WorldWideScience

Sample records for online monitoring techniques

  1. INTERIM REPORT ON CONCRETE DEGRADATION MECHANISMS AND ONLINE MONITORING TECHNIQUES

    Energy Technology Data Exchange (ETDEWEB)

    Mahadevan, Sankaran; Agarwal, Vivek; Neal, Kyle; Kosson, David; Adams, Douglas

    2014-09-01

    The existing fleets of nuclear power plants in the United States have initial operating licenses of 40 years, though most these plants have applied for and received license extensions. As plant structures, systems, and components age, their useful life—considering both structural integrity and performance—is reduced as a result of deterioration of the materials. The online monitoring of concrete structure conducted under the Advanced Instrumentation, Information, and Control Technologies Pathway of the Light Water Reactor Sustainability program at Idaho National Laboratory will develop and demonstrate concrete structures health monitoring capabilities. Assessment and management of aging concrete structures in nuclear plants require a more systematic approach than simple reliance on existing code margins of safety. Therefore, the structural health monitoring is required to produce actionable information regarding structural integrity that supports operational and maintenance decisions. Through this research project, several national laboratories and Vanderbilt University proposes to develop a framework of research activities for the health monitoring of nuclear power plant concrete structures that includes integration of four elements—damage modeling, monitoring, data analytics, and uncertainty quantification. This report briefly discusses available techniques and ongoing challenges in each of the four elements of the proposed framework with emphasis on degradation mechanisms and online monitoring techniques.

  2. Interim Report on Concrete Degradation Mechanisms and Online Monitoring Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mahadevan, Sankaran [Idaho National Lab. (INL), Idaho Falls, ID (United States); Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States); Neal, Kyle [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kosson, David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Adams, Douglas [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    The existing nuclear power plants in the United States have initial operating licenses of 40 years, though most of these plants have applied for and received license extensions. As plant structures, systems, and components age, their useful life—considering both structural integrity and performance—is reduced as a result of deterioration of the materials. The research on online monitoring of concrete structures conducted under the Advanced Instrumentation, Information, and Control Systems Technologies Pathway of the Light Water Reactor Sustainability Program at Idaho National Laboratory will develop and demonstrate concrete structures health monitoring capabilities. Assessment and management of aging concrete structures in nuclear plants require a more systematic approach than simple reliance on existing code margins of safety. Therefore, structural health monitoring is required to produce actionable information regarding structural integrity that supports operational and maintenance decisions. Through this research project, several national laboratories and Vanderbilt University propose to develop a framework of research activities for the health monitoring of nuclear power plant concrete structures that includes the integration of four elements—damage modeling, monitoring, data analytics, and uncertainty quantification. This report briefly discusses available techniques and ongoing challenges in each of the four elements of the proposed framework with emphasis on degradation mechanisms and online monitoring techniques.

  3. On-Line Life Monitoring Technique for Tube Bundles of Boiler High-Temperature Heating Surface

    Institute of Scientific and Technical Information of China (English)

    Yang Dong; Wang Zhongyuan

    2005-01-01

    High-temperature heating surface such as superheater and reheater of large-sized utility boiler all experiences a relatively severe working conditions. The failure of boiler tubes will directly impact the safe and economic operation of boiler. An on-line life monitoring model of high-temperature heating surface was set up according to the well-known L-M formula of the creep damages. The tube wall metal temperature and working stress was measured by on-line monitoring, and with this model, the real-time calculation of the life expenditure of the heating surface tube bundles were realized. Based on the technique the on-line life monitoring and management system of high-temperature heating surface was developed for a 300 MW utility boiler. An effective device was thus suggested for the implementation of the safe operation and the condition-based maintenance of utility boilers.

  4. [Techniques of on-line monitoring volatile organic compounds in ambient air with optical spectroscopy].

    Science.gov (United States)

    Du, Zhen-Hui; Zhai, Ya-Qiong; Li, Jin-Yi; Hu, Bo

    2009-12-01

    Volatile organic compounds (VOCs) are harmful gaseous pollutants in the ambient air. The techniques of on-line monitoring VOCs are very significant for environment protection. Until now, there is no single technology that can meet all the needs of monitoring various VOCs. The characteristics and present situation of several optical methods, which can be applied to on-line monitoring VOCs, including non dispersive infrared (NDIR), Fourier transform infrared (FTIR) spectroscopy, differential optical absorption spectroscopy (DOAS), and laser spectroscopy were reviewed. Comparison was completed between the national standard methods and spectroscopic method for measuring VOCs. The main analysis was focused on the status and trends of tuning diode laser absorption spectroscopy (TDLAS) technology.

  5. An online technique for condition monitoring the induction generators used in wind and marine turbines

    Science.gov (United States)

    Yang, Wenxian; Tavner, P. J.; Court, R.

    2013-07-01

    Induction generators have been successfully applied to a variety of industries. However, their operation and maintenance in renewable wind and marine energy industries still face challenges due to harsh environments, limited access to site and relevant reliability issues. Hence, further enhancing their condition monitoring is regarded as one of the essential measures for improving their availability. To date, much effort has been made to monitor induction motors, which can be equally applied to monitoring induction generators. However, the achieved techniques still have constrains in particular when dealing with the condition monitoring problems in wind and marine turbine generators. For example, physical measurements of partial discharge, noise and temperature have been widely applied to monitoring induction machinery. They are simple and cost-effective, but unable to be used for fault diagnosis. The spectral analysis of vibration and stator current signals is also a mature technique popularly used in motor/generator condition monitoring practice. However, it often requires sufficient expertise for data interpretation, and significant pre-knowledge about the machines and their components. In particular in renewable wind and marine industries, the condition monitoring results are usually coupled with load variations, which further increases the difficulty of obtaining a reliable condition monitoring result. In view of these issues, a new condition monitoring technique is developed in this paper dedicated for wind and marine turbine generators. It is simple, informative and less load-dependent thus more reliable to deal with the online motor/generator condition monitoring problems under varying loading conditions. The technique has been verified through both simulated and practical experiments. It has been shown that with the aid of the proposed technique, not only the electrical faults but also the shaft unbalance occurring in the generator become detectable

  6. On-line monitoring of poly dimethylsiloxane surface modification using the photothermal deflection technique

    Energy Technology Data Exchange (ETDEWEB)

    Najmoddin, Najmeh, E-mail: najmoddin@iust.ac.ir; Khosroshahi, Mohammad E.

    2015-02-21

    Over the last decade, there has been particular interest in surface modification of biomaterials with regard to understanding the importance of surface characterization. This paper reports the use of photothermal deflection (PTD) technique to monitor modifications in poly dimethylsiloxane (PDMS) surface induced following laser treatments. The FTIR results are in agreement with PTD results, indicating that no structural changes occurred using Argon laser up to 180 s and 200 mW at 454, 488 and 514 nm wavelengths. However, with CO{sub 2} laser some physical and chemical changes occurred which are monitored by PTD technique and proved by SEM images.

  7. Study on On-line Trace Analysis Technique for SG Tube Leakage Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seban; Park, Jongsuk; Kim, Seungil; Jo, Youngsoo; Kang, Dukwon [HaJI Co. Ltd., Radiation Eng. Center, Shihung (Korea, Republic of)

    2014-05-15

    NPPs steam generator leakage monitoring method is mainly adopted in the world. Since this method is using nuclear fission product of certain radionuclides ({sup 16}N, {sup 3}H, Xe, etc.), it is only available when the reactor power is more than 20%. Therefore, it requires alternative techniques of real-time leakage monitoring under a variety of operation conditions such as start-up, abnormal environment of NPPs, etc. Boron which exists mostly nonionic particle state has been weakly ionized, revealing the lowest anionic tendency in aqueous phase (SO{sub 4}{sup 2-}>Cl{sup -}>F{sup -}>SiO{sub 2}{sup -}>HBO{sub 3}{sup -}). In general, B has been titrated with a NaOH solution into a new compound forming a strong alkaline anion after being dissociated with addition of a polyhydric alcohol. And that has been also measured amplified conductivity that reacting directly polyhydric alcohol by conductivity detector. GE (General Electric Company) has applied monitoring equipment of ultrapure water production by using mannitol reagent as polyhydric alcohol, which is detected less than 20 ppb of boron in the semiconductor company. However, the separation of boron among the secondary water system has been regarded as a critical issue because it contains a lot of impurities and particulate materials which are N{sub 2}H{sub 4}, NH{sub 3}, ETA and component of the iron in the system. This study is a follow-up study concerning the separation of boron peak presented at the 2013 Korean Nuclear Society. This study indicates the possibility of analysis of trace-level boron. The study investigated the separation of boron peak with anion through 3-steps mode. In previous studies, the problem of peaks overlap has been solved through the rinse process completely removing the interfering ions presented on the line. The combination of mannitol and MSA was dissociated from the strong compound between boron and a chelating type resin in the CB column. In particular, the CB column will be able to

  8. Correlation of cure monitoring techniques

    Science.gov (United States)

    Chang, S. S.; Mopsik, F. I.; Hunston, D. L.

    Six different composite matrix or neat resin cure-monitoring methods are presently used to follow the cure process in a model epoxy system, and the results obtained are compared. Differential scanning calorimetry, viscosity monitoring, the ultrasonic shear wave propagation technique, dielectric spectrometry, and two different fluorescence intensity techniques are compared with a view to common traits and differences. Dielectric fluorescence and ultrasonic measurement techniques are noted to be applicable to on-line process monitoring.

  9. Investigation on using neutron counting techniques for online burnup monitoring of pebble bed reactor fuels

    Science.gov (United States)

    Zhao, Zhongxiang

    Modular Pebble Bed Reactor (MPBR) is a high temperature gas-cooled nuclear power reactor. This project investigated the feasibility of using the passive neutron counting and active neutron/gamma counting for the on line fuel burnup measurement for MPBR. To investigate whether there is a correlation between neutron emission and fuel burnup, the MPBR fuel depletion was simulated under different irradiation conditions by ORIGEN2. It was found that the neutron emission from an irradiated pebble increases with burnup super-linearly and reaches to 104 neutron/sec/pebble at the discharge burnup. The photon emission from an irradiated pebble was found to be in the order of 1013 photon/sec/pebble at all burnup levels. Analysis shows that the neutron emission rate of an irradiated pebble is sensitive to its burnup history and the spectral-averaged one-group cross sections used in the depletion calculations, which consequently leads to large uncertainty in the correlation between neutron emission and burnup. At low burnup levels, the uncertainty in the neutron emission/burnup correlation is too high and the neutron emission rate is too low so that it is impossible to determine a pebble's burnup by on-line neutron counting at low burnup levels. At high burnup levels, the uncertainty in the neutron emission rate becomes less but is still large in quantity. However, considering the super-linear feature of the correlation, the uncertainty in burnup determination was found to be ˜7% at the discharge burnup, which is acceptable. Therefore, total neutron emission rate of a pebble can be used as a burnup indicator to determine whether a pebble should be discharged or not. The feasibility of using passive neutron counting methods for the on-line burnup measurement was investigated by using a general Monte Carlo code, MCNP, to assess the detectability of the neutron emission and the capability to discriminate gamma noise by commonly used neutron detectors. It was found that both He-3

  10. Fluorescence technique for on-line monitoring of state of hydrogen-producing microorganisms

    Science.gov (United States)

    Seibert, Michael; Makarova, Valeriya; Tsygankov, Anatoly A.; Rubin, Andrew B.

    2007-06-12

    In situ fluorescence method to monitor state of sulfur-deprived algal culture's ability to produce H.sub.2 under sulfur depletion, comprising: a) providing sulfur-deprived algal culture; b) illuminating culture; c) measuring onset of H.sub.2 percentage in produced gas phase at multiple times to ascertain point immediately after anerobiosis to obtain H.sub.2 data as function of time; and d) determining any abrupt change in three in situ fluorescence parameters; i) increase in F.sub.t (steady-state level of chlorophyll fluorescence in light adapted cells); ii) decrease in F.sub.m', (maximal saturating light induced fluorescence level in light adapted cells); and iii) decrease in .DELTA.F/F.sub.m'=(F.sub.m'-F.sub.t)/F.sub.m' (calculated photochemical activity of photosystem II (PSII) signaling full reduction of plastoquinone pool between PSII and PSI, which indicates start of anaerobic conditions that induces synthesis of hydrogenase enzyme for subsequent H.sub.2 production that signal oxidation of plastoquinone pool asmain factor to regulate H.sub.2 under sulfur depletion.

  11. Study on a New Technique of On-line Monitoring of Oil Contamination Level Using Computer Vision Technology

    Institute of Scientific and Technical Information of China (English)

    TU Qun-zhang; ZUO Hong-fu

    2004-01-01

    In this paper,a new technique of capturing the images of debris in lubrication or hydraulic oil using micro-imaging and computer vision techniques is introduced.By way of image processing,the size and distribution of debris are obtained,and then the oil contamination level is also obtained.Because the information of oil contamination is obtained directly from the images of debris by this method,the monitoring result is more intuitive and reliable.

  12. The Use of MIMS-MS-MS in field locations as an on-line quantitative environmental monitoring technique for trace contaminants in air and water.

    Science.gov (United States)

    Etzkorn, J M; Davey, N G; Thompson, A J; Creba, A S; Leblanc, C W; Simpson, C D; Krogh, E T; Gill, C G

    2009-01-01

    Membrane introduction mass spectrometry (MIMS) is emerging as an important technique for on-line, real-time environmental monitoring. Because MIMS interfaces are simple and robust, they are ideally suited for operation in MS instrumentation used for in-field applications. We report the use of an on-line permeation tube to continuously infuse an isotopically labeled internal standard for continuous quantitative determinations in atmospheric and aqueous samples without the need for off-line calibration. This approach also provides important information on the operational performance of the analytical system during multi-day deployments. We report measured signal stability during on-line deployments in air and water of 7% based on variation of the internal standard response and have used this technique to quantify BTEX (benzene, toluene, ethylbenzenes, and xylenes), pinenes, naphthalene and 2-methoxyphenol (guaiacol) in urban air plumes at parts-per-billion by volume levels. Presented are several recent applications of MIMS-MS-MS for on-line environmental monitoring in atmospheric and aqueous environmental samples demonstrating laboratory, remote and mobile deployments. We also present the use of a thermally assisted MIMS interface for the direct measurement of polyaromatic hydrocarbons, alkylphenols, and other SVOCs in the low ppb range in aqueous environmental samples and discuss improvements in both the sensitivity and response times for selected SVOCs. The work presented in this paper represents significant improvements in field deployable mass spectrometric techniques, which can be applied to direct on-site analytical measurements of VOC and SVOCs in environmental samples.

  13. ATLAS online data quality monitoring

    CERN Document Server

    Cuenca Almenar, C; The ATLAS collaboration; Hadavand, H; Ilchenko, Y; Kolos, S; Slagle, K; Taffard, A

    2010-01-01

    Every minute the ATLAS detector is taking data, the monitoring framework serves several thousands physics events to monitoring data analysis applications, handles millions of histogram updates coming from thousands applications, executes over forty thousand advanced data quality checks for a subset of those histograms, displays histograms and results of these checks on several dozens of monitors installed in main and satellite ATLAS control rooms. The online data quality monitoring system has been of great help in providing quick feedback to the subsystems about the functioning and performance of the different parts of ATLAS by providing a configurable easy and fast visualization of all this information. The Data Quality Monitoring Display (DQMD) is a visualization tool for the automatic data quality assessment of the ATLAS experiment. It is the interface through which the shift crew and experts can validate the quality of the data being recorded or processed, be warned of problems related to data quality, an...

  14. ATLAS online data quality monitoring

    CERN Document Server

    Cuenca Almenar, C; The ATLAS collaboration

    2010-01-01

    With the delivery of the first proton-proton collisions by the LHC, the ATLAS collaboration had the opportunity to operate the detector under the environment it was designed for. These first events have been of great interest not only for the high energy physics outcome, but also as a means to perform a general commissioning of system. A highly scalable distributed monitoring framework assesses the quality of the data and the operational conditions of the detector, trigger and data acquisition system. Every minute of an ATLAS data taking session the monitoring framework serves several thousands physics events to monitoring data analysis applications, handles millions of histogram updates coming from thousands applications, executes over forty thousand advanced data quality checks for a subset of those histograms, displays histograms and results of these checks on several dozens of monitors installed in main and satellite ATLAS control rooms. The online data quality monitoring system has been of great help in ...

  15. Scale-up from microtiter plate to laboratory fermenter: evaluation by online monitoring techniques of growth and protein expression in Escherichia coli and Hansenula polymorpha fermentations

    Directory of Open Access Journals (Sweden)

    Engelbrecht Christoph

    2009-12-01

    Full Text Available Abstract Background In the past decade, an enormous number of new bioprocesses have evolved in the biotechnology industry. These bioprocesses have to be developed fast and at a maximum productivity. Up to now, only few microbioreactors were developed to fulfill these demands and to facilitate sample processing. One predominant reaction platform is the shaken microtiter plate (MTP, which provides high-throughput at minimal expenses in time, money and work effort. By taking advantage of this simple and efficient microbioreactor array, a new online monitoring technique for biomass and fluorescence, called BioLector, has been recently developed. The combination of high-throughput and high information content makes the BioLector a very powerful tool in bioprocess development. Nevertheless, the scalabilty of results from the micro-scale to laboratory or even larger scales is very important for short development times. Therefore, engineering parameters regarding the reactor design and its operation conditions play an important role even on a micro-scale. In order to evaluate the scale-up from a microtiter plate scale (200 μL to a stirred tank fermenter scale (1.4 L, two standard microbial expression systems, Escherichia coli and Hansenula polymorpha, were fermented in parallel at both scales and compared with regard to the biomass and protein formation. Results Volumetric mass transfer coefficients (kLa ranging from 100 to 350 1/h were obtained in 96-well microtiter plates. Even with a suboptimal mass transfer condition in the microtiter plate compared to the stirred tank fermenter (kLa = 370-600 1/h, identical growth and protein expression kinetics were attained in bacteria and yeast fermentations. The bioprocess kinetics were evaluated by optical online measurements of biomass and protein concentrations exhibiting the same fermentation times and maximum signal deviations below 10% between the scales. In the experiments, the widely applied green

  16. Online APAN IPv6 Network Monitoring

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    APAN [4] has native IPv6 network across all major APAN exchange points. It is important to validate the performance of the links in the network to ensure the link stability. This paper discusses the technique and mechanism that are used to perform online monitoring of the APAN IPv6 network status. Pchar tool is used to check the performance of the network. Metrics such as bandwidth, hop count and round trip time between nodes in each country's have been adopted for these monitoring activity.

  17. Online Monitoring of Induction Motors

    Energy Technology Data Exchange (ETDEWEB)

    McJunkin, Timothy R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lybeck, Nancy Jean [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-01-01

    The online monitoring of active components project, under the Advanced Instrumentation, Information, and Control Technologies Pathway of the Light Water Reactor Sustainability Program, researched diagnostic and prognostic models for alternating current induction motors (IM). Idaho National Laboratory (INL) worked with the Electric Power Research Institute (EPRI) to augment and revise the fault signatures previously implemented in the Asset Fault Signature Database of EPRI’s Fleet Wide Prognostic and Health Management (FW PHM) Suite software. Induction Motor diagnostic models were researched using the experimental data collected by Idaho State University. Prognostic models were explored in the set of literature and through a limited experiment with 40HP to seek the Remaining Useful Life Database of the FW PHM Suite.

  18. On-line blood viscosity monitoring in vivo with a central venous catheter, using electrical impedance technique.

    Science.gov (United States)

    Pop, Gheorghe A M; Bisschops, Laurens L A; Iliev, Blagoy; Struijk, Pieter C; van der Hoeven, Johannes G; Hoedemaekers, Cornelia W E

    2013-03-15

    Blood viscosity is an important determinant of microvascular hemodynamics and also reflects systemic inflammation. Viscosity of blood strongly depends on the shear rate and can be characterized by a two parameter power-law model. Other major determinants of blood viscosity are hematocrit, level of inflammatory proteins and temperature. In-vitro studies have shown that these major parameters are related to the electrical impedance of blood. A special central venous catheter was developed to measure electrical impedance of blood in-vivo in the right atrium. Considering that blood viscosity plays an important role in cerebral blood flow, we investigated the feasibility to monitor blood viscosity by electrical bioimpedance in 10 patients during the first 3 days after successful resuscitation from a cardiac arrest. The blood viscosity-shear rate relationship was obtained from arterial blood samples analyzed using a standard viscosity meter. Non-linear regression analysis resulted in the following equation to estimate in-vivo blood viscosity (Viscosity(imp)) from plasma resistance (R(p)), intracellular resistance (R(i)) and blood temperature (T) as obtained from right atrium impedance measurements: Viscosity(imp)=(-15.574+15.576R(p)T)SR ((-.138RpT-.290Ri)). This model explains 89.2% (R(2)=.892) of the blood viscosity-shear rate relationship. The explained variance was similar for the non-linear regression model estimating blood viscosity from its major determinants hematocrit and the level of fibrinogen and C-reactive protein (R(2)=.884). Bland-Altman analysis showed a bias between the in-vitro viscosity measurement and the in-vivo impedance model of .04 mPa s at a shear rate of 5.5s(-1) with limits of agreement between -1.69 mPa s and 1.78 mPa s. In conclusion, this study demonstrates the proof of principle to monitor blood viscosity continuously in the human right atrium by a dedicated central venous catheter equipped with an impedance measuring device. No safety

  19. INTRACRANIAL PRESSURE MONITORING TECHNIQUE

    Directory of Open Access Journals (Sweden)

    Ida Bagus Adi Kayana

    2013-03-01

    Full Text Available Head injury is the most significant cause of increased morbidity and mortality. An estimated 1.4 million head injuries occur each year, with and more than 1.1 million come to the Emergency Unit. On each patient head injury, an increase in intracranial pressure (ICP related to poor outcomes and aggressive therapy to increased ICP can improve the outcomes. ICP monitoring is the most widely used because of the prevention and control of ICP as well as maintain the pressure increase perfusion of cerebral (Cerebral Perfusion Pressure/CPP is the basic purpose of handling head injury. There are two methods of monitoring ICP that is an invasive methods (directly and non-invasive techniques (indirectly. The method commonly used, namely intraventricular and intraparenkimal (microtransducer sensor because it is more accurate but keep attention to the existence of the risk of bleeding and infection resulting from installation. Monitoring of ICT can determine the actions that avoid further brain injury, which can be lethal and irreversibel.

  20. CMS OnlineWeb-Based Monitoring

    Science.gov (United States)

    Badgett, William; Chakaberia, Irakli; Lopez-Perez, Juan Antonio; Maeshima, Kaori; Maruyama, Sho; Soha, Aron; Sulmanas, Balys; Wan, Zongru

    For large international High Energy Physics experiments, modern web technologies make the online monitoring of detector status, data acquisition status, trigger rates, luminosity, etc., accessible for the collaborators anywhere and anytime. This helps the collaborating experts monitor the status of the experiment, identify the problems and improve data taking efficiency. We present the online Web-Based Monitoring project of the CMS experiment at the LHC at CERN.The data sources are relational databasesandvarious messaging systems. The projectprovidesavast amountof in-depth information including real-time data, historical trends and correlations in a user-friendly way.

  1. 超高频在线监测技术在 GIS 局部放电检测中的应用%The Application of Online Monitoring Technique with UHF to Detection of the GIS Partial Discharge

    Institute of Scientific and Technical Information of China (English)

    黄凤萍; 刘开贵

    2013-01-01

      鉴于超高频(UHF)法用于局部放电检测日渐增多,结合 UHF 用于广东电网变电站 GIS 局部放电检测案例,分析了 UHF 在线监测技术的优越性,并对 PDM UHF 局部放电在线监测系统的应用效果进行了试验研究。试验和实践表明,UHF 在线监测技术能够提高变电站 GIS 局部放电的监测效果,具有很好的应用前景。提高监测灵敏度的关键在于选择合适的传感器安装位置。此外,对于全封闭的 GIS 设备 UHF 法宜结合超声波定位技术一起使用。%In view of the increasing application of UHF to the detection of partial discharge, and in combination with the case of UHF technique for GIS patial discharge detection in Guangdong Power Grid substations, this paper analyzes the advantage of UHF based online monitoring technique, and carries out test research of the application effect of PDM UHF system for patial discharge detection. The test results and practical application show that the UHF online monitoring technique can improve the efficiency of detecting GIS partial discharge, and thus have very good application prospect. The key of the technique to improve the monitoring sensitivity is to select right installation position for transducers. In addition, UHF technique is better used with ultrasonic positioning technique for a full-closed GIS device.

  2. CMS OnlineWeb-Based Monitoring

    CERN Document Server

    Wan, Zongru; Chakaberia, Irakli; Lopez-Perez, Juan Antonio; Maeshima, Kaori; Maruyama, Sho; Soha, Aron; Sulmanas, Balys; Wan, Zongru

    2012-01-01

    For large international High Energy Physics experiments, modern web technologies make the online monitoring of detector status, data acquisition status, trigger rates, luminosity, etc., accessible for the collaborators anywhere and anytime. This helps the collaborating experts monitor the status of the experiment, identify the problems, and improve data-taking efficiency. We present the Web-Based Monitoring project of the CMS experiment at the LHC of CERN. The data sources are relational databases and various messaging systems. The project provides a vast amount of in-depth information including real time data, historical trend, and correlations, in a user friendly way.

  3. Integrated online condition monitoring system for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hashemian, Hashem M. [Analysis and Measurement Services Corporation, Knoxville, TN (United States). AMS Technology Center

    2010-09-15

    Online condition monitoring or online monitoring (OLM) uses data acquired while a nuclear power is operating to continuously assess the health of the plant's sensors, processes, and equipment; to measure the dynamic performance of the plant's process instrumentation; to verify in-situ the calibration of the process instrumentation; to detect blockages, voids, and leaks in the pressure sensing lines; to identify core flow anomalies; to extend the life of neutron detectors and other sensors; and to measure the vibration of reactor internals. Both the steady-state or DC output of plant sensors and their AC signal or noise output can be used to assess sensor health, depending on whether the application is monitoring a rapidly changing (e.g., core barrel motion) or a slowly changing (e.g., sensor calibration) process. The author has designed, developed, installed, and tested OLM systems (comprised of software/hardware-based data acquisition and data processing modules) that integrate low-frequency (1 mHz to 1 Hz) techniques such as RTD cross-calibration, pressure transmitter calibration monitoring, and equipment condition monitoring and high-frequency (1 Hz to 1 kHz) techniques such as the noise analysis technique. The author has demonstrated the noise analysis technique's effectiveness for measuring the dynamic response-time of pressure transmitters and their sensing lines; for performing predictive maintenance on reactor internals; for detecting core flow anomalies; and for extending neutron detector life. Integrated online condition monitoring systems can combine AC and DC data acquisition and signal processing techniques, can use data from existing process sensors during all modes of plant operation, including startup, normal operation, and shutdown; can be retrofitted into existing PWRs, BWRs, and other reactor types and will be integrated into next-generation plants. (orig.)

  4. Environmental monitoring using optical techniques

    Science.gov (United States)

    Svanberg, Sune

    2003-11-01

    An overview of optical techniques for environmental monitoring is presented. Range-resolved measurements of atmospheric pollutants can be performed using the differential absorption lidar technique. Fluorescence lidar allows assessment of vegetation status and also the conditions of the facades of historical buildings. Diode lasers provide particularly realistic schemes for atmospheric gas analysis, where certain wavelength ranges, which are not easily directly assessed, can be reached by sum- and difference frequency generation. Finally, the gas correlation principle can be used for real-time imaging of hydrocarbons. Several types of such optical environmental monitoring are illustrated with examples from research at the Lund Institute of Technology, Sweden.

  5. On-line corrosion monitoring in district heating systems

    DEFF Research Database (Denmark)

    Richter, Sonja; Thorarinsdottir, R.I.; Hilbert, Lisbeth Rischel

    2004-01-01

    complicates the chemistry of the environment. Hydrogen sulphide is present in geothermal systems and can be formed as a by-product of sulphate-reducing-bacteria (SRB). The application of electrochemical methods makes on-line monitoring possible. These methods include: Linear Polarization Resistance (LPR......), Electrochemical Noise (EN) and Zero Resistance Ammetry (ZRA). Electrochemical Resistance (ER) has also been used to measure corrosion. The method traditionally only measures corrosion off-line but with newly developed high-sensitive ER technique developed by MetriCorr in Denmark, on-line monitoring is possible......Traditionally corrosion monitoring in district heating systems has been performed offline via weight loss coupons. These measurements give information about the past and not the present situation and require long exposure time (weeks or months). The good quality of district heating medium makes...

  6. Flue gas on-line monitoring techniques of continuous emission monitoring system.%烟气排放连续监测系统的烟气参数在线监测技术

    Institute of Scientific and Technical Information of China (English)

    朱卫东; 朱建平; 徐淮明; 范黎峰; 祖亮

    2011-01-01

    The flue gas monitoring techniques of continuous emission monitoring system are introduced briefly,including flue gas flow rate measurement, flue gas water content measurement and flue gas oxygen content measurement. The applications of the data obtained from flue gas monitoring and the future development of flue gas monitoring techniques are discussed.%简要介绍了烟气排放连续监测系统的烟气参数监测项目及技术要求,包括烟气流速、烟气水分含量、烟气含氧量在线监测技术.对烟气参数在线监测的应用与发展进行了探讨.

  7. Online Monitoring of Plant Assets in the Nuclear Industry

    Energy Technology Data Exchange (ETDEWEB)

    Nancy Lybeck; Vivek Agarwal; Binh Pham; Richard Rusaw; Randy Bickford

    2013-10-01

    Today’s online monitoring technologies provide opportunities to perform predictive and proactive health management of assets within many different industries, in particular the defense and aerospace industries. The nuclear industry can leverage these technologies to enhance safety, productivity, and reliability of the aging fleet of existing nuclear power plants. The U.S. Department of Energy’s Light Water Reactor Sustainability Program is collaborating with the Electric Power Research Institute’s (EPRI’s) Long-Term Operations program to implement online monitoring in existing nuclear power plants. Proactive online monitoring in the nuclear industry is being explored using EPRI’s Fleet-Wide Prognostic and Health Management (FW-PHM) Suite software, a set of web-based diagnostic and prognostic tools and databases that serves as an integrated health monitoring architecture. This paper focuses on development of asset fault signatures used to assess the health status of generator step-up transformers and emergency diesel generators in nuclear power plants. Asset fault signatures describe the distinctive features based on technical examinations that can be used to detect a specific fault type. Fault signatures are developed based on the results of detailed technical research and on the knowledge and experience of technical experts. The Diagnostic Advisor of the FW-PHM Suite software matches developed fault signatures with operational data to provide early identification of critical faults and troubleshooting advice that could be used to distinguish between faults with similar symptoms. This research is important as it will support the automation of predictive online monitoring techniques in nuclear power plants to diagnose incipient faults, perform proactive maintenance, and estimate the remaining useful life of assets.

  8. ONLINE SALE Ten Profitable Sales Techniques

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    1.Focus your entire online business onyour customers.Actually there should be15 sales techniques,and this one should berepeated 6 times because of itsimportance.Why are you in business,to sellto your customers?If they don’t buy yougo bankrupt.Then who is the number oneperson you need to satisfy?Your customer.Build your business strategy,model andweb site around the needs of your clients.The ability to serve their needs will makeor break your business.

  9. DOE-EPRI On-Line Monitoring Implementation Guidelines

    Energy Technology Data Exchange (ETDEWEB)

    E. Davis, R. Bickford

    2003-01-02

    Industry and EPRI experience at several plants has shown on-line monitoring to be very effective in identifying out-of-calibration instrument channels or indications of equipment-degradation problems. The EPRI implementation project for on-line monitoring has demonstrated the feasability of on-line monitoring at several participating nuclear plants. The results have been very enouraging, and substantial progress is anticipated in the coming years.

  10. Plan for Demonstration of Online Monitoring for the Light Water Reactor Sustainability Online Monitoring Project

    Energy Technology Data Exchange (ETDEWEB)

    Magdy S. Tawfik; Vivek Agarwal; Nancy J. Lybeck

    2011-09-01

    Condition based online monitoring technologies and development of diagnostic and prognostic methodologies have drawn tremendous interest in the nuclear industry. It has become important to identify and resolve problems with structures, systems, and components (SSCs) to ensure plant safety, efficiency, and immunity to accidents in the aging fleet of reactors. The Machine Condition Monitoring (MCM) test bed at INL will be used to demonstrate the effectiveness to advancement in online monitoring, sensors, diagnostic and prognostic technologies on a pilot-scale plant that mimics the hydraulics of a nuclear plant. As part of this research project, INL will research available prognostics architectures and their suitability for deployment in a nuclear power plant. In addition, INL will provide recommendation to improve the existing diagnostic and prognostic architectures based on the experimental analysis performed on the MCM test bed.

  11. On-line corrosion monitoring in district heating systems

    DEFF Research Database (Denmark)

    Richter, Sonja; Thorarinsdottir, R.I.; Hilbert, Lisbeth Rischel

    2004-01-01

    Traditionally corrosion monitoring in district heating systems has been performed offline via weight loss coupons. These measurements give information about the past and not the present situation and require long exposure time (weeks or months). The good quality of district heating medium makes...... corrosion monitoring a challenge. Under normal conditions the pH is high (app. 9), conductivity is low (app. 10-200 µS/cm) and the concentration of dissolved oxygen is negligible. The low corrosion rates (in the order of µm/y) are difficult to measure and furthermore, factors such as hydrogen sulphide......), Electrochemical Noise (EN) and Zero Resistance Ammetry (ZRA). Electrochemical Resistance (ER) has also been used to measure corrosion. The method traditionally only measures corrosion off-line but with newly developed high-sensitive ER technique developed by MetriCorr in Denmark, on-line monitoring is possible...

  12. Monitoring Techniques for Microbially Influenced Corrosion of Carbon Steel

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    2000-01-01

    Abstract Monitoring Techniques for Microbially Influenced Corrosion of Carbon Steel Microbially influenced corrosion (MIC) of carbon steel may occur in media with microbiological activity of especially sulphate-reducing bacteria, e.g. on pipelines buried in soil and on marine structures. MIC...... of carbon steel must be monitored on-line in order to provide an efficient protection and control the corrosion. A number of monitoring techniques is industrially used today, and the applicability and reliability of these for monitoring MIC is evaluated. Coupons and ER are recommended as necessary basic...... techniques even though localised corrosion rate cannot be measured. FSM measures general corrosion and detects localised corrosion, but the sensitivity is not high enough for monitoring initiation of pitting and small attacks. Electrochemical techniques as LPR and EIS give distorted data and unreliable...

  13. Monitoring Techniques for Microbially Influenced Corrosion of Carbon Steel

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    2000-01-01

    of carbon steel must be monitored on-line in order to provide an efficient protection and control the corrosion. A number of monitoring techniques is industrially used today, and the applicability and reliability of these for monitoring MIC is evaluated. Coupons and ER are recommended as necessary basic......Abstract Monitoring Techniques for Microbially Influenced Corrosion of Carbon Steel Microbially influenced corrosion (MIC) of carbon steel may occur in media with microbiological activity of especially sulphate-reducing bacteria, e.g. on pipelines buried in soil and on marine structures. MIC...... techniques even though localised corrosion rate cannot be measured. FSM measures general corrosion and detects localised corrosion, but the sensitivity is not high enough for monitoring initiation of pitting and small attacks. Electrochemical techniques as LPR and EIS give distorted data and unreliable...

  14. Information Fusion of Online Oil Monitoring System Using Multiple Sensors

    Institute of Scientific and Technical Information of China (English)

    高慧良; 周新聪; 程海明; 赵春华; 严新平

    2004-01-01

    Machine lubrication contains abundant information on the equipment operation.Nowadays, most measuring methods are based on offline sampling or on online measuring with a single sensor.An online oil monitoring system with multiple sensors was designed.The measurement data was processed with a fuzzy intelligence system.Information from integrated sensors in an oil online monitoring system was evaluated using fuzzy logic.The analyses show that the multiple sensors evaluation results are more reliable than online monitoring systems with single sensors.

  15. On-Line Monitoring of Fermentation Processes by Near Infrared and Fluorescence Spectroscopy

    DEFF Research Database (Denmark)

    Svendsen, Carina

    Monitoring and control of fermentation processes is important to ensure high product yield, product quality and product consistency. More knowledge on on-line analytical techniques such as near infrared and fluorescence spectroscopy is desired in the fermentation industry to increase the efficiency...... of on-line monitoring systems. The primary aim of this thesis is to elucidate and explore the dynamics in fermentation processes by spectroscopy. Though a number of successful on-line lab-scale monitoring systems have been reported, it seems that several challenges are still met, which limits the number...... for on-line monitoring if corrections or preventive measures during the quantification are carried out. The findings presented in this thesis have enabled the possibility of obtaining a better process understanding and to ease monitoring and controlling of fermentation processes....

  16. Development of a tunable diode laser absorption sensor for online monitoring of industrial gas total emissions based on optical scintillation cross-correlation technique.

    Science.gov (United States)

    Zhang, Zhirong; Pang, Tao; Yang, Yang; Xia, Hua; Cui, Xiaojuan; Sun, Pengshuai; Wu, Bian; Wang, Yu; Sigrist, Markus W; Dong, Fengzhong

    2016-05-16

    We report the first application of gas total emission using a DFB diode laser for gas concentration measurements combined with two LEDs for gas velocity measurements. In situ gas total emissions and particle density measurements in an industrial pipeline using simultaneous tunable diode laser absorption spectroscopy (TDLAS) and optical scintillation cross-correlation technique (OSCC) are presented. Velocity mean values obtained are 7.59 m/s (OSCC, standard deviation is 1.37 m/s) and 8.20 m/s (Pitot tube, standard deviation is 1.47 m/s) in a steel plant pipeline for comparison. Our experiments demonstrate that the combined system of TDLAS and OSCC provides a new versatile tool for accurate measurements of total gas emissions.

  17. Online monitoring of the laser brazing of titanium overlap joints

    Science.gov (United States)

    Schmitt, R.; Vielhaber, K.; Donst, D.; Klocke, F.

    2007-06-01

    Image processing and thermography for its own are very versatile and established measurement techniques for many years. However, the combination of these two measurement technologies opens a new field of applications. The online monitoring of the laser-brazing of titanium overlap joints is such a new application. The laser brazing process for overlap joining of formed titanium sheets for the production of heat exchangers is presently being investigated at the Fraunhofer IPT. In comparison to conventional furnace brazing the laser brazing technology decreases substantially the heat impact and thus reduces the thermal material damage in the parts due to local selective heating in a laser beam focal spot. Even though the process is stable, errors in the brazing seam such as pores or unacceptable material oxidation can occur. To ensure a high quality an online process monitoring or even process control is necessary. But since the surface remains unchanged during this brazing process no geometrical inspection of the surface can be conducted. Therefore today's quality assurance performs x-ray or destructive testing. This paper demonstrates how the use of thermography in combination with image processing allows a machine integrated online monitoring of the laser brazing process. First the basic principals are presented which cover the fields of heat coupling, heat transmission and heat distribution as well as the temperature emission of light and the spectral properties of the laser beam shaping optic and so lead to the optical set-up. Then analysis algorithms are derived which characterize the process, detect process failures and make a seam tracking possible.

  18. Monitoring Techniques for Microbially Influenced Corrosion of Carbon Steel

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    2000-01-01

    Microbially influenced corrosion (MIC) of carbon steel may occur in media with microbiological activity of especially sulphate-reducing bacteria, e.g. on pipelines buried in soil and on marine structures. MIC of carbon steel must be monitored on-line in order to provide an efficient protection...... corrosion and detects localised corrosion, but the sensitivity is not high enough for monitoring initiation of pitting and small attacks. Electrochemical techniques as LPR and EIS give distorted data and unreliable corrosion rates, when biofilm and corrosion products cover the steel surface. However, EIS...... and control the corrosion. A number of monitoring techniques is industrially used today, and the applicability and reliability of these for monitoring MIC is evaluated. Coupons and ER are recommended as necessary basic techniques even though localised corrosion rate cannot be measured. FSM measures general...

  19. Monitoring Techniques for Microbially Influenced Corrosion of Carbon Steel

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    2000-01-01

    and control the corrosion. A number of monitoring techniques is industrially used today, and the applicability and reliability of these for monitoring MIC is evaluated. Coupons and ER are recommended as necessary basic techniques even though localised corrosion rate cannot be measured. FSM measures general......Microbially influenced corrosion (MIC) of carbon steel may occur in media with microbiological activity of especially sulphate-reducing bacteria, e.g. on pipelines buried in soil and on marine structures. MIC of carbon steel must be monitored on-line in order to provide an efficient protection...... corrosion and detects localised corrosion, but the sensitivity is not high enough for monitoring initiation of pitting and small attacks. Electrochemical techniques as LPR and EIS give distorted data and unreliable corrosion rates, when biofilm and corrosion products cover the steel surface. However, EIS...

  20. Runtime Monitoring Technique to handle Tautology based SQL Injection Attacks

    Directory of Open Access Journals (Sweden)

    Ramya Dharam

    2015-05-01

    Full Text Available Software systems, like web applications, are often used to provide reliable online services such as banking, shopping, social networking, etc., to users. The increasing use of such systems has led to a high need for assuring confidentiality, integrity, and availability of user data. SQL Injection Attacks (SQLIAs is one of the major security threats to web applications. It allows attackers to get unauthorized access to the back-end database consisting of confidential user information. In this paper we present and evaluate a Runtime Monitoring Technique to detect and prevent tautology based SQLIAs in web applications. Our technique monitors the behavior of the application during its post- deployment to identify all the tautology based SQLIAs. A framework called Runtime Monitoring Framework, that implements our technique, is used in the development of runtime monitors. The framework uses two pre-deployment testing techniques, such as basis-path and data-flow to identify a minimal set of all legal/valid execution paths of the application. Runtime monitors are then developed and integrated to perform runtime monitoring of the application, during its post-deployment for the identified valid/legal execution paths. For evaluation we targeted a subject application with a large number of both legitimate inputs and illegitimate tautology based inputs, and measured the performance of the proposed technique. The results of our study show that runtime monitor developed for the application was successfully able to detect all the tautology based attacks without generating any false positives.

  1. Modelling of pulverized coal boilers: review and validation of on-line simulation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Diez, L.I.; Cortes, C.; Campo, A. [University of Zaragoza, Zaragoza (Spain). Centro de Investigacion de Recursos y Consumos Energeticos (CIRCE)

    2005-07-01

    Thermal modelling of large pulverized fuel utility boilers has reached a very remarkable development, through the application of CFD techniques and other advanced mathematical methods. However, due to the computational requirements, on-line monitoring and simulation tools still rely on lumped models and semiempirical approaches, which are often strongly simplified and not well connected with sound theoretical basis. This paper reviews on-line modelling techniques, aiming at the improvement of their capabilities, by means of the revision and modification of conventional lumped models and the integration of off-line CFD predictions. The paper illustrates the coherence of monitoring calculations as well as the validation of the on-line thermal simulator, starting from real operation data from a case-study unit. The outcome is that it is possible to significantly improve the accuracy of on-line calculations provided by conventional models, taking into account the singularities of large combustion systems and coupling offline CFD predictions for selected scenarios.

  2. Online Monitor Framework for Network Distributed Data Acquisition Systems

    Science.gov (United States)

    Konno, Tomoyuki; Cabrera, Anatael; Ishitsuka, Masaki; Kuze, Masahiro; Sakamoto, Yasunobu; the Double Chooz Collaboration

    Data acquisition (DAQ) systems for recent high energy physics experiments consist of lots of subsystems distributed in the local area network. Therefore, scalability for the number of connections from subsystems and availability of access via the Internet are required. "Online monitor framework" is a general software framework for online data monitoring, which provides a way to collect monitoring information distributed in the network and pass them though the firewalls. The framework consists of two subsystems; "Monitor Sever" and "Monitor Viewer". Monitor Server is a core system of the framework. The server collects monitoring information from the DAQ subsystems to provide them to Monitor Viewer. Monitor Viewer is a graphical user interface of the monitor framework, which displays plots in itself. We adapted two types of technologies; Java and HTML5 with Google Web Toolkit, which are independent of operating systems or plugin-libraries like ROOT and contain some functionalities of communicating via the Internet and drawing graphics. The monitoring framework was developed for the Double Chooz reactor neutrino oscillation experiment but is general enough for other experiments. This document reports the structure of the online monitor framework with some examples from the adaption to the Double Chooz experiment.

  3. Teaching Multiple Online Sections/Courses: Tactics and Techniques

    Science.gov (United States)

    Bates, Rodger; LaBrecque, Bryan; Fortner, Emily

    2016-01-01

    The challenge of teaching online increases as the number of sections or courses increase in a semester. The tactics and techniques which enrich online instruction in the tradition of quality matters can be modified and adapted to the demands of multiple instructional needs during a semester. This paper addresses time management and instructional…

  4. Rotor blade online monitoring and fault diagnosis technology research

    DEFF Research Database (Denmark)

    Tesauro, Angelo; Pavese, Christian; Branner, Kim

    Rotor blade online monitoring and fault diagnosis technology is an important way to find blade failure mechanisms and thereby improve the blade design. Condition monitoring of rotor blades is necessary in order to ensure the safe operation of the wind turbine, make the maintenance more economical...

  5. An online substructure identification method for local structural health monitoring

    Science.gov (United States)

    Hou, Jilin; Jankowski, Łukasz; Ou, Jinping

    2013-09-01

    This paper proposes a substructure isolation method, which uses time series of measured local response for online monitoring of substructures. The proposed monitoring process consists of two key steps: construction of the isolated substructure, and its identification. The isolated substructure is an independent virtual structure, which is numerically isolated from the global structure by placing virtual supports on the interface. First, the isolated substructure is constructed by a specific linear combination of time series of its measured local responses. Then, the isolated substructure is identified using its local natural frequencies extracted from the combined responses. The substructure is assumed to be linear; the outside part of the global structure can have any characteristics. The method has no requirements on the initial state of the structure, and so the process can be carried out repetitively for online monitoring. Online isolation and monitoring is illustrated in a numerical example with a frame model, and then verified in a cantilever beam experiment.

  6. Experiences on MIC monitoring by electrochemical techniques

    DEFF Research Database (Denmark)

    Cristiani, P.; Perboni, G.; Hilbert, Lisbeth Rischel;

    2002-01-01

    Some results of practical experiences on the performances of electrochemical and electric MIC monitoring techniques, coming from the discussion in the Brite-Euram thematic network "MIC of industrial materials", are presented in this paper.......Some results of practical experiences on the performances of electrochemical and electric MIC monitoring techniques, coming from the discussion in the Brite-Euram thematic network "MIC of industrial materials", are presented in this paper....

  7. An On-line Ferrograph for Monitoring Machine Wear

    Institute of Scientific and Technical Information of China (English)

    L(U) Xiao-jun; JING Min-qing; XIE You-bai

    2005-01-01

    In order to improve an on-line ferrograph, this paper simulates a three dimensional magnetic field distribution of an electromagnet, builds a sinking motion model of a wear particle, and investigates the motion law of wear particles under two different conditions. Both numeric results and experimental results show that the on-line ferrograph is capable of monitoring machine wear conditions by measuring the concentration and size distribution of wear particles in lubricating oil.

  8. CDF Run Ⅱ Run Control and Online Monitor

    Institute of Scientific and Technical Information of China (English)

    T.Arisawa; W.Badgett; 等

    2001-01-01

    In this paper,we discuss the CDF Run Ⅱ Run Control and online event monitoring system.Run Control is the top level application that controls the data acquisition activities across 150 front end VME crates and related service processes,Run Control is a real-time multi-threaded application implemented in Java with flexible state machines,using JDBC database connections to configure clients,and including a user friendly and powerful graphical user interface.The CDF online event monitoring system consists of several parts;the eent monitoring programs,the display to browse their results,the server program which communicates with the display via socket connections ,the error receiver which displays error messages and communicates with run Control,and the state manager which monitors the state of the monitor programs.

  9. Online Bridge Crack Monitoring with Smart Film

    Directory of Open Access Journals (Sweden)

    Benniu Zhang

    2013-01-01

    Full Text Available Smart film crack monitoring method, which can be used for detecting initiation, length, width, shape, location, and propagation of cracks on real bridges, is proposed. Firstly, the fabrication of the smart film is developed. Then the feasibility of the method is analyzed and verified by the mechanical sensing character of the smart film under the two conditions of normal strain and crack initiation. Meanwhile, the coupling interference between parallel enameled wires of the smart film is discussed, and then low-frequency detecting signal and the custom communication protocol are used to decrease interference. On this basis, crack monitoring system with smart film is designed, where the collected crack data is sent to the remote monitoring center and the cracks are simulated and recurred. Finally, the monitoring system is applied to six bridges, and the effects are discussed.

  10. Advanced Process Monitoring Techniques for Safeguarding Reprocessing Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Orton, Christopher R.; Bryan, Samuel A.; Schwantes, Jon M.; Levitskaia, Tatiana G.; Fraga, Carlos G.; Peper, Shane M.

    2010-11-30

    The International Atomic Energy Agency (IAEA) has established international safeguards standards for fissionable material at spent fuel reprocessing plants to ensure that significant quantities of weapons-grade nuclear material are not diverted from these facilities. For large throughput nuclear facilities, it is difficult to satisfy the IAEA safeguards accountancy goal for detection of abrupt diversion. Currently, methods to verify material control and accountancy (MC&A) at these facilities require time-consuming and resource-intensive destructive assay (DA). Leveraging new on-line non destructive assay (NDA) process monitoring techniques in conjunction with the traditional and highly precise DA methods may provide an additional measure to nuclear material accountancy which would potentially result in a more timely, cost-effective and resource efficient means for safeguards verification at such facilities. By monitoring process control measurements (e.g. flowrates, temperatures, or concentrations of reagents, products or wastes), abnormal plant operations can be detected. Pacific Northwest National Laboratory (PNNL) is developing on-line NDA process monitoring technologies, including both the Multi-Isotope Process (MIP) Monitor and a spectroscopy-based monitoring system, to potentially reduce the time and resource burden associated with current techniques. The MIP Monitor uses gamma spectroscopy and multivariate analysis to identify off-normal conditions in process streams. The spectroscopic monitor continuously measures chemical compositions of the process streams including actinide metal ions (U, Pu, Np), selected fission products, and major cold flowsheet chemicals using UV-Vis, Near IR and Raman spectroscopy. This paper will provide an overview of our methods and report our on-going efforts to develop and demonstrate the technologies.

  11. Online monitoring of cartilage tissue in a novel bioreactor

    Science.gov (United States)

    von der Burg, E.; von Buttlar, M.; Grill, W.

    2011-04-01

    Standard techniques for the analysis of biological tissues like immunohistochemical staining are typically invasive and lead to mortification of cells. Non-invasive monitoring is an important element of regenerative medicine because implants and components of implants should be 100% quality-checked with non-invasive and therefore also marker-free methods. We report on a new bioreactor for the production of collagen scaffolds seeded with Mesenchymal Stem Cells (MSCs). It contains a computer controlled mechanical activation and ultrasonic online monitoring and has been constructed for the in situ determination of ultrasonic and rheological parameters. During the cultivation period of about two weeks the scaffold is periodically compressed by two movable pistons for improved differentiation of the MSCs. This periodic compression beneficially ensures the supply with nutrition even inside the sample. During the physiological stimuli, rheological properties are measured by means of highly sensitive load cells. In addition measurements of the speed of sound in the sample and in the culture medium, with frequencies up to 16 MHz, are performed continuously. Therefore piezoceramic transducers are attached to the pistons and emit and detect ultrasonic waves, travelling through the pistons, the sample and the culture medium. The time-of-flight (TOF) of the ultrasonic signals is determined in real time with the aid of chirped excitation and correlation procedures with a resolution of at least 10 ps. The implemented ultrasonic measurement scheme allows beside the speed of sound measurements the detection of the distance between the pistons with a resolution better than 100 nm. The developed monitoring delivers information on rigidity, fluid dynamics and velocity of sound in the sample and in the culture medium. The hermetically sealed bioreactor with its life support system provides a biocompatible environment for MSCs for long time cultivation.

  12. Tools and strategies to monitor the ATLAS online computing farm

    CERN Document Server

    Ballestrero, S; The ATLAS collaboration; Darlea, G L; Dumitru, I; Scannicchio, DA; Twomey, M S; Valsan, M L; Zaytsev, A

    2012-01-01

    In the ATLAS experiment the collection, processing, selection and conveyance of event data from the detector front-end electronics to mass storage is performed by the ATLAS online farm consisting of nearly 3000 PCs with various characteristics. To assure the correct and optimal working conditions the whole online system must be constantly monitored. The monitoring system should be able to check up to 100000 health parameters and provide alerts on a selected subset. In this paper we present the assessment of a new monitoring and alerting system based on Icinga. This is an open source monitoring system derived from Nagios, granting backward compatibility with already known configurations, plugins and add-ons, while providing new features. We also report on the evaluation of different data gathering systems and visualization interfaces.

  13. Ultrasonic techniques for process monitoring and control.

    Energy Technology Data Exchange (ETDEWEB)

    Chien, H.-T.

    1999-03-24

    Ultrasonic techniques have been applied successfully to process monitoring and control for many industries, such as energy, medical, textile, oil, and material. It helps those industries in quality control, energy efficiency improving, waste reducing, and cost saving. This paper presents four ultrasonic systems, ultrasonic viscometer, on-loom, real-time ultrasonic imaging system, ultrasonic leak detection system, and ultrasonic solid concentration monitoring system, developed at Argonne National Laboratory in the past five years for various applications.

  14. Acoustic Techniques for Structural Health Monitoring

    Science.gov (United States)

    Frankenstein, B.; Augustin, J.; Hentschel, D.; Schubert, F.; Köhler, B.; Meyendorf, N.

    2008-02-01

    Future safety and maintenance strategies for industrial components and vehicles are based on combinations of monitoring systems that are permanently attached to or embedded in the structure, and periodic inspections. The latter belongs to conventional nondestructive evaluation (NDE) and can be enhanced or partially replaced by structural health monitoring systems. However, the main benefit of this technology for the future will consist of systems that can be differently designed based on improved safety philosophies, including continuous monitoring. This approach will increase the efficiency of inspection procedures at reduced inspection times. The Fraunhofer IZFP Dresden Branch has developed network nodes, miniaturized transmitter and receiver systems for active and passive acoustical techniques and sensor systems that can be attached to or embedded into components or structures. These systems have been used to demonstrate intelligent sensor networks for the monitoring of aerospace structures, railway systems, wind energy generators, piping system and other components. Material discontinuities and flaws have been detected and monitored during full scale fatigue testing. This paper will discuss opportunities and future trends in nondestructive evaluation and health monitoring based on new sensor principles and advanced microelectronics. It will outline various application examples of monitoring systems based on acoustic techniques and will indicate further needs for research and development.

  15. Development of On-Line Monitoring Systems for High Temperature Components in Power Plants

    Directory of Open Access Journals (Sweden)

    Hongcai Zhang

    2013-11-01

    Full Text Available To accurately detect deformation and extend the component life beyond the original design limits, structural safety monitoring techniques have attracted considerable attention in the power and process industries for decades. In this paper an on-line monitoring system for high temperature pipes in a power plant is developed. The extension-based sensing devices are amounted on straight pipes, T-Joints and elbows of a main steam pipeline. During on-site monitoring for more than two years, most of the sensors worked reliably and steadily. However, the direct strain gauge could not work for long periods because of the high temperature environment. Moreover, it is found that the installation and connection of the extensometers can have a significant influence on the measurement results. The on-line monitoring system has a good alarming function which is demonstrated by detecting a steam leakage of the header.

  16. Development of on-line monitoring systems for high temperature components in power plants.

    Science.gov (United States)

    Zhang, Hongcai; Jia, Jiuhong; Wang, Ning; Hu, Xiaoyin; Tu, Shan-Tung; Zhou, Shaoping; Wang, Zhengdong

    2013-11-13

    To accurately detect deformation and extend the component life beyond the original design limits, structural safety monitoring techniques have attracted considerable attention in the power and process industries for decades. In this paper an on-line monitoring system for high temperature pipes in a power plant is developed. The extension-based sensing devices are amounted on straight pipes, T-Joints and elbows of a main steam pipeline. During on-site monitoring for more than two years, most of the sensors worked reliably and steadily. However, the direct strain gauge could not work for long periods because of the high temperature environment. Moreover, it is found that the installation and connection of the extensometers can have a significant influence on the measurement results. The on-line monitoring system has a good alarming function which is demonstrated by detecting a steam leakage of the header.

  17. Development of On-Line Monitoring Systems for High Temperature Components in Power Plants

    Science.gov (United States)

    Zhang, Hongcai; Jia, Jiuhong; Wang, Ning; Hu, Xiaoyin; Tu, Shan-Tung; Zhou, Shaoping; Wang, Zhengdong

    2013-01-01

    To accurately detect deformation and extend the component life beyond the original design limits, structural safety monitoring techniques have attracted considerable attention in the power and process industries for decades. In this paper an on-line monitoring system for high temperature pipes in a power plant is developed. The extension-based sensing devices are amounted on straight pipes, T-Joints and elbows of a main steam pipeline. During on-site monitoring for more than two years, most of the sensors worked reliably and steadily. However, the direct strain gauge could not work for long periods because of the high temperature environment. Moreover, it is found that the installation and connection of the extensometers can have a significant influence on the measurement results. The on-line monitoring system has a good alarming function which is demonstrated by detecting a steam leakage of the header. PMID:24233026

  18. Dynamics-based Nondestructive Structural Monitoring Techniques

    Science.gov (United States)

    2012-06-21

    in the practice of non- destructive evaluation ( NDE ) and structural health monitoring (SHM). Guided wave techniques have several advantages over...conventional bulk wave ultrasonic NDE /SHM techniques. Some of these advantages are outlined in Table I. However, in addition to the advantages of...PVDF transducers for SHM applications with controlled guided wave modes and frequencies [7]. Wilcox used EMATs with circular coils in a guided wave

  19. Online Monitoring for the Silicon Tracker of the LHCb Experiment

    CERN Document Server

    Chiapolini, N

    While the LHCb exp eriment acquires data, the detector and the data quality are continuously monitored. The rst part of this thesis describ es a package that was develop ed for managing monitoring pages. This package is a sub detector indep endent to ol originally develop ed for the online monitoring system of the Silicon Tracker. In the second half of this thesis, metho des to calculate the common mo de subtracted noise in the Silicon Tracker are compared. Dierent p ossible adjustments are evaluated and p ossible improvements presented.

  20. TAUOVERSUPERMON: LOW-OVERHEAD ONLINE PARALLEL PERFORMANCE MONITORING

    Energy Technology Data Exchange (ETDEWEB)

    SOTTILE, MATTHEW JOSEPH [Los Alamos National Laboratory; NATARAJ, AROON [Los Alamos National Laboratory; MALONY, ALLEN [Los Alamos National Laboratory; MORRIS, ALAN [Los Alamos National Laboratory; SHENDE, SAMEER [Los Alamos National Laboratory

    2007-01-30

    Online or Real-time application performance monitoring allows tracking performance characteristics during execution as opposed to doing so post-mortem. This opens up several possibilities otherwise unavailable such as real-time visualization and application performance steering that can be useful in the context of long-running applications. Two fundamental components that constitute such a performance monitor are the measurement and transport systems. The former captures performance metrics of individual contexts (processes, threads). The latter enables querying the parallel/distributed state from the different contexts and also allows measurement control. As HPC systems grow in size and complexity, the key challenge is to keep the online performance monitor scalable and low overhead while still providing a useful performance reporting capability. We adapt and combine two existing, mature systems - Tuning and Analysis Utility (TAU) and Supermon - to address this problem. Tau performs the measurement while Supermon is used to collect the distributed measurement state. Our experiments show that this novel approach of using a cluster-monitor, Supermon, as the transport for online performance data from Tau leads to very low-overhead application monitoring as well as other beneits unavailable from using a traditional transport such as NFS.

  1. Online Monitoring software framework in the ATLAS experiment

    CERN Document Server

    Barczyk, M.; Caprini, M.; Da Silva Conceicao, J.; Dobson, M.; Flammer, J.; Jones, R.; Kazarov, A.; Kolos, S.; Liko, D.; Lucio, L.; Mapelli, L.; Soloviev, I.; Hart, R.; Amorim, A.; Klose, D.; Lima, J.; Pedro, L.; Wolters, H.; Badescu, E.; Alexandrov, I.; Kotov, V.; Mineev, M.; Ryabov, Yu.; CHEP 2003 Computing in High Energy Physics; Ryabov, Yu.

    2003-01-01

    A fast, efficient and comprehensive monitoring system is a vital part of any HEP experiment. This paper describes the software framework that will be used during ATLAS data taking to monitor the state of the data acquisition and the quality of physics data in the experiment. The framework has been implemented by the Online Software group of the ATLAS Trigger&Data Acquisition (TDAQ) project and has already been used for several years in the ATLAS test beams at CERN. The inter-process communication in the framework is implemented via CORBA, which provides portability between different operating systems and programming languages. This paper will describe the design and the most important aspects of the online monitoring framework implementation. It will also show some test results, which indicate the performance and scalability of the current implementation.

  2. Contactless optoelectronic technique for monitoring epoxy cure.

    Science.gov (United States)

    Cusano, A; Buonocore, V; Breglio, G; Calabrò, A; Giordano, M; Cutolo, A; Nicolais, L

    2000-03-01

    We describe a novel noninvasive optical technique to monitor the refractive-index variation in an epoxy-based resin that is due to the polymerization process. This kind of resin is widely used in polymer matrix composites. It is well known that the process of fabricating a thermoset-based composite involves mass and heat transfer coupled with irreversible chemical reactions that induce physical changes. To improve the quality and the reliability of these materials, monitoring the cure and optimization of the manufacturing process are of key importance. We discuss the basic operating principles of an optical system based on angle deflection measurements and present typical cure-monitoring results obtained from optical characterization. The method provides a flexible, high-sensitivity, material-independent, low-cost, noninvasive tool for monitoring real-time refractive-index variation.

  3. On-line bioprocess monitoring - an academic discipline or an industrial tool?

    DEFF Research Database (Denmark)

    Olsson, Lisbeth; Schulze, Ulrik; Nielsen, Jens Bredal

    1998-01-01

    Bioprocess monitoring capabilities are gaining increasing Importance bath in physiological studies and in bioprocess development, The present article focuses on on-line analytical systems since these represent the backbone of most bioprocess monitoring systems, both in academia and in industry. We...... discuss advantages and drawbacks of various of the most frequently used components (sampling units, flow systems and detection unit) and analytical techniques, The differences between academia and industry in the use of bioprocess monitoring are discussed, based on the key drivers determining...... implementation of analytical systems in each of these fields. (C) 1998 Elsevier Science B.V....

  4. [Advanced online search techniques and dedicated search engines for physicians].

    Science.gov (United States)

    Nahum, Yoav

    2008-02-01

    In recent years search engines have become an essential tool in the work of physicians. This article will review advanced search techniques from the world of information specialists, as well as some advanced search engine operators that may help physicians improve their online search capabilities, and maximize the yield of their searches. This article also reviews popular dedicated scientific and biomedical literature search engines.

  5. Talking Techne: Techniques to Establish an Active Online Discussion Forum

    Science.gov (United States)

    Palenque, Stephanie Maher; DeCosta, Meredith

    2015-01-01

    Discussion forums are critically important to the online classroom, as they virtually take the place of a classroom discussion and become a stage on which active learning takes place. Active learning occurs when instructors practice certain techniques in the discussion that are carefully and thoughtfully crafted and guided. The authors propose the…

  6. Blazar Alerts with the HAWC Online Flare Monitor

    CERN Document Server

    Weisgarber, Thomas

    2015-01-01

    The High Altitude Water Cherenkov (HAWC) Observatory monitors the gamma-ray sky in the 100 GeV to 100 TeV energy range with > 95% uptime and unprecedented sensitivity for a survey instrument. The HAWC Collaboration has implemented an online flare monitor that detects episodes of rapid flaring activity from extragalactic very high energy (VHE) sources in the declination band from -26 to 64 degrees. This allows timely alerts to be sent to multiwavelength instruments without human intervention. The preliminary configuration of the online flare monitor achieves sensitivity to flares of at least 1 hour duration that attain an average flux of 10 times that of the Crab Nebula. While flares of this magnitude are not common, several flares reaching the level of 10 Crab have been observed in the VHE band within the past decade. With its survey capabilities and high duty cycle, HAWC will expand the observational data set on these particularly extreme flares. We characterize the sensitivity of the online flare monitor an...

  7. COMPARISON BETWEEN ONLINE AND OFFLINE TOURISM USING ASSOCIATIVE TECHNIQUE

    Directory of Open Access Journals (Sweden)

    Cosma Smaranda

    2014-07-01

    Full Text Available Travel and tourism is one of the most dynamic and successful sector in the globalising world. The accelerating and synergistic interaction between technology and tourism in recent times has brought fundamental changes in the industry and on our perceptions of its nature. Several studies show that the Internet has become one of the most important information sources for travel information acquisition. The present paper is focused on a better understanding of tourist behaviors in online versus offline. For investigations it was used exploratory research through qualitative approach. The word association technique from projective techniques it was considered appropriate for this research. It was used Chinese portrait technique to explain deeply the difference between traditional tourism and online tourism and the reasons of preferring mostly use a form or another. The study reveals that the personality of the respondents is almost identical with the constructed profile of online tourism. Interestingly, the remaining associations are found between those assigned to offline tourism. This result was expected because in the sample are even persons that use only offline tourism. These identified profiles have many implications both for further scientific researches, but especially for all actors involved in tourism activities. After consulting the main sources of literature references the present study can be considered one of first researches on online tourism in Romania. The study provides empirical support for identifying features and motivations of online customers and behavioural characteristics of users of online tourism products. The results offer managerial implications for business environment, travel destination areas, services, and facilities and also for tourism organizations.

  8. Dynamic computing resource allocation in online flood monitoring and prediction

    Science.gov (United States)

    Kuchar, S.; Podhoranyi, M.; Vavrik, R.; Portero, A.

    2016-08-01

    This paper presents tools and methodologies for dynamic allocation of high performance computing resources during operation of the Floreon+ online flood monitoring and prediction system. The resource allocation is done throughout the execution of supported simulations to meet the required service quality levels for system operation. It also ensures flexible reactions to changing weather and flood situations, as it is not economically feasible to operate online flood monitoring systems in the full performance mode during non-flood seasons. Different service quality levels are therefore described for different flooding scenarios, and the runtime manager controls them by allocating only minimal resources currently expected to meet the deadlines. Finally, an experiment covering all presented aspects of computing resource allocation in rainfall-runoff and Monte Carlo uncertainty simulation is performed for the area of the Moravian-Silesian region in the Czech Republic.

  9. Virtual Machine Monitor Indigenous Memory Reclamation Technique

    Directory of Open Access Journals (Sweden)

    Muhammad Shams Ul Haq

    2016-04-01

    Full Text Available Sandboxing is a mechanism to monitor and control the execution of malicious or untrusted program. Memory overhead incurred by sandbox solutions is one of bottleneck for sandboxing most of applications in a system. Memory reclamation techniques proposed for traditional full virtualization do not suit sandbox environment due to lack of full scale guest operating system in sandbox. In this paper, we propose memory reclamation technique for sandboxed applications. The proposed technique indigenously works in virtual machine monitor layer without installing any driver in VMX non root mode and without new communication channel with host kernel. Proposed Page reclamation algorithm is a simple modified form of Least recently used page reclamation and Working set page reclamation algorithms. For efficiently collecting working set of application, we use a hardware virtualization extension, page Modification logging introduced by Intel. We implemented proposed technique with one of open source sandboxes to show effectiveness of proposed memory reclamation method. Experimental results show that proposed technique successfully reclaim up to 11% memory from sandboxed applications with negligible CPU overheads

  10. On-line Corrosion Monitoring in District Heating Systems

    DEFF Research Database (Denmark)

    Richter, Sonja; Thorarinsdottir, R.I.; Hilbert, Lisbeth Rischel

    2005-01-01

    The corrosion control in district heating systems is today performed primarily with control of the water quality. The corrosion rate is kept low by assuring low dissolved oxygen concentration, high pH and low conductivity. Corrosion failures can occur, e.g. as a result of unknown oxygen ingress......, precipitation of deposits or crevices. The authors describe methods used for on-line monitoring of corrosion, cover the complications and the main results of a Nordic project....

  11. Online, real-time corrosion monitoring in district heating systems

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Thorarinsdottir, R.I.

    2005-01-01

    The corrosion control in district heating systems is today performed primarily with control of the water quality. The corrosion rate is kept low by assuring low dissolved oxygen concentration, high pH and low conductivity. Corrosion failures can occur, e.g. as a result of unknown oxygen ingress......, precipitation of deposits or crevices. The authors describe methods used for on-line monitoring of corrosion, cover the complications and the main results of a Nordic project....

  12. High Temperature Transducers for Online Monitoring of Microstructure Evolution

    Energy Technology Data Exchange (ETDEWEB)

    Lissenden, Cliff [Pennsylvania State Univ., State College, PA (United States); Tittmann, Bernhard [Battelle Energy Alliance, LLC, Idaho Falls, ID (United States)

    2015-03-30

    A critical technology gap exists relative to online condition monitoring (CM) of advanced nuclear plant components for damage accumulation; there are not capable sensors and infrastructure available for the high temperature environment. The sensory system, monitoring methodology, data acquisition, and damage characterization algorithm that comprise a CM system are investigated here. Thus this work supports the DOE mission to develop a fundamental understanding of advanced sensors to improve physical measurement accuracy and reduce uncertainty. The research involves a concept viability assessment, a detailed technology gap analysis, and a technology development roadmap.

  13. Online monitoring of food processes using subsurface laser scattering

    DEFF Research Database (Denmark)

    Carstensen, Jens Michael; Møller, Flemming

    Online monitoring of physical parameters during food production is not a trivial task, but promising results can often be obtained with Subsurface Laser Scattering (SLS). The first SLS instruments are on the market today, and studies are needed to asses the potential of the technology. SLS can...... monitor particle changes and gelation formation in a fast and non-invasive manner during production of most food products. SLS is correlated to classical particle sizing parameters, i.e. size, number of light scatters and refractive index, as well as sensoric parameters like mouthfeel. The background...

  14. The development of digital monitoring technique

    Energy Technology Data Exchange (ETDEWEB)

    Koo, In Soo; Kim, D. H.; Kim, J. S.; Kim, C. H.; Kim, G. O.; Park, H. Y.; Suh, S. Y.; Sung, S. H.; Song, S. J.; Lee, C. K.; Jang, G. S.; Hur, S.

    1997-08-01

    A study has been performed for advanced DSP technology for the digital nuclear I and C systems for the monitoring and diagnosis techniques for high-pressurized structures integrity in NSSS. In the development of advanced DSP technology, real time process, communication network and signal validation were selected as the essential technologies of the digital signal process, and the requirements and methodology for the application of these technologies in NPP were established through technical analysis. Based on its results, the DPIS and the signal validation algorithm were developed. For the real-time process, the necessary requirements were define and the methodology of real-time software modeling was developed. For the communication network, the methodology of selection of the communication technique and developing procedure were established with an extraction of requirements. Functions, requirements, structure and technical specification were developed for the DPIS, and a real-time signal validation algorithm was developed and implemented for the signal validation. In a study on monitoring techniques for abnormal conditions, test and experimental facilities have been set up in order to carry out the required tests during research activities. Studies concentrated on how to acquire proper vibration or emission signals from mechanical structures and equipments, and to diagnose effectively the abnormal conditions of high pressure structure integrity. The algorithms of automatic signal analysis and diagnosis for abnormal conditions have been developed in this study to assist the operator`s monitoring and diagnosis activities on structure integrity using new technologies. (author). 23 refs., 68 tabs., 196 figs.

  15. ONLINE GRINDING WHEEL WEAR COMPENSATION BY IMAGE BASED MEASURING TECHNIQUES

    Institute of Scientific and Technical Information of China (English)

    WAN Daping; HU Dejin; WU Qi; ZHANG Yonghong

    2006-01-01

    Automatic compensation of grinding wheel wear in dry grinding is accomplished by an image based online measurement method. A kind of PC-based charge-coupled device image recognition system is schemed out, which detects the topography changes of the grinding wheel surface. Profile data, which corresponds to the wear and the topography, is measured by using a digital image processing method. The grinding wheel wear is evaluated by analyzing the position deviation of the grinding wheel edge. The online wear compensation is achieved according to the measure results. The precise detection and automatic compensation system is integrated into an open structure CNC curve grinding machine. A practical application is carried out to fulfil the precision curve grinding. The experimental results confirm the benefits of the proposed techniques, and the online detection accuracy is less than 5 μm. The grinding machine provides higher precision according to the in-process grinding wheel error compensation.

  16. Some studies on condition monitoring techniques for on line condition monitoring and fault diagnosis of mine winder motor.

    Directory of Open Access Journals (Sweden)

    Tarun Kumar. Chatterjee

    2012-08-01

    Full Text Available Survey of existing literature reveals that no serious attempt has been made so far to monitor the health of mine winder motors. The electrical motors are the critical equipment of the mine winders which require constant condition monitoring for planning the right time for their maintenance and thus ensure maximum machineavailability. In this research work an online condition monitoring instrumentation system has been developed based on axial flux, current and vibration monitoring technique for mine winder motor. The online condition monitoring instrumentation system is noninvasive in nature and can be connected with mine winder motors which are in operation. The developed instrumentation system would be able to diagnose the health of mine winder motor and the motor fault of incipient nature can be pinpointed by the trend analysis of the frequency spectrum of time varying signal of axial flux, motor current and vibration.

  17. Application of Condition-Based Monitoring Techniques for Remote Monitoring of a Simulated Gas Centrifuge Enrichment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, David A [ORNL; Henkel, James J [ORNL; Whitaker, Michael [ORNL

    2012-01-01

    This paper presents research into the adaptation of monitoring techniques from maintainability and reliability (M&R) engineering for remote unattended monitoring of gas centrifuge enrichment plants (GCEPs) for international safeguards. Two categories of techniques are discussed: the sequential probability ratio test (SPRT) for diagnostic monitoring, and sequential Monte Carlo (SMC or, more commonly, particle filtering ) for prognostic monitoring. Development and testing of the application of condition-based monitoring (CBM) techniques was performed on the Oak Ridge Mock Feed and Withdrawal (F&W) facility as a proof of principle. CBM techniques have been extensively developed for M&R assessment of physical processes, such as manufacturing and power plants. These techniques are normally used to locate and diagnose the effects of mechanical degradation of equipment to aid in planning of maintenance and repair cycles. In a safeguards environment, however, the goal is not to identify mechanical deterioration, but to detect and diagnose (and potentially predict) attempts to circumvent normal, declared facility operations, such as through protracted diversion of enriched material. The CBM techniques are first explained from the traditional perspective of maintenance and reliability engineering. The adaptation of CBM techniques to inspector monitoring is then discussed, focusing on the unique challenges of decision-based effects rather than equipment degradation effects. These techniques are then applied to the Oak Ridge Mock F&W facility a water-based physical simulation of a material feed and withdrawal process used at enrichment plants that is used to develop and test online monitoring techniques for fully information-driven safeguards of GCEPs. Advantages and limitations of the CBM approach to online monitoring are discussed, as well as the potential challenges of adapting CBM concepts to safeguards applications.

  18. A novel online adaptive time delay identification technique

    Science.gov (United States)

    Bayrak, Alper; Tatlicioglu, Enver

    2016-05-01

    Time delay is a phenomenon which is common in signal processing, communication, control applications, etc. The special feature of time delay that makes it attractive is that it is a commonly faced problem in many systems. A literature search on time-delay identification highlights the fact that most studies focused on numerical solutions. In this study, a novel online adaptive time-delay identification technique is proposed. This technique is based on an adaptive update law through a minimum-maximum strategy which is firstly applied to time-delay identification. In the design of the adaptive identification law, Lyapunov-based stability analysis techniques are utilised. Several numerical simulations were conducted with Matlab/Simulink to evaluate the performance of the proposed technique. It is numerically demonstrated that the proposed technique works efficiently in identifying both constant and disturbed time delays, and is also robust to measurement noise.

  19. Techniques for fostering collaboration in online learning communities

    OpenAIRE

    Pozzi, Francesca; Persico, Donatella

    2011-01-01

    Collaboration is, to date, extensively adopted for supporting learning processes, both in face-to-face and in virtual learning contexts. However, technology profoundly changes the nature of human interactions and, consequently, also changes the nature of the collaborative learning process, yielding a range of new potentialities and problems. "Techniques for Fostering Collaboration in Online Learning Communities: Theoretical and Practical Perspectives" provides a focused assessment of the pecu...

  20. Inspection and Monitoring Techniques for Power Lines

    Institute of Scientific and Technical Information of China (English)

    DAI Kaoshan; CHEN Shenen

    2011-01-01

    Structural assessment is prerequisite for proper maintenance of civil infrastructure.In the begining of this paper, modern inspection and monitoring methods are briefly reviewed.Experiences in applying imagebased methods for highway bridge inspection are described shortly afterward.Studies are then extended to explore technologies for power delivery infrastructure evaluation.Typical power line components are first introduced.Structural analyses show complicated coupling phenomena in the power line system; and its vulnerability is intensified by extreme environment or human induced events.As a main interest, the state-of-art of power line inspection is summarized.Both visual observations and inspections assisted with novel techniques are presented.Real time monitoring of the power line is also investigated in this paper.Technologies that have potentials for monitoring power cables, insulators, and support structures are identified.A conceptual integrated design is proposed by the authors through combining innovative inspection with promising monitoring methods to ensure a sustainable, smart power line.

  1. Monitoring and evaluation techniques for airborne contamination

    Energy Technology Data Exchange (ETDEWEB)

    Xia Yihua [China Inst. of Atomic Energy, Beijing (China)

    1997-06-01

    Monitoring and evaluation of airborne contamination are of great importance for the purpose of protection of health and safety of workers in nuclear installations. Because airborne contamination is one of the key sources to cause exposure to individuals by inhalation and digestion, and to cause diffusion of contaminants in the environment. The main objectives of monitoring and evaluation of airborne contamination are: to detect promptly a loss of control of airborne material, to help identify those individuals and predict exposure levels, to assess the intake and dose commitment to the individuals, and to provide sufficient documentation of airborne radioactivity. From the viewpoint of radiation protection, the radioactive contaminants in air can be classified into the following types: airborne aerosol, gas and noble gas, and volatile gas. In this paper, the following items are described: sampling methods and techniques, measurement and evaluation, and particle size analysis. (G.K.)

  2. Performance Monitoring Techniques Supporting Cognitive Optical Networking

    DEFF Research Database (Denmark)

    Caballero Jambrina, Antonio; Borkowski, Robert; Zibar, Darko

    2013-01-01

    to solve this issue by realizing a network that can observe, act, learn and optimize its performance, taking into account end-to-end goals. In this letter we present the approach of cognition applied to heterogeneous optical networks developed in the framework of the EU project CHRON: Cognitive...... Heterogeneous Reconfigurable Optical Network. We focus on the approaches developed in the project for optical performance monitoring, which enable the feedback from the physical layer to the cognitive decision system by providing accurate description of the performance of the established lightpaths.......High degree of heterogeneity of future optical networks, such as services with different quality-of-transmission requirements, modulation formats and switching techniques, will pose a challenge for the control and optimization of different parameters. Incorporation of cognitive techniques can help...

  3. Integrated monitoring of the ATLAS online computing farm

    CERN Document Server

    Ballestrero, Sergio; The ATLAS collaboration; Fazio, Daniel; Gament, Costin-Eugen; Lee, Christopher; Scannicchio, Diana; Twomey, Matthew Shaun

    2016-01-01

    The online farm of the ATLAS experiment at the LHC, consisting of nearly 4000 PCs with various characteristics, provides configuration and control of the detector and performs the collection, processing, selection and conveyance of event data from the front-end electronics to mass storage. The status and health of every host must be constantly monitored to ensure the correct and reliable operation of the whole online system. This is the first line of defense, which should not only promptly provide alerts in case of failure but, whenever possible, warn of impending issues. The monitoring system should be able to check up to 100000 health parameters and provide alerts on a selected subset. In this paper we present the implementation and validation of our new monitoring and alerting system based on Icinga 2 and Ganglia. We describe how the load distribution and high availability features of Icinga 2 allowed us to have a centralised but scalable system, with a configuration model that allows full flexibility whil...

  4. Integrated monitoring of the ATLAS online computing farm

    CERN Document Server

    Ballestrero, Sergio; The ATLAS collaboration

    2017-01-01

    The online farm of the ATLAS experiment at the LHC, consisting of nearly 4000 PCs with various characteristics, provides configuration and control of the detector and performs the collection, processing, selection and conveyance of event data from the front-end electronics to mass storage. The status and health of every host must be constantly monitored to ensure the correct and reliable operation of the whole online system. This is the first line of defense, which should not only promptly provide alerts in case of failure but, whenever possible, warn of impending issues. The monitoring system should be able to check up to 100000 health parameters and provide alerts on a selected subset. In this paper we present the implementation and validation of our new monitoring and alerting system based on Icinga 2 and Ganglia. We describe how the load distribution and high availability features of Icinga 2 allowed us to have a centralised but scalable system, with a configuration model that allows full flexibility whil...

  5. Comparison of Photogrammetric Techniques for Rockfalls Monitoring

    Science.gov (United States)

    Buill, Felipe; Amparo Núñez-Andrés, María; Lantada, Nieves; Prades, Albert

    2016-10-01

    The use of Unmanned Aerial Vehicles, UAVs to image capture for monitoring natural hazards has had a major boost for its wide possibilities in the last decade. These are, for example, the studying and monitoring of unstable slopes, glaciers and rocky escarpments. Moreover, to evaluate the risk after a rockfall or debris flow event, for example measuring volume of displaced material, trajectories of blocks or building and/or infrastructure damaged. But the use of these devices requires a specific treatment regarding the studied case and geomatic techniques suitable to get the adequate precision of the movement, size of items or events to study. For each application it is necessary to determine what kind of capture is the most appropriate to obtain an optimal benefit-cost ratio. A comparison of the use of terrestrial photogrammetry, UAV photogrammetry and video from UAV has been done. The best result has been obtained combining techniques aerial and terrestrial since ground points with a best quality can be identified and measured and all the surface has a best image coverage.

  6. A simple deep monitoring well dilution technique.

    Science.gov (United States)

    Rogiers, Bart; Labat, Serge; Gedeon, Matej; Vandersteen, Katrijn

    2015-04-01

    Well dilution techniques are well known and studied as one of the basic techniques to quantify groundwater fluxes. A typical well dilution test consists of the injection of a tracer, a mixing mechanism (e.g. water circulation with a pump) to achieve a homogeneous concentration distribution within the well, and monitoring of the evolution of tracer concentration with time. An apparent specific discharge can be obtained from such a test, and when details on the well construction are known, it can be converted into a specific discharge representative of the undisturbed aquifer. For deep wells however, the injection of tracer becomes less practical and the use of pumps for circulating and mixing the water becomes problematic. This is due to the limited pressure that common pumps can endure at the outlet, as well as the large volume of water that makes it difficult to achieve a homogeneous concentration, and the impracticalities of getting a lot of equipment to large depths in very small monitoring wells. Injection and monitoring of tracer at a specific depth omits several of the problems with deep wells. We present a very simple device that can be used to perform a dilution test at a specific depth in deep wells. The injection device consists of a PVC tube with a detachable rubber seal at its bottom. To minimize disturbance of the water column in the well, we integrated an EC sensor in this injection device, which enables us to use demineralized water or dissolved salts as a tracer. Once at the target depth, the PVC tube is retracted and the EC sensor and tracer become subject to groundwater flow. The device was tested on a shallow well, on which different types of dilution tests were performed. The results of the other tests agree well with the injection tube results. Finally, the device was used to perform a dilution test in a deep well in order to demonstrate the feasibility of the approach.

  7. On-line Monitoring and Active Control for Transformer Noise

    Science.gov (United States)

    Liang, Jiabi; Zhao, Tong; Tian, Chun; Wang, Xia; He, Zhenhua; Duan, Lunfeng

    This paper introduces the system for on-line monitoring and active noise control towards the transformer noise based on LabVIEW and the hardware equipment including the hardware and software. For the hardware part, it is mainly focused on the composition and the role of hardware devices, as well as the mounting location in the active noise control experiment. And the software part introduces the software flow chats, the measurement and analysis module for the sound pressure level including A, B, C weighting methods, the 1/n octave spectrum and the power spectrum, active noise control module and noise data access module.

  8. Online analysis of protein inclusion bodies produced in E. coli by monitoring alterations in scattered and reflected light.

    Science.gov (United States)

    Ude, Christian; Ben-Dov, Nadav; Jochums, André; Li, Zhaopeng; Segal, Ester; Scheper, Thomas; Beutel, Sascha

    2016-05-01

    The online monitoring of recombinant protein aggregate inclusion bodies during microbial cultivation is an immense challenge. Measurement of scattered and reflected light offers a versatile and non-invasive measurement technique. Therefore, we investigated two methods to detect the formation of inclusion bodies and monitor their production: (1) online 180° scattered light measurement (λ = 625 nm) using a sensor platform during cultivation in shake flask and (2) online measurement of the light reflective interference using a porous Si-based optical biosensor (SiPA). It could be shown that 180° scattered light measurement allows monitoring of alterations in the optical properties of Escherichia coli BL21 cells, associated with the formation of inclusion bodies during cultivation. A reproducible linear correlation between the inclusion body concentration of the non-fluorescent protein human leukemia inhibitory factor (hLIF) carrying a thioredoxin tag and the shift ("Δamp") in scattered light signal intensity was observed. This was also observed for the glutathione-S-transferase-tagged green fluorescent protein (GFP-GST). Continuous online monitoring of reflective interference spectra reveals a significant increase in the bacterium refractive index during hLIF production in comparison to a non-induced reference that coincide with the formation of inclusion bodies. These online monitoring techniques could be applied for fast and cost-effective screening of different protein expression systems.

  9. The Monitor online system of the OPERA muon magnetic spectrometer

    CERN Document Server

    Ugolino, U.; Acquafredda, R.; Masone, v.

    2008-01-01

    The OPERA muon magnetic spectrometer has been designed for muon detection, tracking and timing. The 44 bakelite Resistive Chambers (RPC) planes, imbibed inside the magnet iron slabs, must provide the tracking of the muon curved in the magnetic field to ease the momentum and charge measurement provided by the HPT. Furthermore, it provides the momentum for muons stopping in the iron. RPC signals will be also used as start of drift tube acquisition thanks to the very good time resolution of RPC detectors. Due to the required performances the tracking detector must be fully efficient and stable. In this conditions an online monitor is mandatory to continuously control stability of run conditions. We report the main characteristics and performances of the monitor system for the OPERA spectrometer and capabilities of the software developed for settings and data acquisition.

  10. An online monitor ionization chamber used in particle therapy

    Institute of Scientific and Technical Information of China (English)

    TANG Bin; HU Zhengguo; MAO Ruishi; XU Zhiguo; WANG Jiansong; YUE Ke; TU Xiaolin; WU Dapeng; CHEN Jinda; ZHANG Jie; WANG Meng; SUN Zhiyu; ZHANG Xueheng; LI Qiang; XU Hushan; XIOA Guoqing

    2009-01-01

    The clinical trials of tumor therapy using heavy ions beam 12C are now in progress at Institute of Modern Physics in Lanzhou. In order to achieve the precise radiotherapy with the high energy 12C beam in active pencil beam scanning mode, we have developed an ionization chamber(IC) as an online monitor for beam intensity and also a do-simeter after calibration. Through the choosing of working gas and voltage, optimizing of the electrics and the read-out system, calibrating the linearity, the detector system provide us one of the simple and highly reliable way to monitoring the beam during the active pencil beam scanning treatments. The measurement results of this detector sys-tem show that it could work well under the condition of high energy 12C beam in active pencil beam scanning mode.

  11. The Monitor System for the LHCb on-line farm

    CERN Document Server

    Bonifazi, F; Carbone, A; Galli, D; Gregori, D; Marconi, U; Peco, G; Vagnoni, V

    2005-01-01

    The aim of the LHCb on-line farm Monitor System is to keep under control all the working indicators which are relevant for the farm operation, and to set the appropriate alarms whenever an error or a critical condition comes up. Since the most stressing tasks of the farm are the data transfer and processing, relevant indicators includes the CPU and the memory load of the system, the network interface and the TCP/IP stack parameters, the rates of the interrupts raised by the network interface card and the detailed status of the running processes. The monitoring of computers’ physical conditions (temperatures, fan speeds and motherboard voltages) are the subject of a separate technical note, since they are accessed in a different way, by using the IPMI protocol.

  12. Applying Supervised Opinion Mining Techniques on Online User Reviews

    Directory of Open Access Journals (Sweden)

    Ion SMEUREANU

    2012-01-01

    Full Text Available In recent years, the spectacular development of web technologies, lead to an enormous quantity of user generated information in online systems. This large amount of information on web platforms make them viable for use as data sources, in applications based on opinion mining and sentiment analysis. The paper proposes an algorithm for detecting sentiments on movie user reviews, based on naive Bayes classifier. We make an analysis of the opinion mining domain, techniques used in sentiment analysis and its applicability. We implemented the proposed algorithm and we tested its performance, and suggested directions of development.

  13. Molecularly imprinted polymers for on-line extraction techniques.

    Science.gov (United States)

    Moein, Mohammad M; Abdel-Rehim, Mohamed

    2015-01-01

    Recent years have seen an increasing interest in the use of molecularly imprinted polymers (MIPs) as a sorbent for different extraction methods and this is due to its high selectivity. The MIP is designed to show specificity for the analyte of interest. Moreover, MIPs show physical robustness, resistance to high temperatures and pressures, and stability in the presence of acids, bases and a wide range of organic solvents. In the present article, various novel sample preparation techniques which MIPs applied as sorbent and on-line connected with analytical instruments were highlighted and discussed. The future aspects of MIPs as well were described.

  14. A strategy for monitoring and evaluating massive open online courses.

    Science.gov (United States)

    Chapman, S A; Goodman, S; Jawitz, J; Deacon, A

    2016-08-01

    We argue that the complex, innovative and adaptive nature of Massive Open Online Course (MOOC) initiatives poses particular challenges to monitoring and evaluation, in that any evaluation strategy will need to follow a systems approach. This article aims to guide organizations implementing MOOCs through a series of steps to assist them in developing a strategy to monitor, improve, and judge the merit of their initiatives. We describe how we operationalise our strategy by first defining the different layers of interacting agents in a given MOOC system. We then tailor our approach to these different layers. Specifically, a two-pronged approach was developed, where we suggest that individual projects be assessed through performance monitoring; assessment criteria for which would be defined at the outset to include coverage, participation, quality and student achievement. In contrast, the success of an overall initiative should be considered within a more adaptive, emergent evaluation inquiry framework. We present the inquiry framework we developed for MOOC initiatives, and show how this framework might be used to develop evaluation questions and an assessment methodology. We also define the more fixed indicators and measures for project performance monitoring. Our strategy is described as it was developed to inform the evaluation of a MOOC initiative at the University of Cape Town (UCT), South Africa.

  15. Research on Linear Wireless Sensor Networks Used for Online Monitoring of Rolling Bearing in Freight Train

    Science.gov (United States)

    Nan, Wang; Qingfeng, Meng; Bin, Zheng; Tong, Li; Qinghai, Ma

    2011-07-01

    This paper presents a Wireless Sensor Networks (WSNs) technique for the purpose of on-line monitoring of rolling bearing in freight train. A new technical scheme including the arrangements of sensors, the design of sensor nodes and base station, routing protocols, signal acquirement, processing and transmission is described, and an on-line monitoring system is established. Considering the approximately linear arrangements of cars and the running state of freight train, a linear topology structure of WSNs is adopted and five linear routing protocols are discussed in detail as to obtain the desired minimum energy consumption of WSNs. By analysing the simulation results, an optimal multi-hop routing protocol named sub-section routing protocol according to equal distance is adopted, in which all sensor nodes are divided into different groups according to the equal transmission distance, the optimal transmission distance and number of hops of routing protocol are also studied. We know that the communication consumes significant power in WSNs, so, in order to save the limit power supply of WSNs, the data compression and coding scheme based on lifting integer wavelet and embedded zerotree wavelet (EZW) algorithms is studied to reduce the amounts of data transmitted. The experimental results of rolling bearing have been given at last to verify the effectiveness of data compression algorithm. The on-line monitoring system of rolling bearing in freight train will be applied to actual application in the near future.

  16. Research on Linear Wireless Sensor Networks Used for Online Monitoring of Rolling Bearing in Freight Train

    Energy Technology Data Exchange (ETDEWEB)

    Wang Nan; Meng Qingfeng; Zheng Bin [Theory of Lubrication and Bearing Institute, Xi' an Jiaotong University Xi' an, 710049 (China); Li Tong; Ma Qinghai, E-mail: heroyoyu.2009@stu.xjtu.edu.cn [Xi' an Rail Bureau, Xi' an, 710054 (China)

    2011-07-19

    This paper presents a Wireless Sensor Networks (WSNs) technique for the purpose of on-line monitoring of rolling bearing in freight train. A new technical scheme including the arrangements of sensors, the design of sensor nodes and base station, routing protocols, signal acquirement, processing and transmission is described, and an on-line monitoring system is established. Considering the approximately linear arrangements of cars and the running state of freight train, a linear topology structure of WSNs is adopted and five linear routing protocols are discussed in detail as to obtain the desired minimum energy consumption of WSNs. By analysing the simulation results, an optimal multi-hop routing protocol named sub-section routing protocol according to equal distance is adopted, in which all sensor nodes are divided into different groups according to the equal transmission distance, the optimal transmission distance and number of hops of routing protocol are also studied. We know that the communication consumes significant power in WSNs, so, in order to save the limit power supply of WSNs, the data compression and coding scheme based on lifting integer wavelet and embedded zerotree wavelet (EZW) algorithms is studied to reduce the amounts of data transmitted. The experimental results of rolling bearing have been given at last to verify the effectiveness of data compression algorithm. The on-line monitoring system of rolling bearing in freight train will be applied to actual application in the near future.

  17. Artificial intelligence techniques for monitoring dangerous infections.

    Science.gov (United States)

    Lamma, Evelina; Mello, Paola; Nanetti, Anna; Riguzzi, Fabrizio; Storari, Sergio; Valastro, Gianfranco

    2006-01-01

    The monitoring and detection of nosocomial infections is a very important problem arising in hospitals. A hospital-acquired or nosocomial infection is a disease that develops after admission into the hospital and it is the consequence of a treatment, not necessarily a surgical one, performed by the medical staff. Nosocomial infections are dangerous because they are caused by bacteria which have dangerous (critical) resistance to antibiotics. This problem is very serious all over the world. In Italy, almost 5-8% of the patients admitted into hospitals develop this kind of infection. In order to reduce this figure, policies for controlling infections should be adopted by medical practitioners. In order to support them in this complex task, we have developed a system, called MERCURIO, capable of managing different aspects of the problem. The objectives of this system are the validation of microbiological data and the creation of a real time epidemiological information system. The system is useful for laboratory physicians, because it supports them in the execution of the microbiological analyses; for clinicians, because it supports them in the definition of the prophylaxis, of the most suitable antibi-otic therapy and in monitoring patients' infections; and for epidemiologists, because it allows them to identify outbreaks and to study infection dynamics. In order to achieve these objectives, we have adopted expert system and data mining techniques. We have also integrated a statistical module that monitors the diffusion of nosocomial infections over time in the hospital, and that strictly interacts with the knowledge based module. Data mining techniques have been used for improving the system knowledge base. The knowledge discovery process is not antithetic, but complementary to the one based on manual knowledge elicitation. In order to verify the reliability of the tasks performed by MERCURIO and the usefulness of the knowledge discovery approach, we performed a test

  18. Robust on-line monitoring of biogas processes; Robusta maettekniker on-line foer optimerad biogasproduktion

    Energy Technology Data Exchange (ETDEWEB)

    Nordberg, Aake; Hansson, Mikael; Kanerot, Mija; Krozer, Anatol; Loefving, Bjoern; Sahlin, Eskil

    2010-03-15

    Although demand for biomethane in Sweden is higher than ever, many Swedish codigestion plants are presently operated below their designed capacity. Efforts must be taken to increase the loading rate and guarantee stable operation and high availability of the plants. There are currently no commercial systems for on-line monitoring, and due to the characteristics of the material, including corrosion and tearing, robust applications have to be developed. The objective of this project was to identify and study different monitoring technologies with potential for on-line monitoring of both substrate mixtures and anaerobic digester content. Based on the prerequisites and demands at Boraas Energi och Miljoe AB's (BEMAB, the municipal energy and waste utility in the city of Boraas, Sweden) biogas plant, the extent of the problems, measurement variables and possible ways of managing these issues have been identified and prioritized. The substrate mixtures in question have a high viscosity and are inhomogeneous with variation in composition, which calls for further homogenization, dilution and filtration to achieve high precision in the necessary analyses. Studies of using different mixers and mills showed that the particle size (800 mum) needed for on-line COD measurement could not be achieved. The problem of homogenization can be avoided if indirect measurement methods are used. Laboratory tests with NIR (near-infra red spectroscopy) showed that VS can be predicted (R2=0,78) in the interval of 2-9% VS. Furthermore, impedance can give a measurement of soluble components. However, impedance is not sensitive enough to give a good measurement of total TS. Microwave technology was installed at the production plant and showed a faster response to changes in TS than the existing TS-sensor. However, due to technical problems, the evaluation only could be done during a limited period of ten days. BEMAB will continue the measurements and evaluation of the instrument. The

  19. Design of a new tracking device for on-line dose monitor in ion therapy

    CERN Document Server

    Traini, Giacomo; Bollella, Angela; Collamati, Francesco; De Lucia, Erika; Faccini, Riccardo; Ferroni, Fernando; Frallicciardi, Paola Maria; Mancini-Terracciano, Carlo; Marafini, Michela; Mattei, Ilaria; Miraglia, Federico; Muraro, Silvia; Paramatti, Riccardo; Piersanti, Luca; Pinci, Davide; Rucinski, Antoni; Russomando, Andrea; Sarti, Alessio; Sciubba, Adalberto; Senzacqua, Martina; Solfaroli-Camillocci, Elena; Toppi, Marco; Voena, Cecilia; Patera, Vincenzo

    2016-01-01

    Charged Particle Therapy is a technique for cancer treatment that exploits hadron beams, mostly protons and carbons. A critical issue is the monitoring of the dose released by the beam to the tumor and to the surrounding tissues. We present the design of a new tracking device for monitoring on-line the dose in ion therapy through the detection of secondary charged particles produced by the beam interactions in the patient tissues. In fact, the charged particle emission shape can be correlated with the spatial dose release and the Bragg peak position. The detector uses the information provided by 12 layers of scintillating fibers followed by a plastic scintillator and a small calorimeter made of a pixelated Lutetium Fine Silicate crystal. Simulations have been performed to evaluate the achievable spatial resolution and a possible application of the device for the monitoring of the dose pro?le in a real treatment is presented.

  20. On-line monitoring of one-step laser fabrication of micro-optical components.

    Science.gov (United States)

    Juliá, J E; Soriano, J C

    2001-07-01

    The use of an on-line monitoring method based on photoelasticity techniques for the fabrication of micro-optical components by means of controlled laser heating is described. From this description it is possible to show in real time the mechanical stresses that form the microelement. A new parameter, stressed area, is introduced that quantifies the stresses of a microelement during its fabrication, facilitating a deeper understanding of the physical phenomena involved in the process as well as being a useful test of quality. It also permits the stress produced in the manufacturing process and the optical properties of the final microelement to be correlated. The results for several microlenses monitored with this technique are presented.

  1. Online monitoring of a belt grinding process by using a light scattering method

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Johannes; Vernes, Andras; Vorlaufer, Georg; Vellekoop, Michael

    2010-10-20

    Industrially ground surfaces often have a characteristic surface topography known as chatter marks. The surface finishing is mainly monitored by optical measurement techniques. In this work, the monitoring of an industrial belt grinding process with a light scattering sensor is presented. Although this technique is primarily applied for parametric surface roughness analysis, here it is shown that it enables also the measurement of the surface topography, i.e., the chatter marks occurring during the belt grinding process. In particular, it is proven that the light scattering method is appropriate to measure online the topography of chatter marks. Furthermore, the frequency analysis of the data reveals that the wavelength of chatter marks strongly depends on process parameters, such as the grinding speed.

  2. Development of on-line laser power monitoring system

    Science.gov (United States)

    Ding, Chien-Fang; Lee, Meng-Shiou; Li, Kuan-Ming

    2016-03-01

    Since the laser was invented, laser has been applied in many fields such as material processing, communication, measurement, biomedical engineering, defense industries and etc. Laser power is an important parameter in laser material processing, i.e. laser cutting, and laser drilling. However, the laser power is easily affected by the environment temperature, we tend to monitor the laser power status, ensuring there is an effective material processing. Besides, the response time of current laser power meters is too long, they cannot measure laser power accurately in a short time. To be more precisely, we can know the status of laser power and help us to achieve an effective material processing at the same time. To monitor the laser power, this study utilize a CMOS (Complementary metal-oxide-semiconductor) camera to develop an on-line laser power monitoring system. The CMOS camera captures images of incident laser beam after it is split and attenuated by beam splitter and neutral density filter. By comparing the average brightness of the beam spots and measurement results from laser power meter, laser power can be estimated. Under continuous measuring mode, the average measuring error is about 3%, and the response time is at least 3.6 second shorter than thermopile power meters; under trigger measuring mode which enables the CMOS camera to synchronize with intermittent laser output, the average measuring error is less than 3%, and the shortest response time is 20 millisecond.

  3. Upgraded Fast Beam Conditions Monitor for CMS online luminosity measurement

    CERN Document Server

    Leonard, Jessica Lynn

    2014-01-01

    The CMS beam and radiation monitoring subsystem BCM1F during LHC Run I consisted of 8 individual diamond sensors situated around the beam pipe within the tracker detector volume, for the purpose of fast monitoring of beam background and collision products. Effort is ongoing to develop the use of BCM1F as an online bunch-by-bunch luminosity monitor. BCM1F will be running whenever there is beam in LHC, and its data acquisition is independent from the data acquisition of the CMS detector, hence it delivers luminosity even when CMS is not taking data. To prepare for the expected increase in the LHC luminosity and the change from 50 ns to 25 ns bunch separation, several changes to the system are required, including a higher number of sensors and upgraded electronics. In particular, a new real-time digitizer with large memory was developed and is being integrated into a multi-subsystem framework for luminosity measurement. Current results from Run II preparation will be shown, including results from the January 201...

  4. Upgraded Fast Beam Conditions Monitor for CMS online luminosity measurement

    CERN Document Server

    Leonard, Jessica Lynn; Hempel, Maria; Henschel, Hans; Karacheban, Olena; Lange, Wolfgang; Lohmann, Wolfgang; Novgorodova, Olga; Penno, Marek; Walsh, Roberval; Dabrowski, Anne; Guthoff, Moritz; Loos, R; Ryjov, Vladimir; Burtowy, Piotr; Lokhovitskiy, Arkady; Odell, Nathaniel; Przyborowski, Dominik; Stickland, David P; Zagozdzinska, Agnieszka

    2014-01-01

    The CMS beam condition monitoring subsystem BCM1F during LHC Run I consisted of 8 individual diamond sensors situated around the beam pipe within the tracker detector volume, for the purpose of fast monitoring of beam background and collision products. Effort is ongoing to develop the use of BCM1F as an online bunch-by-bunch luminosity monitor. BCM1F will be running whenever there is beam in LHC, and its data acquisition is independent from the data acquisition of the CMS detector, hence it delivers luminosity even when CMS is not taking data. To prepare for the expected increase in the LHC luminosity and the change from 50 ns to 25 ns bunch separation, several changes to the system are required, including a higher number of sensors and upgraded electronics. In particular, a new real-time digitizer with large memory was developed and is being integrated into a multi-subsystem framework for luminosity measurement. Current results from Run II preparation will be discussed, including results from the January 201...

  5. Online monitoring of cracking in concrete structures using embedded piezoelectric transducers

    Science.gov (United States)

    Dumoulin, C.; Karaiskos, G.; Sener, J.-Y.; Deraemaeker, A.

    2014-10-01

    Online damage detection is of great interest in the field of concrete structures and, more generally, within the construction industry. Current economic requirements impose the reduction of the operating costs related to such inspection while the security and the reliability of structures must constantly be improved. In this paper, nondestructive testing is applied using piezoelectric transducers embedded in concrete structures. These transducers are especially adapted for online ultrasonic monitoring, due to their low cost, small size, and broad frequency band. These recent transducers are called smart aggregates. The technique of health monitoring developed in this study is based on a ultrasonic pulse velocity test with an embedded ultrasonic emitter-receiver pair (pitch-catch). The damage indicator focuses on the early wave arrival. The Belgian company MS3 takes an interest in evaluating the quality of the concrete around the anchorage system of highway security barriers after important shocks. The failure mechanism can be viewed as a combination of a bending and the failure of the anchorages. Accordingly, the monitoring technique has been applied both on a three-points bending test and several pull-out tests. The results indicate a very high sensitivity of the method, which is able to detect the crack initiation phase and follow the crack propagation over the entire duration of the test.

  6. On-line corrosion monitoring in geothermal district heating systems. I. General corrosion rates

    DEFF Research Database (Denmark)

    Richter, S.; Hilbert, Lisbeth Rischel; Thorarinsdottir, R.I.

    2006-01-01

    General corrosion rates in the geothermal district heating systems in Iceland are generally low, of the magnitude 1 mu m/y. The reason is high pH (9.5), low-conductivity (200 mu m/y) and negligible dissolved oxygen. The geothermal hot water is either used directly from source or to heat up cold...... ground water. The fluid naturally contains sulphide, which helps keeping the fluid oxygen-free but complicates the electrochemical environment. In this research on-line techniques for corrosion monitoring were tested and evaluated in this medium. Electrochemical methods worked well as long as frequency...

  7. Online monitoring and control of the biogas process

    Energy Technology Data Exchange (ETDEWEB)

    Boe, K.

    2006-07-01

    The demand for online monitoring and control of biogas process is increasing, since better monitoring and control system can improve process stability and enhance process performance for better economy of the biogas plants. A number of parameters in both the liquid and the gas phase have been suggested as process indicators. These include gas production, pH, alkalinity, volatile fatty acids (VFA) and hydrogen. Of these, VFA is the most widely recognised as a direct, relevant measure of stability. The individual, rather than collective VFA concentrations are recognised as providing significantly more information for diagnosis. However, classic on-line measurement is based on filtration, which suffers from fouling, especially in particulate or slurry wastes. In this project, a new online VFA monitoring system has been developed using gas-phase VFA extraction to avoid sample filtration. The liquid sample is pumped into a sampling chamber, acidified, added with salt and heated to extract VFA into the gas phase before analysis by GC-FID. This allows easy application to manure. Sample and analysis time of the system varies from 25-40 min. depending on the washing duration. The sampling frequency is fast enough for the dynamic of a manure digester, which is in the range of several hours. This system has been validated over more than 6 months and had shown good agreement with offline VFA measurement. Response from this sensor was compared with other process parameters such as biogas production, pH and dissolved hydrogen during overload situations in a laboratory-scale digester, to investigate the suitability of each measure as a process indicator. VFA was most reliable for indicating process imbalance, and propionate was most persistent. However, when coupling the online VFA monitoring with a simple control for automatic controlling propionate level in a digester, it was found that propionate decreased so slow that the biogas production fluctuated. Therefore, it is more

  8. General Purpose Data-Driven Online System Health Monitoring with Applications to Space Operations

    Science.gov (United States)

    Iverson, David L.; Spirkovska, Lilly; Schwabacher, Mark

    2010-01-01

    Modern space transportation and ground support system designs are becoming increasingly sophisticated and complex. Determining the health state of these systems using traditional parameter limit checking, or model-based or rule-based methods is becoming more difficult as the number of sensors and component interactions grows. Data-driven monitoring techniques have been developed to address these issues by analyzing system operations data to automatically characterize normal system behavior. System health can be monitored by comparing real-time operating data with these nominal characterizations, providing detection of anomalous data signatures indicative of system faults, failures, or precursors of significant failures. The Inductive Monitoring System (IMS) is a general purpose, data-driven system health monitoring software tool that has been successfully applied to several aerospace applications and is under evaluation for anomaly detection in vehicle and ground equipment for next generation launch systems. After an introduction to IMS application development, we discuss these NASA online monitoring applications, including the integration of IMS with complementary model-based and rule-based methods. Although the examples presented in this paper are from space operations applications, IMS is a general-purpose health-monitoring tool that is also applicable to power generation and transmission system monitoring.

  9. In situ sensor techniques in modern bioprocess monitoring.

    Science.gov (United States)

    Beutel, Sascha; Henkel, Steffen

    2011-09-01

    New reactor concepts as multi-parallel screening systems or disposable bioreactor systems for decentralized and reproducible production increase the need for new and easy applicable sensor technologies to access data for process control. These sophisticated reactor systems require sensors to work with the lowest sampling volumes or, even better, to measure directly in situ, but in situ sensors are directly incorporated into a reactor or fermenter within the sterility barrier and have therefore to stand the sterilization procedures. Consequently, these in situ sensor technologies should enable the measurement of multi-analytes simultaneously online and in real-time at a low price for the robust sensing element. Current research therefore focuses on the implementation of noninvasive spectroscopic and optical technologies, and tries to employ them through fiber optics attached to disposable sensing connectors. Spectroscopic methods reach from ultraviolet to infrared and further comprising fluorescence and Raman spectroscopy. Also, optic techniques like microscopy are adapted for the direct use in bioreactor systems (Ulber et al. in Anal Bioanal Chem 376:342-348, 2003) as well as various electrochemical methods (Joo and Brown in Chem Rev 108:638-651, 2008). This review shows the variety of modern in situ sensing principles in bioprocess monitoring with emphasis on spectroscopic and optical techniques and the progress in the adaption to latest reactor concepts.

  10. Corrosion product monitoring using an on-line X-ray fluorescence probe

    Energy Technology Data Exchange (ETDEWEB)

    Stauffer, C.C.; Connolly, D.J. [Babcock & Wilcox Research, Alliance, OH (United States); Millett, P. [Electric Power Research Institute, Palo Alto, CA (United States)

    1995-01-01

    The need for monitoring corrosion products is becoming increasingly important as power plants strive to minimize the effects of corrosion products on plant availability. Current methodology for monitoring corrosion products involves collection of samples using membrane filters followed by analysis of the membranes in the laboratory. This technique is labor intensive and provides only average values over lengthy sampling intervals. Recently, a laboratory tool, x-ray fluorescence spectroscopy, has been combined with on-line sampling capability resulting in an on-line instrument capable of measuring iron oxide particulates in a flowing stream at the ppb level and below. After development in the laboratory, the instrument was successfully field tested in a power plant and is currently undergoing a second field test at another plant. This paper will discuss the design and operation of the instrument, and field data obtained from plant service will be presented. Results show that this instrument will provide on-line measurements of iron oxides at the ppb level with minimal operator involvement.

  11. On-Line Condition Monitoring using Computational Intelligence

    CERN Document Server

    Vilakazi, C B; Mautla, P; Moloto, E

    2007-01-01

    This paper presents bushing condition monitoring frameworks that use multi-layer perceptrons (MLP), radial basis functions (RBF) and support vector machines (SVM) classifiers. The first level of the framework determines if the bushing is faulty or not while the second level determines the type of fault. The diagnostic gases in the bushings are analyzed using the dissolve gas analysis. MLP gives superior performance in terms of accuracy and training time than SVM and RBF. In addition, an on-line bushing condition monitoring approach, which is able to adapt to newly acquired data are introduced. This approach is able to accommodate new classes that are introduced by incoming data and is implemented using an incremental learning algorithm that uses MLP. The testing results improved from 67.5% to 95.8% as new data were introduced and the testing results improved from 60% to 95.3% as new conditions were introduced. On average the confidence value of the framework on its decision was 0.92.

  12. Bio-inspired computational techniques based on advanced condition monitoring

    Institute of Scientific and Technical Information of China (English)

    Su Liangcheng; He Shan; Li Xiaoli; Li Xinglin

    2011-01-01

    The application of bio-inspired computational techniques to the field of condition monitoring is addressed.First, the bio-inspired computational techniques are briefly addressed; the advantages and disadvantages of these computational methods are made clear. Then, the roles of condition monitoring in the predictive maintenance and failures prediction and the development trends of condition monitoring are discussed. Finally, a case study on the condition monitoring of grinding machine is described, which shows the application of bio-inspired computational technique to a practical condition monitoring system.

  13. Research and exploitation of CNC laser manufacturing online monitoring system based on OpenGL

    Science.gov (United States)

    Wang, Gang; Hu, Shengsun; Wang, Mingjian; Ding, Wei; Zhao, Jie

    2010-12-01

    CNC manufacturing online monitoring technology is a significant method to improve the processing quality and achieve an important part of intelligent processing. Based on OpenGL 3D graphics technology, a Computer Numerical Control (CNC ) Laser Manufacturing 3D model is established; based on the model and the powerful ability of OpenGL, a CNC manufacturing on-line monitoring system is developed so as to achieve the ability of CNC remote real-time online monitoring in different working locations. Remote real-time online monitoring of different position of the CNC is realized. The online monitoring scope of the CNC is enlarged, with more flexibility to meet the demands of practical application, meanwhile the cost of hardware investment is greatly reduced.

  14. On-line monitoring of particulate iron oxides in steam generator feedwater using x-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Stauffer, C.C.; Connolly, D.J. [Babcock and Wilcox, Alliance, OH (United States). Research and Development Division; Millett, P.J. [Electric Power Research Inst., Palo Alto, CA (United States)

    1995-12-01

    Corrosion product monitoring is important as power plants strive to minimize corrosion and maximize availability. Current methodology for monitoring corrosion products involves grab sampling and/or collection of integrated samples using membrane filters followed by analysis of the membranes in the laboratory. This technique is labor intensive and provides only average values over lengthy sampling intervals (typically 1--3 days). Recently, a laboratory tool -- x-ray fluorescence (XRF) spectroscopy -- was combined with existing on-line sampling techniques resulting in an on-line XRF monitor capable of measuring iron oxide particulates in a flowing stream at the parts-per-billion (ppb) level and below. After development in the laboratory, the instrument was successfully field tested in two power plants. After testing at the first power plant, modifications to improve instrument performance were incorporated. This paper presents information regarding design and operation of the instrument, improvements made during the first test period, and field data obtained during plant service. Results show that this instrument will provide on-line measurements of iron oxides at the ppb level with minimal operator involvement. Finally, there are wider applications for this on-line XRF monitor. Though the present system is geared toward iron analysis in corrosion products, it could as well be configured for other elements or groups of elements for other applications such lead, sulfur, copper, chromium, or any other element detectable by x-ray fluorescence.

  15. Framework for Structural Online Health Monitoring of Aging and Degradation of Secondary Systems due to some Aspects of Erosion

    Energy Technology Data Exchange (ETDEWEB)

    Gribok, Andrei [Idaho National Lab. (INL), Idaho Falls, ID (United States); Patnaik, Sobhan [Idaho National Lab. (INL), Idaho Falls, ID (United States); Williams, Christian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pattanaik, Marut [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kanakala, Raghunath [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    This report describes the current state of research related to critical aspects of erosion and selected aspects of degradation of secondary components in nuclear power plants. The report also proposes a framework for online health monitoring of aging and degradation of secondary components. The framework consists of an integrated multi-sensor modality system which can be used to monitor different piping configurations under different degradation conditions. The report analyses the currently known degradation mechanisms and available predictive models. Based on this analysis, the structural health monitoring framework is proposed. The Light Water Reactor Sustainability Program began to evaluate technologies that could be used to perform online monitoring of piping and other secondary system structural components in commercial NPPs. These online monitoring systems have the potential to identify when a more detailed inspection is needed using real-time measurements, rather than at a pre-determined inspection interval. This transition to condition-based, risk informed automated maintenance will contribute to a significant reduction of operations and maintenance costs that account for the majority of nuclear power generation costs. There is unanimous agreement between industry experts and academic researchers that identifying and prioritizing inspection locations in secondary piping systems (for example, in raw water piping or diesel piping) would eliminate many excessive in-service inspections. The proposed structural health monitoring framework takes aim at answering this challenge by combining long-range guided wave technologies with other monitoring techniques, which can significantly increase the inspection length and pinpoint the locations that degraded the most. More widely, the report suggests research efforts aimed at developing, validating, and deploying online corrosion monitoring techniques for complex geometries, which are pervasive in NPPs.

  16. Online Learning Techniques for Improving Robot Navigation in Unfamiliar Domains

    Science.gov (United States)

    2010-12-01

    online resource allocation problems, Streeter and Golovin [125] introduced an online algorithm whose worst-case performance approaches that of the...system for autonomous navigation. In AUVSIs Unmanned Systems North America, August 2007. 3.3 [125] Matthew J. Streeter and Daniel Golovin . An online

  17. Development of Online Spectroscopic pH Monitoring for Nuclear Fuel Reprocessing Plants: Weak Acid Schemes.

    Science.gov (United States)

    Casella, Amanda J; Ahlers, Laura R H; Campbell, Emily L; Levitskaia, Tatiana G; Peterson, James M; Smith, Frances N; Bryan, Samuel A

    2015-05-19

    In nuclear fuel reprocessing, separating trivalent minor actinides and lanthanide fission products is extremely challenging and often necessitates tight pH control in TALSPEAK (Trivalent Actinide-Lanthanide Separation by Phosphorus reagent Extraction from Aqueous Komplexes) separations. In TALSPEAK and similar advanced processes, aqueous pH is one of the most important factors governing the partitioning of lanthanides and actinides between an aqueous phase containing a polyaminopolycarboxylate complexing agent and a weak carboxylic acid buffer and an organic phase containing an acidic organophosphorus extractant. Real-time pH monitoring would significantly increase confidence in the separation performance. Our research is focused on developing a general method for online determination of the pH of aqueous solutions through chemometric analysis of Raman spectra. Spectroscopic process-monitoring capabilities, incorporated in a counter-current centrifugal contactor bank, provide a pathway for online, real-time measurement of solution pH. The spectroscopic techniques are process-friendly and can be easily configured for online applications, whereas classic potentiometric pH measurements require frequent calibration/maintenance and have poor long-term stability in aggressive chemical and radiation environments. Raman spectroscopy discriminates between the protonated and deprotonated forms of the carboxylic acid buffer, and the chemometric processing of the Raman spectral data with PLS (partial least-squares) regression provides a means to quantify their respective abundances and therefore determine the solution pH. Interpretive quantitative models have been developed and validated under a range of chemical composition and pH conditions using a lactic acid/lactate buffer system. The developed model was applied to new spectra obtained from online spectral measurements during a solvent extraction experiment using a counter-current centrifugal contactor bank. The model

  18. Algorithm and Software for Landslide Slopes Stability Estimation with Online Very Low Frequency Monitoring

    Science.gov (United States)

    Gordeev, V. F.; Kabanov, M. M.; Kapustin, S. N.

    2017-04-01

    In addition to preliminary surveying, landslide slopes stability estimation problems require online real-time monitoring alerting about potential emergencies. Very low frequency monitoring data provided by geodynamic processes automated control system provides a solution to that problem. Authors describe the software and algorithms implemented for that system, make conclusions on the efficiency of applied solutions and propose options for the further development of online very low frequency monitoring system.

  19. Comparison of corrosion monitoring techniques in district heating systems

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Nielsen, Lars Vendelbo; Thorarinsdottir, R.I.

    2004-01-01

    Investigations aimed at evaluating monitoring techniques as a function of the specific water chemistry has been conducted as a part of a Nordic project focused on improving the quality of corrosion monitoring in municipal district heating. A combination of techniques has been selected to measure...

  20. Development of On-Line Spectroscopic pH Monitoring for Nuclear Fuel Reprocessing Plants: Weak Acid Schemes

    Energy Technology Data Exchange (ETDEWEB)

    Casella, Amanda J.; Hylden, Laura R.; Campbell, Emily L.; Levitskaia, Tatiana G.; Peterson, James M.; Smith, Frances N.; Bryan, Samuel A.

    2015-05-19

    Knowledge of real-time solution properties and composition is a necessity for any spent nuclear fuel reprocessing method. Metal-ligand speciation in aqueous solutions derived from the dissolved commercial spent fuel is highly dependent upon the acid concentration/pH, which influences extraction efficiency and the resulting speciation in the organic phase. Spectroscopic process monitoring capabilities, incorporated in a counter current centrifugal contactor bank, provide a pathway for on-line real-time measurement of solution pH. The spectroscopic techniques are process-friendly and can be easily configured for on-line applications, while classic potentiometric pH measurements require frequent calibration/maintenance and have poor long-term stability in aggressive chemical and radiation environments. Our research is focused on developing a general method for on-line determination of pH of aqueous solutions through chemometric analysis of Raman spectra. Interpretive quantitative models have been developed and validated under the range of chemical composition and pH using a lactic acid/lactate buffer system. The developed model was applied to spectra obtained on-line during solvent extractions performed in a centrifugal contactor bank. The model predicted the pH within 11% for pH > 2, thus demonstrating that this technique could provide the capability of monitoring pH on-line in applications such as nuclear fuel reprocessing.

  1. LHCb RICH Online-Monitor and Data-Quality

    CERN Multimedia

    Kerzel, U

    2009-01-01

    The LHCb experiment at the LHC (CERN) has been optimised for high precision measurements of the beauty quark sector. Its main objective is to precisely determine and over-constrain the parameters of the CKM mixing matrix, and to search for further sources of CP violation and new physics beyond the Standard Model in rare B-decays. Efficient particle identification at high purities over a wide momentum range from around 1 to ~100GeV/c is vital to many LHCb analyses. Central to the LHCb particle identification strategy are two Ring Imaging CHerenkov (RICH) detectors which use Silica Aerogel and C4F10 and CF4 gas radiators. A rigorous quality control scheme is being developed to insure that the data recorded by the RICH detector meets the stringent requirements of the physics analyses. The talk summarises the LHCb RICH online monitoring and data-quality strategy. Multiple dedicated algorithms are deployed to detect any potential issue already during data-taking ranging from integrity checks, mis-alignments to cha...

  2. On-line remote monitoring of radioactive waste repositories

    Directory of Open Access Journals (Sweden)

    Calì Claudio

    2014-01-01

    Full Text Available A low-cost array of modular sensors for online monitoring of radioactive waste was developed at INFN-LNS. We implemented a new kind of gamma counter, based on Silicon PhotoMultipliers and scintillating fibers, that behaves like a cheap scintillating Geiger-Muller counter. It can be placed in shape of a fine grid around each single waste drum in a repository. Front-end electronics and an FPGA-based counting system were developed to handle the field data, also implementing data transmission, a graphical user interface and a data storage system. A test of four sensors in a real radwaste storage site was performed with promising results. Following the tests an agreement was signed between INFN and Sogin for the joint development and installation of a prototype DMNR (Detector Mesh for Nuclear Repository system inside the Garigliano radwaste repository in Sessa Aurunca (CE, Italy. Such a development is currently under way, with the installation foreseen within 2014.

  3. New Web Technologies for the LHCb Online Monitoring Displays

    CERN Document Server

    Lagou, Charalampia

    2017-01-01

    The LHCb Online Monitoring Displays is a web application, that gives access to real-time measurements and status information about the LHCb detector and its components, without the need to login. It is hosted at CERN on the computer lbcomet.cern.ch. The system is architecturally complex, based on the Comet technology for the data-transfer and the STOMP protocol for the communication between the clients and the message broker. The application is functional, however concerns are expressed over the future maintenance of the system’s architecture as is. The cause of these concerns are firstly the fact that the STOMP JavaScript client package is outdated and flagged by the original author flagged as non-maintained and secondly that todays modern browsers support real-time bi-directional communication which, at the time of development was not compatible even with some of the major browsers. Therefore, the objective of this project is to investigate modern data-push mechanisms, which could complement or replace...

  4. Online monitoring of Mezcal fermentation based on redox potential measurements.

    Science.gov (United States)

    Escalante-Minakata, P; Ibarra-Junquera, V; Rosu, H C; De León-Rodríguez, A; González-García, R

    2009-01-01

    We describe an algorithm for the continuous monitoring of the biomass and ethanol concentrations as well as the growth rate in the Mezcal fermentation process. The algorithm performs its task having available only the online measurements of the redox potential. The procedure combines an artificial neural network (ANN) that relates the redox potential to the ethanol and biomass concentrations with a nonlinear observer-based algorithm that uses the ANN biomass estimations to infer the growth rate of this fermentation process. The results show that the redox potential is a valuable indicator of the metabolic activity of the microorganisms during Mezcal fermentation. In addition, the estimated growth rate can be considered as a direct evidence of the presence of mixed culture growth in the process. Usually, mixtures of microorganisms could be intuitively clear in this kind of processes; however, the total biomass data do not provide definite evidence by themselves. In this paper, the detailed design of the software sensor as well as its experimental application is presented at the laboratory level.

  5. Monitoring beach changes using GPS surveying techniques

    Science.gov (United States)

    Morton, Robert; Leach, Mark P.; Paine, Jeffrey G.; Cardoza, Michael A.

    1993-01-01

    A need exists for frequent and prompt updating of shoreline positions, rates of shoreline movement, and volumetric nearshore changes. To effectively monitor and predict these beach changes, accurate measurements of beach morphology incorporating both shore-parallel and shore-normal transects are required. Although it is possible to monitor beach dynamics using land-based surveying methods, it is generally not practical to collect data of sufficient density and resolution to satisfy a three-dimensional beach-change model of long segments of the coast. The challenge to coastal scientists is to devise new beach monitoring methods that address these needs and are rapid, reliable, relatively inexpensive, and maintain or improve measurement accuracy.

  6. Novel current monitoring techniques without shunt resistors

    Directory of Open Access Journals (Sweden)

    VODA Adriana

    2012-05-01

    Full Text Available Current measurement for automotiveelectrical actuator applications (with motors or valvesis necessary for appropriate control in many cases anda safety requirement in all cases: the control algorithmmay be dependent on the data but safety relevantfunctions will use it to determine possible over-current,over-temperature or failure conditions. This paperproposes an alternative method of monitoring thecurrent, without using sensors or current shunts.Instead, measurements are made on the motor in thedevelopment stages and low/high frequency variationsin the supply line are monitored, through low/highpassfilters, by available AD channels in the system.This results in cost reduction for the final product, byreducing hardware complexity.

  7. A review of bridge scour monitoring techniques

    Institute of Scientific and Technical Information of China (English)

    L.J. Prendergast; K. Gavin

    2014-01-01

    The high profile failure of the Malahide Viaduct in Dublin, Ireland, which is a part of the EU TEN-T network of critical transport links, was caused by foundation scour. Scour is a common soil-structure interaction problem. In light of current changes in climate, increasing frequency of flooding, coupled with the increasing magnitude of these flood events, will lead to a higher risk of bridge failure. Moni-toring scour is of paramount importance to ensure the continued safe operation of the aging bridge asset network. Most monitoring regimes are based on expensive underwater instrumentation that can often be subjected to damage during times of flooding, when scour risk is at its highest. This paper presents a critical review of existing scour monitoring equipments and methodologies with a particular focus on those using the dynamic response of the structure to indicate the existence and severity of the scour phenomenon affecting the structure. A sensitivity study on a recently developed monitoring method is also undertaken.

  8. A review of bridge scour monitoring techniques

    Directory of Open Access Journals (Sweden)

    L.J. Prendergast

    2014-04-01

    Full Text Available The high profile failure of the Malahide Viaduct in Dublin, Ireland, which is a part of the EU TEN-T network of critical transport links, was caused by foundation scour. Scour is a common soil-structure interaction problem. In light of current changes in climate, increasing frequency of flooding, coupled with the increasing magnitude of these flood events, will lead to a higher risk of bridge failure. Monitoring scour is of paramount importance to ensure the continued safe operation of the aging bridge asset network. Most monitoring regimes are based on expensive underwater instrumentation that can often be subjected to damage during times of flooding, when scour risk is at its highest. This paper presents a critical review of existing scour monitoring equipments and methodologies with a particular focus on those using the dynamic response of the structure to indicate the existence and severity of the scour phenomenon affecting the structure. A sensitivity study on a recently developed monitoring method is also undertaken.

  9. Communication Pathways in the Light Water Reactor Sustainability Online Monitoring Project

    Energy Technology Data Exchange (ETDEWEB)

    Nancy J. Lybeck; Magdy S. Tawfik; Binh T. Pham; Vivek Agarwal; Jamie Coble

    2011-09-01

    Implementation of online monitoring and prognostics in existing U.S. nuclear power plants will involve coordinating the efforts of national laboratories, utilities, universities, and private companies. Large amounts of operational data, including failure data, are necessary for the development and calibration of diagnostic and prognostic algorithms. The ability to use data from all available resources will provide the most expeditious avenue to implementation of online monitoring in existing NPPs; however, operational plant data are often considered proprietary. Secure methods for transferring and storing data are discussed, along with a potential technology for implementation of online monitoring.

  10. Novel OSNR Monitoring Technique in Dense WDM Systems using Inherently Generated CW Monitoring Channels

    DEFF Research Database (Denmark)

    Petersen, Martin Nordal

    2007-01-01

    We present a simple, yet effective OSNR monitoring technique based on an inherent effect in the optical modulator. Highly accurate OSNR monitoring is demonstrated in a 40 Gb/s dense WDM system with 50 GHz channel spacing....

  11. An Online Monitoring and Fault Location Methodology for Underground Power Cables

    Science.gov (United States)

    Govindarajan, Sudarshan

    With the growing importance of underground power systems and the need for greater reliability of the power supply, cable monitoring and accurate fault location detection has become an increasingly important issue. The presence of inherent random fluctuations in power system signals can be used to extract valuable information about the condition of system equipment. One such component is the power cable, which is the primary focus of this research. This thesis investigates a unique methodology that allows online monitoring of an underground power cable. The methodology analyzes conventional power signals in the frequency domain to monitor the condition of a power cable. First, the proposed approach is analyzed theoretically with the help of mathematical computations. Frequency domain analysis techniques are then used to compute the power spectral density (PSD) of the system signals. The importance of inherent noise in the system, a key requirement of this methodology, is also explained. The behavior of resonant frequencies, which are unique to every system, are then analyzed under different system conditions with the help of mathematical expressions. Another important aspect of this methodology is its ability to accurately estimate cable fault location. The process is online and hence does not require the system to be disconnected from the grid. A single line to ground fault case is considered and the trend followed by the resonant frequencies for different fault positions is observed. The approach is initially explained using theoretical calculations followed by simulations in MATLAB/Simulink. The validity of this technique is proved by comparing the results obtained from theory and simulation to actual measurement data.

  12. An inverse method for online stress monitoring and fatigue life analysis of boiler drums

    Institute of Scientific and Technical Information of China (English)

    HU Wen-sen; LI Bin; CAO Zi-dong; YANG Dong; LI Ya-chao

    2009-01-01

    A method based on solution of the inverse heat conduction problem was presented for online stress monitoring and fatigue life analysis of boiler drums. The mathematical model of the drum temperature distribution is based on the assumptions that the difference of temperature along the longitudinal axis of the boiler drum is negligible with changes only in the radial direction and the circumferential direction, and that the outer surface of drum is thermally insulated. Combining this model with the control-volume method provides temperatures at different points on a eross-section of the drum. With the temperature data, the stresses and the life expectancy of the boiler drum are derived according to the ASME code. Applying this method to the cold start-up process of a 300 MW boiler demonswated the absence of errors caused by the boundary condition assumptions on the inner surface of the drum and testified that the method is an applicable technique for the online stress monitoring and fatigue life analysis of boiler drums.

  13. On-line Monitoring of VoIP Quality Using IPFIX

    Directory of Open Access Journals (Sweden)

    Petr Matousek

    2014-01-01

    Full Text Available The main goal of VoIP services is to provide a reliable and high-quality voice transmission over packet networks. In order to prove the quality of VoIP transmission, several approaches were designed. In our approach, we are concerned about on-line monitoring of RTP and RTCP traffic. Based on these data, we are able to compute main VoIP quality metrics including jitter, delay, packet loss, and finally R-factor and MOS values. This technique of VoIP quality measuring can be directly incorporated into IPFIX monitoring framework where an IPFIX probe analyses RTP/RTCP packets, computes VoIP quality metrics, and adds these metrics into extended IPFIX flow records. Then, these extended data are stored in a central IPFIX monitoring system called collector where can be used for monitoring purposes. This paper presents a functional implementation of IPFIX plugin for VoIP quality measurement and compares the results with results obtained by other tools.

  14. Transformer ageing modern condition monitoring techniques and their interpretations

    CERN Document Server

    Purkait, Prithwiraj

    2017-01-01

    This book is a one-stop guide to state-of-the-art research in transformer ageing, condition monitoring and diagnosis. It is backed by rigorous research projects supported by the Australian Research Council in collaboration with several transmission and distribution companies. Many of the diagnostic techniques and tools developed in these projects have been applied by electricity utilities and would appeal to both researchers and practicing engineers. Important topics covered in this book include transformer insulation materials and their ageing behaviour, transformer condition monitoring techniques and detailed diagnostic techniques and their interpretation schemes. It also features a monitoring framework for smart transformers as well as a chapter on biodegradable oil.

  15. Installation and Operation of RENO Slow Control and Online Monitoring System

    CERN Document Server

    Choi, J H; Pac, M Y; Ahn, J K; Choi, S; Choi, Y; Choi, W K; Jang, J S; Jeon, E J; Joo, K K; Kim, H S; Kim, J Y; Kim, S B; Kim, W; Kim, Y D; Lee, J; Lim, I T; Ma, K J; Park, I G; Park, J S; Park, K S; Shin, J W; K, Siyeon; Stepanyan, S S; Yeo, I S; Yu, I

    2013-01-01

    The RENO is the reactor based experiment to measure the smallest neutrino mixing angle, $\\theta_{13}$. The slow control and online monitoring system for RENO monitors the status of the HV systems, the temperatures of the electronics crates and detectors, the fluids levels, humidities of experimental halls and electronics huts, and gas concentrations. And the slow control system is able to set up high voltage for each channel and turn on and off HV remotely. An online monitoring system located in the control room reads data from the DAQ host computer via network. It provides event display, online histograms to monitor detector performance, and variety of additional tasks needed to efficiently monitor detector performance parameters and diagnose troubles of detector and DAQ system. In this paper, we explan the installation of the slow control and monitoring system and their operation status,

  16. A novel, optical, on-line bacteria sensor for monitoring drinking water quality

    DEFF Research Database (Denmark)

    Højris, Bo; Christensen, Sarah Christine Boesgaard; Albrechtsen, Hans-Jørgen;

    2016-01-01

    Today, microbial drinking water quality is monitored through either time-consuming laboratory methods or indirect on-line measurements. Results are thus either delayed or insufficient to support proactive action. A novel, optical, on-line bacteria sensor with a 10-minute time resolution has been...... conditions such as pollution events in drinking water....

  17. Integrated electrochemical sensor array for on-line monitoring of yeast fermentations

    NARCIS (Netherlands)

    Krommenhoek, E.E.; Gardeniers, Johannes G.E.; Bomer, Johan G.; Li, X.; Ottens, M.; van Dedem, G.W.K.; van Leeuwen, M.; van Gulik, W.M.; van der Wielen, L.A.M.; Heijnen, J.J.; van den Berg, Albert

    2007-01-01

    This paper describes the design, modeling, and experimental characterization of an electrochemical sensor array for on-line monitoring of fermentor conditions in both miniaturized cell assays and in industrial scale fertnentations. The viable biomass concentration is determined from impedance

  18. Online monitoring of oil film using electrical capacitance tomography and level set method

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Q., E-mail: xueqian@tju.edu.cn; Ma, M. [College of Aeronautical Automation, Civil Aviation University of China, Tianjin 300300 (China); Sun, B. Y.; Cui, Z. Q.; Wang, H. X. [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China)

    2015-08-15

    In the application of oil-air lubrication system, electrical capacitance tomography (ECT) provides a promising way for monitoring oil film in the pipelines by reconstructing cross sectional oil distributions in real time. While in the case of small diameter pipe and thin oil film, the thickness of the oil film is hard to be observed visually since the interface of oil and air is not obvious in the reconstructed images. And the existence of artifacts in the reconstructions has seriously influenced the effectiveness of image segmentation techniques such as level set method. Besides, level set method is also unavailable for online monitoring due to its low computation speed. To address these problems, a modified level set method is developed: a distance regularized level set evolution formulation is extended to image two-phase flow online using an ECT system, a narrowband image filter is defined to eliminate the influence of artifacts, and considering the continuity of the oil distribution variation, the detected oil-air interface of a former image can be used as the initial contour for the detection of the subsequent frame; thus, the propagation from the initial contour to the boundary can be greatly accelerated, making it possible for real time tracking. To testify the feasibility of the proposed method, an oil-air lubrication facility with 4 mm inner diameter pipe is measured in normal operation using an 8-electrode ECT system. Both simulation and experiment results indicate that the modified level set method is capable of visualizing the oil-air interface accurately online.

  19. Online monitoring of oil film using electrical capacitance tomography and level set method

    Science.gov (United States)

    Xue, Q.; Sun, B. Y.; Cui, Z. Q.; Ma, M.; Wang, H. X.

    2015-08-01

    In the application of oil-air lubrication system, electrical capacitance tomography (ECT) provides a promising way for monitoring oil film in the pipelines by reconstructing cross sectional oil distributions in real time. While in the case of small diameter pipe and thin oil film, the thickness of the oil film is hard to be observed visually since the interface of oil and air is not obvious in the reconstructed images. And the existence of artifacts in the reconstructions has seriously influenced the effectiveness of image segmentation techniques such as level set method. Besides, level set method is also unavailable for online monitoring due to its low computation speed. To address these problems, a modified level set method is developed: a distance regularized level set evolution formulation is extended to image two-phase flow online using an ECT system, a narrowband image filter is defined to eliminate the influence of artifacts, and considering the continuity of the oil distribution variation, the detected oil-air interface of a former image can be used as the initial contour for the detection of the subsequent frame; thus, the propagation from the initial contour to the boundary can be greatly accelerated, making it possible for real time tracking. To testify the feasibility of the proposed method, an oil-air lubrication facility with 4 mm inner diameter pipe is measured in normal operation using an 8-electrode ECT system. Both simulation and experiment results indicate that the modified level set method is capable of visualizing the oil-air interface accurately online.

  20. Monitoring DNAPL pumping using integrated geophysical techniques

    Energy Technology Data Exchange (ETDEWEB)

    Newmark, R.L.

    1997-01-01

    The removal of DNAPL during pumping was monitored. At Hill AFB in Utah, a free-product DNAPL plume (predominantly TCE, with some TCA, PCE, methylene chloride) is pooled in water-wet soil on a thick clay aquitard. Groundwater pumping at Operable Unit 2 began in 1994; to date, nearly 30,000 gal DNAPL have been recovered. From Sept. 1994 through Sept. 1995, changes in the basin during DNAPL pumping were monitored using fiber optic chemical sensors, neutron logs, and electrical resistance tomography (ERT). The first two sensor types verify the presence of DNAPL in vicinity of 3 boreholes which form a cross section from the perimeter of the basin to its center. Cross borehole ERT images the changes in formation electrical properties due to removal of DNAPL, extending the understanding of DNAPL removal between the boreholes. During pumping, electrical resistivities decreased; we suggest these decreases are directly caused by the reduction in DNAPL. During ground water pumping, water with relatively low resistivity replaces some of the DNAPL pockets as the highly insulating DNAPL is removed. Results suggest that, as DNAPL is pumped from a nearby well, product slowly drains along the top of an aquitard and into the pump well, where it collects.

  1. Monitoring technique for seepage line of tailings dam

    Institute of Scientific and Technical Information of China (English)

    李夕兵; 蒋卫东

    2003-01-01

    An automatic monitoring technique of the seepage line, including the monitoring design, the automatic monitoring system and the backfill technique of the measuring probe of pore-water pressure, was used in a tailings dam, and a shallow refractive seismic method was investigated for obtaining the seepage line of those areas outside the monitoring zone. The results show that the automatic monitoring has the error within ± 3 % relative to piezometric tube method and improves monitoring efficiency greatly, and the shallow refractive seismic method has the error within ± 10% but expands the area of monitoring. Both of them can be used for a daily measurement in monitoring the seepage line. The result of the automatic monitoring also shows that not only the design of the survey line and the backfill technique of the measuring probe of pore-water pressure are reasonable and economic but also the reliability and safety of the automatic monitoring system are better. Testing result by the shallow refractive seismic method in tailings reveals that the energy excited by hammering iron sheet-pole is strong enough and safe, and that the character of anti-jamming by the detectors with long tailcone is better.

  2. A Sensor-less Method for Online Thermal Monitoring of Switched Reluctance Machine

    DEFF Research Database (Denmark)

    Wang, Chao; Liu, Hui; Liu, Xiao

    2015-01-01

    Stator winding is one of the most vulnerable parts in Switched Reluctance Machine (SRM), especially under thermal stresses during frequently changing operation circumstances and susceptible heat dissipation conditions. Thus real-time online thermal monitoring of the stator winding is of great......, neither machine parameters nor thermal impedance parameters are required in the scheme. Simulation results under various operating conditions confirm the proposed sensor-less online thermal monitoring approach....

  3. Establishment of a Hub for the Light Water Reactor Sustainability Online Monitoring Community

    Energy Technology Data Exchange (ETDEWEB)

    Nancy J. Lybeck; Magdy S. Tawfik; Binh T. Pham

    2011-08-01

    Implementation of online monitoring and prognostics in existing U.S. nuclear power plants will involve coordinating the efforts of national laboratories, utilities, universities, and private companies. Internet-based collaborative work environments provide necessary communication tools to facilitate interaction between geographically diverse participants. Available technologies were considered, and a collaborative workspace was established at INL as a hub for the light water reactor sustainability online monitoring community.

  4. Power system low frequency oscillation monitoring and analysis based on multi-signal online identification

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The advance in the wide-area measurement system (WAMS) is driving the power system to the trend of wide-area monitoring and control.The Prony method is usually used for low frequency oscillation online identification.However,the identified amplitude and phase information is not sufficiently used.In this paper,the amplitude is adopted to detect the occurrence of the oscillation and to obtain the mode observability of the sites.The phase is adopted to identify the oscillation generator grouping and to obtain the mode shapes.The time varying characteristics of low frequency oscillations are studied.The behaviors and the characters of low frequency oscillations are displayed by dynamic visual techniques.Demonstrations on the "11.9" low frequency oscillation of the Guizhou Power Grid substantiate the feasibility and the validation of the proposed methods.

  5. Monitoring of Concrete Structures Using Ofdr Technique

    Science.gov (United States)

    Henault, J. M.; Salin, J.; Moreau, G.; Delepine-Lesoille, S.; Bertand, J.; Taillade, F.; Quiertant, M.; Benzarti, K.

    2011-06-01

    Structural health monitoring is a key factor in life cycle management of infrastructures. Truly distributed fiber optic sensors are able to provide relevant information on large structures, such as bridges, dikes, nuclear power plants or nuclear waste disposal facilities. The sensing chain includes an optoelectronic unit and a sensing cable made of one or more optical fibers. A new instrument based on Optical Frequency Domain Reflectometry (OFDR), enables to perform temperature and strain measurements with a centimeter scale spatial resolution over hundred of meters and with a level of precision equal to 1 μstrain and 0.1 °C. Several sensing cables are designed with different materials targeting to last for decades in a concrete aggressive environment and to ensure an optimal transfer of temperature and strain from the concrete matrix to the optical fiber. Tests were carried out by embedding various sensing cables into plain concrete specimens and representative-scale reinforced concrete structural elements. Measurements were performed with an OFDR instrument; meanwhile, mechanical solicitations were imposed to the concrete element. Preliminary experiments are very promising since measurements performed with distributed sensing system are comparable to values obtained with conventional sensors used in civil engineering and with the Strength of Materials Modelling. Moreover, the distributed sensing system makes it possible to detect and localize cracks appearing in concrete during the mechanical loading.

  6. Comparison of corrosion monitoring techniques in district heating systems

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Nielsen, Lars Vendelbo; Thorarinsdottir, R.I.

    2004-01-01

    Investigations aimed at evaluating monitoring techniques as a function of the specific water chemistry has been conducted as a part of a Nordic project focused on improving the quality of corrosion monitoring in municipal district heating. A combination of techniques has been selected to measure...... both general and localised corrosion. Electrochemical techniques (LPR, EIS) as well as direct techniques (high sensitive ER, weight loss, local crevice corrosion current) have been applied. The data show that the water quality in Danish systems is high resulting in low corrosion rates, but changes...... in the water quality induce localised corrosion. Useful monitoring results have been obtained with high sensitive ER technique (MetriCorr) and crevice corrosion measurements with the LOCORR cell (FORCE TECHNOLOGY)....

  7. Online monitoring of biofouling using coaxial stub resonator technique

    Directory of Open Access Journals (Sweden)

    N.A. Hoog

    2015-03-01

    Analysis of the biofilm and the stub resonator signal, both as function of time, indicates that the sensor allows detection of early stages of biofilm formation. In addition, the sensor signal clearly discriminates between the first stages of biofilm formation (characterized by separated, individual spots of bacterial growth on the glass beads and the presence of a nearly homogeneous biofilm later on in time. Model simulations based on the transmission line theory predict a shift of the sensor response in the same direction and order of magnitude as observed in the biofouling experiments, thereby confirming the operating principle of the sensor.

  8. Online Monitoring Technical Basis and Analysis Framework for Large Power Transformers; Interim Report for FY 2012

    Energy Technology Data Exchange (ETDEWEB)

    Nancy J. Lybeck; Vivek Agarwal; Binh T. Pham; Heather D. Medema; Kirk Fitzgerald

    2012-09-01

    The Light Water Reactor Sustainability program at Idaho National Laboratory (INL) is actively conducting research to develop and demonstrate online monitoring (OLM) capabilities for active components in existing Nuclear Power Plants. A pilot project is currently underway to apply OLM to Generator Step-Up Transformers (GSUs) and Emergency Diesel Generators (EDGs). INL and the Electric Power Research Institute (EPRI) are working jointly to implement the pilot project. The EPRI Fleet-Wide Prognostic and Health Management (FW-PHM) Software Suite will be used to implement monitoring in conjunction with utility partners: the Shearon Harris Nuclear Generating Station (owned by Duke Energy for GSUs, and Braidwood Generating Station (owned by Exelon Corporation) for EDGs. This report presents monitoring techniques, fault signatures, and diagnostic and prognostic models for GSUs. GSUs are main transformers that are directly connected to generators, stepping up the voltage from the generator output voltage to the highest transmission voltages for supplying electricity to the transmission grid. Technical experts from Shearon Harris are assisting INL and EPRI in identifying critical faults and defining fault signatures associated with each fault. The resulting diagnostic models will be implemented in the FW-PHM Software Suite and tested using data from Shearon-Harris. Parallel research on EDGs is being conducted, and will be reported in an interim report during the first quarter of fiscal year 2013.

  9. Online Monitoring Technical Basis and Analysis Framework for Emergency Diesel Generators - Interim Report for FY 2013

    Energy Technology Data Exchange (ETDEWEB)

    Binh T. Pham; Nancy J. Lybeck; Vivek Agarwal

    2012-12-01

    The Light Water Reactor Sustainability program at Idaho National Laboratory is actively conducting research to develop and demonstrate online monitoring capabilities for active components in existing nuclear power plants. Idaho National Laboratory and the Electric Power Research Institute are working jointly to implement a pilot project to apply these capabilities to emergency diesel generators and generator step-up transformers. The Electric Power Research Institute Fleet-Wide Prognostic and Health Management Software Suite will be used to implement monitoring in conjunction with utility partners: Braidwood Generating Station (owned by Exelon Corporation) for emergency diesel generators, and Shearon Harris Nuclear Generating Station (owned by Duke Energy Progress) for generator step-up transformers. This report presents monitoring techniques, fault signatures, and diagnostic and prognostic models for emergency diesel generators. Emergency diesel generators provide backup power to the nuclear power plant, allowing operation of essential equipment such as pumps in the emergency core coolant system during catastrophic events, including loss of offsite power. Technical experts from Braidwood are assisting Idaho National Laboratory and Electric Power Research Institute in identifying critical faults and defining fault signatures associated with each fault. The resulting diagnostic models will be implemented in the Fleet-Wide Prognostic and Health Management Software Suite and tested using data from Braidwood. Parallel research on generator step-up transformers was summarized in an interim report during the fourth quarter of fiscal year 2012.

  10. Online monitoring of chemical reactions by polarization-induced electrospray ionization.

    Science.gov (United States)

    Meher, Anil Kumar; Chen, Yu-Chie

    2016-09-21

    Polarization-induced electrospray ionization (PI-ESI) is a simple technique for instant generation of gas-phase ions directly from a microliter-sized droplet for mass spectrometric analysis. A sample droplet was placed over a dielectric substrate and in proximity (2-3 mm) to the inlet of a mass spectrometer. Owing to the polarization effect induced by the high electric field provided by the mass spectrometer, the droplet was polarized and the electrospray was generated from the apex of the droplet. The polarization-induced electrospray could last for tens of seconds, which was sufficiently long to monitor fast reactions occurring within few seconds. Thus, we demonstrated the feasibility of using the droplet-based PI-ESI MS for the online monitoring of fast reactions by simply mixing two droplets (5-10 μL) containing reactants on a dielectric substrate placed in front of a mass spectrometer applied with a high voltage (-4500 V). Schiff base reactions and oxidation reactions that can generate intermediates/products within a few seconds were selected as the model reactions. The ionic reaction species generated from intermediates and products can be simultaneously monitored by PI-ESI MS in real time. We also used this approach to selectively detect acetone from a urine sample, in which acetone was derivatized in situ. In addition, the possibility of using this approach for quantitative analysis of acetone from urine samples was examined.

  11. Optical fiber sensor for an on-line monitoring of epoxy resin/amine reaction

    Science.gov (United States)

    Fouchal, F.; Knight, J. A. G.; Garrington, N.; Cope, B.

    2002-05-01

    An optical fiber sensor is described; it permits a rapid determination of the state of chemical reaction in epoxy resin diglycidyl ether of bisphenol A (DGEBA), and Triethylenetetramine stoichiometric reaction. Mid infrared Fourier transform technique was used to analyze the mixture via a pair of embedded optical fibers connected to an FTIR spectrometer, which operates in the region 4000-700 cm-1 of the electromagnetic waves. An accurate monitoring of the concentration changes over time of epoxy, amine and hydroxyl groups gave a good estimate of extent of reaction and description of physical state of the produced matrix. The chemical group peaks 1130 cm-1 and 3300-3400 cm-1 where used to follow the disappearance of the epoxy, and the amine respectively, while the peak 2970 cm-1 was used as reference peak. A review of a number of other techniques used to study the curing of epoxy resins together with on-line monitoring methods applied in processing thermoset resin is referred to.

  12. The INSIDE project: on-line monitoring and simulation validation with the in-beam PET scanner

    Science.gov (United States)

    Ferrero, V.; INSIDE Collaboration

    2017-05-01

    The quality assurance of particle therapy treatment is a fundamental issue that can be addressed by developing reliable monitoring techniques and indicators of the treatment plan accuracy. Monitoring using Position Emission Tomography (PET) systems is the only in-vivo non invasive technique employed clinically and has been carried out in particle therapy since 1997. However, the PET monitoring of β + emitter isotopes is typically done after the treatment, resulting in a large fraction of lost data because of the isotopes rapid physical decay. The INSIDE collaboration has recently installed an in-beam PET scanner at the Italian National Center of Oncologic Hadrontherapy in Pavia, Italy. Here, there is an ongoing project in order to start testing the method on patients. This work focuses on the online performances of the scanner with clinical beams.

  13. Alternative techniques for deep-water monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Matveev, Viktor A. [Institute for Nuclear Research, Russian Academy of Sciences, 60th October Anniversary Prospect 7a, Moscow 117312 (Russian Federation); Zheleznykh, Igor M., E-mail: zhelezny@minus.inr.ac.r [Institute for Nuclear Research, Russian Academy of Sciences, 60th October Anniversary Prospect 7a, Moscow 117312 (Russian Federation); Korotin, Pavel I. [Institute of Applied Physics, Russian Academy of Sciences, Ul' yanov Str., 46, Nizhnii Novgorod 603950 (Russian Federation); Paka, Vadim T. [P.P. Shirshov Institute of Oceanology - Atlantic Branch, Russian Academy of Sciences, Mir Prospect 1, Kaliningrad 236022 (Russian Federation); Surin, Nikolai M. [N.S. Enikolopov Institute of Synthetic Polymer Materials, Russian Academy of Sciences, Profsojuznaya Str. 70, Moscow 117393 (Russian Federation)

    2011-01-21

    A cruise of the Soviet R/V 'Dmitry Mendeleyev' in the Mediterranean Sea in 1989 is mentioned as the first step towards an international cooperation for high energy neutrino astrophysics in the Mediterranean. New proposals are considered related to carrying out common investigations connected with the construction of a large-scale neutrino telescope in the Mediterranean. In these investigations new techniques, which were developed in the last years or are being developed now by the Russian institutes, could be used, and in particular: (1) a system of multi-parameter non-tethered probes for deep-water hydrographic measurements, (2) a bottom-mounted acoustical antenna consisting of smart digital hydrophones, and (3) a deep-water scintillation spectrometer for the determination of the composition and for measuring the concentration of dissolved radionuclides. Given the necessity of making a best choice for the KM3 Neutrino Telescope construction, the idea of using light-weight flexible elements for making a 'flexible tower' presented at the Taormina Workshop in 1997 is reviewed.

  14. Monitoring of PON System Using Compound Surveillance Technique

    Institute of Scientific and Technical Information of China (English)

    Sun-Chien Ko; Hsiu-Jung Chuang; Si-Chong Chen; Chih-Yih Wang; Sheng-Fwu Lin

    2015-01-01

    A passive optical network (PON) monitoring system combined light pulse and frequency sweep techniques is proposed and verified in a field test. The light pulse surveys over the all whole network and the frequency sweep are used to investigate any fault in the link. The field test is performed with 4 PONs. Each PON is monitored at 4 ports, one is the splitter port and the other three are arbitrary chosen multiple optical units(ONUs). All the tested PONs are monitored in turns once per hour. Faults at the feeder and branch fiber have been observed in this field test and have been analyzed with the monitoring system.

  15. Patterns of success: online self-monitoring in a web-based behavioral weight control program.

    Science.gov (United States)

    Krukowski, Rebecca A; Harvey-Berino, Jean; Bursac, Zoran; Ashikaga, Taka; West, Delia Smith

    2013-02-01

    Online weight control technologies could reduce barriers to treatment, including increased ease and convenience of self-monitoring. Self-monitoring consistently predicts outcomes in behavioral weight loss programs; however, little is known about patterns of self-monitoring associated with success. The current study examines 161 participants (92% women; 31% African American; mean body mass index = 35.7 ± 5.7) randomized to a 6-month online behavioral weight control program that offered weekly group "chat" sessions and online self-monitoring. Self-monitoring log-ins were continuously monitored electronically during treatment and examined in association with weight change and demographics. Weekend and weekday log-ins were examined separately and length of periods of continuous self-monitoring were examined. We found that 91% of participants logged in to the self-monitoring webpage at least once. Over 6 months, these participants monitored on an average of 28% of weekdays and 17% of weekend days, with most log-ins earlier in the program. Women were less likely to log-in, and there were trends for greater self-monitoring by older participants. Race, education, and marital status were not significant predictors of self-monitoring. Both weekday and weekend log-ins were significant independent predictors of weight loss. Patterns of consistent self-monitoring emerged early for participants who went on to achieve greater than a 5% weight loss. Patterns of online self-monitoring were strongly associated with weight loss outcomes. These results suggest a specific focus on consistent self-monitoring early in a behavioral weight control program might be beneficial for achieving clinically significant weight losses.

  16. Plant applications of online corrosion monitoring: CO2 capture amine plant case study

    NARCIS (Netherlands)

    Kane, R.D.; Srinivasan, S.; Khakharia, P.M.; Goetheer, E.L.V.; Mertens, J.; Vroey, S. de

    2015-01-01

    Over the past several years, there has been a significant effort to bring corrosion monitoring into the realm of online, real-time management with plant process control technology. As part of this new direction in corrosion monitoring, corrosion data (e.g. information on corrosion rate, measured Ste

  17. A P2P approach to resource discovery in on-line monitoring of Grid workflows

    NARCIS (Netherlands)

    Łabno, B.; Bubak, M.; Baliś, B.

    2008-01-01

    On-line monitoring of Grid workflows is challenging since workflows are loosely coupled and highly dynamic. An efficient mechanism of automatic resource discovery is needed in order to discover new producers of workflow monitoring data fast. However, currently used Grid information systems are not s

  18. Research of PD on-line Monitoring System for DC Cable

    Directory of Open Access Journals (Sweden)

    Duan Da-Peng

    2014-01-01

    Full Text Available In order to monitor the insulation of XLPE cable of rail system, an On-line Partial Discharge (PD Monitoring System applied for 1500V DC cables of Shanghai Traction Substation is described, including its hardware and software structure. After installed, this system successfully detected one PD signal. The results demonstrated that this system worked stably and reliably.

  19. Plant applications of online corrosion monitoring: CO2 capture amine plant case study

    NARCIS (Netherlands)

    Kane, R.D.; Srinivasan, S.; Khakharia, P.M.; Goetheer, E.L.V.; Mertens, J.; Vroey, S. de

    2015-01-01

    Over the past several years, there has been a significant effort to bring corrosion monitoring into the realm of online, real-time management with plant process control technology. As part of this new direction in corrosion monitoring, corrosion data (e.g. information on corrosion rate, measured

  20. Increasing Learning: Classroom Assessment Techniques in the Online Classroom

    Science.gov (United States)

    Cross, Ted; Palese, Kelly

    2015-01-01

    Five full-time online mathematics instructors participated in a study to test the impact of using discussion forums as a space for formative assessments. Mean student posting activity and student quiz scores for sections in which the instructors used formative assessments were compared with previous sections in which formative assessments were not…

  1. The 'Techniques de l'ingénieur' available online at CERN!

    CERN Multimedia

    2001-01-01

    Those already familiar with 'Techniques de l'ingénieur' will be delighted. This engineering technology database widely known among French-speaking engineers and technicians can now be consulted online from the CERN Intranet until the end of the summer. To access this database of reference articles in French, all you need to do is go to the CERN Library's Web pages (http://library.cern.ch) and click on the 'Techniques de l'ingénieur' link under the 'News' heading. The Library will be monitoring the use of the database for a couple of months, at the end of which an access licence may be negotiated. Don't hesitate to use it because the decision whether or not to purchase it will depend on the extent to which it is used. The Library is seeking partners within the Laboratory to finance the purchase if it is decided to go ahead with it. Contributions from the CERN community are therefore welcome. For those who are not yet familiar with it, the 'Techniques de l'ingénieur' database ...

  2. A Novel Image Steganography Technique for Secured Online Transaction Using DWT and Visual Cryptography

    Science.gov (United States)

    Anitha Devi, M. D.; ShivaKumar, K. B.

    2017-08-01

    Online payment eco system is the main target especially for cyber frauds. Therefore end to end encryption is very much needed in order to maintain the integrity of secret information related to transactions carried online. With access to payment related sensitive information, which enables lot of money transactions every day, the payment infrastructure is a major target for hackers. The proposed system highlights, an ideal approach for secure online transaction for fund transfer with a unique combination of visual cryptography and Haar based discrete wavelet transform steganography technique. This combination of data hiding technique reduces the amount of information shared between consumer and online merchant needed for successful online transaction along with providing enhanced security to customer’s account details and thereby increasing customer’s confidence preventing “Identity theft” and “Phishing”. To evaluate the effectiveness of proposed algorithm Root mean square error, Peak signal to noise ratio have been used as evaluation parameters

  3. FRAMEWORK FOR STRUCTURAL ONLINE HEALTH MONITORING OF AGING AND DEGRADATION OF SECONDARY PIPING SYSTEMS DUE TO SOME ASPECTS OF EROSION

    Energy Technology Data Exchange (ETDEWEB)

    Gribok, Andrei V.; Agarwal, Vivek

    2017-06-01

    answering this challenge by combining long range guided wave technologies with other monitoring techniques, which can significantly increase the inspection length and pinpoint the locations that degraded the most. More widely, the report suggests research efforts aimed at developing, validating, and deploying online corrosion monitoring techniques for complex geometries, which are pervasive in NPPs.

  4. Radiation Effects on the On-line Monitoring System of a Hadrontherapy Center

    Directory of Open Access Journals (Sweden)

    Abdolkazem Ansarinejad

    2014-11-01

    Full Text Available Introduction Today, there is a growing interest in the use of hadrontherapy as an advanced radiotherapy technique. Hadrontherapy is considered a promising tool for cancer treatment, given its high radiobiological effectiveness and high accuracy of dose deposition due to the physical properties of hadrons. However, new radiation modalities of dose delivery and on-line beam monitoring play crucial roles in a successful treatment. In hadrontherapy, through interactions between the primary beam and patient’s tissue, secondary neutrons are produced. Materials and Methods This study, by using FLUKA Monte Carlo simulations, assessed the level of secondary neutron radiation, produced during patient treatment. In addition,  the evaluation included secondary neutron radiation, which was produced while hitting the on-line detectors of beam delivery system by the Italian National Center for Hadrontherapy (CNAO. This study assessed the effects of secondary neutron radiation on an electronics rack (including a data acquisition system, a power supply, and a gas system and a nozzle, where two monitoring boxes (each one consisting of two or three parallel plate ionization chambers were installed. Results The resulting neutron energy spectra and radiation doses were used to determine the life performance and the probability of damage to these devices. Findings showed that by using carbon ions of 400 MeV/u, the fluence rate of secondary neutrons will be approximately 3.4×1010 n/cm2 in a year. Conclusion This value is lower than the experimental threshold, which is responsible for less than 1% of changes in electrical characteristics, and would cause no single event upsets.

  5. The Technique of Building a Networked Manufacturing Process Monitoring System

    Institute of Scientific and Technical Information of China (English)

    XIE Yong; ZHANG Yu; YANG Musheng

    2006-01-01

    This paper introduces the constitute, structure and the software model of a set of networked manufacturing process monitoring system, using JAVA network technique to realize a set of three layer distributed manufacturing process monitoring system which is comprised with remote manage center, manufacturing process supervision center and the units of measure and control layer such as displacement sensor, the device of temperature measure and alarm etc. The network integration of the production management layer, the process control layer and the hard ware control layer is realized via using this approach. The design using object-oriented technique based on JAVA can easily transport to different operation systems with high performance of the expansibility.

  6. An integrated system for the online monitoring of particle therapy treatment accuracy

    Science.gov (United States)

    Fiorina, E.

    2016-07-01

    Quality assurance in hadrontherapy remains an open issue that can be addressed with reliable monitoring of treatment accuracy. The INSIDE (INnovative SolutIons for DosimEtry in hadrontherapy) project aims to develop an integrated online monitoring system based on two dedicated PET panels and a tracking system, called Dose Profiler. The proposed solution is designed to operate in-beam and provide an immediate feedback on the particle range acquiring both photons produced by β+ decays and prompt secondary particle signals. Monte Carlo simulations cover an important role both in the system development, by confirming the design feasibility, and in the system operation, by understanding data. A FLUKA-based integrated simulation was developed taking into account the hadron beam structure, the phantom/patient features and the PET detector and Dose Profiler specifications. In addition, to reduce simulation time in signal generation on PET detectors, a two-step technique has been implemented and validated. The first PET modules were tested in May 2015 at the Centro Nazionale Adroterapia Oncologica (CNAO) in Pavia (Italy) with very satisfactory results: in-spill, inter-spill and post-treatment PET images were reconstructed and a quantitative agreement between data and simulation was found.

  7. Optofluidic multi-measurement system for the online monitoring of lubricant oil

    Science.gov (United States)

    Verschooten, Tom; Callewaert, Manly; Ciaccheri, Leonardo; Vervaeke, Michael; Van Erps, Jürgen; De Malsche, Wim; Grazia Mignani, Anna; Thienpont, Hugo; Ottevaere, Heidi

    2016-01-01

    We show a detection system that simultaneously allows absorbance (ABS), laser-induced fluorescence (LIF) and scattering detection excited by two different laser sources at 405 nm and 450 nm. The heart of the system consists of a mass manufacturable polymer optofluidic chip. The chip is mounted in an optical detection assembly that aligns the chip to the rest of the system, seals the chip from leakage, fixes the position and connects the channels to the rest of the fluidic system. The fluidics exhibit a reduced susceptibility to perturbations caused by air bubbles, this is accomplished by making use of a serpentine channel layout. For coumarin 480, detection limits of 100 nM and 10 pM are observed for ABS and LIF respectively. An effective detection range of 4000 down to 1 nephelometric turbidity units is shown for the detection of scattered light. The viscous behaviour of the sample is analysed by a secondary FFT processing step of which the result is further processed by multivariate data analysis. This allows the identification of samples and prediction of their quality parameters. We apply this system for the monitoring of lubricant oil, demonstrating its ability to compete with spectroscopic detection techniques. The low-cost approach and multi-measurement architecture shown in this paper pave the way for miniaturized on-line monitoring of liquids in an industrial environment.

  8. An integrated system for the online monitoring of particle therapy treatment accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Fiorina, E., E-mail: fiorina@to.infn.it [Università degli Studi di Torino, Torino (Italy); Istituto Nazionale di Fisica Nucleare (INFN) (Italy)

    2016-07-11

    Quality assurance in hadrontherapy remains an open issue that can be addressed with reliable monitoring of treatment accuracy. The INSIDE (INnovative SolutIons for DosimEtry in hadrontherapy) project aims to develop an integrated online monitoring system based on two dedicated PET panels and a tracking system, called Dose Profiler. The proposed solution is designed to operate in-beam and provide an immediate feedback on the particle range acquiring both photons produced by β{sup +} decays and prompt secondary particle signals. Monte Carlo simulations cover an important role both in the system development, by confirming the design feasibility, and in the system operation, by understanding data. A FLUKA-based integrated simulation was developed taking into account the hadron beam structure, the phantom/patient features and the PET detector and Dose Profiler specifications. In addition, to reduce simulation time in signal generation on PET detectors, a two-step technique has been implemented and validated. The first PET modules were tested in May 2015 at the Centro Nazionale Adroterapia Oncologica (CNAO) in Pavia (Italy) with very satisfactory results: in-spill, inter-spill and post-treatment PET images were reconstructed and a quantitative agreement between data and simulation was found.

  9. Simultaneous 19F-1H medium resolution NMR spectroscopy for online reaction monitoring

    Science.gov (United States)

    Zientek, Nicolai; Laurain, Clément; Meyer, Klas; Kraume, Matthias; Guthausen, Gisela; Maiwald, Michael

    2014-12-01

    Medium resolution nuclear magnetic resonance (MR-NMR) spectroscopy is currently a fast developing field, which has an enormous potential to become an important analytical tool for reaction monitoring, in hyphenated techniques, and for systematic investigations of complex mixtures. The recent developments of innovative MR-NMR spectrometers are therefore remarkable due to their possible applications in quality control, education, and process monitoring. MR-NMR spectroscopy can beneficially be applied for fast, non-invasive, and volume integrating analyses under rough environmental conditions. Within this study, a simple 1/16″ fluorinated ethylene propylene (FEP) tube with an ID of 0.04″ (1.02 mm) was used as a flow cell in combination with a 5 mm glass Dewar tube inserted into a benchtop MR-NMR spectrometer with a 1H Larmor frequency of 43.32 MHz and 40.68 MHz for 19F. For the first time, quasi-simultaneous proton and fluorine NMR spectra were recorded with a series of alternating 19F and 1H single scan spectra along the reaction time coordinate of a homogeneously catalysed esterification model reaction containing fluorinated compounds. The results were compared to quantitative NMR spectra from a hyphenated 500 MHz online NMR instrument for validation. Automation of handling, pre-processing, and analysis of NMR data becomes increasingly important for process monitoring applications of online NMR spectroscopy and for its technical and practical acceptance. Thus, NMR spectra were automatically baseline corrected and phased using the minimum entropy method. Data analysis schemes were designed such that they are based on simple direct integration or first principle line fitting, with the aim that the analysis directly revealed molar concentrations from the spectra. Finally, the performance of 1/16″ FEP tube set-up with an ID of 1.02 mm was characterised regarding the limit of detection (LOQ (1H) = 0.335 mol L-1 and LOQ (19F) = 0.130 mol L-1 for trifluoroethanol in

  10. Control and monitoring of on-line trigger algorithms using a SCADA system

    CERN Document Server

    van Herwijnen, E; Barczyk, A; Damodaran, B; Frank, M; Gaidioz, B; Gaspar, C; Jacobsson, R; Jost, B; Neufeld, N; Bonifazi, F; Callot, O; Lopes, H

    2006-01-01

    LHCb [1] has an integrated Experiment Control System (ECS) [2], based on the commercial SCADA system PVSS [3]. The novelty of this approach is that, in addition to the usual control and monitoring of experimental equipment, it provides control and monitoring for software processes, namely the on-line trigger algorithms. Algorithms based on Gaudi [4] (the LHCb software framework) compute the trigger decisions on an event filter farm of around 2000 PCs. Gaucho [5], the GAUdi Component Helping Online, was developed to allow the control and monitoring of Gaudi algorithms. Using Gaucho, algorithms can be monitored from the run control system provided by the ECS. To achieve this, Gaucho implements a hierarchical control system using Finite State Machines. In this article we describe the Gaucho architecture, the experience of monitoring a large number of software processes and some requirements for future extensions.

  11. Online observation of emulsion polymerization by fluorescence technique

    CERN Document Server

    Rudschuck, S; Fuhrmann, J

    1999-01-01

    An online observation of local polarity via fluorescence spectroscopy was used to study the formation and growth of polymer particles during an emulsifier-free heterogeneous polymerization. The reaction mixture consisted of styrene dispersed in water and the polymerization was initiated by a macro-initiator (hydrolyzed propene-maleic acid copolymer with t-butyl perester groups). Pyrenyl probes were attached to the backbone of the initiator to analyze the heterogeneous reaction. The experimental results allow a clear distinction of different time regions during the heterogeneous polymerization. Information about the heating period, the latex formation, the particle growth and the final stage of the polymerization process (gel point) were obtained. (11 refs).

  12. LHCb: Online Data Monitoring in the LHCb experiment

    CERN Multimedia

    Frank, M

    2007-01-01

    Data monitoring is an important concept to verify the detector performance with quick response in case of problems (hardware aspects) and to verify the performance of the software based event filtering and rejection (software aspects).

  13. CFRP Structural Health Monitoring by Ultrasonic Phased Array Technique

    OpenAIRE

    Boychuk, A.S.; Generalov, A.S.; A.V. Stepanov

    2014-01-01

    International audience; The report deals with ultrasonic phased array (PA) application for high-loaded CFRP structural health monitoring in aviation. Principles of phased array technique and most dangerous types of damages are briefly described. High-performance inspection technology suitable for periodic plane structure check is suggested. The results of numerical estimation of detection probability for impact damages and delaminations by PA technique are presented. The experience of PA impl...

  14. Research of on-line monitoring method for insulation condition of power transformer bushing

    Science.gov (United States)

    Xia, Jiuyun; Qian, Zheng; Yu, Hao; Yao, Junda

    2016-01-01

    The power transformer is the key equipment of the power system; its insulation condition will directly influence the security and reliability of the power system. Thus, the on-line monitoring of power transformer is urgently required in order to guarantee the normal operation of the power system. Moreover, the dielectric loss factor is a significant parameter reflecting the condition of transformer bushing, so the on-line measurement of dielectric loss factor is really important. In this paper, the phase-to-phase comparison method is selected as the on-line monitoring method based on the overall analysis and discussion of the existing on-line monitoring methods. At first, the harmonic analysis method is utilized to calculate the dielectric loss of each phase of the three-phase transformer bushing, and then the differences of dielectric loss between every two phases are calculated and analyzed. So the insulation condition of each bushing could be achieved based on the careful analysis of different phase-to-phase dielectric loss. The simulation results of phase-to-phase comparison method are carried out in this paper, and the validity is verified. At last, this method is utilized in an actual equipment of on-line monitoring.

  15. Combination Method of Principal Component Analysis and Support Vector Machine for On-line Process Monitoring and Fault Diagnosis

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    On-line monitoring and fault diagnosis of chemical process is extremely important for operation safety and product quality. Principal component analysis (PCA) has been widely used in multivariate statistical process monitoring for its ability to reduce processes dimensions. PCA and other statistical techniques, however, have difficulties in differentiating faults correctly in complex chemical process.Support vector machine (SVM) is a novel approach based on statistical learning theory, which has emerged for feature identification and classification. In this paper, an integrated method is applied for process monitoring and fault diagnosis, which combines PCA for fault feature extraction and multiple SVMs for identification of different fault sources. This approach is verified and illustrated on the Tennessee Eastman benchmark process as a case study.Results show that the proposed PCA-SVMs method has good diagnosis capability and overall diagnosis correctness rate.

  16. [Comparative study of two techniques of ciclosporine monitoring].

    Science.gov (United States)

    Charfi, Rim; El Jebari, Hanène; Gaïes, Emna; Charfi, Ons; Jebabli, Nadia; Thouraya, Riahi; Ben Messaouda, Mhamed; Lakhal, Mohamed; Klouz, Anis; Salouage, Issam; Trabelsi, Sameh

    2015-01-01

    Ciclosporine (CsA) is an immunosuppressant drug used in bone marrow transplantation in order to extend allograft survival. Despite its efficiency, CsA can expose to therapeutic failure or to toxicity because of underdosing or overdosage. So, many techniques of monitoring CsA in blood were used, the referance one is the chromatographic technique then, the automated techniques: fluorescence polarization immunoassay (FPIA) and chimiluminescent microparticle immunoassay (CMIA). In this study, we aimed to compare the results of CsA concentrations measured by the two automised techniques. Statistical studies showed that the two techniques were repeatable and reproductible. Results obtained by FPIA were slightly higher than those obtained by CMIA but without a significative difference. In conclusion, FPIA technique could be used to measure CsA blood concentration in replacement of CMIA in case of technical problems.

  17. Implementation of an on-line monitoring system for transmitters in a CANDU nuclear power plant

    Science.gov (United States)

    Labbe, A.; Abdul-Nour, G.; Vaillancourt, R.; Komljenovic, D.

    2012-05-01

    Many transmitters (pressure, level and flow) are used in a nuclear power plant. It is necessary to calibrate them periodically to ensure that their measurements are accurate. These calibration tasks are time consuming and often contribute to worker radiation exposure. Human errors can also sometimes degrade their performance since the calibration involves intrusive techniques. More importantly, experience has shown that the majority of current calibration efforts are not necessary. These facts motivated the nuclear industry to develop new technologies for identifying drifting instruments. These technologies, well known as on-line monitoring (OLM) techniques, are non-intrusive and allow focusing the maintenance efforts on the instruments that really need a calibration. Although few OLM systems have been implemented in some PWR and BWR plants, these technologies are not commonly used and have not been permanently implemented in a CANDU plant. This paper presents the results of a research project that has been performed in a CANDU plant in order to validate the implementation of an OLM system. An application project, based on the ICMP algorithm developed by EPRI, has been carried out in order to evaluate the performance of an OLM system. The results demonstrated that the OLM system was able to detect the drift of an instrument in the majority of the studied cases. A feasibility study has also been completed and has demonstrated that the implementation of an OLM system at a CANDU nuclear power plant could be advantageous under certain conditions.

  18. On-line Monitoring of Epoxy Resin Exposed to Acid Solution

    Institute of Scientific and Technical Information of China (English)

    Yuyan LIU; M.Kubouchi; H.Sembokuya; K.Tsuda; T.Tomiyama

    2006-01-01

    In this study, a new on-line health monitoring technology for the determination of the penetration of environment solution into epoxy resin was pursued. A corrosion sensor including plastic optical fiber and pH indicator was fabricated. The color-change layer of this sensor appeared after immersion in sulfuric acid solution, which could be examined by using optical fiber and spectrophotometer. The results showed that the penetration of sulfuric acid was detected by adding bromophenol blue (BPB) in the corrosion sensor. This system could be applied to on-line health monitoring of chemical equipment structures.

  19. Online Monitoring Volume Deformation of Cement-based Materials in Multiple Enviroments

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Comparing and analyzing some volume deformation measuring means for cement-based materials at home and abroad, a continuous online monitor of cement-based material volume deformation in multiple environments is developed. The device is designed based on the environmental simulation technology, micro-distance measuring technology of laser and eddy current, and transmission agent online monitoring the deformation of multi-group samples. This device can be used widely, such as glass, ceramics, walling material, and so on, with high precision, low testing cost, and intellectualization.

  20. Development Progress of On-Line Monitoring Equipment for UF6 Abundance

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>Monitoring the abundance of UF6 gas flowing in processing pipe is a nondestructive assay technique. It can be judged whether highly enriched uranium is produced by monitoring the abundance of UF6 gas

  1. Probability-Based Diagnostic Imaging Technique Using Error Functions for Active Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Rahim Gorgin,

    2014-07-01

    Full Text Available This study presents a novel probability-based diagnostic imaging (PDI technique using error functions for active structural health monitoring (SHM. To achieve this, first the changes between baseline and current signals of each sensing path are measured, and by taking the root mean square of such changes, the energy of the scattered signal at different times can be calculated. Then, for different pairs of signal acquisition paths, an error function based on the energy of the scattered signals is introduced. Finally, the resultant error function is fused to the final estimation of the probability of damage presence in the monitoring area. As for applications, developed methods were employed to various damage identification cases, including cracks located in regions among an active sensor network with different configurations (pulse-echo and pitch-catch, and holes located in regions outside active network sensors with pitch-catch configuration. The results identified using experimental Lamb wave signals at different central frequencies corroborated that the developed PDI technique using error functions is capable of monitoring structural damage, regardless of its shape, size and location. The developed method doesn’t need direct interpretation of overlaid and dispersed lamb wave components for damage identification and can monitor damage located anywhere in the structure. These bright advantages, qualify the above presented PDI method for online structural health monitoring.

  2. An intensity-monitoring technique for measuring ellipsometric transients

    NARCIS (Netherlands)

    Droog, J.M.M.; Bootsma, G.A.

    1979-01-01

    Intensity-monitoring techniques make possible the measurement of rapid changes in the ellipsometric parameters. Methods used hitherto have been suitable for measuring slight changes only and require prior knowledge of the Δ and Ψ values for the initial surface. It is shown that larger changes can al

  3. Quality assurance for online adapted treatment plans: Benchmarking and delivery monitoring simulation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Taoran, E-mail: taoran.li.duke@gmail.com; Wu, Qiuwen; Yang, Yun; Rodrigues, Anna; Yin, Fang-Fang; Jackie Wu, Q. [Department of Radiation Oncology, Duke University Medical Center Durham, North Carolina 27710 (United States)

    2015-01-15

    Purpose: An important challenge facing online adaptive radiation therapy is the development of feasible and efficient quality assurance (QA). This project aimed to validate the deliverability of online adapted plans and develop a proof-of-concept online delivery monitoring system for online adaptive radiation therapy QA. Methods: The first part of this project benchmarked automatically online adapted prostate treatment plans using traditional portal dosimetry IMRT QA. The portal dosimetry QA results of online adapted plans were compared to original (unadapted) plans as well as randomly selected prostate IMRT plans from our clinic. In the second part, an online delivery monitoring system was designed and validated via a simulated treatment with intentional multileaf collimator (MLC) errors. This system was based on inputs from the dynamic machine information (DMI), which continuously reports actual MLC positions and machine monitor units (MUs) at intervals of 50 ms or less during delivery. Based on the DMI, the system performed two levels of monitoring/verification during the delivery: (1) dynamic monitoring of cumulative fluence errors resulting from leaf position deviations and visualization using fluence error maps (FEMs); and (2) verification of MLC positions against the treatment plan for potential errors in MLC motion and data transfer at each control point. Validation of the online delivery monitoring system was performed by introducing intentional systematic MLC errors (ranging from 0.5 to 2 mm) to the DMI files for both leaf banks. These DMI files were analyzed by the proposed system to evaluate the system’s performance in quantifying errors and revealing the source of errors, as well as to understand patterns in the FEMs. In addition, FEMs from 210 actual prostate IMRT beams were analyzed using the proposed system to further validate its ability to catch and identify errors, as well as establish error magnitude baselines for prostate IMRT delivery

  4. Quality assurance for online adapted treatment plans: benchmarking and delivery monitoring simulation.

    Science.gov (United States)

    Li, Taoran; Wu, Qiuwen; Yang, Yun; Rodrigues, Anna; Yin, Fang-Fang; Jackie Wu, Q

    2015-01-01

    An important challenge facing online adaptive radiation therapy is the development of feasible and efficient quality assurance (QA). This project aimed to validate the deliverability of online adapted plans and develop a proof-of-concept online delivery monitoring system for online adaptive radiation therapy QA. The first part of this project benchmarked automatically online adapted prostate treatment plans using traditional portal dosimetry IMRT QA. The portal dosimetry QA results of online adapted plans were compared to original (unadapted) plans as well as randomly selected prostate IMRT plans from our clinic. In the second part, an online delivery monitoring system was designed and validated via a simulated treatment with intentional multileaf collimator (MLC) errors. This system was based on inputs from the dynamic machine information (DMI), which continuously reports actual MLC positions and machine monitor units (MUs) at intervals of 50 ms or less during delivery. Based on the DMI, the system performed two levels of monitoring/verification during the delivery: (1) dynamic monitoring of cumulative fluence errors resulting from leaf position deviations and visualization using fluence error maps (FEMs); and (2) verification of MLC positions against the treatment plan for potential errors in MLC motion and data transfer at each control point. Validation of the online delivery monitoring system was performed by introducing intentional systematic MLC errors (ranging from 0.5 to 2 mm) to the DMI files for both leaf banks. These DMI files were analyzed by the proposed system to evaluate the system's performance in quantifying errors and revealing the source of errors, as well as to understand patterns in the FEMs. In addition, FEMs from 210 actual prostate IMRT beams were analyzed using the proposed system to further validate its ability to catch and identify errors, as well as establish error magnitude baselines for prostate IMRT delivery. Online adapted plans were

  5. BWR online monitoring system based on noise analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz-Villafuerte, Javier [Departamento de Sistemas Nucleares, Instituto Nacional de Investigaciones Nucleares, Carr. Mexico-Toluca S/N, Ocoyoacac, Edo. de Mexico, 52750 (Mexico)]. E-mail: jov@nuclear.inin.mx; Castillo-Duran, Rogelio [Departamento de Sistemas Nucleares, Instituto Nacional de Investigaciones Nucleares, Carr. Mexico-Toluca S/N, Ocoyoacac, Edo. de Mexico, 52750 (Mexico)]. E-mail: rcd@nuclear.inin.mx; Alonso, Gustavo [Departamento de Sistemas Nucleares, Instituto Nacional de Investigaciones Nucleares, Carr. Mexico-Toluca S/N, Ocoyoacac, Edo. de Mexico, 52750 (Mexico)]. E-mail: galonso@nuclear.inin.mx; Calleros-Micheland, Gabriel [Central Nuclear de Laguna Verde, Comision Federal de Electricidad, Carr. Cardel-Nautla, km. 42.5, Alto Lucero, Veracruz (Mexico)]. E-mail: gcm9acpp@cfe.gob.mx

    2006-11-15

    A monitoring system for during operation early detection of an anomaly and/or faulty behavior of equipment and systems related to the dynamics of a boiling water reactor (BWR) has been developed. The monitoring system is based on the analysis of the 'noise' or fluctuations of a signal from a sensor or measurement device. An efficient prime factor algorithm to compute the fast Fourier transform allows the continuous, real-time comparison of the normalized power spectrum density function of the signal against previously stored reference patterns in a continuously evolving matrix. The monitoring system has been successfully tested offline. Four examples of the application of the monitoring system to the detection and diagnostic of faulty equipment behavior are presented in this work: the detection of two different events of partial blockage at the jet pump inlet nozzle, miss-calibration of a recirculation mass flow sensor, and detection of a faulty data acquisition card. The events occurred at the two BWR Units of the Laguna Verde Nuclear Power Plant. The monitoring system and its possible coupling to the data and processing information system of the Laguna Verde Nuclear Power Plant are described. The signal processing methodology is presented along with the introduction of the application of the evolutionary matrix concept for determining the base signature of reactor equipment or component and the detection of off normal operation conditions.

  6. An optimised multi-baseline approach for on-line MR-temperature monitoring on commodity graphics hardware

    DEFF Research Database (Denmark)

    de Senneville, Baudouin Denis; Noe, Karsten Østergaard; Ries, Mario

    2008-01-01

    Magnetic Resonance Imaging (MRI) can be used for non invasive temperature mapping and is therefore a promising tool to monitor and control interventional therapies based on thermal ablation. The Proton Resonance Frequency shift MRI technique gives an estimate of the temperature by comparing phase....... They have required significant time to compute however, and have not been sufficiently fast for several real-time temperature mapping applications. This paper proposes to use modern graphics cards (GPUs) to assess on-line motion corrected thermal maps. The computation times obtained on the GPU are compared...

  7. Condition Monitoring of Cables Task 3 Report: Condition Monitoring Techniques for Electric Cables

    Energy Technology Data Exchange (ETDEWEB)

    Villaran, M.; Lofaro, R.; na

    2009-11-30

    For more than 20 years the NRC has sponsored research studying electric cable aging degradation, condition monitoring, and environmental qualification testing practices for electric cables used in nuclear power plants. This report summarizes several of the most effective and commonly used condition monitoring techniques available to detect damage and measure the extent of degradation in electric cable insulation. The technical basis for each technique is summarized, along with its application, trendability of test data, ease of performing the technique, advantages and limitations, and the usefulness of the test results to characterize and assess the condition of electric cables.

  8. Online process control for directional solidification by ultrasonic pulse echo technique.

    Science.gov (United States)

    Drevermann, A; Pickmann, C; Tiefers, R; Zimmermann, G

    2004-04-01

    A method of controlling the actual growth velocity during directional solidification based on ultrasound has been developed. For this purpose a pulse echo technique is used to measure the actual solidification rate online. This quantity is used to control the furnace velocity. Solidification experiments with metallic alloys and constant furnace velocity often result in non-steady actual solidification rates. Experiments carried out with online process control demonstrate that a really steady-state solidification with a constant solidification rate is achieved.

  9. On-Line Partial Discharge Monitoring and Diagnostic System for Power Transformer

    Institute of Scientific and Technical Information of China (English)

    LIN Du; JIANG Lei; LI Fuqi; ZHU Deheng; TAN Kexiong; WU Chengqi; JIN Xianhe; WANG Changchang; CHENG T. C.

    2005-01-01

    This paper introduces a computerized on-line partial discharge (PD) monitoring and diagnostic system for transformers. The system, which is already in use in a power station, uses wide-band active transducers and a data acquisition unit with modularized and exchangeable components. The system software is a power equipment monitoring and diagnostic system, which is based on the component object model, and was developed for monitoring multiple parameters in multiple power supply systems. The statistical characteristics of PDs in power transformers were studied using 7 experimental models for simulating PDs in transformers and 3 models for simulating interfering discharges in air. The discharge features were analyzed using a 3-D pattern chart with a three-layer back-propagation artificial neural network used to recognize the patterns. The results show that PDs in air and oil can be distinguished. The model can be used for interference rejection on-line monitoring of partial discharge in transformers.

  10. Classroom Assessment Techniques: A Conceptual Model for CATs in the Online Classroom

    Science.gov (United States)

    Bergquist, Emily; Holbeck, Rick

    2014-01-01

    Formative assessments are an important part of the teaching and learning cycle. Instructors need to monitor student learning and check for understanding throughout the instructional phase of teaching to confirm that students understand the objective before embarking on the summative assessment. Typically, online classrooms are developed with…

  11. Development of an on-line monitoring expert system for heating system fouling

    Science.gov (United States)

    Wang, Yuan-yuan; Wang, Jian-guo

    2008-12-01

    This paper intends to develop an on-line monitoring expert system for heating system fouling. It chooses pressure, flowing and temperature as basic diagnostic variables. The basic evaluative guide lines are the coefficient of flowing resistance, the efficiency and cost of heating system. This system can be used to monitor the fouling degrees and estimate the fouling positions. The expert system is programmed by Delphi to realize all functions.

  12. The Design of Partial Discharge On-Line Monitoring System for XLPE Power Cable

    OpenAIRE

    Chen Rui-Long; Qian Yong; Ye Hai-Feng; Sheng Ge-Hao; Jiang Xiu-Chen

    2013-01-01

    Partial discharge detection is an important means to assess the situation of XLPE power cable’s insulation. This study has developed an on-line monitoring system which applies to the medium voltage XLPE cable on partial discharge, described its working principle, components of hardware, software designing and program implementation in details. Through monitoring the partial discharge signal in grounding lines of the XLPE cable’s shield, the system integrated assess the situation of XLPE cable...

  13. Robust satellite techniques for volcanicand seismic hazards monitoring

    Directory of Open Access Journals (Sweden)

    I. Scaffidi

    2004-06-01

    Full Text Available Several satellite techniques have been proposed to monitor events related to seismic and volcanic activity. A selfadaptive approach (RAT, Robust AVHRR Techniques has recently been proposed which seems able to recognise space-time anomalies, differently related to such events, also in the presence of highly variable contributions from atmospheric (transmittance, surface (emissivity and morphology and observational (time/season, but also solar and satellite zenithal angles conditions. On the basis of NOAA-AVHRR data, the RAT aprroach has already been applied to Mount Etna volcanic ash cloud monitoring in daytime, and to seismic area monitoring in Southern Italy. This paper presents the theoretical basis for the extension of RAT approach also to nighttime volcanic ash cloud detection, together with its possible implementation to lava flow monitoring. One example of successful forecasting (few days before of a new lava vent opening during the Mount Etna eruption of July 2001 will be discussed in some detail. Progress on the use of the same approach on seismically active area monitoring will be discussed by comparison with previous results achieved on the Irpinia-Basilicata earthquake (MS = 6.9, which occurred on November 23rd 1980 in Southern Italy.

  14. Rivoflavin may interfere with on-line monitoring of secreted green fluorescence protein fusion proteins in Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Valero Francisco

    2007-05-01

    Full Text Available Abstract Background Together with the development of optical sensors, fluorometry is becoming an increasingly attractive tool for the monitoring of cultivation processes. In this context, the green fluorescence protein (GFP has been proposed as a molecular reporter when fused to target proteins to study their subcellular localization or secretion behaviour. The present work evaluates the use of the GFP fusion partner for monitoring extracellular production of a Rhizopus oryzae lipase (ROL in Pichia pastoris by means of 2D-fluorimetric techniques Results In this study, the GFP-ROL fusion protein was successfully produced as a secreted fusion form in P. pastoris batch cultivations. Furthermore, both the fusion enzyme and the fluorescent protein (GFP S65T mutant retained their biological activity. However, when multiwavelength spectrofluorometry was used for extracellular fusion protein monitoring, riboflavin appeared as a major interfering component with GFP signal. Only when riboflavin was removed by ultrafiltration from cultivation supernatants, GFP fluorescence signal linearly correlated to lipase activity Conclusion P. pastoris appears to secrete/excrete significant amounts of riboflavin to the culture medium. When attempting to monitor extracellular protein production in P. pastoris using GFP fusions combined with multiwavelength spectrofluorimetric techniques, riboflavin may interfere with GFP fluorescence signal, thus limiting the application of some GFP variants for on-line extracellular recombinant protein quantification and monitoring purposes.

  15. Paternal Monitoring: The Relationship Between Online and In-Person Solicitation and Youth Outcomes.

    Science.gov (United States)

    Hessel, Heather; He, Yaliu; Dworkin, Jodi

    2017-02-01

    Despite extensive literature on parental monitoring, few studies have focused on father-youth solicitation in particular and none on solicitation via communication technology. To address this gap, this study explored the relationships between fathers' online and in-person solicitation of their adolescent and emerging adult children, and the youth's internalizing, externalizing, and prosocial behaviors. A sample of US fathers (N = 158) reported on solicitation patterns, use of technology, and their child's behaviors. The results revealed differences by demographics, and an inverse trend between online and in-person solicitation in relation to internalizing, externalizing, and prosocial behaviors. Regression analyses revealed that online solicitation of information from the youth's friends was related to greater internalizing and externalizing, and less prosocial behavior. These findings support research suggesting that some forms of online solicitation may be interpreted by adolescents and emerging adults as intrusive and a violation of privacy.

  16. World-wide online monitoring interface of the ATLAS experiment

    CERN Document Server

    Kolos, S; The ATLAS collaboration; Mineev, M; Hauser, R; Salnikov, A

    2014-01-01

    The ATLAS collaboration accounts for more than 3000 members located all over the world. The efficiency of the experiment can be improved allowing system experts not present on site to follow the ATLAS operations in real-time, spotting potential problems which otherwise may remain unattended for a non-negligible time. Taking into account the wide geographical spread of the ATLAS collaboration, the solution of this problem is to have all monitoring information with minimal access latency available world-wide. We have implemented a framework which defines a standard approach for retrieving arbitrary monitoring information from the ATLAS private network via HTTP. An information request is made by specifying one of the predefined URLs with some optional parameters refining data which has to be shipped back in XML format. The framework takes care of receiving, parsing and forwarding such requests to the appropriate plugins. The plugins retrieve the requested data and convert it to XML (or optionally to JSON) format...

  17. Scientific Comparison of Different Online Heart Rate Monitoring Systems

    Directory of Open Access Journals (Sweden)

    Martin Schönfelder

    2011-01-01

    Full Text Available Recent technical development focused on real-time heart rate monitoring instead of postexercise evaluation of recorded data. There are several systems on the market that allow direct and real-time monitoring of several individuals at the same time. The present study compared the systems of Polar, Acentas, Activio, and Suunto in a field test with twelve subjects regarding failure quota, operating distance, and ECG validity. Moreover, the installation and use of software and hardware were evaluated with a quality rating system. Chest belts were evaluated with a questionnaire, too. Overall the system of Acentas reached the best mark of all systems, but detailed results showed that every system has its advantages and disadvantages depending on using purpose, location, and weather. So this evaluation cannot recommend a single system but rather shows strength and weakness of all systems and additionally can be used for further system improvements.

  18. Cole-Cole, linear and multivariate modeling of capacitance data for on-line monitoring of biomass.

    Science.gov (United States)

    Dabros, Michal; Dennewald, Danielle; Currie, David J; Lee, Mark H; Todd, Robert W; Marison, Ian W; von Stockar, Urs

    2009-02-01

    This work evaluates three techniques of calibrating capacitance (dielectric) spectrometers used for on-line monitoring of biomass: modeling of cell properties using the theoretical Cole-Cole equation, linear regression of dual-frequency capacitance measurements on biomass concentration, and multivariate (PLS) modeling of scanning dielectric spectra. The performance and robustness of each technique is assessed during a sequence of validation batches in two experimental settings of differing signal noise. In more noisy conditions, the Cole-Cole model had significantly higher biomass concentration prediction errors than the linear and multivariate models. The PLS model was the most robust in handling signal noise. In less noisy conditions, the three models performed similarly. Estimates of the mean cell size were done additionally using the Cole-Cole and PLS models, the latter technique giving more satisfactory results.

  19. A new on-line leakage current monitoring system of ZnO surge arresters

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Bok-Hee [Research Center for Next-Generation High Voltage and Power Technology, Inha University, 253 Yonghyun-dong, Nam-ku, Incheon 402-751 (Korea, Republic of)]. E-mail: bhlee@inha.ac.kr; Kang, Sung-Man [Research Center for Next-Generation High Voltage and Power Technology, Inha University, 253 Yonghyun-dong, Nam-ku, Incheon 402-751 (Korea, Republic of)

    2005-05-15

    This paper presents a new on-line leakage current monitoring system of zinc oxide (ZnO) surge arresters. To effectively diagnose the deterioration of ZnO surge arresters, a new algorithm and on-line leakage current detection device, which uses the time-delay addition method, for discriminating the resistive and capacitive currents was developed to use in the aging test and durability evaluation for ZnO arrester blocks. A computer-based measurement system of the resistive leakage current, the on-line monitoring device can detect accurately the leakage currents flowing through ZnO surge arresters for power frequency ac applied voltages. The proposed on-line leakage current monitoring device of ZnO surge arresters is more highly sensitive and gives more linear response than the existing devices using the detection method of the third harmonic leakage currents. Therefore, the proposed leakage current monitoring device can be useful for predicting the defects and performance deterioration of ZnO surge arresters in power system applications.

  20. Batch process monitoring based on multiple-phase online sorting principal component analysis.

    Science.gov (United States)

    Lv, Zhaomin; Yan, Xuefeng; Jiang, Qingchao

    2016-09-01

    Existing phase-based batch or fed-batch process monitoring strategies generally have two problems: (1) phase number, which is difficult to determine, and (2) uneven length feature of data. In this study, a multiple-phase online sorting principal component analysis modeling strategy (MPOSPCA) is proposed to monitor multiple-phase batch processes online. Based on all batches of off-line normal data, a new multiple-phase partition algorithm is proposed, where k-means and a defined average Euclidean radius are employed to determine the multiple-phase data set and phase number. Principal component analysis is then applied to build the model in each phase, and all the components are retained. In online monitoring, the Euclidean distance is used to select the monitoring model. All the components undergo online sorting through a parameter defined by Bayesian inference (BI). The first several components are retained to calculate the T(2) statistics. Finally, the respective probability indices of [Formula: see text] is obtained using BI as the moving average strategy. The feasibility and effectiveness of MPOSPCA are demonstrated through a simple numerical example and the fed-batch penicillin fermentation process.

  1. Overview of RepLab 2013: Evaluating online reputation monitoring systems

    NARCIS (Netherlands)

    Amigó, E.; Carrillo de Albornoz, J.; Chugur, I.; Corujo, A.; Gonzalo, J.; Martín, T.; Meij, E.; de Rijke, M.; Spina, D.

    2013-01-01

    This paper summarizes the goals, organization, and results of the second RepLab competitive evaluation campaign for Online Reputation Management Systems (RepLab 2013). RepLab focused on the process of monitoring the reputation of companies and individuals, and asked participant systems to annotate

  2. An Intelligent Sensor for the Ultra-High-Frequency Partial Discharge Online Monitoring of Power Transformers

    Directory of Open Access Journals (Sweden)

    Jian Li

    2016-05-01

    Full Text Available Ultra-high-frequency (UHF partial discharge (PD online monitoring is an effective way to inspect potential faults and insulation defects in power transformers. The construction of UHF PD online monitoring system is a challenge because of the high-frequency and wide-frequency band of the UHF PD signal. This paper presents a novel, intelligent sensor for UHF PD online monitoring based on a new method, namely a level scanning method. The intelligent sensor can directly acquire the statistical characteristic quantities and is characterized by low cost, few data to output and transmit, Ethernet functionality, and small size for easy installation. The prototype of an intelligent sensor was made. Actual UHF PD experiments with three typical artificial defect models of power transformers were carried out in a laboratory, and the waveform recording method and intelligent sensor proposed were simultaneously used for UHF PD measurement for comparison. The results show that the proposed intelligent sensor is qualified for the UHF PD online monitoring of power transformers. Additionally, three methods to improve the performance of intelligent sensors were proposed according to the principle of the level scanning method.

  3. Design and Develop Online Monitoring and Early-warning System of Crane Structural Stress

    Institute of Scientific and Technical Information of China (English)

    XU Huping; LIN Weiguo; XU Changsheng

    2006-01-01

    This paper proposed an online monitoring and early-warning system of dynamic stress of crane metal structure, and designed this system's hardware, including sensor unit, data gathering unit, and controlling & processing unit of this system, and discussed the waterproof protection for resistance strain wafer and scheme of data gathering and transmission of dynamic strain gauge, moreover developed system software of real-time and online monitoring dynamic stress, including data gathering by DLL and data display & processing based on Visual C++. The system applies the dynamic strain gauge to gather the data of the stress, and communicates between PLC control system of crane and upper industrial computer, so that realize the real-time online monitoring and early-warning for crane's metal structure stress. The test results show this system carry on real time and online monitoring to dynamic stress of load-bearing metal structure longly and stability, and can give an alarm and overload protection on time. So the system has good practice value.

  4. Online Condition Monitoring to Enable Extended Operation of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Ryan M.; Bond, Leonard J.; Ramuhalli, Pradeep

    2012-03-31

    Safe, secure, and economic operation of nuclear power plants will remain of strategic significance. New and improved monitoring will likely have increased significance in the post-Fukushima world. Prior to Fukushima, many activities were already underway globally to facilitate operation of nuclear power plants beyond their initial licensing periods. Decisions to shut down a nuclear power plant are mostly driven by economic considerations. Online condition monitoring is a means to improve both the safety and economics of extending the operating lifetimes of nuclear power plants, enabling adoption of proactive aging management. With regard to active components (e.g., pumps, valves, motors, etc.), significant experience in other industries has been leveraged to build the science base to support adoption for online condition-based maintenance and proactive aging management in the nuclear industry. Many of the research needs are associated with enabling proactive management of aging in passive components (e.g., pipes, vessels, cables, containment structures, etc.). This paper provides an overview of online condition monitoring for the nuclear power industry with an emphasis on passive components. Following the overview, several technology/knowledge gaps are identified, which require addressing to facilitate widespread online condition monitoring of passive components.

  5. Sensor combination and chemometric variable selection for online monitoring of Streptomyces coelicolor fed-batch cultivations

    DEFF Research Database (Denmark)

    Ödman, Peter; Johansen, C.L.; Olsson, L.

    2010-01-01

    Fed-batch cultivations of Streptomyces coelicolor, producing the antibiotic actinorhodin, were monitored online by multiwavelength fluorescence spectroscopy and off-gas analysis. Partial least squares (PLS), locally weighted regression, and multilinear PLS (N-PLS) models were built for prediction...

  6. Monitoring and control of the biogas process based on propionate concentration using online VFA measurement

    DEFF Research Database (Denmark)

    Boe, Kanokwan; Steyer, J.P.; Angelidaki, Irini

    2008-01-01

    Simple logic control algorithms were tested for automatic control of a lab-scale CSTR manure digester. Using an online VFA monitoring system, propionate concentration in the reactor was used as parameter for control of the biogas process. The propionate concentration was kept below a threshold...

  7. Effects of Online Note Taking Formats and Self-Monitoring Prompts on Learning from Online Text: Using Technology to Enhance Self-Regulated Learning

    Science.gov (United States)

    Kauffman, Douglas F.; Zhao, Ruomeng; Yang, Ya-Shu

    2011-01-01

    This study explored conditions under which note taking methods and self-monitoring prompts are most effective for facilitating information collection and achievement in an online learning environment. In experiment 1 30 students collected notes from a website using an online conventional, outline, or matrix note taking tool. In experiment 2 119…

  8. An Online Non-Invasive Condition Monitoring Method for Stepping Motor CRDM in HTGR

    Directory of Open Access Journals (Sweden)

    S. Bakhri

    2016-12-01

    Full Text Available Control Rod Drive Mechanism (CRDM based on stepping motor is one of the components applied in High Temperature Gas Coold Reactor (HTGR to control the reactivity as well as to maintain the safety of reactor. The stepping motor requires a unique condition monitoring to avoid any failures especially due to the specific environments of CRDM in HTGR such as the allowable of high temperature, high radiation and the location of stepper motor inside a pressure shell. This research aims to demonstrate an online non-invasive condition monitoring method without direct access to the CRDM of HTGR based on voltage and stator current measurements. A simple stepping motor CRDM simulator is employed. The online condition monitoring is carried out by direct pattern matching of the output signals of logic generator block and the output signals of motor driver. The online method utilizes signature patterns of voltage and stator current signals of the healthy motor as a baseline for healthy motor. In addition, the method is applied to detect high-resistance problem on the connector between the motor driver block and the stepper motor to show the effectiveness and the applicability of this method. The online condition monitoring system demonstrates a capability to identify a minimum detectable simulated high-resistance for about 2.9% which decreases the measured stator current and motor’s torque for around 5.1% and 3.3%, respectively. The paper also points out signatures of healthy motor, including mutual inductions of the motor’s winding in voltage and current measurement which can be used as the fault symptom indicators for online monitoring purposes.

  9. Online, In-Situ Monitoring Combustion Turbines Using Wireless Passive Ceramic Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Xun; An, Linan; Xu, Chengying

    2013-06-30

    The overall objective of this project is to develop high-temperature wireless passive ceramic sensors for online, real-time monitoring combustion turbines. During this project period, we have successfully demonstrated temperature sensors up to 1300{degrees}C and pressure sensors up to 800oC. The temperature sensor is based on a high-Q-factor dielectric resonator and the pressure sensor utilizes the evanescent-mode cavity to realize a pressure-sensitive high-Q-factor resonator. Both sensors are efficiently integrated with a compact antenna. These sensors are wirelessly interrogated. The resonant frequency change corresponding to either temperature or pressure can be identified using a time-domain gating technique. The sensors realized in this project can survive harsh environments characterized by high temperatures (>1000{degrees}C) and corrosive gases, owing to the excellent material properties of polymer-derived ceramics (PDCs) developed at University of Central Florida. It is anticipated that this work will significantly advance the capability of high-temperature sensor technologies and be of a great benefit to turbine industry and their customers.

  10. On-line ultrasonic velocity monitoring of alcoholic fermentation kinetics.

    Science.gov (United States)

    Resa, Pablo; Elvira, Luis; de Espinosa, Francisco Montero; González, Ramón; Barcenilla, José

    2009-04-01

    In this work, fundamental aspects on the ultrasonic velocity monitoring of alcoholic fermentations in synthetic broths (glucose, fructose and sucrose) and natural media (must and wort) are reported. Results are explained in terms of monosaccharide catabolism, polysaccharide hydrolysis, gas production and microorganism growth. The effect of each one of these subprocesses upon ultrasonic velocity has been independently studied. It is shown that, regarding the sound propagation, the simplest systems behave as ternary dissolutions of sugar and ethanol in water, where, in the course of time, substrates are transformed into metabolites according to the fermentation reaction. A semi-empirical approach, based on the excess volume concept and the density and velocity measurements of binary mixtures, has been used to calculate these magnitudes in the ternary mixtures and to obtain the concentrations of the main solutes throughout the fermentations, reaching a good correlation (especially for the media of simplest composition). In all the processes analyzed, the data obtained from the ultrasonic measurements followed the changes caused by the yeast metabolism, asserting the potential of mechanical waves to monitor fermentations and, in general, biotechnological processes.

  11. On-line cell mass monitoring of Saccharomyces cerevisiae cultivations by multi-wavelength fluorescence

    DEFF Research Database (Denmark)

    Haack, Martin Brian; Eliasson, Anna; Olsson, Lisbeth

    2004-01-01

    The catalyst in bioprocesses, i.e. the cell mass, is one of the most challenging and important variables to monitor in bioprocesses. In the present study, cell mass in cultivations with Saccharomyces cerevisiae was monitored on-line with a non-invasive in situ placed sensor measuring multi......-line monitoring of culture fluorescence can be used for estimation of the cell mass concentration during cultivations....... in a decomposition of the multivariate fluorescent landscape, whereby underlying spectra of the individual intrinsic fluorophors present in the cell mass were estimated. Furthermore, gravimetrically determined cell mass concentration was used together with the fluorescence spectra for calibration and validation...

  12. On-line internal corrosion monitoring and data management for remote pipelines: a technology update

    Energy Technology Data Exchange (ETDEWEB)

    Wold, Kjell; Stoen, Roar; Jenssen, Hallgeir [Roxar Flow Measurement AS, Stavanger (Norway); Carvalho, Anna Maria [Roxar do Brasil Ltda., Rio de Janeiro, RJ (Brazil)

    2009-07-01

    Internal corrosion monitoring of remote pipelines can be costly and demanding on resources. Online and non-intrusive monitoring directly on the pipe wall can improve the quality of measurements, make installation more convenient and allow more efficient communication of data. The purpose of this paper is to describe a non-intrusive technology, and show examples on field installations of the system. Furthermore, the non-intrusive technology data can be stored, interpreted and combined with conventional (intrusive) system information, in order to get a full picture of internal corrosion profile, corrosion rate and trends regarding the pipeline being monitored. (author)

  13. On-line Batch Process Monitoring and Diagnosing Based on Fisher Discriminant Analysis

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xu; SHAO Hui-he

    2006-01-01

    A new on-line batch process monitoring and diagnosing approach based on Fisher discriminant analysis (FDA) was proposed. This method does not need to predict the future observations of variables, so it is more sensitive to fault detection and stronger implement for monitoring. In order to improve the monitoring performance,the variables trajectories of batch process are separated into several blocks. The key to the proposed approach for on-line monitoring is to calculate the distance of block data that project to low-dimension Fisher space between new batch and reference batch. Comparing the distance with the predefine threshold, it can be considered whether the batch process is normal or abnormal. Fault diagnosis is performed based on the weights in fault direction calculated by FDA. The proposed method was applied to the simulation model of fed-batch penicillin fermentation and the results were compared with those obtained using MPCA. The simulation results clearly show that the on-line monitoring method based on FDA is more efficient than the MPCA.

  14. Novel online sensor technology for continuous monitoring of milk coagulation and whey separation in cheesemaking.

    Science.gov (United States)

    Fagan, Colette C; Castillo, Manuel; Payne, Fred A; O'Donnell, Colm P; Leedy, Megan; O'Callaghan, Donal J

    2007-10-31

    The cheese industry has continually sought a robust method to monitor milk coagulation. Measurement of whey separation is also critical to control cheese moisture content, which affects quality. The objective of this study was to demonstrate that an online optical sensor detecting light backscatter in a vat could be applied to monitor both coagulation and syneresis during cheesemaking. A prototype sensor having a large field of view (LFV) relative to curd particle size was constructed. Temperature, cutting time, and calcium chloride addition were varied to evaluate the response of the sensor over a wide range of coagulation and syneresis rates. The LFV sensor response was related to casein micelle aggregation and curd firming during coagulation and to changes in curd moisture and whey fat contents during syneresis. The LFV sensor has potential as an online, continuous sensor technology for monitoring both coagulation and syneresis during cheesemaking.

  15. Online Monitoring of Composite Overwrapped Pressure Vessels (COPV)

    DEFF Research Database (Denmark)

    Pereira, Gilmar Ferreira; Figueiredo, Joana; Faria, Hugo

    2015-01-01

    Composite overwrapped pressure vessels (COPV) have been increasingly pointed to as the most effective solution for high pressure storage of liquid and gaseous fluids. Reasonably high stiffness-to-weight ratios make them suitable for both static and mobile applications. However, higher operating...... pressures are sought continuously, to get higher energy densities in such storage systems, and safety aspects become critical. Thus, reliable design and test procedures are required to reduce the risks of undesired and unpredicted failures. An in-service health monitoring system may contribute to a better...... product development, design and optimization, as well as to minimize the risks and improve the public acceptance. Within the scope of developing different COPV models for a wide range of operating pressures and applications, optical fiber Bragg grating (FBG) sensors were embedded in the liner...

  16. Grid Environment for On-line Application Monitoring and Performance Analysis

    Directory of Open Access Journals (Sweden)

    Bartosz Baliś

    2004-01-01

    Full Text Available This paper presents an application monitoring infrastructure developed within the CrossGrid project. The software is aimed at enabling performance measurements for the application developer and in this way facilitating the development of applications in the Grid environment. The application monitoring infrastructure is composed of a distributed monitoring system, the OCM-G, and a performance analysis tool called G-PM. The OCM-G is an on-line, grid-enabled, monitoring system, while G-PM is an advanced graphical tool which allows to evaluate and present the results of performance monitoring, to support optimization of the application execution. G-PM supports build-in standard metrics and user-defined metrics expressed in the Performance Measurement Specification Language (PMSL. Communication between the G-PM and the OCM-G is performed according to a well-defined protocol, OMIS (On-line Monitoring Interface Specification. In this paper, the architecture and features of the OCM-G and G-PM are described as well as an example of use of the monitoring infrastructure to visualize the status and communication in the application, to evaluate the performance, including discovering the reason of the performance flaw.

  17. Online monitor detector for the protontherapy beam at the INFN Laboratori Nazionali del Sud-Catania

    Science.gov (United States)

    Givehchi, N.; Marchetto, F.; Boriano, A.; Attili, A.; Bourhaleb, F.; Cirio, R.; Cirrone, G. A. P.; Cuttone, G.; Di Rosa, F.; Donetti, M.; Garella, M. A.; Giordanengo, S.; Iliescu, S.; La Rosa, A.; Lojacono, P. A.; Nicotra, P.; Peroni, C.; Pecka, A.; Pitta, G.; Raffaele, L.; Russo, G.; Sabini, M. G.; Valastro, L. M.

    2007-03-01

    A detector to monitor online the protontherapy beam at the Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali del Sud (LNS) has been built and characterized. The detector is made of two ionization chambers: each chamber has the anode splitted into 256 0.5 mm strips with vertical and horizontal orientation. The chambers are part of the beam line: signals can be processed online at a speed up to 100 Hz and results are promptly available. Thus the beam geometry can be controlled continuously during patient treatment, and in case of deviation from the required conditions, the treatment can be directly concluded.

  18. On-line monitoring of fermentation processes using multi-wavelength fluorescence

    DEFF Research Database (Denmark)

    Odman, Peter; Petersen, Nanna; Johansen, Claus Lindvald

    2007-01-01

    Fermentation processes often suffer from a lack of real-time methods for on-line determination of variables like the concentrations of nutrients and products. This work aims at investigating the possibilities of implementing an on-line fermentation monitoring system based on multi....... The model system considered in this work is the antibiotic production by Streptomyces coelicolor, a filamentous bacterium. In addition to predicting concentrations of biomass in the fermentation broth, the data allowed detection of different physiological states, i.e. growth phase and phosphate limitation...

  19. The design and implementation of on-line monitoring system for UHV compact shunt capacitors

    Science.gov (United States)

    Tao, Weiliang; Ni, Xuefeng; Lin, Hao; Jiang, Shengbao

    2017-08-01

    Because of the large capacity and compact structure of the UHV compact shunt capacitor, it is difficult to take effective measures to detect and prevent the faults. If the fault capacitor fails to take timely maintenance, it will pose a threat to the safe operation of the system and the life safety of the maintenance personnel. The development of UHV compact shunt capacitor on-line monitoring system can detect and record the on-line operation information of UHV compact shunt capacitors, analyze and evaluate the early fault warning signs, find out the fault capacitor or the capacitor with fault symptom, to ensure safe and reliable operation of the system.

  20. Online monitor detector for the protontherapy beam at the INFN Laboratori Nazionali del Sud-Catania

    Energy Technology Data Exchange (ETDEWEB)

    Givehchi, N. [Dipt. di Fisica Sperimentale, Univ. di Torino, via P.Giuria 1, Turin 10125 (Italy)]|[INFN, via P.Giuria 1, Turin 10125 (Italy); Marchetto, F. [INFN, via P.Giuria 1, Turin 10125 (Italy)]. E-mail: marchetto@to.infn.it; Boriano, A. [Dipt. di Fisica Sperimentale, Univ. di Torino, via P.Giuria 1, Turin 10125 (Italy)]|[INFN, via P.Giuria 1, Turin 10125 (Italy); Attili, A. [INFN, via P.Giuria 1, Turin 10125 (Italy); Bourhaleb, F. [Dipt. di Fisica Sperimentale, Univ. di Torino, via P.Giuria 1, Turin 10125 (Italy); Cirio, R. [INFN, via P.Giuria 1, Turin 10125 (Italy); Cirrone, G.A.P.; Cuttone, G.; Di Rosa, F. [INFN Lab. Nazionali del Sud, via S. Sofia 44, Catania 95123 (Italy); Donetti, M. [INFN, via P.Giuria 1, Torino 10125 (Italy)]|[Fondazione CNAO, via Caminadella 16, Milan 20123 (Italy); Garella, M.A.; Giordanengo, S.; Iliescu, S. [INFN, via P.Giuria 1, Turin 10125 (Italy); La Rosa, A. [Dipt. di Fisica Sperimentale, Univ. di Torino, via P.Giuria 1, Turin 10125 (Italy)]|[INFN, via P.Giuria 1, Turin 10125 (Italy); Lojacono, P.A.; Russo, G. [INFN Lab. Nazionali del Sud, via S. Sofia 44, Catania 95123 (Italy); Nicotra, P. [Si.a.tel s.r.l., via G. Marconi 94, Tremestieri Etneo (Ct) 95030 (Italy); Peroni, C. [Dipt. di Fisica Sperimentale, Univ. di Torino, via P.Giuria 1, Turin 10125 (Italy)]|[INFN, via P.Giuria 1, Torino 10125 (Italy); Pecka, A. [Dipt. di Fisica Sperimentale, Univ. di Torino, via P.Giuria 1, Torino 10125 (Italy)]|[INFN, via P.Giuria 1, Turin 10125 (Italy); Pitta, G. [Fondazione TERA, via Puccini 1, Novara 28100 (Italy); Raffaele, L. [INFN Lab. Nazionali del Sud, via S. Sofia 44, Catania 95123 (Italy)]|[U.O.Radiologia e Radioterapia, Azienda Ospedaliero-Univ. Policlinico dell' Univ. di Catania, via S. Sofia 44, Catania 95123 (Italy); Sabini, M.G. [INFN Lab. Nazionali del Sud, via S. Sofia 44, Catania 95123 (Italy)]|[A.O. Cannizzaro, via Messina 829, Catania 95126 (Italy); Valastro, L.M.

    2007-03-21

    A detector to monitor online the protontherapy beam at the Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali del Sud (LNS) has been built and characterized. The detector is made of two ionization chambers: each chamber has the anode splitted into 256 0.5 mm strips with vertical and horizontal orientation. The chambers are part of the beam line: signals can be processed online at a speed up to 100 Hz and results are promptly available. Thus the beam geometry can be controlled continuously during patient treatment, and in case of deviation from the required conditions, the treatment can be directly concluded.

  1. Atmospheric trace gases monitoring by UV-vis spectroscopic techniques

    Science.gov (United States)

    Xie, Pinhua; Li, Ang; Wu, Fengcheng; Qin, Min; Hu, Rezhi; Xu, Jin; Si, Fuqi; Liu, Jianguo; Liu, Wenqing

    2016-04-01

    Due to rapidly economic development, air pollution has become an important issue in China. Phenomena such as regional haze in winter and high O3 concentration in summer are strongly related to increasing trace species. For better understanding the air pollution formation, it is necessary to know spatial and temporal distribution of trace species in the atmosphere. UV-vis spectroscopic techniques are of great advantages for trace species monitoring to meet several requirements, e.g. versatility, high sensitivity, good temporal resolution and field applicability. We have studied and developed various trace gases monitoring techniques and instruments based on UV-vis spectroscopic technique for in-situ measurements and remote sensing, e.g. LP-DOAS, IBBCEAS, CRDS, MAX-DOAS and mobile DOAS for NO2, SO2, HCHO, HONO, NO3, and N2O5 etc. The principle, instrumentation and inversion algorithm are presented. As typical applications of these techniques, investigation of the evolution of HONO and NO3 radicals over Beijing area, measurements of regional pollution in NCP and YRD are discussed in the aspects of HONO and nocturnal NO3 radical characteristics, trace gases (NO2, SO2 etc.) temporal and spatial distribution, pollution transport pathway, emission sources.

  2. Monitoring of Refractory wall recession using radar technique

    Energy Technology Data Exchange (ETDEWEB)

    University of missouri

    2003-12-30

    Furnaces are the most crucial components in the glass and metallurgical industry. Like any other components in an industry, furnaces require periodic maintenance and repair. Today, furnaces are being operated at higher temperatures and for longer periods of time thus increasing the rate of wear and tear on the furnace refractory lining. As a result of the competitive market facing these industries, longer furnace lifetime with shorter maintenance downtime are increasingly required. Higher fuel consumption, low production and safety are issues that accompany delayed maintenance. Consequently, there is a need to know the state of a refractory wall to prevent premature or unnecessary maintenance shutdowns. For many years the observation skills of an experienced operator has been the primary source of evaluating the wear associated with a refractory wall. The rate of regression of a refractory lining depends on the type of the refractory lining, the materials Monitoring of Refractory Wall Recession Using Frequency-Modulated Continuous-Wave (FM-CW) Radar Techniques: A Proof-of-Concept Study, Final Report, Submitted to the Department of Energy (DOE), September 2003. being melted, seepage, mechanical stresses, and temperature. Moreover, the regression of a refractory lining is also not uniform throughout a furnace and it is more prominent at the metal line along the sidewalls as this region is exposed to hot gaseous byproducts and flowing molten material. Hence, more accurate measurement techniques are required to determine the local residual thickness of a refractory lining so as to utilize the refractory lining to the maximum extent possible. The use of isotope radiators, thermocouples and endoscopes has also been investigated for monitoring regression. These techniques are capable of providing scanned thermal images showing the profile of the refractory wall. However, these techniques can only provide relative profile information and cannot provide absolute thickness

  3. Non-destructive monitoring of microbial biofilms at solid-liquid interfaces using on-line devices

    Energy Technology Data Exchange (ETDEWEB)

    Nivens, D.E. (Tennessee Univ., Knoxville, TN (USA). Dept. of Chemistry Tennessee Univ., Knoxville, TN (USA). Inst. for Applied Microbiology); Chambers, J.Q. (Tennessee Univ., Knoxville, TN (USA). Dept. of Chemistry); White, D.C. (Tennessee Univ., Knoxville, TN (USA). Inst. for Applied Microbiology Tennessee Univ., Knoxville, TN (USA). Dept. of Microbiology Oak Ridge National Lab., TN (USA))

    1990-01-01

    Corrosion, biofouling, and related problems have been an impetus for investigating interactions between microorganisms and solid surfaces. In recent years, a number of studies have been performed to assess the damages caused by microbial influenced corrosion (MIC). In a number of these studies, electrochemical techniques have monitored the performance of metal surfaces exposed to bacteria. However, most of these methods can only indirectly detect the presence of biofilms. In this paper, two non-destructive on-line monitoring devices, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FT/IR) and the quartz crystal microbalance (QCM) were used to directly monitor biofilm formation. These devices have been developed to study the initial fouling process and subsequent biofilm development and not merely the effects of the living film on the host material. The ATR-FT/IR technique provides information about biomass, exopolymer production, and the nutritional status of microbial biofilms. The QCM provides a direct measure of biomass. ATR-FT/IR and QCM detect 10{sup 6} and 10{sup 4} Caulobacter crescentus cells/cm{sup 2}, respectively. Both techniques can be coupled with electrochemical methods for deeper insight into mechanisms of MIC. 20 refs., 2 figs.

  4. Online technique for detecting state of onboard fiber optic gyroscope.

    Science.gov (United States)

    Miao, Zhiyong; Xu, Dingjie; He, Kunpeng; Pang, Shuwan; Tian, Chunmiao

    2015-02-01

    Although angle random walk (ARW) of fiber optic gyroscope (FOG) has been well modeled and identified before being integrated into the high-accuracy attitude control system of satellite, aging and unexpected failures can affect the performance of FOG after launch, resulting in the variation of ARW coefficient. Therefore, the ARW coefficient can be regarded as an indicator of "state of health" for FOG diagnosis in some sense. The Allan variance method can be used to estimate ARW coefficient of FOG, however, it requires a large amount of data to be stored. Moreover, the procedure of drawing slope lines for estimation is painful. To overcome the barriers, a weighted state-space model that directly models the ARW to obtain a nonlinear state-space model was established for FOG. Then, a neural extended-Kalman filter algorithm was implemented to estimate and track the variation of ARW in real time. The results of experiment show that the proposed approach is valid to detect the state of FOG. Moreover, the proposed technique effectively avoids the storage of data.

  5. Online technique for detecting state of onboard fiber optic gyroscope

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Zhiyong; He, Kunpeng, E-mail: pengkhe@126.com; Pang, Shuwan [Department of Automation, Harbin Engineering University, Harbin, Heilongjiang 150000 (China); Xu, Dingjie [School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin, Heilongjiang 150000 (China); Tian, Chunmiao [Department of Information and Communication Engineering, Harbin Engineering University, Harbin, Heilongjiang 150000 (China)

    2015-02-15

    Although angle random walk (ARW) of fiber optic gyroscope (FOG) has been well modeled and identified before being integrated into the high-accuracy attitude control system of satellite, aging and unexpected failures can affect the performance of FOG after launch, resulting in the variation of ARW coefficient. Therefore, the ARW coefficient can be regarded as an indicator of “state of health” for FOG diagnosis in some sense. The Allan variance method can be used to estimate ARW coefficient of FOG, however, it requires a large amount of data to be stored. Moreover, the procedure of drawing slope lines for estimation is painful. To overcome the barriers, a weighted state-space model that directly models the ARW to obtain a nonlinear state-space model was established for FOG. Then, a neural extended-Kalman filter algorithm was implemented to estimate and track the variation of ARW in real time. The results of experiment show that the proposed approach is valid to detect the state of FOG. Moreover, the proposed technique effectively avoids the storage of data.

  6. A new online exhaust gas monitoring system in hydrochloric acid regeneration of cold rolling mills.

    Science.gov (United States)

    Tuo, Long; Zheng, Xiang; Chen, Xiong

    2015-07-07

    Measuring the content of hydrogen chloride (HCl) in exhaust gas used to take time and energy. In this paper, we introduce a new online monitoring system which can output real-time data to the monitoring center. The system samples and cools exhaust gas, and after a series of processing, it will be analyzed by a specific instrument. The core part of this system is remote terminal unit (RTU) which is designed on Cortex-A8 embedded architecture. RTU runs a scaled-down version of Linux which is a good choice of OS for embedded applications. It controls the whole processes, does data acquisition and data analysis, and communicates with monitoring center through Ethernet. In addition, through a software developed for windows, the monitoring process can be remotely controlled. The new system is quite beneficial for steel industry to do environment monitoring.

  7. On-line Batch Process Monitoring with Improved Multi-way Independent Component Analysis

    Institute of Scientific and Technical Information of China (English)

    GUO Hui; LI Hongguang

    2013-01-01

    In the past decades,on-line monitoring of batch processes using multi-way independent component analysis (MICA) has received considerable attention in both academia and industry.This paper focuses on two troublesome issues concerning selecting dominant independent components without a standard criterion and determining the control limits of monitoring statistics in the presence of non-Gaussian distribution.To optimize the number of key independent components,we introduce a novel concept of system deviation,which is able to evaluate the reconstructed observations with different independent components.The monitored statistics are transformed to Gaussian distribution data by means of Box-Cox transformation,which helps readily determine the control limits.The proposed method is applied to on-line monitoring of a fed-batch penicillin fermentation simulator,and the experimental results indicate the advantages of the improved MICA monitoring compared to the conventional methods.

  8. Exploring Machine Learning Techniques Using Patient Interactions in Online Health Forums to Classify Drug Safety

    Science.gov (United States)

    Chee, Brant Wah Kwong

    2011-01-01

    This dissertation explores the use of personal health messages collected from online message forums to predict drug safety using natural language processing and machine learning techniques. Drug safety is defined as any drug with an active safety alert from the US Food and Drug Administration (FDA). It is believed that this is the first…

  9. Exploring Machine Learning Techniques Using Patient Interactions in Online Health Forums to Classify Drug Safety

    Science.gov (United States)

    Chee, Brant Wah Kwong

    2011-01-01

    This dissertation explores the use of personal health messages collected from online message forums to predict drug safety using natural language processing and machine learning techniques. Drug safety is defined as any drug with an active safety alert from the US Food and Drug Administration (FDA). It is believed that this is the first…

  10. Design of Nuclear Power Plant Online Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    An, Sang-ha; Jeong, Yong-hoon; Chang, Soon-heung [KAIST, Daejeon (Korea, Republic of); Lee, Song-kyu [Korea Power Engineering Co., Yongin (Korea, Republic of)

    2007-07-01

    Statistical Quality Control techniques have been applied to many aspects of industrial engineering. An application to nuclear power plant maintenance and control is also presented that can greatly improve plant safety. As a demonstration of such an approach, a specific system is analyzed: the reactor coolant pumps (RCPs) and the fouling resistance of heat exchanger. This research uses Shewart X-bar, R charts, Cumulative Sum charts (CUSUM), and Sequential Probability Ratio Test (SPRT) to analyze the process for the state of statistical control. And the Control Chart Analyzer (CCA) has been made to support these analyses that can make a decision of error in process. The analysis shows that statistical process control methods can be applied as an early warning system capable of identifying significant equipment problems well in advance of traditional control room alarm indicators. Such a system would provide operators with enough time to respond to possible emergency situations and thus improve plant safety and reliability.

  11. Comparison of online IGRT techniques for prostate IMRT treatment: Adaptive vs repositioning correction

    Energy Technology Data Exchange (ETDEWEB)

    Thongphiew, Danthai; Wu, Q. Jackie; Lee, W. Robert; Chankong, Vira; Yoo, Sua; McMahon, Ryan; Yin Fangfang [Department of Radiation Oncology, Duke University Medical Center, P.O. Box 3295, Durham, North Carolina 27710 (United States); Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, Ohio 44106 (United States); Department of Radiation Oncology, Duke University Medical Center, P.O. Box 3295, Durham, North Carolina 27710 (United States)

    2009-05-15

    This study compares three online image guidance techniques (IGRT) for prostate IMRT treatment: bony-anatomy matching, soft-tissue matching, and online replanning. Six prostate IMRT patients were studied. Five daily CBCT scans from the first week were acquired for each patient to provide representative ''snapshots'' of anatomical variations during the course of treatment. Initial IMRT plans were designed for each patient with seven coplanar 15 MV beams on a Eclipse treatment planning system. Two plans were created, one with a PTV margin of 10 mm and another with a 5 mm PTV margin. Based on these plans, the delivered dose distributions to each CBCT anatomy was evaluated to compare bony-anatomy matching, soft-tissue matching, and online replanning. Matching based on bony anatomy was evaluated using the 10 mm PTV margin (''bone10''). Soft-tissue matching was evaluated using both the 10 mm (''soft10'') and 5 mm (''soft5'') PTV margins. Online reoptimization was evaluated using the 5 mm PTV margin (''adapt''). The replanning process utilized the original dose distribution as the basis and linear goal programming techniques for reoptimization. The reoptimized plans were finished in less than 2 min for all cases. Using each IGRT technique, the delivered dose distribution was evaluated on all 30 CBCT scans (6 patientsx5CBCT/patient). The mean minimum dose (in percentage of prescription dose) to the CTV over five treatment fractions were in the ranges of 99%-100%(SD=0.1%-0.8%), 65%-98%(SD=0.4%-19.5%), 87%-99%(SD=0.7%-23.3%), and 95%-99%(SD=0.4%-10.4%) for the adapt, bone10, soft5, and soft10 techniques, respectively. Compared to patient position correction techniques, the online reoptimization technique also showed improvement in OAR sparing when organ motion/deformations were large. For bladder, the adapt technique had the best (minimum) D90, D50, and D30 values for 24, 17

  12. Level monitoring system with pulsating sensor—Application to online level monitoring of dashpots in a fast breeder reactor

    Science.gov (United States)

    Malathi, N.; Sahoo, P.; Ananthanarayanan, R.; Murali, N.

    2015-02-01

    An innovative continuous type liquid level monitoring system constructed by using a new class of sensor, viz., pulsating sensor, is presented. This device is of industrial grade and it is exclusively used for level monitoring of any non conducting liquid. This instrument of unique design is suitable for high resolution online monitoring of oil level in dashpots of a sodium-cooled fast breeder reactor. The sensing probe is of capacitance type robust probe consisting of a number of rectangular mirror polished stainless steel (SS-304) plates separated with uniform gaps. The performance of this novel instrument has been thoroughly investigated. The precision, sensitivity, response time, and the lowest detection limit in measurement using this device are reactor. With the evolution of this level measurement approach, it is possible to provide dashpot oil level sensors in fast breeder reactor for the first time for continuous measurement of oil level in dashpots of Control & Safety Rod Drive Mechanism during reactor operation.

  13. Level monitoring system with pulsating sensor--application to online level monitoring of dashpots in a fast breeder reactor.

    Science.gov (United States)

    Malathi, N; Sahoo, P; Ananthanarayanan, R; Murali, N

    2015-02-01

    An innovative continuous type liquid level monitoring system constructed by using a new class of sensor, viz., pulsating sensor, is presented. This device is of industrial grade and it is exclusively used for level monitoring of any non conducting liquid. This instrument of unique design is suitable for high resolution online monitoring of oil level in dashpots of a sodium-cooled fast breeder reactor. The sensing probe is of capacitance type robust probe consisting of a number of rectangular mirror polished stainless steel (SS-304) plates separated with uniform gaps. The performance of this novel instrument has been thoroughly investigated. The precision, sensitivity, response time, and the lowest detection limit in measurement using this device are reactor. With the evolution of this level measurement approach, it is possible to provide dashpot oil level sensors in fast breeder reactor for the first time for continuous measurement of oil level in dashpots of Control & Safety Rod Drive Mechanism during reactor operation.

  14. [Open-path online monitoring of ambient atmospheric CO2 based on laser absorption spectrum].

    Science.gov (United States)

    He, Ying; Zhang, Yu-Jun; Kan, Rui-Feng; Xia, Hui; Geng, Hui; Ruan, Jun; Wang, Min; Cui, Xiao-Juan; Liu, Wen-Qing

    2009-01-01

    With the conjunction of tunable diode laser absorption spectroscopy technology (TDLAS) and the open long optical path technology, the system designing scheme of CO2 on-line monitoring based on near infrared tunable diode laser absorption spectroscopy technology was discussed in detail, and the instrument for large-range measurement was set up. By choosing the infrared absorption line of CO2 at 1.57 microm whose line strength is strong and suitable for measurement, the ambient atmospheric CO2 was measured continuously with a 30 s temporal resolution at an suburb site in the autumn of 2007. The diurnal atmospheric variations of CO2 and continuous monitoring results were presented. The results show that the variation in CO2 concentration has an obvious diurnal periodicity in suburb where the air is free of interference and contamination. The general characteristic of diurnal variation is that the concentration is low in the daytime and high at night, so it matches the photosynthesis trend. The instrument can detect gas concentration online with high resolution, high sensitivity, high precision, short response time and many other advantages, the monitoring requires no gas sampling, the calibration is easy, and the detection limit is about 4.2 x 10(-7). It has been proved that the system and measurement project are feasible, so it is an effective method for gas flux continuous online monitoring of large range in ecosystem based on TDLAS technology.

  15. Development of a Compton Camera for Online Range Monitoring of Laser-Accelerated Proton Beams via Prompt-Gamma Detection

    Directory of Open Access Journals (Sweden)

    Thirolf P.G.

    2014-03-01

    Full Text Available Presently large efforts are conducted in Munich towards the development of proton beams for bio-medical applications, generated via the technique of particle acceleration from high-power, short-pulse lasers. While so far mostly offline diagnostics tools are used in this context, we aim at developing a reliable and accurate online range monitoring technique, based on the position-sensitive detection of prompt γ rays emitted from nuclear reactions between the proton beam and the biological sample. For this purpose, we develop a Compton camera, designed to be able to track not only the Compton scattering of the primary photon, but also to detect the secondary Compton electron, thus reducing the Compton cone to an arc segment and by this increasing the source reconstruction efficiency. Design specifications and the status of the protype system are discussed.

  16. Development and application of On-line Monitoring Device of Transformer Vibration

    Directory of Open Access Journals (Sweden)

    Yang Yongming

    2013-08-01

    Full Text Available A real time on-line transformer vibration monitoring system based on the Labview is proposed and applied in the monitoring of abnormal vibration of transformer caused by DC bias in this paper. The monitoring of the transformer body vibration and the signal online analysis can be well performed by this system. The vibration signals of the transformer body are detected by three acceleration sensors, and the signal features are studied in both the time domain and the frequency domain, which provides the data for the operation condition assessment and fault diagnostics. Combined with the background data base, a virtual instrument technology has been used to realize man machine interface and the real time multifunction and multi-channel monitoring. Compared with the previous similar installations, this monitoring system makes the best use of powerful computer, the flexibility of Labview in the instrument development, and the new data store technology. The experiment results suggest that the installation fully meets the requirements of real time monitoring. Some conclusions of transformer abnormal vibration under the condition of DC bias are gained. The system facilitates the detection of the early signs of transformer mechanical failures.

  17. First Field Experience of On-line Partial Discharge Monitoring of MV Cable Systems with location

    Energy Technology Data Exchange (ETDEWEB)

    Van der Wielen, P.; Steennis, F.

    2009-06-15

    A new measuring system is presented for the on-line monitoring and location of partial discharges (PDs) in medium-voltage power cables. The system uses two inductive sensors, each at one cable end. The measuring system is called PD-OL, which stands for PD detection Online with Location. A pulse injection system is used for the time synchronization of the data intake at both cable ends and for the on-line calibration. PD data is send via internet to the KEMA Control Center for interpretation and final presentation, made visible on a secured website for the network owners. This paper discusses the basics of PD-OL and a number of measurement results.

  18. Monitoring of tissue coagulation during thermotherapy using optoacoustic technique

    Energy Technology Data Exchange (ETDEWEB)

    Larin, Kirill V [Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, TX 77555 (United States); Larina, Irina V [Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, TX 77555 (United States); Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555 (United States); Esenaliev, Rinat O [Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, TX 77555 (United States); Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555 (United States); Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX 77555 (United States)

    2005-08-07

    In this paper we have applied the laser optoacoustic technique for real time noninvasive monitoring of thermal damage in tissues. Changes in tissue optical properties during coagulation were detected by measuring and analysing amplitude and temporal characteristics of optoacoustic signals. Coagulation of liver, myocardium and prostate was induced by interstitial continuous wave Nd : YAG laser irradiation of the samples or by conductive heating. Real time detection of thermally-induced changes in optical properties was performed with sensitive wide-band acoustic transducers. Combination of optoacoustic and diffuse reflectance technique was applied for determination of tissue optical properties: effective attenuation, total diffuse reflectance, reduced scattering coefficient and absorption coefficient. The optical properties did not change up to temperature of coagulation (about 53{sup 0}C) and sharply increased during heating up to 70{sup 0}C. Monitoring of the expansion of interstitial coagulation front within freshly excised canine tissues was performed in real time with spatial resolution of about 0.6 mm. The results of our study suggest that this technique can potentially be used for real time precise thermotherapy of malignant and benign lesions at depths of the order of the centimetre.

  19. Analysis of ultrasonic techniques for monitoring milk coagulation during cheesemaking

    Science.gov (United States)

    Budelli, E.; Pérez, N.; Lema, P.; Negreira, C.

    2012-12-01

    Experimental determination of time of flight and attenuation has been proposed in the literature as alternatives to monitoring the evolution of milk coagulation during cheese manufacturing. However, only laboratory scale procedures have been described. In this work, the use of ultrasonic time of flight and attenuation to determine cutting time and its feasibility to be applied at industrial scale were analyzed. Limitations to implement these techniques at industrial scale are shown experimentally. The main limitation of the use of time of flight is its strong dependence with temperature. Attenuation monitoring is affected by a thin layer of milk skin covering the transducer, which modifies the signal in a non-repetitive way. The results of this work can be used to develop alternative ultrasonic systems suitable for application in the dairy industry.

  20. Design of Reactor Coolant Pump Seal Online Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    Ah, Sang Ha; Chang, Soon Heung [KAIST, Daejeon (Korea, Republic of); Lee, Song Kyu [Korea Power Engineering Co., Yongin (Korea, Republic of)

    2008-05-15

    As a part of a Department of Korea Power Engineering Co., (KOPEC) Project, Statistical Quality Control techniques have been applied to many aspects of industrial engineering. An application to nuclear power plant maintenance and control is also presented that can greatly improve plant safety. As a demonstration of such an approach, a specific system is analyzed: the reactor coolant pumps (RCPs) and the fouling resistance of heat exchanger. This research uses Shewart X-bar, R charts, Cumulative Sum charts (CUSUM), and Sequential Probability Ratio Test (SPRT) to analyze the process for the state of statistical control. And the Control Chart Analyzer (CCA) has been made to support these analyses that can make a decision of error in process. The analysis shows that statistical process control methods can be applied as an early warning system capable of identifying significant equipment problems well in advance of traditional control room alarm indicators. Such a system would provide operators with enough time to respond to possible emergency situations and thus improve plant safety and reliability. RCP circulates reactor coolant to transfer heat from the reactor to the steam generators. RCP seals are in the pressure part of reactor coolant system, so if it breaks, it can cause small break LOCA. And they are running on high pressure, and high temperature, so they can be easily broken. Since the reactor coolant pumps operate within the containment building, physical access to the pumps occurs only during refueling outages. Engineers depend on process variables transmitted to the control room and through the station's data historian to assess the pumps' condition during normal operation.

  1. Wastewater quality monitoring system using sensor fusion and machine learning techniques.

    Science.gov (United States)

    Qin, Xusong; Gao, Furong; Chen, Guohua

    2012-03-15

    A multi-sensor water quality monitoring system incorporating an UV/Vis spectrometer and a turbidimeter was used to monitor the Chemical Oxygen Demand (COD), Total Suspended Solids (TSS) and Oil & Grease (O&G) concentrations of the effluents from the Chinese restaurant on campus and an electrocoagulation-electroflotation (EC-EF) pilot plant. In order to handle the noise and information unbalance in the fused UV/Vis spectra and turbidity measurements during the calibration model building, an improved boosting method, Boosting-Iterative Predictor Weighting-Partial Least Squares (Boosting-IPW-PLS), was developed in the present study. The Boosting-IPW-PLS method incorporates IPW into boosting scheme to suppress the quality-irrelevant variables by assigning small weights, and builds up the models for the wastewater quality predictions based on the weighted variables. The monitoring system was tested in the field with satisfactory results, underlying the potential of this technique for the online monitoring of water quality. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Development of infrared spectroscopy techniques for environmental monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Sandsten, Jonas

    2000-08-01

    Infrared spectroscopy techniques have long been utilized in identifying and quantifying species of interest to us. Many of the elementary molecules in the atmosphere interact with infrared radiation through their ability to absorb and emit energy in vibrational and rotational transitions. A large variety of methods for monitoring of molecules and aerosol particles by collecting samples or by using remote sensing methods are available. The objective of the work presented in this thesis was to develop infrared spectroscopic techniques to further enhance the amount of useful information obtained from gathering spectral data. A new method for visualization and quantification of gas flows based on gas-correlation techniques was developed. Real-time imaging of gas leaks and incomplete or erratic flare combustion of ethene was demonstrated. The method relies on the thermal background as a radiation source and the gas can be visualized in absorption or in emission depending on the temperature difference. Diode laser spectroscopy was utilized to monitor three molecular species at the same time and over the same path. Two near-infrared diode lasers beams were combined in a periodically poled lithium niobate crystal and by difference-frequency generation a third beam was created, enabling simultaneous monitoring of oxygen, water vapor and methane. Models of aerosol particle cross sections were used to simulate the diffraction pattern of light scattered by fibers, spherical particles and real particles, such as pollen, through a new aerosol particle sensing prototype. The instrument, using a coupled cavity diode laser, has been designed with a ray-tracing program and the final prototype was employed for single aerosol particle sizing and identification.

  3. Active load sharing technique for on-line efficiency optimization in DC microgrids

    DEFF Research Database (Denmark)

    Sanseverino, E. Riva; Zizzo, G.; Boscaino, V.

    2017-01-01

    , is created to store the real efficiencies of the converters taking into account components tolerances. A MATLAB/Simulink model of the DC distribution network has been set up and a Genetic Algorithm has been employed for the global efficiency optimization. Simulation results are shown to validate the proposed......-DC converters, is modeled. An active load sharing technique is proposed for the on-line optimization of the global efficiency of the DC distribution network. The algorithm aims at the instantaneous efficiency optimization of the whole DC network, based on the on-line load current sampling. A Look Up Table...

  4. On-line monitoring of pharmaceutical production processes using Hidden Markov Model.

    Science.gov (United States)

    Zhang, Hui; Jiang, Zhuangde; Pi, J Y; Xu, H K; Du, R

    2009-04-01

    This article presents a new method for on-line monitoring of pharmaceutical production process, especially the powder blending process. The new method consists of two parts: extracting features from the Near Infrared (NIR) spectroscopy signals and recognizing patterns from the features. Features are extracted from spectra by using Partial Least Squares method (PLS). The pattern recognition is done by using Hidden Markov Model (HMM). A series of experiments are conducted to evaluate the effectiveness of this new method. In the experiments, wheat powder and corn powder are blended together at a set concentration. The proposed method can effectively detect the blending uniformity (the success rate is 99.6%). In comparison to the conventional Moving Block of Standard Deviation (MBSD), the proposed method has a number of advantages, including higher reliability, higher robustness and more transparent decision making. It can be used for effective on-line monitoring of pharmaceutical production processes.

  5. A New Eye on the VHE Transient Universe with the HAWC Online Flare Monitor

    CERN Document Server

    Weisgarber, Thomas

    2016-01-01

    The High Altitude Water Cherenkov (HAWC) Observatory recently began full-scale operations, surveying 2/3 of the entire sky at very high energy (VHE; E > 100 GeV). This new view of the sky offers the opportunity to detect flares from blazars, facilitating studies of the mechanisms powering their central engines and providing an avenue to constrain the properties of particles and fields in intergalactic space. The HAWC Collaboration has implemented an online flare monitor to search for rapid and extreme transient activity from a set of blazars either known or suspected to produce VHE emission. The goal of this project is to issue alerts sufficiently rapidly to form a complete multiwavelength picture of the flare. We describe the current status of the online flare monitor, demonstrating its ability to detect flares via a study of the blazars Markarian 421 and Markarian 501 in offline data.

  6. A novel, optical, on-line bacteria sensor for monitoring drinking water quality.

    Science.gov (United States)

    Højris, Bo; Christensen, Sarah Christine Boesgaard; Albrechtsen, Hans-Jørgen; Smith, Christian; Dahlqvist, Mathis

    2016-04-04

    Today, microbial drinking water quality is monitored through either time-consuming laboratory methods or indirect on-line measurements. Results are thus either delayed or insufficient to support proactive action. A novel, optical, on-line bacteria sensor with a 10-minute time resolution has been developed. The sensor is based on 3D image recognition, and the obtained pictures are analyzed with algorithms considering 59 quantified image parameters. The sensor counts individual suspended particles and classifies them as either bacteria or abiotic particles. The technology is capable of distinguishing and quantifying bacteria and particles in pure and mixed suspensions, and the quantification correlates with total bacterial counts. Several field applications have demonstrated that the technology can monitor changes in the concentration of bacteria, and is thus well suited for rapid detection of critical conditions such as pollution events in drinking water.

  7. A new oil debris sensor for online condition monitoring of wind turbine gearboxes

    DEFF Research Database (Denmark)

    Wang, Chao; Liu, Hui; Liu, Xiao

    2015-01-01

    systems. The health condition of the wind turbine gearboxes can be indicated by the quantity and size of the metal abrasive particles, which may provide very early warnings of faults/failures and benefit the condition based maintenance of the system. An improved inductive sensor probe is proposed......Online Condition Monitoring (CM) is a key technology for the Operation and Maintenance (O&M) of wind turbines. Lubricating oil is the blood of the wind turbine gearbox. Metal debris in lubricating oil contains abundant information regarding the ageing and wear/damage of mechanical transmission...... in this paper for the online health monitoring of wind turbine gearbox. The magnetic field homogeneity as well as the performance of the proposed Helmholtz-coil probe are analyzed and verified by finite element analysis....

  8. A novel, optical, on-line bacteria sensor for monitoring drinking water quality

    Science.gov (United States)

    Højris, Bo; Christensen, Sarah Christine Boesgaard; Albrechtsen, Hans-Jørgen; Smith, Christian; Dahlqvist, Mathis

    2016-04-01

    Today, microbial drinking water quality is monitored through either time-consuming laboratory methods or indirect on-line measurements. Results are thus either delayed or insufficient to support proactive action. A novel, optical, on-line bacteria sensor with a 10-minute time resolution has been developed. The sensor is based on 3D image recognition, and the obtained pictures are analyzed with algorithms considering 59 quantified image parameters. The sensor counts individual suspended particles and classifies them as either bacteria or abiotic particles. The technology is capable of distinguishing and quantifying bacteria and particles in pure and mixed suspensions, and the quantification correlates with total bacterial counts. Several field applications have demonstrated that the technology can monitor changes in the concentration of bacteria, and is thus well suited for rapid detection of critical conditions such as pollution events in drinking water.

  9. Infrastructures and Monitoring of the on-line CMS computing centre

    CERN Document Server

    Bauer, Gerry; Biery, Kurt; Branson, James G; Cano, Eric; Cheung, Harry; Ciganek, Marek; Cittolin, Sergio; Antonio, Jose; Deldicque, Christian; Dusinberre, Elizabeth; Erhan, Samim; Fortes, Fabiana; Gigi, Dominique; Glege, Frank; Gomez-Reino, Robert; Gutleber, Johannes; Hatton, Derek; Laurens, Jean-francois; David, Elliot; Antonio, Juan; Meijers, Frans; Meschi, Emilio; Meyer, Andreas Bernhard; Moser, Robin; O'Dell, Vivian; Oh, Alexander; Orsini, Luciano; Patras, Vaios; Paus, Christoph; Petrucci, Andrea; Pieri, Marco; Pollet, Lucien; Racz, Attila; Sakulin, Hannes; Sani, Matteo; Schieferdecker, Philipp; Schwick, Christoph; Simon, Sean; Sumorok, Konstanty; Varela, Joao; Zanetti, Marco

    2008-01-01

    This paper describes in detail the infrastructure and installation of the CMS on-line computing centre (CMSOLC) and its associated monitoring system. In summer 2007, 640 PCs acting as detector Readout Units for the CMS Data Acquisition System (DAQ) were deployed along with ~150 servers for DAQ general services. Since summer 2008, ~900 PCs acting as DAQ Event Builder Units/Filter Units have been added and today, the CMSOLC has an on-line processing capability sufficient for a Level 1 trigger accept rate of 50 kHz. To ensure that these ~1700 PCs are running efficiently, a multi-level monitoring system has been put in place. This system is also described in this paper.

  10. FPGA implementation of a hybrid on-line process monitoring in PC based real-time systems

    Directory of Open Access Journals (Sweden)

    Jovanović Bojan

    2011-01-01

    Full Text Available This paper presents one way of FPGA implementation of hybrid (hardware-software based on-line process monitoring in Real-Time systems (RTS. The reasons for RTS monitoring are presented at the beginning. The summary of different RTS monitoring approaches along with its advantages and drawbacks are also exposed. Finally, monitoring module is described in details. Also, FPGA implementation results and some useful monitoring system applications are mentioned.

  11. Sensors Array Technique for Monitoring Aluminum Alloy Spot Welding

    Institute of Scientific and Technical Information of China (English)

    王蕤; 罗震; 单平; 步贤政; 袁书现; 敖三三

    2010-01-01

    In this paper,the sensors array technique is applied to the quality detection of aluminum alloy spot welding.The sensors array has three forms,i.e.,linear magnetic sensors array,annular magnetic sensors array and cross magnetic sensors array.An algorithm based on principal component analysis is proposed to extract the signal eigenvalues.The three types of magnetic sensors array are used in the experiment of monitoring the signal.After the eigenvalues are extracted,they are used to build a relationship with ...

  12. An integrated sensing technique for smart monitoring of water pipelines

    Science.gov (United States)

    Bernini, Romeo; Catapano, Ilaria; Soldovieri, Francesco; Crocco, Lorenzo

    2014-05-01

    Lowering the rate of water leakage from the network of underground pipes is one of the requirements that "smart" cities have to comply with. In fact, losses in the water supply infrastructure have a remarkable social, environmental and economic impact, which obviously conflicts with the expected efficiency and sustainability of a smart city. As a consequence, there is a huge interest in developing prevention policies based on state-of-art sensing techniques and possibly their integration, as well as in envisaging ad hoc technical solutions designed for the application at hand. As a contribution to this framework, in this communication we present an approach aimed to pursue a thorough non-invasive monitoring of water pipelines, with both high spatial and temporal resolution. This goal is necessary to guarantee that maintenance operations are performed timely, so to reduce the extent of the leakage and its possible side effects, and precisely, so to minimize the cost and the discomfort resulting from operating on the water supply network. The proposed approach integrates two sensing techniques that work at different spatial and temporal scales. The first one is meant to provide a continuous (in both space and time) monitoring of the pipeline and exploits a distributed optic fiber sensor based on the Brillouin scattering phenomenon. This technique provides the "low" spatial resolution information (at meter scale) needed to reveal the presence of a leak and call for interventions [1]. The second technique is based on the use of Ground Penetrating Radar (GPR) and is meant to provide detailed images of area where the damage has been detected. GPR systems equipped with suitable data processing strategies [2,3] are indeed capable of providing images of the shallow underground, where the pipes would be buried, characterized by a spatial resolution in the order of a few centimeters. This capability is crucial to address in the most proper way maintenance operations, by for

  13. In-line-focus monitoring technique using lens aberration effect

    Science.gov (United States)

    Yamamoto, Tomohiko; Sawano, Toshio; Yao, Teruyoshi; Kobayashi, Katsuyoshi; Asai, Satoru

    2005-05-01

    Process windows have become narrower as nano-processing technology has advanced. The semiconductor industry, faced with this situation, has had to impose extremely severe tool controls. Above all, with the advent of 90-nm device production, demand has arisen for strict levels of control that exceed the machine specifications of ArF exposure systems. Consequently, high-accuracy focus control and focus monitoring techniques for production wafers will be necessary in order for this to be achieved for practical use. Focus monitoring techniques that measure pattern placement errors and resist features using special reticle and mark have recently been proposed. Unfortunately, these techniques have several disadvantages. They are unable to identify the direction of a focus error, and there are limits on the illumination conditions. Furthermore, they require the use of a reticle that is more expensive than normal and they suffer from a low level of measurement accuracy. To solve these problems, the authors examined methods of focus control and focus error measurement for production wafers that utilize the lens aberration of the exposure tool system. The authors call this method FMLA (focus monitoring using lens aberration). In general, astigmatism causes a difference in the optimum focal point between the horizontal and vertical patterns in the same image plane. If a focus error occurs, regardless of the reason, a critical dimension (CD) difference arises between the sparse horizontal and vertical lines. In addition, this CD difference decreases or increases monotonously with the defocus value. That is to say, it is possible to estimate the focus errors to measure the vertical and horizontal line CD formed by exposure tool with astigmatism. In this paper, the authors examined the FMLA technique using astigmatism. First, focus monitoring accuracy was investigated. Using normal scholar type simulation, FMLA was able to detect a 32.3-nm focus error when 10-mλ astigmatism was

  14. Online Sensing Techniques for Detection of Aircraft Electrical System Anomalies Project

    Data.gov (United States)

    National Aeronautics and Space Administration — As 'fly-by-wire' technologies become more prevalent in the aerospace systems, the need to develop innovative monitoring, diagnostic and fault tolerant techniques for...

  15. FDD-1 System On-line Monitoring Fuel Rod Failure of Nuclear Power Plant

    Institute of Scientific and Technical Information of China (English)

    CHENPeng; ZHANGYing-chao; JISong-tao; GAOYong-guang; YINZhen-guo; HANChuan-bin

    2003-01-01

    The FDD-1 system developed by CIAE for on-line monitoring fuel rod failure of nuclear power plant consists of γ-ray detector, γ-ray spectrum analyzer, computer, and an analysis code for evaluating the status of fuel rod failure. It would be determined that the fuel rod failure occurs when a large amount of γ activity increases in the primary system measured by γ-ray detector near the CVCS.

  16. Monitoring of Lactic Fermentation Process by Ultrasonic Technique

    Science.gov (United States)

    Alouache, B.; Touat, A.; Boutkedjirt, T.; Bennamane, A.

    The non-destructive control by using ultrasound techniques has become of great importance in food industry. In this work, Ultrasound has been used for quality control and monitoring the fermentation stages of yogurt, which is a highly consumed product. On the contrary to the physico-chemical methods, where the measurement instruments are directly introduced in the sample, ultrasound techniques have the advantage of being non-destructive and contactless, thus reducing the risk of contamination. Results obtained in this study by using ultrasound seem to be in good agreement with those obtained by physico-chemical methods such as acidity measurement by using a PH-meter instrument. This lets us to conclude that ultrasound method may be an alternative for a healthy control of yoghurt fermentation process.

  17. On-line monitoring and control of furnace wall corrosion in pf-fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, D.M.; Robbins, B.J.; Sikka, P.; Seaman, M. [Rowan Technologies Ltd., Manchester (United Kingdom)

    2004-05-15

    Corrosion, fouling and sometimes failure of heat exchanger tubing that makes up the boiler walls is a major obstacle to minimising boiler downtime. Rowan Technologies Ltd., has been developing corrosion scanners to enable the condition of these heat exchanger tubes to be assessed online. These scanners are able to monitor fireside corrosion over entire boiler walls and whilst the boiler is operational. This paper describes how the scanner systems can be used to monitor this corrosion and how the corrosion can be subsequently controlled. 8 refs., 9 figs.

  18. Online Vce measurement method for wear-out monitoring of high power IGBT modules

    DEFF Research Database (Denmark)

    Beczkowski, Szymon; Ghimire, Pramod; de Vega, Angel Ruiz

    2013-01-01

    A simple Vce online monitoring circuit is presented in this paper. It allows an accurate wear out prediction of IGBT modules, in high-power applications, during normal converter operation. Bipolar measurement allows monitoring of both IGBT and antiparallel diode. The circuit uses two serial...... connected diodes to sense the Vce voltage with millivolt accuracy. One diode acts as a protection to block high DC voltage present on input terminals. When the device is conducting the voltage on the second diode is measured to compensate for the voltage drop on the protection diode thus eliminating voltage...

  19. The Design of Partial Discharge On-Line Monitoring System for XLPE Power Cable

    Directory of Open Access Journals (Sweden)

    Chen Rui-Long

    2013-09-01

    Full Text Available Partial discharge detection is an important means to assess the situation of XLPE power cable’s insulation. This study has developed an on-line monitoring system which applies to the medium voltage XLPE cable on partial discharge, described its working principle, components of hardware, software designing and program implementation in details. Through monitoring the partial discharge signal in grounding lines of the XLPE cable’s shield, the system integrated assess the situation of XLPE cable’s insulation. The results of running show that the system is stable and reliable.

  20. On-line beam monitoring for neutron capture therapy at the MIT Research Reactor

    Science.gov (United States)

    Harling, Otto K.; Moulin, Damien J.; Chabeuf, Jean-Michel; Solares, Guido R.

    1995-08-01

    Neutron capture therapy sets new requirements on the measurement and monitoring of the radiation fields used in this new form of therapy. Beams used for neutron capture therapy are comprised of mixed radiation fields which include slow, epithermal, and fast neutrons, as well as gamma rays. A computer-based beam monitoring system for epithermal or thermal neutron capture therapy is described. This system provides accurate, sensitive, and rapid on-line readout and recording of the various beam components. Readout of fluxes, fluences, and corresponding doses in the target are provided in color coded graphic analog as well as numerical form on the computer monitors. Variations in neutron spectrum or spatial distribution of the beam can be rapidly diagnosed with the aid of the monitor readout. Redundancy of fluence measurement is provided by an independent system using scalers and timers and by utilizing reactor power measuring instruments.

  1. Photovoltaic Array Condition Monitoring Based on Online Regression of Performance Model

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Sera, Dezso; Kerekes, Tamas

    2013-01-01

    automatic supervision and condition monitoring of the PV system components, especially for small PV installations, where no specialized personnel is present at the site. This work proposes a PV array condition monitoring system based on a PV array performance model. The system is parameterized online, using...... regression modeling, from PV array production, plane-of-array irradiance, and module temperature measurements, acquired during an initial learning phase of the system. After the model has been parameterized automatically, the condition monitoring system enters the normal operation phase, where...... the performance model is used to predict the power output of the PV array. Utilizing the predicted and measured PV array output power values, the condition monitoring system is able to detect power losses above 5%, occurring in the PV array....

  2. Integration of Field and Remote Sensing Techniques For Landslides Monitoring

    Science.gov (United States)

    Allievi, J.; Ambrosi, C.; Ceriani, M.; Colesanti, C.; Crosta, G. B.; Ferretti, A.; Fossati, D.; Menegaz, A.

    The definition of the state of activity of slope movements is of major interest both at local and at regional scale. The Geological Survey of the Regione Lombardia has re- cently started a series of projects aimed to the identification of areas subjected to slope instability and to the assessment of their state of activity. Field survey, aerial photo interpretation and advanced remote sensing techniques have been applied. Some ex- amples of large rock slope instabilities have been investigated in the Valtellina area (Lombardia, Northern Italy). In particular, we demonstrate the degree of integration of the adopted techniques for one of the largest rock slope movements actually recog- nised in the area. The remote sensing approach that has been adopted is the Perma- nent Scatterers (PS) Technique. This technique has been recently developed as a new methodology for surface deformation monitoring, using ESA ERS-SAR data. Its ap- plication to large slope movements in alpine and prealpine areas, with a relatively low urban development, has been tried for the first time in order to evaluate its potential in supporting studies for landslide hazard assessment. Previous results show that this ap- proach allows to reach an accuracy very close to the theoretical limit. This study shows the very good agreement reached for displacement velocities between historical trends and recent PS measurements. Scatterers have been identified by field surveying and some of them are located close to historically monitored benchmark for topographic measurements. Furthermore, the integration of these data with field observations al- lowed us to perform a preliminary reconstrucion of the landslide mechanism and to assess the activity of different landslide structures (scarps, etc.).

  3. On-line monitoring of the crystallization process: relationship between crystal size and electrical impedance spectra

    Science.gov (United States)

    Zhao, Yanlin; Yao, Jun; Wang, Mi

    2016-07-01

    On-line monitoring of crystal size in the crystallization process is crucial to many pharmaceutical and fine-chemical industrial applications. In this paper, a novel method is proposed for the on-line monitoring of the cooling crystallization process of L-glutamic acid (LGA) using electrical impedance spectroscopy (EIS). The EIS method can be used to monitor the growth of crystal particles relying on the presence of an electrical double layer on the charged particle surface and the polarization of double layer under the excitation of alternating electrical field. The electrical impedance spectra and crystal size were measured on-line simultaneously by an impedance analyzer and focused beam reflectance measurement (FBRM), respectively. The impedance spectra were analyzed using the equivalent circuit model and the equivalent circuit elements in the model can be obtained by fitting the experimental data. Two equivalent circuit elements, including capacitance (C 2) and resistance (R 2) from the dielectric polarization of the LGA solution and crystal particle/solution interface, are in relation with the crystal size. The mathematical relationship between the crystal size and the equivalent circuit elements can be obtained by a non-linear fitting method. The function can be used to predict the change of crystal size during the crystallization process.

  4. Optofluidic UV-Vis spectrophotometer for online monitoring of photocatalytic reactions

    Science.gov (United States)

    Wang, Ning; Tan, Furui; Zhao, Yu; Tsoi, Chi Chung; Fan, Xudong; Yu, Weixing; Zhang, Xuming

    2016-06-01

    On-chip integration of optical detection units into the microfluidic systems for online monitoring is highly desirable for many applications and is also well in line with the spirit of optofluidics technology–fusion of optics and microfluidics for advanced functionalities. This paper reports the construction of a UV-Vis spectrophotometer on a microreactor, and demonstrates the online monitoring of the photocatalytic degradations of methylene blue and methyl orange under different flow rates and different pH values by detecting the intensity change and/or the peak shift. The integrated device consists of a TiO2-coated glass substrate, a PDMS micro-sized reaction chamber and two flow cells. By comparing with the results of commercial equipment, we have found that the measuring range and the sensitivity are acceptable, especially when the transmittance is in the range of 0.01–0.9. This integrated optofluidic device can significantly cut down the test time and the sample volume, and would provide a versatile platform for real-time characterization of photochemical performance. Moreover, its online monitoring capability may enable to access the usually hidden information in biochemical reactions like intermediate products, time-dependent processes and reaction kinetics.

  5. On-line Monitoring System based on Vibration Signal of High Voltage Circuit Breaker

    Directory of Open Access Journals (Sweden)

    Chao Fu

    2014-04-01

    Full Text Available High voltage circuit breaker is one of the most important switch apparatus in electrical power system. It play a role in the switch control, which can be used to switch the operating mode during normal operation (the equipment run or quit. In order to ensure the normal operation of the grid, it can be removed quickly when a malfunction on the device or circuit. Real-time online monitoring of high voltage circuit breaker can understand the running status, master the operation characteristics and its tend of development. As early as possible find the potential faults then take preventive measures timely, so as to ensure the reliable operation of power system. Online monitoring of high voltage circuit breakers can reduce the premature or unnecessary maintenance and maintenance cost, improve pertinence of the maintenance firstly. Secondly, it can improve the life of the switching device and improve the reliability of electric power system significantly. In this paper, on-line monitoring system based on vibration signal of high voltage circuit breaker is presented

  6. Research of on-line monitoring equipment for power capacitor based on wireless sensor network

    Science.gov (United States)

    Yu, Hao; Qian, Zheng; Yao, Junda; Xia, Jiuyun

    2016-01-01

    As the main electrical component for the reactive power compensation, the power capacitors are widely applied in many fields. And since the insulation condition of power capacitor could be identified accurately by using the on-line monitoring system, it attracts more and more attentions in recent years. In this paper, a novel on-line monitoring equipment for power capacitor based on wireless sensor network is presented. The operation data which includes the current and voltage of every capacitor is collected at first, and then the FFT is utilized to calculate the amplitude and phase of every signal, thus the insulation condition and the fault symptom could all be diagnosed accurately by analyzing the FFT results. In order to realize the effective isolation and the reliable communication between the sensing part and the merging unit, the wireless sensor network is adopted. The high reliability and transmission rate could be realized by using 2.4GHz UHF and 5GHz ISM radio bands. Thus the on-line monitoring system could be manufactured, and the lab test is carried at last. The testing results illustrate that this system could satisfy the requirement of on-site real-time measurement.

  7. Final Technical Report Recovery Act: Online Nonintrusive Condition Monitoring and Fault Detection for Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Wei Qiao

    2012-05-29

    The penetration of wind power has increased greatly over the last decade in the United States and across the world. The U.S. wind power industry installed 1,118 MW of new capacity in the first quarter of 2011 alone and entered the second quarter with another 5,600 MW under construction. By 2030, wind energy is expected to provide 20% of the U.S. electricity needs. As the number of wind turbines continues to grow, the need for effective condition monitoring and fault detection (CMFD) systems becomes increasingly important [3]. Online CMFD is an effective means of not only improving the reliability, capacity factor, and lifetime, but it also reduces the downtime, energy loss, and operation and maintenance (O&M) of wind turbines. The goal of this project is to develop novel online nonintrusive CMFD technologies for wind turbines. The proposed technologies use only the current measurements that have been used by the control and protection system of a wind turbine generator (WTG); no additional sensors or data acquisition devices are needed. Current signals are reliable and easily accessible from the ground without intruding on the wind turbine generators (WTGs) that are situated on high towers and installed in remote areas. Therefore, current-based CMFD techniques have great economic benefits and the potential to be adopted by the wind energy industry. Specifically, the following objectives and results have been achieved in this project: (1) Analyzed the effects of faults in a WTG on the generator currents of the WTG operating at variable rotating speed conditions from the perspective of amplitude and frequency modulations of the current measurements; (2) Developed effective amplitude and frequency demodulation methods for appropriate signal conditioning of the current measurements to improve the accuracy and reliability of wind turbine CMFD; (3) Developed a 1P-invariant power spectrum density (PSD) method for effective signature extraction of wind turbine faults with

  8. First results of the INSIDE in-beam PET scanner for the on-line monitoring of particle therapy treatments

    Science.gov (United States)

    Piliero, M. A.; Belcari, N.; Bisogni, M. G.; Camarlinghi, N.; Cerello, P.; Coli, S.; Del Guerra, A.; Ferrero, V.; Fiorina, E.; Giraudo, G.; Kostara, E.; Morrocchi, M.; Pennazio, F.; Peroni, C.; Pirrone, G.; Rivetti, A.; Rolo, M. D.; Rosso, V.; Sportelli, G.; Wheadon, R.

    2016-12-01

    Quality assessment of particle therapy treatments by means of PET systems has been carried out since late `90 and it is one of the most promising in-vivo non invasive monitoring techniques employed clinically. It can be performed with a diagnostic PET scanners installed outside the treatment room (off-line monitoring) or inside the treatment room (in-room monitoring). However the most efficient way is by integrating a PET scanner with the treatment delivery system (on-line monitoring) so that the biological wash out and the patient repositioning errors are minimized. In this work we present the performance of the in-beam PET scanner developed within the INSIDE project. The INSIDE PET scanner is made of two planar heads, 10 cm wide (transaxially) and 25 cm long (axially), composed of pixellated LFS crystals coupled to Hamamatsu MPPCs. Custom designed Front-End Electronics (FE) and Data AcQuisition (DAQ) systems allow an on-line reconstruction of PET images from separated in-spill and inter-spill data sets. The INSIDE PET scanner has been recently delivered at the CNAO (Pavia, Italy) hadrontherapy facility and the first experimental measurements have been carried out. Homogeneous PMMA phantoms and PMMA phantoms with small air and bone inserts were irradiated with monoenergetic clinical proton beams. The activity range was evaluated at various benchmark positions within the field of view to assess the homogeneity of response of the PET system. Repeated irradiations of PMMA phantoms with clinical spread out Bragg peak proton beams were performed to evaluate the reproducibility of the PET signal. The results found in this work show that the response of the INSIDE PET scanner is independent of the position within the radiation field. Results also show the capability of the INSIDE PET scanner to distinguish variations of the activity range due to small tissue inhomogeneities. Finally, the reproducibility of the activity range measurement was within 1 mm.

  9. Development of structural health monitoring techniques using dynamics testing

    Energy Technology Data Exchange (ETDEWEB)

    James, G.H. III [Sandia National Labs., Albuquerque, NM (United States). Experimental Structural Dynamics Dept.

    1996-03-01

    Today`s society depends upon many structures (such as aircraft, bridges, wind turbines, offshore platforms, buildings, and nuclear weapons) which are nearing the end of their design lifetime. Since these structures cannot be economically replaced, techniques for structural health monitoring must be developed and implemented. Modal and structural dynamics measurements hold promise for the global non-destructive inspection of a variety of structures since surface measurements of a vibrating structure can provide information about the health of the internal members without costly (or impossible) dismantling of the structure. In order to develop structural health monitoring for application to operational structures, developments in four areas have been undertaken within this project: operational evaluation, diagnostic measurements, information condensation, and damage identification. The developments in each of these four aspects of structural health monitoring have been exercised on a broad range of experimental data. This experimental data has been extracted from structures from several application areas which include aging aircraft, wind energy, aging bridges, offshore structures, structural supports, and mechanical parts. As a result of these advances, Sandia National Laboratories is in a position to perform further advanced development, operational implementation, and technical consulting for a broad class of the nation`s aging infrastructure problems.

  10. Wetland assessment, monitoring and management in India using geospatial techniques.

    Science.gov (United States)

    Garg, J K

    2015-01-15

    Satellite remote sensing and GIS have emerged as the most powerful tools for inventorying, monitoring and management of natural resources and environment. In the special context of wetland ecosystems, remotely sensed data from orbital platforms have been extensively used in India for the inventory, monitoring and preparation of action plans for conservation and management. First scientific inventory of wetlands in India was carried out in 1998 by Space Applications Centre (ISRO), Ahmedabad using indigenous IRS (Indian Remote Sensing Satellite) data of 1992-93 timeframe, which stimulated extensive use of geospatial techniques for wetland conservation and management. Subsequently, with advances in GIS, studies were carried out for development of Wetland Information System for a state (West Bengal) and for Loktak lake wetland (a Ramsar site) as a prelude to National Wetland Information System. Research has also been carried out for preparation of action plans especially for Ramsar sites in the country. In a novel research, use of the geospatial technology has also been demonstrated for biodiversity conservation using landscape ecological metrics. A country-wide estimate of emission of methane, a Green House Gas, from wetlands has also been made using MODIS data. Present article critically reviews the work carried out in India for wetland conservation and management using geospatial techniques.

  11. Land subsidence monitoring by D-InSAR technique

    Institute of Scientific and Technical Information of China (English)

    Fan Hongdong; Deng Kazhong; Ju Chengyu; Zhu Chuanguang; Xue Jiqun

    2011-01-01

    Nowadays,the researches of using Differential Interferometric Synthetic Aperture Radar (D-InSAR) technique to monitor the land subsidence are mainly on how to qualitatively analyze the subsidence areas and values,but the analysis of subsidence process and mechanism are insufficient.In order to resolve these problems,6 scenes of ERS1/2 images captured during 1995 and 2000 in a certain place of Jiangsu province were selected to obtain the subsidence and velocities in three time segments by “two-pass” DInSAR method.Then the relationships among distributions of pumping wells,exploitation quantity of groundwater,and confined water levels were studied and the subsidence mechanism was systematically analyzed.The results show that using D-InSAR technique to monitor the deformation of large area can obtain high accuracies,the disadvantages of classical observation methods can be remedied and there is a linear relationship among the velocities of land subsidence,the water level and the exploitation quantity.

  12. Structural health condition monitoring of rails using acoustic emission techniques

    Science.gov (United States)

    Yilmazer, Pinar

    In-service rails can develop several types of structural defects due to fatigue and wear caused by rolling stock passing over them. Most rail defects will develop gradually over time thus permitting inspection engineers to detect them in time before final failure occurs. In the UK, certain types of severe rail defects such as tache ovales, require the fitting of emergency clamps and the imposing of an Emergency Speed Restriction (ESR) until the defects are removed. Acoustic emission (AE) techniques can be applied for the detection and continuous monitoring of defect growth therefore removing the need of imposing strict ESRs. The work reported herewith aims to develop a sound methodology for the application of AE in order to detect and subsequently monitor damage evolution in rails. To validate the potential of the AE technique, tests have been carried out under laboratory conditions on three and four-point bending samples manufactured from 260 grade rail steel. Further tests, simulating the background noise conditions caused by passing rolling stock have been carried out using special experimental setups. The crack growth events have been simulated using a pencil tip break..

  13. An intelligent condition monitoring system for on-line classification of machine tool wear

    Energy Technology Data Exchange (ETDEWEB)

    Fu Pan; Hope, A.D.; Javed, M. [Systems Engineering Faculty, Southampton Institute (United Kingdom)

    1997-12-31

    The development of intelligent tool condition monitoring systems is a necessary requirement for successful automation of manufacturing processes. This presentation introduces a tool wear monitoring system for milling operations. The system utilizes power, force, acoustic emission and vibration sensors to monitor tool condition comprehensively. Features relevant to tool wear are drawn from time and frequency domain signals and a fuzzy pattern recognition technique is applied to combine the multisensor information and provide reliable classification results of tool wear states. (orig.) 10 refs.

  14. Comparative evaluation of online oil and gas monitor; Avaliacao de monitores de teor de oleo e graxa em linha

    Energy Technology Data Exchange (ETDEWEB)

    Louvisse, Ana Maria Travalloni; Pereira Junior, Oswaldo de Aquino; Jesus, Rafael Ferreira de; Santos, Lino Antonio Duarte dos; Lopes, Humberto Eustaquio [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    Petroleum is predominantly recovered in form of water in oil emulsions, which are stabilised by petroleum resins and asphaltenes, the colloidal disperse components of crude oil. The water phase, separated during the production process, consists of a dilute oil in water emulsion, commonly called produced water.There are a wide variety of methods for determination of oil in produced water that are commercially based on a number of technique. On line continuously monitoring shall be particularly useful in providing information to assist in optimising the separation process and also to attend the environmental legislation for discharge the produced water. There are a wide variety of on line oil in water monitors that are commercially available based on a number of technique. In this paper, a comparative evaluation was made between some methods of on line oil in water detecting. These are light scattering and ultraviolet fluorescence technique. A brief description of the optical methods will be discussed and some of associated problems and limitation are pointed. The work was done in a specific experimental set up that allows the simultaneous pumping of crude oil and water through a calibrated restriction in a pipe has been used. A permanent pressure drop induced by the restriction leads to the dispersion of the oil droplets in the water phase. The monitors based on light scattering technique tested show good agreement between monitor reading and the oil dispersion used. Otherwise for ultraviolet fluorescence based monitors show a significant effect of the variation of oil type. (author)

  15. Real-Time Monitoring System and Advanced Characterization Technique for Civil Infrastructure Health Monitoring

    Directory of Open Access Journals (Sweden)

    V. Bennett

    2011-01-01

    Full Text Available Real-time monitoring of civil infrastructure provides valuable information to assess the health and condition of the associated systems. This paper presents the recently developed shape acceleration array (SAA and local system identification (SI technique, which constitute a major step toward long-term effective health monitoring and analysis of soil and soil-structure systems. The SAA is based on triaxial micro-electro-mechanical system (MEMS sensors to measure in situ deformation (angles relative to gravity and dynamic accelerations up to a depth of one hundred meters. This paper provides an assessment of this array's performance for geotechnical instrumentation applications by reviewing the recorded field data from a bridge replacement site and a full-scale levee test facility. The SI technique capitalizes on the abundance of static and dynamic measurements from the SAA. The geotechnical properties and constitutive response of soil contained within a locally instrumented zone are analyzed and identified independently of adjacent soil strata.

  16. On-line coupling of supercritical fluid extraction and chromatographic techniques.

    Science.gov (United States)

    Sánchez-Camargo, Andrea Del Pilar; Parada-Alfonso, Fabián; Ibáñez, Elena; Cifuentes, Alejandro

    2017-01-01

    This review summarizes and discusses recent advances and applications of on-line supercritical fluid extraction coupled to liquid chromatography, gas chromatography, and supercritical fluid chromatographic techniques. Supercritical fluids, due to their exceptional physical properties, provide unique opportunities not only during the extraction step but also in the separation process. Although supercritical fluid extraction is especially suitable for recovery of non-polar organic compounds, this technique can also be successfully applied to the extraction of polar analytes by the aid of modifiers. Supercritical fluid extraction process can be performed following "off-line" or "on-line" approaches and their main features are contrasted herein. Besides, the parameters affecting the supercritical fluid extraction process are explained and a "decision tree" is for the first time presented in this review work as a guide tool for method development. The general principles (instrumental and methodological) of the different on-line couplings of supercritical fluid extraction with chromatographic techniques are described. Advantages and shortcomings of supercritical fluid extraction as hyphenated technique are discussed. Besides, an update of the most recent applications (from 2005 up to now) of the mentioned couplings is also presented in this review.

  17. Persistent Scatterer Interferometry (PSI Technique for Landslide Characterization and Monitoring

    Directory of Open Access Journals (Sweden)

    Nicola Casagli

    2013-03-01

    Full Text Available : The measurement of landslide superficial displacement often represents the most effective method for defining its behavior, allowing one to observe the relationship with triggering factors and to assess the effectiveness of the mitigation measures. Persistent Scatterer Interferometry (PSI represents a powerful tool to measure landslide displacement, as it offers a synoptic view that can be repeated at different time intervals and at various scales. In many cases, PSI data are integrated with in situ monitoring instrumentation, since the joint use of satellite and ground-based data facilitates the geological interpretation of a landslide and allows a better understanding of landslide geometry and kinematics. In this work, PSI interferometry and conventional ground-based monitoring techniques have been used to characterize and to monitor the Santo Stefano d’Aveto landslide located in the Northern Apennines, Italy. This landslide can be defined as an earth rotational slide. PSI analysis has contributed to a more in-depth investigation of the phenomenon. In particular, PSI measurements have allowed better redefining of the boundaries of the landslide and the state of activity, while the time series analysis has permitted better understanding of the deformation pattern and its relation with the causes of the landslide itself. The integration of ground-based monitoring data and PSI data have provided sound results for landslide characterization. The punctual information deriving from inclinometers can help in defining the actual location of the sliding surface and the involved volumes, while the measuring of pore water pressure conditions or water table level can suggest a correlation between the deformation patterns and the triggering factors.

  18. Feature extraction and analysis of online reviews for the recommendation of books using opinion mining technique

    Directory of Open Access Journals (Sweden)

    Shahab Saquib Sohail

    2016-09-01

    Full Text Available The customer's review plays an important role in deciding the purchasing behaviour for online shopping as a customer prefers to get the opinion of other customers by observing their opinion through online products’ reviews, blogs and social networking sites, etc. The customer's reviews reflect the customer's sentiments and have a substantial significance for the products being sold online including electronic gadgets, movies, house hold appliances and books. Hence, extracting the exact features of the products by analyzing the text of reviews requires a lot of efforts and human intelligence. In this paper we intend to analyze the online reviews available for books and extract book-features from the reviews using human intelligence. We have proposed a technique to categorize the features of books from the reviews of the customers. The extracted features may help in deciding the books to be recommended for readers. The ultimate goal of the work is to fulfil the requirement of the user and provide them their desired books. Thus, we have evaluated our categorization method by users themselves, and surveyed qualified persons for the concerned books. The survey results show high precision of the features categorized which clearly indicates that proposed method is very useful and appealing. The proposed technique may help in recommending the best books for concerned people and may also be generalized to recommend any product to the users.

  19. Integrated Health Monitoring and Fast on-Line Actuator Reconfiguration Enhancement (IHM-FLARE) System for Air Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SSCI proposes to develop innovative algorithms for the integration of Health Monitoring (HM) subsystem with the existing FLARE (Fast on-Line Actuator Reconfiguration...

  20. Effect of monitoring technique on quality of conservation science.

    Science.gov (United States)

    Jewell, Zoe

    2013-06-01

    Monitoring free-ranging animals in their natural habitat is a keystone of ecosystem conservation and increasingly important in the context of current rates of loss of biological diversity. Data collected from individuals of endangered species inform conservation policies. Conservation professionals assume that these data are reliable-that the animals from whom data are collected are representative of the species in their physiology, ecology, and behavior and of the populations from which they are drawn. In the last few decades, there has been an enthusiastic adoption of invasive techniques for gathering ecological and conservation data. Although these can provide impressive quantities of data, and apparent insights into animal ranges and distributions, there is increasing evidence that these techniques can result in animal welfare problems, through the wide-ranging physiological effects of acute and chronic stress and through direct or indirect injuries or compromised movement. Much less commonly, however, do conservation scientists consider the issue of how these effects may alter the behavior of individuals to the extent that the data they collect could be unreliable. The emerging literature on the immediate and longer-term effects of capture and handling indicate it can no longer be assumed that a wild animal's survival of the process implies the safety of the procedure, that the procedure is ethical, or the scientific validity of the resulting data. I argue that conservation professionals should routinely assess study populations for negative effects of their monitoring techniques and adopt noninvasive approaches for best outcomes not only for the animals, but also for conservation science.

  1. Online Monitoring of Concrete Structures in Nuclear Power Plants: Interim Report

    Energy Technology Data Exchange (ETDEWEB)

    Mahadevan, Sankaran [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cai, Guowei [Idaho National Lab. (INL), Idaho Falls, ID (United States); Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    The existing fleet of nuclear power plants in the United States have initial operating licenses of 40 years, and many of these plants have applied for and received license extensions. As plant structures, systems, and components age, their useful life—considering both structural integrity and performance—is reduced as a result of deterioration of the materials. Assessment and management of aging concrete structures in nuclear plants require a more systematic approach than simple reliance on existing code-based design margins of safety. Structural health monitoring is required to produce actionable information regarding structural integrity that supports operational and maintenance decisions. The online monitoring of concrete structures project conducted under the Advanced Instrumentation, Information, and Control Technologies Pathway of the Light Water Reactor Sustainability program at Idaho National Laboratory is seeking to develop and demonstrate capabilities for concrete structures health monitoring. Through this research project, several national laboratories and Vanderbilt University propose to develop a framework of research activities for the health monitoring of nuclear power plant concrete structures that includes the integration of four elements—damage modeling, monitoring, data analytics, and uncertainty quantification. This report briefly discusses activities in this project during October-December, 2014. The most significant activity during this period was the organizing of a two-day workshop on research needs in online monitoring of concrete structures, hosted by Vanderbilt University in November 2014. Thirty invitees from academia, industry and government participated in the workshop. The presentations and discussions at the workshop surveyed current activities related to concrete structures deterioration modeling and monitoring, and identified the challenges, knowledge gaps, and opportunities for advancing the state of the art; these

  2. Robust satellite techniques for oil spill detection and monitoring

    Science.gov (United States)

    Casciello, D.; Pergola, N.; Tramutoli, V.

    Discharge of oil into the sea is one of the most dangerous, among technological hazards, for the maritime environment. In the last years maritime transport and exploitation of marine resources continued to increase; as a result, tanker accidents are nowadays increasingly frequent, continuously menacing the maritime security and safety. Satellite remote sensing could contribute in multiple ways, in particular for what concerns early warning and real-time (or near real-time) monitoring. Several satellite techniques exist, mainly based on the use of SAR (Synthetic Aperture Radar) technology, which are able to recognise, with sufficient accuracy, oil spills discharged into the sea. Unfortunately, such methods cannot be profitably used for real-time detection, because of the low observational frequency assured by present satellite platforms carrying SAR sensors (the mean repetition rate is something like 30 days). On the other hand, potential of optical sensors aboard meteorological satellites, was not yet fully exploited and no reliable techniques have been developed until now for this purpose. Main limit of proposed techniques can be found in the ``fixed threshold'' approach which makes such techniques difficult to implement without operator supervision and, generally, without an independent information on the oil spill presence that could drive the choice of the best threshold. A different methodological approach (RAT, Robust AVHRR Techniques) proposed by Tramutoli (1998) and already successfully applied to several natural and environmental emergencies related to volcanic eruptions, forest fires and seismic activity. In this paper its extension to near real-time detection and monitoring of oil spills by means of NOAA-AVHRR (Advanced Very High Resolution Radiometer) records will be described. Briefly, RAT approach is an automatic change-detection scheme that considers a satellite image as a space-time process, described at each place (x,y) and time t, by the value of

  3. On-line reaction monitoring of lithiation of halogen substituted acetanilides via in situ calorimetry, ATR spectroscopy, and endoscopy.

    Science.gov (United States)

    Godany, Tamas A; Neuhold, Yorck-Michael; Hungerbühler, Konrad

    2011-01-01

    Lithiation of N-(4-chlorophenyl)-pivalamide (NCP) and two additional substituted acetanilides: 4-fluoroacetanilide (4-F) and 4-chloroacetanilide (4-Cl) has been monitored by means of calorimetry, on-line ATR-IR and UV/vis spectroscopy and endoscopy. The combined on-line monitoring revealed the differences between the reaction paths of the chosen substrates. Thus the product structure and the reaction times for the individual reaction steps can be determined in situ.

  4. On-line tool breakage monitoring of vibration tapping using spindle motor current

    Science.gov (United States)

    Li, Guangjun; Lu, Huimin; Liu, Gang

    2008-10-01

    Input current of driving motor has been employed successfully as monitoring the cutting state in manufacturing processes for more than a decade. In vibration tapping, however, the method of on-line monitoring motor electric current has not been reported. In this paper, a tap failure prediction method is proposed to monitor the vibration tapping process using the electrical current signal of the spindle motor. The process of vibration tapping is firstly described. Then the relationship between the torque of vibration tapping and the electric current of motor is investigated by theoretic deducing and experimental measurement. According to those results, a monitoring method of tool's breakage is proposed through monitoring the ratio of the current amplitudes during adjacent vibration tapping periods. Finally, a low frequency vibration tapping system with motor current monitoring is built up using a servo motor B-106B and its driver CR06. The proposed method has been demonstrated with experiment data of vibration tapping in titanic alloys. The result of experiments shows that the method, which can avoid the tool breakage and giving a few error alarms when the threshold of amplitude ratio is 1.2 and there is at least 2 times overrun among 50 adjacent periods, is feasible for tool breakage monitoring in the process of vibration tapping small thread holes.

  5. Geophysical Techniques for Monitoring CO2 Movement During Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Erika Gasperikova; G. Michael Hoversten

    2005-11-15

    The relative merits of the seismic, gravity, and electromagnetic (EM) geophysical techniques are examined as monitoring tools for geologic sequestration of carbon dioxide (CO{sub 2}). This work does not represent an exhaustive study, but rather demonstrates the capabilities of a number of geophysical techniques for two synthetic modeling scenarios. The first scenario represents combined CO{sub 2} enhanced oil recovery (EOR) and sequestration in a producing oil field, the Schrader Bluff field on the north slope of Alaska, USA. EOR/sequestration projects in general and Schrader Bluff in particular represent relatively thin injection intervals with multiple fluid components (oil, hydrocarbon gas, brine, and CO{sub 2}). This model represents the most difficult end member of a complex spectrum of possible sequestration scenarios. The time-lapse performance of seismic, gravity, and EM techniques are considered for the Schrader Bluff model. The second scenario is a gas field that in general resembles conditions of Rio Vista reservoir in the Sacramento Basin of California. Surface gravity, and seismic measurements are considered for this model.

  6. Noble Gas Measurement and Analysis Technique for Monitoring Reprocessing Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Charlton, William S [Univ. of California, Berkeley, CA (United States)

    1999-09-01

    An environmental monitoring technique using analysis of stable noble gas isotopic ratios on-stack at a reprocessing facility was developed. This technique integrates existing technologies to strengthen safeguards at reprocessing facilities. The isotopic ratios are measured using a mass spectrometry system and are compared to a database of calculated isotopic ratios using a Bayesian data analysis method to determine specific fuel parameters (e.g., burnup, fuel type, fuel age, etc.). These inferred parameters can be used by investigators to verify operator declarations. A user-friendly software application (named NOVA) was developed for the application of this technique. NOVA included a Visual Basic user interface coupling a Bayesian data analysis procedure to a reactor physics database (calculated using the Monteburns 3.01 code system). The integrated system (mass spectrometry, reactor modeling, and data analysis) was validated using on-stack measurements during the reprocessing of target fuel from a U.S. production reactor and gas samples from the processing of EBR-II fast breeder reactor driver fuel. These measurements led to an inferred burnup that matched the declared burnup with sufficient accuracy and consistency for most safeguards applications. The NOVA code was also tested using numerous light water reactor measurements from the literature. NOVA was capable of accurately determining spent fuel type, burnup, and fuel age for these experimental results. Work should continue to demonstrate the robustness of this system for production, power, and research reactor fuels.

  7. Suitability of online 3D visualization technique in oil palm plantation management

    Science.gov (United States)

    Mat, Ruzinoor Che; Nordin, Norani; Zulkifli, Abdul Nasir; Yusof, Shahrul Azmi Mohd

    2016-08-01

    Oil palm industry has been the backbone for the growth of Malaysia economy. The exports of this commodity increasing almost every year. Therefore, there are many studies focusing on how to help this industry increased its productivity. In order to increase the productivity, the management of oil palm plantation need to be improved and strengthen. One of the solution in helping the oil palm manager is by implementing online 3D visualization technique for oil palm plantation using game engine technology. The potential of this application is that it can helps in fertilizer and irrigation management. For this reason, the aim of this paper is to investigate the issues in managing oil palm plantation from the view of oil palm manager by interview. The results from this interview will helps in identifying the suitable issues could be highlight in implementing online 3D visualization technique for oil palm plantation management.

  8. Preliminary studies for monitoring erosion in pipelines by the acoustic emission technique

    Energy Technology Data Exchange (ETDEWEB)

    Tiboni, G.B. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil). Programa de Pos-graduacao em Engenharia Mecanica e de Materiais; Marquardt, T.A.S; SantaMaria, V.A.R.; Silva, C.H. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil)

    2009-07-01

    The aim of this work is to present some applications of Acoustic Emission (AE), which is a powerful technique for nondestructive testing in Tribology, treated here as tests of friction, wear by contact fatigue, wear by slip and wear by erosion. In this work a special attention is given to solid particle erosion and hydro-abrasive erosion, problems found in almost every pipeline that lead to local loss of material and eventually rupture of the line. The technique of AE can be used as an efficient online tool when, primarily, to monitor tribological aspects such as the rate of wear of materials, as well as detect the spread of flaws in them. In wear by erosion, specifically, the parameters of RMS and acoustic energy are capable of correlation with the type of mechanism for removal of material. As a preliminary goal, erosive tests were performed with gas (air) without erosive particles, monitored by AE, varying the surface of the samples and the internal diameter the nozzle, taking the differences in signs of AE. Correlation between parameters of RMS and amplitude were noticed with the variables of the tests, such as roughness and fluid velocity. The RMS parameter showed a exponential correction with the fluid velocity, however the amplitude signals had a linear behavior. The knowledge of these parameters is essential for the development of a system that is able to quantify the wear rate of a pipeline without taking it out of operation. (author)

  9. On-line multisensor monitoring of yogurt and filmjölk fermentations on production scale.

    Science.gov (United States)

    Navrátil, Marián; Cimander, Christian; Mandenius, Carl-Fredrik

    2004-02-11

    Near-infrared (NIR) spectrometry and electronic nose (EN) data were used for on-line monitoring of yogurt and filmjölk (a Swedish yogurt-like sour milk) fermentations under industrial conditions. The NIR and EN signals were selected by evaluation of principal component analysis loading vectors and further analyzed by studying the variability of the selected principal components. First principal components for the NIR and the EN signals were used for on-line generation of a process trajectory plot visualizing the actual state of fermentation. The NIR signals were also used to set up empirical partial least-squares (PLS) models for prediction of the cultures' pH and titratable acidity (expressed as Thorner degrees, degrees T). By using five or six PLS factors the models yielded acceptable predictions that could be further improved by increasing the number of reliable and precise calibration data. The presented results demonstrate that the fusion of the NIR and EN signals has a potential for rapid on-line monitoring and assessment of process quality of yogurt fermentation.

  10. Publicly Available Online Tool Facilitates Real-Time Monitoring Of Vaccine Conversations And Sentiments.

    Science.gov (United States)

    Bahk, Chi Y; Cumming, Melissa; Paushter, Louisa; Madoff, Lawrence C; Thomson, Angus; Brownstein, John S

    2016-02-01

    Real-time monitoring of mainstream and social media can inform public health practitioners and policy makers about vaccine sentiment and hesitancy. We describe a publicly available platform for monitoring vaccination-related content, called the Vaccine Sentimeter. With automated data collection from 100,000 mainstream media sources and Twitter, natural-language processing for automated filtering, and manual curation to ensure accuracy, the Vaccine Sentimeter offers a global real-time view of vaccination conversations online. To assess the system's utility, we followed two events: polio vaccination in Pakistan after a news story about a Central Intelligence Agency vaccination ruse and subsequent attacks on health care workers, and a controversial episode in a television program about adverse events following human papillomavirus vaccination. For both events, increased online activity was detected and characterized. For the first event, Twitter response to the attacks on health care workers decreased drastically after the first attack, in contrast to mainstream media coverage. For the second event, the mainstream and social media response was largely positive about the HPV vaccine, but antivaccine conversations persisted longer than the provaccine reaction. Using the Vaccine Sentimeter could enable public health professionals to detect increased online activity or sudden shifts in sentiment that could affect vaccination uptake. Project HOPE—The People-to-People Health Foundation, Inc.

  11. On-line monitoring of aerobic bioremediation with bioluminescent reporter microbes. Final report, July 1991--December 1994

    Energy Technology Data Exchange (ETDEWEB)

    Sayler, G.S.

    1995-03-01

    A critical issue in the biological characterization of contaminated sites and in the evaluation of relative bioremediation treatment efficiencies is the development of appropriate monitoring methods for the assessment of pollutant bioavailability and microbial in situ activity potential. In nature, pollutants are found dispersed among the solid, liquid and gaseous phases of the complex environments rendering the analytical estimation of their bioavailability and degradation more difficult and irrelevant. Ex situ and extractive analytical techniques have only been misrepresentative of the natural conditions and often resulted in inaccurate estimates of pollutants mass transfer. In this project, the bioluminescent bioreporter bacterium P. Fluorescens HK44 was integrated to an optical device, capable of conducting emitted light, and used as an online biosensor of naphthalene and salicylate. The physiological requirements of the bacteria and the physical limitations of the biosensor were also determined.

  12. Volcanic Monitoring Techniques Applied to Controlled Fragmentation Experiments

    Science.gov (United States)

    Kueppers, U.; Alatorre-Ibarguengoitia, M. A.; Hort, M. K.; Kremers, S.; Meier, K.; Scharff, L.; Scheu, B.; Taddeucci, J.; Dingwell, D. B.

    2010-12-01

    ejection and that the evaluated results were mostly in good agreement. We will discuss the technical difficulties encountered, e.g. the temporal synchronisation of the different techniques. Furthermore, the internal data management of the DR prevents at present a continuous recording and only a limited number of snapshots is stored. Nonetheless, in at least three experiments the onset of particle ejection was measured by all different techniques and gave coherent results of up to 100 m/s. This is a very encouraging result and of paramount importance as it proofs the applicability of these independent methods to volcano monitoring. Each method by itself may enhance our understanding of the pressurisation state of a volcano, an essential factor in ballistic hazard evaluation and eruption energy estimation. Technical adaptations of the DR will overcome the encountered problems and allow a more refined data analysis during the next campaign.

  13. Monitoring Therapeutic Treatments against Burkholderia Infections Using Imaging Techniques

    Directory of Open Access Journals (Sweden)

    Tiffany M. Mott

    2013-05-01

    Full Text Available Burkholderia mallei, the etiologic agent of glanders, are Category B select agents with biothreat potential, and yet effective therapeutic treatments are lacking. In this study, we showed that CpG administration increased survival, demonstrating protection in the murine glanders model. Bacterial recovery from infected lungs, liver and spleen was significantly reduced in CpG-treated animals as compared with non-treated mice. Reciprocally, lungs of CpG-treated infected animals were infiltrated with higher levels of neutrophils and inflammatory monocytes, as compared to control animals. Employing the B. mallei bioluminescent strain CSM001 and the Neutrophil-Specific Fluorescent Imaging Agent, bacterial dissemination and neutrophil trafficking were monitored in real-time using multimodal in vivo whole body imaging techniques. CpG-treatment increased recruitment of neutrophils to the lungs and reduced bioluminescent bacteria, correlating with decreased bacterial burden and increased protection against acute murine glanders. Our results indicate that protection of CpG-treated animals was associated with recruitment of neutrophils prior to infection and demonstrated, for the first time, simultaneous real time in vivo imaging of neutrophils and bacteria. This study provides experimental evidence supporting the importance of incorporating optimized in vivo imaging methods to monitor disease progression and to evaluate the efficacy of therapeutic treatment during bacterial infections.

  14. Online monitoring of thermo-cycles and its correlation with microstructure in laser cladding of nickel based super alloy

    Science.gov (United States)

    Muvvala, Gopinath; Patra Karmakar, Debapriya; Nath, Ashish Kumar

    2017-01-01

    Laser cladding, basically a weld deposition technique, is finding applications in many areas including surface coatings, refurbishment of worn out components and generation of functionally graded components owing to its various advantages over conventional methods like TIG, PTA etc. One of the essential requirements to adopt this technique in industrial manufacturing is to fulfil the increasing demand on product quality which could be controlled through online process monitoring and correlating the signals with the mechanical and metallurgical properties. Rapid thermo-cycle i.e. the fast heating and cooling rates involved in this process affect above properties of the deposited layer to a great extent. Therefore, the current study aims to monitor the thermo-cycles online, understand its variation with process parameters and its effect on different quality aspects of the clad layer, like microstructure, elemental segregations and mechanical properties. The effect of process parameters on clad track geometry is also studied which helps in their judicious selection to deposit a predefined thickness of coating. In this study Inconel 718, a nickel based super alloy is used as a clad material and AISI 304 austenitic steel as a substrate material. The thermo-cycles during the cladding process were recorded using a single spot monochromatic pyrometer. The heating and cooling rates were estimated from the recorded thermo-cycles and its effects on microstructures were characterised using SEM and XRD analyses. Slow thermo-cycles resulted in severe elemental segregations favouring Laves phase formation and increased γ matrix size which is found to be detrimental to the mechanical properties. Slow cooling also resulted in termination of epitaxial growth, forming equiaxed grains near the surface, which is not preferred for single crystal growth. Heat treatment is carried out and the effect of slow cooling and the increased γ matrix size on dissolution of segregated elements in

  15. Monitoring protocol for field testing. Monitoring of heating techniques under practical conditions; Monitoringsprotocol voor veldtesten. Monitoring van warmtetechnieken onder praktijkomstandigheden

    Energy Technology Data Exchange (ETDEWEB)

    Fennema, E.; Jansen, C.

    2009-12-15

    Incentivisation of renewable energy requires large-scale implementation of technologies such as heat-cold storage, heat pumps, cogeneration, solar boilers and waste heat utilization. In practice, the performances of such systems often turn out to deviate from the manufacturer's specifications. Therefore it is important to obtain objective data from practice to gain insight in the differences between theoretical and practical performances and items for improvement of various technologies. The aim of monitoring practice is formulated as: 'gaining insight in the energetic performances of heating techniques under practical circumstances by means of monitoring'. Large-scale measuring in a uniform manner requires a monitoring protocol. Such a protocol safeguards the quality, objectivity, uniformity and hence the reliability of the measuring data. [Dutch] Stimulering van duurzame energie vraagt om grootschalige toepassingen van technologieen zoals warmte-koude opslag, warmtepompen, warmtekracht, zonneboilers en restwarmtebenutting. Het blijkt dat de prestaties van dergelijke systemen in de praktijk vaak afwijken van de fabrikantspecificaties. Daarom is het van belang om objectieve praktijkgegevens te verkrijgen waarmee inzicht wordt verkregen in het verschil tussen theoretische en praktische prestaties, en de verbeterpunten van verschillende technologieen. Het doel van praktijkmonitoring is als volgt geformuleerd: via monitoring het inzicht te verkrijgen in de energetische prestaties van warmtetechnieken onder praktijkomstandigheden. Het uitvoeren van grootschalige metingen op een uniforme wijze vereist een monitoring protocol. Zo'n protocol waarborgt de kwaliteit, objectiviteit, uniformiteit en daarmee de betrouwbaarheid van de meetdata.

  16. Uncertainty Quantification Techniques for Sensor Calibration Monitoring in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Ramuhalli, Pradeep; Lin, Guang; Crawford, Susan L.; Konomi, Bledar A.; Braatz, Brett G.; Coble, Jamie B.; Shumaker, Brent; Hashemian, Hash

    2013-09-01

    This report describes the status of ongoing research towards the development of advanced algorithms for online calibration monitoring. The objective of this research is to develop the next generation of online monitoring technologies for sensor calibration interval extension and signal validation in operating and new reactors. These advances are expected to improve the safety and reliability of current and planned nuclear power systems as a result of higher accuracies and increased reliability of sensors used to monitor key parameters. The focus of this report is on documenting the outcomes of the first phase of R&D under this project, which addressed approaches to uncertainty quantification (UQ) in online monitoring that are data-driven, and can therefore adjust estimates of uncertainty as measurement conditions change. Such data-driven approaches to UQ are necessary to address changing plant conditions, for example, as nuclear power plants experience transients, or as next-generation small modular reactors (SMR) operate in load-following conditions.

  17. Uncertainty Quantification Techniques for Sensor Calibration Monitoring in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Ramuhalli, Pradeep; Lin, Guang; Crawford, Susan L.; Konomi, Bledar A.; Coble, Jamie B.; Shumaker, Brent; Hashemian, Hash

    2014-04-30

    This report describes research towards the development of advanced algorithms for online calibration monitoring. The objective of this research is to develop the next generation of online monitoring technologies for sensor calibration interval extension and signal validation in operating and new reactors. These advances are expected to improve the safety and reliability of current and planned nuclear power systems as a result of higher accuracies and increased reliability of sensors used to monitor key parameters. The focus of this report is on documenting the outcomes of the first phase of R&D under this project, which addressed approaches to uncertainty quantification (UQ) in online monitoring that are data-driven, and can therefore adjust estimates of uncertainty as measurement conditions change. Such data-driven approaches to UQ are necessary to address changing plant conditions, for example, as nuclear power plants experience transients, or as next-generation small modular reactors (SMR) operate in load-following conditions.

  18. Ultrasonic technique for monitoring of liquid density variations.

    Science.gov (United States)

    Kazys, R; Rekuviene, R; Sliteris, R; Mazeika, L; Zukauskas, E

    2015-01-01

    A novel ultrasonic measurement technique for density measurements of different liquids in extreme conditions has been developed. The proposed density measurement method is based on transformation of the acoustic impedance of the measured liquid. The higher accuracy of measurements is achieved by means of the λ/4 acoustic matching layer between the load and the ultrasonic waveguide transducer. Introduction of the matching layer enhances sensitivity of the measurement system. Sometimes, the density measurements must be performed in very complex conditions: high temperature (up to 200 °C), pressure (up to 10 MPa), and high chemical activity of the medium under measurement. In this case, the special geometry metal waveguides are proposed to use in order to protect the piezoelectric transducer surface from influence of a high temperature. The experimental set-up of technique was calibrated using the reference liquids with different densities: ethyl ether, ethyl alcohol, distilled water, and different concentration (20%, 40%, and 60%) sugar-water solutions. The uncertainty of measurements is less than 1%. The proposed measurement method was verified in real conditions by monitoring the density of a melted polypropylene during manufacturing process.

  19. MONITORING THE DYNAMIC CHARACTERISTICS OF TALL BUILDINGS BY GPS TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Dynamic characteristics of large structures,such as tall buildings,long-span suspension,cable-stayed bridges and tall chimneys,are key to assess their drift and stress conditions.The dynamic characteristics of large structures are difficult to measure directly under the condition of earthquakes or strong winds using traditional techniques such as laser collimator,total station and accelerometers.Therefore there is a great need for developing new method or technique for this purpose.Recent advances in Global Positioning System (GPS) technology provide a great opportunity to monitor long-period changes of structures reliably.GPS receivers capable to gauge the motion at the centimeter or sub-centimeter level with sampling frequency 10Hz or even 20 Hz are now available from several manufacturers.To the authors' knowledge,the capability of identifying dynamic characteristics from GPS observations has not been widely verified.For the feasibility study on using kinematic GPS technology to identify the dynamic characteristics of tall buildings,some experiments were conducted in a simulative environment.This paper discusses in detail the experiment device,and the ways through them GPS data are recorded,processed and analyzed.With post-processing version of NovAtel's Softsurv software and auto-regressive (AR) spectral analysis method,relative displacements and corresponding vibrating frequencies have been derived from GPS observations.The results indicate that the dynamic characteristics can be identified accurately by kinematic GPS technology.

  20. Online fault diagnostics and testing of area gamma radiation monitor using wireless network

    Science.gov (United States)

    Reddy, Padi Srinivas; Kumar, R. Amudhu Ramesh; Mathews, M. Geo; Amarendra, G.

    2017-07-01

    Periodical surveillance, checking, testing, and calibration of the installed Area Gamma Radiation Monitors (AGRM) in the nuclear plants are mandatory. The functionality of AGRM counting electronics and Geiger-Muller (GM) tube is to be monitored periodically. The present paper describes the development of online electronic calibration and testing of the GM tube from the control room. Two electronic circuits were developed, one for AGRM electronic test and another for AGRM detector test. A dedicated radiation data acquisition system was developed using an open platform communication server and data acquisition software. The Modbus RTU protocol on ZigBee based wireless communication was used for online monitoring and testing. The AGRM electronic test helps to carry out the three-point electronic calibration and verification of accuracy. The AGRM detector test is used to verify the GM threshold voltage and the plateau slope of the GM tube in-situ. The real-time trend graphs generated during these tests clearly identified the state of health of AGRM electronics and GM tube on go/no-go basis. This method reduces the radiation exposures received by the maintenance crew and facilitates quick testing with minimum downtime of the instrument.

  1. Determination of CO₂ sensitivity of micro-organisms in shaken bioreactors. II. Novel online monitoring method.

    Science.gov (United States)

    Amoabediny, Ghassem; Abbas, Mahdi Pesaran Haji; Büchs, Jochen

    2010-12-01

    In the present study, a new online monitoring method for the determination of the CO₂ sensitivity of micro-organisms, based on the values of the respiration factors [OTR (oxygen transfer rate) and CTR (carbon dioxide transfer rate)], obtained by using the RAMOS (respiratory activity monitoring system) device considering a variety of aeration rates in the measuring flask, is investigated. Based on the data of the OTR, obtained by RAMOS under a variety of specific aeration rates, the proposed new method was developed as an online monitoring method for CO₂ sensitivity of micro-organisms in shaken bioreactors. A maximum accumulated CO₂ concentration of 12% was derived in applied methods, provided that the cultivation system is carried out under optimal conditions. Additionally, to predict these conditions, an unsteady-state gas transfer model in shaken bioreactors would be very advantageous. The data of OTR obtained using the RAMOS device were analysed and recalculated by a programme considering the calibration factor (Cf). The major advantage of the new method is the possibility to determine the metabolic activity, regardless of manual sampling.

  2. [The development of acetylene on-line monitoring technology based on laser absorption spectrum].

    Science.gov (United States)

    He, Ying; Zhang, Yu-jun; Kan, Rui-feng; Xia, Hui; Wang, Min; Cui, Xiao-juan; Chen, Jiu-ying; Chen, Dong; Liu, Wen-qing; Liu, Jian-guo

    2008-10-01

    As one of the materials in organic chemical industry, acetylene has been used in many aspects of chemical industry. But acetylene is a very dangerous inflammable and explosive gas, so it needs in-situ monitoring during industrial storage and production. Tunable diode laser absorption spectroscopy (TDLAS) technology has been widely used in atmospheric trace gases detection, because it has a lot of advantageous characteristics, such as high sensitivity, good selectivity, and rapid time response. The distribution characteristics of absorption lines of acetylene in near infrared band were studied, and then the system designing scheme of acetylene on-line monitoring based on near infrared tunable diode laser absorption spectroscopy technology was discussed in detail. Moreover, the system of experiment measurement was set up and the method of signal detection and the algorithm of concentration inversion were studied. In addition, the sample cell with a path length of 10 cm, and the acetylene of different known concentrations were measured. As a result, the detection limit obtained reached 1.46 cm3 x m(-3). Finally the dynamic detection experiment was carried out, and the measurement result is stable and reliable, so the design of the system is practicable through experiment analysis. On-line acetylene leakage monitoring system was developed based on the experiment, and it is suitable for giving a leakage alarm of acetylene during its storage, transportation and use.

  3. Online Remote Recording and Monitoring of Sensor Data Using DTMF Technology

    Directory of Open Access Journals (Sweden)

    Niladri Sekhar TRIPATHY

    2011-05-01

    Full Text Available Different wireless application platforms are available for remote monitoring and control of systems. In the present paper a system has been described for online remote recording and monitoring of sensor data using DTMF (Dual Tone Multi Frequency technology where acoustic communication has been implemented. One DTMF transceiver in the sensing system has been used to generate and decode the DTMF tone corresponding to the sensor output which in turn is received from the mobile phone in the user side. A separate DTMF decoder has been used in the user side to decode the received DTMF tone corresponding to the sensor output from the sensor side. Microcontroller has been used to store the decoded data from the sensor and to control the whole operation sequentially. Thus online remote recording and monitoring of the sensor data have been possible at any where in the coverage area of the mobile network. Experimental result shows good linearity between data output taken directly from the sensor side and that remotely from user side.

  4. Development of an on-line measuring and monitoring system for fouling based on Delphi

    Science.gov (United States)

    Wang, Yuanyuan; Wang, Jianguo

    2010-12-01

    The presence of fouling reduced the heat transfer capability of heat transfer equipments and increased the flow resistance of the medium. Thus the resulting series of economic losses received worldwide attention of the relevant heat transfer industry and countries. For the heating system fouling, direct measurement is nearly impossible. And it is extremely difficulty of structuring mathematic model. Although there are existing monitoring methods, results are not satisfactory. This paper intends to develop a new on-line measuring and monitoring system for heating system fouling. The operating theory of this on-line measuring and monitoring system is based on the soft-sensor technology and Expert System. We select some easily measurements as primary variables, such as pressures, flow rates and temperatures. Through some algorithms, we obtained dozens of secondary variables, for example, the coefficient of flow resistance, the efficiency and cost of heating system and so on. Based on these variables, we construct the knowledge base of this System. This system mainly uses Delphi and Excel as development tools. Now, the system is running well in some heating station, and has reached the expecting result.

  5. On-line neutron beam monitoring of the Finnish BNCT facility

    Science.gov (United States)

    Tanner, Vesa; Auterinen, Iiro; Helin, Jori; Kosunen, Antti; Savolainen, Sauli

    1999-02-01

    A Boron Neutron Capture Therapy (BNCT) facility has been built at the FiR 1 research reactor of VTT Chemical Technology in Espoo, Finland. The facility is currently undergoing dosimetry characterisation and neutron beam operation research for clinical trials. The healthy tissue tolerance study, which was carried out in the new facility during spring 1998, demonstrated the reliability and user-friendliness of the new on-line beam monitoring system designed and constructed for BNCT by VTT Chemical Technology. The epithermal neutron beam is monitored at a bismuth gamma shield after an aluminiumfluoride-aluminium moderator. The detectors are three pulse mode U 235-fission chambers for epithermal neutron fluence rate and one current mode ionisation chamber for gamma dose rate. By using different detector sensitivities the beam intensity can be measured over a wide range of reactor power levels (0.001-250 kW). The detector signals are monitored on-line with a virtual instrumentation (LabView) based PC-program, which records and displays the actual count rates and total counts of the detectors in the beam. Also reactor in-core power instrumentation and control rod positions can be monitored via another LabView application. The main purpose of the monitoring system is to provide a dosimetric link to the dose in a patient during the treatment, as the fission chamber count rates have been calibrated to the induced thermal neutron fluence rate and to the absorbed dose rate at reference conditions in a tissue substitute phantom.

  6. Online Automatic Monitoring of Ambient Air Quality Control Technology Research%环境空气自动监测在线质控技术研究

    Institute of Scientific and Technical Information of China (English)

    陈国伟

    2014-01-01

    The automatic monitoring system for ambient air monitoring, to ensure the accuracy and reliability of the monitoring data. Online quality control technology innovation automatic detection system, which can maximize their potential in the monitoring of ambient air. This paper analyzes the necessity of quality control techniques and management methods automatic ambient air monitoring; quality control methods discussed online automatic monitoring of ambient air.%利用自动监测系统对环境空气进行监测,可保证监测数据的准确性和可靠性。利用在线质控技术不断革新自动检测系统,可使其在监测环境空气时发挥最大功效。分析了质控技术对环境空气自动监测的必要性和管理方法,探讨了环境空气自动监测的在线质控方式。

  7. State-of-the-art steam generator on-line chemistry monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Mac Koul, L.J.; Mc Clendon, M.E.; Richards, J.E.; Wozniak, S.M.

    1986-04-01

    Recent understanding of corrosion mechanisms has changed the industry's approach to one of establishing and maintaining proper water chemistry conditions to increase steam generator life and availability. A rigorous sampling and analysis program, along with management's commitment to proper water chemistry, are integral to the success of this approach. This paper describes Virginia Power's recent commitment to better maintenance of secondary side water chemistry conditions at its nuclear power stations through an on-line, comprehensive, state-of-the-art chemistry monitoring system.

  8. Investigation of the stochastic subspace identification method for on-line wind turbine tower monitoring

    Science.gov (United States)

    Dai, Kaoshan; Wang, Ying; Lu, Wensheng; Ren, Xiaosong; Huang, Zhenhua

    2017-04-01

    Structural health monitoring (SHM) of wind turbines has been applied in the wind energy industry to obtain their real-time vibration parameters and to ensure their optimum performance. For SHM, the accuracy of its results and the efficiency of its measurement methodology and data processing algorithm are the two major concerns. Selection of proper measurement parameters could improve such accuracy and efficiency. The Stochastic Subspace Identification (SSI) is a widely used data processing algorithm for SHM. This research discussed the accuracy and efficiency of SHM using SSI method to identify vibration parameters of on-line wind turbine towers. Proper measurement parameters, such as optimum measurement duration, are recommended.

  9. A new inductive sensor for online health monitoring of mechanical transmission systems

    DEFF Research Database (Denmark)

    Wang, Chao; Liu, Xiao; Chen, Zhe

    2015-01-01

    and benefit the condition based maintenance. Generally speaking, the quantity of the metal debris in oil indicates the ageing rate of the system, while the size shows the severity of the faulty status. Particle diameter under 20μm implies normal wear condition of the system, diameter from 50 μm to 100 μm...... indicates the infancy failure of the system [1-2]. Inductive sensor, which transforms the quantity and size of the particles into the number and magnitude variation of pulses of coil inductance, is widely used in the online metal debris monitoring systems [1-5]....

  10. Health Monitoring of Offshore Wind Turbines Online Fault Detection and Identification Module Test Case: Pitch Offset

    DEFF Research Database (Denmark)

    Perisic, Nevena; Pedersen, Bo Juul; Kirkegaard, Poul Henning

    LACobserver is a model based health monitoring (HM) system for wind turbines (WTGs) which provides an intuitive engineering link between load and strength parameters. The present work demonstrates a newly developed LACobserver Fault Detection and Identification (FDI) module for online detection...... of pitch offset and corresponding root causes. Blade-to-blade pitch offset slowly degrade the WTG performance and results in lower WTG annual energy production and higher structural loads. Thus, a FDI strategy will increase wind turbine efficiency, performance and operational lifetime....

  11. Vapor Online Monitor Model of Vapor Power Station Based on UML

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    We presents a vapor online monitor system model of vapor power station developed by visual tool rational rose2000. Use cases such as on line instrument (onlineinstr), control, query, report, real database (realdb) and alarm are generated according to the system requirements. Use case view and class view of the system are formed at the same time. As for all the UML models of the system, this paper focuses the discussion on the class view, the component diagram of the control class and the sequence diagram of the query class. Corresponding C++ codes are produced and finally transferred into the spot running software.

  12. Dielectrophoresis microsystem with integrated flow cytometers for on-line monitoring of sorting efficiency

    DEFF Research Database (Denmark)

    Wang, Zhenyu; Hansen, Ole; Petersen, Peter Kalsen

    2006-01-01

    Dielectrophoresis (DEP) and flow cytometry are powerful technologies and widely applied in microfluidic systems for handling and measuring cells and particles. Here, we present a novel microchip with a DEP selective filter integrated with two microchip flow cytometers (FCs) for on-line monitoring...... of cell sorting processes. On the microchip, the DEP filter is integrated in a microfluidic channel network to sort yeast cells by positive DER The two FCs detection windows are set upstream and downstream of the DEP filter. When a cell passes through the detection windows, the light scattered by the cell...

  13. Distributed control and monitoring of high-level trigger processes on the LHCb online farm

    CERN Document Server

    Vannerem, P; Jost, B; Neufeld, N

    2003-01-01

    The on-line data taking of the LHCb experiment at the future LHC collider will be controlled by a fully integrated and distributed Experiment Control System (ECS). The ECS will supervise both the detector operation (DCS) and the trigger and data acquisition (DAQ) activities of the experiment. These tasks require a large distributed information management system. The aim of this paper is to show how the control and monitoring of software processes such as trigger algorithms are integrated in the ECS of LHCb.

  14. 在线水质分析仪器应用技术的发展%Development of application techniques of on-line water quality analysis instruments

    Institute of Scientific and Technical Information of China (English)

    程立

    2011-01-01

    The monitoring type and the process control type on-line water quality analysis instruments have different technical features and application requirements, and their application techniques also have different development orientations and different technical characteristics. The on-line water quality analysis systems and application techniques with self-learning function nad expert-like feature are attracting more and more attention of users.%监测型和过程型在线水质分析仪器具有不同的技术特点和应用要求,对应的在线水质分析仪器应用技术也有着不同发展方向的技术特点;具有自学习功能和专家型的在线水质分析仪器系统及应用技术开始得到了市场的重视

  15. Spectral fluorescence signature techniques and absorption measurements for continuous monitoring of biofuel-producing microalgae cultures

    Science.gov (United States)

    Martín de la Cruz, M. C.; Gonzalez Vilas, L.; Yarovenko, N.; Spyrakos, E.; Torres Palenzuela, J. M.

    2013-08-01

    Biofuel production from microalgae can be both sustainable and economically viable. Particularly in the case of algal growth in wastewater an extra benefit is the removal or biotransformation of pollutants from these types of waters. A continuous monitoring system of the microalgae status and the concentration of different wastewater contaminants could be of great help in the biomass production and the water characterisation. In this study we present a system where spectral fluorescence signature (SFS) techniques are used along with absorption measurements to monitor microalgae cultures in wastewater and other mediums. This system aims to optimise the microalgae production for biofuel applications or other uses and was developed and tested in prototype indoor photo-bioreactors at the University of Vigo. SFS techniques were applied using the fluorescence analyser INSTAND-SCREENER developed by Laser Diagnostic Instruments AS. INSTAND-SCREENER permits wavelength scanning in two modes, one in UV and another in VIS. In parallel, it permits the on-line monitoring and rapid analysis of both water quality and phytoplankton status without prior treatment of the sample. Considering that different contaminants and microalgae features (density, status etc.) have different spectral signatures of fluorescence and absorption properties, it is possible to characterise them developing classification libraries. Several algorithms were used for the classification. The implementation of this system in an outdoor raceway reactor in a Spanish wastewater treatment plant is also discussed. This study was part of the Project EnerBioAlgae (http://www.enerbioalgae.com/), which was funded by the Interreg SUDOE and led by the University of Vigo.

  16. On-line acquisition of plant related and environmental parameters (plant monitoring) in gerbera: determining plant responses

    NARCIS (Netherlands)

    Baas, R.; Slootweg, G.

    2004-01-01

    For on-line plant monitoring equipment to be functional in commercial glasshouse horticulture, relations between sensor readings and plant responses on both the short (days) and long term (weeks) are required. For this reason, systems were installed to monitor rockwool grown gerbera plants on a

  17. On-line structural integrity monitoring and defect diagnosis of steam generators using analysis of guided acoustic waves

    Science.gov (United States)

    Lu, Baofu

    2005-11-01

    Integrity monitoring and flaw diagnostics of flat beams and tubular structures was investigated in this research using guided acoustic signals. The primary objective was to study the feasibility of using imbedded sensors for monitoring steam generator and heat exchanger tubing. A piezo-sensor suite was deployed to activate and collect Lamb wave signals that propagate along metallic specimens. The dispersion curves of Lamb waves along plate and tubular structures were generated through numerical analysis. Several advanced techniques were explored to extract representative features from acoustic time series. Among them, the Hilbert-Huang transform (HHT) is a recently developed technique for the analysis of non-linear and transient signals. A moving window method was introduced to generate the local peak characters from acoustic time series, and a zooming window technique was developed to localize the structural flaws. The dissertation presents the background of the analysis of acoustic signals acquired from piezo-electric transducers for structural defect monitoring. A comparison of the use of time-frequency techniques, including the Hilbert-Huang transform, is presented. It also presents the theoretical study of Lamb wave propagation in flat beams and tubular structures, and the need for mode separation in order to effectively perform defect diagnosis. The results of an extensive experimental study of detection, location, and isolation of structural defects in flat aluminum beams and brass tubes are presented. The time-frequency analysis and pattern recognition techniques were combined for classifying structural defects in brass tubes. Several types of flaws in brass tubes were tested, both in the air and in water. The techniques also proved to be effective under background/process noise. A detailed theoretical analysis of Lamb wave propagation was performed and simulations were carried out using the finite element software system ABAQUS. This analytical study

  18. An iterative matching and locating technique for borehole microseismic monitoring

    Science.gov (United States)

    Chen, H.; Meng, X.; Niu, F.; Tang, Y.

    2016-12-01

    Microseismic monitoring has been proven to be an effective and valuable technology to image hydraulic fracture geometry. The success of hydraulic fracturing monitoring relies on the detection and characterization (i.e., location and focal mechanism estimation) of a maximum number of induced microseismic events. All the events are important to quantify the stimulated reservior volume (SRV) and characterize the newly created fracture network. Detecting and locating low magnitude events, however, are notoriously difficult, particularly at a high noisy production environment. Here we propose an iterative matching and locating technique (iMLT) to obtain a maximum detection of small events and the best determination of their locations from continuous data recorded by a single azimuth downhole geophone array. As the downhole array is located in one azimuth, the regular M&L using the P-wave cross-correlation only is not able to resolve the location of a matched event relative to the template event. We thus introduce the polarization direction in the matching, which significantly improve the lateral resolution of the M&L method based on numerical simulations with synthetic data. Our synthetic tests further indicate that the inclusion of S-wave cross-correlation data can help better constrain the focal depth of the matched events. We apply this method to a dataset recorded during hydraulic fracturing treatment of a pilot horizontal well within the shale play in southwest China. Our approach yields a more than fourfold increase in the number of located events, compared with the original event catalog from traditional downhole processing.

  19. Managing the Classroom with Technology. On Progress Reports and Online Communications, and How To Manage the Two Different Communication Techniques.

    Science.gov (United States)

    Kasprowicz, Tim

    2002-01-01

    Describes how one teacher bridged the communications gap among teachers, parents, and students through the use of technology in managing his classroom. Discusses progress reports and online communications and how to manage the two different communication techniques. (JOW)

  20. Automatic online adaptive radiation therapy techniques for targets with significant shape change: a feasibility study.

    Science.gov (United States)

    Court, Laurence E; Tishler, Roy B; Petit, Joshua; Cormack, Robert; Chin, Lee

    2006-05-21

    This work looks at the feasibility of an online adaptive radiation therapy concept that would detect the daily position and shape of the patient, and would then correct the daily treatment to account for any changes compared with planning position. In particular, it looks at the possibility of developing algorithms to correct for large complicated shape change. For co-planar beams, the dose in an axial plane is approximately associated with the positions of a single multi-leaf collimator (MLC) pair. We start with a primary plan, and automatically generate several secondary plans with gantry angles offset by regular increments. MLC sequences for each plan are calculated keeping monitor units (MUs) and number of segments constant for a given beam (fluences are different). Bulk registration (3D) of planning and daily CT images gives global shifts. Slice-by-slice (2D) registration gives local shifts and rotations about the longitudinal axis for each axial slice. The daily MLC sequence is then created for each axial slice/MLC leaf pair combination, by taking the MLC positions from the pre-calculated plan with the nearest rotation, and shifting using a beam's-eye-view calculation to account for local linear shifts. A planning study was carried out using two head and neck region MR images of a healthy volunteer which were contoured to simulate a base-of-tongue treatment: one with the head straight (used to simulate the planning image) and the other with the head tilted to the left (the daily image). Head and neck treatment was chosen to evaluate this technique because of its challenging nature, with varying internal and external contours, and multiple degrees of freedom. Shape change was significant: on a slice-by-slice basis, local rotations in the daily image varied from 2 to 31 degrees, and local shifts ranged from -0.2 to 0.5 cm and -0.4 to 0.0 cm in right-left and posterior-anterior directions, respectively. The adapted treatment gave reasonable target coverage (100

  1. On-line quality monitoring in short-circuit gas metal arc welding

    Energy Technology Data Exchange (ETDEWEB)

    Adolfsson, S. [Univ. of Karlskrono/Ronneby (Sweden). Dept. of Signal Processing]|[Lund Univ. (Sweden). Dept. of Production and Materials Engineering; Bahrami, A. [Technology Center of Kronoberg, Vaexjoe (Sweden)]|[Lund Univ. (Sweden); Bolmsjoe, G. [Lund Univ. (Sweden); Claesson, I. [Univ. of Karlskrono/Ronneby (Sweden)

    1999-02-01

    This paper addresses the problems involved in the automatic monitoring of the weld quality produced by robotized short-arc welding. A simple statistical change detection algorithm for the weld quality, the repeated Sequential Probability Ratio Test (SPRT), was used. The algorithm may similarly be viewed as a cumulative sum (CUSUM) type test, and is well-suited to detecting sudden minor changes in the monitored test statistic. The test statistic is based on the variance of the weld voltage, wherein it will be shown that the variance decreases when the welding process is not operating under optimal conditions. The performance of the algorithm is assessed through the use of experimental data. The results obtained from the algorithm show that it is possible to detect changes in weld quality automatically and on-line.

  2. Online monitoring of printed electronics by Spectral-Domain Optical Coherence Tomography

    KAUST Repository

    Alarousu, Erkki

    2013-03-28

    Spectral-Domain Optical Coherence Tomography (SD-OCT) is an optical method capable of 3D imaging of object\\'s internal structure with micron-scale resolution. Modern SD-OCT tools offer the speed capable of online monitoring of printed devices. This paper demonstrates the use of SD-OCT in a simulated roll-to-roll (R2R) process through monitoring some structural properties of moving screen printed interdigitated electrodes. It is shown that structural properties can be resolved for speeds up to ca. 1m/min, which is the first step towards application of this method in real manufacturing processes, including roll-to-roll (R2R) printing.

  3. Online monitoring of printed electronics by Spectral-Domain Optical Coherence Tomography.

    Science.gov (United States)

    Alarousu, Erkki; AlSaggaf, Ahmed; Jabbour, Ghassan E

    2013-01-01

    Spectral-Domain Optical Coherence Tomography (SD-OCT) is an optical method capable of 3D imaging of object's internal structure with micron-scale resolution. Modern SD-OCT tools offer the speed capable of online monitoring of printed devices. This paper demonstrates the use of SD-OCT in a simulated roll-to-roll (R2R) process through monitoring some structural properties of moving screen printed interdigitated electrodes. It is shown that structural properties can be resolved for speeds up to ca. 1 m/min, which is the first step towards application of this method in real manufacturing processes, including roll-to-roll (R2R) printing.

  4. Investigation of Various Condition Monitoring Techniques Based on a Damaged Wind Turbine Gearbox

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, S.

    2011-10-01

    This paper is a continuation of a 2009 paper presented at the 7th International Workshop on Structural Health Monitoring that described various wind turbine condition-monitoring techniques. This paper presents the results obtained by various condition- monitoring techniques from a damaged Gearbox Reliability Collaborative test gearbox.

  5. Monitoring of Grandes Jorasses hanging glacier (Aosta Valley, Italy): improving monitoring techniques for glaciers instability

    Science.gov (United States)

    Vagliasindi, Marco; Funk, Martin; Faillettaz, Jerome; Dalban, Pierre; Lucianaz, Claudio; Diotri, Fabrizio; Motta, Elena; Margreth, Stephan

    2010-05-01

    Grandes Jorasses serac is an unbalanced hanging glacier located on the south side of Mont Blanc Massif (Aosta Valley - Italy). It stands above Ferret Valley, a famous and most frequented touristic site both in winter and summer. Historical data and morphological evidences show that the glacier is subject to recurrent icefalls which can be dangerous especially in winter, as they can trigger catastrophic combined snow and ice avalanches. Serac dynamic was monitored in 1997-98 by prof. M Funk (ETH Zurich) by means of temperature and topographic measurement. These allowed to forecast the breakdown within a 2 days time. Thanks to a monitoring program, a new instability could be recognized in autumn 2008: a crevasse opening in the lower part of the hanging glacier. A new monitoring system was installed recently, consisting of stakes with prisms on serac surface and an automatic total station (theodolite plus distantiometer) sited on the valley floor. Monitoring is based on an empirically based power law (developed by ETH) that describes the increasing displacement rate before collapse. This monitoring system requires to measure displacement rate of the serac continuously. Although the topographic system is so far the state-of-the.art method, it implies some troubles: (i) the difficulty in placing stakes on the steep and dangerous glacier surface; (ii) potential instability of stakes themselves due to snow pressure in winter and surface ice melting in summer; (iii) impossibility to carry out measurement in case of cloudy or stormy weather, which is rather a frequent situation on Grandes Jorasses peak. Moreover, hazard and risk management require some more informations, such as the instable ice mass volume. New technologies have been applied, and are still under test, to achieve a more reliable monitoring system and a better understanding of the serac dynamics. Close-range photogrammetry techniques have been used, allowing to process helicopter-taken images and obtain

  6. On-line, real-time monitoring for petrochemical and pipeline process control applications

    Energy Technology Data Exchange (ETDEWEB)

    Kane, Russell D.; Eden, D.C.; Cayard, M.S.; Eden, D.A.; Mclean, D.T. [InterCorr International, Inc., 14503 Bammel N. Houston, Suite 300, Houston Texas 77014 (United States); Kintz, J. [BASF Corporation, 602 Copper Rd., Freeport, Texas 77541 (United States)

    2004-07-01

    Corrosion problems in petroleum and petrochemical plants and pipeline may be inherent to the processes, but costly and damaging equipment losses are not. With the continual drive to increase productivity, while protecting both product quality, safety and the environment, corrosion must become a variable that can be continuously monitored and assessed. This millennium has seen the introduction of new 'real-time', online measurement technologies and vast improvements in methods of electronic data handling. The 'replace when it fails' approach is receding into a distant memory; facilities management today is embracing new technology, and rapidly appreciating the value it has to offer. It has offered the capabilities to increase system run time between major inspections, reduce the time and expense associated with turnaround or in-line inspections, and reduce major upsets which cause unplanned shut downs. The end result is the ability to know on a practical basis of how 'hard' facilities can be pushed before excessive corrosion damage will result, so that process engineers can understand the impact of their process control actions and implement true asset management. This paper makes reference to use of a online, real-time electrochemical corrosion monitoring system - SmartCET 1- in a plant running a mostly organic process media. It also highlights other pertinent examples where similar systems have been used to provide useful real-time information to detect system upsets, which would not have been possible otherwise. This monitoring/process control approach has operators and engineers to see, for the first time, changes in corrosion behavior caused by specific variations in process parameters. Process adjustments have been identified that reduce corrosion rates while maintaining acceptable yields and quality. The monitoring system has provided a new window into the chemistry of the process, helping chemical engineers improve their process

  7. On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam Generators and Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Belle R. Upadhyaya; J. Wesley Hines

    2004-09-27

    Integrity monitoring and flaw diagnostics of flat beams and tubular structures was investigated in this research task using guided acoustic signals. A piezo-sensor suite was deployed to activate and collect Lamb wave signals that propagate along metallic specimens. The dispersion curves of Lamb waves along plate and tubular structures are generated through numerical analysis. Several advanced techniques were explored to extract representative features from acoustic time series. Among them, the Hilbert-Huang transform (HHT) is a recently developed technique for the analysis of non-linear and transient signals. A moving window method was introduced to generate the local peak characters from acoustic time series, and a zooming window technique was developed to localize the structural flaws. The time-frequency analysis and pattern recognition techniques were combined for classifying structural defects in brass tubes. Several types of flaws in brass tubes were tested, both in the air and in water. The techniques also proved to be effective under background/process noise. A detailed theoretical analysis of Lamb wave propagation was performed and simulations were carried out using the finite element software system ABAQUS. This analytical study confirmed the behavior of the acoustic signals acquired from the experimental studies. The report presents the background the analysis of acoustic signals acquired from piezo-electric transducers for structural defect monitoring. A comparison of the use of time-frequency techniques, including the Hilbert-Huang transform, is presented. The report presents the theoretical study of Lamb wave propagation in flat beams and tubular structures, and the need for mode separation in order to effectively perform defect diagnosis. The results of an extensive experimental study of detection, location, and isolation of structural defects in flat aluminum beams and brass tubes are presented. The results of this research show the feasibility of on-line

  8. Intelligent instruments for process measurement techniques (monitoring of sensors)

    Science.gov (United States)

    Bauer, B.; Hess, H. D.; Kalinski, J. R.; Leisenberg, W.; Marsch, D.

    1984-06-01

    Possibilities to extract redundant information of temperature sensors (resistance thermometers, thermocouples, semiconductor temperature sensors), and to find out which of the suggested redundancies are most suited for self controlled monitoring were investigated. Practical experience with equipment for process measurement techniques shows that sensor failures are five times more frequent than electronic malfunction. For resistance thermometers the measured values of the redundant information source (ac resistance) are too small (relative inductivity change 7 million). The information sources strain gage and propagation of ultrasonic waves are excluded because of physical properties in the sensor materials. Changes in the crystalline structure of thermocouples have the effect that there is no well defined relationship between thermoelectric voltage and the redundant information sources, resistance and coupled current impulses. A correlation of thermovoltage with these redundant values would yield a measurement uncertainty corresponding to more than + or - 50 K. Experiments with negative temperature coefficient sensors show that a failure is proceeded by a change in capacitance of the order of 0.1 pF.

  9. Sensors Array Technique for Monitoring Aluminum Alloy Spot Welding

    Institute of Scientific and Technical Information of China (English)

    WANG Rui; LUO Zhen; SHAN Ping; BU Xianzheng; YUAN Shuxian; AO Sansan

    2010-01-01

    In this paper, the sensors array technique is applied to the quality detection of aluminum alloy spot weld-ing. The sensors array has three forms, i.e., linear magnetic sensors array, annular magnetic sensors array and cross magnetic sensors array. An algorithm based on principal component analysis is proposed to extract the signal eigen-values. The three types of magnetic sensors array are used in the experiment of monitoring the signal. After the eigen-values are extracted, they are used to build a relationship with the nugget information. The result shows that when the distance between the core of the array and the pole is 60 mm, the arrays work best. In this case, when the eigenvalues' range of the linear array is 0.006 5-0.015 1, the quality of the spots is eligible. To the annular and cross array, when the ranges are 0.082 9—0.131 6 and 0.085 1—0.098 2 respectively, the nugget quality is eligible.

  10. On the use of photothermal techniques for monitoring constructed wetlands

    Science.gov (United States)

    Gatts, C. E. N.; Faria, R. T.; Vargas, H.; Lannes, L. S.; Aragon, G. T.; Ovalle, A. R. C.

    2003-01-01

    Wetlands are a valued part of landscapes throughout the world. The steady increase of industrial facilities and disorganized urbanization processes, especially in developing countries, became a serious menace to these systems. The capability of wetlands to serve as a sink for nonpoint pollutants, particularly nutrients, is remarkable, but not limitless. For this reason, efforts to preserve them are considered a strategic issue for several countries. In addition, due to the exploding costs for sewage treatment, constructed wetlands for wastewater treatment (reed-bed systems) have been widely used under a variety of different conditions. Wetlands present unique characteristics related to biogeochemical cycles, the transport and transformation of chemicals due to interrelated physical, and chemical, and biological processes. Particularly, vegetated wetlands can act as a source for greenhouse gases through the emission of sediment-produced methane (CH4) to atmosphere. From studies concerning the behavior of Salvinia auriculata Aublet., we intend to demonstrate the potential use of photothermal techniques for monitoring gaseous emissions in wetlands.

  11. Monitoring corrosion in prestressed concrete beams using acoustic emission technique

    Science.gov (United States)

    ElBatanouny, Mohamed K.; Mangual, Jesé; Vélez, William; Ziehl, Paul H.; Matta, Fabio; González, Miguel

    2012-04-01

    Early detection of corrosion can help reduce the cost of maintenance and extend the service life of structures. Acoustic emission (AE) sensing has proven to be a promising method for early detection of corrosion in reinforced concrete members. A test program is presented composed of four medium-scale prestressed concrete T-beams. Three of the beams have a length of 16 ft. 4 in. (4.98 m), and one is 9 ft. 8 in. (2.95 m). In order to corrode the specimens a 3% NaCl solution was prepared, which is representative of sea salt concentration. The beams were subjected to wet-dry cycles to accelerate the corrosion process. Two of the specimens were pre-cracked prior to conditioning in order to examine the effect of crack presence. AE data was recorded continuously while half-cell potential measurements and corrosion rate by Linear Polarization Resistance (LPR) were measured daily. Corrosion current was also being acquired constantly to monitor any change in the concrete resistivity. Results indicate that the onset of corrosion may be identified using AE features, and were corroborated with measurements obtained from electrochemical techniques. Corroded areas were located using source triangulation. The results indicate that cracked specimens showed corrosion activity prior to un-cracked specimens and experienced higher corrosion rates. The level of corrosion was determined using corrosion rate results. Intensity analysis was used to link the corrosion rate and level to AE data.

  12. Online Performance Monitoring of the Third ALICE Data Challenge (ADC III)

    CERN Document Server

    Carena, W; Saiz, P; Schossmaier, K; Vascotto, Alessandro; Van de Vyvre, P

    2001-01-01

    The ALICE data acquisition system has been designed for a maximum bandwidth of 2.5 GB/s for event building and of 1.25 GB/s for mass storage. In order to attain a gradual integration of the overall computing infrastructure, the present hardware components and software prototypes are tested during regular ALICE data challenges. The third one (ADC III) took place from January to March 2001 as a joint effort between the ALICE online/offine team and the CERN IT division. The main goal of this data challenge was to achieve a stable 300 MB/s throughput in the event building network and a 100 MB/s throughput to CASTOR over periods of a few days. Performance monitoring was another goal of this exercise, where a prototype (dateStat ) was developed to collect and display statistics. In this paper we will introduce this online monitoring system and report on some of the obtained results. It is structured in three parts: (1) An overview will be given on the testbed hardware, the software running on it, and the data flow....

  13. A high sensitivity wear debris sensor using ferrite cores for online oil condition monitoring

    Science.gov (United States)

    Zhu, Xiaoliang; Zhong, Chong; Zhe, Jiang

    2017-07-01

    Detecting wear debris and measuring the increasing number of wear debris in lubrication oil can indicate abnormal machine wear well ahead of machine failure, and thus are indispensable for online machine health monitoring. A portable wear debris sensor with ferrite cores for online monitoring is presented. The sensor detects wear debris by measuring the inductance change of two planar coils wound around a pair of ferrite cores that make the magnetic flux denser and more uniform in the sensing channel, thereby improving the sensitivity of the sensor. Static testing results showed this wear debris sensor is capable of detecting 11 µm and 50 µm ferrous debris in 1 mm and 7 mm diameter fluidic pipes, respectively; such a high sensitivity has not been achieved before. Furthermore, a synchronized sampling method was also applied to reduce the data size and realize real-time data processing. Dynamic testing results demonstrated that the sensor is capable of detecting wear debris in real time with a high throughput of 750 ml min-1 the measured debris concentration is in good agreement with the actual concentration.

  14. Online total organic carbon (TOC) monitoring for water and wastewater treatment plants processes and operations optimization

    Science.gov (United States)

    Assmann, Céline; Scott, Amanda; Biller, Dondra

    2017-08-01

    Organic measurements, such as biological oxygen demand (BOD) and chemical oxygen demand (COD) were developed decades ago in order to measure organics in water. Today, these time-consuming measurements are still used as parameters to check the water treatment quality; however, the time required to generate a result, ranging from hours to days, does not allow COD or BOD to be useful process control parameters - see (1) Standard Method 5210 B; 5-day BOD Test, 1997, and (2) ASTM D1252; COD Test, 2012. Online organic carbon monitoring allows for effective process control because results are generated every few minutes. Though it does not replace BOD or COD measurements still required for compliance reporting, it allows for smart, data-driven and rapid decision-making to improve process control and optimization or meet compliances. Thanks to the smart interpretation of generated data and the capability to now take real-time actions, municipal drinking water and wastewater treatment facility operators can positively impact their OPEX (operational expenditure) efficiencies and their capabilities to meet regulatory requirements. This paper describes how three municipal wastewater and drinking water plants gained process insights, and determined optimization opportunities thanks to the implementation of online total organic carbon (TOC) monitoring.

  15. On-line condition monitoring systems for high voltage circuit breakers : a collaborative research project 1997-2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    A three year field project was initiated to review and evaluate the state of the art in on-line conditioning monitoring technology for a high voltage (240 kV SF6) circuit breaker located at Dorsey Converter Station. The ELF breaker is a three independent pole design which allows for three separate monitoring systems. This project involved the installation of a different type of monitoring system on each phase and incorporated many types of transducers. Each monitoring system measured the same basic parameters including contact travel, 'a' and 'b' auxiliary contacts, phase currents, coil currents, heater and pump current, plus SF6/CF4 pressure and temperature. Over the entire monitoring period the breaker was operated over 700 times at rated voltage and an additional 300 times during maintenance. Temperature conditions ranged from -35 to +30 degrees C. The use of on-line monitoring provided many valuable results and enhanced the knowledge base for the apparatus under the test. It was determined that on-line monitoring of HV circuit breakers has potential, but installation has to be considered carefully. Monitoring systems can offer improvement in the understanding of how circuit breakers work and provide input into RCM programs. However, monitoring systems themselves are subject to failure and require maintenance and attention. 2 refs., 2 tabs., 7 figs.

  16. Investigation on False Peak Phenomena in On-line Sweeping Technique in MEKC

    Institute of Scientific and Technical Information of China (English)

    YANG,Geng-Liang(杨更亮); LI,Bao-Hui(李保会); WANG,De-Xian(王德先); CHEN,Yi(陈义)

    2002-01-01

    In this paper, several factors that could lead to the appearance of false peak were investigated by using on-line sample sweeping technique under different experimental conditions. The tested analytes were buflomedil hydrochloride, ephedrine hydrochloride, benzyl alcohol, vanillin, p-hydroxybenzaldehyde amd mmethylphenol. Results showed that among the six compounds,three of them, i.e., buflomedil hydrochloride, ephedrine hydrochloride and benzyl alcohol will cause false peaks to appear when sample injection time is long, sodium dodecyl sulfate (SDS) concentration is high and there is pH gradient between cathode and anode. In order to avoid the appearance of false peak, the pH gradient should be avoided.

  17. Error detection capability of a novel transmission detector: a validation study for online VMAT monitoring

    Science.gov (United States)

    Pasler, Marlies; Michel, Kilian; Marrazzo, Livia; Obenland, Michael; Pallotta, Stefania; Björnsgard, Mari; Lutterbach, Johannes

    2017-09-01

    The purpose of this study was to characterize a new single large-area ionization chamber, the integral quality monitor system (iRT, Germany), for online and real-time beam monitoring. Signal stability, monitor unit (MU) linearity and dose rate dependence were investigated for static and arc deliveries and compared to independent ionization chamber measurements. The dose verification capability of the transmission detector system was evaluated by comparing calculated and measured detector signals for 15 volumetric modulated arc therapy plans. The error detection sensitivity was tested by introducing MLC position and linac output errors. Deviations in dose distributions between the original and error-induced plans were compared in terms of detector signal deviation, dose-volume histogram (DVH) metrics and 2D γ-evaluation (2%/2 mm and 3%/3 mm). The detector signal is linearly dependent on linac output and shows negligible (good correlation between DVH metrics and detector signal deviation was found (e.g. PTV D mean: R 2  =  0.97). Positional MLC errors of 1 mm and errors in linac output of 2% were identified with the transmission detector system. The extensive tests performed in this investigation show that the new transmission detector provides a stable and sensitive cumulative signal output and is suitable for beam monitoring during patient treatment.

  18. Advance Technique for Online Payment Security in E-Commerce : “Double Verification”

    Directory of Open Access Journals (Sweden)

    Shilpa

    2013-06-01

    Full Text Available In E-Commerce various parties involve in E-Payment for buying and selling purpose of goods/services. An Internet E-Commerce Payment Gateway is a critical component for online transaction and that should provide trust to customer that transaction is secure and reliable in all security aspect. There are various vulnerabilities in the present Online Payment system. There is a Man-in-the-Browserattack which is an internet threat/ Trojan horse that can modify web pages and infects web browser and it can also alter transaction content or can add some more data in content. The Trojan can bedownloaded or delivered invisibly through Web exploits. This attack is invisible from customer as well as host web application. A MitB attack can take place whether we use SSL, PKI, two or three-factorSecurity solution. I proposed a advanced technique called “Double Verification” which can detect these MitB attacks while transaction and ensure us secure online transaction over the internet.

  19. Final Technical Report Recovery Act: Online Nonintrusive Condition Monitoring and Fault Detection for Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Wei Qiao

    2012-05-29

    The penetration of wind power has increased greatly over the last decade in the United States and across the world. The U.S. wind power industry installed 1,118 MW of new capacity in the first quarter of 2011 alone and entered the second quarter with another 5,600 MW under construction. By 2030, wind energy is expected to provide 20% of the U.S. electricity needs. As the number of wind turbines continues to grow, the need for effective condition monitoring and fault detection (CMFD) systems becomes increasingly important [3]. Online CMFD is an effective means of not only improving the reliability, capacity factor, and lifetime, but it also reduces the downtime, energy loss, and operation and maintenance (O&M) of wind turbines. The goal of this project is to develop novel online nonintrusive CMFD technologies for wind turbines. The proposed technologies use only the current measurements that have been used by the control and protection system of a wind turbine generator (WTG); no additional sensors or data acquisition devices are needed. Current signals are reliable and easily accessible from the ground without intruding on the wind turbine generators (WTGs) that are situated on high towers and installed in remote areas. Therefore, current-based CMFD techniques have great economic benefits and the potential to be adopted by the wind energy industry. Specifically, the following objectives and results have been achieved in this project: (1) Analyzed the effects of faults in a WTG on the generator currents of the WTG operating at variable rotating speed conditions from the perspective of amplitude and frequency modulations of the current measurements; (2) Developed effective amplitude and frequency demodulation methods for appropriate signal conditioning of the current measurements to improve the accuracy and reliability of wind turbine CMFD; (3) Developed a 1P-invariant power spectrum density (PSD) method for effective signature extraction of wind turbine faults with

  20. Micro flow reactor chips with integrated luminescent chemosensors for spatially resolved on-line chemical reaction monitoring.

    Science.gov (United States)

    Gitlin, Leonid; Hoera, Christian; Meier, Robert J; Nagl, Stefan; Belder, Detlev

    2013-10-21

    Real-time chemical reaction monitoring in microfluidic environments is demonstrated using luminescent chemical sensors integrated in PDMS/glass-based microscale reactors. A fabrication procedure is presented that allows for straightforward integration of thin polymer layers with optical sensing functionality in microchannels of glass-PDMS chips of only 150 μm width and of 10 to 35 μm height. Sensor layers consisting of polystyrene and an oxygen-sensitive platinum porphyrin probe with film thicknesses of about 0.5 to 4 μm were generated by combining spin coating and abrasion techniques. Optimal coating procedures were developed and evaluated. The chip-integrated sensor layers were calibrated and investigated with respect to stability, reproducibility and response times. These microchips allowed observation of dissolved oxygen concentration in the range of 0 to over 40 mg L(-1) with a detection limit of 368 μg L(-1). The sensor layers were then used for observation of a model reaction, the oxidation of sulphite to sulphate in a microfluidic chemical reactor and could observe sulphite concentrations of less than 200 μM. Real-time on-line monitoring of this chemical reaction was realized at a fluorescence microscope setup with 405 nm LED excitation and CCD camera detection.

  1. Determination of molecular weight and other characteristics of co- and terpolymers using automatic continuous online monitoring of polymerization reactions (ACOMP)

    Science.gov (United States)

    Enohnyaket, Pascal E. A.

    The Automatic Continuous Online Monitoring of Polymerization reactions (ACOMP), is a technique developed by the Reed Research Group at Tulane University. By simultaneously monitoring and combining signals from a continuously dilute reactor stream, detectors such as a multi-angle light scattering detector, near infra-red spectrometer, viscometer, differential refractive index, and a full wavelength UV/Visible detector were used in a model-independent fashion to follow the weight-average molecular weight, intrinsic viscosity, the concentrations of each comonomer, and hence the evolution of the average instantaneous and cumulative compositions along the chains as comonomers are consumed. The goal of this dissertation is to make the ACOMP system more useful in very complex polymerization situations by improving it with additional detectors and formalisms (such as a new expression for computing the molecular weight a copolymer of nth degree) and to exploit its robustness in situations where traditional routes fail or are of limited value. By providing a continuum of data, ACOMP allows polymer scientists to better understand and control new reaction schemes. At the pilot plant, it can be used to optimize reaction conditions. Because the ACOMP system is relatively cheap, user friendly, can be environmentally friendly, less bulky and very efficient, it is my desire to use ACOMP to solve some of the problems in the petroleum, plastic and drug manufacturing industries in Cameroon (and Africa).

  2. New developments in on-line isoenzyme monitoring for use in clinical diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Bostick, W. D.; Denton, M. S.; Dinsmore, S. R.

    1979-01-01

    Recently, a system for the selective, continuously referenced on-line photometric monitoring of isoenzymes separated by anion-exchange chromatography was introduced. The effluent from the column is mixed with reagent and passes through a delay coil, in which reaction product accumulates. Prior to passage through the spectrophotometer, the effluent stream is split; half is directed to the reference cell of the spectrophotometer and half to the sample cell. An enzymatic microreactor containing immobilized indicator enzymes linking the accumulated reaction product with the generation of a photometrically detectable product is placed in the sample stream prior to the sample cell. The response of the spectrophotometer is highly selective and nonspecific light absorption is effectively blanked. This system has been used for the determination of the isoenzymes of creatine kinase (CK) and lactate dehydrogenase (LD); both of these enzymes are diagnostic of heart damage. The indicator enzymes immobilized onto the microreactor were hexokinase (HK) and glucose-6-phosphate dehydrogenase (GPDH) for CK determination and diaphorase for LD determination. Additional systems for the selective, on-line detection of isoenzymes in chromatographic column effluents are presented. The CK reaction product, ATP, may be monitored by the overall firefly bioluminescence reaction. The use of a flow-through electrochemical cell substituted for an enzymatic microreactor in the continuously referenced detection of LD isoenzymes was investigated.Half of the effluent stream, containing NADH reaction product, passes through a reticulated vitreous carbon electrode, poised at +0.75 to +0.95 V, while half passes through a matched-flow dummy side with no applied potential. A reproducible portion of the NADH in the active side is reoxidized to NAD, thus producing a difference in optical signal between the sample and reference cells of a spectrophotometer monitoring 340 nm. (ERB)

  3. Novel microfluidic system for online monitoring of biofilm dynamics by electrical impedance spectroscopy and amperometry

    Science.gov (United States)

    Bruchmann, Julia; Sachsenheimer, Kai; Schwartz, Thomas; Rapp, Bastian E.

    2016-03-01

    Biofilm formation is ubiquitous in nature where microorganisms attach to surfaces and form highly adapted and protected communities. In technical and industrial systems like drinking water supply, food production or shipping industry biofilms are a major cause of product contamination, biofouling, and biocorrosion. Therefore, understanding of biofilm formation and means of preventing biofilm formation is important to develop novel biofilm treatment strategies. A system allowing directly online detection and monitoring biofilm formation is necessary. However, until today, there are little to none technical systems featuring a non-destructive real-time characterization of biofilm formation in a highthroughput manner. This paper presents such a microfluidic system based on electrical impedance spectroscopy (EIS) and amperomertic current measurement. The sensor consists of four modules, each housing 24 independent electrodes within 12 microfluidic channels. Attached biomass on the electrodes is monitored as increased inhibition in charge transfer by EIS and a change in metabolic activity is measured as change in produced electric current by amperometry. This modular sensor system is highly adaptable and suitable for a broad range of microbiological applications. Among others, biofilm formation processes can be characterized online, biofilm manipulation like inactivation or destabilization can be monitored in real-time and gene expression can be analyzed in parallel. The use of different electrode designs allows effective biofilm studies during all biofilm phases. The whole system was recently extended by an integrated pneumatic microfluidic pump which enables easy handling procedures. Further developments of this pumping module will allow a fully- automated computer-controlled valving and pumping.

  4. On-line monitoring and inservice inspection in codes; Betriebsueberwachung und wiederkehrende Pruefungen in den Regelwerken

    Energy Technology Data Exchange (ETDEWEB)

    Bartonicek, J.; Zaiss, W. [Gemeinschaftskernkraftwerk Neckar GmbH, Neckarwestheim (Germany); Bath, H.R. [Bundesamt fuer Strahlenschutz, Salzgitter (Germany). Geschaeftsstelle des Kerntechnischen Ausschusses (KTA)

    1999-08-01

    The relevant regulatory codes determine the ISI tasks and the time intervals for recurrent components testing for evaluation of operation-induced damaging or ageing in order to ensure component integrity on the basis of the last available quality data. In-service quality monitoring is carried out through on-line monitoring and recurrent testing. The requirements defined by the engineering codes elaborated by various institutions are comparable, with the KTA nuclear engineering and safety codes being the most complete provisions for quality evaluation and assurance after different, defined service periods. German conventional codes for assuring component integrity provide exclusively for recurrent inspection regimes (mainly pressure tests and optical testing). The requirements defined in the KTA codes however always demanded more specific inspections relying on recurrent testing as well as on-line monitoring. Foreign codes for ensuring component integrity concentrate on NDE tasks at regular time intervals, with time intervals scope of testing activities being defined on the basis of the ASME code, section XI. (orig./CB) [Deutsch] Fuer die Komponentenintegritaet sind die Schaedigungsmechanismen mit dem nach den Regelwerken einzuhaltenden Abstand abzusichern. Dabei ist die jeweils vorhandene (Ist-) Qualitaet als Ausgangspunkt entscheidend. Die Absicherung der vorhandenen Qualitaet im weiteren Betrieb erfolgt durch geeignete Betriebsueberwachung und wiederkehrende Pruefungen. Die Anforderungen der Regelwerke sind vergleichbar, wobei die Bestimmung der vorhandenen Qualitaet nach einer bestimmten Betriebszeit sowie deren Absicherung im weiteren Betrieb am vollstaendigsten auf Basis des KTA-Regelwerkes moeglich ist. Die Absicherung der Komponentenintegritaet im Betrieb beruht in deutschen konventionellen Regelwerken nur auf den wiederkehrenden Pruefungen (hauptsaechlich Druckpruefungen und Sichtpruefungen). Das KTA-Regelwerk forderte hier schon immer qualifizierte

  5. On-line monitoring and inservice inspection in codes; Betriebsueberwachung und wiederkehrende Pruefungen in den Regelwerken

    Energy Technology Data Exchange (ETDEWEB)

    Bartonicek, J.; Zaiss, W. [Gemeinschaftskernkraftwerk Neckar GmbH, Neckarwestheim (Germany); Bath, H.R. [Bundesamt fuer Strahlenschutz, Salzgitter (Germany). Geschaeftsstelle des Kerntechnischen Ausschusses (KTA)

    1999-08-01

    The relevant regulatory codes determine the ISI tasks and the time intervals for recurrent components testing for evaluation of operation-induced damaging or ageing in order to ensure component integrity on the basis of the last available quality data. In-service quality monitoring is carried out through on-line monitoring and recurrent testing. The requirements defined by the engineering codes elaborated by various institutions are comparable, with the KTA nuclear engineering and safety codes being the most complete provisions for quality evaluation and assurance after different, defined service periods. German conventional codes for assuring component integrity provide exclusively for recurrent inspection regimes (mainly pressure tests and optical testing). The requirements defined in the KTA codes however always demanded more specific inspections relying on recurrent testing as well as on-line monitoring. Foreign codes for ensuring component integrity concentrate on NDE tasks at regular time intervals, with time intervals scope of testing activities being defined on the basis of the ASME code, section XI. (orig./CB) [Deutsch] Fuer die Komponentenintegritaet sind die Schaedigungsmechanismen mit dem nach den Regelwerken einzuhaltenden Abstand abzusichern. Dabei ist die jeweils vorhandene (Ist-) Qualitaet als Ausgangspunkt entscheidend. Die Absicherung der vorhandenen Qualitaet im weiteren Betrieb erfolgt durch geeignete Betriebsueberwachung und wiederkehrende Pruefungen. Die Anforderungen der Regelwerke sind vergleichbar, wobei die Bestimmung der vorhandenen Qualitaet nach einer bestimmten Betriebszeit sowie deren Absicherung im weiteren Betrieb am vollstaendigsten auf Basis des KTA-Regelwerkes moeglich ist. Die Absicherung der Komponentenintegritaet im Betrieb beruht in deutschen konventionellen Regelwerken nur auf den wiederkehrenden Pruefungen (hauptsaechlich Druckpruefungen und Sichtpruefungen). Das KTA-Regelwerk forderte hier schon immer qualifizierte

  6. Application of multivariate statistical projection techniques for monitoring a sequencing batch reactor (SBR); Aplicacion de tecnicas estadisticas de proyeccion multivariante para la monitorizacion de un SBR

    Energy Technology Data Exchange (ETDEWEB)

    Aguado Garcia, D.; Ferrer Riquelme, A. J.; Seco Torrecillas, A.; Ferrer Polo, J.

    2006-07-01

    Due to the increasingly stringent effluents quality requirements imposed by the regulations, monitoring wastewater treatment plants (WWTP) becomes extremely important in order to achieve efficient process operations. Nowadays, at modern WWTP large number of online process variables are collected and these variable are usually highly correlated. Therefore, appropriate techniques are required to extract the information from the huge amount of collected data. In this work, the application of multivariate statistical projection techniques is presented as an effective strategy for monitoring a sequencing batch reactor (SBR) operated for enhanced biological phosphorus removal. (Author)

  7. Adaptive hidden Markov model-based online learning framework for bearing faulty detection and performance degradation monitoring

    Science.gov (United States)

    Yu, Jianbo

    2017-01-01

    This study proposes an adaptive-learning-based method for machine faulty detection and health degradation monitoring. The kernel of the proposed method is an "evolving" model that uses an unsupervised online learning scheme, in which an adaptive hidden Markov model (AHMM) is used for online learning the dynamic health changes of machines in their full life. A statistical index is developed for recognizing the new health states in the machines. Those new health states are then described online by adding of new hidden states in AHMM. Furthermore, the health degradations in machines are quantified online by an AHMM-based health index (HI) that measures the similarity between two density distributions that describe the historic and current health states, respectively. When necessary, the proposed method characterizes the distinct operating modes of the machine and can learn online both abrupt as well as gradual health changes. Our method overcomes some drawbacks of the HIs (e.g., relatively low comprehensibility and applicability) based on fixed monitoring models constructed in the offline phase. Results from its application in a bearing life test reveal that the proposed method is effective in online detection and adaptive assessment of machine health degradation. This study provides a useful guide for developing a condition-based maintenance (CBM) system that uses an online learning method without considerable human intervention.

  8. A Comparison of Multiscale Permutation Entropy Measures in On-Line Depth of Anesthesia Monitoring

    Science.gov (United States)

    Li, Xiaoli; Li, Duan; Li, Yongwang; Ursino, Mauro

    2016-01-01

    Objective Multiscale permutation entropy (MSPE) is becoming an interesting tool to explore neurophysiological mechanisms in recent years. In this study, six MSPE measures were proposed for on-line depth of anesthesia (DoA) monitoring to quantify the anesthetic effect on the real-time EEG recordings. The performance of these measures in describing the transient characters of simulated neural populations and clinical anesthesia EEG were evaluated and compared. Methods Six MSPE algorithms—derived from Shannon permutation entropy (SPE), Renyi permutation entropy (RPE) and Tsallis permutation entropy (TPE) combined with the decomposition procedures of coarse-graining (CG) method and moving average (MA) analysis—were studied. A thalamo-cortical neural mass model (TCNMM) was used to generate noise-free EEG under anesthesia to quantitatively assess the robustness of each MSPE measure against noise. Then, the clinical anesthesia EEG recordings from 20 patients were analyzed with these measures. To validate their effectiveness, the ability of six measures were compared in terms of tracking the dynamical changes in EEG data and the performance in state discrimination. The Pearson correlation coefficient (R) was used to assess the relationship among MSPE measures. Results CG-based MSPEs failed in on-line DoA monitoring at multiscale analysis. In on-line EEG analysis, the MA-based MSPE measures at 5 decomposed scales could track the transient changes of EEG recordings and statistically distinguish the awake state, unconsciousness and recovery of consciousness (RoC) state significantly. Compared to single-scale SPE and RPE, MSPEs had better anti-noise ability and MA-RPE at scale 5 performed best in this aspect. MA-TPE outperformed other measures with faster tracking speed of the loss of unconsciousness. Conclusions MA-based multiscale permutation entropies have the potential for on-line anesthesia EEG analysis with its simple computation and sensitivity to drug effect

  9. [On-line monitoring of oxygen uptake rate and its application in hybridoma culture].

    Science.gov (United States)

    Feng, Qiang; Mi, Li; Li, Ling; Wang, Xian-Hui; Chen, Zhi-Nan

    2003-09-01

    On-line analysis and control are critical for the optimization of product yields in animal cell culture. The close monitor of viable cell number helps to gain a better insight into the metabolism and to refine culture strategy. In this study, we use the oxygen uptake rate (OUR) to estimate the number of viable cell and the OUR-based feed-back control strategy for nutrients feeding to improve the efficiency of cell culture. A hybridoma cell line (HAb18) was cultured in fed-batch and perfusion model using serum free medium in 5L CelliGen Plus bioreactor (NBS Co., American) and 5L Biostat B bioreactor (Braun Co., Germany). The system and the method for online monitoring OUR in bioreactors, based on the dynamic measurement of dissolved oxygen (DO), were developed. The method of on-line cell concentration estimation was established based on the relationship between the growth of the hybridoma and the uptake rate of oxygen. This method was then used to determine OUR and the concentrations of cell, antibody, glucose, lactate, glutamine and ammonia in the bioreactors at given times. The relationship between OUR and nutrients metabolism was studied and OUR-based feed-back control strategy, which used the state deltaOUR = 0 as the regulation point, was established and used to control the rates of nutrients or medium feeding rate in the perfusion culture. The results showed that there was close relationship between OUR, concentration of live cells, productivity of antibody and consumption of glutamine. The sudden decrease in OUR may be caused by glutamine depletion, and with different delay times, the viable cell concentration and antibody productivity also decreased. The further analysis revealed the linear relationship between OUR and the density of live cells in the exponential growth phase as qOUR = (0.103 +/- 0.028) x 10(-12) mol/cell/h. These findings can be applied to the on-line detection of live cell density. Our study also indicated that by adjusting the perfusion

  10. Online Pattern Recognition for the ALICE High Level Trigger (tracking and compression techniques)

    CERN Document Server

    INSPIRE-00171460; Loizides, C.; Rohrich, D.; Skaali, B.; Steinbeck, T.; Stock, R.; Tilsner, H.; Ullaland, K.; Vestbo, A.; Vik, T.

    2004-01-01

    The ALICE High Level Trigger has to process data online, in order to select interesting (sub)events, or to compress data efficiently by modeling techniques. Focusing on the main data source, the Time Projection Chamber (TPC), we present two pattern recognition methods under investigation: a sequential approach (cluster finder and track follower) and an iterative approach (track candidate finder and cluster deconvoluter). We show, that the former is suited for pp and low multiplicity PbPb collisions, whereas the latter might be applicable for high multiplicity PbPb collisions of dN/dy>3000. Based on the developed tracking schemes we show that using modeling techniques a compression factor of around 10 might be achievable.

  11. On-line scheduling of Automatics and flexible Manufacturing System using SARSA technique

    Science.gov (United States)

    Aissani, N.; Beldjilali, B.

    2008-06-01

    In this paper context, we will show what will be the best organization of decision entities in flexible manufacturing system, but also show our approach steps to achieve a manufacturing control system which is more reliable insofar as it has responding to queries in online. With this intention, we use a multi-agent system of which the decisions taken by the system are the result of those agents group work, these agents ensure in the same time manufacturing scheduling solution and a continuously improvement of their quality thanks to the reinforcement learning technique and particularly SARSA algorithm which was introduced to them. This technique of learning makes it possible the agents to be adaptive and to learn the best behavior in their various roles (answer the requests, self-organization, plan…) without attenuating the system on-line. A computer implementation and experimentation of this model are provided in this paper to demonstrate the contribution of our approach compared to a famous metaheuristic: tabu search, widely used for scheduling in complex manufacturing systems.

  12. Influences of Tourism Activities on Hydrochemistry of Karst Groundwater Revealed by Principal Component Analysis and On-line Monitoring Technique%基于PCA和在线监测技术研究旅游活动对岩溶地下水水化学的影响

    Institute of Scientific and Technical Information of China (English)

    于正良; 袁道先; 杨平恒; 李林立; 谢世友

    2016-01-01

    Karst groundwater is easy to be contaminated and respond quickly, and thus it is unreasonable to reveal the fast variation processes only based on several times of sampling. In this study, the position of pollution resources of Shuifang spring was confirmed by high-resolution online tracer test, and the geochemical information of Shuifang spring from December 1, 2014 to March 27, 2015 was acquired via high-resolution monitoring. Furthermore, the precipitation, soil water and tap-water of Jinfo Mountain Holiday Hotel and wastewater in this basin were sampled bimonthly. The results show that the recovery of uranium injected in the holiday hotel’s toilet is 82%, the shortest time and the mean time of the tracer transport from the injected point to Shuifang spring are 26.8 h and 90.3 h respectively. The values of geochemical parameters in the spring were close between the first monitoring stage (from December 1, 2014 to December 14, 2014) and the last monitoring stage (from March 5, 2015 to March 27, 2015), whereas three fluctuation periods occurred during the middle monitoring stage and this phenomenon coincided well with the peak of tourism activities. PCA analysis yielded 2 principal components accounting for 75.0% of the total variance. The first component indicated the influences of tourism activities (i.e., the decrease in pH value, dissolved oxygen and the increase in specific conductivity, salinity, turbidity, K+, Na+, Ca2+, Mg2+, Sr2+, TFe, TMn, SiO2, HCO– 3, Cl–, PO3– 4) , which accounted for 61.2% of the variability in the data. The second component represented the influences of precipitation (i.e. the increase in flow, NO– 3, Al3+ and the decrease in water temperature), which contributed 13.8% to the total variance. Therefore, tourism activities were the primary factor responsible for the variation of geochemical parameters in Shuifang spring during the monitoring period.%岩溶地下水极易遭受污染且响应迅速,单靠几次取样难

  13. Development of FIA-enzyme systems for on-line monitoring of starch, cellulose and amygdalin concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Umoh, E.

    1993-07-02

    Immobilized enzyme - FIA systems were developed for application in monitoring starch concentration during fermentation, cellulose concentration in hydrolysis process and amygdalin concentration in industrial effluents as an index of toxic potentiality of such effluents. The starch measuring system consisting of glucoamylase, glucose oxidase and mutarotase was employed to measure glucose and starch simultaneously. The system was used for on-line monitoring of starch concentration in a 24 hour Bacillus lichenifonnis fermentation and dextrin concentration in a 140 hour fermentation of Cephalosporium acremonium. The on-line measurements agree well with the concentrations determined off-line using both calorimetric and enzymatic methods. (orig.)

  14. Implementation and Test of an Online Embedded Grid Impedance Estimation Technique for PV Inverters

    DEFF Research Database (Denmark)

    Asiminoaei, Lucian; Teodorescu, Remus; Blaabjerg, Frede

    2005-01-01

    New and stronger power quality requirements are issued due to the increased amount of photovoltaic (PV) installations. In this paper different methods are used for continuous grid monitoring in PV inverters. By injecting a noncharacteristic harmonic current and measuring the grid voltage response...... it is possible to evaluate the grid impedance directly by the PV inverter, providing a fast and low-cost implementation. This principle theoretically provides an accurate result of the grid impedance but when using it in the context of PV integration, different implementation issues strongly affect the quality...... of the results. This paper also presents a new impedance estimation method including typical implementation problems encountered, and it also presents adopted solutions for online grid impedance measurement. Practical tests on an existing PV inverter validate the chosen solution....

  15. Supplemental Report: Technetium-99 On-Line Monitoring by Beta Counting for Hanford Supernate Waste Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Sigg, R.A.

    2000-08-23

    SRTC is investigating approaches for near-real-time monitoring of 99Tc at selected points in the proposed pretreatment process for Hanford supernate waste solutions. The desired monitoring points include both the feed to and decontaminated product from a technetium-removal column. A Cs-removal column precedes technetium decontamination in the proposed process. Our earlier report (Ref. 1) showed that a simple flow-through beta counting system can easily meet 99Tc detection limit goals for solutions that do not contain interfering radionuclides; however, concentrations of residual interferences were too high in process solutions at the desired monitoring points. That is, technetium can not be measured without additional purification. In this supplement, ADS evaluated ion exchange cartridges to remove radionuclides that interfere with 99Tc beta measurements. Tests on radioactive standard solutions and on Hanford Envelope B (AZ-102) pretreated process solutions show that 99Tc passes through the cation removal cartridge to an on-line beta counter, and that interfering radionuclides were nearly totally removed. Envelope B solutions included both the process's Cs-removed feed to the Tc-removal column and product from the column. Analyses of these solutions before and after the cation exchange cartridge show that the concentration of the primary interference, 137Cs, was reduced to about 1/250th of the feed concentration.

  16. On-line monitoring of extraction process of Flos Lonicerae Japonicae using near infrared spectroscopy combined with synergy interval PLS and genetic algorithm

    Science.gov (United States)

    Yang, Yue; Wang, Lei; Wu, Yongjiang; Liu, Xuesong; Bi, Yuan; Xiao, Wei; Chen, Yong

    2017-07-01

    There is a growing need for the effective on-line process monitoring during the manufacture of traditional Chinese medicine to ensure quality consistency. In this study, the potential of near infrared (NIR) spectroscopy technique to monitor the extraction process of Flos Lonicerae Japonicae was investigated. A new algorithm of synergy interval PLS with genetic algorithm (Si-GA-PLS) was proposed for modeling. Four different PLS models, namely Full-PLS, Si-PLS, GA-PLS, and Si-GA-PLS, were established, and their performances in predicting two quality parameters (viz. total acid and soluble solid contents) were compared. In conclusion, Si-GA-PLS model got the best results due to the combination of superiority of Si-PLS and GA. For Si-GA-PLS, the determination coefficient (Rp2) and root-mean-square error for the prediction set (RMSEP) were 0.9561 and 147.6544 μg/ml for total acid, 0.9062 and 0.1078% for soluble solid contents, correspondingly. The overall results demonstrated that the NIR spectroscopy technique combined with Si-GA-PLS calibration is a reliable and non-destructive alternative method for on-line monitoring of the extraction process of TCM on the production scale.

  17. Review of Physical Based Monitoring Techniques for Condition Assessment of Corrosion in Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Ying Lei

    2013-01-01

    Full Text Available Monitoring the condition of steel corrosion in reinforced concrete (RC is imperative for structural durability. In the past decades, many electrochemistry based techniques have been developed for monitoring steel corrosion. However, these electrochemistry techniques can only assess steel corrosion through monitoring the surrounding concrete medium. As alternative tools, some physical based techniques have been proposed for accurate condition assessment of steel corrosion through direct measurements on embedded steels. In this paper, some physical based monitoring techniques developed in the last decade for condition assessment of steel corrosion in RC are reviewed. In particular, techniques based on ultrasonic guided wave (UGW and Fiber Bragg grating (FBG are emphasized. UGW based technique is first reviewed, including important characters of UGW, corrosion monitoring mechanism and feature extraction, monitoring corrosion induced deboning, pitting, interface roughness, and influence factors. Subsequently, FBG for monitoring corrosion in RC is reviewed. The studies and application of the FBG based corrosion sensor developed by the authors are presented. Other physical techniques for monitoring corrosion in RC are also introduced. Finally, the challenges and future trends in the development of physical based monitoring techniques for condition assessment of steel corrosion in RC are put forward.

  18. Real Time On-line Space Research Laboratory Environment Monitoring with Off-line Trend and Prediction Analysis

    Science.gov (United States)

    Jules, Kenol; Lin, Paul P.

    2006-01-01

    their g-level contribution to the environment. The system can detect both known and unknown vibratory disturbance activities. It can also perform trend analysis and prediction by analyzing past data over many Increments of the space station for selected disturbance activities. This feature can be used to monitor the health of onboard mechanical systems to detect and prevent potential system failure as well as for use by research scientists during their science results analysis. Examples of both real time on-line vibratory disturbance detection and off-line trend analysis are presented in this paper. Several soft computing techniques such as Kohonen s Self-Organizing Feature Map, Learning Vector Quantization, Back-Propagation Neural Networks, and Fuzzy Logic were used to design the system.

  19. Decoding of single-trial auditory mismatch responses for online perceptual monitoring and neurofeedback

    Directory of Open Access Journals (Sweden)

    Alex eBrandmeyer

    2013-12-01

    Full Text Available Multivariate pattern classification methods are increasingly applied to neuroimaging data in the context of both fundamental research and in brain-computer interfacing approaches. Such methods provide a framework for interpreting measurements made at the single-trial level with respect to a set of two or more distinct mental states. Here, we define an approach in which the output of a binary classifier trained on data from an auditory mismatch paradigm can be used for online tracking of perception and as a neurofeedback signal. The auditory mismatch paradigm is known to induce distinct perceptual states related to the presentation of high- and low-probability stimuli, which are reflected in event-related potential (ERP components such as the mismatch negativity (MMN. In the first part of the paper, we illustrate how pattern classification methods can be applied to data collected in an MMN paradigm, including discussion of the optimization of preprocessing steps, the interpretation of features and how the performance of these methods generalizes across individual participants and measurement sessions. We then go on to show that the output of these decoding methods can be used in online settings as a continuous index of single-trial brain activation underlying perceptual discrimination. We conclude by discussing several potential domains of application, including neurofeedback, cognitive monitoring and passive brain-computer interfaces.

  20. Assessment of pollutant load emission from combined sewer overflows based on the online monitoring.

    Science.gov (United States)

    Brzezińska, Agnieszka; Zawilski, Marek; Sakson, Grażyna

    2016-09-01

    Cities equipped with combined sewer systems discharge during wet weather a lot of pollutants into receiving waters by combined storm overflows (CSOs). According to the Polish legislation, CSOs should be activated no more than ten times per year, but in Lodz, most of the 18 existing CSOs operate much more frequently. To assess the pollutant load emitted by one of the existing CSOs, the sensors for measuring the concentration of total suspended solids (SOLITAX sc) and dissolved chemical oxygen demand (UVAS plus) installed in the overflow chamber as well as two flowmeters placed in the outflow sewer were used. In order to check the data from sensors, laboratory tests of combined wastewater quality were conducted simultaneously. For the analysis of the total pollutant load emitted from the overflow, the raw data was denoised using the Savitzky-Golay method. Comparing the load calculated from the analytical results to online smoothed measurements, negligible differences were found, which confirms the usefulness of applying the sensors in the combined sewer system. Online monitoring of the quantity and quality of wastewater emitted by the combined sewer overflows to water receivers, provides a considerable amount of data very useful for combined sewerage upgrading based on computer modelling, and allows for a significant reduction of laboratory analysis.

  1. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function

    Science.gov (United States)

    Feiner, Ron; Engel, Leeya; Fleischer, Sharon; Malki, Maayan; Gal, Idan; Shapira, Assaf; Shacham-Diamand, Yosi; Dvir, Tal

    2016-01-01

    In cardiac tissue engineering approaches to treat myocardial infarction, cardiac cells are seeded within three-dimensional porous scaffolds to create functional cardiac patches. However, current cardiac patches do not allow for online monitoring and reporting of engineered-tissue performance, and do not interfere to deliver signals for patch activation or to enable its integration with the host. Here, we report an engineered cardiac patch that integrates cardiac cells with flexible, free-standing electronics and a 3D nanocomposite scaffold. The patch exhibited robust electronic properties, enabling the recording of cellular electrical activities and the on-demand provision of electrical stimulation for synchronizing cell contraction. We also show that electroactive polymers containing biological factors can be deposited on designated electrodes to release drugs in the patch microenvironment on-demand. We expect that the integration of complex electronics within cardiac patches will eventually provide therapeutic control and regulation of cardiac function. PMID:26974408

  2. Online Monitoring System Design of Intelligent Circuit Breaker Based on DSP and ARM

    Directory of Open Access Journals (Sweden)

    Meng Song

    2014-08-01

    Full Text Available In order to accurately analyze the dynamic characteristics of the vacuum circuit breaker, a dual-core master-slave processor structure for online monitoring system based on DSP and ARM is proposed. This structure consists of host computer, lower computer and signal processing modules. The lower computer uses DSP as the core, which completes acquisition and data preprocessing of circuit breaker’s dynamic characteristics through sensors and signal conditioning circuits. The host computer uses ARM as the core which is responsible for task management, analysis, processing and displaying collected data via Ethernet. The communication between DSP and ARM is conducted by HPI. This design improves the reliability of intelligent control unit for the circuit breaker. The experiment showed that this system works steadily and accuracy.

  3. High-voltage cable insulation online monitoring in coal mine based on pattern recognition

    Science.gov (United States)

    Zhao, Yongmei; Li, Junfeng; Wu, Lingjie; Wang, Yanwen

    2017-03-01

    The single-phase grounding fault is the main electrical fault types of the mine power grid. A new cable insulation online monitoring based on pattern recognition is proposed, in case single-phase grounding fault in coal mine. Firstly, using the pattern recognition method, the insulation state of the cable is divided into three types: "good insulation" and "insulation decline symmetrically" and "insulation decline asymmetrically". Then the cables with "insulation decline asymmetrically" can be further analysed and calculated and its insulation parameter value can be determined. The algorithm is simulated and verified. Simulation result shows that: The zero-sequence voltage and each phase voltage and the zero-sequence current of each cable are taken in the coal mine high-voltage system, and the insulation parameter value of each cable can be calculated accurately by using the pattern recognition method.

  4. Comparative Study of Online Open Circuit Voltage Estimation Techniques for State of Charge Estimation of Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Hicham Chaoui

    2017-04-01

    Full Text Available Online estimation techniques are extensively used to determine the parameters of various uncertain dynamic systems. In this paper, online estimation of the open-circuit voltage (OCV of lithium-ion batteries is proposed by two different adaptive filtering methods (i.e., recursive least square, RLS, and least mean square, LMS, along with an adaptive observer. The proposed techniques use the battery’s terminal voltage and current to estimate the OCV, which is correlated to the state of charge (SOC. Experimental results highlight the effectiveness of the proposed methods in online estimation at different charge/discharge conditions and temperatures. The comparative study illustrates the advantages and limitations of each online estimation method.

  5. A comparative study of sampling techniques for monitoring carcass contamination

    NARCIS (Netherlands)

    Snijders, J.M.A.; Janssen, M.H.W.; Gerats, G.E.; Corstiaensen, G.P.

    1984-01-01

    Four bacteriological sampling techniques i.e. the excision, double swab, agar contract and modified agar contact techniques were compared by sampling pig carcasses before and after chilling. As well as assessing the advantages and disadvantages of the techniques particular attention was paid to

  6. A comparative study of sampling techniques for monitoring carcass contamination

    NARCIS (Netherlands)

    Snijders, J.M.A.; Janssen, M.H.W.; Gerats, G.E.; Corstiaensen, G.P.

    1984-01-01

    Four bacteriological sampling techniques i.e. the excision, double swab, agar contract and modified agar contact techniques were compared by sampling pig carcasses before and after chilling. As well as assessing the advantages and disadvantages of the techniques particular attention was paid to vari

  7. Human monitoring, smart health and assisted living techniques and technologies

    CERN Document Server

    Longhi, Sauro; Freddi, Alessandro

    2017-01-01

    This book covers the three main scientific and technological areas critical for improving people's quality of life - namely human monitoring, smart health and assisted living - from both the research and development points of view.

  8. Modern Techniques and Technologies Applied to Training and Performance Monitoring.

    Science.gov (United States)

    Sands, William A; Kavanaugh, Ashley A; Murray, Steven R; McNeal, Jeni R; Jemni, Monèm

    2016-12-05

    Athlete preparation and performance continues to increase in complexity and costs. Modern coaches are shifting from reliance on personal memory, experience, and opinion to evidence from collected training load data. Training load monitoring may hold vital information for developing systems of monitoring that follow the training process with such precision that both performance prediction and day-to-day management of training become an adjunct to preparation and performance. Time series data collection and analyses in sport are still in their infancy with considerable efforts being applied in "big-data" analytics and models of the appropriate variables to monitor and methods for doing so. Training monitoring has already garnered important applications, but lacks a theoretical framework from which to develop further. As such, we propose a framework involving the following: analyses of individuals, trend analyses, rules-based analysis, and statistical process control.

  9. Investigation of Various Wind Turbine Drivetrain Condition Monitoring Techniques (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, S.

    2011-08-01

    This presentation was given at the 2011 Wind Turbine Reliability Workshop sponsored by Sandia National Laboratories in Albuquerque, NM on August 2-3, 2011. It discusses work for the Gearbox Reliability Collaborative including downtime caused by turbine subsystems, annual failure frequency of turbine subsystems, cost benefits of condition monitoring (CM), the Gearbox Reliability Collaborative's condition monitoring approach and rationale, test setup, and results and observations.

  10. An online monitor of the oxidative capacity of aerosols (o-MOCA)

    Science.gov (United States)

    Eiguren-Fernandez, Arantzazu; Kreisberg, Nathan; Hering, Susanne

    2017-02-01

    The capacity of airborne particulate matter to generate reactive oxygen species (ROS) has been correlated with the generation of oxidative stress both in vitro and in vivo. The cellular damage from oxidative stress, and by implication with ROS, is associated with several common diseases, such as asthma and chronic obstructive pulmonary disease (COPD), and some neurological diseases. Yet currently available chemical and in vitro assays to determine the oxidative capacity of ambient particles require large samples, analyses are typically done offline, and the results are not immediate.Here we report the development of an online monitor of the oxidative capacity of aerosols (o-MOCA) to provide online, time-resolved assessment of the capacity of airborne particles to generate ROS. Our approach combines the Liquid Spot Sampler (LSS), which collects particles directly into small volumes of liquid, and a chemical module optimized for online measurement of the oxidative capacity of aerosol using the dithiothreitol (DTT) assay. The LSS uses a three-stage, laminar-flow water condensation approach to enable the collection of particles as small as 5 nm into liquid. The DTT assay has been improved to allow the online, time-resolved analysis of samples collected with the LSS but could be adapted to other collection methods or offline analysis of liquid extracts.The o-MOCA was optimized and its performance evaluated using the 9,10-phenanthraquinone (PQ) as a standard redox-active compound. Laboratory testing shows minimum interferences or carryover between consecutive samples, low blanks, and a reproducible, linear response between the DTT consumption rate (nmol min-1) and PQ concentration (µM). The calculated limit of detection for o-MOCA was 0.15 nmol min-1. The system was validated with a diesel exhaust particle (DEP) extract, previously characterized and used for the development, improvement, and validation of the standard DTT analysis. The DTT consumption rates (nmol min-1

  11. Remote online monitoring of radon wells used for therapy in bathtubs

    Science.gov (United States)

    von Philipsborn, Henning

    2017-04-01

    Sibyllenbad, in the community of Neualbenreuth, 140 km NNE of Regensburg, is well known for two radon wells and one containing carbon dioxide. The water is used pure or mixed for therapy in 200 L bathtubs for a number of indications. Since its beginning, 26 years ago, the author is active in measuring radon and radon decay products and their factor of equilibrium in air and in water for radiation protection of the personnel and for radon water quality assurance for the patients. For the special local operating conditions - high time resolution of measurements is asked - novel measuring methods and instruments were developed. These proved to be useful for several other applications, not foreseen at the beginning. Recently, a probe was installed for online monitoring of water entering the main water storage tank of 42 m3, at the Kurhaus, two km from the radon wells. The probe consists of a 51 mm x 76 mm NaI (Tl) scintillator with photomultiplier, immersed in continuously flowing water in an 8 L pot. The MCA registers the pulses between 200 and 650 keV of the Rn decay products Pb-214 and Bi-214. Specially developed software calculates the gross [cps] from the total counts for variable counting times. The background, determined separately, is subtracted and the net is multiplied with a calibration factor [Bq/L per net cps], determined separately. The activity concentration [Bq/L] of the radon decay products in water is plotted vs. real time (plot P). With Teamviewer, remote online monitoring is possible from the Radiometric Seminar. At the Rn wells, the flow rate [L/s] of the discontinuously working pumps and the lowering of the water level in [m] is measured online. The two quantities are directly correlated, and with a time lag to the demand of radon water from the Kurhaus. Several series of discrete measurements of water, both at the well and at the storage tank, fresh and after 1, 2 and 3 h after storage in full, closed bottles, reveal factors of equilibrium k

  12. On-Line Model-Based System For Nuclear Plant Monitoring

    Science.gov (United States)

    Tsoukalas, Lefteri H.; Lee, G. W.; Ragheb, Magdi; McDonough, T.; Niziolek, F.; Parker, M.

    1989-03-01

    A prototypical on-line model-based system, LASALLE1, developed at the University of Illinois in collaboration with the Illinois Department of Nuclear Safety (IDNS) is described. Its main purpose is to interpret about 300 signals, updated every two minutes at IDNS from the LaSalle Nuclear Power Plant, and to diagnose possible abnormal conditions. It is written in VAX/VMS OPS5 and operates on both the on-line and testing modes. In its knowledge base, operator and plant actions pertaining to the Emergency Operating Procedure(EOP) A-01, are encoded. This is a procedure driven by a reactor's coolant level and pressure signals; with the purpose of shutting down the reactor, maintaining adequate core cooling and reducing the reactor pressure and temperature to cold shutdown conditions ( about 90 to 200 °F). The monitoring of the procedure is performed from the perspective of Emergency Preparedness. Two major issues are addressed in this system. First, the management of the short-term or working memory of the system. LASALLE1 must reach its inferences, display its conclusion and update a message file every two minutes before a new set of data arrives from the plant. This was achieved by superimposing additional layers of control over the inferencing strategies inherent in OPS5, and developing special rules for the management of the used or outdated information. The second issue is the representation of information and its uncertainty. The concepts of information granularity and performance-level, which are based on a coupling of Probability Theory and the theory of Fuzzy Sets, are used for this purpose. The estimation of the performance-level incorporates a mathematical methodology which accounts for two types of uncertainty encountered in monitoring physical systems: Random uncertainty, in the form of of probability density functions generated by observations, measurements and sensors data and fuzzy uncertainty represented by membership functions based on symbolic

  13. Quantitative on-line concentration for capillary electrophoresis with inkjet sample introduction technique.

    Science.gov (United States)

    Rang, Ying; Zeng, Hulie; Nakajima, Hizuru; Kato, Shungo; Uchiyama, Katsumi

    2015-08-01

    A quantitative sample introduction method based upon inkjet injection was applied to capillary electrophoresis coupled with stacking and sweeping on-line concentration techniques. Methylxanthines were used as model compounds for the proof-of-concept of the method. The volume of injected sample could be easily manipulated by controlling the number of ejected droplets in the injection procedure. Under optimized conditions, a linear relationship between the ejected droplet number and peak area was obtained when the droplet number introduced into the capillary was less than 100. Under optimized quantitative on-line concentration conditions, the limits of detection for theobromine, caffeine, and theophylline were 1.0, 2.0, and 1.0 μM, respectively. The inkjet injection system was evaluated by comparing it with conventional injection methods. The electropherogram of the inkjet injection mode was the same as that for hydrodynamic injection mode, and no sample discrimination was observed compared with the electrokinetic injection mode. The established method was applied to the determination of methylxanthines in bottled green tea. The recoveries of theobromine, caffeine, and theophylline were 94.1, 110.6, and 86.8%, respectively. We conclude that proposed method can be used for quantitative concentration for capillary electrophoresis, thus resulting in an improved accuracy.

  14. Exploring Graduate Students' Perspectives towards Using Gamification Techniques in Online Learning

    Directory of Open Access Journals (Sweden)

    Daniah ALABBASI

    2017-07-01

    Full Text Available Teachers and educational institutions are attempting to find an appropriate strategy to motivate as well as engage students in the learning process. Institutions are encouraging the use of gamification in education for the purpose of improving the intrinsic motivation as well as engagement. However, the students’ perspective of the issue is under-investigated. The purpose of this research study was to explore graduate students’ perspectives toward the use of gamification techniques in online learning. The study used exploratory research and survey as the data collection tool. Forty-seven graduate students (n = 47 enrolled in an instructional technology program studied in a learning management system that supports gamification (TalentLMS. The average total percentages were calculated for each survey section to compose the final perspective of the included students. The results showed a positive perception toward the use of gamification tools in online learning among graduate students. Students require effort-demanding, challenging, sophisticated learning systems that increase competency, enhance recall memory, concentration, attentiveness, commitment, and social interaction. Limitations of the study are identified, which highlights the need for further research on the subject matter.

  15. Romantic Partner Monitoring After Breakups: Attachment, Dependence, Distress, and Post-Dissolution Online Surveillance via Social Networking Sites.

    Science.gov (United States)

    Fox, Jesse; Tokunaga, Robert S

    2015-09-01

    Romantic relationship dissolution can be stressful, and social networking sites make it difficult to separate from a romantic partner online as well as offline. An online survey (N = 431) tested a model synthesizing attachment, investment model variables, and post-dissolution emotional distress as predictors of interpersonal surveillance (i.e., "Facebook stalking") of one's ex-partner on Facebook after a breakup. Results indicated that anxious attachment predicted relational investment but also seeking relationship alternatives; avoidant attachment was negatively related to investment but positively related to seeking alternatives. Investment predicted commitment, whereas seeking alternatives was negatively related to commitment. Commitment predicted emotional distress after the breakup. Distress predicted partner monitoring immediately following the breakup, particularly for those who did not initiate the breakup, as well as current partner monitoring. Given their affordances, social media are discussed as potentially unhealthy enablers for online surveillance after relationship termination.

  16. Behavior Change Techniques Implemented in Electronic Lifestyle Activity Monitors: A Systematic Content Analysis

    Science.gov (United States)

    Lewis, Zakkoyya H; Mayrsohn, Brian G; Rowland, Jennifer L

    2014-01-01

    Background Electronic activity monitors (such as those manufactured by Fitbit, Jawbone, and Nike) improve on standard pedometers by providing automated feedback and interactive behavior change tools via mobile device or personal computer. These monitors are commercially popular and show promise for use in public health interventions. However, little is known about the content of their feedback applications and how individual monitors may differ from one another. Objective The purpose of this study was to describe the behavior change techniques implemented in commercially available electronic activity monitors. Methods Electronic activity monitors (N=13) were systematically identified and tested by 3 trained coders for at least 1 week each. All monitors measured lifestyle physical activity and provided feedback via an app (computer or mobile). Coding was based on a hierarchical list of 93 behavior change techniques. Further coding of potentially effective techniques and adherence to theory-based recommendations were based on findings from meta-analyses and meta-regressions in the research literature. Results All monitors provided tools for self-monitoring, feedback, and environmental change by definition. The next most prevalent techniques (13 out of 13 monitors) were goal-setting and emphasizing discrepancy between current and goal behavior. Review of behavioral goals, social support, social comparison, prompts/cues, rewards, and a focus on past success were found in more than half of the systems. The monitors included a range of 5-10 of 14 total techniques identified from the research literature as potentially effective. Most of the monitors included goal-setting, self-monitoring, and feedback content that closely matched recommendations from social cognitive theory. Conclusions Electronic activity monitors contain a wide range of behavior change techniques typically used in clinical behavioral interventions. Thus, the monitors may represent a medium by which

  17. Resistive plate chamber online data quality monitoring for the Compact Muon Solenoid at the European Center for Nuclear Research

    CERN Document Server

    Whitaker, William David

    2008-01-01

    A comprehensive, online, data quality monitoring software package has been developed for the muon system at the European Center for Nuclear Research's (CERN's) Compact Muon Solenoid (CMS) experiment. The package was written in Java, C++, and HTML. It provides real-time, RPC performance feedback in an easy to use graphic user interface (GUI).

  18. Blending online techniques with traditional face to face teaching methods to deliver final year undergraduate radiology learning content.

    Science.gov (United States)

    Howlett, David; Vincent, Tim; Watson, Gillian; Owens, Emma; Webb, Richard; Gainsborough, Nicola; Fairclough, Jil; Taylor, Nick; Miles, Ken; Cohen, Jon; Vincent, Richard

    2011-06-01

    To review the initial experience of blending a variety of online educational techniques with traditional face to face or contact-based teaching methods to deliver final year undergraduate radiology content at a UK Medical School. The Brighton and Sussex Medical School opened in 2003 and offers a 5-year undergraduate programme, with the final 5 spent in several regional centres. Year 5 involves several core clinical specialities with onsite radiology teaching provided at regional centres in the form of small-group tutorials, imaging seminars and also a one-day course. An online educational module was introduced in 2007 to facilitate equitable delivery of the year 5 curriculum between the regional centres and to support students on placement. This module had a strong radiological emphasis, with a combination of imaging integrated into clinical cases to reflect everyday practice and also dedicated radiology cases. For the second cohort of year 5 students in 2008 two additional online media-rich initiatives were introduced, to complement the online module, comprising imaging tutorials and an online case discussion room. In the first year for the 2007/2008 cohort, 490 cases were written, edited and delivered via the Medical School managed learning environment as part of the online module. 253 cases contained a form of image media, of which 195 cases had a radiological component with a total of 325 radiology images. Important aspects of radiology practice (e.g. consent, patient safety, contrast toxicity, ionising radiation) were also covered. There were 274,000 student hits on cases the first year, with students completing a mean of 169 cases each. High levels of student satisfaction were recorded in relation to the online module and also additional online radiology teaching initiatives. Online educational techniques can be effectively blended with other forms of teaching to allow successful undergraduate delivery of radiology. Efficient IT links and good image quality

  19. Blending online techniques with traditional face to face teaching methods to deliver final year undergraduate radiology learning content

    Energy Technology Data Exchange (ETDEWEB)

    Howlett, David, E-mail: david.howlett@esht.nhs.uk [Department of Radiology, Eastbourne District General Hospital, Kings Drive, Eastbourne, East Sussex BN21 2UD (United Kingdom); Vincent, Tim [Department of IT, Brighton and Sussex Medical School (BSMS) (United Kingdom); Watson, Gillian; Owens, Emma [Department of Radiology, Eastbourne District General Hospital, Kings Drive, Eastbourne, East Sussex BN21 2UD (United Kingdom); Webb, Richard; Gainsborough, Nicola [Department of Medicine, Royal Sussex County Hospital, Brighton (United Kingdom); Fairclough, Jil [Department of IT, Brighton and Sussex Medical School (BSMS) (United Kingdom); Taylor, Nick [Department of Medical Illustration, Eastbourne District General Hospital (United Kingdom); Miles, Ken [Department of Imaging, BSMS (United Kingdom); Cohen, Jon [Department of Infectious Diseases, BSMS (United Kingdom); Vincent, Richard [Department of Cardiology, BSMS (United Kingdom)

    2011-06-15

    Aim: To review the initial experience of blending a variety of online educational techniques with traditional face to face or contact-based teaching methods to deliver final year undergraduate radiology content at a UK Medical School. Materials and methods: The Brighton and Sussex Medical School opened in 2003 and offers a 5-year undergraduate programme, with the final 5 spent in several regional centres. Year 5 involves several core clinical specialities with onsite radiology teaching provided at regional centres in the form of small-group tutorials, imaging seminars and also a one-day course. An online educational module was introduced in 2007 to facilitate equitable delivery of the year 5 curriculum between the regional centres and to support students on placement. This module had a strong radiological emphasis, with a combination of imaging integrated into clinical cases to reflect everyday practice and also dedicated radiology cases. For the second cohort of year 5 students in 2008 two additional online media-rich initiatives were introduced, to complement the online module, comprising imaging tutorials and an online case discussion room. Results: In the first year for the 2007/2008 cohort, 490 cases were written, edited and delivered via the Medical School managed learning environment as part of the online module. 253 cases contained a form of image media, of which 195 cases had a radiological component with a total of 325 radiology images. Important aspects of radiology practice (e.g. consent, patient safety, contrast toxicity, ionising radiation) were also covered. There were 274,000 student hits on cases the first year, with students completing a mean of 169 cases each. High levels of student satisfaction were recorded in relation to the online module and also additional online radiology teaching initiatives. Conclusion: Online educational techniques can be effectively blended with other forms of teaching to allow successful undergraduate delivery of

  20. ON-LINE THERMAL BARRIER COATING MONITORING FOR REAL-TIME FAILURE PROTECTION AND LIFE MAXIMIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Dennis H. LeMieux

    2003-10-01

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization,'' to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability, availability, and maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCs have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can, therefore, accelerate the degradation of substrate component materials and eventually lead to a premature failure of critical components and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.

  1. On-Line Thermal Barrier Coating Monitoring for Real-Time Failure Protection and Life Maximization

    Energy Technology Data Exchange (ETDEWEB)

    Dennis H. LeMieux

    2005-04-01

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization'', to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability availability maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCs have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can therefore accelerate the degradation of substrate components materials and eventually lead to a premature failure of critical component and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.

  2. On-Line Thermal Barrier Coating Monitoring for Real-Time Failure Protection and Life Maximization

    Energy Technology Data Exchange (ETDEWEB)

    Dennis H. LeMieux

    2004-10-01

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization'', to develop, build and install the first generation of an on-line TBC monitoring system for use on land -based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability availability maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCs have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can therefore accelerate the degradation of substrate components materials and eventually lead to a premature failure of critical component and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems; a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization.

  3. ON-LINE THERMAL BARRIER COATING MONITORING FOR REAL-TIME FAILURE PROTECTION AND LIFE MAXIMIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Dennis H. LeMieux

    2003-07-01

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization,'' to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability, availability, and maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCs have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can, therefore, accelerate the degradation of substrate component materials and eventually lead to a premature failure of critical components and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.

  4. Non-Dispersive Infrared Sensor for Online Condition Monitoring of Gearbox Oil.

    Science.gov (United States)

    Rauscher, Markus S; Tremmel, Anton J; Schardt, Michael; Koch, Alexander W

    2017-02-18

    The condition of lubricating oil used in automotive and industrial gearboxes must be controlled in order to guarantee optimum performance and prevent damage to machinery parts. In normal practice, this is done by regular oil change intervals and routine laboratory analysis, both of which involve considerable operating costs. In this paper, we present a compact and robust optical sensor that can be installed in the lubrication circuit to provide quasi-continuous information about the condition of the oil. The measuring principle is based on non-dispersive infrared spectroscopy. The implemented sensor setup consists of an optical measurement cell, two thin-film infrared emitters, and two four-channel pyroelectric detectors equipped with optical bandpass filters. We present a method based on multivariate partial least squares regression to select appropriate optical bandpass filters for monitoring the oxidation, water content, and acid number of the oil. We perform a ray tracing analysis to analyze and correct the influence of the light path in the optical setup on the optical parameters of the bandpass filters. The measurement values acquired with the sensor for three different gearbox oil types show high correlation with laboratory reference data for the oxidation, water content, and acid number. The presented sensor can thus be a useful supplementary tool for the online condition monitoring of lubricants when integrated into a gearbox oil circuit.

  5. Non-Dispersive Infrared Sensor for Online Condition Monitoring of Gearbox Oil

    Directory of Open Access Journals (Sweden)

    Markus S. Rauscher

    2017-02-01

    Full Text Available The condition of lubricating oil used in automotive and industrial gearboxes must be controlled in order to guarantee optimum performance and prevent damage to machinery parts. In normal practice, this is done by regular oil change intervals and routine laboratory analysis, both of which involve considerable operating costs. In this paper, we present a compact and robust optical sensor that can be installed in the lubrication circuit to provide quasi-continuous information about the condition of the oil. The measuring principle is based on non-dispersive infrared spectroscopy. The implemented sensor setup consists of an optical measurement cell, two thin-film infrared emitters, and two four-channel pyroelectric detectors equipped with optical bandpass filters. We present a method based on multivariate partial least squares regression to select appropriate optical bandpass filters for monitoring the oxidation, water content, and acid number of the oil. We perform a ray tracing analysis to analyze and correct the influence of the light path in the optical setup on the optical parameters of the bandpass filters. The measurement values acquired with the sensor for three different gearbox oil types show high correlation with laboratory reference data for the oxidation, water content, and acid number. The presented sensor can thus be a useful supplementary tool for the online condition monitoring of lubricants when integrated into a gearbox oil circuit.

  6. On-line monitoring of dissolved gas-in-oil with FTIR spectra

    Institute of Scientific and Technical Information of China (English)

    Xianyong Liu; Yunluo Liu; Li Yue

    2003-01-01

    To overcome the disadvantages of conventional DGA (dissolved gas-in-oil) analysis using gas chromatography and other electrochemical sensors, initial researches were completed to realize on-line monitoring of dissolved gas-in-oil of power transformers using FTIR (Fourier Transform InfraRed) spectroscopy. Gas cell method is used to determine the characteristic absorption peaks of each diagnostic gas; simple and novel devices and procedures were designed in order to get measurable samples and spectra of mixed diagnostic gases with known concentration are taken using long optical path gas cell. The range of wavelength is estimated to be 3.0-13.9 μm from experimental spectra data. Hence the corresponding sampling frequency range should be in 536-4288 Hz and usable optical materials are suggested. It is concluded that a resolution of 10 cm-1 may well satisfy the monitoring of all diagnostic gases and water content except hydrogen, and the lowest detection limit may be as low as 2×l0-8 to acetylene with a 2.4-meter-long optical length.

  7. On-Line Thermal Barrier Coating Monitoring for Real-Time Failure Protection and Life Maximization

    Energy Technology Data Exchange (ETDEWEB)

    Dennis H. LeMieux

    2005-10-01

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Power Generation, Inc proposed a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization'', to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability availability maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCs have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can therefore accelerate the degradation of substrate components materials and eventually lead to a premature failure of critical component and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Power Generation, Inc. has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.

  8. Design optimisation of a TOF-based collimated camera prototype for online hadrontherapy monitoring

    Science.gov (United States)

    Pinto, M.; Dauvergne, D.; Freud, N.; Krimmer, J.; Letang, J. M.; Ray, C.; Roellinghoff, F.; Testa, E.

    2014-12-01

    Hadrontherapy is an innovative radiation therapy modality for which one of the main key advantages is the target conformality allowed by the physical properties of ion species. However, in order to maximise the exploitation of its potentialities, online monitoring is required in order to assert the treatment quality, namely monitoring devices relying on the detection of secondary radiations. Herein is presented a method based on Monte Carlo simulations to optimise a multi-slit collimated camera employing time-of-flight selection of prompt-gamma rays to be used in a clinical scenario. In addition, an analytical tool is developed based on the Monte Carlo data to predict the expected precision for a given geometrical configuration. Such a method follows the clinical workflow requirements to simultaneously have a solution that is relatively accurate and fast. Two different camera designs are proposed, considering different endpoints based on the trade-off between camera detection efficiency and spatial resolution to be used in a proton therapy treatment with active dose delivery and assuming a homogeneous target.

  9. Online Decorrelation of Humidity and Temperature in Chemical Sensors for Continuous Monitoring

    CERN Document Server

    Huerta, Ramon; Fonollosa, Jordi; Rulkov, Nikolai F; Rodriguez-Lujan, Irene

    2016-01-01

    A method for online decorrelation of chemical sensor readings from the effects of environmental humidity and temperature variations is proposed. The goal is to improve the accuracy of electronic nose measurements for continuous monitoring by processing data from simultaneous readings of environmental humidity and temperature. The electronic nose setup built for this study included eight different metal-oxide sensors, temperature and humidity sensors with a wireless communication link to PC. This wireless electronic nose was used to monitor air for two years in the residence of one of the authors and collected data continuously during 510 full days with a sampling rate of 2 samples per second. To estimate the effects of variations in air humidity and temperature on the chemical sensors readings, we used a standard energy band model for an n-type metal-oxide sensor. The main assumption of the model is that variations in sensor conductivity can be expressed as a nonlinear function of changes in the semiconductor...

  10. LHCb: Control and Monitoring of the Online Computer Farm for Offline processing in LHCb

    CERN Multimedia

    Granado Cardoso, L A; Closier, J; Frank, M; Gaspar, C; Jost, B; Liu, G; Neufeld, N; Callot, O

    2013-01-01

    LHCb, one of the 4 experiments at the LHC accelerator at CERN, uses approximately 1500 PCs (averaging 12 cores each) for processing the High Level Trigger (HLT) during physics data taking. During periods when data acquisition is not required most of these PCs are idle. In these periods it is possible to profit from the unused processing capacity to run offline jobs, such as Monte Carlo simulation. The LHCb offline computing environment is based on LHCbDIRAC (Distributed Infrastructure with Remote Agent Control). In LHCbDIRAC, job agents are started on Worker Nodes, pull waiting tasks from the central WMS (Workload Management System) and process them on the available resources. A Control System was developed which is able to launch, control and monitor the job agents for the offline data processing on the HLT Farm. This control system is based on the existing Online System Control infrastructure, the PVSS SCADA and the FSM toolkit. It has been extensively used launching and monitoring 22.000+ agents simultaneo...

  11. Non-Dispersive Infrared Sensor for Online Condition Monitoring of Gearbox Oil

    Science.gov (United States)

    Rauscher, Markus S.; Tremmel, Anton J.; Schardt, Michael; Koch, Alexander W.

    2017-01-01

    The condition of lubricating oil used in automotive and industrial gearboxes must be controlled in order to guarantee optimum performance and prevent damage to machinery parts. In normal practice, this is done by regular oil change intervals and routine laboratory analysis, both of which involve considerable operating costs. In this paper, we present a compact and robust optical sensor that can be installed in the lubrication circuit to provide quasi-continuous information about the condition of the oil. The measuring principle is based on non-dispersive infrared spectroscopy. The implemented sensor setup consists of an optical measurement cell, two thin-film infrared emitters, and two four-channel pyroelectric detectors equipped with optical bandpass filters. We present a method based on multivariate partial least squares regression to select appropriate optical bandpass filters for monitoring the oxidation, water content, and acid number of the oil. We perform a ray tracing analysis to analyze and correct the influence of the light path in the optical setup on the optical parameters of the bandpass filters. The measurement values acquired with the sensor for three different gearbox oil types show high correlation with laboratory reference data for the oxidation, water content, and acid number. The presented sensor can thus be a useful supplementary tool for the online condition monitoring of lubricants when integrated into a gearbox oil circuit. PMID:28218701

  12. Process spectroscopy in microemulsions—Raman spectroscopy for online monitoring of a homogeneous hydroformylation process

    Science.gov (United States)

    Paul, Andrea; Meyer, Klas; Ruiken, Jan-Paul; Illner, Markus; Müller, David-Nicolas; Esche, Erik; Wozny, Günther; Westad, Frank; Maiwald, Michael

    2017-03-01

    A major industrial reaction based on homogeneous catalysis is hydroformylation for the production of aldehydes from alkenes and syngas. Hydroformylation in microemulsions, which is currently under investigation at Technische Universität Berlin on a mini-plant scale, was identified as a cost efficient approach which also enhances product selectivity. Herein, we present the application of online Raman spectroscopy on the reaction of 1-dodecene to 1-tridecanal within a microemulsion. To achieve a good representation of the operation range in the mini-plant with regard to concentrations of the reactants a design of experiments was used. Based on initial Raman spectra partial least squares regression (PLSR) models were calibrated for the prediction of 1-dodecene and 1-tridecanal. Limits of predictions arise from nonlinear correlations between Raman intensity and mass fractions of compounds in the microemulsion system. Furthermore, the prediction power of PLSR models becomes limited due to unexpected by-product formation. Application of the lab-scale derived calibration spectra and PLSR models on online spectra from a mini-plant operation yielded promising estimations of 1-tridecanal and acceptable predictions of 1-dodecene mass fractions suggesting Raman spectroscopy as a suitable technique for process analytics in microemulsions.

  13. Online monitoring of Accessories for Underground Electrical Installations through Acoustics Emissions

    Directory of Open Access Journals (Sweden)

    Casals-Torrens P.

    2012-04-01

    Full Text Available The acoustic waves caused by Partial Discharges inside the dielectric materials, can be detected by acoustic emission (AE sensors and analyzed in the time domain. The experimental results presented, show the online detection capability of these sensors in the environment near a cable accessory, such as a splice or terminal. The AE sensors are immune to electromagnetic interference and constitute a detection method non-intrusive and non-destructive, which ensures a galvanic decoupling with respect to electric networks, this technique of partial discharge detection can be applied as a test method for preventive or predictive maintenance (condition-based maintenance to equipments or facilities of medium and high voltage in service and represents an alternative method to electrical detection systems, conventional or not, that continue to rely on the detection of current pulses. This paper presents characterization tests of the sensors AE through comparative tests of partial discharge on accessories for underground power cables.

  14. Statistical techniques for sampling and monitoring natural resources

    Science.gov (United States)

    Hans T. Schreuder; Richard Ernst; Hugo Ramirez-Maldonado

    2004-01-01

    We present the statistical theory of inventory and monitoring from a probabilistic point of view. We start with the basics and show the interrelationships between designs and estimators illustrating the methods with a small artificial population as well as with a mapped realistic population. For such applications, useful open source software is given in Appendix 4....

  15. Monitoring of rapid sand filters using an acoustic imaging technique

    NARCIS (Netherlands)

    Allouche, N.; Simons, D.G.; Rietveld, L.C.

    2012-01-01

    A novel instrument is developed to acoustically image sand filters used for water treatment and monitor their performance. The instrument consists of an omnidirectional transmitter that generates a chirp with a frequency range between 10 and 110 kHz, and an array of hydrophones. The instrument was e

  16. Monitoring contaminant strategies: tools, techniques, methodologies and model approaches

    Science.gov (United States)

    A century-long history of experiments on solute transport in soils has resulted in a wide range of experimental setups and procedures, as well as methods for interpreting observations which has led to considerable ambiguity regarding monitoring approaches. This presentation will focus on results an...

  17. Distributed Fiber Optic Sensor for On-Line Monitoring of Coal Gasifier Refractory Health

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Anbo [Center for Photonics Technology, Blacksburgh, VA (United States); Yu, Zhihao [Center for Photonics Technology, Blacksburgh, VA (United States)

    2015-11-30

    This report summarizes technical progress on the program “Distributed Fiber Optic Sensor for On-Line Monitoring of Coal Gasifier Refractory Health,” funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The scope of work entails analyses of traveling grating generation technologies in an optical fiber, as well as the interrogation of the gratings to infer a distributed temperature along the fiber, for the purpose of developing a real-time refractory health condition monitoring technology for coal gasifiers. During the project period, which is from 2011-2015, three different sensing principles were studied, including four-wave mixing (FWM), coherent optical time-domain reflectometer (C-OTDR) and Brillouin optical time-domain analysis (BOTDA). By comparing the three methods, the BOTDA was selected for further development into a complete bench-top sensing system for the proposed high-temperature sensing application. Based on the input from Eastman Chemical, the industrial collaborator on this project, a cylindrical furnace was designed and constructed to simulate typical gasifier refractory temperature conditions in the laboratory, and verify the sensor’s capability to fully monitor refractory conditions on the back-side at temperatures up to 1000°C. In the later stages of the project, the sensing system was tested in the simulated environment for its sensing performance and high-temperature survivability. Through theoretical analyses and experimental research on the different factors affecting the sensor performance, a sensor field deployment strategy was proposed for possible future sensor field implementations.

  18. Development of electronic nose and near infrared spectroscopy analysis techniques to monitor the critical time in SSF process of feed protein.

    Science.gov (United States)

    Jiang, Hui; Chen, Quansheng

    2014-10-17

    In order to assure the consistency of the final product quality, a fast and effective process monitoring is a growing need in solid state fermentation (SSF) industry. This work investigated the potential of non-invasive techniques combined with the chemometrics method, to monitor time-related changes that occur during SSF process of feed protein. Four fermentation trials conducted were monitored by an electronic nose device and a near infrared spectroscopy (NIRS) spectrometer. Firstly, principal component analysis (PCA) and independent component analysis (ICA) were respectively applied to the feature extraction and information fusion. Then, the BP_AdaBoost algorithm was used to develop the fused model for monitoring of the critical time in SSF process of feed protein. Experimental results showed that the identified results of the fusion model are much better than those of the single technique model both in the training and validation sets, and the complexity of the fusion model was also less than that of the single technique model. The overall results demonstrate that it has a high potential in online monitoring of the critical moment in SSF process by use of integrating electronic nose and NIRS techniques, and data fusion from multi-technique could significantly improve the monitoring performance of SSF process.

  19. Development of Electronic Nose and Near Infrared Spectroscopy Analysis Techniques to Monitor the Critical Time in SSF Process of Feed Protein

    Directory of Open Access Journals (Sweden)

    Hui Jiang

    2014-10-01

    Full Text Available In order to assure the consistency of the final product quality, a fast and effective process monitoring is a growing need in solid state fermentation (SSF industry. This work investigated the potential of non-invasive techniques combined with the chemometrics method, to monitor time-related changes that occur during SSF process of feed protein. Four fermentation trials conducted were monitored by an electronic nose device and a near infrared spectroscopy (NIRS spectrometer. Firstly, principal component analysis (PCA and independent component analysis (ICA were respectively applied to the feature extraction and information fusion. Then, the BP_AdaBoost algorithm was used to develop the fused model for monitoring of the critical time in SSF process of feed protein. Experimental results showed that the identified results of the fusion model are much better than those of the single technique model both in the training and validation sets, and the complexity of the fusion model was also less than that of the single technique model. The overall results demonstrate that it has a high potential in online monitoring of the critical moment in SSF process by use of integrating electronic nose and NIRS techniques, and data fusion from multi-technique could significantly improve the monitoring performance of SSF process.

  20. Online monitoring of particle mass flow rate in bottom spray fluid bed coating--development and application.

    Science.gov (United States)

    Wang, Li Kun; Heng, Paul Wan Sia; Liew, Celine Valeria

    2010-08-16

    The primary purpose of this study is to develop a visiometric process analyzer for online monitoring of particle mass flow rate in the bottom spray fluid bed coating process. The secondary purpose is to investigate the influences of partition gap and air accelerator insert size on particle mass flow rate using the developed visiometric process analyzer. Particle movement in the region between the product chamber and partition column was captured using a high speed camera. Mean particle velocity and number of particles in the images were determined by particle image velocimetry and morphological image processing method respectively. Mass flow rate was calculated using particle velocity, number of particles in the images, particle density and size information. Particle velocity and number findings were validated using image tracking and manual particle counting techniques respectively. Validation experiments showed that the proposed method was accurate. Partition gap was found to influence particle mass flow rate by limiting the rate of solids flux into the partition column; the air accelerator insert was found to influence particle mass flow rate by a Venturi effect. Partition gap and air accelerator insert diameter needed to be adjusted accordingly in relation to the other variability sources and diameter of coating cores respectively. The potential, challenges and possible solutions of the proposed visiometric process analyzer were further discussed. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  1. Cultivating ICT Students' Interpersonal Soft Skills in Online Learning Environments Using Traditional Active Learning Techniques

    Science.gov (United States)

    Myers, Trina S.; Blackman, Anna; Andersen, Trevor; Hay, Rachel; Lee, Ickjai; Gray, Heather

    2014-01-01

    Flexible online delivery of tertiary ICT programs is experiencing rapid growth. Creating an online environment that develops team building and interpersonal skills is difficult due to factors such as student isolation and the individual-centric model of online learning that encourages discrete study rather than teamwork. Incorporating teamwork…

  2. On-line monitoring of the transesterification reaction between triglycerides and ethanol using near infrared spectroscopy combined with gas chromatography.

    Science.gov (United States)

    Richard, Romain; Li, Ying; Dubreuil, Brigitte; Thiebaud-Roux, Sophie; Prat, Laurent

    2011-06-01

    Many analytical procedures have been developed to determine the composition of reaction mixtures during transesterification of vegetable oils with alcohols. However, despite their accuracy, these methods are time consuming and cannot be easily used for on-line monitoring. In this work, a fast analytical method was developed to on-line monitor the transesterification reaction of high oleic sunflower oil with ethanol using Near InfraRed spectroscopy and a multivariate approach. The reactions were monitored through sequential scans of the reaction medium with a probe in a one-liter batch reactor without collecting and preparing samples. To calibrate the NIR analytical method, gas chromatography-flame ionization detection was used as a reference method. The method was validated by studying the kinetics of the EtONa-catalyzed transesterification reaction. Activation energy (51.0 kJ/mol) was also determined by considering a pseudo second order kinetics model. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Influence of local calibration on the quality of online wet weather discharge monitoring: feedback from five international case studies.

    Science.gov (United States)

    Caradot, Nicolas; Sonnenberg, Hauke; Rouault, Pascale; Gruber, Günter; Hofer, Thomas; Torres, Andres; Pesci, Maria; Bertrand-Krajewski, Jean-Luc

    2015-01-01

    This paper reports about experiences gathered from five online monitoring campaigns in the sewer systems of Berlin (Germany), Graz (Austria), Lyon (France) and Bogota (Colombia) using ultraviolet-visible (UV-VIS) spectrometers and turbidimeters. Online probes are useful for the measurement of highly dynamic processes, e.g. combined sewer overflows (CSO), storm events, and river impacts. The influence of local calibration on the quality of online chemical oxygen demand (COD) measurements of wet weather discharges has been assessed. Results underline the need to establish local calibration functions for both UV-VIS spectrometers and turbidimeters. It is suggested that practitioners calibrate locally their probes using at least 15-20 samples. However, these samples should be collected over several events and cover most of the natural variability of the measured concentration. For this reason, the use of automatic peristaltic samplers in parallel to online monitoring is recommended with short representative sampling campaigns during wet weather discharges. Using reliable calibration functions, COD loads of CSO and storm events can be estimated with a relative uncertainty of approximately 20%. If no local calibration is established, concentrations and loads are estimated with a high error rate, questioning the reliability and meaning of the online measurement. Similar results have been obtained for total suspended solids measurements.

  4. Biological water quality monitoring using chemiluminescent and bioluminescent techniques

    Science.gov (United States)

    Thomas, R. R.

    1978-01-01

    Automated chemiluminescence and bioluminescence sensors were developed for the continuous monitoring of microbial levels in water supplies. The optimal chemical procedures were determined for the chemiluminescence system to achieve maximum sensitivity. By using hydrogen peroxide, reaction rate differentiation, ethylene diamine tetraacetic acid (EDTA), and carbon monoxide pretreatments, factors which cause interference were eliminated and specificity of the reaction for living and dead bacteria was greatly increased. By employing existing technology with some modifications, a sensitive and specific bioluminescent system was developed.

  5. Data Quality Assurance Techniques for a Monitoring and Diagnosis System

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    By researching the data quality problem in the monitoring and diagnosis system (MDS),the method of detecting non-condition data based on the development trend of equipment condition is proposed, and three requirements of criteria for detecting non-condition data: dynamic, syntheses and simplicity are discussed. According to the general mode of data management in MDS, a data quality assurance system (DQAS) comprising data quality monitoring, data quality diagnosis, detection criteria adjusting and artificial confirmation is set up. A route inspection system called MTREE realizes the DQAS. Aiming at vibration data of route inspection, two detecting criteria are made. One is the quality monitoring parameter, which is found through combining and optimizing some fundamental parameters by genetic programming (GP). The other is the quality diagnosis criterion, i. e. pseudo distance of Spectral-Energy-Vector (SEV) named Adjacent J-divergence, which indicates the variation degree of adjacent data's spectral energy distribution. Results show that DQAS, including these two criteria, is effective to improve the data quality of MDS.

  6. Continuous online monitoring of ionic dialysance allows modification of delivered hemodialysis treatment time.

    Science.gov (United States)

    Chesterton, Lindsay J; Priestman, William S; Lambie, Stewart H; Fielding, Catherine A; Taal, Maarten W; Fluck, Richard J; McIntyre, Christopher W

    2006-10-01

    Considerable intrinsic intrapatient variability influences the actual delivery of Kt/V. The aim of this study is to examine the feasibility of using continuous online assessment of ionic dialysance measurements (Kt/V(ID)) to allow dialysis sessions to be altered on an individual basis. Ten well-established chronic hemodialysis (HD) patients without significant residual renal function were studied (mean age 65+/-4.3 [38-81] years, mean length of time on dialysis 66+/-18 [14-189] months). These patients had all been receiving thrice-weekly 4-hr dialysis using Integra dialysis monitors. Dialysis monitors were equipped with Diascan modules permitting measurement of Kt/V(ID). Predicted treatment time required to achieve a Kt/V(ID) > or = 1.1 (equivalent to a urea-based method of 1.2) was calculated from the delivered Kt/V(ID) at 60 and 120 min. Treatment time was reprogrammed at 2 hr (ensuring all planned ultrafiltration would be accommodated into the new modified session duration). Owing to practical issues, and to avoid excessively short dialysis times, these changes were censored at no more than+/-10% of the usual 240-min treatment time (210-265 min). Data were collected from a total of 50 dialysis sessions. Almost all sessions (47/50) required modification of the standard treatment time: 13/50 sessions were lengthened and 34/50 shortened (mean length of session 232.2+/-2.5 [210-265] min). A Kt/V(ID) of > or = 1.1 was achieved in 39/50 sessions. The difference in mean urea-based Kt/V poststudy (1.3+/-0.05 [1.1-1.6]) and mean achieved Kt/V(ID) (1.16+/-0.02 [0.7-1.37]) was significant (p = 0.002). The use of individualized variable dialysis treatment time using online ionic dialysance measurements of Kt/V(ID) appears both practicable and effective at ensuring consistently delivered adequate dialysis.

  7. Versatile Ion-polarized Techniques On-line (VITO) experiment at ISOLDE-CERN

    Energy Technology Data Exchange (ETDEWEB)

    Stachura, M., E-mail: monika.stachura@cern.ch [CERN, 1211 Geneva 23 (Switzerland); Gottberg, A. [CERN, 1211 Geneva 23 (Switzerland); Johnston, K. [CERN, 1211 Geneva 23 (Switzerland); Universität des Saarlandes, Experimentalphysik, 66123 Saabrucken (Germany); Bissell, M.L.; Garcia Ruiz, R.F. [Instituut voor Kern- en Stralingsfysica, KU Leuven, Celestijnenlaan 200 D, 3001 Leuven (Belgium); Martins Correia, J.; Granadeiro Costa, A.R. [Centro de Ciências e Tecnologias Nucleares - C" 2TN, Instituto Superior Técnico, Campus Tecnológico e Nuclear, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS (Portugal); Dehn, M. [Technische Universität München, Physics Department, James-Franck-Str. 1, 85748 Garching (Germany); Deicher, M. [Universität des Saarlandes, Experimentalphysik, 66123 Saabrucken (Germany); Fenta, A. [CICECO, Complexo de Laboratórios Tecnológicos, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Hemmingsen, L. [Kemisk Institut, Københavns Universitet, Universtetsparken 5, 2100 København (Denmark); Mølholt, T.E. [CERN, 1211 Geneva 23 (Switzerland); Munch, M. [Institut for Fysik og Astronomi, Aarhus Universitet, Ny Munkegade 120, 8000 Aarhus C (Denmark); Neyens, G. [Instituut voor Kern- en Stralingsfysica, KU Leuven, Celestijnenlaan 200 D, 3001 Leuven (Belgium); and others

    2016-06-01

    The VITO (Versatile Ion-polarized Techniques Online) project is a new experimental setup at the ISOLDE facility at CERN. VITO is a dedicated beam line for producing laser-induced spin-polarized beams of both, atoms and ions, and it has been commissioned in response to the continuously growing demand for the use of spin-polarized beams. The new VITO beam line is a modification of the formerly existing ultra-high vacuum beam line, connecting ASPIC (Apparatus for Surface Physics and Interfaces at CERN), and it has been under construction since the beginning of 2014. Once fully commissioned, VITO will open up numerous possibilities for carrying out multidisciplinary experiments in the areas of nuclear and solid state physics, fundamental interaction physics and biophysics. In its final stage the VITO beam line will provide three fully independent experimental stations: UHV chamber for material science applications, a β-asymmetry station where highly-polarized ions will be available, and a central open-end station suitable for travelling experiments. The VITO beam line will operate in two different modes providing either beams of spin-polarized atoms or ions, or non-polarized ion beams to all three end stations operating from 10{sup −10} mbar to 50 mbar. Recent experimental campaigns with stable and radioactive beams have allowed for testing VITO’s constituent parts and have demonstrated 96% of ion beam transmission to the collection chamber installed on the central station. The first experimental results obtained with on-line Perturbed Angular Correlation (PAC) spectroscopy using {sup 68m}Cu ion-beams will be briefly discussed.

  8. Test of on-line alkali detector based on surface ionisation technique

    Energy Technology Data Exchange (ETDEWEB)

    Wiktorsson, L.-P.A.; Sjoestroem, L.K. [Chemical Technology, Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    1998-12-31

    The objective of this project is to test on-line alkali metal measuring equipment in a reducing atmosphere. The equipment is based on surface ionisation (SI) technique. The tests have taken place in reactors of varying sizes, from mg per batch to continuous feeding of kg/h, non-pressurised and pressurised. On-line alkali metal detector prototypes have been tested in real gases at atmospheric and elevated pressure. The primary parts of the detector prototypes are a platinum filament and an ion collector. The first prototype (A) of the surface ionisation detector was tested in a mg-scale pyrolysis reactor, a so-called Pyrojector, by introducing the coal sample with a `pelletizer`. The generated detector signal, a current in the pA to {mu}A range, was directly proportional to the sample weight. The second prototype (B) of the surface ionisation detector was tested in a very tarry gas flow, 20 g tar/Nm{sup 3}, at atmospheric pressure in a continuously fed g/min-scale biomass pyrolysis apparatus. The generated detector signal, a current in the {mu}A range, was measured by a picoammeter and sampled on a computer. The feedstocks were pine and birch and straw. A third prototype (D) of the surface ionisation detector was tested during pressurised gasification in a fluidised bed reactor. The feedstock was birch. The prototype detected alkali in the gas, though the temperature was only 773-793 K in the vicinity of the detector. The filament temperature control has to be further developed and tested. 1 ref., 19 figs., 6 tabs.

  9. Versatile Ion-polarized Techniques On-line (VITO) experiment at ISOLDE-CERN

    Science.gov (United States)

    Stachura, M.; Gottberg, A.; Johnston, K.; Bissell, M. L.; Garcia Ruiz, R. F.; Martins Correia, J.; Granadeiro Costa, A. R.; Dehn, M.; Deicher, M.; Fenta, A.; Hemmingsen, L.; Mølholt, T. E.; Munch, M.; Neyens, G.; Pallada, S.; Silva, M. R.; Zakoucky, D.

    2016-06-01

    The VITO (Versatile Ion-polarized Techniques Online) project is a new experimental setup at the ISOLDE facility at CERN. VITO is a dedicated beam line for producing laser-induced spin-polarized beams of both, atoms and ions, and it has been commissioned in response to the continuously growing demand for the use of spin-polarized beams. The new VITO beam line is a modification of the formerly existing ultra-high vacuum beam line, connecting ASPIC (Apparatus for Surface Physics and Interfaces at CERN), and it has been under construction since the beginning of 2014. Once fully commissioned, VITO will open up numerous possibilities for carrying out multidisciplinary experiments in the areas of nuclear and solid state physics, fundamental interaction physics and biophysics. In its final stage the VITO beam line will provide three fully independent experimental stations: UHV chamber for material science applications, a β-asymmetry station where highly-polarized ions will be available, and a central open-end station suitable for travelling experiments. The VITO beam line will operate in two different modes providing either beams of spin-polarized atoms or ions, or non-polarized ion beams to all three end stations operating from 10-10 mbar to 50 mbar. Recent experimental campaigns with stable and radioactive beams have allowed for testing VITO's constituent parts and have demonstrated 96% of ion beam transmission to the collection chamber installed on the central station. The first experimental results obtained with on-line Perturbed Angular Correlation (PAC) spectroscopy using 68mCu ion-beams will be briefly discussed.

  10. Online monitoring and diagnosis of power transformers; Monitoreo y diagnostico en linea de transformadores de potencia

    Energy Technology Data Exchange (ETDEWEB)

    Linan, Roberto; Alvarez, Rafael; Jimenez, Leon; Nunez, Arturo [Instituto de Investigaciones Electricas, Cuernavaca (Mexico); Contreras, Francisco A. [Comision Federal de Electricidad, Mexico, D. F. (Mexico)

    1997-12-31

    In this article are presented three diagnosis techniques for power transformers. The first one consists in a non-invasive technique for detecting mechanical failure in taps with load in power transformers utilizing vibration sensors. The second one consists in an online diagnosis to detect the presence of arcing and partial discharges in the power transformer based in the recording and analysis of the signals using ultrasonic sensors that detect the noise that these phenomena emit from the outside of the transformer tank. The third technique consists in analyzing the dissolved gases in the transformer insulating oil, with it and in accordance with the levels and the existing relationships, it is possible to determine the involved deteriorating process. The results of the application of the three mentioned diagnosis techniques, which were used for the evaluation of some transformers in different Comision Federal de Electricidad (CFE) substations, are presented. [Espanol] En el presente articulo se reportan tres tecnicas de diagnostico para transformadores de potencia. La primera consiste en una tecnica no invasiva para detectar fallas mecanicas en cambiadores de derivacion con carga de transformadores de potencia utilizando sensores de vibracion. La segunda consiste en un diagnostico en linea para detectar la presencia de arqueos y descargas parciales en el transformador de potencia basada en el registro y analisis de senales usando sensores ultrasonicos que detectan el sonido que emiten esos fenomenos desde el exterior del tanque del transformador. La tercer tecnica consisten en analizar los gases disueltos en el aceite aislante de los transformadores, con la cual y de acuerdo con los niveles y relaciones existentes, es posible determinar el proceso de deterioro involucrado. Se presentan resultados de la aplicacion de las tres tecnicas de diagnostico mencionadas, las cuales se usaron para evaluar algunos transformadores en diferentes subestaciones de la Comision

  11. LapRLSR for NIR spectral modeling and its application to online monitoring of the column separation of Salvianolate

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A novel near infrared (NIR) modeling method-Laplacian regularized least squares regression (LapRLSR) was presented,which can take the advantage of many unlabeled spectra to promote the prediction performance of the model even if there are only few calibration samples. Using LapRLSR modeling, NIR spectral analysis was applied to the online monitoring of the concentration of salvia acid B in the column separation of Salvianolate. The results demonstrated that LapRLSR outperformed partial least squares (PLS) significantly, and NIR online analysis was applicable.(C) 2007 Guo An Luo. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

  12. A Demonstration of GPS Landslide Monitoring Using Online Positioning User Service (OPUS)

    Science.gov (United States)

    Wang, G.

    2011-12-01

    Global Positioning System (GPS) technologies have been frequently applied to landslide study, both as a complement, and as an alternative to conventional surveying methods. However, most applications of GPS for landslide monitoring have been limited to the academic community for research purposes. High-accuracy GPS has not been widely equipped in geotechnical companies and used by technicians. The main issue that limits the applications of GPS in the practice of high-accuracy landslide monitoring is the complexity of GPS data processing. This study demonstrated an approach using the Online Positioning User Service (OPUS) (http://www.ngs.noaa.gov/OPUS) provided by the National Geodetic Survey (NGS) of National Oceanic and Atmospheric Administration (NOAA) to process GPS data and conduct long-term landslide monitoring in the Puerto Rico and Virgin Islands Region. Continuous GPS data collected at a creeping landslide site during two years were used to evaluate different scenarios for landslide surveying: continuous or campaign, long duration or short duration, morning or afternoon (different weather conditions). OPUS uses Continuously Operating Reference Station (CORS) managed by NGS (http://www.ngs.noaa.giv/CORS/) as references and user data as a rover to solve a position. There are 19 CORS permanent GPS stations in the Puerto Rico and Virgin Islands region. The dense GPS network provides a precise and reliable reference frame for subcentimeter-accuracy landslide monitoring in this region. Our criterion for the accuracy was the root-mean-square (RMS) of OPUS solutions over a 2-year period with respect to true landslide displacement time series overt the same period. The true landslide displacements were derived from a single-baseline (130 m) GPS processing by using 24-hour continuous data. If continuous GPS surveying is performed in the field, then OPUS static processing can provide 0.6 cm horizontal and 1.1 cm vertical precision with few outliers. If repeated

  13. Online-monitoring of MO-surge arresters with passive surface acoustic wave radio sensors; Online-Temperaturmessung an MO-Ueberspannungsableitern mit funkabfragbaren Oberflaechenwellensensoren

    Energy Technology Data Exchange (ETDEWEB)

    Hinrichsen, V. [Siemens AG, Berlin (Germany). Bereich Energieuebertragung und -verteilung; Scholl, G. [Siemens AG, Muenchen (Germany). Fachzentrum Oberflaechenwellentechnik und Funksensorik

    1998-08-24

    Today no practicable and economical solutions are available for an overall online-monitoring of high-voltage metal oxide surge arresters, which should comprise a surge counter function, an energy monitor and the monitoring of electrical aging if required. A permanent measurement of the arrester temperature on high potential, which basically could provide all these functions, has not yet been realized due to the related technical problems. However, newly developed high-frequency temperature measuring systems based on wireless passive surface acoustic wave temperature sensors are now offering this possibility for the first time. They are actually being field-tested in a 420-kV-arrester and have shown a good performance so far. (orig.) [Deutsch] Zu einem geschlossenen Online-Monitoringkonzept von Hochspannungs-Metalloxid-Ableitern, das eine Ansprechzaehlerfunktion, einen Energiemonitor and gegebenenfalls eine Ueberwachung elektrischer Kennlinienalterung enthalten sollte, fehlen bis heute geeignete, wirtschaftlich vertretbare Loesungen. Eine dauernde Messung der Ableitertemperatur auf Hochspannungspotential, mit der an sich alle genannten Funktionen einfach realisiert werden koennten, scheiterte bisher an der technischen Umsetzbarkeit. Neuentwickelte funkabfragbare Oberflaechenwellen-Temperatursensoren eroeffenen nun erstmalig diese Moeglichkeit. Eingebaut in einem 420-kV-Ableiter, befinden sie sich zur Zeit in einem Feldversuch in praktischer Erprobung und erfuellen dort alle in sie gesetzten Erwartungen. (orig.)

  14. On-line cell mass monitoring of Saccharomyces cerevisiae cultivations by multi-wavelength fluorescence

    DEFF Research Database (Denmark)

    Haack, Martin Brian; Eliasson, Anna; Olsson, Lisbeth

    2004-01-01

    -wavelength culture fluorescence. The excitation wavelength ranged from 270 to 550 nm with 20 nm steps and the emission wavelength range was from 310 to 590 nm also with 20 nm steps. The obtained spectra were analysed chemometrically with the multi-way technique, parallel factor analysis (PARAFAC), resulting...... in a decomposition of the multivariate fluorescent landscape, whereby underlying spectra of the individual intrinsic fluorophors present in the cell mass were estimated. Furthermore, gravimetrically determined cell mass concentration was used together with the fluorescence spectra for calibration and validation......-line monitoring of culture fluorescence can be used for estimation of the cell mass concentration during cultivations....

  15. Report from the Light Water Reactor Sustainability Workshop on On-Line Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Baldwin; Magdy Tawfik; Leonard Bond

    2010-06-01

    In support of expanding the use of nuclear power, interest is growing in methods of determining the feasibility of longer term operation for the U.S. fleet of nuclear power plants, particularly operation beyond 60 years. To help establish the scientific and technical basis for such longer term operation, the DOE-NE has established a research and development (R&D) objective. This objective seeks to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors. The Light Water Reactor Sustainability (LWRS) Program, which addresses the needs of this objective, is being developed in collaboration with industry R&D programs to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of nuclear power plants. The LWRS Program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy and environmental security. In moving to identify priorities and plan activities, the Light Water Reactor Sustainability Workshop on On-Line Monitoring (OLM) Technologies was held June 10–12, 2010, in Seattle, Washington. The workshop was run to enable industry stakeholders and researchers to identify the nuclear industry needs in the areas of future OLM technologies and corresponding technology gaps and research capabilities. It also sought to identify approaches for collaboration that would be able to bridge or fill the technology gaps. This report is the meeting proceedings, documenting the presentations and discussions of the workshop and is intended to serve as a basis for a plan which is under development that will enable the I&C research pathway to achieve its goals. Benefits to the nuclear industry accruing from On Line Monitoring Technology cannot be ignored. Information gathered thus far has contributed significantly to the Department of Energy’s Light Water Reactor Sustainability Program. DOE has

  16. Development of an online biosensor for in situ monitoring of chlorine dioxide gas disinfection efficacy

    Energy Technology Data Exchange (ETDEWEB)

    Del Busto-Ramos, M.; Budzik, M.; Corvalan, C.; Morgan, M.; Nivens, D.; Applegate, B. [Purdue Univ., West Lafayette, IN (United States). Dept. of Food Science; Turco, R. [Purdue Univ., West Lafayette, IN (United States). Dept. of Agronomy

    2008-03-15

    A prototype bioluminescence-based biosensor was designed and constructed to evaluate the antimicrobial efficacy of chlorine dioxide (ClO{sub 2}) gas under various treatment conditions. The biosensor consisted of a bioluminescent bioreporter (Pseudomonas fluorescens 5RL), an optical transducer (photomultiplier tube), and a light-tight chamber housing, the bioreporter and the transducer. The bioluminescent recombinant P. fluorescens 5RL in the biosensor allowed for online monitoring of bioluminescence during ClO{sub 2} gas disinfection. Experiments were performed to evaluate the effects of the two key physical parameters associated with ClO{sub 2} disinfection: relative humidity (40, 60, 80%) and ClO{sub 2} gas concentration (0.5, 1.0, 1.6, 2.1 mg/l) on the bioreporter. Results showed that increasing concentrations of ClO{sub 2} gas corresponded to a faster decrease in luminescence. The rates of luminescence decrease from P. fluorescens 5RL, and the log reduction time (LRT, time required to obtain 1-log reduction in luminescence) were calculated for each treatment tested. The LRT values of luminescence were 103, 78, 53, and 35 s for 0.5, 1.0, 1.6, and 2.1 mg/l of ClO{sub 2} gas treatment, respectively, at 78% relative humidity. The gas concentration which caused a tenfold change in LRT (z value) for luminescence of P. fluorescens 5RL was 3.4 mg/l of ClO{sub 2}. The prototype biosensor showed potential for many applications, such as monitoring real-time microbial inactivation and understanding parameters that influence the efficacy of gaseous decontamination procedures. (orig.)

  17. On-line combustion monitoring on dry low NOx industrial gas turbines

    Science.gov (United States)

    Rea, S.; James, S.; Goy, C.; Colechin, M. J. F.

    2003-07-01

    To reduce the NOx emissions levels produced by industrial gas turbines most manufacturers have adopted a lean premixed approach to combustion. Such combustion systems are susceptible to combustion-driven oscillations, and much of the installed modern gas turbines continue to suffer from reduced reliability due to instability-related problems. The market conditions which now exist under the New Electricity Trading Arrangements provide a strong driver for power producers to improve the reliability and availability of their generating units. With respect to low-emission gas turbines, such improvements can best be achieved through a combination of sophisticated monitoring, combustion optimization and, where appropriate, plant modifications to reduce component failure rates. On-line combustion monitoring (OLCM) provides a vital contribution to each of these by providing the operator with increased confidence in the health of the combustion system and also by warning of the onset of combustion component deterioration which could cause significant downstream damage. The OLCM systems installed on Powergen's combined cycle gas turbine plant utilize high-temperature dynamic pressure transducers mounted close to the combustor to enable measurement of the fluctuating pressures experienced within the combustion system. Following overhaul, a reference data set is determined over a range of operating conditions. Real-time averaged frequency spectra are then compared to the reference data set to enable identification of abnormalities. Variations in the signal may occur due to changes in ambient conditions, fuel composition, operating conditions, and the onset of component damage. The systems on Powergen's plant have been used successfully to detect each of the above, examples of which are presented here.

  18. Novel Monitoring Techniques for Characterizing Frictional Interfaces in the Laboratory

    Directory of Open Access Journals (Sweden)

    Paul A. Selvadurai

    2015-04-01

    Full Text Available A pressure-sensitive film was used to characterize the asperity contacts along a polymethyl methacrylate (PMMA interface in the laboratory. The film has structural health monitoring (SHM applications for flanges and other precision fittings and train rail condition monitoring. To calibrate the film, simple spherical indentation tests were performed and validated against a finite element model (FEM to compare normal stress profiles. Experimental measurements of the normal stress profiles were within −7.7% to 6.6% of the numerical calculations between 12 and 50 MPa asperity normal stress. The film also possessed the capability of quantifying surface roughness, an important parameter when examining wear and attrition in SHM applications. A high definition video camera supplied data for photometric analysis (i.e., the measure of visible light of asperities along the PMMA-PMMA interface in a direct shear configuration, taking advantage of the transparent nature of the sample material. Normal stress over individual asperities, calculated with the pressure-sensitive film, was compared to the light intensity transmitted through the interface. We found that the luminous intensity transmitted through individual asperities linearly increased 0.05643 ± 0.0012 candelas for an increase of 1 MPa in normal stress between normal stresses ranging from 23 to 33 MPa.

  19. Turbidimetric Measurement for On-line Monitoring of SiO{sub 2} Particles

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Sook; Lim, H. B. [Dankook University, Seoul (Korea, Republic of); Kim, Yang Sun [Proteonik, Inc., Ansan (Korea, Republic of)

    2004-06-15

    In this work, the fundamental study of on-line monitoring of SiO{sub 2} particles in the size range of 40 nm to 725 nm was carried out using turbidimetry. The size of particle was measured using a field emission scanning electron microscope (FE-SEM). The factors affecting on the turbidity were discussed, for example, wavelength, size, and concentration. In order to observe the dependence of turbidity on the wavelength, a turbidimetric system equipped with charged coupled detector (CCD) was built. The shape of the transmitted peak was changed and the peak maximum was shifted to the red when the concentration of particle was increased. This result indicates that the turbidity is related to the wavelength, which corresponds to the characteristic of the Mie extinction coefficient, Q, that is a function of not only particle diameter and refractive index but also wavelength. It is clear that a linear calibration curve for each particle in different size can be obtained at an optimized wavelength.

  20. On-line monitoring of chemical reactions by using bench-top nuclear magnetic resonance spectroscopy.

    Science.gov (United States)

    Danieli, E; Perlo, J; Duchateau, A L L; Verzijl, G K M; Litvinov, V M; Blümich, B; Casanova, F

    2014-10-06

    Real-time nuclear magnetic resonance (NMR) spectroscopy measurements carried out with a bench-top system installed next to the reactor inside the fume hood of the chemistry laboratory are presented. To test the system for on-line monitoring, a transfer hydrogenation reaction was studied by continuously pumping the reaction mixture from the reactor to the magnet and back in a closed loop. In addition to improving the time resolution provided by standard sampling methods, the use of such a flow setup eliminates the need for sample preparation. Owing to the progress in terms of field homogeneity and sensitivity now available with compact NMR spectrometers, small molecules dissolved at concentrations on the order of 1 mmol L(-1) can be characterized in single-scan measurements with 1 Hz resolution. Owing to the reduced field strength of compact low-field systems compared to that of conventional high-field magnets, the overlap in the spectrum of different NMR signals is a typical situation. The data processing required to obtain concentrations in the presence of signal overlap are discussed in detail, methods such as plain integration and line-fitting approaches are compared, and the accuracy of each method is determined. The kinetic rates measured for different catalytic concentrations show good agreement with those obtained with gas chromatography as a reference analytical method. Finally, as the measurements are performed under continuous flow conditions, the experimental setup and the flow parameters are optimized to maximize time resolution and signal-to-noise ratio.

  1. Economics of online structural health monitoring of wind turbines: Cost benefit analysis

    Science.gov (United States)

    Van Dam, Jeremy; Bond, Leonard J.

    2015-03-01

    Operations and maintenance (O&M) costs have an average share over the lifetime of the turbine of approximately 20%-25% of the total levelized cost per kWh of electricity produced. Online structural health monitoring (OSHM) and condition-based maintenance (CBM) of wind turbine blades has the potential to reduce O&M costs and hence reduce the overall cost of wind energy. OSHM and CBM offer the potential to improve turbine blade life cycle management, limit the number of physical inspections, and reduce the potential for missed significant defects. An OSHM system would reduce the need for physical inspections, and have inspections occur only after problem detection takes place. In the economics of wind energy, failures and unplanned outages can cause significant downtime, particularly while waiting for the manufacturing and shipping of major parts. This paper will report a review and assessment of SHM technologies and a cost benefit analysis, which will examine whether the added costs associated with an OSHM system will give an adequate return on the investment. One method in which OSHM reduces costs is, in part, by converting corrective maintenance to preventative maintenance. This paper shows that under both best and worse conditions implementing an OSHM system is cost effective in more than 50% of the trials, which have been performed. Opportunities appear to exist to improve the economic justification for implementing OSHM.

  2. On-line monitoring of the intravascular volume during haemodialysis by continuous refractometry.

    Science.gov (United States)

    Kuhlmann, U; van Buuren, F; Aziz, O; Lange, H

    1999-01-01

    The control of intravascular volume (IVV) by continuous on-line measurement of protein concentration would optimise the patients' specific rate of ultrafiltration. To prove the accuracy of a refractometric device, plasma was continuously drawn by haemofiltration during 10 haemodialysis treatments of male patients. Refractometry reflects highly significant changes in the concentrations of filtrate proteins (r = 0.862, p < 0.001) and blood proteins (rtotal = 0.593, ptotal < 0.001). In vitro, the refractometric device detected a change of protein concentration of 0.041 g/L through a refraction increase of 0.1 mV. The power of discrimination was 0.067% of IVV However, in vivo, the accuracy of IVV refractometric monitoring is reduced by interference factors such as sodium (0. 141 mV/mmol/L), glucose (0.034 mV/mg/dl) and triglycerides (-0.040 mV/mg/dl). Adjustment of the refraction data using sodium and glucose electrodes and plasma filters with a cut-off below the size of chylomicrons is recommended.

  3. A novel method about online monitoring surface shape of optical elements in continuous polishing

    Science.gov (United States)

    Yin, Jin; Zhu, Jianqiang; Jiao, Xiang; Wu, Yongzhong

    2016-10-01

    In conventional continuous polishing process, the surface shape of work-piece was measured by an optical plane template after being placed in such environment with constant temperature for 1 to 2 hours. During this period, uncertain influence may occur on the polishing pad due to the change of system state. Meanwhile, the regular off-line testing may cause re-processing. In this paper, a new method about on-line monitoring surface shape of optical elements is proposed by the theory of run sphere, and the change in curvature radius of the work-piece which lead to its radial tilt angle change. The change in work-piece surface shape indirectly obtain by the correction plate small angle with respect to the horizontal, and the angle were detected on line by the high-precision goniometer with the resolution 0.04 ''. According to theoretical calculations, the diameter of 200mm precision work-piece PV value up to 0.02λ (λ = 632.8nm). The fused quartz glass was measured by above method. The test results showed that the surface accuracy and processing efficiency were significantly promoted, and also improving the controllability of surface shape of work-piece based on this method.

  4. Application of laser ultrasonic method for on-line monitoring of friction stir spot welding process.

    Science.gov (United States)

    Zhang, Kuanshuang; Zhou, Zhenggan; Zhou, Jianghua

    2015-09-01

    Application of a laser ultrasonic method is developed for on-line monitoring of the friction stir spot welding (FSSW) process. Based on the technology of FSSW, laser-generated ultrasonic waves in a good weld and nonweld area are simulated by a finite element method. The reflected and transmitted waves are analyzed to disclose the properties of the welded interface. The noncontact-laser ultrasonic-inspection system was established to verify the numerical results. The reflected waves in the good-weld and nonweld area can be distinguished by time-of-flight. The transmitted waves evidently attenuate in the nonweld area in contrast to signal amplitude in the good weld area because of interfacial impedance difference. Laser ultrasonic C-scan images can sufficiently evaluate the intrinsic character of the weld area in comparison with traditional water-immersion ultrasonic testing results. The research results confirm that laser ultrasonics would be an effective method to realize the characterization of FSSW defects.

  5. Soil hydrophysical characteristics in the Nitra river basin (Slovakia: Their monitoring, analysis, online publishing

    Directory of Open Access Journals (Sweden)

    Dusan Igaz

    2014-04-01

    Full Text Available The paper is focused on the purpose made, or local monitoring of areal unit of the Nitra river basin (Slovakia, Central EU with total area 4501 km2 in order to obtain the inputs on soil, moisture and hydrophysical characteristics of the given area. In this study, there was evaluated the share of individual soil texture classes in the Nitra river basin on the basis of map records and its comparison with the soil samples taken from the 111 selected sites. Soil samples were taken from two depths of soil profile (15-20 cm, 40-45 cm. The sites were chosen according to the percentage representation of individual soil texture classes. Based on the identification of sampling points localization and following analysis of granularity ratio, it can be concluded that the grain composition from the soil samplings does not correspond fully with the map records. Subsequently, drainage branches of moisture retention curves were measured for all sites Obtained hydrophysical data were enabled on the web-portal. With the use of OpenGeo Suite software, version 4.0.2 and its components Geoserver and Geoexplorer, the data on soil characteristics were published online at: http://fzki.uniag.sk/02FacultyStructure/02Departments/KBH/02Research/Hydrophysics.Thus, information about the soil characteristics in the basin is available to specialists.

  6. New Electric Online Oil Condition Monitoring Sensor – an Innovation in Early Failure Detection of Industrial Gears

    Directory of Open Access Journals (Sweden)

    Manfred Mauntz

    2013-02-01

    Full Text Available A new online diagnostics system for the continuous condition monitoring of lubricating oils in industrial gearboxes is presented. Characteristic features of emerging component damage, such as wear, contamination or chemical aging, are identified in an early stage. The OilQSens® sensor effectively controls the proper operation conditions of bearings and cogwheels in gears. Also, the condition of insulating oils in transformers can be monitored. The online diagnostics system measures components of the specific complex impedance of oils. For instance, metal abrasion due to wear debris, broken oil molecules, forming acids or oil soaps result in an increase of the electrical conductivity, which directly correlates with the degree of contamination in the oil. The dielectrical properties of the oils are particularly determined by the water content that becomes accessible via an additional accurate measurement of the dielectric constant. For additivated oils, statements on the degradation of additives can also be derived from changes in the dielectric constant. For an efficient machine utilization and targeted damage prevention, the new OilQSens® online condition monitoring sensor system allows for timely preventative maintenance on demand rather than in rigid inspection intervals. The determination of impurities or reduction in the quality of the oil and the quasi continuous evaluation of wear and chemical aging follow the holistic approach of a real-time monitoring of a change in the condition of the oil-machine system. Once the oil condition monitoring sensors are installed on the plants, the measuring data can be displayed and evaluated elsewhere. The measuring signals are transmitted to a web-based condition monitoring system via LAN, WLAN or serial interfaces of the sensor system. Monitoring of the damage mechanisms during proper operation below the tolerance limits of the components enables specific preventive maintenance independent of rigid

  7. Cleaning Verification Monitor Technique Based on Infrared Optical Methods

    Science.gov (United States)

    2004-10-01

    Cleaning Verification Techniques.” Real-time methods to provide both qualitative and quantitative assessments of surface cleanliness are needed for a...detection VCPI method offer a wide range of complementary capabilities in real-time surface cleanliness verification. Introduction Currently...also has great potential to reduce or eliminate premature failures of surface coatings caused by a lack of surface cleanliness . Additional

  8. New approaches to biocide effectiveness monitoring using on-site biocide active analysis, ATP analysis, and on-line dosage/monitoring control

    Energy Technology Data Exchange (ETDEWEB)

    Borchardt, S.A.; Wetegrove, R.L.; Martens, J.D. [Nalco Chemical Co., Naperville, IL (United States)

    1997-09-01

    Accurate monitoring and control of antimicrobial agents (biocides) are necessary to maintain optimum performance of industrial water systems. Evaluation of many biocides on-site is often difficult due to a lack of accurate field methods. For many non-oxidizing biocides, no field methods are available. The use of a bioluminescence bioassay allows on-site measurement of actual effective toxicant. This technology is based on a bioluminescence bioassay that measures the decrease in light output of a specific bacterium over a given time period in the presence of a toxicant. This response can be accurately correlated to the concentration of toxicant present. This system can also be used to monitor the response of microbiological populations to treatment programs by monitoring shifts in ATP levels. On-line dosage/monitoring control of a biocide product can be achieved by the addition of an inert fluorescent tracer molecule to a biocide formulation. The benefits of these traced biocides include precise documentation and on-line control of product feed and discharge, measurement of system consumption, and measurement of biocide concentration gradients throughout a system. The attributes of these new approaches to biocide effectiveness monitoring allow for more efficient and economical microbiological treatment of industrial water systems.

  9. Opportunities for Process Monitoring Techniques at Delayed Access Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, Michael M.; Gitau, Ernest TN; Johnson, Shirley J.; Schanfein, Mark; Toomey, Christopher

    2013-09-20

    Except for specific cases where the International Atomic Energy Agency (IAEA) maintains a continuous presence at a facility (such as the Japanese Rokkasho Reprocessing Plant), there is always a period of time or delay between the moment a State is notified or aware of an upcoming inspection, and the time the inspector actually enters the material balance area or facility. Termed by the authors as “delayed access,” this period of time between inspection notice and inspector entrance to a facility poses a concern. Delayed access also has the potential to reduce the effectiveness of measures applied as part of the Safeguards Approach for a facility (such as short-notice inspections). This report investigates the feasibility of using process monitoring to address safeguards challenges posed by delayed access at a subset of facility types.

  10. Monitoring fetal maturation - objectives, techniques and indices of autonomic function.

    Science.gov (United States)

    Hoyer, Dirk; Zebrowski, Jan; Cysarz, Dirk; Goncalves, Hernani; Pytlik, Adelina; Amorim-Costa, Celia; Bernardes, Joao; Ayres-de-Campos, Diogo; Witte, Otto; Schleussner, Ekkehard; Stroux, Lisa; Redman, Christopher; Georgieva, Antoniya; Payne, Stephen; Clifford, Gari; Signorini, Maria; Magenes, Giovanni; Andreotti, Fernando; Malberg, Hagen; Zaunseder, Sebastian; Lakhno, Igor; Schneider, Uwe

    2017-02-10

    Monitoring the fetal behavior does not only have implications for acute care but also for identifying developmental disturbances that burden the entire later life. The concept, of "fetal programming", also known as "developmental origins of adult disease hypothesis", e.g. applies for cardiovascular, metabolic, hyperkinetic, cognitive disorders. Since the autonomic nervous system is involved in all of those systems, cardiac autonomic control may provide relevant functional diagnostic and prognostic information. The fetal heart rate patterns (HRP) are one of the few functional signals in the prenatal period that relate to autonomic control and, therefore, is predestinated for its evaluation. The development of sensitive markers of fetal maturation and its disturbances requires the consideration of physiological fundamentals, recording technology and HRP parameters of autonomic control. Based on the ESGCO2016 special session on monitoring the fetal maturation we herein report the most recent results on: (i) functional fetal autonomic brain age score (fABAS), Recurrence Quantitative Analysis and Binary Symbolic Dynamics of complex HRP resolve specific maturation periods, (ii) magnetocardiography (MCG) based fABAS was validated for cardiotocography (CTG), (iii) 30 min recordings are sufficient for obtaining episodes of high variability, important for intrauterine growth restriction (IUGR) detection in handheld Doppler, (iv) novel parameters from PRSA to identify Intra IUGR fetuses, (v) Electrocardiographic (ECG) recordings allowed a stable heart beat detection in the maturation periods between 20 to 28 weeks of gestation only, (vi) correlation between maternal and fetal HRV is disturbed in pre-eclampsia. The reported novel developments significantly extend the possibilities for the established CTG methodology. Novel HRP indices improve the accuracy of assessment due to their more appropriate consideration of complex autonomic processes across the recording technologies

  11. Design of a tracking device for on-line dose monitoring in hadrontherapy

    Science.gov (United States)

    Battistoni, G.; Collamati, F.; De Lucia, E.; Faccini, R.; Marafini, M.; Mattei, I.; Muraro, S.; Paramatti, R.; Patera, V.; Pinci, D.; Rucinski, A.; Russomando, A.; Sarti, A.; Sciubba, A.; Solfaroli Camillocci, E.; Toppi, M.; Traini, G.; Voena, C.

    2017-02-01

    Hadrontherapy is a technique for cancer treatment that exploits ion beams (mostly protons and carbons). A critical issue is the accuracy that is achievable when monitoring the dose released by the beam to the tumor and to the surrounding tissues. We present the design of a tracking device, developed in the framework of the INSIDE project [1], capable of monitoring in real time the longitudinal profile of the dose delivered in the patient. This is possible by detecting the secondary particles produced by the interaction of the beam in the tissues. The position of the Bragg peak can be correlated to the charged particles emission point distribution measurement. The tracking device will be able to provide a fast response on the dose pattern by tracking the secondary charged fragments. The tracks are detected using 6 planes of scintillating fibers, providing the 3D coordinates of the track intersection with each plane. The fibers planes are followed by a plastic scintillator and by a small calorimeter built with a pixelated Lutetium Fine Silicate (LFS) crystal. A complete detector simulation, followed by the event reconstruction, has been performed to determine the achievable monitoring spatial resolution.

  12. Feature extraction and analysis of online reviews for the recommendation of books using opinion mining technique

    OpenAIRE

    Shahab Saquib Sohail; Jamshed Siddiqui; Rashid Ali

    2016-01-01

    The customer's review plays an important role in deciding the purchasing behaviour for online shopping as a customer prefers to get the opinion of other customers by observing their opinion through online products’ reviews, blogs and social networking sites, etc. The customer's reviews reflect the customer's sentiments and have a substantial significance for the products being sold online including electronic gadgets, movies, house hold appliances and books. Hence, extracting the exact featur...

  13. Online Image-based Monitoring of Soft-tissue Displacements for Radiation Therapy of the Prostate

    Energy Technology Data Exchange (ETDEWEB)

    Schlosser, Jeffrey [Department of Mechanical Engineering, Stanford University, Stanford, CA (United States); Department of Bioengineering, Stanford University, Stanford, CA (United States); Salisbury, Kenneth [Department of Computer Science, Stanford University, Stanford, CA (United States); Department of Surgery, Stanford University, Stanford, CA (United States); Hristov, Dimitre, E-mail: dhristov@stanford.edu [Department of Radiation Oncology, Stanford University, Stanford, CA (United States)

    2012-08-01

    Purpose: Emerging prolonged, hypofractionated radiotherapy regimens rely on high-dose conformality to minimize toxicity and thus can benefit from image guidance systems that continuously monitor target position during beam delivery. To address this need we previously developed, as a potential add-on device for existing linear accelerators, a novel telerobotic ultrasound system capable of real-time, soft-tissue imaging. Expanding on this capability, the aim of this work was to develop and characterize an image-based technique for real-time detection of prostate displacements. Methods and Materials: Image processing techniques were implemented on spatially localized ultrasound images to generate two parameters representing prostate displacements in real time. In a phantom and five volunteers, soft-tissue targets were continuously imaged with a customized robotic manipulator while recording the two tissue displacement parameters (TDPs). Variations of the TDPs in the absence of tissue displacements were evaluated, as was the sensitivity of the TDPs to prostate translations and rotations. Robustness of the approach to probe force was also investigated. Results: With 95% confidence, the proposed method detected in vivo prostate displacements before they exceeded 2.3, 2.5, and 2.8 mm in anteroposterior, superoinferior, and mediolateral directions. Prostate pitch was detected before exceeding 4.7 Degree-Sign at 95% confidence. Total system time lag averaged 173 ms, mostly limited by ultrasound acquisition rate. False positives (FPs) (FP) in the absence of displacements did not exceed 1.5 FP events per 10 min of continuous in vivo imaging time. Conclusions: The feasibility of using telerobotic ultrasound for real-time, soft-tissue-based monitoring of target displacements was confirmed in vivo. Such monitoring has the potential to detect small clinically relevant intrafractional variations of the prostate position during beam delivery.

  14. 77 FR 24228 - Condition Monitoring Techniques for Electric Cables Used in Nuclear Power Plants

    Science.gov (United States)

    2012-04-23

    ...The U.S. Nuclear Regulatory Commission (NRC or the Commission) is issuing a new guide regulatory guide, (RG) 1.218, ``Condition Monitoring Techniques for Electric Cables Used in Nuclear Power Plants.'' This guide describes techniques that the staff of the NRC considers acceptable for condition monitoring of electric cables for nuclear power plants. RG 1.218 is not intended to be prescriptive,......

  15. Dispersion Monitoring techniques in High Bit-rate Optical Communication Systems

    Institute of Scientific and Technical Information of China (English)

    SANG Xin-zhu; YU Chong-xiu; ZHANG Qi; WANG Xu

    2004-01-01

    For the efficient dynamic dispersion compensation, it is essential to monitor the dispersion accurately. The existing main dispersion monitoring techniques in high bit- rate optical communication systems are presented as well as their operating principles and research progress. The advantages and disadvantages of these methods are analyzed and discussed.

  16. Inline monitoring of CO2 absorption processes using simple analytical techniques and multivariate modeling

    NARCIS (Netherlands)

    Ham, L.V. van der; Bakker, D.E.; Geers, L.F.G.; Goetheer, E.L.V.

    2014-01-01

    The solvent and the dissolved CO2 concentrations are two essential properties of CO2 absorption processes. Currently, they are typically monitored using time-consuming offline analytical techniques. Initial development efforts aiming at a cost-effective and reliable inline monitoring system are desc

  17. Online laboratory evaluation of seeding-machine application by an acoustic technique

    Energy Technology Data Exchange (ETDEWEB)

    Karimi, H.; Navid, H.; Mahmoudi, A.

    2015-07-01

    Researchers and planter manufacturers have been working closely to develop an automated system for evaluating performance of seeding. In the present study, an innovative use of acoustic signal for laboratory evaluation of seeding-machine application is described. Seed detection technique of the proposed system was based on a rising voltage value that a microphone sensed in each impaction of seeds to a steel plate. Online determining of seed spacing was done with a script which was written in MATLAB software. To evaluate the acoustic system with desired seed spacing, a testing rig was designed. Seeds of wheat, corn and pelleted tomato were used as experimental material. Typical seed patterns were positioned manually on a belt stand with different spacing patterns. When the belt was running, the falling seeds from the end point of the belt impacted to the steel plate, and their acoustic signal was sensed by the microphone. In each impact, data was processed and spacing between the seeds was automatically obtained. Coefficient of determination of gathered data from the belt system and the corresponding seeds spacing measured with the acoustic system in all runs was about 0.98. This strong correlation indicates that the acoustic system worked well in determining the seeds spacing. (Author)

  18. Quantifying the UK Online Interest in Substances of the EU Watchlist for Water Monitoring: Diclofenac, Estradiol, and the Macrolide Antibiotics

    Directory of Open Access Journals (Sweden)

    Amaryllis Mavragani

    2016-11-01

    Full Text Available Due to the increased interest in micropollutants, this paper aims at quantifying and analyzing the UK online interest in Diclofenac, Estradiol, Azithromycin, Clarithromycin, and Erythromycin, substances included in the EU watchlist for monitoring, in order to examine if the public’s online behavior and the use of these substances, in terms of issued prescriptions, are correlated. Using time series data from Google Trends from January 2004 to December 2014, an analysis of these substances in the UK, and in each UK region, i.e., England, Wales, Scotland, and Northern Ireland, is at first performed, followed by an analysis of interest by substance. The results show high interest in Diclofenac with a slight decline, while the Macrolides are significantly less popular though increasing. For Estradiol, the interest is low and declining throughout the examined period, in contrast to the scientific community, where Estradiol is the most studied substance. Prescription items and Google hits are highly correlated in the UK for Diclofenac, Azithromycin, and Clarithromycin, while no correlation is observed for Estradiol. Results from this study indicated that online search traffic data can be valuable in examining the public’s online behavior towards the monitored micropollutants, and could assist with the evaluation and forecasting of their concentrations in the waste, surface, and ground water in the UK.

  19. Data quality assurance in monitoring of wastewater quality: Univariate on-line and off-line methods

    DEFF Research Database (Denmark)

    Alferes, J.; Poirier, P.; Lamaire-Chad, C.;

    To make water quality monitoring networks useful for practice, the automation of data collection and data validation still represents an important challenge. Efficient monitoring depends on careful quality control and quality assessment. With a practical orientation a data quality assurance...... procedure is presented that combines univariate off-line and on-line methods to assess water quality sensors and to detect and replace doubtful data. While the off-line concept uses control charts for quality control, the on-line methods aim at outlier and fault detection by using autoregressive models....... The proposed tools were successfully tested with data sets collected at the inlet of a primary clarifier,where probably the toughest measurement conditions are found in wastewater treatment plants....

  20. Pilot-scale application of an online VFA sensor for monitoring and control of a manure digester

    DEFF Research Database (Denmark)

    Boe, Kanokwan; Angelidaki, Irini

    2012-01-01

    parameter for optimization, it could not distinguish between the decreases of biogas production from inhibition and from lower organic content in the substrate, which resulted in undesired decreasing of the control gas setpoint when the substrate was diluted. It was necessary to adjust the yield parameter...... in order to get this control approach to function properly, which is not suitable for the full-scale biogas plant where the organic content of waste streams can vary. An alternative approach could be a modified rule-based algorithm that includes VFA parameters to help distinguish between different process......A volatile fatty acids (VFA) sensor based on headspace chromatography was tested for online monitoring and control of a pilot-scale manure digester. The sensor showed satisfying results in terms of sensitivity and reliability for monitoring of the digester. The online VFA and biogas production data...

  1. Aerial monitoring in active mud volcano by UAV technique

    Science.gov (United States)

    Pisciotta, Antonino; Capasso, Giorgio; Madonia, Paolo

    2016-04-01

    UAV photogrammetry opens various new applications in the close range domain, combining aerial and terrestrial photogrammetry, but also introduces low-cost alternatives to the classical manned aerial photogrammetry. Between 2014 and 2015 tree aerial surveys have been carried out. Using a quadrotor drone, equipped with a compact camera, it was possible to generate high resolution elevation models and orthoimages of The "Salinelle", an active mud volcanoes area, located in territory of Paternò (South Italy). The main risks are related to the damages produced by paroxysmal events. Mud volcanoes show different cyclic phases of activity, including catastrophic events and periods of relative quiescence characterized by moderate activity. Ejected materials often are a mud slurry of fine solids suspended in liquids which may include water and hydrocarbon fluids, the bulk of released gases are carbon dioxide, with some methane and nitrogen, usually pond-shaped of variable dimension (from centimeters to meters in diameter). The scope of the presented work is the performance evaluation of a UAV system that was built to rapidly and autonomously acquire mobile three-dimensional (3D) mapping data in a volcanic monitoring scenario.

  2. ENVISION, developing motion monitoring techniques for particle therapy

    CERN Multimedia

    2013-01-01

    Particle therapy is an advanced technique of cancer radiation therapy, using protons or other ions to target the cancerous mass. ENVISION aims at developing medical imaging tools to improve the dose delivery to the patient, to ensure a safer and more effective treatment. The animation illustrates the challenge of treating a tumour as it moves due to patient breathing. The ENVISION project is co-funded by the European Commission under FP7 Grant Agreement N. 241851. ENVISION serves as a training platform for the Marie Curie Initial Training Programme ENTERVISION, funded by the European Commission under FP7 Grant Agreement N. 264552. Produced by: CERN KT/Life Sciences and ENVISION Project Management: Manuela Cirilli 3D animation: Jeroen Huijben, Nymus3d

  3. Neurophotonics: non-invasive optical techniques for monitoring brain functions

    Science.gov (United States)

    Torricelli, Alessandro; Contini, Davide; Mora, Alberto Dalla; Pifferi, Antonio; Re, Rebecca; Zucchelli, Lucia; Caffini, Matteo; Farina, Andrea; Spinelli, Lorenzo

    2014-01-01

    Summary The aim of this review is to present the state of the art of neurophotonics, a recently founded discipline lying at the interface between optics and neuroscience. While neurophotonics also includes invasive techniques for animal studies, in this review we focus only on the non-invasive methods that use near infrared light to probe functional activity in the brain, namely the fast optical signal, diffuse correlation spectroscopy, and functional near infrared spectroscopy methods. We also present an overview of the physical principles of light propagation in biological tissues, and of the main physiological sources of signal. Finally, we discuss the open issues in models, instrumentation, data analysis and clinical approaches. PMID:25764252

  4. Using Supervised Machine Learning to Classify Real Alerts and Artifact in Online Multisignal Vital Sign Monitoring Data.

    Science.gov (United States)

    Chen, Lujie; Dubrawski, Artur; Wang, Donghan; Fiterau, Madalina; Guillame-Bert, Mathieu; Bose, Eliezer; Kaynar, Ata M; Wallace, David J; Guttendorf, Jane; Clermont, Gilles; Pinsky, Michael R; Hravnak, Marilyn

    2016-07-01

    The use of machine-learning algorithms to classify alerts as real or artifacts in online noninvasive vital sign data streams to reduce alarm fatigue and missed true instability. Observational cohort study. Twenty-four-bed trauma step-down unit. Two thousand one hundred fifty-three patients. Noninvasive vital sign monitoring data (heart rate, respiratory rate, peripheral oximetry) recorded on all admissions at 1/20 Hz, and noninvasive blood pressure less frequently, and partitioned data into training/validation (294 admissions; 22,980 monitoring hours) and test sets (2,057 admissions; 156,177 monitoring hours). Alerts were vital sign deviations beyond stability thresholds. A four-member expert committee annotated a subset of alerts (576 in training/validation set, 397 in test set) as real or artifact selected by active learning, upon which we trained machine-learning algorithms. The best model was evaluated on test set alerts to enact online alert classification over time. The Random Forest model discriminated between real and artifact as the alerts evolved online in the test set with area under the curve performance of 0.79 (95% CI, 0.67-0.93) for peripheral oximetry at the instant the vital sign first crossed threshold and increased to 0.87 (95% CI, 0.71-0.95) at 3 minutes into the alerting period. Blood pressure area under the curve started at 0.77 (95% CI, 0.64-0.95) and increased to 0.87 (95% CI, 0.71-0.98), whereas respiratory rate area under the curve started at 0.85 (95% CI, 0.77-0.95) and increased to 0.97 (95% CI, 0.94-1.00). Heart rate alerts were too few for model development. Machine-learning models can discern clinically relevant peripheral oximetry, blood pressure, and respiratory rate alerts from artifacts in an online monitoring dataset (area under the curve > 0.87).

  5. Using Supervised Machine Learning to Classify Real Alerts and Artifact in Online Multi-signal Vital Sign Monitoring Data

    Science.gov (United States)

    Chen, Lujie; Dubrawski, Artur; Wang, Donghan; Fiterau, Madalina; Guillame-Bert, Mathieu; Bose, Eliezer; Kaynar, Ata M.; Wallace, David J.; Guttendorf, Jane; Clermont, Gilles; Pinsky, Michael R.; Hravnak, Marilyn

    2015-01-01

    OBJECTIVE Use machine-learning (ML) algorithms to classify alerts as real or artifacts in online noninvasive vital sign (VS) data streams to reduce alarm fatigue and missed true instability. METHODS Using a 24-bed trauma step-down unit’s non-invasive VS monitoring data (heart rate [HR], respiratory rate [RR], peripheral oximetry [SpO2]) recorded at 1/20Hz, and noninvasive oscillometric blood pressure [BP] less frequently, we partitioned data into training/validation (294 admissions; 22,980 monitoring hours) and test sets (2,057 admissions; 156,177 monitoring hours). Alerts were VS deviations beyond stability thresholds. A four-member expert committee annotated a subset of alerts (576 in training/validation set, 397 in test set) as real or artifact selected by active learning, upon which we trained ML algorithms. The best model was evaluated on alerts in the test set to enact online alert classification as signals evolve over time. MAIN RESULTS The Random Forest model discriminated between real and artifact as the alerts evolved online in the test set with area under the curve (AUC) performance of 0.79 (95% CI 0.67-0.93) for SpO2 at the instant the VS first crossed threshold and increased to 0.87 (95% CI 0.71-0.95) at 3 minutes into the alerting period. BP AUC started at 0.77 (95%CI 0.64-0.95) and increased to 0.87 (95% CI 0.71-0.98), while RR AUC started at 0.85 (95%CI 0.77-0.95) and increased to 0.97 (95% CI 0.94–1.00). HR alerts were too few for model development. CONCLUSIONS ML models can discern clinically relevant SpO2, BP and RR alerts from artifacts in an online monitoring dataset (AUC>0.87). PMID:26992068

  6. A Novel Application for Low Frequency Electrochemical Impedance Spectroscopy as an Online Process Monitoring Tool for Viable Cell Concentrations

    Science.gov (United States)

    Slouka, Christoph; Wurm, David J.; Brunauer, Georg; Welzl-Wachter, Andreas; Spadiut, Oliver; Fleig, Jürgen; Herwig, Christoph

    2016-01-01

    New approaches in process monitoring during industrial fermentations are not only limited to classical pH, dO2 and offgas analysis, but use different in situ and online sensors based on different physical principles to determine biomass, product quality, lysis and far more. One of the very important approaches is the in situ accessibility of viable cell concentration (VCC). This knowledge provides increased efficiency in monitoring and controlling strategies during cultivations. Electrochemical impedance spectroscopy—EIS—is used to monitor biomass in a fermentation of E. coli BL21(DE3), producing a recombinant protein using a fed batch-based approach. Increases in the double layer capacitance (Cdl), determined at frequencies below 1 kHz, are proportional to the increase of biomass in the batch and fed batch phase, monitored in offline and online modes for different cultivations. A good correlation of Cdl with cell density is found and in order to get an appropriate verification of this method, different state-of-the-art biomass measurements are performed and compared. Since measurements in this frequency range are largely determined by the double layer region between the electrode and media, rather minor interferences with process parameters (aeration, stirring) are to be expected. It is shown that impedance spectroscopy at low frequencies is a powerful tool for cultivation monitoring. PMID:27845720

  7. A Novel Application for Low Frequency Electrochemical Impedance Spectroscopy as an Online Process Monitoring Tool for Viable Cell Concentrations

    Directory of Open Access Journals (Sweden)

    Christoph Slouka

    2016-11-01

    Full Text Available New approaches in process monitoring during industrial fermentations are not only limited to classical pH, dO2 and offgas analysis, but use different in situ and online sensors based on different physical principles to determine biomass, product quality, lysis and far more. One of the very important approaches is the in situ accessibility of viable cell concentration (VCC. This knowledge provides increased efficiency in monitoring and controlling strategies during cultivations. Electrochemical impedance spectroscopy—EIS—is used to monitor biomass in a fermentation of E. coli BL21(DE3, producing a recombinant protein using a fed batch-based approach. Increases in the double layer capacitance (Cdl, determined at frequencies below 1 kHz, are proportional to the increase of biomass in the batch and fed batch phase, monitored in offline and online modes for different cultivations. A good correlation of Cdl with cell density is found and in order to get an appropriate verification of this method, different state-of-the-art biomass measurements are performed and compared. Since measurements in this frequency range are largely determined by the double layer region between the electrode and media, rather minor interferences with process parameters (aeration, stirring are to be expected. It is shown that impedance spectroscopy at low frequencies is a powerful tool for cultivation monitoring.

  8. Optimal Parameter Exploration for Online Change-Point Detection in Activity Monitoring Using Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Naveed Khan

    2016-10-01

    Full Text Available In recent years, smart phones with inbuilt sensors have become popular devices to facilitate activity recognition. The sensors capture a large amount of data, containing meaningful events, in a short period of time. The change points in this data are used to specify transitions to distinct events and can be used in various scenarios such as identifying change in a patient’s vital signs in the medical domain or requesting activity labels for generating real-world labeled activity datasets. Our work focuses on change-point detection to identify a transition from one activity to another. Within this paper, we extend our previous work on multivariate exponentially weighted moving average (MEWMA algorithm by using a genetic algorithm (GA to identify the optimal set of parameters for online change-point detection. The proposed technique finds the maximum accuracy and F_measure by optimizing the different parameters of the MEWMA, which subsequently identifies the exact location of the change point from an existing activity to a new one. Optimal parameter selection facilitates an algorithm to detect accurate change points and minimize false alarms. Results have been evaluated based on two real datasets of accelerometer data collected from a set of different activities from two users, with a high degree of accuracy from 99.4% to 99.8% and F_measure of up to 66.7%.

  9. LHCb: Beam and Background Monitoring and the Development of an Online Condition Analysis Tool for the LHCb Experiment at CERN

    CERN Multimedia

    Alessio, F

    2010-01-01

    The LHCb experiment has been taking data since more than half a year at the LHC, recording events from collisions at the highest energy ever achieved. For its physics purposes in the sector of CP violation, the experiment will record data with the best precision achievable. An online and offline beam and background monitoring became therefore essential to understand the performance of the LHC accelerator at CERN, to monitor and study the behavior of the background around the LHCb experiment and to optimize the experimental conditions. During my second year as a Doctoral Student at CERN, I have been working on the timing and readout control as well as on the online Beam, Background, and Luminosity Monitoring of the LHCb experiment in the frame of the LHCb Online group. The group is responsible for the complete data acquisition of the LHCb experiment, from the Front-End Electronics (FEE) to the storage of the data for offline analysis, including the Timing and Fast Control (TFC) system. The latter controls and...

  10. Assessing Faculty Perceptions and Techniques to Combat Academic Dishonesty in Online Courses

    Science.gov (United States)

    Paullet, Karen; Chawdhry, Adnan A.; Douglas, David M.; Pinchot, Jamie

    2016-01-01

    Online Education is growing as it provides an added convenience to students, especially ones who have life circumstances that prevent them from attending traditional classes. With this growing trend, faculty and universities are facing increased risks with validating student identities in online courses and combatting unethical student behavior.…

  11. Monitoring and Modeling the Impact of Grazers Using Visual, Remote and Traditional Field Techniques

    Science.gov (United States)

    Roadknight, C. M.; Marshall, I. W.; Rose, R. J.

    2009-04-01

    The relationship between wild and domestic animals and the landscape they graze upon is important to soil erosion studies because they are a strong influence on vegetation cover (a key control on the rate of overland flow runoff), and also because the grazers contribute directly to sediment transport via carriage and indirectly by exposing fresh soil by trampling and burrowing/excavating. Quantifying the impacts of these effects on soil erosion and their dependence on grazing intensity, in complex semi-natural habitats has proved difficult. This is due to lack of manpower to collect sufficient data and weak standardization of data collection between observers. The advent of cheaper and more sophisticated digital camera technology and GPS tracking devices has lead to an increase in the amount of habitat monitoring information that is being collected. We report on the use of automated trail cameras to continuously capture images of grazer (sheep, rabbits, deer) activity in a variety of habitats at the Moor House nature reserve in northern England. As well as grazer activity these cameras also give valuable information on key climatic soil erosion factors such as snow, rain and wind and plant growth and thus allow the importance of a range of grazer activities and the grazing intensity to be estimated. GPS collars and more well established survey methods (erosion monitoring, dung counting and vegetation surveys) are being used to generate a detailed representation of land usage and plan camera siting. This paper describes the data collection techniques, outlines the quantitative and qualitative data collected and proposes online and offline systems that can reduce the data processing time and increase focus on important subsets in the collected data. We also present a land usage model that estimates grazing intensity, grazer behaviours and their impact on soil coverage at sites where cameras have not been deployed, based on generalising from camera sites to other

  12. The application of data mining and cloud computing techniques in data-driven models for structural health monitoring

    Science.gov (United States)

    Khazaeli, S.; Ravandi, A. G.; Banerji, S.; Bagchi, A.

    2016-04-01

    Recently, data-driven models for Structural Health Monitoring (SHM) have been of great interest among many researchers. In data-driven models, the sensed data are processed to determine the structural performance and evaluate the damages of an instrumented structure without necessitating the mathematical modeling of the structure. A framework of data-driven models for online assessment of the condition of a structure has been developed here. The developed framework is intended for automated evaluation of the monitoring data and structural performance by the Internet technology and resources. The main challenges in developing such framework include: (a) utilizing the sensor measurements to estimate and localize the induced damage in a structure by means of signal processing and data mining techniques, and (b) optimizing the computing and storage resources with the aid of cloud services. The main focus in this paper is to demonstrate the efficiency of the proposed framework for real-time damage detection of a multi-story shear-building structure in two damage scenarios (change in mass and stiffness) in various locations. Several features are extracted from the sensed data by signal processing techniques and statistical methods. Machine learning algorithms are deployed to select damage-sensitive features as well as classifying the data to trace the anomaly in the response of the structure. Here, the cloud computing resources from Amazon Web Services (AWS) have been used to implement the proposed framework.

  13. Use of Stewart Control Chart Technique in Monitoring Student Performance

    Directory of Open Access Journals (Sweden)

    A.A. Akinrefon

    2014-12-01

    Full Text Available Students' academic performance was assessed using quality control techniques. Results show that performance of students was out of control using mean chart (X ̅-Chart with Central Limit (CL = 2.35, Upper Control Limit (UCL = 3.20 (although grade points above this limit may not necessarily be regarded as out-of-control-points for academic performance and Lower Control Limit (LCL = 1.51. Similarly, students' performance was also found not to be in control using Standard Deviation (S-Chart with Central Limit (CL = 0.71, Upper Control Limit = 1.34, Lower Control Limit = 0.001 approximately.The chart shows point falling below lower control limit (1.51; that is, students with poor performance. This can be adopted as a bench mark for assessing whether or not students should proceed to the next academic level, some sort of 'Academic Good-Standing'. Above the upper control limit are exceptional/ good results. The average performance of students is 2.35 which corresponds to third class grade; this implies that on average, students graduate with third class.

  14. Application of Dynamic Speckle Techniques in Monitoring Biofilms Drying Process

    Science.gov (United States)

    Enes, Adilson M.; Júnior, Roberto A. Braga; Dal Fabbro, Inácio M.; da Silva, Washington A.; Pereira, Joelma

    2008-04-01

    Horticultural crops exhibit losses far greater than grains in Brazil which are associated to inappropriate maturation, mechanical bruising, infestation by microorganisms, wilting, etc. Appropriate packing prevents excessive mass loss associated to transpiration as well as to respiration, by controlling gas exchanging with outside environment. Common packing materials are identified as plastic films, waxes and biofilms. Although research developed with edible films and biopolymers has increased during last years to attend the food industry demands, avoiding environmental problems, little efforts have been reported on biofilm physical properties investigations. These properties, as drying time and biofilm interactions with environment are considered of basic importance. This research work aimed to contribute to development of a methodology to evaluate yucca (Maniot vulgaris) based biofilms drying time supported by a biospeckle technique. Biospeckle is a phenomenon generated by a laser beam scattered on a dynamic active surface, producing a time varying pattern which is proportional to the surface activity level. By capturing and processing the biospeckle image it is possible to attribute a numerical quantity to the surface bioactivity. Materials exhibiting high moisture content will also show high activity, which will support the drying time determination. Tests were set by placing biofilm samples on polyetilen plates and further submitted to laser exposition at four hours interval to capture the pattern images, generating the Intensities Dispersion Modulus. Results indicates that proposed methodology is applicable in determining biofilm drying time as well as vapor losses to environment.

  15. Preliminary Characterization Tests of Detectors of on-Line Monitor Systems of the Italian National Center of Oncological Hadron-Therapy (CNAO

    Directory of Open Access Journals (Sweden)

    Abdolkazem Ansarinejad

    2013-03-01

    Full Text Available Introduction Hadron-therapy is an effective technique used to treat tumors that are located between or nearby vital organs. The Italian National Center of Oncological Hadron-therapy (CNAO has been realized as the first facility in Italy to treat very difficult tumors with protons and Carbon ions. The on-line monitor system for CNAO has been developed by the Department of Physics of the University of Torino and Italian National Institute of Nuclear Physics (INFN. The monitoring system performs the on-line checking of the beam intensity, dimension, and beam position. Materials and Methods The monitor system is based on parallel plate ionization chambers and is composed of five ionization chambers with the anodes fully integrated or segmented in pixels or strips that are placed in two boxes. A series of measurements were performed that involve the background current and the detectors have been characterized by means of a series of preliminary testes in order to verify reproducibility and uniformity of the chambers using an X-ray source. Results The measured background currents for StripX, StripY and Pixel chambers are five orders of magnitude smaller than the nominal treatment current. The reproducibility error of chambers is less than 1%. The analysis of the uniformity showed that the monitor devices have a spread in gain that varies, but only about 2%. Conclusion The reproducibility and the uniformity values are considered as a good result, taking into account that the X-ray energy range is several orders of magnitude smaller than the particle energies used at CNAO.

  16. Online monitoring of Escherichia coli and Bacillus thuringiensis spore inactivation after advanced oxidation treatment.

    Science.gov (United States)

    Sherchan, Samendra P; Snyder, Shane A; Gerba, Charles P; Pepper, Ian L

    2014-01-01

    Various studies have shown that advanced oxidation processes (AOPs) such as UV light in combination with hydrogen peroxide is an efficient process for the removal of a large variety of emerging contaminants including microorganisms. The mechanism of destruction in the presence of hydrogen peroxide (H2O2) is the enhanced formation of hydroxyl (·OH) radicals, which have a high oxidation potential. The goal of this study was to utilize in-line advanced oxidation to inactivate microbes, and document the inactivation via an in-line, real-time sensor. Escherichia coli cells and Bacillus thuringiensis spores were exposed to UV/H2O2 treatment in DI water, and the online sensor BioSentry(®) was evaluated for its potential to monitor inactivation in real-time. B. thuringiensis was selected as a non-pathogenic surrogate for B. anthracis, the causative agent of anthrax and a proven biological weapon. UV radiation and UV/H2O2 exposure resulted in a >6 log10 reduction of the viable culturable counts of E. coli vegetative cells, and a 3 log10 reduction of B. thuringiensis spores. Scanning electron microscopy of the treated samples revealed severe damage on the surface of most E. coli cells, yet there was no significant change observed in the morphology of the B. thuringiensis spores. Following AOP exposure, the BioSentry sensor showed an increase in the categories of unknown, rod and spores counts, but overall, did not correspond well with viable count assays. Data from this study show that advanced oxidation processes effectively inactivate E. coli vegetative cells, but not B. thuringiensis spores, which were more resistant to AOP. Further, the BioSentry in-line sensor was not successful in documenting destruction of the microbial cells in real-time.

  17. Monitoring individual cow udder health in automated milking systems using online somatic cell counts.

    Science.gov (United States)

    Sørensen, L P; Bjerring, M; Løvendahl, P

    2016-01-01

    This study presents and validates a detection and monitoring model for mastitis based on automated frequent sampling of online cell count (OCC). Initially, data were filtered and adjusted for sensor drift and skewed distribution using ln-transformation. Acceptable data were passed on to a time-series model using double exponential smoothing to estimate level and trends at cow level. The OCC levels and trends were converted to a continuous (0-1) scale, termed elevated mastitis risk (EMR), where values close to zero indicate healthy cow status and values close to 1 indicate high risk of mastitis. Finally, a feedback loop was included to dynamically request a time to next sample, based on latest EMR values or errors in the raw data stream. The estimated EMR values were used to issue 2 types of alerts, new and (on-going) intramammary infection (IMI) alerts. The new alerts were issued when the EMR values exceeded a threshold, and the IMI alerts were issued for subsequent alerts. New alerts were only issued after the EMR had been below the threshold for at least 8d. The detection model was evaluated using time-window analysis and commercial herd data (6 herds, 595,927 milkings) at different sampling intensities. Recorded treatments of mastitis were used as gold standard. Significantly higher EMR values were detected in treated than in contemporary untreated cows. The proportion of detected mastitis cases using new alerts was between 28.0 and 43.1% and highest for a fixed sampling scheme aiming at 24h between measurements. This was higher for IMI alerts, between 54.6 and 89.0%, and highest when all available measurements were used. The lowest false alert rate of 6.5 per 1,000 milkings was observed when all measurements were used. The results showed that a dynamic sampling scheme with a default value of 24h between measurements gave only a small reduction in proportion of detected mastitis treatments and remained at 88.5%. It was concluded that filtering of raw data

  18. Determination of the delivered hemodialysis dose using standard methods and on-line clearance monitoring

    Directory of Open Access Journals (Sweden)

    Vlatković Vlastimir

    2006-01-01

    Full Text Available Background/aim: Delivered dialysis dose has a cumulative effect and significant influence upon the adequacy of dialysis, quality of life and development of co-morbidity at patients on dialysis. Thus, a great attention is given to the optimization of dialysis treatment. On-line Clearance Monitoring (OCM allows a precise and continuous measurement of the delivered dialysis dose. Kt/V index (K = dialyzer clearance of urea; t = dialysis time; V = patient's total body water, measured in real time is used as a unit for expressing the dialysis dose. The aim of this research was to perform a comparative assessment of the delivered dialysis dose by the application of the standard measurement methods and a module for continuous clearance monitoring. Methods. The study encompassed 105 patients who had been on the chronic hemodialysis program for more than three months, three times a week. By random choice, one treatment per each controlled patient was taken. All the treatments understood bicarbonate dialysis. The delivered dialysis dose was determined by the calculation of mathematical models: Urea Reduction Ratio (URR singlepool index Kt/V (spKt/V and by the application of OCM. Results. Urea Reduction Ratio was the most sensitive parameter for the assessment and, at the same time, it was in the strongest correlation with the other two, spKt/V indexes and OCM. The values pointed out an adequate dialysis dose. The URR values were significantly higher in women than in men, p < 0.05. The other applied model for the delivered dialysis dose measurement was Kt/V index. The obtained values showed that the dialysis dose was adequate, and that, according to this parameter, the women had significantly better dialysis, then the men p < 0.05. According to the OCM, the average value was slightly lower than the adequate one. The women had a satisfactory dialysis according to this index as well, while the delivered dialysis dose was insufficient in men. The difference

  19. Toward an optimisation technique for dynamically monitored environment

    Science.gov (United States)

    Shurrab, Orabi M.

    2016-10-01

    The data fusion community has introduced multiple procedures of situational assessments; this is to facilitate timely responses to emerging situations. More directly, the process refinement of the Joint Directors of Laboratories (JDL) is a meta-process to assess and improve the data fusion task during real-time operation. In other wording, it is an optimisation technique to verify the overall data fusion performance, and enhance it toward the top goals of the decision-making resources. This paper discusses the theoretical concept of prioritisation. Where the analysts team is required to keep an up to date with the dynamically changing environment, concerning different domains such as air, sea, land, space and cyberspace. Furthermore, it demonstrates an illustration example of how various tracking activities are ranked, simultaneously into a predetermined order. Specifically, it presents a modelling scheme for a case study based scenario, where the real-time system is reporting different classes of prioritised events. Followed by a performance metrics for evaluating the prioritisation process of situational awareness (SWA) domain. The proposed performance metrics has been designed and evaluated using an analytical approach. The modelling scheme represents the situational awareness system outputs mathematically, in the form of a list of activities. Such methods allowed the evaluation process to conduct a rigorous analysis of the prioritisation process, despite any constrained related to a domain-specific configuration. After conducted three levels of assessments over three separates scenario, The Prioritisation Capability Score (PCS) has provided an appropriate scoring scheme for different ranking instances, Indeed, from the data fusion perspectives, the proposed metric has assessed real-time system performance adequately, and it is capable of conducting a verification process, to direct the operator's attention to any issue, concerning the prioritisation capability

  20. Neural network model for the on-line monitoring of a crystallization process

    Directory of Open Access Journals (Sweden)

    Guardani R.

    2001-01-01

    Full Text Available This paper presents the results of the application of a recently developed technique, based on Neural Networks (NN, in the recognition of angular distribution patterns of light scattered by particles in suspension, for the purpose of estimating concentration and crystal size distribution (CSD in a precipitation process based on the addition of antisolvent (a model system consisting of sodium chloride, water and ethanol. In the first step, in NN model was fitted, using particles with different size distributions and concentrations. Then the model was used to monitor the process, thus enabling a fast and reliable estimation of supersaturation and CSD. Such information, which is difficult to obtain by any other means, can be used in the study of fundamental aspects of crystallization and precipitation processes.

  1. Landslide monitoring at hillside residential area using GPS static and inclinometer techniques

    Science.gov (United States)

    Othman, Z.; Wan Aziz, W. A.; Anuar, A.

    2012-04-01

    Landslide is one of prominent geohazards that continuously affecting the tropical countries including Malaysia. Frequent occurrences of landslides at hillslopes during the heavy rainy periods have resulted in public fear for the safety of their life and properties. For the past 25 years, many landslides have occurrences have been reported in Klang Valley especially at the hilly terrain residential areas. A landslide monitoring scheme is therefore very crucial and should be carried out continuously. Various studies have been conducted to monitor landslide activities such as conventional geotechnical and geodetic techniques. Each of these techniques has its own advantages and limitations. Therefore, this study focuses on the effectiveness of the combination approach of GPS technology and inclinometer techniques for landslide monitoring. The study area is located at residential area Section 5, Wangsa Maju, Kuala Lumpur, Malaysia. The inclinometer instrument has been placed at five (5) selected monitoring points and three (3) epochs of inclinometer measurements were made. At the same time, the GPS observations have also been carried out for three (3) epochs separately using GPS static techniques. This GPS network consists of four (4) control points and eleven (11) monitoring points. The GPS observations data were validated, processed and adjusted using two (2) adjustment software namely Trimble Geomatic Office (TGO) version 1.6, and GPS Adjustment and Deformation Analysis (GADA). The results have shown that the GPS technique can be implemented with inclinometer technique to detect horizontal displacements up to +/- 30 mm and vertical displacements less than +/- 50 mm.

  2. Review of neutron calibration facilities and monitoring techniques: new needs for emerging fields.

    Science.gov (United States)

    Gressier, V

    2014-10-01

    Neutron calibration facilities and monitoring techniques have been developed since the middle of the 20th century to support research and nuclear power energy development. The technical areas needing reference neutron fields and related instruments were mainly cross section measurements, radiation protection, dosimetry and fission reactors, with energy ranging from a few millielectronvolts to about 20 MeV. The reference neutron fields and calibration techniques developed for these purposes will be presented in this paper. However, in recent years, emerging fields have brought new needs for calibration facilities and monitoring techniques. These new challenges for neutron metrology will be exposed with their technical difficulties.

  3. Investigation of novel geophysical techniques for monitoring CO2 movement during sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Hoversten, G. Michael; Gasperikova, Erika

    2003-10-31

    Cost effective monitoring of reservoir fluid movement during CO{sub 2} sequestration is a necessary part of a practical geologic sequestration strategy. Current petroleum industry seismic techniques are well developed for monitoring production in petroleum reservoirs. The cost of time-lapse seismic monitoring can be born because the cost to benefit ratio is small in the production of profit making hydrocarbon. However, the cost of seismic monitoring techniques is more difficult to justify in an environment of sequestration where the process produces no direct profit. For this reasons other geophysical techniques, which might provide sufficient monitoring resolution at a significantly lower cost, need to be considered. In order to evaluate alternative geophysical monitoring techniques we have undertaken a series of numerical simulations of CO{sub 2} sequestration scenarios. These scenarios have included existing projects (Sleipner in the North Sea), future planned projects (GeoSeq Liberty test in South Texas and Schrader Bluff in Alaska) as well as hypothetical models based on generic geologic settings potentially attractive for CO{sub 2} sequestration. In addition, we have done considerable work on geophysical monitoring of CO{sub 2} injection into existing oil and gas fields, including a model study of the Weyburn CO{sub 2} project in Canada and the Chevron Lost Hills CO{sub 2} pilot in Southern California (Hoversten et al. 2003). Although we are specifically interested in considering ''novel'' geophysical techniques for monitoring we have chosen to include more traditional seismic techniques as a bench mark so that any quantitative results derived for non-seismic techniques can be directly compared to the industry standard seismic results. This approach will put all of our finding for ''novel'' techniques in the context of the seismic method and allow a quantitative analysis of the cost/benefit ratios of the newly

  4. Study of techniques applicable for monitoring MIC in soil or sediment

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    1999-01-01

    Microbially influenced corrosion of carbon steel in anaerobic environment is difficult to monitor with electrochemical techniques because of heterogeneous surface conditions and electrochemically active corrosion products. Weight loss measurement, LPR, EIS, hydrogen permeation, and a refined ER...... technique have been evaluated including field tests in soil and marine sediment. The conclusions are that EIS can detect combined biofilm and corrosion product film formation, but corrosion rate is overestimated. The ER technique seems to give a correct and sensitive corrosion rate measurement within...

  5. Study of techniques applicable for monitoring MIC in soil or sediment

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    1999-01-01

    Microbially influenced corrosion of carbon steel in anaerobic environment is difficult to monitor with electrochemical techniques because of heterogeneous surface conditions and electrochemically active corrosion products. Weight loss measurement, LPR, EIS, hydrogen permeation, and a refined ER...... technique have beeen evaluated including field tests in soil and marine sediment. The conclusions are that EIS can detect combined biofilm and corrosion product film formation, but corrosion rate is overestimated. The ER technique seems to give a correct and sensitive corrosion rate measurement within...

  6. Validation of a high-throughput fermentation system based on online monitoring of biomass and fluorescence in continuously shaken microtiter plates

    Directory of Open Access Journals (Sweden)

    Kensy Frank

    2009-06-01

    Full Text Available Abstract Background An advanced version of a recently reported high-throughput fermentation system with online measurement, called BioLector, and its validation is presented. The technology combines high-throughput screening and high-information content by applying online monitoring of scattered light and fluorescence intensities in continuously shaken microtiter plates. Various examples in calibration of the optical measurements, clone and media screening and promoter characterization are given. Results Bacterial and yeast biomass concentrations of up to 50 g/L cell dry weight could be linearly correlated to scattered light intensities. In media screening, the BioLector could clearly demonstrate its potential for detecting different biomass and product yields and deducing specific growth rates for quantitatively evaluating media and nutrients. Growth inhibition due to inappropriate buffer conditions could be detected by reduced growth rates and a temporary increase in NADH fluorescence. GFP served very well as reporter protein for investigating the promoter regulation under different carbon sources in yeast strains. A clone screening of 90 different GFP-expressing Hansenula polymorpha clones depicted the broad distribution of growth behavior and an even stronger distribution in GFP expression. The importance of mass transfer conditions could be demonstrated by varying filling volumes of an E. coli culture in 96 well MTP. The different filling volumes cause a deviation in the culture growth and acidification both monitored via scattered light intensities and the fluorescence of a pH indicator, respectively. Conclusion The BioLector technology is a very useful tool to perform quantitative microfermentations under engineered reaction conditions. With this technique, specific yields and rates can be directly deduced from online biomass and product concentrations, which is superior to existing technologies such as microplate readers or optode

  7. On-line monitoring of European frequency-swing behaviour; Online-Ueberwachung des europaeischen Netzpendelverhaltens. Wide-Area Monitoring als Massnahme zur Vermeidung von Netzpendelungen

    Energy Technology Data Exchange (ETDEWEB)

    Zima, M. [Atel Netz AG, Olten (Switzerland); Sattinger, W. [Swissgrid AG, Laufenburg (Switzerland); Korba, P.; Larsson, M. [ABB Schweiz AG, Forschungszentrum, Baden-Daettwil (Switzerland)

    2007-07-01

    This article examines how wide-area monitoring can help avoid frequency-swings in the European electricity grid. Increasing power trading and the extension of the UCTE are discussed as the source of possible short-term frequency-swinging, which can occur when faults occur in the grid. Measures that can be taken to prevent such swinging are examined. A GPS-synchronised, wide-area monitoring and control system (WAM and C) is described that, since 2001, has monitored mains phase-shifts and other relevant data. Also a system operated since 2003 by Swissgrid is briefly described. A selection of curves used in the analysis of a frequency-swinging event in Switzerland are provided.

  8. Towards Online Visualization and Interactive Monitoring of Real-Time CFD Simulations on Commodity Hardware

    Directory of Open Access Journals (Sweden)

    Nils Koliha

    2015-09-01

    Full Text Available Real-time rendering in the realm of computational fluid dynamics (CFD in particular and scientific high performance computing (HPC in general is a comparably young field of research, as the complexity of most problems with practical relevance is too high for a real-time numerical simulation. However, recent advances in HPC and the development of very efficient numerical techniques allow running first optimized numerical simulations in or near real-time, which in return requires integrated and optimized visualization techniques that do not affect performance. In this contribution, we present concepts, implementation details and several application examples of a minimally-invasive, efficient visualization tool for the interactive monitoring of 2D and 3D turbulent flow simulations on commodity hardware. The numerical simulations are conducted with ELBE, an efficient lattice Boltzmann environment based on NVIDIA CUDA (Compute Unified Device Architecture, which provides optimized numerical kernels for 2D and 3D computational fluid dynamics with fluid-structure interactions and turbulence.

  9. OPTIMIZED ANOMALY FOR LAYERED DECEPTION IN ONLINE TRANSACTIONS USING COMBINATORIAL TECHNIQUES

    Directory of Open Access Journals (Sweden)

    MR.S.RAJKUMAR,

    2010-08-01

    Full Text Available In the last few years the transaction processing industry has faced troubling events that have threatened revenues and the ultimate viability and longevity of businesses. While the industry is technology driven, its roots and most common dominator exists in the highly regulated online industry. The unique challenge is maintaining the independence, creativity and flexibility of innovative and entrepreneurial service providers while instilling some of the process, audit, legal and regulatory requirements of the business. Even today, organizations are still experiencing a rapid increase in the incidence of online identity attacks. Typical attacks to perpetrate these crimes include phishing, man-in-the-middle and malware, and result in the rapid increase of online user identities being stolen at an alarming rate. This paper deals with online risks and steps taken to avoid those malfunctions using a proposed architecture with a proposed mixture technology.

  10. Characteristics analyzing and parametric modeling of the arc sound in CO2 GMAW for on-line quality monitoring

    Institute of Scientific and Technical Information of China (English)

    Ma Yuezhou; Ma Wenbin; Qu Min; Chen Jianhong

    2006-01-01

    For on-line monitoring of welding quality, the characteristics of the arc sound signals in short circuit CO2 GMAW were analyzed in the time and frequency domains. The arc sound presents a series of ringing-like oscillations that occur at the end of short circuit i. e. the moment of arc re-ignition, and distributes mainly in the frequency band below 10 kHz. A concept of the arc tone channel and its equivalent electrical model were suggested, which is considered a time-dependent distributed parametric system of which the transmission properties depend upon the geometric and physical characteristics of the arc and surroundings, and is excited by the sound source results from the change of arc energy so that results in arc sound. The linear prediction coding ( LPC) model is an estimation of the tone channel. The radial basis function ( RBF) neural networks were built for on-line pattern recognition of the gas-lack in welding, in which the input vectors were formed with the LPC coefficients. The test results proved that the LPC model of arc sound and the RBF networks are feasible in on-line quality monitoring.

  11. A Proposed Architecture for Continuous Web Monitoring Through Online Crawling of Blogs

    CERN Document Server

    Naghavi, Mehdi; 10.5121/iju.2012.3102

    2012-01-01

    Getting informed of what is registered in the Web space on time, can greatly help the psychologists, marketers and political analysts to familiarize, analyse, make decision and act correctly based on the society`s different needs. The great volume of information in the Web space hinders us to continuously online investigate the whole space of the Web. Focusing on the considered blogs limits our working domain and makes the online crawling in the Web space possible. In this article, an architecture is offered which continuously online crawls the related blogs, using focused crawler, and investigates and analyses the obtained data. The online fetching is done based on the latest announcements of the ping server machines. A weighted graph is formed based on targeting the important key phrases, so that a focused crawler can do the fetching of the complete texts of the related Web pages, based on the weighted graph.

  12. Monitoring Crustal Movement of the Coastal Zone in Eastern China with GPS Technique

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    In this paper, various dominating factors affecting crustal movement of the coastal zone in eastern China are analyzed, and major characteristics of crustal movement are summarized. Subduction of the pacific plate and Philippine plate and southeastward "escape" of Qinghai-Tibet plateau are believed to be dominating factors affecting crustal movement of that zone. Undoubtedly, it is a best way to monitor this kind of large-scale crustal movement with GPS technique. The feasibility of monitoring crustal m...

  13. Monitoring systems online of oil for transformers of nuclear power plants; Sistemas de monitorizacion online del aceite para transformadores de potencia de Centrales

    Energy Technology Data Exchange (ETDEWEB)

    Sarandeses, S.

    2014-07-01

    The nuclear power plants are showing their concern due to the existence of recent failures related to the bulky transformers of power. These transformers are not security, but are important for the production of power as its failure can cause transient on the floor, reactor scram or shooting, that can cause interruptions in the production of energy or might force us to reduce the power of production The analysis of gases dissolved in transformer oil is recognized as a trial key to identify a submerged transformer failure in oil. With this analysis it is not possible to ensure that there is no damage in the transformer, but the probability of risk of this type of failure can be reduced. The industry recommended to equip the new large power transformers with oil online monitoring systems and in some cases also be It recommended its use in existing transformers. (Author)

  14. Replication methods and tools in high-throughput cultivation processes - recognizing potential variations of growth and product formation by on-line monitoring

    Directory of Open Access Journals (Sweden)

    Luft Karina

    2010-03-01

    Full Text Available Abstract Background High-throughput cultivations in microtiter plates are the method of choice to express proteins from recombinant clone libraries. Such processes typically include several steps, whereby some of them are linked by replication steps: transformation, plating, colony picking, preculture, main culture and induction. In this study, the effects of conventional replication methods and replication tools (8-channel pipette, 96-pin replicators: steel replicator with fixed or spring-loaded pins, plastic replicator with fixed pins on growth kinetics of Escherichia coli SCS1 pQE-30 pSE111 were observed. Growth was monitored with the BioLector, an on-line monitoring technique for microtiter plates. Furthermore, the influence of these effects on product formation of Escherichia coli pRhotHi-2-EcFbFP was investigated. Finally, a high-throughput cultivation process was simulated with Corynebacterium glutamicum pEKEx2-phoD-GFP, beginning at the colony picking step. Results Applying different replication tools and methods for one single strain resulted in high time differences of growth of the slowest and fastest growing culture. The shortest time difference (0.3 h was evaluated for the 96 cultures that were transferred with an 8-channel pipette from a thawed and mixed cryoculture and the longest time difference (6.9 h for cultures that were transferred with a steel replicator with fixed pins from a frozen cryoculture. The on-line monitoring of a simulated high-throughput cultivation process revealed strong variances in growth kinetics and a twofold difference in product formation. Another experiment showed that varying growth kinetics, caused by varying initial biomass concentrations (OD600 of 0.0125 to 0.2 led to strongly varying product formation upon induction at a defined point of time. Conclusions To improve the reproducibility of high-throughput cultivation processes and the comparability between different applied cultures, it is strongly

  15. A multisyringe flow-through sequential extraction system for on-line monitoring of orthophosphate in soils and sediments

    DEFF Research Database (Denmark)

    Buanuam, Janya; Miró, Manuel; Hansen, Elo Harald

    2007-01-01

    A fully automated flow-through microcolumn fractionation system with on-line post-extraction derivatization is proposed for monitoring of orthophosphate in solid samples of environmental relevance. The system integrates dynamic sequential extraction using 1.0 mol l-1 NH4Cl, 0.1 mol l-1 NaOH and 0.......5 mol l-1 HCl as extractants according to the Hietjles-Lijklema (HL) scheme for fractionation of phosphorus associated with different geological phases, and on-line processing of the extracts via the Molybdenum Blue (MB) reaction by exploiting multisyringe flow injection as the interface between...... the solid containing microcolumn and the flow-through detector. The proposed flow assembly, capitalizing on the features of the multicommutation concept, implies several advantages as compared to fractionation analysis in the batch mode in terms of saving of extractants and MB reagents, shortening...

  16. Application of a Mechanistic Model as a Tool for On-line Monitoring of Pilot Scale Filamentous Fungal Fermentation Processes - The Importance of Evaporation Effects

    DEFF Research Database (Denmark)

    Mears, Lisa; Stocks, Stuart M.; Albæk, Mads Orla

    2017-01-01

    block models the changing rates of formation of product, biomass, and water, and the rate of consumption of feed using standard, available on-line measurements. This parameter estimation block, is coupled to a mechanistic process model, which solves the current states of biomass, product, substrate...... a historical dataset of eleven batches from the fermentation pilot plant (550L) at Novozymes A/S. The model is then implemented on-line in 550L fermentation processes operated at Novozymes A/S in order to validate the state estimator model on fourteen new batches utilizing a new strain. The product...... of the input data. Parameter estimation uncertainty is also carried out. The application of this on-line state estimator allows for on-line monitoring of pilot scale batches, including real-time estimates of multiple parameters which are not able to be monitored on-line. With successful application of a soft...

  17. The feasibility of automated online flow cytometry for in-situ monitoring of microbial dynamics in aquatic ecosystems

    Directory of Open Access Journals (Sweden)

    Michael Domenic Besmer

    2014-06-01

    Full Text Available Fluorescent staining coupled with flow cytometry (FCM is often used for the monitoring, quantification and characterization of bacteria in engineered and environmental aquatic ecosystems including seawater, freshwater, drinking water, wastewater, and industrial bioreactors. However, infrequent grab sampling hampers accurate characterization and subsequent understanding of microbial dynamics in all of these ecosystems. A logic technological progression is high throughput and full automation of the sampling, staining, measurement, and data analysis steps. Here we assess the feasibility and applicability of automated FCM by means of actual data sets produced with prototype instrumentation. As proof-of-concept we demonstrate examples of microbial dynamics in (i flowing tap water from a municipal drinking water supply network and (ii river water from a small creek subject to two rainfall events. In both cases, automated measurements were done at 15-min intervals during 12 to 14 consecutive days, yielding more than 1000 individual data points for each ecosystem. The extensive data sets derived from the automated measurements allowed for the establishment of baseline data for each ecosystem, as well as for the recognition of daily variations and specific events that would most likely be missed (or miss-characterized by infrequent sampling. In addition, the online FCM data from the river water was combined and correlated with online measurements of abiotic parameters, showing considerable potential for a better understanding of cause-and-effect relationships in aquatic ecosystems. Although several challenges remain, the successful operation of an automated online FCM system and the basic interpretation of the resulting data sets represent a breakthrough towards the eventual establishment of fully automated online microbiological monitoring technologies.

  18. Full-field speckle correlation technique as applied to blood flow monitoring

    Science.gov (United States)

    Vilensky, M. A.; Agafonov, D. N.; Timoshina, P. A.; Shipovskaya, O. V.; Zimnyakov, D. A.; Tuchin, V. V.; Novikov, P. A.

    2011-03-01

    The results of experimental study of monitoring the microcirculation in tissue superficial layers of the internal organs at gastro-duodenal hemorrhage with the use of laser speckles contrast analysis technique are presented. The microcirculation monitoring was provided in the course of the laparotomy of rat abdominal cavity in the real time. Microscopic hemodynamics was analyzed for small intestine and stomach under different conditions (normal state, provoked ischemia, administration of vasodilative agents such as papaverine, lidocaine). The prospects and problems of internal monitoring of micro-vascular flow in clinical conditions are discussed.

  19. Process/health monitoring for wind turbine blade by using FBG sensors with multiplexing techniques

    Science.gov (United States)

    Eum, S. H.; Kageyama, K.; Murayama, H.; Uzawa, K.; Ohsawa, I.; Kanai, M.; Igawa, H.

    2008-04-01

    In this study, we applied fiber Bragg grating sensors to conduct process/health monitoring of wind turbine blade manufactured by VaRTM. In this study, we used a long gauge FBG (about 100mm) based optical frequency domain reflectometory (OFDR) and 8 FBGs on a single fiber based wavelength division multiplexing (WDM). Resin flow front and resin cure were detected during VaRTM. After manufacturing, structural health monitoring was conducted with the blades. These sensors with multiplexing techniques were able to monitor VaRTM process and wind turbine blade successfully.

  20. In-situ laser material process monitoring using a cladding power detection technique

    Science.gov (United States)

    Su, Daoning; Norris, Ian; Peters, Chris; Hall, Denis R.; Jones, Julian D. C.

    Progress in laser material processing may require real-time monitoring and process control for consistent quality and productivity. We report a method of in-situ monitoring of laser metal cutting and drilling using cladding power monitoring of an optical fibre beam delivery system—a technique which detects the light reflected or scattered from the workpiece. The light signal carries information about the quality of the process. Experiments involving drilling and cutting of two samples, a thin aluminum foil and a 2-mm thick stainless steel plate, confirmed the effectiveness of this method.

  1. Development and evaluation of a technique for in vivo monitoring of 60Co in human lungs

    Science.gov (United States)

    de Mello, J. Q.; Lucena, E. A.; Dantas, A. L. A.; Dantas, B. M.

    2016-07-01

    60Co is a fission product of 235U and represents a risk of internal exposure of workers in nuclear power plants, especially those involved in the maintenance of potentially contaminated parts and equipment. The control of 60Co intake by inhalation can be performed through in vivo monitoring. This work describes the evaluation of a technique through the minimum detectable activity and the corresponding minimum detectable effective doses, based on biokinetic and dosimetric models of 60Co in the human body. The results allow to state that the technique is suitable either for monitoring of occupational exposures or evaluation of accidental intake.

  2. Countermeasures of Stimulated-Raman-Scattering-Induced Video Distortion in 1.65 μm Optical Time-domain Reflectometer On-line Monitoring 1.55 μm Cable Television System

    Science.gov (United States)

    Tsai, Szu-Chi; Tu, Yuan-Kuang; Chen, Yung-Kuang

    2003-07-01

    The countermeasures of stimulated-Raman-scattering (SRS)-induced baseband video distortion in the 1.65 μm optical time-domain reflectometer (OTDR) on-line monitoring 1.55 μm amplitude modulation with vestigial sideband (AM-VSB) cable television (CATV) transmission system are investigated theoretically and experimentally. The countermeasures entail the reduction in the optical modulation index (OMI) of the AM transmitter, OTDR peak power and/or pulse width. The results of numerical simulations and experimental measurements are in good agreement. Moreover, the countermeasure for eliminating the SRS-induced baseband video distortion by the 1.31 μm OTDR on-line monitoring technique is investigated and demonstrated.

  3. Spectroscopic characterisation of dissolved organic matter changes in drinking water treatment: From PARAFAC analysis to online monitoring wavelengths.

    Science.gov (United States)

    Shutova, Yulia; Baker, Andy; Bridgeman, John; Henderson, Rita K

    2014-05-01

    Organic matter (OM) causes many problems in drinking water treatment. It is difficult to monitor OM concentrations and character during treatment processes due to its complexity. Fluorescence spectroscopy is a promising tool for online monitoring. In this study, a unique dataset of fluorescence excitation emission matrixes (EEMs) (n = 867) was collected from all treatment stages of five drinking water treatment plants (WTPs) situated in diverse locations from subtropical to temperate climate. The WTPs incorporated various water sources, treatment processes and OM removal efficiencies (DOC removal 0%-68%). Despite these differences, four common fluorescence PARAFAC components were identified for characterisation of OM concentration and treatability. Moreover, fluorescence component ratios showed site-specific statistically significant correlations with OM removal, which contrasted with correlations between specific UV absorbance at 254 nm (SUVA) and OM removal that were not statistically significant. This indicates that use of fluorescence spectroscopy may be a more robust alternative for predicting DOC removal than UV spectroscopy. Based on the identified fluorescence components, four optical locations were selected in order to move towards single wavelength online OM monitoring. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. On-line monitoring of food fermentation processes using electronic noses and electronic tongues: a review.

    Science.gov (United States)

    Peris, Miguel; Escuder-Gilabert, Laura

    2013-12-04

    Fermentation processes are often sensitive to even slight changes of conditions that may result in unacceptable end-product quality. Thus, close follow-up of this type of processes is critical for detecting unfavorable deviations as early as possible in order to save downtime, materials and resources. Nevertheless the use of traditional analytical techniques is often hindered by the need for expensive instrumentation and experienced operators and complex sample preparation. In this sense, one of the most promising ways of developing rapid and relatively inexpensive methods for quality control in fermentation processes is the use of chemical multisensor systems. In this work we present an overview of the most important contributions dealing with the monitoring of fermentation processes using electronic noses and electronic tongues. After a brief description of the fundamentals of both types of devices, the different approaches are critically commented, their strengths and weaknesses being highlighted. Finally, future trends in this field are also mentioned in the last section of the article.

  5. Key Technique of Austenitic Stainless Steel on-line Solution Treatment

    Institute of Scientific and Technical Information of China (English)

    LI Sheng-li; LI Wei-juan; LIU Shuang; LI Ying; ZHAO Fei

    2004-01-01

    Generally the methods of solution treatment of austenitic stainless steel are bifurcated on-line solution and off-line solution . For a founded enterprise, it is necessary to find out how to get across alterations and search a measure of on -line solution disposal with less investment and higher efficiency. By studying and analysingin laboratory, several key points and the methods settle them are presented, which offers a new route to realize austenitic stainless steel on-line solution. By reducing the cost greatly, it makes the enterprise larger benefits.

  6. Survey on Online Public Opinion Information Monitoring%网络舆情信息监测研究进展

    Institute of Scientific and Technical Information of China (English)

    陈忆金; 曹树金; 陈少驰; 陈珏静

    2011-01-01

    从网络舆情理论研究、网络舆情监测与分析技术、网络舆情监测系统与实践三个方面对现有研究进行分析和概括。通过归纳网络舆情信息监测的技术流程,综述了与网络舆情监测密切相关的论题如网络舆情的概念、产生与传播机制、网络舆情的特征与影响、网络舆情的主体与媒介、网络舆情模式识别、基于内容挖掘的舆情监测与分析核心技术、舆情监测系统与应用等研究的成就与不足,并试图指出发展前景。%The primary three aspects of current interesting researches were presented: theory researches, monitoring and analysis technologies and existing systems and practice of online public opinion. The basic technology flow of online public opinion information monitoring was introduced. The achievements and shortcomings of important research topics with close relation to opinion monitoring, such as concepts, generation and transmission mechanisms, characteristics and influence, the main body and media of online public opinion, pattern recognition, core technologies of content-based public opinion mining and analysis, existing systems and practice, were summarized, and forecasted research perspectives were proposed.

  7. Continuous Non-Invasive Arterial Pressure Technique Improves Patient Monitoring during Interventional Endoscopy

    Directory of Open Access Journals (Sweden)

    Sylvia Siebig, Felix Rockmann, Karl Sabel, Ina Zuber-Jerger, Christine Dierkes, Tanja Brünnler, Christian E. Wrede

    2009-01-01

    Full Text Available Introduction: Close monitoring of arterial blood pressure (BP is a central part of cardiovascular surveillance of patients at risk for hypotension. Therefore, patients undergoing diagnostic and therapeutic procedures with the use of sedating agents are monitored by discontinuous non-invasive BP measurement (NIBP. Continuous non-invasive BP monitoring based on vascular unloading technique (CNAP®, CN Systems, Graz may improve patient safety in those settings. We investigated if this new technique improved monitoring of patients undergoing interventional endoscopy. Methods: 40 patients undergoing interventional endoscopy between April and December 2007 were prospectively studied with CNAP® in addition to standard monitoring (NIBP, ECG and oxygen saturation. All monitoring values were extracted from the surveillance network at one-second intervals, and clinical parameters were documented. The variance of CNAP® values were calculated for every interval between two NIBP measurements. Results: 2660 minutes of monitoring were recorded (mean 60.1±34.4 min/patient. All patients were analgosedated with midazolam and pethidine, and 24/40 had propofol infusion (mean 90.9±70.3 mg. The mean arterial pressure for CNAP® was 102.4±21.2 mmHg and 106.8±24.8 mmHg for NIBP. Based on the first NIBP value in an interval between two NIBP measurements, BP values determined by CNAP® showed a maximum increase of 30.8±21.7% and a maximum decrease of 22.4±28.3% (mean of all intervals. Discussion: Conventional intermittent blood pressure monitoring of patients receiving sedating agents failed to detect fast changes in BP. The new technique CNAP® improved the detection of rapid BP changes, and may contribute to a better patient safety for those undergoing interventional procedures.

  8. 3D LASER SCANNING TECHNIQUE FOR THE INSPECTION AND MONITORING OF RAILWAY TUNNELS

    OpenAIRE

    2015-01-01

    Railway tunnel inspection and monitoring has predominantly been a visual and manual procedure, which is time-consuming and subjective, giving rise to variance in standards and quality. Thus, alternative, novel, automated techniques need to be developed, for more efficient and reliable tunnel examination. The reported research aimed to investigate the application of a laser scanning technique for the inspection of tunnel degradation and structural integrity. The proposed method may either subs...

  9. Use of multi-objective air pollution monitoring sites and online air pollution monitoring system for total health risk assessment in Hyderabad, India.

    Science.gov (United States)

    Anjaneyulu, Y; Jayakumar, I; Hima Bindu, V; Sagareswar, G; Mukunda Rao, P V; Rambabu, N; Ramani, K V

    2005-08-01

    A consensus has been emerging among public health experts in developing countries that air pollution, even at current ambient levels, aggravates respiratory and cardiovascular diseases and leads to premature mortality. Recent studies have also presented well-founded theories concerning the biological mechanisms involved and the groups of people that are probably more susceptible to health effects caused or exacerbated by inhalation of ambient particulate matter (PM.). On the basis of prognostic studies carried out in Center for Environment, JNT University, Hyderabad "it has been estimated that in Hyderabad some 1,700 to 3,000 people per year die prematurely as a result of inhaling PM". These figures reflect only the effects of acute exposure to air pollution. If the long-term effects of chronic exposure are taken into account, 10,000-15,000 people a year could die prematurely in Hyderabad. This estimate of the chronic effects is based on other studies, which are not completely comparable with the Hyderabad situation. While the study designs and analyses in these other studies may indeed be different or irrelevant to Hyderabad, the fact they were carried out in other countries is irrelevant. Taking into account these considerations, a model for total health risk assessment for the city of Hyderabad, and its state of Andhra Pradesh in India has been developed using a multi-objective air pollution monitoring network and online and real time air pollution monitoring stations. For the model studies a number of potential monitoring sites were screened for general and site-specific criteria in a geographic information system (GIS) environment that may, on a local basis, affect the representativeness of the data collected. Local features that may affect either the chemical or meteorological parameters are evaluated to assure a minimum of interference. Finally, for monitoring air pollution, an online and real-time monitoring system was designed using advanced

  10. Use of Multi-Objective Air Pollution Monitoring Sites and Online Air Pollution Monitoring System for Total Health Risk Assessment in Hyderabad, India

    Directory of Open Access Journals (Sweden)

    K. V. Ramani

    2005-08-01

    Full Text Available A consensus has been emerging among public health experts in developing countries that air pollution, even at current ambient levels, aggravates respiratory and cardiovascular diseases and leads to premature mortality. Recent studies have also presented well-founded theories concerning the biological mechanisms involved and the groups of people that are probably more susceptible to health effects caused or exacerbated by inhalation of ambient particulate matter (PM.. On the basis of prognostic studies carried out in Center for Environment, JNT University, Hyderabad “it has been estimated that in Hyderabad some 1,700 to 3,000 people per year die prematurely as a result of inhaling PM”. These figures reflect only the effects of acute exposure to air pollution. If the long-term effects of chronic exposure are taken into account, 10,000–15,000 people a year could die prematurely in Hyderabad. This estimate of the chronic effects is based on other studies, which are not completely comparable with the Hyderabad situation. While the study designs and analyses in these other studies may indeed be different or irrelevant to Hyderabad, the fact they were carried out in other countries is irrelevant. Taking into account these considerations, a model for total health risk assessment for the city of Hyderabad, and its state of Andhra Pradesh in India has been developed using a multi-objective air pollution monitoring network and online and real time air pollution monitoring stations. For the model studies a number of potential monitoring sites were screened for general and site-specific criteria in a geographic information system (GIS environment that may, on a local basis, affect the representativeness of the data collected. Local features that may affect either the chemical or meteorological parameters are evaluated to assure a minimum of interference. Finally, for monitoring air pollution, an online and real

  11. High sensitive gas detection and isotopic measurement for the applications of industrial emission online monitoring and air pollution source tracking

    Science.gov (United States)

    Dong, Fengzhong; Zhang, Zhirong; Xia, Hua; Cui, Xiaojuan; Pang, Tao; Wu, Bian; Chen, Weidong; Sigrist, Markus

    2015-04-01

    High sensitive gas detection and isotopic measurements have been widely employed in the industrial and safety production. The recent progress made by our group on high sensitive gas detection with technologies of TDLAS, off-axis integrated cavity output spectroscopy (OA-ICOS) and cavity ring-down spectroscopy (CRDS) will be briefly summarized in this report. Some works for field applications of industrial emission online monitoring and gas leakage detection in oil tank farm with TDLAS are first presented, and then part of our most recent researches on isotopic gas detection with OA-ICOS and CRDS for tracking of pollution sources are also introduced.

  12. Concentration Places, Concentration Evolutions, and Online Information Retrieval Techniques for Calculating Them.

    Science.gov (United States)

    Egghe, L.

    1988-01-01

    Presents a mathematical theory that can be used to define concentration places of objects within unordered classes. The application to research on the evolution of journals and subject areas is illustrated, and an online method of calculating concentration evolution is described. (1 references) (CLB)

  13. Critical Thinking in Asynchronous Online Discussion: An Investigation of Student Facilitation Techniques

    Science.gov (United States)

    Lim, Sze Chung Raymond; Cheung, Wing Sum; Hew, Khe Foon

    2011-01-01

    Background: In the last decade, asynchronous online discussion forums have become a primary focus of many educational researchers. Some advocates believed that the process of typing out messages in itself can promote in-depth critical thinking skills. Nevertheless, empirical research has not provided much support for this claim in natural…

  14. Puzzling with online games (BAM-COG): reliability, validity, and feasibility of an online self-monitor for cognitive performance in aging adults.

    Science.gov (United States)

    Aalbers, Teun; Baars, Maria A E; Olde Rikkert, Marcel G M; Kessels, Roy P C

    2013-12-03

    Online interventions are aiming increasingly at cognitive outcome measures but so far no easy and fast self-monitors for cognition have been validated or proven reliable and feasible. This study examines a new instrument called the Brain Aging Monitor-Cognitive Assessment Battery (BAM-COG) for its alternate forms reliability, face and content validity, and convergent and divergent validity. Also, reference values are provided. The BAM-COG consists of four easily accessible, short, yet challenging puzzle games that have been developed to measure working memory ("Conveyer Belt"), visuospatial short-term memory ("Sunshine"), episodic recognition memory ("Viewpoint"), and planning ("Papyrinth"). A total of 641 participants were recruited for this study. Of these, 397 adults, 40 years and older (mean 54.9, SD 9.6), were eligible for analysis. Study participants played all games three times with 14 days in between sets. Face and content validity were based on expert opinion. Alternate forms reliability (AFR) was measured by comparing scores on different versions of the BAM-COG and expressed with an intraclass correlation (ICC: two-way mixed; consistency at 95%). Convergent validity (CV) was provided by comparing BAM-COG scores to gold-standard paper-and-pencil and computer-assisted cognitive assessment. Divergent validity (DV) was measured by comparing BAM-COG scores to the National Adult Reading Test IQ (NART-IQ) estimate. Both CV and DV are expressed as Spearman rho correlation coefficients. Three out of four games showed adequate results on AFR, CV, and DV measures. The games Conveyer Belt, Sunshine, and Papyrinth have AFR ICCs of .420, .426, and .645 respectively. Also, these games had good to very good CV correlations: rho=.577 (P=.001), rho=.669 (Pgame Viewpoint provided less desirable results with an AFR ICC of .167, CV rho=.202 (P=.15), and DV rho=-.162 (P=.21). This study provides evidence for the use of the BAM-COG test battery as a feasible, reliable, and

  15. A clinical evaluation of an improved Holter monitoring technique for artificial pacemaker function.

    Science.gov (United States)

    Kelen, G J; Bloomfield, D A; Hardage, M; Gomes, J A; Khan, R; Gopalaswamy, C; El Sherif, N

    1980-03-01

    This paper discusses shortcomings of conventional Holter monitoring in paced patients and describes a new technique which permits reliable detection of intermittent pacemaker malfunction and counts pacemaker activity during the recording period. Evaluation of the system of 64 consecutive patients revealed 15 with unsuspected episodic pacemaker dysfunction.

  16. Performance Analysis of a network using GriFT Monitoring Technique

    Directory of Open Access Journals (Sweden)

    Priya Kundal

    2012-08-01

    Full Text Available Fault tolerance is an influential field of concern while working in a grid. Sharing as its primary goal of evolvement, a Grid includes hardware, software, and heterogeneous resources from different organizations spread over large geographical area which would make it a complex behaviour system. With this composite nature grid systems are hard to manage and will result in a faulty system. To over-come this breach of failure a monitoring technique is required that could observe and analyze the performance of the environment and report the existence of faults. This paper presents the design, implementation and evaluation of the monitoring technique called GriFT which is developed using the concept of Grid Monitoring Architecture (GMA. The analysis is done by deploying it in a real laboratory set-up.

  17. On-line monitoring of milk electrical conductivity by fuzzy logic technology to characterise health status in dairy goats

    Directory of Open Access Journals (Sweden)

    Mauro Zaninelli

    2014-04-01

    Full Text Available Intramammary infection affects the quality and quantity of dairy goat milk. Health status (HS and milk quality can be monitored by electrical conductivity (EC. The aim of the study was to determine the detection potential of EC when measured on-line on a daily basis and compared with readings from previous milkings. Milk yields (MYs were investigated with the same approach. To evaluate these relative traits, a multivariate model based on fuzzy logic technology – which provided interesting results in cows – was used. Two foremilk samples from 8 healthy Saanen goats were measured daily over the course of six months. Bacteriological tests and somatic cells counts were used to define the HS. On-line EC measurements for each gland and MYs were also considered. Predicted deviations of EC and MY were calculated using a moving-average model and entered in the fuzzy logic model. The reported accuracy has a sensitivity of 81% and a specificity of 69%. Conclusions show that fuzzy logic is an interesting approach for dairy goats, since it offered better accuracy than other methods previously published. Nevertheless, specificity was lower than in dairy cows, probably due to the lack of a significant decrease of MY in diseased glands. Still, results show that the detection of the HS characteristics with EC is improved, when measured on-line, daily and compared with the readings from previous milkings.

  18. Multi-channel microfluidic biosensor platform applied for online monitoring and screening of biofilm formation and activity.

    Science.gov (United States)

    Bruchmann, Julia; Sachsenheimer, Kai; Rapp, Bastian E; Schwartz, Thomas

    2015-01-01

    Bacterial colonization of surfaces and interfaces has a major impact on various areas including biotechnology, medicine, food industries, and water technologies. In most of these areas biofilm development has a strong impact on hygiene situations, product quality, and process efficacies. In consequence, biofilm manipulation and prevention is a fundamental issue to avoid adverse impacts. For such scenario online, non-destructive biofilm monitoring systems become important in many technical and industrial applications. This study reports such a system in form of a microfluidic sensor platform based on the combination of electrical impedance spectroscopy and amperometric current measurement, which allows sensitive online measurement of biofilm formation and activity. A total number of 12 parallel fluidic channels enable real-time online screening of various biofilms formed by different Pseudomonas aeruginosa and Stenotrophomonas maltophilia strains and complex mixed population biofilms. Experiments using disinfectant and antibiofilm reagents demonstrate that the biofilm sensor is able to discriminate between inactivation/killing of bacteria and destabilization of biofilm structures. The impedance and amperometric sensor data demonstrated the high dynamics of biofilms as a consequence of distinct responses to chemical treatment strategies. Gene expression of flagellar and fimbrial genes of biofilms grown inside the microfluidic system supported the detected biofilm growth kinetics. Thus, the presented biosensor platform is a qualified tool for assessing biofilm formation in specific environments and for evaluating the effectiveness of antibiofilm treatment strategies.

  19. Study of techniques applicable for monitoring MIC in soil or sediment

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    1999-01-01

    Microbially influenced corrosion of carbon steel in anaerobic environment is difficult to monitor with electrochemical techniques because of heterogeneous surface conditions and electrochemically active corrosion products. Weight loss measurement, LPR, EIS, hydrogen permeation, and a refined ER...... technique have beeen evaluated including field tests in soil and marine sediment. The conclusions are that EIS can detect combined biofilm and corrosion product film formation, but corrosion rate is overestimated. The ER technique seems to give a correct and sensitive corrosion rate measurement within...... minutes. Hydrogen permeation measurements can indirectly identify sulphide....

  20. Multifunctional ultrasonic sensor for on-line tool condition monitoring in turning operations

    Energy Technology Data Exchange (ETDEWEB)

    Nayfeh, T.H.; Abu-Zahra, N.H. [Cleveland State Univ., OH (United States). Industrial Engineering Dept.

    1998-03-01

    Machining operations in automated manufacturing centers are, in general, under-performing by 20--80 percent. Optimizing these machining operations requires on-line knowledge of the cutting tool`s condition and the process state. Currently, this information is either not reliable or not available in a timely manner. This in part is due to the lack of suitable sensors which are able to measure on-line directly and accurately one or more of the relevant tool and process variables. A direct, active, ultrasonic method for on-line sensing of the tool condition and the process state in turning operations was developed in this work. Sensing is achieved by using an ultrasonic transducer operating at 10 MHz in a pulse-echo mode to send pulses through the cutting tool. The amplitude and propagation time of the reflected pulses are modulated by the tool nose, flank, temperature, and by the material in contact with the tools. This method has the potential to measure on-line several relevant process and cutting tool parameters directly and accurately through the use of a single sensor. These parameters are tool-workpiece contact, tool gradual wear, tool chipping and tool chatter.