia, Finland, New Zealand, the UK, and the USA. In the case of Ontario Power Generation Inc., the company is assessed to have significant advantages initially, but various uncertainties over the medium term warrant a more cautious view of the credit profile. For the Ontario Hydro Services Company the business risks appear to be low and moderate leverage entails a strong, stable credit profile. The overall assessment of the two companies is that while certain questions such as the workability and credibility of the new industry structure, the problem of stranded debt and questions about the liquidity of market participants remain unsolved, Ontario Power Generation Inc., and the Ontario Hydro Services Company ratings compare favorably with ratings of global industry peers.

  17. Market surveillance in Ontario

    Chandler, H.

    2002-01-01

    On May 1, 2002 both wholesale and retail electricity markets in Ontario were opened to competition. Wholesale electricity market sales of 150 TWh were valued at over $11 billion with 27,500 MW in service installed capacity and 4,000 to 6,000 MW import/export capability with strong interconnections to the Quebec, the Midwest and the Northeast. The key players in Ontario's electricity market are the Ontario Energy Board (OEB), the Independent Electricity Market Operator (IMO), Ontario Power Generation, and Hydro One. The OEB regulatory framework includes licensing and front line, daily monitoring of whole sale market. Serious capacity problems in Ontario have manifested themselves in tight supply and demand situations and highly volatile prices. The paper included graphs of available reserves for 1996 to 2002, HOEP trends and frequency, HOEP comparison, and a sensitivity to demand forecast. 1 tab., 6 figs

  18. Technological development with reference to hydro-power, nuclear, and alternative energy technologies

    Burns, T R; Baumgartner, T

    1985-01-01

    This report outlines a theoretical framework for describing and analyzing the introduction of new technologies and the development of socio-technical systems associated with such innovations. While the report is largely theoretical in nature, it refers to certain strategic aspects of the development of nuclear, hydro-power and alternative energy systems. The ease with which technological innovation and development occur, the directions they take, and the impacts they have on the social and physical environments depend not only on purely technical and economic factors. Barriers, regulators and facilitators are inherent in the socio-political, institutional and cultural structures within which any attempts at innovation and technological development take place. The final section of the report explores some of the implications of the theory for policy and strategy, including consideration of environmental policy.

  19. Economic and greenhouse gas consequences of nuclear phase-out: a case study of Japan, Germany, and Ontario

    Fedechko, R.T.; Khani, J.Y.; Toor, J.S.; Donev, J.M.K.C.

    2014-01-01

    Phasing out the use of nuclear energy for electricity production is often cited as a recommended policy strategy by anti-nuclear activists. This claim is very difficult to empirically test, however, Japan and Germany both offer interesting case studies into the economic, social, and greenhouse gas related consequences of phasing out nuclear energy on a rapid time scale. The results of the Japanese and German case studies inform a hypothetical phase out of nuclear energy from Ontario's energy mix. In all cases considered, rapid nuclear energy phase-out resulted in increased electricity costs, higher GHG emissions, and social externalities. (author)

  20. Impact of Ontario electricity industry structure on the viability of cogeneration projects

    Chuddy, B.

    1999-01-01

    A review of Ontario Hydro's existing market structure and how its move toward a more competitive profile can be advantageous for cogeneration projects was presented. Ontario's existing electric power supply is as follows: 6 fossil fuels stations generate a total of 9, 969 MW of electricity, 23 NUG stations generate 1,541 MW, 3 nuclear stations generate a total of 9,028 MW and 69 hydro-electric stations generates 6,751 MW of electricity. The criteria and characteristics for cogeneration projects were listed. The paper also discussed other topics such as the market price of power, outstanding regulatory issues, market volatility and relative pricing. The prognosis for Ontario cogeneration projects for the early years from 1999-2004 is that for economic reasons, only big projects with large loads of 200 to 800 MW will be considered. In later years, other projects will become economic

  1. Thermal efficiency improvements - an imperative for nuclear generating stations

    Hassanien, S.; Rouse, S.

    1997-01-01

    A one and a half percent thermal performance improvement of Ontario Hydro's operating nuclear units (Bruce B, Pickering B, and Darlington) means almost 980 GWh are available to the transmission system (assuming an 80% capacity factor). This is equivalent to the energy consumption of 34,000 electrically-heated homes in Ontario, and worth more than $39 million in revenue to Ontario Hydro Nuclear Generation. Improving nuclear plant thermal efficiency improves profitability (more GWh per unit of fuel) and competitiveness (cost of unit energy), and reduces environmental impact (less spent fuel and nuclear waste). Thermal performance will naturally decrease due to the age of the units unless corrective action is taken. Most Ontario Hydro nuclear units are ten to twenty years old. Some common causes for loss of thermal efficiency are: fouling and tube plugging of steam generators, condensers, and heat exchangers; steam leaks in the condenser due to valve wear, steam trap and drain leaks; deposition, pitting, cracking, corrosion, etc., of turbine blades; inadequate feedwater metering resulting from corrosion and deposition. This paper stresses the importance of improving the nuclear units' thermal efficiency. Ontario Hydro Nuclear has demonstrated energy savings results are achievable and affordable. Between 1994 and 1996, Nuclear reduced its energy use and improved thermal efficiency by over 430,000 MWh. Efficiency improvement is not automatic - strategies are needed to be effective. This paper suggests practical strategies to systematically improve thermal efficiency. (author)

  2. Alternative models for restructuring Ontario's electric sector

    Bright, D.; Salaff, S.

    1996-01-01

    The future of Ontario Hydro and the provincial electrical sector was discussed. Various models proposed for restructuring Ontario's electric sector were described and views of some of the stake holders were presented, among them the views of AMPCO, MEA, the Ontario Chamber of Commerce, IPPSO, Ontario Hydro Management, Energy Probe and the Power Workers' Union. In general, most stake holders were in favour of privatization to some degree except for the Power Workers' Union which was unalterably opposed to privatization, claiming that it would lead to quantum increases in electricity rates. 2 figs

  3. A look forward to the competitive landscape of Ontario's electricity supply

    Carr, J.

    1998-01-01

    The government of Ontario is a shareholder in Ontario Hydro and is responsible for ensuring that the public receives electricity service at the lowest, most prudent price. The current monopoly arrangement provides Ontario with a revenue stream that is predictable and amenable to control. However, the emerging restructuring of Ontario's electricity supply system will be strongly dependent on the direction determined by government policy. Other factors that will have significant influence on developments will be the restructuring initiatives outside the province, and the attractiveness of the electricity sector to investors. In November 1997, Ontario released a white paper by the Minister of Energy, Science and Technology, entitled 'Direction for change'. This document is a preliminary statement of potential policy regarding electricity restructuring in Ontario. Some of the key elements of the White Paper were: (1) the creation of a competitive market in the year 2000 for both wholesale and retail customers, (2) separating monopoly operations from competitive business activities throughout the electricity sector, (3) expanding the role on the Ontario Energy Board to give it regulatory power over the electricity sector, and (4) introducing measures to ensure environmental protection. Three other relevant reports were also released in December 1997: (1) Report of the Select Committee on Ontario Hydro Nuclear Affairs, (2) Ontario Energy Board Advisory Report on Legislative Change Requirements for Natural Gas Deregulation, and (3) Report of the Toronto Transition Team. The government policy indicated by these various reports appear to represent a careful balance of many conflicting interests and obligations. According to expert observers, the emerging policy appears to have the necessary technical, financial and political support to ensure a successful competitive electricity supply system in Ontario. 4 refs

  4. A Rock Mechanics and Coupled Hydro mechanical Analysis of Geological Repository of High Level Nuclear Waste in Fractured Rocks

    Min, Kibok

    2011-01-01

    This paper introduces a few case studies on fractured hard rock based on geological data from Sweden, Korea is one of a few countries where crystalline rock is the most promising rock formation as a candidate site of geological repository of high level nuclear waste. Despite the progress made in the area of rock mechanics and coupled hydro mechanics, extensive site specific study on multiple candidate sites is essential in order to choose the optimal site. For many countries concerned about the safe isolation of nuclear wastes from the biosphere, disposal in a deep geological formation is considered an attractive option. In geological repository, thermal loading continuously disturbs the repository system in addition to disturbances a recent development in rock mechanics and coupled hydro mechanical study using DFN(Discrete Fracture Network) - DEM(Discrete Element Method) approach mainly applied in hard, crystalline rock containing numerous fracture which are main sources of deformation and groundwater flow

  5. Beware: The empire striking back: An update of regulatory changes in Ontario`s gas and electricity business as at February 1998

    Rosenberg, K. [Gowling, Strathy and Henderson, Toronto, ON (Canada)

    1998-09-01

    A review of what is happening with regard to deregulation of the gas and electricity industry in Ontario was presented. Recently, a series of government actions in Ontario have recommended fundamental changes in the gas and electric power sector. Prior to the October 31, 1985 agreement, no competitive market existed within local distribution franchises in Ontario or elsewhere in Canada. The Agreement created gas on gas competition and enabled consumers to purchase natural gas from producers at negotiated prices. The Ontario government`s proposed legislation and implementation schedule forecasts even more fundamental changes for the province`s electric power industry. Essentially, the legislation proposes to break up Ontario Hydro into several different entities and transfer regulatory authority to the Ontario Energy Board. The pending legislation also envisages the structural separation of local distribution companies into natural monopolies which will compete in the marketplace. The possibility of privatizing part or all of Ontario`s nuclear assets is also part of the ongoing debate. It was the author`s view that unless there is immediate and complete structural separation of all monopoly services within the gas and electric utilities, the market will not be truly competitive. Instead, regulated monopoly pricing would be replaced by unregulated oligopoly pricing. 1 tab.

  6. A journalist's guide to nuclear power

    McMaster, Michele

    1988-12-01

    This guidebook is meant to assist journalists in communicating information about nuclear power. It provides basic information about the CANDU reactor and its use by Ontario Hydro, radiation, and fission, as well as background and statistics on the use of nuclear power in Canada and around the world

  7. How generation choices are influenced by costs, risks and externalities: the generation planning process in Ontario, Canada

    Marriage, E.A.; Rogers, M.S.

    1994-01-01

    Ontario Hydro is responsible for generating, supplying and delivering electricity throughout Ontario, Canada. Installed generation capacity of 32 GW consists of 20% hydro-electric (6.4 GW), 35% fossil (11.3 GW) and 40% nuclear (14.2 GW). Ontario Hydro' s planning process has evolved significantly since its decision in the late 1970's to build the 4-unit 3500 MW Darlington Nuclear Station. The emergence of environmental issues as a primary consideration, increased awareness of financial and regulatory risks, and uncertainty about the load forecast and the impact of demand management programs on the load have all contributed to the changed planning process. This paper discusses Ontario Hydro's responses to these changes such as: increased public involvement in the decision-making process; the use of a broader range of options including demand management and non-utility generation; optimizing the use of the existing system; more complete risk analyses of generation options, and recent attempts to incorporate externalities into the decision-making process. (authors). 3 figs

  8. Cogeneration markets in Ontario

    Poredos, S.

    1993-01-01

    Cogeneration offers a key strategy which supports global competitiveness for Ontario businesses, encourages energy efficiency and environmental protection, and offers natural gas utilities and producers stable long-term incremental markets. By supporting cogeneration projects, electric utilities will benefit from increased flexibility. Natural gas is the fuel of choice for cogeneration, which can in most cases be easily integrated into existing operations. In Ontario, electric demand grew along with the gross domestic product until 1990, but has decreased with the recent economic recession. The provincial utility Ontario Hydro is resizing itself to stabilize total rate increases of 30% over the last three years and supporting reduction of its high debt load. Rate increases are supposed to be limited but this may be difficult to achieve without further cost-cutting measures. Cogeneration opportunities exist with many institutional and industrial customers who are trying to remain globally competitive by cutting operating costs. In general, cogeneration can save 20% or more of total annual energy costs. Due to excess capacity, Ontario Hydro is not willing to purchase electric power, thus only electric load displacement projects are valid at this time. This will reduce overall savings due to economies of scale. In southwestern Ontario, Union Gas Ltd. has been successful in developing 40 MW of electric displacement projects, providing a total load of 5 billion ft 3 of natural gas (50% of which is incremental). Over 3,000 MW of technical cogeneration potential is estimated to exist in the Union Gas franchise area

  9. A study of wet deposition of atmospheric tritium releases at the Ontario Power Generation, Pickering Nuclear Generating Station

    Crooks, G.; DeWilde, J.; Yu, L.

    2001-01-01

    The Ontario Power Generation,Pickering Nuclear Generating Station (PNGS) has been investigating deposition of atmospheric releases of tritium on their site. This study has included numerical dispersion modelling studies conducted over the past three years, as well as an ongoing field monitoring study. The following paper will present results of the field monitoring study and make comparisons to the numerical modelling. The results of this study could be of potential use to nuclear stations in quantifying tritium deposition in near field regions where building wake effects dominate pollutant dispersion

  10. Community dynamics in the siting process for a low to intermediate level nuclear waste facility in Kincardine, Ontario

    Al-Haydari, D.

    2007-01-01

    The use of nuclear technology to generate electricity inevitably produces waste that is detrimental to the environment and human health. Finding communities that will accept nuclear waste disposal facilities is extremely challenging. Furthermore, the siting of a nuclear waste disposal facility is more than a technological analysis, but a matter that includes a variety of social, ethical and political considerations. This study is aimed to assess the role of the place-based community, communities of interest and communities of identity involved in the voluntary siting process for a low to intermediate level nuclear waste disposal facility in Ontario. To accomplish this, a framework was developed and applied though a case study evaluation of the siting process for the Deep Geologic Repository in Kincardine, Ontario. The framework highlights four key procedural principles that were used to analyze the siting process: trust, public participation, equity and risk. The data revealed that the positions of the communities involved in the siting process varied depending on the meaningful fulfillment the four key procedural principles. (author)

  11. Towards a sustainable electricity system for Ontario : interim report

    2004-04-01

    More changes have occurred in Ontario's electricity sector in the past 5 years than over the preceding 9 decades since the creation of Ontario Hydro Electric Power Commission in 1906. The province's nuclear generating facilities were taken out of service in 1997 for safety and maintenance overhauls. The existing nuclear facilities, which account for 28 per cent of the province's generating capacity, will reach the end of their operational lifetimes by 2018. The government of Ontario also announced the phasing out of Ontario Power Generation's coal-fired plants by 2007 due to the environmental health impacts of their operation. These changes have ignited debate over the province's future electricity needs and how they might be met. This study examined by how much electricity demand in Ontario could be reduced through the adoption of energy efficient technologies, fuel switching, cogeneration and demand response measures. It also examined how much future supply could be obtained from renewable energy sources such as wind, the upgrading of existing hydroelectric facilities, and the development of new solar, biomass and small-scale hydro facilities. It also examined how to accommodate the remaining grid demand and which public policies should be adopted to maximize efficiency and other demand side measures. The impacts of the policies were simulated using the Canadian Integrated Modelling System (CIMS) computer model developed by the Energy and Materials Research Group at Simon Fraser University. The CIMS simulations were conducted under the assumptions that barriers to cogeneration would be removed, financial incentives would be provided along with innovative financing programs. The study revealed that capital investments of $18.2 billion over the 2005-2020 period would be required to reduce peak demand of 12,300 MW relative to the business and usual forecast through efficiency, fuel switching and cogeneration. 13 refs., 8 tabs

  12. IPPSO raises Hydro exports in smog negotiations

    Anon.

    1997-01-01

    The Independent Power Producers of Ontario (IPPSO) requested federal and provincial committees negotiating atmospheric emission standards to review Ontario Hydro's export wheeling plans. IPPSO alleges that Ontario Hydro is preparing to apply pressure on the Canadian export approval process, and is building up a major effort that will increase emissions, contrary to the objectives embodied in a number of environment protection projects such as the Ontario Smog Plan, The Federal-Provincial NOx Management Plan, the Strategic Options Plan, or the Convention on Long-Range Transboundary Air Pollution Draft NOx Protocol Negotiations. IPPSO alleges further that while Ontario Hydro is one of Canada's largest single emitter of greenhouse gases NOx, and SO 2 , and as a public sector corporation it should be the most amenable to serving the public good, the Corporation is doing exactly the opposite: it actively prevents production of electricity from less polluting sources. It is IPPSO's contention that Ontario Hydro's desire to control the Ontario market could come at significant cost to the environment

  13. The Canadian nuclear scene - a 1983 perspective

    Foulkes, F.M.

    1983-01-01

    The author reviews the previous year's performance and future prospects for the Canadian nuclear industry. Continued economic difficulties have meant continued streamlining of the industry. Basic strength is still the year-after-year record performance of the Ontario Hydro CANDU units. Given this performance, flexibility in the structure of the industry, and strong government support commercial success can be achieved eventually

  14. Retailers test Ontario market

    Kishewitsch, S.

    2000-01-01

    In anticipation of the full opening of the Ontario electricity market in November 2000, some of the newly-licensed electricity retailers are reported to be ready to begin testing the market early, hoping that all the uncertainties that still exist about pricing will be worked out in time. Among those jumping in now is Direct Energy Marketing, a retailer which claims 800,000 households in Ontario as electricity supply customers, as well as a wholesale gas marketing business. Direct Energy began retail electrical marketing on April 3, 2000, starting cautiously with small commercial operations as the initial target. Greengrid Electric, another of the new marketers, planned to begin marketing in mid-April, offering 100 per cent renewable-sourced electricity. Provident Energy Management, one of the new marketers whose licence is still pending, hopes to begin direct marketing as soon as its licence is confirmed. Another marketer ready to go as soon its license is issued is the former Sault Ste. Marie Hydro, now reorganized as PUC Energies Inc. PUC has the advantage of having a firm contract with a NUG (non-utility generator), Great Lakes Power, signed while PUC was still a municipal electric utility. As far as the other potential marketers are concerned, caution overrides opportunity for the present. Principal concerns are uncertainty over the retail settlement code, the electronic business data transfer system, transmission and distribution tariffs, whether existing non-utility generator contracts will allow for supply to another party, and over how quickly Ontario Power Generation Inc's (successor to Ontario Hydro) market power will be ratcheted down. Many of the potential marketers feel that despite the Ontario government's desire to see more competition, the power mitigation agreement, as it now reads, leaves little room for the small retailer to compete

  15. Retailers test Ontario market

    Kishewitsch, S.

    2000-04-01

    In anticipation of the full opening of the Ontario electricity market in November 2000, some of the newly-licensed electricity retailers are reported to be ready to begin testing the market early, hoping that all the uncertainties that still exist about pricing will be worked out in time. Among those jumping in now is Direct Energy Marketing, a retailer which claims 800,000 households in Ontario as electricity supply customers, as well as a wholesale gas marketing business. Direct Energy began retail electrical marketing on April 3, 2000, starting cautiously with small commercial operations as the initial target. Greengrid Electric, another of the new marketers, planned to begin marketing in mid-April, offering 100 per cent renewable-sourced electricity. Provident Energy Management, one of the new marketers whose licence is still pending, hopes to begin direct marketing as soon as its licence is confirmed. Another marketer ready to go as soon its license is issued is the former Sault Ste. Marie Hydro, now reorganized as PUC Energies Inc. PUC has the advantage of having a firm contract with a NUG (non-utility generator), Great Lakes Power, signed while PUC was still a municipal electric utility. As far as the other potential marketers are concerned, caution overrides opportunity for the present. Principal concerns are uncertainty over the retail settlement code, the electronic business data transfer system, transmission and distribution tariffs, whether existing non-utility generator contracts will allow for supply to another party, and over how quickly Ontario Power Generation Inc's (successor to Ontario Hydro) market power will be ratcheted down. Many of the potential marketers feel that despite the Ontario government's desire to see more competition, the power mitigation agreement, as it now reads, leaves little room for the small retailer to compete.

  16. The management of nuclear fuel waste

    1980-06-01

    A Select Committee of the Legislature of Ontario was established to examine the affairs of Ontario Hydro, the provincial electrical utility. The Committee's terms of reference included examination of the waste management program being carried out jointly by the Ontario provincial government and the Canadian federal government. Public hearings were held which included private citizens as well as officials of organizations in the nuclear field and independent experts. Recommendations were made concerning the future direction of the Canadian fuel waste management program. (O.T.)

  17. The restructuring of the Ontario electricity market

    Doucet, J.A.

    1999-01-01

    A summary of the current status of the deregulation of the electricity market in Ontario was presented. To follow global deregulation trends, the Ontario Government has embarked on a considerable restructuring of the Ontario electricity market. The monopoly position of Ontario Hydro has been removed by restructuring the provincial utility into two separate companies, GENCO and SERVCO, which will be responsible for the generation and transmission and distribution of electricity, respectively. Other mechanisms put in place to favour a free and competitive market for electricity in the province, such as the arrival on the market of other electricity producers, and the establishment of the independent market operator, are also discussed. 2 tabs

  18. Taylor Hydro plant goes live

    Anon.

    2000-01-01

    The 12.75 MW Taylor Hydroelectric Plant in Magrath, Alberta, synchronized its generator with the Alberta Power Grid and began production in April 2000. The plant is located on Government of Alberta irrigation works and is owned by Canadian Hydro Developers. During the irrigation season the plant will generate approximately 40 million kilowatt hours of zero-emission 'green' power for consumption, enough to power 5,000 homes for a year. The Taylor plant is a joint venture with EPCOR Power Development Corporation, a wholly-owned subsidiary of EPCOR Inc., the City of Edmonton utility. Canadian Hydro Developers also owns a 19 MW wind plant and a 6 MW gas plant in Alberta and five other 'run of river' hydro plants in Ontario and British Columbia. The company is committed to the concept of low-impact power generation; its ownership of wind run-of-river hydro and gas-fired facilities is proof of that commitment

  19. Canada's commitment to nuclear technology

    Stewart, Murray J.

    1998-01-01

    This paper gives a broad update on all facets of the Canadian nuclear industry and demonstrates Canada's continuing commitment to nuclear technology. Canada has developed a global leadership position in nuclear technology for power generation, uranium production and isotope supply. This commitment is being further enhanced by successes in international markets with Candu technology, new uranium mine developments in our province of Saskatchewan, and expanding isotope capabilities including the construction of two new production reactors. Korea's economy is benefiting through collaboration with Canada's leading nuclear companies, both in Korea and Canada. These collaborations have the potential to expand considerably with the implementation of the Kyoto Framework Convention on Climate Change and the anticipated increased demand for new nuclear power generation installations in all major global markets. Much has been publicized about the situation surrounding Ontario Hydro Nuclear and its nuclear recovery program. This paper gives the background and highlights the actions within Ontario and Ontario Hydro designed to ensure the long term recovery of all twenty nuclear units in Ontario. The presentation at the conference will bring the audience completely up-to-date on recent events. (author)

  20. Hearing in the matter of an application by Erie Shores Wind Farm Limited Partnership for an Order granting leave to construct transmission facilities to connect a wind farm to the transmission facilities of Hydro One Network Inc.[In the matter of the Ontario Energy Board Act, 1998, S.O. 1998, c. 15, Schedule B

    Kaiser, G.; Vlahos, P.; Betts, B.

    2005-06-20

    This document presents the transcripts of an Ontario Energy Board hearing regarding an application filed by Erie Shores Wind Farm Limited to construct transmission facilities that will connect Erie Shores' wind farm on the north shore of Lake Erie to the transmission facilities of Hydro One Network. This document presents the examinations by representatives of the Board Counsel, Erie Shores Wind Farm Limited Partnership, Hydro One Networks Inc., Ontario's Independent Electricity System Operator and intervenors. Erie Shores is a limited partnership between AIM PowerGen Corporation and Clean Power Income Fund. The proposed wind farm is to be located along the north shore of Lake Erie, covering about 14,000 acres of farmland in the townships of Bayham, Malahide and Norfolk County. It consists of 66 wind turbines with a net output of 99 MW. The construction of transmission facilities would involve the construction of a new transformer station with a 34.5/115 kV transformer, a capacitor bank, switch gear, and space for a future transformer. It would also include a transmission line from the Port Burwell transmission station to Hydro One's circuits at Cranberry Junction near Tillsonburg. Erie Shores also proposes to construct 27 km of the transmission line within the existing Otter Valley utility corridor, 3 km along the active Canadian Pacific Rail corridor, and over certain private lands located south of Tillsonburg Junction. Erie Shores was one of the successful bidders that has entered into a 20-year renewable energy supply contract with the Ontario Electricity Financial Corporation. The Board considers that the project is in the public interest and granted approval for the project, subject to certain conditions regarding communications, monitoring and reporting requirements. 2 refs., 1 appendix.

  1. Hydro One 2002 annual report

    2003-01-01

    Financial information from Hydro One was presented and a review of its 2002 operations was made available for the benefit of shareholders. Hydro One is the largest electricity delivery company in Ontario and one of the largest in North America. It began operation in 1999 after Ontario Hydro restructured its delivery and generation entities. Hydro One now includes power transmission, power distribution and telecom, with transmission and distribution operations representing 99 per cent of its business. This report indicates that in 2002, the utility had strong financial performance with $344 million in net income. The utility met its health and safety targets, and established a customer advisory board to improve customer satisfaction. A layer of management at the executive level was eliminated to stream-line decision-making and enhance productivity. The electricity network was upgraded and maintained through $546 million in capital expenditures. Non-core functions were sold to ensure a better focus on the core business of electricity delivery. This report presents an operations review as well as consolidated financial statements and common share information including the accounts of Hydro One and its share of assets, liabilities, revenues, expenses and cash flows. Revenue and expenditure statements were summarized by source. tabs., figs

  2. Thermo-hydro mechanical modeling in unsaturated hard clay: application to nuclear waste storage

    Jia, Y.

    2006-07-01

    This work presents an elastoplastic damage model for argillite in unsaturated conditions. A short resume of experimental investigations is presented in the first part. The results obtained show an important plastic deformation coupled with damage induced by initiation and growth of microcracks. Influences of water content on the mechanical behaviour are also investigated. Based on experimental data and micro-mechanical considerations, a general constitutive model is proposed for the poro-mechanical behavior of argillite in unsaturated conditions. The time dependent creep has also been incorporated in they model. The performance of the model is examined by comparing numerical simulation with experimental data in various load paths under saturated and unsaturated conditions. Finally, the model is applied to hydro-mechanical coupling study of the REP experiment and thermo-hydro-mechanical coupling study of the HE-D experiment. A good agreement is obtained between experimental data and numerical predictions. It has been shown that the proposed model describe correctly the main features of the mechanical behaviour of unsaturated rocks. (author)

  3. Implications of the Ontario government's white paper and competition strategies for Ontario's municipal electric utilities

    Wills, D.L.

    1998-01-01

    The strategies that Municipal Electric Utilities (MEU) should follow to deal with competition were discussed. North Bay Hydro is the 34th largest MEU out of 300 in Ontario but it serves only 23,000 out of 4 million electrical customers in Ontario. Therefore, the main strategy for municipal utilities to ensure their future would be to become part of an alliance and association like the MEA and the SAC - the Strategic Alliance for Competition and Customer Choice. Strong criticism was voiced regarding the contents of the recent Ontario Government White Paper for being vague with regard to electrical distribution and the role of MEUs in Ontario. It was suggested that it is vitally important that MEUs ally themselves with other stakeholders, to resist an Ontario Hydro monopoly, to make sure that prices stay low, to avoid excessive debt and bureaucratic inefficiency, be innovative, and consumer oriented and be prepared to anticipate events and conditions. 3 figs

  4. Transmission system planning in Ontario

    Barrie, D; Macedo, F X; Mcconnach, J S [Ontario Hydro, Toronto, ON (Canada)

    1994-12-31

    In recent years, new and modified approaches to planning the large transmission system that serves the province of Ontario, Canada, have been necessary to accommodate the rapidly changing planning environment including slower uncertain growth, ageing of facilities, integration of demand side management and non utility generation options, increased competitiveness, increased financial stresses and affordable constraints. This paper describes some of the new and modified approaches and tools that have been adopted or are being developed by Ontario Hydro to cope with this changing environment. (author) 9 refs., 4 figs.

  5. Disposal of Canada's nuclear fuel waste

    Dormuth, K.W.; Nuttall, K.

    1994-01-01

    In 1978, the governments of Canada and Ontario established the Nuclear Fuel Waste Management program. As of the time of the conference, the research performed by AECL was jointly funded by AECL and Ontario Hydro through the CANDU owners' group. Ontario Hydro have also done some of the research on disposal containers and vault seals. From 1978 to 1992, AECL's research and development on disposal cost about C$413 million, of which C$305 was from funds provided to AECL by the federal government, and C$77 million was from Ontario Hydro. The concept involves the construction of a waste vault 500 to 1000 metres deep in plutonic rock of the Canadian Precambrian Shield. Used fuel (or possibly solidified reprocessing waste) would be sealed into containers (of copper, titanium or special steel) and emplaced (probably in boreholes) in the vault floor, surrounded by sealing material (buffer). Disposal rooms might be excavated on more than one level. Eventually all excavated openings in the rock would be backfilled and sealed. Research is organized under the following headings: disposal container, waste form, vault seals, geosphere, surface environment, total system, assessment of environmental effects. A federal Environmental Assessment Panel is assessing the concept (holding public hearings for the purpose) and will eventually make recommendations to assist the governments of Canada and Ontario in deciding whether to accept the concept, and how to manage nuclear fuel waste. 16 refs., 1 tab., 3 figs

  6. Ontario energy market review and outlook

    Brett, J.T.

    1997-01-01

    The current status of the natural gas industry and the electric power industry in Ontario, in terms of deregulation, was described. Natural gas utilities will exit the regulated gas market over the next few years and transfer their existing residential and small commercial gas contracts to their unregulated affiliates. Nevertheless, a regulated gas supply option will remain until the regulator is assured that consumer protection issues have been properly addressed, and there is a truly competitive market. Ontario Hydro is a vertically integrated virtual monopoly. It lags behind B.C., Alberta, Quebec and Nova Scotia in terms of deregulation and restructuring, although the MacDonald Commission's recent report recommended sweeping changes to Ontario Hydro's monopoly over the electric power industry. A final response from the Ontario government is still pending. The convergence of the electric power and natural gas industries was also discussed

  7. The safety of Ontario's nuclear power reactors. A scientific and technical review. A submission to the Ontario Nuclear Safety Review by Atomic Energy Canada Limited

    1987-01-01

    This submission comments on the evolution of the Canadian nuclear program, the management of safety, and the reactor design, analysis, operation and research programs that contribute to the safety of the CANDU reactor and provide assurance of safety to the regulatory agency and to the public. The CANDU reactor system has been designed and developed with close cooperation between Atomic Energy of Canada Ltd. (AECL), utilities, manufacturers, and the Atomic Energy Control Board (AECB). The AECB has the responsibility, on behalf of the public, for establishing acceptable standards with respect to public risk and for establishing through independent review that these standards are satisfied. The plant designer has responsibility for defining how those standards will be met. The plant operator has responsibility for operating within the framework of those standards. The Canadian approach to safety design is based on the philosophy of defence in depth. Defence in depth is achieved through a high level of equipment quality, system redundancy and fail-safe design; regulating and process systems designed to maintain all process systems within acceptable operating parameters; and, independent safety systems to shut down the reactor, provide long-term cooling, and contain potential release of radioactivity in the event of an accident. The resulting design meets regulatory requirements not only in Canada but also in other countries. Probabilistic safety and risk evaluations show that the CANDU design offers a level of safety and least as good as other commercially available reactor designs

  8. Report on Darlington nuclear generating station

    1985-12-01

    The Select Committee on Energy was appointed on July 10, 1985 by the Legislative Assembly of the Province of Ontario in order to inquire into and report on Ontario Hydro affairs within ten months. Two sessions were planned the first of which was a review of the Darlington Nuclear Generating Station. Darlington is a large, 4 unit nuclear-powered electricity generating station currently under construction on the shore of Lake Ontario in the town of Newcastle. At the time the Committee met, construction had been underway for over four years. The first two units are scheduled to become operational in 1988 and 1989 with the second two scheduled to become operational in 1991 and 1992. The total estimated cost of the station is $10.895 billion of which $3.66 billion has been spent and $3.385 billion has been committed. Though the nuclear industry has been a major area of investment in Ontario over the past decade, the demand for electrical power from nuclear stations has been significantly decreased. This report focusses on the need for Darlington and public policy issues involved in planning and completing it. The Committee proposed the following recommendations: 1) The relationship between the Government of Ontario and Ontario Hydro and their individual responsibilities should be clarified. 2) An independent review of the Ontario Hydro demand/supply options should be carried out. 3) No further significant contracts for Darlington units 3 and 4 should be let for materials not required for construction during the next 6 months while the Committee studies demand and supply options

  9. Marketing program for R2000 in Ontario

    Killins, B.L.

    1990-01-01

    In the Ontario new housing market, Ontario Hydro's goal is to reduce the demand for electricity, increase the utility's visibility in this market, and increase customer satisfaction. Analyses have demonstrated that it costs less to construct new houses according to R-2000 insulation standards than to install new power production and transmission facilities. Research has also shown that R-2000 houses have better air quality and energy efficiency than ordinary houses. Nevertheless, most home builders have little enthusiasm for R-2000 houses; the strictness of airtightness standards, the slowness of certification, excessive paperwork, and a lack of promised marketing support are cited as the reasons for this. Ontario Hydro and builders' associations have signed a cooperative agreement for certifying new houses with the object of self-financing the program. The program intends to see construction of 1,000 R-2000 houses in 1990. To carry out this objective, some elements have been added to Ontario Hydro's marketing program in order to make potential customers aware of the advantages of the R-2000 house. Field staff will receive rigorous training in order to prepare them for helping the diverse types of builders. A mail campaign, focusing on areas not served by natural gas where significant numbers of new houses are being built, intends to bring home builders and buyers together. In February 1990, Ontario Hydro signed agreements with four major housing manufacturers to construct a significant proportion of the R-2000 housing stock

  10. Toronto Hydro annual report, 1992

    1993-01-01

    Toronto Hydro is the electric utility serving about 219,000 customers in Toronto, Ontario. In 1992, the utility purchased 9.6 billion kWh of electricity from Ontario Hydro, down 3.6% from 1990. Energy sales totalled 9.2 billion kWh, down 4.1% from 1990. Retail electricity rates increased an average of 6.7% in 1992, in spite of an increase in Ontario Hydro's wholesale rate by 8.2%, due to better than anticipated financial results and cost-control measures. The decline in electricity purchases and sales are attributed to economic factors, which also contributed to an increase in the utility's provision for bad debts. The third year of a 13.8-kV conversion project was completed in 1992; this project is converting the existing 4 kV distribution system to the higher voltage since maintenance and repair of the existing system is costly and the equipment is becoming less reliable. New construction, refurbishing, and modernization of equipment were performed at a number of substations. Other improvements in 1992 are reported in the areas of management and engineering systems, personnel policies, work safety, and energy management. Financial statements are included. 11 figs., 4 tabs

  11. Assessing the role of large hydro in Canada's electricity future

    Lee Pochih

    1992-01-01

    Electric power in Canada was first generated by steam in the 1880s. The use of hydroelectricity spread rapidly due to abundant water resources and the nationalization of power companies by the provinces; by 1920, 97% of Canadian electricity production came from hydroelectric plants. Thermal generation became competitive by the 1960s, when most of the best hydro sites had been developed, and nuclear generation also started gaining a share of the market. By 1991, hydroelectricity's share of Canadian power production had declined to around 60%. Hydroelectric power has long been used as an instrument of Canadian industrial policy. Given the amount and importance of utility capital expenditures, it was recognized that hydropower development could serve such policy objectives as job creation, industrial development, and macroeconomic stabilization. Creation of provincially owned utilities led to construction of large hydroelectric projects, notably in Quebec, British Columbia, Manitoba, and Newfoundland. The 20 largest hydroelectric power plants in Canada have a total installed capacity of 35,704 MW, representing ca 59% of Canada's total 1991 hydro capacity. The construction of such large projects is not expected to proceed as quickly as in the past because of environmental concerns. However, a number of factors favor continuation of development of hydro resources: a remaining potential estimated at ca 44,000 MW; simplification of electricity export regulations; more stringent air pollution standards that favor non-polluting energy sources; and a moratorium on nuclear power plants in Ontario. 4 tabs

  12. Restructuring of Canada's nuclear utilities: recent developments

    Guindon, S.

    1998-01-01

    Business decisions relating to the electric power sector are a provincial responsibility in Canada. The federal government looks to the three nuclear utilities to manage their nuclear assets and maintain them in a way that maximizes their reliability, efficiency and overall performance. A significant development in Canada's nuclear sector in the past year was the Ontario Hydro Nuclear Asset Optimization Plan. Structural change in the North American electricity market is a major impetus for decisions regarding nuclear assets by Canada's electric power utilities. The Ontario government is now taking steps to introduce competition in the Ontario Electricity market. The province of New Brunswick, which has one reactor at Point Lepreau which supplies one-third of the province's electricity, is also taking measures to introduce competition in its electricity market. (author)

  13. AECB staff annual assessment of the Bruce A Nuclear Generating Station for the year 1995

    1996-06-01

    The Atomic Energy Control Board conducts a staff assessment of safety at Bruce Nuclear Generating Station A for 1995. On-site Project Officers and Ottawa based specialists monitored the station throughout the year. Ontario Hydro operated Bruce A safely in 1995, maintaining the risk to workers and the public at an acceptably low level. Radiation doses to workers and releases to the environment were well below regulatory limits. However, Ontario Hydro must improve contamination control at Bruce A. Special safety system performance a Bruce A was less than adequate. The negative pressure containment system and units 4's shutdown system two exceeded unavailability targets in 1995. However, we are satisfied Ontario Hydro is taking appropriate action to correct this. 5 tabs., 5 figs

  14. Nuclear process steam for industry: potential for the development of an Industrial Energy Park adjacent to the Bruce Nuclear Power Development

    Seddon, W A

    1981-11-01

    This report summarizes the results of an industrial survey jointly funded by the Bruce County Council, the Ontario Energy Corporation, Atomic Energy of Canada Limited and conducted with the cooperation of Ontario Hydro and the Ontario Ministry of Industry and Tourism. The objective of the study was to identify and assess the future needs and interest of energy-intensive industries in the concept of an Industrial Energy Park adjacent tof the Bruce Nuclear Power Development. The proposed Energy Park would capitalize on the infrastructure of the existing CANDU reactors and Ontario Hydro's proven and unique capability to produce steam, as well as electricity, at a cost currently about half that from a comparable coal-fired station.

  15. Creating a competitive electricity market in Ontario - The energy consumer perspective

    Ford, M.

    1997-01-01

    The large consumers' perspective on the Ontario Government's decision to delay action on restructuring the electric power industry was provided, and recommendations were offered as to the best course of action that the Government ought to take. Ontario Hydro's proposal to restructure itself into separate generation, transmission and retail corporations, and to introduce competition into the Corporation was attacked as unworkable, in that it could not help but encourage price manipulation. The large consumer group also argued that retail distribution in Ontario needs major rationalization without an Ontario Hydro presence. In place of the Ontario Hydro proposal the Association of Major Power Consumers in Ontario (AMPCO) recommends a separate transmission system including an independent system operator, a restructuring of local distribution within a definite time frame and consistent criteria, to be worked out by municipal utilities and Ontario Hydro Retail, and establishment of a Transition Authority independent of Ontario Hydro with a mandate to carry out these changes. While the Ontario Government appears to be unlikely to undertake such a'risky' initiative at this stage of its mandate, significant change, including competition, remains inevitable. It is not a question of whether, but when a fully competitive energy market in Ontario will become a reality. tabs., figs

  16. Hydro - nuclear strategy in the expansion of the North and Northeast regions interconnected system

    Lima, J.O.V.

    1981-04-01

    The settlement of nuclear power plants in the North and Northeast Regions Interconnected System, taking into consideration merely economic analysis, is studied. Assuming that the system isn't connected with the Southeast Region, expansion alternatives were defined supported by an optimization model which mathematical formulation was based on a Linear Programming. The main model conditioning was the eletric energy market requirements evolution of the mentioned regions, estimated up to 2010, regarding tendencies presented by forecast elaborated by ELETROBRAS. The system was designed to assure its continuously attendance, even in the case of occurrence of a critical hidrological period, employing as generation sources hidroeletric plants and PWR nuclear power plants of 1245 MWe, similar to ANGRA II. (Author) [pt

  17. US team measurements during the June 1987 experimental HT release at the Chalk River Nuclear Laboratories, Ontario, Canada

    Jalbert, R.A.; Murphy, C.E.

    1988-01-01

    In June 1987, an experiment was performed at the Chalk River Nuclear Laboratories in Ontario, Canada, to study the oxidation of HT in the environment. The experiment involved a 30-minute release of 100 Ci of HT to the atmosphere at an elevation of one meter. The HTOHT ratios were shown to slowly increase downwind (/approximately/4 /times/ 10/sup /minus/5/ at 50 meters to almost 10/sup /minus/3 at 400 meters) as conversion of HT takes place. For several days after the release, HTO concentrations in the atmosphere remained elevated. Freeze-dried water from vegetation samples was found to be very low in HTO immediately after the release suggesting a very low direct uptake of HTO in air by vegetation. The tritiated water concentration increased during the first day, peaking during the second day (about 400 to 600 pCiml of water at 50 meters from the source) and decreasing by the end of the second day. The organically bound tritium continued to accumulate during the period following exposure (about 10 pCigm dry weight at 50 meters after two days). 4 refs., 6 figs., 2 tabs

  18. U.S. team measurements during the June 1987 experimental HT release at the Chalk River Nuclear Laboratories, Ontario, Canada

    Jalbert, R.A.; Murphy, C.E.

    1988-01-01

    In June 1987, an experiment was performed at the Chalk River Nuclear Laboratories in Ontario, Canada, to study the oxidation of HT in the environment. The experiment involved a 30-minute release of 3.54 TBq (95.7 Ci) of HT to the atmosphere at an elevation of one meter. The HTO/HT ratios were shown to slowly increase downwind (-- 4 x 10/sup -5/ at 50 meters to almost 10/sup -3/ at 400 meters) as conversion of HT takes place. For several days after the release, HTO concentrations in the atmosphere remained elevated. Freeze-dried water from vegetation samples was found to be very low in HTO immediately after the release suggesting a very low direct uptake of HTO in air by vegetation. The free-HTO concentration in vegetation increased during the first day, peaking during the second day (about 1.5 - 3.0 x 10/sup 4/ Bq/L at 50 meters from the source) and decreasing by the end of the second day. The organically bound tritium continued to accumulate during the period following exposure (about 400 Bq/kg dry weight at 50 meters after two days)

  19. A critical review on the application of elastic-plastic fracture mechanics to nuclear pressure vessel and piping systems

    Scarth, D.A.; Kim, Y.J.; Vanderglas, M.L.

    1985-10-01

    A comprehensive literature survey on the application of Elastic-Plastic Fracture Mechanics to the assessment of the structural integrity of nuclear pressure vessels and piping is presented. In particular, the J-integral/Tearing Modulus (J/T) approach and the Failure Assessment Diagram (FAD) are covered in detail because of their general suitability for use in Ontario Hydro. (25 refs.)

  20. Panel report on coupled thermo-mechanical-hydro-chemical processes associated with a nuclear waste repository

    Tsang, C.F.; Mangold, D.C.

    1984-07-01

    Four basic physical processes, thermal, hydrological, mechanical and chemical, are likely to occur in 11 different types of coupling during the service life of an underground nuclear waste repository. A great number of coupled processes with various degrees of importance for geological repositories were identified and arranged into these 11 types. A qualitative description of these processes and a tentative evaluation of their significance and the degree of uncertainty in prediction is given. Suggestions for methods of investigation generally include, besides theoretical work, laboratory and large scale field testing. Great efforts of a multidisciplinary nature are needed to elucidate details of several coupled processes under different temperature conditions in different geological formations. It was suggested that by limiting the maximum temperature to 100 0 C in the backfill and in the host rock during the whole service life of the repository the uncertainties in prediction of long-term repository behavior might be considerably reduced

  1. Panel report on coupled thermo-mechanical-hydro-chemical processes associated with a nuclear waste repository

    Tsang, C.F.; Mangold, D.C. (eds.)

    1984-07-01

    Four basic physical processes, thermal, hydrological, mechanical and chemical, are likely to occur in 11 different types of coupling during the service life of an underground nuclear waste repository. A great number of coupled processes with various degrees of importance for geological repositories were identified and arranged into these 11 types. A qualitative description of these processes and a tentative evaluation of their significance and the degree of uncertainty in prediction is given. Suggestions for methods of investigation generally include, besides theoretical work, laboratory and large scale field testing. Great efforts of a multidisciplinary nature are needed to elucidate details of several coupled processes under different temperature conditions in different geological formations. It was suggested that by limiting the maximum temperature to 100{sup 0}C in the backfill and in the host rock during the whole service life of the repository the uncertainties in prediction of long-term repository behavior might be considerably reduced.

  2. Small hydro

    Bennett, K.; Tung, T.

    1995-01-01

    A small hydro plant in Canada is defined as any project between 1 MW and 15 MW but the international standard is 10 MW. The global market for small hydro development was considered good. There are some 1000 to 2000 MW of generating capacity being added each year. In Canada, growth potential is considered small, primarily in remote areas, but significant growth is anticipated in Eastern Europe, Africa and Asia. Canada with its expertise in engineering, manufacturing and development is considered to have a good chance to take advantage of these growing markets

  3. Independent power and cogeneration in Ontario's new competitive electricity market

    Barnstable, A.G.

    1999-01-01

    The factors influencing the initial market pricing in the early years of Ontario's new electricity market were discussed with particular insight on the potential for near term development of independent power and cogeneration. The major factors influencing prices include: (1) no increase in retail prices, (2) financial restructuring of Ontario Hydro, (3) the Market Power Mitigation Agreement, (4) tighter power plant emissions standards, and (5) an electricity supply and demand balance. Generation competition is not expected to influence market pricing in the early years of the new electricity market. Prices will instead reflect the restructuring decisions of the Ontario government. The decision to have Ontario Power Generation Inc. (OPGI) as a single generator for Ontario Hydro's generation assets will ensure that average spot market pricing in the early market years will be close to a 3.8 c/kWh revenue cap

  4. A review of geophysical investigations at the site of Chalk River Nuclear Laboratories, Ontario

    Thomas, M.D.; Hayles, J.G.

    1988-01-01

    The site of the Chalk River Nuclear Laboratories was one of the first research areas located on crystalline rocks to be extensively investigated under the Canadian Nuclear Fuel Waste Management Program. A large contribution to meeting the geoscientific objectives of the program has been made using a suite of geophysical techniques. Many of them are standard, though sometimes modified in terms of instrumentation and/or experimental and/or analytical procedures, to meet the particular needs of the waste management program. Relatively new techniques have also been employed. Much of the early evaluation and development of the various techniques took place at the Chalk River site. Standard methods such as gravity, magnetics and seismic sounding have been used to investigate bedrock structure, and the seismic method has also been used to estimate overburden thickness. Standard geophysical borehole logging has been used to obtain in situ estimates of physical properties, to locate fracture zones and to make hole to hole correlations that have helped define local structure. Several standard electrical (e.g. resitivity) and electromagnetic (e.g. VLF-EM) techniques have proven successful in identifying water-filled fractures and faults. Relatively new techniques introduced into the geophysics at Chalk River were: ground probing radar; to investigate overburden; borehole TV and acoustic televiewer and VLF-EM, to locate fractures; studies of seismic tube-waves, well tides and temperature logs, to investigate fracture location and permeability. Most of these methods have been successful and are now routinely employed at other research sites

  5. Application of ecological risk assessment to establish nonhuman environmental protection at nuclear generating stations in Ontario, Canada

    Wismer, D.A.

    2004-01-01

    A screening ecological risk assessment was performed for regulatory compliance at three Ontario nuclear generating station sites to establish design requirements for a routine contaminant monitoring program and to address the need for non-contaminant stressor management. Site specific assessments went beyond traditional contaminant risk assessment to include stressors associated with land-use change, cooling water systems and site storm water runoff. Valued terrestrial and aquatic ecosystem components were selected from species lists after stakeholder consultation, and contaminants of concern were selected based on their relative loadings, and with respect to regulatory and literature-based benchmarks. Predictive modeling was used to estimate chemical and radionuclide exposures and likelihood of effects. Adverse effects on individual biota were predicted for aqueous emissions of chlorine and storm water but not for radionuclides. Retrospective analyses of past field monitoring were used to determine likelihood of effects from non-contaminant stressors. Individual-level adverse effects were observed for fish losses from cooling water withdrawal. Depending on the site and the biological species, either beneficial or adverse effects from thermal discharge and land-use change were observed. Followup studies include monitoring, laboratory study, computer modeling and mitigation. Field monitoring will generate more precise species-level estimates of intake fish losses, magnitude of fish response to thermal discharge and chlorine concentrations in near-field discharge waters. Laboratory study is determining the effectiveness of intake fish loss mitigation technology. Computer fish population models are being used to design field studies and interpret individual level effects. Mitigation includes storm water controls and habitat biodiversity management projects to offset past losses from site development and construction. Routine contaminant monitoring is planned to

  6. Estimating cancer risk in relation to tritium exposure from routine operation of a nuclear-generating station in Pickering, Ontario.

    Wanigaratne, S; Holowaty, E; Jiang, H; Norwood, T A; Pietrusiak, M A; Brown, P

    2013-09-01

    Evidence suggests that current levels of tritium emissions from CANDU reactors in Canada are not related to adverse health effects. However, these studies lack tritium-specific dose data and have small numbers of cases. The purpose of our study was to determine whether tritium emitted from a nuclear-generating station during routine operation is associated with risk of cancer in Pickering, Ontario. A retrospective cohort was formed through linkage of Pickering and north Oshawa residents (1985) to incident cancer cases (1985-2005). We examined all sites combined, leukemia, lung, thyroid and childhood cancers (6-19 years) for males and females as well as female breast cancer. Tritium estimates were based on an atmospheric dispersion model, incorporating characteristics of annual tritium emissions and meteorology. Tritium concentration estimates were assigned to each cohort member based on exact location of residence. Person-years analysis was used to determine whether observed cancer cases were higher than expected. Cox proportional hazards regression was used to determine whether tritium was associated with radiation-sensitive cancers in Pickering. Person-years analysis showed female childhood cancer cases to be significantly higher than expected (standardized incidence ratio [SIR] = 1.99, 95% confidence interval [CI]: 1.08-3.38). The issue of multiple comparisons is the most likely explanation for this finding. Cox models revealed that female lung cancer was significantly higher in Pickering versus north Oshawa (HR = 2.34, 95% CI: 1.23-4.46) and that tritium was not associated with increased risk. The improved methodology used in this study adds to our understanding of cancer risks associated with low-dose tritium exposure. Tritium estimates were not associated with increased risk of radiationsensitive cancers in Pickering.

  7. Power for the future : towards a sustainable electricity system for Ontario

    Winfield, M.S.; Horne, M.; McClenaghan, T.; Peters, R.

    2004-05-01

    Ontario's electricity system has undergone major changes since 1998, when the Hydro-Electric Power Commission was divided into four separate entities, Ontario Power Generation, Hydro One, the Ontario Electricity Financial Corporation, and the Electrical Safety Authority. In addition, retail and wholesale electricity markets were introduced in 2002 under the supervision of the Ontario Energy Board. The removal from service of several nuclear generating facilities in the province led to greater reliance on coal-fired generation to meet energy demands. In 2003, the newly elected provincial government made a commitment to phase out coal-fired plants by 2007 for environmental reasons. It is estimated that all the the existing nuclear facilities will reach their projected operational lifetimes by 2018. Given the province's growing electricity demand, several options have been proposed as to how future energy needs could be met. The options range from investment into low-impact renewable energy sources such as small-scale hydro, solar, biomass and wind, to the construction of new nuclear generating facilities. The Pembina Institute and the Canadian Environmental Law Association examined the following four key issues regarding Ontario's future direction in electricity generation, transmission and distribution: (1) by how much can electricity demand be reduced through the adoption of energy efficient technologies, fuel switching, cogeneration and demand response measures, (2) how much electricity supply can be obtained from low-impact renewable energy sources, (3) how should the grid demand be met once the electricity system has maximized the technically and economically feasible contributions from energy efficiency, fuel switching, cogeneration, response management measures (RMM) and renewable energy sources, and (4) what public policies should the province adopt to maximize energy efficiency, fuel switching, cogeneration, RMM and renewable energy sources. The Canadian

  8. Ontario electricity bill review

    O'Neill, G.

    2003-01-01

    Findings of an independent review of charges to electricity bills and recommendations to assist in the development of a standard, province-wide residential electricity bill for Ontario are discussed. The review was requested by the province's Minister of Energy in an effort to dispel growing confusion about the variations in customer billing practices used by the province's 90+ local distribution companies. Key recommendations and findings were as follows: (1)Consumer bill formats issued by local distribution companies should be more consumer-friendly, adhere to minimum design standards, adapt uniform terminology and common line charges; (2) charges on customer bills should be grouped into four standard line items, with full details available to customers: the four line items should be a basic service charge, a charge for delivering electricity to the customer, a charge for the electricity itself, and a separate charge for retiring the outstanding debt of the former Ontario Hydro; (3) bills should take advantage of opportunities for promoting province-wide energy conservation, such as encouraging the long-term use of interval meters, presenting historical consumption data on residential bills on a period-to-period basis, and education and communications initiatives. Details of the recommendations, including the calculation of the fixed and variable components of usage charges, an explanation of the concept of electricity system loss adjustments, a method for phasing in the recommendations, and the anticipated benefits to consumers are provided

  9. Nuclear process steam for industry

    Seddon, W.A.

    1981-11-01

    A joint industrial survey funded by the Bruce County Council, the Ontario Energy Corporation and Atomic Energy of Canada Limited was carried out with the cooperation of Ontario Hydro and the Ontario Ministry of Industry and Tourism. Its objective was to identify and assess the future needs and interest of energy-intensive industries in an Industrial Energy Park adjacent to the Bruce Nuclear Power Development. The Energy Park would capitalize on the infrastructure of the existing CANDU reactors and Ontario Hydro's proven and unique capability to produce steam, as well as electricity, at a cost currently about half that from a comparable coal-fired station. Four industries with an integrated steam demand of some 1 x 10 6 lb/h were found to be prepared to consider seriously the use of nuclear steam. Their combined plants would involve a capital investment of over $200 million and provide jobs for 350-400 people. The high costs of transportation and the lack of docking facilities were considered to be the major drawbacks of the Bruce location. An indication of steam prices would be required for an over-all economic assessment

  10. AECB staff annual assessment of the Bruce B Nuclear Generating Station for the year 1994

    1995-06-01

    AECB staff believes Ontario Hydro operated Bruce B safely in 1994. The Bruce B reactors will remain limited to 88% full power until Ontario Hydro is able to demonstrate that it is safe to operate at higher powers. Ontario Hydro's compliance with AECB regulations and the Operating Licence was satisfactory. AECB found no major violations. The station performance was similar to previous years. Radiation doses to workers and the public were well below the legal limits and also remained below Ontario Hydro's internal targets. Worker radiation doses increased slightly but were comparable to previous years. Inspection of pressure tubes and steam generator tubes by Ontario Hydro showed continuing tube degradation. However, we believe that Ontario Hydro made progress in correcting and managing these problems. Ontario Hydro carried out a full-scale fire drill at Bruce B in 1994. AECB witnessed the drill and were pleased to observe a significant improvement in the station's fire-fighting capability. 7 tabs., 4 figs

  11. Hydro adventurers

    Wood, Janet

    2000-01-01

    Some of the changes brought about by privatisation of the hydroelectric power industry in Ecuador are discussed. At present, about 25% of the population has no electricity supply; in the remaining areas demand is increasing. Seven new facilities are presently under discussion and these are described briefly. A plant at Abitugua is to be developed as a 'merchant plant' and the meaning and implications of this are described in detail. The present financing programme for Abituaga and an alternative financing programme are detailed. By 2010, some 40% of Ecuador's electricity is expected to come from hydro

  12. Hydro Ottawa achieves Smart Meter milestone

    Anon.

    2008-01-01

    As Ontario's second largest municipal electricity company, Hydro Ottawa serves more than 285,000 residential and business customers in the city of Ottawa and the village of Casselman. Since 2006, the utility has installed more than 230,000 Smart Meters throughout its service territory in an effort to provide better services to its customers. This initiative represents the largest operational advanced metering infrastructure network in Canada. This move was necessary before time-of-use rates can be implemented in Ottawa. The Smart Meters deliver data wirelessly to Hydro Ottawa's Customer Information System for billing and eliminating manual readings. The Smart Meters are designed to promote more efficient use of electricity. The Government of Ontario has passed legislation requiring the installation of Smart Meters throughout the province by the end of 2010

  13. BLUE GOLD: HYDRO-ELECTRIC RENT IN CANADA

    Glenn Jenkins; RICHARD ZUKER

    1984-01-01

    In this study, an attempt is made to develop estimates of the value of economic rent from production of hydro-electricity. These estimates are made for the year 1979, which is the latest period for which a comprehensive set of data was available at the time this work was undertaken. The estimates are developed for the hydro-electricity generated (or used) by electric utilities in four provinces: Quebec (including Churchill Falls), Ontario, Manitoba and British Columbia. These electric systems...

  14. The effect of Ontario's transmission system policies on cogeneration projects

    Carr, J.

    1999-01-01

    The impact that the establishment of transmission tariffs would have on the viability of cogeneration projects in Ontario was discussed. The proposal to establish such tariffs on the basis of a 'postage stamp' rate would ensure that all electricity users have access to electricity at the same price. However, this would unfairly penalize short-haul transmission transactions and would possibly result in the inappropriate location of new generation facilities. Electricity users would ultimately be burdened with these inefficiencies. This presentation also discussed another public policy which proposes to determine what parts of the electricity system should have their costs recovered at postage stamp rates. The costs would include not only transmission charges but also distribution and generation costs. The restructuring of Ontario Hydro into the Ontario Power Generation Company (OPGC) and the Ontario Hydro Services Company (OHSC) and its impact on the cogeneration projects was also discussed

  15. The predictable nature of the Paleozoic sedimentary sequence beneath the Bruce nuclear site in Southern Ontario, Canada

    Parmenter, Andrew; Jensen, Mark; Crowe, Richard

    2012-01-01

    Document available in extended abstract form only. A key aspect of a Deep Geologic Repository (DGR) safety case is the ability to develop and communicate an understanding of the geologic stability and resilience to change at time frames relevant to demonstrating repository performance. As part of an on-going Environmental Assessment, Ontario Power Generation (OPG) recently completed site-specific investigations within an 850 m thick Paleozoic sedimentary sequence beneath the Bruce nuclear site for the proposed development of a DGR for Low and Intermediate Level Waste (L and ILW). As envisioned, the shaft-accessed DGR would be excavated at a nominal depth of 680 m within the low permeability Ordovician argillaceous limestone of the Cobourg Formation, which is overlain by more than 200 m of low permeability Ordovician shale. The geo-scientific investigations revealed a relatively undeformed and laterally continuous architecture within the sedimentary sequence at the repository scale (1.5 km 2 ) and beyond. This paper explores the predictable nature of the sedimentary sequence that has contributed to increasing confidence in an understanding of the spatial distribution of groundwater system properties, deep groundwater system evolution and natural barrier performance. Multi-disciplinary geo-scientific investigations of the Bruce nuclear site were completed in 3 phases between 2006 and 2010. The sub-surface investigations included a deep drilling, coring and in-situ testing program and, the completion of a 19.7 km (9 lines) 2-D seismic reflection survey. The drilling program involved 6 (150 mm dia.) deep boreholes (4-vertical; 2 inclined) that were extended through the sedimentary sequence from 4 drill sites, arranged around the 0.3 km 2 footprint of the proposed repository. The more than 3.8 km of rock core (77 mm dia.) retrieved have provided, in part, a strong basis to understand bedrock lithology and mineralogy, facies assemblages, structure, and oil and gas

  16. Organizing the Canadian nuclear industry to meet the challenge

    Lortie, Pierre.

    1983-06-01

    The CANDU reactor is struggling for a share of the dwindling reactor market against formidable and well-established competition. The Canadian nuclear industry has historically depended upon two crown corporations, Atomic Energy of Canada Ltd. and Ontario Hydro, which have taken the lead in designing and engineering the reactor. Crown corporations are not notably successful in marketing, however, and the time has come for the industry to organize itself in preparation for an aggressive export drive

  17. Ontario's intertie capacity and electricity trade in the interconnected system

    Dorey, S.

    2002-01-01

    Hydro One's capacity of existing interconnections were described. The Ontario utility is within reach of about 320 GW electricity markets in neighbouring Quebec, New York, Michigan, Minnesota, and Manitoba. It is also within reach of 50 million customers, and 30 per cent of total U.S. energy consumption. The author emphasized the need for expanded interties and new interconnections. The status of new interconnections was described along with the rules regarding electric power import, export and wheeling. It was noted that compared to the United States, Canada has a higher proportion of clean hydro and nuclear power plants in its mix of power generation. Markets across North America are adopting electricity restructuring and open competition. However, the transmission grids were not designed to support market-driven electricity trading. Most transmission grids were built when utilities were tightly regulated and provided service only within their assigned regions. The current energy infrastructure is not equipped for large-scale swapping of power in competitive markets. It was also noted that growth in US power flows is outpacing transmission investment. This paper addressed the issue of license requirements, transmitter proposals for regulated investments, and non-rate base transmitter investments. It was concluded that while market rules are flexible enough to encourage inter-jurisdictional trade, the rules have to facilitate and encourage transmission investment. 8 figs

  18. AECB staff annual assessment of the Bruce B Nuclear Generating Station for the year 1996

    1997-06-01

    The Atomic Energy Control Board is the independent federal agency that controls all nuclear activities in Canada. A major use of nuclear energy in Canada is electricity production. The AECB assesses every station's performance against legal requirements, including the conditions in the operating licence. Each station is inspected and all aspects of the station's operation and management is reviewed. This report is the AECB staff assessment of reactor safety at the Bruce Nuclear Generating Station B for 1996. It was concluded that Ontario Hydro operated Bruce B safely in 1996. Although the Bruce B plant is safe,it was noted that the number of outages and the number of secondary and tertiary equipment failures during reactor unit upsets increased. Ontario Hydro needs to pay special attention to prevent such a decrease in the safety performance at Bruce B

  19. Effect of the heating rate on residual thermo-hydro-mechanical properties of a high-strength concrete in the context of nuclear waste storage

    Galle, C.; Pin, M.; Ranc, G.; Rodrigues, S.

    2003-01-01

    Concrete is likely to be used in massive structures for nuclear waste long-term storage facilities in France. In the framework of vitrified waste and spent fuel management, these structures could be submitted to high temperatures. In standard conditions, ambient temperature should not exceed 60 degC but in case of failure of a cooling system, concretes could be temporarily exposed to temperatures up to 250 degC. Depending on the temperature rise kinetics, concretes could be damaged to a greater or lesser extent. In this context, an experimental study on the effect of heating rate on concrete thermo-hydro-mechanical properties exposed to high temperatures (110 - 250 degC) was carried out at the French Atomic Energy Commission (CEA). Data analysis and interpretation provided enough arguments to conclude that, at local scale, the impact of heating rate on residual properties was real though relatively limited. (author)

  20. Nuclear fuel waste disposal

    1982-01-01

    This film for a general audience deals with nuclear fuel waste management in Canada, where research is concentrating on land based geologic disposal of wastes rather than on reprocessing of fuel. The waste management programme is based on cooperation of the AECL, various universities and Ontario Hydro. Findings of research institutes in other countries are taken into account as well. The long-term effects of buried radioactive wastes on humans (ground water, food chain etc.) are carefully studied with the help of computer models. Animated sequences illustrate the behaviour of radionuclides and explain the idea of a multiple barrier system to minimize the danger of radiation hazards

  1. Cross currents : hydroelectricity and the engineering of northern Ontario

    Manore, J.L. [Calgary Univ., AB (Canada)

    1999-05-01

    The history of hydroelectric development in northern Ontario was reviewed and analysed with special emphasis on the developments along the Mattagami and Abitibi Rivers. The objective was to examine the important factors that shaped modern hydroelectric development in Canada. System builders, the privately owned Nesbitt Thomson Company, the publicly owned Hydro Electric Power Corporation of Ontario and the eventual evolution of the single power system under Ontario Hydro are chronicled. Broad historical themes such as the technological impacts, regionalism, indigenous rights, plus environmental and economic issues are examined, in addition to an appreciation of the importance of electricity in the manufacturing sector of Ontario, the impact of hydroelectric development on the northern environment and on the northern First Nations, who rely on rivers for their subsistence. Until fairly recently, government policies and interpretations of law often excluded the recognition of Aboriginal uses of river systems, thereby limiting First Nations` peoples ability to practice traditional ways of life. In essence, the book is an account of how the northeastern power system in Ontario shaped the social, political and natural environments and how the development of northeastern power sources by southern power developers shaped the regional interactions between Ontario`s north and south. refs., figs.

  2. New Ontario power legislation aims to protect consumers

    Anon.

    2000-09-01

    New legislation designed to improve regulation of the electricity sector in Ontario was introduced by the provincial government in June 2000, the first such legislation since the government mandated an open electricity market with the Energy Competition Act of 1998. The new legislation is described as narrowly focused on putting limits on local power rate increases. The legislation was introduced in combination with a directive to the Ontario Energy Board, and is designed to ensure that the Board approves municipal electric utility rates only when certain conditions are met. The Energy Minister was at great pains to point out that the legislation should not be interpreted as the government interfering in the marketplace, it is merely to help the utility wires side of the business during a two-year transition period. Municipal authorities reacted unfavorably to the legislation because it appears to require them to return significant assets to their utilities, assets that they considered as theirs under municipal restructuring. Energy Probe, an environmental advocacy group, suggested an alternative to the legislation, i. e., the government should allow the price increases requested by the municipal utilities to go through, but to leave consumers whole, it should impose a windfall profits tax on municipal governments, use the proceeds to reduce debt retirement taxes in the electricity bill, a leftover from Ontario Hydro's debt and stranded nuclear waste liabilities, and eliminate the province's own electricity tax on consumers. No direct reaction has been received from the Minister to date. If the legislation is passed in its present form it will prevent municipalities from using windfall profits from their utilities to justify rate hikes.

  3. Meeting Ontario's electricity needs : a critical review of the Ontario Power Authority's supply mix advice report

    Gibbons, J.; Fracassi, J.

    2006-01-01

    In December, 2005 the Ontario Power Authority (OPA) outlined its proposed blueprint for meeting Ontario's electricity needs to 2025 in the document entitled Supply Mix Advice Report. As a result of the actions taken by the current government, the OPA believes that Ontario will have adequate electricity supplies to meet the province's needs until 2013. However, it stated that Ontario will require an additional 15,000 megawatts of new generation capacity between 2013 and 2025. The OPA also recommends that a significant proportion of this new generation capacity be nuclear. The Ontario Clean Air Alliance undertook a review of the OPA report and identified several discrepancies including an over-estimation of Ontario's rate of electricity load growth from 2005 to 2025; an under-estimation of the potential for electricity productivity improvements to reduce electricity demand and raise living standards; an under-estimation of renewable energy supply potential; an under-estimation of the potential for biomass and natural gas fired combined heat and power plants to meet electricity needs and increase the competitiveness of Ontario's industries; an under-estimation of the economic costs and risks of nuclear power; and a biased recommendation for a 70 million dollar resource acquisition budget against energy efficiency investments that would reduce demand and raise living standards. This report provides the Ontario Clean Air Alliances' analysis of the OPA report and presents it own recommendations for how Ontario can increase its electricity productivity and meet its electricity supply needs until 2025. The report concluded that the Government of Ontario should direct the OPA to develop a long-term strategy to raise the price of electricity up to its full cost without raising the electricity bills of low income consumers or impairing the competitiveness of Ontario's industries. It was suggested that Ontario's electricity productivity should be increased to the same level as

  4. Pickering education centre aids nuclear acceptance

    Anon.

    1979-01-01

    Activities at the new education centre at Pickering are described. The opening of the Nuclear Communications Centre, in 1978, resulting from a search for an effective means of maintaining public acceptance of Ontario Hydro's extensive nuclear power programme. Activities include participation in the interactive computer games, guided tours of educational exhibits including a model of Pickering A generating station, and displays depicting the Candu fuel cycle, outdoor exhibits of renewable energy sources, and tours of the plant. Outside activities include lectures to schools and citizen, business, or professional groups. (U.K.)

  5. Low head hydro market assessment : main report : vol. 1

    2008-03-01

    Hydroelectric power is a predictable renewable energy source that produces no greenhouse gases (GHGs) and has low maintenance costs. In addition to river resources, low head hydro is available in sluice gates, irrigation canals, drinking water pressure release valves, and municipal wastewater outfalls. Canada's potential for low head hydro has been estimated at 5000 MW at 2000 different sites across the country. Sites of up to 50 MW have been identified in Ontario and Manitoba. This study performed a market assessment on low head hydro developments. Available and emerging technologies for developing low head hydro were identified. The economics of low head hydro in Canada were explored, and barriers to low head hydro development were identified. Strategies to promote low head hydro development were also explored, and the impact of different incentive types on the low head hydropower market were estimated using a simple economic model. It was concluded that a reduced, streamlined, and standardized environmental assessment process will significantly benefit low head hydro development in Canada. 5 refs., 14 tabs., 17 figs

  6. Cross currents : hydroelectricity and the engineering of northern Ontario

    Manore, J.L.

    1999-01-01

    The history of hydroelectric development in northern Ontario was reviewed and analysed with special emphasis on the developments along the Mattagami and Abitibi Rivers. The objective was to examine the important factors that shaped modern hydroelectric development in Canada. System builders, the privately owned Nesbitt Thomson Company, the publicly owned Hydro Electric Power Corporation of Ontario and the eventual evolution of the single power system under Ontario Hydro are chronicled. Broad historical themes such as the technological impacts, regionalism, indigenous rights, plus environmental and economic issues are examined, in addition to an appreciation of the importance of electricity in the manufacturing sector of Ontario, the impact of hydroelectric development on the northern environment and on the northern First Nations, who rely on rivers for their subsistence. Until fairly recently, government policies and interpretations of law often excluded the recognition of Aboriginal uses of river systems, thereby limiting First Nations' peoples ability to practice traditional ways of life. In essence, the book is an account of how the northeastern power system in Ontario shaped the social, political and natural environments and how the development of northeastern power sources by southern power developers shaped the regional interactions between Ontario's north and south. refs., figs

  7. A Dual-Continuum Model for Brine Migration in Salt Associated with Heat-Generating Nuclear Waste: Fully Coupled Thermal-Hydro-Mechanical Analysis

    Hu, M.; Rutqvist, J.

    2017-12-01

    The disposal of heat-generating nuclear waste in salt host rock establishes a thermal gradient around the waste package that may cause brine inclusions in the salt grains to migrate toward the waste package. In this study, a dual-continuum model is developed to analyze such a phenomenon. This model is based on the Finite Volume Method (FVM), and it is fully thermal-hydro-mechanical (THM) coupled. For fluid flow, the dual-continuum model considers flow in the interconnected pore space and also in the salt grains. The mass balance of salt and water in these two continua is separately established, and their coupling is represented by flux associated with brine migration. Together with energy balance, such a system produces a coupled TH model with strongly nonlinear features. For mechanical analysis, a new formulation is developed based on the Voronoi tessellated mesh. By relating each cell to several connected triangles, first-order approximation is constructed. The coupling between thermal and mechanical fields is only considered in terms of thermal expansion. And the coupling between the hydraulic and mechanical fields in terms of pore-volume effects is consistent with Biot's theory. Therefore, a fully coupled THM model is developed. Several demonstration examples are provided to verify the model. Last the new model is applied to analyze coupled THM behavior and the results are compared with experimental data.

  8. Why we must move quickly to open Ontario's power market

    Brooks, J.

    2001-01-01

    This paper presented issues regarding the reform in Ontario's electricity sector and why the Independent Power Producer's Society of Ontario (IPPSO) believes it is necessary to open the electricity market in the province as soon as possible. The 400 members of IPPSO include developers, suppliers, consultants and various professionals working in the fields of co-generation, small hydro, biomass, wind energy and other technologies with a total generating capacity of about 1600 MW in Ontario. The government of Ontario recently announced four principles for implementing competition in the electricity sector which were protecting the consumers and offering choice, creating a strong business climate, protecting the environment, and supporting innovation and alternative energy development. This paper described the possible indicators of success in implementing these four principles and provided a historical perspective on the motivation for bringing in competition

  9. Summary of geoscience work at the AECL research site near Atikokan, Ontario

    Stone, D.

    1984-03-01

    Since 1979 June, geolgical, geophysical and hydro-geological investigations have been conducted at Research Area 4 north of Atikokan, Ontario as part of the Canadian Nuclear Fuel Waste Management Program. Composition, shape and internal structure of the Eye-Dashwa pluton were the subjects of regional field studies. Detailed research concentrated on the detection and characterization of surface and subsurface fractures within a 400-m x 800-m grid area, where five boreholes were drilled to depths of between 200 m and 1100 m. Fracture zones in the area were readily detected by surface mapping, ground very low frequency electromagnetic (VLF-EM) surveys and borehole logging. Borehole logs, downhole tube-wave seismic surveys, and thermal and television logging were successful in detecting open fractures in boreholes

  10. The Manitoba Hydro-Electric Board 50. annual report

    NONE

    2001-07-01

    This document presents the financial statements for The Manitoba Hydro-Electric Board (Manitoba Hydro) for the fiscal year ended March 31, 2001. Manitoba Hydro was proud to report no electricity rate increase for the period 2000-2001, a feat realized for the fifth consecutive year for most customer groups. Financial and production highlights were first presented, followed by the vision mission and goals of Manitoba Hydro. Manitoba Hydro serves 403 000 customers in the province with electric energy, and 248 000 customers with natural gas service mainly in the south of the province. Electricity export sale agreements are in place with more than 35 utilities and marketers in the United States, Ontario and Saskatchewan. Self-renewing waterpower is used to generate the bulk of the electricity. The transmission and distribution lines stretch over 100 000 kilometres. Manitoba Hydro is the fourth largest energy utility in Canada based on capital assets. A review of the year was presented, as well as a brief historical overview of Manitoba Hydro. The financial review section discussed the management report, the Auditor's report. Included in this section were various statement sheets, namely the consolidated statement of income and retained earnings, consolidated balance sheet, consolidated statement of cash flows, followed by some notes to the consolidated financial statements. Consolidated financial statistics and operating statistics - 10-year overview were presented. A brief presentation of the Board members and senior officers ended this report. tabs. figs.

  11. The Manitoba Hydro-Electric Board 50. annual report

    2001-01-01

    This document presents the financial statements for The Manitoba Hydro-Electric Board (Manitoba Hydro) for the fiscal year ended March 31, 2001. Manitoba Hydro was proud to report no electricity rate increase for the period 2000-2001, a feat realized for the fifth consecutive year for most customer groups. Financial and production highlights were first presented, followed by the vision mission and goals of Manitoba Hydro. Manitoba Hydro serves 403 000 customers in the province with electric energy, and 248 000 customers with natural gas service mainly in the south of the province. Electricity export sale agreements are in place with more than 35 utilities and marketers in the United States, Ontario and Saskatchewan. Self-renewing waterpower is used to generate the bulk of the electricity. The transmission and distribution lines stretch over 100 000 kilometres. Manitoba Hydro is the fourth largest energy utility in Canada based on capital assets. A review of the year was presented, as well as a brief historical overview of Manitoba Hydro. The financial review section discussed the management report, the Auditor's report. Included in this section were various statement sheets, namely the consolidated statement of income and retained earnings, consolidated balance sheet, consolidated statement of cash flows, followed by some notes to the consolidated financial statements. Consolidated financial statistics and operating statistics - 10-year overview were presented. A brief presentation of the Board members and senior officers ended this report. tabs. figs

  12. Application of best estimate and uncertainty safety analysis methodology to loss of flow events at Ontario's Power Generation's Darlington Nuclear Generating Station

    Huget, R.G.; Lau, D.K.; Luxat, J.C.

    2001-01-01

    Ontario Power Generation (OPG) is currently developing a new safety analysis methodology based on best estimate and uncertainty (BEAU) analysis. The framework and elements of the new safety analysis methodology are defined. The evolution of safety analysis technology at OPG has been thoroughly documented. Over the years, the use of conservative limiting assumptions in OPG safety analyses has led to gradual erosion of predicted safety margins. The main purpose of the new methodology is to provide a more realistic quantification of safety margins within a probabilistic framework, using best estimate results, with an integrated accounting of the underlying uncertainties. Another objective of the new methodology is to provide a cost-effective means for on-going safety analysis support of OPG's nuclear generating stations. Discovery issues and plant aging effects require that the safety analyses be periodically revised and, in the past, the cost of reanalysis at OPG has been significant. As OPG enters the new competitive marketplace for electricity, there is a strong need to conduct safety analysis in a less cumbersome manner. This paper presents the results of the first licensing application of the new methodology in support of planned design modifications to the shutdown systems (SDSs) at Darlington Nuclear Generating Station (NGS). The design modifications restore dual trip parameter coverage over the full range of reactor power for certain postulated loss-of-flow (LOF) events. The application of BEAU analysis to the single heat transport pump trip event provides a realistic estimation of the safety margins for the primary and backup trip parameters. These margins are significantly larger than those predicted by conventional limit of the operating envelope (LOE) analysis techniques. (author)

  13. Transforming Ontario's Power Generation Company

    Manley, J.; Epp, J.; Godsoe, P.C.

    2004-01-01

    The OPG Review Committee was formed by the Ontario Ministry of Energy to provide recommendations and advice on the future role of Ontario Power Generation Inc. (OPG) in the electricity sector. This report describes the future structure of OPG with reference to the appropriate corporate governance and senior management structure. It also discusses the potential refurbishing of the Pickering A nuclear generating Units 1, 2 and 3. The electricity system in Ontario is becoming increasingly fragile. The province relies heavily on electricity imports and the transmission system is being pushed to near capacity. Three nuclear generating units are out of service. The problems can be attributed to the fact that the electricity sector has been subjected to unpredictable policy changes for more than a decade, and that the largest electricity generator (OPG) has not been well governed. OPG has had frequent senior management change, accountability has been weak, and cost overruns have delayed the return to service of the Pickering nuclear power Unit 4. It was noted that the generating assets owned and operated by OPG are capable of providing more than 70 per cent of Ontario's electricity supply. Decisive action is needed now to avoid a potential supply shortage of about 5,000 to 7,000 megawatts by 2007. In its current state, OPG risks becoming a burden on ratepayers. Forty recommendations were presented, some of which suggest that OPG should become a rate-regulated commercial utility focused on running and maintaining its core generating assets. This would require that the government act as a shareholder, and the company operate like a commercial business. It was also emphasized that the market must be allowed to bring in new players. refs., tabs., figs

  14. DECOVALEX III PROJECT. Mathematical Models of Coupled Thermal-Hydro-Mechanical Processes for Nuclear Waste Repositories. Executive Summary

    Jing, L.; Stephansson, O. [Royal Inst. of Technology, Stockholm (Sweden). Engineering Geology; Tsang, C.F. [Lawrence Berkely National Laboratory, Berkeley, CA (United States). Earth Science Div.; Mayor, J.C. [ENRESA, Madrid (Spain); Kautzky, F. [Swedish Nuclear Power Inspectorate, Stockholm (Sweden)] (eds.)

    2005-02-15

    DECOVALEX is an international consortium of governmental agencies associated with the disposal of high-level nuclear waste in a number of countries. The consortium's mission is the DEvelopment of COupled models and their VALidation against EXperiments. Hence the acronym/name DECOVALEX. Currently, agencies from Canada, Finland, France, Germany, Japan, Spain, Switzerland, Sweden, United Kingdom, and the United States are in DECOVALEX. Emplacement of nuclear waste in a repository in geologic media causes a number of physical processes to be intensified in the surrounding rock mass due to the decay heat from the waste. The four main processes of concern are thermal, hydrological, mechanical and chemical. Interactions or coupling between these heat-driven processes must be taken into account in modeling the performance of the repository for such modeling to be meaningful and reliable. DECOVALEX III is organized around four tasks. The FEBEX (Full-scale Engineered Barriers EXperiment) in situ experiment being conducted at the Grimsel site in Switzerland is to be simulated and analyzed in Task 1. Task 2, centered around the Drift Scale Test (DST) at Yucca Mountain in Nevada, USA, has several sub-tasks (Task 2A, Task 2B, Task 2C and Task 2D) to investigate a number of the coupled processes in the DST. Task 3 studies three benchmark problems: a) the effects of thermal-hydrologic-mechanical (THM) coupling on the performance of the near-field of a nuclear waste repository (BMT1); b) the effect of upscaling THM processes on the results of performance assessment (BMT2); and c) the effect of glaciation on rock mass behavior (BMT3). Task 4 is on the direct application of THM coupled process modeling in the performance assessment of nuclear waste repositories in geologic media. This executive summary presents the motivation, structure, objectives, approaches, and the highlights of the main achievements and outstanding issues of the tasks studied in the DECOVALEX III project

  15. DECOVALEX III PROJECT. Mathematical Models of Coupled Thermal-Hydro-Mechanical Processes for Nuclear Waste Repositories. Executive Summary

    Jing, L.; Stephansson, O.; Kautzky, F.

    2005-02-01

    DECOVALEX is an international consortium of governmental agencies associated with the disposal of high-level nuclear waste in a number of countries. The consortium's mission is the DEvelopment of COupled models and their VALidation against EXperiments. Hence the acronym/name DECOVALEX. Currently, agencies from Canada, Finland, France, Germany, Japan, Spain, Switzerland, Sweden, United Kingdom, and the United States are in DECOVALEX. Emplacement of nuclear waste in a repository in geologic media causes a number of physical processes to be intensified in the surrounding rock mass due to the decay heat from the waste. The four main processes of concern are thermal, hydrological, mechanical and chemical. Interactions or coupling between these heat-driven processes must be taken into account in modeling the performance of the repository for such modeling to be meaningful and reliable. DECOVALEX III is organized around four tasks. The FEBEX (Full-scale Engineered Barriers EXperiment) in situ experiment being conducted at the Grimsel site in Switzerland is to be simulated and analyzed in Task 1. Task 2, centered around the Drift Scale Test (DST) at Yucca Mountain in Nevada, USA, has several sub-tasks (Task 2A, Task 2B, Task 2C and Task 2D) to investigate a number of the coupled processes in the DST. Task 3 studies three benchmark problems: a) the effects of thermal-hydrologic-mechanical (THM) coupling on the performance of the near-field of a nuclear waste repository (BMT1); b) the effect of upscaling THM processes on the results of performance assessment (BMT2); and c) the effect of glaciation on rock mass behavior (BMT3). Task 4 is on the direct application of THM coupled process modeling in the performance assessment of nuclear waste repositories in geologic media. This executive summary presents the motivation, structure, objectives, approaches, and the highlights of the main achievements and outstanding issues of the tasks studied in the DECOVALEX III project. The

  16. AECB staff annual assessment of the Pickering A and B Nuclear Generating Stations for the year 1994

    NONE

    1995-06-01

    The Pickering Nuclear Generating Station (PNGS) is located on the north shore of Lake Ontario, about 32 km east of downtown Toronto. It consists of two stations, PNGS-A and PNGS-B. Each station contains four reactor units. PNGS-A consists of Units 1 to 4, while PNGS-B consists of Units 5 to 8. Each unit can generate about 540 megawatts of electricity. All eight units are located within a single enclosure. Ontario Hydro`s Pickering Nuclear Division has assigned one Station Director with authority over both stations, but each station has its own organization. AECB issue a separate operating licence for each station. This report presents the Atomic Energy Control Board staff assessment of the Pickering stations` safety performance in 1994 and other aspects that they consider to have significant impact on nuclear safety. AECB based their conclusions on their observations, audits, inspections and review of information that Ontario Hydro submits to them as required by the station Operating Licences. 11 tabs., 8 figs.

  17. Some environmental effects of emissions from CANDU nuclear generating stations and heavy water plants

    Effer, W.R.

    Non-radioactive releases during normal operation of Ontario Hydro's nuclear generating stations and heavy water plants are summarized and related to existing regulations and guidelines. Low-grade heat in the circulating cooling water discharge is the most important of the non-radioactive effluents. Some of the hydrological, biological and water quality aspects of thermal discharges are discussed in relation to the operation of Ontario Hydro's thermal generating stations on the Great Lakes. Chemical releases to air or water include chlorine, hydrogen sulphide, water treatment plant effluents, oily waste water and sewage lagoon effluents. The significance of the first two of these releases to the environment is reviewed, particularly in relation to Great Lakes water quality and biological concerns. (author)

  18. Assessment of field training for nuclear operations personnel

    White, M [Safety Management Services, Inc. (Canada)

    1995-08-01

    Training of station personnel is an important component of the safe operation of the nuclear generating station. On-the-job training (OJT) is an important component of training. The AECB initiated this project to develop a process to assess the effectiveness of OJT for field operators, and perform an initial trial of the developed process. This report describes the recommended process to assess the effectiveness of OJT for field operators, as well as the results of the initial assessment at Pickering Nuclear Generating Station. The assessment`s conclusions included: (1) Ontario Hydro policies and procedures are generally consistent with industry guidelines requiring a systematic approach to training; (2) Pickering NGS field operator performance is not always consistent with documented station requirements and standards, nor industry guidelines and practices; and (3) The Pickering NGS field operator on-the-job training is not consistent with a systematic approach to training, a requirement recognized in Ontario Hydro`s Policy NGD 113, and does not contribute to a high level of performance in field operator tasks. Recommendations are made regarding the use of the developed process for future assessments of on-the-job training at nuclear power plants. (author). 36 refs., 4 tabs., 3 figs.

  19. Thermal hydro-dynamic behavior of the nuclear-powered ship Mutsu in the power-up test

    Ishida, Toshihisa; Kusunoki, Tsuyoshi; Tanaka, Yoshimi; Yao, Toshiaki; Inoue, Kimio; Ochiai, Masa-aki

    1991-01-01

    The first Japanese nuclear ship N.S. Mutsu was tested with heavy load changes as ones of the full scale start-up tests. This paper describes the results of power increasing test, test of crash astern propulsion from ahead cruising, and turbine trip test; In the power increasing test, the main steam flow rate increased from 20 % flow to 70 % flow in 13 seconds; In the test of crash astern propulsion from ahead cruising, an astern turbine maneuvering handle was drawn to the position equivalent to about 60 % reactor power in 30 seconds after an ahead turbine stopping; In the turbine trip test, the ahead turbine was tripped manually at about 100 % power operation. From these tests it was verified that the Mutsu reactor is capable to respond smoothly and safely to the heavy load change without reactor scram, without workings of the pressurizer relief valve and main steam dump valve, and without need of any manual adjustment of the reactor control system. (author)

  20. Review of first line supervisory positions in nuclear power plants - Phase II

    Mackenzie, C W; Huntley, M [Hickling Corp., Ottawa, ON (Canada)

    1995-10-01

    This report provides an overview of first line supervisory activities at Ontario Hydro nuclear generating stations (Pickering `A` and Bruce `B`) and the Point Lepreau nuclear generating station in New Brunswick. Activity profiles describing the range of first line supervisory roles and responsibilities for nuclear operators have been developed from survey data and flowcharting methods. These activity profiles have then been compared with formal job responsibilities as identified in job descriptions, supervisory training provided and assessment criteria used to evaluate supervisors. Finally, this report relates the findings of supervisory practices in the group under study with the findings in the current literature relating to supervisory functioning. (author). 32 tabs., 2 figs.

  1. Review of first line supervisory positions in nuclear power plants - Phase II

    Mackenzie, C.W.; Huntley, M.

    1995-10-01

    This report provides an overview of first line supervisory activities at Ontario Hydro nuclear generating stations (Pickering 'A' and Bruce 'B') and the Point Lepreau nuclear generating station in New Brunswick. Activity profiles describing the range of first line supervisory roles and responsibilities for nuclear operators have been developed from survey data and flowcharting methods. These activity profiles have then been compared with formal job responsibilities as identified in job descriptions, supervisory training provided and assessment criteria used to evaluate supervisors. Finally, this report relates the findings of supervisory practices in the group under study with the findings in the current literature relating to supervisory functioning. (author). 32 tabs., 2 figs

  2. The breakup of OPG : a suggestion for accelerating competition in generation in Ontario

    2003-01-01

    Although wholesale and retail electricity markets in Ontario were opened to competition on May 1, 2002, the market cannot be said to be truly competitive because Ontario Power Generation (OPG) is still the dominant market participant controlling more than 25,000 MW of capacity, which gives it market power. The Association of Major Power Consumers in Ontario (AMPCO) has made specific proposals to the Macdonald Committee on how OPG could be restructured into several commercial generating companies, but it does not appear that OPG activities will be decontrolled in the next 2 or 3 years for the following 4 reasons: (1) the general state of the market for generation resource is poor following the collapse of Enron, (2) the government cannot afford to decontrol large quantities of OPG plants, (3) uncertainty over public policy regarding environmental regulations makes it difficult to decontrol fossil-fuelled plants, and (4) uncertainty over the return to service of Pickering A and Bruce A nuclear plants. Total OPG capacity is 25,855 MW including Pickering A. OPG's fossil-fuelled plants are mostly coal-fuelled and are under pressure from environmental groups to convert to gas. However, none of the plants are suitable for conversion. AMPCO strongly recommends that these plants should be operated in a commercial manner without unduly intrusive environmental regulation. Options for restructuring nuclear, fossil and large hydro plants were also presented along with a proposal to restructure OPG into multiple operating companies. It was concluded that the decontrol of OPG generation through the Market Power Mitigation Arrangement would result in a viable and liquid market, where prices are controlled by competitive forces. 2 refs., 2 tabs

  3. Tinker, Tory, Wobbler, why? The political economy of electricity restructuring in Ontario, 1995--2003

    Martin, Charles Francis James

    The Ontario Tories' 42-year hegemony in government (1943-1985) was wrought through clever policies which often utilized Crown institutions to promote prosperity or to oblige or mollify vying interests. Ousted in 1985, though, they used their time in opposition to revise the Tory doctrine. In the 1995 election, the Tories emerged a tougher, more truculent group quite unlike their predecessors. Campaigning on their Common Sense Revolution (CSR) platform, they promised to eliminate red tape and vowed to obliterate all ostensible economic barriers which were impeding commerce in the province. In the CSR, the Tories identified Ontario Hydro (OH), the province's lauded publicly-owned power monopoly, as a troublesome and inefficient Crown entity which required fundamental reform. Portions of OH, they hinted, would likely be sold. Once elected, the Tories worked hurriedly to demolish OH and destroy public power in Ontario. For nearly 100 years, OH proved a pivotal component within the province's political economy for its provision of affordable, reliable power and its function as a policy tool to incite and direct development. A Tory government fought to instigate public power in the early 1900s and, in the late 1900s, a Tory government was fighting vigorously to rescind it. Why would they now renounce Crown power? It is the intent of this thesis to elucidate the Tory government's involvement in the transformation of Ontario's electricity industry from 1995 to 2003. Distinguishing electricity as a special, strategic staple, this thesis uses a pro-state, pro-staples industry political economy approach to discern how and why the Tory government sought to restructure the electricity sector. Essentially, it posits that the onslaught of neoliberalism, the emergence of novel generating technology, and the faltering of OH's nuclear wing all had a huge part to play in provoking the Tory government to initiate its reforms. Their reforms, though, proved too hasty, haughty, and

  4. Hydro-energy

    Bacher, P.; Tardieu, B.

    2005-01-01

    The first part of this study concerns the different type of hydraulic works. The second part presents the big hydro-energy, its advantages and disadvantages, the industrial risks, the electric power transport network, the economy and the development perspectives. The third part presents the little hydro-energy, its advantages and disadvantages, the decentralized production and the development perspectives. (A.L.B.)

  5. Government intervention in the Canadian nuclear industry

    Doern, G.B.

    1980-01-01

    Several facets of government intervention in the Canadian nuclear industry are examined by reviewing the general historical evolution of intervention since the Second World War and by a more detailed analysis of three case studies. The case studies are the public sector - private sector content of the initial CANDU reactor program in the 1950's, the regulation of the health and safety of uranium miners in the late 1960's and early 1970's, and the Ontario Hydro decision in 1978 to enter into longer-term (40 year) contracts for uranium for its power reactors. (auth)

  6. Government intervention in the Canadian nuclear industry

    Doern, G B [Carleton Univ., Ottawa, Ontario (Canada). School of Public Administration

    1980-01-01

    Several facets of government intervention in the Canadian nuclear industry are examined by reviewing the general historical evolution of intervention since the Second World War and by a more detailed analysis of three case studies. The case studies are the public sector - private sector content of the initial CANDU reactor program in the 1950's, the regulation of the health and safety of uranium miners in the late 1960's and early 1970's, and the Ontario Hydro decision in 1978 to enter into longer-term (40 year) contracts for uranium for its power reactors.

  7. Policy communities and allocation of internalized cost : negotiation of the Ontario acid rain program, 1982-1985

    MacDonald, D.C.

    1997-12-31

    The process of allocating the internalized cost of environmental protection amongst industrial concerns and governments was studied. The issue was addressed by reviewing the literature on the treatment of externalities by economists, and the literature describing the approach to policy analysis by the the policy communities. An examination of a case study in which the cost of sulphur dioxide emission reductions was allocated amongst the major Ontario sources during the development of the 1985 national and Ontario acid rain programs was presented. The study provided an insight into issues regarding Canadian environmental policy and policy communities theory and practice. The Ontario allocation was negotiated by Ontario alone, even though it was part of a national program. The environmental movement also had no role in this Ontario policy decisions. The power to influence the Ontario cabinet belonged to MOE, Inco, and Ontario Hydro through negotiations and compromise, which conforms to the basic premise of the policy communities approach.

  8. Ontario's power market post November 11

    Murphy, P.

    2003-01-01

    This paper provides a review of Ontario's first year with an open electricity market. The year 2002 to 2003 had record energy demands with challenges on the supply side. In particular, generation availability was below expectations during the summer months. This demonstrated that price predictability and volatility needs to be addressed and investment in new power generation is needed in Ontario. Ontario demand forecasts outpace supply for the long term outlook. In addition, most of Ontario's generating plants are aging and will soon exceed their nominal service life, requiring major refurbishment or replacement. Decisions are needed now on the future of coal in Ontario's generation mix. It was also noted that transmission reinforcements are needed in the Greater Toronto Area (GTA). In the short term, consumers can expect delays in return to service of nuclear units, forced extensions to planned outages, and reduced outlook for energy from hydroelectric resources. It was noted that Ontario will continue to rely on imports, although emergency generation is being installed. 5 figs

  9. AECB staff annual assessment of the Pickering A and B Nuclear Generating Stations for the year 1996

    1997-06-01

    The Atomic Energy Control Board is the independent federal agency that controls all nuclear activities in Canada. A major use of nuclear energy in Canada is electricity production. The AECB assesses every station's performance against legal requirements, including the conditions in the operating licence. Each station is inspected and all aspects of the station's operation and management is reviewed. This report is the AECB staff assessment of reactor safety at the Pickering A and B Generating Stations for 1996. PNGS-A and PNGS-B operated safely during 1996. Although the risk to the workers and the public is low, major safety related changes are necessary at the stations and the sustainability of those changes needs to be demonstrated. Improvement is needed by Ontario Hydro in meeting the time limits for reporting reportable events. Ontario Hydro's follow up to events and causal factor analyses continue to need improvements. Improvements are needed to operational safety and reactor maintenance at both A and B. There are signs of improvement through Ontario Hydro's plan for recovery, and in station management changes. There also appears to be commitment to safety expressed at the highest level of the utility

  10. Ontario Hydro studies on copper corrosion under waste disposal conditions

    Lam, K.W.

    1990-01-01

    The corrosion rate of copper is generally greater in aerated solutions containing sulphide; also, in the presence of sulphide there is the fear that pitting may occur. Experiments have been carried out to study the corrosion of copper in deaerated groundwater/bentonite slurries with and without added sulphide for exposure periods from two months to one year. The groundwater contains 6500 ppm of chloride and 1000 ppm of sulphate. Tests were also performed in the presence of a 150 rad/h radiation field. In deaerated slurries at 75C the corrosion rate is less than 2 μm/a. With one addition of 10 mg/l sulphide, the rate increases by a factor of ten. With daily sulphide additions to deaerated solutions the corrosion rate initially falls but then rises and stabilizes after 15 days. In aerated solutions the corrosion increases over the first 25 days and then stabilizes. The corrosion rate of copper reached a steady value in 15 to 30 days. Rates are higher in aerated solutions, but the effect of adding sulphide is not so marked in aerated solutions as in unaerated solutions. The highest corrosion rate, less than 150 μm/a, was observed in aerated slurries saturated with sulphide. For deaerated solutions in the absence of sulphide the corrosion rate increases with temperature, but in aerated solutions the rate decreases. For solutions containing added sulphide the influence of temperature is negligible. The effect of a radiation field may be beneficial; in the presence of a radiation field the corrosion rate is less than 20 μm/a. After descaling the coupons showed a high density of irregularly shaped pits both in the presence and absence of sulphide, resulting from intergranular attack. The pitting factor for the highest corrosion rate is around 15

  11. Ontario electricity industry restructuring

    1999-01-01

    The objective of Ontario's electricity industry restructuring was described as an effort to enhance Ontario's competitiveness. It is believed that restructuring can be accomplished without an increase in electricity rates. In a series of charts, the report provides the timeline of restructuring from the time of the Macdonald report in 1995 to the beginning of open competition in Ontario electricity markets. It oulines the principles underlying the financial restructuring and the financial results of restructuring, including the size of the stranded debt ($ 7.8 billion). It lists the changes that have occurred since October 1998, explains some key factors in valuing the successor companies and profiles the Ontario Electricity Financial Corporation. Restructuring of the industry is expected to have a neutral to positive impact on Ontario's fiscal position. The residual stranded debt of $7.8 billion will be retired through revenues generated by the electricity sector, without recourse to the Provincial Treasury. 9 figs

  12. Ontario energy review

    1990-03-01

    This publication provides a review of the developments in Ontario in relation to the national and international energy scene. Ontario is the largest energy consumer in Canada and is highly dependent on external energy sources. Several developments have significantly altered the Ontario energy scene. Oil and gas markets have become deregulated and market forces increasingly determine prices. A free trade agreement with the United States makes Ontario even more affected by international markets. Oil and gas prices have fallen from the high levels of the 1980s, but energy efficiency and conservation continue to be extremely important because they affect economic performance and the environment. In the next few years the greatest challenges will be to continue improving energy efficiency, to reduce the impact of energy on the environment, and to ensure the availability of sufficient energy supplies for future needs. This review contains statistics on energy in Ontario and explains them for the non-specialist. (7 tabs., figs.)

  13. Nuclear pursuits: The scientific biography of Wilfrid Bennett Lewis

    Fawcett, R.

    1994-01-01

    The scientific life of Wilfrid Bennett Lewis. The biography covers Lewis's role in the development of radar, his tenure as the Chief Superintendent of the Telecommunications Research Establishment at Malvern through his heading of the then fledgling Canadian nuclear research facility in Chalk River, Ontario. Lewis's drive, intelligence, and remarkable organizational skills placed him at the forefront of Canada's nuclear program. His influence lead to a collaboration between Atomic Energy of Canada Limited and Ontario Hydro that ultimately resulted in the development of the CANDU reactor. His influence was also profound in the near by town of Deep River with one prime legacy being the W.B. Lewis Library. Lewis's bibliography is included in the biography

  14. Hydro-climatology

    The hydro-climatological approach of this volume illustrates the scientific and practical value of considering hydrological phenomena and processes in a climate context to improve understanding of controls, process interaction, and past and future variability/change. Contributions deal with under......The hydro-climatological approach of this volume illustrates the scientific and practical value of considering hydrological phenomena and processes in a climate context to improve understanding of controls, process interaction, and past and future variability/change. Contributions deal...... considered. The interdisciplinary approach reveals information and perspective that go beyond the study of cli ate and hydro gy alone...

  15. Interconnection issues in Ontario : a status check

    Helbronner, V.

    2010-01-01

    This PowerPoint presentation discussed wind and renewable energy interconnection issues in Ontario. The province's Green Energy Act established a feed-in tariff (FIT) program and provided priority connection access to the electricity system for renewable energy generation facilities that meet regulatory requirements. As a result of the province's initiatives, Hydro One has identified 20 priority transmission expansion projects and is focusing on servicing renewable resource clusters. As of October 2010, the Ontario Power Authority (OPA) has received 1469 MW of FIT contracts executed for wind projects. A further 5953 MW of wind projects are awaiting approval. A Korean consortium is now planning to develop 2500 MW of renewable energy projects in the province. The OPA has also been asked to develop an updated transmission expansion plan. Transmission/distribution availability tests (TAT/DAT) have been established to determine if there is sufficient connection availability for FIT application projects. Economic connection tests (ECTs) are conducted to assess whether grid upgrade costs to enable additional FIT capacity are justifiable. When projects pass the ECT, grid upgrades needed for the connection included in grid expansion plans. Ontario's long term energy plan was also reviewed. tabs., figs.

  16. Hydro under shock

    Maffezzini, I.; Pineault, E.; Poirier, M.

    1997-01-01

    A discussion of the potential privatisation of Hydro-Quebec, and of the motivation to do so, was presented. The creation of Hydro-Quebec resulted from the nationalization in 1963 of all major electricity producers in the province of Quebec. Since its inception, Hydro-Quebec has gone through many episodes of restructuring but none more far reaching in extent, or in consequences, than the present one. The current deregulation of the electrical industry in Quebec, and the potential commercialization of Hydro-Quebec is considered to be a natural and inevitable result of the current global trend towards competition in the power industry and the demand for greater consumer choice. 1 tab

  17. New rules for competition: Ontario to cap power plant emissions

    Anon.

    1999-01-01

    The Ontario government through the Dept. of the Environment announced on November 16, 1999 that it would cut the emissions from Ontario coal burning power plants that cause acid rain and smog. This announcement was a much anticipated clarification of the government's plans to clean up the power industry since the enactment of the Electricity Competition Act more than one year past. The announcement signals the beginning of a public discussion process between government and stakeholders on the environmental rules for electricity generation in Ontario. The Ontario government is expected to release draft regulations for controlling coal burning power plant emissions in the near future. Consulations with stakeholders on the regulations, as well as the rules for disclosure and labeling, are anticipated to begin in a few months. The announcement set out four principles for environmental performance in the competitive electricity market. Anti-smog requirements will be included in the stringent environmental requirements to be built into Ontario's new, competitive electricity market. The strong measures which the government will put into place when the market opens later in 2000 include: (1) regulations to cut smog and acid gas emissions for all Ontario electricity generators on the grid - these regulations will include Ontario Hydro's voluntary nitrogen oxide limits; (2) emission performance standards to define maximum acceptable emission levels for all generators wanting to sell in the Ontario market; (3) a framework to support opportunities to make greater use of more efficient, environmentally responsible technologies; and (4) disclosure requirements to ensure that electricity consumers can understand the environmental implications of their purchasing decisions

  18. Instrumentation and control in the Canadian nuclear power program - 1991 status

    Lepp, R.M.

    1992-01-01

    Shortly, Canada will have an installed nuclear capacity of 15,500 MWe. The 4 unit Darlington Nuclear Generating Station, which makes extensive use of computers for control and safety shutdown, is currently being connected to the Ontario Hydro grid. A significant effort is underway on technologies that will enhance the human-machine interface to meet more stringent plant availability and safety goals. This includes work on alarm annunciation, distributed control, plant display, relay logic replacement and software technology. These various initiatives and their benefits are discussed in the paper. (author). 6 refs

  19. Bathymetry of Lake Ontario

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lake Ontario has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and geophysical data and make it more...

  20. A remotely controlled CCTV system for nuclear reactor retube operations

    Stovman, J.A.

    1984-01-01

    This paper describes the CCTV Vault Observation Subsystem (VOS) under development for Ontario Hydro for the Pickering 'A' Nuclear Power Plant Large Scale Retubing program. This subsystem will be used by a supervisor and several operators to observe fuel channel replacement operations following plant shutdown and removal of the fuel bundles. VOS basically comprises 23 monochrome television camera driven circuits, a matrix switcher, 15 monitors, 9 tape recorders and 4 microphone driven sound circuits. Remote control of the camera's zoom lenses and mounts is via a digitally multiplexed control system. Design considerations include viewing requirements, reliability, radiation, redundance, and economic factors

  1. Hydro in the Kyoto era

    Bourdon, M.-C.

    2003-01-01

    Quebec has the best performance in North America in terms of greenhouse gas (GHG) emissions. Unlike neighbouring provinces and states which rely heavily on coal for power generation, Quebec generates 96 per cent of its electricity from hydroelectric power. However, no new dams have been built in the past decade in Quebec due to land disputes with Aboriginal communities and general distrust among many ecologists. It takes about 12 years for a hydroelectric project to come to fruition. For that reason, and in order to capitalize on energy market opportunities, Hydro-Quebec is seriously considering expanding its generating capability beyond the needs of Quebec consumers, with gas-fired thermal generating stations. Environmental groups claim that the proposal to build the Suroit combined-cycle facility near the United States border destroys Quebec's efforts to honour the Kyoto Protocol. Economists argue that it is entirely in the spirit of Kyoto if exports of hydroelectricity or natural gas from Canada to the United States leads to less use of oil or coal. But one energy modeling expert at INRS-Energie et Materiaux claims that Quebec has a moral obligation to develop hydroelectricity for its own use as well as for export purposes, noting that any country with the good fortune to have renewable forms of energy, such as wind and hydro, should develop them to lower world GHG emissions. Quebec has many opportunities to sell hydroelectricity even while domestic demand grows. Hydroelectricity from Quebec should interest some states that have adopted their own GHG reduction standards, despite the U.S. government's refusal to ratify Kyoto. It should also interest Ontario and the Maritimes because they will be trying to reduce emissions from their thermal plants. The current situation does not favour the Kyoto Protocol. Exports of electricity from Quebec have dropped because no new dams have been built in recent years and gas-fired plants are looking more attractive to power

  2. Provincial hydro expansions

    Froschauer, K J

    1993-01-01

    A study of the development of five provincial hydroelectric utilities in Canada indicates that power companies and the state invited manufacturers to use hydroelectricity and natural resources in order to diversify provincial economies. These hydro expansions also show that utilities and government designed hydro projects to serve continental requirements; serving both objectives became problematic. It is argued that when the Canadian state and firms such as utilities use hydro expansions to serve both continentalism and industrialization, then at best they foster dependent industrialization and staple processing. At worst, they overbuild the infrastructure to generate provincial surplus energy for continental, rather than national, integration. Hydro developments became subject to state intervention in Canada mainly through the failures of private utilities to provide power for the less-lucrative industrial markets within provincial subregions. Although the state and utilities invited foreign firms to manufacture hydro equipment within the provinces and others to use electricity to diversify production beyond resource processing, such a diversification did not occur. Since 1962, ca 80% of industrial energy was used to semi-process wood-derived products, chemicals, and metals. The idea for a national power network became undermined by interprovincial political-economic factors and since 1963, the federal national/continential power policy prevailed. 187 refs., 6 figs., 52 tabs.

  3. Small steps for hydro

    Wicke, Peter

    1998-01-01

    The government in Peru has decided to utilise its gas reserves and restrict hydro to relatively small schemes. A number of reasons for the decision are given. In 1997, the Shell-Mobile-Bechtel-COSAPI consortium was formed and agreements were signed regarding exploiting Gas de Camisea. The country's energy needs to 2010 are being assessed. It is likely that by 2001 the whole of south Peru will be receiving gas from Camisea. The Peru situation is discussed under the headings of (i) existing capacity, (ii) growing demands, (iii) a history of hydro in Peru, (iv) electrification and SHP and (v) outlook. The future for Peru's electric energy development is bright. While most of its new power capacity will come from natural gas, the small hydros also have a part to play. A stronger commitment of national and regional political authorities to consider supplies outside the big cities is said to be needed. (UK)

  4. AECB staff annual assessment of the Pickering A and B Nuclear Generating Stations for the year 1994

    1995-06-01

    The Pickering Nuclear Generating Station (PNGS) is located on the north shore of Lake Ontario, about 32 km east of downtown Toronto. It consists of two stations, PNGS-A and PNGS-B. Each station contains four reactor units. PNGS-A consists of Units 1 to 4, while PNGS-B consists of Units 5 to 8. Each unit can generate about 540 megawatts of electricity. All eight units are located within a single enclosure. Ontario Hydro's Pickering Nuclear Division has assigned one Station Director with authority over both stations, but each station has its own organization. AECB issue a separate operating licence for each station. This report presents the Atomic Energy Control Board staff assessment of the Pickering stations' safety performance in 1994 and other aspects that they consider to have significant impact on nuclear safety. AECB based their conclusions on their observations, audits, inspections and review of information that Ontario Hydro submits to them as required by the station Operating Licences. 11 tabs., 8 figs

  5. Meeting Ontario's electricity supply challenge

    Johnson, A.

    2004-01-01

    This paper presents a comparison between nuclear generation and other existing power generation, with particular reference to the natural gas industry. The aim of the paper was to present a rationale for an extensive nuclear restart in the near future in Ontario. An energy forecast was provided, generating capacity requirements were examined, with particular reference to requirements beyond conservation and renewable energy supplies. The cost effectiveness of nuclear rehabilitation was compared to combined cycle gas turbines (CCGT) in terms of capital and non-fuel costs. Future prospects of gas prices were discussed, as well as the possibilities of demand outstripping supply. CCGT costs were compared to nuclear rehabilitation in terms of overall electricity prices, including capital, non-fuel operating costs and fuel costs. Steps towards making the nuclear option a reality included a sustainable market environment; clear policy framework; a balanced energy mix; long term price certainty; and clear regulatory requirements. In was concluded that in order to regenerate its potential, the nuclear industry must demonstrate world class project management; fixed scope; fixed supplier prices; program commitment; guarantees; and realistic future production estimates. It was also concluded that nuclear restart and life extension was an extremely attractive option for consumers, offering long term stable competitive power, with fuel diversity and future reserves as well as zero greenhouse gas emissions and an optimization and use of existing facilities. Challenges in creating the right climate for nuclear rehabilitation were the difficulties in making the nuclear option attractive to investors as well as developing correct estimation of project times, costs, and scopes and allocation of project risks. tabs., figs

  6. Green power opportunities for Ontario

    Elwell, C.; Rotenberg, E.; Torrie, R.; Poch, D.; Allen, G.

    2002-02-01

    Green energy is defined as the energy generated from renewable and environmentally benign sources. In this document, the authors demonstrated that Ontario possesses the potential to reduce energy waste on an economic basis while generating sufficient green energy to enable the province to decommission its coal burning power plants. In turn, this would lead to a more sustainable energy economy and a lesser reliance on nuclear generation. It was determined that a three-fold policy would enable the province to achieve this goal. First, there is a need to remove hidden subsidies to polluting forms of generation. The second aspect of this policy is the implementation of a robust Demand Side Management Program, and the third aspect calls for the reform of the price of electricity that includes all costs. In this manner, all forms of generation would compete on an equal footing. The authors identified an alternative to immediate price reform in the form of a legislated Renewable Portfolio Standard. A growing percentage of new renewable electricity in the supply portfolio offered by electricity providers would be required by the Renewable Portfolio Standard. It was suggested that the Ontario government adopt this measure before the opening of the electricity market in May 2002, as strong support for the measure is present. 13 refs

  7. Small hydro in Africa

    Jonker Klunne, W

    2011-10-01

    Full Text Available hydro, the author has started an online database of small hydropower projects in eastern and southern Africa. The main aim of the database is to catalogue the current situation and to make that accessible to policymakers, project developers, as well...

  8. Assessment of field training for nuclear operations personnel

    White, M.

    1995-08-01

    Training of station personnel is an important component of the safe operation of the nuclear generating station. On-the-job training (OJT) is an important component of training. The AECB initiated this project to develop a process to assess the effectiveness of OJT for field operators, and perform an initial trial of the developed process. This report describes the recommended process to assess the effectiveness of OJT for field operators, as well as the results of the initial assessment at Pickering Nuclear Generating Station. The assessment's conclusions included: (1) Ontario Hydro policies and procedures are generally consistent with industry guidelines requiring a systematic approach to training; (2) Pickering NGS field operator performance is not always consistent with documented station requirements and standards, nor industry guidelines and practices; and (3) The Pickering NGS field operator on-the-job training is not consistent with a systematic approach to training, a requirement recognized in Ontario Hydro's Policy NGD 113, and does not contribute to a high level of performance in field operator tasks. Recommendations are made regarding the use of the developed process for future assessments of on-the-job training at nuclear power plants. (author). 36 refs., 4 tabs., 3 figs

  9. Natural resources: adjusting and innovating - Hydro-Quebec in the global age

    Ouellet, D.

    1995-01-01

    Although it is believed that the information economy is replacing the mass economy, many companies continue to grow on economies based on natural resources. Recent aggressive growth by Hydro-Quebec in the highly competitive market for energy products was singled out as one of the success stories. Among other things, Hydro-Quebec was reported to focus attention on the globalization of electricity products, particularly in Asia, Europe and Africa. The corporation was said to cooperate with other utilities companies such as Ontario Hydro and Power Asia Assets Corporation to diversify its markets abroad. Hydro-Quebec is also marketing new products, developed in its laboratories and by subsidiaries, such as power system simulators and power system planning and management systems, on a global scale

  10. Market Myths and Facts - the Ontario Context

    Dorey, S.

    2007-07-01

    The world has learned much about electricity markets and what they can and can't do over the past few years, but some myths persist. Why they persist is a subject for those who study politics, interests and influence. This paper provides a perspective on myths which have affected the reliable and economic delivery of electricity to customers, particularly with respect to transmission. Hydro One effectively provides the transmission network for the Province of Ontario, Canada. As Hydro One is a wires company, the paper is not intended to address the issues which affect the generation or conservation sectors of the industry, except where they directly relate to the wires. The proposition of this paper is that electricity transmission is best treated as an essential public good. Transmission as a market participant and a traded commodity has generally not worked with respect to assuring that the system continues to be developed to meet the basic need of customers for reliable and affordable electricity. (auth)

  11. Professional aspects of nuclear safety

    1987-01-01

    Design and operation of nuclear facilities in Ontario are performed by professionals who have more at stake in the nuclear scene than the average resident of the province. Their technical expertise is constantly under scrutiny by their employers, the Atomic Energy Control Board, and the dissenting factions in the community. They and their families live close to nuclear facilities. It is highly unlikely that these professionals would assume a less than cautious approach to their work. The professional staff at both AECL-CANDU Operations and at Ontario Hydro have employee associations that date back many years. The presence of these associations has helped professional employees to divorce their labour-related concerns from their technical responsibilities to the advantage of the public. With the backing of their associations, the professional employees have encouraged the employers to sponsor career development programs to help them maintain state-of-the-art expertise. Employers have sponsored attendance and participation at technical seminars, many of them international. These benefits and privileges have contributed to improved standards in design, but most importantly the protection afforded by collective agreements to professional integrity has permitted engineers and other professionals to insist on the highest possible design standards

  12. Analysis of the potential for wind energy production in northwestern Ontario

    Brown, C K; Warne, D F

    1975-11-01

    A study of the feasibility of generating electric power from wind generators at remote sites in Northwestern Ontario has been carried out on behalf of the Ontario Ministry of Energy, with project management from Ontario Hydro. The work included (1) a survey of commercially available wind driven electric plant, both currently available and planned for production, (2) an analysis of existing wind data and preparation of an isovent map for Ontario showing annual mean wind speeds, (3) the selection of suitable sites for a demonstration unit and a prototype system, (4) the matching of available plant to the wind regimes to predict annual energy production, and (5) a systems analysis of pure diesel, hybrid wind/diesel and pure wind electric plants to determine the cost of power from the various alternatives.

  13. Financial profile of Hydro-Quebec : 1998-2001

    1999-01-01

    Hydro-Quebec is a publicly owned company with a single shareholder, the Quebec government. It is ranked among North America's largest distributors of green energy. This report provides financial highlights including revenue, expenditure, net income, total assets, long term debt, shareholder's equity and the financial position of the utility. Operating statistics are also provided. This includes electricity sold both in and out of Quebec, total installed capacity, peak requirements for winter, total number of customer accounts, and the number of permanent employees. Because of the January ice storm, Hydro-Quebec's major priority in 1998 was to reinforce its transmission and distribution system to meet customer expectations. From February to December 1998, about 3,000 km of line were built, rebuilt or consolidated. By 2001, the utility will have looped several of its high-voltage transmission systems. Plans are also underway to build four new high-voltage lines and an interconnection with Ontario, using advanced technologies. tabs., figs

  14. Ontario's energy action plan

    2003-07-01

    In the fall of 2002, the government of Ontario announced an action plan designed to ensure stable electricity prices while additional electricity generating capacity is built. The action plan included a strategy for encouraging major private sector investments in wind, solar and other renewable energy sources. The strategies for new renewable energy projects include: property tax incentives, business income tax incentives, and sales tax rebates. Initiatives to increase supply include: Toronto's Portland 550 megawatt, natural gas-fired generating station, Niagara Falls' Beck Tunnel Project, and Windsor's 580 megawatt natural gas-fired generating station. The government is promoting energy conservation by reducing its electricity consumption by 10 per cent, and setting a target where 20 per cent of electricity consumed in the province must be from renewable energy sources. The use of interval meters by Ontario residents is being encouraged. A provincial sales tax rebate is being offered to customers buying select energy efficient appliances. In its commitment to environmental protection, the Ontario government is phasing out coal, offering rebates for solar energy systems, implementing measures to reduce acid rain, and investing $3.25 billion over ten years to renew and expand public transit. In Chatham, Ontario, a plant producing ethanol from corn was built, and others are planned for other parts of the province. Tax incentives are also offered for alternative fuel users. 1 ref., 1 tab

  15. The case for new nuclear

    Luxat, J.C.

    2013-01-01

    Over a 22 year period from 1971 to 1993 a total of 20 reactor units were brought into service - an average of approximately one unit per year. Ontario Hydro constructed the four-unit Pickering A station, four units at Bruce A, four units at Pickering B, four units at Bruce B and four units at Darlington during this period. This represents a capacity of nearly 14,000 MW, as shown in Figure 1. During this period there was a large increase in industrial capacity in Ontario, particularly in manufacturing, driven in large measure by the incentives offered by low electricity prices, skilled workers and a good health care system. Subsequently in the mid-1990's the Pickering A and Bruce A units were laid up and maintenance efforts were focused on the Pickering B, Bruce B and Darlington stations. Two of the four units at Pickering A were returned to service in the early 2000's and the four units of Bruce A were returned to service with two units being refurbished. By 2010 nuclear capacity in the province had returned to 12,800 MW. The Ontario Long Term Energy Plan (LTEP) announced at the beginning of December does not include new build nuclear but does include refurbishment of the Darlington station as well as two units at Bruce A and four units at Bruce B. The six units at Pickering will be shut down by 2020. As shown in Figure 1, this will reduce the nuclear capacity from the current 12,800 MW to 8000 MW when the Pickering A and B units are removed from service in 2020 and the refurbishment of Darlington and Bruce units proceeds starting in 2016 and projected to complete by 2031. This will be the lowest nuclear generating capacity in the province since 1985. (author)

  16. Your energy team : Hydro Mississauga 1998 annual report

    1999-01-01

    An operational and financial review of Hydro Mississauga for fiscal year 1998 is presented. Hydro Mississauga has been serving the municipality of Mississauga, Ontario for the past 82 years. In 1998, Hydro Mississauga went through major restructuring to include a new competitive 'Services' Division which offers a wide range of competitive products and services. Despite deregulation and restructuring, quality of service was maintained and all-time performance records were set for company safety and system reliability. Operating costs were also cut and low rates continued. The residential rate freeze will be extended for a sixth straight year into 1999. Consolidated financial statements show that in 1998 Hydro Mississauga was 100 per cent debt free. One of the top priorities for the utility in 1998 was to get ready to deal with any problem that might arise as we roll over into the year 2000. The utility has completed an inventory of all computer software and equipment and has taken measures such as remediation, testing and getting vendor assurances. tabs., figs

  17. Independent Power Producers' view on restructuring in Ontario's electric power sector

    Brooks, J.

    1996-01-01

    The collective views on electricity industry restructuring of the independent power producers in Ontario were summarized by IPPSO's executive director. The Society is fully in agreement with the MacDonald Committee recommendations to privatize power generation in Ontario, and is equally in favor of competitive restructuring that is now underway in Michigan, New York and Quebec, as well as farther afield in the U.S., the U.K., and elsewhere around the world. IPPSO claims that a competitive generation system comprised of current and future IPPSO members could supply the province's power requirements at a cost 20 per cent lower than the present monopolistic system of Ontario Hydro. Add to that no reduction in services to the consumers, increased revenues in the form of taxes to the province, and the prospect of restructuring becomes far less threatening than first perceived. While fully in agreement with the MacDonald Committee's recommendations, IPPSO is opposed to Ontario Hydro's own restructuring plans. Their objection is based on the assessment that the plan would not result in real competition; in reality, it would allow Hydro even greater freedom to continue investing publicly-guaranteed money on a completely dissimilar basis to its competitors

  18. Hydro turbines: An introduction

    Gordon, J.L.

    1993-01-01

    The various types of hydraulic turbines currently used in hydroelectric power plants are described. The descriptions are intended for use by non-engineers who are concerned with fish passage and fish mortality at a hydro power facility. Terminology used in the hydro industry is explained. Since the extent of cavitation is one of the factors affecting mortality rates of fish passing through hydraulic turbines, an equation is introduced which measures the extent of cavitation likely to be experienced in a turbine. An example of how the cavitation index can be calculated is provided for two typical power plants. The relation between certain parameters of power plant operation and the extent of cavitation, and therefore of fish mortality, is illustrated. 2 refs., 14 figs

  19. Fisheries and Oceans Canada - habitat management program in Ontario

    NONE

    2011-07-01

    On May 5, 2011, the Ontario Waterpower Association hosted the emergent hydro workshop in Peterborough. In the course of the workshop, Fisheries and Oceans Canada presented the habitat management program in Ontario. Fisheries and Oceans Canada explained that their role is to protect water resources. The Fisheries Act was passed to manage fisheries and fish habitats in Canada and to protect them from harmful alteration, disruption or destruction. The policy for the management of fish was written to interpret the Fisheries Act and enhance the productive capacity of fish habitats. In addition, two other Acts were passed, the Species at Risk Act and the Canadian Environmental Assessment Act, designed to protect species from extinction and improve coordination of, and public access to EA information. This presentation highlighted the different existing policies aimed at protecting fisheries and fish habitats in Canada.

  20. The hydro digest

    Scheil, Hermann [Itaipu Mondig, Power Generation Group (KWU), Siemens AG, Erlangen (Germany)

    2000-12-01

    Digest WK is an analysis and diagnostics system for turbine generators in large hydroelectric plant: it was developed from the Digest system which has been used in steam turbine plants for many years. The system is in use at the world's biggest hydro plant in Itaipu Binacional between Paraguay and Brazil. The system is described under the sub-headings of (a) monitoring concept; (b) the Digest WK system; (c) vibration monitoring; (d) generator temperature analysis and (e) outlook.

  1. Remote micro hydro

    1985-03-01

    The micro-hydro project, built on a small tributary of Cowley Creek, near Whitehorse, Yukon, is an important step in the development of alternative energy sources and in conserving expensive diesel fuel. In addition to demonstrating the technical aspects of harnessing water power, the project paved the way for easier regulatory procedures. The power will be generated by a 9 meter head and a 6 inch crossflow turbine. The 36 V DC power will be stored in three 12 V batteries and converted to ac on demand by a 3,800 watt inverter. The system will produce 1.6 kW or 14,016 kWh per year with a firm flow of 1.26 cfs. This is sufficient to supply electricity for household needs and a wood working shop. The project is expected to cost about $18,000 and is more economical than tying into the present grid system, or continuing to use a gasoline generator. An environmental study determined that any impact of the project on the stream would be negligible. It is expected that no other water users will be affected by the project. This pilot project in micro-hydro applications will serve as a good indicator of the viability of this form of alternate energy in the Yukon. The calculations comparing the micro-hydro and grid system indicate that the mico-hydro system is a viable source of inflation-proof power. Higher heads and larger flow resulting in ac generation in excess of 10 kW would yield much better returns than this project. 3 tabs.

  2. Rural hydro technology

    Fowlie, M.

    1999-01-01

    This paper examines the increasing use of micro hydroelectric schemes for power generation in mountainous communities in Asia to alleviate some of the pressures on forests. An example of such a scheme in Pakistan is given, and the installation and operation of small hydro units, socio-economic factors, and the impact of the projects on the position of women in the community are discussed. (UK)

  3. Vaksvikelva small hydro

    Loe, Daniel Aarset

    2017-01-01

    Norway is in constant need of renewable energy, and hydroelectric power is still the main source. A great future potential can be found in countless small rivers scattered across the country, which could be developed through small hydro projects. In the process of converting mechanical movement - flowing water - into electric energy, about 5% turns into heat. From a power plant with an annual production of 15 GWh, this means energy enough to heat approximately 30 households is lost. In my pro...

  4. Report of the COG/IAEA international workshop on managing nuclear safety at CANDU (PHWR) plants. Working material

    1997-01-01

    The workshop, hosted by COG and co-sponsored by the International Atomic Energy Agency (IAEA, Vienna) was held in Toronto, April 28 - May 1st, 1997. The 40 participants included senior managers from IAEA member countries operating or constructing CANDU (PHWR) stations. All the offshore utilities with PHWR stations in Korea, Romania, India, Argentina, Pakistan, and China were present with their domestic counterparts from Ontario Hydro Nuclear, Hydro Quebec, New Brunswick Power, and AECL. The objectives of the workshop were to: provide a forum for exchange of ideas among nuclear safety managers operating CANDU (PHWR) stations and to learn from each other's experiences; to foster sharing of information on different operating approaches to managing safety and, in particular, to highlight the strategies for controlling the overall plant risk to a low level; to identify and discuss issues of mutual interest pertinent to PHWR stations and to define future follow-up activities. Refs, figs

  5. Report of the COG/IAEA international workshop on managing nuclear safety at CANDU (PHWR) plants. Working material

    NONE

    1997-12-01

    The workshop, hosted by COG and co-sponsored by the International Atomic Energy Agency (IAEA, Vienna) was held in Toronto, April 28 - May 1st, 1997. The 40 participants included senior managers from IAEA member countries operating or constructing CANDU (PHWR) stations. All the offshore utilities with PHWR stations in Korea, Romania, India, Argentina, Pakistan, and China were present with their domestic counterparts from Ontario Hydro Nuclear, Hydro Quebec, New Brunswick Power, and AECL. The objectives of the workshop were to: provide a forum for exchange of ideas among nuclear safety managers operating CANDU (PHWR) stations and to learn from each other`s experiences; to foster sharing of information on different operating approaches to managing safety and, in particular, to highlight the strategies for controlling the overall plant risk to a low level; to identify and discuss issues of mutual interest pertinent to PHWR stations and to define future follow-up activities. Refs, figs.

  6. Hydro-power

    Piro, P.

    2010-01-01

    On average the hydro-power sector produces 12% of the electrical power in France. A quarter of this production might pass to another operator than EDF because the end of some grants is nearing (2012 for 12 installations). In France the power of rivers belongs to the state that gives operators grants to harness it. The allowance lasts 75 years usually but for installations below 4.5 MW a permanent and definitive grant is allowed. Most installations are ancient and their investment have been paid off since a long, so hydro-power is the most profitable renewable energy in France. A lot of bidders are expected. Each bid will be assessed on 3 criteria: -) the global energy efficiency of the waterfall, -) a balanced management of the water resource, and -) an economic and financial offer to the state. The balance between the different uses of water is getting more delicate to reach and this renewal of grants will be an opportunity for the state to impose a better preservation of the environment. In July 2008, the French government announced a program for the re launching of the hydro-power, this program has been reduced and now only 3000 GWh supplementary are expected by 2020. (A.C.)

  7. Higher profits, lower bills : a new electricity strategy for Hydro-Quebec

    2010-01-01

    Quebec is the fourth largest producer of hydro-electricity in the world, and has among the lowest electricity rates in North America. In 2008, 89 percent of the electricity produced by Hydro-Quebec was sold in the province, and the remainder was exported. In 2009, the electric utility released its strategic plan for 2009 to 2013. Hydro-Quebec's net profits are forecast to decline by 24 percent by 2013 and electricity rates are forecast to rise by 8.5 percent. Since Hydro-Quebec has already developed all of the province's low-cost hydroelectric resources, it can no longer increase profits and lower rates by building new hydropower production stations. In order to continue to prosper, the utility will invest in energy efficiency and better coordination of its power system with Ontario's. Increased electricity exports from Hydro-Quebec will help both Ontario and the United States reduce their greenhouse gas emissions by displacing fossil power generation. 25 refs., 2 tabs., 3 figs.

  8. An overview of the transportation of radioactive waste at Ontario Power Generation facilities

    Holmes, P.

    2006-01-01

    The Radioactive Material Transportation Department (RMT) ensures regulatory compliance in radioactive material shipping within Ontario Power Generation (OPG). OPG provides a radioactive shipping program, high quality carrier service, stringent packaging maintenance, and quality assurance oversight to the corporation's nuclear facilities and its customers. This paper will speak to the transport of radioactive waste in Ontario Power Generation. It will also mention non-waste shipments and the quality assurance programme used at Ontario Power Generation to ensure a high quality transportation system. (author)

  9. Ontario's uranium mining industry

    Runnalls, O.J.C.

    1981-01-01

    This report traces the Ontario uranium mining industry from the first discovery of uranium north of Sault Ste. Marie through the uranium boom of the 1950's when Elliot Lake and Bancroft were developed, the cutbacks of the 1960s, the renewed enthusiasm in exploration and development of the 1970s to the current position when continued production for the domestic market is assured. Ontario, with developed mines and operational expertise, will be in a position to compete for export markets as they reopen. The low level of expenditures for uranium exploration and the lack of new discoveries are noted. The report also reviews and places in perspective the development of policies and regulations governing the industry and the jurisdictional relationships of the Federal and Provincial governments

  10. The structure of the nuclear industry

    Leaist, G.T.; Morisette, E.F.

    1981-01-01

    Since 1952, when Canadians began to study the application of reactors to power generation, the CANDU reactor design and the manufacturing and and engineering capability supporting it have evolved into a world-class technology. At present, Atomic Energy of Canada Ltd. works directly with provincial electrical utilities in developing their power reactor requirements. It assumes responsibility for the detailed design of the nuclear steam supply system of stations, undertakes some procurement activities, and may represent the utilities in licensing applications. The detailed design and supply of components for the remainder of the nuclear steam plant, as well as for the secondary plant, are provided in Ontario by Ontario Hydro together with manufacturers, and in Quebec and New Brunswick by private firms. Canadian utilities have always assumed the project managment function themselves, but with export sales AECL has taken turnkey responsiblity for either the nuclear steam plant or the complete power station. AECL owns design specifications and other documentation, the use of which it can license, but manufacturing technology resides with Canadian industry. Canadian manufacturers have supported AECL design licensing initiatives overseas. The Canadian nuclear industry's major problem is the current lack of a vigorous domestic market combined with an uncertain international one

  11. Ontario's energy crisis brings out conflicting visions

    Kishewitsch, S.

    2004-01-01

    Ontario's medium-term energy supply situation is discussed in light of the Ontario provincial government's insistence on phasing out coal-fired generation by 2007, and the somewhat longer term uncertainty about the aging nuclear fleet and the price tag associated with their overhauling or replacement. Centre to the discussion is the replacement of coal-fired plants by natural gas-fired generating plants, complicated by the fact is that there is already a surfeit of gas-fired plants sitting idle for lack of fuel available at an economically acceptable price. Recent statistics show that conventional gas supplies have already levelled off and unconventional sources, such as coalbed methane, and imports like LNG, are more abundant, but also significantly more expensive. The nuclear option is considered by knowledgeable insiders as a viable option for increased generation, although it is generally acknowledged as a serious public relations problem. The contributions of green power and cogeneration are also explored; the most optimistic estimates put the supply from this source at 50,000 GWh a year; less than the amount needed even in the absence of growth in demand. The overall conclusion is that Ontario's energy future can only be assured by aggressive pursuit of productivity improvements, financial and policy innovations, extensive use of cogeneration, strong development of renewables, energy conservation, efficiency, and demand management

  12. Public attitudes to nuclear and coal power in site selection for a future energy centre

    Baril, R.G.; Dobson, J.K.

    This paper discusses the results of a 1977 public attitude survey carried out as part of an Ontario Hydro generating site selection program along the North Channel of Lake Huron. The results of the survey are compared with those of two similar surveys conducted in 1974 and 1975. The main topics discussed include local citizen attitudes to a generating site in the area, nuclear power, attitude changes over three years, differences in attitudes to nuclear and to coal fired generation and the underlying reasons given for favouring or opposing nuclear power. The results of other surveys which have been conducted recently in Canada and internationally are discussed and compared with this survey. Most longitudinal studies point to a trend of declining public acceptance regarding nuclear power. If this trend continues, there are important implications for the nuclear power industry: they are discussed from a sociological and political perspective. (author)

  13. Challenging hydro-hegemony

    Wessels, Josepha Ivanka

    2015-01-01

    Bank. Both case studies show that control over water resources and supply provides political power over others at local level. Yet non-violent resistance can be observed in these border areas. In border areas between Israel, Syria and Palestine, control over access and water supply plays an important...... role in the ability of Israel to exercise hegemonic power in daily hydro-politics, which in the long term is detrimental for the people and the environment and disrupts the hydrological balance in the entire Jordan River basin....

  14. Management of design support for nuclear plant modifications

    Doyle, F.W.

    1991-01-01

    The paper will present an overview of the Ontario Hydro organization and processes for providing design support to the operating nuclear power plants. Examples of design support for Pickering GS will be highlighted. The process is described from identification of projects through the design, procurement, construction, commissioning and in-service phases. The practices for managing engineering deliverables are discussed in the context of how these integrate into the overall change control process. The interaction of Engineering with Operations, Construction, Supply and the regulatory bodies is discussed both for major retro-fit programs and for ongoing design support to the nuclear power plants. Recent experiences during the 1990 Pickering Station Outage and during the Unit 3 fuel channel replacement program are highlighted and an integrated 5 year plan for upgrading the safety related systems for the Pickering Nuclear Power Plant is presented. (author)

  15. Hydro-energy; Energie hydraulique

    Bacher, P. [Electricite de France (EDF), 75 - Paris (France); Tardieu, B. [Coyne et Bellier, 92 - Gennevilliers (France)

    2005-07-01

    The first part of this study concerns the different type of hydraulic works. The second part presents the big hydro-energy, its advantages and disadvantages, the industrial risks, the electric power transport network, the economy and the development perspectives. The third part presents the little hydro-energy, its advantages and disadvantages, the decentralized production and the development perspectives. (A.L.B.)

  16. Semi-annual status report of the Canadian Nuclear Fuel Waste Management Program, April 1--September 30, 1991

    Wright, E. D. [comp.

    1992-02-01

    This report is the eleventh in a series of semi-annual status reports on the research and development program for the safe management and disposal of Canada's nuclear fuel waste. it describes progress achieved in the three major subprograms, engineered systems, natural systems and performance assessment, from 1991 April 1 to September 30. It also gives a brief description of the activities being carried out in preparation for the public and governmental review of the disposal concept. Since 1987, this program has been jointly funded by AECL and Ontario Hydro under the auspices of the CANDU Owners Group (COG).

  17. Ontario demand response scenarios

    Rowlands, I.H.

    2005-09-01

    Strategies for demand management in Ontario were examined via 2 scenarios for a commercial/institutional building with a normal summertime peak load of 300 kW between 14:00 and 18:00 during a period of high electricity demand and high electricity prices. The first scenario involved the deployment of a 150 kW on-site generator fuelled by either diesel or natural gas. The second scenario involved curtailing load by 60 kW during the same periods. Costs and benefits of both scenarios were evaluated for 3 groups: consumers, system operators and society. Benefits included electricity cost savings, deferred transmission capacity development, lower system prices for electricity, as well as environmental changes, economic development, and a greater sense of corporate social responsibility. It was noted that while significant benefits were observed for all 3 groups, they were not substantial enough to encourage action, as the savings arising from deferred generation capacity development do not accrue to individual players. The largest potential benefit was identified as lower prices, spread across all users of electricity in Ontario. It was recommended that representative bodies cooperate so that the system-wide benefits can be reaped. It was noted that if 10 municipal utilities were able to have 250 commercial or institutional customers engaged in distributed response, then a total peak demand reduction of 375 MW could be achieved, representing more than 25 per cent of Ontario's target for energy conservation. It was concluded that demand response often involves the investment of capital and new on-site procedures, which may affect reactions to various incentives. 78 refs., 10 tabs., 5 figs

  18. Current experience with central-station nuclear cogeneration plants

    1981-10-01

    In considering the potential of the HTGR for nuclear cogeneration, a logical element for investigation is the recent history of nuclear cogeneration experience. Little is found in recent literature; however, the twin nuclear cogeneration plant at Midland is nearing completion and this milestone will no doubt be the basis for a number of reports on the unique cogeneration facility and operating experiences with it. Less well known in the US is the Bruce Nuclear Power Development in Ontario, Canada. Originally designed to cogenerate steam for heavy water production, the Bruce facility is the focus of a major initiative to create an energy park on the shores of Lake Huron. To obtain an improved understanding of the status and implications of current nuclear cogeneration experience, GCRA representatives visited the Ontario Hydro offices in Toronto and subsequently toured the Midland site near Midland, Michigan. The primary purpose of this report is to summarize the results of those visits and to develop a series of conclusions regarding the implications for HTGR cogeneration concepts

  19. Papers of a Canadian Institute conference on generation adequacy in Ontario : essential updates on the state of generation capacity and the latest efforts to solve the supply crunch

    2004-01-01

    The issue of power generation and supply in Ontario was addressed at this conference which provided critical information on power supply and the Ontario government's plans for easing the power supply crisis. The state of existing generation assets and the feasibility of potential supply additions were also discussed. Specific issues such as pricing regulations, as well as broader issues such as market conditions and current energy policies were assessed. Planning, investment and issues such as demand-side management were discussed. The role of government, directions for the future, and the phasing out of coal power plants were important focal points. Nuclear power, water power and the search for reliable sources of supply were examined, including the possibility of importing hydro electricity. In addition, key objectives such as clean air strategies and the development of a renewable energy strategy were discussed and various options were identified. The conference featured 24 presentations, of which 8 have been catalogued separately for inclusion in this database. refs., tabs., figs

  20. The disposal of Canada's nuclear fuel waste: public involvement and social aspects

    Greber, M.A.; Frech, E.R.; Hillier, J.A.R.

    1994-01-01

    This report describes the activities undertaken to provide information to the public about the Canadian Nuclear Fuel Waste Management Program as well as the opportunities for public involvement in the direction and development of the disposal concept through government inquiries and commissions and specific initiatives undertaken by AECL. Public viewpoints and the major issues identified by the public to be of particular concern and importance in evaluating the acceptability of the concept are described. In addition, how the issues have been addressed during the development of the disposal concept or how they could be addressed during implementation of the disposal concept are presented. There is also discussion of public perspectives of risk, the ethical aspects of nuclear fuel waste disposal, and public involvement in siting a nuclear fuel waste disposal facility. The Canadian Nuclear Fuel Waste Management Program is funded jointly by AECL and Ontario Hydro under the auspices of the CANDU Owners Group. (author)

  1. From promise to crisis : lessons for Atlantic Canada from Ontario's electricity liberalisation

    Adams, T.

    2000-01-01

    This report synthesized some lessons learned from Ontario's electric power restructuring and showed how they can be applied to reform the Atlantic Canada's electricity sector. Since the opening of Ontario electricity markets to competition, numerous problems have threatened the potential of the power sector to deliver reasonably priced, reliable and environmentally responsible electricity to consumers in Ontario. The original vision of power restructuring in Ontario called for the break-up of Ontario Hydro, the privatisation of major components of the power system, major regulatory improvements, more stringent environmental rules, the creation of an independent agency responsible for power system reliability, and the opening of electricity markets to competition. This original vision has failed for many reasons, including failure to establish a firm date for the opening of the electricity market, a lack of financial accountability, continued subsidies to industrial customers, local distribution rate shock, lack of investment, politicizing transmission tariffs, aggressive marketers exploiting consumer uncertainty and ill-advised deregulation of fossil emissions. It was emphasized that Atlantic Canada could benefit from any eventual electricity restructuring by avoiding these mistakes made in Ontario. This report also described the contents of an 8 point program that was recommended by the author. 21 refs

  2. Ontario regulatory update

    Thompson, P.

    1998-01-01

    This paper provides a summary of recent events which when combined add up to a gradual but unmistakable movement of the energy sector in Ontario towards a fully competitive market. Some of the events precipitating this movement towards competition include the passing of the Energy Competition Act of 1998 (Bill 35), electricity deregulation, regulatory reform of the natural gas sector, and changes to the consumer protection legislation. The role of the Ontario Energy Board was also updated to bring it in line with the demands of the competitive marketplace. Among the new roles that the Board will assume are to facilitate competition, to maintain fair and reasonable rates, and to facilitate rational expansion. Another objective is to provide opportunities for including energy efficiency in government policies. Implications of the changes in the OEB's mandate for market participants were also discussed, including (1) regulated gas sales and delivery mechanisms, (2) transactional services, (3) contract restructuring, (4) consumer protection, (5) supervision of competitive market participants, and (6) market surveillance

  3. Development of Manitoba Hydro's public water safety around dams management guidelines

    Bonin, Dave; McPhail, Gord; Murphy, Shayla; Schellenberg, Gord [KGS Acres, Winnipeg, (Canada); Read, Nick [Manitoba Hydro, Winnipeg, (Canada)

    2010-07-01

    Several drowning fatalities and safety incidents have occurred around dams in Ontario, Manitoba and other jurisdictions in Canada. Following these incidents, Manitoba Hydro implemented several measures to improve public safety around its dams with the development of a warning signs manual. Manitoba Hydro found that a standard centralized approach to the process of improving public safety is better for ensuring compliance and consistency, even though they have safety measures in place. This paper described the process that Manitoba Hydro has followed in developing a formal set of public water safety around dams (PWSD) guidelines and a program for implementing these guidelines. This program was developed with the intent of providing a high standard of public protection and continuous improvement and monitoring on par with the effect spent on similar dam safety type programs. This paper focused on the development of the pilot PWSD management plan for Pine Falls generating station in order to test the effectiveness and usability of the guidelines.

  4. Discussion paper : financial strategies for the use of proceeds from the sale of Brampton Hydro

    2001-11-01

    In October 2000, following changes to the structure of Ontario's electricity industry, the City of Brampton negotiated the sale of Brampton Hydro to Hydro One for $260.2 million. The City Council had determined that the sale would offer the best combination of potential operating efficiencies, reliability of service and rate stability for customers and protection of jobs for employees of Brampton Hydro. The proceeds of the sale will have to be carefully managed. The City Council has developed a strategy to ensure the best balance of immediate and long term benefits for its residents. This paper presents several mechanisms for accessing the funds and possible uses of the funds such as asset repair and rehabilitation, special projects, and growth driven projects. 6 tabs., 1 fig

  5. Green tide: indoor marihuana cultivation and its impact on Ontario

    NONE

    2003-07-01

    This paper discusses the apparent proliferation of marihuana grow-ops in Ontario over the last five years. Estimated revenues from indoor marihuana were detailed, as well as estimates of quantities of marihuana produced, forecasted trends and annual and weekly historical trends. The potential economic impact of this criminal activity was examined, with particular reference to increased police activities. The potential for fire and other human health risks included: exposure to mould associated with hydroponic cultivation and growth chemicals and higher concentrations of carbon dioxide and carbon monoxide. The socio-economic impact of grow ops were examined, with detailed estimates of law enforcement costs, insurance costs and costs to the justice system. Societal costs, such as environmental hazards, violence associated with organized crime, and the perceived threat to Ontario's children and communities were also outlined. Costs stemming from hydro theft were cited, including hydro repair and administration. Details of the bypass systems installed for hydro theft were also provided. It was concluded that it was unlikely that grow ops will be entirely eradicated. Measures that may limit the scope of grow ops included: developing avenues to increase effectiveness and efficiency of law enforcement approaches to grow ops, enhancing lines of communication and sharing of intelligence between police and other key stakeholders such as insurance companies, real estate agencies and banks and educating persons in the justice system on the issue of grow ops so that sentencing more accurately reflects the crime. It was recommended that lenient sentencing for marihuana possession and cultivation be re-examined. 70 refs., 12 tabs, 38 figs.

  6. Clinical Telemedicine Utilization in Ontario over the Ontario Telemedicine Network.

    O'Gorman, Laurel D; Hogenbirk, John C; Warry, Wayne

    2016-06-01

    Northern Ontario is a region in Canada with approximately 775,000 people in communities scattered across 803,000 km(2). The Ontario Telemedicine Network (OTN) facilitates access to medical care in areas that are often underserved. We assessed how OTN utilization differed throughout the province. We used OTN medical service utilization data collected through the Ontario Health Insurance Plan and provided by the Ministry of Health and Long Term Care. Using census subdivisions grouped by Northern and Southern Ontario as well as urban and rural areas, we calculated utilization rates per fiscal year and total from 2008/2009 to 2013/2014. We also used billing codes to calculate utilization by therapeutic area of care. There were 652,337 OTN patient visits in Ontario from 2008/2009 to 2013/2014. Median annual utilization rates per 1,000 people were higher in northern areas (rural, 52.0; urban, 32.1) than in southern areas (rural, 6.1; urban, 3.1). The majority of usage in Ontario was in mental health and addictions (61.8%). Utilization in other areas of care such as surgery, oncology, and internal medicine was highest in the rural north, whereas primary care use was highest in the urban south. Utilization was higher and therapeutic areas of care were more diverse in rural Northern Ontario than in other parts of the province. Utilization was also higher in urban Northern Ontario than in Southern Ontario. This suggests that telemedicine is being used to improve access to medical care services, especially in sparsely populated regions of the province.

  7. The human factors specialist in nuclear control centre design

    Wilson, R.B.; Beattie, J.D.

    The main focus at Ontario Hydro for man-machine interface design is in the design of control centres. Because the control of a nuclear generating unit is highly centralized there is an increasing need for effective information display and control layout. Control panel design innovations such as the use of CRT displays and the extended use of computerized control in the Darlington station have made it possible for Ontario Hydro to continue to have one first operator for each generating unit. The human factors specialist involved in control panel design must deal with people who know much more about the specific systems being controlled, and must become a generalist in all these systems as well. Designers have to use conceptual techniques such as task analysis, systems design, panel mock-ups, anthropometric data, and personal judgement based on experience as they design panels. They must find a balance between becoming locked into existing technology and methods, slavishly following the latest technological trends, and forgetting that real people will be using what they design

  8. Ontario electricity outlook : smaller reserve margins and higher prices

    Alexander, C.; Kalevar, P.

    2002-01-01

    Privatization of Hydro One has been delayed, but this will not postpone the scheduled launch of restructuring the electricity markets in Ontario on May 1, 2002. The main concern of Ontario consumers is whether they will undergo an energy crisis such as the one experienced in California. A report released in February 2002 stated that electricity bills will be higher under the new electricity regime. It appears that electricity supply reserve margins will be tighter than originally thought, raising price volatility in the summer and fall. The authors claim that the chance for an energy crisis are low because of the added generating capacity. However, regardless of whether consumers sign a fixed term price contract with retailers, it is likely that electricity bills will be higher in 2002 and 2003. The Independent Electricity Market Operator (IMO) is assuring the public that the power generation resources currently available are sufficient to meet expected demand. However, in June through July, it is possible that reserves will fall short. It is also evident that charges for distribution, transmission and other services will be higher under the restructured system. Electricity bills are likely to be about 5 to 15 per cent higher in 2003 than they were before March 1, 2002. Higher prices might not last indefinitely. Initially, they will be used to pay off the debt, but competition and opportunities for profit should allow for greater efficiencies and innovation in Ontario's electricity system and prices could potentially fall lower than pre-deregulation prices. 1 tab., 3 figs

  9. After the crisis: which future for the competitive power market of Ontario?

    Fraser, P.

    2003-01-01

    This document presents the power distribution system of Ontario (Canada) and the crisis that followed the opening of the electricity market on May 1, 2002 in Ontario. The author explains the process of reforms of the power market, the re-structuration of Ontario Hydro company and the occurrence of new energy companies (73 new retailers), the launching of a wholesale market, the reasons of the crisis (25% average rise of electricity prices) and the lessons to be learned from. In front of this situation, a freezing of electricity prices to their level prior to May 2002 and a reimbursement of the difference paid by consumers since May 2002 have been decided by the government up to 2006. (J.S.)

  10. The transmission business rate order application, 1999-2000 : application to the Ontario Energy Board

    1998-01-01

    The Ontario government is restructuring the electric power industry by introducing competition to the generation and retailing sectors, as well as to the transmission and distribution sectors within the industry. This application marks the beginning of the regulation of the Ontario Hydro Services Company Inc.'s (OHSC) transmission business by the Ontario Energy Board (OEB). The OHSC has asked the OEB to approve a revenue requirement for the transmission business and rates derived from the revenue requirement for unbundled transmission services to customers for the year 1999. For the year 2000, the OHSC asked the OEB to approve the performance-based regulation mechanism and the transmission rates derived from that mechanism. This document includes the actual text of the application and provides the justification for the $1,327 million revenue requirement for 1999 and the PBR framework forecast of $ 1,291 million for the year 2000. tabs., figs

  11. Opportunities for independent power in Ontario : perspective of TransCanada Power

    Greflund, F.

    1998-01-01

    The recent white paper of the Government of Ontario and its implications for independent power producers (IPPs), vis-a-vis Ontario Hydro's market power and dominance, was discussed. The conclusion was that opportunities do exist to establish a competitive market for power which is open and transparent, has non-discriminatory transmission access, and in which price is a function of supply and demand. However, IPPs will need strong marketing skills to survive in the new marketplace. In addition to skills in power marketing, there will be strong demand for skills in gas marketing, operations, risk management, and financing. Prospects for interconnected markets and generators, and pipeline capacity considerations for Ontario were explored. The corporate profile of TransCanada Power (an affiliate of TransCanada Pipelines) was also reviewed. . 4 figs

  12. Use of borehole-geophysical logs and hydrologic tests to characterize crystalline rock for nuclear-waste storage, Whiteshell Nuclear Research Establishment, Manitoba, and Chalk River Nuclear Laboratory, Ontario, Canada

    Davison, C.C.

    1982-12-01

    A number of borehole methods were used in the investigation of crystalline rocks at Whiteshell Nuclear Research Establishment and Chalk River Nuclear Laboratory in Canada. The selection of a crystalline-rock mass for the storage of nuclear waste likely will require the drilling and testing of a number of deep investigative boreholes in the rock mass. Although coring of at least one hole in each new area is essential, methods for making in-situ geophysical and hydrologic measurements can substitute for widespread coring and result in significant savings in time and money. Borehole-geophysical logging techniques permit the lateral extrapolation of data from a core hole. Log response is related to rock type, alteration, and the location and character of fractures. The geophysical logs that particularly are useful for these purposes are the acoustic televiewer and acoustic waveform, neutron and gamma, resistivity, temperature, and caliper. The acoustic-televiewer log of the borehole wall can provide high resolution data on the orientation and apparent width of fractures. In situ hydraulic tests of single fractures or fracture zones isolated by packers provide quantitative information on permeability, extent, and interconnection. The computer analysis of digitized acoustic waveforms has identified a part of the waveform that has amplitude variations related to permeabilities measured in the boreholes by packer tests. 38 refs., 37 figs., 4 tabs

  13. Porter with nuclear reservations

    Patterson, W.

    1978-01-01

    The Ontario Royal Commission on Electric Power Planning, chaired by Arthur Porter is reviewed. This interim report on nuclear power is relevant to nuclear power planning far beyond the confines of Ontario and discusses nuclear issues in the explicit context of electricity generation and use. Problems considered in the report include safety aspects of uranium mining, milling, and spent fuel disposal, the economic issues which affect nuclear planning and nuclear industry, and the proliferation issue. (U.K.)

  14. Conditioning and handling of tritiated wastes at Canadian nuclear power facilities

    Krochmalnek, L.S.; Krasznai, J.P.; Carney, M.

    1987-04-01

    Ontario Hydro operates a 10,000 MW capacity nuclear power system utilizing the CANDU pressurized heavy water reactor design. The use of D 2 O as moderator and coolant results in the production of about 2400 Ci of tritium per MWe-yr. As a result, there is significant Canadian experience in the treatment, handling, transport and storage of tritiated wastes. Ontario Hydro operates its own reactor waste storage site which includes systems for volume reduction, immobilization and packaging of wastes. In addition, a facility to remove tritium from heavy water is presently being commissioned at the Darlington nuclear site. This facility will generate tritiated liquid and solid waste that will have to be properly conditioned prior to storage or disposal. The nature of these various wastes and the processes/packaging required to meet storage/disposal criteria are judged to have relevance to investigations in fusion facility waste arisings. Experience to date, planned operational procedures and ongoing R and D in this area are described

  15. Hydro-Quebec looks south

    Ross, P.

    1997-01-01

    The recent introduction of Hydro-Quebec, the Canadian utility, into selling cheap electric power in the United States (US) deregulated power market is described, following applications to the US Federal Energy Regulatory Commission. As its prices are so much cheaper than its US competitors, it is expected that the company will soon have many willing customers across the USA. Hydro-Quebec will remain a publicly owned utility, but has experienced restructuring in order to meet this new competitive challenge. (UK)

  16. Hydro-mechanical processes

    Laouafa, F.; Kazmierczak, J.B. [Institut National de l' Environnement Industriel et des Risques (INERIS), Parc Technologique ALATA, 60 - Verneuil en Halatte (France); Armand, G. [Agence Nationale pour la Gestion des Dechets Radioactifs, Lab. de Souterrain de Meuse/Haute-Marne, 55 - Bure (France); Vaunat, J. [Catalonia UPC- Technical Univ., Barcelona (Spain); Jobmann, M.; Polster, M. [DBETEC- DBE Technology GmbH, Peine (Germany); Su, K.; Lebon, P.; Plas, F.; Armand, G.; Abou-Chakra Guery, A.; Cormery, F.; Shao, J.F.; Kondo, D. [ANDRA - Agence Nationale pour la Gestion des Dechets Radioactifs, 92 - Chatenay Malabry (France); Souley, M. [Institut National de l' Environnement Industriel et des Risques (INERIS), 54 - Nancy (France); Coll, C.; Charlier, R.; Collin, F.; Gerard, P. [Liege Univ., Dept. ArGEnCo (Belgium); Xiang Ling, Li [ESV EURIDICE, SCK.CEN, Belgian Nuclear Research Centre, Mol (Belgium); Collin, F. [Liege Univ., Charge de Recherches FNRS (Belgium); Pellet, F.L.; Fabre, G. [University Joseph Fourier, Laboratory 3S-R, 38 - Grenoble (France); Garcia-Sineriz, J.L.; Rey, M. [AITEMIN - Asociacion para la Investigacion y Desarrollo Industrial de los Recursos Naturales, Madrid (Spain); Mayor, J.C. [ENRESA - Empresa Nacional des Residuos Radioactivos, Madrid (Spain); Castellanos, E.; Romero, E.; Lloret, A.; Gens, A. [Catalunya Univ. Politecnica, UPC (Spain); Villar, M.V. [CIEMAT - Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Madrid (Spain); Chambon, R. [Laboratoire 3S, UJF-INPG-CNRS, 38 - Grenoble (France); Czaikowski, O.; Lux, K.H. [Clausthal Univ. of Technology, Professorship for Waste Disposal and Geomechanics, Clausthal-Zellerfeld (Germany); Van Geet, M.; Bastiaens, W.; Volckaert, G.; Weetjens, E.; Sillen, X. [SCK-CEN, Waste and Disposal dept., Mol (Belgium); ONDRAF/NIRAS, Brussel (Belgium); Imbert, Ch. [CEA Saclay, Dept. de Physico-Chimie (DPC/SCCME/LECBA), 91 - Gif sur Yvette (France)] [and others

    2007-07-01

    This session gathers 13 articles dealing with: three-dimensional and time stepping modelling of the whole Meuse/Haute-Marne ANDRA URL (F. Laouafa, J.B. Kazmierczak, G. Armand, J. Vaunat, M. Jobmann, M. Polster); a constitutive model for a deep argillaceous rock using Hoek-Brown criteria (K. Su, C. Chavant, M. Souley); the long term behaviour of the Boom clay: influence of viscosity on the pore pressure distribution (C. Coll, R. Charlier, X.L. Li, F. Collin); the microstructural changes induced by viscoplastic deformations in argillaceous rocks (F.L. Pellet, G. Fabre, K. Su, P. Lebon); the engineered barrier experiment at Mont Terri rock laboratory (J.L. Garcia-Sineriz, M. Rey, J.C. Mayor); the chemical influence on the Hydro-Mechanical behaviour of high-density FEBEX bentonite (E. Castellanos, M.V. Villar, E. Romero, A. Lloret, A. Gens); the influence of water exchanges on the gallery convergence (P. Gerard, R. Charlier, R. Chambon, F. Collin); a new method for ageing resistant storage of argillaceous rock samples to achieve reproducible experimental results even after long intermediate storage times (O. Czaikowski, K.H. Lux); the installation and evaluation of a large-scale in-situ shaft seal experiment in Boom clay the RESEAL project M. Van Geet, W. Bastiaens, G. Volckaert, E. Weetjens, X. Sillen, A. Gens, M.V. Villar, Ch. Imbert, M. Filippi, F. Plas); the hydro-Mechanical response of the Callovo-Oxfordian mud-stone around a deep vertical drift (J. Vaunat, B. Garitte, A. Gens, K. Su, G. Armand); the sensitivity of total stress to changes in externally applied water pressure in KBS-3 buffer bentonite (J.F. Harrington, D.J. Birchall, P. Sellin); the comparison of the poro-elastic behavior of Meuse/Haute Marne and Tournemire argillites: effect of loading and saturation states (E. Bemer, A. Noiret, F. Homand, A. Rejeb); and the multi-scale modelling of the argillites mechanical behaviour (A. Abou-Chakra Guery, F. Cormery, K. Su, J.F. Shao, D. Kondo)

  17. Evaluation of nuclear power plant concrete to maintain continued service

    McColm, E.J.; Mukherjee, P.K.; Sato, J.A.

    1997-01-01

    Nuclear power plant concrete structures in addition to satisfying structural requirements are a major part of the safety and containment systems. As a result, the structures are required to operate satisfactorily for the life of the plant and until well after decommissioning. Successful life management requires an understanding of potential degradation mechanisms that can impact on the performance of these structures, regular well planned inspection programs and the use of specialized repair and maintenance programs. These aspects of nuclear life management are discussed with an example of inspection and repair conducted at one of Ontario Hydro's nuclear generating stations. The example is discussed in terms of the performance requirements of the containment concrete. The plant referred to has been in operation for over 20 years, making it currently the oldest operating commercial nuclear power plant in Ontario, Canada. The information on the concrete containment structures included baseline construction data on the concrete material properties and the results of periodic scheduled and other interim specialized inspections. Also available were the results of laboratory testing of concrete cores obtained from the structures. The data from these inspections and laboratory testing were used to monitor the aging characteristics of the structures and to plan appropriate repair activities. (author)

  18. Ontario perspective on interregional markets

    Shalaby, A.

    2003-01-01

    On May 1, 2002, wholesale and retail electricity markets in Ontario were opened to competition. The industry structure has been completely unbundled into separate entities for power generation, distribution and transmission. There are currently 20 generators, 90 distributors and 4 transmitters in Ontario. Trade with neighbouring jurisdictions has increased and now accounts for 10 to 15 per cent of demand on summer peak days. Import/export capability with the United States (northeast and midwest) and other Canadian provinces (Quebec and Manitoba) is 4,000 to 6,000 MW. Ontario has not had new generation or transmission capacity in several years and the heat waves of summer 2002 resulted in a heavier power demand than forecasted. The province had to rely heavily on power imports resulting in high and volatile electricity prices. In response to customer complaints, the Ontario government froze retail rates and in a recent policy directive announced a public ownership policy for transmission with further consultation on improving supply competition in Ontario. FERC order 888 and the increased role of independent power producers has improved trading opportunities between Canada and the United States. The presentation highlighted recent trade trends and outlined the specific impact of the Standard Market Design on Canadian markets. It was noted that Ontario should work on ensuring power reliability, transmission planning, inter-regional coordination, and joint investments with neighbouring jurisdictions. 9 figs

  19. AECB staff annual assessment of the Bruce A Nuclear Generating Station for the year 1996

    1997-06-01

    The Atomic Energy Control Board is the independent federal agency that controls all nuclear activities in Canada. A major use of nuclear energy in Canada is electricity production. The AECB assesses every station's performance against legal requirements, including the conditions in the operating licence. Each station is inspected and all aspects of the station's operation and management is reviewed. This report is the AECB staff assessment of reactor safety at the Bruce Nuclear Generating Station A for 1996. Ontario Hydro operated Bruce A safely in 1996, maintaining the risk to workers and the public at an acceptably low level. Special safety system performance at Bruce A was adequate. Availability targets were all met. Improvement is needed to reduce the number of operating licence non-compliances

  20. AECB staff annual assessment of the Darlington Nuclear Generating Station for the year 1996

    1997-06-01

    The Atomic Energy Control Board is the independent federal agency that controls all nuclear activities in Canada. A major use of nuclear energy in Canada is electricity production. The AECB assesses every station's performance against legal requirements, including the conditions in the operating licence. Each station is inspected and all aspects of the station's operation and management is reviewed. This report is the AECB staff assessment of safety at the Darlington Nuclear Generating Station for 1996. Ontario Hydro operated the station in a safe manner in 1996. All four special safety systems were fully available 100 percent of the time. There were more problems that affected the safety support systems in 1996 than in the previous year

  1. Modeling of Coupled Thermo-Hydro-Mechanical-Chemical Processes for Bentonite in a Clay-rock Repository for Heat-generating Nuclear Waste

    Xu, H.; Rutqvist, J.; Zheng, L.; Birkholzer, J. T.

    2016-12-01

    Engineered Barrier Systems (EBS) that include a bentonite-based buffer are designed to isolate the high-level radioactive waste emplaced in tunnels in deep geological formations. The heat emanated from the waste can drive the moisture flow transport and induce strongly coupled Thermal (T), Hydrological (H), Mechanical (M) and Chemical (C) processes within the bentonite buffer and may also impact the evolution of the excavation disturbed zone and the sealing between the buffer and walls of an emplacement tunnel The flow and contaminant transport potential along the disturbed zone can be minimized by backfilling the tunnels with bentonite, if it provides enough swelling stress when hydrated by the host rock. The swelling capability of clay minerals within the bentonite is important for sealing gaps between bentonite block, and between the EBS and the surrounding host rock. However, a high temperature could result in chemical alteration of bentonite-based buffer and backfill materials through illitization, which may compromise the function of these EBS components by reducing their plasticity and capability to swell under wetting. Therefore, an adequate THMC coupling scheme is required to understand and to predict the changes of bentonite for identifying whether EBS bentonite can sustain higher temperatures. More comprehensive links between chemistry and mechanics, taking advantage of the framework provided by a dual-structure model, named Barcelona Expansive Model (BExM), was implemented in TOUGHREACT-FLAC3D and is used to simulate the response of EBS bentonite in in clay formation for a generic case. The current work is to evaluate the chemical changes in EBS bentonite and the effects on the bentonite swelling stress under high temperature. This work sheds light on the interaction between THMC processes, evaluates the potential deterioration of EBS bentonite and supports the decision making in the design of a nuclear waste repository in light of the maximum allowance

  2. Market Power in Hydro-Thermal Supply

    Edin, Karl-Axel

    2006-12-01

    Despite having had a deregulated electricity market in Sweden for over ten years we still need to increase our understanding as to how deregulated electricity markets actually work and how possible problems are to be solved. One question that is always in focus is if the competition between generators in the Nordic electricity market really works the way it was intended. Many argue that the concentration in ownership of generation plants already has gone too far. Together with joint ownership in nuclear facilities and barriers for entrance, critics say that this has resulted in higher electricity prices than necessary. In this report different methods to (ex ante) study potential possibilities for generating firms to influence the electricity price (market power) and (ex post) discover possible manipulation through analysing the spot price and other observed factors on the electricity market are analysed. The purpose of the longer underlying paper is to give a comprehensive treatment of the electricity market with storage, i.e. hydro power, with an auction market organisation and to test the models on the Nordic market in order to explore the explanatory power of auction market theory and the theory of contestable market. The main theoretical effort in the paper concerns auction theory with inventories. The paper develops an inter-temporal auction model of a thermal-hydro power market. Parallel to the derivation of the basic equations a numerical model is developed in order to illustrate the results of the model. Section 2 of the present paper summarizes the basic equations (derived in the longer paper) for an inter-temporal auction thermal-hydro market. Section 3 contains the illustrations of solutions to equations for some stylized markets. In section 4 the auction model is tested on the Nordic market

  3. Ontario freight movement study

    Anon.

    1995-11-01

    The freight (cargo) transportation sector accounts for a major use of fossil fuels and contributes significantly to greenhouse gas emissions. A study was conducted to estimate and forecast emissions from transportation in Ontario, by mode, over the next 15 years, and to examine ways in which those emissions could be reduced. Published data of freight transportation industries was used to examine the fuel consumption characteristics of each mode, followed by a review of emission rates. It was determined that truck transportation accounts for most CO 2 emissions (about 70%). Rail follows with 21% and the marine and air modes contribute relatively small shares (6% and 2%). New intermodal technologies being introduced by the railways were discussed. They have been designed to make intermodal transport more accessible to a wider segment of the freight market. A recommendation was made which would require all truck shipments over 500 km, accounting for fully one half of truck tonne-km, to have their line-haul component diverted to this new more fuel-efficient mode (i.e., from truck to rail). refs., tabs., figs

  4. The impact of the Market Power Mitigation Agreement on power prices in Ontario

    Chute, R. G.

    2000-01-01

    Market power was defined by the Market Design Committee (MDC) as 'the ability to sustain a significant price increase profitably', although it is generally understood to refer to the 'overwhelming dominance of generating capacity and supply capability of Ontario Power Generation' (OPG), the former generating arm of Ontario Hydro. The MDC sought to address market power within the context of the Ontario Government's White Paper on electricity sector reform, entitled 'Directions for Change'. The solution was the Market Power Mitigation Agreement (MPMA), a negotiated agreement between the MDC and OPG that established market share goals and provided incentives and penalties to meet these goals. Briefly, the major instrument used by the MPMA is the price of electric power sold in the Ontario market to reward, or penalize the actions of OPG in moving towards its market share goals as defined in the MPMA. This paper explains the principal elements of the MPMA and how they are expected to influence the market prices for power in Ontario. The principal elements of the Agreement are price cap and rebate, decontrol targets, and intertie capacity and limits, while the instruments comprise licence conditions, settlement agreements, market rules and ministerial directives. The issue of the impact of the MPMA on the cost of power, and the future prospects of market power after the expiration of the MPMA are also addressed

  5. Heat wave generates questions about Ontario's generation capacity

    Horne, D.

    2005-01-01

    Concerns regarding Ontario's power generation capacity were raised following a major blackout which occurred in August 2003. Power demand reached 26,170 MW during the weeks leading to the blackout, forcing the Independent Electricity System Operator (IESO) to ask residents to reduce electricity use during the day. The grid operator had also issued a forecast that Toronto could face rolling blackouts during times of heavy power demand. Ontario power consumption records were set in June and July of 2003 due to a heat wave, with hourly demand exceeding 25,000 MW on 53 occasions. Ontario was forced to import up to 3,400 MW (13 per cent of its power needs) from neighbouring provinces and the United States. During that period, the price of power had risen sharply to over 30 cents a kilowatt hour, although household consumers were still charged in the 5 to 10 cent range per kilowatt hour. However, it was noted that taxpayers will eventually bear the cost of importing power. The IESO noted that importing electricity is cheaper than the generation available in Ontario and that it is more economical to import, based on the market clearing price of all generators. In 2004, the IESO purchased 6 per cent of their electricity from the United States. That figure is expected to increase for 2005. Ontario generators produced 26.9 million MWh more in the summer of 2005 than during the same period in 2004 to meet electricity demand levels. It was noted that although importing power presently meets peak demand, the IESO agrees there is a need for new generation within Ontario. In addition to restarting Ontario's Pickering and Bruce nuclear facilities, more than 3,300 MW of new gas-fired generation is under construction or approved, and more than 9,000 MW are in various stages of approval. This paper discussed the effect of high energy costs on industry and Ontario's ability to meet future electricity demand in comparison to neighbouring jurisdictions. Issues regarding grid maintenance

  6. Himalayan hydro on the horizon

    Sharp, Timothy

    2000-01-01

    The prospects for development of hydro in the Himalayas has been enhanced by privatisation and the urgent need for clean electricity in the north of India. There are various hurdles to be overcome before the projects are likely to move forward in earnest before 2005, and these are mentioned. The demand for electricity in India is said to be enormous. At present, there is much polluting industry along the Himalayas. As throughout the Indian privatisation dilemma, the critical issues for development of Himalayan hydro come down to credible commercial power markets and finance. With regard to finance and administrative changes, the Indian government is carrying out a number of actions and these are itemised. The US is vigorously promoting the development of Himalayan hydro as a key to much needed regional co-operation and the World Bank is supportive

  7. Tectonic implications of seismic activity recorded by the northern Ontario seismograph network

    Wetmiller, R.J.; Cajka, M.G.

    1989-01-01

    The northern Ontario seismograph network, which has operated under the Canadian Nuclear Fuel Waste Management Program since 1982, has provided valuable data to supplement those recorded by the Canadian national networks on earthquake activity, rockburst activity, the distribution of regional seismic velocities, and the contemporary stress field in northern Ontario. The combined networks recorded the largest earthquake known in northwestern Ontario, M 3.9 near Sioux Lookout on February 11, 1984, and many smaller earthquakes in northeastern Ontario. Focal mechanism solutions of these and older events showed high horizontal stress and thrust faulting to be dominant features of the contemporary tectonics of northern Ontario. The zone of more intense earthquake activity in western Quebec appeared to extend northwestward into the Kapuskasing area of northeastern Ontario, where an area of persistent microearthquake activity had been identified by a seismograph station near Kapuskasing. Controlled explosions of the 1984 Kapuskasing Uplift seismic profile experiment recorded on the northern Ontario seismograph network showed the presence of anomalously high LG velocities in northeastern Ontario (3.65 km/s) that when properly taken into account reduced the mislocation errors of well-recorded seismic events by 50% on average

  8. Ontario's changing electrical sector : implications for air quality and human health

    Perrota, K.; De Leon, F.

    1999-03-01

    Concerns regarding the changes to Ontario's electricity sector and the impacts that these changes may have on the environment and public health are discussed. Two of the major changes include the implementation of the Nuclear Asset Optimization Plan, and the introduction of competition to Ontario's electrical market. Both changes could have profound impacts on air quality in Toronto and the rest of Ontario. This report recommends that the Ontario Minister of Environment and the Ontario Minister of Energy, Science and Technology establish: a regulatory framework to ensure that competition in Ontario's electrical sector does not lead to greater reliance on coal-fired generating stations and further degradation of air quality, human health and the environment in Toronto and the rest of southern Ontario; annual air emission caps for the entire electrical sector to limit the volume of air pollutants released each year; a renewable energy standard which defines the percentage of electricity that must be generated with renewable energies by electrical suppliers serving Ontario consumers; and a public benefit fund to support the promotion of energy conservation and the development of renewable energies with a surcharge on the transmission of electricity. 35 refs., 5 tabs

  9. Safety in nuclear power systems

    Myers, L.C.

    1987-05-01

    This paper discusses the issue of safety in complex energy systems and provides brief accounts of some of the most serious reactor accidents that have occurred to date. Details are also provided of Ontario Hydro's problems with Unit 2 at Pickering

  10. Fixing hydro - The forgotten renewable

    Nalder, N.

    1992-01-01

    Since the dawn of civilization, man has captured the energy potential of falling water, from the water wheels in the fertile crescent of ancient times to today's highly sophisticated conventional and pumped storage projects. As we approach the 21st century, electric energy captured from falling water provides 2.0 trillion kilowatt-hours (21.23 quadrillion Btu), roughly 20% of the world's electric energy. Of the 2.56 billion kilowatts of the world's installed electric generating capacity, hydropower accounts for 24%. Between 1980 and 1989, world generation of hydroelectric power rose from 1.7 trillion kWh to 2.0 trillion kWh. As of January 1, 1988, the US has 90.5 million kW of installed hydro capacity - 70.8 million kW of it under license by the Federal Energy Regulatory Commission - with annual generation estimated at just under 300 billion kWh. Hydro's share, which not long ago comprised 13% of the nation's total capacity, now is just a 9% share. The US has the option to choose one or another path for hydro. If policy makers are willing to coast on a cushion of cheap natural gas, they will continue to shun hydro and put obstacles in its path. But if they come to regard hydro as an attractive resource - as they did only recently - economically and environmentally, they will encourage more balance in resource policies. Believing that interest in a balanced national resource portfolio will grow, the author reviews the past and suggests a possible future course of reasonable development for hydro. The article concludes with some suggested principles that will be needed if the appropriate balance is to be found

  11. Strategies for growth of hydro electric power

    Khera, D.V.

    1998-01-01

    Hydro power on account of its several inherent advantages has a key role to play in the development of long term energy strategies based on diversified and balance use of natural national resources. Our country is fortunate to be endowed with large hydro-electric potential. It is estimated that the hydro potential while fully developed may yield to an installed capacity of 1,50,000 MW. An attempt has been made in this paper to examine and analyse the status and trend of hydro power development, need for accelerated development of hydro power, myths about hydro electric projects, principal causes responsible for scaling down of hydro share in the total installed capacity and strategies which could restore optimum hydro thermal mix. (author)

  12. Hydro-Quebec's environmental policy

    1996-10-01

    Hydro-Quebec established a new environmental policy on August 1, 1996. A summary of the policy was presented. According to this policy statement the utility undertakes to recognize the environmental implications of its activities and assumes responsibilities for these implications by integrating them into its corporate decision-making processes. The following general principles and means of implementation have been highlighted: (1) sustainable development, (2) strict, responsible environmental management, (3) environmental research, (4) enhancement of activities and facilities, (5) information, consultation and dialogue, and (6) environmental responsibility of Hydro-Quebec personnel, subsidiaries and business partners

  13. Hydro-Quebec is profitable

    Poirier, M.

    1997-01-01

    The pros and cons of the potential privatisation of Hydro-Quebec were discussed. A brief review of charges of less than competent management, low profitability and the corporation's recent administrative restructuring was presented. The general thrust of the argument was that Hydro-Quebec plays a crucial role in the economic development of Quebec, it can be made to be more profitable and that for the good of Quebec it should continue as a public corporation under the control of the provincial government

  14. Cost comparison of 4x500 MW coal-fuelled and 4x850 MW CANDU nuclear generating stations

    Costa, M.

    1981-01-01

    The lifetime costs for a 4x850 MW CANDU generating station are compared to those for 4x500 MW bituminous coal-fuelled generating stations. Two types of coal-fuelled stations are considered; one burning U.S. coal which includes flue gas desulfurization and one burning Western Canadian coal. Current estimates for the capital costs, operation and maintenance costs, fuel costs, decommissioning costs and irradiated fuel management costs are shown. The results show: (1) The accumulated discounted costs of nuclear generation, although initially higher, are lower than coal-fuelled generation after two or three years. (2) Fuel costs provide the major contribution to the total lifetime costs for coal-fuelled stations whereas capital costs are the major item for the nuclear station. (3) The break even lifetime capacity factor between nuclear and U.S. coal-fuelled generation is projected to be 5%; that for nuclear and Canadian coal-fuelled generation is projected to be 9%. (4) Large variations in the costs are required before the cost advantage of nuclear generation is lost. (5) Comparison with previous results shows that the nuclear alternative has a greater cost advantage in the current assessment. (6) The total unit energy cost remains approximately constant throughout the station life for nuclear generation while that for coal-fuelled generation increases significantly due to escalating fuel costs. The 1978 and 1979 actual total unit energy cost to the consumer for several Ontario Hydro stations are detailed, and projected total unit energy costs for several Ontario Hydro stations are shown in terms of escalated dollars and in 1980 constant dollars

  15. Hydro One smart meter/smart grid : realizing the vision

    Stevens, R. [Hydro One Networks Inc., Toronto, ON (Canada)

    2010-07-01

    Ontario's Hydro One Networks has been installing smart meters as part of its smart grid plan since 2007. The smart grid plan forms part of the utility's overall aim to create an energy conservation culture across the province. The utility now has over 1 million installed meters over a 640,000{sup 2} km territory. The smart grid planning team has adopted the use of an upgraded open protocol standards-based communications as part of its 2-way high bandwidth network. The utility is using a 1.8 Ghz worldwide interoperability for microwave access (WiMAX) spectrum designed specifically for the protection of electric utility infrastructure. The utility is now incorporating proof-of-concept applications including automated reclosers, remote terminal units, demand management devices and mobile technologies for use in its smart grid procedures. Various smart zone business scenarios were also described in this power point presentation, as well as details of Hydro One's integration plans for vendors and other power systems. tabs., figs.

  16. From concept to construction: a 15 MW small hydro project

    Stephens, S.; Neegan, K.

    1995-12-31

    An audio recording of an address by Chief Stanley Stephens and Deputy-Chief Ken Neegan of the Constance Lake First Nation, at the Renewable Energy Commercial Trade Show and Markets Conference was presented. The speech concerned development of a 15 MW hydro project on the reservation. Stephens recalled how initial opposition was overcome by addressing simple misconceptions about the project. The project was initiated by the Ontario Energy Corporation with a series of community discussions which addressed environmental impacts, and benefits that would result from the project. Neegan explained that after deliberation and negotiations, the Constance Lake First Nation was pleased with the project. This project was evidence that sound partnership could be formed between First Nations and hydro developers, while preserving respect for `Mother Earth` in the process. Trust between the community, the developers and government was considered to be the critical component of the project. Sound legal, technical, environmental and financial information was also indispensable in allowing the Constance Lake First Nation to make its decision to proceed with the project.

  17. From concept to construction: a 15 MW small hydro project

    Stephens, S.; Neegan, K.

    1995-01-01

    An audio recording of an address by Chief Stanley Stephens and Deputy-Chief Ken Neegan of the Constance Lake First Nation, at the Renewable Energy Commercial Trade Show and Markets Conference was presented. The speech concerned development of a 15 MW hydro project on the reservation. Stephens recalled how initial opposition was overcome by addressing simple misconceptions about the project. The project was initiated by the Ontario Energy Corporation with a series of community discussions which addressed environmental impacts, and benefits that would result from the project. Neegan explained that after deliberation and negotiations, the Constance Lake First Nation was pleased with the project. This project was evidence that sound partnership could be formed between First Nations and hydro developers, while preserving respect for 'Mother Earth' in the process. Trust between the community, the developers and government was considered to be the critical component of the project. Sound legal, technical, environmental and financial information was also indispensable in allowing the Constance Lake First Nation to make its decision to proceed with the project

  18. Toxicity regulation of radioactive liquid waste effluent from CANDU stations - lessons from Ontario's MISA program

    Rodgers, D.W.

    2009-01-01

    Toxicity testing became an issue for Ontario's CANDU stations, when it was required under Ontario's MISA regulations for the Electricity Generation Sector. In initial tests, radioactive liquid waste (RLW) effluent was intermittently toxic to both rainbow trout and Daphnia. Significant differences in RLW toxicity were apparent among stations and contributing streams. Specific treatment systems were designed for three stations, with the fourth electing to use existing treatment systems. Stations now use a combination of chemical analysis and treatment to regulate RLW toxicity. Studies of Ontario CANDU stations provide a basis for minimizing costs and environmental effects of new nuclear stations. (author)

  19. Ontario electricity industry restructuring : preliminary asset valuation and calculation of stranded debt

    1998-01-01

    The rationale for restructuring Ontario's electricity industry was restated. Financial elements of the Government's White Paper on the electrical industry included the following: (1) establishing a level playing field on taxes and regulation, (2) restructuring Ontario Hydro into new companies with clear business mandates, and (3) taking action to put the new companies on solid financial ground. To achieve these objectives requires valuation of the new companies as a key part in the restructuring process. This Ministry of Finance document contains preliminary estimates of the total debt and liabilities of Ontario Hydro ($ 39.1 billion), the value of the new generation and service companies ($ 15.8 billion), and the stranded debt ($ 23.3 billion, less the value of dedicated revenue streams of $ 15.4 billion, equal to the residual stranded debt of $ 7.9 billion). The method by which the stranded debt was calculated is also described. It is stressed that the overriding principles governing the financial restructuring plan are to achieve restructuring without increasing electricity rates, to retain maximum value in the electricity sector until stranded debt is retired, and to recover stranded debt from the electricity sector and not from taxpayers. Ministry advisors indicate that these preliminary valuations would allow the new companies to operate as commercial companies in a competitive market and receive investment grade credit ratings. 44 figs

  20. Transmission solutions : a 10 year plan for the province of Ontario 2005-2014

    2005-02-01

    This paper present a 10 year transmission plan for Ontario by Hydro One Networks Inc., the largest electricity delivery company in the province. A history of Hydro One Network's activities during the past century was provided as well as information about the company and details of their mission and objectives. A list of their accomplishments during 2004 was also presented. An outline of the current transmission infrastructure system was presented. Elements of the plan include customer connections; area supply reliability; facilitation of electricity supply; and transmission needs and solutions. Plans specific to central, western, eastern and northeastern zones were also presented, including zone maps of transmission lines and generating stations. Changes included: Bill 100, the Electricity Restructuring Act in 2004 and the establishment of the Ontario Power Authority (OPA); changes to the Ontario Energy Board's Transmission System Code (TSC); government measures to increase the supply of electricity through requests for proposals (RFPs) for new renewable and clean energy; and the announcement of an increase in the amount of wind energy through the Wind Power Production Incentive program. refs., tabs., figs

  1. The hydro energy; Energie hydraulique

    Vachey, C.

    2000-05-01

    This paper is a first approach of the hydro energy energy. It presents the principle and the applications of this energy source. It proposes recommendations on the sizing and the cost estimation of an installation and the environmental impacts of this energy. (A.L.B.)

  2. The Ontario-Manitoba clean energy transfer initiative

    Clarkson, J.

    2006-01-01

    Manitoba currently generates 5500 MW of electricity, and has the potential to add another 5000 MW of clean energy. Nearly 2000 MW of Manitoba's electricity is currently being sold to the United States. New transmission sites will ensure both grid reliability and energy security for Ontario, and power exchanges are expected to reduce costs. This presentation provided details of a memorandum of understanding (MOU) between Ontario and Manitoba concerning energy sales across existing and future transmission infrastructure. Peak energy sales were expected to reach 1000 MW in the near future. Options for the interconnection included direct high voltage direct current (HVDC) lines to Sudbury as well as lines through Thunder Bay and Winnipeg. Manitoba's existing hydro sites were outlined, and potential sites were reviewed. In addition to presenting new supply options, this presentation described generation and transmission approval processes, as well as construction schedules for new sites and interconnection points. It was concluded that while there is currently a provincial focus on electricity supply and demand, new generation technologies will make interprovincial electricity agreements economically viable. tabs., figs

  3. After the crisis: which future for the competitive power market of Ontario?; Apres la crise: quel avenir pour le marche concurrentiel d'electricite de l'Ontario?

    Fraser, P

    2003-07-01

    This document presents the power distribution system of Ontario (Canada) and the crisis that followed the opening of the electricity market on May 1, 2002 in Ontario. The author explains the process of reforms of the power market, the re-structuration of Ontario Hydro company and the occurrence of new energy companies (73 new retailers), the launching of a wholesale market, the reasons of the crisis (25% average rise of electricity prices) and the lessons to be learned from. In front of this situation, a freezing of electricity prices to their level prior to May 2002 and a reimbursement of the difference paid by consumers since May 2002 have been decided by the government up to 2006. (J.S.)

  4. Integrated operation of hydro thermal system

    Nanthakumar, J.

    1994-01-01

    Long-term power system expansion planning studies are carried out to meet the electricity requirement in the future. Prior to the expansion planning studies, it is essential to know the energy potential of the existing generating system, especially the hydro power plants. Detailed hydro thermal stimulation studies of the integrated system is therefore carried out to determine the best way to maximise the hydro energy of the existing and committed plants. The results of the integrated system simulated model are stored in numerous files and are available for retrieval. Most important output used for expansion analysis is the energy production of each hydro plant. The annual hydro energy potential of the total hydro system of Sri Lanka for the hydrological year from 1949 to 1988 is given. Hydro condition data with different probability levels are also indicated

  5. Moderator inlet line hanger replacement for Pickering nuclear power station

    Kirkpatrick, R.A.; Bowman, J.M.; Symmons, W.R.; El-Nesr, S.

    1988-01-01

    Ontario Hydro's Pickering Nuclear Generating Station (PNGS), Units 1 and 2 were shutdown for large scale fuel channel replacement. Other nonroutine inspection and maintenance activities were performed to determine the overall condition of the units and it was seen that a moderator inlet line hanger (identified as HR-29) had failed in both units. Subsequent inspections during planned maintenance outages of Pickering NGS Units 3 and 4 revealed that hanger HR-29 had failed and required replacement. A research program was conducted to find a suitable technique. These problems included accessing tooling through small inspection ports, manipulating tooling from a significant distance and the high radiation fields within the vault. This paper describes the program undertaken to replace hanger HR-29. (author)

  6. Plugging inaccessible leaks in cooling water pipework in nuclear power plants

    Powell, A.B.; May, R.; Down, M.G.

    1988-01-01

    The manifestation of initially small leaks in ancilliary reactor cooling water systems is not an unusual event. Often these leaks are in virtually inaccessible locations - for example, buried in thick concrete shielding or situated in cramped and highly radioactive vaults. Such leaks may ultimately prejudice the availability of the entire nuclear system. Continued operation without repair can result in the leak becoming larger, and the leaking water can cause further corrosion problems and interfere with instrumentation. In addition, the water may increase the volume of radwaste. In short, initially trivial leaks may cause significant operating problems. This paper describes the sealing of such leaks in the biological shield cooling system of Ontario Hydro's Pickering nuclear generating station CANDU reactors

  7. Second interim assessment of the Canadian concept for nuclear fuel waste disposal. Volume 3

    Johansen, K.; Donnelly, K.J.; Gee, J.H.; Green, B.J.; Nathwani, J.S.; Quinn, A.M.; Rogers, B.G.; Stevenson, M.A.; Dunford, W.E.; Tamm, J.A.

    1985-12-01

    The nuclear fuel waste disposal concept chosen for development and assessment in Canada involves the isolation of corrosion-resistant containers of waste in a vault located deep in plutonic rock. As the concept and the assessment tools are developed, periodic assessments are performed to permit evaluation of the methodology and provide feedback to those developing the concept. The ultimate goal of these assessments is to predict what impact the disposal system would have on man and the environment if the concept were implemented. The second such assessment was completed in 1984 and is documented in the Second Interim Assessment of the Canadian Concept for Nuclear Fuel Waste Disposal - Volumes 1-4. This, the third volume of the report, summarizes the pre-closure environmental and safety assessments completed by Ontario Hydro for Atomic Energy of Canada Limited. The preliminary results and their sigificance are discussed. 85 refs

  8. Ontario Energy Corporation annual report 1981. [Monograph

    1981-01-01

    The Ontario Energy Corporation's mission of providing leadership and investment capital for selected energy ventures brought its total participation in projects from $16.4 million to $669 million, and its total assets increased from $44.4 million to $693 million during the year. The annual report review major operations with Ontario Energy Resources Ltd., Onexco Ltd., Ontario Alternate Energy Ltd., Ontario Power Share Ltd., and Ontario Energy in Transportation Ltd. The financial report includes a balance sheet, income and retained earnings statement, and a summary of financial changes during the reporting period. 1 figure, 4 tables. (DCK)

  9. Hydro and After: The Canadian Experience with the Organization, Nationalization and Deregulation of Electrical Utilities

    Nelles, Henry Vivian

    2003-01-01

    This paper surveys the process of nationalization and some recent steps towards denationalization in a distinctive Canadian institutional setting, the provincial hydro-electric power utilities. The richest, most industrialized central province, Ontario, established a dynamic publicly owned electric generation and distribution system before World War I. Most other provinces developed variations of the regulatory model to govern private monopolies until the post World War II period when widespread nationalization at the provincial level created a near universal pattern of state owned electric companies. Recently, the process of dismantling state monopolies in this sector has begun in two provinces, one where public ownership was weakest, and the other where the concept of 'provincial hydro' was born

  10. Manitoba Hydro-Electric Board 52. annual report : Building as one

    2003-01-01

    A provincial Crown corporation, Manitoba Hydro serves approximately 502,000 customers throughout Manitoba with electric energy, and provides natural gas service to 251,000 customers in several communities in southern Manitoba. In addition, Manitoba Hydro exports electricity to electric utilities and marketers in the mid-western United States, Ontario, and Saskatchewan. In 2002, Winnipeg Hydro was purchased from the City of Winnipeg. Records were broken for historical peak demand for electricity (24 February 2003) and natural gas (22 January 2003). A study of wind power generation was launched, with seven sites being monitored. A Power Smart program focusing on geothermal heat pump systems also offered assistance to Manitoba homeowners. Successful conversion of the Selkirk Generating Station from coal to natural gas was achieved. In Brandon, a 260 mega watt (MW) natural gas combustion turbine plant was opened. Over $29 million in loans were issued to customers under the Home Comfort and Energy Savings Program. Electricity rates for residential customers remained unchanged, as did those for large industrial customers. Approval was received by the National Energy Board to export 500 MW of electricity to Northern States Power. A new international interconnection was brought into service in November 2002 between Glenboro, Manitoba and Harvey, North Dakota. The ISO 14001 international certification for environmental management systems was awarded to Manitoba Hydro. tabs., figs

  11. Brigham City Hydro Generation Project

    Ammons, Tom B. [Energy Conservation Specialist, Port Ewen, NY (United States)

    2015-10-31

    Brigham City owns and operates its own municipal power system which currently includes several hydroelectric facilities. This project was to update the efficiency and capacity of current hydro production due to increased water flow demands that could pass through existing generation facilities. During 2006-2012, this project completed efficiency evaluation as it related to its main objective by completing a feasibility study, undergoing necessary City Council approvals and required federal environmental reviews. As a result of Phase 1 of the project, a feasibility study was conducted to determine feasibility of hydro and solar portions of the original proposal. The results indicated that the existing Hydro plant which was constructed in the 1960’s was running at approximately 77% efficiency or less. Brigham City proposes that the efficiency calculations be refined to determine the economic feasibility of improving or replacing the existing equipment with new high efficiency equipment design specifically for the site. Brigham City completed the Feasibility Assessment of this project, and determined that the Upper Hydro that supplies the main culinary water to the city was feasible to continue with. Brigham City Council provided their approval of feasibility assessment’s results. The Upper Hydro Project include removal of the existing powerhouse equipment and controls and demolition of a section of concrete encased penstock, replacement of penstock just upstream of the turbine inlet, turbine bypass, turbine shut-off and bypass valves, turbine and generator package, control equipment, assembly, start-up, commissioning, Supervisory Control And Data Acquisition (SCADA), and the replacement of a section of conductors to the step-up transformer. Brigham City increased the existing 575 KW turbine and generator with an 825 KW turbine and generator. Following the results of the feasibility assessment Brigham City pursued required environmental reviews with the DOE and

  12. Ontario electricity rates and industrial competitiveness

    2006-01-01

    Industrial electricity prices in Ontario rose significantly after the opening of the competitive Ontario electricity market in 2002, thereby widening the gap between industrial electricity prices in Ontario and those in other Canadian provinces. Navigant Consulting Ltd. conducted this study at the request of the Association of Major Power Consumers in Ontario (AMPCO) to research and compare current and historical electricity prices in Ontario and other jurisdictions in North America. The study provided an independent analysis of how industrial electricity prices in Ontario compare to those in other jurisdiction in which AMPCO members operate. It also formed the basis for comparing the impacts of electricity policy on the economic competitiveness of major power consumers in Ontario. The relative electricity intensity in the United States, Ontario and other Canadian provinces was reviewed for specific industries, including forest products, steel manufacturing, petroleum refining, chemical manufacturing and cement manufacturing. Publicly available aggregate data from Statistics Canada and the United States Bureau of the Census was then used to compare average electricity prices for industrial customers in Ontario. The data confirmed that Ontario has experienced a decline in its competitive price advantage in industrial electricity. Delivered industrial electricity prices in Ontario have increased by more than 60 per cent since 2001. Industrial electricity prices in Ontario rose above those in Quebec, Manitoba, British Columbia and New Brunswick. In addition, industrial electricity prices in Ontario rose above those in competing states such as Ohio and Illinois, in part due to the increase in the value of the Canadian dollar. It was concluded that the price increase may lead to a greater decline in economic output in Ontario compared to competing jurisdictions. 2 tabs., 14 figs., 1 appendix

  13. The Nothuesli small hydro project

    Balachandran, S.; Jorde, K.

    2008-01-01

    This report for the Swiss Federal Office of Energy (SFOE) discusses the project for a small 16-kilowatt hydro plant on the Gonzenbaechli stream in eastern Switzerland. The site, which was used even before 1860 for obtaining power from the stream is briefly described, as are the present remains of earlier installations. An old Francis turbine has been retrieved and could possibly be reused. Water-flow figures and fall-heights are noted. Design flows and residual water quantities required by legislation are noted and discussed, as are the geology and topology of the catchment area. The proposals for a new hydro-power plant are described, including the apparatus proposed with a power of 20 kVA. Environmental aspects are also discussed, as are the investment costs and the economic viability of the project. The paper is completed with a comprehensive appendix, including detailed cost estimates.

  14. Architecture at Hydro-Quebec

    1991-01-01

    Architecture at Hydro-Quebec is concerned not only with combining function and aesthetics in designing buildings and other structures for an electrical utility, but also to satisfy technical and administrative needs and to help solve contemporary problems such as the rational use of energy. Examples are presented of Hydro-Quebec's architectural accomplishments in the design of hydroelectric power stations and their surrounding landscapes, thermal power stations, transmission substations, research and testing facilities, and administrative buildings. It is shown how some buildings are designed to adapt to local environments and to conserve energy. The utility's policy of conserving installations of historic value, such as certain pre-1930 power stations, is illustrated, and aspects of its general architectural policy are outlined. 20 figs.

  15. 18-month outlook : An assessment of the adequacy of the Ontario electricity system from January 2002 to June 2003

    2001-01-01

    The Independent Electricity Market Operator (IMO) has monitored the state of electricity demand and available supply in Ontario and has reported its findings to the Minister of Energy, Science and Technology and to the Ontario Energy Board. This report presents the IMO's assessment of the adequacy of resources and transmission for the Ontario electricity system for the 18-month period from January 2002 to June 2003. The assessment was based on current information on forecasts of electricity demand and available supply. The existing installed generation within Ontario was summarized. Existing power facilities include nuclear, coal, oil, gas, hydroelectric, wind-powered, wood and waste-fuelled generation. The installations range from less than 1 MW in size to 881 MW net electrical output. The total generating capacity in Ontario is 29,523 MW, excluding embedded generators that are not managed by the Ontario Electricity Financial Corporation or generation not connected to the IMO-controlled grid. In addition, the Bruce Nuclear Unit was not included because it is currently in laid-up state. This report discussed changes from the previous 18-month outlook in terms of power demand. It also presented outlooks of the transmission outage plan, system voltage, thermal concerns and forced outages. The general conclusion reached in this report is that there will be sufficient resources and transmission available to Ontario to supply Ontario demands and to meet the Northeast Power Coordinating Council (NPCC) resource criteria for the next 18 months. tabs., figs

  16. Trading our health: Ontario Power Generation's plan to violate its air pollution reduction commitment

    Gibbons, J.; Bjorkquist, S.

    1999-01-01

    Amid growing concerns about nitrogen oxide (Nox) emissions, the Ontario Clean Air Alliance is recommending in this report that the Ontario government restrict Nox emissions from Ontario Power Generation (OPG) in the year 2000 and not let the corporation meet its emissions cap by on a net basis by retiring Pilot Emission Reduction Trading (PERT) Nox emission reduction credits. Instead the alliance believes the Ontario government should require OPG to achieve emissions compliance by curtailing coal-fired electricity exports, purchasing renewable and natural-gas electricity and promoting energy efficiency. OPG's inventory of PERT Nox reduction credits are assessed against whether they will cause an increase in the year 2000 as a result of trading. Ontario Power Generation's Nox emissions are a central chemical component of acid rain and smog and are produced from its coal-fired electricity generators. The utility would like to achieve Nox reductions by establishing demand management programs which would reduce the demand for electricity by 5200 megawatts (MW), by purchasing 3100 MW of non-utility generation and by undertaking combustion process modifications at its Lambton and Nanticoke coal-fired generating stations. It has not met its 2000 demand management and non-utility generation targets, and specifically, as of December 31, 1998, Ontario Hydro's successor companies demand management programs have only reduced electricity demand by approximately 1300 MW. Furthermore, the successor companies will have only approximately 1700 MW of non-utility generation capacity under contract by December 31, 1999. The report describes the criteria for ensuring that Nox emissions trading will not lead to a net increase in Ontario's emissions in any given year, and a description is included of why the 'Draft Rules for Emission Trading in Ontario' rules do not meet these criteria. Permitting OPG to use its PERT credits to meet its Nox cap, will allow them to increase coal

  17. Experience in ultrasonic gap measurement between calandria tubes and liquid injection shutdown systems nozzles in Bruce Nuclear Generating Station

    Abucay, R.C.; Mahil, K.S.; Goszczynski, J.J.

    1995-01-01

    The gaps between calandria tubes (CT) and Liquid Injection Shutdown System (LISS) nozzles at the Bruce Nuclear Generating Station ''A'' (Bruce A) are known to decrease with time due to radiation induced creep/sag of the calandria tubes. If this gap decreases to a point where the calandria tubes come into contact with the LISS nozzle, the calandria tubes could fail as a result of fretting damage. Proximity measurements were needed to verify the analytical models and ensure that CT/LISS nozzle contact does not occur earlier than predicted. The technique used was originally developed at Ontario Hydro Technologies (formerly Ontario Hydro Research Division) in the late seventies and put into practical use by Research and Productivity Council (RPC) of New Brunswick, who carried out similar measurements at Point Lepreau NGS in 1989 and 1991. The gap measurement was accomplished y inserting an inspection probe, containing four ultrasonic transducers (2 to measure gaps and 2 to check for probe tilt) and a Fredericks electrolytic potentiometer as a probe rotational sensor, inside LISS Nozzle number-sign 7. The ultrasonic measurements were fed to a system computer that was programmed to convert the readings into fully compensated gaps, taking into account moderator heavy water temperature and probe tilt. Since the measured gaps were found to be generally larger than predicted, the time to CT/LISS nozzle contact is now being re-evaluated and the planned LISS nozzle replacement will likely be deferred, resulting in considerable savings

  18. Hydro-Quebec's buyback tariff

    Richard, J.C.

    1992-01-01

    Hydro-Quebec had an installed electric generation capacity of 25,682 MW in 1990, of which 23,927 MW was hydraulic. Of the 26 thermal power plants, 22 are in remote communities on islands or in the north part of the province. The utility's development plan predicts an annual growth in demand of 2.6% to reach ca 200 TWh in 2006; this demand would be reduced to ca 180 TWh by energy efficiency measures. To increase capacity, Hydro-Quebec can utilize the hydro generation potential of its large rivers, of which 18,000 MW is economically viable, and its small rivers. Of the 10,000 MW theoretical potential of the latter, a large fraction cannot be economically developed under existing conditions. The utility has a policy to purchase energy as a function of the price of fossil fuel. For wind energy, this price was 4.22 cents/kWh in 1991; this price will be increased annually according to the inflation index. In its isolated sites such as the Magdalen Islands, current costs of diesel-generated electricity are at least 5.5 cents/kWh. There are possibilities for installing wind plants in isolated regions but their automatic control systems need to be improved for achieving a larger utilization factor relative to diesel generation and their cost needs to be reduced. 1 tab

  19. Data feature: World nuclear power plant capacity 1991

    Anon.

    1992-01-01

    At this point, the future of the nuclear power industry remains largely in doubt. The gloomy predictions about global warming have done little to convince politicians and the public of the benefits of nuclear power. Meanwhile, the setbacks to nuclear have continued apace: The United States has failed to take the expected lead in ordering new nuclear plants. And President-elect Bill Clinton does not consider nuclear a major part of his energy strategy. The situation looks equally bleak in other countries. Canada's biggest utility, Ontario Hydro, was forced under intense political pressure to defer its ambitious nuclear expansion program until after the year 2010. In Europe, the suspension of France's Superphenix fast-breeder reactor in June could stop progress on the technology indefinitely. And the Finnish parliament dropped plans for expansion of nuclear power from its national energy strategy. Developing and semi-industrialized countries, such as Brazil and Argentina, have shown little progress, taking upwards of twenty years to complete plants already under construction. Nuclear's problems seem always to hinge on economics. Nuclear has little chance of revival during the current global recession, especially in countries fighting for their long-term economic survival. That is why NUKEM believes nuclear power will not grow much in the CIS and Eastern Europe beyond the projects already in the advanced stages of construction. What's more, the longer countries such as Italy, the Netherlands, Spain, Switzerland and Finland keep their nuclear expansion plans on hold, the harder it will be to get the political support to restart them. So far in 1992, only two nuclear plants, with a combined capacity of 1,520 MWe, have gone into commercial operation. One more 1,330 MWe reactor may start up by year's end. By then, NUKEM expects world nuclear plant capacity to stand at 330.3 GWe

  20. Good prospects for Portuguese small hydro industry

    Betamio de Almeida, A.; Serranho, H.

    2000-01-01

    The article outlines the history of hydro in Portugal and discusses the current position of small-scale hydro with particular reference to the Portuguese Small Hydro Association (AMPH). Encouraged by legislation, and the Valoren community programme (which defined investment incentives), many new small hydro projects sprang up in Portugal in the 1990s. In some areas of Portugal the water levels were higher than the urban centres where the water is required: how the problems of integrating power and water were addressed is described. The integration of power and irrigation schemes is also mentioned. In the wake of great expansion in the Portuguese hydro industry, there was a sharp reduction (in 1995-6) and the reasons for that are listed. The 1999 tariff was such that it is likely that small hydro will provide 3.8% of the electric power consumed nationally by 2010

  1. BC hydro: Annual report, 1991-1992

    1992-01-01

    The third largest electric utility in Canada, B.C. Hydro services almost 1.3 million customers in an area containing over 92 per cent of British Columbia's population. B.C. Hydro's mission is to generate, transmit and distribute electricity. This annual report covers the business and financial performance of B.C. Hydro, and financial statistics.

  2. 76 FR 67175 - Riverbank Hydro No. 2 LLC, Lock Hydro Friends Fund XXXVI, Arkansas Electric Cooperative Corp...

    2011-10-31

    ...; 14149-000] Riverbank Hydro No. 2 LLC, Lock Hydro Friends Fund XXXVI, Arkansas Electric Cooperative Corp... Lock Hydro Friends Fund XXXVI (Lock Hydro) and on April 11, 2011, Arkansas Electric Cooperative Corp... & Dam No. 3, as directed by the Corps. Applicant Contact: Mr. Wayne F. Krouse, Hydro Green Energy, 5090...

  3. The competitive economics of a middle aged multi unit nuclear generating station

    Talbot, K.H.

    1994-01-01

    In 1992 Ontario Hydro's 15 year old 4 x 850 MWe Candu, Bruce A Nuclear Generating Station was predicted to need considerable capital investment to replace pressure tubes, steam generators and other prematurely ageing equipment in order to restore the station to high performance. Over the subsequent two years the station has undergone 2 major economic assessment studies which have confirmed the economic viability of continued operation of the plant. Declining demand for electricity in Ontario combined with a excess of generating capacity and a need to stabilise electricity rates have however forced significant operational cost reductions and reduced capital availability for rehabilitation work, it's medium and long term future remains in question. This presentation offers a practical illustration of the need to maintain steady high performance from nuclear generating plant via the appropriate life management techniques. The avoidance of mid life infusion of capital is considered as essential if nuclear generation is to successfully survive major changes in economic conditions. 2 tabs., 7 figs

  4. 78 FR 56224 - Hydro Nelson, Ltd.; Hydro-WM, LLC; Notice of Transfer of Exemption

    2013-09-12

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 3401-049] Hydro Nelson, Ltd.; Hydro-WM, LLC; Notice of Transfer of Exemption 1. By documentation filed July 8, 2013 and supplemented... Hydro-WM, LLC. The project is located on the Rockfish River in Nelson County, Virginia. The transfer of...

  5. Analysis of strontium-90 in the bones of brown trout (Salmo trutta) from Lake Ontario

    Manos, C.G. Jr.; Kinney, R.M.; Lisk, D.J.

    1993-01-01

    Radionuclides such as Sr-90, mainly from liquid effluent releases from nuclear power generating facilities, can contaminate water and biota. Lake Ontario ultimately receives the outflow from each of the other Great Lakes. In the work reported, brown trout (Salmo trutta) were captured from Lake Ontario and their entire skeletal bone material analyzed for Sr-90. They showed an average concentration of Sr-90 approximately four times greater than control brown trout captured from nearby Cayuga Lake in Central New York State which has no nuclear generating facilities. The results are discussed considering fallout and hydrographic considerations. (author)

  6. The Education Act (Ontario) 1980: A Review.

    Hodder, C. J.

    1984-01-01

    Ontario has provided special education legislation through the Education Amendment Act, 1980. Issues related to teacher preparation for special education and program planning and implementation are reviewed. (DF)

  7. Lower rates, better service, accelerated debt repayment: how best to sell a minority interest in Hydro One

    2002-01-01

    The sale of a minority stake in the provincially-owned, integrated electricity transmission and distribution company Hydro One is being contemplated by the Ontario government. Several options are open to the government to complete this sale, such as an income trust, an Initial Public Offering (IPO), straight sale of 49.9 per cent or less, and the separation and sale of the distribution operations. Some issues must be considered before proceeding with the divestiture: service quality and the current structure of the distribution sector in Ontario, the distribution and transmission rates, fostering competition in distribution, regulatory costs, tax leakage/stranded debt repayment, maximization of value to the province, public/stakeholder acceptance, foreign versus domestic ownership, accountability to consumers, and the policies/requirements of interconnected markets. The aim in the divestiture is to ensure customers in Ontario benefit from lower distribution rates, higher quality services, enhanced local accountability, a more efficient electricity industry, and accelerated stranded debt payoff. As a result, the Electricity Distributors Association is proposing that the government separate Hydro One's transmission and distribution. The rationale for the proposal was discussed in the paper, stressing the importance of making the decision now

  8. Romanian achievement in hydro-power plants

    Cardu, M.; Bara, T.

    1998-01-01

    This paper briefly deals with the achievements relating to Hydro-electric Power Plants within the process of development of the National Power System in Romania. Also presented is the Romanian industry contribution to hydro-electrical power plant equipment manufacturing. (author)

  9. Development of Hydro-Mechanical Deep Drawing

    Zhang, Shi-Hong; Danckert, Joachim

    1998-01-01

    The hydro-mechanical deep-drawing process is reviewed in this article. The process principles and features are introduced and the developments of the hydro-mechanical deep-drawing process in process performances, in theory and in numerical simulation are described. The applications are summarized....... Some other related hydraulic forming processes are also dealt with as a comparison....

  10. Optimal control systems in hydro power plants

    Babunski, Darko L.

    2012-01-01

    The aim of the research done in this work is focused on obtaining the optimal models of hydro turbine including auxiliary equipment, analysis of governors for hydro power plants and analysis and design of optimal control laws that can be easily applicable in real hydro power plants. The methodology of the research and realization of the set goals consist of the following steps: scope of the models of hydro turbine, and their modification using experimental data; verification of analyzed models and comparison of advantages and disadvantages of analyzed models, with proposal of turbine model for design of control low; analysis of proportional-integral-derivative control with fixed parameters and gain scheduling and nonlinear control; analysis of dynamic characteristics of turbine model including control and comparison of parameters of simulated system with experimental data; design of optimal control of hydro power plant considering proposed cost function and verification of optimal control law with load rejection measured data. The hydro power plant models, including model of power grid are simulated in case of island ing and restoration after breakup and load rejection with consideration of real loading and unloading of hydro power plant. Finally, simulations provide optimal values of control parameters, stability boundaries and results easily applicable to real hydro power plants. (author)

  11. New markets for small-scale hydro

    Maurer, E.A.

    1997-01-01

    The market for small and medium sized hydro-electric power plant is more attractive than ever. The boom in Europe has increasingly spread to the emerging countries, and here too small hydro plays an important ecological role. In addition to new plant rehabilitation of 'historical' plant is now a major factor. The last few years have seen a market shift from single machine components to complete plant and systems, requiring a strategy re-think on the part of larger companies. Following the influx of private capital into the power industry, business conditions have also undergone a thorough transformation. In place of 'fast money', hydro power offers the prospect of earning longer-term, sustainable money'. The term small-scale hydro-electric power (or simply 'small hydro') is used slightly differently depending on the country and market. Here, it is used to denote plant with turbines up to 10 MW. (Author)

  12. Reality check on Ontario electricity price procurement: a report from the trenches

    Rodger, J.M.; Wegiel, H.; Ferns, T.; Bystrin, A.

    2003-01-01

    The approaches taken to manage energy price risks from three different perspectives were presented. The first perspective presented was that of a law firm specializing in assisting a wide variety of clients constituting retailers and large industrial, institutional, and commercial users. The second perspective presented was that of Dofasco, the largest industrial electricity consumer in Ontario, followed by the perspective offered by Oakville Hydro, representing one of few municipally owned electricity retailers in Ontario. The first order of business, from the lawyer's viewpoint, is to identify relevant considerations for consumers and retailers, such as how do you intend to participate in the new market, what are the desired outcomes, the appetite for risk. The formulation of an approach should take the following into consideration: historical context versus new market reality, experience with electricity suppliers, and dilemma for consumers and retailers on how to level the playing field. The chosen approach was that of a request for proposals process for electricity price procurement. In the case of Dofasco, the introduction of the deregulated electricity market meant business risks, which it chose to address using an integrated risk management approach. Oakville Hydro explained its reasons for jumping into a trench: earn financial rewards and prevent brand equity erosion. Retail business must be kept simple through identifying, understanding and limiting the risks; and moving carefully but expeditiously. To mitigate the risks, it advocated getting the best legal and economics advice possible, looking for experienced partners, and not betting the shop.tabs., figs

  13. Applicability of a track-based multiprocess portable robot to some maintenance tasks in CANDU nuclear plants

    Hazel, B.; Fihey, J.-L.; Laroche, Y.

    2000-01-01

    Hydro-Quebec has developed a six-axis, track-based, multiprocess robot. This lightweight (30 kg) compact robot travels on a bent track with a radius of curvature ranging from 1 m to infinity (straight track). Standard and tandem wires GMAW, FCAW and Narrow gap TIG welding as well as plasma gouging and cutting, electrical and pneumatic rough and precision grinding, and profile measurement functionalities have been incorporated. A description of this technology an its newly developed functionalities is given in this paper. Since 1995, a number of industrial and R and D projects have been performed using this technology now called the Scompi technology. The main field of application is the in situ repair of hydraulic turbine runners. However some applications have been developed in the nuclear field. One particular development was funded by the International Thermonuclear Experimental Reactor (ITER) project. Scompi was selected by the ITER US Home Team for a demonstration of remote techniques for welding, cutting and rewelding the 30 m diameter, 17 m high, vacuum vessel. The demonstration involved all position robotic plasma cutting and NG-TIG welding of a 316L, 40 mm thick, double wall. In 1998, two Scompi robots working in tandem performed in York, Pa, the joint welding and cutting of a full scale portion of the vacuum vessel. In 1995, the applicability of the Scompi technology to the repair of the divider plates in the four steam generators at Gentilly-2 was evaluated based on a joint proposal by Ontario Hydro Technologies (now Ontario Power Technologies-OPT) and Hydro-Quebec. A MIG welding procedure was proposed for the horizontal and vertical divider plates welds. A complete simulation of the robot and primary head demonstrated the feasibility of the concept. However, based on cost and scheduling, it was decided to proceed with a manual repair. Nevertheless it is anticipated that this technology will find its niche in the maintenance of Candu reactors. (author)

  14. Applicability of a track-based multiprocess portable robot to some maintenance tasks in CANDU nuclear plants

    Hazel, B.; Fihey, J.-L.; Laroche, Y. [Hydro-Quebec, Varennes, Quebec (Canada)

    2000-07-01

    Hydro-Quebec has developed a six-axis, track-based, multiprocess robot. This lightweight (30 kg) compact robot travels on a bent track with a radius of curvature ranging from 1 m to infinity (straight track). Standard and tandem wires GMAW, FCAW and Narrow gap TIG welding as well as plasma gouging and cutting, electrical and pneumatic rough and precision grinding, and profile measurement functionalities have been incorporated. A description of this technology an its newly developed functionalities is given in this paper. Since 1995, a number of industrial and R and D projects have been performed using this technology now called the Scompi technology. The main field of application is the in situ repair of hydraulic turbine runners. However some applications have been developed in the nuclear field. One particular development was funded by the International Thermonuclear Experimental Reactor (ITER) project. Scompi was selected by the ITER US Home Team for a demonstration of remote techniques for welding, cutting and rewelding the 30 m diameter, 17 m high, vacuum vessel. The demonstration involved all position robotic plasma cutting and NG-TIG welding of a 316L, 40 mm thick, double wall. In 1998, two Scompi robots working in tandem performed in York, Pa, the joint welding and cutting of a full scale portion of the vacuum vessel. In 1995, the applicability of the Scompi technology to the repair of the divider plates in the four steam generators at Gentilly-2 was evaluated based on a joint proposal by Ontario Hydro Technologies (now Ontario Power Technologies-OPT) and Hydro-Quebec. A MIG welding procedure was proposed for the horizontal and vertical divider plates welds. A complete simulation of the robot and primary head demonstrated the feasibility of the concept. However, based on cost and scheduling, it was decided to proceed with a manual repair. Nevertheless it is anticipated that this technology will find its niche in the maintenance of Candu reactors. (author)

  15. The Ontario Energy Marketers Association

    Baker, W.F.C.

    1998-01-01

    An overview of the role of the Ontario Energy Marketers Association (OEMA) and its future orientation was presented. Participants in the OEMA include agents, brokers, marketers, local distribution companies, public interest representatives, associations and government representatives. The role of the OEMA is to encourage open competition for the benefit and protection of all energy consumer and market participants. As well, the OEMA serves as a forum for key industry stakeholders to resolve market issues outside the regulatory arena, set standards and codes of practice, establish customer education programs, and develop industry input into public policy making

  16. The Clean Energy Transfer : preliminary assesment of the potential for a clean energy transfer between Manitoba and Ontario

    NONE

    2004-09-01

    Ontario may have an electrical power shortfall of as much as 25,000 MW by 2020, due to phase-out of coal fired plants, a general increase in demand and existing plants reaching the end of their design lives. Manitoba has approximately 5,000 MW of new hydroelectric power potential which could help to reduce this shortfall. This document reports on a study between the Manitoba government, the Ontario government, Manitoba Hydro, Hydro One, and the Ontario Independent Electricity Market Operator to provide an incremental transfer capability of 1,500 MW between the provinces. This is known as the Clean Energy Transfer Initiative (CETI). The current east-west transmission grid is limited to about 200 MW and is thus not sufficient for this project. Three transmission options have been studied. The report claims that CETI would be the largest single project in terms of greenhouse gas reductions. It is also claimed to potentially benefit Aboriginal groups by increasing employment and business opportunities. Also, tax revenues would be substantial. The most likely alternative energy supply is considered to be the combined cycle gas turbine which, according to the study, would cost about the same amount per MWh, excluding environmental credits. 4 tabs., 11 figs.

  17. The Clean Energy Transfer : preliminary assesment of the potential for a clean energy transfer between Manitoba and Ontario

    2004-09-01

    Ontario may have an electrical power shortfall of as much as 25,000 MW by 2020, due to phase-out of coal fired plants, a general increase in demand and existing plants reaching the end of their design lives. Manitoba has approximately 5,000 MW of new hydroelectric power potential which could help to reduce this shortfall. This document reports on a study between the Manitoba government, the Ontario government, Manitoba Hydro, Hydro One, and the Ontario Independent Electricity Market Operator to provide an incremental transfer capability of 1,500 MW between the provinces. This is known as the Clean Energy Transfer Initiative (CETI). The current east-west transmission grid is limited to about 200 MW and is thus not sufficient for this project. Three transmission options have been studied. The report claims that CETI would be the largest single project in terms of greenhouse gas reductions. It is also claimed to potentially benefit Aboriginal groups by increasing employment and business opportunities. Also, tax revenues would be substantial. The most likely alternative energy supply is considered to be the combined cycle gas turbine which, according to the study, would cost about the same amount per MWh, excluding environmental credits. 4 tabs., 11 figs

  18. Examining Competition in Ontario's Higher Education Market

    Farhan, Bayan Yousef

    2017-01-01

    Financial challenges have forced many publicly funded academic institutions in Ontario to adopt a corporate model and to use market tools to compete in the higher education market and maintain their enrolment and revenue levels. This study has analyzed how competition affects publicly funded universities in Ontario. Competition was examined by…

  19. Experience with an ultrasonic sealing system for nuclear safeguards in irradiated fuel bay demonstrations

    White, B.F.; Smith, M.T.

    1985-07-01

    The development of the irradiated fuel safeguards containment assembly for CANDU nuclear generating stations has stimulated the development of the AECL Random Coil Sealing System. The ARC seal combines the identity and integrity elements in an ultrasonically-determined signature. This is verified in situ, in real time with the seal reading system. The maturation of this technology has been facilitated with demonstration trials in the NRU and NPD irradiated fuel bays. The NPD demonstration includes operation of the systems tooling by Ontario Hydro staff. It provides the opportunity for IAEA inspectors from Toronto and Vienna to direct the operational procedures and to perform the data acquisition. The procedures and systems developed in these trials are reviewed. The estimation of the system performance characteristics from the observations is presented. A minimum frequency of reading for individual seals is recommended to be once per annum following initial deployment

  20. Microbial speciation and biofouling potential of cooling water used by Ontario Hydro

    Sharpe, V.J.

    1985-02-01

    The cooling water composition and microbial components of biofilms attached to stainless steel wafers submerged in three lake water types were evaluated to determine whether their biofouling potential differed in a predictable manner. The composition of the lake waters was different which affected biofilm composition, where the predominance of specific microbial groups varied between test systems and with time. Some prediction of biofouling potential was possible, and it was concluded that the cooling water in the vicinity of Bruce NGS had the lowest biofouling potential whereas greater biofouling could be expected in the Pickering and Nanticoke stations

  1. Mercury Emission Measurement in Coal-Fired Boilers by Continuous Mercury Monitor and Ontario Hydro Method

    Zhu, Yanqun; Zhou, Jinsong; He, Sheng; Cai, Xiaoshu; Hu, Changxin; Zheng, Jianming; Zhang, Le; Luo, Zhongyang; Cen, Kefa

    2007-06-01

    The mercury emission control approach attaches more importance. The accurate measurement of mercury speciation is a first step. Because OH method (accepted method) can't provide the real-time data and 2-week time for results attained, it's high time to seek on line mercury continuous emission monitors(Hg-CEM). Firstly, the gaseous elemental and oxidized mercury were conducted to measure using OH and CEM method under normal operation conditions of PC boiler after ESP, the results between two methods show good consistency. Secondly, through ESP, gaseous oxidized mercury decrease a little and particulate mercury reduce a little bit, but the elemental mercury is just the opposite. Besides, the WFGD system achieved to gaseous oxidized mercury removal of 53.4%, gaseous overall mercury and elemental mercury are 37.1% and 22.1%, respectively.

  2. [Overview of acupuncture development in Ontario Canada].

    Wang, Fang; Wu, Bin-jiang

    2012-04-01

    The history of acupuncture in Ontario, Canada was traced, and the current status as welI as the prospection were introduced in this paper. Statistics showed that the history of acupuncture in Ontario started in the 1880s, and it was only popular in China Town and Chinese community. In the 1970s, it gradually merged into the mainstream of the society, and entered into a growing period. With the tide of Chinese immigration in the 1980s and 1990s, acupuncture matured rapidly. In 2006, the "Traditional Chinese Medicine Act" was passed in Ontario, it was considered as a milestone in the history of acupuncture. At present, just like the other 23 health care professions, acupuncture has already be included into the legislation system, and become a component of Ontario's health care system. At the same time, the law and regulation may also promote the establishment of "pure Chinese Medicine" in Ontario.

  3. The uranium deposits of Ontario

    Robertson, J.A.

    1981-01-01

    The principal types of uranium deposits in Ontario are carbonatites and fenites, alkalic volcanic rocks, pegiatites, calc-silicate rocks, pyritic quartz-pebble conglomerates, polymictic conglomerates and some pelitic rocks, and various 'pitchblende' deposits including late Precambrian unconformities, possibly late Precambrian diabase dikes, and other unconformities: carbonates, sandstones, lignites, and semi-pelitic rocks of middle and upper Precambrian age. Only red unzoned pegmatite and the pyritic quartz-pebble conglomerate have supported production. Ontario reasonably assured and estimated resources in the economic and subeconomic categories in 1977 amounted to 553 000 tonnes U, and 1977 production was 4000 tonnes U. Measured, indicated, and inferred resources in the Elliot Lake - Agnew Lake area are at least 400 000 tonnes U. The latter deposits are also a significant thorium resource. Geological features reflecting major changes in physics and chemistry are prime controls on distribution of uranium deposits. Geological province and subprovince boundaries, major faults, higher metamorphic grades, domain boundaries related to quartz monzonite batholiths, alkalic complexes, and the distribution of carbonate rocks are examples of such geological features

  4. The Hydroelectric Business Unit of Ontario Power Generation Inc

    Gaboury, J.

    2001-01-01

    The focus of this presentation was on the generation and sale of electricity. Prior to deregulation, companies that generated electricity had a readily available customer base to whom the electricity could be sold. The author discussed some of the changes affecting the industry as a result of deregulation of the electricity market in Ontario: the increasing number of companies, as well as the increased number of generators supplying power within the province. Currently 85 per cent of the generation in Ontario is met by Ontario Power Generation (OPG) and this percentage will decrease through de-control. De-control can be achieved in a variety of ways, either through the sale of assets, leases, asset swaps. The market rules dictate that OPG not control in excess of 35 per cent of the generation supply in Ontario, OPG is examining the situation. New supply being constructed or new interconnections with neighboring markets could affect the total assets that would have to be de-controlled. OPG has a mix of generation that includes hydroelectric, fossil, and nuclear, as well as a single wind turbine. Green power, defined as electricity generation deemed less intrusive environmentally than most traditional generation, includes wind, water, landfill gas, solar and others, and could affect the mix of generation. It is expected that there will be a niche market for green power, especially when one considers the reduction in emissions. It could represent a viable option for smaller startup companies, as less capital is required. The options for selling the power, either to the spot market or by entering into a bilateral contract with another customer, were explained

  5. Small hydro: Policy and potential in Spain

    Gutierrez, C.

    2001-01-01

    In Spain, the benefits of small-scale (less than 10 MW) hydro are apparently rarely appreciated and there is little support from European institutions. The article suggests that small hydro technology can make a significant contribution to the country's energy requirements and create employment, provided certain obstacles can be removed. Data on the number of small hydros in Spain, and of recent installations are given; the share of hydro in Spain's total energy production is 2.5%. The low environmental impact of hydro is extolled, and the conclusions of a recent study of 'environmental impacts of the production of electricity' are listed. There are said to be unreasonable administrative obstacles; for example, it is more difficult to obtain permission to refurbish a 100 kW hydro plant in Castilla y Leon than it is to install a 30,000 kW gas plant. Some details relating to the affect of hydro on aquatic ecosystems, noise levels, and water quality, are given

  6. Preliminary nuclear decommissioning cost study

    Sissingh, R.A.P.

    1981-04-01

    The decommissioning of a nuclear power plant may involve one or more of three possible options: storage with surveillance (SWS), restricted site release (RSR), and unrestricted site use(USU). This preliminary study concentrates on the logistical, technical and cost aspects of decommissioning a multi-unit CANDU generating station using Pickering GS as the reference design. The procedure chosen for evaluation is: i) removal of the fuel and heavy water followed by decontamination prior to placing the station in SWS for thiry years; ii) complete dismantlement to achieve a USU state. The combination of SWS and USU with an interim period of surveillance allows for radioactive decay and hence less occupational exposure in achieving USU. The study excludes the conventional side of the station, assumes waste disposal repositories are available 1600 km away from the station, and uses only presently available technologies. The dismantlement of all systems except the reactor core can be accomplished using Ontario Hydro's current operating, maintenance and construction procedures. The total decommissioning period is spread out over approximately 40 years, with major activities concentrated in the first and last five years. The estimated dose would be approximately 1800 rem. Overall Pickering GS A costs would be $162,000,000 (1980 Canadian dollars)

  7. Irresistible force meets immovable object : an Ontario case study on grid expansion

    Vegh, G.; Annis, K. [McCarthy Tetrault, Toronto, ON (Canada)

    2010-07-01

    This PowerPoint presentation discussed a case study of an Ontario grid expansion. The Green Energy and Green Economy Act was introduced in Ontario in 2009. The federal feed-in tariff (FIT) program has been successful, and has resulted in increased renewable energy capacity throughout the province. The expansion in distribution has resulted in the socialization of distribution expansion costs. A cost sharing mechanism has been established to ensure that the amount of rate protection is equal to investment costs. Costs that are the distributor's responsibility are considered to be eligible investment costs, and Green Energy Act plans are required to account for distribution expansion that is built to connect renewable generation. Details of Hydro One Networks' distribution expansion plans were presented. The methods used by the Ontario Energy Board (OEB) to determine which types of generation should be connected were reviewed. The presentation concluded by recommending the development of a generic process for addressing generation and connection cost considerations in order to increase transparency and predictability. Transmission projects and policy changes were also discussed. tabs., figs.

  8. Hydro or the waltz of managers

    Anon.

    1997-01-01

    A critique of current management and personnel problems at Hydro-Quebec was presented. With 20,000 employees and some of the world's greatest hydroelectric projects to its credit, Hydro-Quebec has historically been a source of great pride for its employees and Quebec's society. However, recent problems related to management, bureaucratization and communications within the corporation have led to important moral problems within the workforce. Management of the corporation under the newly appointed president, Andre Caille, the issue of profitability and competitiveness, the worsening morale among employees and the relationship between Hydro-Quebec and the provincial government were the principal topics discussed

  9. 77 FR 77070 - Black Bear Hydro Partners, LLC;

    2012-12-31

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 2727-086] Black Bear Hydro...: October 24, 2012. d. Submitted By: Black Bear Hydro Partners, LLC (Black Bear Hydro). e. Name of Project... designating Black Bear Hydro as the Commission's non-federal representative for carrying out informal...

  10. Nuclear and conventional baseload electricity generation cost experience

    1993-04-01

    The experienced costs of electricity generation by nuclear and conventional plants and the expected costs of future plants are important for evaluating the economic attractiveness of various power projects and for planning the expansion of electrical generating systems. The main objective of this report is to shed some light on recent cost experience, based on well authenticated information made available by the IAEA Member States participating in this study. Cost information was provided by Canada (Ontario Hydro), Czechoslovakia, Hungary, India, the Republic of Korea and Spain. Reference is also made to information received from Brazil, China, France, Russia and the United States of America. The part of the report that deals with cost experience is Section 2, where the costs of both nuclear and fossil fired plants are reviewed. Other sections give emphasis to the analysis of the major issues and relevant cost elements influencing the costs of nuclear power plants and to a discussion of cost projections. Many of the conclusions can also be applied to conventional plants, although they are usually less important than in the case of nuclear plants. 1 ref., figs and tabs

  11. Nuclear medicine

    Chamberlain, M.J.

    1986-01-01

    Despite an aggressive, competitive diagnostic radiology department, the University Hospital, London, Ontario has seen a decline of 11% total (in vivo and in the laboratory) in the nuclear medicine workload between 1982 and 1985. The decline of in vivo work alone was 24%. This trend has already been noted in the U.S.. Nuclear medicine is no longer 'a large volume prosperous specialty of wide diagnostic application'

  12. Hydro-power: a long history, a bright future

    Deudney, D

    1981-07-01

    A brief history of the spread of hydro-power in the world was given. Tables showing hydro-power potential and use, and the % electricity from hydro-power for 13 countries were included along with a graph showing % hydro-power operating, planned and under construction by region. The need for committed and farsighted political leadership for future development and the possibility of hydro production reaching 4 to 6 times its present level were discussed.

  13. Micro Hydro-Electric Energy Generation- An Overview

    S. O. Anaza; M. S. Abdulazeez; Y. A. Yisah; Y. O. Yusuf; B. U. Salawu; S. U. Momoh

    2017-01-01

    Energy is required now more than ever due to population growth, industrialization and modernization. Challenges such as carbon dioxide (CO2) emissions and depletion of conventional source of energy necessitate for renewable sources, of which hydro energy seems to be the most predictable. Micro-hydro which is hydro energy in a “small” scale provides electricity to small communities by converting hydro energy into electrical energy. This paper is an overview of micro-hydro system by reviewing s...

  14. Hydro energetic inventory study from Chapecozinho river

    Pimenta, S.C.; Sureck, M.A.A.; Nascimento, P.R.; Kawasaki, M.; Silva Felipe, R. da.

    1990-01-01

    The Hydro energetic Inventory Study in Chapecozinho River Basin, Brazil is described, comparing the proposed results in 1979 with the actual review in 1989. An analysis for solution the socio-economic and environment problems is also presented. (author)

  15. Emerging Market Attractiveness Index for hydro IPPs

    Weaver, Tyson John

    2013-01-01

    This article addresses two primary commercial themes that affect the future development of the industry. 1. What are the most attractive future emerging markets for hydropower? 2. What parameters are utilized by international hydro IPPs to determine market attractiveness?

  16. Mobile units to hydro geochemistry characterization

    Gomez, P.; Martinez, B.; Turrero, M.J.

    1994-01-01

    This report shows the mobile units for hydro geochemical studies. The authors analyze the work of mobile unit and the cars that conform the unit: Sampling car and analysis car: The sampling and equipment are took into account as well

  17. Thai-Myanmar joint hydro schemes

    Boonpiraks, S [Electricity Generating Authority of Thailand, Nonthaburi (Thailand)

    1992-10-01

    A brief overview is presented here of planned cooperation between Thailand and Myanmar to harness the hydro resources available along the border of the two countries. This would reduce their dependence on thermal generation. (author).

  18. Home and away with Norwegian hydro

    Jones, Simon

    2000-01-01

    Evidence of Norway's position as a world leader in terms of design and construction of hydroelectric power plant, and its position as the biggest producer of hydro in Europe, is presented. There is still some 30 TWh of hydro available for development in Norway. Statkraft is the country's biggest hydro generator: it owns and operates 54 hydro plants and has shares in a further 30. Statkraft's research has shown that there is still a large market for renewables in Europe and believes that householders are prepared to pay a premium for green energy. Statkraft trades energy with Denmark and Sweden and is believed to be planning further growth overseas. The new millennium is set to bring major changes in Norway's power industry: Hafslund and Elkem have already agreed to merge to create the country's biggest privately-owned power group

  19. Coanda hydro intake screen testing and evaluation

    Howarth, J.

    2001-07-01

    The objective of this project has been to evaluate the effectiveness, suitability and cost benefit of the Aquashear Coanda effect, maintenance free intake screen for use in small hydro system intakes. (author)

  20. Manitoba Hydro 1998 progress report

    1998-11-01

    Manitoba Hydro has four commitments: 1) they will integrate climate change management into their plans and operations, 2) between 1991 and 2012 they will reduce their greenhouse gas emissions in excess of 6% below 1990 levels, 3) they anticipate that their greenhouse gas production will be in excess of 40% below their 1990 levels by 2010-11, and 4) they have the potential to make a greater contribution to national and international environmental and economic efforts by developing additional hydroelectric energy. The performance to date in implementing their strategy since 1990 includes: the 1330 megawatt Limestone Generating Station came into full production in 1992, which has increased electricity output without additional greenhouse gas emissions; four coal fueled generating units were removed from service at Brandon Generating Station in 1996, reducing coal generating capacity; seven communities previously served have been connected to the province's provincial grid, reducing the emissions from diesel generators; demand-side energy initiatives resulted in a saving of 45 megawatts since 1990, and supply-side initiatives, 152 megawatts; and net exports have increased significantly, from 2,296 megawatt hours in 1990 to 13,888 megawatt hours in 1997-98, which displaces energy that would otherwise have been produced at fossil-fueled generating stations. tabs

  1. Optimization of biofuel production from corn stover under supply uncertainty in Ontario

    Jonathan Ranisau

    2017-12-01

    Full Text Available In this paper, a biofuel production supply chain optimization framework is developed that can supply the fuel demand for 10% of Ontario. Different biomass conversion technologies are considered, such as pyrolysis and gasification and subsequent hydro processing and the Fischer-Tropsch process. A supply chain network approach is used for the modeling, which enables the optimization of both the biorefinery locations and the associated transportation networks. Gasification of corn stover is examined to convert waste biomass into valuable fuel. Biomass-derived fuel has several advantages over traditional fuels including substantial greenhouse gas reduction, generating higher quality synthetic fuels, providing a use for biomass waste, and potential for use without much change to existing infrastructure. The objective of this work is to show the feasibility of the use of corn stover as a biomass feedstock to a hydrocarbon biofuel supply chain in Ontario using a mixed-integer linear programming model while accounting for the uncertainty in the availability of corn stover. In the case study, the exact number of biorefineries is left as a policy decision and the optimization is carried out over a range of the possible numbers of facilities. The results obtained from the case study suggests implementing gasification technology followed by Fischer-Tropsch at two different sites in Ontario. The optimal solution satisfied 10% of the yearly fuel demand of Ontario with two production plants (14.8 billion L of fuel and requires an investment of $42.9 billion, with a payback period of about 3 years.

  2. Economic impacts of the solar PV sector in Ontario 2008-2018

    2011-07-01

    Over the next 20 years most of the electricity generating facilities in Ontario will need to be replaced or refurbished and the electricity demand will rise by 15%. The province has adopted a long term energy plan (LTEP) to prepare for these changes; its objectives are to reduce demand and to produce electricity from nuclear power and renewable energy sources by 2030. The LTEP foresees the installation of 3,000 MW solar photovoltaic (PV) energy by 2018 in Ontario and the aim of this report is to determine the economic effects of this development on investments, job creation and cost to customers. Over 150 interviews and 100 surveys were carried out with solar PV stakeholders. It was found that the solar PV market in Ontario will drive $13 billion of private investment, create 74,000 jobs at a cost of $5 per month to electricity customers by 2018.

  3. X-ray safety in Ontario

    1980-03-01

    In July 1979 the Ontario Advisory Committee on Radiology was formed to develop a comprehensive strategy for x-ray safety in the province. At its hearings the committee recieved submissions from groups representing physicians, dentists, chiropractors, radiological technicians, physiotherapists, podiatrists, and consumers, among others; these briefs are included as appendices to the report. The report surveys the historical background and the current situation in Ontario, and makes recommendations for an organized safety program. (L.L.)

  4. Market prices for solar electricity in Ontario

    Rowlands, I.H.

    2006-01-01

    The Ontario electricity supply is facing considerable challenges while demand is increasing due to a growing population and increased economic growth needs. In response to these challenges, the government of Ontario established the Ontario Power Authority (OPA) in 2004 to ensure adequate, reliable and secure electricity supply and resources in Ontario. The OPA has also engaged in activities to facilitate the diversification of sources of electricity supply by promoting the use of cleaner energy sources and technologies, including alternative energy sources and renewable energy. The purpose of this paper was to advance discussions regarding the contribution that solar PV can make to Ontario's supply mix. In particular, it determined the value of the electricity that would have been produced by a PV system located in Waterloo, Ontario under the following 4 pricing regimes: (1) the conventional small user tariff system currently in place in Ontario, (2) the time-of-use pricing system that is voluntarily available to those who have smart meters installed in their facilities, (3) the spot market, hourly prices, to which some of Ontario's largest electricity users are exposed, and (4) the recently-proposed rate for standard offer contracts for PV systems. The study showed that a solar PV system that produces 3,000 kWh of electricity over the course of a year would generate different revenue amounts, ranging from the smallest amount of approximately $174.00 to $1,260.00, depending on the pricing regime. The pricing regime that reflects real, time-of-day electricity prices appears to be most advantageous to solar PV systems. It was recommended that additional work is needed regarding the other benefits of solar PV, such as avoided capacity/generation needs, avoided transmission and distribution cost and losses, environmental benefits, and job creation. 3 refs., 4 tabs., 8 figs

  5. Electricity deregulation roundup : Ontario prepares for electricity deregulation and anxiously watches impact elsewhere

    Hurst, R.

    2000-01-01

    As the time for deregulation of Ontario's electric power industry approaches, consumers are watching other Canadian and American jurisdictions to see what deregulation will mean in terms of energy costs. Albertans have expressed serious concerns about the impact of deregulating their electric power industry. They found that in the four years since deregulation in their province, electricity prices increased when markets opened to competition. The proposed start date for deregulation in Ontario is November 1, 2000. This paper suggests that if investors don't put out significant resources, problems such as power shortages and brownouts could occur, as was the case in Alberta. Potential investors in the Ontario electricity market are already sceptical because the Ontario government, in an effort to protect consumers from unreasonable price increases, has tabled legislation that restricts the efforts of municipal utility companies to raise distribution rates. One step that will inspire some confidence is the recently finalized deal between Ontario Power Generation and British Energy to operate the Bruce Nuclear Power Station. Independent consultants have warned that electricity prices will continue to increase with deregulation for a least the next few years. Industrial customers will be the hardest hit. In California, America's first deregulated electricity market, the power grid is strained and prices have doubled or tripled in one year

  6. Nuclear power and hydrogen

    Welch, Robert.

    1982-06-01

    Ontario has been using CANDU reactors to produce electricity since 1962. The province does not have an electricity shortage, but it does have a shortage of liquid fuels. The government of Ontario is encouraging research into the production of hydrogen using electricity generated by a dedicated nuclear plant, and the safe and economical use of hydrogen both in the production of synthetic petroleum fuels and as a fuel in its own right

  7. The Bruce nuclear project

    Rose, J.B.

    1981-01-01

    This case study assesses the industrial relations impact of the construction of the Bruce Nuclear Power Development. It examines the labour relations system in the Ontario electric power sector and in major building construction. Industrial relations problems and practices at the Bruce project are reviewed. The focus of the study is on the relationship between the project and the rest of the Ontario industrial construction industry

  8. Home grown hydro, part 1: Hydro development in Canada key to regional, international business expansion

    Wiebe, P.A.

    1994-01-01

    Canada has had a long and successful record of hydroelectric power development since the first hydraulic generators were installed at Chaudiere Falls near Ottawa in 1881. Canadian hydro engineers have demonstrated their ability to develop and manage higher voltages, longer transmission networks, larger projects, remote sites, and undersea cable technology. Canada has earned a reputation for excellence in the hydro industry and is successful at exporting its expertise to develop hydro resources in the international market. A prominent example is provided by the Three Gorges Project in China, for which the Chinese Ministry of Energy searched for the best foreign engineers to prepare a feasibility report. A Canadian team that integrated the expertise of hydro consultants, utilities, and major equipment suppliers was chosen to prepare the report, winning over teams from the USA, Brazil, and Europe. Success in this initiative is attributed to Canada's ability to demonstrate the favorable application of new technology at James Bay. Domestic hydro projects are thus seen as crucial in efforts to expand into international markets. However, Canada's new completed hydro capacity has fallen dramatically since 1986, and Canadian hydro contractors have tended to remain domestic operators with little incentive to enter foreign markets. By having the foresight to begin new hydro developments now, Canada would benefit from increased employment and orders for equipment, and would ensure a continuing base of technical expertise and innovation in the electrical industry. 2 figs

  9. Home grown hydro, part 1: Hydro development in Canada key to regional, international business expansion

    Wiebe, P.A

    1994-06-01

    Canada has had a long and successful record of hydroelectric power development since the first hydraulic generators were installed at Chaudiere Falls near Ottawa in 1881. Canadian hydro engineers have demonstrated their ability to develop and manage higher voltages, longer transmission networks, larger projects, remote sites, and undersea cable technology. Canada has earned a reputation for excellence in the hydro industry and is successful at exporting its expertise to develop hydro resources in the international market. A prominent example is provided by the Three Gorges Project in China, for which the Chinese Ministry of Energy searched for the best foreign engineers to prepare a feasibility report. A Canadian team that integrated the expertise of hydro consultants, utilities, and major equipment suppliers was chosen to prepare the report, winning over teams from the USA, Brazil, and Europe. Success in this initiative is attributed to Canada's ability to demonstrate the favorable application of new technology at James Bay. Domestic hydro projects are thus seen as crucial in efforts to expand into international markets. However, Canada's new completed hydro capacity has fallen dramatically since 1986, and Canadian hydro contractors have tended to remain domestic operators with little incentive to enter foreign markets. By having the foresight to begin new hydro developments now, Canada would benefit from increased employment and orders for equipment, and would ensure a continuing base of technical expertise and innovation in the electrical industry. 2 figs.

  10. Large catchment area recharges Titan's Ontario Lacus

    Dhingra, Rajani D.; Barnes, Jason W.; Yanites, Brian J.; Kirk, Randolph L.

    2018-01-01

    We seek to address the question of what processes are at work to fill Ontario Lacus while other, deeper south polar basins remain empty. Our hydrological analysis indicates that Ontario Lacus has a catchment area spanning 5.5% of Titan's surface and a large catchment area to lake surface area ratio. This large catchment area translates into large volumes of liquid making their way to Ontario Lacus after rainfall. The areal extent of the catchment extends to at least southern mid-latitudes (40°S). Mass conservation calculations indicate that runoff alone might completely fill Ontario Lacus within less than half a Titan year (1 Titan year = 29.5 Earth years) assuming no infiltration. Cassini Visual and Infrared Mapping Spectrometer (VIMS) observations of clouds over the southern mid and high-latitudes are consistent with precipitation feeding Ontario's large catchment area. This far-flung rain may be keeping Ontario Lacus filled, making it a liquid hydrocarbon oasis in the relatively dry south polar region.

  11. Hydro-thermal power flow scheduling accounting for head variations

    El-Hawary, M.E.; Ravindranath, K.M.

    1992-01-01

    In this paper the authors treat the problem of optimal economic operation of hydrothermal electric power systems with variable head hydro plants employing the power flow equations to represent the network. Newton's method is used to solve the problem for a number of test systems. A comparison with solutions with fixed head is presented. In general the optimal schedule requires higher slack bus and thermal power generation and cost in the case of variable head hydro plant than that required by the fixed head hydro plant in all demand periods. Correspondingly, the hydro generation is less in the case of variable head hydro plant compared to fixed head hydro plant. A negligible difference in voltage magnitudes in all the time intervals, but it is observed that slightly higher voltages occur in the case of the fixed head hydro plant. Higher power and energy losses occur in the case of variable head hydro plants compared to the fixed head hydro plants

  12. Nuclear power plants in Canada: how we address community issues and concerns

    McFarlane, D.

    2003-01-01

    This presentation was developed by the public affairs staff of three Canadian utilities who offered case studies from three nuclear generating stations. Ontario Power Generation (OPG) facilities include Pickering Nuclear, with 8 units, and Darlington Nuclear, with 4 units, both located in the Region of Durham. The Pickering community is located east of Toronto on the shore of Lake Ontario. The facilities are located in the City of Pickering but are close to Ajax and the City of Toronto as well. They are surrounded by residences and businesses. The Darlington station is close to Pickering but further east of Toronto. It is located in a more rural environment in the Municipality of Clarington. Approximately 96% of installed capacity in Quebec is based on hydropower. Hydro-Quebec's Gentilly-2 is the only thermal nuclear generation station in operation. The station is located in Becancour on the south shore of the St. Lawrence River between Quebec City and Montreal. The population of Becancour is 12 000, while Trois-Rivieres and Champlain, on the north shore, count 100 000 residents. New Brunswick Power's Point Lepreau generating station (PLGS) is the only nuclear facility in Atlantic Canada, and supplies some 30% of in-province energy. The station is located in a rural area on the Lepreau peninsula overlooking the Bay of Fundy. It is located within 10 kilometers of the small communities of Dipper Harbour, Maces Bay, Little Lepreau and Chance Harbour. Approximately 38 kilometers to the northeast is located Saint John with a population of about 120 000. Corporate-community relations objectives are similar across the three utilities. They include building trust, garnering support for ongoing operations, and being - as well as being viewed as - a good corporate citizen. Meeting these objectives implies knowing and caring for the community and the issues raised by residents - not just issues of interest to the company. (author)

  13. A comparison of the aquatic impacts of large hydro and small hydro projects

    Taylor, Lara A.

    The expansion of small hydro development in British Columbia has raised concerns surrounding the effects of these projects, and the provincial government's decision to proceed with Site C has brought attention to the impacts of large hydro. Together, these decisions highlight that there are impacts associated with all energy development. My study examines the aquatic effects of large and small hydro projects using two case study sites: Site C and the Upper Harrison Water Power Project. I first determine the aquatic effects of each of the case study sites. Next, I use existing literature and benefits transfer to determine the monetary value of these effects. My results suggest that, with mitigation, small hydro projects have less of an effect on the environment than a large hydro project per unit of electricity. I also describe the implications of my study in the context of current British Columbia energy policy. Keywords: hydropower; aquatic effects. Subject Terms: environmental impact assessment; benefits transfer.

  14. Electrosleeve process for in-situ nuclear steam generator repair

    Barton, R.A.; Moran, T.E.; Renaud, E.

    1997-01-01

    Degradation of steam generator (SG) tubing by localized corrosion is a widespread problem in the nuclear industry that can lead to costly forced out-ages, unit de-rating, SG replacement or even the permanent shutdown of a reactor. In response to the onset of SG tubing degradation at Ontario Hydro's Pickering Nuclear Generating Station (PNGS) Unit 5, and the determined unsuitability of conventional repair methods (mechanically expanded or welded sleeves) for Alloy 400, an alternative repair technology was developed. Electrosleeve is a non-intrusive, low-temperature process that involves the electrodeposition of a nanocrystalline nickel microalloy forming a continuously bonded, structural layer over the internal diameter of the degraded region. This technology is designed to provide a long-term pressure boundary repair, fully restoring the structural integrity of the damaged region to its original state. This paper describes the Electrosleeve process for SG tubing repair and the unique properties of the advanced sleeve material. The successful installation of Electrosleeves that have been in service for more than three years in Alloy 400 SG tubing at the Pickering-5 CANDU unit, the more recent extension of the technology to Alloy 600 and its demonstration in a U.S. pressurized water reactor (PWR), is presented. A number of PWR operators have requested plant operating technical specification changes to permit Electrosleeve SG tube repair. Licensing of the Electrosleeve by the U.S. Nuclear Regulatory Commission (NRC) is expected imminently. (author)

  15. Quality assurance in the field of nuclear power, international and Romanian practice

    Rogociu, Ioan

    1997-01-01

    Electricity should be generated in nuclear power plants under nuclear safety regulations with a high reliability level. In order to achieve this requirement it is necessary to work under quality assurance (QA) mode. The term of 'quality assurance' was used for the first time in USA in 1967. Since then, the situation has continuously developed. The most comprehensive standards in the fields are the USA ones. The IAEA agency in Vienna developed the first standards in 1978. The developed countries have their own legislation in the field. The IAEA standards, are based on the USA, German, Japanese, British, Canadian and French legislation. Romania drafted the Law No. 6/1982, repealed by the Law No. 11 in 1996. There is no satisfactory Romanian standard at present to regulate the activities of quality assurance in the nuclear power field. The works at Unit 1 of Cernavoda nuclear power plant were performed under the Canadian QA standards. The Canadian nuclear power company Ontario Hydro has been lately confronted with difficulties that may lead to decommission of 7 out of 19 units now in operation. To avoid the Canadian system deficiencies Romania needs standards based on the experience gained in this field by all developed countries, such as: USA, Japan, Germany, France, etc and IAEA regulations. The present paper is a pleading in favour of the Romanian legislation drafting at the level of the international demands. (author)

  16. Introducing Physician Assistants to Ontario

    Meredith Vanstone

    2014-02-01

    Full Text Available In 2006, the Ontario Ministry of Health and Long-Term Care (MOHLTC introduced Physician Assistants (PAs through the announcement of demonstration projects, education and training programs, and subsequent funding. PAs are directly supervised by physicians and act as physician extenders by performing acts as delegated to them by their supervising physicians. PAs were proposed as a potential solution to help improve access to health care and reduce wait times throughout the province. Prior to the 2006 Ministry announcement, there was little public discussion regarding the acceptance of the PA role or its sustainability. Opposition from nursing and other groups emerged in response to the 2006 announcement and flared again when stakeholder comments were solicited in 2012 as part of the PA application for status as regulated health professionals. As a health reform, the introduction of PAs has neither succeeded nor failed. In 2013, the majority of PA funding continues to be provided by the MOHLTC, and it is unknown whether the PA role will be sustainable when the MOHTLC withdraws salary funding and health system employers must decide whether or not to continue employing PAs at their own expense.

  17. Climate impact on BC Hydro's water resources

    Smith, D.; Rodenhuis, D.

    2008-01-01

    BC Hydro like many other hydro utilities has used the historical record of weather and runoff as the standard description the variability and uncertainty of the key weather drivers for its operation and planning studies. It has been conveniently assumed that this historical record is or has been statistically stationary and therefore is assumed to represent the future characteristics of climatic drivers on our system. This assumption is obviously no longer justifiable. To address the characterisation of future weather, BC Hydro has a multi-year a directed research program with the Pacific Climate Impacts Consortium to evaluate the impacts of climate change on the water resources that BC Hydro manages for hydropower generation and other uses. The objective of this program is to derive climate change adjusted meteorologic and hydrologic sequences suitable for use in system operations and planning studies. These climate-adjusted sequences then can be used to test system sensitivity to climate change scenarios relative to the baseline of the historical record. This paper describes BC Hydro's research program and the results achieved so far. (author)

  18. BC Hydro shops for GHG offsets

    Anon.

    2000-01-01

    BC Hydro is reported to have offered to purchase one million tonnes of carbon dioxide reductions in Canada's Greenhouse Gas Emissions Reduction Trading program (GERT). The program uses a baseline and credit system, where emitters purchase measurable quantities of site-specific GHG reductions. Since mid-1998, the program registered five bilateral trades and seven offers to sell. BC Hydro's recent offer is the first offer to buy. BC Hydro has made the offer to buy in expectation of the introduction of the start of the Kyoto Protocol reductions, and expects to be in the game for some time to come if it is to meet its obligations under the Kyoto Protocol. Preference will be given to projects located in Canada, but BC Hydro will consider reductions created anywhere in the world. The financial range of a single trade is between $50,000 and $1 million. (GHG offsets are currently trading in North America for between $.50 and $3.00 Cdn per metric tonne of carbon dioxide equivalent.) At present, offsets are selling at a heavily discounted price because of the uncertainty that investments made now will be credited against future regulations curbing emitters. Consequently, buying now while prices are low, may lead to sizable benefits later, depending on the actual regulations when they are promulgated. Trading now will also give BC Hydro greater credibility and assurance to have its voice heard when discussions about emissions trading and the implementation of emission trading rules reaches the serious stage

  19. The little hydro-electricity: the boosting?

    Brunier, S.; Najac, C.; Roussel, A.M.; Claustre, R; Baril, D.; Marty, D.; Lefevre, P.; Arnould, M.

    2007-01-01

    The hydraulic energy could be easily developed in France to reach the objectives of the european directive on the renewable energies. This development can be assured by the construction of power plants perfectly integrated in their environment and respecting the rivers and assured also by the increase of the capacities of existing power plants as it is allowing by the new regulations. This document presents the place and the capacity of the hydro-electricity in France, the implementing of a green electricity, the existing regulation, the river biological continuation, the ecosystems and the little hydro-electricity and the example of the hydro-electric power plant of Scey-sur-Saone. (A.L.B.)

  20. Collision data involving hydro-carbon molecules

    Tawara, H.; Itikawa, Y.; Nishimura, H.; Tanaka, H.; Nakamura, Y.

    1990-07-01

    Hydro-carbon molecules are abundantly produced when graphites are used as internal wall materials of hydrogen plasmas and strongly influence properties of low temperature plasmas near the edges as well as those of high temperature plasmas at the center. In this report, following simple description of the production mechanisms of hydro-carbon molecules under the interactions between graphite and hydrogen plasma, the present status of collision data for hydro-carbon molecules by electron impact is discussed and the relevant data are summarized in a series of figures and tables. It should also be noted that, in addition to fusion plasmas, these hydrocarbon data compiled here are quite useful in other applications such as plasma chemistry and material processing. (author)

  1. DECOVALEX III/BENCHPAR PROJECTS. The Thermal-Hydro-Mechanical Responses to a Glacial Cycle and their Potential Implications for Deep Geological Disposal of Nuclear Fuel Waste in a Fractured Crystalline Rock Mass. Report of BMT3/WP4

    Chan, T.; Stanchell, F.W. [Atomic Energy of Canada Ltd, Toronto (Canada); Christiansson, R. [Swedish Nuclear Fuel and Waste Management Co., Figeholm (Sweden); Boulton, G.S. [Univ. of Edinburgh (United Kingdom). School of GeoSciences; Eriksson, L.O.; Vistrand, P.; Wallroth, T. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Geology; Hartikainen, J. [Helsinki Univ. of Technology (Finland). Inst. of Mathematics; Jensen, M.R. [0ntario Power Generation, Toronto (Canada); Mas lvars, D. [Royal Inst. of Technology, Stockholm (Sweden). Land and Water Resources engineering

    2005-02-15

    A number of studies related to past and on-going deep repository performance assessments have identified glaciation/deglaciation as major future events in the next few hundred thousand years capable of causing significant impact on the long term performance of the repository system. Benchmark Test 3 (BMT3) of the international DECOVALEX III project has been designed to provide an illustrative example that explores the mechanical and hydraulic response of a fractured crystalline rock mass to a period of glaciation. The primary purpose of this numerical study is to investigate whether transient events associated with a glacial cycle could significantly influence the performance of a deep geological repository in a crystalline shield setting. A conceptual site-scale (tens of kilometres) hydro-mechanical (HM) model was assembled based primarily on site-specific litho-structural, hydrogeological and geomechanical data from the Whiteshell Research Area in the Canadian Shield, with simplification and generalization. Continental glaciological modelling of the Laurentide ice sheet through the last glacial cycle lasting approximately 100,000 years suggests that this site was glaciated at about 60 ka and between about 22.5 ka and 11 ka before present with maximum ice sheet thickness reaching 2,500 m and maximum basal water pressure head reaching 2000 m. The ice-sheet/drainage model was scaled down to generate spatially and temporally variable hydraulic and mechanical glaciated surface boundary conditions for site-scale subsurface HM modelling and permafrost modelling. Under extreme periglacial conditions permafrost was able to develop down to the assumed 500-m repository horizon. Two- and three-dimensional coupled HM finite-element simulations indicate: during ice-sheet advance there is rapid rise in hydraulic head, high transient hydraulic gradients and high groundwater velocities 2-3 orders of magnitude higher than under nonglacial conditions; surface water recharges deeper

  2. DECOVALEX III/BENCHPAR PROJECTS. The Thermal-Hydro-Mechanical Responses to a Glacial Cycle and their Potential Implications for Deep Geological Disposal of Nuclear Fuel Waste in a Fractured Crystalline Rock Mass. Report of BMT3/WP4

    Chan, T.; Stanchell, F.W.; Christiansson, R.; Boulton, G.S.; Mas lvars, D.

    2005-02-01

    A number of studies related to past and on-going deep repository performance assessments have identified glaciation/deglaciation as major future events in the next few hundred thousand years capable of causing significant impact on the long term performance of the repository system. Benchmark Test 3 (BMT3) of the international DECOVALEX III project has been designed to provide an illustrative example that explores the mechanical and hydraulic response of a fractured crystalline rock mass to a period of glaciation. The primary purpose of this numerical study is to investigate whether transient events associated with a glacial cycle could significantly influence the performance of a deep geological repository in a crystalline shield setting. A conceptual site-scale (tens of kilometres) hydro-mechanical (HM) model was assembled based primarily on site-specific litho-structural, hydrogeological and geomechanical data from the Whiteshell Research Area in the Canadian Shield, with simplification and generalization. Continental glaciological modelling of the Laurentide ice sheet through the last glacial cycle lasting approximately 100,000 years suggests that this site was glaciated at about 60 ka and between about 22.5 ka and 11 ka before present with maximum ice sheet thickness reaching 2,500 m and maximum basal water pressure head reaching 2000 m. The ice-sheet/drainage model was scaled down to generate spatially and temporally variable hydraulic and mechanical glaciated surface boundary conditions for site-scale subsurface HM modelling and permafrost modelling. Under extreme periglacial conditions permafrost was able to develop down to the assumed 500-m repository horizon. Two- and three-dimensional coupled HM finite-element simulations indicate: during ice-sheet advance there is rapid rise in hydraulic head, high transient hydraulic gradients and high groundwater velocities 2-3 orders of magnitude higher than under nonglacial conditions; surface water recharges deeper

  3. BC Hydro triple bottom line report 2002

    Anon

    2002-08-01

    British Columbia Hydro (BC Hydro) published this document which measures the environmental, social and economic performance of the company. It is a complement to BC Hydro's 2002 Annual Report. The report was prepared to better understand the company's business in terms of its commitment to being an environmentally, socially, and economically responsible company (the three bottom lines). BC Hydro proved its ability to integrate the three bottom lines in decision making processes by carefully examining the environmental, social and economical impacts of programs such as Power Smart, Green and Alternative Energy, and Water Use Planning. All indicators point to BC Hydro achieving its commitment of providing a minimum of 10 per cent of new demand through 2010 with new green energy sources. Water Use Plans were developed for hydroelectric generating stations, and they should all be in place by 2003. Efficiencies realised through the Power Smart program offset the increases in greenhouse gas associated with increased energy demand. Juvenile sturgeon raised in a hatchery were released into the Columbia River in May 2002. The completion of a 40-kilometre trail on the Sunshine Coast was helped by a financial contribution from BC Hydro in the amount of 23,000 dollars. Safety improvements were implemented at eight facilities, such as dam remediation, dam surveillance and instrumentation updates. Scholarships were awarded across the province, along with additional donations to non-profit organizations. Co-op positions were provided for 150 students. Internal energy efficiency programs were successful. Planning is under way for significant maintenance work and equipment replacement projects as the transmission and distribution infrastructure ages. The number of reported indicators was expanded this year. In turn, they were aligned with the revised Global Reporting Initiative (GRI) guidelines. tabs

  4. BC Hydro's integrated resource planning : the 2004 IEP and beyond

    Soulsby, R.

    2004-01-01

    An outline of BC Hydro Integrated Electricity Plan (IEP) was presented in this paper, along with details of its environmental, social and business performance and statistics of its net income and revenue for 2003-2004. The IEP was created to match long term load to supply in the most cost-effective way and is also the basis for resource acquisition plans. In addition, the IEP models performance of portfolios of resources on a system-wide basis, considers uncertainties through sensitivity analysis and measures and evaluates multiple attributes from various portfolios. A flow chart of processes informed by the IEP was presented. Guiding principles behind the creation of the plan include low electricity rates and public ownership; secure, reliable supply; private sector development; environmental responsibility, with no nuclear power sources; ensuring energy self-sufficiency; and maintaining a balanced portfolio of resources. A pie chart of BC Hydro's current portfolio mix was presented as well as a supply and demand outlook and details of plans and new capacity resources required before 2013. Various resource options were presented. Key outcomes of First Nations and stakeholder engagement include the acceptance of BC Hydro as a sustainable energy company; a desire for higher priority on reliability and low cost; an agreement over the Power Smart 10 year plan; a general agreement that the current, balanced approach to resource acquisition was appropriate; and a desire for more rate options. There was an assurance that BC Hydro would continue to engage First Nations and stakeholders in integrated electricity planning. Other outcomes included requests for more information about outage and outage planning and process improvements; support to maintain low rates; a preference for maximizing use of existing facilities; support for wood waste cogeneration. A broad range of options were reviewed, but no superior portfolio was identified within the parameters of this paper

  5. Alexela ostab Hydro Texaco tanklaketi / Gert D. Hankewitz

    Hankewitz, Gert D.

    2006-01-01

    Kütusefirma Alexela Oil teatas, et ostab tanklaketi Hydro Texaco kõik Balti riikide tanklad. Diagramm: Alexela ja Hydro Texaco majandusnäitajad. Vt. samas: Statoili juht: ühinemine turul muutusi ei too

  6. B.C. Hydro : 1997 annual report

    1997-01-01

    Operating and financial information from B.C. Hydro for 1997 is presented. B.C. Hydro is the third largest electric utility in Canada. The utility generates between 43,000 and 54,000 gigawatt-hours of electricity annually. More than 80 per cent of the electricity is produced by major hydroelectric generating stations on the Columbia and Peace rivers. This report presents a picture of improved financial performance, details of all revenues and expenditures and capsule summaries of the Utility's operations. The report also addresses issues regarding strategic direction, local and international competition, and consultation and regulatory activities. tabs. and figs

  7. Navigating the hydro market in Latin America

    Yermoli, C.A.

    1995-01-01

    The governments of most Latin American countries have yet to establish clear policies about the future ownership of existing generation assets, but they do expect future capacity to be largely developed by the private sector. There were at one time plans for many government-financed hydro projects in the area, but these projects produced much paper and little electricity. Present trends will take the area toward independent power projects, both hydro projects and thermal power projects. This article is a review of those present trends

  8. Lessons learned from Ontario wind energy disputes

    Fast, Stewart; Mabee, Warren; Baxter, Jamie; Christidis, Tanya; Driver, Liz; Hill, Stephen; McMurtry, J. J.; Tomkow, Melody

    2016-02-01

    Issues concerning the social acceptance of wind energy are major challenges for policy-makers, communities and wind developers. They also impact the legitimacy of societal decisions to pursue wind energy. Here we set out to identify and assess the factors that lead to wind energy disputes in Ontario, Canada, a region of the world that has experienced a rapid increase in the development of wind energy. Based on our expertise as a group comprising social scientists, a community representative and a wind industry advocate engaged in the Ontario wind energy situation, we explore and suggest recommendations based on four key factors: socially mediated health concerns, the distribution of financial benefits, lack of meaningful engagement and failure to treat landscape concerns seriously. Ontario's recent change from a feed-in-tariff-based renewable electricity procurement process to a competitive bid process, albeit with more attention to community engagement, will only partially address these concerns.

  9. Assessing Ontario's Personal Support Worker Registry

    Audrey Laporte

    2013-08-01

    Full Text Available In response to the growing role of personal support workers (PSWs in the delivery of health care services to Ontarians, the Ontario government has moved forward with the creation of a PSW registry. This registry will be mandatory for all PSWs employed by publicly funded health care employers, and has the stated objectives of better highlighting the work that PSWs do in Ontario, providing a platform for PSWs and employers to more easily access the labour market, and to provide government with information for human resources planning. In this paper we consider the factors that brought the creation of a PSW registry onto the Ontario government’s policy agenda, discuss how the registry is being implemented, and provide an analysis of the strengths and weaknesses of this policy change.

  10. Uranium and thorium deposits of Northern Ontario

    Robertson, J.A.; Gould, K.L.

    1983-01-01

    This, the second edition of the uranium-thorium deposit inventory, describes briefly the deposits of uranium and/or thorium in northern Ontario, which for the purposes of this circular is defined as that part of Ontario lying north and west of the Grenville Front. The most significant of the deposits described are fossil placers lying at or near the base of the Middle Precambrian Huronian Supergroup. These include the producing and past-producing mines of the Elliot Lake - Agnew Lake area. Also included are the pitchblende veins spatially associated with Late Precambrian (Keweenawan) diabase dikes of the Theano Point - Montreal River area. Miscellaneous Early Precambrian pegmatite, pitchblende-coffinite-sulphide occurrences near the Middle-Early Precambrian unconformity fringing the Lake Superior basin, and disseminations in diabase, granitic rocks, alkalic complexes and breccias scattered throughout northern Ontario make up the rest of the occurrences

  11. Ontario Power Generation Fukushima emergency response drill strengthens and lessons learned - Ontario Power Generation Fukushima Emergency Response Drill Highlights

    Miller, David W.

    2014-01-01

    Japan's Fukushima Daiichi severe nuclear accident in March 2011 has resulted in a reassessment of nuclear emergency response and preparedness in Canada. On May 26, 27 and 28, 2014 Ontario Power Generation (OPG) conducted the first North American full scale nuclear emergency response exercise designed to include regional, provincial and federal bodies as well as the utility. This paper describes the radiological aspects of the OPG Exercise Unified Response (ExUR) with emphasis on deployment of new Fukushima equipment on the Darlington site, management of emergency workers deplored in the vicinity of Darlington to collect environmental samples and radiation measurements, performance of dose calculations, communication of dose projections and protective actions to local, provincial and federal agencies and conduct of vehicle, truck and personnel monitoring and decontamination facilities. The ExUR involved more than 1000 personnel from local, provincial and federal bodies. Also, 200 OPG employees participated in the off-site emergency response duties. The objective of the ExUR was to test and enhance the preparedness of the utility (OPG), government and non-government agencies and communities to respond to a nuclear emergency. The types of radiological instrumentation and mobile facilities employed are highlighted in the presentation. The establishment of temporary emergency rooms with 8 beds and treatment facilities to manage potentially contaminated injuries from the nuclear emergency is also described. (author)

  12. Milton Hydro's Energy Drill Program : demand response based on behavioural responses to price signals

    Thorne, D.; Heeney, D.

    2006-01-01

    The Energy Drill Program is a demand response tool and economic instrument based on a fire drill protocol. The aim of the program is to reduce peak demand and emissions and improve system reliability and price volatility. This presentation provided details of an Energy Drill pilot program, conducted in Milton, Ontario. Customized approaches were used in the buildings partaking in the drill, which included the Milton Hydro Headquarters, the Robert Baldwin Public School, and a leisure centre. Building assessments inventoried building systems and equipment usage patterns. Pilot monitoring and evaluation was conducted through the use of checklists completed by marshals and building coordinators. Energy use data was tracked by Milton Hydro, and report cards were sent after each drill. A short-term drop in demand was observed in all the buildings, as well as overall reductions in peak period demand. Energy consumption data for all the buildings were provided. Results of the pilot program suggested that rotating the drills among participating buildings may prove to be a more effective strategy for the program to adopt in future. A greater emphasis on energy efficiency was also recommended. It was concluded that the eventual roll-out strategy should carefully consider the number and types of buildings involved in the program; internal commitment to the program; available resources; and timing for implementation. refs., tabs., figs

  13. Hydro biological investigations of lake Drukshiai

    Mazheikaite, S.; Sinkevichiene, Z.; Marchiulioniene, D.; Astrauskas, A.; Barshiene, J.

    1998-01-01

    Purposes of this research were to investigate changes in the physical, chemical and tropic conditions of Lake Drukshiai caused by the combined effect of Ignalina NPP and how it effects on structures and function of biocenoses; to estimate the influence of phytocenoses, zoocenoses and bacteriocenoses on the quality of water in Lake Drukshiai; to estimate the eco toxicological state of Lake Drukshiai. According to the complex hydro biological investigations on Lake Drukshiai - Ignalina NPP cooler great changes in planktonic organism community, tendencies of those changes in different ecological zones were evaluated in 1993 - 1997. The amount of species of most dominant planktonic organisms in 1993 - 1997 decreased 2-3 times in comparison with that before Ignalina NPP operation: phytoplankton from 116 to 40 - 50, zooplankton - from 233 to 139. The organic matter increasing tendency was determined in bottom sediments of the lake. The highest amount of it was evaluated in the south - eastern part of the lake. 69 water macrophyte species were found in bottom sediments during the investigation period. 16 species were not found in this lake earlier. Abundance of filamentous green algae was registered.The rates of fish communities successional transformation were ten times in excess of those of the given processes in natural lakes. Moreover the comparison of results on Lake Drukshiai bioindication analysis with changes of comparable bio markers which were obtained from other water systems of Lithuania, Switzerland, Sweden and Poland, including those with active nuclear power plants in their environment was carried out. It was determined that the functional and structural changes in Lake Drukshiai biota are mostly caused by chemical pollution. It was found out that the frequency of cytogenetic damage emerged as a specific radionuclide - caused effect in aquatic organisms inhabiting Lake Drukshiai, is slightly above the background level and is 5 times lower than the same

  14. Ontario feed-in-tariff programs

    Yatchew, Adonis; Baziliauskas, Andy

    2011-01-01

    Recent feed-in-tariff (FIT) programs in Ontario, Canada have elicited a very strong supply response. Within the first year of their inception, the Ontario Power Authority received applications totaling over 15,000 MW, equivalent to about 43% of current Ontario electricity generating capacity. The overwhelming share of applications is for wind-power (69%) and solar photovoltaic (28%) generating facilities. Wind generation is being remunerated at 14-19 cents /kWh. Solar facilities receive from 40 to 80 cents /kWh. The initiative, which responds to Provincial legislation is administratively divided into applications for facilities exceeding 10 kW (the FIT program) and those less than or equal to 10 kW (the microFIT program). This paper describes the programs and their features, compares them to their predecessors in Ontario as well as to programs elsewhere, analyses the reasons for the very strong response, and assesses their efficacy and sustainability. - Research highlights: → Recent feed-in-tariff (FIT) programs in Ontario, Canada have elicited a very strong supply response. Within the first year, applications totaled over 15,000 MW, equivalent to about 43% of current Ontario electricity generating capacity. → Most projects are either solar or wind. → Likely causes of strong supply response-preferred system access and favorable, secure tariffs. (Wind generation is being remunerated at 14-19 cents /kWh. Solar facilities receive from 40 to 80 cents /kWh.) → Long term political sustainability of present program is in question.

  15. The potential of solar PV in Ontario

    McMonagle, R.

    2005-01-01

    Canada has lagged behind other industrialized nations in the growth of solar energy markets. Currently, over 78 per cent of the global market for solar energy is for grid-connected applications where power is fed into the electrical distribution network. Less than 3.5 per cent of the Canadian solar market is grid-connected. This report investigated the potential size of the photovoltaic (PV) market in Ontario given adequate support from both governments and utilities. The forecast was based on sustainable growth levels that the solar industry as a whole might maintain over an extended period of time. It was suggested that it is technically feasible to install over 3000 MW of PV in single, detached homes in the province, which could generate over 3200 GWh each year. If the right policy conditions were put in place, the technical potential for PV on all buildings in Ontario is over 14,000 MW by 2025, which would generate over 13,000 GWh annually. Support mechanisms such as the Advanced Renewable Tariff (ART) or Standard Offer Contracts (SOC) will enable the PV industry to build capacity. Future markets for PV include new homes, commercial buildings and the existing housing stock. With a properly designed system, it is forecasted that the deployment of PV by 2025 could result in the involvement of 400,000 homes with over 1200 MW of installed capacity and over 290 MW installed annually by 2025. Recommendations to Ontario Power Authority's (OPA) report supply mix report focused on the use of SOCs as the appropriate support mechanism to start building solar capacity in Ontario, as projections using SOCs would see Ontario following the growth patterns of other nations. It was concluded that the OPA report does not acknowledge the current growth rates of PV globally, nor does it fully consider the potential of PV in Ontario. 9 refs., 8 figs

  16. Sparking investment in Ontario's power generation industry

    Allen, J.

    2004-01-01

    This paper discusses the business strategy needed to spark investment in Ontario's power generation industry. It examines the process of decision making and investing in an uncertain environment. The paper suggests that any strategy based on one view of the future courts trouble and that strategic flexibility can prepare for what cannot be predicted. Finally the paper suggests that Ontario needs to create a stable policy and regulatory environment that allows investors to fulfill reasonable expectations and investors need to place bets that provide the flexibility to respond quickly to changing market conditions

  17. Design concept of Hydro cascade control system

    Fustik, Vangel; Kiteva, Nevenka

    2006-01-01

    In this paper a design concept of the comple hydro cascade scheme is presented with the design parameters of the main technical features. The cascade control system architecture is designed considering up-to-date communication and information technology. The control algorithm is based on Pond Level Control and Economic Load Allocation concepts.

  18. Using historic earnings to value hydro energy

    Robson, I.A.; Whittington, H.W.

    1993-01-01

    This article briefly presents a technique for assigning a value to the water held in and removed from the hydro reservoir. Using historic earnings as the basis for a series of equations, it aims to give engineers trading energy a reliable means of placing a value on what is effectively a ''free'' resource. (Author)

  19. Resettlement associated with hydro projects in China

    Anon.

    1993-01-01

    The flow rates of Chinese rivers are subject to major seasonal fluctuations, and as a result large reservoirs have to be constructed for flood control, irrigation, and power generation. As most of the river valleys are densely populated, the relocation and resettlement of people from the reservoir areas are major but unavoidable problems to be addressed in building hydro projects in China. (author)

  20. Ontario's standard offer programs: moving toward a cleaner energy future

    Shervill, P.

    2006-01-01

    The Ontario Standard Offer Program is designed to ensure reliable, long-term electricity supply for Ontario. The functional areas of the program are planning, conservation and supply sector development. The long-term plan is to create a self-sustaining electricity market in Ontario with 2700 MW renewable sources by 2010 including wind, waterpower, solar photovoltaic (PV) and biomass

  1. "Strengthening" Ontario Universities: A Neoliberal Reconstruction of Higher Education

    Rigas, Bob; Kuchapski, Renée

    2016-01-01

    This paper reviews neoliberalism as an ideology that has influenced higher education generally and Ontario higher education in particular. It includes a discourse analysis of "Strengthening Ontario's Centres of Creativity, Innovation and Knowledge" (Ontario Ministry of Training, Colleges, and Universities, 2012), a government discussion…

  2. Opening Doors to Nursing Degrees: A Proposal from Ontario's Colleges

    Colleges Ontario, 2010

    2010-01-01

    Ontario needs to expand nursing education options to improve access to the nursing profession, create better pathways amongst all nursing occupations, and build Ontario's capacity to meet the province's long-term nursing needs. Ontario's colleges are capable of playing a larger role within a long-term provincial strategy for sustaining and…

  3. Analyze the factors effecting the development of hydro power projects in hydro rich regions of India

    Ameesh Kumar Sharma

    2016-09-01

    Full Text Available Power is considered as the major back bone for all the nations throughout the world including India on the basis of which development of the country depends. If a country has the resources to generate the power at competitive price in that case the people of the country get the benefits in terms of improvement in their social and economical life. When we talk about India, various locations in the country where still there is no electricity people are living in dark without having the access of the modern technology. The total hydro power potential of India is 1, 50,000 MW out of this total hydro potential only 40,195 MW is exploited till 2014. More than 80% of the total hydro potential of the country is lying in the western Himalayan states (Jammu and Kashmir, Himachal Pradesh, Uttrakhand and Arunachal Pradesh. Small hydro projects are also playing a very important role in the modern world for the development of the remote areas which are not main grid connected specially in western Himalayan region of India. India has a total potential 19,749 MW of small hydro projects and of this total potential only 3990.9 MW harnessed till 2014. Ministry of new and renewable energy in India is also providing special incentives to hydro rich states of India. In this research article we are taken the case study of the small hydro projects in the western Himalayan region because theses states are having vast small hydro potential which is still needed to be harnessed. So, it is very important to identify the factors which are effecting the development of these small ventures especially in western Himalayan region in India.

  4. Proceedings of the Canadian Institute's 3. annual conference on generation adequacy in Ontario : strategies to increase capacity to ensure a reliable electricity supply in Ontario

    2006-01-01

    This conference provided a forum for the discussion of issues related to generation adequacy in Ontario. Members of the electricity industry as well as members from governmental and non-governmental agencies discussed a variety of recommendations for cost-effective reliable energy in Ontario. Issues related to the overhaul or replacement of nuclear power reactors and coal-fired generators in the province were reviewed. The status of various wind power projects in the province was examined along with issues related to interconnected power systems. Best practices for the planning and execution of electricity infrastructure projects were also reviewed, and issues related to stakeholder involvement in electricity generation projects were discussed. The discussions also described recent developments in electricity generation in various jurisdictions in Canada and the United States. The conference featured 19 presentations, of which 7 have been catalogued separately for inclusion in this database. tabs., figs

  5. An economic analysis of small-scale cogeneration using forest biomass and sawmill residuals in northern Ontario

    Beke, N.L.

    1994-01-01

    The economic feasibility of using biomass for cogeneration in northern Ontario was investigated and the institutional factors that may affect establishment and operation of cogeneration facilities were determined. Two fuel sources for a cogeneration plant were evaluated: forest materials and sawmill residuals. To establish and operate a cogeneration plant, the policies of the Ontario Ministry of Natural Resources and Ontario Hydro needed to be analyzed. Some of the benefits of using sawmill residuals for cogeneration were identified and an inventory of sawmill residuals was compiled. The welfare effects of three pricing schemes for non-utility generated electricity are described using a neoclassical welfare model. This model is further extended to include the effects of subsidizing public utilities and using biomass to generate electricity. A competitive market for electricity generation and relating pricing structure was also examined. The results of the capital budget for the cogeneration facility indicated that by using sawmill residuals and chipped forest biomass as fuel for cogeneration, internal rates of return would be 22.7% and 8.7% and net present values would be $8,659,870 and $1,867,822, respectively. This implied that using sawmill residuals for cogeneration fuel would be both profitable and would help to reduce possible harmful effects that current dumping practices may have on the surrounding ecosystem. 84 refs., 17 figs., 14 tabs

  6. The low enriched uranium fuel cycle in Ontario

    Archinoff, G.H.

    1979-02-01

    Six fuel-cycle strategies for use in CANDU reactors are examined in terms of their uranium-conserving properties and their ease of commercialization for three assumed growth rates of installed nuclear capacity in Ontario. The fuel cycle strategies considered assume the continued use of the natural uranium cycle up to the mid-1990's. At that time, the low-enriched uranium (LEU) cycle is gradually introduced into the existing power generation grid. In the mid-2020's one of four advanced cycles is introduced. The advanced cycles considered are: mixed oxide, intermediate burn-up thorium (Pu topping), intermediate burn-up thorium (U topping), and LMFBR. For comparison purposes an all natural uranium strategy and a natural uranium-LEU strategy (with no advanced cycle) are also included. None of the strategies emerges as a clear, overall best choice. (LL)

  7. Radioecological impact of effluents from a nuclear facility being decommissioned in the Antas river hydro graphic basin in the state of Minas Gerais, Brazil. Radioecological impact of effluents in the Antas reservoir

    Ronque, Leilane Barbosa; Azevedo, Heliana de; Lopes do Nascimento, Marcos Roberto; Roque, Claudio Vitor; Silva, Nivaldo Carlos da; Rodgher, Suzelei; Regali-Seleghim, Mirna Helena

    2008-01-01

    The Antas reservoir receives the treated effluents which come from acid drainage of uranium ore from the UTM-INB (Ore Treatment Unit - Brazilian Nuclear Industries), located in Caldas, Minas Gerais. This study was conducted in order to determine the possible environmental impact caused by discharge of the treated liquid effluent from the UTM into the Antas reservoir. Biological (ciliated protozoa and Peridinium sp. phytoflagellate) and physicochemical variables (manganese, zinc, sulfate, uranium, dissolved oxygen and temperature), trophic state and saprobity indexes were evaluated. Sampling in reservoir (Cab, P41, P14S, and P14F points) took place during the dry winter season (July 2006). Each day, samples were collected four times (6:00 am, 12:00 pm, 6:00 pm, and 12:00 am). Biological variables analyzed at the Antas reservoir classified it as an oligo trophic and beta-mesosaprobic environment. Chemical parameters indicate failures in the nuclear facility effluent treatment plant, showing that effluents outside of standard limits established by Brazilian current legislation for Class II water are being discharged at point P41. These results agree with biological analyses, since point P41 has the lowest diversity and biomass values for ciliated protozoa organisms, indicating possible environmental impacts on the ecosystem due to effluent discharge by this mining company.(author)

  8. Wind power and bats : Ontario guideline

    McGuiness, F. [Ontario Ministry of Natural Resources, Peterborough, ON (Canada). Renewable Energy Resources; Stewart, J. [Ontario Ministry of Natural Resources, Toronto, ON (Canada). Wildlife Section

    2008-07-01

    None of the 8 species of bats in Ontario are considered as species at risk. However, all bats in Ontario are protected under the Fish and Wildlife Conservation Act. The Ontario Ministry of Natural Resources (MNR) is responsible for identifying significant wildlife habitat for bats, including hibernacula and maternity roosts. The MNR's role in wind development includes environmental assessments (EA) and surveys. The MNR bat guideline includes a summary of Ontario species, a literature review of research related to wind turbines and bats, and a review of methods for assessing and monitoring bats. Guideline development includes a bat working group responsible for obtaining data on risk factors and monitoring requirements. The MNR has determined that site selection is critical for minimizing potential impacts. Wind farm proponents can use MNR data, information, and maps for their site selection process. Information requirements include bat species data; habitat data; and meteorological data. The presence of risk factors results in a sensitivity rating. The MNR is also developing a site sensitivity mapping project in order to assist proponents in making siting decisions. All proposed sites are required to conduct pre-construction site surveys. Acoustic detectors and radar are used to determine bat activity at the site. Monitoring and mitigation strategies include selective wind turbine shutdown during key periods or weather conditions. tabs., figs.

  9. Measuring Social Capital in Hamilton, Ontario

    Kitchen, Peter; Williams, Allison; Simone, Dylan

    2012-01-01

    Social capital has been studied by academics for more than 20 years and within the past decade there has been an explosion of growth in research linking social capital to health. This paper investigates social capital in Hamilton, Ontario by way of a telephone survey of 1,002 households in three neighbourhood groups representing high, mixed and…

  10. Poster - 27: Incident Learning Practices in Ontario

    Angers, Crystal; Medlam, Gaylene; Liszewski, Brian; Simniceanu, Carina [The Ottawa Hospital Cancer Centre, Mississauga Halton/Central West Regional Cancer Center, Odette Cancer Centre, Cancer Care Ontario (Canada)

    2016-08-15

    Purpose: The Radiation Incident and Safety Committee (RISC), established and supported by Cancer Care Ontario (CCO), is responsible for advising the Provincial Head of the Radiation Treatment program on matters relating to provincial reporting of radiation incidents with the goal of improved risk mitigation. Methods: The committee is made up of Radiation Incident Leads (RILs) with representation from each of the 14 radiation medicine programs in the province. RISC routinely meets to review recent critical incidents and to discuss provincial reporting processes and future directions of the committee. Regular face to face meetings have provided an excellent venue for sharing incident learning practices. A summary of the incident learning practices across Ontario has been compiled. Results: Almost all programs in Ontario employ an incident learning committee to review incidents and identify corrective actions or process improvements. Tools used for incident reporting include: paper based reporting, a number of different commercial products and software solutions developed in-house. A wide range of classification schema (data taxonomies) are employed, although most have been influenced by national guidance documents. The majority of clinics perform root cause analyses but utilized methodologies vary significantly. Conclusions: Most programs in Ontario employ a committee approach to incident learning. However, the reporting tools and taxonomies in use vary greatly which represents a significant challenge to provincial reporting. RISC is preparing to adopt the National System for Incident Reporting – Radiation Therapy (NSIR-RT) which will standardize incident reporting and facilitate data analyses aimed at identifying targeted improvement initiatives.

  11. Ontario's Quality Assurance Framework: A Critical Response

    Heap, James

    2013-01-01

    Ontario's Quality Assurance Framework (QAF) is reviewed and found not to meet all five criteria proposed for a strong quality assurance system focused on student learning. The QAF requires a statement of student learning outcomes and a method and means of assessing those outcomes, but it does not require that data on achievement of intended…

  12. The Status of Benthos in Lake Ontario

    The benthic community of Lake Ontario was dominated by an amphipod (Diporeia spp.) prior to the 1990’s. Two dreissenid mussel species D. polymorpha (zebra) and D. bugensis (quagga) were introduced in 1989 and 1991 via ballast water exchange. D. bugensis was observed as deep as 85...

  13. Global warming: Towards a strategy for Ontario

    1990-01-01

    A discussion paper is provided as background to a proposed public review of a strategy for Ontario's response to global warming. Global warming arises from the generation of greenhouse gases, which come from the use of fossil fuels, the use of chlorofluorocarbons, and deforestation. Energy policy is the backbone of achieving climate stability since the burning of fossil fuels releases most of the greenhouse gases, mainly carbon dioxide. Canada is, by international standards, a very energy-intensive country and is among the world's largest emitters of carbon dioxide on a per capita basis. Ontario is the largest energy-using province in Canada, and fossil fuels represent over 80% of provincial energy use. A proposed goal for Ontario is to provide leadership in stabilizing atmospheric concentrations of the greenhouse gases, while minimizing the social, economic, and environmental costs in Ontario of adapting to global warming. A proposed first step to address global warming is to achieve reductions in expected emissions of the greenhouse gases, especially carbon dioxide, so that levels by the year 2000 are lower than in 1989. Current policies and regulations helping to reduce the greenhouse effect include some of the current controls on automotive emissions and the adoption by the provincial electric utility of targets to reduce electricity demand. New initiatives include establishment of minimum energy efficiency standards and reduction of peak-day electricity use. Action steps for future consideration are detailed in the categories of greenhouse gas emissions reductions, carbon dioxide absorption, and research and analysis into global warming

  14. Seven steps to an energy efficient Ontario

    2003-01-01

    The future of the electricity market in Ontario is examined in light of the recent debate concerning deregulation. This report focuses on measures that would have to be taken to ensure that there will be sufficient electricity available to serve the needs of Ontario. Increasing supply, or decreasing demand are discussed as the obvious answers to the problem at hand. The report concludes that: (1) mechanisms to encourage Demand Side Management and Demand Response have all but disappeared since the opening of the competitive electricity market in Ontario, (2) the current market structure does nothing to stimulate increased supply, nor does it encourage measures to reduce demand; as such, the result is an unsustainable situation. The report further concludes that Demand Side Management and Demand Response programs are essential components of the success of Ontario's evolving electricity market, and recommends programs that are designed and implemented in a manner that dovetail with parallel policies dealing with supply challenges. Seven essential elements of such a policy are discussed. These are: (1) vision and a clear set of goals for demand side management; (2) appropriate market drivers, principles and pricing incentives; (3) a central co-ordinating authority for managing demand side management; (4) appropriate implementation agents to manage programs and processes; (5) incentives to motivate change; (6) widespread education of the market; and (7) appropriate tactics to enable demand side management in sectors

  15. Poster - 27: Incident Learning Practices in Ontario

    Angers, Crystal; Medlam, Gaylene; Liszewski, Brian; Simniceanu, Carina

    2016-01-01

    Purpose: The Radiation Incident and Safety Committee (RISC), established and supported by Cancer Care Ontario (CCO), is responsible for advising the Provincial Head of the Radiation Treatment program on matters relating to provincial reporting of radiation incidents with the goal of improved risk mitigation. Methods: The committee is made up of Radiation Incident Leads (RILs) with representation from each of the 14 radiation medicine programs in the province. RISC routinely meets to review recent critical incidents and to discuss provincial reporting processes and future directions of the committee. Regular face to face meetings have provided an excellent venue for sharing incident learning practices. A summary of the incident learning practices across Ontario has been compiled. Results: Almost all programs in Ontario employ an incident learning committee to review incidents and identify corrective actions or process improvements. Tools used for incident reporting include: paper based reporting, a number of different commercial products and software solutions developed in-house. A wide range of classification schema (data taxonomies) are employed, although most have been influenced by national guidance documents. The majority of clinics perform root cause analyses but utilized methodologies vary significantly. Conclusions: Most programs in Ontario employ a committee approach to incident learning. However, the reporting tools and taxonomies in use vary greatly which represents a significant challenge to provincial reporting. RISC is preparing to adopt the National System for Incident Reporting – Radiation Therapy (NSIR-RT) which will standardize incident reporting and facilitate data analyses aimed at identifying targeted improvement initiatives.

  16. Renewables without limits : moving Ontario to advanced renewable tariffs by updating Ontario's groundbreaking standard offer program

    Gipe, P.

    2007-11-01

    The Ontario Sustainable Energy Association (OSEA) promotes the development of community-owned renewable energy generation. It was emphasized that in order to achieve OSEA's original objectives of developing as much renewable energy as quickly as possible through community participation, changes are needed to Ontario's groundbreaking standard offer contract (SOC) program. This report examined the status of Ontario's SOC program and proposed changes to the program as part of the program's first two-year review. The report provided a summary of the program and discussed each of the program's goals, notably to encourage broad participation; eliminate barriers to distributed renewable generation; provide a stable market for renewable generation; stimulate new investment in renewable generation; provide a rigorous pricing model for setting the tariffs; create a program applicable to all renewable technologies; provide a simple, streamlined, and cost-effective application process; and provide a dispute resolution process. The program goals as developed by the Ontario Power Authority and Ontario Energy Board were discussed with reference to mixed results to date; simplicity; removing barriers; balancing targets with value to ratepayers; and building on the efforts of OSEA. Advanced renewable tariffs (ART) and tariff determination was also discussed along with ART's in Germany, France, Spain and Ontario. Inflation indexing; tariff degression; proposed new tariffs by technology; and other costs and factors affecting profitability were also reviewed. ref., tabs

  17. Ontario's Clean Air Action Plan : protecting environmental and human health in Ontario

    2004-01-01

    Ontario's Clean Air Action Plan was launched in June 2000 in an effort to improve air quality and comply with the Canada-Wide Standards for Particulate Matter and Ozone. This paper describes Ontario's approach to reducing smog. Smog-related air pollution is linked to health problems such as premature death, respiratory and heart problems. Smog also contributes to environmental problems such as damage to forests, agricultural crops and natural vegetation. The two main ingredients of smog are ground level ozone and particulate matter. In order to reduce the incidence of smog, the following four key smog-causing pollutants must be reduced: nitrogen oxides, volatile organic compounds, sulphur dioxide and particular matter. This paper includes the 2001 estimates for Ontario's emissions inventory along with Ontario's smog reduction targets. It was noted that approximately half of all smog in Ontario comes from sources in the midwestern United States. The province of Ontario is committed to replacing coal-fired power plants with cleaner sources of energy. It is also considering emission caps for key industrial sectors. The key players in reducing smog include municipalities, industry, individuals, the federal government and programs that reduce emissions in the United States. 3 figs., 8 tabs., 1 appendix

  18. Investigations of natural groundwater hazards at the proposed Yucca Mountain high level nuclear waste repository. Part A: Geology at Yucca Mountain. Part B: Modeling of hydro-tectonic phenomena relevant to Yucca Mountain. Annual report - Nevada

    Szymanski, J.S.; Schluter, C.M.; Livingston, D.E.

    1993-05-01

    This document is an annual report describing investigations of natural groundwater hazards at the proposed Yucca Mountain, Nevada High-Level Nuclear Waste Repository.This document describes research studies of the origin of near surface calcite/silica deposits at Yucca Mountain. The origin of these deposits is controversial and the authors have extended and strengthened the basis of their arguments for epigenetic, metasomatic alteration of the tuffs at Yucca Mountain. This report includes stratigraphic, mineralogical, and geochronological information along with geochemical data to support the conclusions described by Livingston and Szymanski, and others. As part of their first annual report, they take this opportunity to clarify the technical basis of their concerns and summarize the critical geological field evidence and related information. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  19. Deregulation experiences in Alberta and Ontario

    Axford, D.

    2003-01-01

    A brief introduction of Nexen Chemicals, one of the largest producers of sodium chlorate in the world, was offered, and a map displaying its locations throughout the world was displayed. Nexen is one of Canada's largest independent oil and gas producers, while Nexen Marketing is involved in the marketing of natural gas in North America. In January 2001, the deregulated market opened in Alberta. High natural gas prices, generation shortages, high prices in California and an upcoming provincial election all combined to complicate the situation. A high degree of volatility characterized the market. A chart displaying weekly average Alberta power and gas prices from Jan 2002 to 13 Oct 2002 was shown. In Ontario, the market opened in May 2002, and the demand growth rate was in the 1 to 2 per cent range. The author indicated that approximately 20 per cent of homeowners in Ontario have signed deals with retailers, contrary to Alberta where very few have done so. A similar chart displaying weekly average Ontario power prices was presented. The issues in Ontario are: consistency in policy, increase market transparency, transmission / distribution price flexibility, overall transmission / distribution to industrial consumers high, and increasing costs of the system operator. In Alberta, the issues are: government intent, congestion management issues, and billing settlement errors that continue. The opportunities offered by a deregulated market include process responsiveness which is rewarded, the ability to look in forward prices when prices fit margin requirement, and gives companies the opportunity to participate in the development of the market. Various charts were also displayed to further illustrate the market in both Alberta and Ontario. figs

  20. The Grossmatt hydro-power station

    Hintermann, M.

    2006-01-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the project for a small hydropower station on the Birs river in north-western Switzerland. The report reviews the history of the project, in which a new 385 kW-hydro-power station at the site of an earlier installation is foreseen. Details are presented on the investigations made and on the co-ordination with the owners of the hydro-power station situated up-river, the local power utility and the local authorities. Also, the requirements placed on the project by the fishing authorities are quoted and the solution foreseen is described. Also discussed are the requirements placed on the project by legislation on environmental impact and flood protection. Figures on electrical energy production and building costs are presented

  1. Small hydro generation building block profile

    2003-01-01

    Concise business information on small hydro generation in British Columbia was presented in this document. It was noted that the steep terrain within the province and its abundant precipitation provides numerous opportunities for hydropower generation in British Columbia. The hydroelectric sector produces approximately 90 per cent of the electrical demand in the province. The document focusses on small hydro sites producing between 0.5 and 50 mega watts (MW) and not having large water storage. In the first section, an overview of the electricity sector in the province is provided. The following issues are examined in subsequent sections: land resources; infrastructure requirements; sales market; labour market; the regulatory regime; development factors; non-governmental aspects; investments and economics; the present status and future outlook of the industry; and, government revenue. Input-output tables were also provided. 22 refs., 5 tabs., 4 figs

  2. Unmanned operation of Hydro Power Plants

    Regula, E.

    2008-01-01

    Intentions to launch unmanned operation are no news, the very first occurred in Hydro Power Plants (HPP) at the time when the first computer technology was implemented into process of power generation, i.e. no later than in 1960 s . ENEL entering Slovenske elektrarne not only revived but significantly accelerated the implementation process of unmanned operation. Experience of ENEL says that unmanned operation means better reliability of the HPP and this is the priority. (author)

  3. Development of coal hydro gasification technology

    Itoh, Kazuo; Nomura, Kazuo; Asaoka, Yoshikiyo; Kato, Shojiro; Seo, Tomoyuki

    1997-01-01

    Taking a potential future decrease in natural gas supply into consideration, we are looking for a way to secure a stable supply of high quality substitute natural gas made from coal (which occurs abundantly throughout the world) in large volumes at low cost. We are working towards our goal of commercializing coal hydro gasification technology in the 2010's and have started developing elemental technology from FY, 1996 as a part of the governmental new energy program. (au)

  4. Financing options for small hydro projects

    Shepherd, J.C.

    1993-01-01

    Examples and techniques used to enhance the ability to finance small hydro projects, or to finance them in non-standard ways, were discussed. It was suggested that factors that motivate investors, namely the maximization of the rate of return on capital, and minimization of risk, should be the primary concern for any would-be developer. A responsible, conservative approach to financial projections was recommended as the best to impress potential investors

  5. The disposal of Canada's nuclear fuel waste: engineering for a disposal facility

    Simmons, G.R.; Baumgartner, P.

    1994-01-01

    This report presents some general considerations for engineering a nuclear fuel waste disposal facility, alternative disposal-vault concepts and arrangements, and a conceptual design of a used-fuel disposal centre that was used to assess the technical feasibility, costs and potential effects of disposal. The general considerations and alternative disposal-vault arrangements are presented to show that options are available to allow the design to be adapted to actual site conditions. The conceptual design for a used-fuel disposal centre includes descriptions of the two major components of the disposal facility, the Used-Fuel Packaging Plant and the disposal vault; the ancillary facilities and services needed to carry out the operations are also identified. The development of the disposal facility, its operation, its decommissioning, and the reclamation of the site are discussed. The costs, labour requirements and schedules used to assess socioeconomic effects and that may be used to assess the cost burden of waste disposal to the consumer of nuclear energy are estimated. The Canadian Nuclear Fuel Waste Management Program is funded jointly by AECL and Ontario Hydro under the auspices of the CANDU Owners Group. (author)

  6. Canadian development program for off-gas management in nuclear facilities

    Sridhar, T.S.

    1983-01-01

    The Canadian program for the development and evaluation of processes and technology for the separation and containment of radioactive species in off-gases is directed towards the following specific aspects: 1) assessment of available treatment technology and evaluation of future clean-up requirements; 2) development and engineering evaluation, under realistic conditions, of promising new processes that would be inherently simpler and safer; and 3) specification of off-gas emission control systems for future nuclear facilities based on the most favourable technology. The program is being carried out by Atomic Energy of Canada Limited in collaboration with the electrical utility, Ontario Hydro, and selected Canadian universities. A brief description is presented of methods for removing tritium and carbon-14 from the moderator systems of CANDU power reactors, methods for removing iodine from the off-gases of a molybdenum-99 production facility at the Chalk River Nuclear Laboratories, and procedures for monitoring the off-gas effluent composition in the Thorium Fuel Reprocessing Experiment (TFRE) facility at the Whiteshell Nuclear Research Establishment

  7. Quality assurance in management of geotechnical experiments for nuclear waste disposal

    Dormuth, K.W.; Simmons, G.R.

    1992-01-01

    Research and development (R and D) of technology for the disposal of nuclear fuel waste in plutonic rock is being undertaken in the Canadian Nuclear Fuel Waste Management Program, jointly funded by Atomic Energy of Canada Limited (AECL) Research and Ontario Hydro under the auspices of the CANDU Owner's Group. A major component of the R and D is geotechnical research to improve the understanding of the response of the host rock to a waste repository; investigate the interactions between the waste package, sealing systems, and rock; elucidate geotechnical factors affecting potential transport of waste elements from the repository; and establish and refine techniques and procedures for repository engineering. Nine major experimental activities are currently in various stages of planning and implementation at AECL's Underground Research Laboratory (URL). A general description of a quality assurance (QA) program developed at AECL for R and D on nuclear waste disposal has been published previously. This QA program is project-oriented and is designed specifically for and R and D environment. The full application of the QA program is being phased into the management of the operating phase experiments because some activities were under way prior to establishment of the QA program

  8. Benthic prey fish assessment, Lake Ontario 2013

    Weidel, Brian C.; Walsh, Maureen; Connerton, Michael J.

    2014-01-01

    The 2013 benthic fish assessment was delayed and shortened as a result of the U.S. Government shutdown, however the assessment collected 51 of the 62 planned bottom trawls. Over the past 34 years, Slimy Sculpin abundance in Lake Ontario has fluctuated, but ultimately decreased by two orders of magnitude, with a substantial decline occurring in the past 10 years. The 2013 Slimy Sculpin mean bottom trawl catch density (0.001 ind.·m-2, s.d.= 0.0017, n = 52) and mean biomass density (0.015 g·m-2 , s.d.= 0.038, n = 52) were the lowest recorded in the 27 years of sampling using the original bottom trawl design. From 2011-2013, the Slimy Sculpin density and biomass density has decreased by approximately 50% each year. Spring bottom trawl catches illustrate Slimy Sculpin and Round Goby Neogobius melanostoma winter habitat overlaps for as much as 7 months out of a year, providing opportunities for competition and predation. Invasive species, salmonid piscivory, and declines in native benthic invertebrates are likely all important drivers of Slimy Sculpin population dynamics in Lake Ontario. Deepwater Sculpin Myoxocephalus thompsonii, considered rare or absent from Lake Ontario for 30 years, have generally increased over the past eight years. For the first time since they were caught in this assessment, Deepwater Sculpin density and biomass density estimates declined from the previous year. The 2013 abundance and density estimates for trawls covering the standard depths from 60m to 150m was 0.0001 fish per square meter and 0.0028 grams per square meter. In 2013, very few small (recruitment. Nonnative Round Gobies were first detected in the USGS/NYSDEC Lake Ontario spring Alewife assessment in 2002. Since that assessment, observations indicate their population has expanded and they are now found along the entire south shore of Lake Ontario, with the highest densities in U.S. waters just east of the Niagara River confluence. In the 2013 spring-based assessment, both the

  9. An assessment of the reliability of the Ontario electricity system : 18-month outlook from April 2004 to September 2005

    2004-01-01

    This report presents a resource assessment by the Independent Electricity Market Operator (IMO) for the 18-month period from April 2004 to September 2005. It is based on the IMO's forecast of electricity demand. The information was provided by power generators in Ontario. The outlook for the electricity system has improved due to the return to service of 3 nuclear units and the addition of more than 700 MW of generation. The return to service of the nuclear units has decreased Ontario's reliance on imports to help meet energy demand in the province. The shutdown of 1150 MW of coal-fired generation at Lakeview Thermal Generating Station in Mississauga emphasizes the importance of improving transmission and generation capacity in the Toronto area. This report also includes updated values for existing resource scenarios and planned resource scenarios. The reliability of Ontario's transmission system was also assessed along with the adequacy of the existing resource to meet the forecast demand. The existing installed generation resources include 5 nuclear stations generating 10,831 MW of electricity, 5 coal stations generating 7,564 MW of electricity, 22 oil and gas fired stations generating 4,364 MW of electricity, 61 hydroelectric stations generating 7,676 MW of electricity, and 2 other stations generating 66 MW of electricity. Although the existing resource scenario is better than in previous reports, imports will be required under extreme weather conditions to help meet electricity demand in Ontario during peak periods. 21 tabs., 10 figs

  10. HydroSoft coil versus HydroCoil for endovascular aneurysm occlusion study: A single center experience

    Guo Xinbin; Fan Yimu; Zhang Jianning

    2011-01-01

    Background and purpose: The HydroCoil Embolic System (HES) was developed to reduce recurrences of aneurysms relative to platinum coils. But the HydroCoil Embolic System was characterized with many limitations. The manufacturer had recognized the challenge and recently a new design of hydrogel-coated coil-HydroSoft has become available in the market as the new generation HydroCoil. We reported our initial experience using HydroSoft coil versus HydroCoil in our center. Methods: 75 aneurysms embolized primarily using HydroSoft Coils from July 2008 to May 2009 were compared with 66 volume- and shape-matched aneurysms treated with HydroCoils from March 2006 to August 2008. Outcome measures included length and number of coils used, contrast volume, and length of hospital stay. During embolization, a stable framework was first established with bare coils, and hydrogel-coated coils were used subsequently to increase the packing density. Follow-up angiographic results 6 months after treatment were evaluated among some of the patients. Results: Successful coil embolization was achieved in all patients. There were no differences in average total coil length used per aneurysm. There were no differences in length of hospital stay and packing density. HydroSoft coils were more suitable using as the finishing or final coil. HydroSoft coil decreased the procedure-related retreated rates, and aneurysm packing was finished with soft, flexible HydroSoft coil and decreased the neck remnant rates. Follow-up angiography in HydroSoft-treated patients at 6 months revealed aneurysm stability without significant residual neck. Conclusions: HydroSoft coil allowed us to deploy coated coils with good packing density. A slight expansion of these coils at the neck can be expected to reduce neck remnant and potentially inhibit recurrence.

  11. An Overview of Power Topologies for Micro-hydro Turbines

    Nababan, Sabar; Muljadi, E.; Blaabjerg, Frede

    2012-01-01

    This paper is an overview of different power topologies of micro-hydro turbines. The size of micro-hydro turbine is typically under 100kW. Conventional topologies of micro-hydro power are stand-alone operation used in rural electrical network in developing countries. Recently, many of micro-hydro...... power generations are connected to the distribution network through power electronics (PE). This turbines are operated in variable frequency operation to improve efficiency of micro-hydro power generation, improve the power quality, and ride through capability of the generation. In this paper our...... discussion is limited to the distributed generation. Like many other renewable energy sources, the objectives of micro-hydro power generation are to reduce the use of fossil fuel, to improve the reliability of the distribution system (grid), and to reduce the transmission losses. The overview described...

  12. Electricity market readiness plan : Ontario Energy Board

    2001-03-01

    This document informs electric power market participants of the Ontario Energy Board's newly developed market readiness plan and target timelines that local distribution companies (LDCs) must meet for retail marketing. The Ontario Energy Board's plan incorporates relevant independent market operator (IMO)-administered market milestones with retail market readiness targeted for September 2001. The market readiness framework involves a self-certification process for LDCs by August 10, 2001, through which the Board will be able to monitor progress and assess the feasibility of meeting the target timelines. For retail market readiness, all LDCs will have to calculate settlement costs, produce unbundled bills, provide standard supply service, change suppliers and accommodate retail transactions. LDCs must be either authorized participants in the IMO-administered market or become retail customers of their host LDC. Unbundled bills will include itemized charges for energy price, transmission, distribution and debt retirement charge. 1 tab., 1 fig

  13. An Outbreak of Foodborne Botulism in Ontario

    Mona R Loutfy

    2003-01-01

    Full Text Available Botulism is a rare paralytic illness resulting from a potent neurotoxin produced by Clostridium botulinum. Botulism in Canada is predominately due to C botulinum type E and affects mainly the First Nations and Inuit populations. The most recent outbreak of botulism in Ontario was in Ottawa in 1991 and was caused by C botulinum type A. We report an outbreak of foodborne type B botulism in Ontario, which implicated home-canned tomatoes. The outbreak was characterized by mild symptoms in two cases and moderately severe illness in one case. The investigation shows the importance of considering the diagnosis of botulism in patients presenting with cranial nerve and autonomic dysfunction, especially when combined with gastrointestinal complaints; it also highlights the importance of proper home canning technique.

  14. CANDU operating experience

    McConnell, L.G.; Woodhead, L.W.; Fanjoy, G.R.

    1982-03-01

    The CANDU Pressurized Heavy Water (CANDU-PHW) type of nuclear electric generating station has been developed jointly by Atomic Energy of Canada Limited and Ontario Hydro. This paper highlights Ontario Hydro's operating experience using the CANDU-PHW system, with a focus on the operating performance and costs, reliability of system components and nuclear safety considerations both to the workers and the public

  15. Nuclear

    2014-01-01

    This document proposes a presentation and discussion of the main notions, issues, principles, or characteristics related to nuclear energy: radioactivity (presence in the environment, explanation, measurement, periods and activities, low doses, applications), fuel cycle (front end, mining and ore concentration, refining and conversion, fuel fabrication, in the reactor, back end with reprocessing and recycling, transport), the future of the thorium-based fuel cycle (motivations, benefits and drawbacks), nuclear reactors (principles of fission reactors, reactor types, PWR reactors, BWR, heavy-water reactor, high temperature reactor of HTR, future reactors), nuclear wastes (classification, packaging and storage, legal aspects, vitrification, choice of a deep storage option, quantities and costs, foreign practices), radioactive releases of nuclear installations (main released radio-elements, radioactive releases by nuclear reactors and by La Hague plant, gaseous and liquid effluents, impact of releases, regulation), the OSPAR Convention, management and safety of nuclear activities (from control to quality insurance, to quality management and to sustainable development), national safety bodies (mission, means, organisation and activities of ASN, IRSN, HCTISN), international bodies, nuclear and medicine (applications of radioactivity, medical imagery, radiotherapy, doses in nuclear medicine, implementation, the accident in Epinal), nuclear and R and D (past R and D programmes and expenses, main actors in France and present funding, main R and D axis, international cooperation)

  16. Life cycle management at Ontario Power Generation

    Spekkens, P.

    2006-01-01

    This paper outlines the Life Cycle Management (LCM) program at Ontario Power Generation. LCM is carried out at different levels that includes components, systems, unit and fleet. A system involves cumulative effect of individual component aging. These components include steam generators, pressure tubes and feeders. A unit involves an overall unit aging strategy integrating all systems. At the fleet level, there is an optimal strategy for plant-level investments including end-of-life of a unit

  17. Vibration analysis of a hydro generator for different operating regimes

    Haţiegan, C.; Pădureanu, I.; Jurcu, M.; Nedeloni, M. D.; Hamat, C. O.; Chioncel, C. P.; Trocaru, S.; Vasile, O.; Bădescu, O.; Micliuc, D.; (Filip Nedeloni, L.; Băra, A.; (Barboni Haţiegan, L.

    2017-01-01

    Based on experimental measurements, this paper presents the vibration analysis of a hydro generator that equips a Kaplan hydraulic turbine of a Hydropower plant in Romania. This analysis means vibrations measurement to different operating regimes of the hydro generator respectively before installing it and into operation, namely putting off load mode (unexcited and excited) respectively putting on load mode. By comparing, through the experimental results obtained before and after the operation of hydro aggregates are observed vibrations improvements.

  18. Locked on course: Hydro-Quebec's commitment to mega-projects

    Maxwell, J.; Briscoe, F.; Suzuki, Tatsujiro; Lee, J.; Stewart, A.

    1997-01-01

    Large organizations often escalate their commitments to mega-project development, even after evidence becomes available of adverse environmental consequences or lack of economic feasibility. This escalation of commitment transcends both sectorial and national boundaries. Preeminent examples include controversial nuclear projects in the US, hydroelectric projects like the Three Gorges Dam in China, and transport projects like the Chunnel and the Concorde. In this article, the authors examine the experience of Hydro-Quebec with the Great Whale Project. They argue that Hydro-Quebec escalated its commitment even after serious questions emerged about its environmental impacts and economic feasibility, because of (1) its earlier success with large projects, (2) its engineering culture''s norms for consistency, and (3) its role in the government''s desire for economic and cultural autonomy. Finally, they discuss the changes that are necessary to break commitments to such projects

  19. Aquatic dispersion modelling of a tritium plume in Lake Ontario

    Klukas, M.H.; Moltyaner, G.L.

    1996-05-01

    Approximately 2900 kg of tritiated water, containing 2.3E+15 Bq of tritium, were released to Lake Ontario via the cooling water discharge when a leak developed in a moderator heat exchanger in Unit 1 at the Pickering Nuclear Generating Station (PNGS) on 1992 August 2. The release provided the opportunity to study the dispersion of a tritium plume in the coastal zone of Lake Ontario. Current direction over the two-week period following the release was predominantly parallel to the shore, and elevated tritium concentrations were observed up to 20 km east and 85 km west of the PNGS. Predictions of the tritium plume movement were made using current velocity measurements taken at 8-m depth, 2.5 km offshore from Darlington and using a empirical relationship where alongshore current speed is assumed to be proportional to the alongshore component of the wind speed. The tritium migration was best described using current velocity measurements. The tritium plume dispersion is modelled using the one-dimensional advection-dispersion equation. Transport parameters are the alongshore current speed and longitudinal dispersion coefficient. Longitudinal dispersion coefficients, estimated by fitting the solution of the advection-dispersion equation to measured concentration distance profiles ranged from 3.75 to 10.57 m 2 s -1 . Simulations using the fitted values of the dispersion coefficient were able to describe maximum tritium concentrations measured at water supply plants located within 25 km of Pickering to within a factor of 3. The dispersion coefficient is a function of spatial and temporal variability in current velocity and the fitted dispersion coefficients estimated here may not be suitable for predicting tritium plume dispersion under different current conditions. The sensitivity of the dispersion coefficient to variability in current conditions should be evaluated in further field experiments. (author). 13 refs., 7 tabs., 12 figs

  20. Ontario-U.S. power outages : impacts on critical infrastructure

    2006-01-01

    This paper described the power outage and resulting blackout that occurred on August 14, 2003 and identified how critical infrastructure was directly and interdependently impacted in Canada. The aim of the paper was to assist critical infrastructure protection and emergency management professionals in assessing the potential impacts of large-scale critical infrastructure disruptions. Information for the study was acquired from Canadian and American media reports and cross-sectoral information sharing with provincial and federal governments and the private sector. The blackout impacted most of the sources and means of generating, transmitting and distributing power within the area, which in turn impacted all critical infrastructure sectors. Landline and cellular companies experienced operational difficulties, which meant that emergency responders were impacted. Newspapers and the electronic media struggled to release information to the public. The banking and finance industry experienced an immediate degradation of services. The power outage caused shipping and storage difficulties for commercial retailers and dairy producers. A number of incidents were reported where only partially treated waste water was released into neighbouring waterways. The timing of the blackout coincided with the closures of workplaces and created additional difficulties on transportation networks. Many gas station pumps were inoperable. Police, fire departments and ambulance services experienced a dramatic increase in the volume of calls received, and all branches of the emergency services sector encountered transportation delays and difficulties with communications equipment. Nuclear reactors were also impacted. An estimated 150,000 Government of Canada employees were unable to report to work. Estimates have indicated that the power outage cost Ontario's economy between $1 and $2 billion. The outage negatively impacted 82 per cent of small businesses in Ontario. 170 refs., 3 figs

  1. Gas marketing strategies for Ontario producers

    Walsh, P.R. [Energy Objective Ltd., London, ON (Canada)

    2000-07-01

    Activity in natural gas exploration and production in the province of Ontario has recently increased due to higher natural gas prices. This paper discussed the issue of how the gas from the new reserves should be marketed. A review of historical pricing and consumption patterns was also presented to better identify how prices of natural gas are determined in Ontario and to forecast the future demand for natural gas. The first trend of interest is the increased use of natural gas in generating electricity to meet cooling needs in the summer months. The second trend is the increase in gas consumption by the industrial sector resulting from increases in process load. Several marketing options are available to Ontario natural gas producers. They can market their gas to third parties at various trading points in the province or they can market it directly to Union Gas Limited, the local gas utility. This paper briefly described how a gas supply contract works with the union, how gas marketing agreement is conducted with a gas marketer, and how a gas marketing arrangement works with a consultant. Some of the pitfalls of marketing natural gas were also described and some recommended some strategies for selling natural gas in the future were presented. 7 figs.

  2. A fluvial mercury budget for Lake Ontario.

    Denkenberger, Joseph S; Driscoll, Charles T; Mason, Edward; Branfireun, Brian; Warnock, Ashley

    2014-06-03

    Watershed mercury (Hg) flux was calculated for ten inflowing rivers and the outlet for Lake Ontario using empirical measurements from two independent field-sampling programs. Total Hg (THg) flux for nine study watersheds that directly drain into the lake ranged from 0.2 kg/yr to 13 kg/yr, with the dominant fluvial THg load from the Niagara River at 154 kg/yr. THg loss at the outlet (St. Lawrence River) was 68 kg/yr and has declined approximately 40% over the past decade. Fluvial Hg inputs largely (62%) occur in the dissolved fraction and are similar to estimates of atmospheric Hg inputs. Fluvial mass balances suggest strong in-lake retention of particulate Hg inputs (99%), compared to dissolved total Hg (45%) and methyl Hg (22%) fractions. Wetland land cover is a good predictor of methyl Hg yield for Lake Ontario watersheds. Sediment deposition studies, coupled atmospheric and fluvial Hg fluxes, and a comparison of this work with previous measurements indicate that Lake Ontario is a net sink of Hg inputs and not at steady state likely because of recent decreases in point source inputs and atmospheric Hg deposition.

  3. Gas marketing strategies for Ontario producers

    Walsh, P.R.

    2000-01-01

    Activity in natural gas exploration and production in the province of Ontario has recently increased due to higher natural gas prices. This paper discussed the issue of how the gas from the new reserves should be marketed. A review of historical pricing and consumption patterns was also presented to better identify how prices of natural gas are determined in Ontario and to forecast the future demand for natural gas. The first trend of interest is the increased use of natural gas in generating electricity to meet cooling needs in the summer months. The second trend is the increase in gas consumption by the industrial sector resulting from increases in process load. Several marketing options are available to Ontario natural gas producers. They can market their gas to third parties at various trading points in the province or they can market it directly to Union Gas Limited, the local gas utility. This paper briefly described how a gas supply contract works with the union, how gas marketing agreement is conducted with a gas marketer, and how a gas marketing arrangement works with a consultant. Some of the pitfalls of marketing natural gas were also described and some recommended some strategies for selling natural gas in the future were presented. 7 figs

  4. Reappraisal of the seismotectonics of southern Ontario

    Mohajer, A.A.

    1987-11-01

    The fundamental objectives of this study were to review and improve the seismological data base as an aid in more realistic evaluation of seismic hazard in southern Ontario. For this purpose, the following procedures have been undertaken: In the first stage, the types of errors in earthquake location files are identified, sources of uncertainties are discussed and a sensitivity analysis of the errors to different parameters is presented. In the second stage, a group location technique, Joint Hypocenter Determination (JHD), has been utilized to improve the locations of a group of 67 well-recorded events, mostly from the more active region near the Ottawa River and in western Quebec. The third stage, to relocate smaller and less reliably detected events in southern Ontario, utilized a nw algorithm, 'HYPOCENTER', which proved very efficient and flexible in the test runs for handling local explosion and natural events. A preliminary interpretation of the seismicity patterns in the study regions shows that earthquakes of magnitude 3 and larger tend to align along preferred seismic trends which may, in turn, be controlled by weakness planes in the Earth's crust. These inferred trends coincide with dominant northwesterly and northeasterly striking structural directions. For earthquakes smaller than magnitude 4 prior to 1970 and for microearthquakes (M<3) which occurred near the Lake Ontario shoreline, the detection coverage was not sufficient to conclusively discuss accurate locations and causative mechanisms

  5. Climate change impacts: an Ontario perspective

    Mortsch, L.

    1995-11-01

    Significant changes in the climate system which are likely to affect biophysical, social and economic systems in various ways, were discussed. Trends in greenhouse gas levels show that during the 20. century, human activity has changed the make-up of the atmosphere and its greenhouse effect properties. A pilot study on the impacts of climate change identified changes in the water regime such as declines in net basin supply, lake levels and outflows, as important concerns. These changes would have impacts on water quality, wetlands, municipal water supply, hydroelectric power generation, commercial shipping, tourism and recreation, and to a lesser extent, on food productions. Climate impact assessments suggest that world conditions will change significantly as a result. Those with less resources are likely to be most affected by climate change, and the impacts on other regions of the world will be more significant to Ontario than the direct impacts on Ontario itself. In an effort to keep pace with global changes, Ontario will have to limit emissions, conduct research in innovative technology and develop greater awareness of the risk of climate change. refs., tabs., figs

  6. Hydro mechanical behaviour of shales. Application to the Tournemire site

    Ramambasoa, N.

    2001-01-01

    In order to fulfill its mission of research and expertise about deep nuclear waste disposals, the French Institute for Nuclear Protection and Safety has selected the Tournemire site to study the confining properties of argillaceous media. This study is mainly motivated by the apparition of cracks that after the excavation of two galleries perpendicularly to an old tunnel. These cracks are not of mechanical or tectonic origin. They are regularly spaced and follow the rock sub-horizontal stratification. Their aperture is very sensitive to the hygrometry in the galleries. These cracks are supposed to result of the rock desaturation, which is in contact with an unsaturated atmosphere. In order to validate this hypothesis, an hydro-mechanical constitutive law for Tournemire shale is proposed. In order to take account of the shale desaturation and of microscopic interactions specific of argillaceous media, chemical potential is used as an hydric variable instead of interstitial pressure, which is classically used in poro-mechanics. This constitutive law differs from classical elastic law by the dependence of elastic parameters with the water chemical potential and by the adding of shrinkage strains and mechanical strains to get total strains. The numerical simulation of the Tournemire galleries desaturation shows the existence of high tractions around the excavation that certainly lead to material failure. The propagation of the cracks at the front faces is modeled by taking account of the interactions between the cracks in order to predict their depth and to explain their almost periodical distribution on the site. (author)

  7. Full-scope nuclear training simulator -brought to the desktop

    LaPointe, D.J.; Manz, A.; Hall, G.S.

    1997-01-01

    further tools are developed to enhance the system, all users of the system will benefit from these improvements. We feel this will have meaningful benefit to training and engineering analysis users who will in turn be better able to contribute to nuclear recovery in Ontario Hydro. (author)

  8. Competition policy and regulation in hydro-dominated electricity markets

    Rangel, Luiz Fernando

    2008-01-01

    This paper discusses the main competition issues that arise in electricity systems dominated by hydro generation, arguing that technological differences between hydro and thermal plants may allow hydropower producers to exert market power in different and subtler ways compared to thermal generators. The key for market power in hydro-based systems is the strategic allocation of a given amount of output across periods, rather than a straightforward reduction of total output. The paper examines the interaction between strategic hydro reservoir operation and transmission capacity constraints, and summarizes the implications of market power for system reliability. A review of recent relevant literature is included. Finally, possible interventions to mitigate market power are analysed

  9. BOT schemes as financial model of hydro power projects

    Grausam, A.

    1997-01-01

    Build-operate-transfer (BOT) schemes are the latest methods adopted in the developing infrastructure projects. This paper outlines the project financing through BOT schemes and briefly focuses on the factors particularly relevant to hydro power projects. Hydro power development provides not only the best way to produce electricity, it can also solve problems in different fields, such as navigation problems in case of run-of-the river plants, ground water management systems and flood control etc. This makes HPP projects not cheaper, but hydro energy is a clean and renewable energy and the hydro potential worldwide will play a major role to meet the increased demand in future. 5 figs

  10. Phytotoxicology section investigation in the vicinity of the Bruce Nuclear Power Development, the Pickering Nuclear Generating Station and the Darlington Nuclear Generating Station, in October, 1989

    1991-02-01

    The Phytotoxicology Section, Air Resources Branch is a participant in the Pickering and Bruce Nuclear Contingency Plans. The Phytotoxicology Emergency Response Team is responsible for collecting vegetation samples in the event of a nuclear emergency at any of the nuclear generating stations in the province. As part of its responsibility the Phytotoxicology Section collects samples around the nuclear generating stations for comparison purposes in the event of an emergency. Because of the limited frequency of sampling, the data from the surveys are not intended to be used as part of a regulatory monitoring program. These data represent an effort by the MOE to begin to establish a data base of tritium concentrations in vegetation. The Phytotoxicology Section has carried out seven surveys in the vicinity of Ontario Hydro nuclear generating stations since 1981. Surveys were conducted for tritium in snow in the vicinity of Bruce Nuclear Power Development (BNPD), February, 1981; tritium in cell-free water of white ash in the vicinity of BNPD, September, 1981; tritium in snow in the vicinity of BNPD, March, 1982; tritium in tree sap in the vicinity of BNPD, April, 1982; tritium in tree sap in the vicinity of BNPD, April, 1984, tritium in the cell-free water of white ash in the vicinity of BNPD, September, 1985; and, tritium in cell-free water of grass in the vicinity of Pickering Nuclear Generation Station (PNGS), October 1986. In all cases a pattern of decreasing tritium levels with increasing distance from the stations was observed. In October, 1989, assessment surveys were conducted around Bruce Nuclear Power Development, the Pickering Nuclear Generating Station and the new Darlington Nuclear Generating Station (DNGS). The purpose of these surveys was to provide baseline data for tritium in cell-free water of grass at all three locations at the same time of year. As none of the reactor units at DNGS had been brought on line at the time of the survey, this data was to be

  11. Industry, university and government partnership to address research, education and human resource challenges for nuclear industry in Canada

    Mathur, R.M.

    2004-01-01

    professors from all supported universities and which can be completed through part-time studies; Create a pool of nuclear expertise in universities that can be accessed by public and governments for impartial and trustworthy advice. The Canadian Nuclear Safety Commission (CNSC), the Canadian Regulator, and Candu Owners Group are also participating in UNENE activities. Nuclear industries have linked with a select group of Canadian universities agreeable to committing to nuclear research and education and seeking investment from governments to match cash and in-kind contributions from industry. The University Network of Excellence in Nuclear Engineering (UNENE) was thus created involving universities of McMaster, Queen's, Toronto, Waterloo, Western Ontario and the new University of Ontario Institute of Technology. These universities are recipients of funds for setting up NSERC-UNENE Industry Research Chairs in Nuclear Engineering. Also, Ecole Polytechnique and the University of New Brunswick, supported respectively by Hydro Quebec and New Brunswick Power, and Royal Military College - operating a joint graduate program with Queen's University, are participants in UNENE. The following Industrial Research Chairs are either in place or approved to start within the next few months. In each case there is a provision for hiring a junior Research Chair. - Dr. John Luxat, Nuclear Safety Analysis and Thermal Hydraulics, McMaster University; - Dr. Rick Holt, Advanced Nuclear Materials, Queen's University; - Dr. Roger Newman, Nano-Engineering of Alloys for Nuclear Power Systems, University of Toronto; - Dr. Mahesh Pandey, Risk-Based Life Cycle Management of Engineering Systems, University of Waterloo; - Dr. Jin Jiang, Control, Instrumentation and Electrical Systems of Nuclear Power Plants, University of Western Ontario. Progress is being made to find a candidate and define a research program for an Industrial Research Chair:- Knowledge Management, University of Ontario Institute of

  12. Mental Health Consultation Among Ontario's Immigrant Populations.

    Islam, Farah; Khanlou, Nazilla; Macpherson, Alison; Tamim, Hala

    2017-11-16

    To determine the prevalence rates and characteristics of past-year mental health consultation for Ontario's adult (18 + years old) immigrant populations. The Canadian Community Health Survey (CCHS) 2012 was used to calculate the prevalence rates of past-year mental health consultation by service provider type. Characteristics associated with mental health consultation were determined by carrying out multivariable logistic regression analysis on merged CCHS 2008-2012 data. Adult immigrant populations in Ontario (n = 3995) had lower estimated prevalence rates of past-year mental health consultation across all service provider types compared to Canadian-born populations (n = 14,644). Amongst those who reported past-year mental health consultation, 57.89% of Ontario immigrants contacted their primary care physician, which was significantly higher than the proportion who consulted their family doctor from Canadian-born populations (45.31%). The factors of gender, age, racial/ethnic background, education level, working status, food insecurity status, self-perceived health status, smoking status, alcohol drinking status, years since immigration, and age at time of immigration were significantly associated with past-year mental health consultation for immigrant populations. Ontario's adult immigrant populations most commonly consult their family doctor for mental health care. Potential exists for expanding the mental health care role of primary care physicians as well as efforts to increase accessibility of specialized mental health services. Integrated, coordinated care where primary care physicians, specialized mental health professionals, social workers, and community educators, etc. working together in a sort of "one-stop-shop" may be the most effective way to mitigate gaps in the mental health care system. In order to effectively tailor mental health policy, programming, and promotion to suit the needs of immigrant populations initiatives that focus on

  13. Lake Ontario benthic prey fish assessment, 2015

    Weidel, Brian C.; Walsh, Maureen; Holden, Jeremy P.; Connerton, Michael J.

    2016-01-01

    Benthic prey fishes are a critical component of the Lake Ontario food web, serving as energy vectors from benthic invertebrates to native and introduced piscivores. Since the late 1970’s, Lake Ontario benthic prey fish status was primarily assessed using bottom trawl observations confined to the lake’s south shore, in waters from 8 – 150 m (26 – 492 ft). In 2015, the Benthic Prey Fish Survey was cooperatively adjusted and expanded to address resource management information needs including lake-wide benthic prey fish population dynamics. Effort increased from 55 bottom trawl sites to 135 trawl sites collected in depths from 8 - 225m (26 – 738 ft). The spatial coverage of sampling was also expanded and occurred in all major lake basins. The resulting distribution of tow depths more closely matched the available lake depth distribution. The additional effort illustrated how previous surveys were underestimating lake-wide Deepwater Sculpin, Myoxocephalus thompsonii, abundance by not sampling in areas of highest density. We also found species richness was greater in the new sampling sites relative to the historic sites with 11 new fish species caught in the new sites including juvenile Round Whitefish, Prosopium cylindraceum, and Mottled sculpin, Cottus bairdii. Species-specific assessments found Slimy Sculpin, Cottus cognatus abundance increased slightly in 2015 relative to 2014, while Deepwater Sculpin and Round Goby, Neogobius melanostomus, dramatically increased in 2015, relative to 2014. The cooperative, lake-wide Benthic Prey Fish Survey expanded our understanding of benthic fish population dynamics and habitat use in Lake Ontario. This survey’s data and interpretations influence international resource management decision making, such as informing the Deepwater Sculpin conservation status and assessing the balance between sport fish consumption and prey fish populations. Additionally a significant Lake Ontario event occurred in May 2015 when a single

  14. Proceedings of the Ontario Energy Association's 2004 annual conference

    2004-01-01

    The Ontario Energy Association (OEA) is a unique trade association that represents key participants in Ontario's converging natural gas and electricity industries. Its members include energy producers, transmitters, distributors, marketers, and retailers. This conference provided a forum to discuss the role of energy policy and energy conservation in promoting competitive and efficient gas and electricity markets in Ontario. The conference featured 15 presentations, of which 3 have been catalogued separately for inclusion in this database

  15. Hydro investment analysis under new market conditions

    Doorman, Gerard

    2010-07-01

    Full text: A future energy system with stronger coupling to Europe and with an increased share of non-regulated renewables will lead to increasing variability of the demand faced by the hydro system. In a market based system these variations will be reflected by larger daily price variations, both in the Elspot day ahead market, the Elbas intraday market and in the balancing market. With its unique regulation capabilities, hydro power will be very well positioned to handle these variations. However, existing model concepts for long term hydro scheduling were not developed for this framework, and do not take the new market conditions into account to a sufficient degree. Therefore hydro scheduling tools used for upgrading and investment analysis as well as analysing consequences of new environmental demands need adaptation to a finer temporal resolution, and to perform optimisation under varying constraints and uncertain input data for inflow and electricity prices. Focus is on investment analysis for a river system or power producer. Existing models can be grouped in the long-term (scheduling models with a time horizon up to 5 years) EOPS (Vansimtap), EOPS-ST (SimtapEffekt) and ProdRisk, and the shortterm scheduling models with a typical time horizon up to a few weeks, but focus on 1-2 days (SHOP and ID-SIM). A perfect tool in the present context would combine the properties of the long term stochastic optimisation models with the modelling details of SHOP and/or ID-SIM. However, this is probably not possible and simplifications will be necessary. Some important deficiencies in the present long term models are: Insufficiently realistic plant models in the relevant optimization models; Time delays are not handled; Handing of flexible / state dependent constraints; Handling of ramping constraints; Modelling of the cost of frequent regulations (wear and tear); Reserve markets As a result of these deficiencies the investment analysis does not adequately assess the value

  16. Steam generator life cycle management: Ontario Power Generation (OPG) experience

    Maruska, C.C.

    2002-01-01

    A systematic managed process for steam generators has been implemented at Ontario Power Generation (OPG) nuclear stations for the past several years. One of the key requirements of this managed process is to have in place long range Steam Generator Life Cycle Management (SG LCM) plans for each unit. The primary goal of these plans is to maximize the value of the nuclear facility through safe and reliable steam generator operation over the expected life of the units. The SG LCM plans integrate and schedule all steam generator actions such as inspection, operation, maintenance, modifications, repairs, assessments, R and D, performance monitoring and feedback. This paper discusses OPG steam generator life cycle management experience to date, including successes, failures and how lessons learned have been re-applied. The discussion includes relevant examples from each of the operating stations: Pickering B and Darlington. It also includes some of the experience and lessons learned from the activities carried out to refurbish the steam generators at Pickering A after several years in long term lay-up. The paper is structured along the various degradation modes that have been observed to date at these sites, including monitoring and mitigating actions taken and future plans. (author)

  17. The control of emissions from nuclear power reactors in Canada

    Gorman, D.J.; Neil, B.C.J.; Chatterjee, R.M.

    1988-01-01

    Nuclear power reactors in Canada are of the CANDU pressurised heavy water design. These are located in the provinces of Ontario, Quebec, and New Brunswick. Most of the nuclear generating capacity is in the province of Ontario which has 16 commissioned reactors with a total capacity of 11,500 MWe. There are four reactors under construction with an additional capacity of 3400 MWe. Nuclear power currently accounts for approximately 50% of the electrical power generation of Ontario. Regulation of the reactors is a Federal Government responsibility administered by the Atomic Energy Control Board (AECB) which licenses the reactors and sets occupational and public dose limits

  18. Standardized CSR and climate performance: why is Shell willing, but Hydro reluctant?; Shell; Hydro

    Boasson, Elin Lerum; Wettestad, Joergen

    2007-06-15

    This report aims to contribute to the ongoing discussion concerning whether CSR merely serves to streamline company rhetoric or also has an influence on actual efforts. We discuss the tangible effects of CSR instruments on the climate-related rules and performances of the two different oil companies Hydro and Shell. First we explore whether similar CSR instruments lead to similar climate-related rules and practices in the two companies. Both Hydro and Shell adhere to the Global Compact (GC), the Global Reporting Initiative (GRI), the Carbon Disclosure Project (CDP) and the Global Gas Flaring Reduction Public-Private Partnership (GGFR). The report concludes that the GC has not rendered any tangible effects in either of the companies. Concerning the other instruments, Hydro has only followed the instrument requirements that fit their initial approach, and refrained from all deviating requirements. Shell has been more malleable, but we have noted few effects on the actual emissions and business portfolio resulting from the instrument adherence. Second, we assess how the differing results of the similar CSR portfolio may be explained. The reluctant attitude of the leaders in Hydro and the strong CSR motivation of Shell's executives result in significant differences. Hydro executives are able to constrain the effects of the instrument adherence. With Shell we note the opposite pattern: Its leaders promoted the instruments to be translated into internal rules, but a general lack of hierarchical structures hinders them from governing the conduct of various sub-organisations. The very diversity of the Shell culture helps to explain why the efforts of its executives have resulted in limited impact. The strength of the Hydro culture makes the corporation resistant to the instruments. Moreover, Hydro is strikingly shielded by virtue of its strong position in Norway. In contrast, Shell is more strongly affected by the global field of petroleum and the global field of CSR

  19. Hydro-electric power - potential and limitations

    Amundsen, T.

    1995-01-01

    This paper focuses on efficiency improvement in electric power production by matching the different characteristics for thermal power and hydropower. The paper introduces secondary hydropower defined as available power stored as hydro-energy in water reservoirs as a key element to achieve this goal. The iron-locked connection between GDP (Gross Domestic Product) and power consumption is discussed. As it also is a general understanding that GDP has to increase to accommodate the world's growing population, the unavoidable conclusion is that more power is to be produced. 3 figs

  20. Global warming: a changing climate for hydro

    Oud, E.

    1993-01-01

    This paper quantifies the benefits attributable to hydroelectric power generation in preventing carbon dioxide emissions from the use of thermal plants. It proposes that utilities and funding agencies consider the societal costs associated with the emission of CO 2 in power system planning. It also suggests that the industrialized countries should consider changing their funding practice and give more appropriate credits for the construction of hydro plants in developing countries, with a view to avoiding the construction and operation of fossil fuelled powerplants. (author)