Energy Technology Data Exchange (ETDEWEB)
Devreese, Jeroen P. A.; Wouters, Michiel [TQC (Theory of Quantum Systems and Complex Systems), Universiteit Antwerpen, B-2020 Antwerpen (Belgium); Tempere, Jacques [TQC (Theory of Quantum Systems and Complex Systems), Universiteit Antwerpen, B-2020 Antwerpen (Belgium); Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138 (United States)
2011-10-15
The question whether a spin-imbalanced Fermi gas can accommodate the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state has been the subject of intense study. This state, in which Cooper pairs obtain a nonzero momentum, has hitherto eluded experimental observation. Recently, we demonstrated that the FFLO state can be stabilized in a 3D Fermi gas, by adding a 1D periodic potential. Until now it was assumed that the FFLO wave vector always lies parallel to this periodic potential (FFLO-P). In this contribution we show that, surprisingly, the FFLO wave vector can also lie skewed with respect to the potential (FFLO-S). Starting from the partition sum, the saddle-point free energy of the system is derived within the path-integral formalism. Minimizing this free energy allows us to study the different competing ground states of the system. To qualitatively understand the underlying pairing mechanism, we visualize the Fermi surfaces of the spin-up and spin-down particles. From this visualization, we find that tilting the FFLO wave vector with respect to the direction of the periodic potential can result in a larger overlap between the pairing bands of both spin species. This skewed FFLO state can provide an additional experimental signature for observing FFLO superfluidity in a 3D Fermi gas.
An interpolatory ansatz captures the physics of one-dimensional confined Fermi systems
DEFF Research Database (Denmark)
Andersen, Molte Emil Strange; Salami Dehkharghani, Amin; Volosniev, A. G.;
2016-01-01
beyond the Bethe ansatz and bosonisation allow us to predict the behaviour of one-dimensional confined systems with strong short-range interactions, and new experiments with cold atomic Fermi gases have already confirmed these theories. Here we demonstrate that a simple linear combination of the strongly...
Institute of Scientific and Technical Information of China (English)
YANG XiaoXue; WU Ying
2002-01-01
We develop a simple approach to obtain explicitly exact analytical expressions of particle and kinetic-energy densities for noninteracting Fermi gases in one-dimensional harmonic confinement, and in one-dimensional boxconfinement as well.
Time correlation functions for the one-dimensional Lorentz gas
Mazo, R.M.; Beijeren, H. van
1983-01-01
The velocity autocorrelation function and related quantities are investigated for the one-dimensional deterministic Lorentz gas, consisting of randomly distributed fixed scatterers and light particles moving back and forth between two of these at a constant given speed. An expansion for the velocity
One-dimensional Bose gas on an atom chip
van Amerongen, A.H.
2008-01-01
We describe experiments investigating the (coherence) properties of a finite-temperature one-dimensional (1D) Bose gas with repulsive interactions. The confining magnetic field is generated with a micro-electronic circuit. This microtrap for atoms or `atom chip' is particularly suited to generate a
Korteweg de Vries Description of One-Dimensional Superfluid Fermi Gases
Institute of Scientific and Technical Information of China (English)
徐艳霞; 段文山
2011-01-01
We study one-dimensional matter-wave pulses in cigar-shaped superfluid Fermi gases, including the linear and nonlinear waves of the system. A Korteweg de Vries (KdV) solitary wave is obtained for the superfluid Fermi gases in the limited case of a BEC regime, a BCS regime and unitarity. The dependences of the propagation velocity, amplitude and the width of the solitary wave on the dimensionless interaction parameter y = 1/{kFasc) are given for the limited cases of BEC and unitarity.%We study one-dimensional matter-wave pulses in cigar-shaped superfluid Fermi gases,including the linear and nonlinear waves of the system.A Korteweg de Vries(KdV)solitary wave is obtained for the superfluid Fermi gases in the limited case of a BEC regime,a BCS regime and unitarity.The dependences of the propagation velocity,amplitude and the width of the solitary wave on the dimensionless interaction parameter y =1 /(kFasc)are given for the limited cases of BEC and unitarity.
Ground State Density Distribution of Bose-Fermi Mixture in a One-Dimensional Harmonic Trap
Institute of Scientific and Technical Information of China (English)
HAO Ya-Jiang
2011-01-01
By the density-functional calculation we investigate the ground-state properties of Bose-Fermi mixture confined in one-dimensional harmonic traps. The homogeneous mixture of bosons and polarized fermions with contact interaction can be exactly solved by the Bethe-ansatz method. After giving the exact formula of ground state energy density, we employ the local-density approximation to determine the density distribution of each component. It is shown that with the increase in interaction, the total density distribution evolves to Fermi-like distribution and the system exhibits phase separation between two components when the interaction is strong enough but finite. While in the infinite interaction limit both bosons and fermions display the completely same Fermi-like distributions and phase separation disappears.
Bloch oscillations in a one-dimensional spinor gas.
Gangardt, D M; Kamenev, A
2009-02-20
A force applied to a spin-flipped particle in a one-dimensional spinor gas may lead to Bloch oscillations of the particle's position and velocity. The existence of Bloch oscillations crucially depends on the viscous friction force exerted by the rest of the gas on the spin excitation. We evaluate the friction in terms of the quantum fluid parameters. In particular, we show that the friction is absent for integrable cases, such as an SU(2) symmetric gas of bosons or fermions. For small deviations from the exact integrability the friction is very weak, opening the possibility to observe Bloch oscillations.
Exchange effects in a quasi-one-dimensional electron gas
Gold, A.; Ghazali, A.
1990-04-01
We calculate the electron exchange of a quasi-one-dimensional electron gas in a quantum-well wire of radius R0. A two-subband model is considered and the exchange self-energy for the first and second subband is calculated under the assumption that only the lowest subband is partially filled with electrons. Band-bending effects are also discussed. Results for the total energy per electron including kinetic and exchange energy are presented.
Scattering resonances in a degenerate Fermi gas
DEFF Research Database (Denmark)
Challis, Katharine; Nygaard, Nicolai; Mølmer, Klaus
2009-01-01
We consider elastic single-particle scattering from a one-dimensional trapped two-component superfluid Fermi gas when the incoming projectile particle is identical to one of the confined species. Our theoretical treatment is based on the Hartree-Fock ground state of the trapped gas and a configur......We consider elastic single-particle scattering from a one-dimensional trapped two-component superfluid Fermi gas when the incoming projectile particle is identical to one of the confined species. Our theoretical treatment is based on the Hartree-Fock ground state of the trapped gas...
An interpolatory ansatz captures the physics of one-dimensional confined Fermi systems.
Andersen, M E S; Dehkharghani, A S; Volosniev, A G; Lindgren, E J; Zinner, N T
2016-01-01
Interacting one-dimensional quantum systems play a pivotal role in physics. Exact solutions can be obtained for the homogeneous case using the Bethe ansatz and bosonisation techniques. However, these approaches are not applicable when external confinement is present. Recent theoretical advances beyond the Bethe ansatz and bosonisation allow us to predict the behaviour of one-dimensional confined systems with strong short-range interactions, and new experiments with cold atomic Fermi gases have already confirmed these theories. Here we demonstrate that a simple linear combination of the strongly interacting solution with the well-known solution in the limit of vanishing interactions provides a simple and accurate description of the system for all values of the interaction strength. This indicates that one can indeed capture the physics of confined one-dimensional systems by knowledge of the limits using wave functions that are much easier to handle than the output of typical numerical approaches. We demonstrate our scheme for experimentally relevant systems with up to six particles. Moreover, we show that our method works also in the case of mixed systems of particles with different masses. This is an important feature because these systems are known to be non-integrable and thus not solvable by the Bethe ansatz technique.
Emulating the one-dimensional Fermi-Hubbard model by a double chain of qubits
Reiner, Jan-Michael; Marthaler, Michael; Braumüller, Jochen; Weides, Martin; Schön, Gerd
2016-09-01
The Jordan-Wigner transformation maps a one-dimensional (1D) spin-1 /2 system onto a fermionic model without spin degree of freedom. A double chain of quantum bits with X X and Z Z couplings of neighboring qubits along and between the chains, respectively, can be mapped on a spin-full 1D Fermi-Hubbard model. The qubit system can thus be used to emulate the quantum properties of this model. We analyze physical implementations of such analog quantum simulators, including one based on transmon qubits, where the Z Z interaction arises due to an inductive coupling and the X X interaction due to a capacitive interaction. We propose protocols to gain confidence in the results of the simulation through measurements of local operators.
Multi-symplectic, Lagrangian, one-dimensional gas dynamics
Webb, G. M.
2015-05-01
The equations of Lagrangian, ideal, one-dimensional, compressible gas dynamics are written in a multi-symplectic form using the Lagrangian mass coordinate m and time t as independent variables, and in which the Eulerian position of the fluid element x = x(m, t) is one of the dependent variables. This approach differs from the Eulerian, multi-symplectic approach using Clebsch variables. Lagrangian constraints are used to specify equations for xm, xt, and St consistent with the Lagrangian map, where S is the entropy of the gas. We require St = 0 corresponding to advection of the entropy S with the flow. We show that the Lagrangian Hamiltonian equations are related to the de Donder-Weyl multi-momentum formulation. The pullback conservation laws and the symplecticity conservation laws are discussed. The pullback conservation laws correspond to invariance of the action with respect to translations in time (energy conservation) and translations in m in Noether's theorem. The conservation law due to m-translation invariance gives rise to a novel nonlocal conservation law involving the Clebsch variable r used to impose ∂S(m, t)/∂t = 0. Translation invariance with respect to x in Noether's theorem is associated with momentum conservation. We obtain the Cartan-Poincaré form for the system, and use it to obtain a closed ideal of two-forms representing the equation system.
Some Aspects of Statistical Thermodynamics of a Magnetized Fermi Gas
Tsintsadze, N L; Tsintsadze, L N
2015-01-01
We show that at the Landau ground state a Fermi gas remains precisely a three-dimensional for an arbitrary magnetic field in radical contrast to the previous claims that the perpendicular component of the pressure of a Fermi gas vanishes at the Landau ground state and therefore, it becomes strictly a one-dimensional gas.
Correlation effects for a quasi-one-dimensional polaron gas
Energy Technology Data Exchange (ETDEWEB)
Machado, Paulo Cesar Miranda [Escola de Engenharia Eletrica e de Computacao, Universidade Federal de Goias, Goiania (Brazil); Borges, Antonio Newton; Osorio, Francisco Aparecido Pinto [Instituto de Fisica, Universidade Federal de Goias, Goiania (Brazil); Nucleo de Pesquisa em Fisica, Pontificia Universidade Catolica de Goias, Goiania (Brazil)
2011-04-15
In this work, we investigate the plasmon-LO phonon interaction effects on the intrasubband structure factor, electron-electron effective potential, and plasmon energy associated with the lowest subband in a GaAs-AlGaAs rectangular quantum-well wire (QWW) as a function of the electronic density. Our calculations are performed using the self-consistent field approximation, which includes the local-field correction (LFC) within the Singwi, Tosi, Land, and Sjolander (STLS) theory, at zero temperature and assuming a three-subband model, where only the first subband is occupied by electrons. We report for the first time dips in the structure factor spectra as a function of the quasi-one-dimensional (Q1D) plasmon-LO phonon wavevector that are directly related with the resonant split of the collective excitation energy into two branches due to the polaronic effects. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Boltzmann equations for a binary one-dimensional ideal gas.
Boozer, A D
2011-09-01
We consider a time-reversal invariant dynamical model of a binary ideal gas of N molecules in one spatial dimension. By making time-asymmetric assumptions about the behavior of the gas, we derive Boltzmann and anti-Boltzmann equations that describe the evolution of the single-molecule velocity distribution functions for an ensemble of such systems. We show that for a special class of initial states of the ensemble one can obtain an exact expression for the N-molecule velocity distribution function, and we use this expression to rigorously prove that the time-asymmetric assumptions needed to derive the Boltzmann and anti-Boltzmann equations hold in the limit of large N. Our results clarify some subtle issues regarding the origin of the time asymmetry of Boltzmann's H theorem.
Free cooling of the one-dimensional wet granular gas.
Zaburdaev, V Yu; Brinkmann, M; Herminghaus, S
2006-07-07
The free cooling behavior of a wet granular gas is studied in one dimension. We employ a particularly simple model system in which the interaction of wet grains is characterized by a fixed energy loss assigned to each collision. Macroscopic laws of energy dissipation and cluster formation are studied on the basis of numerical simulations and mean-field analytical calculations. We find a number of remarkable scaling properties which may shed light on earlier unexplained results for related systems.
Faraday waves in quasi-one-dimensional superfluid Fermi-Bose mixtures
DEFF Research Database (Denmark)
Abdullaev, F. Kh.; Ögren, Magnus; Sørensen, Mads Peter
2013-01-01
The generation of Faraday waves in superfluid Fermi-Bose mixtures in elongated traps is investigated. The generation of waves is achieved by periodically changing a parameter of the system in time. Two types of modulations of parameters are considered: a variation of the fermion-boson scattering...
Riemann problem for one-dimensional binary gas enhanced coalbed methane process
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
With an extended Langmuir isotherm, a Riemann problem for one-dimensional binary gas enhanced coalbed methane (ECBM) process is investigated. A new analytical solution to the Riemann problem, based on the method of characteristics, is developed by introducing a gas selectivity ratio representing the gas relative sorption affinity. The influence of gas selectivity ratio on the enhanced coalbed methane processes is identified.
Energy and contact of the one-dimensional Fermi polaron at zero and finite temperature.
Doggen, E V H; Kinnunen, J J
2013-07-12
We use the T-matrix approach for studying highly polarized homogeneous Fermi gases in one dimension with repulsive or attractive contact interactions. Using this approach, we compute ground state energies and values for the contact parameter that show excellent agreement with exact and other numerical methods at zero temperature, even in the strongly interacting regime. Furthermore, we derive an exact expression for the value of the contact parameter in one dimension at zero temperature. The model is then extended and used for studying the temperature dependence of ground state energies and the contact parameter.
Institute of Scientific and Technical Information of China (English)
Hou Quan-Wen; Cao Bing-Yang
2012-01-01
The phonon relaxation and heat conduction in one-dimensional Fermi-Pasta-Ulam (FPU) β lattices are studied by using molecular dynamics simulations.The phonon relaxation rate,which dominates the length dependence of the FPU β lattice,is first calculated from the energy autocorrelation function for different modes at various temperatures through equilibrium molecular dynamics simulations.We find that the relaxation rate as a function of wave number k is proportional to k1.688,which leads to a N0.41 divergence of the thermal conductivity in the framework of Green-Kubo relation.This is also in good agreement with the data obtained by non-equilibrium molecular dynamics simulations which estimate the length dependence exponent of the thermal conductivity as 0.415.Our results confirm the N2/5divergence in one-dimensional FPU β lattices.The effects of the heat flux on the thermal conductivity are also studied by imposing different temperature differences on the two ends of the lattices.We find that the thermal conductivity is insensitive to the heat flux under our simulation conditions.It implies that the linear response theory is applicable towards the heat conduction in one-dimensional FPUβ lattices.
Weidinger, Lukas; Bauer, Florian; von Delft, Jan
2017-01-01
We introduce an equilibrium formulation of the functional renormalization group (fRG) for inhomogeneous systems capable of dealing with spatially finite-ranged interactions. In the general third-order truncated form of fRG, the dependence of the two-particle vertex is described by O (N4) independent variables, where N is the dimension of the single-particle system. In a previous paper [Bauer et al., Phys. Rev. B 89, 045128 (2014), 10.1103/PhysRevB.89.045128], the so-called coupled-ladder approximation (CLA) was introduced and shown to admit a consistent treatment for models with a purely onsite interaction, reducing the vertex to O (N2) independent variables. In this work, we introduce an extended version of this scheme, called the extended coupled ladder approximation (eCLA), which includes a spatially extended feedback between the individual channels, measured by a feedback length L , using O (N2L2) independent variables for the vertex. We apply the eCLA in a static approximation and at zero temperature to three types of one-dimensional model systems, focusing on obtaining the linear response conductance. First, we study a model of a quantum point contact (QPC) with a parabolic barrier top and on-site interactions. In our setup, where the characteristic length lx of the QPC ranges between approximately 4-10 sites, eCLA achieves convergence once L becomes comparable to lx. It also turns out that the additional feedback stabilizes the fRG flow. This enables us, second, to study the geometric crossover between a QPC and a quantum dot, again for a one-dimensional model with on-site interactions. Third, the enlarged feedback also enables the treatment of a finite-ranged interaction extending over up to L sites. Using a simple estimate for the form of such a finite-ranged interaction in a QPC with a parabolic barrier top, we study its effects on the conductance and the density. We find that for low densities and sufficiently large interaction ranges the conductance
Yang-Yang thermometry and momentum distribution of a trapped one-dimensional Bose gas
Davis, M.J.; Blakie, P.B.; van Amerongen, A.H.; van Druten, N.J.; Kheruntsyan, K.V.
2012-01-01
We describe the use of the exact Yang-Yang solutions for the one-dimensional Bose gas to enable accurate kinetic-energy thermometry based on the root-mean-square width of an experimentally measured momentum distribution. Furthermore, we use the stochastic projected Gross-Pitaevskii theory to provide
Finite-temperature correlations in the Lieb-Liniger one-dimensional Bose gas
Panfil, M.; Caux, J.-S.
2014-01-01
We address the problem of calculating finite-temperature response functions of an experimentally relevant low-dimensional, strongly correlated system: the integrable one-dimensional Bose gas with a repulsive δ-function interaction (the Lieb-Liniger model). Focusing on the dynamical density-density f
Fluctuations of the heat flux of a one-dimensional hard particle gas
Brunet, E.; Derrida, B.; Gerschenfeld, A.
2010-04-01
Momentum-conserving one-dimensional models are known to exhibit anomalous Fourier's law, with a thermal conductivity varying as a power law of the system size. Here we measure, by numerical simulations, several cumulants of the heat flux of a one-dimensional hard particle gas. We find that the cumulants, like the conductivity, vary as power laws of the system size. Our results also indicate that cumulants higher than the second follow different power laws when one compares the ring geometry at equilibrium and the linear case in contact with two heat baths (at equal or unequal temperatures).
Quantum quenches to the attractive one-dimensional Bose gas: exact results
Directory of Open Access Journals (Sweden)
Lorenzo Piroli, Pasquale Calabrese, Fabian H. L. Essler
2016-09-01
Full Text Available We study quantum quenches to the one-dimensional Bose gas with attractive interactions in the case when the initial state is an ideal one-dimensional Bose condensate. We focus on properties of the stationary state reached at late times after the quench. This displays a finite density of multi-particle bound states, whose rapidity distribution is determined exactly by means of the quench action method. We discuss the relevance of the multi-particle bound states for the physical properties of the system, computing in particular the stationary value of the local pair correlation function $g_2$.
Perpetual motion of a mobile impurity in a one-dimensional quantum gas
Lychkovskiy, O.
2014-03-01
Consider an impurity particle injected in a degenerate one-dimensional gas of noninteracting fermions (or, equivalently, Tonks-Girardeau bosons) with some initial momentum p0. We examine the infinite-time value of the momentum of the impurity, p∞, as a function of p0. A lower bound on |p∞(p0)| is derived under fairly general conditions. The derivation, based on the existence of the lower edge of the spectrum of the host gas, does not resort to any approximations. The existence of such bound implies the perpetual motion of the impurity in a one-dimensional gas of noninteracting fermions or Tonks-Girardeau bosons at zero temperature. The bound admits an especially simple and useful form when the interaction between the impurity and host particles is everywhere repulsive.
Current progress on heat conduction in one-dimensional gas channels
Institute of Scientific and Technical Information of China (English)
MAO Jun-wen; LI You-quan
2006-01-01
We give a brief review of the past development of model studies on one-dimensional heat conduction.Particularly,we describe recent achievements on the study of heat conduction in one-dimensional gas models including the hard-point gas model and billiard gas channel.For a onedimensional gas of elastically colliding particles of unequal masses,heat conduction is anomalous due to momentum conservation,and the divergence exponent of heat conductivity is estimated as α=0.33 in κ～Lα.Moreover,in billiard gas models,it is found that exponent instability is not necessary for normal heat conduction.The connection between heat conductivity and diffusion is investigated.Some new progress is reported.A recently proposed model with a quantized degree of freedom to study the heat transport in quasi-one dimensional systems is illustrated in which three distinct temperature regimes of heat conductivity are manifested.The establishment of local thermal equilibrium (LTE)in homogeneous and heterogeneous systems is also discussed.Finally,we give a summary with an outlook for further study about the problem of heat conduction.
Thermodynamics of a one-dimensional self-gravitating gas with periodic boundary conditions
Kumar, Pankaj; Miller, Bruce N.; Pirjol, Dan
2017-02-01
We study the thermodynamic properties of a one-dimensional gas with one-dimensional gravitational interactions. Periodic boundary conditions are implemented as a modification of the potential consisting of a sum over mirror images (Ewald sum), regularized with an exponential cutoff. As a consequence, each particle carries with it its own background density. Using mean-field theory, we show that the system has a phase transition at a critical temperature. Above the critical temperature the gas density is uniform, while below the critical point the system becomes inhomogeneous. Numerical simulations of the model, which include the caloric curve, the equation of state, the radial distribution function, and the largest Lyapunov exponent, confirm the existence of the phase transition, and they are in good agreement with the theoretical predictions.
Entanglement pre-thermalization in a one-dimensional Bose gas
Kaminishi, Eriko; Mori, Takashi; Ikeda, Tatsuhiko N.; Ueda, Masahito
2015-12-01
An isolated quantum system often shows relaxation to a quasi-stationary state before reaching thermal equilibrium. Such a pre-thermalized state was observed in recent experiments in a one-dimensional Bose gas after it had been coherently split into two. Although the existence of local conserved quantities is usually considered to be the key ingredient of pre-thermalization, the question of whether non-local correlations between the subsystems can influence pre-thermalization of the entire system has remained unanswered. Here we study the dynamics of coherently split one-dimensional Bose gases and find that the initial entanglement combined with energy degeneracy due to parity and translation invariance strongly affects the long-term behaviour of the system. The mechanism of this entanglement pre-thermalization is quite general and not restricted to one-dimensional Bose gases. In view of recent experiments with a small and well-defined number of ultracold atoms, our predictions based on exact few-body calculations could be tested in experiments.
Choi, S; Dunjko, V; Zhang, Z D; Olshanii, M
2015-09-11
Using a time-dependent modified nonlinear Schrödinger equation (MNLSE)-where the conventional chemical potential proportional to the density is replaced by the one inferred from Lieb-Liniger's exact solution-we study frequencies of the collective monopole excitations of a one-dimensional Bose gas. We find that our method accurately reproduces the results of a recent experimental study [E. Haller et al., Science 325, 1224 (2009)] in the full spectrum of interaction regimes from the ideal gas, through the mean-field regime, through the mean-field Thomas-Fermi regime, all the way to the Tonks-Giradeau gas. While the former two are accessible by the standard time-dependent NLSE and inaccessible by the time-dependent local density approximation, the situation reverses in the latter case. However, the MNLSE is shown to treat all these regimes within a single numerical method.
Energy of one-dimensional diatomic elastic granular gas: Theory and molecular dynamics Simulation
Khotimah, Siti Nurul; Widayani,; Waris, Abdul
2011-01-01
One-dimensional ideal diatomic gas is simulated through possible types of motion of a molecule. Energy of each type of its motion is calculated from theory and numerical method. Calculation of kinetic energy of an atom in translational-vibrational motion is not analytically simple, but it can be solved by numerical method of molecular dynamic simulation. This paper justifies that kinetic energy of a diatomic molecule can be determined by two different approaches. The first is the sum of kinetic energy of each atom and second is the sum of kinetic energy of translational motion and vibrational motion.
Alloy-disorder scattering in the quasi-one dimensional electron gas
Gold, A.; Ghazali, A.
1992-08-01
We calculate the mobility μ due to alloy-disorder scattering in a quasi-one-dimensional electron gas. In the one-subband approximation the screening effects are taken into account. We discuss the dependence of μ on the wire radius and the electron density and derive analytical results. We compare our results with the mobility due to interface-roughness scattering and conclude that in In 0.53Ga 0.47As/InP wires alloy-disorder scattering is more important than interface-roughness scattering. Our results should apply to recently realized In 0.53Ga 0.47As/InP wires.
New nonlinear structures in a degenerate one-dimensional electron gas
Ghosh, S; Haas, F
2014-01-01
The collective dynamics of nonlinear electron waves in an one-dimensional degenerate electron gas is treated using the Lagrangian fluid approach. A new class of solutions with a nontrivial space and time dependence is derived. Both analytical and numerical results demonstrate the formation of stable, breather-like modes, provided certain conditions are meet. For large amplitude of the initial density perturbation, a catastrophic collapse of the plasma density is predicted, even in the presence of the quantum statistical pressure and quantum diffraction dispersive effects. The results are useful for the understanding of the properties of general nonlinear structures in dense plasmas.
One-dimensional nanostructure field-effect sensors for gas detection.
Zhao, Xiaoli; Cai, Bin; Tang, Qingxin; Tong, Yanhong; Liu, Yichun
2014-07-31
Recently; one-dimensional (1D) nanostructure field-effect transistors (FETs) have attracted much attention because of their potential application in gas sensing. Micro/nanoscaled field-effect sensors combine the advantages of 1D nanostructures and the characteristic of field modulation. 1D nanostructures provide a large surface area-volume ratio; which is an outstanding advantage for gas sensors with high sensitivity and fast response. In addition; the nature of the single crystals is favorable for the studies of the response mechanism. On the other hand; one main merit of the field-effect sensors is to provide an extra gate electrode to realize the current modulation; so that the sensitivity can be dramatically enhanced by changing the conductivity when operating the sensors in the subthreshold regime. This article reviews the recent developments in the field of 1D nanostructure FET for gas detection. The sensor configuration; the performance as well as their sensing mechanism are evaluated.
Composite-fermionization of the mixture composed of Tonks gas and Fermi gas
Institute of Scientific and Technical Information of China (English)
Hao Ya-Jiang
2011-01-01
This paper investigates the ground-state properties of the mixture composed of the strongly interacting TonksGirardeau gas and spin polarized Fermi gas confined in one-dimensional harmonic traps, where the interaction between the Bose atoms and Fermi atoms is tunable. With a generalized Bose-Fermi transformation the mixture is mapped into a two-component Fermi gas. The homogeneous Fermi gas is exactly solvable by the Bethe-ansatz method and the ground state energy density can be obtained. Combining the ground-state energy function of the homogeneous system with local density approximation it obtains the ground-state density distributions of inhomogeneous mixture. It is shown that with the increase in boson-fermion interaction, the system exhibits composite-fermionization crossover.
Anisotropic Heisenberg form of RKKY interaction in the one-dimensional spin-polarized electron gas
Valizadeh, M. M.
2016-09-01
We study the indirect exchange interaction between two localized magnetic moments, known as Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, in a one-dimensional (1D) spin-polarized electron gas. We find explicit expressions for each term of this interaction, study their oscillatory behaviors as a function of the distance between two magnetic moments, R, and compare them with the known results for RKKY interaction in the case of 1D standard electron gas. We show this interaction can be written in an anisotropic Heisenberg form, E(R) = λ2χ xx(S1xS2x + S1yS2y) + λ2χ zzS1zS2z, coming from broken time-reversal symmetry of the host material.
Gradient catastrophe and Fermi-edge resonances in Fermi gas.
Bettelheim, E; Kaplan, Y; Wiegmann, P
2011-04-22
Any smooth spatial disturbance of a degenerate Fermi gas inevitably becomes sharp. This phenomenon, called the gradient catastrophe, causes the breakdown of a Fermi sea to multiconnected components characterized by multiple Fermi points. We argue that the gradient catastrophe can be probed through a Fermi-edge singularity measurement. In the regime of the gradient catastrophe the Fermi-edge singularity problem becomes a nonequilibrium and nonstationary phenomenon. We show that the gradient catastrophe transforms the single-peaked Fermi-edge singularity of the tunneling (or absorption) spectrum to a sequence of multiple asymmetric singular resonances. An extension of the bosonic representation of the electronic operator to nonequilibrium states captures the singular behavior of the resonances.
Gas Sensors Based on One Dimensional Nanostructured Metal-Oxides: A Review
Directory of Open Access Journals (Sweden)
A. S. M. A. Haseeb
2012-05-01
Full Text Available Recently one dimensional (1-D nanostructured metal-oxides have attracted much attention because of their potential applications in gas sensors. 1-D nanostructured metal-oxides provide high surface to volume ratio, while maintaining good chemical and thermal stabilities with minimal power consumption and low weight. In recent years, various processing routes have been developed for the synthesis of 1-D nanostructured metal-oxides such as hydrothermal, ultrasonic irradiation, electrospinning, anodization, sol-gel, molten-salt, carbothermal reduction, solid-state chemical reaction, thermal evaporation, vapor-phase transport, aerosol, RF sputtering, molecular beam epitaxy, chemical vapor deposition, gas-phase assisted nanocarving, UV lithography and dry plasma etching. A variety of sensor fabrication processing routes have also been developed. Depending on the materials, morphology and fabrication process the performance of the sensor towards a specific gas shows a varying degree of success. This article reviews and evaluates the performance of 1-D nanostructured metal-oxide gas sensors based on ZnO, SnO_{2}, TiO_{2}, In_{2}O_{3}, WO_{x}, AgVO_{3}, CdO, MoO_{3}, CuO, TeO_{2} and Fe_{2}O_{3}. Advantages and disadvantages of each sensor are summarized, along with the associated sensing mechanism. Finally, the article concludes with some future directions of research.
Gas sensors based on one dimensional nanostructured metal-oxides: a review.
Arafat, M M; Dinan, B; Akbar, Sheikh A; Haseeb, A S M A
2012-01-01
Recently one dimensional (1-D) nanostructured metal-oxides have attracted much attention because of their potential applications in gas sensors. 1-D nanostructured metal-oxides provide high surface to volume ratio, while maintaining good chemical and thermal stabilities with minimal power consumption and low weight. In recent years, various processing routes have been developed for the synthesis of 1-D nanostructured metal-oxides such as hydrothermal, ultrasonic irradiation, electrospinning, anodization, sol-gel, molten-salt, carbothermal reduction, solid-state chemical reaction, thermal evaporation, vapor-phase transport, aerosol, RF sputtering, molecular beam epitaxy, chemical vapor deposition, gas-phase assisted nanocarving, UV lithography and dry plasma etching. A variety of sensor fabrication processing routes have also been developed. Depending on the materials, morphology and fabrication process the performance of the sensor towards a specific gas shows a varying degree of success. This article reviews and evaluates the performance of 1-D nanostructured metal-oxide gas sensors based on ZnO, SnO(2), TiO(2), In(2)O(3), WO(x), AgVO(3), CdO, MoO(3), CuO, TeO(2) and Fe(2)O(3). Advantages and disadvantages of each sensor are summarized, along with the associated sensing mechanism. Finally, the article concludes with some future directions of research.
Scaling symmetries, conservation laws and action principles in one-dimensional gas dynamics
Energy Technology Data Exchange (ETDEWEB)
Webb, G M; Zank, G P [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL 35805 (United States)], E-mail: gary.webb@uah.edu
2009-11-27
Scaling symmetries of the planar, one-dimensional gas dynamic equations with adiabatic index {gamma} are used to obtain Lagrangian and Eulerian conservation laws associated with the symmetries. The known Eulerian symmetry operators for the scaling symmetries are converted to the Lagrangian form, in which the Eulerian spatial position of the fluid element is given in terms of the Lagrangian fluid labels. Conditions for a linear combination of the three scaling symmetries to be a divergence or variational symmetry of the action are established. The corresponding Lagrangian and Eulerian form of the conservation laws are determined by application of Noether's theorem. A nonlocal conservation law associated with the scaling symmetries is obtained by applying a nonlocal symmetry operator to the scaling symmetry-conserved vector. An action principle incorporating known conservation laws using Lagrangian constraints is developed. Noether's theorem for the constrained action principle gives the same formulas for the conserved vector as the classical Noether theorem, except that the Lie symmetry vector field now includes the effects of nonlocal potentials. Noether's theorem for the constrained action principle is used to obtain nonlocal conservation laws. The scaling symmetry conservation laws only apply for special forms of the entropy of the gas.
Quantum recurrences in a one-dimensional gas of impenetrable bosons.
Solano-Carrillo, E
2015-10-01
It is well-known that a dilute one-dimensional (1D) gas of bosons with infinitely strong repulsive interactions behaves like a gas of free fermions. Just as with conduction electrons in metals, we consider a single-particle picture of the resulting dynamics, when the gas is isolated by enclosing it into a box with hard walls and preparing it in a special initial state. We show, by solving the nonstationary problem of a free particle in a 1D hard-wall box, that the single-particle state recurs in time, signaling the intuitively expected back-and-forth motion of a free particle moving in a confined space. Under suitable conditions, the state of the whole gas can then be made to recur if all the particles are put in the same initial momentum superposition. We introduce this problem here as a modern instance of the discussions giving rise to the famous recurrence paradox in statistical mechanics: on one hand, our results may be used to develop a poor man's interpretation of the recurrence of the initial state observed [T. Kinoshita et al., Nature 440, 900 (2006)] in trapped 1D Bose gases of cold atoms, for which our estimated recurrence time is in fair agreement with the period of the oscillations observed; but this experiment, on the other hand, has been substantially influential on the belief that an isolated quantum many-body system can equilibrate as a consequence of its own unitary nonequilibrium dynamics. Some ideas regarding the latter are discussed.
Okubo, T.; Yamada, M.; Thamizhavel, A.; Kirita, S.; Inada, Y.; Settai, R.; Harima, H.; Takegahara, K.; Galatanu, A.; Yamamoto, E.; Onuki, Y.
2003-11-01
We have carried out de Haas-van Alphen (dHvA) experiments on a ferromagnet CeRh3B2 with an extremely high Curie temperature T_{\\mathrm {C}} \\simeq 120 K and a non-4f reference compound LaRh3B2. The dHvA data of LaRh3B2 are well explained by the results of energy band calculations. The topology of the Fermi surfaces in CeRh3B2 is found to be very similar to that of LaRh3B2, possessing wavy but flat Fermi surfaces in the basal plane. Observation of a quasi-one-dimensional electronic state is the first such case in a rare earth compound.
Nonstandard Analysis and Shock Wave Jump Conditions in a One-Dimensional Compressible Gas
Energy Technology Data Exchange (ETDEWEB)
Roy S. Baty, F. Farassat, John A. Hargreaves
2007-05-25
Nonstandard analysis is a relatively new area of mathematics in which infinitesimal numbers can be defined and manipulated rigorously like real numbers. This report presents a fairly comprehensive tutorial on nonstandard analysis for physicists and engineers with many examples applicable to generalized functions. To demonstrate the power of the subject, the problem of shock wave jump conditions is studied for a one-dimensional compressible gas. It is assumed that the shock thickness occurs on an infinitesimal interval and the jump functions in the thermodynamic and fluid dynamic parameters occur smoothly across this interval. To use conservations laws, smooth pre-distributions of the Dirac delta measure are applied whose supports are contained within the shock thickness. Furthermore, smooth pre-distributions of the Heaviside function are applied which vary from zero to one across the shock wave. It is shown that if the equations of motion are expressed in nonconservative form then the relationships between the jump functions for the flow parameters may be found unambiguously. The analysis yields the classical Rankine-Hugoniot jump conditions for an inviscid shock wave. Moreover, non-monotonic entropy jump conditions are obtained for both inviscid and viscous flows. The report shows that products of generalized functions may be defined consistently using nonstandard analysis; however, physically meaningful products of generalized functions must be determined from the physics of the problem and not the mathematical form of the governing equations.
Qin, C.; Hassanizadeh, S.M.; Rensink, D.; Fell, S.
2012-01-01
The mathematical description of liquid water flooding in the gas channel (GC) of a polymer electrolyte fuel cell (PEFC) at the macro scale has remained a challenge up to now. The mist flow assumption in the GC has been commonly used in previous numerical studies. In this work, a one-dimensional (dow
Yu, Yi-Cong; Guan, Xi-Wen
2017-06-01
We present a unified derivation of the pressure equation of states, thermodynamics and scaling functions for the one-dimensional (1D) strongly attractive Fermi gases with SU(w) symmetry. These physical quantities provide a rigorous understanding on a universality class of quantum criticality characterized by the critical exponents z = 2 and correlation length exponent ν = 1/2. Such a universality class of quantum criticality can occur when the Fermi sea of one branch of charge bound states starts to fill or becomes gapped at zero temperature. The quantum critical cone can be determined by the double peaks in specific heat, which serve to mark two crossover temperatures fanning out from the critical point. Our method opens to further study on quantum phases and phase transitions in strongly interacting fermions with large SU(w) and non-SU(w) symmetries in one dimension. Supported by the National Natural Science Foundation of China under Grant No 11374331 and the key NSFC under Grant No 11534014. XWG has been partially supported by the Australian Research Council.
Institute of Scientific and Technical Information of China (English)
G.X.Wang; M.S.Park; J.S.Park; X.L.Gou; J.Yang; D.Wexler; J.Z.Wang; J.Yao; H.K.Liu
2007-01-01
1 Results One dimensional (1D) nanostructures such as nanowires,nanotubes,nanorods and nanoribbons have been extensively investigated for a wide range of applications[1].Here,we present the synthesis,characterization and technological applications of several 1D nanostructures including SnO2 nanowires,CuO nanoribbons,CdSe nanowires and In2O3 nanowires.SnO2 nanowires were synthesized by thermal evaporation combined with a self-catalyzed growth procedure.Scanning electron microscopy (SEM) observation shows...
Energy Technology Data Exchange (ETDEWEB)
Benseghir, Rym, E-mail: benseghirrym@ymail.com, E-mail: benseghirrym@ymail.com; Benchettah, Azzedine, E-mail: abenchettah@hotmail.com [LANOS Laboratory, Badji Mokhtar University, BP 12, 23000, Annaba (Algeria); Raynaud de Fitte, Paul, E-mail: prf@univ-rouen.fr [Normandie Univ, Laboratoire Raphaël Salem, UMR CNRS 6085, Rouen (France)
2015-11-30
A stochastic equation system corresponding to the description of the motion of a barotropic viscous gas in a discretized one-dimensional domain with a weight regularizing the density is considered. In [2], the existence of an invariant measure was established for this discretized problem in the stationary case. In this paper, applying a slightly modified version of Khas’minskii’s theorem [5], we generalize this result in the periodic case by proving the existence of a periodic measure for this problem.
Non-Gaussian and Clustering Behavior in One-Dimensional Polydisperse Granular Gas System
Institute of Scientific and Technical Information of China (English)
CHEN Zhi-Yuan; ZHANG Duan-Ming; ZHONG Zhi-Cheng; LI Rui
2007-01-01
We present a one-dimensional dynamic model of polydisperse granular mixture with the fractal characteristic of the particle size distribution, in which the particles are subject to inelastic mutual collisions and are driven by Gaussian white noise. The inhomogeneity of the particle size distribution is described by a fractal dimension D. The stationary state that the mixture reaches is the result of the balance between energy dissipation and energy injection. By molecular dynamics simulations, we have mainly studied how the inhomogeneity of the particle size distribution and the inelasticity of collisions influence the velocity distribution and distribution of interparticle spacing in the steady-state.The simulation results indicate that, in the inelasticity case, the velocity distribution strongly deviates from the Gaussian one and the system has a strong spatial clustering. Thus the inhomogeneity and the inelasticity have great effects on the velocity distribution and distribution of interparticle spacing. The quantitative information of the non-Gaussian velocity distribution and that of clustering are respectively represented.
Directory of Open Access Journals (Sweden)
P. V. Bulat
2015-07-01
Full Text Available One-dimensional unsteady gas dynamics problems are revealing tests for the accuracy estimation of numerical solution with respect to simulation of supersonic flows of inviscid compressible gas. Numerical solution of Euler equations describing flows of inviscid compressible gas and conceding continuous and discontinuous solutions is considered. Discretization of Euler equations is based on finite volume method and WENO finite difference schemes. The numerical solutions computed are compared with the exact solution of Riemann problem. Monotonic correction of derivatives makes possible avoiding new extremes and ensures monotonicity of the numerical solution near the discontinuity, but it leads to the smoothness of the existing minimums and maximums and to the accuracy loss. Calculations with the use of WENO schemes give the possibility for obtaining accurate and monotonic solution with the presence of weak and strong gas dynamical discontinuities.
Costanza, E. F.; Costanza, G.
2016-10-01
Continuum partial differential equations are obtained from a set of discrete stochastic evolution equations of both non-Markovian and Markovian processes and applied to the diffusion within the context of the lattice gas model. A procedure allowing to construct one-dimensional lattices that are topologically equivalent to two-dimensional lattices is described in detail in the case of a rectangular lattice. This example shows the general features that possess the procedure and extensions are also suggested in order to provide a wider insight in the present approach.
Heat and particle transport in a one-dimensional hard-point gas model with on-site potential
Directory of Open Access Journals (Sweden)
Lei Wang
2015-05-01
Full Text Available Heat and particle transport in a one-dimensional hard-point gas of elastically colliding particles are studied. In the nonequal mass case, due to the presence of on-site potential, the heat conduction of the model obeys the Fourier law and all the transport coefficients asymptotically approach constants in the thermodynamic limit. The thermoelectric figure of merit ZT increases slowly with the system length L and is proportional to the height of the potential barriers H in high H regime. These findings may serve as a guide for future theoretical and experimental studies.
WENO SCHEMES FOR SOLUTION OF UNSTEADY ONE-DIMENSIONAL GAS DYNAMICS TEST PROBLEMS
Directory of Open Access Journals (Sweden)
P. V. Bulat
2016-01-01
Full Text Available Creation of test solutions is an essential element in the general design contents for numerical methods aimed at integration of Euler equations. We consider numerical solution of Euler equations describing flows of inviscid compressible gas and allowing continuous and discontinuous solutions. Discretization of Euler equations is based on finite volume method and WENO finite difference schemes. The numerical solutions computed are compared with the exact solutions of Riemann problem. Monotonic correction of derivatives makes it possible to avoid new extremes and ensures monotonicity of the numerical solution near the discontinuity, but it leads to the smoothness of the existing minimums and maximums and to the loss of accuracy. Calculations with the use of WENO schemes allow obtaining accurate and monotonic solution with the presence of both weak and strong gas dynamical discontinuities.
Long-distance behavior of temperature correlation functions in the one-dimensional Bose gas
Energy Technology Data Exchange (ETDEWEB)
Kozlowski, K.K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Maillet, J.M. [UMR 5672 du CNRS, ENS Lyon (France). Lab. de Physique; Slavnov, N.A. [Steklov Mathematical Institute, Moscow (Russian Federation)
2010-12-15
We describe a Bethe ansatz based method to derive, starting from a multiple integral representation, the long-distance asymptotic behavior at finite temperature of the density-density correlation function in the interacting onedimensional Bose gas. We compute the correlation lengths in terms of solutions of non-linear integral equations of the thermodynamic Bethe ansatz type. Finally, we establish a connection between the results obtained in our approach with the correlation lengths stemming from the quantum transfer matrix method. (orig.)
Universal correlations of one-dimensional electrons at low density
Göhmann, F.
2000-01-01
We summarize results on the asymptotics of the two-particle Green functions of interacting electrons in one dimension. Below a critical value of the chemical potential the Fermi surface vanishes, and the system can no longer be described as a Luttinger liquid. Instead, the non-relativistic Fermi gas with infinite point-like repulsion becomes the universal model for the long-wavelength, low temperature physics of the one-dimensional electrons. This model, which we call the impenetrable electro...
Geiger, Remi; Mazets, Igor; Schmiedmayer, Jörg
2013-01-01
We describe the relaxation dynamics of a coherently split one-dimensional (1D) Bose gas in the harmonic approximation. A dephased, prethermalized state emerges in a light-cone-like evolution which is connected to the spreading of correlations with a characteristic velocity. In our description we put special emphasis on the influence of the longitudinal trapping potential and the finite size of the system, both of which are highly relevant in experiments. In particular, we quantify their influence on the phase correlation properties and the characteristic velocity with which the prethermalized state is established. Finally, we show that the trapping potential has an important effect on the recurrences of coherence which are expected to appear in a finite size system.
Massive Fermi gas in the expanding universe
Trautner, Andreas
2017-03-01
The behavior of a decoupled ideal Fermi gas in a homogeneously expanding three-dimensional volume is investigated, starting from an equilibrium spectrum. In case the gas is massless and/or completely degenerate, the spectrum of the gas can be described by an effective temperature and/or an effective chemical potential, both of which scale down with the volume expansion. In contrast, the spectrum of a decoupled massive and non-degenerate gas can only be described by an effective temperature if there are strong enough self-interactions such as to maintain an equilibrium distribution. Assuming perpetual equilibration, we study a decoupled gas which is relativistic at decoupling and then is red-shifted until it becomes non-relativistic. We find expressions for the effective temperature and effective chemical potential which allow us to calculate the final spectrum for arbitrary initial conditions. This calculation is enabled by a new expansion of the Fermi-Dirac integral, which is for our purpose superior to the well-known Sommerfeld expansion. We also compute the behavior of the phase space density under expansion and compare it to the case of real temperature and real chemical potential. Using our results for the degenerate case, we also obtain the mean relic velocity of the recently proposed non-thermal cosmic neutrino background.
Shear Viscosity of a Unitary Fermi Gas
Wlazłowski, Gabriel; Magierski, Piotr; Drut, Joaquín E.
2012-01-01
We present the first ab initio determination of the shear viscosity eta of the Unitary Fermi Gas, based on finite temperature quantum Monte Carlo calculations and the Kubo linear-response formalism. We determine the temperature dependence of the shear viscosity to entropy density ratio eta/s. The minimum of eta/s appears to be located above the critical temperature for the superfluid-to-normal phase transition with the most probable value being eta/s approx 0.2 hbar/kB, which almost saturates...
Parisi, L.; Giorgini, S.
2017-02-01
We present a theoretical study based upon quantum Monte Carlo methods of the Bose polaron in one-dimensional systems with contact interactions. In this instance of the problem of a single impurity immersed in a quantum bath, the medium is a Lieb-Liniger gas of bosons ranging from the weakly interacting to the Tonks-Girardeau regime, whereas the impurity is coupled to the bath via a different contact potential, producing both repulsive and attractive interactions. Both the case of a mobile impurity, having the same mass as the particles in the medium, and the case of a static impurity with infinite mass are considered. We make use of numerical techniques that allow us to calculate the ground-state energy of the impurity, its effective mass, and the contact parameter between the impurity and the bath. These quantities are investigated as a function of the strength of interactions between the impurity and the bath and within the bath. In particular, we find that the effective mass rapidly increases to very large values when the impurity gets strongly coupled to an otherwise weakly repulsive bath. This heavy impurity hardly moves within the medium, thereby realizing the "self-localization" regime of the Landau-Pekar polaron. Furthermore, we compare our results with predictions of perturbation theory valid for weak interactions and with exact solutions available when the bosons in the medium behave as impenetrable particles.
Orientifolding of the ABJ Fermi gas
Okuyama, Kazumi
2016-01-01
The grand partition functions of ABJ theory can be factorized into even and odd parts under the reflection of fermion coordinate in the Fermi gas approach. In some cases, the even/odd part of ABJ grand partition function is equal to that of $\\mathcal{N}=5$ $O(n)\\times USp(n')$ theory, hence it is natural to think of the even/odd projection of grand partition function as an orientifolding of ABJ Fermi gas system. By a systematic WKB analysis, we determine the coefficients in the perturbative part of grand potential of such orientifold ABJ theory. We also find the exact form of the first few "half-instanton" corrections coming from the twisted sector of the reflection of fermion coordinate. For the Chern-Simons level $k=2,4,8$ we find closed form expressions of the grand partition functions of orientifold ABJ theory, and for $k=2,4$ we prove the functional relations among the grand partition functions conjectured in arXiv:1410.7658.
DEFF Research Database (Denmark)
Sarkar, I.; Laux, M.; Demokritova, J.
2010-01-01
We describe the growth of high quality tetrathiofulvalene tetracyanoquinodimethane (TTF-TCNQ) organic charge-transfer thin films which show a clear non-Fermi liquid behavior. Temperature dependent angle resolved photoemission spectroscopy and electronic structure calculations show that the growth...... of TTF-TCNQ films is accompanied by the unfavorable presence of neutral TTF and TCNQ molecules. The quality of the films can be controlled by tuning the evaporation temperature of the precursor in physical vapor deposition method....
Institute of Scientific and Technical Information of China (English)
刘淑娟; 徐志君; 隋成华; 黄琳; 熊宏伟
2003-01-01
Evolution of a Bose-condensed gas in one-dimensional optical lattices is investigated in the presence of a potential barrier created by a far-off resonant laser beam. After the magnetic trap and optical lattices are switched off,by using the propagator method, the analytical result of the evolution of the density distribution of the Bosecondensed gas is given. In particular, the collision between the condensate and the potential barrier is shown in this paper.
One-dimensional nanoclustering of the Cu(100) surface under CO gas in the mbar pressure range
Eren, Baran; Zherebetskyy, Danylo; Hao, Yibo; Patera, Laerte L.; Wang, Lin-Wang; Somorjai, Gabor A.; Salmeron, Miquel
2016-09-01
The bulk terminated Cu(100) surface becomes unstable in the presence of CO at room temperature when the pressure reaches the mbar range. Scanning tunneling microscopy images show that above 0.25 mbar the surface forms nanoclusters with CO attached to peripheral Cu atoms. At 20 mbar and above 3-atom wide one-dimensional nanoclusters parallel to directions cover the surface, with CO on every Cu atom, increasing in density up to 115 mbar. Density functional theory explains the findings as a result of the detachment of Cu atoms from step edges caused by the stronger binding of CO relative to that on flat terraces.
Spin-orbit-induced resonances and threshold anomalies in a reduced dimension Fermi gas
Wang, Su-Ju
2016-01-01
We calculate the reflection and transmission probabilities in a one-dimensional Fermi gas with an equal mixing of the Rashba and Dresselhaus spin-orbit coupling (RD-SOC) produced by an external Raman laser field. These probabilities are computed over multiple relevant energy ranges within the pseudo-potential approximation. Strong scattering resonances are found whenever the incident energy approaches either a scattering threshold or a quasi-bound state attached to one of the energetically closed higher dispersion branches. A striking difference is demonstrated between two very different regimes set by the Raman laser intensity, namely between scattering for the single- minimum dispersion versus the double-minimum dispersion at the lowest threshold. The presence of RD-SOC together with the Raman field fundamentally changes the scattering behavior and enables the realization of very different one-dimensional theoretical models in a single experimental setup when combined with a confinement-induced resonance.
Energy Technology Data Exchange (ETDEWEB)
Serrano, J.R.; Arnau, F.J.; Dolz, V.; Tiseira, A. [CMT-Motores Termicos, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Cervello, C. [Conselleria de Cultura, Educacion y Deporte, Generalitat Valenciana (Spain)
2008-12-15
The paper presents a model of fixed and variable geometry turbines. The aim of this model is to provide an efficient boundary condition to model turbocharged internal combustion engines with zero- and one-dimensional gas dynamic codes. The model is based from its very conception on the measured characteristics of the turbine. Nevertheless, it is capable of extrapolating operating conditions that differ from those included in the turbine maps, since the engines usually work within these zones. The presented model has been implemented in a one-dimensional gas dynamic code and has been used to calculate unsteady operating conditions for several turbines. The results obtained have been compared with success against pressure-time histories measured upstream and downstream of the turbine during on-engine operation. (author)
DEFF Research Database (Denmark)
Chen, T.; Han, Z. H.; Liu, J. J.
2014-01-01
exhibits high-quality factors, facilitating the realization of high sensitivity in the gas refractive index sensing. In our experiment, 6% of the change of hydrogen concentration in air, which corresponds to a refractive index change of 1.4 x 10(-5), can be steadily detected, and different gas samples can......We report in this paper terahertz gas sensing using a simple 1D photonic crystal cavity. The resonant frequencies of the cavity depend linearly on the refractive index of the ambient gas, which can then be measured by monitoring the resonance shift. Although quite easy to manufacture, this cavity...
Umklapp superradiance with a collisionless quantum degenerate Fermi gas.
Piazza, Francesco; Strack, Philipp
2014-04-11
The quantum dynamics of the electromagnetic light mode of an optical cavity filled with a coherently driven Fermi gas of ultracold atoms strongly depends on the geometry of the Fermi surface. Superradiant light generation and self-organization of the atoms can be achieved at low pumping threshold due to resonant atom-photon umklapp processes, where the fermions are scattered from one side of the Fermi surface to the other by exchanging photon momenta. The cavity spectrum exhibits sidebands that, despite strong atom-light coupling and cavity decay, retain narrow linewidth, due to absorptionless transparency windows outside the atomic particle-hole continuum and the suppression of broadening and thermal fluctuations in the collisionless Fermi gas.
Fleming, L.; Gibson, D.; Song, S.; Hutson, D.; Reid, S.; MacGregor, C.; Clark, C.
2017-02-01
Mid-IR carbon dioxide (CO2) gas sensing is critical for monitoring in respiratory care, and is finding increasing importance in surgical anaesthetics where nitrous oxide (N2O) induced cross-talk is a major obstacle to accurate CO2 monitoring. In this work, a novel, solid state mid-IR photonics based CO2 gas sensor is described, and the role that 1- dimensional photonic crystals, often referred to as multilayer thin film optical coatings [1], play in boosting the sensor's capability of gas discrimination is discussed. Filter performance in isolating CO2 IR absorption is tested on an optical filter test bed and a theoretical gas sensor model is developed, with the inclusion of a modelled multilayer optical filter to analyse the efficacy of optical filtering on eliminating N2O induced cross-talk for this particular gas sensor architecture. Future possible in-house optical filter fabrication techniques are discussed. As the actual gas sensor configuration is small, it would be challenging to manufacture a filter of the correct size; dismantling the sensor and mounting a new filter for different optical coating designs each time would prove to be laborious. For this reason, an optical filter testbed set-up is described and, using a commercial optical filter, it is demonstrated that cross-talk can be considerably reduced; cross-talk is minimal even for very high concentrations of N2O, which are unlikely to be encountered in exhaled surgical anaesthetic patient breath profiles. A completely new and versatile system for breath emulation is described and the capability it has for producing realistic human exhaled CO2 vs. time waveforms is shown. The cross-talk inducing effect that N2O has on realistic emulated CO2 vs. time waveforms as measured using the NDIR gas sensing technique is demonstrated and the effect that optical filtering will have on said cross-talk is discussed.
Pachfule, Pradip; Balan, Beena K; Kurungot, Sreekumar; Banerjee, Rahul
2012-02-14
The loading of a Zn-terephthalate based MOF in the inner cavity as well as on the outer walls of a hollow carbon nanofiber (CNF) creates MOF@CNF hybrids. This hybrid ''MOF@CNF'' displayed improved thermal stability as well as gas adsorption compared to the individual counterparts. This journal is © The Royal Society of Chemistry 2012
The strong coupling Kondo lattice model as a Fermi gas
Östlund, S
2007-01-01
The strong coupling half-filled Kondo lattice model is an important example of a strongly interacting dense Fermi system for which conventional Fermi gas analysis has thus far failed. We remedy this by deriving an exact transformation that maps the model to a dilute gas of weakly interacting electron and hole quasiparticles that can then be analyzed by conventional dilute Fermi gas methods. The quasiparticle vacuum is a singlet Mott insulator for which the quasiparticle dynamics are simple. Since the transformation is exact, the electron spectral weight sum rules are obeyed exactly. Subtleties in understanding the behavior of electrons in the singlet Mott insulator can be reduced to a fairly complicated but precise relation between quasiparticles and bare electrons. The theory of free quasiparticles can be interpreted as an exactly solvable model for a singlet Mott insulator, providing an exact model in which to explore the strong coupling regime of a singlet Kondo insulator.
Institute of Scientific and Technical Information of China (English)
赵华; 易林
2010-01-01
运用发展的Ford-Kac-Mazur方法对一维β-Fermi-Pasta-Ulam纳米单原子链的运动方程进行了简化.通过数值计算,对系统在非线性相互作用下的傅里叶热传输定律进行了修正,同时对奇偶原子数晶格系统的局域能量密度进行了比较,发现奇数原子系统中明显存在离散呼吸子.
Institute of Scientific and Technical Information of China (English)
周倩; 吕彬彬; 田强
2009-01-01
采用推广的旋转平面波近似对一维非线性Klein-Gordon/Fermi-Pasta-Ulam混合原子链的运动方程进行简化,数值求解得到该系统中存在的离散呼吸子解.研究了系统中各非线性参数对该振动模的直流、一阶简谐项和二阶简谐项三个分量的对称性的影响以及对系统中局域模的影响.
Costanza, E. F.; Costanza, G.
2016-12-01
Continuum partial differential equations are obtained from a set of discrete stochastic evolution equations of both non-Markovian and Markovian processes and applied to the diffusion within the context of the lattice gas model. A procedure allowing to construct one-dimensional lattices that are topologically equivalent to two-dimensional lattices is described in detail in the case of a triangular lattice. This example shows the general features that possess the procedure and extensions are also suggested in order to provide a wider insight in the present approach.
Costanza, E. F.; Costanza, G.
2017-02-01
Continuum partial differential equations are obtained from a set of discrete stochastic evolution equations of both non-Markovian and Markovian processes and applied to the diffusion within the context of the lattice gas model. A procedure allowing to construct one-dimensional lattices that are topologically equivalent to two-dimensional lattices is described in detail in the case of a hexagonal lattice which has the particular feature that need four types of dynamical variables. This example shows additional features to the general procedure and some extensions are also suggested in order to provide a wider insight in the present approach.
Itinerant Ferromagnetism in a Polarized Two-Component Fermi Gas
DEFF Research Database (Denmark)
Massignan, Pietro; Yu, Zhenhua; Bruun, Georg
2013-01-01
We analyze when a repulsively interacting two-component Fermi gas becomes thermodynamically unstable against phase separation. We focus on the strongly polarized limit, where the free energy of the homogeneous mixture can be calculated accurately in terms of well-defined quasiparticles, the repul......We analyze when a repulsively interacting two-component Fermi gas becomes thermodynamically unstable against phase separation. We focus on the strongly polarized limit, where the free energy of the homogeneous mixture can be calculated accurately in terms of well-defined quasiparticles...
Thermodynamics of the relativistic Fermi gas in D dimensions
Sevilla, Francisco J.; Piña, Omar
2017-09-01
The influence of spatial dimensionality and particle-antiparticle pair production on the thermodynamic properties of the relativistic Fermi gas, at finite chemical potential, is studied. Resembling a ;phase transition;, qualitatively different behaviors of the thermodynamic susceptibilities, namely the isothermal compressibility and the specific heat, are markedly observed at different temperature regimes as function of the system dimensionality and of the rest mass of the particles. A minimum in the temperature dependence of the isothermal compressibility marks a characteristic temperature, in the range of tenths of the Fermi temperature, at which the system transit from a ;normal; phase, to a phase where the gas compressibility grows as a power law of the temperature.
Institute of Scientific and Technical Information of China (English)
Zhao Guo-Zhong; Yu Xi-Jun; Zhang Rong-Pei
2013-01-01
In this paper,Runge-Kutta Discontinuous Galerkin (RKDG) finite element method is presented to solve the onedimensional inviscid compressible gas dynamic equations in a Lagrangian coordinate.The equations are discretized by the DG method in space and the temporal discretization is accomplished by the total variation diminishing Runge-Kutta method.A limiter based on the characteristic field decomposition is applied to maintain stability and non-oscillatory property of the RKDG method.For multi-medium fluid simulation,the two cells adjacent to the interface are treated differently from other cells.At first,a linear Riemann solver is applied to calculate the numerical flux at the interface.Numerical examples show that there is some oscillation in the vicinity of the interface.Then a nonlinear Riemann solver based on the characteristic formulation of the equation and the discontinuity relations is adopted to calculate the numerical flux at the interface,which suppresses the oscillation successfully.Several single-medium and multi-medium fluid examples are given to demonstrate the reliability and efficiency of the algorithm.
Spin-Seebeck effect in a strongly interacting Fermi gas
Wong, C.H.; Stoof, H.T.C.; Duine, R.A.
2012-01-01
We study the spin-Seebeck effect in a strongly interacting, two-component Fermi gas and propose an experiment to measure this effect by relatively displacing spin-up and spin-down atomic clouds in a trap using spin-dependent temperature gradients. We compute the spin-Seebeck coefficient and related
Spin-Seebeck effect in a strongly interacting Fermi gas
Wong, C.H.; Stoof, H.T.C.; Duine, R.A.
2012-01-01
We study the spin-Seebeck effect in a strongly interacting, two-component Fermi gas and propose an experiment to measure this effect by relatively displacing spin-up and spin-down atomic clouds in a trap using spin-dependent temperature gradients. We compute the spin-Seebeck coefficient and related
Energy Technology Data Exchange (ETDEWEB)
Kerstein, A.R. [Sandia National Lab., Livermore, CA (United States)
1996-12-31
One-Dimensional Turbulence is a new turbulence modeling strategy involving an unsteady simulation implemented in one spatial dimension. In one dimension, fine scale viscous and molecular-diffusive processes can be resolved affordably in simulations at high turbulence intensity. The mechanistic distinction between advective and molecular processes is thereby preserved, in contrast to turbulence models presently employed. A stochastic process consisting of mapping {open_quote}events{close_quote} applied to a one-dimensional velocity profile represents turbulent advection. The local event rate for given eddy size is proportional to the velocity difference across the eddy. These properties cause an imposed shear to induce an eddy cascade analogous in many respects to the eddy cascade in turbulent flow. Many scaling and fluctuation properties of self-preserving flows, and of passive scalars introduced into these flows, are reproduced.
The universal sound velocity formula for the strongly interacting unitary Fermi gas
Institute of Scientific and Technical Information of China (English)
Liu Ke; Chen Ji-Sheng
2011-01-01
Due to the scale invariance, the thermodynamic laws of strongly interacting limit unitary Fermi gas can be similar to those of non-interacting ideal gas. For example, the virial theorem between pressure and energy density of the ideal gas P = 2E/ZV is still satisfied by the unitary Fermi gas. This paper analyses the sound velocity of unitary Fermi gases with the quasi-linear approximation. For comparison, the sound velocities for the ideal Boltzmann, Bose and Fermi gas are also given. Quite interestingly, the sound velocity formula for the ideal non-interacting gas is found to be satisfied by the unitary Fermi gas in different temperature regions.
Creation of ultracold molecules from a Fermi gas of atoms
2003-01-01
Since the realization of Bose-Einstein condensates (BEC) in atomic gases an experimental challenge has been the production of molecular gases in the quantum regime. A promising approach is to create the molecular gas directly from an ultracold atomic gas; for example, atoms in a BEC have been coupled to electronic ground-state molecules through photoassociation as well as through a magnetic-field Feshbach resonance. The availability of atomic Fermi gases provides the exciting prospect of coup...
Two-component Fermi gas in a Harmonic Trap
Yi, X X; Cui, H T; Zhang, C M
2002-01-01
We consider a mixture of two-component Fermi gases at low temperature. The density profile of this degenerate Fermi gas is calculated under the semiclassical approximation. The results show that the fermion-fermion interactions make a large correction to the density profile at low temperature. The phase separation of such a mixture is also discussed for both attractive and repulsive interatomic interactions, and the numerical calculations demonstrate the exist of a stable temperature region $T_{c1}
Density Functional Theory Studies of Magnetically Confined Fermi Gas
Institute of Scientific and Technical Information of China (English)
陈宇俊; 马红孺
2001-01-01
A theory is developed for magnetically confined Fermi gas at a low temperature based on the density functional theory. The theory is illustrated by the numerical calculation of the density distributions of Fermi atoms 40K with parameters according to DeMarco and Jin's experiment [Science, 285(1999)1703]. Our results are in close agreement with the experiment. To check the theory, we also performed calculations using our theory at a high temperature, which compared very well to the results of the classical limit.
Virial theorem and universality in a unitary fermi gas.
Thomas, J E; Kinast, J; Turlapov, A
2005-09-16
Unitary Fermi gases, where the scattering length is large compared to the interparticle spacing, can have universal properties, which are independent of the details of the interparticle interactions when the range of the scattering potential is negligible. We prepare an optically trapped, unitary Fermi gas of 6Li, tuned just above the center of a broad Feshbach resonance. In agreement with the universal hypothesis, we observe that this strongly interacting many-body system obeys the virial theorem for an ideal gas over a wide range of temperatures. Based on this result, we suggest a simple volume thermometry method for unitary gases. We also show that the observed breathing mode frequency, which is close to the unitary hydrodynamic value over a wide range of temperature, is consistent with a universal hydrodynamic gas with nearly isentropic dynamics.
Exploring the thermodynamics of a universal Fermi gas.
Nascimbène, S; Navon, N; Jiang, K J; Chevy, F; Salomon, C
2010-02-25
One of the greatest challenges in modern physics is to understand the behaviour of an ensemble of strongly interacting particles. A class of quantum many-body systems (such as neutron star matter and cold Fermi gases) share the same universal thermodynamic properties when interactions reach the maximum effective value allowed by quantum mechanics, the so-called unitary limit. This makes it possible in principle to simulate some astrophysical phenomena inside the highly controlled environment of an atomic physics laboratory. Previous work on the thermodynamics of a two-component Fermi gas led to thermodynamic quantities averaged over the trap, making comparisons with many-body theories developed for uniform gases difficult. Here we develop a general experimental method that yields the equation of state of a uniform gas, as well as enabling a detailed comparison with existing theories. The precision of our equation of state leads to new physical insights into the unitary gas. For the unpolarized gas, we show that the low-temperature thermodynamics of the strongly interacting normal phase is well described by Fermi liquid theory, and we localize the superfluid transition. For a spin-polarized system, our equation of state at zero temperature has a 2 per cent accuracy and extends work on the phase diagram to a new regime of precision. We show in particular that, despite strong interactions, the normal phase behaves as a mixture of two ideal gases: a Fermi gas of bare majority atoms and a non-interacting gas of dressed quasi-particles, the fermionic polarons.
Instanton effects in ABJM theory from Fermi gas approach
Energy Technology Data Exchange (ETDEWEB)
Hatsuda, Yasuyuki [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie; Tokyo Institute of Technology (Japan). Dept. of Physics; Moriyama, Sanefumi [Nagoya Univ. (Japan). Kobayashi Maskawa Inst.; Nagoya Univ. (Japan). Graduate School of Mathematics; Okuyama, Kazumi [Shinshu Univ., Matsumoto, Nagano (Japan). Dept. of Physics
2012-11-19
We study the instanton effects of the ABJM partition function using the Fermi gas formalism. We compute the exact values of the partition function at the Chern-Simons levels k=1, 2, 3, 4, 6 up to N=44, 20, 18, 16, 14 respectively, and extract non-perturbative corrections from these exact results. Fitting the resulting non-perturbative corrections by their expected forms from the Fermi gas, we determine unknown parameters in them. After separating the oscillating behavior of the grand potential, which originates in the periodicity of the grand partition function, and the worldsheet instanton contribution, which is computed from the topological string theory, we succeed in proposing an analytical expression for the leading D2-instanton correction. Just as the perturbative result, the instanton corrections to the partition function are expressed in terms of the Airy function.
The Shear Viscosity in an Anisotropic Unitary Fermi Gas
Samanta, Rickmoy; Trivedi, Sandip P
2016-01-01
We consider a system consisting of a strongly interacting, ultracold unitary Fermi gas under harmonic confinement. Our analysis suggests the possibility of experimentally studying, in this system, an anisotropic shear viscosity tensor driven by the anisotropy in the trapping potential. In particular, we suggest that this experimental setup could mimic some features of anisotropic geometries that have recently been studied for strongly coupled field theories which have a gravitational dual. Results using the AdS/CFT correspondence in these theories show that in systems with a background linear potential, certain viscosity components can be made much smaller than the entropy density, parametrically violating the KSS bound. This intuition, along with results from a Boltzmann analysis that we perform, suggests that a violation of the KSS bound can perhaps occur in the unitary Fermi gas system when it is subjected to a suitable anisotropic trapping potential. We give a concrete proposal for an experimental setup w...
Seiberg-Witten theory as a Fermi gas
Bonelli, Giulio; Tanzini, Alessandro
2016-01-01
We explore a new connection between Seiberg-Witten theory and quantum statistical systems by relating the dual partition function of SU(2) Super Yang-Mills theory in a self-dual Omega-background to the spectral determinant of an ideal Fermi gas. We show that the spectrum of this gas is encoded in the zeroes of the Painleve III tau function. Our construction arises as a four-dimensional limit of a recently proposed conjecture relating topological strings and spectral theory. In this limit, we provide a mathematical proof of the conjecture for the local P1xP1 geometry.
Shortcut to adiabaticity for an anisotropic unitary Fermi gas
Deng, Shujin; Yu, Qianli; Wu, Haibin
2016-01-01
Coherent control of complex quantum systems is a fundamental requirement in quantum information processing and engineering. Recently developed notion of shortcut to adiabaticity (STA) has spawned intriguing prospects. So far, the most experimental investigations of STA are implemented in the ideal thermal gas or the weakly interacting ultracold Bose gases. Here we report the first demonstration of a many-body STA in a 3D anisotropically trapped unitary Fermi gas. A new dynamical scaling law is demonstrated on such a strongly interacting quantum gas. By simply engineering the frequency aspect ratio of a harmonic trap, the dynamics of the gas can be manipulated and the many-body state can be transferred adiabatically from one stationary state to another one in short time scale without the excitation. The universal scaling both for non-interacting and unitary Fermi gas is also verified. This could be very important for future many-body quantum engineering and the exploration of the fundamental law of the thermod...
Polarons and molecules in a two-dimensional Fermi gas
DEFF Research Database (Denmark)
Zöllner, Sascha; Bruun, Georg Morten; Pethick, C. J.
2011-01-01
We study an impurity atom in a two-dimensional Fermi gas using variational wave functions for (i) an impurity dressed by particle-hole excitations (polaron) and (ii) a dimer consisting of the impurity and a majority atom. In contrast to three dimensions, where similar calculations predict a sharp...... transition to a dimer state with increasing interspecies attraction, we show that the polaron Ansatz always gives a lower energy. However, the exact solution for a heavy impurity reveals that both a two-body bound state and distortions of the Fermi sea are crucial. This reflects the importance of particle......-hole pairs in lower dimensions and makes simple variational calculations unreliable. We show that the energy of an impurity gives important information about its dressing cloud, for which both Ansätze give inaccurate results....
National Aeronautics and Space Administration — Fermi is a powerful space observatory that will open a wide window on the universe. Gamma rays are the highest-energy form of light, and the gamma-ray sky is...
One-Dimensionality and Whiteness
Calderon, Dolores
2006-01-01
This article is a theoretical discussion that links Marcuse's concept of one-dimensional society and the Great Refusal with critical race theory in order to achieve a more robust interrogation of whiteness. The author argues that in the context of the United States, the one-dimensionality that Marcuse condemns in "One-Dimensional Man" is best…
One-Dimensionality and Whiteness
Calderon, Dolores
2006-01-01
This article is a theoretical discussion that links Marcuse's concept of one-dimensional society and the Great Refusal with critical race theory in order to achieve a more robust interrogation of whiteness. The author argues that in the context of the United States, the one-dimensionality that Marcuse condemns in "One-Dimensional Man" is best…
Attack-Induced Entanglement of Noninteracting Fermi Gas
Institute of Scientific and Technical Information of China (English)
Alexis Larra(~n)aga; REN Jie; ZHU Shi-Qun
2008-01-01
The bipartite entanglement in Fermi gas without interaction is investigated when there are three fermions in the system. The negativity and the von Neumann entropy are employed to measure the entanglement of the system. The position of the third fermion can affect the entanglement between the first and the second fermions. The entanglement can be enhanced or suppressed when the third fermion changes its position. When the two fermions are at the same position or when their distance is more than 2.0/kF, the third fermion cannot affect them.
Itinerant ferromagnetism in a polarized two-component Fermi gas.
Massignan, Pietro; Yu, Zhenhua; Bruun, Georg M
2013-06-07
We analyze when a repulsively interacting two-component Fermi gas becomes thermodynamically unstable against phase separation. We focus on the strongly polarized limit, where the free energy of the homogeneous mixture can be calculated accurately in terms of well-defined quasiparticles, the repulsive polarons. Phase diagrams as a function of polarization, temperature, mass imbalance, and repulsive polaron energy, as well as scattering length and range parameter, are provided. We show that the lifetime of the repulsive polaron increases significantly with the interaction range and the mass of the minority atoms, raising the prospects of detecting the transition to the elusive itinerant ferromagnetic state with ultracold atoms.
Energy Technology Data Exchange (ETDEWEB)
Kuznetsov, V L; Kuznetsova, L A; Rowe, D M [Division of Electronic Engineering, Cardiff University, Queen' s Buildings, 5 The Parade, PO Box 925, Cardiff CF24 0YE (United Kingdom)
2003-11-07
The feasibility of improving the conversion efficiency of a thermoelectric converter by employing interfaces between materials exhibiting Fermi gas (FG) and Fermi liquid (FL) behaviour has been studied. Thermocouples consisting of a semiconductor and a strongly correlated material have been fabricated and the Peltier heat measured over the temperature range 15 deg 330 K. A number of materials possessing different types of strong electron correlation have been synthesized including the heavy fermion compound YbAl{sub 3}, manganite La{sub 0.7}Ca{sub 0.3}MnO{sub 3} and high-T{sub c} superconductor YBa{sub 2}Cu{sub 3}O{sub 7{delta}}. n- and p-Bi{sub 2}Te{sub 3}-based solid solutions as well as n-Bi{sub 0.85}Sb{sub 0.15} solid solution have also been synthesized and used as materials exhibiting FG properties. Experimental measurements of the Peltier heat were compared to the results of calculations based on preliminary measured thermoelectric properties of materials and electrical contact resistance at the interfaces. The potential of employing FG/FL interfaces in thermoelectric energy conversion is discussed.
Seiberg-Witten theory as a Fermi gas
Bonelli, Giulio; Grassi, Alba; Tanzini, Alessandro
2017-01-01
We explore a new connection between Seiberg-Witten theory and quantum statistical systems by relating the dual partition function of SU(2) Super Yang-Mills theory in a self-dual Ω background to the spectral determinant of an ideal Fermi gas. We show that the spectrum of this gas is encoded in the zeroes of the Painlevé III_3 τ function. In addition, we find that the Nekrasov partition function on this background can be expressed as an O(2) matrix model. Our construction arises as a four-dimensional limit of a recently proposed conjecture relating topological strings and spectral theory. In this limit, we provide a mathematical proof of the conjecture for the local P^1 × P^1 geometry.
Rotating a Rashba-coupled Fermi gas in two dimensions
Doko, E.; Subaşı, A. L.; Iskin, M.
2016-03-01
We analyze the interplay of adiabatic rotation and Rashba spin-orbit coupling on the BCS-BEC evolution of a harmonically trapped Fermi gas in two dimensions under the assumption that vortices are not excited. First, by taking the trapping potential into account via both the semiclassical and exact quantum-mechanical approaches, we firmly establish the parameter regime where the noninteracting gas forms a ring-shaped annulus. Then, by taking the interactions into account via the BCS mean-field approximation, we study the pair-breaking mechanism that is induced by rotation, i.e., the Coriolis effects. In particular, we show that the interplay allows for the possibility of creating either an isolated annulus of rigidly rotating normal particles that is disconnected from the central core of nonrotating superfluid pairs or an intermediate mediator phase where the superfluid pairs and normal particles coexist as a partially rotating gapless superfluid.
Low-lying excitations in a strongly interacting Fermi gas
Vale, Christopher; Hoinka, Sascha; Dyke, Paul; Lingham, Marcus
2016-05-01
We present measurements of the low-lying excitation spectrum of a strongly interacting Fermi gas across the Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein condensate (BEC) crossover using Bragg spectroscopy. By focussing the Bragg lasers onto the central volume of the cloud we can probe atoms at near-uniform density allowing measurement of the homogeneous density-density response function. The Bragg wavevector is set to be approximately half of the Fermi wavevector to probe the collective response. Below the superfluid transition temperature the Bragg spectra dominated by the Bogoliubov-Anderson phonon mode. Single particle excitations become visible at energies greater than twice the pairing gap. As interactions are tuned from the BCS to BEC regime the phonon and single particle modes separate apart and both the pairing gap and speed of sound can be directly read off in certain regions of the crossover. Single particle pair-breaking excitations become heavily suppressed as interactions are tuned from the BCS to BEC regimes.
Influence of nucleonic motion in Relativistic Fermi Gas inclusive responses
Alvarez-Ruso, L; Donnelly, T W; Molinari, A
2001-01-01
Impulsive hadronic descriptions of electroweak processes in nuclei involve two distinctly different elements: one stems from the nuclear many-body physics --- the medium --- which is rather similar for the various inclusive response functions, and the other embodies the responses of the hadrons themselves to the electroweak probe and varies with the channel selected. In this letter we investigate within the context of the relativistic Fermi gas in both the quasi-elastic and $N\\to\\Delta$ regimes the interplay between these two elements. Specifically, we focus on expansions in the one small parameter in the problem, namely, the momentum of a nucleon in the initial wave function compared with the hadronic scale, the nucleon mass. Both parity-conserving and -violating inclusive responses are studied and the interplay between longitudinal ($L$) and transverse ($T$ and $T'$) contributions is highlighted.
Trapped 173Yb Fermi gas across an orbital Feshbach resonance
Iskin, M.
2017-01-01
Starting with the two-band description of an orbital Feshbach resonance, we study superfluid properties of a trapped 173Yb Fermi gas under the assumptions of a local-density approximation for the trapping potential and a mean-field approximation for the intraband Cooper pairings. In particular, we investigate the competition and interplay between the pair-breaking effect that is caused by the interband detuning energy, and the pair-breaking and thermal-broadening effects that are simultaneously caused by the temperature. We predict several experimental signatures that are directly caused by this interplay including a spatial separation of superfluid and normal phases within the trap, and could play decisive roles in probing two-band superfluidity in these systems.
Quantized superfluid vortex rings in the unitary Fermi gas.
Bulgac, Aurel; Forbes, Michael McNeil; Kelley, Michelle M; Roche, Kenneth J; Wlazłowski, Gabriel
2014-01-17
In a recent article, Yefsah et al. [Nature (London) 499, 426 (2013)] report the observation of an unusual excitation in an elongated harmonically trapped unitary Fermi gas. After phase imprinting a domain wall, they observe oscillations almost an order of magnitude slower than predicted by any theory of domain walls which they interpret as a "heavy soliton" of inertial mass some 200 times larger than the free fermion mass or 50 times larger than expected for a domain wall. We present compelling evidence that this "soliton" is instead a quantized vortex ring, by showing that the main aspects of the experiment can be naturally explained within the framework of time-dependent superfluid density functional theories.
Energy Technology Data Exchange (ETDEWEB)
Savage, M.G.
1984-07-01
A one-dimensional computational model was developed to evaluate the heat removal capabilities of both prismatic-core and pebble-bed modular HTGRs during depressurized heatup transients. A correlation was incorporated to calculate the temperature- and neutron-fluence-dependent thermal conductivity of graphite. The modified Zehner-Schluender model was used to determine the effective thermal conductivity of a pebble bed, accounting for both conduction and radiation. Studies were performed for prismatic-core and pebble-bed modular HTGRs, and the results were compared to analyses performed by GA and GR, respectively. For the particular modular reactor design studied, the prismatic HTGR peak temperature was 2152.2/sup 0/C at 38 hours following the transient initiation, and the pebble-bed peak temperature was 1647.8/sup 0/C at 26 hours. These results compared favorably with those of GA and GE, with only slight differences caused by neglecting axial heat transfer in a one-dimensional radial model. This study found that the magnitude of the initial power density had a greater effect on the temperature excursion than did the initial temperature.
Devos, Christophe; Ochiai, Nobuo; Sasamoto, Kikuo; Sandra, Pat; David, Frank
2012-09-14
Suspected fragrance allergens were determined in cosmetic products using a combination of full evaporation-dynamic headspace (FEDHS) with selectable one-dimensional/two-dimensional GC-MS. The full evaporation dynamic headspace approach allows the non-discriminating extraction and injection of both apolar and polar fragrance compounds, without contamination of the analytical system by high molecular weight non-volatile matrix compounds. The method can be applied to all classes of cosmetic samples, including water containing matrices such as shower gels or body creams. In combination with selectable (1)D/(2)D GC-MS, consisting of a dedicated heart-cutting GC-MS configuration using capillary flow technology (CFT) and low thermal mass GC (LTM-GC), a highly flexible and easy-to-use analytical solution is offered. Depending on the complexity of the perfume fraction, analyses can be performed in one-dimensional GC-MS mode or in heart-cutting two-dimensional GC-MS mode, without the need of hardware reconfiguration. The two-dimensional mode with independent temperature control of the first and second dimension column is especially useful to confirm the presence of detected allergen compounds when mass spectral deconvolution is not possible.
A theorem on the single particle energy in a Fermi gas with interaction
Hugenholtz, N.M.; Hove, Léon van
1958-01-01
This paper investigates single particle properties in a Fermi gas with interaction at the absolute zero of temperature. In such a system a single particle energy has only a meaning for particles of momentum k close to the Fermi momentum kF. These single particle states are metastable with a life-tim
A theorem on the single particle energy in a Fermi gas with interaction
Hugenholtz, N.M.; Hove, Léon van
1958-01-01
This paper investigates single particle properties in a Fermi gas with interaction at the absolute zero of temperature. In such a system a single particle energy has only a meaning for particles of momentum k close to the Fermi momentum kF. These single particle states are metastable with a
One-dimensional photonic crystals
Shen, Huaizhong; Wang, Zhanhua; Wu, Yuxin; Yang, Bai
2016-01-01
A one-dimensional photonic crystal (1DPC), which is a periodic nanostructure with a refractive index distribution along one direction, has been widely studied by scientists. In this review, materials and methods for 1DPC fabrication are summarized. Applications are listed, with a special emphasis
Wilson loops in 3d $\\mathcal{N}=4$ SQCD from Fermi gas
Okuyama, Kazumi
2016-01-01
We study 1/2 BPS Wilson loops in 3d $\\mathcal{N}=4$ $U(N)$ Yang-Mills theory with one adjoint and $N_f$ fundamental hypermultiplets from the Fermi gas approach. By numerical fitting, we find the first few worldsheet instanton corrections to the Wilson loops with winding numbers 1, 2 and 3. We verify that our Fermi gas results are consistent with the matrix model results in the planar limit.
Universal spin transport in a strongly interacting Fermi gas.
Sommer, Ariel; Ku, Mark; Roati, Giacomo; Zwierlein, Martin W
2011-04-14
Transport of fermions, particles with half-integer spin, is central to many fields of physics. Electron transport runs modern technology, defining states of matter such as superconductors and insulators, and electron spin is being explored as a new carrier of information. Neutrino transport energizes supernova explosions following the collapse of a dying star, and hydrodynamic transport of the quark-gluon plasma governed the expansion of the early Universe. However, our understanding of non-equilibrium dynamics in such strongly interacting fermionic matter is still limited. Ultracold gases of fermionic atoms realize a pristine model for such systems and can be studied in real time with the precision of atomic physics. Even above the superfluid transition, such gases flow as an almost perfect fluid with very low viscosity when interactions are tuned to a scattering resonance. In this hydrodynamic regime, collective density excitations are weakly damped. Here we experimentally investigate spin excitations in a Fermi gas of (6)Li atoms, finding that, in contrast, they are maximally damped. A spin current is induced by spatially separating two spin components and observing their evolution in an external trapping potential. We demonstrate that interactions can be strong enough to reverse spin currents, with components of opposite spin reflecting off each other. Near equilibrium, we obtain the spin drag coefficient, the spin diffusivity and the spin susceptibility as a function of temperature on resonance and show that they obey universal laws at high temperatures. In the degenerate regime, the spin diffusivity approaches a value set by [planck]/m, the quantum limit of diffusion, where [planck]/m is Planck's constant divided by 2π and m the atomic mass. For repulsive interactions, our measurements seem to exclude a metastable ferromagnetic state.
Han, Jin-Woo; Rim, Taiuk; Baek, Chang-Ki; Meyyappan, M
2015-09-30
Gas sensors based on metal-oxide-semiconductor transistor with the polysilicon gate replaced by a gas sensitive thin film have been around for over 50 years. These are not suitable for the emerging mobile and wearable sensor platforms due to operating voltages and powers far exceeding the supply capability of batteries. Here we present a novel approach to decouple the chemically sensitive region from the conducting channel for reducing the drive voltage and increasing reliability. This chemically gated field effect transistor uses silicon nanowire for the current conduction channel with a tin oxide film on top of the nanowire serving as the gas sensitive medium. The potential change induced by the molecular adsorption and desorption allows the electrically floating tin oxide film to gate the silicon channel. As the device is designed to be normally off, the power is consumed only during the gas sensing event. This feature is attractive for the battery operated sensor and wearable electronics. In addition, the decoupling of the chemical reaction and the current conduction regions allows the gas sensitive material to be free from electrical stress, thus increasing reliability. The device shows excellent gas sensitivity to the tested analytes relative to conventional metal oxide transistors and resistive sensors.
One Dimensional Ballistic Electron Transport
Directory of Open Access Journals (Sweden)
Thomas K J
2009-10-01
Full Text Available Research in low-dimensional semiconductor systems over the last three decades has been largely responsible for the current progress in the areas of nanoscience and nanotechnology. The ability to control and manipulate the size, the carrier density, and the carrier type in two-, one-, and zero- dimensional structures has been widely exploited to study various quantum transport phenomena. In this article, a brief introduction is given to ballistic electron transport in one-dimensional quantum wires.
Institute of Scientific and Technical Information of China (English)
李付亮; 汪沨; 王国利; W. PFEIFFER; 何荣涛
2012-01-01
Using a hybrid Monte Carlo Collision/Fluid model, the formation and propagation of streamers in SF6 and its gas mixtures are simulated. The simulation is based on an accurate numerical solution of Poisson＇s equation in conjunction with the continuity fluid equation for electrons, negative ions, and positive ions. The factors that influence the formation and propagation of streamers are investigated. The electron density, positive and negative ion density, and electric field in the discharge channel are also presented, which are very important in understanding the phenomena of streamers and in assessing the insulation strength of the gas mixture.
Temperature dependence of the universal contact parameter in a unitary Fermi gas.
Kuhnle, E D; Hoinka, S; Dyke, P; Hu, H; Hannaford, P; Vale, C J
2011-04-29
The contact I, introduced by Tan, has emerged as a key parameter characterizing universal properties of strongly interacting Fermi gases. For ultracold Fermi gases near a Feshbach resonance, the contact depends upon two quantities: the interaction parameter 1/(k(F)a), where k(F) is the Fermi wave vector and a is the s-wave scattering length, and the temperature T/T(F), where T(F) is the Fermi temperature. We present the first measurements of the temperature dependence of the contact in a unitary Fermi gas using Bragg spectroscopy. The contact is seen to follow the predicted decay with temperature and shows how pair-correlations at high momentum persist well above the superfluid transition temperature.
Spin-Lattice Order in One-Dimensional Conductors: Beyond the RKKY Effect
Schecter, Michael; Rudner, Mark S.; Flensberg, Karsten
2015-06-01
We investigate magnetic order in a lattice of classical spins coupled to an isotropic gas of one-dimensional conduction electrons via local exchange interactions. The frequently discussed Ruderman-Kittel-Kasuya-Yosida effective exchange model for this system predicts that spiral order is always preferred. Here we consider the problem nonperturbatively, and find that such order vanishes above a critical value of the exchange coupling that depends strongly on the lattice spacing. The critical coupling tends to zero as the lattice spacing becomes commensurate with the Fermi wave vector, signaling the breakdown of the perturbative Ruderman-Kittel-Kasuya-Yosida picture, and spiral order, even at weak coupling. We provide the exact phase diagram for arbitrary exchange coupling and lattice spacing, and discuss its stability. Our results shed new light on the problem of utilizing a spiral spin-lattice state to drive a one-dimensional superconductor into a topological phase.
Symmetry-broken local-density approximation for one-dimensional systems
Rogers, Fergus J M; Loos, Pierre-François
2016-01-01
Within density-functional theory, the local-density approximation (LDA) correlation functional is typically built by fitting the difference between the near-exact and Hartree-Fock (HF) energies of the uniform electron gas (UEG), together with analytic perturbative results from the high- and low-density regimes. Near-exact energies are obtained by performing accurate diffusion Monte Carlo calculations, while HF energies are usually assumed to be the Fermi fluid HF energy. However, it has been known since the seminal work of Overhauser that one can obtain lower, symmetry-broken (SB) HF energies at any density. Here, we have computed the SBHF energies of the one-dimensional UEG and constructed a SB version of the LDA (SBLDA) from the results. We compare the performance of the LDA and SBLDA functionals when applied to one-dimensional systems, including atoms and molecules. Generalization to higher dimensions is also discussed.
Observation of the Leggett-Rice effect in a unitary Fermi gas.
Trotzky, S; Beattie, S; Luciuk, C; Smale, S; Bardon, A B; Enss, T; Taylor, E; Zhang, S; Thywissen, J H
2015-01-09
We observe that the diffusive spin current in a strongly interacting degenerate Fermi gas of (40)K precesses about the local magnetization. As predicted by Leggett and Rice, precession is observed both in the Ramsey phase of a spin-echo sequence, and in the nonlinearity of the magnetization decay. At unitarity, we measure a Leggett-Rice parameter γ=1.08(9) and a bare transverse spin diffusivity D(0)(⊥)=2.3(4)ℏ/m for a normal-state gas initialized with full polarization and at one-fifth of the Fermi temperature, where m is the atomic mass. One might expect γ=0 at unitarity, where two-body scattering is purely dissipative. We observe γ→0 as temperature is increased towards the Fermi temperature, consistent with calculations that show the degenerate Fermi sea restores a nonzero γ. Tuning the scattering length a, we find that a sign change in γ occurs in the range 0Fermi momentum. We discuss how γ reveals the effective interaction strength of the gas, such that the sign change in γ indicates a switching of branch between a repulsive and an attractive Fermi gas.
A high-response ethanol gas sensor based on one-dimensional TiO2/V2O5 branched nanoheterostructures
Wang, Yuan; Zhou, Yun; Meng, Chuanmin; Gao, Zhao; Cao, Xiuxia; Li, Xuhai; Xu, Liang; Zhu, Wenjun; Peng, Xusheng; Zhang, Botao; Lin, Yifeng; Liu, Lixin
2016-10-01
Hierarchical nanostructures with much increased surface-to-volume ratio have been of significant interest for prototypical gas sensors. Herein we report a novel resistive gas sensor based on TiO2/V2O5 branched nanoheterostructures fabricated by a facile one-step synthetic process, in which well-matched energy levels induced by the formation of effective heterojunctions between TiO2 and V2O5, a large Brunauer-Emmett-Teller surface area and complete electron depletion for the V2O5 nanobranches induced by the branched-nanofiber structures are all beneficial to the change of resistance upon ethanol exposure. As a result, the ethanol sensing performance of this device shows a lower operating temperature, faster response/recovery behavior, better selectivity and about seven times higher sensitivity compared with pure TiO2 nanofibers. This study not only confirms the gas sensing mechanism for performing enhancement of branched nanoheterostructures, but also proposes a rational approach to the design of nanostructure-based chemical sensors with desirable performance.
Indian Academy of Sciences (India)
S Panda; B K Panda
2010-09-01
Chemical potential and internal energy of a noninteracting Fermi gas at low temperature are evaluated using the Sommerfeld method in the fractional-dimensional space. When temperature increases, the chemical potential decreases below the Fermi energy for any dimension equal to 2 and above due to the small entropy, while it increases above the Fermi energy for dimensions below 2 as a result of high entropy. The ranges of validity of the truncated series expansions of these quantities are extended from low to intermediate temperature regime as well as from high to relatively low density regime by using the Pad ́e approximant technique.
Shear viscosity and spin-diffusion coefficient of a two-dimensional Fermi gas
DEFF Research Database (Denmark)
Bruun, Georg
2012-01-01
Using kinetic theory, we calculate the shear viscosity and the spin-diffusion coefficient as well as the associated relaxation times for a two-component Fermi gas in two dimensions, as a function of temperature, coupling strength, polarization, and mass ratio of the two components. It is demonstr......Using kinetic theory, we calculate the shear viscosity and the spin-diffusion coefficient as well as the associated relaxation times for a two-component Fermi gas in two dimensions, as a function of temperature, coupling strength, polarization, and mass ratio of the two components....... It is demonstrated that the minimum value of the viscosity decreases with the mass ratio, since Fermi blocking becomes less efficient. We furthermore analyze recent experimental results for the quadrupole mode of a two-dimensional gas in terms of viscous damping, obtaining a qualitative agreement using no fitting...
Emergence of a Metallic Quantum Solid Phase in a Rydberg-Dressed Fermi Gas.
Li, Wei-Han; Hsieh, Tzu-Chi; Mou, Chung-Yu; Wang, Daw-Wei
2016-07-15
We examine possible low-temperature phases of a repulsively Rydberg-dressed Fermi gas in a three-dimensional free space. It is shown that the collective density excitations develop a roton minimum, which is softened at a wave vector smaller than the Fermi wave vector when the particle density is above a critical value. The mean field calculation shows that, unlike the insulating density wave states often observed in conventional condensed matters, a self-assembled metallic density wave state emerges at low temperatures. In particular, the density wave state supports a Fermi surface and a body-centered-cubic crystal order at the same time with the estimated critical temperature being about one tenth of the noninteracting Fermi energy. Our results suggest the emergence of a fermionic quantum solid that should be observable in the current experimental setup.
Dimensionality and Finite Number Effect on BCS Transition of Atomic Fermi Gas
Institute of Scientific and Technical Information of China (English)
CUI Hai-Tao; WANG Lin-Cheng; YI Xue-Xi
2005-01-01
The effect of finite number and dimensionality has been discussed in this paper. The finite number effect has a negative correction to final temperature for 2D or 3D atomic Fermi gases. The changing of final temperature obtained by scanning from BEC region to BCS region are 10% or so with N ≤ 103 and can be negligible when N ＞ 103.However, in 1D atomic Fermi gas, the effect gives a positive correction which greatly changes the final temperature in Fermi gas. This behavior is completely opposed to the 2D and 3D cases and a proper explanation is still to be found.Dimensionality also has a positive correction, in which the more tightly trapping, the higher final temperature one gets with the same particle number. A discussion is also presented.
Spin Transport in a Unitarity Fermi Gas Close to the BCS Transition
Mink, M.P.; Jacobs, V. P. J.; Stoof, H.T.C.; Duine, R.A.; Polini, M.; Vignale, G.
2012-01-01
We consider spin transport in a two-component ultracold Fermi gas with attractive interspecies interactions close to the BCS pairing transition. In particular, we consider the spin-transport relaxation rate and the spin-diffusion constant. Upon approaching the transition, the scattering amplitude is
On the ground state energy of the delta-function Fermi gas
Tracy, Craig A.; Widom, Harold
2016-10-01
The weak coupling asymptotics to order γ of the ground state energy of the delta-function Fermi gas, derived heuristically in the literature, is here made rigorous. Further asymptotics are in principle computable. The analysis applies to the Gaudin integral equation, a method previously used by one of the authors for the asymptotics of large Toeplitz matrices.
Statistical mechanics of a Feshbach-coupled Bose-Fermi gas in an optical lattice
DEFF Research Database (Denmark)
Sørensen, Ole Søe; Nygaard, Nicolai; Blakie, P.B.
2009-01-01
We consider an atomic Fermi gas confined in a uniform optical lattice potential, where the atoms can pair into molecules via a magnetic-field-controlled narrow Feshbach resonance. The phase diagram of the resulting atom-molecule mixture in chemical and thermal equilibria is determined numerically...
Atom-molecule equilibration in a degenerate Fermi gas with resonant interactions
DEFF Research Database (Denmark)
Williams, J. E.; Nikuni, T.; Nygaard, Nicolai;
2004-01-01
We present a nonequilibrium kinetic theory describing atom-molecule population dynamics in a two-component Fermi gas with a Feshbach resonance. Key collision integrals emerge that govern the relaxation of the atom-molecule mixture to chemical and thermal equilibrium. Our focus is on the pseudogap...
Microscopic Structure of a Vortex Line in a Dilute Superfluid Fermi Gas
DEFF Research Database (Denmark)
Nygaard, Nicolai; Bruun, G. M.; Clark, C. W.;
2003-01-01
The microscopic properties of a single vortex in a dilute superfluid Fermi gas at zero temperature are examined within the framework of self-consistent Bogoliubov–de Gennes theory. Using only physical parameters as input, we study the pair potential, the density, the energy, and the current...
Anisotropic relaxation dynamics in a dipolar Fermi gas driven out of equilibrium
DEFF Research Database (Denmark)
Aikawa, K.; Frisch, A.; Mark, M.;
2014-01-01
We report on the observation of a large anisotropy in the rethermalization dynamics of an ultracold dipolar Fermi gas driven out of equilibrium. Our system consists of an ultracold sample of strongly magnetic $^{167}$Er fermions, spin-polarized in the lowest Zeeman sublevel. In this system, elastic...
Vortex line in a neutral finite-temperature superfluid Fermi gas
DEFF Research Database (Denmark)
Nygaard, Nicolai; Bruun, G. M.; Schneider, B. I.;
2004-01-01
The structure of an isolated vortex in a dilute two-component neutral superfluid Fermi gas is studied within the context of self-consistent Bogoliubov-de Gennes theory. Various thermodynamic properties are calculated, and the shift in the critical temperature due to the presence of the vortex...
Universal relations for the two-dimensional spin-1/2 Fermi gas with contact interactions
DEFF Research Database (Denmark)
Valiente, Manuel; Zinner, Nikolaj Thomas; Mølmer, Klaus
2011-01-01
We present universal relations for a two-dimensional Fermi gas with pairwise contact interactions. The derivation of these relations is made possible by obtaining the explicit form of a generalized function—selector—in the momentum representation. The selector implements the short-distance bounda...
Phase correlations and quasicondensate in a two-dimensional ultracold Fermi gas
Energy Technology Data Exchange (ETDEWEB)
Tempere, J., E-mail: jacques.tempere@uantwerpen.be [Theory of Quantum and Complex Systems, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen (Belgium); Lyman Laboratory of Physics, Harvard University, Cambridge, MA 02138 (United States); Klimin, S.N. [Theory of Quantum and Complex Systems, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen (Belgium)
2015-02-15
The interplay between dimensionality, coherence and interaction in superfluid Fermi gases is analyzed by the phase correlation function of the field of fermionic pairs. We calculate this phase correlation function for a two-dimensional superfluid Fermi gas with s-wave interactions within the Gaussian pair fluctuation formalism. The spatial behavior of the correlation function is shown to exhibit a rapid (exponential) decay at short distances and a characteristic algebraic decay at large distances, with an exponent matching that expected from the Berezinskii–Kosterlitz–Thouless theory of 2D Bose superfluids. We conclude that the Gaussian pair fluctuation approximation is able to capture the physics of quasi-long-range order in two-dimensional Fermi gases. - Highlights: • The phase correlation functions for an ultracold Fermi gas in 2D are calculated. • The decay of the correlation functions is algebraic at long distances. • The Gaussian pair fluctuation approach is shown to capture the quasicondensate physics in 2D Fermi gases.
Universal relations for the two-dimensional spin-1/2 Fermi gas with contact interactions
Energy Technology Data Exchange (ETDEWEB)
Valiente, Manuel; Zinner, Nikolaj T.; Moelmer, Klaus [Lundbeck Foundation Theoretical Center for Quantum System Research, Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark)
2011-12-15
We present universal relations for a two-dimensional Fermi gas with pairwise contact interactions. The derivation of these relations is made possible by obtaining the explicit form of a generalized function--selector--in the momentum representation. The selector implements the short-distance boundary condition between two fermions in a straightforward manner and leads to simple derivations of the universal relations, in the spirit of Tan's original method for the three-dimensional gas.
A two-dimensional Fermi gas in the BEC-BCS crossover
Energy Technology Data Exchange (ETDEWEB)
Ries, Martin Gerhard
2016-01-21
This thesis reports on the preparation of a 2D Fermi gas in the BEC-BCS crossover and the observation of the BKT transition into a quasi long-range ordered superfluid phase. The pair momentum distribution of the gas is probed by means of a matter-wave focusing technique which relies on time-of-flight evolution in a weak harmonic potential. This distribution holds the coherence properties of the gas. The quasi long-range ordered phase manifests itself as a sharp low-momentum peak. The temperature where it forms is identified as the transition temperature. By tuning the temperature and the interaction strength, the phase diagram of the 2D Fermi gas in the BEC-BCS crossover is mapped out. The phase coherence is investigated in a self-interference experiment. Furthermore, algebraic decay of correlations is observed in the trap average of the first order correlation function, which is obtained from the Fourier transform of the pair momentum distribution. This is in qualitative agreement with predictions of homogeneous theory for the superfluid phase in a 2D gas. The presented results provide a foundation for future experimental and theoretical studies of strongly correlated 2D Fermi gases. They might thus help to elucidate complex systems such as the electron gas in high-T{sub c} superconductors.
Fermi liquid-to-Bose condensate crossover in a two-dimensional ultracold gas experiment
Barmashova, T. V.; Mart'yanov, K. A.; Makhalov, V. B.; Turlapov, A. V.
2016-02-01
By controling interparticle interactions, it is possible to transform a fermionic system into a bosonic system and vice versa, while preserving quantum degeneracy. Evidence of such a transformation may be found by monitoring the pressure and interference. The Fermi pressure is an indication of the fermion?ic character of a system, while the interference implies a nonzero order parameter and Bose condensation. Lowering from three to two spatial dimensions introduces new physics and makes the system more difficult to describe due to the increased fluctuations and the reduced applicability of mean field methods. An experiment with a two-dimensional ultracold atomic gas shows a crossover between the Bose and Fermi limits, as evident from the value of pressure and from the interference pattern, and provides data to test models of 2D Fermi and Bose systems, including the most-difficult-to-model strongly coupled systems.
Response Functions for the Two-Dimensional Ultracold Fermi Gas: Dynamical BCS Theory and Beyond
Vitali, Ettore; Shi, Hao; Qin, Mingpu; Zhang, Shiwei
2017-08-01
Response functions are central objects in physics. They provide crucial information about the behavior of physical systems, and they can be directly compared with scattering experiments involving particles such as neutrons or photons. Calculations of such functions starting from the many-body Hamiltonian of a physical system are challenging and extremely valuable. In this paper, we focus on the two-dimensional (2D) ultracold Fermi atomic gas which has been realized experimentally. We present an application of the dynamical BCS theory to obtain response functions for different regimes of interaction strengths in the 2D gas with zero-range attractive interaction. We also discuss auxiliary-field quantum Monte Carlo (AFQMC) methods for the calculation of imaginary time correlations in these dilute Fermi gas systems. Illustrative results are given and comparisons are made between AFQMC and dynamical BCS theory results to assess the accuracy of the latter.
Zero sound in a two-dimensional dipolar Fermi gas
Lu, Z.K.; Matveenko, S.I.; Shlyapnikov, G.V.
2013-01-01
We study zero sound in a weakly interacting two-dimensional (2D) gas of single-component fermionic dipoles (polar molecules or atoms with a large magnetic moment) tilted with respect to the plane of their translational motion. It is shown that the propagation of zero sound is provided by both mean-f
Finite-Temperature Collective Dynamics of a Fermi Gas in the BEC-BCS Crossover
Wright, M. J.; Riedl, S.; Altmeyer, A.; Kohstall, C.; Guajardo, E. R. Sánchez; Denschlag, J. Hecker; Grimm, R.
2007-10-01
We report on experimental studies on the collective behavior of a strongly interacting Fermi gas with tunable interactions and variable temperature. A scissors mode excitation in an elliptical trap is used to characterize the dynamics of the quantum gas in terms of hydrodynamic or near-collisionless behavior. We obtain a crossover phase diagram for collisional properties, showing a large region where a nonsuperfluid strongly interacting gas shows hydrodynamic behavior. In a narrow interaction regime on the BCS side of the crossover, we find a novel temperature-dependent damping peak, suggesting a relation to the superfluid phase transition.
Ochiai, Nobuo; Sasamoto, Kikuo; MacNamara, Kevin
2012-12-28
A method is described for characterization of sulfur compounds in unaged and aged whisky. The method is based on full evaporation dynamic headspace (FEDHS) of 100 μL of whisky samples followed by selectable one-dimensional ((1)D) or two-dimensional ((2)D) retention-time-locked (RTL) gas chromatography (GC)-mass spectrometry (MS) with simultaneous element-specific detection using a sulfur chemiluminescence detector (SCD) and a nitrogen chemiluminescence detector (NCD). Sequential heart-cuts of the 16 sulfur fractions were used to identify each individual sulfur compound in the unaged whisky. Twenty sulfur compounds were positively identified by a MS library search, linear retention indices (LRI), and formula identification using MS calibration software. Additionally eight formulas were also identified for unknown sulfur compounds. Simultaneous heart-cuts of the 16 sulfur fractions were used to produce the (2)D RTL GC-SCD chromatograms for principal component analysis. PCA of the (2)D RTL GC-SCD data clearly demonstrated the difference between unaged and aged whisky, as well as two different whisky samples. Fourteen sulfur compounds could be characterized as key sulfur compounds responsible for the changes in the aging step and/or the difference between two kinds of whisky samples. The determined values of the key sulfur compounds were in the range of 0.3-210 ng mL(-1) (RSD: 0.37-12%, n=3).
Evidence for an excited-state Efimov trimer in a three-component Fermi gas.
Williams, J R; Hazlett, E L; Huckans, J H; Stites, R W; Zhang, Y; O'Hara, K M
2009-09-25
We observe enhanced three-body recombination in a three-component ;{6}Li Fermi gas attributable to an excited Efimov trimer state intersecting the three-atom scattering threshold near 895 G. From measurements of the recombination rate we determine the Efimov parameters kappa_{*} and eta_{*} for the universal region above 600 G which includes three overlapping Feshbach resonances. The value of kappa_{*} also predicts the locations of loss features previously observed near 130 and 500 G [T. B. Ottenstein, Phys. Rev. Lett. 101, 203202 (2008)10.1103/PhysRevLett.101.203202; J. H. Huckans, Phys. Rev. Lett. 102, 165302 (2009)10.1103/PhysRevLett.102.165302] suggesting they are associated with a ground-state Efimov trimer near threshold. We also report on the realization of a degenerate three-component Fermi gas with approximate SU(3) symmetry.
Analysis of Neutron Stars Observations Using a Correlated Fermi Gas Model
Hen, O; Piasetzky, E; Weinstein, L B
2016-01-01
Background: The nuclear symmetry energy is a fundamental ingredient in determining the equation of state (EOS) of neutron stars (NS). Recent terrestrial experiments constrain both its value and slope at nuclear saturation density, however, its value at higher densities is unknown. Assuming a Free Fermi-gas (FFG) model for the kinetic symmetry energy, the high-density extrapolation depends on a single parameter, the density dependence of the potential symmetry energy. The Correlated Fermi-gas (CFG) model improves on the FFG model by including the effects of short-range, correlated, high-momentum, nucleons in nuclear matter. Using the CFG model for the kinetic symmetry energy along with constraints from terrestrial measurements leads to a much softer density dependence for the potential symmetry energy. Purpose: Examine the ability of the FFG and CFG models to describe NS observables that are directly sensitive to the symmetry energy at high-density. Specifically, examine the ability of the CFG model, with its ...
Pontes, Marisela; Pereira, Jorge; Câmara, José S
2012-10-15
In this study the effect of the cultivar on the volatile profile of five different banana varieties was evaluated and determined by dynamic headspace solid-phase microextraction (dHS-SPME) combined with one-dimensional gas chromatography-mass spectrometry (1D-GC-qMS). This approach allowed the definition of a volatile metabolite profile to each banana variety and can be used as pertinent criteria of differentiation. The investigated banana varieties (Dwarf Cavendish, Prata, Maçã, Ouro and Platano) have certified botanical origin and belong to the Musaceae family, the most common genomic group cultivated in Madeira Island (Portugal). The influence of dHS-SPME experimental factors, namely, fibre coating, extraction time and extraction temperature, on the equilibrium headspace analysis was investigated and optimised using univariate optimisation design. A total of 68 volatile organic metabolites (VOMs) were tentatively identified and used to profile the volatile composition in different banana cultivars, thus emphasising the sensitivity and applicability of SPME for establishment of the volatile metabolomic pattern of plant secondary metabolites. Ethyl esters were found to comprise the largest chemical class accounting 80.9%, 86.5%, 51.2%, 90.1% and 6.1% of total peak area for Dwarf Cavendish, Prata, Ouro, Maçã and Platano volatile fraction, respectively. Gas chromatographic peak areas were submitted to multivariate statistical analysis (principal component and stepwise linear discriminant analysis) in order to visualise clusters within samples and to detect the volatile metabolites able to differentiate banana cultivars. The application of the multivariate analysis on the VOMs data set resulted in predictive abilities of 90% as evaluated by the cross-validation procedure.
Spectral zeta function and non-perturbative effects in ABJM Fermi-gas
Hatsuda, Yasuyuki
2015-11-01
The exact partition function in ABJM theory on three-sphere can be regarded as a canonical partition function of a non-interacting Fermi-gas with an unconventional Hamiltonian. All the information on the partition function is encoded in the discrete spectrum of this Hamiltonian. We explain how (quantum mechanical) non-perturbative corrections in the Fermi-gas system appear from a spectral consideration. Basic tools in our analysis are a Mellin-Barnes type integral representation and a spectral zeta function. From a consistency with known results, we conjecture that the spectral zeta function in the ABJM Fermi-gas has an infinite number of "non-perturbative" poles, which are invisible in the semi-classical expansion of the Planck constant. We observe that these poles indeed appear after summing up perturbative corrections. As a consequence, the perturbative resummation of the spectral zeta function causes non-perturbative corrections to the grand canonical partition function. We also present another example associated with a spectral problem in topological string theory. A conjectured non-perturbative free energy on the resolved conifold is successfully reproduced in this framework.
Spectral zeta function and non-perturbative effects in ABJM Fermi-gas
Hatsuda, Yasuyuki
2015-01-01
The exact partition function in ABJM theory on three-sphere can be regarded as a canonical partition function of a non-interacting Fermi-gas with an unconventional Hamiltonian. All the information on the partition function is encoded in the discrete spectrum of this Hamiltonian. We explain how (quantum mechanical) non-perturbative corrections in the Fermi-gas system appear from a spectral consideration. Basic tools in our analysis are a Mellin-Barnes type integral representation and a spectral zeta function. From a consistency with known results, we conjecture that the spectral zeta function in the ABJM Fermi-gas has an infinite number of "non-perturbative" poles, which are invisible in the semi-classical expansion of the Planck constant. We observe that these poles indeed appear after summing up perturbative corrections. As a consequence, the perturbative resummation of the spectral zeta function causes non-perturbative corrections to the grand canonical partition function. We also present another example as...
Indian Academy of Sciences (India)
Bihong Lin; Yingru Zhao; Jincan Chen
2008-05-01
An irreversible model of an Ericsson cryogenic refrigeration cycle working with an ideal Fermi gas is established, which is composed of two isothermal and two isobaric processes. The influence of both the quantum degeneracy and the finite-rate heat transfer between the working fluid and the heat reservoirs on the performance of the cycle is investigated, based on the theory of statistical mechanics and thermodynamic properties of an ideal Fermi gas. The inherent regeneration losses of the cycle are analyzed. Expressions for several important performance parameters such as the coefficient of performance, cooling rate and power input are derived. By using numerical solutions, the cooling rate of the cycle is optimized for a given power input. The maximum cooling rate and the corresponding parameters are calculated numerically. The optimal regions of the coefficient of performance and power input are determined. Especially, the optimal performance of the cycle in the strong and weak gas degeneracy cases and the high temperature limit is discussed in detail. The analytic expressions of some optimized parameters are derived. Some optimum criteria are given. The distinctions and connections between the Ericsson refrigeration cycles working with the Fermi and classical gases are revealed.
Tito, Elizabeth P
2016-01-01
We consider accretion-caused deceleration of a gravitationally-powerful compact stellar object traveling within a cold Fermi-gas medium. We provide analytical and numerical estimates of the effect manifestation.
One Dimensional Locally Connected S-spaces
Kunen, Joan E Hart Kenneth
2007-01-01
We construct, assuming Jensen's principle diamond, a one-dimensional locally connected hereditarily separable continuum without convergent sequences. The construction is an inverse limit in omega_1 steps, and is patterned after the original Fedorchuk construction of a compact S-space. To make it one-dimensional, each space in the inverse limit is a copy of the Menger sponge.
Lifetime of angular momentum in a rotating strongly interacting Fermi gas
Riedl, S.; Guajardo, E. R. Sánchez; Kohstall, C.; Denschlag, J. Hecker; Grimm, R.
2009-05-01
We investigate the lifetime of angular momentum in an ultracold strongly interacting Fermi gas, confined in a trap with controllable ellipticity. To determine the angular momentum we measure the precession of the radial quadrupole mode. We find that in the vicinity of a Feshbach resonance, the deeply hydrodynamic behavior in the normal phase leads to a very long lifetime of the angular momentum. Furthermore, we examine the dependence of the decay rate of the angular momentum on the ellipticity of the trapping potential and the interaction strength. The results are in general agreement with the theoretically expected behavior for a Boltzmann gas.
Universality of the unitary Fermi gas: a few-body perspective
Levinsen, Jesper; Massignan, Pietro; Endo, Shimpei; Parish, Meera M.
2017-04-01
We revisit the properties of the two-component Fermi gas with short-range interactions in three dimensions, in the limit where the s-wave scattering length diverges. Such a unitary Fermi gas possesses universal thermodynamic and dynamical observables that are independent of any interaction length scale. Focusing on trapped systems of N fermions, where N≤slant 10, we investigate how well we can determine the zero-temperature behavior of the many-body system from published few-body data on the ground-state energy and the contact. For the unpolarized case, we find that the Bertsch parameters extracted from trapped few-body systems all lie within 15% of the established value. Furthermore, the few-body values for the contact are well within the range of values determined in the literature for the many-body system. In the limit of large spin polarization, we obtain a similar accuracy for the polaron energy, and we estimate the polaron’s effective mass from the dependence of its energy on N. We also compute an upper bound for the squared wave-function overlap between the unitary Fermi system and the non-interacting ground state, both for the trapped and uniform cases. This allows us to prove that the trapped unpolarized ground state at unitarity has zero overlap with its non-interacting counterpart in the many-body limit N\\to ∞ .
Transport through a Finite One-Dimensional Crystal
Kouwenhoven, L.P.; Hekking, F.W.J.; Wees, B.J. van; Harmans, C.J.P.M.; Timmering, C.E.; Foxon, C.T.
1990-01-01
We have studied the magnetotransport properties of an artificial one-dimensional crystal. The crystal consists of a sequence of fifteen quantum dots, defined in the two-dimensional electron gas of a GaAs/AlGaAs heterostructure by means of a split-gate technique. At a fixed magnetic field of 2 T, two
Anomalous conductance of a strongly interacting Fermi gas through a quantum point contact
Liu, Boyang; Zhai, Hui; Zhang, Shizhong
2017-01-01
In this work we study the particle conductance of a strongly interacting Fermi gas through a quantum point contact. With an atom-molecule two-channel model, we compute the contribution to particle conductance by both the fermionic atoms and the bosonic molecules using the Keldysh formalism. Focusing on the regime above the Fermi superfluid transition temperature, we find that the fermionic contribution to the conductance is reduced by interaction compared with the quantized value for the noninteracting case; while the bosonic contribution to the conductance exhibits a plateau with nonuniversal values that is larger than the quantized conductance. This feature is particularly profound at temperature close to the superfluid transition. We emphasize that the enhanced conductance arises because of the bosonic nature of closed channel molecules and the low dimensionality of the quantum point contact.
Fermi-to-Bose crossover in a trapped quasi-2D gas of fermionic atoms
Turlapov, A. V.; Kagan, M. Yu
2017-09-01
The physics of many-body systems where particles are restricted to move in two spatial dimensions is challenging and even controversial: on one hand, neither long-range order nor Bose condensation may appear in infinite uniform 2D systems at finite temperature, on the other hand this does not prohibit superfluidity or superconductivity. Moreover, 2D superconductors, such as cuprates, are among the systems with the highest critical temperatures. Ultracold atoms are a platform for studying 2D physics. Unique from other physical systems, quantum statistics may be completely changed in an ultracold gas: an atomic Fermi gas may be smoothly crossed over into a gas of Bose molecules (or dimers) by tuning interatomic interactions. We review recent experiments where such crossover has been demonstrated, as well as critical phenomena in the Fermi-to-Bose crossover. We also present simple theoretical models describing the gas at different points of the crossover and compare the data to these and more advanced models.
Exactly solvable one-dimensional inhomogeneous models
Energy Technology Data Exchange (ETDEWEB)
Derrida, B.; France, M.M.; Peyriere, J.
1986-11-01
The authors present a simple way of constructing one-dimensional inhomogeneous models (random or quasiperiodic) which can be solved exactly. They treat the example of an Ising chain in a varying magnetic field, but their procedure can easily be extended to other one-dimensional inhomogeneous models. For all the models they can construct, the free energy and its derivatives with respect to temperature can be computed exactly at one particular temperature.
The instability conditions of a weakly interacting Fermi gas trapped in weak magnetic field
Institute of Scientific and Technical Information of China (English)
Men Fu-Dian; Liu Hui
2006-01-01
In this paper the analytical expression of free energy expressed by small parameter r of a weakly interacting Fermi Based on the derived expression, the exact instability conditions of a weakly interacting Fermi gas trapped in weak magnetic field at both high and low temperatures are given. From the instability conditions we get the following two results. (1) At the whole low-temperature extent, whether the interactions are repulsive or attractive with (αn + 4εF/3)(n and εF denote the particle-number density and the Fermi energy respectively, c = 4πah2/m, and a is s-wave scattering length) positive, there is a lower-limit magnetic field of instability; in addition, there is an upper-limit magnetic field for the system of attractive interactions with (αn + 4eF/3) negative. (2) At the whole high-temperature extent, the system with repulsive interactions is always stable, but for the system with attractive interactions, the greater the scattering length of attractive interactions |a| is, the stronger the magnetic field is and the larger the particle-number density is,the bigger the possibility of instability in the system will be.
The Physical and Dynamical Properties of Gas that Molds the Fermi Bubbles
Jenkins, Edward
2012-10-01
Two sharply defined lobes of gamma-ray emission emerging from the center of our Galaxy, called the Fermi Bubbles, have been discovered in the Galactic halo. Their emissivity appears to be uniform and extends up to 8 kpc on either side of the plane. Accompanying the Fermi Bubbles are excess emissions seen in X-rays and microwaves. It is generally believed that cosmic ray particles emitted from the central portion of the Galactic disk {or perhaps the nucleus itself} are responsible for these emissions. These particles must have been advected into the halo by a wind or shock. Our goal is to gain a better understanding of the nature of this gaseous transport by viewing the UV spectra of bright, extragalactic sources behind one of the Fermi Bubbles and its surrounding regions. We plan to obtain COS spectra of 5 such objects, with the goal of measuring absorption features from Si III, Si IV, C IV and N V. We expect that our mapping of column densities and kinematics of the gases will help us to distinguish a shock from a wind. Moreover, if a shock is present, we should be able to evaluate the product of its age and the density of the gas by comparing the column densities of different species.
Collective Modes in a Unitary Fermi Gas across the Superfluid Phase Transition
Tey, Meng Khoon; Sidorenkov, Leonid A.; Guajardo, Edmundo R. Sánchez; Grimm, Rudolf; Ku, Mark J. H.; Zwierlein, Martin W.; Hou, Yan-Hua; Pitaevskii, Lev; Stringari, Sandro
2013-02-01
We provide a joint theoretical and experimental investigation of the temperature dependence of the collective oscillations of first sound nature exhibited by a highly elongated harmonically trapped Fermi gas at unitarity, including the region below the critical temperature for superfluidity. Differently from the lowest axial breathing mode, the hydrodynamic frequencies of the higher-nodal excitations show a temperature dependence, which is calculated starting from Landau two-fluid theory and using the available experimental knowledge of the equation of state. The experimental results agree with high accuracy with the predictions of theory and provide the first evidence for the temperature dependence of the collective frequencies near the superfluid phase transition.
Mapping the Two-Component Atomic Fermi Gas to the Nuclear Shell-Model
DEFF Research Database (Denmark)
Özen, C.; Zinner, Nikolaj Thomas
2014-01-01
The physics of a two-component cold fermi gas is now frequently addressed in laboratories. Usually this is done for large samples of tens to hundreds of thousands of particles. However, it is now possible to produce few-body systems (1-100 particles) in very tight traps where the shell structure...... of the external potential becomes important. A system of two-species fermionic cold atoms with an attractive zero-range interaction is analogous to a simple model of nucleus in which neutrons and protons interact only through a residual pairing interaction. In this article, we discuss how the problem of a two...
A phenomenological approach to the equation of state of a unitary Fermi gas
Indian Academy of Sciences (India)
M V N Murthy; M Brack; R K Bhaduri
2014-06-01
We propose a phenomenological approach for the equation of state of a unitary Fermi gas. The universal equation of state is parametrized in terms of Fermi–Dirac integrals. This reproduces the experimental data over the accessible range of fugacity and normalized temperature, but cannot describe the superfluid phase transition found in the MIT experiment [Ku et al, Science 335, 563 (2012)]. The most sensitive data for compressibility and specific heat at phase transition can, however, be fitted by introducing into the grand partition function a pair of complex conjugate zeros lying in the complex fugacity plane slightly off the real axis.
Mapping the Two-Component Atomic Fermi Gas to the Nuclear Shell-Model
DEFF Research Database (Denmark)
Özen, C.; Zinner, Nikolaj Thomas
2014-01-01
of the external potential becomes important. A system of two-species fermionic cold atoms with an attractive zero-range interaction is analogous to a simple model of nucleus in which neutrons and protons interact only through a residual pairing interaction. In this article, we discuss how the problem of a two......-component atomic fermi gas in a tight external trap can be mapped to the nuclear shell model so that readily available many-body techniques in nuclear physics, such as the Shell Model Monte Carlo (SMMC) method, can be directly applied to the study of these systems. We demonstrate an application of the SMMC method...
Phase Diagram of a Strongly Interacting Spin-Imbalanced Fermi Gas
Olsen, Ben A; Fry, Jacob A; Sheehy, Daniel E; Hulet, Randall G
2015-01-01
We obtain the phase diagram of spin-imbalanced interacting Fermi gases from measurements of density profiles of $^6$Li atoms in a harmonic trap. These results agree with, and extend, previous experimental measurements. Measurements of the critical polarization at which the balanced superfluid core vanishes generally agree with previous experimental results and with quantum Monte Carlo (QMC) calculations in the BCS and unitary regimes. We disagree with the QMC results in the BEC regime, however, where the measured critical polarizations are greater than theoretically predicted. We also measure the equation of state in the crossover regime for a gas with equal numbers of the two fermion spin states.
Thermodynamics of ideal Fermi gas under generic power law potential in $d$-dimension
Faruk, Mir Mehedi; Bhuiyan, G. M.
2015-01-01
Thermodynamics of ideal Fermi gas trapped in an external generic power law potential $U=\\sum_{i=1} ^d c_i |\\frac{x_i}{a_i}|^{n_i}$ are investigated systematically from the grand thermodynamic potential in $d$ dimensional space. These properties are explored deeply in the degenerate limit ($\\mu>> K_BT$), where the thermodynamic properties are greatly dominated by Pauli exclusion principle. Pressure and energy along with the isothermal compressibilty is non zero at $T=0K$, denoting trapped Ferm...
Current correlation functions of ideal Fermi gas at ﬁnite temperature
Indian Academy of Sciences (India)
R P Kaur; K Tankeshwar; K N Pathak
2002-04-01
Expressions for transverse and longitudinal current–current correlation functions of an ideal Fermi gas describing the current ﬂuctuations induced in the electron system by external probe perpendicular and parallel to the propagation of electron wave, have been obtained at ﬁnite temperature. The results obtained for transverse and longitudinal functions are presented for different values of wavelength and frequency at different temperatures. The diamagnetic susceptibility as a function of temperature has also been obtained from transverse current correlation function as its long wavelength and static limit, which smoothly cross over from known quantum values to the classical limit with increase in temperature.
Stationary one-dimensional dispersive shock waves
Kartashov, Yaroslav V
2011-01-01
We address shock waves generated upon the interaction of tilted plane waves with negative refractive index defect in defocusing media with linear gain and two-photon absorption. We found that in contrast to conservative media where one-dimensional dispersive shock waves usually exist only as nonstationary objects expanding away from defect or generating beam, the competition between gain and two-photon absorption in dissipative medium results in the formation of localized stationary dispersive shock waves, whose transverse extent may considerably exceed that of the refractive index defect. One-dimensional dispersive shock waves are stable if the defect strength does not exceed certain critical value.
Observation of a pairing pseudogap in a two-dimensional Fermi gas.
Feld, Michael; Fröhlich, Bernd; Vogt, Enrico; Koschorreck, Marco; Köhl, Michael
2011-11-30
Pairing of fermions is ubiquitous in nature, underlying many phenomena. Examples include superconductivity, superfluidity of (3)He, the anomalous rotation of neutron stars, and the crossover between Bose-Einstein condensation of dimers and the BCS (Bardeen, Cooper and Schrieffer) regime in strongly interacting Fermi gases. When confined to two dimensions, interacting many-body systems show even more subtle effects, many of which are not understood at a fundamental level. Most striking is the (as yet unexplained) phenomenon of high-temperature superconductivity in copper oxides, which is intimately related to the two-dimensional geometry of the crystal structure. In particular, it is not understood how the many-body pairing is established at high temperature, and whether it precedes superconductivity. Here we report the observation of a many-body pairing gap above the superfluid transition temperature in a harmonically trapped, two-dimensional atomic Fermi gas in the regime of strong coupling. Our measurements of the spectral function of the gas are performed using momentum-resolved photoemission spectroscopy, analogous to angle-resolved photoemission spectroscopy in the solid state. Our observations mark a significant step in the emulation of layered two-dimensional strongly correlated superconductors using ultracold atomic gases.
Higher-nodal collective modes in a resonantly interacting Fermi gas
Guajardo, Edmundo R. Sánchez; Tey, Meng Khoon; Sidorenkov, Leonid A.; Grimm, Rudolf
2013-06-01
We report on experimental investigations of longitudinal collective oscillations in a highly elongated, harmonically trapped two-component Fermi gas with resonantly tuned s-wave interactions (“unitary Fermi gas”). We focus on higher-nodal axial modes, which in contrast to the elementary modes have received little attention so far. We show how these modes can be efficiently excited using a resonant local excitation scheme and sensitively analyzed by a Fourier transformation of the detected time evolution of the axial density profile. We study the temperature dependence of the mode frequencies across the superfluid phase transition. The behavior is qualitatively different from the elementary modes, where the mode frequencies are independent of the temperature as long as the gas stays in the hydrodynamic regime. Our results are compared to theoretical predictions based on Landau's two-fluid theory and available experimental knowledge of the equation of state. The comparison shows excellent agreement and thus both represents a sensitive test for the validity of the theoretical approach and provides an independent test of the equation of state. The present results obtained on modes of first-sound character represent benchmarks for the observation of second-sound propagation and corresponding oscillation modes.
The unitary Fermi gas at finite temperature: momentum distribution and contact
Drut, Joaquín E; Ten, Timour
2011-01-01
The Unitary Fermi Gas (UFG) is one of the most strongly interacting systems known to date, as it saturates the unitarity bound on the quantum mechanical scattering cross section. The UFG corresponds to a two-component Fermi gas in the limit of short interaction range and large scattering length, and is currently realized in ultracold-atom experiments via Feshbach resonances. While easy to define, the UFG poses a challenging quantum many-body problem, as it lacks any characteristic scale other than the density. As a consequence, accurate quantitative predictions of the thermodynamic properties of the UFG require Monte Carlo calculations. However, significant progress has also been made with purely analytical methods. Notably, in 2005 Tan derived a set of exact thermodynamic relations in which a universal quantity known as the "contact" C plays a crucial role. Recently, C has also been found to determine the prefactor of the high- frequency power-law decay of correlators as well as the right-hand-sides of shear...
Evidence for ferromagnetic instability in a repulsive Fermi gas of ultracold atoms
Valtolina, G; Amico, A; Burchianti, A; Recati, A; Enss, T; Inguscio, M; Zaccanti, M; Roati, G
2016-01-01
Ferromagnetism is among the most spectacular manifestations of interactions within many-body fermion systems. In contrast to weak-coupling phenomena, it requires strong repulsion to develop, making a quantitative description of ferromagnetic materials notoriously difficult. This is especially true for itinerant ferromagnets, where magnetic moments are not localized into a crystal lattice. In particular, it is still debated whether the simplest case envisioned by Stoner of a homogeneous Fermi gas with short-range repulsive interactions can exhibit ferromagnetism at all. In this work, we positively answer this question by studying a clean model system consisting of a binary spin-mixture of ultracold 6Li atoms, whose repulsive interaction is tuned via a Feshbach resonance. We drastically limit detrimental pairing effects that affected previous studies by preparing the gas in a magnetic domain-wall configuration. We reveal the ferromagnetic instability by observing the softening of the spin-dipole collective mode...
Quantum anomaly, universal relations, and breathing mode of a two-dimensional Fermi gas.
Hofmann, Johannes
2012-05-01
In this Letter, we show that the classical SO(2,1) symmetry of a harmonically trapped Fermi gas in two dimensions is broken by quantum effects. The anomalous correction to the symmetry algebra is given by a two-body operator that is well known as the contact. Taking into account this modification, we are able to derive the virial theorem for the system and a universal relation for the pressure of a homogeneous gas. The existence of an undamped breathing mode is associated with the classical symmetry. We provide an estimate for the anomalous frequency shift of this oscillation at zero temperature and compare the result with a recent experiment by [E. Vogt et al., Phys. Rev. Lett. 108, 070404 (2012)]. Discrepancies are attributed to finite temperature effects.
One-dimensional oscillator in a box
Energy Technology Data Exchange (ETDEWEB)
Amore, Paolo [Facultad de Ciencias, Universidad de Colima, Bernal DIaz del Castillo 340, Colima, Colima (Mexico); Fernandez, Francisco M [INIFTA (UNLP, CCT La Plata-CONICET), Division Quimica Teorica, Blvd 113 S/N, Sucursal 4, Casilla de Correo 16, 1900 La Plata (Argentina)], E-mail: paolo@ucol.mx, E-mail: fernande@quimica.unlp.edu.ar
2010-01-15
We discuss a quantum-mechanical model of two particles that interact by means of a harmonic potential and are confined to a one-dimensional box with impenetrable walls. We apply perturbation theory to the cases of different and equal masses and analyse the symmetry of the states in the latter case. We compare the approximate perturbation results with accurate numerical ones.
QUASI-ONE DIMENSIONAL CLASSICAL FLUIDS
Directory of Open Access Journals (Sweden)
J.K.Percus
2003-01-01
Full Text Available We study the equilibrium statistical mechanics of simple fluids in narrow pores. A systematic expansion is made about a one-dimensional limit of this system. It starts with a density functional, constructed from projected densities, which depends upon projected one and two-body potentials. The nature of higher order corrections is discussed.
Highly conducting one-dimensional solids
Evrard, Roger; Doren, Victor
1979-01-01
Although the problem of a metal in one dimension has long been known to solid-state physicists, it was not until the synthesis of real one-dimensional or quasi-one-dimensional systems that this subject began to attract considerable attention. This has been due in part to the search for high temperature superconductivity and the possibility of reaching this goal with quasi-one-dimensional substances. A period of intense activity began in 1973 with the report of a measurement of an apparently divergent conduc tivity peak in TfF-TCNQ. Since then a great deal has been learned about quasi-one-dimensional conductors. The emphasis now has shifted from trying to find materials of very high conductivity to the many interesting problems of physics and chemistry involved. But many questions remain open and are still under active investigation. This book gives a review of the experimental as well as theoretical progress made in this field over the last years. All the chapters have been written by scientists who have ...
Bose gases in one-dimensional harmonic trap
Indian Academy of Sciences (India)
JI-XUAN HOU; JING YANG
2016-10-01
Thermodynamic quantities, occupation numbers and their fluctuations of a one-dimensional Bose gas confined by a harmonic potential are studied using different ensemble approaches. Combining number theory methods, a new approach is presented to calculate the occupation numbers of different energy levels in microcanonical ensemble. The visible difference of the ground state occupation number in grand-canonical ensemble and microcanonical ensemble is found to decrease by power law as the number of particles increases.
Correlation functions of one-dimensional bosons at low temperature
Energy Technology Data Exchange (ETDEWEB)
Kozlowski, K.K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Maillet, J.M. [CNRS, ENS Lyon (France). Lab. de Physique; Slavnov, N.A. [Steklov Mathematical Institute, Moscow (Russian Federation)
2010-12-15
We consider the low-temperature limit of the long-distance asymptotic behavior of the finite temperature density-density correlation function in the one-dimensional Bose gas derived recently in the algebraic Bethe Ansatz framework. Our results confirm the predictions based on the Luttinger liquid and conformal field theory approaches. We also demonstrate that the amplitudes arising in this asymptotic expansion at low-temperature coincide with the amplitudes associated with the so-called critical form factors. (orig.)
Morphology-Controlled Growth of AIN One-Dimensional Nanostructures
Institute of Scientific and Technical Information of China (English)
Ting XIE; Min YE; Xiaosheng FANG; Zhi JIANG; Li CHEN; Mingguang KONG; Yucheng WU; Lide ZHANG
2008-01-01
Aluminum nitride (AIN) nanowires, serrated nanoribbons, and nanoribbons were selectively obtained through a simple chloride assisted chemical vapor deposition process. The morphologies of the products could be controlled by adjusting the deposition position and the flux of the reactant gas. The morphologies and structures of the AIN products were investigated in detail. The formation mechanism of the as-prepared different morphologies of AIN one-dimensional (1D) nanostructures was discussed on the basis of the experimental results.
Reprint of : Absorbing/Emitting Phonons with one dimensional MOSFETs
Bosisio, Riccardo; Gorini, Cosimo; Fleury, Geneviève; Pichard, Jean-Louis
2016-08-01
We consider nanowires in the field effect transistor device configuration. Modeling each nanowire as a one dimensional lattice with random site potentials, we study the heat exchanges between the nanowire electrons and the substrate phonons, when electron transport is due to phonon-assisted hops between localized states. Shifting the nanowire conduction band with a metallic gate induces different behaviors. When the Fermi potential is located near the band center, a bias voltage gives rise to small local heat exchanges which fluctuate randomly along the nanowire. When it is located near one of the band edges, the bias voltage yields heat currents which flow mainly from the substrate towards the nanowire near one boundary of the nanowire, and in the opposite direction near the other boundary. This opens interesting perspectives for heat management at submicron scales: arrays of parallel gated nanowires could be used for a field control of phonon emission/absorption.
Low temperatures shear viscosity of a two-component dipolar Fermi gas with unequal population
Darsheshdar, E.; Yavari, H.; Zangeneh, Z.
2016-07-01
By using the Green's functions method and linear response theory we calculate the shear viscosity of a two-component dipolar Fermi gas with population imbalance (spin polarized) in the low temperatures limit. In the strong-coupling Bose-Einstein condensation (BEC) region where a Feshbach resonance gives rise to tightly bound dimer molecules, a spin-polarized Fermi superfluid reduces to a simple Bose-Fermi mixture of Bose-condensed dimers and the leftover unpaired fermions (atoms). The interactions between dimer-atom, dimer-dimer, and atom-atom take into account to the viscous relaxation time (τη) . By evaluating the self-energies in the ladder approximation we determine the relaxation times due to dimer-atom (τDA) , dimer-dimer (τcDD ,τdDD) , and atom-atom (τAA) interactions. We will show that relaxation rates due to these interactions τDA-1 ,τcDD-1, τdDD-1, and τAA-1 have T2, T4, e - E /kB T (E is the spectrum of the dimer atoms), and T 3 / 2 behavior respectively in the low temperature limit (T → 0) and consequently, the atom-atom interaction plays the dominant role in the shear viscosity in this rang of temperatures. For small polarization (τDA ,τAA ≫τcDD ,τdDD), the low temperatures shear viscosity is determined by contact interaction between dimers and the shear viscosity varies as T-5 which has the same behavior as the viscosity of other superfluid systems such as superfluid neutron stars, and liquid helium.
Precision measurement of the sound velocity in an ultracold fermi gas through the BEC-BCS crossover
Joseph, James Adlai
A trapped Fermi gas near a collisional resonance provides a unique laboratory for testing many-body theories in a variety of fields. The ultracold Fermi gas produced in our lab is comprised of the lowest two spin states of 6Li. At 834 G there is a collisional or Feshbach resonance between the two spin states. The scattering length between trapped atoms of opposing spins far exceeds the interparticle spacing of the gas. On resonance, a strongly interacting, unitary, Fermi gas is created which exhibits universal behavior. The unitary Fermi gas is a prototype for other exotic systems in nature from nuclear matter to neutron stars and high temperature superconductors. For magnetic fields less than 834 G the scattering length is positive, and pairs Fermi atoms can form molecular dimers. These dimers, comprised of two fermions, are bosons. At ultracold temperatures the molecular bosons populate the lowest energy level and form a Bose Einstein Condensate (BEC). For magnetic fields greater than 834G the scattering length between fermions in opposing spin states is negative, like Cooper pairs formed between electrons in a superconductor. The Bardeen, Cooper, and Shriefer (BCS) theory was developed to describe the pairing effect in the context of superconductors. In our experiment we produce an ultracold unitary gas. By tuning the magnetic field to either side of the Feshbach resonance we can transform the gas into a weakly interacting BEC or BCS superfluid. Therefore, the region near a Feshbach resonance is called the BEC-BCS crossover. This dissertation presents a precision measurement of the hydrodynamic sound velocity in an ultracold Fermi gas near a Feshbach resonance. The sound velocity is measured at various magnetic fields both above and below resonance. Moreover, we are able compare our measurements to theoretical descriptions of hydrodynamic sound propagation. Further, our measurement of sound velocity exactly reproduces the non-perturbative case, eliminating the
O'Hara, K. M.; Hemmer, S. L.; Gehm, M. E.; Thomas, J. E.
2003-05-01
Atomic Fermi gases with magnetically tunable, strong interactions provide a desktop laboratory for exploring new nonperturbative theories in systems ranging from superconductors to neutron stars. We use all-optical methods to produce a highly degenerate, two-component gas of ^6Li atoms in an applied magnetic field (910 G) near a Feshbach resonance where strong interactions are observed [1]. The s-wave scattering length is estimated to be a_S=-10^4 a_0, which is large compared to the interparticle spacing. Exciting new predictions for this regime include unitarity-limited universal interactions [2] and the onset of resonance superfluidity at a very high transition temperature [3-5]. Forced evaporation is accomplished by lowering the trap laser intensity over a period of 3.5 seconds and then recompressing the trap to full depth. Abrupt release of the cloud at 910 G results in a highly anisotropic expansion, where the gas expands rapidly in the transverse directions while remaining nearly stationary in the axial direction [1]. This anisotropic energy release has been predicted recently to be a signature of superfluidity in a Fermi gas [6]. We will discuss interpretations of the data in terms of superfluidity and unitarity-limited collision dynamics. References 1. K. M. O'Hara et al., Science, 298, 2179 (2002). 2. H. Heiselberg, Phys. Rev. A 63, 043606 (2001). 3. M. Holland, et al., Phys. Rev. Lett. 87, 120406 (2001). 4. E. Timmermans, et al., Phys. Lett. A 285, 228 (2001). 5. Y. Ohashi and A. Griffin, Phys. Rev. Lett. 89, 130402 (2002). 6. C. Menotti, et al., Phys. Rev. Lett. 89, 250402 (2002).
The Interaction of the Fermi Bubbles with the Milky Way's Hot Gas Halo
Miller, Matthew J
2016-01-01
The Fermi bubbles are two lobes filled with non-thermal particles that emit gamma rays, extend $\\approx$10 kpc vertically from the Galactic center, and formed from either nuclear star formation or accretion activity on Sgr A*. Simulations predict a range of shock strengths as the bubbles expand into the surrounding hot gas halo distribution ($T_{halo} \\approx 2 \\times 10^6$ K), but with significant uncertainties in the energetics, age, and thermal gas structure. The bubbles should contain thermal gas with temperatures between $10^6$ and $10^8$ K, with potential X-ray signatures. In this work, we constrain the bubbles' thermal gas structure by modeling the OVII and OVIII emission line strengths from archival XMM-Newton and Suzaku data. Our emission model includes a hot thermal volume-filled bubble component cospatial with the gamma-ray region, and a shell of compressed material. We find that a bubble/shell model with $n \\approx 1 \\times 10^{-3}$ cm$^{-3}$ and with log($T$) $\\approx$ 6.60-6.70 is consistent wit...
One-Dimensional Simulation of Clay Drying
Directory of Open Access Journals (Sweden)
Siljan Siljan
2002-04-01
Full Text Available Drying of clay is simulated by a one-dimensional model. The background of the work is to form a better basis for investigation of the drying process in production of clay-based building materials. A model of one-dimensional heat and mass transfer in porous material is used and modified to simulate drying of clay particles. The convective terms are discretized by first-order upwinding, and the diffusive terms are discretized by central differencing. DASSL was used to solve the set of algebraic and differential equations. The different simulations show the effect of permeability, initial moisture content and different boundary conditions. Both drying of a flat plate and a spherical particle are modelled.
One-dimensional nano-interconnection formation.
Ji, Jianlong; Zhou, Zhaoying; Yang, Xing; Zhang, Wendong; Sang, Shengbo; Li, Pengwei
2013-09-23
Interconnection of one-dimensional nanomaterials such as nanowires and carbon nanotubes with other parts or components is crucial for nanodevices to realize electrical contacts and mechanical fixings. Interconnection has been being gradually paid great attention since it is as significant as nanomaterials properties, and determines nanodevices performance in some cases. This paper provides an overview of recent progress on techniques that are commonly used for one-dimensional interconnection formation. In this review, these techniques could be categorized into two different types: two-step and one-step methods according to their established process. The two-step method is constituted by assembly and pinning processes, while the one-step method is a direct formation process of nano-interconnections. In both methods, the electrodeposition approach is illustrated in detail, and its potential mechanism is emphasized.
One-Dimensional Tunable Josephson Metamaterials
Butz, Susanne
2014-01-01
This thesis presents a novel approach to the experimental realization of tunable, superconducting metamaterials. Therefore, conventional resonant meta-atoms are replaced by meta-atoms that contain Josephson junctions, which renders their resonance frequency tunable by an external magnetic field. This tunability is theoretically and experimentally investigated in one-dimensional magnetic and electric metamaterials. For the magnetic metamaterial, the effective, magnetic permeability is determined.
Vectorlike representation of one-dimensional scattering
Sánchez-Soto, L L; Barriuso, A G; Monzon, J J
2004-01-01
We present a self-contained discussion of the use of the transfer-matrix formalism to study one-dimensional scattering. We elaborate on the geometrical interpretation of this transfer matrix as a conformal mapping on the unit disk. By generalizing to the unit disk the idea of turns, introduced by Hamilton to represent rotations on the sphere, we develop a method to represent transfer matrices by hyperbolic turns, which can be composed by a simple parallelogramlike rule.
Momentum Dynamics of One Dimensional Quantum Walks
Fuss, I; Sherman, P J; Naguleswaran, S; Fuss, Ian; White, langord B.; Sherman, Peter J.; Naguleswaran, Sanjeev
2006-01-01
We derive the momentum space dynamic equations and state functions for one dimensional quantum walks by using linear systems and Lie group theory. The momentum space provides an analytic capability similar to that contributed by the z transform in discrete systems theory. The state functions at each time step are expressed as a simple sum of three Chebyshev polynomials. The functions provide an analytic expression for the development of the walks with time.
Thermodynamic stability of a weakly interacting Fermi gas trapped in a harmonic potential
Institute of Scientific and Technical Information of China (English)
Men Fu-Dian; Liu Hui; Zhu Hou-Yu
2008-01-01
Based on the theoretical results derived from pseudopotential method and local approximation,this paper studies the thermodynamic stability of a weakly interacting Fermi gas trapped in a harmonic potential by using analytical method of thermodynamics.The effects of the interparticle interactions as well as external potential on the thermodynamic stability of the system are discussed.It is shown that the system is stable as for the complete average,but as for local parts,the system is unstable anywhere.This instability shows that the stability conditions of mechanics cannot be satisfied anywhere,and the stability conditions of thermostatics cannot be satisfied somewhere.In addition,the interactions and external potential have direct effects on the local stability of the system.
Unified properties of a weakly interacting Fermi gas in a weak magnetic field
Institute of Scientific and Technical Information of China (English)
2008-01-01
When the orbital motion and the spin motion of particles were considered simultaneously,the thermodynamic potential function of a weakly interacting Fermi gas in a weak magnetic field was derived using the thermodynamics method. Based on the derived expression,the analytical expressions of energy,heat capacity,chemical potential,susceptibility and stability conditions of the system were given,and the effects of the interparticle interactions as well as the magnetic field on the properties of the system were analyzed. It was shown that the magnetic field always causes energy and stability to decrease,while the chemical potential of the system to increase. The repulsive(attractive) interactions always increase(decrease) energy and stability,but decrease(increase) the chemical potential and paramagnetism. The repulsive(attractive) interactions decrease(increase) heat capacity of the system at high temperatures but increase(decrease) it at low temperatures.
Thermal stability conditions of a weakly interacting Fermi gas in a weak magnetic field
Institute of Scientific and Technical Information of China (English)
Fudian Men; Hui Liu; Houyu Zhu
2009-01-01
On the basis of the results derived from pseudopotential method and ensemble theory,thermal stability of a weakly interacting Fermi gas in a weak magnetic field is studied by using analytical method of thermodynamics.The exact analytical expressions of stability conditions at different temperatures are given,and the effects of interactions as well as magnetic field on the stability of the system are discussed.It is shown that there is an upper-limit magnetic field for the stability of the system at low temperatures,and there is an attractive dividing value at high temperatures.If attractive interaction is lower than the critical value,the stability of the system has no request for magnetic field,but if attractive interaction is higher than the dividing value,a lower-limit magnetic field exists for the stability of the system.
Relativistic thermodynamic properties of a weakly interacting Fermi gas in a weak magnetic field
Institute of Scientific and Technical Information of China (English)
Men Fu-Dian; Liu Hui; Fan Zhao-Lan; Zhu Hou-Yu
2009-01-01
This paper derives the analytical expression of free energy for a weakly interacting Fermi gas in a weak magnetic field, by using the methods of quantum statistics as well as considering the relativistic effect. Based on the derived expression, the thermodynamic properties of the system at both high and low temperatures are given and the relativistic effect on the properties of the system is discussed. It shows that, in comparison with a nonrelativistic situation,the relativistic effect changes the influence of temperature on the thermodynamic properties of the system at high temperatures, and changes the influence of particle-number density on them at extremely low temperature. But the relativistic effect does not change the influence of the magnetic field and inter-particle interactions on the thermodynamic properties of the system at both high and extremely low temperatures.
Meissner-like effect on normal-superfluid interface of imbalanced Fermi gas
Ebrahimian, N.; Mehrafarin, M.
2013-06-01
We examine the N-SF interface of a polarized Fermi gas with two spin species a and b, in the presence of a weak external magnetic field. In our analysis we shall, therefore, consider the possibility of the Meissner effect too. We use perturbation theory to solve the Bogoliubov equations and obtain the wave functions. We consider the various scattering regions of the BCS regime and analytically obtain the transmission coefficients and the heat conductivity across the interface. We describe how the heat conductivity is affected by the Meissner effect and the species imbalance. It suffices to remark that the leading order term in transmission coefficients are independent of energy E. Also the additional heat conductivity is found to be proportional to λ 2 ( λ is penetration depth). The corresponding graphs is also plotted and discussed.
Phase Diagram and Phase Separation of a Trapped Interacting Bose-Fermi Gas Mixture
Institute of Scientific and Technical Information of China (English)
MA Yong-Li
2004-01-01
@@ In six different regimes for a spatial phase diagram of a trapped interacting Bose-Fermi gas mixture at low temperatures, we present the conditions for the spatial demixing and separation of bosons and fermions. Starting from a semiclassically thermodynamic model for the local density functional of thermal bosons and fermions,the explicit analytical expressions for the fugacities of bosons and fermions are derived in different regimes by means of a first-order perturbation method in a local-density approximation. The critical values of the fermionboson interaction strength as a function of the fractional composition of fermions have a general feature: increase,extreme and decrease with increasing the fermionic composition slightly above Bose-Einstein critical temperature.
Phonon contribution to the shear viscosity of a superfluid Fermi gas in the unitarity limit
Energy Technology Data Exchange (ETDEWEB)
Mannarelli, Massimo [I.N.F.N., Laboratori Nazionali del Gran Sasso, Assergi (AQ) (Italy); Manuel, Cristina [Instituto de Ciencias del Espacio (IEEC/CSIC), Campus Universitat Autònoma de Barcelona, Facultat de Ciències, Torre C5, E-08193 Bellaterra (Barcelona) (Spain); Tolos, Laura, E-mail: tolos@ice.csic.es [Instituto de Ciencias del Espacio (IEEC/CSIC), Campus Universitat Autònoma de Barcelona, Facultat de Ciències, Torre C5, E-08193 Bellaterra (Barcelona) (Spain); Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe University, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main (Germany)
2013-09-15
We present a detailed analysis of the contribution of small-angle Nambu–Goldstone boson (phonon) collisions to the shear viscosity, η, in a superfluid atomic Fermi gas close to the unitarity limit. We show that the experimental values of the shear viscosity coefficient to entropy ratio, η/s, obtained at the lowest reached temperature can be reproduced assuming that phonons give the leading contribution to η. The phonon contribution is evaluated considering 1↔2 processes and taking into account the finite size of the experimental system. In particular, for very low temperatures, T≲0.1T{sub F}, we find that phonons are ballistic and the contribution of phonons to the shear viscosity is determined by the processes that take place at the interface between the superfluid and the normal phase. This result is independent of the detailed form of the phonon dispersion law and leads to two testable predictions: the shear viscosity should correlate with the size of the optical trap and it should decrease with decreasing temperature. For higher temperatures the detailed form of the phonon dispersion law becomes relevant and, within our model, we find that the experimental data for η/s can be reproduced assuming that phonons have an anomalous dispersion law. -- Highlights: •We study the contribution of phonons to shear viscosity of a cold Fermi gas at unitary. •The shear viscosity to entropy ratio (η/s) is reproduced for T<∼0.1T{sub F}. •For very low temperatures η/s correlates with the size of the optical trap. •We explain η/s for T>∼0.1T{sub F} assuming an anomalous dispersion law for phonons.
Detecting Friedel oscillations in ultracold Fermi gases
Riechers, Keno; Hueck, Klaus; Luick, Niclas; Lompe, Thomas; Moritz, Henning
2017-09-01
Investigating Friedel oscillations in ultracold gases would complement the studies performed on solid state samples with scanning-tunneling microscopes. In atomic quantum gases interactions and external potentials can be tuned freely and the inherently slower dynamics allow to access non-equilibrium dynamics following a potential or interaction quench. Here, we examine how Friedel oscillations can be observed in current ultracold gas experiments under realistic conditions. To this aim we numerically calculate the amplitude of the Friedel oscillations which are induced by a potential barrier in a 1D Fermi gas and compare it to the expected atomic and photonic shot noise in a density measurement. We find that to detect Friedel oscillations the signal from several thousand one-dimensional systems has to be averaged. However, as up to 100 parallel one-dimensional systems can be prepared in a single run with present experiments, averaging over about 100 images is sufficient.
Inotani, Daisuke; Ohashi, Yoji
2015-12-01
We investigate the superfluid properties of a one-component Fermi gas with a uniaxially anisotropic p -wave pairing interaction, Ux>Uy=Uz [where Ui(i =x ,y ,z ) is a pi-wave pairing interaction]. This type of interaction is considered to be realized in a 40K Fermi gas. Including pairing fluctuations within a strong-coupling T -matrix theory, we determine the px-wave superfluid phase transition temperature Tcpx, as well as the other phase transition temperature Tcpx+i py(
One-Dimensional Anisotropic Band Gap Structure
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
The band gap structure of one-dimensional anisotropic photonic crystal has been studied by means of the transfer matrix formalism. From the analytic expressions and numeric calculations we see some general characteristics of the band gap structure of anisotropic photonic crystals, each band separates into two branches and the two branches react to polarization sensitively. In the practical case of oblique incidence, gaps move towards high frequency when the angle of incidence increases. Under some special conditions, the two branches become degenerate again.
One-dimensional nanostructures principles and applications
Zhai, Tianyou
2012-01-01
Reviews the latest research breakthroughs and applications Since the discovery of carbon nanotubes in 1991, one-dimensional nanostructures have been at the forefront of nanotechnology research, promising to provide the building blocks for a new generation of nanoscale electronic and optoelectronic devices. With contributions from 68 leading international experts, this book reviews both the underlying principles as well as the latest discoveries and applications in the field, presenting the state of the technology. Readers will find expert coverage of all major classes of one-di
Distibines, New One-Dimensional Materials.
2014-09-26
Diarsines, Distibines * and Dibismuthines," XI International Conference on Organometallic * Chemistry , Pine Mountain, Georgia, October 1983. (vi...D-R158 534 DISTIINES NEW ONE-DIMENSIONAL MTERILS(U) ICHIGAN i/UNJY ANN ARBOR DEPT OF CHEMISTRY A J ASHE 17 NAY 85 RFOSR-TR-85-9592 RFOSR-81-909 N...ADDRESS (Ci, Stett, and ZIP Code) Department of Chemistry , University Building 410, Bolling AFS, D.C. of Michigan, Ann Arbor, MI 48109 20332-6448 Sa
One-dimensional hypersonic phononic crystals.
Gomopoulos, N; Maschke, D; Koh, C Y; Thomas, E L; Tremel, W; Butt, H-J; Fytas, G
2010-03-10
We report experimental observation of a normal incidence phononic band gap in one-dimensional periodic (SiO(2)/poly(methyl methacrylate)) multilayer film at gigahertz frequencies using Brillouin spectroscopy. The band gap to midgap ratio of 0.30 occurs for elastic wave propagation along the periodicity direction, whereas for inplane propagation the system displays an effective medium behavior. The phononic properties are well captured by numerical simulations. The porosity in the silica layers presents a structural scaffold for the introduction of secondary active media for potential coupling between phonons and other excitations, such as photons and electrons.
Relativistic dynamics compels a thermalized Fermi gas to a unique intrinsic parity eigenstate
Bernardini, Alex E
2014-01-01
Dirac equation describes the dynamics of a relativistic spin-1/2 particle regarding its spatial motion and intrinsic degrees of freedom. Here we adopt the point of view that the spinors describe the state of a massive particle carrying two qubits of information: helicity and intrinsic parity. We show that the density matrix for a gas of free fermions, in thermal equilibrium, correlates helicity and intrinsic parity. Our results introduce the basic elements for discussing the spin-parity correlation for a Fermi gas: (1) at the ultra-relativistic domains, when the temperature is quite high, $T > 10^{10}\\ K$, the fermions have no definite intrinsic parity (50% : 50%), which is maximally correlated with the helicity; (2) at very low temperature, $T \\approx 3 \\ K$, a unique parity dominates (conventionally chosen positive), by $10^{20}$ to $1$, while the helicity goes into a mixed state for spin up and down, and the quantum correlation decoheres. For the anti-fermions we get the opposite behavior. In the framework...
A long-lived spin-orbit-coupled degenerate dipolar Fermi gas
Burdick, Nathaniel Q; Lev, Benjamin L
2016-01-01
We describe the creation of a long-lived spin-orbit-coupled gas of quantum degenerate atoms using the most magnetic fermionic element, dysprosium. Spin-orbit-coupling arises from a synthetic gauge field created by the adiabatic following of degenerate dressed states comprised of optically coupled components of an atomic spin. Because of dysprosium's large electronic orbital angular momentum and large magnetic moment, the lifetime of the gas is limited not by spontaneous emission from the light-matter coupling, as for gases of alkali-metal atoms, but by dipolar relaxation of the spin. This relaxation is suppressed at large magnetic fields due to Fermi statistics. We observe lifetimes up to 400 ms, which exceeds that of spin-orbit-coupled fermionic alkali atoms by a factor of 10-100, and is close to the value obtained from a theoretical model. Elastic dipolar interactions are also observed to influence the Rabi evolution of the spin, revealing an interacting fermionic system. The long lifetime of this weakly in...
Measuring the Speed of Sound in a 1D Fermi Gas
Fry, Jacob; Revelle, Melissa; Hulet, Randall
2016-05-01
We report measurements of the speed of sound in a two-spin component, 1D gas of fermionic lithium. The 1D system is an array of one-dimensional tubes created by a 2D optical lattice. By increasing the lattice depth, the tunneling between tubes is sufficiently small to make each an independent 1D system. To measure the speed of sound, we create a density notch at the center of the atom cloud using a sheet of light tuned far from resonance. The dipole force felt by both spin states will be equivalent, so this notch can be thought of as a charge excitation. Once this beam is turned off, the notch propagates to the edge of the atomic cloud with a velocity that depends on the strength of interatomic interactions. We control interactions using a magnetically tuned Feshbach resonance, allowing us to measure the speed of sound over a wide range of interaction. This method may be used to extract the Luttinger parameter vs. interaction strength. Supported by an ARO MURI Grant, NSF, and The Welch Foundation.
Localized chaos in one-dimensional hydrogen
Energy Technology Data Exchange (ETDEWEB)
Humm, D.C.; Saltz, D.; Nayfeh, M.H. (Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801 (USA))
1990-08-01
We calculate the response of hydrogen to the presence of both a strong dc electric field (necessary to isolate a nearly one-dimensional motion) and a strong radiation field of higher frequency than the binding energy of the system, a regime that has not previously been examined by theory or experiment. We determine the classical ionization threshold, the quantum-delocalization threshold, and the threshold of {ital n} mixing due to chaotic effects. The analysis indicates that the dc field can have a dramatic effect on the quantum localization of classically chaotic diffusion, changing the delocalization threshold by more than an order of magnitude. Moreover, this system provides a large spectral region in which quantum-mechanical localization inhibits classical chaotic diffusion. This theory is well suited to experimental testing.
One-dimensional spinon spin currents
Hirobe, Daichi; Sato, Masahiro; Kawamata, Takayuki; Shiomi, Yuki; Uchida, Ken-Ichi; Iguchi, Ryo; Koike, Yoji; Maekawa, Sadamichi; Saitoh, Eiji
2017-01-01
Quantum spin fluctuation in a low-dimensional or frustrated magnet breaks magnetic ordering while keeping spin correlation. Such fluctuation has been a central topic in magnetism because of its relevance to high-Tc superconductivity and topological states. However, utilizing such spin states has been quite difficult. In a one-dimensional spin-1/2 chain, a particle-like excitation called a spinon is known to be responsible for spin fluctuation in a paramagnetic state. Spinons behave as a Tomonaga-Luttinger liquid at low energy, and the spin system is often called a quantum spin chain. Here we show that a quantum spin chain generates and carries spin current, which is attributed to spinon spin current. This is demonstrated by observing an anisotropic negative spin Seebeck effect along the spin chains in Sr2CuO3. The results show that spin current can flow even in an atomic channel owing to long-range spin fluctuation.
Collapsing of chaos in one dimensional maps
Yuan, Guocheng; Yorke, James A.
2000-02-01
In their numerical investigation of the family of one dimensional maps f l(x)=1-2∣x∣ l, where l>2 , Diamond et al. [P. Diamond et al., Physica D 86 (1999) 559-571] have observed the surprising numerical phenomenon that a large fraction of initial conditions chosen at random eventually wind up at -1, a repelling fixed point. This is a numerical artifact because the continuous maps are chaotic and almost every (true) trajectory can be shown to be dense in [-1,1]. The goal of this paper is to extend and resolve this obvious contradiction. We model the numerical simulation with a randomly selected map. While they used 27 bit precision in computing f l, we prove for our model that this numerical artifact persists for an arbitrary high numerical prevision. The fraction of initial points eventually winding up at -1 remains bounded away from 0 for every numerical precision.
Superfluid helium-4 in one dimensional channel
Kim, Duk Y.; Banavar, Samhita; Chan, Moses H. W.; Hayes, John; Sazio, Pier
2013-03-01
Superfluidity, as superconductivity, cannot exist in a strict one-dimensional system. However, the experiments employing porous media showed that superfluid helium can flow through the pores of nanometer size. Here we report a study of the flow of liquid helium through a single hollow glass fiber of 4 cm in length with an open id of 150 nm between 1.6 and 2.3 K. We found the superfluid transition temperature was suppressed in the hollow cylinder and that there is no flow above the transition. Critical velocity at temperature below the transition temperature was determined. Our results bear some similarity to that found by Savard et. al. studying the flow of helium through a nanohole in a silicon nitrite membrane. Experimental study at Penn State is supported by NSF Grants No. DMR 1103159.
One-dimensional reduction of viscous jets
Pitrou, Cyril
2015-01-01
We build a general formalism to describe thin viscous jets as one-dimensional objects with an internal structure. We present in full generality the steps needed to describe the viscous jets around their central line, and we argue that the Taylor expansion of all fields around that line is conveniently expressed in terms of symmetric trace-free tensors living in the two dimensions of the fiber sections. We recover the standard results of axisymmetric jets and we report the first and second corrections to the lowest order description, also allowing for a rotational component around the axis of symmetry. When applied to generally curved fibers, the lowest order description corresponds to a viscous string model whose sections are circular. However, when including the first corrections we find that curved jets generically develop elliptic sections. Several subtle effects imply that the first corrections cannot be described by a rod model, since it amounts to selectively discard some corrections. However, in a fast...
One-dimensional Vlasov-Maxwell equilibria
Greene, John M.
1993-06-01
The purpose of this paper is to show that the Vlasov equilibrium of a plasma of charged particles in an electromagnetic field is closely related to a fluid equilibrium, where only a few moments of the velocity distribution of the plasma are considered. In this fluid equilibrium the electric field should be calculated from Ohm's law, rather than the Poisson equation. In practice, only one-dimensional equilibria are treated, because the symmetry makes this case tractable. The emphasis here is on gaining a better understanding of the subject, but an alternate way of doing the calculations is suggested. It is shown that particle distributions can be found that are consistent with any reasonable electromagnetic field profile.
Neutron and photon (light) scattering on solitons in the quasi-one-dimensional magnetics
Abdulloev, K O
1999-01-01
The general expression we have found earlier for the dynamics form-factor is used to analyse experiments on the neutron and photon (light) scattering by the gas of solitons in quasi-one-dimensional magnetics (Authors)
Solution of the Problem of the Couette Flow for a Fermi Gas with Almost Specular Boundary Conditions
Bedrikova, E. A.; Latyshev, A. V.
2016-06-01
A solution of the Couette problem for a Fermi gas is constructed. The kinetic Bhatnagar-Gross-Krook (BGK) equation is used. Almost specular boundary conditions are considered. Formulas for the mass flux and the heat flux of the gas are obtained. These fluxes are proportional to the difference of the tangential momentum accommodation coefficients of the molecules. An expression for the viscous drag force acting on the walls of the channel is also found. An analysis of the macroparameters of the gas is performed. The limit to classical gases is taken. The obtained results are found to go over to the known results in this limit.
DEFF Research Database (Denmark)
Bellotti, Filipe Furlan; Salami Dehkharghani, Amin; Zinner, Nikolaj Thomas
2017-01-01
We investigate one-dimensional harmonically trapped two-component systems for repulsive interaction strengths ranging from the non-interacting to the strongly interacting regime for Fermi-Fermi mixtures. A new and powerful mapping between the interaction strength parameters from a continuous......) and exact diagonalization) and analytically. Since DMRG results do not converge as the interaction strength is increased, analytical solutions are used as a benchmark to identify the point where these calculations become unstable. We use the proposed mapping to set a quantitative limit on the interaction...
Few quantum particles on one dimensional lattices
Energy Technology Data Exchange (ETDEWEB)
Valiente Cifuentes, Manuel
2010-06-18
There is currently a great interest in the physics of degenerate quantum gases and low-energy few-body scattering due to the recent experimental advances in manipulation of ultracold atoms by light. In particular, almost perfect periodic potentials, called optical lattices, can be generated. The lattice spacing is fixed by the wavelength of the laser field employed and the angle betwen the pair of laser beams; the lattice depth, defining the magnitude of the different band gaps, is tunable within a large interval of values. This flexibility permits the exploration of different regimes, ranging from the ''free-electron'' picture, modified by the effective mass for shallow optical lattices, to the tight-binding regime of a very deep periodic potential. In the latter case, effective single-band theories, widely used in condensed matter physics, can be implemented with unprecedent accuracy. The tunability of the lattice depth is nowadays complemented by the use of magnetic Feshbach resonances which, at very low temperatures, can vary the relevant atom-atom scattering properties at will. Moreover, optical lattices loaded with gases of effectively reduced dimensionality are experimentally accessible. This is especially important for one spatial dimension, since most of the exactly solvable models in many-body quantum mechanics deal with particles on a line; therefore, experiments with one-dimensional gases serve as a testing ground for many old and new theories which were regarded as purely academic not so long ago. The physics of few quantum particles on a one-dimensional lattice is the topic of this thesis. Most of the results are obtained in the tight-binding approximation, which is amenable to exact numerical or analytical treatment. For the two-body problem, theoretical methods for calculating the stationary scattering and bound states are developed. These are used to obtain, in closed form, the two-particle solutions of both the Hubbard and
Equivalence between local Fermi gas and shell models in inclusive muon capture from nuclei
Energy Technology Data Exchange (ETDEWEB)
Amaro, J.E.; Nieves, J.; Valverde, M. [Universidad de Granada, Departamento de Fisica Moderna, Granada (Spain); Maieron, C. [INFN, Sezione di Catania, Catania (Italy)
2005-06-01
Motivated by recent studies of inclusive neutrino nucleus processes and muon capture within a correlated local Fermi gas model (LFG), we discuss the relevance of nuclear finite-size effects in these reactions at low energy, in particular for muon capture. To disentangle these effects from others coming from the reaction dynamics we employ here a simple uncorrelated shell model that embodies the typical finite-size content of the problem. The integrated decay widths of muon atoms calculated with this shell model are then compared for several nuclei with those obtained within the uncorrelated LFG, using in both models exactly the same theoretical ingredients and parameters. We find that the two predictions are in quite good agreement, within 1-7%, when the shell model density and the correct energy balance is used as input in the LFG calculation. The present study indicates that, despite the low excitation energies involved in the reaction, integrated inclusive observables, like the total muon capture width, are quite independent of the fine details of the nuclear wave functions. (orig.)
Collective modes of a two-dimensional spin-1/2 Fermi gas in a harmonic trap
DEFF Research Database (Denmark)
Baur, Stefan; Vogt, Enrico; Köhl, Michael
2013-01-01
We derive analytical expressions for the frequency and damping of the lowest collective modes of a two-dimensional Fermi gas using kinetic theory. For strong coupling, we furthermore show that pairing correlations overcompensate the effects of Pauli blocking on the collision rate for a large rang...... the experimental bounds results in a damping of the breathing mode which is comparable to what is observed, even for a scale-invariant system....
The success of Fermi gas model for overall scaling of 2D metal-to-insulator transition data
Cheremisin, M. V.
2017-03-01
The melting condition for two-dimensional Wigner solid (Platzman and Fukuyama, 1974) [14] is shown to contain an error of a factor of π. The analysis of experimental data for apparent 2D metal-to-insulator transition shows that the Wigner solidification (Tanatar and Ceperley, 1989) [16] has been never achieved. Within routine Fermi gas model both the metallic and insulating behavior of different 2D system for actual range of carrier densities and temperatures is explained.
One-Dimensional (1-D) Nanoscale Heterostructures
Institute of Scientific and Technical Information of China (English)
Guozhen SHEN; Di CHEN; Yoshio BANDO; Dmitri GOLBERG
2008-01-01
One-dimensional (1-D) nanostructures have been attracted much attention as a result of their exceptional properties, which are different from bulk materials. Among 1-D nanostructures, 1-D heterostructures with modulated compositions and interfaces have recently become of particular interest with respect to potential applications in nanoscale building blocks of future optoelectronic devices and systems. Many kinds of methods have been developed for the synthesis of 1-D nanoscale heterostructures. This article reviews the most recent development, with an emphasize on our own recent efforts, on 1-D nanoscale heterostructures, especially those synthesized from the vapor deposition methods, in which all the reactive precursors are mixed together in the reaction chamber. Three types of 1-D nanoscale heterostructures, defined from their morphologies characteristics, are discussed in detail, which include 1-D co-axial core-shell heterostructures, 1-D segmented heterostructures and hierarchical heterostructures. This article begins with a brief survey of various methods that have been developed for synthesizing 1-D nanoscale heterostructures and then mainly focuses on the synthesis, structures and properties of the above three types of nanoscale heterostructures. Finally, this review concludes with personal views towards the topic of 1-D nanoscale heterostructures.
Conjugated Molecules Described by a One-Dimensional Dirac Equation.
Ernzerhof, Matthias; Goyer, Francois
2010-06-08
Starting from the Hückel Hamiltonian of conjugated hydrocarbon chains (ethylene, allyl radical, butadiene, pentadienyl radical, hexatriene, etc.), we perform a simple unitary transformation and obtain a Dirac matrix Hamiltonian. Thus already small molecules are described exactly in terms of a discrete Dirac equation, the continuum limit of which yields a one-dimensional Dirac Hamiltonian. Augmenting this Hamiltonian with specially adapted boundary conditions, we find that all the orbitals of the unsaturated hydrocarbon chains are reproduced by the continuous Dirac equation. However, only orbital energies close to the highest occupied molecular orbital/lowest unoccupied molecular orbital energy are accurately predicted by the Dirac equation. Since it is known that a continuous Dirac equation describes the electronic structure of graphene around the Fermi energy, our findings answer the question to what extent this peculiar electronic structure is already developed in small molecules containing a delocalized π-electron system. We illustrate how the electronic structure of small polyenes carries over to a certain class of rectangular graphene sheets and eventually to graphene itself. Thus the peculiar electronic structure of graphene extends to a large degree to the smallest unsaturated molecule (ethylene).
Fermion Coherent State Studies of One-Dimensional Hubbard Model
Institute of Scientific and Technical Information of China (English)
LIN Ji; GAO Xian-Long; WANG Ke-Lin
2007-01-01
We present a comparative study of the ground state of the one-dimensional Hubbard model. We first use a new fermion coherent state method in the framework of Fermi liquid theory by introducing a hole operator and considering the interactions of two pairs electrons and holes. We construct the ground state of the Hubbard model as ｜〉 = [f + ∑′ψc+k1σ1 h+k2σ2 c+k3σ3 h+k4σ4 ∏exp(ρc+k1σ1 h+k2σ2)] [〉0, where ψ and ρ are the coupling constants. Our results are then compared to those of variational methods, density functional theory based on the exact solvable Bethe ansatz solutions, variational Monto-Carlo method (VMC) as well as to the exact result of the infinite system. We find satisfactory agreement between the fermion coherent state scheme and the VMC data, and provide a new picture to deal with the strongly correlated system.
One-dimensional nanomaterials: Synthesis and applications
Lei, Bo
My research mainly covers three types of one-dimensional (1D) nanomaterials: metal oxide nanowires, transition metal oxide core-shell nanowires and single-walled carbon nanotubes. This new class of nanomaterials has generated significant impact in multiple fields including electronics, medicine, computing and energy. Their peculiar, fascinating properties are promising for unique applications on electronics, spintronics, optical and chemical/biological sensing. This dissertation will summarize my research work on these three 1D nanomaterials and propose some ideas that may lead to further development. Chapter 1 will give a brief introduction of nanotechnology journey and 1D nanomaterials. Chapter 2 and 3 will discuss indium oxide nanowires, as the representative of metal oxide nanwires. More specifically, chapter 2 is focused on the synthesis, material characterization, transport studies and doping control of indium oxide nanowires; Chapter 3 will give a comprehensive review of our systematic studies on molecular memory applications based on molecule/indium oxide nanowire heterostructures. Chapter 4 will introduce another 1D nanomaterial-transition metal oxide (TMO) core-shell nanowires. The discuss will focus on the synthesis of TMO nanowires, material analysis and their electronic properties as a function of temperature and magnetic field. Chapter 5 is dedicated to aligned single-walled carbon nanotubes (SWNTs) on synthesis with rational control of position and orientation, detailed characterization and construction of scaled top-gated transistors. This chapter presents a way to produce the p- and n-type nanotube transistors based on gate voltage polarity control during electrical breakdown. Finally, chapter 6 summarizes the above discussions and proposes some suggestions for future studies.
Bjorken flow in one-dimensional relativistic magnetohydrodynamics with magnetization
Pu, Shi; Rezzolla, Luciano; Rischke, Dirk H
2016-01-01
We study the one-dimensional, longitudinally boost-invariant motion of an ideal fluid with infinite conductivity in the presence of a transverse magnetic field, i.e., in the ideal transverse magnetohydrodynamical limit. In an extension of our previous work [1], we consider the fluid to have a non-zero magnetization. First, we assume a constant magnetic susceptibility $\\chi_{m}$ and consider an ultrarelativistic ideal gas equation of state. For a paramagnetic fluid (i.e., with $\\chi_{m}>0$), the decay of the energy density slows down since the fluid gains energy from the magnetic field. For a diamagnetic fluid (i.e., with $\\chi_{m}<0$), the energy density decays faster because it feeds energy into the magnetic field. Furthermore, when the magnetic field is taken to be external and to decay in proper time $\\tau$ with a power law $\\sim\\tau^{-a}$, two distinct solutions can be found depending on the values of $a$ and $\\chi_m$. Finally, we also solve the ideal magnetohydrodynamical equations for one-dimensional...
Bjorken flow in one-dimensional relativistic magnetohydrodynamics with magnetization
Pu, Shi; Roy, Victor; Rezzolla, Luciano; Rischke, Dirk H.
2016-04-01
We study the one-dimensional, longitudinally boost-invariant motion of an ideal fluid with infinite conductivity in the presence of a transverse magnetic field, i.e., in the ideal transverse magnetohydrodynamical limit. In an extension of our previous work Roy et al., [Phys. Lett. B 750, 45 (2015)], we consider the fluid to have a nonzero magnetization. First, we assume a constant magnetic susceptibility χm and consider an ultrarelativistic ideal gas equation of state. For a paramagnetic fluid (i.e., with χm>0 ), the decay of the energy density slows down since the fluid gains energy from the magnetic field. For a diamagnetic fluid (i.e., with χmlaw ˜τ-a, two distinct solutions can be found depending on the values of a and χm. Finally, we also solve the ideal magnetohydrodynamical equations for one-dimensional Bjorken flow with a temperature-dependent magnetic susceptibility and a realistic equation of state given by lattice-QCD data. We find that the temperature and energy density decay more slowly because of the nonvanishing magnetization. For values of the magnetic field typical for heavy-ion collisions, this effect is, however, rather small. It is only for magnetic fields about an order of magnitude larger than expected for heavy-ion collisions that the system is substantially reheated and the lifetime of the quark phase might be extended.
Kobayashi, K.; Saito, M.; Ohmichi, E.; Osada, T.
2006-03-01
We report a novel electric field effect on angular dependent magnetotransport in quasi-one-dimensional layered conductors with a pair of sheetlike Fermi surfaces. Under tilted magnetic fields and additional interlayer electric fields, semiclassical electron orbits on two Fermi sheets become periodic at different magnetic field orientations. This causes double splitting of the Lebed’s commensurability resonance in interlayer transport, and the amount of splitting allows us to estimate the Fermi velocity directly. We have successfully demonstrated this effect in the organic conductor α-(BEDT-TTF)2KHg(SCN)4.
Strongly interacting photons in one-dimensional continuum
Roy, Dibyendu; Firstenberg, Ofer
2016-01-01
The photon-photon scattering in vacuum is extremely weak. However, strong effective interactions between single photons can be realized by employing strong light-matter coupling. These interactions are a fundamental building block for quantum optics, bringing many-body physics to the photonic world and providing important resources for quantum photonic devices and for optical metrology. In this Colloquium, we review the physics of strongly-interacting photons in one-dimensional systems with no optical confinement along the propagation direction. We focus on two recently-demonstrated experimental realizations: (i) superconducting qubits coupled to open transmission lines, and (ii) interacting Rydberg atoms in a cold gas. Advancements in the theoretical understanding of these systems are presented in complementary formalisms and compared to experimental results. The experimental achievements are summarized alongside of a systematic description of the quantum optical effects and quantum devices emerging from the...
Capillary condensation in one-dimensional irregular confinement
Handford, Thomas P.; Pérez-Reche, Francisco J.; Taraskin, Sergei N.
2013-07-01
A lattice-gas model with heterogeneity is developed for the description of fluid condensation in finite sized one-dimensional pores of arbitrary shape. Mapping to the random-field Ising model allows an exact solution of the model to be obtained at zero-temperature, reproducing the experimentally observed dependence of the amount of fluid adsorbed in the pore on external pressure. It is demonstrated that the disorder controls the sorption for long pores and can result in H2-type hysteresis. Finite-temperature Metropolis dynamics simulations support analytical findings in the limit of low temperatures. The proposed framework is viewed as a fundamental building block of the theory of capillary condensation necessary for reliable structural analysis of complex porous media from adsorption-desorption data.
One-dimensional t-J model with next-nearest-neighbor hopping : Breakdown of the Luttinger liquid
Eder, R; Ohta, Y.
1997-01-01
We investigate the effect of a next-nearest-neighbor hopping integral t' in the one-dimensional t-J model, using Lanczos diagonalization of finite chains. Even moderate values of t' have a dramatic effect on the dynamical correlation functions and Fermi-surface topology. The high-energy holon bands
Non-Fermi liquid behavior of thermal relaxation time in degenerate electron gas
Sarkar, Sreemoyee
2012-01-01
The thermal relaxation time ($\\tau_{\\kappa_{ee}}$) for the degenerate electron plasma has been calculated by incorporating non-Fermi liquid (NFL) corrections both for the thermal conductivity and specific heat capacity. Perturbative results are presented by making expansion in $T/m_D$ with next to leading order corrections. It is seen that unlike the normal Fermi liquid (FL) result where $\\tau_{\\kappa_{ee}}\\propto 1/T^2$, NFL corrections in leading order (LO) changes the temperature dependence of $\\tau_{\\kappa_{ee}}$ to 1/T. Incorporation of the phase space correction driven by the medium modified Fermion dispersion relation increases the relaxation time further.
MARCUSE’S ONE-DIMENSIONAL SOCIETY IN ONE-DIMENSIONAL MAN
Directory of Open Access Journals (Sweden)
MILOS RASTOVIC
2013-05-01
Full Text Available Nowadays, Marcuse’s main book One-Dimensional Man is almost obsolete, or rather passé. However, there are reasons to renew the reading of his book because of “the crisis of capitalism,” and the prevailing framework of technological domination in “advanced industrial society” in which we live today. “The new forms of control” in “advanced industrial societies” have replaced traditional methods of political and economic administration. The dominant structural element of “advanced industrial society” has become a technical and scientific apparatus of production and distribution of technology and administrative practice based on application of impersonal rules by a hierarchy of associating authorities. Technology has been liberated from the control of particular interests, and it has become the factor of domination in itself. Technological domination stems from the technical development of the productive apparatus that reproduces its ability into all spheres of social life (cultural, political, and economic. Based upon this consideration, in this paper, I will examine Marcuse’s ideas of “the new forms of control,” which creates a one–dimensional society. Marcuse’s fundamental thesis in One-Dimensional Man is that technological rationality is the most dominant factor in an “advanced industrial society,” which unites two earlier opposing forces of dissent: the bourgeoisie and the proletariat.
Inotani, Daisuke; van Wyk, Pieter; Ohashi, Yoji
2016-12-01
We investigate the specific heat CV at constant volume in the normal state of a p-wave interacting Fermi gas. Including p-wave pairing fluctuations within the strong-coupling theory developed by Nozières and Schmitt-Rink, we show that, in the weak-coupling side, CV exhibits a dip-hump behavior as a function of the temperature. While the dip is associated with the pseudogap phenomenon near Tc, the hump structure is found to come from the suppression of Fermi quasiparticle scattering into a p-wave molecular state in the Fermi degenerate regime. Since the latter phenomenon does not occur in the ordinary s-wave interacting Fermi gas, it may be viewed as a characteristic phenomenon associated with a p-wave pairing interaction.
Imploding ignition waves: I. one dimensional analysis
Kushnir, Doron; Waxman, Eli
2011-01-01
We show that converging spherical and cylindrical shock waves may ignite a detonation wave in a combustible medium, provided the radius at which the shocks become strong exceeds a critical radius, R_c. An approximate analytic expression for R_c is derived for an ideal gas equation of state and a simple (power-law-Arrhenius) reaction law, and shown to reproduce the results of numerical solutions. For typical acetylene-air experiments we find R_c~0.1 mm (spherical) and R_c~1 mm (cylindrical). We suggest that the deflagration to detonation transition (DDT) observed in these systems may be due to converging shocks produced by the turbulent deflagration flow, which reaches sub (but near) sonic velocities on scales >>R_c. Our suggested mechanism differs from that proposed by Zel'dovich et al. (1970), in which a fine tuned spatial gradient in the chemical induction time is required to be maintained within the turbulent deflagration flow. Our analysis may be readily extended to more complicated equations of state and...
Quantum Impurity in a One-dimensional Trapped Bose Gas
DEFF Research Database (Denmark)
Salami Dehkharghani, Amin; Volosniev, A. G.; Zinner, N. T.
2015-01-01
We present a new theoretical framework for describing an impurity in a trapped Bose system in one spatial dimension. The theory handles any external confinement, arbitrary mass ratios, and a weak interaction may be included between the Bose particles. To demonstrate our technique, we calculate...... the ground state energy and properties of a sample system with eight bosons and find an excellent agreement with numerically exact results. Our theory can thus provide definite predictions for experiments in cold atomic gases....
Gibbs measures and phase transitions in one-dimensional models
Mallak, Saed
2000-01-01
Ankara : Department of Mathematics and the Institute of Engineering and Sciences of Bilkent University, 2000. Thesis (Ph.D.) -- Bilkent University, 2000. Includes bibliographical references leaves 63-64 In this thesis we study the problem of limit Gibbs measures in one-dimensional models. VVe investigate uniqueness conditions for the limit Gibbs measures for one-dimensional models. VVe construct a one-dimensional model disproving a uniqueness conjecture formulated before for...
Large-scale behaviour of local and entanglement entropy of the free Fermi gas at any temperature
Leschke, Hajo; Sobolev, Alexander V.; Spitzer, Wolfgang
2016-07-01
The leading asymptotic large-scale behaviour of the spatially bipartite entanglement entropy (EE) of the free Fermi gas infinitely extended in multidimensional Euclidean space at zero absolute temperature, T = 0, is by now well understood. Here, we present and discuss the first rigorous results for the corresponding EE of thermal equilibrium states at T\\gt 0. The leading large-scale term of this thermal EE turns out to be twice the first-order finite-size correction to the infinite-volume thermal entropy (density). Not surprisingly, this correction is just the thermal entropy on the interface of the bipartition. However, it is given by a rather complicated integral derived from a semiclassical trace formula for a certain operator on the underlying one-particle Hilbert space. But in the zero-temperature limit T\\downarrow 0, the leading large-scale term of the thermal EE considerably simplifies and displays a {ln}(1/T)-singularity which one may identify with the known logarithmic enhancement at T = 0 of the so-called area-law scaling. birthday of the ideal Fermi gas.
Matsumoto, M.; Hanai, R.; Inotani, D.; Ohashi, Y.
2017-06-01
We investigate strong-coupling properties of a two-dimensional ultracold Fermi gas in the normal phase. In the three-dimensional case, it has been shown that the so-called pseudogap phenomena can be well described by a (non-self-consistent) T-matrix approximation (TMA). In the two-dimensional case, while this strong-coupling theory can explain the pseudogap phenomenon in the strong-coupling regime, it unphysically gives large pseudogap size in the crossover region, as well as in the weak-coupling regime. We show that this difficulty can be overcome when one improves TMA to include higher-order pairing fluctuations within the framework of a self-consistent T-matrix approximation (SCTMA). The essence of this improvement is also explained. Since the observation of the BKT transition has recently been reported in a two-dimensional ^6{Li} Fermi gas, our results would be useful for the study of strong-coupling physics associated with this quasi-long-range order.
Planck,; Ade, P A R; Aghanim, N; Aniano, G; Arnaud, M; Ashdown, M; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Bartolo, N; Battaner, E; Benabed, K; Benoit-Levy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bonaldi, A; Bonavera, L; Bond, J R; Borrill, J; Bouchet, F R; Boulanger, F; Burigana, C; Butler, R C; Calabrese, E; Cardoso, J -F; Casandjian, J M; Catalano, A; Chamballu, A; Chiang, H C; Christensen, P R; Colombo, L P L; Combet, C; Couchot, F; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; Davis, R J; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Desert, F -X; Dickinson, C; Diego, J M; Digel, S W; Dole, H; Donzelli, S; Dore, O; Douspis, M; Ducout, A; Dupac, X; Efstathiou, G; Elsner, F; Ensslin, T A; Eriksen, H K; Falgarone, E; Finelli, F; Forni, O; Frailis, M; Fraisse, A A; Franceschi, E; Frejsel, A; Fukui, Y; Galeotta, S; Galli, S; Ganga, K; Ghosh, T; Giard, M; Gjerlow, E; Gonzalez-Nuevo, J; Gorski, K M; Gregorio, A; Grenier, I A; Gruppuso, A; Hansen, F K; Hanson, D; Harrison, D L; Henrot-Versille, S; Hernandez-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hivon, E; Holmes, W A; Hovest, W; Huffenberger, K M; Hurier, G; Jaffe, A H; Jaffe, T R; Jones, W C; Keihanen, E; Keskitalo, R; Kisner, T S; Kneissl, R; Knoche, J; Kunz, M; Kurki-Suonio, H; Lagache, G; Lamarre, J -M; Lasenby, A; Lattanzi, M; Lawrence, C R; Leonardi, R; Levrier, F; Liguori, M; Lilje, P B; Linden-Vornle, M; Lopez-Caniego, M; Lubin, P M; Macias-Perez, J F; Maffei, B; Maino, D; Mandolesi, N; Maris, M; Marshall, D J; Martin, P G; Martinez-Gonzalez, E; Masi, S; Matarrese, S; Mazzotta, P; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Miville-Deschenes, M -A; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Munshi, D; Murphy, J A; Naselsky, P; Natoli, P; Norgaard-Nielsen, H U; Novikov, D; Novikov, I; Oxborrow, C A; Pagano, L; Pajot, F; Paladini, R; Paoletti, D; Pasian, F; Perdereau, O; Perotto, L; Perrotta, F; Pettorino, V; Piacentini, F; Piat, M; Plaszczynski, S; Pointecouteau, E; Polenta, G; Popa, L; Pratt, G W; Prunet, S; Puget, J -L; Rachen, J P; Reach, W T; Rebolo, R; Reinecke, M; Remazeilles, M; Renault, C; Ristorcelli, I; Rocha, G; Roudier, G; Rusholme, B; Sandri, M; Santos, D; Scott, D; Spencer, L D; Stolyarov, V; Strong, A W; Sudiwala, R; Sunyaev, R; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Terenzi, L; Tibaldo, L; Toffolatti, L; Tomasi, M; Tristram, M; Tucci, M; Umana, G; Valenziano, L; Valiviita, J; Van Tent, B; Vielva, P; Villa, F; Wade, L A; Wandelt, B D; Wehus, I K; Yvon, D; Zacchei, A; Zonca, A
2014-01-01
Shortened abstract: Observations of the nearby Chamaeleon clouds in gamma rays with the Fermi Large Area Telescope and in thermal dust emission with Planck and IRAS have been used with the HI and CO radio data to (i) map the gas column densities in the different phases and at the dark neutral medium (DNM) transition between the HI-bright and CO-bright media; (ii) constrain the CO-to-$H_2$ conversion factor, $X_{CO}$; (iii) probe the dust properties per gas nucleon in each gas phase and spatially across the clouds. We have separated clouds in velocity in HI and CO emission and modelled the 0.4-100 GeV intensity, the dust optical depth at 353 GHz, the thermal radiance of the large grains, and an estimate of the dust extinction empirically corrected for the starlight intensity, $A_{VQ}$. The gamma-ray emissivity spectra confirm that the GeV-TeV cosmic rays uniformly permeate all gas phases up to the CO cores. The dust and cosmic rays reveal large amounts of DNM gas, with comparable spatial distributions and twic...
Heat conduction in one-dimensional oscillator lattices using Nose-Hoover chain thermostats
Energy Technology Data Exchange (ETDEWEB)
Romero-Bastida, M; Aguilar, J F [Centro de Investigacion en PolImeros, Marcos Achar Lobaton No. 2, Tepexpan, 55885 Acolman, Estado de Mexico (Mexico)
2006-09-08
In this work, we numerically study the dynamical evolution and heat transport properties of a system that consists of two time-reversible thermostats connected either by a one-dimensional Fermi-Pasta-Ulam or a Frenkel-Kontorova oscillator lattice, which are representative models of momentum-conserving and nonconserving systems, respectively. The thermostats were described by a chain of variables, Nose-Hoover chains, which enhances the ergodicity of the thermostats in comparison to the Nose-Hoover method. The time evolution of both lattices is not significantly altered by the dynamics of the thermostats. The temperature profile and heat flux of the Fermi-Pasta-Ulam model are more sensitive to the dynamics of the extended variables than those corresponding to the Frenkel-Kontorova model. Nevertheless we reproduce the scaling properties of the thermal conductivity with system size obtained by other authors.
Bellotti, Filipe F.; Dehkharghani, Amin S.; Zinner, Nikolaj T.
2017-02-01
We investigate one-dimensional harmonically trapped two-component systems for repulsive interaction strengths ranging from the non-interacting to the strongly interacting regime for Fermi-Fermi mixtures. A new and powerful mapping between the interaction strength parameters from a continuous Hamiltonian and a discrete lattice Hamiltonian is derived. As an example, we show that this mapping does not depend neither on the state of the system nor on the number of particles. Energies, density profiles and correlation functions are obtained both numerically (density matrix renormalization group (DMRG) and exact diagonalization) and analytically. Since DMRG results do not converge as the interaction strength is increased, analytical solutions are used as a benchmark to identify the point where these calculations become unstable. We use the proposed mapping to set a quantitative limit on the interaction parameter of a discrete lattice Hamiltonian above which DMRG gives unrealistic results.
One dimensional Convolutional Goppa Codes over the projective line
Pérez, J A Domínguez; Sotelo, G Serrano
2011-01-01
We give a general method to construct MDS one-dimensional convolutional codes. Our method generalizes previous constructions of H. Gluesing-Luerssen and B. Langfeld. Moreover we give a classification of one-dimensional Convolutional Goppa Codes and propose a characterization of MDS codes of this type.
One-dimensional diffusion model in an Inhomogeneous region
CSIR Research Space (South Africa)
Fedotov, I
2006-01-01
Full Text Available A one-dimensional model is developed to describe atomic diffusion in a graphite tube atomizer for electrothermal atomic adsorption spectrometry. The underlying idea of the model is the solution of an inhomogeneous one-dimensional diffusion equation...
Strong correlations and topological order in one-dimensional systems
De Gottardi, Wade Wells
This thesis presents theoretical studies of strongly correlated systems as well as topologically ordered systems in 1D. Non-Fermi liquid behavior characteristic of interacting 1D electron systems is investigated with an emphasis on experimentally relevant setups and observables. The existence of end Majorana fermions in a 1D p-wave superconductor subject to periodic, incommensurate and disordered potentials is studied. The Tomonaga-Luttinger liquid (TLL), a model of interacting electrons in one spatial dimension, is considered in the context of two systems of experimental interest. First, a study of the electronic properties of single-walled armchair carbon nanotubes in the presence of transverse electric and magnetic fields is presented. As a result of their effect on the band structure and electron wave functions, fields alter the nature of the (effective) Coulomb interaction in tubes. In particular, it is found that fields couple to nanotube bands (or valleys), a quantum degree of freedom inherited from the underlying graphene lattice. As revealed by a detailed TLL calculation, it is predicted that fields induce electrons to disperse into their spin, band, and charge components. Fields also provide a means of tuning the shell-filling behavior associated with short tubes. The phenomenon of charge fractionalization is investigated in a one-dimensional ring. TLL theory predicts that momentum-resolved electrons injected into the ring will fractionalize into clockwise- and counterclockwise-moving quasiparticles. As a complement to transport measurements in quantum wires connected to leads, non-invasive measures involving the magnetic field profiles around the ring are proposed. Topological aspects of 1D p-wave superconductors are explored. The intimate connection between non-trivial topology (fermions) and spontaneous symmetry breaking (spins) in one-dimension is investigated. Building on this connection, a spin ladder system endowed with vortex degrees of freedom is
Hanai, Ryo; Ohashi, Yoji
2014-03-01
We investigate a two-component Fermi gas with mass imbalance (m↑ ≠m↓ , where mσ is an atomic mass in the σ-component) in the BCS-BEC crossover region. Including pairing fluctuations within a self-consistent T-matrix theory, we examine how the superfluid instability is affected by the presence of mass imbalance. We determine the superfluid region in the phase diagram of a Fermi gas in terms of the temperature, the strength of a pairing interaction, and the ratio of mass imbalance. The superfluid phase transition is shown to always occur even when m↑ ≠m↓ .[2] This behavior of Tc is quite different from the previous result in an extended T-matrix theory,[3] where Tc vanishes at a certain value of m↑ /m↓ > 0 in the BCS regime. Since Fermi condensates with mass imbalance have been discussed in various systems, such as a cold Fermi gas, an exciton(polariton) condensate, as well as color superconductivity, our results would be useful for further understandings of these novel Fermi superfluids. R.H. was supported by Graduate School Doctoral Student Aid Program, Keio University.
Controlled Growth of One-Dimensional Oxide Nanomaterials
Institute of Scientific and Technical Information of China (English)
Xiaosheng FANG; Lide ZHANG
2006-01-01
This article reviews the recent developments in the controlled growth of one-dimensional (1D) oxide nanomaterials, including ZnO, SnO2, In2O3, Ga2O3, SiOx, MgO, and Al2O3. The growth of 1D oxide nanomaterials was carried out in a simple chemical vapor transport and condensation system. This article will begin with a survey of nanotechnology and 1D nanomaterials achieved by many researchers, and then mainly discuss on the controlled growth of 1D oxide nanomaterials with their morphologies, sizes, compositions, and microstructures controlled by altering experimental parameters, such as the temperature at the source material and the substrate, temperature gradient in the tube furnace, the total reaction time, the heating rate of the furnace, the gas flow rate, and the starting material. Their roles in the formation of various morphologies are analyzed and discussed. Finally, this review will be concluded with personal perspectives on the future research directions of this area.
Nucleation and growth of nanoscaled one-dimensional materials
Cui, Hongtao
Nanoscaled one-dimensional materials have attracted great interest due to their novel physical and chemical properties. The purpose of this dissertation is to study the nucleation and growth mechanisms of carbon nanotubes and silicon nitride nanowires with their field emission applications in mind. As a result of this research, a novel methodology has been developed to deposit aligned bamboo-like carbon nanotubes on substrates using a methane and ammonia mixture in microwave plasma enhanced chemical deposition. Study of growth kinetics suggests that the carbon diffusion through bulk catalyst particles controls growth in the initial deposition process. Microstructures of carbon nanotubes are affected by the growth temperature and carbon concentration in the gas phase. High-resolution transmission electron microscope confirms the existence of the bamboo-like structure. Electron diffraction reveals that the iron-based catalyst nucleates and sustains the growth of carbon nanotubes. A nucleation and growth model has been constructed based upon experimental data and observations. In the study of silicon nitride nanoneedles, a vapor-liquid-solid model is employed to explain the nucleation and growth processes. Ammonia plasma etching is proposed to reduce the size of the catalyst and subsequently produce the novel needle-like nanostructure. High-resolution transmission electron microscope shows the structure is well crystallized and composed of alpha-silicon nitride. Other observations in the structure are also explained.
α'-expansion of antisymmetric Wilson loops in N =4 SYM from Fermi gas
Horikoshi, Masaatsu; Okuyama, Kazumi
2016-11-01
We study the large 't Hooft coupling expansion of 1/2 BPS Wilson loops in the antisymmetric representation in N =4 super Yang-Mills (SYM) theory at the leading order in the 1/N expansion. Via AdS/CFT correspondence, this expansion corresponds to the α expansion in bulk type IIB string theory. We show that this expansion can be systematically computed by using the low temperature expansion of the Fermi distribution function, known as the Sommerfeld expansion in statistical mechanics. We check numerically that our expansion agrees with the exact result of antisymmetric Wilson loops recently found by Fiol and Torrents.
Helm, T.; Flicker, F.; Kealhofer, R.; Moll, P. J. W.; Hayes, I. M.; Breznay, N. P.; Li, Z.; Louie, S. G.; Zhang, Q. R.; Balicas, L.; Moore, J. E.; Analytis, J. G.
2017-02-01
We study the intrinsic electronic anisotropy and fermiology of the quasi-one-dimensional superconductor Ta4Pd3Te16 . Below T*=20 K, we detect a thermodynamic phase transition that predominantly affects the conductivity perpendicular to the quasi-one-dimensional chains. The transition relates to the presence of charge order that precedes superconductivity. Remarkably, the Fermi surface pockets detected by de Haas-van Alphen oscillations are unaffected by this transition, suggesting that the ordered state does not break any translational symmetries but rather alters the scattering of the quasiparticles themselves.
Inotani, Daisuke; van Wyk, Pieter; Ohashi, Yoji
2017-02-01
We theoretically investigate the specific heat CV at constant volume in the normal state of a p-wave interacting Fermi gas. Including fluctuations in the p-wave Cooper channel within the framework of the strong-coupling theory developed by Nozières and Schmitt-Rink, we clarify how CV as a function of temperature varies, as one moves from the weak-coupling regime to the strong-coupling limit. In the weak-coupling regime, CV is shown to be enhanced by p-wave pairing fluctuations, near the superfluid phase transition temperature Tc. Similar enhancement of CV(T ≃ Tc) is also obtained in the strong-coupling regime, which, however, reflects that system is close an ideal Bose gas of p-wave two-body bound molecules. Using these results, we classify the normal state into (1) the normal Fermi gas regime, (2) the p-wave molecular Bose gas regime, and (3) the region between the two, where p-wave pairing fluctuations are dominant. Since the current experiments can only access the normal phase of a p-wave interacting Fermi gas, our results would be useful for experiments to understand strong-coupling properties of this Fermi system above Tc.
Apostol, M
2001-01-01
sup 3 He liquefies at 3.2 K under normal pressure, where its mean inter-particle separation of a few angstroms, is comparable with the range of the interaction potential (and with the mean inter-particle separation in the corresponding ideal gas); its thermal wavelength is about 8 A, so that, under this conditions, sup 3 He is a quantum liquid of fermions, or a Fermi liquid (sometimes called a normal Fermi liquid too). The motion of the sup 3 He atoms in the (repulsive) self-consistent, meanfield potential is affected by inertial effects, i.e. the particles possess an effective mass, and consequently they obey the Fermi distribution, like an ideal Fermi gas. In this paper the Landau's theory of the Fermi liquid is reviewed. (author)
Yan, Yangqian; Blume, D
2016-06-10
The unitary equal-mass Fermi gas with zero-range interactions constitutes a paradigmatic model system that is relevant to atomic, condensed matter, nuclear, particle, and astrophysics. This work determines the fourth-order virial coefficient b_{4} of such a strongly interacting Fermi gas using a customized ab initio path-integral Monte Carlo (PIMC) algorithm. In contrast to earlier theoretical results, which disagreed on the sign and magnitude of b_{4}, our b_{4} agrees within error bars with the experimentally determined value, thereby resolving an ongoing literature debate. Utilizing a trap regulator, our PIMC approach determines the fourth-order virial coefficient by directly sampling the partition function. An on-the-fly antisymmetrization avoids the Thomas collapse and, combined with the use of the exact two-body zero-range propagator, establishes an efficient general means to treat small Fermi systems with zero-range interactions.
Observation of Zero-Dimensional States in a One-Dimensional Electron Interferometer
Wees, B.J. van; Kouwenhoven, L.P.; Harmans, C.J.P.M.; Williamson, J.G.; Timmering, C.E.; Broekaart, M.E.I.; Foxon, C.T.; Harris, J.J.
1989-01-01
We have studied the electron transport in a one-dimensional electron interferometer. It consists of a disk-shaped two-dimensional electron gas, to which quantum point contacts are attached. Discrete zero-dimensional states are formed due to constructive interference of electron waves traveling along
Transport in an Electron Interferometer and an Artificial One-Dimensional Crystal
Wees, B.J. van; Kouwenhoven, L.P.; Kraayeveld, J.R.; Hekking, F.W.J.; Harmans, C.J.P.M.; Williamson, J.G.
1990-01-01
We have studied the electron transport in a one-dimensional electron interferometer. It consists of a quantum dot, defined in a two-dimensional electron gas, to which quantum point contacts are attached. Discrete electronic states are formed due to the constructive interference of electron waves whi
Torsional Detwinning Domino in Nanotwinned One-Dimensional Nanostructures.
Zhou, Haofei; Li, Xiaoyan; Wang, Ying; Liu, Zishun; Yang, Wei; Gao, Huajian
2015-09-09
How to maintain sustained deformation in one-dimensional nanostructures without localized failure is an important question for many applications of nanotechnology. Here we report a phenomenon of torsional detwinning domino that leads to giant rotational deformation without localized failure in nanotwinned one-dimensional metallic nanostructures. This mechanism is demonstrated in nanotwinned Cu nanorods via molecular dynamics simulations, where coherent twin boundaries are transformed into twist boundaries and then dissolved one by one, resulting in practically unlimited rotational deformation. This finding represents a fundamental advance in our understanding of deformation mechanisms in one-dimensional metallic nanostructures.
Pacifying the Fermi-liquid: battling the devious fermion signs
Directory of Open Access Journals (Sweden)
J. Zaanen
2008-06-01
Full Text Available The fermion sign problem is studied in the path integral formalism. The standard picture of Fermi liquids is first critically analyzed, pointing out some of its rather peculiar properties. The insightful work of Ceperley in constructing fermionic path integrals in terms of constrained world-lines is then reviewed. In this representation, the minus signs associated with Fermi-Dirac statistics are self consistently translated into a geometrical constraint structure (the nodal hypersurface acting on an effective bosonic dynamics. As an illustrative example we use this formalism to study 1+1-dimensional systems, where statistics are irrelevant, and hence the sign problem can be circumvented. In this low-dimensional example, the structure of the nodal constraints leads to a lucid picture of the entropic interaction essential to one-dimensional physics. Working with the path integral in momentum space, we then show that the Fermi gas can be understood by analogy to a Mott insulator in a harmonic trap. Going back to real space, we discuss the topological properties of the nodal cells, and suggest a new holographic conjecture relating Fermi liquids in higher dimensions to soft-core bosons in one dimension. We also discuss some possible connections between mixed Bose/Fermi systems and supersymmtery.
A NEW ONE-DIMENSIONAL CHAOTIC MAP WITH INFINITE COLLAPSES
Institute of Scientific and Technical Information of China (English)
Qiu Yuehong; He Chen; Zhu Hongwen
2002-01-01
This letter presents a new one-dimensional chaotic map with infinite collapses. Theoretical analyses show that the map has complicated dynamical behavior and ideal distribution.The map can be applied in chaotic spreading spectrum communication and chaotic cipher.
One-dimensional spatially dependent solute transport in semi ...
African Journals Online (AJOL)
One-dimensional spatially dependent solute transport in semi-infinite porous media: an analytical solution. ... Journal Home > Vol 9, No 4 (2017) > ... In this mathematical model the dispersion coefficient is considered spatially dependent while ...
One-Dimensional Tunable Photonic-Crystal IR Filter Project
National Aeronautics and Space Administration — MetroLaser proposes to design and develop an innovative narrowband tunable IR filter based on the properties of a one-dimensional photonic crystal structure with a...
One-Dimensional Tunable Photonic-Crystal IR Filter Project
National Aeronautics and Space Administration — MetroLaser proposes to design and develop an innovative narrowband tunable IR filter based on the properties of a one-dimensional photonic crystal structure with a...
Spin-anisotropic magnetic impurity in a Fermi gas: Integration of poor man's scaling equations
Kogan, Eugene; Noda, Kazuto; Yunoki, Seiji
2017-04-01
We consider a single magnetic impurity described by the spin-anisotropic s -d (f ) exchange (Kondo) model and formulate a scaling equation for the spin-anisotropic model when the density of states (DOS) of electrons is a power-law function of energy (measured relative to the Fermi energy). We solve this equation containing terms up to the second order in coupling constants in terms of elliptic functions. From the obtained solution we find the phases corresponding to the infinite isotropic antiferromagnetic Heisenberg exchange, to the impurity spin decoupled from the electron environment (only for the pseudogap DOS), and to the infinite Ising exchange (only for the diverging DOS). We analyze the critical surfaces, corresponding to the finite isotropic antiferromagnetic Heisenberg exchange for the pseudogap DOS.
Universal properties of a trapped two-component fermi gas at unitarity.
Blume, D; von Stecher, J; Greene, Chris H
2007-12-01
We treat the trapped two-component Fermi system, in which unlike fermions interact through a two-body short-range potential having no bound state but an infinite scattering length. By accurately solving the Schrödinger equation for up to N=6 fermions, we show that no many-body bound states exist other than those bound by the trapping potential, and we demonstrate unique universal properties of the system: Certain excitation frequencies are separated by 2variant Planck's over 2piomega, the wave functions agree with analytical predictions and a virial theorem is fulfilled. Further calculations up to N=30 determine the excitation gap, an experimentally accessible universal quantity, and it agrees with recent predictions based on a density functional approach.
One dimensional models of excitons in carbon nanotubes
DEFF Research Database (Denmark)
Cornean, Horia Decebal; Duclos, P.; Pedersen, Thomas Garm
Excitons in carbon nanotubes may be modeled by two oppositely charged particles living on the surface of a cylinder. We derive three one dimensional effective Hamiltonians which become exact as the radius of the cylinder vanishes. Two of them are solvable.......Excitons in carbon nanotubes may be modeled by two oppositely charged particles living on the surface of a cylinder. We derive three one dimensional effective Hamiltonians which become exact as the radius of the cylinder vanishes. Two of them are solvable....
An investigation of dopping profile for a one dimensional heterostructure
Huang, Zhaohui
2005-03-01
A one-dimensional junction is formed by joining two silicon nanowires whose surfaces are terminated with capping groups of different electronegativity and polarizability. If this heterostructure is doped (with e.g. phosphorous) on the side with the higher bandgap, the system becomes a modulation doped heterostructure with novel one-dimensional electrostatics. We use density functional theory calculations in the pseudopotential approximation, plus empirical model calculations, to investigate doping profiles in this new class of nanostructures.
Fidelity of an electron in one-dimensional determined potentials
Institute of Scientific and Technical Information of China (English)
Song Wen-Guang; Tong Pei-Qing
2009-01-01
We numerically study the fidelity of an electron in the one-dimensional Harper model and in the one-dimensional slowly varying potential model. Our results show that many properties of the two models can be well reflected by the fidelity: (i) the mobility edge and metal-insulator transition can be characterized by the static fidelity; (ii) the extended state and localized state can be identified by the dynamic fidelity. Therefore, it may broaden the applied areas of the fidelity.
Interplay between Rashba spin-orbit coupling and adiabatic rotation in a two-dimensional Fermi gas
Doko, E.; Subaşı, A. L.; Iskin, M.
2017-01-01
We explore the trap profiles of a two-dimensional atomic Fermi gas in the presence of a Rashba spin-orbit coupling and under an adiabatic rotation. We first consider a noninteracting gas and show that the competition between the effects of Rashba coupling on the local density of single-particle states and the Coriolis effects caused by rotation gives rise to a characteristic ring-shaped density profile that survives at experimentally accessible temperatures. Furthermore, Rashba splitting of the Landau levels gives the density profiles a ziggurat shape in the rapid-rotation limit. We then consider an interacting gas under the BCS mean-field approximation for local pairing, and study the pair-breaking mechanism that is induced by the Coriolis effects on superfluidity, where we calculate the critical rotation frequencies both for the onset of pair breaking and for the complete destruction of superfluidity in the system. In particular, by comparing the results of a fully-quantum-mechanical Bogoliubov-de Gennes approach with those of a semiclassical local-density approximation, we construct extensive phase diagrams for a wide range of parameter regimes in the trap where the aforementioned competition may, e.g., favor an outer normal edge that is completely phase separated from the central superfluid core by vacuum.
Rigorous results for the one-dimensional Fermi liquid at zero temperature
Energy Technology Data Exchange (ETDEWEB)
Procacci, Aldo [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Dept. de Matematica
1994-12-31
Some of the most important aspects for a rigorous discussion of analyticity properties of Schwinger functions for the ground state theory of a many-fermion system in one dimension are presented. (author). 9 refs.
Spin-incoherent one-dimensional spin-1 Bose Luttinger liquid
Jen, H. H.; Yip, S.-K.
2016-09-01
We investigate spin-incoherent Luttinger liquid of a one-dimensional spin-1 Bose gas in a harmonic trap. In this regime highly degenerate spin configurations emerge since the energy splitting between different spin states is much less than the thermal energy of the system, while the temperature is low enough that the lowest energetic orbitals are occupied. As an example we numerically study the momentum distribution of a one-dimensional spin-1 Bose gas in Tonks-Girardeau gas limit and in the sector of zero magnetization. We find that the momentum distributions broaden as the number of atoms increase due to the averaging of spin function overlaps. Large momentum (p ) asymptotic is analytically derived, showing the universal 1 /p4 dependence. We demonstrate that the spin-incoherent Luttinger liquid has a momentum distribution also distinct from spinless bosons at finite temperature.
Peletminskii, A. S.; Peletminskii, S. V.; Slyusarenko, Yu V.
2017-07-01
We study a many-body system of interacting fermionic atoms of two species that are in thermodynamic equilibrium with their condensed heteronuclear bound states (molecules). In order to describe such an equilibrium state, we use a microscopic approach that involves the Bogoliubov model for a weakly interacting Bose gas and approximate formulation of the second quantization method in the presence of bound states of particles elaborated earlier by the authors. This microscopic approach is valid at low temperatures, when the average kinetic energy of all the components in the system is small in comparison with the bound state energy. The coupled equations, which relate the chemical potentials of fermionic components and molecular condensate density, are obtained within the proposed theory. At zero temperature, these equations are analyzed both analytically and numerically, attracting the relevant experimental data. We find the conditions at which a condensate of heteronuclear molecules coexists in equilibrium with degenerate components of a Fermi gas. The ground state energy and single-particle excitation spectrum are found. The boundaries of the applicability of the developed microscopic approach are analyzed.
One dimensional speckle fields generated by three phase level diffusers
Cabezas, L.; Amaya, D.; Bolognini, N.; Lencina, A.
2015-02-01
Speckle patterns have usually been obtained by using ground glass as random diffusers. Liquid-crystal spatial light modulators have opened the possibility of engineering tailored speckle fields obtained from designed diffusers. In this work, one-dimensional Gaussian speckle fields with fully controllable features are generated. By employing a low-cost liquid-crystal spatial light modulator, one-dimensional three phase level diffusers are implemented. These diffusers make it possible to control average intensity distribution and statistical independence among the generated patterns. The average speckle size is governed by an external slit pupil. A theoretical model to describe the generated speckle patterns is developed. Experimental and theoretical results confirming the generation of one-dimensional speckle fields are presented. Some possible applications of these speckles, such as atom trapping and super-resolution imaging, are briefly envisaged.
Analysis of one dimensional and two dimensional fuzzy controllers
Institute of Scientific and Technical Information of China (English)
Ban Xiaojun; Gao Xiaozhi; Huang Xianlin; Wu Tianbao
2006-01-01
The analytical structures and the corresponding mathematical properties of the one dimensional and two dimensional fuzzy controllers are first investigated in detail.The nature of these two kinds of fuzzy controllers is next probed from the perspective of control engineering. For the one dimensional fuzzy controller, it is concluded that this controller is a combination of a saturation element and a nonlinear proportional controller, and the system that employs the one dimensional fuzzy controller is the combination of an open-loop control system and a closedloop control system. For the latter case, it is concluded that it is a hybrid controller, which comprises the saturation part, zero-output part, nonlinear derivative part, nonlinear proportional part, as well as nonlinear proportional-derivative part, and the two dimensional fuzzy controller-based control system is a loop-varying system with varying number of control loops.
A review on one dimensional perovskite nanocrystals for piezoelectric applications
Directory of Open Access Journals (Sweden)
Li-Qian Cheng
2016-03-01
Full Text Available In recent years, one-dimensional piezoelectric nanomaterials have become a research topic of interest because of their special morphology and excellent piezoelectric properties. This article presents a short review on one dimensional perovskite piezoelectric materials in different systems including Pb(Zr,TiO3, BaTiO3 and (K,NaNbO3 (KNN. We emphasize KNN as a promising lead-free piezoelectric compound with a high Curie temperature and high piezoelectric properties and describe its synthesis and characterization. In particular, details are presented for nanoscale piezoelectricity characterization of a single KNN nanocrystal by piezoresponse force microscopy. Finally, this review describes recent progress in applications based on one dimensional piezoelectric nanostructures with a focus on energy harvesting composite materials.
Magnetic properties of a Fermi gas in a noncommutative phase space
Viñas, S Franchino
2016-01-01
Motivated by the precision attained by SQUID devices in measuring magnetic fields, we study in this article the thermodynamic behaviour of a fermion gas in two and three dimen\\-sional spatial space with noncommutative coordinates and momenta. An explicit expression, both for Landau's diamagnetism and Pauli's paramagnetism, is obtained for the magnetization and magnetic susceptibility of the gas in two and three spatial dimensions. These results show that an upper bound for the noncommutative parameter $\\theta\\lesssim (10 \\,\\text{Gev})^{-2}$ could be obtained.
Jiang, Hao; Cao, Guanghan; Cao, Chao
2015-11-01
The electronic structure of quasi-one-dimensional superconductor K2Cr3As3 is studied through systematic first-principles calculations. The ground state of K2Cr3As3 is paramagnetic. Close to the Fermi level, the , dxy, and orbitals dominate the electronic states, and three bands cross EF to form one 3D Fermi surface sheet and two quasi-1D sheets. The electronic DOS at EF is less than 1/3 of the experimental value, indicating a large electron renormalization factor around EF. Despite of the relatively small atomic numbers, the antisymmetric spin-orbit coupling splitting is sizable (≈60 meV) on the 3D Fermi surface sheet as well as on one of the quasi-1D sheets. Finally, the imaginary part of bare electron susceptibility shows large peaks at Γ, suggesting the presence of large ferromagnetic spin fluctuation in the compound.
One-dimensional models of excitons in carbon nanotubes
DEFF Research Database (Denmark)
Cornean, Horia Decebal; Duclos, Pierre; Pedersen, Thomas Garm
2004-01-01
Excitons in carbon nanotubes may be modeled by two oppositely charged particles living on the surface of a cylinder. We derive three one-dimensional effective Hamiltonians which become exact as the radius of the cylinder vanishes. Two of them are solvable.......Excitons in carbon nanotubes may be modeled by two oppositely charged particles living on the surface of a cylinder. We derive three one-dimensional effective Hamiltonians which become exact as the radius of the cylinder vanishes. Two of them are solvable....
One-dimensional Nanostructured Materials From Organic Precursor
Institute of Scientific and Technical Information of China (English)
K. F. Cai
2005-01-01
@@ 1Introduction One-dimensional nanostructured materials, such as nanowires, nanobelts, nanotubes and nanocables have been attracting a great research interest in the last decade due to their superior electrical, optical, mechanical and thermal properties, and many methods have been explored to synthesis of the materials, e.g., arc discharge, laser ablation, chemical vapor deposition, thermal evaporation, sol-gel method, template method and so on. In this work, we present a novel and simple method to one-dimensional nanostructured materials by pyrolysis of organic precursor.
Branching solutions to one-dimensional variational problems
Ivanov, A O
2001-01-01
This book deals with the new class of one-dimensional variational problems - the problems with branching solutions. Instead of extreme curves (mappings of a segment to a manifold) we investigate extreme networks, which are mappings of graphs (one-dimensional cell complexes) to a manifold. Various applications of the approach are presented, such as several generalizations of the famous Steiner problem of finding the shortest network spanning given points of the plane. Contents: Preliminary Results; Networks Extremality Criteria; Linear Networks in R N; Extremals of Length Type Functionals: The
Coexistence of density wave and superfluid order in a dipolar Fermi gas
DEFF Research Database (Denmark)
Wu, Zhigang; Block, Jens Kusk; Bruun, Georg M.
2015-01-01
We analyse the coexistence of superfluid and density wave (stripe) order in a quasi-two-dimensional gas of dipolar fermions aligned by an external field. Remarkably, the anisotropic nature of the dipolar interaction allows for such a coexistence in a large region of the zero temperature phase dia...
Institute of Scientific and Technical Information of China (English)
YANGXiao－Xue; WUYing
2002-01-01
We develop a simple approach to obtain explicitly exact analytical expressions of particle and kineticenergy densities for noninteracting Fermi gases in one-dimensional harmonic confinement,and in one-dimensional box confinement as well.
Symmetricity of Distribution for One-Dimensional Hadamard Walk
Konno, N; Soshi, T; Konno, Norio; Namiki, Takao; Soshi, Takahiro
2002-01-01
In this paper we study a one-dimensional quantum random walk with the Hadamard transformation which is often called the Hadamard walk. We construct the Hadamard walk using a transition matrix on probability amplitude and give some results on symmetricity of probability distributions for the Hadamard walk.
The electromagnetic Brillouin precursor in one-dimensional photonic crystals
Uitham, R.; Hoenders, B. J.
2008-01-01
We have calculated the electromagnetic Brillouin precursor that arises in a one-dimensional photonic crystal that consists of two homogeneous slabs which each have a single electron resonance. This forerunner is compared with the Brillouin precursor that arises in a homogeneous double-electron reson
Current-Voltage Characteristics of Quasi-One-Dimensional Superconductors
DEFF Research Database (Denmark)
Vodolazov, D.Y.; Peeters, F.M.; Piraux, L.
2003-01-01
The current-voltage (I-V) characteristics of quasi-one-dimensional superconductors were discussed. The I-V characteristics exhibited an unusual S behavior. The dynamics of superconducting condensate and the existence of two different critical currents resulted in such an unusual behavior....
The Long Decay Model of One-Dimensional Projectile Motion
Lattery, Mark Joseph
2008-01-01
This article introduces a research study on student model formation and development in introductory mechanics. As a point of entry, I present a detailed analysis of the Long Decay Model of one-dimensional projectile motion. This model has been articulated by Galileo ("in De Motu") and by contemporary students. Implications for instruction are…
The electromagnetic Brillouin precursor in one-dimensional photonic crystals
Uitham, R.; Hoenders, B. J.
2008-01-01
We have calculated the electromagnetic Brillouin precursor that arises in a one-dimensional photonic crystal that consists of two homogeneous slabs which each have a single electron resonance. This forerunner is compared with the Brillouin precursor that arises in a homogeneous double-electron
Quasi-one-dimensional scattering in a discrete model
DEFF Research Database (Denmark)
Valiente, Manuel; Mølmer, Klaus
2011-01-01
that more than one confinement-induced resonances appear due to the nonseparability of the center-of-mass and relative coordinates on the lattice. This is done by solving its corresponding Lippmann-Schwinger-like equation. We characterize the effective one-dimensional interaction and compare it with a model...
Quantum Dynamics of One-Dimensional Nanocrystalline Solids
Institute of Scientific and Technical Information of China (English)
丁建文; 颜晓红; 曹觉先; 王登龙
2002-01-01
A novel ballistic-nonballistic dynamic transition in one-dimensional nanocrystalline solids is found upon varyingthe strength of the composition modulation and the grain-boundary effect. This can contribute to the under-standing of the strange electronic transport properties of nanostructured systems.
One-dimensional models of thermal activation under shear stress
CSIR Research Space (South Africa)
Nabarro, FRN
2003-01-01
Full Text Available The analysis of thermal activation under shear stress in three- and even two-dimensional models presents unresolved problems. The analysis of one-dimensional models presented here may illuminate the study of more realistic models. For the model...
How good are one-dimensional Josephson junction models?
DEFF Research Database (Denmark)
Lomdahl, P. S.; Olsen, O.H.; Eilbeck, J. C.
1985-01-01
A two-dimensional model of Josephson junctions of overlap type is presented and shown to reduce to the usual one-dimensional (1D) model in the limit of a very narrow junction. Comparisons between the stability limits for fluxon reflection obtained from the two models suggest that the many results...
Quasi-one-dimensional intermittent flux behavior in superconducting films
DEFF Research Database (Denmark)
Qviller, A. J.; Yurchenko, V. V.; Galperin, Y. M.
2012-01-01
. The intermittent behavior shows no threshold value in the applied field, in contrast to conventional flux jumping. The results strongly suggest that the quasi-one-dimensional flux jumps are of a different nature than the thermomagnetic dendritic (branching) avalanches that are commonly found in superconducting...
Radiative decay of the one-dimensional large acoustic polaron
Energy Technology Data Exchange (ETDEWEB)
Ivic, Zoran; Zekovic, Slobodan; Przulj, Zeljko
2002-12-30
Finite temperature dynamics and stability of the adiabatic large acoustic polaron in one-dimensional systems have been examined by means of the perturbation method based upon the inverse scattering transform. Polaron life-time was estimated in dependence of temperature and electron (exciton)-phonon coupling constant.
An algebraic study of unitary one dimensional quantum cellular automata
Arrighi, P
2005-01-01
We provide algebraic characterizations of unitary one dimensional quantum cellular automata. We do so both by algebraizing existing decision procedures, and by adding constraints into the model which do not change the quantum cellular automata's computational power. The configurations we consider have finite but unbounded size.
Novel Progress in One-Dimensional Carbon Nanotubes Studies
Institute of Scientific and Technical Information of China (English)
无
2004-01-01
@@ One-dimensional carbon nanotubes (CNT) have received considerable attention from researchers worldwide. It is not only because of their unique physical properties, but also their potential applications. Recently, researchers of the CAS Institute of Physics have made new progress in the field.
Quantum transport in strongly interacting one-dimensional nanostructures
Agundez, R. R.
2015-01-01
In this thesis we study quantum transport in several one-dimensional systems with strong electronic interactions. The first chapter contains an introduction to the concepts treated throughout this thesis, such as the Aharonov-Bohm effect, the Kondo effect, the Fano effect and quantum state transfer.
Bloch oscillations in an aperiodic one-dimensional potential
de Moura, FABF; Lyra, ML; Dominguez-Adame, F; Malyshev, V.A.
2005-01-01
We study the dynamics of an electron subjected to a static uniform electric field within a one-dimensional tight-binding model with a slowly varying aperiodic potential. The unbiased model is known to support phases of localized and extended one-electron states separated by two mobility edges. We sh
Lie symmetry algebra of one-dimensional nonconservative dynamical systems
Institute of Scientific and Technical Information of China (English)
Liu Cui-Mei; Wu Run-Heng; Fu Jing-Li
2007-01-01
Lie symmetry algebra of linear nonconservative dynamical systems is studied in this paper. By using 1-1 mapping,the Lie point and Lie contact symmetry algebras are obtained from two independent solutions of the one-dimensional linear equations of motion.
Intertwining technique for the one-dimensional stationary Dirac equation
Nieto, L M; Samsonov, B F; Samsonov, Boris F.
2003-01-01
The technique of differential intertwining operators (or Darboux transformation operators) is systematically applied to the one-dimensional Dirac equation. The following aspects are investigated: factorization of a polynomial of Dirac Hamiltonians, quadratic supersymmetry, closed extension of transformation operators, chains of transformations, and finally particular cases of pseudoscalar and scalar potentials. The method is widely illustrated by numerous examples.
One Dimensional Quasi-Exactly Solvable Differential Equations
Fasihi, Mohammad A.
2006-01-01
In this paper by means of similarity transformation we find some one-dimensional quasi-exactly solvable differential equations and their related Hamiltonians which appear in physical problems. We have provided also two examples with application of these differential equations.
Quantum dynamics of one-dimensional nanocrystalline solids
Ding Jian Wen; Cao Jue Xian; Wang Deng Long
2002-01-01
A novel ballistic-non-ballistic dynamic transition in one-dimensional nanocrystalline solids is found upon varying the strength of the composition modulation and the grain-boundary effect. This can contribute to the understanding of the strange electronic transport properties of nano-structured systems
Exact results for one dimensional fluids through functional integration
Fantoni, Riccardo
2016-01-01
We review some of the exactly solvable one dimensional continuum fluid models of equilibrium classical statistical mechanics under the unified setting of functional integration in one dimension. We make some further developments and remarks concerning fluids with penetrable particles. We then apply our developments to the study of the Gaussian core model for which we are unable to find a well defined thermodynamics.
Bosonization of One-Dimensional Exclusons and Characterization of Luttinger Liquids
Wu, Yong-Shi; Yu, Yue
1995-01-01
We achieve a bosonization of one-dimensional ideal gas of exclusion statistics $\\lambda$ at low temperatures, resulting in a new variant of $c=1$ conformal field theory with compactified radius $R=\\sqrt{1/\\lambda}$. These ideal excluson gases exactly reproduce the low-$T$ critical properties of Luttinger liquids, so they can be used to characterize the fixed points of the latter. Generalized ideal gases with mutual statistics and non-ideal gases with Luttinger-type interactions have also simi...
Ivanov, M V; Barbaro, M B; Giusti, C; Meucci, A; Caballero, J A; Gonzalez-Jimenez, R; de Guerra, E Moya; Udias, J M
2015-01-01
Neutral current quasielastic (anti)neutrino scattering cross sections on a $^{12}$C target are analyzed using a realistic spectral function $S(p,E)$ that gives a scaling function in accordance with the ($e,e'$) scattering data. The spectral function accounts for the nucleon-nucleon (NN) correlations by using natural orbitals (NOs) from the Jastrow correlation method and has a realistic energy dependence. The standard value of the axial mass $M_A= 1.032$ GeV is used in all calculations. The role of the final-state interaction (FSI) on the spectral and scaling functions, as well as on the cross sections is accounted for. A comparison of the calculations with the empirical data of the MiniBooNE and BNL experiments is performed. Our results are analyzed in comparison with those when NN correlations are not included, and also with results from other theoretical approaches, such as the relativistic Fermi gas (RFG), the relativistic mean field (RMF), the relativistic Green's function (RGF), as well as with the Super...
Energy Technology Data Exchange (ETDEWEB)
Ebrahimian, N., E-mail: n.ebrahimian@aut.ac.ir [Physics Department, Amirkabir University of Technology, Tehran 15914 (Iran, Islamic Republic of); Mehrafarin, M., E-mail: mehrafar@aut.ac.ir [Physics Department, Amirkabir University of Technology, Tehran 15914 (Iran, Islamic Republic of); Afzali, R., E-mail: afzali@kntu.ac.ir [Physics Department, K.N. Toosi University of Technology, Tehran 15418 (Iran, Islamic Republic of)
2012-01-01
Using perturbed Bogoliubov equations, we study the linear response to a weak orbital magnetic field of the heat conductivity of the normal-superfluid interface of a polarized Fermi gas at sufficiently low temperature. We consider the various scattering regions of the BCS regime and analytically obtain the transmission coefficients and the heat conductivity across the interface in an arbitrary weak orbital field. For a definite choice of the field, we consider various values of the scattering length in the BCS range and numerically obtain the allowed values of the average and species-imbalance chemical potentials. Thus, taking Andreev reflection into account, we describe how the heat conductivity is affected by the field and the species imbalance. In particular, we show that the additional heat conductivity due to the orbital field increases with the species imbalance, which is more noticeable at higher temperatures. Our results indicate how the heat conductivity may be controlled, which is relevant to sensitive magnetic field sensors/regulators at the interface.
Zero-order crystallization in the Bethe-Fermi homework and electron gas problems
Cambiaggio, M. C.; De Llano, M.; Plastino, A.; Szybisz, L.; Ramírez, S.
1980-04-01
Single-determinantal states consisting of localized, non-overlapping single-particle orbitals are used in comparison with those made up of plane wave ones to show that neutron matter prefers a "crystalline" configuration beyond a density of around 0.07 fm -3 for the ν0 homework potential. The total energy is not too high above the best Jastrow-correlated calculations. No such effect is found for the ν1 homework potential. The analogous question for the electron gas is also studied.
Simple Two-Dimensional Corrections for One-Dimensional Pulse Tube Models
Lee, J. M.; Kittel, P.; Timmerhaus, K. D.; Radebaugh, R.
2004-01-01
One-dimensional oscillating flow models are very useful for designing pulse tubes. They are simple to use, not computationally intensive, and the physical relationship between temperature, pressure and mass flow are easy to understand when used in conjunction with phasor diagrams. They do not possess, however, the ability to directly calculate thermal and momentum diffusion in the direction transverse to the oscillating flow. To account for transverse effects, lumped parameter corrections, which are obtained though experiment, must be used. Or two-dimensional solutions of the differential fluid equations must be obtained. A linear two-dimensional solution to the fluid equations has been obtained. The solution provides lumped parameter corrections for one-dimensional models. The model accounts for heat transfer and shear flow between the gas and the tube. The complex Nusselt number and complex shear wall are useful in describing these corrections, with phase relations and amplitudes scaled with the Prandtl and Valensi numbers. The calculated ratio, a, between a two-dimensional solution of the oscillating temperature and velocity and a one-dimensional solution for the same shows a scales linearly with Va for Va less than 30. In this region alpha less than 0.5, that is, the enthalpy flow calculated with a two-dimensional model is 50% of a calculation using a one-dimensional model. For Va greater than 250, alpha = 0.8, showing that diffusion is still important even when it is confined to a thing layer near the tube wall.
Fermionization of two-component few-fermion systems in a one-dimensional harmonic trap
DEFF Research Database (Denmark)
J. Lindgren, E.; Rotureau, J.; Forssén, C.
2014-01-01
The nature of strongly interacting Fermi gases and magnetism is one of the most important and studied topics in condensed-matter physics. Still, there are many open questions. A central issue is under what circumstances strong short-range repulsive interactions are enough to drive magnetic...... correlations. Recent progress in the field of cold atomic gases allows to address this question in very clean systems where both particle numbers, interactions and dimensionality can be tuned. Here we study fermionic few-body systems in a one dimensional harmonic trap using a new rapidly converging effective......-interaction technique, plus a novel analytical approach. This allows us to calculate the properties of a single spin-down atom interacting with a number of spin-up particles, a case of much recent experimental interest. Our findings indicate that, in the strongly interacting limit, spin-up and spin-down particles want...
Bi(114): A quasi one-dimensional metal with strong spin-orbit splitting
Energy Technology Data Exchange (ETDEWEB)
Hofmann, Philip; Rienks, Emile; Fuglsang Jensen, Maria [University of Aarhus (Denmark); Wells, Justin [University of Aarhus (Denmark); University of Science and Technology, Trondheim (Norway); Dil, Hugo; Meier, Fabian; Lobo-Checa, Jorge [Universitaet Zuerich-Irchel (Switzerland); Paul Scherrer Institut (Switzerland); Petrov, Vladimir [St. Petersburg Technical University (Russian Federation); Osterwalder, Juerg [Universitaet Zuerich-Irchel (Switzerland); Ugeda, Miguel Moreno; Fernandez-Torrente, Isabel; Pascual, Jose Ignacio [Freie Universitaet Berlin (Germany)
2009-07-01
The (114) vicinal surface of the semimetal Bi is found to support a quasi one-dimensional, metallic surface state. As required by symmetry, the state is degenerate along the anti {gamma}- anti Y line of the surface Brillouin zone with a highest binding energy of {approx}100 meV. In the anti {gamma}- anti X direction the degeneracy is lifted by the strong spin-orbit interaction, as directly shown by spin-resolved photoemission. This results in a Fermi surface consisting of two closely separated, parallel lines of opposite spin direction. We discuss these findings in the light of the recently discovered topological stability of surface states on BiSb topological insulators.
Inotani, Daisuke; Hanai, Ryo; Ohashi, Yoji
2016-10-01
We extend our recent work [Y. Endo et al., Phys. Rev. A 92, 023610 (2015)], 10.1103/PhysRevA.92.023610 for a parity-mixing effect in a model of two-dimensional lattice fermions to a realistic three-dimensional ultracold Fermi gas. Including effects of broken local spatial inversion symmetry by a trap potential within the framework of the real-space Bogoliubov-de Gennes theory at T =0 , we point out that an odd-parity p -wave Cooper-pair amplitude is expected to have already been realized in previous experiments on an (even-parity) s -wave superfluid Fermi gas with spin imbalance. This indicates that when one suddenly changes the s -wave pairing interaction to an appropriate p -wave one by using a Feshbach technique in this case, a nonvanishing p -wave superfluid order parameter is immediately obtained, which is given by the product of the p -wave interaction and the p -wave pair amplitude that has already been induced in the spin-imbalanced s -wave superfluid Fermi gas. Thus, by definition, the system is in the p -wave superfluid state, at least just after this manipulation. Since the achievement of a p -wave superfluid state is one of the most exciting challenges in cold Fermi gas physics, our results may provide an alternative approach to this unconventional pairing state. In addition, since the parity-mixing effect cannot be explained as far as one deals with a trap potential in the local density approximation (LDA), it is considered as a crucial example which requires us to go beyond the LDA.
Ivanov, M V; Caballero, J A; Antonov, A N; de Guerra, E Moya; Gaidarov, M K
2008-01-01
The superscaling analysis using the scaling function obtained within the coherent density fluctuation model is extended to calculate charge-changing neutrino and antineutrino scattering on $^{12}$C at energies from 1 to 2 GeV not only in the quasielastic but also in the delta excitation region. The results are compared with those obtained using the scaling functions from the relativistic Fermi gas model and from the superscaling analysis of inclusive scattering of electrons from nuclei.
Hamdouni, Yamen
2011-01-01
The object of this paper is to investigate, classically and quantum mechanically, the relation existing between the position-dependent mass and damping-antidamping dynamics. The quantization of the equations of motion is carried out using the geometric interpretation of the motion. Furthermore, we apply the obtained results to a Fermi gas of damped-antidamped particles, and we solve the Schr\\"odinger equation in the presence of the Morse potential.
Sur, Shouvik; Lee, Sung-Sik
2016-11-01
We study non-Fermi-liquid states that arise at the quantum critical points associated with the spin density wave (SDW) and charge density wave (CDW) transitions in metals with twofold rotational symmetry. We use the dimensional regularization scheme, where a one-dimensional Fermi surface is embedded in (3 -ɛ ) -dimensional momentum space. In three dimensions, quasilocal marginal Fermi liquids arise both at the SDW and CDW critical points: the speed of the collective mode along the ordering wave vector is logarithmically renormalized to zero compared to that of Fermi velocity. Below three dimensions, however, the SDW and CDW critical points exhibit drastically different behaviors. At the SDW critical point, a stable anisotropic non-Fermi-liquid state is realized for small ɛ , where not only time but also different spatial coordinates develop distinct anomalous dimensions. The non-Fermi liquid exhibits an emergent algebraic nesting as the patches of Fermi surface are deformed into a universal power-law shape near the hot spots. Due to the anisotropic scaling, the energy of incoherent spin fluctuations disperse with different power laws in different momentum directions. At the CDW critical point, on the other hand, the perturbative expansion breaks down immediately below three dimensions as the interaction renormalizes the speed of charge fluctuations to zero within a finite renormalization group scale through a two-loop effect. The difference originates from the fact that the vertex correction antiscreens the coupling at the SDW critical point whereas it screens at the CDW critical point.
Direct Current Hopping Conductivity in One-Dimensional Nanometre Systems
Institute of Scientific and Technical Information of China (English)
宋祎璞; 徐慧; 罗峰
2003-01-01
A one-dimensional random nanocrystalline chain model is established. A dc electron-phonon-field conductance model of electron tunnelling transfer is set up, and a new dc conductance formula in one-dimensional nanometre systems is derived. By calculating the dc conductivity, the relationship among the electric field, temperature and conductivity is analysed, and the effect of the crystalline grain size and the distortion of interfacial atoms on the dc conductance is discussed. The result shows that the nanometre system appears the characteristic of negative differential dependence of resistance and temperature at low temperature. The dc conductivity of nanometre systems varies with the change of electric field and trends to rise as the crystalline grain size increases and to decrease as the distorted degree of interfacial atoms increases.
True Bilayer Exciton Condensate of One-Dimensional Electrons
Kantian, A.; Abergel, D. S. L.
2017-07-01
We theoretically predict that a true bilayer exciton condensate, characterized by off-diagonal long-range order and global phase coherence, can be created in one-dimensional solid state electron systems. The mechanism by which this happens is to introduce a single particle hybridization of electron and hole populations, which locks the phase of the relevant mode and hence invalidates the Mermin-Wagner theorem. Electron-hole interactions then amplify this tendency towards off-diagonal long-range order, enhancing the condensate properties by more than an order of magnitude over the noninteracting limit. We show that the temperatures below which a substantial condensate fraction would form could reach hundreds of Kelvin, a benefit of the weak screening in one-dimensional systems.
Fate of classical solitons in one-dimensional quantum systems.
Energy Technology Data Exchange (ETDEWEB)
Pustilnik, M.; Matveev, K. A.
2015-11-23
We study one-dimensional quantum systems near the classical limit described by the Korteweg-de Vries (KdV) equation. The excitations near this limit are the well-known solitons and phonons. The classical description breaks down at long wavelengths, where quantum effects become dominant. Focusing on the spectra of the elementary excitations, we describe analytically the entire classical-to-quantum crossover. We show that the ultimate quantum fate of the classical KdV excitations is to become fermionic quasiparticles and quasiholes. We discuss in detail two exactly solvable models exhibiting such crossover, the Lieb-Liniger model of bosons with weak contact repulsion and the quantum Toda model, and argue that the results obtained for these models are universally applicable to all quantum one-dimensional systems with a well-defined classical limit described by the KdV equation.
Resonance Raman spectroscopy in one-dimensional carbon materials
Directory of Open Access Journals (Sweden)
Dresselhaus Mildred S.
2006-01-01
Full Text Available Brazil has played an important role in the development and use of resonance Raman spectroscopy as a powerful characterization tool for materials science. Here we present a short history of Raman scattering research in Brazil, highlighting the important contributions to the field coming from Brazilian researchers in the past. Next we discuss recent and important contributions where Brazil has become a worldwide leader, that is on the physics of quasi-one dimensional carbon nanotubes. We conclude this article by presenting results from a very recent resonance Raman study of exciting new materials, that are strictly one-dimensional carbon chains formed by the heat treatment of very pure double-wall carbon nanotube samples.
One-dimensional XY model: Ergodic properties and hydrodynamic limit
Shuhov, A. G.; Suhov, Yu. M.
1986-11-01
We prove theorems on convergence to a stationary state in the course of time for the one-dimensional XY model and its generalizations. The key point is the well-known Jordan-Wigner transformation, which maps the XY dynamics onto a group of Bogoliubov transformations on the CAR C *-algebra over Z 1. The role of stationary states for Bogoliubov transformations is played by quasifree states and for the XY model by their inverse images with respect to the Jordan-Wigner transformation. The hydrodynamic limit for the one-dimensional XY model is also considered. By using the Jordan-Wigner transformation one reduces the problem to that of constructing the hydrodynamic limit for the group of Bogoliubov transformations. As a result, we obtain an independent motion of "normal modes," which is described by a hyperbolic linear differential equation of second order. For the XX model this equation reduces to a first-order transfer equation.
One-dimensional Si nanolines in hydrogenated Si(001)
François, Bianco; Köster, Sigrun A.; Owen, James G. H.; Renner, Christoph; Bowler, David R.
2012-02-01
We present a detailed study of the structural and electronic properties of a self-assembled silicon nanoline embedded in the H-terminated silicon (001) surface, known as the Haiku stripe. The nanoline is a perfectly straight and defect free endotaxial structure of huge aspect ratio; it can grow micrometre long at a constant width of exactly four Si dimers (1.54 nm). Another remarkable property is its capacity to be exposed to air without suffering any degradation. The nanoline grows independently of any step edges at tunable densities, from isolated nanolines to a dense array of nanolines. In addition to these unique structural characteristics, scanning tunnelling microscopy and density functional theory reveal a one-dimensional state confined along the Haiku core. This nanoline is a promising candidate for the long sought after electronic solid-state one-dimensional model system to explore the fascinating quantum properties emerging in such reduced dimensionality. Phys. Rev. B, 84, 035328 (2011)
Luttinger parameter of quasi-one-dimensional para -H2
Ferré, G.; Gordillo, M. C.; Boronat, J.
2017-02-01
We have studied the ground-state properties of para-hydrogen in one dimension and in quasi-one-dimensional configurations using the path-integral ground-state Monte Carlo method. This method produces zero-temperature exact results for a given interaction and geometry. The quasi-one-dimensional setup has been implemented in two forms: the inner channel inside a carbon nanotube coated with H2 and a harmonic confinement of variable strength. Our main result is the dependence of the Luttinger parameter on the density within the stable regime. Going from one dimension to quasi-one dimension, keeping the linear density constant, produces a systematic increase of the Luttinger parameter. This increase is, however, not enough to reach the superfluid regime and the system always remain in the quasicrystal regime, according to Luttinger liquid theory.
Kinetic properties of small one-dimensional Ising magnetic
Udodov, Vladimir; Spirin, Dmitriy; Katanov Khakas State University Team
2011-03-01
Within the framework of a generalized Ising model, a one-dimensional magnetic of a finite length with free ends is considered. The correlation length critical exponent ν and kinetic critical exponent z of the magnet is calculated taking into account the next nearest neighbor interactions and the external field. Of special interest are non-equilibrium processes taking place within the critical temperature interval, which are characterized critical exponent y and dynamic critical index z . Due to significant difficulties encountered in the experimental investigations (e.g., measurement of z) , a natural solution to this complex problem would be modeling of those non-eqilibrium processes. This work addresses non-equilibrium processes in one-dimensional magnetics. Using the Monte Carlo method, an equilibrium critical exponent of the correlation length ν and the dynamic critical index z are calculated for a finite-size magnetic.
Dark Matter in a One-dimensional Universe
Sigismondi, C
2003-01-01
A computer code to simulate temporal evolution of overdensities in a one-dimensional Universe is presented for didactic purposes. The formation of large scale structures in this one-dimensional universe can be studied both in matter or radiation dominated eras. Since large scale structures are already observed at z > 7, primordial dark matter overdensities delta_DM which are 90 times larger than the observed barionic delta_B in the cosmic microwave background are required at z~1000. This makes possible non-linear gravitational collapse at redshift z >7 and the formation of the structures. Primordial perturbations delta_B~10^-5 do not leave the linear regime of growth without the aid of dark matter's potential wells. This code is suitable for commercial worksheets like MSExcel, StarOffice, or OpenOffice.
The Quantum Well of One-Dimensional Photonic Crystals
Directory of Open Access Journals (Sweden)
Xiao-Jing Liu
2015-01-01
Full Text Available We have studied the transmissivity of one-dimensional photonic crystals quantum well (QW with quantum theory approach. By calculation, we find that there are photon bound states in the QW structure (BA6(BBABBn(AB6, and the numbers of the bound states are equal to n+1. We have found that there are some new features in the QW, which can be used to design optic amplifier, attenuator, and optic filter of multiple channel.
Nonequilibrium statistical mechanics in one-dimensional bose gases
Baldovin, F.; Cappellaro, A.; Orlandini, E.; Salasnich, L.
2016-06-01
We study cold dilute gases made of bosonic atoms, showing that in the mean-field one-dimensional regime they support stable out-of-equilibrium states. Starting from the 3D Boltzmann-Vlasov equation with contact interaction, we derive an effective 1D Landau-Vlasov equation under the condition of a strong transverse harmonic confinement. We investigate the existence of out-of-equilibrium states, obtaining stability criteria similar to those of classical plasmas.
ONE-DIMENSIONAL AND TWO-DIMENSIONAL LEADERSHIP STYLES
Nikola Stefanović
2007-01-01
In order to motivate their group members to perform certain tasks, leaders use different leadership styles. These styles are based on leaders' backgrounds, knowledge, values, experiences, and expectations. The one-dimensional styles, used by many world leaders, are autocratic and democratic styles. These styles lie on the two opposite sides of the leadership spectrum. In order to precisely define the leadership styles on the spectrum between the autocratic leadership style and the democratic ...
Butz, Susanne
2014-01-01
This thesis presents a novel approach to the experimental realization of tunable, superconducting metamaterials. Therefore, conventional resonant meta-atoms are replaced by meta-atoms that contain Josephson junctions, which renders their resonance frequency tunable by an external magnetic field. This tunability is theoretically and experimentally investigated in one-dimensional magnetic and electric metamaterials. For the magnetic metamaterial, the effective, magnetic permeability is determined.
Few interacting fermions in one-dimensional harmonic trap
Sowiński, Tomasz; Dutta, Omjyoti; Lewenstein, Maciej
2013-01-01
We study spin-1/2 fermions, interacting via a two-body contact potential, in a one-dimensional harmonic trap. Applying exact diagonalization, we investigate the behavior at finite interaction strength, and discuss the role of a ground state degeneracy which occurs for sufficiently strong repulsive interaction. Even low temperature or a completely depolarizing channel may then dramatically influence the system's behavior. We calculate level occupation numbers as signatures of thermalization, and we discuss the mechanisms to break the degeneracy.
Hidden Symmetry from Supersymmetry in One-Dimensional Quantum Mechanics
Directory of Open Access Journals (Sweden)
Alexander A. Andrianov
2009-06-01
Full Text Available When several inequivalent supercharges form a closed superalgebra in Quantum Mechanics it entails the appearance of hidden symmetries of a Super-Hamiltonian. We examine this problem in one-dimensional QM for the case of periodic potentials and potentials with finite number of bound states. After the survey of the results existing in the subject the algebraic and analytic properties of hidden-symmetry differential operators are rigorously elaborated in the Theorems and illuminated by several examples.
Thermal breakage of a discrete one-dimensional string.
Lee, Chiu Fan
2009-09-01
We study the thermal breakage of a discrete one-dimensional string, with open and fixed ends, in the heavily damped regime. Basing our analysis on the multidimensional Kramers escape theory, we are able to make analytical predictions on the mean breakage rate and on the breakage propensity with respect to the breakage location on the string. We then support our predictions with numerical simulations.
PT-invariant one-dimensional Coulomb problem
Sinha, A K; Sinha, Anjana; Roychoudhury, Rajkumar
2002-01-01
The one-dimensional Coulomb-like potential with a real coupling constant beta, and a centrifugal-like core of strength G = alpha^2 - {1/4}, viz. V(x) = {alpha^2 - (1/4)}/{(x-ic)^2} + beta/|x-ic|, is discussed in the framework of PT-symmetry. The PT-invariant exactly solvable model so formed, is found to admit a double set of real and discrete energies, numbered by a quasi-parity q = +/- 1.
Impurity modes in the one-dimensional XXZ Heisenberg model
Energy Technology Data Exchange (ETDEWEB)
Sousa, J.M. [Departamento de Física, Universidade Federal do Piauí, Campus Ministro Petrônio Portella, 57072-970 Teresina, Piauí (Brazil); Leite, R.V. [Centro de Ciências Exatas e Tecnologia, Curso de Física, Universidade Estadual Vale do Acaraú, Av. Dr. Guarany 317, Campus Cidao, 62040-730 Sobral, Ceará (Brazil); Landim, R.R. [Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, Campus do Pici, 60455-760 Fortaleza, Ceará (Brazil); Costa Filho, R.N., E-mail: rai@fisica.ufc.br [Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, Campus do Pici, 60455-760 Fortaleza, Ceará (Brazil)
2014-04-01
A Green's function formalism is used to calculate the energy of impurity modes associated with one and/or two magnetic impurities in the one-dimensional Heisenberg XXZ magnetic chain. The system can be tuned from the Heisenberg to the Ising model varying a parameter λ. A numerical study is performed showing two types of localized modes (s and p). The modes depend on λ and the degeneracy of the acoustic modes is broken.
One Dimensional Polymeric Organic Photonic Crystals for DFB Lasers
Directory of Open Access Journals (Sweden)
F. Scotognella
2008-01-01
Full Text Available We present a very simple method to realize a one-dimensional photonic crystal (1D PC, consisting of a dye-doped polymeric multilayer. Due to the high photonic density of states at the edges of the photonic band-gap (PBG, a surface emitting distributed feedback (DFB laser is obtained with this structure. Furthermore, the incidence angle dependence of the PBG of the polymeric multilayer is reported.
PERIODIC SOLUTIONS IN ONE-DIMENSIONAL COUPLED MAP LATTICES
Institute of Scientific and Technical Information of China (English)
郑永爱; 刘曾荣
2003-01-01
It is proven that the existence of nonlinear solutions with time period in one-dimensional coupled map lattice with nearest neighbor coupling. This is a class of systemswhose behavior can be regarded as infinite array of coupled oscillators. A method forestimating the critical coupling strength below which these solutions with time period persistis given. For some particular nonlinear solutions with time period, exponential decay inspace is proved.
One-dimensional photonic crystals bound by light
Cui, Liyong; Li, Xiao; Chen, Jun; Cao, Yongyin; Du, Guiqiang; Ng, Jack
2017-08-01
Through rigorous simulations, the light scattering induced optical binding of one-dimensional (1D) dielectric photonic crystals is studied. The optical forces corresponding to the pass band, band gap, and band edge are qualitatively different. It is shown that light can induce self-organization of dielectric slabs into stable photonic crystals, with its lower band edge coinciding with the incident light frequency. Incident light at normal and oblique incidence and photonic crystals with parity-time symmetry are also considered.
One-dimensional contact process: duality and renormalization.
Hooyberghs, J; Vanderzande, C
2001-04-01
We study the one-dimensional contact process in its quantum version using a recently proposed real-space renormalization technique for stochastic many-particle systems. Exploiting the duality and other properties of the model, we can apply the method for cells with up to 37 sites. After suitable extrapolation, we obtain exponent estimates that are comparable in accuracy with the best known in the literature.
Fast Integration of One-Dimensional Boundary Value Problems
Campos, Rafael G.; Ruiz, Rafael García
2013-11-01
Two-point nonlinear boundary value problems (BVPs) in both unbounded and bounded domains are solved in this paper using fast numerical antiderivatives and derivatives of functions of L2(-∞, ∞). This differintegral scheme uses a new algorithm to compute the Fourier transform. As examples we solve a fourth-order two-point boundary value problem (BVP) and compute the shape of the soliton solutions of a one-dimensional generalized Korteweg-de Vries (KdV) equation.
The one-dimensional extended Bose-Hubbard model
Indian Academy of Sciences (India)
Ramesh V Pai; Rahul Pandit
2003-10-01
We use the finite-size, density-matrix-renormalization-group (DMRG) method to obtain the zero-temperature phase diagram of the one-dimensional, extended Bose-Hubbard model, for mean boson density ρ = 1, in the - plane ( and are respectively, onsite and nearest-neighbour repulsive interactions between bosons). The phase diagram includes superfluid (SF), bosonic-Mott-insulator (MI), and mass-density-wave (MDW) phases. We determine the natures of the quantum phase transitions between these phases.
Statistics of resonances in one-dimensional continuous systems
Indian Academy of Sciences (India)
Joshua Feinberg
2009-09-01
We study the average density of resonances (DOR) of a disordered one-dimensional continuous open system. The disordered system is semi-infinite, with white-noise random potential, and it is coupled to the external world by a semi-infinite continuous perfect lead. Our main result is an integral representation for the DOR which involves the probability density function of the logarithmic derivative of the wave function at the contact point.
Negative Refraction Angular Characterization in One-Dimensional Photonic Crystals
Jesus Eduardo Lugo; Rafael Doti; Jocelyn Faubert
2011-01-01
BACKGROUND: Photonic crystals are artificial structures that have periodic dielectric components with different refractive indices. Under certain conditions, they abnormally refract the light, a phenomenon called negative refraction. Here we experimentally characterize negative refraction in a one dimensional photonic crystal structure; near the low frequency edge of the fourth photonic bandgap. We compare the experimental results with current theory and a theory based on the group velocity d...
Topological modes in one-dimensional solids and photonic crystals
Atherton, Timothy J.; Butler, Celia A. M.; Taylor, Melita C.; Hooper, Ian R.; Hibbins, Alastair P.; Sambles, J. Roy; Mathur, Harsh
2016-03-01
It is shown theoretically that a one-dimensional crystal with time-reversal and particle-hole symmetries is characterized by a topological invariant that predicts the existence or otherwise of edge states. This is confirmed experimentally through the construction and simulation of a photonic crystal analog in the microwave regime. It is shown that the edge mode couples to modes external to the photonic crystal via a Fano resonance.
One-dimensional photonic band gaps in optical lattices
Samoylova, Marina; Holynski, Michael; Courteille, Philippe Wilhelm; Bachelard, Romain
2013-01-01
The phenomenon of photonic band gaps in one-dimensional optical lattices is reviewed using a microscopic approach. Formally equivalent to the transfer matrix approach in the thermodynamic limit, a microscopic model is required to study finite-size effects, such as deviations from the Bragg condition. Microscopic models describing both scalar and vectorial light are proposed, as well as for two- and three-level atoms. Several analytical results are compared to experimental data, showing a good agreement.
Conserving approximations for response functions of the Fermi gas in a random potential
Janiš, Václav; Kolorenč, Jindřich
2016-07-01
One- and two-electron Green functions are simultaneously needed to determine the response functions of the electron gas in a random potential. Reliable approximations must retain consistency between the two types of Green functions expressed via Ward identities so that their output is compliant with macroscopic symmetries and conservation laws. Such a consistency is not directly guaranteed when summing nonlocal corrections to the local (dynamical) mean field. We analyze the reasons for this failure and show how the full Ward identity can generically be implemented in the diagrammatic approach to the vertex functions without breaking the analytic properties of the self-energy. We use the low-energy asymptotics of the conserving two-particle vertex determining the singular part of response and correlation functions to derive an exact representation of the diffusion constant in terms of Green functions of the perturbation theory. We then calculate explicitly the leading vertex corrections to the mean-field diffusion constant due to maximally-crossed diagrams.
Analysis of necking based on a one-dimensional model
Audoly, Basile; Hutchinson, John W.
2016-12-01
Dimensional reduction is applied to derive a one-dimensional energy functional governing tensile necking localization in a family of initially uniform prismatic solids, including as particular cases rectilinear blocks in plane strain and cylindrical bars undergoing axisymmetric deformations. The energy functional depends on both the axial stretch and its gradient. The coefficient of the gradient term is derived in an exact and general form. The one-dimensional model is used to analyze necking localization for nonlinear elastic materials that experience a maximum load under tensile loading, and for a class of nonlinear materials that mimic elastic-plastic materials by displaying a linear incremental response when stretch switches from increasing to decreasing. Bifurcation predictions for the onset of necking from the simplified theory compared with exact results suggest the approach is highly accurate at least when the departures from uniformity are not too large. Post-bifurcation behavior is analyzed to the point where the neck is fully developed and localized to a region on the order of the thickness of the block or bar. Applications to the nonlinear elastic and elastic-plastic materials reveal the highly unstable nature of necking for the former and the stable behavior for the latter, except for geometries where the length of the block or bar is very large compared to its thickness. A formula for the effective stress reduction at the center of a neck is established based on the one-dimensional model, which is similar to that suggested by Bridgman (1952).
Gravitational anomalies and one-dimensional behavior of black holes
Energy Technology Data Exchange (ETDEWEB)
Majhi, Bibhas Ranjan, E-mail: bibhas.majhi@iitg.ernet.in [Department of Physics, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam (India)
2015-12-08
It has been pointed out by Bekenstein and Mayo that the behavior of the black hole’s entropy or information flow is similar to information flow through one-dimensional channel. Here I analyze the same issue with the use of gravitational anomalies. The rate of the entropy change (S{sup .}) and the power (P) of the Hawking emission are calculated from the relevant components of the anomalous stress tensor under the Unruh vacuum condition. I show that the dependence of S{sup .} on the power is S{sup .} ∝P{sup 1/2}, which is identical to that for the information flow in a one-dimensional system. This is established by using the (1+1)-dimensional gravitational anomalies first. Then the fact is further bolstered by considering the (1+3)-dimensional gravitational anomalies. It is found that, in the former case, the proportionality constant is exactly identical to the one-dimensional situation, known as Pendry’s formula, while in the latter situation its value decreases.
Gravitational anomalies and one-dimensional behavior of black holes
Energy Technology Data Exchange (ETDEWEB)
Majhi, Bibhas Ranjan [Indian Institute of Technology Guwahati, Department of Physics, Guwahati, Assam (India)
2015-12-15
It has been pointed out by Bekenstein and Mayo that the behavior of the black hole's entropy or information flow is similar to information flow through one-dimensional channel. Here I analyze the same issue with the use of gravitational anomalies. The rate of the entropy change (S) and the power (P) of the Hawking emission are calculated from the relevant components of the anomalous stress tensor under the Unruh vacuum condition. I show that the dependence of S on the power is S ∝ P{sup 1/2}, which is identical to that for the information flow in a one-dimensional system. This is established by using the (1+1)-dimensional gravitational anomalies first. Then the fact is further bolstered by considering the (1+3)-dimensional gravitational anomalies. It is found that, in the former case, the proportionality constant is exactly identical to the one-dimensional situation, known as Pendry's formula, while in the latter situation its value decreases. (orig.)
Gravitational anomalies and one dimensional behaviour of black holes
Majhi, Bibhas Ranjan
2015-01-01
It has been pointed out by Bekenstein and Mayo that the behavior of the Black hole's entropy or information flow is similar to that through one-dimensional channel. Here I analyse the same issue with the use of gravitational anomalies. The rate of the entropy change ($\\dot{S}$) and the power ($P$) of the Hawking emission are calculated from the relevant components of the anomalous stress-tensor under the Unruh vacuum condition. I show that the dependence of $\\dot{S}$ on power is $\\dot{S}\\propto P^{1/2}$ which is identical to that for the information flow in one dimensional system. This is established by using the ($1+1$) dimensional gravitational anomalies first. Then the fact is further bolstered by considering the ($1+3$) dimensional gravitational anomalies. It is found that in the former case, the proportionality constant is exactly identical to one dimensional situation, known as Pendry's formula, while in later situation its value decreases.
Quasi-one-dimensional scattering in a discrete model
Energy Technology Data Exchange (ETDEWEB)
Valiente, Manuel; Moelmer, Klaus [Lundbeck Foundation Theoretical Center for Quantum System Research, Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark)
2011-11-15
We study quasi-one-dimensional scattering of one and two particles with short-range interactions on a discrete lattice model in two dimensions. One of the directions is tightly confined by an arbitrary trapping potential. We obtain the collisional properties of these systems both at finite and zero Bloch quasimomenta, considering as well finite sizes and transversal traps that support a continuum of states. This is made straightforward by using the exact ansatz for the quasi-one-dimensional states from the beginning. In the more interesting case of genuine two-particle scattering, we find that more than one confinement-induced resonances appear due to the nonseparability of the center-of-mass and relative coordinates on the lattice. This is done by solving its corresponding Lippmann-Schwinger-like equation. We characterize the effective one-dimensional interaction and compare it with a model that includes only the effect of the dominant, broadest resonance, which amounts to a single-pole approximation for the interaction coupling constant.
Experimental research on mercury emission from one-dimensional combustion test facility
Institute of Scientific and Technical Information of China (English)
WANG Quan-hai(王泉海); QIU Jian-rong(邱建荣); LIU Jing(刘晶); ZHANG Jun-ying(张军营)
2004-01-01
The research of mercury release from coal combustion and mercury speciation in flue gas was conducted in a one-dimensional combustion test facility. The experimental results indicated that combustion temperature was the primary factor in affecting mercury vaporization and release. Experimental measurements showed high mercury levels in the particulate phase. Hg(S) is enriched in fly ash and dispersed in bottom ash. Hg(B) content decreases and the Hg(F) content increases with higher furnace temperature. At 1 100℃, the levels of Hg2+(g) are 17%~48% for limited chemical kinetics .The mercury equilibrium in the flue-gas is frozen below some temperature.
U(1) chiral symmetry in a one-dimensional interacting electron system with spin
Lee, Taejin
2016-11-01
We study a spin-dependent Tomonaga-Luttinger model in one dimension, which describes electron transport through a single barrier. Using the Fermi-Bose equivalence in one dimension, we map the model onto a massless Thirring model with a boundary interaction. A field theoretical perturbation theory for the model has been developed, and the chiral symmetry is found to play an important role. The classical bulk action possesses a global U A (1)4 chiral symmetry because the fermion fields are massless. This global chiral symmetry is broken by the boundary interaction, and the bosonic degrees of freedom, corresponding to a chiral phase transformation, become dynamical. They acquire an additional kinetic action from the fermion path-integral measure and govern the critical behaviors of the physical operators. On the critical line where the boundary interaction becomes marginal, they decouple from the fermi fields. Consequently, the action reduces to the free-field action, which contains only a fermion bilinear boundary mass term as an interaction term. By using a renormalization group analysis, we obtain a new critical line, which differs from the previously known critical lines in the literature. The result of this work implies that the phase diagram of the one-dimensional electron system may have a richer structure than previously thought.
Institute of Scientific and Technical Information of China (English)
封锋; 陈军; 郑亚; 宋洪昌
2009-01-01
Based on the model of one-dimensional steady-state reaction gas flow, the correction factors of burning rate related to double base propellant, modified double base propellant and composite solid propellant were summed up, the application scope of theoretical combustion model was broadened. Using Visual C++ and Microsoft Access for the development tools, the software of solid propellant burning rate prediction(SPRS) was completed by the structural parameters of chemical bonds. The software was based on system of Windows XP, user-friendly, easy to use ,and with the functions of data updating and information querying. The burning rates and pressure indexs could been calculated when the chemical compositions of the propellant (formula) and the pressures were given. The compositions of the propellant(formula) could be adjusted by giving the burning rates and pressure indexs too. It was of great significance in development of cycle-shortening and cost-saving of solid propellant.%在一维气相稳态反应流模型的基础上,总结了适用于双基推进剂、改性双基推进剂、复合固体推进剂燃速预估的修正因子,拓宽了燃烧理论模型的适用范围.采用Visual C++和Microsoft Access为开发工具,完成了基于组分化学键结构参数的固体推进剂燃速预估软件(SPRS)编制.该软件基于Windows XP系统,界面友好,使用方便,具有数据更新和信息查询功能.用户不仅能根据推进剂的化学组成(配方)和给定压强计算燃速、压力指数等参数,还可根据给定的燃速和压力指数等调整推进剂配方组成,对缩短固体推进剂研制周期和节约研制成本具有重要意义.
Institute of Scientific and Technical Information of China (English)
唐力铁; 李艳娜; 赵乐至
2016-01-01
The pressure recovery system is one of the key techniques for the high energy chemical lasers. Total pressure losses affect the key specification of lasers, such as the output ability, the size and weight of laser systems. The total pressure losses for combustion-driven continuous wave DF/HF chemical lasers were proposed according to the theory analysis of one dimensional gas exhausting. The analysis of the main factors of total pressure losses in the gain generator of the laser is the foundation of the research of recovering the gain generator with high pressure. Two major factors of total pressure losses caused by viscous friction and the temperature rise caused by chemical reaction in optical cavity were discussed in this paper. The result shows that temperature rise caused by burning has obvious influence on system's performance of pressure recovery.%压力恢复系统是目前高能化学激光器的关键部件，它的总压损失会影响到整个激光器系统的出光能力和全系统的体积重量等关键技术指标。为了研究燃烧驱动CW DF/HF化学激光器总压损失，从一维气体动力学进行了理论分析。分析在激光器增益发生器内引起总压损失的主要因素，是研究高压力恢复激光器增益发生器的基础。主要讨论了引起总压损失的两个主要原因：第一，由于粘性摩擦引起的总压损失；第二，由于光学谐振腔中化学反应放热升温引起的总压损失。计算结果表明，燃烧升温对系统的压力恢复能力有较大的影响。
A One Dimensional, Time Dependent Inlet/Engine Numerical Simulation for Aircraft Propulsion Systems
Garrard, Doug; Davis, Milt, Jr.; Cole, Gary
1999-01-01
The NASA Lewis Research Center (LeRC) and the Arnold Engineering Development Center (AEDC) have developed a closely coupled computer simulation system that provides a one dimensional, high frequency inlet/engine numerical simulation for aircraft propulsion systems. The simulation system, operating under the LeRC-developed Application Portable Parallel Library (APPL), closely coupled a supersonic inlet with a gas turbine engine. The supersonic inlet was modeled using the Large Perturbation Inlet (LAPIN) computer code, and the gas turbine engine was modeled using the Aerodynamic Turbine Engine Code (ATEC). Both LAPIN and ATEC provide a one dimensional, compressible, time dependent flow solution by solving the one dimensional Euler equations for the conservation of mass, momentum, and energy. Source terms are used to model features such as bleed flows, turbomachinery component characteristics, and inlet subsonic spillage while unstarted. High frequency events, such as compressor surge and inlet unstart, can be simulated with a high degree of fidelity. The simulation system was exercised using a supersonic inlet with sixty percent of the supersonic area contraction occurring internally, and a GE J85-13 turbojet engine.
One-dimensional CdS nanostructures: a promising candidate for optoelectronics.
Li, Huiqiao; Wang, Xi; Xu, Junqi; Zhang, Qi; Bando, Yoshio; Golberg, Dmitri; Ma, Ying; Zhai, Tianyou
2013-06-11
As a promising candidate for optoelectronics, one-dimensional CdS nanostructures have drawn great scientific and technical interest due to their interesting fundamental properties and possibilities of utilization in novel promising optoelectronical devices with augmented performance and functionalities. This progress report highlights a selection of important topics pertinent to optoelectronical applications of one-dimensional CdS nanostructures over the last five years. This article begins with the description of rational design and controlled synthesis of CdS nanostructure arrays, alloyed nanostructucures and kinked nanowire superstructures, and then focuses on the optoelectronical properties, and applications including cathodoluminescence, lasers, light-emitting diodes, waveguides, field emitters, logic circuits, memory devices, photodetectors, gas sensors, photovoltaics and photoelectrochemistry. Finally, the general challenges and the potential future directions of this exciting area of research are highlighted.
Lime Kiln Modeling. CFD and One-dimensional simulations
Energy Technology Data Exchange (ETDEWEB)
Svedin, Kristoffer; Ivarsson, Christofer; Lundborg, Rickard
2009-03-15
The incentives for burning alternative fuels in lime kilns are growing. An increasing demand on thorough investigations of alternative fuel impact on lime kiln performance have been recognized, and the purpose of this project has been to develop a lime kiln CFD model with the possibility to fire fuel oil and lignin. The second part of the project consists of three technical studies. Simulated data from a one-dimensional steady state program has been used to support theories on the impact of biofuels and lime mud dryness. The CFD simulations was carried out in the commercial code FLUENT. Due to difficulties with the convergence of the model the calcination reaction is not included. The model shows essential differences between the two fuels. Lignin gives a different flame shape and a longer flame length compared to fuel oil. Mainly this depends on how the fuel is fed into the combustion chamber and how much combustion air that is added as primary and secondary air. In the case of lignin combustion the required amount of air is more than in the fuel oil case. This generates more combustion gas and a different flow pattern is created. Based on the values from turbulent reaction rate for the different fuels an estimated flame length can be obtained. For fuel oil the combustion is very intense with a sharp peak in the beginning and a rapid decrease. For lignin the combustion starts not as intense as for the fuel oil case and has a smoother shape. The flame length appears to be approximately 2-3 meter longer for lignin than for fuel oil based on turbulent reaction rate in the computational simulations. The first technical study showed that there are many benefits of increasing dry solids content in the lime mud going into a kiln such as increased energy efficiency, reduced TRS, and reduced sodium in the kiln. However, data from operating kilns indicates that these benefits can be offset by increasing exit gas temperature that can limit kiln production capacity. Simulated
Lime Kiln Modeling. CFD and One-dimensional simulations
Energy Technology Data Exchange (ETDEWEB)
Svedin, Kristoffer; Ivarsson, Christofer; Lundborg, Rickard
2009-03-15
The incentives for burning alternative fuels in lime kilns are growing. An increasing demand on thorough investigations of alternative fuel impact on lime kiln performance have been recognized, and the purpose of this project has been to develop a lime kiln CFD model with the possibility to fire fuel oil and lignin. The second part of the project consists of three technical studies. Simulated data from a one-dimensional steady state program has been used to support theories on the impact of biofuels and lime mud dryness. The CFD simulations was carried out in the commercial code FLUENT. Due to difficulties with the convergence of the model the calcination reaction is not included. The model shows essential differences between the two fuels. Lignin gives a different flame shape and a longer flame length compared to fuel oil. Mainly this depends on how the fuel is fed into the combustion chamber and how much combustion air that is added as primary and secondary air. In the case of lignin combustion the required amount of air is more than in the fuel oil case. This generates more combustion gas and a different flow pattern is created. Based on the values from turbulent reaction rate for the different fuels an estimated flame length can be obtained. For fuel oil the combustion is very intense with a sharp peak in the beginning and a rapid decrease. For lignin the combustion starts not as intense as for the fuel oil case and has a smoother shape. The flame length appears to be approximately 2-3 meter longer for lignin than for fuel oil based on turbulent reaction rate in the computational simulations. The first technical study showed that there are many benefits of increasing dry solids content in the lime mud going into a kiln such as increased energy efficiency, reduced TRS, and reduced sodium in the kiln. However, data from operating kilns indicates that these benefits can be offset by increasing exit gas temperature that can limit kiln production capacity. Simulated
One-dimensional Transport Simulation of Pollutants in Natural Streams
Directory of Open Access Journals (Sweden)
Mostafa Ramezani
2016-10-01
Full Text Available Rivers are the main sources of freshwater systems which governments need to manage and plan to maintain them as per an acceptable quality. In this research, a numerical scheme was used and implemented in MATLAB to provide a one-dimensional water quality tool. This code then was tested with two datasets of Chattahoochee and Mackinaw rivers. To evaluate the model performance, results and sampled data were checked in terms of conformity by using three metrics: CE, MARE, and RMSE. Results were almost near to observed data and metrics’ values were found satisfactory, showing that the employed numerical approach is an appropriate method for surface water quality planning and management.
Universality of anomalous one-dimensional heat conductivity
Lepri, Stefano; Livi, Roberto; Politi, Antonio
2003-12-01
In one and two dimensions, transport coefficients may diverge in the thermodynamic limit due to long-time correlation of the corresponding currents. The effective asymptotic behavior is addressed with reference to the problem of heat transport in one-dimensional crystals, modeled by chains of classical nonlinear oscillators. Extensive accurate equilibrium and nonequilibrium numerical simulations confirm that the finite-size thermal conductivity diverges with system size L as κ∝Lα. However, the exponent α deviates systematically from the theoretical prediction α=1/3 proposed in a recent paper [O. Narayan and S. Ramaswamy, Phys. Rev. Lett. 89, 200601 (2002)].
One-dimensional hydrodynamic model generating turbulent cascade
Matsumoto, Takeshi
2016-01-01
As a minimal mathematical model generating cascade analogous to that of the Navier-Stokes turbulence in the inertial range, we propose a one-dimensional partial-differential-equation model that conserves the integral of the squared vorticity analogue (enstrophy) in the inviscid case. With a large-scale forcing and small viscosity, we find numerically that the model exhibits the enstrophy cascade, the broad energy spectrum with a sizable correction to the dimensional-analysis prediction, peculiar intermittency and self-similarity in the dynamical system structure.
On Global One-Dimensionality proposal in Quantum General Relativity
Glinka, L A
2008-01-01
Quantum General Relativity, better known as Quantum Gravity with additional epithets, currently is faraway from phenomenology. This mental crisis leads at most to empty hypotheses, but not to realistic physics. However, there exists the way, investigated by Dirac, which is constructive for experimental data predictions in astrophysics, high energy physics, and condensed matter physics. It is Field Theory. This article presents certain proposal for new discussion. General Relativity in 3+1 metric field gauge and its canonical quantization is developed. Reduction of the quantum geometrodynamics to Global One-Dimensional bosonic field theory, its quantization, and some conclusions are presented.
Exactly integrable analogue of a one-dimensional gravitating system
Energy Technology Data Exchange (ETDEWEB)
Miller, Bruce N. [Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129 (United States)]. E-mail: b.miller@tcu.edu; Yawn, Kenneth R. [Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129 (United States); Maier, Bill [Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129 (United States)
2005-10-10
Exchange symmetry in acceleration partitions the configuration space of an N particle one-dimensional gravitational system (OGS) into N{exclamation_point} equivalent cells. We take advantage of the resulting small angular separation between the forces in neighboring cells to construct a related integrable version of the system that takes the form of a central force problem in N-1 dimensions. The properties of the latter, including the construction of trajectories and possible continuum limits, are developed. Dynamical simulation is employed to compare the two models. For some initial conditions, excellent agreement is observed.
One-dimensional inverse problems of mathematical physics
Lavrent'ev, M M; Yakhno, V G; Schulenberger, J R
1986-01-01
This monograph deals with the inverse problems of determining a variable coefficient and right side for hyperbolic and parabolic equations on the basis of known solutions at fixed points of space for all times. The problems are one-dimensional in nature since the desired coefficient of the equation is a function of only one coordinate, while the desired right side is a function only of time. The authors use methods based on the spectral theory of ordinary differential operators of second order and also methods which make it possible to reduce the investigation of the inverse problems to the in
Solution of One-dimensional Dirac Equation via Poincare Map
Bahlouli, Hocine; Jellal, Ahmed
2011-01-01
We solve the general one-dimensional Dirac equation using a "Poincare Map" approach which avoids any approximation to the spacial derivatives and reduces the problem to a simple recursive relation which is very practical from the numerical implementation point of view. To test the efficiency and rapid convergence of this approach we apply it to a vector coupling Woods--Saxon potential, which is exactly solvable. Comparison with available analytical results is impressive and hence validates the accuracy and efficiency of this method.
Fluctuation dissipation ratio in the one dimensional kinetic Ising model
Lippiello, E.; Zannetti, M.
2000-01-01
The exact relation between the response function $R(t,t^{\\prime})$ and the two time correlation function $C(t,t^{\\prime})$ is derived analytically in the one dimensional kinetic Ising model subjected to a temperature quench. The fluctuation dissipation ratio $X(t,t^{\\prime})$ is found to depend on time through $C(t,t^{\\prime})$ in the time region where scaling $C(t,t^{\\prime}) = f(t/t^{\\prime})$ holds. The crossover from the nontrivial form $X(C(t,t^{\\prime}))$ to $X(t,t^{\\prime}) \\equiv 1$ t...
Enhanced dipolar transport in one-dimensional waveguide arrays
Cantillano, Camilo; Real, Bastián; Rojas-Rojas, Santiago; Delgado, Aldo; Szameit, Alexander; Vicencio, Rodrigo A
2016-01-01
We study the transport properties of fundamental and dipolar (first-excited) modes on one-dimensional coupled waveguide arrays. By modulating an optical beam, we are able to generate fundamental and dipolar modes to study discrete diffraction (single-site excitation) and gaussian beam propagation (multi-site excitation \\& phase gradient). We find that dipolar modes experience a coupling constant more than two times larger than the one for fundamental modes. This implies an enhanced transport of energy for dipoles in a tight-binding lattice. Additionally, we study disordered systems and find that while fundamental modes are already trapped in a weakly disorder array, dipoles still diffract across the lattice.
Impedance of rigid bodies in one-dimensional elastic collisions
Santos, Janilo; de Oliveira, Bruna P. W.; Nelson,Osman Rosso
2012-01-01
In this work we study the problem of one-dimensional elastic collisions of billiard balls, considered as rigid bodies, in a framework very different from the classical one presented in text books. Implementing the notion of impedance matching as a way to understand efficiency of energy transmission in elastic collisions, we find a solution which frames the problem in terms of this conception. We show that the mass of the ball can be seen as a measure of its impedance and verify that the probl...
One-dimensional hydrodynamic model generating a turbulent cascade
Matsumoto, Takeshi; Sakajo, Takashi
2016-05-01
As a minimal mathematical model generating cascade analogous to that of the Navier-Stokes turbulence in the inertial range, we propose a one-dimensional partial-differential-equation model that conserves the integral of the squared vorticity analog (enstrophy) in the inviscid case. With a large-scale random forcing and small viscosity, we find numerically that the model exhibits the enstrophy cascade, the broad energy spectrum with a sizable correction to the dimensional-analysis prediction, peculiar intermittency, and self-similarity in the dynamical system structure.
Quantum Simulations of One-Dimensional Nanostructures under Arbitrary Deformations
Koskinen, Pekka
2016-09-01
A powerful technique is introduced for simulating mechanical and electromechanical properties of one-dimensional nanostructures under arbitrary combinations of bending, twisting, and stretching. The technique is based on an unconventional control of periodic symmetry which eliminates artifacts due to deformation constraints and quantum finite-size effects and allows transparent electronic-structure analysis. Via density-functional tight-binding implementation, the technique demonstrates its utility by predicting nonlinear electromechanical properties in carbon nanotubes and abrupt behavior in the structural yielding of Au7 and Mo6 S6 nanowires. The technique drives simulations markedly closer to the realistic modeling of these slender nanostructures under experimental conditions.
Beam interactions in one-dimensional saturable waveguide arrays
Stepic, M; Rueter, C E; Shandarov, V; Kip, D; Stepic, Milutin; Smirnov, Eugene; Rueter, Christian E.; Shandarov, Vladimir; Kip, Detlef
2006-01-01
The interaction between two parallel beams in one-dimensional discrete saturable systems has been investigated using lithium niobate nonlinear waveguide arrays. When the beams are separated by one channel and in-phase it is possible to observe soliton fusion at low power levels. This new result is confirmed numerically. By increasing the power, soliton-like propagation of weakly-coupled beams occurs. When the beams are out-of-phase the most interesting result is the existence of oscillations which resemble the recently discovered Tamm oscillations.
Waves and instability in a one-dimensional microfluidic array
Liu, Bin; Feng, Yan
2012-01-01
Motion in a one-dimensional (1D) microfluidic array is simulated. Water droplets, dragged by flowing oil, are arranged in a single row, and due to their hydrodynamic interactions spacing between these droplets oscillates with a wave-like motion that is longitudinal or transverse. The simulation yields wave spectra that agree well with experiment. The wave-like motion has an instability which is confirmed to arise from nonlinearities in the interaction potential. The instability's growth is spatially localized. By selecting an appropriate correlation function, the interaction between the longitudinal and transverse waves is described.
Fragmented one dimensional man / El hombre unidimensional fragmentado
Directory of Open Access Journals (Sweden)
Juan Antonio Rodríguez del Pino
2013-10-01
Full Text Available Paraphrase the title of the famous essay by Herbert Marcuse, since the image has traditionally been generated of man, masculinity, has been one-dimensional. I mean, the man was characterized by traits and behaviors established and entrenched since ancient time, considering all other distinguishing signs as mere deviations from the normative improper. But observe that this undeniable reality, as analyzed various researchers through what has come to be called Men's studies, has proven to be a fallacy difficult to maintain throughout history and today turns into fallacious and ineffective against changes in our current existing corporate models.
Molecular nanostamp based on one-dimensional porphyrin polymers.
Kanaizuka, Katsuhiko; Izumi, Atsushi; Ishizaki, Manabu; Kon, Hiroki; Togashi, Takanari; Miyake, Ryosuke; Ishida, Takao; Tamura, Ryo; Haga, Masa-aki; Moritani, Youji; Sakamoto, Masatomi; Kurihara, Masato
2013-08-14
Surface design with unique functional molecules by a convenient one-pot treatment is an attractive project for the creation of smart molecular devices. We have employed a silane coupling reaction of porphyrin derivatives that form one-dimensional polymer wires on substrates. Our simple one-pot treatment of a substrate with porphyrin has successfully achieved the construction of nanoscale bamboo shoot structures. The nanoscale bamboo shoots on the substrates were characterized by atomic force microscopy (AFM), UV-vis spectra, and X-ray diffraction (XRD) measurements. The uneven and rigid nanoscale structure has been used as a stamp for constructing bamboo shoot structures of fullerene.
Dynamical Structure Factors of quasi-one-dimensional antiferromagnets
Hagemans, Rob; Caux, Jean-Sébastien; Maillet, Jean Michel
2007-03-01
For a long time it has been impossible to accurately calculate the dynamical structure factors (spin-spin correlators as a function of momentum and energy) of quasi-one-dimensional antiferromagnets. For integrable Heisenberg chains, the recently developed ABACUS method (a first-principles computational approach based on the Bethe Ansatz) now yields highly accurate (over 99% of the sum rule) results for the DSF for finite chains, allowing for a very precise description of neutron-scattering data over the full momentum and energy range. We show remarkable agreement between results obtained with ABACUS and experiment.
ONE-DIMENSIONAL AND TWO-DIMENSIONAL LEADERSHIP STYLES
Directory of Open Access Journals (Sweden)
Nikola Stefanović
2007-06-01
Full Text Available In order to motivate their group members to perform certain tasks, leaders use different leadership styles. These styles are based on leaders' backgrounds, knowledge, values, experiences, and expectations. The one-dimensional styles, used by many world leaders, are autocratic and democratic styles. These styles lie on the two opposite sides of the leadership spectrum. In order to precisely define the leadership styles on the spectrum between the autocratic leadership style and the democratic leadership style, leadership theory researchers use two dimensional matrices. The two-dimensional matrices define leadership styles on the basis of different parameters. By using these parameters, one can identify two-dimensional styles.
Strongly anisotropic wetting on one-dimensional nanopatterned surfaces.
Xia, Deying; Brueck, S R J
2008-09-01
This communication reports strongly anisotropic wetting behavior on one-dimensional nanopatterned surfaces. Contact angles, degree of anisotropy, and droplet distortion are measured on micro- and nanopatterned surfaces fabricated with interference lithography. Both the degree of anisotropy and the droplet distortion are extremely high as compared with previous reports because of the well-defined nanostructural morphology. The surface is manipulated to tune with the wetting from hydrophobic to hydrophilic while retaining the structural wetting anisotropy with a simple silica nanoparticle overcoat. The wetting mechanisms are discussed. Potential applications in microfluidic devices and evaporation-induced pattern formation are demonstrated.
Spiral Magnetic Order in the One-Dimensional Kondo Lattice
Institute of Scientific and Technical Information of China (English)
LIU Zhen-Rong; LI Zheng-Zhong; SHEN Rui
2001-01-01
The effects of c-f (conduction-f electrons) hybridization on the spiral spin magnetism in the one dimensional Kondo lattice are studied. By using the mean-field approximation, a close set of equations of the Green's functions with arbitrary wave vector Q for the spiral ordering of spins is deduced. The magnetic phase boundary between the spiral magnetism and ferromagnetism has been calculated approximately. From our qualitative results, one can find that the ferromagnetic region is enlarged due to the c f hybridization. Moreover, some new results reflecting the Kondo effect, such as the modified dispersion relation and the weakening of the localized magnetic moments are also obtained.
Obstacle Effects on One-Dimensional Translocation of ATPase
Institute of Scientific and Technical Information of China (English)
WANG Xian-Ju; AI Bao-Quan; LIU Liang-Gang
2002-01-01
We apply a general random walk model to the study of the ATPase's one-dimensional translocation along obstacle biological environment, and show the effects of random obstacles on the ATPase translocation along single stranded DNA. We find that the obstacle environment can reduce the lifetime of ATPase lattice-bound state which results in the inhibition of ATPase activity. We also carry out the ranges of rate constant of ATPase unidirectonal translocation and bidirectional translocation. Our results are consistent with the experiments and relevant theoretical consideration, and can be used to explain some physiological phenomena.
Longitudinal waves in one dimensional non-uniform waveguides
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
Wave approach is used to analyze the longitudinal wave motion in one dimensional non-uniform waveguides.With assumptions of constant wave velocity and no wave conversion,there exist four types of non-uniform rods and corresponding traveling wave solutions are investigated.The obtained results indicate that the kinetic energy is preserved as a constant and the wave amplitude is inversely proportional to square root of the cross-sectional area of the rod.Under certain condition,there exists a cut-off frequ...
Black Phosphorus based One-dimensional Photonic Crystals and Microcavities
Kriegel, I
2016-01-01
The latest achievements in the fabrication of black phosphorus thin layers, towards the technological breakthrough of a phosphorene atomically thin layer, are paving the way for a their employment in electronics, optics, and optoelectronics. In this work, we have simulated the optical properties of one-dimensional photonic structures, i.e. photonic crystals and microcavities, in which few-layer black phosphorus is one of the components. The insertion of the 5 nm black phosphorous layers leads to a photonic band gap in the photonic crystals and a cavity mode in the microcavity interesting for light manipulation and emission enhancement.
Fourier's law for quasi-one-dimensional chaotic quantum systems
Seligman, Thomas H.; Weidenmüller, Hans A.
2011-05-01
We derive Fourier's law for a completely coherent quasi-one-dimensional chaotic quantum system coupled locally to two heat baths at different temperatures. We solve the master equation to first order in the temperature difference. We show that the heat conductance can be expressed as a thermodynamic equilibrium coefficient taken at some intermediate temperature. We use that expression to show that for temperatures large compared to the mean level spacing of the system, the heat conductance is inversely proportional to the level density and, thus, inversely proportional to the length of the system.
Coherent Backscattering of Light Off One-Dimensional Atomic Strings
Sørensen, H. L.; Béguin, J.-B.; Kluge, K. W.; Iakoupov, I.; Sørensen, A. S.; Müller, J. H.; Polzik, E. S.; Appel, J.
2016-09-01
We present the first experimental realization of coherent Bragg scattering off a one-dimensional system—two strings of atoms strongly coupled to a single photonic mode—realized by trapping atoms in the evanescent field of a tapered optical fiber, which also guides the probe light. We report nearly 12% power reflection from strings containing only about 1000 cesium atoms, an enhancement of 2 orders of magnitude compared to reflection from randomly positioned atoms. This result paves the road towards collective strong coupling in 1D atom-photon systems. Our approach also allows for a straightforward fiber connection between several distant 1D atomic crystals.
Multiple nonequilibrium steady states for one-dimensional heat flow.
Zhang, F; Isbister, D J; Evans, D J
2001-08-01
A nonequilibrium molecular dynamics model of heat flow in one-dimensional lattices is shown to have multiple steady states for any fixed heat field strength f(e) ranging from zero to a certain positive value. We demonstrate that, depending on the initial conditions, there are at least two possibilities for the system's evolution: (i) formation of a stable traveling wave (soliton), and (ii) chaotic motion throughout the entire simulation. The percentage of the soliton-generating trajectories is zero for small field strength f(e), but increases sharply to unity over a critical region of the parameter f(e).
Nonlocal separable potential in the one-dimensional Dirac equation
Energy Technology Data Exchange (ETDEWEB)
Calkin, M.G.; Kiang, D.; Nogami, Y.
1988-08-01
The one-dimensional Dirac equation is solved for a separable potential of the form of Lorentz scalar plus vector, (..beta..g+h)v(x)v(x'). Exact analytic solutions are obtained for bound and scattering states for arbitrary v(x). For a particular combination of the values of g and h, degeneracy of the bound state occurs, and total reflection also takes place for a certain incident energy. The limiting case, in which v(x) becomes a delta function, is discussed in detail.
Lateral shift in one-dimensional quasiperiodic chiral photonic crystal
Energy Technology Data Exchange (ETDEWEB)
Da, Jian, E-mail: dajian521@sina.com [Department of Information Engineering, Huaian Senior Vocational and Technical School, Feiyao road, Huaian 223005, Jiangsu Province (China); Mo, Qi, E-mail: moqiyueyang@163.com [School of Software, Yunnan University, Cuihu Bai Road, Kunming City, Yunnan Province 650091 (China); Cheng, Yaokun [Department of Information Engineering, Huaian Senior Vocational and Technical School, Feiyao road, Huaian 223005, Jiangsu Province (China); Liu, Taixiang [Taishan Vocational College of Nursing, Shandong Province 271000 (China)
2015-02-01
We investigate the lateral shift of a one-dimensional quasiperiodic photonic crystal consisting of chiral and conventional dielectric materials. The effect of structural irregularity on lateral shift is evaluated by stationary-phase approach. Our results show that the lateral shift can be modulated by varying the structural irregularity in quasiperiodic structure. Besides, the position of peak in lateral shift spectrum stays sensitive to the chiral factor of chiral materials. In comparison with that of periodic structure, quasiperiodic structure provides an extra degree of freedom to manipulate the lateral shift.
One-Dimensional Metals Conjugated Polymers, Organic Crystals, Carbon Nanotubes
Roth, Siegmar
2004-01-01
Low-dimensional solids are of fundamental interest in materials science due to their anisotropic properties. Written not only for experts in the field, this book explains the important concepts behind their physics and surveys the most interesting one-dimensional systems and discusses their present and emerging applications in molecular scale electronics. The second edition of this successful book has been completely revised to include the remarkable achievements of the last ten years of research and applications. Chemists, polymer and materials scientists as well as students will find this bo
Adiabatic swimming in an ideal quantum gas.
Avron, J E; Gutkin, B; Oaknin, D H
2006-04-07
Interference effects are important for swimming of mesoscopic systems that are small relative to the coherence length of the surrounding quantum medium. Swimming is geometric for slow swimmers and the distance covered in each stroke is determined, explicitly, in terms of the on-shell scattering matrix. Remarkably, for a one-dimensional Fermi gas at zero temperature we find that slow swimming is topological: the swimming distance covered in one stroke is quantized in half integer multiples of the Fermi wavelength. In addition, a careful choice of the swimming stroke can eliminate dissipation.
Quasi-Dirac points in one-dimensional graphene superlattices
Energy Technology Data Exchange (ETDEWEB)
Chen, C.H.; Tseng, P.; Hsueh, W.J., E-mail: hsuehwj@ntu.edu.tw
2016-08-26
Quasi-Dirac points (QDPs) with energy different from the traditional Dirac points (TDPs) have been found for the first time in one-dimensional graphene superlattices. The angular-averaged conductance reaches a minimum value at the QDPs, at which the Fano factor approaches 1/3. Surprisingly, the minimum conductance at these QDPs may be lower than that at the TDPs under certain conditions. This is remarkable as the minimum conductance attainable in graphene superlattices was believed to appear at TDPs. - Highlights: • Quasi-Dirac points (QDPs) are found for the first time in one-dimensional graphene superlattices. • The QDP is different from the traditional Dirac points (TDPs) in graphene superlattices. • The angular-averaged conductance reaches a minimum value at the QDPs, at which the Fano factor approaches 1/3. • The minimum conductance at these QDPs may be lower than that at the TDPs under certain conditions. • The minimum conductance attainable in graphene superlattices was believed to appear at TDPs.
One-Dimensional Forward–Forward Mean-Field Games
Gomes, Diogo A.
2016-11-01
While the general theory for the terminal-initial value problem for mean-field games (MFGs) has achieved a substantial progress, the corresponding forward–forward problem is still poorly understood—even in the one-dimensional setting. Here, we consider one-dimensional forward–forward MFGs, study the existence of solutions and their long-time convergence. First, we discuss the relation between these models and systems of conservation laws. In particular, we identify new conserved quantities and study some qualitative properties of these systems. Next, we introduce a class of wave-like equations that are equivalent to forward–forward MFGs, and we derive a novel formulation as a system of conservation laws. For first-order logarithmic forward–forward MFG, we establish the existence of a global solution. Then, we consider a class of explicit solutions and show the existence of shocks. Finally, we examine parabolic forward–forward MFGs and establish the long-time convergence of the solutions.
Neutron scattering studies of three one-dimensional antiferromagnets
Kenzelmann, M
2001-01-01
observed in the disordered phase of spin-1/2 chains. The magnetic order of the one-dimensional spin-1/2 XY antiferromagnet Cs sub 2 CoCl sub 4 was investigated using neutron diffraction. The magnetic structure has an ordering wave-vector (0, 0.5, 0.5) for T < 217 mK and the magnetic structure is a non-linear structure with the magnetic moments at a small angle to the b axis. Above a field of H = 2.1 T the magnetic order collapses in an apparent first order phase transition, suggesting a transition to a spin-liquid phase. Low-dimensional magnets with low-spin quantum numbers are ideal model systems for investigating strongly interacting macroscopic quantum ground states and their non-linear spin excitations. This thesis describes neutron scattering experiments of three one-dimensional low-spin antiferromagnets where strong quantum fluctuations lead to highly-correlated ground states and unconventional cooperative spin excitations. The excitation spectrum of the antiferromagnetic spin-1 Heisenberg chain CsNi...
One-Dimensional Forward–Forward Mean-Field Games
Energy Technology Data Exchange (ETDEWEB)
Gomes, Diogo A., E-mail: diogo.gomes@kaust.edu.sa; Nurbekyan, Levon; Sedjro, Marc [King Abdullah University of Science and Technology (KAUST), CEMSE Division (Saudi Arabia)
2016-12-15
While the general theory for the terminal-initial value problem for mean-field games (MFGs) has achieved a substantial progress, the corresponding forward–forward problem is still poorly understood—even in the one-dimensional setting. Here, we consider one-dimensional forward–forward MFGs, study the existence of solutions and their long-time convergence. First, we discuss the relation between these models and systems of conservation laws. In particular, we identify new conserved quantities and study some qualitative properties of these systems. Next, we introduce a class of wave-like equations that are equivalent to forward–forward MFGs, and we derive a novel formulation as a system of conservation laws. For first-order logarithmic forward–forward MFG, we establish the existence of a global solution. Then, we consider a class of explicit solutions and show the existence of shocks. Finally, we examine parabolic forward–forward MFGs and establish the long-time convergence of the solutions.
Hydrogen peroxide stabilization in one-dimensional flow columns
Schmidt, Jeremy T.; Ahmad, Mushtaque; Teel, Amy L.; Watts, Richard J.
2011-09-01
Rapid hydrogen peroxide decomposition is the primary limitation of catalyzed H 2O 2 propagations in situ chemical oxidation (CHP ISCO) remediation of the subsurface. Two stabilizers of hydrogen peroxide, citrate and phytate, were investigated for their effectiveness in one-dimensional columns of iron oxide-coated and manganese oxide-coated sand. Hydrogen peroxide (5%) with and without 25 mM citrate or phytate was applied to the columns and samples were collected at 8 ports spaced 13 cm apart. Citrate was not an effective stabilizer for hydrogen peroxide in iron-coated sand; however, phytate was highly effective, increasing hydrogen peroxide residuals two orders of magnitude over unstabilized hydrogen peroxide. Both citrate and phytate were effective stabilizers for manganese-coated sand, increasing hydrogen peroxide residuals by four-fold over unstabilized hydrogen peroxide. Phytate and citrate did not degrade and were not retarded in the sand columns; furthermore, the addition of the stabilizers increased column flow rates relative to unstabilized columns. These results demonstrate that citrate and phytate are effective stabilizers of hydrogen peroxide under the dynamic conditions of one-dimensional columns, and suggest that citrate and phytate can be added to hydrogen peroxide before injection to the subsurface as an effective means for increasing the radius of influence of CHP ISCO.
Spatial mapping and statistical reproducibility of an array of 256 one-dimensional quantum wires
Energy Technology Data Exchange (ETDEWEB)
Al-Taie, H., E-mail: ha322@cam.ac.uk; Kelly, M. J. [Centre for Advanced Photonics and Electronics, Electrical Engineering Division, Department of Engineering, 9 J. J. Thomson Avenue, University of Cambridge, Cambridge CB3 0FA (United Kingdom); Cavendish Laboratory, Department of Physics, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Smith, L. W.; Lesage, A. A. J.; Griffiths, J. P.; Beere, H. E.; Jones, G. A. C.; Ritchie, D. A.; Smith, C. G. [Cavendish Laboratory, Department of Physics, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); See, P. [National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW (United Kingdom)
2015-08-21
We utilize a multiplexing architecture to measure the conductance properties of an array of 256 split gates. We investigate the reproducibility of the pinch off and one-dimensional definition voltage as a function of spatial location on two different cooldowns, and after illuminating the device. The reproducibility of both these properties on the two cooldowns is high, the result of the density of the two-dimensional electron gas returning to a similar state after thermal cycling. The spatial variation of the pinch-off voltage reduces after illumination; however, the variation of the one-dimensional definition voltage increases due to an anomalous feature in the center of the array. A technique which quantifies the homogeneity of split-gate properties across the array is developed which captures the experimentally observed trends. In addition, the one-dimensional definition voltage is used to probe the density of the wafer at each split gate in the array on a micron scale using a capacitive model.
Application of a One-Dimensional Position Sensitive Chamber on Synchrotron Radiation
Qi, Huirong; Liu, Mei
2014-02-01
In the last few years, wire chambers have been frequently used for X-ray detection because of their low cost, large area and reliability. X-ray diffraction is an irreplaceable method for powder crystal lattice measurements. A one-dimensional single-wire chamber has been developed in our lab to provide high position resolution for powder diffraction experiments using synchrotron radiation. There are 200 readout strips of 0.5 mm width with a pitch of 1.0 mm in the X direction, and the working gas is a mixture of Ar and CO2 (90/10). The one-dimensional position of the original ionization point is determined by the adjacent strip's distribution information using the center of gravity method. Recently, a study of the detector's performance and diffraction image was completed at the 1W1B laboratory of the Beijing Synchrotron Radiation Facility (BSRF) using a sample of SiO2. Most of the relative errors between the measured values of diffraction angles and existing data were less than 1%. The best position resolution achieved for the detector in the test was 71 μm (σ value) with a 20 μm slit collimator. Finally, by changing the detector height in incremental distances from the center of the sample, the one-dimensional detector achieved a two-dimensional diffraction imaging function, and the results are in good agreement with standard data.
Spatial mapping and statistical reproducibility of an array of 256 one-dimensional quantum wires
Al-Taie, H.; Smith, L. W.; Lesage, A. A. J.; See, P.; Griffiths, J. P.; Beere, H. E.; Jones, G. A. C.; Ritchie, D. A.; Kelly, M. J.; Smith, C. G.
2015-08-01
We utilize a multiplexing architecture to measure the conductance properties of an array of 256 split gates. We investigate the reproducibility of the pinch off and one-dimensional definition voltage as a function of spatial location on two different cooldowns, and after illuminating the device. The reproducibility of both these properties on the two cooldowns is high, the result of the density of the two-dimensional electron gas returning to a similar state after thermal cycling. The spatial variation of the pinch-off voltage reduces after illumination; however, the variation of the one-dimensional definition voltage increases due to an anomalous feature in the center of the array. A technique which quantifies the homogeneity of split-gate properties across the array is developed which captures the experimentally observed trends. In addition, the one-dimensional definition voltage is used to probe the density of the wafer at each split gate in the array on a micron scale using a capacitive model.
Energy Technology Data Exchange (ETDEWEB)
Pashitskii, E. A., E-mail: pashitsk@iop.kiev.ua; Pentegov, V. I., E-mail: pentegov@iop.kiev.ua [National Academy of Sciences of Ukraine, Institute of Physics (Ukraine)
2017-03-15
We consider a possible scenario for the evolution of the early cold Universe born from a fairly large quantum fluctuation in a vacuum with a size a{sub 0} ≫ l{sub P} (where l{sub P} is the Planck length) and filled with both a nonlinear scalar field φ, whose potential energy density U(φ) determines the vacuum energy density λ, and a nonideal Fermi gas with short-range repulsion between particles, whose equation of state is characterized by the ratio of pressure P(n{sub F}) to energy density ε(n{sub F}) dependent on the number density of fermions n{sub F}. As the early Universe expands, the dimensionless quantity ν(n{sub F}) = P(n{sub F})/ε(n{sub F}) decreases with decreasing n{sub F} from its maximum value ν{sub max} = 1 for n{sub F} → ∞ to zero for n{sub F} → 0. The interaction of the scalar and gravitational fields, which is characterized by a dimensionless constant ξ, is proportional to the scalar curvature of four-dimensional space R = κ[3P(n{sub F})–ε(n{sub F})–4λ] (where κ is Einstein’s gravitational constant), and contains terms both quadratic and linear in φ. As a result, the expanding early Universe reaches the point of first-order phase transition in a finite time interval at critical values of the scalar curvature R = R{sub c} =–μ{sup 2}/ξ and radius a{sub c} ≫ a{sub 0}. Thereafter, the early closed Universe “rolls down” from the flat inflection point of the potential U(φ) to the zero potential minimum in a finite time. The release of the total potential energy of the scalar field in the entire volume of the expanding Universe as it “rolls down” must be accompanied by the production of a large number of massive particles and antiparticles of various kinds, whose annihilation plays the role of the Big Bang. We also discuss the fundamental nature of Newton’ gravitational constant G{sub N}.
Fourier's law on a one-dimensional optical random lattice
Energy Technology Data Exchange (ETDEWEB)
Platini, T [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Harris, R J [School of Mathematical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS (United Kingdom); Karevski, D [Institut Jean Lamour, Departement Physique de la Matiere et des Materiaux, Groupe de Physique Statistique, Nancy-Universite CNRS, BP 70239, F-54506 Vandoeuvre les Nancy Cedex (France)
2010-04-02
We study the transport properties of a one-dimensional hard-core bosonic lattice gas coupled to two particle reservoirs at different chemical potentials which generate a current flow through the system. In particular, the influence of random fluctuations of the underlying lattice on the stationary-state properties is investigated. We show analytically that the steady-state density presents a linear profile. The local steady-state current obeys the Fourier law j = -{kappa}({tau}){nabla}n where {tau} is a typical timescale of the lattice fluctuations and {nabla}n is the density gradient imposed by the reservoirs.
Full counting statistics of laser excited Rydberg aggregates in a one-dimensional geometry
Schempp, H; Robert-de-Saint-Vincent, M; Hofmann, C S; Breyel, D; Komnik, A; Schönleber, D W; Gärttner, M; Evers, J; Whitlock, S; Weidemüller, M
2014-01-01
We experimentally study the full counting statistics of few-body Rydberg aggregates excited from a quasi-one-dimensional Rydberg gas. We measure asymmetric excitation spectra and increased second and third order statistical moments of the Rydberg number distribution, from which we determine the average aggregate size. Direct comparisons with numerical simulations reveal the presence of liquid-like spatial correlations, and indicate sequential growth of the aggregates around an initial grain. These findings demonstrate the importance of dissipative effects in strongly correlated Rydberg gases and introduce a way to study spatio-temporal correlations in strongly-interacting many-body quantum systems without imaging.
Proskuryakov, Y. Y.; Savchenko, A. K.; Safonov, S. S.; Pepper, M; Simmons, M.Y.; Ritchie, D. A.
2001-01-01
We examine the validity of the Fermi-liquid description of the dilute 2D hole gas in the crossover from 'metallic'-to-'insulating' behaviour of R(T).It has been established that, at r_s as large as 29, negative magnetoresistance does exist and is well described by weak localisation. The dephasing time extracted from the magnetoresistance is dominated by the T^2 -term due to Landau scattering in the clean limit. The effect of hole-hole interactions, however, is suppressed when compared with th...
Crystallographic shear mechanisms in Rh one-dimensional oxides
Hernando, María; Boulahya, Khalid; Parras, Marina; González-Calbet, José M.
2005-02-01
Electron diffraction and high resolution electron microscopy have been used to characterize two new one-dimensional superstructures in the A sbnd Rh sbnd O system (A = Ca, Sr) related to the 2H-ABO 3-type. They are formed by the intergrowth of n A 3A'BO 6 blocks, showing the Sr 4RhO 6-type, with A 12A' 2B 8O 30 blocks, constituted by two A 3O 9 and two A 3A'O 6 layers alternating in the stacking sequence 1:1, leading to the A 27A' 7B 13O 60 ( n=5) and A 30A' 8B 14O 66 ( n=6) compositions. A crystallographic shear mechanism is proposed to describe the structural relationship between Sr 4RhO 6 (A 3A'BO 6-type) and the new superstructures.
One-dimensional modeling of piping flow erosion
Lachouette, Damien; Golay, Frédéric; Bonelli, Stéphane
2008-09-01
A process called "piping", which often occurs in water-retaining structures (earth-dams, dykes, levees), involving the formation and progression of a continuous tunnel between the upstream and downstream sides, is one of the main cause of structure failure. Starting with the diphasic flow volume equations and the jump equations including the erosion processes, a simplified one-dimensional model for two-phase piping flow erosion was developed. The numerical simulation based on constant input and output pressures showed that the particle concentration can be a significant factor at the very beginning of the process, resulting in the enlargement of the hole at the exit. However, it was concluded that this influence is a secondary factor: the dilute flow assumption, which considerably simplifies the description, is relevant here. To cite this article: D. Lachouette et al., C. R. Mecanique 336 (2008).
Impedance of rigid bodies in one-dimensional elastic collisions
Santos, Janilo; Nelson, Osman Rosso
2012-01-01
In this work we study the problem of one-dimensional elastic collisions of billiard balls, considered as rigid bodies, in a framework very different from the classical one presented in text books. Implementing the notion of impedance matching as a way to understand eficiency of energy transmission in elastic collisions, we find a solution which frames the problem in terms of this conception. We show that the mass of the ball can be seen as a measure of its impedance and verify that the problem of maximum energy transfer in elastic collisions can be thought of as a problem of impedance matching between different media. This approach extends the concept of impedance, usually associated with oscillatory systems, to system of rigid bodies.
One-dimensional long-range percolation: A numerical study
Gori, G.; Michelangeli, M.; Defenu, N.; Trombettoni, A.
2017-07-01
In this paper we study bond percolation on a one-dimensional chain with power-law bond probability C /rd +σ , where r is the distance length between distinct sites and d =1 . We introduce and test an order-N Monte Carlo algorithm and we determine as a function of σ the critical value Cc at which percolation occurs. The critical exponents in the range 0 introduction of a suitably defined effective dimension deff relating the long-range model with a short-range one in dimension deff. We finally present a formulation of our algorithm for bond percolation on general graphs, with order N efficiency on a large class of graphs including short-range percolation and translationally invariant long-range models in any spatial dimension d with σ >0 .
Configurational and energy landscape in one-dimensional Coulomb systems.
Varela, Lucas; Téllez, Gabriel; Trizac, Emmanuel
2017-02-01
We study a one-dimensional Coulomb system, where two charged colloids are neutralized by a collection of point counterions, with global neutrality. With temperature being given, two situations are addressed: Either the colloids are kept at fixed positions (canonical ensemble) or the force acting on the colloids is fixed (isobaric-isothermal ensemble). The corresponding partition functions are worked out exactly, in view of determining which arrangement of counterions is optimal. How many counterions should be in the confined segment between the colloids? For the remaining ions outside, is there a left-right symmetry breakdown? We evidence a cascade of transitions as system size is varied in the canonical treatment or as pressure is increased in the isobaric formulation.
The statistical distributions of one-dimensional “turbulence”
Peyrard, Michel
2004-06-01
We study a one-dimensional discrete analog of the von Kármán flow widely investigated in turbulence, made of a lattice of anharmonic oscillators excited by both ends in the presence of a dissipative term proportional to the second-order finite difference of the velocities, similar to the viscous term in a fluid. The dynamics of the model shows striking similarities with an actual turbulent flow, both at local and global scales. Calculations of the probability distribution function of velocity increments, extensively studied in turbulence, with a very large number of points in order to determine accurately the statistics of rare events, allow us to provide a meaningful comparison of different theoretical expressions of the PDFs.
Scale dependent partitioning of one-dimensional aperiodic set diffraction
Elkharrat, A.
2004-06-01
We give a multiresolution partition of pure point parts of diffraction patterns of one-dimensional aperiodic sets. When an aperiodic set is related to the Golden Ratio, denoted by tau, it is well known that the pure point part of its diffractive measure is supported by the extension ring of tau, denoted by mathbb{Z}[tau]. The partition we give is based on the formalism of the so called tau-integers, denoted by mathbb{Z}_tau. The set of tau-integers is a selfsimilar set obeying mathbb{Z}_tau/tau^{j-1}subsetmathbb{Z}_tau/tau^j subset mathbb{Z}_tau/tau^{j + 1} subsetmathbb{Z}[tau], jinmathbb{Z}. The pure point spectrum is then partitioned with respect to this “Russian doll” like sequence of subsets mathbb{Z}_tau/tau^j. Thus we deduce the partition of the pure point part of the diffractive measure of aperiodic sets.
Explicit Solutions for One-Dimensional Mean-Field Games
Prazeres, Mariana
2017-04-05
In this thesis, we consider stationary one-dimensional mean-field games (MFGs) with or without congestion. Our aim is to understand the qualitative features of these games through the analysis of explicit solutions. We are particularly interested in MFGs with a nonmonotonic behavior, which corresponds to situations where agents tend to aggregate. First, we derive the MFG equations from control theory. Then, we compute explicit solutions using the current formulation and examine their behavior. Finally, we represent the solutions and analyze the results. This thesis main contributions are the following: First, we develop the current method to solve MFG explicitly. Second, we analyze in detail non-monotonic MFGs and discover new phenomena: non-uniqueness, discontinuous solutions, empty regions and unhappiness traps. Finally, we address several regularization procedures and examine the stability of MFGs.
Numerical method of characteristics for one-dimensional blood flow
Acosta, Sebastian; Riviere, Beatrice; Penny, Daniel J; Rusin, Craig G
2014-01-01
Mathematical modeling at the level of the full cardiovascular system requires the numerical approximation of solutions to a one-dimensional nonlinear hyperbolic system describing flow in a single vessel. This model is often simulated by computationally intensive methods like finite elements and discontinuous Galerkin, while some recent applications require more efficient approaches (e.g. for real-time clinical decision support, phenomena occurring over multiple cardiac cycles, iterative solutions to optimization/inverse problems, and uncertainty quantification). Further, the high speed of pressure waves in blood vessels greatly restricts the time-step needed for stability in explicit schemes. We address both cost and stability by presenting an efficient and unconditionally stable method for approximating solutions to diagonal nonlinear hyperbolic systems. Theoretical analysis of the algorithm is given along with a comparison of our method to a discontinuous Galerkin implementation. Lastly, we demonstrate the ...
Study on pile drivability with one dimensional wave propagation theory
Institute of Scientific and Technical Information of China (English)
陈仁朋; 王仕方; 陈云敏
2003-01-01
Pile drivability is a key problem during the stage of design and construction installation of pile foundations. The solution to the one dimensional wave equation was used to determine the impact force at the top of a concrete pile for a given ram mass, cushion stiffness, and pile impedance. The kinematic equation of pile toe was established and solved based on wave equation theory. The movements of the pile top and pile toe were presented, which clearly showed the dynamic displacement, including rebound and penetration of pile top and toe. A parametric study was made with a full range of practical values of ram weight, cushion stiffness, dropheight, and pile impedance. Suggestions for optimizing the parameters were also presented. Comparisons between the results obtained by the present solution and in-situ measurements indicated the reliability and validity of the method.
Testing of a one dimensional model for Field II calibration
DEFF Research Database (Denmark)
Bæk, David; Jensen, Jørgen Arendt; Willatzen, Morten
2008-01-01
to the calibrated Field II program for 1, 4, and 10 cycle excitations. Two parameter sets were applied for modeling, one real valued Pz27 parameter set, manufacturer supplied, and one complex valued parameter set found in literature, Alguer´o et al. [11]. The latter implicitly accounts for attenuation. Results show......Field II is a program for simulating ultrasound transducer fields. It is capable of calculating the emitted and pulse-echoed fields for both pulsed and continuous wave transducers. To make it fully calibrated a model of the transducer’s electro-mechanical impulse response must be included. We...... examine an adapted one dimensional transducer model originally proposed by Willatzen [9] to calibrate Field II. This model is modified to calculate the required impulse responses needed by Field II for a calibrated field pressure and external circuit current calculation. The testing has been performed...
Automated quantification of one-dimensional nanostructure alignment on surfaces
Dong, Jianjin; Abukhdeir, Nasser Mohieddin
2016-01-01
A method for automated quantification of the alignment of one-dimensional nanostructures from microscopy imaging is presented. Nanostructure alignment metrics are formulated and shown to able to rigorously quantify the orientational order of nanostructures within a two-dimensional domain (surface). A complementary image processing method is also presented which enables robust processing of microscopy images where overlapping nanostructures might be present. Scanning electron microscopy (SEM) images of nanowire-covered surfaces are analyzed using the presented methods and it is shown that past single parameter alignment metrics are insufficient for highly aligned domains. Through the use of multiple parameter alignment metrics, automated quantitative analysis of SEM images is shown to be possible and the alignment characteristics of different samples are able to be rigorously compared using a similarity metric. The results of this work provide researchers in nanoscience and nanotechnology with a rigorous metho...
Coherent backscattering of light off one-dimensional atomic strings
Sørensen, H L; Kluge, K W; Iakoupov, I; Sørensen, A S; Müller, J H; Polzik, E S; Appel, J
2016-01-01
Bragg scattering, well known in crystallography, has become a powerful tool for artificial atomic structures such as optical lattices. In an independent development photonic waveguides have been used successfully to boost quantum light-matter coupling. We combine these two lines of research and present the first experimental realisation of coherent Bragg scattering off a one-dimensional (1D) system - two strings of atoms strongly coupled to a single photonic mode - realised by trapping atoms in the evanescent field of a tapered optical fibre (TOF), which also guides the probe light. We report nearly 12% power reflection from strings containing only about one thousand caesium atoms, an enhancement of more than two orders of magnitude compared to reflection from randomly positioned atoms. This result paves the road towards collective strong coupling in 1D atom-photon systems. Our approach also allows for a straightforward fibre connection between several distant 1D atomic crystals.
A Reduced Order, One Dimensional Model of Joint Response
Energy Technology Data Exchange (ETDEWEB)
DOHNER,JEFFREY L.
2000-11-06
As a joint is loaded, the tangent stiffness of the joint reduces due to slip at interfaces. This stiffness reduction continues until the direction of the applied load is reversed or the total interface slips. Total interface slippage in joints is called macro-slip. For joints not undergoing macro-slip, when load reversal occurs the tangent stiffness immediately rebounds to its maximum value. This occurs due to stiction effects at the interface. Thus, for periodic loads, a softening and rebound hardening cycle is produced which defines a hysteretic, energy absorbing trajectory. For many jointed sub-structures, this hysteretic trajectory can be approximated using simple polynomial representations. This allows for complex joint substructures to be represented using simple non-linear models. In this paper a simple one dimensional model is discussed.
Properties of surface modes in one dimensional plasma photonic crystals
Energy Technology Data Exchange (ETDEWEB)
Shukla, S.; Prasad, S., E-mail: prasad.surendra@gmail.com; Singh, V. [Department of Physics, Faculty of Science, Banaras Hindu University, Varanasi 221005 (India)
2015-02-15
Properties of surface modes supported at the interface of air and a semi-infinite one dimensional plasma photonic crystal are analyzed. The surface mode equation is obtained by using transfer matrix method and applying continuity conditions of electric fields and its derivatives at the interface. It is observed that with increase in the width of cap layer, frequencies of surface modes are shifted towards lower frequency side, whereas increase in tangential component of wave-vector increases the mode frequency and total energy carried by the surface modes. With increase in plasma frequency, surface modes are found to shift towards higher frequency side. The group velocity along interface is found to control by cap layer thickness.
Singularity formation for one dimensional full Euler equations
Pan, Ronghua; Zhu, Yi
2016-12-01
We investigate the basic open question on the global existence v.s. finite time blow-up phenomena of classical solutions for the one-dimensional compressible Euler equations of adiabatic flow. For isentropic flows, it is well-known that the solutions develop singularity if and only if initial data contain any compression (the Riemann variables have negative spatial derivative). The situation for non-isentropic flow is not quite clear so far, due to the presence of non-constant entropy. In [4], it is shown that initial weak compressions do not necessarily develop singularity in finite time, unless the compression is strong enough for general data. In this paper, we identify a class of solutions of the full (non-isentropic) Euler equations, developing singularity in finite time even though their initial data do not contain any compression. This is in sharp contrast to the isentropic flow.
One-dimensional topological edge states of bismuth bilayers
Drozdov, Ilya K.; Alexandradinata, A.; Jeon, Sangjun; Nadj-Perge, Stevan; Ji, Huiwen; Cava, R. J.; Andrei Bernevig, B.; Yazdani, Ali
2014-09-01
The hallmark of a topologically insulating state of matter in two dimensions protected by time-reversal symmetry is the existence of chiral edge modes propagating along the perimeter of the sample. Among the first systems predicted to be a two-dimensional topological insulator are bilayers of bismuth. Here we report scanning tunnelling microscopy experiments on bulk Bi crystals that show that a subset of the predicted Bi-bilayers' edge states are decoupled from the states of the substrate and provide direct spectroscopic evidence of their one-dimensional nature. Moreover, by visualizing the quantum interference of edge-mode quasi-particles in confined geometries, we demonstrate their remarkable coherent propagation along the edge with scattering properties consistent with strong suppression of backscattering as predicted for the propagating topological edge states.
Spin accumulation on a one-dimensional mesoscopic Rashba ring
Energy Technology Data Exchange (ETDEWEB)
Zhang Zhiyong [Department of Physics, Nanjing University, Nanjing 210093 (China)
2006-04-26
The nonequilibrium spin accumulation on a one-dimensional (1D) mesoscopic Rashba ring is investigated with unpolarized current injected through ideal leads. Due to the Rashba spin-orbit (SO) coupling and back-scattering at the interfaces between the leads and the ring, a beating pattern is formed in the fast oscillation of spin accumulation. If every beating period is complete, a plateau is formed, where the variation of spin accumulation with the external voltage is slow, but if new incomplete periods emerge in the envelope function, a transitional region appears. This plateau structure and the beating pattern are related to the tunnelling through spin-dependent resonant states. Because of the Aharonov-Casher (AC) effect, the average spin accumulation oscillates quasi-periodically with the Rashba SO coupling and has a series of zeros. In some situations, the direction of the average spin accumulation can be reversed by the external voltage in this 1D Rashba ring.
Spin accumulation on a one-dimensional mesoscopic Rashba ring.
Zhang, Zhi-Yong
2006-04-26
The nonequilibrium spin accumulation on a one-dimensional (1D) mesoscopic Rashba ring is investigated with unpolarized current injected through ideal leads. Due to the Rashba spin-orbit (SO) coupling and back-scattering at the interfaces between the leads and the ring, a beating pattern is formed in the fast oscillation of spin accumulation. If every beating period is complete, a plateau is formed, where the variation of spin accumulation with the external voltage is slow, but if new incomplete periods emerge in the envelope function, a transitional region appears. This plateau structure and the beating pattern are related to the tunnelling through spin-dependent resonant states. Because of the Aharonov-Casher (AC) effect, the average spin accumulation oscillates quasi-periodically with the Rashba SO coupling and has a series of zeros. In some situations, the direction of the average spin accumulation can be reversed by the external voltage in this 1D Rashba ring.
SUSY-inspired one-dimensional transformation optics
Miri, Mohammad-Ali; Christodoulides, Demetrios N
2014-01-01
Transformation optics aims to identify artificial materials and structures with desired electromagnetic properties by means of pertinent coordinate transformations. In general, such schemes are meant to appropriately tailor the constitutive parameters of metamaterials in order to control the trajectory of light in two and three dimensions. Here we introduce a new class of one-dimensional optical transformations that exploits the mathematical framework of supersymmetry (SUSY). This systematic approach can be utilized to synthesize photonic configurations with identical reflection and transmission characteristics, down to the phase, for all incident angles, thus rendering them perfectly indistinguishable to an external observer. Along these lines, low-contrast dielectric arrangements can be designed to fully mimic the behavior of a given high-contrast structure that would have been otherwise beyond the reach of available materials and existing fabrication techniques. Similar strategies can also be adopted to re...
Characterizing high- n quasi-one-dimensional strontium Rydberg atoms
Hiller, Moritz; Yoshida, Shuhei; Burgdörfer, Joachim; Ye, Shuzhen; Zhang, Xinyue; Dunning, F. Barry
2014-05-01
The production of high- n, n ~ 300 , quasi-one-dimensional strontium Rydberg atoms by two-photon excitation of selected extreme Stark states in the presence of a weak dc field is examined using a crossed laser-atom beam geometry. The polarization of the product states is probed using three independent techniques which are analyzed with the aid of classical-trajectory Monte Carlo simulations that employ initial ensembles based on quantum calculations using a two-active-electron model. Comparisons between theory and experiment demonstrate that the product states have large dipole moments, ~ 1 . 0 - 1 . 2n2 a . u . and that they can be engineered using pulsed electric fields to create a wide variety of target states. Research supported by the NSF, the Robert A Welch Foundation, and the FWF (Austria).
Topologically protected states in one-dimensional systems
Fefferman, C L; Weinstein, M I
2017-01-01
The authors study a class of periodic Schrödinger operators, which in distinguished cases can be proved to have linear band-crossings or "Dirac points". They then show that the introduction of an "edge", via adiabatic modulation of these periodic potentials by a domain wall, results in the bifurcation of spatially localized "edge states". These bound states are associated with the topologically protected zero-energy mode of an asymptotic one-dimensional Dirac operator. The authors' model captures many aspects of the phenomenon of topologically protected edge states for two-dimensional bulk structures such as the honeycomb structure of graphene. The states the authors construct can be realized as highly robust TM-electromagnetic modes for a class of photonic waveguides with a phase-defect.
One-dimensional hybrid nanostructures for heterogeneous photocatalysis and photoelectrocatalysis.
Xiao, Fang-Xing; Miao, Jianwei; Tao, Hua Bing; Hung, Sung-Fu; Wang, Hsin-Yi; Yang, Hong Bin; Chen, Jiazang; Chen, Rong; Liu, Bin
2015-05-13
Semiconductor-based photocatalysis and photoelectrocatalysis have received considerable attention as alternative approaches for solar energy harvesting and storage. The photocatalytic or photoelectrocatalytic performance of a semiconductor is closely related to the design of the semiconductor at the nanoscale. Among various nanostructures, one-dimensional (1D) nanostructured photocatalysts and photoelectrodes have attracted increasing interest owing to their unique optical, structural, and electronic advantages. In this article, a comprehensive review of the current research efforts towards the development of 1D semiconductor nanomaterials for heterogeneous photocatalysis and photoelectrocatalysis is provided and, in particular, a discussion of how to overcome the challenges for achieving full potential of 1D nanostructures is presented. It is anticipated that this review will afford enriched information on the rational exploration of the structural and electronic properties of 1D semiconductor nanostructures for achieving more efficient 1D nanostructure-based photocatalysts and photoelectrodes for high-efficiency solar energy conversion.
Polaron and bipolaron of uniaxially strained one dimensional zigzag ladder
Energy Technology Data Exchange (ETDEWEB)
Yavidov, B.Ya., E-mail: bakhrom.yavidov@gmail.com
2016-09-15
An influence of the uniaxial strains in one dimensional zigzag ladder (1DZL) on the properties of polarons and bipolarons is considered. It is shown that strain changes all the parameters of the system, in particular, spectrum, existing bands and the masses of charge carriers. Numerical results obtained by taking into an account the Poisson effect clearly indicate that the properties of the (bi)polaronic system can be tuned via strain. Mass of bipolaron can be manipulated by the strain too which in turn leads to the way of tuning Bose–Einstein condensation temperature T{sub BEC} of bipolarons. It is shown that T{sub BEC} of bipolarons in strained 1DZL reasonably correlates with the values of critical temperature of superconductivity of certain perovskites.
Thermal radiation in one-dimensional photonic quasicrystals with graphene
Costa, C. H.; Vasconcelos, M. S.; Fulco, U. L.; Albuquerque, E. L.
2017-10-01
In this work we investigate the thermal power spectra of the electromagnetic radiation through one-dimensional stacks of dielectric layers, with graphene at their interfaces, arranged according to a quasiperiodic structure obeying the Fibonacci (FB), Thue-Morse (TM) and double-period (DP) sequences. The thermal radiation power spectra are determined by means of a theoretical model based on a transfer matrix formalism for both normal and oblique incidence geometries, considering the Kirchhoff's law of thermal radiation. A systematic study of the consequences of the graphene layers in the thermal emittance spectra is presented and discussed. We studied also the radiation spectra considering the case where the chemical potential is changed in order to tune the omnidirectional photonic band gap.
One-dimensional quasi-relativistic particle in the box
Kaleta, Kamil; Malecki, Jacek
2011-01-01
Two-term Weyl-type asymptotic law for the eigenvalues of one-dimensional quasi-relativistic Hamiltonian (-h^2 c^2 d^2/dx^2 + m^2 c^4)^(1/2) + V_well(x) (the Klein-Gordon square-root operator with electrostatic potential) with the infinite square well potential V_well(x) is given: the n-th eigenvalue is equal to (n pi/2 - pi/8) h c/a + O(1/n), where 2a is the width of the potential well. Simplicity of eigenvalues is proved. Some L^2 and L^infinity properties of eigenfunctions are also studied. Eigenvalues represent energies of a `massive particle in the box' quasi-relativistic model.
Novel superconducting phenomena in quasi-one-dimensional Bechgaard salts
Jerome, Denis; Yonezawa, Shingo
2016-03-01
It is the saturation of the transition temperature Tc in the range of 24 K for known materials in the late sixties that triggered the search for additional materials offering new coupling mechanisms leading in turn to higher Tc's. As a result of this stimulation, superconductivity in organic matter was discovered in tetramethyl-tetraselenafulvalene-hexafluorophosphate, (TMTSF)2PF6, in 1979, in the laboratory founded at Orsay by Professor Friedel and his colleagues in 1962. Although this conductor is a prototype example for low-dimensional physics, we mostly focus in this article on the superconducting phase of the ambient-pressure superconductor (TMTSF)2ClO4, which has been studied most intensively among the TMTSF salts. We shall present a series of experimental results supporting nodal d-wave symmetry for the superconducting gap in these prototypical quasi-one-dimensional conductors. xml:lang="fr"
One-Dimensional Time to Explosion (Thermal Sensitivity) of ANPZ
Energy Technology Data Exchange (ETDEWEB)
Hsu, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hust, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McClelland, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gresshoff, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2014-11-12
Incidents caused by fire and combat operations can heat energetic materials that may lead to thermal explosion and result in structural damage and casualty. Some explosives may thermally explode at fairly low temperatures (< 100 C) and the violence from thermal explosion may cause a significant damage. Thus it is important to understand the response of energetic materials to thermal insults. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory has been used for decades to measure times to explosion, threshold thermal explosion temperature, and determine kinetic parameters of energetic materials. Samples of different configurations (pressed part, powder, paste, and liquid) can be tested in the system. The ODTX testing can also provide useful data for assessing the thermal explosion violence of energetic materials. This report summarizes the recent ODTX experimental data and modeling results for 2,6-diamino-3,5-dintropyrazine (ANPZ).
Compaction of quasi-one-dimensional elastoplastic materials
Shaebani, M. Reza; Najafi, Javad; Farnudi, Ali; Bonn, Daniel; Habibi, Mehdi
2017-06-01
Insight into crumpling or compaction of one-dimensional objects is important for understanding biopolymer packaging and designing innovative technological devices. By compacting various types of wires in rigid confinements and characterizing the morphology of the resulting crumpled structures, here, we report how friction, plasticity and torsion enhance disorder, leading to a transition from coiled to folded morphologies. In the latter case, where folding dominates the crumpling process, we find that reducing the relative wire thickness counter-intuitively causes the maximum packing density to decrease. The segment size distribution gradually becomes more asymmetric during compaction, reflecting an increase of spatial correlations. We introduce a self-avoiding random walk model and verify that the cumulative injected wire length follows a universal dependence on segment size, allowing for the prediction of the efficiency of compaction as a function of material properties, container size and injection force.
One-dimensional photonic crystal fishbone hybrid nanocavity with nanoposts
Energy Technology Data Exchange (ETDEWEB)
Lu, Tsan-Wen; Lin, Pin-Tso; Lee, Po-Tsung, E-mail: potsung@mail.nctu.edu.tw [Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Rm. 413 CPT Building, 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan (China)
2014-05-12
We propose and investigate a one-dimensional photonic crystal (PhC) fishbone (FB) hybrid nanocavity lying on silver substrate with a horizontal air slot. With very few PhC periods, the confined transverse-magnetic, TM{sub 10} hybrid mode concentrated within the air slot shows high quality factor over effective mode volume ratio larger than 10{sup 5}λ{sup −3}. Most importantly, this FB hybrid nanocavity allows formation of low-index nanoposts within the air slot without significantly affecting the mode properties. These nanoposts guarantee the structural stabilities under different environmental perturbations. Furthermore, capabilities of our proposed design in serving as optical sensors and tweezers for bio-sized nanoparticles are also investigated.
Charge diffusion in the one-dimensional Hubbard model
Steinigeweg, R.; Jin, F.; De Raedt, H.; Michielsen, K.; Gemmer, J.
2017-08-01
We study the real-time and real-space dynamics of charge in the one-dimensional Hubbard model in the limit of high temperatures. To this end, we prepare pure initial states with sharply peaked density profiles and calculate the time evolution of these nonequilibrium states, by using numerical forward-propagation approaches to chains as long as 20 sites. For a class of typical states, we find excellent agreement with linear-response theory and unveil the existence of remarkably clean charge diffusion in the regime of strong particle-particle interactions. We additionally demonstrate that, in the half-filling sector, this diffusive behavior does not depend on certain details of our initial conditions, i.e., it occurs for five different realizations with random and nonrandom internal degrees of freedom, single and double occupation of the central site, and displacement of spin-up and spin-down particles.
Analytical models of optical response in one-dimensional semiconductors
Energy Technology Data Exchange (ETDEWEB)
Pedersen, Thomas Garm, E-mail: tgp@nano.aau.dk
2015-09-04
The quantum mechanical description of the optical properties of crystalline materials typically requires extensive numerical computation. Including excitonic and non-perturbative field effects adds to the complexity. In one dimension, however, the analysis simplifies and optical spectra can be computed exactly. In this paper, we apply the Wannier exciton formalism to derive analytical expressions for the optical response in four cases of increasing complexity. Thus, we start from free carriers and, in turn, switch on electrostatic fields and electron–hole attraction and, finally, analyze the combined influence of these effects. In addition, the optical response of impurity-localized excitons is discussed. - Highlights: • Optical response of one-dimensional semiconductors including excitons. • Analytical model of excitonic Franz–Keldysh effect. • Computation of optical response of impurity-localized excitons.
A one-dimensional toy model of globular clusters
Fanelli, D; Ruffo, S; Fanelli, Duccio; Merafina, Marco; Ruffo, Stefano
2001-01-01
We introduce a one-dimensional toy model of globular clusters. The model is a version of the well-known gravitational sheets system, where we take additionally into account mass and energy loss by evaporation of stars at the boundaries. Numerical integration by the "exact" event-driven dynamics is performed, for initial uniform density and Gaussian random velocities. Two distinct quasi-stationary asymptotic regimes are attained, depending on the initial energy of the system. We guess the forms of the density and velocity profiles which fit numerical data extremely well and allow to perform an independent calculation of the self-consistent gravitational potential. Some power-laws for the asymptotic number of stars and for the collision times are suggested.
Magnons in one-dimensional k-component Fibonacci structures
Costa, C. H.; Vasconcelos, M. S.
2014-05-01
We have studied the magnon transmission through of one-dimensional magnonic k-component Fibonacci structures, where k different materials are arranged in accordance with the following substitution rule: Sn(k)=Sn-1(k)Sn-k(k) (n ≥k=0,1,2,…), where Sn(k) is the nth stage of the sequence. The calculations were carried out in exchange dominated regime within the framework of the Heisenberg model and taking into account the RPA approximation. We have considered multilayers composed of simple cubic spin-S Heisenberg ferromagnets, and, by using the powerful transfer-matrix method, the spin wave transmission is obtained. It is demonstrated that the transmission coefficient has a rich and interesting magnonic pass- and stop-bands structures, which depends on the frequency of magnons and the k values.
Magnons in one-dimensional k-component Fibonacci structures
Energy Technology Data Exchange (ETDEWEB)
Costa, C. H., E-mail: carloshocosta@hotmail.com [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN (Brazil); Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN (Brazil); Vasconcelos, M. S. [Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN (Brazil)
2014-05-07
We have studied the magnon transmission through of one-dimensional magnonic k-component Fibonacci structures, where k different materials are arranged in accordance with the following substitution rule: S{sub n}{sup (k)}=S{sub n−1}{sup (k)}S{sub n−k}{sup (k)} (n≥k=0,1,2,…), where S{sub n}{sup (k)} is the nth stage of the sequence. The calculations were carried out in exchange dominated regime within the framework of the Heisenberg model and taking into account the RPA approximation. We have considered multilayers composed of simple cubic spin-S Heisenberg ferromagnets, and, by using the powerful transfer-matrix method, the spin wave transmission is obtained. It is demonstrated that the transmission coefficient has a rich and interesting magnonic pass- and stop-bands structures, which depends on the frequency of magnons and the k values.
Well-posedness of one-dimensional Korteweg models
Directory of Open Access Journals (Sweden)
Sylvie Benzoni-Gavage
2006-05-01
Full Text Available We investigate the initial-value problem for one-dimensional compressible fluids endowed with internal capillarity. We focus on the isothermal inviscid case with variable capillarity. The resulting equations for the density and the velocity, consisting of the mass conservation law and the momentum conservation with Korteweg stress, are a system of third order nonlinear dispersive partial differential equations. Additionally, this system is Hamiltonian and admits travelling solutions, representing propagating phase boundaries with internal structure. By change of unknown, it roughly reduces to a quasilinear Schrodinger equation. This new formulation enables us to prove local well-posedness for smooth perturbations of travelling profiles and almost-global existence for small enough perturbations. A blow-up criterion is also derived.
One-Dimensional Modeling of an Entrained Coal Gasification Process Using Kinetic Parameters
Directory of Open Access Journals (Sweden)
Moonkyeong Hwang
2016-02-01
Full Text Available A one-dimensional reactor model was developed to simulate the performance of an entrained flow gasifier under various operating conditions. The model combined the plug flow reactor (PFR model with the well-stirred reactor (WSR model. Reaction kinetics was considered together with gas diffusion for the solid-phase reactions in the PFR model, while equilibrium was considered for the gas-phase reactions in the WSR model. The differential and algebraic equations of mass balance and energy balance were solved by a robust ODE solver, i.e., an semi-implicit Runge–Kutta method, and by a nonlinear algebraic solver, respectively. The computed gasifier performance was validated against experimental data from the literature. The difference in product gas concentration from the equilibrium model, and the underlying mechanisms were discussed further. The optimal condition was found after parameter studies were made for various operating conditions.
A detailed one-dimensional model of combustion of a woody biomass particle.
Haseli, Y; van Oijen, J A; de Goey, L P H
2011-10-01
A detailed one-dimensional model for combustion of a single biomass particle is presented. It accounts for particle heating up, pyrolysis, char gasification and oxidation and gas phase reactions within and in the vicinity of the particle. The biomass pyrolysis is assumed to take place through three competing reactions yielding char, light gas and tar. The model is validated using different sets of experiments reported in the literature. Special emphasis is placed on examination of the effects of pyrolysis kinetic constants and gas phase reactions on the combustion process which have not been thoroughly discussed in previous works. It is shown that depending on the process condition and reactor temperature, correct selection of the pyrolysis kinetic data is a necessary step for simulation of biomass particle conversion. The computer program developed for the purpose of this study enables one to get a deeper insight into the biomass particle combustion process.
Magnetic properties of manganese based one-dimensional spin chains.
Asha, K S; Ranjith, K M; Yogi, Arvind; Nath, R; Mandal, Sukhendu
2015-12-14
We have correlated the structure-property relationship of three manganese-based inorganic-organic hybrid structures. Compound 1, [Mn2(OH-BDC)2(DMF)3] (where BDC = 1,4-benzene dicarboxylic acid and DMF = N,N'-dimethylformamide), contains Mn2O11 dimers as secondary building units (SBUs), which are connected by carboxylate anions forming Mn-O-C-O-Mn chains. Compound 2, [Mn2(BDC)2(DMF)2], contains Mn4O20 clusters as SBUs, which also form Mn-O-C-O-Mn chains. In compound 3, [Mn3(BDC)3(DEF)2] (where DEF = N,N'-diethylformamide), the distorted MnO6 octahedra are linked to form a one-dimensional chain with Mn-O-Mn connectivity. The magnetic properties were investigated by means of magnetization and heat capacity measurements. The temperature dependent magnetic susceptibility of all the three compounds could be nicely fitted using a one-dimensional S = 5/2 Heisenberg antiferromagnetic chain model and the value of intra-chain exchange coupling (J/k(B)) between Mn(2+) ions was estimated to be ∼1.1 K, ∼0.7 K, and ∼0.46 K for compounds 1, 2, and 3, respectively. Compound 1 does not undergo any magnetic long-range-order down to 2 K while compounds 2 and 3 undergo long-range magnetic order at T(N) ≈ 4.2 K and ≈4.3 K, respectively, which are of spin-glass type. From the values of J/k(B) and T(N) the inter-chain coupling (J(⊥)/k(B)) was calculated to be about 0.1J/k(B) for both compounds 2 and 3, respectively.
A One-Dimensional Synthetic-Aperture Microwave Radiometer
Doiron, Terence; Piepmeier, Jeffrey
2010-01-01
A proposed one-dimensional synthetic- aperture microwave radiometer could serve as an alternative to either the two-dimensional synthetic-aperture radiometer described in the immediately preceding article or to a prior one-dimensional one, denoted the Electrically Scanned Thinned Array Radiometer (ESTAR), mentioned in that article. The proposed radiometer would operate in a pushbroom imaging mode, utilizing (1) interferometric cross-track scanning to obtain cross-track resolution and (2) the focusing property of a reflector for along-track resolution. The most novel aspect of the proposed system would be the antenna (see figure), which would include a cylindrical reflector of offset parabolic cross section. The reflector could be made of a lightweight, flexible material amenable to stowage and deployment. Other than a stowage/deployment mechanism, the antenna would not include moving parts, and cross-track scanning would not entail mechanical rotation of the antenna. During operation, the focal line, parallel to the cylindrical axis, would be oriented in the cross-track direction, so that placement of receiving/radiating elements at the focal line would afford the desired along-track resolution. The elements would be microwave feed horns sparsely arrayed along the focal line. The feed horns would be oriented with their short and long cross-sectional dimensions parallel and perpendicular, respectively, to the cylindrical axis to obtain fan-shaped beams having their broad and narrow cross-sectional dimensions parallel and perpendicular, respectively, to the cylindrical axis. The interference among the beams would be controlled in the same manner as in the ESTAR to obtain along-cylindrical- axis (cross-track) resolution and cross-track scanning.
Transdimensional equivalence of universal constants for Fermi gases at unitarity.
Endres, Michael G
2012-12-21
I present lattice Monte Carlo calculations for a universal four-component Fermi gas confined to a finite box and to a harmonic trap in one spatial dimension. I obtain the values ξ(1D) = 0.370(4) and ξ(1D) = 0.372(1), respectively, for the Bertsch parameter, a nonperturbative universal constant defined as the (square of the) energy of the untrapped (trapped) system measured in units of the free gas energy. The Bertsch parameter obtained for the one-dimensional system is consistent to within ~1% uncertainties with the most recent numerical and experimental estimates of the analogous Bertsch parameter for a three-dimensional spin-1/2 Fermi gas at unitarity. The finding suggests the intriguing possibility that there exists a universality between two conformal theories in different dimensions. To lend support to this study, I also compute ground state energies for four and five fermions confined to a harmonic trap and demonstrate the restoration of a virial theorem in the continuum limit. The continuum few-body energies obtained are consistent with exact analytical calculations to within ~1.0% and ~0.3% statistical uncertainties, respectively.
Transdimensional equivalence of universal constants from universal Fermi gases
Endres, Michael G
2012-01-01
I present lattice Monte Carlo calculations for a universal four-component Fermi gas confined to a finite box and to a harmonic trap in one spatial dimension. I obtain the continuum and thermodynamic limit extrapolated values xi_1d = 0.370(4) and xi_1d = 0.372(1), respectively, for the Bertsch parameter, a nonperturbative universal constant defined as the (square of the) energy of the untrapped (trapped) system measured in units of the free gas energy. The Bertsch parameter for the one-dimensional system is consistent to within ~1% uncertainties with the most recent numerical and experimental estimates of the analogous Bertsch parameter for a three-dimensional spin-1/2 Fermi gas at unitarity. The finding suggests the intriguing possibility that there exists a universality between two conformal theories in different dimensions. To lend support to this study, I also compute continuum extrapolated ground state energies for four and five fermions confined to a harmonic trap and demonstrate the restoration of a Vir...
Yamaguchi, T.; Inotani, D.; Ohashi, Y.
2016-05-01
We investigate the formation of rashbon bound states and strong-coupling effects in an ultracold Fermi gas with a spherical spin-orbit interaction, H_so=λ {\\varvec{p}}\\cdot {σ } (where {σ }=(σ _x,σ _y,σ _z) are Pauli matrices). Extending the strong-coupling theory developed by Nozières and Schmitt-Rink (NSR) to include this spin-orbit coupling, we determine the superfluid phase transition temperature T_c, as functions of the strength of a pairing interaction U_s, as well as the spin-orbit coupling strength λ . Evaluating poles of the NSR particle-particle scattering matrix describing fluctuations in the Cooper channel, we clarify the region where rashbon bound states dominate the superfluid phase transition in the U_s-λ phase diagram. Since the antisymmetric spin-orbit interaction H_so breaks the inversion symmetry of the system, rashbon bound states naturally have not only a spin-singlet and even-parity symmetry, but also a spin-triplet and odd-parity symmetry. Thus, our results would be also useful for the study of this parity-mixing effect in the BCS-BEC crossover regime of a spin-orbit coupled Fermi gas.
Negative refraction angular characterization in one-dimensional photonic crystals.
Directory of Open Access Journals (Sweden)
Jesus Eduardo Lugo
Full Text Available BACKGROUND: Photonic crystals are artificial structures that have periodic dielectric components with different refractive indices. Under certain conditions, they abnormally refract the light, a phenomenon called negative refraction. Here we experimentally characterize negative refraction in a one dimensional photonic crystal structure; near the low frequency edge of the fourth photonic bandgap. We compare the experimental results with current theory and a theory based on the group velocity developed here. We also analytically derived the negative refraction correctness condition that gives the angular region where negative refraction occurs. METHODOLOGY/PRINCIPAL FINDINGS: By using standard photonic techniques we experimentally determined the relationship between incidence and negative refraction angles and found the negative refraction range by applying the correctness condition. In order to compare both theories with experimental results an output refraction correction was utilized. The correction uses Snell's law and an effective refractive index based on two effective dielectric constants. We found good agreement between experiment and both theories in the negative refraction zone. CONCLUSIONS/SIGNIFICANCE: Since both theories and the experimental observations agreed well in the negative refraction region, we can use both negative refraction theories plus the output correction to predict negative refraction angles. This can be very useful from a practical point of view for space filtering applications such as a photonic demultiplexer or for sensing applications.
Charge transport through one-dimensional Moiré crystals
Bonnet, Roméo; Lherbier, Aurélien; Barraud, Clément; Rocca, Maria Luisa Della; Lafarge, Philippe; Charlier, Jean-Christophe
2016-01-01
Moiré superlattices were generated in two-dimensional (2D) van der Waals heterostructures and have revealed intriguing electronic structures. The appearance of mini-Dirac cones within the conduction and valence bands of graphene is one of the most striking among the new quantum features. A Moiré superstructure emerges when at least two periodic sub-structures superimpose. 2D Moiré patterns have been particularly investigated in stacked hexagonal 2D atomic lattices like twisted graphene layers and graphene deposited on hexagonal boron-nitride. In this letter, we report both experimentally and theoretically evidence of superlattices physics in transport properties of one-dimensional (1D) Moiré crystals. Rolling-up few layers of graphene to form a multiwall carbon nanotube adds boundaries conditions that can be translated into interference fringes-like Moiré patterns along the circumference of the cylinder. Such a 1D Moiré crystal exhibits a complex 1D multiple bands structure with clear and robust interband quantum transitions due to the presence of mini-Dirac points and pseudo-gaps. Our devices consist in a very large diameter (>80 nm) multiwall carbon nanotubes of high quality, electrically connected by metallic electrodes acting as charge reservoirs. Conductance measurements reveal the presence of van Hove singularities assigned to 1D Moiré superlattice effect and illustrated by electronic structure calculations.
Negative refraction angular characterization in one-dimensional photonic crystals.
Lugo, Jesus Eduardo; Doti, Rafael; Faubert, Jocelyn
2011-04-06
Photonic crystals are artificial structures that have periodic dielectric components with different refractive indices. Under certain conditions, they abnormally refract the light, a phenomenon called negative refraction. Here we experimentally characterize negative refraction in a one dimensional photonic crystal structure; near the low frequency edge of the fourth photonic bandgap. We compare the experimental results with current theory and a theory based on the group velocity developed here. We also analytically derived the negative refraction correctness condition that gives the angular region where negative refraction occurs. By using standard photonic techniques we experimentally determined the relationship between incidence and negative refraction angles and found the negative refraction range by applying the correctness condition. In order to compare both theories with experimental results an output refraction correction was utilized. The correction uses Snell's law and an effective refractive index based on two effective dielectric constants. We found good agreement between experiment and both theories in the negative refraction zone. Since both theories and the experimental observations agreed well in the negative refraction region, we can use both negative refraction theories plus the output correction to predict negative refraction angles. This can be very useful from a practical point of view for space filtering applications such as a photonic demultiplexer or for sensing applications.
One-dimensional consolidation in unsaturated soils under cyclic loading
Lo, Wei-Cheng; Sposito, Garrison; Lee, Jhe-Wei; Chu, Hsiuhua
2016-05-01
The one-dimensional consolidation model of poroelasticity of Lo et al. (2014) for an unsaturated soil under constant loading is generalized to include an arbitrary time-dependent loading. A closed-form solution for the pore water and air pressures along with the total settlement is derived by employing a Fourier series representation in the spatial domain and a Laplace transformation in the time domain. This solution is illustrated for the important example of a fully-permeable soil cylinder with an undrained initial condition acted upon by a periodic stress. Our results indicate that, in terms of a dimensionless time scale, the transient solution decays to zero most slowly in a water-saturated soil, whereas for an unsaturated soil, the time for the transient solution to die out is inversely proportional to the initial water saturation. The generalization presented here shows that the diffusion time scale for pore water in an unsaturated soil is orders of magnitude greater than that in a water-saturated soil, mainly because of the much smaller hydraulic conductivity of the former.
Integral Transport Theory in One-dimensional Geometries
Energy Technology Data Exchange (ETDEWEB)
Carlvik, I.
1966-06-15
A method called DIT (Discrete Integral Transport) has been developed for the numerical solution of the transport equation in one-dimensional systems. The characteristic features of the method are Gaussian integration over the coordinate as described by Kobayashi and Nishihara, and a particular scheme for the calculation of matrix elements in annular and spherical geometry that has been used for collision probabilities in earlier Flurig programmes. The paper gives a general theory including such things as anisotropic scattering and multi-pole fluxes, and it gives a brief description of the Flurig scheme. Annular geometry is treated in some detail, and corresponding formulae are given for spherical and plane geometry. There are many similarities between DIT and the method of collision probabilities. DIT is in many cases faster, because for a certain accuracy in the fluxes DIT often needs fewer space points than the method of collision probabilities needs regions. Several computer codes using DIT, both one-group and multigroup, have been written. It is anticipated that experience gained in calculations with these codes will be reported in another paper.
Solitary Wave in One-dimensional Buckyball System at Nanoscale
Xu, Jun; Zheng, Bowen; Liu, Yilun
2016-01-01
We have studied the stress wave propagation in one-dimensional (1-D) nanoscopic buckyball (C60) system by molecular dynamics (MD) simulation and quantitative modeling. Simulation results have shown that solitary waves are generated and propagating in the buckyball system through impacting one buckyball at one end of the buckyball chain. We have found the solitary wave behaviors are closely dependent on the initial temperature and impacting speed of the buckyball chain. There are almost no dispersion and dissipation of the solitary waves (stationary solitary wave) for relatively low temperature and high impacting speed. While for relatively high temperature and low impacting speed the profile of the solitary waves is highly distorted and dissipated after propagating several tens of buckyballs. A phase diagram is proposed to describe the effect of the temperature and impacting speed on the solitary wave behaviors in buckyball system. In order to quantitatively describe the wave behavior in buckyball system, a simple nonlinear-spring model is established, which can describe the MD simulation results at low temperature very well. The results presented in this work may lay a solid step towards the further understanding and manipulation of stress wave propagation and impact energy mitigation at nanoscale. PMID:26891624
Solution-phase Synthesis of One-dimensional Semiconductor Nanostructures
Institute of Scientific and Technical Information of China (English)
Jianfeng YE; Limin QI
2008-01-01
The synthesis of one-dimensional (1D) semiconductor nanostructures has been studied intensively for a wide range of materials due to their unique structural and physical properties and promising potential for future technological applications. Among various strategies for synthesizing 1D semiconductor nanostructures, solution-phase synthetic routes are advantageous in terms of cost, throughput, modulation of composition, and the potential for large-scale and environmentally benign production. This article gives a concise review on the recent developments in the solution-phase synthesis of 1D semiconductor nanostructures of different compositions, sizes, shapes, and architectures. We first introduce several typical solution-phase synthetic routes based on controlled precipitation from homogeneous solutions, including hydrothermal/solvothermal process, solution-liquid-solid (SLS) process, high-temperature organic-solution process, and low-temperature aqueous-solution process. Subsequently, we discuss two solution-phase synthetic strategies involving solid templates or substrates, such as the chemical transformation of 1D sacrificial templates and the oriented growth of 1D nanostructure arrays on solid substrates. Finally, prospects of the solution-phase approaches to 1D semiconductor nanostructures will be briefly discussed.
Approximate Relativistic Solutions for One-Dimensional Cylindrical Coaxial Diode
Institute of Scientific and Technical Information of China (English)
曾正中; 刘国治; 邵浩
2002-01-01
Two approximate analytical relativistic solutions for one-dimensional, space-chargelimited cylindrical coaxial diode are derived and utilized to compose best-fitting approximate solutions. Comparison of the best-fitting solutions with the numerical one demonstrates an error of about 11% for cathode-inside arrangement and 12% in the cathode-outside case for ratios of larger to smaller electrode radius from 1.2 to 10 and a voltage above 0.5 MV up to 5 MV. With these solutions the diode lengths for critical self-magnetic bending and for the condition under which the parapotential model validates are calculated to be longer than 1 cm up to more than 100 cm depending on voltage, radial dimensions and electrode arrangement. The influence of ion flow from the anode on the relativistic electron-only solution is numerically computed, indicating an enhancement factor of total diode current of 1.85 to 4.19 related to voltage, radial dimension and electrode arrangement.
Negativity spectrum of one-dimensional conformal field theories
Ruggiero, Paola; Calabrese, Pasquale
2016-01-01
The partial transpose $\\rho_A^{T_2}$ of the reduced density matrix $\\rho_A$ is the key object to quantify the entanglement in mixed states, in particular through the presence of negative eigenvalues in its spectrum. Here we derive analytically the distribution of the eigenvalues of $\\rho_A^{T_2}$, that we dub negativity spectrum, in the ground sate of gapless one-dimensional systems described by a Conformal Field Theory (CFT), focusing on the case of two adjacent intervals. We show that the negativity spectrum is universal and depends only on the central charge of the CFT, similarly to the entanglement spectrum. The precise form of the negativity spectrum depends on whether the two intervals are in a pure or mixed state, and in both cases, a dependence on the sign of the eigenvalues is found. This dependence is weak for bulk eigenvalues, whereas it is strong at the spectrum edges. We also investigate the scaling of the smallest (negative) and largest (positive) eigenvalues of $\\rho_A^{T_2}$. We check our resu...
One-Dimensional Electron Transport Layers for Perovskite Solar Cells
Directory of Open Access Journals (Sweden)
Ujwal K. Thakur
2017-04-01
Full Text Available The electron diffusion length (Ln is smaller than the hole diffusion length (Lp in many halide perovskite semiconductors meaning that the use of ordered one-dimensional (1D structures such as nanowires (NWs and nanotubes (NTs as electron transport layers (ETLs is a promising method of achieving high performance halide perovskite solar cells (HPSCs. ETLs consisting of oriented and aligned NWs and NTs offer the potential not merely for improved directional charge transport but also for the enhanced absorption of incoming light and thermodynamically efficient management of photogenerated carrier populations. The ordered architecture of NW/NT arrays affords superior infiltration of a deposited material making them ideal for use in HPSCs. Photoconversion efficiencies (PCEs as high as 18% have been demonstrated for HPSCs using 1D ETLs. Despite the advantages of 1D ETLs, there are still challenges that need to be overcome to achieve even higher PCEs, such as better methods to eliminate or passivate surface traps, improved understanding of the hetero-interface and optimization of the morphology (i.e., length, diameter, and spacing of NWs/NTs. This review introduces the general considerations of ETLs for HPSCs, deposition techniques used, and the current research and challenges in the field of 1D ETLs for perovskite solar cells.
Digital noise generators using one-dimensional chaotic maps
Energy Technology Data Exchange (ETDEWEB)
Martínez-Ñonthe, J. A; Palacios-Luengas, L.; Cruz-Irisson, M.; Vazquez Medina, R. [Instituto Politécnico Nacional, ESIME-Culhuacan, Santa Ana 1000, 04430, D.F. (Mexico); Díaz Méndez, J. A. [Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro 1, Tonantzintla, Puebla (Mexico)
2014-05-15
This work shows how to improve the statistical distribution of signals produced by digital noise generators designed with one-dimensional (1-D) chaotic maps. It also shows that in a digital electronic design the piecewise linear chaotic maps (PWLCM) should be considered because they do not have stability islands in its chaotic behavior region, as it occurs in the case of the logistic map, which is commonly used to build noise generators. The design and implementation problems of the digital noise generators are analyzed and a solution is proposed. This solution relates the output of PWLCM, usually defined in the real numbers' domain, with a codebook of S elements, previously defined. The proposed solution scheme produces digital noise signals with a statistical distribution close to a uniform distribution. Finally, this work shows that it is possible to have control over the statistical distribution of the noise signal by selecting the control parameter of the PWLCM and using, as a design criterion, the bifurcation diagram.
A Smart Colorful Supercapacitor with One Dimensional Photonic Crystals
Liu, Cihui; Liu, Xing; Xuan, Hongyun; Ren, Jiaoyu; Ge, Liqin
2015-12-01
To meet the pressing demands for portable and flexible equipment in contemporary society, developing flexible, lightweight, and sustainable supercapacitor systems with large power densities, long cycle life, and ease of strongly required. However, estimating the state-of-charge of existing supercapacitors is difficult, and thus their service life is limited. In this study, we fabricate a flexible color indicative supercapacitor device with mesoporous polyaniline (mPANI)/Poly(N-Isopropyl acrylamide-Graphene Oxide-Acrylic Acid) (P(NiPPAm-GO-AA)) one dimensional photonic crystals (1DPCs) as the electrode material through a low-cost, eco-friendly, and scalable fabrication process. We found that the state-of-charge could be monitored by the structural color oscillation due to the change in the photonic band gap position of the 1DPCs. The flexible 1DPCs supercapacitor is thin at 3 mm and exhibits good specific capacitance of 22.6 F g-1 with retention of 91.1% after 3,000 cycles. This study shows the application of the 1DPCs supercapacitor as a visual ultrathin power source. The technology may find many applications in future wearable electronics.
Cooperative eigenmodes and scattering in one-dimensional atomic arrays
Bettles, Robert J.; Gardiner, Simon A.; Adams, Charles S.
2016-10-01
Collective coupling between dipoles can dramatically modify the optical response of a medium. Such effects depend strongly on the geometry of the medium and the polarization of the light. Using a classical coupled dipole model, here we investigate the simplest case of one-dimensional arrays of interacting atomic dipoles driven by a weak laser field. Changing the polarization and direction of the driving field allows us to separately address superradiant, subradiant, redshifted, and blueshifted eigenmodes, as well as observe strong Fano-like interferences between different modes. The cooperative eigenvectors can be characterized by the phase difference between nearest-neighbor dipoles, ranging from all oscillating in phase to all oscillating out of phase with their nearest neighbors. Investigating the eigenvalue behavior as a function of atom number and lattice spacing, we find that certain eigenmodes of an infinite atomic chain have the same decay rate as a single atom between two mirrors. The effects we observe provide a framework for collective control of the optical response of a medium, giving insight into the behavior of more complicated geometries, as well as providing further evidence for the dipolar analog of cavity QED.
One-Dimensional Electron Transport Layers for Perovskite Solar Cells
Thakur, Ujwal K.; Kisslinger, Ryan; Shankar, Karthik
2017-01-01
The electron diffusion length (Ln) is smaller than the hole diffusion length (Lp) in many halide perovskite semiconductors meaning that the use of ordered one-dimensional (1D) structures such as nanowires (NWs) and nanotubes (NTs) as electron transport layers (ETLs) is a promising method of achieving high performance halide perovskite solar cells (HPSCs). ETLs consisting of oriented and aligned NWs and NTs offer the potential not merely for improved directional charge transport but also for the enhanced absorption of incoming light and thermodynamically efficient management of photogenerated carrier populations. The ordered architecture of NW/NT arrays affords superior infiltration of a deposited material making them ideal for use in HPSCs. Photoconversion efficiencies (PCEs) as high as 18% have been demonstrated for HPSCs using 1D ETLs. Despite the advantages of 1D ETLs, there are still challenges that need to be overcome to achieve even higher PCEs, such as better methods to eliminate or passivate surface traps, improved understanding of the hetero-interface and optimization of the morphology (i.e., length, diameter, and spacing of NWs/NTs). This review introduces the general considerations of ETLs for HPSCs, deposition techniques used, and the current research and challenges in the field of 1D ETLs for perovskite solar cells. PMID:28468280
A disorder-enhanced quasi-one-dimensional superconductor.
Petrović, A P; Ansermet, D; Chernyshov, D; Hoesch, M; Salloum, D; Gougeon, P; Potel, M; Boeri, L; Panagopoulos, C
2016-01-01
A powerful approach to analysing quantum systems with dimensionality d>1 involves adding a weak coupling to an array of one-dimensional (1D) chains. The resultant quasi-1D (q1D) systems can exhibit long-range order at low temperature, but are heavily influenced by interactions and disorder due to their large anisotropies. Real q1D materials are therefore ideal candidates not only to provoke, test and refine theories of strongly correlated matter, but also to search for unusual emergent electronic phases. Here we report the unprecedented enhancement of a superconducting instability by disorder in single crystals of Na2-δMo6Se6, a q1D superconductor comprising MoSe chains weakly coupled by Na atoms. We argue that disorder-enhanced Coulomb pair-breaking (which usually destroys superconductivity) may be averted due to a screened long-range Coulomb repulsion intrinsic to disordered q1D materials. Our results illustrate the capability of disorder to tune and induce new correlated electron physics in low-dimensional materials.
Spin interference in silicon one-dimensional rings
Energy Technology Data Exchange (ETDEWEB)
Bagraev, N T [Ioffe Physico-Technical Institute, RAS, 194021 St Petersburg (Russian Federation); Galkin, N G [Ioffe Physico-Technical Institute, RAS, 194021 St Petersburg (Russian Federation); Gehlhoff, W [Institut fuer Festkoerperphysik, TU Berlin, D-10623 Berlin (Germany); Klyachkin, L E [Ioffe Physico-Technical Institute, RAS, 194021 St Petersburg (Russian Federation); Malyarenko, A M [Ioffe Physico-Technical Institute, RAS, 194021 St Petersburg (Russian Federation); Shelykh, I A [Physics and Astronomy School, University of Southampton, Highfield, Southampton, S017 1BJ (United Kingdom)
2006-11-15
We present the first findings of the spin transistor effect in a Rashba gate-controlled ring embedded in a p-type self-assembled silicon quantum well that is prepared on an n-type Si(100) surface. The coherence and phase sensitivity of the spin-dependent transport of holes are studied by varying the values of the external magnetic field and the bias voltage that are applied perpendicularly to the plane of the double-slit ring. First, the amplitude and phase sensitivity of the 0.7 x (2e{sup 2}/h) feature of the hole quantum conductance staircase revealed by the quantum point contact inserted in one of the arms of the double-slit ring are found to result from the interplay of the spontaneous spin polarization and the Rashba spin-orbit interaction. Second, the quantum scatterers connected to two one-dimensional leads and the quantum point contact inserted are shown to define the amplitude and the phase of the Aharonov-Bohm and the Aharonov-Casher conductance oscillations. (letter to the editor)
A Smart Colorful Supercapacitor with One Dimensional Photonic Crystals.
Liu, Cihui; Liu, Xing; Xuan, Hongyun; Ren, Jiaoyu; Ge, Liqin
2015-12-22
To meet the pressing demands for portable and flexible equipment in contemporary society, developing flexible, lightweight, and sustainable supercapacitor systems with large power densities, long cycle life, and ease of strongly required. However, estimating the state-of-charge of existing supercapacitors is difficult, and thus their service life is limited. In this study, we fabricate a flexible color indicative supercapacitor device with mesoporous polyaniline (mPANI)/Poly(N-Isopropyl acrylamide-Graphene Oxide-Acrylic Acid) (P(NiPPAm-GO-AA)) one dimensional photonic crystals (1DPCs) as the electrode material through a low-cost, eco-friendly, and scalable fabrication process. We found that the state-of-charge could be monitored by the structural color oscillation due to the change in the photonic band gap position of the 1DPCs. The flexible 1DPCs supercapacitor is thin at 3 mm and exhibits good specific capacitance of 22.6 F g(-1) with retention of 91.1% after 3,000 cycles. This study shows the application of the 1DPCs supercapacitor as a visual ultrathin power source. The technology may find many applications in future wearable electronics.
Transmission properties of one-dimensional ternary plasma photonic crystals
Energy Technology Data Exchange (ETDEWEB)
Shiveshwari, Laxmi [Department of Physics, K. B. Womens' s College, Hazaribagh 825 301 (India); Awasthi, S. K. [Department of Physics and Material Science and Engineering, Jaypee Institute of Information Technology, Noida 201 304 (India)
2015-09-15
Omnidirectional photonic band gaps (PBGs) are found in one-dimensional ternary plasma photonic crystals (PPC) composed of single negative metamaterials. The band characteristics and transmission properties are investigated through the transfer matrix method. We show that the proposed structure can trap light in three-dimensional space due to the elimination of Brewster's angle transmission resonance allowing the existence of complete PBG. The results are discussed in terms of incident angle, layer thickness, dielectric constant of the dielectric material, and number of unit cells (N) for TE and TM polarizations. It is seen that PBG characteristics is apparent even in an N ≥ 2 system, which is weakly sensitive to the incident angle and completely insensitive to the polarization. Finite PPC could be used for multichannel transmission filter without introducing any defect in the geometry. We show that the locations of the multichannel transmission peaks are in the allowed band of the infinite structure. The structure can work as a single or multichannel filter by varying the number of unit cells. Binary PPC can also work as a polarization sensitive tunable filter.
Phonons in a one-dimensional microfluidic crystal
Beatus, Tsevi; Bar-Ziv, Roy; 10.1038/nphys432
2010-01-01
The development of a general theoretical framework for describing the behaviour of a crystal driven far from equilibrium has proved difficult1. Microfluidic crystals, formed by the introduction of droplets of immiscible fluid into a liquid-filled channel, provide a convenient means to explore and develop models to describe non-equilibrium dynamics2, 3, 4, 5, 6, 7, 8, 9, 10, 11. Owing to the fact that these systems operate at low Reynolds number (Re), in which viscous dissipation of energy dominates inertial effects, vibrations are expected to be over-damped and contribute little to their dynamics12, 13, 14. Against such expectations, we report the emergence of collective normal vibrational modes (equivalent to acoustic 'phonons') in a one-dimensional microfluidic crystal of water-in-oil droplets at Reapprox10-4. These phonons propagate at an ultra-low sound velocity of approx100 mum s-1 and frequencies of a few hertz, exhibit unusual dispersion relations markedly different to those of harmonic crystals, and g...
Trapped Atoms in One-Dimensional Photonic Crystals
Kimble, H.
2013-05-01
I describe one-dimensional photonic crystals that support a guided mode suitable for atom trapping within a unit cell, as well as a second probe mode with strong atom-photon interactions. A new hybrid trap is analyzed that combines optical and Casimir-Polder forces to form stable traps for neutral atoms in dielectric nanostructures. By suitable design of the band structure, the atomic spontaneous emission rate into the probe mode can exceed the rate into all other modes by more than tenfold. The unprecedented single-atom reflectivity r0 ~= 0 . 9 for the guided probe field could create new scientific opportunities, including quantum many-body physics for 1 D atom chains with photon-mediated interactions and high-precision studies of vacuum forces. Towards these goals, my colleagues and I are pursuing numerical simulation, device fabrication, and cold-atom experiments with nanoscopic structures. Funding is provided by by the IQIM, an NSF PFC with support of the Moore Foundation, by the AFOSR QuMPASS MURI, by the DoD NSSEFF program (HJK), and by NSF Grant PHY0652914 (HJK). DEC acknowledges funding from Fundacio Privada Cellex Barcelona.
Validation and Comparison of One-Dimensional Graound Motion Methodologies
Energy Technology Data Exchange (ETDEWEB)
B. Darragh; W. Silva; N. Gregor
2006-06-28
Both point- and finite-source stochastic one-dimensional ground motion models, coupled to vertically propagating equivalent-linear shear-wave site response models are validated using an extensive set of strong motion data as part of the Yucca Mountain Project. The validation and comparison exercises are presented entirely in terms of 5% damped pseudo absolute response spectra. The study consists of a quantitative analyses involving modeling nineteen well-recorded earthquakes, M 5.6 to 7.4 at over 600 sites. The sites range in distance from about 1 to about 200 km in the western US (460 km for central-eastern US). In general, this validation demonstrates that the stochastic point- and finite-source models produce accurate predictions of strong ground motions over the range of 0 to 100 km and for magnitudes M 5.0 to 7.4. The stochastic finite-source model appears to be broadband, producing near zero bias from about 0.3 Hz (low frequency limit of the analyses) to the high frequency limit of the data (100 and 25 Hz for response and Fourier amplitude spectra, respectively).
Topological water wave states in a one-dimensional structure
Yang, Zhaoju; Gao, Fei; Zhang, Baile
2016-01-01
Topological concepts have been introduced into electronic, photonic, and phononic systems, but have not been studied in surface-water-wave systems. Here we study a one-dimensional periodic resonant surface-water-wave system and demonstrate its topological transition. By selecting three different water depths, we can construct different types of water waves - shallow, intermediate and deep water waves. The periodic surface-water-wave system consists of an array of cylindrical water tanks connected with narrow water channels. As the width of connecting channel varies, the band diagram undergoes a topological transition which can be further characterized by Zak phase. This topological transition holds true for shallow, intermediate and deep water waves. However, the interface state at the boundary separating two topologically distinct arrays of water tanks can exhibit different bands for shallow, intermediate and deep water waves. Our work studies for the first time topological properties of water wave systems, and paves the way to potential management of water waves. PMID:27373982
Charge transport through one-dimensional Moiré crystals.
Bonnet, Roméo; Lherbier, Aurélien; Barraud, Clément; Della Rocca, Maria Luisa; Lafarge, Philippe; Charlier, Jean-Christophe
2016-01-20
Moiré superlattices were generated in two-dimensional (2D) van der Waals heterostructures and have revealed intriguing electronic structures. The appearance of mini-Dirac cones within the conduction and valence bands of graphene is one of the most striking among the new quantum features. A Moiré superstructure emerges when at least two periodic sub-structures superimpose. 2D Moiré patterns have been particularly investigated in stacked hexagonal 2D atomic lattices like twisted graphene layers and graphene deposited on hexagonal boron-nitride. In this letter, we report both experimentally and theoretically evidence of superlattices physics in transport properties of one-dimensional (1D) Moiré crystals. Rolling-up few layers of graphene to form a multiwall carbon nanotube adds boundaries conditions that can be translated into interference fringes-like Moiré patterns along the circumference of the cylinder. Such a 1D Moiré crystal exhibits a complex 1D multiple bands structure with clear and robust interband quantum transitions due to the presence of mini-Dirac points and pseudo-gaps. Our devices consist in a very large diameter (>80 nm) multiwall carbon nanotubes of high quality, electrically connected by metallic electrodes acting as charge reservoirs. Conductance measurements reveal the presence of van Hove singularities assigned to 1D Moiré superlattice effect and illustrated by electronic structure calculations.
Redshift distortions in one-dimensional power spectra
Desjacques, V; Desjacques, Vincent; Nusser, Adi
2004-01-01
We present a model for one-dimensional (1D) matter power spectra in redshift space as estimated from data provided along individual lines of sight. We derive analytic expressions for these power spectra in the linear and nonlinear regimes, focusing on redshift distortions arising from peculiar velocities. In the linear regime, redshift distortions enhance the 1D power spectra only on small scales, and do not affect the power on large scales. This is in contrast to the effect of distortions on three-dimensional (3D) power spectra estimated from data in 3D space, where the enhancement is independent of scale. For CDM cosmologies, the 1D power spectra in redshift and real space are similar for wavenumbers $q<0.1h/Mpc$ where both have a spectral index close to unity, independent of the details of the 3D power spectrum. Nonlinear corrections drive the 1D power spectrum in redshift space into a nearly universal shape over scale $q<10h/Mpc$, and suppress the power on small scales as a result of the strong velo...
Electron Rydberg wave packets in one-dimensional atoms
Indian Academy of Sciences (India)
Supriya Chatterjee; Amitava Choudhuri; Aparna Saha; B Talukdar
2010-09-01
An expression for the transition probability or form factor in one-dimensional Rydberg atom irradiated by short half-cycle pulse was constructed. In applicative contexts, our expression was found to be more useful than the corresponding result given by Landau and Lifshitz. Using the new expression for the form factor, the motion of a localized quantum wave packet was studied with particular emphasis on its revival and super-revival properties. Closed form analytical expressions were derived for expectation values of the position and momentum operators that characterized the widths of the position and momentum distributions. Transient phase-space localization of the wave packet produced by the application of a single impulsive kick was explicitly demonstrated. The undulation of the uncertainty product as a function of time was studied in order to visualize how the motion of the wave packet in its classical trajectory spreads throughout the orbit and the system becomes nonclassical. The process, however, repeats itself such that the atom undergoes a free evolution from a classical, to a nonclassical, and back to a classical state.
One-dimensional Ising model with multispin interactions
Turban, L
2016-01-01
We study the spin-$1/2$ Ising chain with multispin interactions $K$ involving the product of $m$ successive spins, for general values of $m$. Using a change of spin variables the zero-field partition function of a finite chain is obtained for free and periodic boundary conditions (BC) and we calculate the two-spin correlation function. When placed in an external field $H$ the system is shown to be self-dual. Using another change of spin variables the one-dimensional (1D) Ising model with multispin interactions in a field is mapped onto a zero-field rectangular Ising model with first-neighbour interactions $K$ and $H$. The 2D system, with size $m\\times N/m$, has the topology of a cylinder with helical BC. In the thermodynamic limit $N/m\\to\\infty$, $m\\to\\infty$, a 2D critical singularity develops on the self-duality line, $\\sinh 2K\\sinh 2H=1$.
One dimensional numerical simulation of small scale CFB combustors
Energy Technology Data Exchange (ETDEWEB)
Gungor, Afsin [Department of Mechanical Engineering, Faculty of Engineering and Architecture, Nigde University, 51100 Nigde (Turkey)
2009-03-15
In this study, a one-dimensional model which includes volatilization, attrition and combustion of char particles for a circulating fluidized bed (CFB) combustor has been developed. In the modeling, the CFB combustor is analyzed in two regions: bottom zone considering as a bubbling fluidized bed in turbulent fluidization regime and upper zone core-annulus solids flow structure is established. In the bottom zone, a single-phase back-flow cell model is used to represent the solid mixing. Solids exchange, between the bubble phase and emulsion phase is a function of the bubble diameter and varies along the axis of the combustor. In the upper zone, particles move upward in the core and downward in the annulus. Thickness of the annulus varies according to the combustor height. Using the developed simulation program, the effects of operational parameters which are the particle diameter, superficial velocity and air-to-fuel ratio on net solids flux, oxygen and carbon dioxide mole ratios along the bed height and carbon content and bed temperature on the top of the riser are investigated. Simulation results are compared with test results obtained from the 50 kW Gazi University Heat Power Laboratory pilot scale unit and good agreement is observed. (author)
One dimensional coordination polymers: Synthesis, crystal structures and spectroscopic properties
Karaağaç, Dursun; Kürkçüoğlu, Güneş Süheyla; Şenyel, Mustafa; Şahin, Onur
2016-11-01
Two new one dimensional (1D) cyanide complexes, namely [M(4-aepy)2(H2O)2][Pt(CN)4], (4-aepy = 4-(2-aminoethyl)pyridine M = Cu(II) (1) or Zn(II) (2)), have been synthesized and characterized by vibrational (FT-IR and Raman) spectroscopy, single crystal X-ray diffraction, thermal and elemental analyses techniques. The crystallographic analyses reveal that 1 and 2 are isomorphous and isostructural, and crystallize in the monoclinic system and C2 space group. The Pt(II) ions are coordinated by four cyanide-carbon atoms in the square-planar geometry and the [Pt(CN)4]2- ions act as a counter ion. The M(II) ions display an N4O2 coordination sphere with a distorted octahedral geometry, the nitrogen donors belonging to four molecules of the organic 4-aepy that act as unidentate ligands and two oxygen atoms from aqua ligands. The crystal structures of 1 and 2 are similar each other and linked via intermolecular hydrogen bonding, Pt⋯π interactions to form 3D supramolecular network. Vibration assignments of all the observed bands are given and the spectral features also supported to the crystal structures of the complexes.
Automated quantification of one-dimensional nanostructure alignment on surfaces
Dong, Jianjin; Goldthorpe, Irene A.; Mohieddin Abukhdeir, Nasser
2016-06-01
A method for automated quantification of the alignment of one-dimensional (1D) nanostructures from microscopy imaging is presented. Nanostructure alignment metrics are formulated and shown to be able to rigorously quantify the orientational order of nanostructures within a two-dimensional domain (surface). A complementary image processing method is also presented which enables robust processing of microscopy images where overlapping nanostructures might be present. Scanning electron microscopy (SEM) images of nanowire-covered surfaces are analyzed using the presented methods and it is shown that past single parameter alignment metrics are insufficient for highly aligned domains. Through the use of multiple parameter alignment metrics, automated quantitative analysis of SEM images is shown to be possible and the alignment characteristics of different samples are able to be quantitatively compared using a similarity metric. The results of this work provide researchers in nanoscience and nanotechnology with a rigorous method for the determination of structure/property relationships, where alignment of 1D nanostructures is significant.
Stepwise Nanopore Evolution in One-Dimensional Nanostructures
Choi, Jang Wook
2010-04-14
We report that established simple lithium (Li) ion battery cycles can be used to produce nanopores inside various useful one-dimensional (1D) nanostructures such as zinc oxide, silicon, and silver nanowires. Moreover, porosities of these 1D nanomaterials can be controlled in a stepwise manner by the number of Li-battery cycles. Subsequent pore characterization at the end of each cycle allows us to obtain detailed snapshots of the distinct pore evolution properties in each material due to their different atomic diffusion rates and types of chemical bonds. Also, this stepwise characterization led us to the first observation of pore size increases during cycling, which can be interpreted as a similar phenomenon to Ostwald ripening in analogous nanoparticle cases. Finally, we take advantage of the unique combination of nanoporosity and 1D materials and demonstrate nanoporous silicon nanowires (poSiNWs) as excellent supercapacitor (SC) electrodes in high power operations compared to existing devices with activated carbon. © 2010 American Chemical Society.
A one-dimensional theory for Higgs branch operators
Dedushenko, Mykola; Yacoby, Ran
2016-01-01
We use supersymmetric localization to calculate correlation functions of half-BPS local operators in 3d ${\\cal N} = 4$ superconformal field theories whose Lagrangian descriptions consist of vectormultiplets coupled to hypermultiplets. The operators we primarily study are certain twisted linear combinations of Higgs branch operators that can be inserted anywhere along a given line. These operators are constructed from the hypermultiplet scalars. They form a one-dimensional non-commutative operator algebra with topological correlation functions. The 2- and 3-point functions of Higgs branch operators in the full 3d ${\\cal N}=4$ theory can be simply inferred from the 1d topological algebra. After conformally mapping the 3d superconformal field theory from flat space to a round three-sphere, we preform supersymmetric localization using a supercharge that does not belong to any 3d ${\\cal N} = 2$ subalgebra of the ${\\cal N}=4$ algebra. The result is a simple model that can be used to calculate correlation functions ...
Ground-state properties of anyons in a one-dimensional lattice
Tang, Guixin; Eggert, Sebastian; Pelster, Axel
2015-12-01
Using the Anyon-Hubbard Hamiltonian, we analyze the ground-state properties of anyons in a one-dimensional lattice. To this end we map the hopping dynamics of correlated anyons to an occupation-dependent hopping Bose-Hubbard model using the fractional Jordan-Wigner transformation. In particular, we calculate the quasi-momentum distribution of anyons, which interpolates between Bose-Einstein and Fermi-Dirac statistics. Analytically, we apply a modified Gutzwiller mean-field approach, which goes beyond a classical one by including the influence of the fractional phase of anyons within the many-body wavefunction. Numerically, we use the density-matrix renormalization group by relying on the ansatz of matrix product states. As a result it turns out that the anyonic quasi-momentum distribution reveals both a peak-shift and an asymmetry which mainly originates from the nonlocal string property. In addition, we determine the corresponding quasi-momentum distribution of the Jordan-Wigner transformed bosons, where, in contrast to the hard-core case, we also observe an asymmetry for the soft-core case, which strongly depends on the particle number density.
Effect of Inter-particle Interactions on Pair Correlations of One-Dimensional Anyon Gases
Li, Yan; He, Zhi
2015-10-01
The pair correlation function of the one-dimensional interacting anyonic system in its ground state is investigated based on the exact Bethe ansatz solution for arbitrary coupling constant () and statistics parameter (). We discuss the effects of the inter-particle interactions and the fractional statistics on the pair correlations in both position and momentum spaces. The pair correlations of anyons with coupling constant c and statistical parameter in position space are identical to that of the Lieb-Liniger Bose model with effective coupling constant . Besides the effect of renormalized coupling, the correlations in momentum space reveal more effects induced by the statistics parameter. The anyonic statistics results in the nonsymmetric correlation when the statistics parameter deviates from 0 (Bose statistics) and (Fermi statistics) for any coupling constant c. The correlations display peaks and dips, representing the bunching and antibunching of atoms, respectively. The correlations show crossover from bunching behavior of bosons to antibunching behavior of fermions as varies from 0 to for arbitrary coupling constant. Besides the fractional effect, we also observe the effects induced by the inter-particle interactions in the momentum correlations. With the increase of the coupling constant, the bunching effect between particles weakens and the antibunching points in the correlations shift.
Synthesis and application of one-dimensional nanomaterials
Zhang, Daihua
My research has been focused on the synthesis, characterization and application of three types of one-dimensional (1D) nanostructures, including metal oxide nanowires, transition metal oxide core-shell nanocables, and carbon nanotubes. They represent a new class of materials that have attracted steadily growing interest due to their peculiar properties and unique applications complementary to bulk materials. This dissertation will summarize my studies on these three 1D nanomaterials, as well as propose future research work that may lead to further development of this field. Following a brief introduction to 1D nanomaterials in Chapter 1, Chapter 2 will focus on the first material - metal oxide nanowires. The discussion starts from the synthesis approach and material characterization of metal oxide nanowires, and then shifts to the electron transport properties and potential applications. A series of functional devices based on In2O 3 and SnO2 nanowires will be demonstrated and evaluated, which range from field effect transistors (FETs), nonvolatile memories, to photo-detecting devices and chemical sensors. Chapter 3 will discuss the fabrication of transition metal oxide (TMO) core-shell nanocables and their electron transport properties as a function of temperature and external magnetic field. The discussion will primarily focus on one of the TMO materials---magnetite (Fe3O 4) core-shell nanowires and nanotubes. Chapter 4 focuses on the application of carbon nanotubes (CNTs) in macroelectronics and explores the feasibility of using CNT films as transparent electrodes for organic light emitting diodes (OLEDs). Chapter 5, in the end, summarizes the above discussions and proposes future research directions in 1D nanomaterials.
One-dimensional semirelativistic Hamiltonian with multiple Dirac delta potentials
Erman, Fatih; Gadella, Manuel; Uncu, Haydar
2017-02-01
In this paper, we consider the one-dimensional semirelativistic Schrödinger equation for a particle interacting with N Dirac delta potentials. Using the heat kernel techniques, we establish a resolvent formula in terms of an N ×N matrix, called the principal matrix. This matrix essentially includes all the information about the spectrum of the problem. We study the bound state spectrum by working out the eigenvalues of the principal matrix. With the help of the Feynman-Hellmann theorem, we analyze how the bound state energies change with respect to the parameters in the model. We also prove that there are at most N bound states and explicitly derive the bound state wave function. The bound state problem for the two-center case is particularly investigated. We show that the ground state energy is bounded below, and there exists a self-adjoint Hamiltonian associated with the resolvent formula. Moreover, we prove that the ground state is nondegenerate. The scattering problem for N centers is analyzed by exactly solving the semirelativistic Lippmann-Schwinger equation. The reflection and the transmission coefficients are numerically and asymptotically computed for the two-center case. We observe the so-called threshold anomaly for two symmetrically located centers. The semirelativistic version of the Kronig-Penney model is shortly discussed, and the band gap structure of the spectrum is illustrated. The bound state and scattering problems in the massless case are also discussed. Furthermore, the reflection and the transmission coefficients for the two delta potentials in this particular case are analytically found. Finally, we solve the renormalization group equations and compute the beta function nonperturbatively.
Filtration-guided assembly for patterning one-dimensional nanostructures
Zhang, Yaozhong; Wang, Chuan; Yeom, Junghoon
2017-04-01
Tremendous progress has been made in synthesizing various types of one-dimensional (1D) nanostructures (NSs), such as nanotubes and nanowires, but some technical challenges still remain in the deterministic assembly of the solution-processed 1D NSs for device integration. In this work we investigate a scalable yet inexpensive nanomaterial assembly method, namely filtration-guided assembly (FGA), to place nanomaterials into desired locations as either an individual entity or ensembles, and form functional devices. FGA not only addresses the assembly challenges but also encompasses the notion of green nanomanufacturing, maximally utilizing nanomaterials and eliminating a waste stream of nanomaterials into the environment. FGA utilizes selective filtration of 1D NSs through the open windows on the nanoporous filter membrane whose surface is patterned by a polymer mask for guiding the 1D NS deposition. The modified soft-lithographic technique called blanket transfer (BT) is employed to create the various photoresist patterns of sub-10-micron resolution on the nanoporous filter membrane like mixed cellulose acetate. We use single-walled carbon nanotubes (SWCNTs) as a model 1D NS and demonstrate the fabrication of an array pattern of homogeneous 1D NS network films over an area of 20 cm2 within 10 min. The FGA-patterned SWCNT network films are transferred onto the substrate using the adhesive-based transfer technique, and show the highly uniform film thickness and resistance measurements across the entire substrate. Finally, the electrical performance of the back-gated transistors made from the FGA and transfer method of 95% pure SWCNTs is demonstrated.
Spatial modes in one-dimensional models for capillary jets
Guerrero, J.; González, H.; García, F. J.
2016-03-01
One-dimensional (1D) models are widely employed to simplify the analysis of axisymmetric capillary jets. These models postulate that, for slender deformations of the free surface, the radial profile of the axial velocity can be approximated as uniform (viscous slice, averaged, and Cosserat models) or parabolic (parabolic model). In classical works on spatial stability analysis with 1D models, considerable misinterpretation was generated about the modes yielded by each model. The already existing physical analysis of three-dimensional (3D) axisymmetric spatial modes enables us to relate these 1D spatial modes to the exact 3D counterparts. To do so, we address the surface stimulation problem, which can be treated as linear, by considering the effect of normal and tangential stresses to perturb the jet. A Green's function for a spatially local stimulation having a harmonic time dependence provides the general formalism to describe any time-periodic stimulation. The Green's function of this signaling problem is known to be a superposition of the spatial modes, but in fact these modes are of fundamental nature, i.e., not restricted to the surface stimulation problem. The smallness of the wave number associated with each mode is the criterion to validate or invalidate the 1D approaches. The proposed axial-velocity profiles (planar or parabolic) also have a remarkable influence on the outcomes of each 1D model. We also compare with the classical 3D results for (i) conditions for absolute instability, and (ii) the amplitude of the unstable mode resulting from both normal and tangential surface stress stimulation. Incidentally, as a previous task, we need to re-deduce 1D models in order to include eventual stresses of various possible origins (electrohydrodynamic, thermocapillary, etc.) applied on the free surface, which were not considered in the previous general formulations.
Rashba electron transport in one-dimensional quantum waveguides
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
The properties of Rashba wave function in the planar one-dimensional waveguide are studied, and the following results are obtained. Due to the Rashba effect, the plane waves of electron with the energy E divide into two kinds of waves with the wave vectors k 1 =k 0 +k δ and k 2 =k 0 -k δ , where k δ is proportional to the Rashba coefficient, and their spin orientations are +π/2 (spin up) and -π/2 (spin down) with respect to the circuit, respectively. If there is gate or ferromagnetic contact in the circuit, the Rashba wave function becomes standing wave form exp(±ik δ l)sin[k 0 (l-L)], where L is the position coordinate of the gate or contact. Unlike the electron without considering the spin, the phase of the Rashba plane or standing wave function depends on the direction angle θ of the circuit. The travel velocity of the Rashba waves with the wave vector k 1 or k 2 are the same hk0/m * . The boundary conditions of the Rashba wave functions at the intersection of circuits are given from the continuity of wave functions and the conservation of current density. Using the boundary conditions of Rashba wave functions we study the transmission and reflection probabilities of Rashba electron moving in several structures, and find the interference effects of the two Rashba waves with different wave vectors caused by ferromagnetic contact or the gate. Lastly we derive the general theory of multiple branches structure. The theory can be used to design various spin polarized devices.
Hardening transition in a one-dimensional model for ferrogels
Annunziata, Mario Alberto; Menzel, Andreas M.; Löwen, Hartmut
2013-05-01
We introduce and investigate a coarse-grained model for quasi one-dimensional ferrogels. In our description the magnetic particles are represented by hard spheres with a magnetic dipole moment in their centers. Harmonic springs connecting these spheres mimic the presence of a cross-linked polymer matrix. A special emphasis is put on the coupling of the dipolar orientations to the elastic deformations of the matrix, where a memory effect of the orientations is included. Although the particles are displaced along one spatial direction only, the system already shows rich behavior: as a function of the magnetic dipole moment, we find a phase transition between "soft-elastic" states with finite interparticle separation and finite compressive elastic modulus on the one hand, and "hardened" states with touching particles and therefore diverging compressive elastic modulus on the other hand. Corresponding phase diagrams are derived neglecting thermal fluctuations of the magnetic particles. In addition, we consider a situation in which a spatially homogeneous magnetization is initially imprinted into the material. Depending on the strength of the magneto-mechanical coupling between the dipole orientations and the elastic deformations, the system then relaxes to a uniaxially ferromagnetic, an antiferromagnetic, or a spiral state of magnetization to minimize its energy. One purpose of our work is to provide a largely analytically solvable approach that can provide a benchmark to test future descriptions of higher complexity. From an applied point of view, our results could be exploited, for example, for the construction of novel damping devices of tunable shock absorbance.
Fractal spectra in generalized Fibonacci one-dimensional magnonic quasicrystals
Energy Technology Data Exchange (ETDEWEB)
Costa, C.H.O. [Departamento de Fisica Teorica e Experimental, Universidade Federal do Rio grande do Norte, 59072-970 Natal-RN (Brazil); Vasconcelos, M.S., E-mail: manoelvasconcelos@yahoo.com.br [Escola de Ciencias e Tecnologia, Universidade Federal do Rio grande do Norte, 59072-970 Natal-RN (Brazil); Barbosa, P.H.R.; Barbosa Filho, F.F. [Departamento de Fisica, Universidade Federal do Piaui, 64049-550 Teresina-Pi (Brazil)
2012-07-15
In this work we carry out a theoretical analysis of the spectra of magnons in quasiperiodic magnonic crystals arranged in accordance with generalized Fibonacci sequences in the exchange regime, by using a model based on a transfer-matrix method together random-phase approximation (RPA). The generalized Fibonacci sequences are characterized by an irrational parameter {sigma}(p,q), which rules the physical properties of the system. We discussed the magnonic fractal spectra for first three generalizations, i.e., silver, bronze and nickel mean. By varying the generation number, we have found that the fragmentation process of allowed bands makes possible the emergence of new allowed magnonic bulk bands in spectra regions that were magnonic band gaps before, such as which occurs in doped semiconductor devices. This interesting property arises in one-dimensional magnonic quasicrystals fabricated in accordance to quasiperiodic sequences, without the need to introduce some deferent atomic layer or defect in the system. We also make a qualitative and quantitative investigations on these magnonic spectra by analyzing the distribution and magnitude of allowed bulk bands in function of the generalized Fibonacci number F{sub n} and as well as how they scale as a function of the number of generations of the sequences, respectively. - Highlights: Black-Right-Pointing-Pointer Quasiperiodic magnonic crystals are arranged in accordance with the generalized Fibonacci sequence. Black-Right-Pointing-Pointer Heisenberg model in exchange regime is applied. Black-Right-Pointing-Pointer We use a theoretical model based on a transfer-matrix method together random-phase approximation. Black-Right-Pointing-Pointer Fractal spectra are characterized. Black-Right-Pointing-Pointer We analyze the distribution of allowed bulk bands in function of the generalized Fibonacci number.
Shah, Kushal; Rom-Kedar, Vered; Turaev, Dmitry
2015-01-01
A Fermi accelerator is a billiard with oscillating walls. A leaky accelerator interacts with an environment of an ideal gas at equilibrium by exchange of particles through a small hole on its boundary. Such interaction may heat the gas: we estimate the net energy flow through the hole under the assumption that the particles inside the billiard do not collide with each other and remain in the accelerator for sufficiently long time. The heat production is found to depend strongly on the type of the Fermi accelerator. An ergodic accelerator, i.e. one which has a single ergodic component, produces a weaker energy flow than a multi-component accelerator. Specifically, in the ergodic case the energy gain is independent of the hole size, whereas in the multi-component case the energy flow may be significantly increased by shrinking the hole size.
One dimensional modeling of a diesel-CNG dual fuel engine
Azman, Putera Adam; Fawzi, Mas; Ismail, Muammar Mukhsin; Osman, Shahrul Azmir
2017-04-01
Some of the previous studies have shown that the use of compressed natural gas (CNG) in diesel engines potentially produce engine performance improvement and exhaust gas emission reduction, especially nitrogen oxides, unburned hydrocarbons, and carbon dioxide. On the other hand, there are other researchers who claimed that the use of CNG increases exhaust gas emissions, particularly nitrogen oxides. In this study, a one-dimensional model of a diesel-CNG dual fuel engine was made based on a 4-cylinder 2.5L common rail direct injection diesel engine. The software used is GT-Power, and it was used to analyze the engine performance and exhaust gas emissions of several diesel-CNG dual fuel blend ratios, i.e. 100:0, 90:10, 80:20, 70:30, 60:40 and 50:50. The effect of 100%, 75%, 50% engine loads on the exhaust gas emissions were also studied. The result shows that all diesel-CNG fuel blends produces higher brake torque and brake power at engine speed of 2000-3000 rpm compared with 100% diesel. The 50:50 diesel-CNG blend produces the highest brake torque and brake power, but also has the highest brake specific fuel consumption. As a higher percentage of CNG added to the dual fuel blend, unburned hydrocarbons and carbon monoxide emission increased while carbon dioxide emission decreased. The nitrogen oxides emission concentration is generally unaffected by any change of the dual fuel ratio.
$\\alpha'$-expansion of Anti-Symmetric Wilson Loops in $\\mathcal{N}=4$ SYM from Fermi Gas
Horikoshi, Masaatsu
2016-01-01
We study the large 't Hooft coupling expansion of 1/2 BPS Wilson loops in the anti-symmetric representation in $\\N=4$ super Yang-Mills (SYM) theory at the leading order in the 1/N expansion. Via AdS/CFT correspondence, this expansion corresponds to the $\\alpha'$ expansion in bulk type IIB string theory. We show that this expansion can be systematically computed by using the low temperature expansion of Fermi distribution function, known as the Sommerfeld expansion in statistical mechanics. We check numerically that our expansion agrees with the exact result of anti-symmetric Wilson loops recently found by Fiol and Torrents.
One-dimensional acoustic modeling of thermoacoustic instabilities
Kampen, van Jaap F.; Huls, Rob A.; Kok, Jim B.W.; Meer, van der Theo H.; Nilsson, A.; Boden, H.
2003-01-01
In this paper the acoustic stability of a premixed turbulent natural gas flame confined in a combustor is investigated. Specifically when the flame is operated in a lean premixed mode, the thermoacoustic system is known to exhibit instabilities. These arise from a feedback mechanism between the osci
A general spectral method for the numerical simulation of one-dimensional interacting fermions
Clason, Christian; von Winckel, Gregory
2012-02-01
This work introduces a general framework for the direct numerical simulation of systems of interacting fermions in one spatial dimension. The approach is based on a specially adapted nodal spectral Galerkin method, where the basis functions are constructed to obey the antisymmetry relations of fermionic wave functions. An efficient MATLAB program for the assembly of the stiffness and potential matrices is presented, which exploits the combinatorial structure of the sparsity pattern arising from this discretization to achieve optimal run-time complexity. This program allows the accurate discretization of systems with multiple fermions subject to arbitrary potentials, e.g., for verifying the accuracy of multi-particle approximations such as Hartree-Fock in the few-particle limit. It can be used for eigenvalue computations or numerical solutions of the time-dependent Schrödinger equation. Program summaryProgram title: assembleFermiMatrix Catalogue identifier: AEKO_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKO_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 102 No. of bytes in distributed program, including test data, etc.: 2294 Distribution format: tar.gz Programming language: MATLAB Computer: Any architecture supported by MATLAB Operating system: Any supported by MATLAB; tested under Linux (x86-64) and Mac OS X (10.6) RAM: Depends on the data Classification: 4.3, 2.2 Nature of problem: The direct numerical solution of the multi-particle one-dimensional Schrödinger equation in a quantum well is challenging due to the exponential growth in the number of degrees of freedom with increasing particles. Solution method: A nodal spectral Galerkin scheme is used where the basis functions are constructed to obey the antisymmetry relations of the fermionic wave
Rostami, R
2016-01-01
To investigate the high mass dilepton production cross section produced due to the Drell-Yan process in hadronic collisions such as nucleon- nucleus, the valence and sea quarks distribution functions inside nucleus is used. In this study, in the framework of the shell and Fermi gas models, by adding quarks distribution functions of pions inside nucleus besides the quarks distribution functions of bound nucleons, the changes in the dilepton production cross section were investigated. For this reason, pionic contribution in the structure function of 63Cunucleus and its EMC ratio was first studied using the aforementioned models. Then, in the framework of the Drell-Yan process using GRV's nucleons and pions quarks distribution functions, the high mass dilepton production cross section in p-cu collision was calculated and compared with the available experimental data. The extracted results, based on the two mentioned models, were greatly the same and by considering the pionic contribution, the theoretical results...
Institute of Scientific and Technical Information of China (English)
李琳
2006-01-01
Enrico Fermi was born in Rome on 29th September, 1901. He attended a local grammar school, and in 1918, he won a fellowship of the Scuola Normale Superiore of Pisa, where he gained his doctor’s degree in physics in 1922, with Professor Puccianti. In 1923, he was awarded a scholarship from the Italian Government. With a Rockefeller Fellowship, in 1924, he moved to Leyden, and later that same year he returned to Italy to occupy for two
One-Dimensional Metal-Oxide Nanostructures for Solar Photocatalytic Water-Splitting
Wang, Fengyun; Song, Longfei; Zhang, Hongchao; Luo, Linqu; Wang, Dong; Tang, Jie
2017-08-01
Because of their unique physical and chemical properties, one-dimensional (1-D) metal-oxide nanostructures have been extensively applied in the areas of gas sensors, electrochromic devices, nanogenerators, and so on. Solar water-splitting has attracted extensive research interest because hydrogen generated from solar-driven water splitting is a clean, sustainable, and abundant energy source that not only solves the energy crisis, but also protects the environment. In this comprehensive review, the main synthesis methods, properties, and especially prominent applications in solar water splitting of 1-D metal-oxides, including titanium dioxide (TiO2), zinc oxide (ZnO), tungsten trioxide (WO3), iron oxide (Fe2O3), and copper oxide (CuO) are fully discussed.
Quench-induced breathing mode of one-dimensional Bose gases.
Fang, Bess; Carleo, Giuseppe; Johnson, Aisling; Bouchoule, Isabelle
2014-07-18
We measure the position- and momentum-space breathing dynamics of trapped one-dimensional Bose gases at finite temperature. The profile in real space reveals sinusoidal width oscillations whose frequency varies continuously through the quasicondensate to ideal Bose gas crossover. A comparison with theoretical models taking temperature into account is provided. In momentum space, we report the first observation of a frequency doubling in the quasicondensate regime, corresponding to a self-reflection mechanism due to the repulsive interactions. Such a mechanism is predicted for a fermionized system, and has not been observed to date. The disappearance of the frequency doubling through the crossover is mapped out experimentally, giving insights into the dynamics of the breathing evolution.
DEFF Research Database (Denmark)
Geng, Junfeng; Solov'yov, Ilia; Reid, David G.;
2010-01-01
Large-scale practical applications of fullerene (C_60) in nanodevices could be significantly facilitated if the commercially available micrometer-scale raw C_60 powder were further processed into a one-dimensional nanowire-related polymer displaying covalent bonding as molecular interlinks...... and resembling traditional important conjugated polymers. However, there has been little study thus far in this area despite the abundant literature on fullerene. Here we report the preparation and characterization of such a C_60-based polymer nanowire, (-C_60.TMB-)_n, where TMB=1,2,4-trimethylbenzene, which...... displays a well-defined crystalline nanostructure, exceptionally large length-to-width ratio and excellent thermal stability. The material is prepared by first growing the corresponding nanowire through a solution phase of C_60 followed by a topochemical polymerization reaction in the solid state. Gas...
Shouman, A. R.; Garcia, C. E.
1971-01-01
An analytical solution for the compressible one-dimensional flow in convergent and divergent ducts with friction is obtained. It is found that a nondimensional parameter, N, can be formed using the friction factor, duct half-angle and the ratio of specific heats of the gas. Seven flow regimes are describable with the solution, based on certain bounds on the magnitude of N. The regimes are discussed and corollary data are presented graphically.
,
2011-01-01
The Cygnus region hosts a giant molecular-cloud complex which actively forms massive stars. Interactions of cosmic rays with interstellar gas and radiation fields make it shine at gamma-ray energies. Several gamma-ray pulsars and other energetic sources are seen in this direction. In this paper we analyse the gamma-ray emission measured by the Fermi Large Area Telescope in the energy range from 100 MeV to 100 GeV in order to probe the gas and cosmic-ray content over the scale of the whole Cygnus complex. The signal from bright pulsars is largely reduced by selecting photons in their off-pulse phase intervals. We compare the diffuse gamma-ray emission with interstellar gas maps derived from radio/mm-wave lines and visual extinction data, and a global model of the region, including other pulsars and gamma-ray sources, is sought. The integral HI emissivity and its spectral energy distribution are both consistent within the systematics with LAT measurements in the interstellar space near the solar system. The ave...
Tomchenko, Maksim
2017-01-01
We compare two approaches to the construction of the thermodynamics of a one-dimensional periodic system of spinless point bosons: the Yang-Yang approach and a new approach proposed by the author. In the latter, the elementary excitations are introduced so that there is only one type of excitations (as opposed to Lieb's approach with two types of excitations: particle-like and hole-like). At the weak coupling, these are the excitations of the Bogolyubov type. The equations for the thermodynamic quantities in these approaches are different, but their solutions coincide (this is shown below and is the main result). Moreover, the new approach is simpler. An important point is that the thermodynamic formulae in the new approach for any values of parameters are formulae for an ensemble of quasiparticles with Bose statistics, whereas a formulae in the traditional Yang-Yang approach have the Fermi-like one-particle form.
Filling-dependent doublon dynamics in the one-dimensional Hubbard model
Rausch, Roman; Potthoff, Michael
2017-01-01
The fate of a local two-hole doublon excitation in the one-dimensional Fermi-Hubbard model is systematically studied for strong Hubbard interaction U in the entire filling range using the density-matrix renormalization group (DMRG) and the Bethe ansatz. For strong U , two holes at the same site form a compound object whose decay is impeded by the lack of phase space. Still, a partial decay is possible on an extremely short time scale where phase-space arguments do not yet apply. We argue that the initial decay and the resulting intermediate state are relevant for experiments performed with ultracold atoms loaded into an optical lattice as well as for (time-resolved) CVV Auger-electron spectroscopy. The detailed discussion comprises the mixed ballistic-diffusive real-time propagation of the doublon through the lattice, its partial decay on the short time scale as a function of filling and interaction strength, as well as the analysis of the decay products, which are metastable on the intermediate time scale that is numerically accessible and which show up in the two-hole excitation (Auger) spectrum. The ambivalent role of singly occupied sites is key to understanding the doublon physics; for high fillings, ground-state configurations with single occupancies are recognized to strongly relax the kinematic constraints and to open up decay channels. For fillings close to half-filling, however, their presence actually blocks the doublon decay. Finally, the analysis of the continua in the two-hole spectrum excludes a picture where the doublon decays into unbound electron holes for generic fillings, different from the limiting case of the completely filled band. We demonstrate that the decay products as well as the doublon propagation should rather be understood in terms of Bethe ansatz eigenstates.
Fabrication and characterization of one dimensional zinc oxide nanostructures
Cheng, Chun
In this thesis, one dimensional (1D) ZnO nanostructures with controlled morphologies, defects and alignment have been fabricated by a simple vapor transfer method. The crystal structures, interfaces, growth mechanisms and optical properties of ZnO nanostructures have been investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and photoluminescence (PL) spectroscopy. Great efforts have been devoted to the patterned growth and assembly of ZnO nanostructures as well as the stability of ZnO nanowires (NWs). Using carbonized photoresists, a simple and very effective method has been developed for fabricating and patterning high-quality ZnO NW arrays. ZnO NWs from this method show excellent alignment, crystal quality, and optical properties that are independent of the substrates. The carbonized photoresists provide perfect nucleation sites for the growth of aligned ZnO NWs and also perfectly connect to the NWs to form ideal electrodes. This approach is further extended to realize large area growth of different forms of ZnO NW arrays (e.g., the horizontal growth and multilayered ZnO NW arrays) on other kinds of carbon-based materials. In addition, the as-synthesized vertically aligned ZnO NW arrays show a low weighted reflectance (Rw) and can be used as antireflection coatings. Moreover, non c-axis growth of 1D ZnO nanostructures (e.g., nanochains, nanobrushes and nanobelts) and defect related 1D ZnO nanostructures (e.g., Y-shaped twinned nanobelts and hierarchical nanostructures decorated by flowers induced by screw dislocations) is also present. Using direct oxidization of pure Zn at high temperatures in air, uniformed ZnO NWs and tetrapods have been fabricated. The spatially-resolved PL study on these two kinds of nanostructures suggests that the defects leading to the green luminescence (GL) should originate from the structural changes along the legs of the tetrapods. Surface defects in these ZnO nanostructures play an unimportant
Information theory approach to a new Thomas-Fermi scheme
Energy Technology Data Exchange (ETDEWEB)
Casas, M. (Dept. de Fisica, Univ. de les Illes Balears, Palma de Mallorca (Spain)); Plastino, A. (Dept. de Fisica, Univ. de les Illes Balears, Palma de Mallorca (Spain)); Puente, A. (Dept. de Fisica, Univ. de les Illes Balears, Palma de Mallorca (Spain))
1994-01-24
A new semi-classical Thomas-Fermi scheme is advanced that is able to extend the range of validity of the concomitant reduced one-body density beyond the classical turning points. The approach is based upon information theory concepts and employs as informational input just a few standard Thomas-Fermi mean values. One-dimensional examples show that the present technique considerably improves upon the traditional one. (orig.)
A Quasi-One-Dimensional CFD Model for Multistage Turbomachines
Institute of Scientific and Technical Information of China (English)
Olivier Léonard; Olivier Adam
2008-01-01
The objective of this paper is to present a fast and reliable CFD model that is able to simulate stationary and transient operations of multistage compressors and turbines. This analysis tool is based on an adapted version of the Euler equations solved by a time-marching, finite-volume method. The Euler equations have been extended by including source terms expressing the blade-flow interactions. These source terms are determined using the velocity triangles and a row-by-row representation of the blading at mid-span. The losses and deviations undergone by the fluid across each blade row are supplied by correlations. The resulting flow solver is a performance prediction tool based only on the machine geometry, offering the possibility of exploring the entire characteristic map of a multistage compressor or turbine. Its efficiency in terms of CPU time makes it possible to couple it to an optimization algorithm or to a gas turbine performance tool. Different test-cases are presented for which the calculated characteristic maps are compared to experimental ones.
Imploding Ignition Waves. I. One-dimensional Analysis
Kushnir, Doron; Livne, Eli; Waxman, Eli
2012-06-01
We show that converging spherical and cylindrical shock waves may ignite a detonation wave in a combustible medium, provided the radius at which the shocks become strong exceeds a critical radius, R crit. An approximate analytic expression for R crit is derived for an ideal gas equation of state and a simple (power-law-Arrhenius) reaction law, and shown to reproduce the results of numerical solutions. For typical acetylene-air experiments we find R crit ~ 100 μm (spherical) and R crit ~ 1 mm (cylindrical). We suggest that the deflagration to detonation transition (DDT) observed in these systems may be due to converging shocks produced by the turbulent deflagration flow, which reaches sub- (but near) sonic velocities on scales GtR crit. Our suggested mechanism differs from that proposed by Zel'dovich et al., in which a fine-tuned spatial gradient in the chemical induction time is required to be maintained within the turbulent deflagration flow. Our analysis may be readily extended to more complicated equations of state and reaction laws. An order of magnitude estimate of R crit within a white dwarf at the pre-detonation conditions believed to lead to Type Ia supernova explosions is 0.1 km, suggesting that our proposed mechanism may be relevant for DDT initiation in these systems. The relevance of our proposed ignition mechanism to DDT initiation may be tested by both experiments and numerical simulations.
IMPLODING IGNITION WAVES. I. ONE-DIMENSIONAL ANALYSIS
Energy Technology Data Exchange (ETDEWEB)
Kushnir, Doron; Waxman, Eli [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 76100 (Israel); Livne, Eli [Racah Institute of Physics, Hebrew University, Jerusalem (Israel)
2012-06-20
We show that converging spherical and cylindrical shock waves may ignite a detonation wave in a combustible medium, provided the radius at which the shocks become strong exceeds a critical radius, R{sub crit}. An approximate analytic expression for R{sub crit} is derived for an ideal gas equation of state and a simple (power-law-Arrhenius) reaction law, and shown to reproduce the results of numerical solutions. For typical acetylene-air experiments we find R{sub crit} {approx} 100 {mu}m (spherical) and R{sub crit} {approx} 1 mm (cylindrical). We suggest that the deflagration to detonation transition (DDT) observed in these systems may be due to converging shocks produced by the turbulent deflagration flow, which reaches sub- (but near) sonic velocities on scales >>R{sub crit}. Our suggested mechanism differs from that proposed by Zel'dovich et al., in which a fine-tuned spatial gradient in the chemical induction time is required to be maintained within the turbulent deflagration flow. Our analysis may be readily extended to more complicated equations of state and reaction laws. An order of magnitude estimate of R{sub crit} within a white dwarf at the pre-detonation conditions believed to lead to Type Ia supernova explosions is 0.1 km, suggesting that our proposed mechanism may be relevant for DDT initiation in these systems. The relevance of our proposed ignition mechanism to DDT initiation may be tested by both experiments and numerical simulations.
Luo, Xuebing; Zhou, Kezhao; Zhang, Zhidong
2016-11-01
We use the path-integral formalism to investigate the vortex properties of a quasi-two dimensional (2D) Fermi superfluid system trapped in an optical lattice potential. Within the framework of mean-field theory, the cooper pair density, the atom number density, and the vortex core size are calculated from weakly interacting BCS regime to strongly coupled while weakly interacting BEC regime. Numerical results show that the atoms gradually penetrate into the vortex core as the system evolves from BEC to BCS regime. Meanwhile, the presence of the optical lattice allows us to analyze the vortex properties in the crossover from three-dimensional (3D) to 2D case. Furthermore, using a simple re-normalization procedure, we find that the two-body bound state exists only when the interaction is stronger than a critical one denoted by G c which is obtained as a function of the lattice potential’s parameter. Finally, we investigate the vortex core size and find that it grows with increasing interaction strength. In particular, by analyzing the behavior of the vortex core size in both BCS and BEC regimes, we find that the vortex core size behaves quite differently for positive and negative chemical potentials. Project supported by the National Natural Science Foundation of China (Grant Nos. 51331006, 51590883, and 11204321) and the Project of Chinese Academy of Sciences (Grant No. KJZD-EW-M05-3).
Biased discrete symmetry breaking and Fermi balls
MacPherson, A L; Macpherson, Alick L; Campbell, Bruce A
1994-01-01
The spontaneous breaking of an approximate discrete symmetry is considered, with the resulting protodomains of true and false vacuum being separated by domain walls. Given a strong, symmetric Yukawa coupling of the real scalar field to a generic fermion, the domain walls accumulate a gas of fermions, which modify the domain wall dynamics. The splitting of the degeneracy of the ground states results in the false vacuum protodomain structures eventually being fragmented into tiny false vacuum bags with a Fermi gas shell (Fermi balls), that may be cosmologically stable due to the Fermi gas pressure and wall curvature forces, acting on the domain walls. As fermions inhabiting the domain walls do not undergo number density freeze out, stable Fermi balls exist only if a fermion anti-fermion asymmetry occurs. Fermi balls formed with a new Dirac fermion that possesses no standard model gauge charges provide a novel cold dark matter candidate.
Strongly interacting Fermi gases
Directory of Open Access Journals (Sweden)
Bakr W.
2013-08-01
Full Text Available Strongly interacting gases of ultracold fermions have become an amazingly rich test-bed for many-body theories of fermionic matter. Here we present our recent experiments on these systems. Firstly, we discuss high-precision measurements on the thermodynamics of a strongly interacting Fermi gas across the superfluid transition. The onset of superfluidity is directly observed in the compressibility, the chemical potential, the entropy, and the heat capacity. Our measurements provide benchmarks for current many-body theories on strongly interacting fermions. Secondly, we have studied the evolution of fermion pairing from three to two dimensions in these gases, relating to the physics of layered superconductors. In the presence of p-wave interactions, Fermi gases are predicted to display toplogical superfluidity carrying Majorana edge states. Two possible avenues in this direction are discussed, our creation and direct observation of spin-orbit coupling in Fermi gases and the creation of fermionic molecules of 23Na 40K that will feature strong dipolar interactions in their absolute ground state.
One-dimensional Array Grammars and P Systems with Array Insertion and Deletion Rules
Directory of Open Access Journals (Sweden)
Rudolf Freund
2013-09-01
Full Text Available We consider the (one-dimensional array counterpart of contextual as well as insertion and deletion string grammars and consider the operations of array insertion and deletion in array grammars. First we show that the emptiness problem for P systems with (one-dimensional insertion rules is undecidable. Then we show computational completeness of P systems using (one-dimensional array insertion and deletion rules even of norm one only. The main result of the paper exhibits computational completeness of one-dimensional array grammars using array insertion and deletion rules of norm at most two.
Institute of Scientific and Technical Information of China (English)
宁伏龙; 张可霓; 吴能友; 蒋国盛; 张凌; 刘力; 余义兵
2013-01-01
本文以墨西哥湾水合物区域为背景,利用数值模拟方法研究了过平衡钻井条件下,当钻井液温度高于地层中水合物稳定温度时,水基钻井液侵入海洋含水合物地层的动态过程及其一般性规律.与侵入常规油气地层相比,耦合水合物分解和再形成是钻井液侵入海洋含水合物地层的主要特征.模拟结果表明.钻井液密度、温度和盐度都对侵入过程有影响.在一定条件下,钻井液密度越大,温度和含盐量越高,则钻井液侵入程度越深,热量传递越远,水合物分解程度越大.分解的水气在合适条件下又会重新形成水合物,影响了钻井液进一步侵入.而重新形成的水合物的饱和度甚至可能高于原位水合物饱和度,在井周形成一个“高饱水合物”环带.这一现象归因于钻井液侵入的驱替推挤、水合物分解的吸热以及地层传热的滞后等因素共同作用.在地层物性一定的条件下,高饱水合物环带的出现与否主要受钻井液温度和盐度控制.水合物分解以及高饱水合物环带的出现对井壁稳定和电阻率测井解释有很大影响.因此,为维护井壁稳定、确保测井准确和减少水合物储层伤害,就必须对钻井液密度、温度和滤失量进行严格控制,防止地层中的水合物大量分解.最好采用控制压力钻井(MPD)和深侧向测井方式,同时尽量选用低矿化度的含水合物动力学抑制剂的钻井液体系,采取低温快速循环方式.%Integrating 3D seismic survey and well logging can achieve more accurate quantification of natural gas hydrates as a potential energy and environmental impact. However, some factors can influence the accurate interpretation and evaluation of well logging results. Except washouts,the invasions of drilling fluid probably also seriously distorts the results of well logging. In this work, we performed numerical simulations to study the dynamic behavior and general rules of
Stationary bottom generated velocity fluctuations in one-dimensional open channel flow
Jong, de Bartele
1993-01-01
Statistical characteristics are calculated for stationary velocity fluctuations in a one-dimensional open channel flow with a given vertical velocity profile and with one-dimensional irregular bottom waves, characterized by a spectral density function. The calculations are based on an approximate ca
Synthesis and magneticproperties of one-dimensional Mn(Ⅱ) complexes linked bydithiooxalato
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
Three dithiooxalato (Dto) bridging one-dimensional Mn(Ⅱ) complexes [Mn(L)Dto](L = Phen (1), Bpy (2) and en (3)) were synthesized. All of the complexes have the similar one-dimensional structure through Dto bridge. The measurement of the variable temperature magnetic susceptibility of complex 1 showed that there are weak antiferromag- netic interactions between the Mn(Ⅱ) ions.
One-Dimensional Physics of Interacting Electrons and Phonons in Carbon Nanotubes
Deshpande, Vikram Vijay
The one-dimensional (1D) world is quite different from its higher dimensional counterparts. For example, the electronic ground state in 1D is not a Fermi liquid as in most solids, due to the role of electron-electron interactions. Most commonly, electrons in 1D are described as a Luttinger liquid , where the low-energy excitations are decoupled bosonic charge and spin waves. Carbon nanotubes are clean 1D systems which have been shown to behave like a Luttinger liquid at high electron density. However, at low electron density and in the absence of disorder, the ground state is predicted to be a 1D Wigner crystal---an electron solid dominated by long-range Coulomb interaction. Moreover, short-range interaction mediated by the atomic lattice (umklapp scattering) is predicted to transform a nominal 1D metal into a Mott insulator. In this thesis, we develop techniques to make extremely clean nanotube single-electron transistors. We study them in the few-electron/hole regime using Coulomb blockade spectroscopy in a magnetic field. In semiconducting nanotubes, we map out the antiferromagnetic exchange coupling as a function of carrier number and find excellent agreement to a Wigner crystal model. In nominally metallic nanotubes, we observe a universal energy gap in addition to the single-particle bandgap, implying that nanotubes are never metallic. The magnitude, radius dependence and low-energy neutral excitations of this additional gap indicate a Mott insulating origin. Further, we use simultaneous electrical and Raman spectroscopy measurements to study the phonons scattered by an electric current. At high bias, suspended nanotubes show striking negative differential conductance, attributed to non-equilibrium phonons. We directly observe such "hot" phonon populations in the Raman response and also report preferential electron coupling to one of two optical phonon modes. In addition, using spatially-resolved Raman spectroscopy, we obtain a wealth of local information
Matrix product state calculations for one-dimensional quantum chains and quantum impurity models
Energy Technology Data Exchange (ETDEWEB)
Muender, Wolfgang
2011-09-28
This thesis contributes to the field of strongly correlated electron systems with studies in two distinct fields thereof: the specific nature of correlations between electrons in one dimension and quantum quenches in quantum impurity problems. In general, strongly correlated systems are characterized in that their physical behaviour needs to be described in terms of a many-body description, i.e. interactions correlate all particles in a complex way. The challenge is that the Hilbert space in a many-body theory is exponentially large in the number of particles. Thus, when no analytic solution is available - which is typically the case - it is necessary to find a way to somehow circumvent the problem of such huge Hilbert spaces. Therefore, the connection between the two studies comes from our numerical treatment: they are tackled by the density matrix renormalization group (DMRG) and the numerical renormalization group (NRG), respectively, both based on matrix product states. The first project presented in this thesis addresses the problem of numerically finding the dominant correlations in quantum lattice models in an unbiased way, i.e. without using prior knowledge of the model at hand. A useful concept for this task is the correlation density matrix (CDM) which contains all correlations between two clusters of lattice sites. We show how to extract from the CDM, a survey of the relative strengths of the system's correlations in different symmetry sectors as well as detailed information on the operators carrying long-range correlations and the spatial dependence of their correlation functions. We demonstrate this by a DMRG study of a one-dimensional spinless extended Hubbard model, while emphasizing that the proposed analysis of the CDM is not restricted to one dimension. The second project presented in this thesis is motivated by two phenomena under ongoing experimental and theoretical investigation in the context of quantum impurity models: optical absorption
One-dimensional electron liquid at a surface. Gold nanowires on Ge(001)
Energy Technology Data Exchange (ETDEWEB)
Blumenstein, Christian
2012-09-11
Self-organized nanowires at semiconductor surfaces offer the unique opportunity to study electrons in reduced dimensions. Notably the dimensionality of the system determines it's electronic properties, beyond the quasiparticle description. In the quasi-one-dimensional (1D) regime with weak lateral coupling between the chains, a Peierls instability can be realized. A nesting condition in the Fermi surface leads to a backfolding of the 1D electron band and thus to an insulating state. It is accompanied by a charge density wave (CDW) in real space that corresponds to the nesting vector. This effect has been claimed to occur in many surface-defined nanowire systems, such as the In chains on Si(111) or the Au reconstructions on the terraced Si(553) and Si(557) surfaces. Therefore a weak coupling between the nanowires in these systems has to be concluded. However theory proposes another state in the perfect 1D limit, which is completely destroyed upon slight coupling to higher dimensions. In this so-called Tomonaga-Luttinger liquid (TLL) state, the quasiparticle description of the Fermi liquid breaks down. Since the interaction between the electrons is enhanced due to the strong confinement, only collective excitations are allowed. This leads to novel effects like spin charge separation, where spin and charge degrees of freedom are decoupled and allowed to travel independently along the 1D-chain. Such rare state has not been realized at a surface until today. This thesis uses a novel approach to realize nanowires with improved confinement by studying the Au reconstructed Ge(001) surface. A new cleaning procedure using piranha solution is presented, in order to prepare a clean and long-range ordered substrate. To ensure optimal growth of the Au nanowires the phase diagram is extensively studied by scanning tunneling microscopy (STM) and low energy electron diffraction (LEED). The structural elements of the chains are revealed and described in high detail. Remarkably
Strongly Interacting Fermi Gases in Two Dimensions
2012-07-17
Svistunov, M. Ku, A. Sommer, L. W. Cheuk, A. Schirotzek, M. W. Zwierlein Feynman diagrams versus Fermi-gas Feynman emulator Nature Physics 8... Feynman emulator. Nature Physics 8, 366 (2012) 4. Jee Woo Park, Cheng-Hsun Wu, Ibon Santiago, Tobias G. Tiecke, Peyman Ahmadi, Martin W. Zwierlein...chapters 7. M. Randeria, W. Zwerger, and M. Zwierlein. The BEC-BCS Crossover and the Unitary Fermi Gas. Lecture Notes in Physics , Volume 836, edited by
The third virial coefficient of a two-component unitary Fermi gas across an Efimov-effect threshold
Gao, Chao; Endo, Shimpei; Castin, Yvan
2015-01-01
We consider a mixture of two single-spin-state fermions with an interaction of negligible range and infinite s-wave scattering length. By varying the mass ratio α across α_c≃ 13.6069 one can switch on and off the Efimov effect. We determine analytically the third cluster coefficient of the gas. We show that it is a smooth function of α across αc since, unexpectedly, the three-body parameter characterizing the interaction is relevant even on the non-Efimovian side α<αc .