Particle in the Brusselator Model with Flow
DEFF Research Database (Denmark)
Kuptsov, P.V.; Kuznetsov, S.P.; Mosekilde, Erik
2002-01-01
We consider the interaction of a small moving particle with a stationary space-periodic pattern in a chemical reaction-diffusion system with a flow. The pattern is produced by a one-dimensional Brusselator model that is perturbed by a constant displacement from the equilibrium state at the inlet....... By partially blocking the flow, the particle gives rise to a local increment of the flow rate. For certain parameter values a response with intermittent Hopf and Turing type structures is observed. In other regimes a wave of substitution of missing peaks runs across the pattern....
One-Dimensional Model for Mud Flows.
1985-10-01
law relation between the Chezy coefficient and the flow Reynolds number. Jeyapalan et al. [2], in their analysis of mine tailing dam failures...8217.. .: -:.. ; .r;./. : ... . :\\ :. . ... . RESULTS The model is compared with several dambreak experiments performed by Jeyapalan et al. [3]. In these...0.34 seconds per computational node. 5i Test 6 Test 2 Test 7 44 E 3 A2 Experimental Results0 Jeyapalan at al. (3) - C6- Numerical Results 4 8 12 i6 Time
Approximate characteristics for one-dimensional two-phase flows
International Nuclear Information System (INIS)
Sarayloo, A.; Peddleson, J.
1985-01-01
An approximate method for determining the characteristics associated with one-dimensional particulate two-phase flow models is presented. The method is based on iteration and is valid for small particulate volume fractions. The method is applied to several special cases involving incompressible particles suspended in a gas. The influences of certain changes in the physical model are investigated
One-dimensional energy flow model for poroelastic material
International Nuclear Information System (INIS)
Kim, Jung Soo; Kang, Yeon June
2009-01-01
This paper presents a one-dimensional energy flow model to investigate the energy behavior for poroelastic media coupled with acoustical media. The proposed energy flow model is expressed by an independent energy governing equation that is classified into each wave component propagating in poroelastic media. The energy governing equation is derived using the General Energetic Method (GEM). To facilitate a comparison with the classical solution based on the conventional displacement-base formulation, approximate solutions of energy density and intensity are obtained. Furthermore, the limitations and usability of the proposed energy flow model for poroelastic media are described.
Hydrogen peroxide stabilization in one-dimensional flow columns
Schmidt, Jeremy T.; Ahmad, Mushtaque; Teel, Amy L.; Watts, Richard J.
2011-09-01
Rapid hydrogen peroxide decomposition is the primary limitation of catalyzed H 2O 2 propagations in situ chemical oxidation (CHP ISCO) remediation of the subsurface. Two stabilizers of hydrogen peroxide, citrate and phytate, were investigated for their effectiveness in one-dimensional columns of iron oxide-coated and manganese oxide-coated sand. Hydrogen peroxide (5%) with and without 25 mM citrate or phytate was applied to the columns and samples were collected at 8 ports spaced 13 cm apart. Citrate was not an effective stabilizer for hydrogen peroxide in iron-coated sand; however, phytate was highly effective, increasing hydrogen peroxide residuals two orders of magnitude over unstabilized hydrogen peroxide. Both citrate and phytate were effective stabilizers for manganese-coated sand, increasing hydrogen peroxide residuals by four-fold over unstabilized hydrogen peroxide. Phytate and citrate did not degrade and were not retarded in the sand columns; furthermore, the addition of the stabilizers increased column flow rates relative to unstabilized columns. These results demonstrate that citrate and phytate are effective stabilizers of hydrogen peroxide under the dynamic conditions of one-dimensional columns, and suggest that citrate and phytate can be added to hydrogen peroxide before injection to the subsurface as an effective means for increasing the radius of influence of CHP ISCO.
Bjorken flow in one-dimensional relativistic magnetohydrodynamics with magnetization
Pu, Shi; Roy, Victor; Rezzolla, Luciano; Rischke, Dirk H.
2016-04-01
We study the one-dimensional, longitudinally boost-invariant motion of an ideal fluid with infinite conductivity in the presence of a transverse magnetic field, i.e., in the ideal transverse magnetohydrodynamical limit. In an extension of our previous work Roy et al., [Phys. Lett. B 750, 45 (2015)], we consider the fluid to have a nonzero magnetization. First, we assume a constant magnetic susceptibility χm and consider an ultrarelativistic ideal gas equation of state. For a paramagnetic fluid (i.e., with χm>0 ), the decay of the energy density slows down since the fluid gains energy from the magnetic field. For a diamagnetic fluid (i.e., with χmlaw ˜τ-a, two distinct solutions can be found depending on the values of a and χm. Finally, we also solve the ideal magnetohydrodynamical equations for one-dimensional Bjorken flow with a temperature-dependent magnetic susceptibility and a realistic equation of state given by lattice-QCD data. We find that the temperature and energy density decay more slowly because of the nonvanishing magnetization. For values of the magnetic field typical for heavy-ion collisions, this effect is, however, rather small. It is only for magnetic fields about an order of magnitude larger than expected for heavy-ion collisions that the system is substantially reheated and the lifetime of the quark phase might be extended.
Research on one-dimensional two-phase flow
International Nuclear Information System (INIS)
Adachi, Hiromichi
1988-10-01
In Part I the fundamental form of the hydrodynamic basic equations for a one-dimensional two-phase flow (two-fluid model) is described. Discussions are concentrated on the treatment of phase change inertial force terms in the equations of motion and the author's equations of motion which have a remarkable uniqueness on the following three points. (1) To express force balance of unit mass two-phase fluid instead of that of unit volume two-phase fluid. (2) To pick up the unit existing mass and the unit flowing mass as the unit mass of two-phase fluid. (3) To apply the kinetic energy principle instead of the momentum low in the evaluation of steady inertial force term. In these three, the item (1) is for excluding a part of momentum change or kinetic energy change due to mass change of the examined part of fluid, which is independent of force. The item (2) is not to introduce a phenomenological physical model into the evaluation of phase change inertial force term. And the item (3) is for correctly applying the momentum law taking into account the difference of representative velocities between the main flow fluid (vapor phase or liquid phase) and the phase change part of fluid. In Part II, characteristics of various kinds of high speed two-phase flow are clarified theoretically by the basic equations derived. It is demonstrated that the steam-water two-phase critical flow with violent flashing and the airwater two-phase critical flow without phase change can be described with fundamentally the same basic equations. Furthermore, by comparing the experimental data from the two-phase critical discharge test and the theoretical prediction, the two-phase discharge coefficient, C D , for large sharp-edged orifice is determined as the value which is not affected by the experimental facility characteristics, etc. (author)
Shell-crossing in quasi-one-dimensional flow
Rampf, Cornelius; Frisch, Uriel
2017-10-01
Blow-up of solutions for the cosmological fluid equations, often dubbed shell-crossing or orbit crossing, denotes the breakdown of the single-stream regime of the cold-dark-matter fluid. At this instant, the velocity becomes multi-valued and the density singular. Shell-crossing is well understood in one dimension (1D), but not in higher dimensions. This paper is about quasi-one-dimensional (Q1D) flow that depends on all three coordinates but differs only slightly from a strictly 1D flow, thereby allowing a perturbative treatment of shell-crossing using the Euler-Poisson equations written in Lagrangian coordinates. The signature of shell-crossing is then just the vanishing of the Jacobian of the Lagrangian map, a regular perturbation problem. In essence, the problem of the first shell-crossing, which is highly singular in Eulerian coordinates, has been desingularized by switching to Lagrangian coordinates, and can then be handled by perturbation theory. Here, all-order recursion relations are obtained for the time-Taylor coefficients of the displacement field, and it is shown that the Taylor series has an infinite radius of convergence. This allows the determination of the time and location of the first shell-crossing, which is generically shown to be taking place earlier than for the unperturbed 1D flow. The time variable used for these statements is not the cosmic time t but the linear growth time τ ˜ t2/3. For simplicity, calculations are restricted to an Einstein-de Sitter universe in the Newtonian approximation, and tailored initial data are used. However it is straightforward to relax these limitations, if needed.
One-dimensional calculation of flow branching using the method of characteristics
International Nuclear Information System (INIS)
Meier, R.W.; Gido, R.G.
1978-05-01
In one-dimensional flow systems, the flow often branches, such as at a tee or manifold. The study develops a formulation for calculating the flow through branch points with one-dimensional method of characteristics equations. The resultant equations were verified by comparison with experimental measurements
Elementary notions on one-dimensional flow thermohydraulic modelling
International Nuclear Information System (INIS)
Perrin, M.
1982-02-01
This paper is an overview of the notions of mathematical and simulation model applied to flows met in pipes and in several components of power plants (valves, pump, turbine). Finally, the results of a computer code based on the equations previously presented are given [fr
Extended forward sensitivity analysis of one-dimensional isothermal flow
International Nuclear Information System (INIS)
Johnson, M.; Zhao, H.
2013-01-01
Sensitivity analysis and uncertainty quantification is an important part of nuclear safety analysis. In this work, forward sensitivity analysis is used to compute solution sensitivities on 1-D fluid flow equations typical of those found in system level codes. Time step sensitivity analysis is included as a method for determining the accumulated error from time discretization. The ability to quantify numerical error arising from the time discretization is a unique and important feature of this method. By knowing the relative sensitivity of time step with other physical parameters, the simulation is allowed to run at optimized time steps without affecting the confidence of the physical parameter sensitivity results. The time step forward sensitivity analysis method can also replace the traditional time step convergence studies that are a key part of code verification with much less computational cost. One well-defined benchmark problem with manufactured solutions is utilized to verify the method; another test isothermal flow problem is used to demonstrate the extended forward sensitivity analysis process. Through these sample problems, the paper shows the feasibility and potential of using the forward sensitivity analysis method to quantify uncertainty in input parameters and time step size for a 1-D system-level thermal-hydraulic safety code. (authors)
Flow Patterns and Thermal Drag in a One-Dimensional Inviscid Channel with Heating or Cooling
Institute of Scientific and Technical Information of China (English)
无
1993-01-01
In this paper investigations on the flow patterns and the thermal drag phenomenon in one -dimensional inviscid channel flow with heating or cooling are described and discussed:expressions of flow rate ratio and thermal drag coefficient for different flow patterns and its physical mechanism are presented.
Semi-analytical Study of a One-dimensional Contaminant Flow in a ...
African Journals Online (AJOL)
ADOWIE PERE
ABSTRACT: The Bubnov-Galerkin weighted residual method was used to solve a one- dimensional contaminant flow problem in this paper. The governing equation of the contaminant flow, which is characterized by advection, dispersion and adsorption was discretized and solved to obtain the semi-analytical solution.
Development of One Dimensional Hyperbolic Coupled Solver for Two-Phase Flows
International Nuclear Information System (INIS)
Kim, Eoi Jin; Kim, Jong Tae; Jeong, Jae June
2008-08-01
The purpose of this study is a code development for one dimensional two-phase two-fluid flows. In this study, the computations of two-phase flow were performed by using the Roe scheme which is one of the upwind schemes. The upwind scheme is widely used in the computational fluid dynamics because it can capture discontinuities clearly such as a shock. And this scheme is applicable to multi-phase flows by the extension methods which were developed by Toumi, Stadtke, etc. In this study, the extended Roe upwind scheme by Toumi for two-phase flow was implemented in the one-dimensional code. The scheme was applied to a shock tube problem and a water faucet problem. This numerical method seems efficient for non oscillating solutions of two phase flow problems, and also capable for capturing discontinuities
Development of One Dimensional Hyperbolic Coupled Solver for Two-Phase Flows
Energy Technology Data Exchange (ETDEWEB)
Kim, Eoi Jin; Kim, Jong Tae; Jeong, Jae June
2008-08-15
The purpose of this study is a code development for one dimensional two-phase two-fluid flows. In this study, the computations of two-phase flow were performed by using the Roe scheme which is one of the upwind schemes. The upwind scheme is widely used in the computational fluid dynamics because it can capture discontinuities clearly such as a shock. And this scheme is applicable to multi-phase flows by the extension methods which were developed by Toumi, Stadtke, etc. In this study, the extended Roe upwind scheme by Toumi for two-phase flow was implemented in the one-dimensional code. The scheme was applied to a shock tube problem and a water faucet problem. This numerical method seems efficient for non oscillating solutions of two phase flow problems, and also capable for capturing discontinuities.
One-dimensional acoustic standing waves in rectangular channels for flow cytometry.
Austin Suthanthiraraj, Pearlson P; Piyasena, Menake E; Woods, Travis A; Naivar, Mark A; Lόpez, Gabriel P; Graves, Steven W
2012-07-01
Flow cytometry has become a powerful analytical tool for applications ranging from blood diagnostics to high throughput screening of molecular assemblies on microsphere arrays. However, instrument size, expense, throughput, and consumable use limit its use in resource poor areas of the world, as a component in environmental monitoring, and for detection of very rare cell populations. For these reasons, new technologies to improve the size and cost-to-performance ratio of flow cytometry are required. One such technology is the use of acoustic standing waves that efficiently concentrate cells and particles to the center of flow channels for analysis. The simplest form of this method uses one-dimensional acoustic standing waves to focus particles in rectangular channels. We have developed one-dimensional acoustic focusing flow channels that can be fabricated in simple capillary devices or easily microfabricated using photolithography and deep reactive ion etching. Image and video analysis demonstrates that these channels precisely focus single flowing streams of particles and cells for traditional flow cytometry analysis. Additionally, use of standing waves with increasing harmonics and in parallel microfabricated channels is shown to effectively create many parallel focused streams. Furthermore, we present the fabrication of an inexpensive optical platform for flow cytometry in rectangular channels and use of the system to provide precise analysis. The simplicity and low-cost of the acoustic focusing devices developed here promise to be effective for flow cytometers that have reduced size, cost, and consumable use. Finally, the straightforward path to parallel flow streams using one-dimensional multinode acoustic focusing, indicates that simple acoustic focusing in rectangular channels may also have a prominent role in high-throughput flow cytometry. Copyright © 2012 Elsevier Inc. All rights reserved.
Advanced One-Dimensional Entrained-Flow Gasifier Model Considering Melting Phenomenon of Ash
Directory of Open Access Journals (Sweden)
Jinsu Kim
2018-04-01
Full Text Available A one-dimensional model is developed to represent the ash-melting phenomenon, which was not considered in the previous one-dimensional (1-D entrained-flow gasifier model. We include sensible heat of slag and the fusion heat of ash in the heat balance equation. To consider the melting of ash, we propose an algorithm that calculates the energy balance for three scenarios based on temperature. We also use the composition and the thermal properties of anorthite mineral to express ash. gPROMS for differential equations is used to solve this algorithm in a simulation; the results include coal conversion, gas composition, and temperature profile. Based on the Texaco pilot plant gasifier, we validate our model. Our results show good agreement with previous experimental data. We conclude that the sensible heat of slag and the fusion heat of ash must be included in the entrained flow gasifier model.
Analysis of the one-dimensional transient compressible vapor flow in heat pipes
Jang, Jong H.; Faghri, Amir; Chang, Won S.
1991-01-01
The transient compressible one-dimensional vapor flow dynamics in a heat pipe is modeled. The numerical results are obtained by using the implicit non-iterative Beam-Warming finite difference method. The model is tested for simulated heat pipe vapor flow and actual vapor flow in cylindrical heat pipes. A good comparison of the present transient results for the simulated heat pipe vapor flow with the previous results of a two-dimensional numerical model is achieved and the steady state results are in agreement with the existing experimental data. The transient behavior of the vapor flow under subsonic, sonic, and supersonic speeds as well as high mass flow rates are successfully predicted.
One-dimensional pulse-flow modeling of a twin-scroll turbine
International Nuclear Information System (INIS)
Chiong, M.S.; Rajoo, S.; Romagnoli, A.; Costall, A.W.; Martinez-Botas, R.F.
2016-01-01
This paper presents a revised one-dimensional (1D) pulse flow modeling of twin-scroll turbocharger turbine under pulse flow operating conditions. The proposed methodology in this paper provides further consideration for the turbine partial admission performance during model characterization. This gives rise to significant improvement on the model pulse flow prediction quality compared to the previous model. The results show that a twin-scroll turbine is not operating at full admission throughout the in-phase pulse flow conditions. Instead, they are operating at unequal admission state due to disparity in the magnitude of turbine inlet flow. On the other hand, during out-of-phase pulse flow, a twin-scroll turbine is working at partial admission state for majority of the pulse cycle. An amended mathematical correlation in calculating the twin-scroll turbine partial admission characteristics is also presented in the paper. The impact of its accuracy on the pulse flow model prediction is explored. - Highlights: • Paper presents a 1D modeling for twin-scroll turbine under pulsating flow. • Predicted pulse pressure propagation is in good agreement with experimental data. • A methodology is proposed to consider the turbine partial admission performance. • Prediction shows twin-scroll turbine operates at unequal admission during in-phase flow. • During out-of-phase flow a twin-scroll turbine mainly operates at partial admission.
From lag synchronization to pattern formation in one-dimensional open flow models
International Nuclear Information System (INIS)
Liu Zengrong; Luo Jigui
2006-01-01
In this paper, the relation between synchronization and pattern formation in one-dimensional discrete and continuous open flow models is investigated in detail. Firstly a sufficient condition for globally asymptotical stability of lag/anticipating synchronization among lattices of these models is proved by analytic method. Then, by analyzing and simulating lag/anticipating synchronization in discrete case, three kinds of pattern of wave (it is called wave pattern) travelling in the lattices are discovered. Finally, a proper definition for these kinds of pattern is proposed
One-dimensional model of steady, compressible channel flow with mass, momentum, and energy addition
International Nuclear Information System (INIS)
Johnston, S.C.
1976-09-01
A one-dimensional model of steady, compressible channel flow with mass, momentum and energy addition is discussed. An exact solution to the governing equations was found and from it a similarity parameter relating dimensionless mass, momentum and energy addition identified. This similarity parameter is used to make two flows having different dimensionless mass, momentum and energy additions equivalent. Application of the similarity parameter to the LASL Intense Neutron Source experiment and the Sandia simulation of that experiment results in an expression relating the dimensionless mass addition of combustible gas required in the Sandia experiment to dimensionless energy addition in the LASL experiment. Results of the analysis indicate that the Sandia experiment can realistically simulate the energy addition in the LASL Intense Neutron Source experiment
One-Dimensional, Two-Phase Flow Modeling Toward Interpreting Motor Slag Expulsion Phenomena
Kibbey, Timothy P.
2012-01-01
Aluminum oxide slag accumulation and expulsion was previously shown to be a player in various solid rocket motor phenomena, including the Space Shuttle's Reusable Solid Rocket Motor (RSRM) pressure perturbation, or "blip," and phantom moment. In the latter case, such un ]commanded side accelerations near the end of burn have also been identified in several other motor systems. However, efforts to estimate the mass expelled during a given event have come up short. Either bulk calculations are performed without enough physics present, or multiphase, multidimensional Computational Fluid Dynamic analyses are performed that give a snapshot in time and space but do not always aid in grasping the general principle. One ]dimensional, two ]phase compressible flow calculations yield an analytical result for nozzle flow under certain assumptions. This can be carried further to relate the bulk motor parameters of pressure, thrust, and mass flow rate under the different exhaust conditions driven by the addition of condensed phase mass flow. An unknown parameter is correlated to airflow testing with water injection where mass flow rates and pressure are known. Comparison is also made to full ]scale static test motor data where thrust and pressure changes are known and similar behavior is shown. The end goal is to be able to include the accumulation and flow of slag in internal ballistics predictions. This will allow better prediction of the tailoff when much slag is ejected and of mass retained versus time, believed to be a contributor to the widely-observed "flight knockdown" parameter.
Luna, Byron Quan; Remaître, Alexandre; van Asch, Theo; Malet, Jean-Philippe; van Westen, Cees
2010-05-01
Estimating the magnitude and the intensity of rapid landslides like debris flows is fundamental to evaluate quantitatively the hazard in a specific location. Intensity varies through the travelled course of the flow and can be described by physical features such as deposited volume, velocities, height of the flow, impact forces and pressures. Dynamic run-out models are able to characterize the distribution of the material, its intensity and define the zone where the elements will experience an impact. These models can provide valuable inputs for vulnerability and risk calculations. However, most dynamic run-out models assume a constant volume during the motion of the flow, ignoring the important role of material entrained along its path. Consequently, they neglect that the increase of volume enhances the mobility of the flow and can significantly influence the size of the potential impact area. An appropriate erosion mechanism needs to be established in the analyses of debris flows that will improve the results of dynamic modeling and consequently the quantitative evaluation of risk. The objective is to present and test a simple 1D debris flow model with a material entrainment concept based on limit equilibrium considerations and the generation of excess pore water pressure through undrained loading of the in situ bed material. The debris flow propagation model is based on a one dimensional finite difference solution of a depth-averaged form of the Navier-Stokes equations of fluid motions. The flow is treated as a laminar one phase material, which behavior is controlled by a visco-plastic Coulomb-Bingham rheology. The model parameters are evaluated and the model performance is tested on a debris flow event that occurred in 2003 in the Faucon torrent (Southern French Alps).
A quasi-one-dimensional theory of sound propagation in lined ducts with mean flow
Dokumaci, Erkan
2018-04-01
Sound propagation in ducts with locally-reacting liners has received the attention of many authors proposing two- and three-dimensional solutions of the convected wave equation and of the Pridmore-Brown equation. One-dimensional lined duct models appear to have received less attention. The present paper proposes a quasi-one-dimensional theory for lined uniform ducts with parallel sheared mean flow. The basic assumption of the theory is that the effects of refraction and wall compliance on the fundamental mode remain within ranges in which the acoustic fluctuations are essentially uniform over a duct section. This restricts the model to subsonic low Mach numbers and Helmholtz numbers of less than about unity. The axial propagation constants and the wave transfer matrix of the duct are given by simple explicit expressions and can be applied with no-slip, full-slip or partial slip boundary conditions. The limitations of the theory are discussed and its predictions are compared with the fundamental mode solutions of the convected wave equation, the Pridmore-Brown equation and measurements where available.
Gradient flow for the one-dimensional Mumford-Shah functional
International Nuclear Information System (INIS)
Gobbino, M.
1998-01-01
In order to introduce a notion of gradient flow for the one-dimensional Mumford-Shah functional M S(u), the article considers a family {F hatε} of regular functionals, defined in spaces of piecewise constant functions, which converge in a variational sense to M S(u). Moreover, given an initial datum U 0 , with M S(u 0 ) 0ε } of piecewise constant approximations of u 0 , the evolution problems are considered. For large classes of initial data, the family {u ε (t)} converges, as ε→0 + , to a certain u(t), which is the solution of the heat equation with homogeneous Neumann boundary conditions in a suitable variable domain. On the other hand, for some special u 0 , the family {u ε (t)} has infinitely many limit points as ε→0 +
Analysis of one-dimensional nonequilibrium two-phase flow using control volume method
International Nuclear Information System (INIS)
Minato, Akihiko; Naitoh, Masanori
1987-01-01
A one-dimensional numerical analysis model was developed for prediction of rapid flow transient behavior involving boiling. This model was based on six conservation equations of time averaged parameters of gas and liquid behavior. These equations were solved by using a control volume method with an explicit time integration. This model did not use staggered mesh scheme, which had been commonly used in two-phase flow analysis. Because void fraction and velocity of each phase were defined at the same location in the present model, effects of void fraction on phase velocity calculation were treated directly without interpolation. Though non-staggered mesh scheme was liable to cause numerical instability with zigzag pressure field, stability was achieved by employing the Godunov method. In order to verify the present analytical model, Edwards' pipe blow down and Zaloudek's initially subcooled critical two-phase flow experiments were analyzed. Stable solutions were obtained for rarefaction wave propagation with boiling and transient two-phase flow behavior in a broken pipe by using this model. (author)
One-dimensional transient unequal velocity two-phase flow by the method of characteristics
International Nuclear Information System (INIS)
Rasouli, F.
1981-01-01
An understanding of two-phase flow is important when one is analyzing the accidental loss of coolant or when analyzing industrial processes. If a pipe in the steam generator of a nuclear reactor breaks, the flow will remain critical (or choked) for almost the entire blowdown. For this reason the knowledge of the two-phase maximum (critical) flow rate is important. A six-equation model--consisting of two continuity equations, two energy equations, a mixture momentum equation, and a constitutive relative velocity equation--is solved numerically by the method of characteristics for one-dimensional, transient, two-phase flow systems. The analysis is also extended to the special case of transient critical flow. The six-equation model is used to study the flow of a nonequilibrium sodium-argon system in a horizontal tube in which the nonequilibrium sodium-argon system in a horizontal tube in which the critical flow condition is at the entrance. A four-equation model is used to study the pressure-pulse propagation rate in an isothermal air-water system, and the results that are found are compared with the experimental data. Proper initial and boundary conditions are obtained for the blowdown problem. The energy and mass exchange relations are evaluated by comparing the model predictions with results of void-fraction and heat-transfer experiments. A simplified two-equation model is obtained for the special case of two incompressible phases. This model is used in the preliminary analysis of batch sedimentation. It is also used to predict the shock formation in the gas-solid fluidized bed
On the One-Dimensional Modeling of Vertical Upward Bubbly Flow
Directory of Open Access Journals (Sweden)
C. Peña-Monferrer
2018-01-01
Full Text Available The one-dimensional two-fluid model approach has been traditionally used in thermal-hydraulics codes for the analysis of transients and accidents in water–cooled nuclear power plants. This paper investigates the performance of RELAP5/MOD3 predicting vertical upward bubbly flow at low velocity conditions. For bubbly flow and vertical pipes, this code applies the drift-velocity approach, showing important discrepancies with the experiments compared. Then, we use a classical formulation of the drag coefficient approach to evaluate the performance of both approaches. This is based on the critical Weber criteria and includes several assumptions for the calculation of the interfacial area and bubble size that are evaluated in this work. A more accurate drag coefficient approach is proposed and implemented in RELAP5/MOD3. Instead of using the Weber criteria, the bubble size distribution is directly considered. This allows the calculation of the interfacial area directly from the definition of Sauter mean diameter of a distribution. The results show that only the proposed approach was able to predict all the flow characteristics, in particular the bubble size and interfacial area concentration. Finally, the computational results are analyzed and validated with cross-section area average measurements of void fraction, dispersed phase velocity, bubble size, and interfacial area concentration.
International Nuclear Information System (INIS)
Thompson, J.S.; Zeiler, R.M.
1995-01-01
A field investigation characterizing contamination at the Rocky Flats Plant (Rocky Flats Environmental Technology Site) near Golden, Colorado revealed unexpectedly high moisture contents in the unsaturated soil column (vadose zone) beneath several of the Plant's Waste Water Treatment Plant (WWTP) sludge drying beds. Because these beds were seldom in use, researchers had hypothesized that the water required to maintain the saturated conditions observed beneath several of the sludge drying beds was coming from sources other than the beds themselves. In an effort to substantiate this hypothesis, a one-dimensional physically-based unsaturated flow model was utilized to simulate the vertical movement of moisture from the sludge drying beds into the unsaturated soil column below. The model was run to simulate vertical flow over a two-year period and results indicated that no significant changes from initial conditions were apparent. This evidence supports the hypothesis that the high moisture contents found beneath the sludge drying beds are being fed by sources other than infiltration of sludge applied to the beds themselves. This paper presents the details of the simulation and provides further evidence of the hypothesized flow regime
Determination of heat flows inside turbochargers by means of a one dimensional lumped model
Olmeda González, Pablo Cesar; Dolz Ruiz, Vicente; Arnau Martínez, Francisco José; Reyes Belmonte, Miguel Angel
2013-01-01
In the present paper, a methodology to calculate the heat fluxes inside a turbocharger from diesel passenger car is presented. The heat transfer phenomenon is solved by using a one dimensional lumped model that takes into account both the heat fluxes between the different turbocharger elements, as well as the heat fluxes between the working fluids and the turbocharger elements. This heat transfer study is supported by the high temperature differences between the working fluids passing thr...
DEFF Research Database (Denmark)
Petkov, K.P.; Puton, M; Madsen, Søren Peder
2014-01-01
are accounted for through both friction and acceleration as in a conventional formulation. However, in this analysis the acceleration term is both attributed geometrical effects through the area change and fluid dynamic effects through the expansion of the two-phase flow. The comparison of numerical...... is a one dimensional formulation in space and the equations incorporates the change in tubes and orifice diameter as formulated in (S. Madsen et.al., Dynamic Modeling of Phase Crossings in Two-Phase Flow, Communications in Computational Physics 12 (4), 1129-1147). The pressure changes in the flow...
On the One-Dimensional Steady and Unsteady Porous Flow Equation
DEFF Research Database (Denmark)
Andersen, O. H.; Burcharth, H. F.
1995-01-01
Porous flow in coarse granular media is discussed theoretically with special concern given to the variation of the flow resistance with the porosity. For steady state flow, the Navier-Stokes equation is applied as a basis for the derivations. A turbulent flow equation is suggested. Alternative...... derivations based on dimensional analysis and a pipe analogy, respectively, are discussed. For non-steady state flow, the derivations are based on a cylinder/sphere analogy leading to a virtual mass coefficient. For the fully turbulent flow regime, existing experimental data values of the quadratic flow...... resistance coefficients are presented. Moreover, a simple formula for estimation of the turbulent flow coefficient is given. Virtual mass coefficients based on existing data are presented, however, no definite conclusions can be given due to the scarce data available....
One-dimensional analysis of plane and radial thin film flows including solid-body rotation
Thomas, S.; Hankey, W.; Faghri, A.; Swanson, T.
1989-01-01
The flow of a thin liquid film with a free surface along a horizontal plate which emanates from a pressurized vessel is examined by integrating the equations of motion across the thin liquid layer and discretizing the integrated equations using finite difference techniques. The effects of 0-g and solid-body rotation will be discussed. The two cases of interest are plane flow and radial flow. In plane flow, the liquid is considered to be flowing along a channel with no change in the width of the channel, whereas in radial flow the liquid spreads out radially over a disk, so that the area changes along the radius. It is desired to determine the height of the liquid film at any location along the plate of disk, so that the heat transfer from the plate or disk can be found. The possibility that the flow could encounter a hydraulic jump is accounted for.
Mirels, Harold
1959-01-01
A source distribution method is presented for obtaining flow perturbations due to small unsteady area variations, mass, momentum, and heat additions in a basic uniform (or piecewise uniform) one-dimensional flow. First, the perturbations due to an elemental area variation, mass, momentum, and heat addition are found. The general solution is then represented by a spatial and temporal distribution of these elemental (source) solutions. Emphasis is placed on discussing the physical nature of the flow phenomena. The method is illustrated by several examples. These include the determination of perturbations in basic flows consisting of (1) a shock propagating through a nonuniform tube, (2) a constant-velocity piston driving a shock, (3) ideal shock-tube flows, and (4) deflagrations initiated at a closed end. The method is particularly applicable for finding the perturbations due to relatively thin wall boundary layers.
Numerical Model of Air Valve For Computation of One-dimensional Flow
Directory of Open Access Journals (Sweden)
Daniel HIMR
2014-06-01
Full Text Available The paper is focused on a numerical simulation of unsteady flow in a pipeline. The special attention is paid to a numerical model of an air valve, which has to include all possible regimes: critical/subcritical inflow and critical/subcritical outflow of air. Thermodynamic equation of subcritical mass flow was simplified to get more friendly shape of relevant equations, which enables easier solution of the problem.
One-dimensional modeling of concentration distribution in pipe flow of combined-load slurry
Czech Academy of Sciences Publication Activity Database
Matoušek, Václav; Krupička, Jan
2014-01-01
Roč. 260, July (2014), s. 42-51 ISSN 0032-5910 R&D Projects: GA ČR GA103/09/0383 Institutional support: RVO:67985874 Keywords : hydraulic transport * sediment transport * two-phase flow * experiment * bed shear Subject RIV: BK - Fluid Dynamics Impact factor: 2.349, year: 2014
Integral model of linear momentum for one-dimensional two-phase flows
International Nuclear Information System (INIS)
Kuznetsov, Yu.A.; Sabaev, E.F.
1976-01-01
''An integrated momentum model'' obtained by Meyer-Rose and widely applicable in calculations of dynamics of the thermal power systems is generalized for a case of flow of a vapour-liquid mixture with phase creep and pressure variation in the heated channel. Pressure distribution along the channel length is shown for a number of cases to be negligible. The obtained equations are found as well applicable in case pressure greatly though slowly varies in the system
Verification and validation of one-dimensional models used in subcooled flow boiling analysis
International Nuclear Information System (INIS)
Braz Filho, Francisco A.; Caldeira, Alexandre D.; Borges, Eduardo M.; Sabundjian, Gaiane
2009-01-01
Subcooled flow boiling occurs in many industrial applications and it is characterized by large heat transfer coefficients. However, this efficient heat transfer mechanism is limited by the critical heat flux, where the heat transfer coefficient decreases leading to a fast heater temperature excursion, potentially leading to heater melting and destruction. Subcooled flow boiling is especially important in water-cooled nuclear power reactors, where the presence of vapor bubbles in the core influences the reactor system behavior at operating and accident conditions. With the aim of verifying the subcooled flow boiling calculation models of the most important nuclear reactor thermal-hydraulic computer codes, such as RELAP5, COBRA-EN and COTHA-2tp, the main purpose of this work is to compare experimental data with results from these codes in the pressure range between 15 and 45 bar. For the pressure of 45 bar the results are in good agreement, while for low pressures (15 and 30 bar) the results start to become conflicting. Besides, as a sub-product of this analysis, a comparison among the models is also presented. (author)
Di Nucci, Carmine
2018-05-01
This note examines the two-dimensional unsteady isothermal free surface flow of an incompressible fluid in a non-deformable, homogeneous, isotropic, and saturated porous medium (with zero recharge and neglecting capillary effects). Coupling a Boussinesq-type model for nonlinear water waves with Darcy's law, the two-dimensional flow problem is solved using one-dimensional model equations including vertical effects and seepage face. In order to take into account the seepage face development, the system equations (given by the continuity and momentum equations) are completed by an integral relation (deduced from the Cauchy theorem). After testing the model against data sets available in the literature, some numerical simulations, concerning the unsteady flow through a rectangular dam (with an impermeable horizontal bottom), are presented and discussed.
International Nuclear Information System (INIS)
Rahatgaonkar, P. S.; Datta, D.; Malhotra, P. K.; Ghadge, S. G.
2012-01-01
Prediction of groundwater movement and contaminant transport in soil is an important problem in many branches of science and engineering. This includes groundwater hydrology, environmental engineering, soil science, agricultural engineering and also nuclear engineering. Specifically, in nuclear engineering it is applicable in the design of spent fuel storage pools and waste management sites in the nuclear power plants. Ground water modeling involves the simulation of flow and contaminant transport by groundwater flow. In the context of contaminated soil and groundwater system, numerical simulations are typically used to demonstrate compliance with regulatory standard. A one-dimensional Computational Fluid Dynamics code GFLOW had been developed based on the Finite Difference Method for simulating groundwater flow and contaminant transport through saturated and unsaturated soil. The code is validated with the analytical model and the benchmarking cases available in the literature. (authors)
On the Hughes' model for pedestrian flow: The one-dimensional case
Di Francesco, Marco
2011-02-01
In this paper we investigate the mathematical theory of Hughes\\' model for the flow of pedestrians (cf. Hughes (2002) [17]), consisting of a non-linear conservation law for the density of pedestrians coupled with an eikonal equation for a potential modelling the common sense of the task. For such an approximated system we prove existence and uniqueness of entropy solutions (in one space dimension) in the sense of Kružkov (1970) [22], in which the boundary conditions are posed following the approach of Bardos et al. (1979) [7]. We use BV estimates on the density ρ and stability estimates on the potential Π in order to prove uniqueness. Furthermore, we analyze the evolution of characteristics for the original Hughes\\' model in one space dimension and study the behavior of simple solutions, in order to reproduce interesting phenomena related to the formation of shocks and rarefaction waves. The characteristic calculus is supported by numerical simulations. © 2010 Elsevier Inc.
Investigation of one-dimensional heat flow in a solarflat plate collector with sun tracing system
Directory of Open Access Journals (Sweden)
H Samimi Akhijahani
2016-09-01
Full Text Available Introduction Drying is one of the most common methods for storing food and agricultural products. During drying process, free water that causes the growth of microorganisms and spoilage of products is removed from the product. There are several methods for drying of agricultural products. one of the most important methods of investment is drying by using sunlight. Iran is situated at 25- 43oE longitude and mean solar radiation is about 4.9 kwh.m-2.d-1. Because of the proper solar radiations in 95% of the agricultural areas in Iran, solar drying is widely used for drying of fruits and vegetables. The use of solar dryer causes saving in energy consumption and processing costs for drying of products in farms and gardens. Several researchers investigated heat transfer and heat flow in dryers. Selection of appropriate method was carried out for drying of agricultural products using heat pump. Experiments were done and mathematical relationships were estimated to obtain correlation parameters between Reynolds number and Nusselt number for the three cases of solar dryer (cabinet, indirect and combination.The best working conditions were determined for three types of solar collectors (flat, finned and corrugated. In this study, the process of heat transfer and heat transfer coefficient of a solar dryer with and without rotation of absorber plate was compared. Materials and Methods The experiments were conducted in Azarshahr, East Azarbayjan province, Iran in September 2014. Newton's law of thermodynamic was used to analyze the working condition of solar absorber. For this purpose the absorber plate was divided into four equal parts. According to the thermal equations and related boundary conditions as well as the relationship between heat transfer coefficient and the temperature gradient, equation 1 for the Nusselet number obtained: 1 Beside the relationship between Nusselt number and heat transfer coefficient is defined as equation 2: 2 Finally
International Nuclear Information System (INIS)
Kumar, Raghwendra; Biswas, Debabrata
2008-01-01
For a nonrelativistic electron beam propagating in a cylindrical drift tube, it is shown that the limiting current density does not saturate to the electrostatic one-dimensional (1D) estimate with increasing beam radius. Fully electromagnetic particle-in-cell (PIC) simulation studies show that beyond a critical aspect ratio, the limiting current density is lower than the 1D electrostatic prediction. The lowering in the limiting current density is found to be due to the transition from the space charge limited to magnetically limited flow. An adaptation of Alfven's single particle trajectory method is used to estimate the magnetically limited current as well as the critical radius beyond which the flow is magnetically limited in a drift tube. The predictions are found to be in close agreement with PIC simulations
Gildfind, D. E.; Jacobs, P. A.; Morgan, R. G.; Chan, W. Y. K.; Gollan, R. J.
2017-11-01
Large-scale free-piston driven expansion tubes have uniquely high total pressure capabilities which make them an important resource for development of access-to-space scramjet engine technology. However, many aspects of their operation are complex, and their test flows are fundamentally unsteady and difficult to measure. While computational fluid dynamics methods provide an important tool for quantifying these flows, these calculations become very expensive with increasing facility size and therefore have to be carefully constructed to ensure sufficient accuracy is achieved within feasible computational times. This study examines modelling strategies for a Mach 10 scramjet test condition developed for The University of Queensland's X3 facility. The present paper outlines the challenges associated with test flow reconstruction, describes the experimental set-up for the X3 experiments, and then details the development of an experimentally tuned quasi-one-dimensional CFD model of the full facility. The 1-D model, which accurately captures longitudinal wave processes, is used to calculate the transient flow history in the shock tube. This becomes the inflow to a higher-fidelity 2-D axisymmetric simulation of the downstream facility, detailed in the Part 2 companion paper, leading to a validated, fully defined nozzle exit test flow.
Gildfind, D. E.; Jacobs, P. A.; Morgan, R. G.; Chan, W. Y. K.; Gollan, R. J.
2018-07-01
Large-scale free-piston driven expansion tubes have uniquely high total pressure capabilities which make them an important resource for development of access-to-space scramjet engine technology. However, many aspects of their operation are complex, and their test flows are fundamentally unsteady and difficult to measure. While computational fluid dynamics methods provide an important tool for quantifying these flows, these calculations become very expensive with increasing facility size and therefore have to be carefully constructed to ensure sufficient accuracy is achieved within feasible computational times. This study examines modelling strategies for a Mach 10 scramjet test condition developed for The University of Queensland's X3 facility. The present paper outlines the challenges associated with test flow reconstruction, describes the experimental set-up for the X3 experiments, and then details the development of an experimentally tuned quasi-one-dimensional CFD model of the full facility. The 1-D model, which accurately captures longitudinal wave processes, is used to calculate the transient flow history in the shock tube. This becomes the inflow to a higher-fidelity 2-D axisymmetric simulation of the downstream facility, detailed in the Part 2 companion paper, leading to a validated, fully defined nozzle exit test flow.
International Nuclear Information System (INIS)
Trewin, Richard R.
2011-01-01
Highlights: → CCFL in the hot leg of a PWR with ECC Injection. → Three-Field Model of counter flowing water film and entrained droplets. → Flow of steam can cause a hydraulic jump in the supercritical flow of water. → Condensation of steam on subcooled water increases the required flow for hydraulic jump. → Better agreement with UPTF experimental data than Wallis-type correlation. - Abstract: A one-dimensional three-field model was developed to predict the flow of liquid and vapor that results from countercurrent flow of water injected into the hot leg of a PWR and the oncoming steam flowing from the upper plenum. The model solves the conservation equations for mass, momentum, and energy in a continuous-vapor field, a continuous-liquid field, and a dispersed-liquid (entrained-droplet) field. Single-effect experiments performed in the upper plenum test facility (UPTF) of the former SIEMENS KWU (now AREVA) at Mannheim, Germany, were used to validate the countercurrent flow limitation (CCFL) model in case of emergency core cooling water injection into the hot legs. Subcooled water and saturated steam flowed countercurrent in a horizontal pipe with an inside diameter of 0.75 m. The flow of injected water was varied from 150 kg/s to 400 kg/s, and the flow of steam varied from 13 kg/s to 178 kg/s. The subcooling of the liquid ranged from 0 K to 104 K. The velocity of the water at the injection point was supercritical (greater than the celerity of a gravity wave) for all the experiments. The three-field model was successfully used to predict the experimental data, and the results from the model provide insight into the mechanisms that influence the flows of liquid and vapor during countercurrent flow in a hot leg. When the injected water was saturated and the flow of steam was small, all or most of the injected water flowed to the upper plenum. Because the velocity of the liquid remained supercritical, entrainment of droplets was suppressed. When the injected
International Nuclear Information System (INIS)
Lyczkowski, R.W.; Gidaspow, D.; Solbrig, C.W.; Hughes, E.D.
1975-01-01
Equation systems describing one-dimensional, transient, two-phase flow with separate continuity, momentum, and energy equations for each phase are classified by use of the method of characteristics. Little attempt is made to justify the physics of these equations. Many of the equation systems possess complex-valued characteristics and hence, according to well-known mathematical theorems, are not well-posed as initial-value problems (IVPs). Real-valued characteristics are necessary but not sufficient to insure well-posedness. In the absence of lower order source or sink terms (potential type flows), which can affect the well-posedness of IVPs, the complex characteristics associated with these two-phase flow equations imply unbounded exponential growth for disturbances of all wavelengths. Analytical and numerical examples show that the ill-posedness of IVPs for the two-phase flow partial differential equations which possess complex characteristics produce unstable numerical schemes. These unstable numerical schemes can produce apparently stable and even accurate results if the growth rate resulting from the complex characteristics remains small throughout the time span of the numerical experiment or if sufficient numerical damping is present for the increment size used. Other examples show that clearly nonphysical numerical instabilities resulting from the complex characteristics can be produced. These latter types of numerical instabilities are shown to be removed by the addition of physically motivated differential terms which eliminate the complex characteristics. (auth)
International Nuclear Information System (INIS)
Naymik, T.G.
1978-01-01
To evaluate the inability of a one-dimensional ground-water model to interact continuously with surrounding hydraulic head gradients, simulations using one-dimensional and two-dimensional ground-water flow models were compared. This approach used two types of models: flow-conserving one-and-two dimensional models, and one-dimensional and two-dimensional models designed to yield two-dimensional solutions. The hydraulic conductivities of controlling features were varied and model comparison was based on the travel times of marker particles. The solutions within each of the two model types compare reasonably well, but a three-dimensional solution is required to quantify the comparison
Vaz-Romero, A.; Rodríguez-Martínez, J. A.
2018-01-01
In this paper we investigate flow localization in viscoplastic slender bars subjected to dynamic tension. We explore loading rates above the critical impact velocity: the wave initiated in the impacted end by the applied velocity is the trigger for the localization of plastic deformation. The problem has been addressed using two kinds of numerical simulations: (1) one-dimensional finite difference calculations and (2) axisymmetric finite element computations. The latter calculations have been used to validate the capacity of the finite difference model to describe plastic flow localization at high impact velocities. The finite difference model, which highlights due to its simplicity, allows to obtain insights into the role played by the strain rate and temperature sensitivities of the material in the process of dynamic flow localization. Specifically, we have shown that viscosity can stabilize the material behavior to the point of preventing the appearance of the critical impact velocity. This is a key outcome of our investigation, which, to the best of the authors' knowledge, has not been previously reported in the literature.
Energy Technology Data Exchange (ETDEWEB)
Wang, Yu-Jou [Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China); Pan, Chin, E-mail: cpan@ess.nthu.edu.tw [Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China); Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China); Low Carbon Energy Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China)
2017-05-15
Highlights: • Seven heat transfer mechanisms are studied numerically by the model. • A semi-empirical method is proposed to account for the transition boiling effect. • The parametric effects on the heat transfer mechanisms are investigated. • The thermal non-equilibrium phenomenon between vapor and droplets is investigated. - Abstract: The objective of this paper is to develop a one-dimensional semi-empirical model for the dispersed flow film boiling considering transition boiling effects. The proposed model consists of conservation equations, i.e., vapor mass, vapor energy, droplet mass and droplet momentum conservation, and a set of closure relations to address the interactions among wall, vapor and droplets. The results show that the transition boiling effect is of vital importance in the dispersed flow film boiling regime, since the flowing situation in the downstream would be influenced by the conditions in the upstream. In addition, the present paper, through evaluating the vapor temperature and the amount of heat transferred to droplets, investigates the thermal non-equilibrium phenomenon under different flowing conditions. Comparison of the wall temperature predictions with the 1394 experimental data in the literature, the present model ranging from system pressure of 30–140 bar, heat flux of 204–1837 kW/m{sup 2} and mass flux of 380–5180 kg/m{sup 2} s, shows very good agreement with RMS of 8.80% and standard deviation of 8.81%. Moreover, the model well depicts the thermal non-equilibrium phenomenon for the dispersed flow film boiling.
1DFEMWATER: A one-dimensional finite element model of WATER flow through saturated-unsaturated media
International Nuclear Information System (INIS)
Yeh, G.T.
1988-08-01
This report presents the development and verification of a one- dimensional finite element model of water flow through saturated- unsaturated media. 1DFEMWATER is very flexible and capable of modeling a wide range of real-world problems. The model is designed to (1) treat heterogeneous media consisting of many geologic formations; (2) consider distributed and point sources/sinks that are spatially and temporally variable; (3) accept prescribed initial conditions or obtain them from steady state simulations; (4) deal with transient heads distributed over the Dirichlet boundary; (5) handle time-dependent fluxes caused by pressure gradient on the Neumann boundary; (6) treat time-dependent total fluxes (i.e., the sum of gravitational fluxes and pressure-gradient fluxes) on the Cauchy boundary; (7) automatically determine variable boundary conditions of evaporation, infiltration, or seepage on the soil-air interface; (8) provide two options for treating the mass matrix (consistent and lumping); (9) provide three alternatives for approximating the time derivative term (Crank-Nicolson central difference, backward difference, and mid-difference); (10) give three options (exact relaxation, underrelaxation, and overrelaxation) for estimating the nonlinear matrix; (11) automatically reset the time step size when boundary conditions or source/sinks change abruptly; and (12) check mass balance over the entire region for every time step. The model is verified with analytical solutions and other numerical models for three examples
Directory of Open Access Journals (Sweden)
Dong Yan
2017-01-01
Full Text Available Strong shock waves can be generated by pulse discharge in water, and the characteristics due to the shock wave normal reflection from rigid walls have important significance to many fields, such as industrial production and defense construction. This paper investigates the effects of hydrostatic pressures and perturbation of wave source (i.e., charging voltage on normal reflection of one-dimensional unsteady flow shock waves. Basic properties of the incidence and reflection waves were analyzed theoretically and experimentally to identify the reflection mechanisms and hence the influencing factors and characteristics. The results indicated that increased perturbation (i.e., charging voltage leads to increased peak pressure and velocity of the reflected shock wave, whereas increased hydrostatic pressure obviously inhibited superposition of the reflection waves close to the rigid wall. The perturbation of wave source influence on the reflected wave was much lower than that on the incident wave, while the hydrostatic pressure obviously affected both incident and reflection waves. The reflection wave from the rigid wall in water exhibited the characteristics of a weak shock wave, and with increased hydrostatic pressure, these weak shock wave characteristics became more obvious.
Energy Technology Data Exchange (ETDEWEB)
Eichert, K.; Kaeppeler, H. J. [Institut fuer Plasmaforschung der Technischen Hochschule Stuttgart, Federal Republic of Germany (Germany)
1966-10-15
In previous publications, a system of equations was derived from the gas-kinetic description of a multi-component reacting plasma and employed for the calculation of one-dimensional subsonic flows. This system is now extended to include non-equilibrium excitation. No thermal or chemical equilibrium between the various components of the plasma is assumed. The components of the plasma considered are a non-reacting working fluid, an alkali metal vapour as a seeding material, ions of this seeding substance, and electrons. Three levels for the excited states are introduced. The reactions considered are excitation and ionization by electron collisions, and photo-ionization, as well as the corresponding reverse processes. For the reaction velocities, analytical equations are introduced permitting insertion of any excitation or ionization cross-sections of either experimental or theoretical origin. The method employed had been previously suggested by one of the authors. As examples, the degrees of excitation and ionization in the flow of a helium working fluid with 1% caesium seeding through a channel against transverse magnetic fields of 15 and 40 kg at Mach numbers of 0.7 and 0.8, respectively, were calculated. The results of the calculations show that for relatively small magnetic fields there is no rapid rise of the ionization to Saha-equilibrium as a function of electron temperature. A comparison with the results of a calculation neglecting excitation shows that especially for relatively large magnetic fields non-equilibrium excitation has an essential influence on the electron density and its approach to equilibrium. Neglecting excitation, there results a nearly frozen behaviour of the degree of ionization within channel lengths of technical interest for small magnetic fields. (author)
International Nuclear Information System (INIS)
Banach, Zbigniew; Larecki, Wieslaw
2013-01-01
The spectral formulation of the nine-moment radiation hydrodynamics resulting from using the Boltzmann entropy maximization procedure is considered. The analysis is restricted to the one-dimensional flows of a gas of massless fermions. The objective of the paper is to demonstrate that, for such flows, the spectral nine-moment maximum entropy hydrodynamics of fermionic radiation is not a purely formal theory. We first determine the domains of admissible values of the spectral moments and of the Lagrange multipliers corresponding to them. We then prove the existence of a solution to the constrained entropy optimization problem. Due to the strict concavity of the entropy functional defined on the space of distribution functions, there exists a one-to-one correspondence between the Lagrange multipliers and the moments. The maximum entropy closure of moment equations results in the symmetric conservative system of first-order partial differential equations for the Lagrange multipliers. However, this system can be transformed into the equivalent system of conservation equations for the moments. These two systems are consistent with the additional conservation equation interpreted as the balance of entropy. Exploiting the above facts, we arrive at the differential relations satisfied by the entropy function and the additional function required to close the system of moment equations. We refer to this additional function as the moment closure function. In general, the moment closure and entropy–entropy flux functions cannot be explicitly calculated in terms of the moments determining the state of a gas. Therefore, we develop a perturbation method of calculating these functions. Some additional analytical (and also numerical) results are obtained, assuming that the maximum entropy distribution function tends to the Maxwell–Boltzmann limit. (paper)
A third-order moving mesh cell-centered scheme for one-dimensional elastic-plastic flows
Cheng, Jun-Bo; Huang, Weizhang; Jiang, Song; Tian, Baolin
2017-11-01
A third-order moving mesh cell-centered scheme without the remapping of physical variables is developed for the numerical solution of one-dimensional elastic-plastic flows with the Mie-Grüneisen equation of state, the Wilkins constitutive model, and the von Mises yielding criterion. The scheme combines the Lagrangian method with the MMPDE moving mesh method and adaptively moves the mesh to better resolve shock and other types of waves while preventing the mesh from crossing and tangling. It can be viewed as a direct arbitrarily Lagrangian-Eulerian method but can also be degenerated to a purely Lagrangian scheme. It treats the relative velocity of the fluid with respect to the mesh as constant in time between time steps, which allows high-order approximation of free boundaries. A time dependent scaling is used in the monitor function to avoid possible sudden movement of the mesh points due to the creation or diminishing of shock and rarefaction waves or the steepening of those waves. A two-rarefaction Riemann solver with elastic waves is employed to compute the Godunov values of the density, pressure, velocity, and deviatoric stress at cell interfaces. Numerical results are presented for three examples. The third-order convergence of the scheme and its ability to concentrate mesh points around shock and elastic rarefaction waves are demonstrated. The obtained numerical results are in good agreement with those in literature. The new scheme is also shown to be more accurate in resolving shock and rarefaction waves than an existing third-order cell-centered Lagrangian scheme.
Anibas, Christian; Kukral, Janik; Touhidul Mustafa, Syed Md; Huysmans, Marijke
2017-04-01
Urban areas have a great potential for shallow geothermal systems. Their energy demand is high, but currently they have only a limited potential to cover their own energy demand. The transition towards a low-carbon energy regime offers alternative sources of energy an increasing potential. Urban areas however pose special challenges for the successful exploitation of shallow geothermal energy. High building densities limit the available space for drillings and underground investigations. Urban heat island effects and underground structures influence the thermal field, groundwater pollution and competing water uses limit the available subsurface. To tackle these challenges in the Brussels Capital Region, Belgium two projects 'BruGeo' and the recently finished 'Prospective Research of Brussels project 2015-PRFB-228' address the investigation in urban geothermal systems. They aim to identify the key factors of the underground with respect to Aquifer Thermal Energy Storage (ATES) installations like thermal properties, aquifer thicknesses, groundwater flow velocities and their heterogeneity. Combined numerical groundwater and heat transport models are applied for the assessment of both open and closed loop shallow geothermal systems. The Brussels Capital Region comprises of the Belgian Capital, the City of Brussels and 18 other municipalities covering 161 km2 with almost 1.2 million inhabitants. Beside the high population density the Brussels Capital Region has a pronounced topography and a relative complex geology. This is both a challenge and an opportunity for the exploitation of shallow geothermal energy. The most important shallow hydrogeological formation in the Brussels-Capital Region are the Brussels Sands with the Brussels Sands Aquifer. Scenarios where developed using criteria for the hydrogeological feasibility of ATES installations such as saturated aquifer thickness, groundwater flow velocity and the groundwater head below surface. The Brussels Sands
Thomas, S.; Hankey, W.; Faghri, A.; Swanson, T.
1990-01-01
The flow of a thin liquid film with a free surface along a horizontal plane that emanates from a pressurized vessel is examined numerically. In one g, a hydraulic jump was predicted in both plane and radial flow, which could be forced away from the inlet by increasing the inlet Froude number or Reynolds number. In zero g, the hydraulic jump was not predicted. The effect of solid-body rotation for radial flow in one g was to 'wash out' the hydraulic jump and to decrease the film height on the disk. The liquid film heights under one g and zero g were equal under solid-body rotation because the effect of centrifugal force was much greater than that of the gravitational force. The heat transfer to a film on a rotating disk was predicted to be greater than that of a stationary disk because the liquid film is extremely thin and is moving with a very high velocity.
Quasi One-Dimensional Model of Natural Draft Wet-Cooling Tower Flow, Heat and Mass Transfer
Directory of Open Access Journals (Sweden)
Hyhlík Tomáš
2015-01-01
Full Text Available The article deals with the development of CFD (Computational Fluid Dynamics model of natural draft wet-cooling tower flow, heat and mass transfer. The moist air flow is described by the system of conservation laws along with additional equations. Moist air is assumed to be homogeneous mixture of dry air and water vapour. Liquid phase in the fill zone is described by the system of ordinary differential equations. Boundary value problem for the system of conservation laws is discretized in space using Kurganov-Tadmor central scheme and in time using strong stability preserving Runge-Kutta scheme. Initial value problems in the fill zone is solved by using standard fourth order Runge-Kutta scheme. The interaction between liquid water and moist air is done by source terms in governing equations.
Papadimitriou, P.; Skorek, T.
THESUS is a thermohydraulic code for the calculation of steady state and transient processes of two-phase cryogenic flows. The physical model is based on four conservation equations with separate liquid and gas phase mass conservation equations. The thermohydraulic non-equilibrium is calculated by means of evaporation and condensation models. The mechanical non-equilibrium is modeled by a full-range drift-flux model. Also heat conduction in solid structures and heat exchange for the full spectrum of heat transfer regimes can be simulated. Test analyses of two-channel chilldown experiments and comparisons with the measured data have been performed.
Energy Technology Data Exchange (ETDEWEB)
Lopez de Bertodano, Martín, E-mail: bertodan@purdue.edu [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States); Fullmer, William D. [Department of Chemical and Biological Engineering, U. of Colorado, Boulder, CO 80309 (United States); Clausse, Alejandro [CNEA-CONICET and Universidad Nacional del Centro, 7000 Tandil (Argentina)
2016-12-15
A 1D TFM numerical simulation of near horizontal stratified two-phase flow is performed where the TFM, including surface tension and viscous stresses, is simplified to a two-equation model using the fixed-flux approximation. As the angle of inclination of the channel increases so does the driving body force, so the flow becomes KH unstable, and waves grow and develop nonlinearities. It is shown that these waves grow until they reach a limit cycle due to viscous dissipation at wave fronts. Upon further inclination of the channel, chaos is observed. The appearance of chaos in a 1D TFM implies a nonlinear process that transfers energy intermittently from long wavelengths where energy is produced to short wavelengths where energy is dissipated by viscosity, so that an averaged energy equilibrium in frequency space is attained. This is comparable to the well-known turbulent stability mechanism of the multi-dimensional Navier–Stokes equations, i.e., chaos implies Lyapunov stability, but in this case it is strictly a two-phase phenomenon.
Directory of Open Access Journals (Sweden)
Daniel Fernández Suárez
2015-01-01
Full Text Available Marine energy has significant potential still to be developed. The required high investment, operating costs and environmental impact have been the barriers that have not permitted its development. This paper presents an evaluation of the potential energy which can be harnessed in the mouth of the river Nalón using microgeneration installations. Such facilities may be viable in locations near the coast, thereby minimizing the investment required as well as the operaing cost and environmental impact. To achieve this objective HEC-RAS have been used to simulate one-dimensional flow free surface flow. However, it was necessary to construct a geometric model of the mouth using geographic data and nautical information. The results demonstrate the existence of an area with energy potential.
Analytical solution of one dimensional temporally dependent ...
African Journals Online (AJOL)
user
transfer of heat in fluids, flow through porous media, and the spread of ... In present paper, advection-dispersion equation is considered one dimensional longitudinal initially solute free semi- .... free. Thus initial and boundary conditions for eq.
Energy Technology Data Exchange (ETDEWEB)
Gómez-Zarzuela, C.; Miró, R.; Verdú, G. [Institute for Industrial Safety, Radiology and Environmental (ISIRYM), Universitat Politècnica de València (Spain); Peña-Monferrer, C.; Chiva, S. [Department of Mechanical Engineering and Construction, Universitat Jaume I, Castellón de la Plana (Spain); Muñoz-Cobo, J.L., E-mail: congoque@iqn.upv.es, E-mail: cpena@uji.es [Institute for Energy Engineering, Universitat Politècnica de València (Spain)
2017-07-01
Two-phase flow simulation has been an extended research topic over the years due to the importance of predicting with accuracy the flow behavior within different installations, including nuclear power plants. Some of them are low pressure events, like low water pressure injection, nuclear refueling or natural circulation. This work is devoted to investigate the level of accuracy of the results when a two-phase flow experiment, which has been carried out at low pressure, is performed in a one-dimensional simulation code. In particular, the codes that have been selected to represent the experiment are the best-estimate system codes RELAP5/MOD3 and TRACE v5.0 patch4. The experiment consists in a long vertical pipe along which an air-water fluid in bubbly regime moves upwards in adiabatic conditions and atmospheric pressure. The simulations have been first performed in both codes with their original correlations, which are based on the drift flux model for the case of bubbly regime in vertical pipes. Then, a different implementation for the drag force has been undertaken, in order to perform a simulation with equivalent bubble diameter to the experiment. Results show that the calculation obtained from the codes are within the ranges of validity of the experiment with some discrepancies, which leads to the conclusion that the use of a drag correlation approach is more realistic than drift flux model. (author)
International Nuclear Information System (INIS)
Gómez-Zarzuela, C.; Miró, R.; Verdú, G.; Peña-Monferrer, C.; Chiva, S.; Muñoz-Cobo, J.L.
2017-01-01
Two-phase flow simulation has been an extended research topic over the years due to the importance of predicting with accuracy the flow behavior within different installations, including nuclear power plants. Some of them are low pressure events, like low water pressure injection, nuclear refueling or natural circulation. This work is devoted to investigate the level of accuracy of the results when a two-phase flow experiment, which has been carried out at low pressure, is performed in a one-dimensional simulation code. In particular, the codes that have been selected to represent the experiment are the best-estimate system codes RELAP5/MOD3 and TRACE v5.0 patch4. The experiment consists in a long vertical pipe along which an air-water fluid in bubbly regime moves upwards in adiabatic conditions and atmospheric pressure. The simulations have been first performed in both codes with their original correlations, which are based on the drift flux model for the case of bubbly regime in vertical pipes. Then, a different implementation for the drag force has been undertaken, in order to perform a simulation with equivalent bubble diameter to the experiment. Results show that the calculation obtained from the codes are within the ranges of validity of the experiment with some discrepancies, which leads to the conclusion that the use of a drag correlation approach is more realistic than drift flux model. (author)
One-Dimensionality and Whiteness
Calderon, Dolores
2006-01-01
This article is a theoretical discussion that links Marcuse's concept of one-dimensional society and the Great Refusal with critical race theory in order to achieve a more robust interrogation of whiteness. The author argues that in the context of the United States, the one-dimensionality that Marcuse condemns in "One-Dimensional Man" is best…
Franz, Delbert D.; Melching, Charles S.
1997-01-01
The Full EQuations (FEQ) model is a computer program for solution of the full, dynamic equations of motion for one-dimensional unsteady flow in open channels and through control structures. A stream system that is simulated by application of FEQ is subdivided into stream reaches (branches), parts of the stream system for which complete information on flow and depth are not required (dummy branches), and level-pool reservoirs. These components are connected by special features; that is, hydraulic control structures, including junctions, bridges, culverts, dams, waterfalls, spillways, weirs, side weirs, and pumps. The principles of conservation of mass and conservation of momentum are used to calculate the flow and depth throughout the stream system resulting from known initial and boundary conditions by means of an implicit finite-difference approximation at fixed points (computational nodes). The hydraulic characteristics of (1) branches including top width, area, first moment of area with respect to the water surface, conveyance, and flux coefficients and (2) special features (relations between flow and headwater and (or) tail-water elevations, including the operation of variable-geometry structures) are stored in function tables calculated in the companion program, Full EQuations UTiLities (FEQUTL). Function tables containing other information used in unsteady-flow simulation (boundary conditions, tributary inflows or outflows, gate settings, correction factors, characteristics of dummy branches and level-pool reservoirs, and wind speed and direction) are prepared by the user as detailed in this report. In the iterative solution scheme for flow and depth throughout the stream system, an interpolation of the function tables corresponding to the computational nodes throughout the stream system is done in the model. FEQ can be applied in the simulation of a wide range of stream configurations (including loops), lateral-inflow conditions, and special features. The
Directory of Open Access Journals (Sweden)
William Hansen
2017-12-01
Full Text Available A striking difference between the folk-narrative genres of legend and folktale is how the human characters respond to supernatural, otherworldly, or uncanny beings such as ghosts, gods, dwarves, giants, trolls, talking animals, witches, and fairies. In legend the human actors respond with fear and awe, whereas in folktale they treat such beings as if they were ordinary and unremarkable. Since folktale humans treat all characters as belonging to a single realm, folklorists have described the world of the folktale as one-dimensional, in contrast to the two-dimensionality of the legend. The present investigation examines dimensionality in the third major genre of folk narrative: myth. Using the Greek and Hebrew myths of primordial paradise as sample narratives, the present essay finds—surprisingly—that the humans in these stories respond to the otherworldly one-dimensionally, as folktale characters do, and suggests an explanation for their behavior that is peculiar to the world of myth.
One dimensional reactor core model
International Nuclear Information System (INIS)
Kostadinov, V.; Stritar, A.; Radovo, M.; Mavko, B.
1984-01-01
The one dimensional model of neutron dynamic in reactor core was developed. The core was divided in several axial nodes. The one group neutron diffusion equation for each node is solved. Feedback affects of fuel and water temperatures is calculated. The influence of xenon, boron and control rods is included in cross section calculations for each node. The system of equations is solved implicitly. The model is used in basic principle Training Simulator of NPP Krsko. (author)
Realization of Configurable One-Dimensional Reflectarray
2017-08-31
experiments show strong signatures of beam steering that are dependent upon graphene doping. This seed grant has allowed our team to establish the essential...based, one-dimensional reflectarrays. Several immediate improvements to the device design and process flow are essential to suppress specular...beam steering that are dependent upon graphene doping. This seed grant has allowed our team to establish the essential operating procedures (i.e
One dimensional model for polytypes
International Nuclear Information System (INIS)
Rosato, A.
1979-01-01
The general expression for the dispersion relation for a polyatomic one dimensional crystal obtained by the Laplace Transform Method is applied to materials with the fcc and hcp structures, both consisting of close-packed planes of atoms with the stacking sequence of plane ABC/ABC... and AB/AB... respectively. The expression is also applied to polytypes, that is materials caracterized by a stacking sequence with longer repeat unit. The effective mass is cast in a condensed form useful for further calculations. The results from this simple model are only qualitative. (Author) [pt
International Nuclear Information System (INIS)
Ozar, B.; Brooks, C.S.; Euh, D.J.; Hibiki, T.; Ishii, M.
2013-01-01
Highlights: • Interfacial area transport equation (IATE) for a rectangular duct is modified for an annulus. • IATE predicts interfacial area transport in bubbly-to-churn flow. • Scalability of IATE to elevated pressure conditions is validated. • Detailed 1D interfacial area transport data are presented. • Detailed interfacial area transport mechanisms are discussed. -- Abstract: The interfacial area transport of vertical, upward, air–water two-phase flows in an annular channel has been investigated at different system pressures. The inner and outer diameters of the annular channel were 19.1 mm and 38.1 mm, respectively. Twenty three inlet flow conditions were selected, which covered bubbly, cap-bubbly, and churn-turbulent flows. These flow conditions also overlapped with twelve conditions of a previous study for comparison. The local flow parameters, such as void fractions, interfacial area concentrations (IAC), and bubble interface velocities, were measured at nine radial positions for the three axial locations and converted into area-averaged parameters. The axial evolutions of local flow structure were interpreted in terms of bubble coalescence, breakup, expansion of the gas-phase due to pressure drop and system pressure. An assessment of interfacial area transport equation (IATE) was made and compared with the experimental data. A discussion of the comparison between model prediction and the experimental results were made
Energy Technology Data Exchange (ETDEWEB)
Ozar, B., E-mail: ozar@fauske.com [School of Nuclear Engineering, Purdue University, 400 Central Drive, West Lafayette, IN 47907-2017 (United States); Brooks, C.S. [School of Nuclear Engineering, Purdue University, 400 Central Drive, West Lafayette, IN 47907-2017 (United States); Euh, D.J. [Korea Atomic Energy Research Institute, 150 Deokjin, Yuseong, Daejeon 305-353 (Korea, Republic of); Hibiki, T.; Ishii, M. [School of Nuclear Engineering, Purdue University, 400 Central Drive, West Lafayette, IN 47907-2017 (United States)
2013-10-15
Highlights: • Interfacial area transport equation (IATE) for a rectangular duct is modified for an annulus. • IATE predicts interfacial area transport in bubbly-to-churn flow. • Scalability of IATE to elevated pressure conditions is validated. • Detailed 1D interfacial area transport data are presented. • Detailed interfacial area transport mechanisms are discussed. -- Abstract: The interfacial area transport of vertical, upward, air–water two-phase flows in an annular channel has been investigated at different system pressures. The inner and outer diameters of the annular channel were 19.1 mm and 38.1 mm, respectively. Twenty three inlet flow conditions were selected, which covered bubbly, cap-bubbly, and churn-turbulent flows. These flow conditions also overlapped with twelve conditions of a previous study for comparison. The local flow parameters, such as void fractions, interfacial area concentrations (IAC), and bubble interface velocities, were measured at nine radial positions for the three axial locations and converted into area-averaged parameters. The axial evolutions of local flow structure were interpreted in terms of bubble coalescence, breakup, expansion of the gas-phase due to pressure drop and system pressure. An assessment of interfacial area transport equation (IATE) was made and compared with the experimental data. A discussion of the comparison between model prediction and the experimental results were made.
Kurylyk, Barret L.; McKenzie, Jeffrey M; MacQuarrie, Kerry T. B.; Voss, Clifford I.
2014-01-01
Numerous cold regions water flow and energy transport models have emerged in recent years. Dissimilarities often exist in their mathematical formulations and/or numerical solution techniques, but few analytical solutions exist for benchmarking flow and energy transport models that include pore water phase change. This paper presents a detailed derivation of the Lunardini solution, an approximate analytical solution for predicting soil thawing subject to conduction, advection, and phase change. Fifteen thawing scenarios are examined by considering differences in porosity, surface temperature, Darcy velocity, and initial temperature. The accuracy of the Lunardini solution is shown to be proportional to the Stefan number. The analytical solution results obtained for soil thawing scenarios with water flow and advection are compared to those obtained from the finite element model SUTRA. Three problems, two involving the Lunardini solution and one involving the classic Neumann solution, are recommended as standard benchmarks for future model development and testing.
International Nuclear Information System (INIS)
Shin, Y.W.; Wiedermann, A.H.
1984-01-01
Accurate numerical methods for treating the junction and boundary conditions needed in the transient two-phase flows of a piping network were published earlier by us; the same methods are used to formulate the treatment of the material interface as a moving boundary. The method formulated is used in a computer program to calculate sample problems designed to test the numerical methods as to their ability and the accuracy limits for calculation of the transient two-phase flows in the piping network downstream of a PWR pressurizer. Independent exact analytical solutions for the sample problems are used as the basis of a critical evaluation of the proposed numerical methods. The evaluation revealed that the proposed boundary scheme indeed generates very accurate numerical results. However, in some extreme flow conditions, numerical difficulties were experienced that eventually led to numerical instability. This paper discusses further a special technique to overcome the difficulty
Energy Technology Data Exchange (ETDEWEB)
López, R., E-mail: ralope1@ing.uc3m.es; Lecuona, A., E-mail: lecuona@ing.uc3m.es; Nogueira, J., E-mail: goriba@ing.uc3m.es; Vereda, C., E-mail: cvereda@ing.uc3m.es
2017-03-15
Highlights: • A two-phase flows numerical algorithm with high order temporal schemes is proposed. • Transient solutions route depends on the temporal high order scheme employed. • ESDIRK scheme for two-phase flows events exhibits high computational performance. • Computational implementation of the ESDIRK scheme can be done in a very easy manner. - Abstract: An extension for 1-D transient two-phase flows of the SIMPLE-ESDIRK method, initially developed for incompressible viscous flows by Ijaz is presented. This extension is motivated by the high temporal order of accuracy demanded to cope with fast phase change events. This methodology is suitable for boiling heat exchangers, solar thermal receivers, etc. The methodology of the solution consist in a finite volume staggered grid discretization of the governing equations in which the transient terms are treated with the explicit first stage singly diagonally implicit Runge-Kutta (ESDIRK) method. It is suitable for stiff differential equations, present in instant boiling or condensation processes. It is combined with the semi-implicit pressure linked equations algorithm (SIMPLE) for the calculation of the pressure field. The case of study consists of the numerical reproduction of the Bartolomei upward boiling pipe flow experiment. The steady-state validation of the numerical algorithm is made against these experimental results and well known numerical results for that experiment. In addition, a detailed study reveals the benefits over the first order Euler Backward method when applying 3rd and 4th order schemes, making emphasis in the behaviour when the system is subjected to periodic square wave wall heat function disturbances, concluding that the use of the ESDIRK method in two-phase calculations presents remarkable accuracy and computational advantages.
Arbogast, Todd
2012-01-01
Motivated by possible generalizations to more complex multiphase multicomponent systems in higher dimensions, we develop an Eulerian-Lagrangian numerical approximation for a system of two conservation laws in one space dimension modeling a simplified two-phase flow problem in a porous medium. The method is based on following tracelines, so it is stable independent of any CFL constraint. The main difficulty is that it is not possible to follow individual tracelines independently. We approximate tracing along the tracelines by using local mass conservation principles and self-consistency. The two-phase flow problem is governed by a system of equations representing mass conservation of each phase, so there are two local mass conservation principles. Our numerical method respects both of these conservation principles over the computational mesh (i.e., locally), and so is a fully conservative traceline method. We present numerical results that demonstrate the ability of the method to handle problems with shocks and rarefactions, and to do so with very coarse spatial grids and time steps larger than the CFL limit. © 2012 Society for Industrial and Applied Mathematics.
Healthy food trends - Brussels sprouts
... belong to the cabbage family, which also includes kale, broccoli, collard greens, and cauliflower. In fact, Brussels ... Brussels sprouts rank high in antioxidants, just after kale and spinach. Antioxidants are substances that can help ...
Energy Technology Data Exchange (ETDEWEB)
Bosevski, T [elektrotehnicki fakultet, Skopje (Yugoslavia); Kusakatov, V [Matematicki fakultet, Skopje (Yugoslavia)
1978-07-01
In this work an improvement of the methodology for analysis of time dependent one-dimensional heat exchange between a river flow and atmosphere at additional discharge of condenser heated water from thermal power plant, published at the XXI Yugoslav Conference of ETAN, is performed. In comparison with the already published methodology this work comprises the following improvements: The dispersive member along the river flow is taken into account, so that the basic second order partial differential equation is to be solved. With this improvement the mentioned methodology becomes applicable for analysis of rivers with high and low velocities. The assumption for stationarity is dropped out for at least three consequent days, in a manner that the conditions for equality of temperature and derivative at the beginning and at the end of the day is replaced with assumption that the river flow reaches minimal and maximal ambient temperature at sunrise and sunset. It is possible to conclude that the main characteristics of the developed methodology is the minimal number of hydro meteorological data are needed, that is only two temperature measurements of the water and two measurements of the wind velocity for the whole day - night time period. This conclusion is especially important when statistical analyses of data for longer past period of time are made, i.e. when it is not possible to obtain additional information. (author)
One-dimensional model of inertial pumping
Kornilovitch, Pavel E.; Govyadinov, Alexander N.; Markel, David P.; Torniainen, Erik D.
2013-02-01
A one-dimensional model of inertial pumping is introduced and solved. The pump is driven by a high-pressure vapor bubble generated by a microheater positioned asymmetrically in a microchannel. The bubble is approximated as a short-term impulse delivered to the two fluidic columns inside the channel. Fluid dynamics is described by a Newton-like equation with a variable mass, but without the mass derivative term. Because of smaller inertia, the short column refills the channel faster and accumulates a larger mechanical momentum. After bubble collapse the total fluid momentum is nonzero, resulting in a net flow. Two different versions of the model are analyzed in detail, analytically and numerically. In the symmetrical model, the pressure at the channel-reservoir connection plane is assumed constant, whereas in the asymmetrical model it is reduced by a Bernoulli term. For low and intermediate vapor bubble pressures, both models predict the existence of an optimal microheater location. The predicted net flow in the asymmetrical model is smaller by a factor of about 2. For unphysically large vapor pressures, the asymmetrical model predicts saturation of the effect, while in the symmetrical model net flow increases indefinitely. Pumping is reduced by nonzero viscosity, but to a different degree depending on the microheater location.
Basic physics of one-dimensional metals
International Nuclear Information System (INIS)
Emery, V.J.
1976-01-01
Largely nonmathematical qualitative lectures are given on the basic physics of nearly one-dimensional conductors. The main emphasis is placed on the properties of a purely one-dimensional electron gas. The effects of a real system having interchain coupling, impurities, a compressible lattice, lattice distortions and phonon anomalies are discussed
One-Dimensional Czedli-Type Islands
Horvath, Eszter K.; Mader, Attila; Tepavcevic, Andreja
2011-01-01
The notion of an island has surfaced in recent algebra and coding theory research. Discrete versions provide interesting combinatorial problems. This paper presents the one-dimensional case with finitely many heights, a topic convenient for student research.
Factorizations of one-dimensional classical systems
International Nuclear Information System (INIS)
Kuru, Senguel; Negro, Javier
2008-01-01
A class of one-dimensional classical systems is characterized from an algebraic point of view. The Hamiltonians of these systems are factorized in terms of two functions that together with the Hamiltonian itself close a Poisson algebra. These two functions lead directly to two time-dependent integrals of motion from which the phase motions are derived algebraically. The systems so obtained constitute the classical analogues of the well known factorizable one-dimensional quantum mechanical systems
One-dimensional photonic crystal design
International Nuclear Information System (INIS)
Mee, Cornelis van der; Contu, Pietro; Pintus, Paolo
2010-01-01
In this article we present a method to determine the band spectrum, band gaps, and discrete energy levels, of a one-dimensional photonic crystal with localized impurities. For one-dimensional crystals with piecewise constant refractive indices we develop an algorithm to recover the refractive index distribution from the period map. Finally, we derive the relationship between the period map and the scattering matrix containing the information on the localized modes.
Appropriateness of one-dimensional calculations for repository analysis
International Nuclear Information System (INIS)
Eaton, R.R.
1994-01-01
This paper brings into focus the results of numerous studies that have addressed issues associated with the validity of assumptions which are used to justify reducing the dimensionality of numerical calculations of water flow through Yucca Mountain, NV. It is shown that in many cases, one-dimensional modeling is more rigorous than previously assumed
The appropriateness of one-dimensional Yucca Mountain hydrologic calculations
International Nuclear Information System (INIS)
Eaton, R.R.
1993-07-01
This report brings into focus the results of numerous studies that have addressed issues associated with the validity of assumptions which are used to justify reducing the dimensionality of numerical calculations of water flow through Yucca Mountain, NV. it is shown that, in many cases, one-dimensional modeling is more rigorous than previously assumed
One-dimensional Gromov minimal filling problem
International Nuclear Information System (INIS)
Ivanov, Alexandr O; Tuzhilin, Alexey A
2012-01-01
The paper is devoted to a new branch in the theory of one-dimensional variational problems with branching extremals, the investigation of one-dimensional minimal fillings introduced by the authors. On the one hand, this problem is a one-dimensional version of a generalization of Gromov's minimal fillings problem to the case of stratified manifolds. On the other hand, this problem is interesting in itself and also can be considered as a generalization of another classical problem, the Steiner problem on the construction of a shortest network connecting a given set of terminals. Besides the statement of the problem, we discuss several properties of the minimal fillings and state several conjectures. Bibliography: 38 titles.
Sounds in one-dimensional superfluid helium
International Nuclear Information System (INIS)
Um, C.I.; Kahng, W.H.; Whang, E.H.; Hong, S.K.; Oh, H.G.; George, T.F.
1989-01-01
The temperature variations of first-, second-, and third-sound velocity and attenuation coefficients in one-dimensional superfluid helium are evaluated explicitly for very low temperatures and frequencies (ω/sub s/tau 2 , and the ratio of second sound to first sound becomes unity as the temperature decreases to absolute zero
QUASI-ONE DIMENSIONAL CLASSICAL FLUIDS
Directory of Open Access Journals (Sweden)
J.K.Percus
2003-01-01
Full Text Available We study the equilibrium statistical mechanics of simple fluids in narrow pores. A systematic expansion is made about a one-dimensional limit of this system. It starts with a density functional, constructed from projected densities, which depends upon projected one and two-body potentials. The nature of higher order corrections is discussed.
Highly conducting one-dimensional solids
Evrard, Roger; Doren, Victor
1979-01-01
Although the problem of a metal in one dimension has long been known to solid-state physicists, it was not until the synthesis of real one-dimensional or quasi-one-dimensional systems that this subject began to attract considerable attention. This has been due in part to the search for high temperature superconductivity and the possibility of reaching this goal with quasi-one-dimensional substances. A period of intense activity began in 1973 with the report of a measurement of an apparently divergent conduc tivity peak in TfF-TCNQ. Since then a great deal has been learned about quasi-one-dimensional conductors. The emphasis now has shifted from trying to find materials of very high conductivity to the many interesting problems of physics and chemistry involved. But many questions remain open and are still under active investigation. This book gives a review of the experimental as well as theoretical progress made in this field over the last years. All the chapters have been written by scientists who have ...
Remarks for one-dimensional fractional equations
Directory of Open Access Journals (Sweden)
Massimiliano Ferrara
2014-01-01
Full Text Available In this paper we study a class of one-dimensional Dirichlet boundary value problems involving the Caputo fractional derivatives. The existence of infinitely many solutions for this equations is obtained by exploiting a recent abstract result. Concrete examples of applications are presented.
Controlled size and one-dimensional growth
Indian Academy of Sciences (India)
875–881. c Indian Academy of Sciences. Synthesis of azamacrocycle stabilized palladium nanoparticles: Controlled size and one-dimensional growth. JEYARAMAN ATHILAKSHMI and DILLIP KUMAR CHAND. ∗. Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India e-mail: dillip@iitm.ac.
Gravitational anomalies and one-dimensional behavior of black holes
Energy Technology Data Exchange (ETDEWEB)
Majhi, Bibhas Ranjan [Indian Institute of Technology Guwahati, Department of Physics, Guwahati, Assam (India)
2015-12-15
It has been pointed out by Bekenstein and Mayo that the behavior of the black hole's entropy or information flow is similar to information flow through one-dimensional channel. Here I analyze the same issue with the use of gravitational anomalies. The rate of the entropy change (S) and the power (P) of the Hawking emission are calculated from the relevant components of the anomalous stress tensor under the Unruh vacuum condition. I show that the dependence of S on the power is S ∝ P{sup 1/2}, which is identical to that for the information flow in a one-dimensional system. This is established by using the (1+1)-dimensional gravitational anomalies first. Then the fact is further bolstered by considering the (1+3)-dimensional gravitational anomalies. It is found that, in the former case, the proportionality constant is exactly identical to the one-dimensional situation, known as Pendry's formula, while in the latter situation its value decreases. (orig.)
One-dimensional plasma simulation studies
International Nuclear Information System (INIS)
Friberg, Ari; Virtamo, Jorma
1976-01-01
Some basic plasma phenomena are studied by a one-dimensional electrostatic simulation code. A brief description of the code and its application to a test problem is given. The experiments carried out include Landau damping of an excited wave, particle retardation by smoothed field and beam-plasma instability. In each case, the set-up of the experiment is described and the results are compared with theoretical predictions. In the theoretical discussions, the oscillatory behaviour found in the Landau damping experiment is explained, an explicit formula for the particle retardation rate is derived and a rudimentary picture of the beam-plasma instability in terms of quasilinear theory is given. (author)
Solitons in one-dimensional antiferromagnetic chains
International Nuclear Information System (INIS)
Pires, A.S.T.; Talim, S.L.; Costa, B.V.
1989-01-01
We study the quantum-statistical mechanics, at low temperatures, of a one-dimensional antiferromagnetic Heisenberg model with two anisotropies. In the weak-coupling limit we determine the temperature dependences of the soliton energy and the soliton density. We have found that the leading correction to the sine-Gordon (SG) expression for the soliton density and the quantum soliton energy comes from the out-of-plane magnon mode, not present in the pure SG model. We also show that when an external magnetic field is applied, the chain supports a new type of kink, where the sublattices rotate in opposite directions
One-dimensional hypersonic phononic crystals.
Gomopoulos, N; Maschke, D; Koh, C Y; Thomas, E L; Tremel, W; Butt, H-J; Fytas, G
2010-03-10
We report experimental observation of a normal incidence phononic band gap in one-dimensional periodic (SiO(2)/poly(methyl methacrylate)) multilayer film at gigahertz frequencies using Brillouin spectroscopy. The band gap to midgap ratio of 0.30 occurs for elastic wave propagation along the periodicity direction, whereas for inplane propagation the system displays an effective medium behavior. The phononic properties are well captured by numerical simulations. The porosity in the silica layers presents a structural scaffold for the introduction of secondary active media for potential coupling between phonons and other excitations, such as photons and electrons.
One-dimensional radionuclide transport under time-varying conditions
International Nuclear Information System (INIS)
Gelbard, F.; Olague, N.E.; Longsine, D.E.
1990-01-01
This paper discusses new analytical and numerical solutions presented for one-dimensional radionuclide transport under time-varying fluid-flow conditions including radioactive decay. The analytical solution assumes that all radionuclides have identical retardation factors, and is limited to instantaneous releases. The numerical solution does not have these limitations, but is tested against the limiting case given for the analytical solution. Reasonable agreement between the two solutions was found. Examples are given for the transport of a three-member radionuclide chain transported over distances and flow rates comparable to those reported for Yucca Mountain, the proposed disposal site for high-level nuclear waste
Specificities of one-dimensional dissipative magnetohydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Popov, P. V., E-mail: popov.pv@mipt.ru [National Research Center Kurchatov Institute (Russian Federation)
2016-11-15
One-dimensional dynamics of a plane slab of cold (β ≪ 1) isothermal plasma accelerated by a magnetic field is studied in terms of the MHD equations with a finite constant conductivity. The passage to the limit β → 0 is analyzed in detail. It is shown that, at β = 0, the character of the solution depends substantially on the boundary condition for the electric field at the inner plasma boundary. The relationship between the boundary condition for the pressure at β > 0 and the conditions for the electric field at β = 0 is found. The stability of the solution against one-dimensional longitudinal perturbations is analyzed. It is shown that, in the limit β → 0, the stationary solution is unstable if the time during which the acoustic wave propagates across the slab is longer than the time of magnetic field diffusion. The growth rate and threshold of instability are determined, and results of numerical simulation of its nonlinear stage are presented.
One-dimensional nanomaterials for energy storage
Chen, Cheng; Fan, Yuqi; Gu, Jianhang; Wu, Liming; Passerini, Stefano; Mai, Liqiang
2018-03-01
The search for higher energy density, safer, and longer cycling-life energy storage systems is progressing quickly. One-dimensional (1D) nanomaterials have a large length-to-diameter ratio, resulting in their unique electrical, mechanical, magnetic and chemical properties, and have wide applications as electrode materials in different systems. This article reviews the latest hot topics in applying 1D nanomaterials, covering both their synthesis and their applications. 1D nanomaterials can be grouped into the categories: carbon, silicon, metal oxides, and conducting polymers, and we structure our discussion accordingly. Then, we survey the unique properties and application of 1D nanomaterials in batteries and supercapacitors, and provide comments on the progress and advantages of those systems, paving the way for a better understanding of employing 1D nanomaterials for energy storage.
One-Dimensional Modelling of Internal Ballistics
Monreal-González, G.; Otón-Martínez, R. A.; Velasco, F. J. S.; García-Cascáles, J. R.; Ramírez-Fernández, F. J.
2017-10-01
A one-dimensional model is introduced in this paper for problems of internal ballistics involving solid propellant combustion. First, the work presents the physical approach and equations adopted. Closure relationships accounting for the physical phenomena taking place during combustion (interfacial friction, interfacial heat transfer, combustion) are deeply discussed. Secondly, the numerical method proposed is presented. Finally, numerical results provided by this code (UXGun) are compared with results of experimental tests and with the outcome from a well-known zero-dimensional code. The model provides successful results in firing tests of artillery guns, predicting with good accuracy the maximum pressure in the chamber and muzzle velocity what highlights its capabilities as prediction/design tool for internal ballistics.
Stability model for one-dimensional FRCs
International Nuclear Information System (INIS)
Schwarzmeier, J.L.; Hewitt, T.G.; Lewis, H.R.; Seyler, C.E.; Symon, K.R.
1982-01-01
The subject of transport near the separatrix in FRC devices is important for determining the performance to be expected from an FRC reactor or from FRC experiments. A computer code was constructed for studying the micro-stability properties of FRCs near the separatrix as a first step in obtaining quasilinear transport coefficients that can be used in a transport code. We consider collisionless ions and electrons, without an expansion in powers of a parameter, like the electron or ion gyroradius, and we approximate the equilibrium with an infinitely long axially and translationally symmetric equilibrium. Thus, in our equilibria, there are only an axial magnetic field and a radial electric field. Our equilibria are collisionless, two-species, diffuse-profile, one-dimensional, theta-pinch equilibria. We allow the possibility that there be a magnetic field null in order to be able to model FRC devices more realistically
One-Dimensional Photonic Crystal Superprisms
Ting, David
2005-01-01
Theoretical calculations indicate that it should be possible for one-dimensional (1D) photonic crystals (see figure) to exhibit giant dispersions known as the superprism effect. Previously, three-dimensional (3D) photonic crystal superprisms have demonstrated strong wavelength dispersion - about 500 times that of conventional prisms and diffraction gratings. Unlike diffraction gratings, superprisms do not exhibit zero-order transmission or higher-order diffraction, thereby eliminating cross-talk problems. However, the fabrication of these 3D photonic crystals requires complex electron-beam substrate patterning and multilayer thin-film sputtering processes. The proposed 1D superprism is much simpler in structural complexity and, therefore, easier to design and fabricate. Like their 3D counterparts, the 1D superprisms can exhibit giant dispersions over small spectral bands that can be tailored by judicious structure design and tuned by varying incident beam direction. Potential applications include miniature gas-sensing devices.
One dimensional systems with singular perturbations
International Nuclear Information System (INIS)
Alvarez, J J; Gadella, M; Nieto, L M; Glasser, L M; Lara, L P
2011-01-01
This paper discusses some one dimensional quantum models with singular perturbations. Eventually, a mass discontinuity is added at the points that support the singular perturbations. The simplest model includes an attractive singular potential with a mass jump both located at the origin. We study the form of the only bound state. Another model exhibits a hard core at the origin plus one or more repulsive deltas with mass jumps at the points supporting these deltas. We study the location and the multiplicity of these resonances for the case of one or two deltas and settle the basis for a generalization. Finally, we consider the harmonic oscillator and the infinite square well plus a singular potential at the origin. We see how the energy of bound states is affected by the singular perturbation.
Cohesive motion in one-dimensional flocking
International Nuclear Information System (INIS)
Dossetti, V
2012-01-01
A one-dimensional rule-based model for flocking, which combines velocity alignment and long-range centering interactions, is presented and studied. The induced cohesion in the collective motion of the self-propelled agents leads to unique group behavior that contrasts with previous studies. Our results show that the largest cluster of particles, in the condensed states, develops a mean velocity slower than the preferred one in the absence of noise. For strong noise, the system also develops a non-vanishing mean velocity, alternating its direction of motion stochastically. This allows us to address the directional switching phenomenon. The effects of different sources of stochasticity on the system are also discussed. (paper)
DEFF Research Database (Denmark)
Arnt Nielsen, Peter
2013-01-01
The most important amendments to the Brussels I Regulation adopted on 12 December 2012 are presented and discussed. The amendments concern: 1) arbitration, 2) external situations, 3) choice-of-court agreements, and 4) abolition of exequatur. Compared to the Commission's ambitions, only modest...
Few quantum particles on one dimensional lattices
International Nuclear Information System (INIS)
Valiente Cifuentes, Manuel
2010-01-01
There is currently a great interest in the physics of degenerate quantum gases and low-energy few-body scattering due to the recent experimental advances in manipulation of ultracold atoms by light. In particular, almost perfect periodic potentials, called optical lattices, can be generated. The lattice spacing is fixed by the wavelength of the laser field employed and the angle betwen the pair of laser beams; the lattice depth, defining the magnitude of the different band gaps, is tunable within a large interval of values. This flexibility permits the exploration of different regimes, ranging from the ''free-electron'' picture, modified by the effective mass for shallow optical lattices, to the tight-binding regime of a very deep periodic potential. In the latter case, effective single-band theories, widely used in condensed matter physics, can be implemented with unprecedent accuracy. The tunability of the lattice depth is nowadays complemented by the use of magnetic Feshbach resonances which, at very low temperatures, can vary the relevant atom-atom scattering properties at will. Moreover, optical lattices loaded with gases of effectively reduced dimensionality are experimentally accessible. This is especially important for one spatial dimension, since most of the exactly solvable models in many-body quantum mechanics deal with particles on a line; therefore, experiments with one-dimensional gases serve as a testing ground for many old and new theories which were regarded as purely academic not so long ago. The physics of few quantum particles on a one-dimensional lattice is the topic of this thesis. Most of the results are obtained in the tight-binding approximation, which is amenable to exact numerical or analytical treatment. For the two-body problem, theoretical methods for calculating the stationary scattering and bound states are developed. These are used to obtain, in closed form, the two-particle solutions of both the Hubbard and extended Hubbard models
Few quantum particles on one dimensional lattices
Energy Technology Data Exchange (ETDEWEB)
Valiente Cifuentes, Manuel
2010-06-18
There is currently a great interest in the physics of degenerate quantum gases and low-energy few-body scattering due to the recent experimental advances in manipulation of ultracold atoms by light. In particular, almost perfect periodic potentials, called optical lattices, can be generated. The lattice spacing is fixed by the wavelength of the laser field employed and the angle betwen the pair of laser beams; the lattice depth, defining the magnitude of the different band gaps, is tunable within a large interval of values. This flexibility permits the exploration of different regimes, ranging from the ''free-electron'' picture, modified by the effective mass for shallow optical lattices, to the tight-binding regime of a very deep periodic potential. In the latter case, effective single-band theories, widely used in condensed matter physics, can be implemented with unprecedent accuracy. The tunability of the lattice depth is nowadays complemented by the use of magnetic Feshbach resonances which, at very low temperatures, can vary the relevant atom-atom scattering properties at will. Moreover, optical lattices loaded with gases of effectively reduced dimensionality are experimentally accessible. This is especially important for one spatial dimension, since most of the exactly solvable models in many-body quantum mechanics deal with particles on a line; therefore, experiments with one-dimensional gases serve as a testing ground for many old and new theories which were regarded as purely academic not so long ago. The physics of few quantum particles on a one-dimensional lattice is the topic of this thesis. Most of the results are obtained in the tight-binding approximation, which is amenable to exact numerical or analytical treatment. For the two-body problem, theoretical methods for calculating the stationary scattering and bound states are developed. These are used to obtain, in closed form, the two-particle solutions of both the Hubbard and
One dimensional benchmark calculations using diffusion theory
International Nuclear Information System (INIS)
Ustun, G.; Turgut, M.H.
1986-01-01
This is a comparative study by using different one dimensional diffusion codes which are available at our Nuclear Engineering Department. Some modifications have been made in the used codes to fit the problems. One of the codes, DIFFUSE, solves the neutron diffusion equation in slab, cylindrical and spherical geometries by using 'Forward elimination- Backward substitution' technique. DIFFUSE code calculates criticality, critical dimensions and critical material concentrations and adjoint fluxes as well. It is used for the space and energy dependent neutron flux distribution. The whole scattering matrix can be used if desired. Normalisation of the relative flux distributions to the reactor power, plotting of the flux distributions and leakage terms for the other two dimensions have been added. Some modifications also have been made for the code output. Two Benchmark problems have been calculated with the modified version and the results are compared with BBD code which is available at our department and uses same techniques of calculation. Agreements are quite good in results such as k-eff and the flux distributions for the two cases studies. (author)
Diffusiophoresis in one-dimensional solute gradients
Energy Technology Data Exchange (ETDEWEB)
Ault, Jesse T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Warren, Patrick B. [Unilever R& D Port Sunlight, Bebington (United Kingdom); Shin, Sangwoo [Univ. of Hawaii at Manoa, Honolulu, HI (United States); Stone, Howard A. [Princeton Univ., Princeton, NJ (United States)
2017-11-06
Here, the diffusiophoretic motion of suspended colloidal particles under one-dimensional solute gradients is solved using numerical and analytical techniques. Similarity solutions are developed for the injection and withdrawal dynamics of particles into semi-infinite pores. Furthermore, a method of characteristics formulation of the diffusion-free particle transport model is presented and integrated to realize particle trajectories. Analytical solutions are presented for the limit of small particle diffusiophoretic mobility Γ_{p} relative to the solute diffusivity D_{s} for particle motions in both semi-infinite and finite domains. Results confirm the build up of local maxima and minima in the propagating particle front dynamics. The method of characteristics is shown to successfully predict particle motions and the position of the particle front, although it fails to accurately predict suspended particle concentrations in the vicinity of sharp gradients, such as at the particle front peak seen in some injection cases, where particle diffusion inevitably plays an important role. Results inform the design of applications in which the use of applied solute gradients can greatly enhance particle injection into and withdrawal from pores.
Diffusiophoresis in one-dimensional solute gradients
International Nuclear Information System (INIS)
Ault, Jesse T.; Warren, Patrick B.; Shin, Sangwoo; Stone, Howard A.
2017-01-01
Here, the diffusiophoretic motion of suspended colloidal particles under one-dimensional solute gradients is solved using numerical and analytical techniques. Similarity solutions are developed for the injection and withdrawal dynamics of particles into semi-infinite pores. Furthermore, a method of characteristics formulation of the diffusion-free particle transport model is presented and integrated to realize particle trajectories. Analytical solutions are presented for the limit of small particle diffusiophoretic mobility Γ p relative to the solute diffusivity D s for particle motions in both semi-infinite and finite domains. Results confirm the build up of local maxima and minima in the propagating particle front dynamics. The method of characteristics is shown to successfully predict particle motions and the position of the particle front, although it fails to accurately predict suspended particle concentrations in the vicinity of sharp gradients, such as at the particle front peak seen in some injection cases, where particle diffusion inevitably plays an important role. Results inform the design of applications in which the use of applied solute gradients can greatly enhance particle injection into and withdrawal from pores.
Solute transport with periodic input point source in one-dimensional ...
African Journals Online (AJOL)
JOY
groundwater flow velocity is considered proportional to multiple of temporal function and ζ th ... One-dimensional solute transport through porous media with or without .... solute free. ... the periodic concentration at source of the boundary i.e.,. 0.
One-dimensional two-phase thermal hydraulics (ENSTA course)
International Nuclear Information System (INIS)
Olive, J.
1995-11-01
This course is part of the ENSTA 3rd year thermal hydraulics program (nuclear power option). Its purpose is to provide the theoretical basis and main physical notions pertaining to two-phase flow, mainly focussed on water-steam flows. The introduction describes the physical specificities of these flows, emphasizing their complexity. The mathematical bases are then presented (partial derivative equations), leading to a one-dimensional type, simplified description. Balances drawn up for a pipe length volume are used to introduce the mass conservation. motion and energy equations for each phase. Various postulates used to simplify two-phase models are presented, culminating in homogeneous model definitions and equations, several common examples of which are given. The model is then applied to the calculation of pressure drops in two-phase flows. This involves presenting the models most frequently used to represent pressure drops by friction or due to pipe irregularities, without giving details (numerical values of parameters). This chapter terminates with a brief description of static and dynamic instabilities in two-phase flows. Finally, heat transfer conditions frequently encountered in liquid-steam flows are described, still in the context of a 1D model. This chapter notably includes reference to under-saturated boiling conditions and the various forms of DNB. The empirical heat transfer laws are not discussed in detail. Additional material is appended, some of which is in the form of corrected exercises. (author). 6 appends
MARCUSE’S ONE-DIMENSIONAL SOCIETY IN ONE-DIMENSIONAL MAN
Directory of Open Access Journals (Sweden)
MILOS RASTOVIC
2013-05-01
Full Text Available Nowadays, Marcuse’s main book One-Dimensional Man is almost obsolete, or rather passé. However, there are reasons to renew the reading of his book because of “the crisis of capitalism,” and the prevailing framework of technological domination in “advanced industrial society” in which we live today. “The new forms of control” in “advanced industrial societies” have replaced traditional methods of political and economic administration. The dominant structural element of “advanced industrial society” has become a technical and scientific apparatus of production and distribution of technology and administrative practice based on application of impersonal rules by a hierarchy of associating authorities. Technology has been liberated from the control of particular interests, and it has become the factor of domination in itself. Technological domination stems from the technical development of the productive apparatus that reproduces its ability into all spheres of social life (cultural, political, and economic. Based upon this consideration, in this paper, I will examine Marcuse’s ideas of “the new forms of control,” which creates a one–dimensional society. Marcuse’s fundamental thesis in One-Dimensional Man is that technological rationality is the most dominant factor in an “advanced industrial society,” which unites two earlier opposing forces of dissent: the bourgeoisie and the proletariat.
International Nuclear Information System (INIS)
Xu Hao; Shi Tianjun
2011-01-01
In this article,the qualities of Wigner function and the corresponding stationary perturbation theory are introduced and applied to one-dimensional infinite potential well and one-dimensional harmonic oscillator, and then the particular Wigner function of one-dimensional infinite potential well is specified and a special constriction effect in its pure state Wigner function is discovered, to which,simultaneously, a detailed and reasonable explanation is elaborated from the perspective of uncertainty principle. Ultimately, the amendment of Wigner function and energy of one-dimensional infinite potential well and one-dimensional harmonic oscillator under perturbation are calculated according to stationary phase space perturbation theory. (authors)
Linearized analysis of one-dimensional magnetohydrodynamic flows
Gundersen, Roy M
1964-01-01
Magnetohydrodynamics is concerned with the motion of electrically conducting fluids in the presence of electric or magnetic fields. Un fortunately, the subject has a rather poorly developed experimental basis and because of the difficulties inherent in carrying out controlled laboratory experiments, the theoretical developments, in large measure, have been concerned with finding solutions to rather idealized problems. This lack of experimental basis need not become, however, a multi megohm impedance in the line of progress in the development of a satisfactory scientific theory. While it is true that ultimately a scientific theory must agree with and, in actuality, predict physical phenomena with a reasonable degree of accuracy, such a theory must be sanctioned by its mathematical validity and consistency. Physical phenomena may be expressed precisely and quite comprehensively through the use of differential equations, and the equations formulated by LUNDQUIST and discussed by FRIEDRICHS belong to a class ...
Study of one dimensional magnetic system via field theory
International Nuclear Information System (INIS)
Talim, S.L.
1988-04-01
We present a study of one-dimensional magnetic system using field theory methods. We studied the discreteness effects in a classical anisotropic one dimensional antiferromagnet in an external magnetic field. It is shown that for TMMC, at the temperatures and magnetic fields where most experiments have been done, the corrections are small and can be neglected. (author)
RETRAN-02 one-dimensional kinetics model: a review
International Nuclear Information System (INIS)
Gose, G.C.; McClure, J.A.
1986-01-01
RETRAN-02 is a modular code system that has been designed for one-dimensional, transient thermal-hydraulics analysis. In RETRAN-02, core power behavior may be treated using a one-dimensional reactor kinetics model. This model allows the user to investigate the interaction of time- and space-dependent effects in the reactor core on overall system behavior for specific LWR operational transients. The purpose of this paper is to review the recent analysis and development activities related to the one dimensional kinetics model in RETRAN-02
Plasma properties of quasi-one-dimensional ring
Shmelev, G M
2001-01-01
The plasma properties of the quasi-one-dimensional ring in the threshold cases of low and high frequencies, corresponding to the plasma oscillations and dielectric relaxation are studied within the frames of the classical approach. The plasma oscillations spectrum and the electron dielectric relaxation frequency in the quasi-one-dimensional ring are calculated. The plasmons spectrum equidistance is identified. It is shown , that in contrast to the three-dimensional case there takes place the dielectric relaxation dispersion, wherefrom there follows the possibility of studying the carriers distribution in the quasi-one-dimensional rings through the method of the dielectric relaxation spectroscopy
Explicit Solutions for One-Dimensional Mean-Field Games
Prazeres, Mariana
2017-01-01
In this thesis, we consider stationary one-dimensional mean-field games (MFGs) with or without congestion. Our aim is to understand the qualitative features of these games through the analysis of explicit solutions. We are particularly interested
Negative differential resistance in a one-dimensional molecular wire ...
Indian Academy of Sciences (India)
voltage characteristics of a one-dimensional molecular wire with odd number of ... lem, although interesting both from a fundamental point of view and in terms of ..... SKP acknowledges the DST, Government of India, for financial support.
The one-dimensional extended Bose–Hubbard model
Indian Academy of Sciences (India)
Unknown
method to obtain the zero-temperature phase diagram of the one-dimensional, extended ... Progress in this field has been driven by an interplay between ... superconductor-insulator transition in thin films of superconducting materials like bis-.
One-dimensional reactor kinetics model for RETRAN
International Nuclear Information System (INIS)
Gose, G.C.; Peterson, C.E.; Ellis, N.L.; McClure, J.A.
1981-01-01
This paper describes a one-dimensional spatial neutron kinetics model that was developed for the RETRAN code. The RETRAN -01 code has a point kinetics model to describe the reactor core behavior during thermal-hydraulic transients. A one-dimensional neutronics model has been developed for RETRAN-02. The ability to account for flux shape changes will permit an improved representation of the thermal and hydraulic feedback effects for many operational transients. 19 refs
One dimensional Bosons: From Condensed Matter Systems to Ultracold Gases
Cazalilla, M. A.; Citro, R.; Giamarchi, T.; Orignac, E.; Rigol, M.
2011-01-01
The physics of one-dimensional interacting bosonic systems is reviewed. Beginning with results from exactly solvable models and computational approaches, the concept of bosonic Tomonaga-Luttinger liquids relevant for one-dimensional Bose fluids is introduced, and compared with Bose-Einstein condensates existing in dimensions higher than one. The effects of various perturbations on the Tomonaga-Luttinger liquid state are discussed as well as extensions to multicomponent and out of equilibrium ...
One dimensional models of excitons in carbon nanotubes
DEFF Research Database (Denmark)
Cornean, Horia Decebal; Duclos, P.; Pedersen, Thomas Garm
Excitons in carbon nanotubes may be modeled by two oppositely charged particles living on the surface of a cylinder. We derive three one dimensional effective Hamiltonians which become exact as the radius of the cylinder vanishes. Two of them are solvable.......Excitons in carbon nanotubes may be modeled by two oppositely charged particles living on the surface of a cylinder. We derive three one dimensional effective Hamiltonians which become exact as the radius of the cylinder vanishes. Two of them are solvable....
A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers
de Jong, Anne; Wijnant, Ysbrand H.; de Boer, Andries
2014-01-01
A one-dimensional (1D) laminar oscillating flow heat transfer model is derived and applied to parallel-plate thermoacoustic heat exchangers. The model can be used to estimate the heat transfer from the solid wall to the acoustic medium, which is required for the heat input/output of thermoacoustic
A review on one dimensional perovskite nanocrystals for piezoelectric applications
Directory of Open Access Journals (Sweden)
Li-Qian Cheng
2016-03-01
Full Text Available In recent years, one-dimensional piezoelectric nanomaterials have become a research topic of interest because of their special morphology and excellent piezoelectric properties. This article presents a short review on one dimensional perovskite piezoelectric materials in different systems including Pb(Zr,TiO3, BaTiO3 and (K,NaNbO3 (KNN. We emphasize KNN as a promising lead-free piezoelectric compound with a high Curie temperature and high piezoelectric properties and describe its synthesis and characterization. In particular, details are presented for nanoscale piezoelectricity characterization of a single KNN nanocrystal by piezoresponse force microscopy. Finally, this review describes recent progress in applications based on one dimensional piezoelectric nanostructures with a focus on energy harvesting composite materials.
Strong chaos in one-dimensional quantum system
International Nuclear Information System (INIS)
Yang, C.-D.; Wei, C.-H.
2008-01-01
According to the Poincare-Bendixson theorem, a minimum of three autonomous equations is required to exhibit deterministic chaos. Because a one-dimensional quantum system is described by only two autonomous equations using de Broglie-Bohm's trajectory interpretation, chaos in one-dimensional quantum systems has long been considered impossible. We will prove in this paper that chaos phenomenon does exist in one-dimensional quantum systems, if the domain of quantum motions is extended to complex space by noting that the quantum world is actually characterized by a four-dimensional complex spacetime according to the E (∞) theory. Furthermore, we point out that the interaction between the real and imaginary parts of complex trajectories produces a new chaos phenomenon unique to quantum systems, called strong chaos, which describes the situation that quantum trajectories may emerge and diverge spontaneously without any perturbation in the initial position
Absorption in one-dimensional metallic-dielectric photonic crystals
International Nuclear Information System (INIS)
Yu Junfei; Shen Yifeng; Liu Xiaohan; Fu Rongtang; Zi Jian; Zhu Zhiqiang
2004-01-01
We show theoretically that the absorption of one-dimensional metallic-dielectric photonic crystals can be enhanced considerably over the corresponding constituent metal. By properly choosing the structural and material parameters, the absorption of one-dimensional metallic-dielectric photonic crystals can be enhanced by one order of magnitude in the visible and in the near infrared regions. It is found that the absorptance of such photonic crystals increases with increasing number of periods. Rules on how to obtain a absorption enhancement in a certain frequency range are discussed. (letter to the editor)
One-dimensional models of excitons in carbon nanotubes
DEFF Research Database (Denmark)
Cornean, Horia Decebal; Duclos, Pierre; Pedersen, Thomas Garm
2004-01-01
Excitons in carbon nanotubes may be modeled by two oppositely charged particles living on the surface of a cylinder. We derive three one-dimensional effective Hamiltonians which become exact as the radius of the cylinder vanishes. Two of them are solvable.......Excitons in carbon nanotubes may be modeled by two oppositely charged particles living on the surface of a cylinder. We derive three one-dimensional effective Hamiltonians which become exact as the radius of the cylinder vanishes. Two of them are solvable....
Correlation Functions of the One-Dimensional Attractive Bose Gas
International Nuclear Information System (INIS)
Calabrese, Pasquale; Caux, Jean-Sebastien
2007-01-01
The zero-temperature correlation functions of the one-dimensional attractive Bose gas with a delta-function interaction are calculated analytically for any value of the interaction parameter and number of particles, directly from the integrability of the model. We point out a number of interesting features, including zero recoil energy for a large number of particles, analogous to the Moessbauer effect
Analytical solutions of one-dimensional advection–diffusion
Indian Academy of Sciences (India)
Analytical solutions are obtained for one-dimensional advection –diffusion equation with variable coefficients in a longitudinal ﬁnite initially solute free domain,for two dispersion problems.In the ﬁrst one,temporally dependent solute dispersion along uniform ﬂow in homogeneous domain is studied.In the second problem the ...
Underwater striling engine design with modified one-dimensional model
Directory of Open Access Journals (Sweden)
Daijin Li
2015-05-01
Full Text Available Stirling engines are regarded as an efficient and promising power system for underwater devices. Currently, many researches on one-dimensional model is used to evaluate thermodynamic performance of Stirling engine, but in which there are still some aspects which cannot be modeled with proper mathematical models such as mechanical loss or auxiliary power. In this paper, a four-cylinder double-acting Stirling engine for Unmanned Underwater Vehicles (UUVs is discussed. And a one-dimensional model incorporated with empirical equations of mechanical loss and auxiliary power obtained from experiments is derived while referring to the Stirling engine computer model of National Aeronautics and Space Administration (NASA. The P-40 Stirling engine with sufficient testing results from NASA is utilized to validate the accuracy of this one-dimensional model. It shows that the maximum error of output power of theoretical analysis results is less than 18% over testing results, and the maximum error of input power is no more than 9%. Finally, a Stirling engine for UUVs is designed with Schmidt analysis method and the modified one-dimensional model, and the results indicate this designed engine is capable of showing desired output power.
Quantitative hyperbolicity estimates in one-dimensional dynamics
International Nuclear Information System (INIS)
Day, S; Kokubu, H; Pilarczyk, P; Luzzatto, S; Mischaikow, K; Oka, H
2008-01-01
We develop a rigorous computational method for estimating the Lyapunov exponents in uniformly expanding regions of the phase space for one-dimensional maps. Our method uses rigorous numerics and graph algorithms to provide results that are mathematically meaningful and can be achieved in an efficient way
Quasi-one-dimensional scattering in a discrete model
DEFF Research Database (Denmark)
Valiente, Manuel; Mølmer, Klaus
2011-01-01
We study quasi-one-dimensional scattering of one and two particles with short-range interactions on a discrete lattice model in two dimensions. One of the directions is tightly confined by an arbitrary trapping potential. We obtain the collisional properties of these systems both at finite and zero...
Structure Variation from One-Dimensional Chain to Three ...
Indian Academy of Sciences (India)
WEN-XUAN LI, XIAO-MIN GU, WEN-LI ZHANG and LIANG NI. School of Chemistry ... Compound 1 possesses one-dimensional chain structure, and expands into ..... sis of fine chemicals and pharmaceuticals.30 The results were summarized ...
Current-Voltage Characteristics of Quasi-One-Dimensional Superconductors
DEFF Research Database (Denmark)
Vodolazov, D.Y.; Peeters, F.M.; Piraux, L.
2003-01-01
The current-voltage (I-V) characteristics of quasi-one-dimensional superconductors were discussed. The I-V characteristics exhibited an unusual S behavior. The dynamics of superconducting condensate and the existence of two different critical currents resulted in such an unusual behavior....
Diffusive transport in a one dimensional disordered potential involving correlations
International Nuclear Information System (INIS)
Monthus, C.; Paris-6 Univ., 75
1995-03-01
Transport properties of one dimensional Brownian diffusion under the influence of a quenched random force, distributed as a two-level Poisson process is discussed. Large time scaling laws of the position of the Brownian particle, and the probability distribution of the stationary flux going through a sample between two prescribed concentrations are studied. (author) 14 refs.; 3 figs
One-dimensional position readout from microchannel plates
International Nuclear Information System (INIS)
Connell, K.A.; Przybylski, M.M.
1982-01-01
The development of a one-dimensional position readout system with microchannel plates, is described, for heavy ion detectors for use in a particle time-of-flight telescope and as a position sensitive device in front of an ionisation counter at the Nuclear Structure Facility. (U.K.)
Lekhnitskii's formalism of one-dimensional quasicrystals and its ...
Indian Academy of Sciences (India)
To illustrate its utility, the generalized Lekhnitskii's formal- ism is used to analyse the coupled phonon and phason fields in an infinite quasicrystal medium con- taining an elliptic rigid inclusion. Keywords. Generalized Lekhnitskii's formalism; one-dimensional quasicrystals; plane problems; elliptic inclusion. PACS Nos 61.44.
Backward scattering in the one-dimensional Fermi gas
International Nuclear Information System (INIS)
Apostol, M.
1980-05-01
The Ward identity is derived for non-relativistic fermions with two-body spin-independent interaction. Using this identity for the one-dimensional Fermi gas with backward scattering the equations of the perturbation theory are solved for the effective interaction and the collective excitations of the particle density fluctuations are obtained. (author)
Simulation of the diffraction pattern of one dimensional quasicrystal ...
African Journals Online (AJOL)
The effects of the variation of atomic spacing ratio of a one dimensional quasicrystal material are investigated. The work involves the use of the solid state simulation code, Laue written by Silsbee and Drager. We are able to observe the general features of the diffraction pattern by a quasicrystal. In addition, it has been found ...
Monte Carlo investigation of the one-dimensional Potts model
International Nuclear Information System (INIS)
Karma, A.S.; Nolan, M.J.
1983-01-01
Monte Carlo results are presented for a variety of one-dimensional dynamical q-state Potts models. Our calculations confirm the expected universal value z = 2 for the dynamic scaling exponent. Our results also indicate that an increase in q at fixed correlation length drives the dynamics into the scaling regime
State reconstruction of one-dimensional wave packets
Krähmer, D. S.; Leonhardt, U.
1997-12-01
We review and analyze the method [U. Leonhardt, M.G. Raymer: Phys. Rev. Lett. 76, 1985 (1996)] for quantum-state reconstruction of one-dimensional non-relativistic wave packets from position observations. We illuminate the theoretical background of the technique and show how to extend the procedure to the continuous part of the spectrum.
One-dimensional autonomous systems and dissipative systems
International Nuclear Information System (INIS)
Lopez, G.
1996-01-01
The Lagrangian and the Generalized Linear Momentum are given in terms of a constant of motion for a one-dimensional autonomous system. The possibility of having an explicit Hamiltonian expression is also analyzed. The approach is applied to some dissipative systems. Copyright copyright 1996 Academic Press, Inc
Quantum transport in strongly interacting one-dimensional nanostructures
Agundez, R.R.
2015-01-01
In this thesis we study quantum transport in several one-dimensional systems with strong electronic interactions. The first chapter contains an introduction to the concepts treated throughout this thesis, such as the Aharonov-Bohm effect, the Kondo effect, the Fano effect and quantum state transfer.
Statistics of resonances in one-dimensional continuous systems
Indian Academy of Sciences (India)
Vol. 73, No. 3. — journal of. September 2009 physics pp. 565–572. Statistics of resonances in one-dimensional continuous systems. JOSHUA FEINBERG. Physics Department, University of Haifa at Oranim, Tivon 36006, Israel ..... relativistic quantum mechanics (Israel Program for Scientific Translations, Jerusalem,. 1969).
Statistical mechanics of quantum one-dimensional damped harmonic oscillator
International Nuclear Information System (INIS)
Borges, E.N.M.; Borges, O.N.; Ribeiro, L.A.A.
1985-01-01
We calculate the thermal correlation functions of the one-dimensional damped harmonic oscillator in contact with a reservoir, in an exact form by applying Green's function method. In this way the thermal fluctuations are incorporated in the Caldirola-Kanai Hamiltonian
Anomalous heat conduction in a one-dimensional ideal gas.
Casati, Giulio; Prosen, Tomaz
2003-01-01
We provide firm convincing evidence that the energy transport in a one-dimensional gas of elastically colliding free particles of unequal masses is anomalous, i.e., the Fourier law does not hold. Our conclusions are confirmed by a theoretical and numerical analysis based on a Green-Kubo-type approach specialized to momentum-conserving lattices.
Relativistic band gaps in one-dimensional disordered systems
International Nuclear Information System (INIS)
Clerk, G.J.; McKellar, B.H.J.
1992-01-01
Conditions for the existence of band gaps in a one-dimensional disordered array of δ-function potentials possessing short range order are developed in a relativistic framework. Both Lorentz vector and scalar type potentials are treated. The relationship between the energy gaps and the transmission properties of the array are also discussed. 20 refs., 2 figs
The electromagnetic Brillouin precursor in one-dimensional photonic crystals
Uitham, R.; Hoenders, B. J.
2008-01-01
We have calculated the electromagnetic Brillouin precursor that arises in a one-dimensional photonic crystal that consists of two homogeneous slabs which each have a single electron resonance. This forerunner is compared with the Brillouin precursor that arises in a homogeneous double-electron
On the quantisation of one-dimensional bags
International Nuclear Information System (INIS)
Fairley, G.T.; Squires, E.J.
1976-01-01
The quantisation of one-dimensional MIT bags by expanding the fields as a sum of classical modes and truncating the series after the first term is discussed. The lowest states of a bag in a world containing two scalar quark fields are obtained. Problems associated with the zero-point oscillations of the field are discussed. (Auth.)
Light propagation in one-dimensional porous silicon complex systems
Oton, C.J.; Dal Negro, L.; Gaburro, Z.; Pavesi, L.; Johnson, P.J.; Lagendijk, Aart; Wiersma, D.S.
2003-01-01
We discuss the optical properties of one-dimensional complex dielectric systems, in particular the time-resolved transmission through thick porous silicon quasiperiodic multi-layers. Both in numerical calculations and experiments we find dramatic distortion effects, i.e. pulse stretching and
Analytical approach for collective diffusion: one-dimensional heterogeneous lattice
Czech Academy of Sciences Publication Activity Database
Tarasenko, Alexander
2016-01-01
Roč. 144, č. 14 (2016), 1-11, č. článku 144105. ISSN 0021-9606 Institutional support: RVO:68378271 Keywords : diffusion * Monte Carlo simulations * one-dimensional heterogeneous lattice Subject RIV: BE - Theoretical Physics Impact factor: 2.965, year: 2016
Approximate Approaches to the One-Dimensional Finite Potential Well
Singh, Shilpi; Pathak, Praveen; Singh, Vijay A.
2011-01-01
The one-dimensional finite well is a textbook problem. We propose approximate approaches to obtain the energy levels of the well. The finite well is also encountered in semiconductor heterostructures where the carrier mass inside the well (m[subscript i]) is taken to be distinct from mass outside (m[subscript o]). A relevant parameter is the mass…
Toward precise solution of one-dimensional velocity inverse problems
International Nuclear Information System (INIS)
Gray, S.; Hagin, F.
1980-01-01
A family of one-dimensional inverse problems are considered with the goal of reconstructing velocity profiles to reasonably high accuracy. The travel-time variable change is used together with an iteration scheme to produce an effective algorithm for computation. Under modest assumptions the scheme is shown to be convergent
Applicability of one-dimensional mechanistic post-dryout prediction model
International Nuclear Information System (INIS)
Jeong, Hae Yong; No Hee Cheon
1996-01-01
Through the analysis of many experimental post-dryout data, it is shown that the most probable flow regime near dryout or quench front is not annular flow but churn-turbulent flow when the mass flux is low. A correlation describing the initial droplet size just after the CHF position at low mass flux is low. A correlation describing the initial droplet size just after the CHF position at low mass flux is suggested through regression analysis. In the post-dryout region at low pressure and low flow, it is found that the suggested one-dimensional mechanistic model is not applicable when the vapor superficial velocity is very low, i. e., when the flow is bubbly or slug flow regime. This is explained by the change of main entrainment mechanism with the change of flow regime. Therefore, the suggested correlation is valid only in the churn-turbulent flow regime (j * g = 0.5 ∼ 4.5)
Bound states of Dipolar Bosons in One-dimensional Systems
DEFF Research Database (Denmark)
G. Volosniev, A.; R. Armstrong, J.; V. Fedorov, D.
2013-01-01
that in the weakly-coupled limit the inter-tube interaction is similar to a zero-range term with a suitable rescaled strength. This allows us to address the corresponding many-body physics of the system by constructing a model where bound chains with one molecule in each tube are the effective degrees of freedom......We consider one-dimensional tubes containing bosonic polar molecules. The long-range dipole-dipole interactions act both within a single tube and between different tubes. We consider arbitrary values of the externally aligned dipole moments with respect to the symmetry axis of the tubes. The few....... This model can be mapped onto one-dimensional Hamiltonians for which exact solutions are known....
Quasi-One-Dimensional Intermittent Flux Behavior in Superconducting Films
Directory of Open Access Journals (Sweden)
A. J. Qviller
2012-01-01
Full Text Available Intermittent filamentary dynamics of the vortex matter in superconductors is found in films of YBa_{2}Cu_{3}O_{7-δ} deposited on tilted substrates. Deposition of this material on such substrates creates parallel channels of easy flux penetration when a magnetic field is applied perpendicular to the film. As the applied field is gradually increased, magneto-optical imaging reveals that flux penetrates via numerous quasi-one-dimensional jumps. The distribution of flux avalanche sizes follows a power law, and data collapse is obtained by finite-size scaling, with the depth of the flux front used as crossover length. The intermittent behavior shows no threshold value in the applied field, in contrast to conventional flux jumping. The results strongly suggest that the quasi-one-dimensional flux jumps are of a different nature than the thermomagnetic dendritic (branching avalanches that are commonly found in superconducting films.
Versatile hydrothermal synthesis of one-dimensional composite structures
Luo, Yonglan
2008-12-01
In this paper we report on a versatile hydrothermal approach developed to fabricate one-dimensional (1D) composite structures. Sulfur and selenium formed liquid and adsorbed onto microrods as droplets and subsequently reacted with metallic ion in solution to produce nanoparticles-decorated composite microrods. 1D composites including ZnO/CdS, ZnO/MnS, ZnO/CuS, ZnO/CdSe, and FeOOH/CdS were successfully made using this hydrothermal strategy and the growth mechanism was also discussed. This hydrothermal strategy is simple and green, and can be extended to the synthesis of various 1D composite structures. Moreover, the interaction between the shell nanoparticles and the one-dimensional nanomaterials were confirmed by photoluminescence investigation of ZnO/CdS.
Solitons in one-dimensional charge density wave systems
International Nuclear Information System (INIS)
Su, W.P.
1981-01-01
Theoretical research on one dimensional charge density wave systems is outlined. A simple coupled electron-photon Hamiltonian is studied including a Green's function approach, molecular dynamics, and Monte Carlo path integral method. As in superconductivity, the nonperturbative nature of the system makes the physical ground states and low energy excitations drastically different from the bare electrons and phonons. Solitons carry quantum numbers which are entirely different from those of the bare electrons and holes. The fractional charge character of the solitons is an example of this fact. Solitons are conveniently generated by doping material with donors or acceptors or by photon absorption. Most predictions of the theory are in qualitative agreement with experiments. The one dimensional charge density wave system has potential technological importance and a possible role in uncovering phenomena which might have implications in relativistic field theory and elementary particle physics
Applications of one-dimensional models in simplified inelastic analyses
International Nuclear Information System (INIS)
Kamal, S.A.; Chern, J.M.; Pai, D.H.
1980-01-01
This paper presents an approximate inelastic analysis based on geometric simplification with emphasis on its applicability, modeling, and the method of defining the loading conditions. Two problems are investigated: a one-dimensional axisymmetric model of generalized plane strain thick-walled cylinder is applied to the primary sodium inlet nozzle of the Clinch River Breeder Reactor Intermediate Heat Exchanger (CRBRP-IHX), and a finite cylindrical shell is used to simulate the branch shell forging (Y) junction. The results are then compared with the available detailed inelastic analyses under cyclic loading conditions in terms of creep and fatigue damages and inelastic ratchetting strains per the ASME Code Case N-47 requirements. In both problems, the one-dimensional simulation is able to trace the detailed stress-strain response. The quantitative comparison is good for the nozzle, but less satisfactory for the Y junction. Refinements are suggested to further improve the simulation
Thermal conductivity in one-dimensional nonlinear systems
Politi, Antonio; Giardinà, Cristian; Livi, Roberto; Vassalli, Massimo
2000-03-01
Thermal conducitivity of one-dimensional nonlinear systems typically diverges in the thermodynamic limit, whenever the momentum is conserved (i.e. in the absence of interactions with an external substrate). Evidence comes from detailed studies of Fermi-Pasta-Ulam and diatomic Toda chains. Here, we discuss the first example of a one-dimensional system obeying Fourier law : a chain of coupled rotators. Numerical estimates of the thermal conductivity obtained by simulating a chain in contact with two thermal baths at different temperatures are found to be consistent with those ones based on linear response theory. The dynamics of the Fourier modes provides direct evidence of energy diffusion. The finiteness of the conductivity is traced back to the occurrence of phase-jumps. Our conclusions are confirmed by the analysis of two variants of the rotator model.
Thermoelectric properties of one-dimensional graphene antidot arrays
International Nuclear Information System (INIS)
Yan, Yonghong; Liang, Qi-Feng; Zhao, Hui; Wu, Chang-Qin; Li, Baowen
2012-01-01
We investigate the thermoelectric properties of one-dimensional (1D) graphene antidot arrays by nonequilibrium Green's function method. We show that by introducing antidots to the pristine graphene nanoribbon the thermal conductance can be reduced greatly while keeping the power factor still high, thus leading to an enhanced thermoelectric figure of merit (ZT). Our numerical results indicate that ZT values of 1D antidot graphene arrays can be up to unity, which means the 1D graphene antidot arrays may be promising for thermoelectric applications. -- Highlights: ► We study thermoelectric properties of one-dimensional (1D) graphene antidot arrays. ► Thermoelectric figure of merit (ZT) of 1D antidot arrays can exceed unity. ► ZT of 1D antidot arrays is larger than that of two-dimensional arrays.
Scattering theory for one-dimensional step potentials
International Nuclear Information System (INIS)
Ruijsenaars, S.N.M.; Bongaarts, P.J.M.
1977-01-01
The scattering theory is treated for the one-dimensional Dirac equation with potentials that are bounded, measurable, real-valued functions on the real line, having constant values, not necessarily the same, on the left and on the right side of a compact interval. Such potentials appear in the Klein paradox. It is shown that appropriately modified wave operators exist and that the corresponding S-operator is unitary. The connection between time-dependent scattering theory and time-independent scattering theory in terms of incoming and outgoing plane wave solutions is established and some further properties are proved. All results and their proofs have a straightforward translation to the one-dimensional Schroedinger equation with the same class of step potentials
Resonance Raman spectroscopy in one-dimensional carbon materials
Directory of Open Access Journals (Sweden)
Dresselhaus Mildred S.
2006-01-01
Full Text Available Brazil has played an important role in the development and use of resonance Raman spectroscopy as a powerful characterization tool for materials science. Here we present a short history of Raman scattering research in Brazil, highlighting the important contributions to the field coming from Brazilian researchers in the past. Next we discuss recent and important contributions where Brazil has become a worldwide leader, that is on the physics of quasi-one dimensional carbon nanotubes. We conclude this article by presenting results from a very recent resonance Raman study of exciting new materials, that are strictly one-dimensional carbon chains formed by the heat treatment of very pure double-wall carbon nanotube samples.
Impurity modes in the one-dimensional XXZ Heisenberg model
International Nuclear Information System (INIS)
Sousa, J.M.; Leite, R.V.; Landim, R.R.; Costa Filho, R.N.
2014-01-01
A Green's function formalism is used to calculate the energy of impurity modes associated with one and/or two magnetic impurities in the one-dimensional Heisenberg XXZ magnetic chain. The system can be tuned from the Heisenberg to the Ising model varying a parameter λ. A numerical study is performed showing two types of localized modes (s and p). The modes depend on λ and the degeneracy of the acoustic modes is broken.
UNICIN - an one-dimensional computer code for reactor kinetics
International Nuclear Information System (INIS)
Rosa, M.A.P.; Alcantara, H.G. de; Nair, R.P.K.
1984-01-01
A program for the solution of the time- and space-dependent multigroup diffusion equations and the delayed-neutron precursors concentration equations in one dimensional geometries by the weighted residual method is described. The discretized equations are solved through an iterative procedure with convergence accelerated by the over-relaxation method. The system is perturbed through the variation of the nuclide concentrations in specified regions. Two feedback effects are included, namely, the temperature and the burnup. (Author) [pt
Nonlinear acoustic wave propagating in one-dimensional layered system
International Nuclear Information System (INIS)
Yun, Y.; Miao, G.Q.; Zhang, P.; Huang, K.; Wei, R.J.
2005-01-01
The propagation of finite-amplitude plane sound in one-dimensional layered media is studied by the extended method of transfer matrix formalism. For the periodic layered system consisting of two alternate types of liquid, the energy distribution and the phase vectors of the interface vibration are computed and analyzed. It is found that in the pass-band, the second harmonic of sound wave can propagate with the characteristic modulation
The analysis of one-dimensional reactor kinetics benchmark computations
International Nuclear Information System (INIS)
Sidell, J.
1975-11-01
During March 1973 the European American Committee on Reactor Physics proposed a series of simple one-dimensional reactor kinetics problems, with the intention of comparing the relative efficiencies of the numerical methods employed in various codes, which are currently in use in many national laboratories. This report reviews the contributions submitted to this benchmark exercise and attempts to assess the relative merits and drawbacks of the various theoretical and computer methods. (author)
Heat transfer in a one-dimensional mixed convection loop
International Nuclear Information System (INIS)
Kim, Min Joon; Lee, Yong Bum; Kim, Yong Kyun; Kim, Jong Man; Nam, Ho Yun
1999-01-01
Effects of non-uniform heating in the core and additional forced circulation during decay heat removal operation are studied with a simplified mixed convection loop. The heat transfer coefficient is calculated analytically and measured experimentally. The analytic solution obtained from a one-dimensional heat equation is found to agree well with the experimental results. The effects of the non-uniform heating and the forced circulation are discussed
Energy in one-dimensional linear waves in a string
International Nuclear Information System (INIS)
Burko, Lior M
2010-01-01
We consider the energy density and energy transfer in small amplitude, one-dimensional waves on a string and find that the common expressions used in textbooks for the introductory physics with calculus course give wrong results for some cases, including standing waves. We discuss the origin of the problem, and how it can be corrected in a way appropriate for the introductory calculus-based physics course. (letters and comments)
Quasi-one-dimensional intermittent flux behavior in superconducting films
Qviller, A. J.; Yurchenko, V. V.; Galperin, Y. M.; Vestgården, J. I.; Mozhaev, Peter; Hansen, Jørn Bindslev; Johansen, T. H.
2012-01-01
Intermittent filamentary dynamics of the vortex matter in superconductors is found in films of YBa_{2}Cu_{3}O_{7-δ} deposited on tilted substrates. Deposition of this material on such substrates creates parallel channels of easy flux penetration when a magnetic field is applied perpendicular to the film. As the applied field is gradually increased, magneto-optical imaging reveals that flux penetrates via numerous quasi-one-dimensional jumps. The distribution of flux avalanche sizes follows a ...
Variational iteration method for one dimensional nonlinear thermoelasticity
International Nuclear Information System (INIS)
Sweilam, N.H.; Khader, M.M.
2007-01-01
This paper applies the variational iteration method to solve the Cauchy problem arising in one dimensional nonlinear thermoelasticity. The advantage of this method is to overcome the difficulty of calculation of Adomian's polynomials in the Adomian's decomposition method. The numerical results of this method are compared with the exact solution of an artificial model to show the efficiency of the method. The approximate solutions show that the variational iteration method is a powerful mathematical tool for solving nonlinear problems
Localization in a one-dimensional spatially correlated random potential
International Nuclear Information System (INIS)
Kasner, M.; Weller, W.
1986-01-01
The motion of an electron in a random one-dimensional spatially correlated potential is investigated. The spatial correlation is generated by a Markov chain. It is shown that the influence of the spatial correlation can be described by means of oscillating vertices usually neglected in the Berezinskii diagram technique. Correlation mainly leads to an increase of the localization length in comparison with an uncorrelated potential. However, there is a region of the parameter, where the localization decreases. (author)
ONE-DIMENSIONAL AND TWO-DIMENSIONAL LEADERSHIP STYLES
Nikola Stefanović
2007-01-01
In order to motivate their group members to perform certain tasks, leaders use different leadership styles. These styles are based on leaders' backgrounds, knowledge, values, experiences, and expectations. The one-dimensional styles, used by many world leaders, are autocratic and democratic styles. These styles lie on the two opposite sides of the leadership spectrum. In order to precisely define the leadership styles on the spectrum between the autocratic leadership style and the democratic ...
Correlation functions of one-dimensional bosons at low temperature
Energy Technology Data Exchange (ETDEWEB)
Kozlowski, K.K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Maillet, J.M. [CNRS, ENS Lyon (France). Lab. de Physique; Slavnov, N.A. [Steklov Mathematical Institute, Moscow (Russian Federation)
2010-12-15
We consider the low-temperature limit of the long-distance asymptotic behavior of the finite temperature density-density correlation function in the one-dimensional Bose gas derived recently in the algebraic Bethe Ansatz framework. Our results confirm the predictions based on the Luttinger liquid and conformal field theory approaches. We also demonstrate that the amplitudes arising in this asymptotic expansion at low-temperature coincide with the amplitudes associated with the so-called critical form factors. (orig.)
Graphene-based one-dimensional photonic crystal
Berman, Oleg L.; Kezerashvili, Roman Ya.
2011-01-01
A novel type of one-dimensional (1D) photonic crystal formed by the array of periodically located stacks of alternating graphene and dielectric stripes embedded into a background dielectric medium is proposed. The wave equation for the electromagnetic wave propagating in such structure solved in the framework of the Kronig-Penney model. The frequency band structure of 1D graphene-based photonic crystal is obtained analytically as a function of the filling factor and the thickness of the diele...
Negative Refraction Angular Characterization in One-Dimensional Photonic Crystals
Lugo, Jesus Eduardo; Doti, Rafael; Faubert, Jocelyn
2011-01-01
Background Photonic crystals are artificial structures that have periodic dielectric components with different refractive indices. Under certain conditions, they abnormally refract the light, a phenomenon called negative refraction. Here we experimentally characterize negative refraction in a one dimensional photonic crystal structure; near the low frequency edge of the fourth photonic bandgap. We compare the experimental results with current theory and a theory based on the group velocity de...
Majorana fermion exchange in strictly one dimensional structures
Chiu, Ching-Kai; Vazifeh, M. M.; Franz, M.
2014-01-01
It is generally thought that adiabatic exchange of two identical particles is impossible in one spatial dimension. Here we describe a simple protocol that permits adiabatic exchange of two Majorana fermions in a one-dimensional topological superconductor wire. The exchange relies on the concept of "Majorana shuttle" whereby a $\\pi$ domain wall in the superconducting order parameter which hosts a pair of ancillary Majoranas delivers one zero mode across the wire while the other one tunnels in ...
On a class of one-dimensional random walks
O.J. Boxma (Onno); V.I. Lotov
1995-01-01
textabstractnoindent This paper studies a one-dimensional Markov chain ${X_n,n=0,1,dots$ that satisfies the recurrence relation $X_n = max(0, X_{n-1 + eta_n^{(m) )$ if $X_{n-1 =m leq a$; for $X_{n-1 > a$ it satisfies the same relation with $eta_n^{(m)$ replaced by $xi_n$. Here ${ eta_n^{(m) $ and ${
Theory of the one-dimensional forest-fire model
International Nuclear Information System (INIS)
Paczuski, M.; Bak, P.
1993-01-01
Turbulent cascade processes are studied in terms of a one-dimensional forest-fire model. A hier- archy of steady-state equations for the forests and the holes between them is constructed and solved within a mean-field closure scheme. The exact hole distribution function is found to be N H (s)=4N/[s(s+1)(s+2)], where N is the number of forests
Quantum logic using correlated one-dimensional quantum walks
Lahini, Yoav; Steinbrecher, Gregory R.; Bookatz, Adam D.; Englund, Dirk
2018-01-01
Quantum Walks are unitary processes describing the evolution of an initially localized wavefunction on a lattice potential. The complexity of the dynamics increases significantly when several indistinguishable quantum walkers propagate on the same lattice simultaneously, as these develop non-trivial spatial correlations that depend on the particle's quantum statistics, mutual interactions, initial positions, and the lattice potential. We show that even in the simplest case of a quantum walk on a one dimensional graph, these correlations can be shaped to yield a complete set of compact quantum logic operations. We provide detailed recipes for implementing quantum logic on one-dimensional quantum walks in two general cases. For non-interacting bosons—such as photons in waveguide lattices—we find high-fidelity probabilistic quantum gates that could be integrated into linear optics quantum computation schemes. For interacting quantum-walkers on a one-dimensional lattice—a situation that has recently been demonstrated using ultra-cold atoms—we find deterministic logic operations that are universal for quantum information processing. The suggested implementation requires minimal resources and a level of control that is within reach using recently demonstrated techniques. Further work is required to address error-correction.
Quasi-one-dimensional metals on semiconductor surfaces with defects
International Nuclear Information System (INIS)
Hasegawa, Shuji
2010-01-01
Several examples are known in which massive arrays of metal atomic chains are formed on semiconductor surfaces that show quasi-one-dimensional metallic electronic structures. In this review, Au chains on Si(557) and Si(553) surfaces, and In chains on Si(111) surfaces, are introduced and discussed with regard to the physical properties determined by experimental data from scanning tunneling microscopy (STM), angle-resolved photoemission spectroscopy (ARPES) and electrical conductivity measurements. They show quasi-one-dimensional Fermi surfaces and parabolic band dispersion along the chains. All of them are known from STM and ARPES to exhibit metal-insulator transitions by cooling and charge-density-wave formation due to Peierls instability of the metallic chains. The electrical conductivity, however, reveals the metal-insulator transition only on the less-defective surfaces (Si(553)-Au and Si(111)-In), but not on a more-defective surface (Si(557)-Au). The latter shows an insulating character over the whole temperature range. Compared with the electronic structure (Fermi surfaces and band dispersions), the transport property is more sensitive to the defects. With an increase in defect density, the conductivity only along the metal atomic chains was significantly reduced, showing that atomic-scale point defects decisively interrupt the electrical transport along the atomic chains and hide the intrinsic property of transport in quasi-one-dimensional systems.
One-dimensional crystal with a complex periodic potential
International Nuclear Information System (INIS)
Boyd, John K.
2001-01-01
A one-dimensional crystal model is constructed with a complex periodic potential. A wave function solution for the crystal model is derived without relying on Bloch functions. The new wave function solution of this model is shown to correspond to the solution for the probability amplitude of a two-level system. The energy discriminant is evaluated using an analytic formula derived from the probability amplitude solution, and based on an expansion parameter related to the energy and potential amplitude. From the wave function energy discriminant the crystal band structure is derived and related to standard energy bands and gaps. It is also shown that several of the properties of the two-level system apply to the one-dimensional crystal model. The two-level system solution which evolves in time is shown to manifest as a spatial configuration of the one-dimensional crystal model. The sensitivity of the wave function probability density is interpreted in the context of the new solution. The spatial configuration of the wave function, and the appearance of a long wavelength in the wave function probability density is explained in terms of the properties of Bessel functions
Travelling wave solutions of the homogeneous one-dimensional FREFLO model
Huang, B.; Hong, J. Y.; Jing, G. Q.; Niu, W.; Fang, L.
2018-01-01
Presently there is quite few analytical studies in traffic flows due to the non-linearity of the governing equations. In the present paper we introduce travelling wave solutions for the homogeneous one-dimensional FREFLO model, which are expressed in the form of series and describe the procedure that vehicles/pedestrians move with a negative velocity and decelerate until rest, then accelerate inversely to positive velocities. This method is expect to be extended to more complex situations in the future.
Lateral shift in one-dimensional quasiperiodic chiral photonic crystal
Energy Technology Data Exchange (ETDEWEB)
Da, Jian, E-mail: dajian521@sina.com [Department of Information Engineering, Huaian Senior Vocational and Technical School, Feiyao road, Huaian 223005, Jiangsu Province (China); Mo, Qi, E-mail: moqiyueyang@163.com [School of Software, Yunnan University, Cuihu Bai Road, Kunming City, Yunnan Province 650091 (China); Cheng, Yaokun [Department of Information Engineering, Huaian Senior Vocational and Technical School, Feiyao road, Huaian 223005, Jiangsu Province (China); Liu, Taixiang [Taishan Vocational College of Nursing, Shandong Province 271000 (China)
2015-02-01
We investigate the lateral shift of a one-dimensional quasiperiodic photonic crystal consisting of chiral and conventional dielectric materials. The effect of structural irregularity on lateral shift is evaluated by stationary-phase approach. Our results show that the lateral shift can be modulated by varying the structural irregularity in quasiperiodic structure. Besides, the position of peak in lateral shift spectrum stays sensitive to the chiral factor of chiral materials. In comparison with that of periodic structure, quasiperiodic structure provides an extra degree of freedom to manipulate the lateral shift.
Integrability of the one dimensional Schrödinger equation
Combot, Thierry
2018-02-01
We present a definition of integrability for the one-dimensional Schrödinger equation, which encompasses all known integrable systems, i.e., systems for which the spectrum can be explicitly computed. For this, we introduce the class of rigid functions, built as Liouvillian functions, but containing all solutions of rigid differential operators in the sense of Katz, and a notion of natural of boundary conditions. We then make a complete classification of rational integrable potentials. Many new integrable cases are found, some of them physically interesting.
Inversion of reflection for the one-dimensional Dirac equation
International Nuclear Information System (INIS)
Clerk, G.L.; Davies, A.J.
1991-01-01
It is a general result of one-dimensional non-relativistic quantum mechanics that the coefficient of reflection (reflected flux) is the same irrespective of the direction of traversing a potential barrier, a result that is independent of the barrier shape. In this note, the authors consider the transmission coefficient instead, and derive a strong result, namely that the transmission amplitude is independent of the direction of barrier traversal. That is, the transmission amplitude has the same complex phase as well as being unchanged in magnitude by changing the barrier around. This process was called inversion of reflection. 2 refs
Two-dimensional beam profiles and one-dimensional projections
Findlay, D. J. S.; Jones, B.; Adams, D. J.
2018-05-01
One-dimensional projections of improved two-dimensional representations of transverse profiles of particle beams are proposed for fitting to data from harp-type monitors measuring beam profiles on particle accelerators. Composite distributions, with tails smoothly matched on to a central (inverted) parabola, are shown to give noticeably better fits than single gaussian and single parabolic distributions to data from harp-type beam profile monitors all along the proton beam transport lines to the two target stations on the ISIS Spallation Neutron Source. Some implications for inferring beam current densities on the beam axis are noted.
Optical Tamm states in one-dimensional magnetophotonic structures.
Goto, T; Dorofeenko, A V; Merzlikin, A M; Baryshev, A V; Vinogradov, A P; Inoue, M; Lisyansky, A A; Granovsky, A B
2008-09-12
We demonstrate the existence of a spectrally narrow localized surface state, the so-called optical Tamm state, at the interface between one-dimensional magnetophotonic and nonmagnetic photonic crystals. The state is spectrally located inside the photonic band gaps of each of the photonic crystals comprising this magnetophotonic structure. This state is associated with a sharp transmission peak through the sample and is responsible for the substantial enhancement of the Faraday rotation for the corresponding wavelength. The experimental results are in excellent agreement with the theoretical predictions.
Exactly integrable analogue of a one-dimensional gravitating system
International Nuclear Information System (INIS)
Miller, Bruce N.; Yawn, Kenneth R.; Maier, Bill
2005-01-01
Exchange symmetry in acceleration partitions the configuration space of an N particle one-dimensional gravitational system (OGS) into N! equivalent cells. We take advantage of the resulting small angular separation between the forces in neighboring cells to construct a related integrable version of the system that takes the form of a central force problem in N-1 dimensions. The properties of the latter, including the construction of trajectories and possible continuum limits, are developed. Dynamical simulation is employed to compare the two models. For some initial conditions, excellent agreement is observed
Acoustic and electronic properties of one-dimensional quasicrystals
International Nuclear Information System (INIS)
Nori, F.; Rodriguez, J.P.
1986-01-01
We study the acoustic and electronic properties of one-dimensional quasicrystals. Both numerical (nonperturbative) and analytical (perturbative) results are shown. The phonon and electronic spectra exhibit a self-similar hierarchy of gaps and many localized states in the gaps. We study quasiperiodic structures with any number of layers and several types of boundary conditions. We discuss the connection between our phonon model and recent experiments on quasiperiodic GaAs-AlAs superlattices. We predict the existence of many gap states localized at the surfaces
Hidden symmetries in one-dimensional quantum Hamiltonians
International Nuclear Information System (INIS)
Curado, E.M.F.; Rego-Monteiro, M.A.; Nazareno, H.N.
2000-11-01
We construct a Heisenberg-like algebra for the one dimensional infinite square-well potential in quantum mechanics. The number-type and ladder operators are realized in terms of physical operators of the system as in the harmonic oscillator algebra. These physical operators are obtained with the help of variables used in a recently developed non commutative differential calculus. This square-well algebra is an example of an algebra in large class of generalized Heisenberg algebras recently constructed. This class of algebras also contains q-oscillators as a particular case. We also show here how this general algebra can address hidden symmetries present in several quantum systems. (author)
Quantum quench in an atomic one-dimensional Ising chain.
Meinert, F; Mark, M J; Kirilov, E; Lauber, K; Weinmann, P; Daley, A J; Nägerl, H-C
2013-08-02
We study nonequilibrium dynamics for an ensemble of tilted one-dimensional atomic Bose-Hubbard chains after a sudden quench to the vicinity of the transition point of the Ising paramagnetic to antiferromagnetic quantum phase transition. The quench results in coherent oscillations for the orientation of effective Ising spins, detected via oscillations in the number of doubly occupied lattice sites. We characterize the quench by varying the system parameters. We report significant modification of the tunneling rate induced by interactions and show clear evidence for collective effects in the oscillatory response.
Chemical potential of one-dimensional simple harmonic oscillators
International Nuclear Information System (INIS)
Mungan, Carl E
2009-01-01
Expressions for the chemical potential of an Einstein solid, and of ideal Fermi and Bose gases in an external one-dimensional oscillatory trap, are calculated by two different methods and are all found to share the same functional form. These derivations are easier than traditional textbook calculations for an ideal gas in an infinite three-dimensional square well. Furthermore, the results indicate some important features of chemical potential that could promote student learning in an introductory course in statistical mechanics at the undergraduate level.
Peierls' instability in a one-dimensional potentially metallic solid
International Nuclear Information System (INIS)
Valladares, A.A.; Cetina, E.A.; Sansores, L.E.
1980-01-01
The Peierls instability of one-dimensional potentially metallic lithium solid is investigated in the Hueckel and SCF approximations. In the Hueckel approximation Esub(F) is a monotonic increasing function of the displacement of every other atom of the lattice, whereas in the SCF approximation, where the filling of the bands is considered, Esub(F) shows the minimum predicted by Peierls. The energy gap (for the arrangement that minimizes Esub(F)) is 4.5 eV, indicating that this solid is an insulator. (author)
One-dimensional nonlinear inverse heat conduction technique
International Nuclear Information System (INIS)
Hills, R.G.; Hensel, E.C. Jr.
1986-01-01
The one-dimensional nonlinear problem of heat conduction is considered. A noniterative space-marching finite-difference algorithm is developed to estimate the surface temperature and heat flux from temperature measurements at subsurface locations. The trade-off between resolution and variance of the estimates of the surface conditions is discussed quantitatively. The inverse algorithm is stabilized through the use of digital filters applied recursively. The effect of the filters on the resolution and variance of the surface estimates is quantified. Results are presented which indicate that the technique is capable of handling noisy measurement data
The quantum flux in quasis one-dimensional conductors
International Nuclear Information System (INIS)
Ventura, J.
1989-01-01
A method is presented which quantizes electromagnetic fluxes directly in flux space. It is based on the commutation law [φ B , φ E ] = i, where φ B is the magnetic flux, and φ E the longitudinal electric flux of a quasi one-dimensional conductor. The relevance of such a method for the description of the quantized Hall plateaus is discussed. In a second step, the polarization electric flux is introduced, together with a method for quantization of hybrid variables formed with pure electromagnetic fluxes plus electronic variables. (author) [pt
Evaluation of one dimensional analytical models for vegetation canopies
Goel, Narendra S.; Kuusk, Andres
1992-01-01
The SAIL model for one-dimensional homogeneous vegetation canopies has been modified to include the specular reflectance and hot spot effects. This modified model and the Nilson-Kuusk model are evaluated by comparing the reflectances given by them against those given by a radiosity-based computer model, Diana, for a set of canopies, characterized by different leaf area index (LAI) and leaf angle distribution (LAD). It is shown that for homogeneous canopies, the analytical models are generally quite accurate in the visible region, but not in the infrared region. For architecturally realistic heterogeneous canopies of the type found in nature, these models fall short. These shortcomings are quantified.
ONE-DIMENSIONAL AND TWO-DIMENSIONAL LEADERSHIP STYLES
Directory of Open Access Journals (Sweden)
Nikola Stefanović
2007-06-01
Full Text Available In order to motivate their group members to perform certain tasks, leaders use different leadership styles. These styles are based on leaders' backgrounds, knowledge, values, experiences, and expectations. The one-dimensional styles, used by many world leaders, are autocratic and democratic styles. These styles lie on the two opposite sides of the leadership spectrum. In order to precisely define the leadership styles on the spectrum between the autocratic leadership style and the democratic leadership style, leadership theory researchers use two dimensional matrices. The two-dimensional matrices define leadership styles on the basis of different parameters. By using these parameters, one can identify two-dimensional styles.
Generalized entropy decay rates of one-dimensional maps
International Nuclear Information System (INIS)
Csordas, A.; Szepfalusy, P.
1988-01-01
A series of entropies, approaching the order-q Renyi's entropies when the length of orbits tends to infinity, is considered. Their scaling form is determined for chaotic one-dimensional maps. For the characteristic relaxation time a general expression is derived, and it is shown to be closely related to the eigenvalues of a generalized Frobenius-Perron operator. The case of intermittent maps is also considered, and the spectrum of relaxation time is found to reflect the phase transition at q = 1. Results of numerical experiments are also presented
Entanglement entropy and complexity for one-dimensional holographic superconductors
Kord Zangeneh, Mahdi; Ong, Yen Chin; Wang, Bin
2017-08-01
Holographic superconductor is an important arena for holography, as it allows concrete calculations to further understand the dictionary between bulk physics and boundary physics. An important quantity of recent interest is the holographic complexity. Conflicting claims had been made in the literature concerning the behavior of holographic complexity during phase transition. We clarify this issue by performing a numerical study on one-dimensional holographic superconductor. Our investigation shows that holographic complexity does not behave in the same way as holographic entanglement entropy. Nevertheless, the universal terms of both quantities are finite and reflect the phase transition at the same critical temperature.
Fragmented one dimensional man / El hombre unidimensional fragmentado
Directory of Open Access Journals (Sweden)
Juan Antonio Rodríguez del Pino
2013-10-01
Full Text Available Paraphrase the title of the famous essay by Herbert Marcuse, since the image has traditionally been generated of man, masculinity, has been one-dimensional. I mean, the man was characterized by traits and behaviors established and entrenched since ancient time, considering all other distinguishing signs as mere deviations from the normative improper. But observe that this undeniable reality, as analyzed various researchers through what has come to be called Men's studies, has proven to be a fallacy difficult to maintain throughout history and today turns into fallacious and ineffective against changes in our current existing corporate models.
One-dimensional neutron imager for the Sandia Z facility.
Fittinghoff, David N; Bower, Dan E; Hollaway, James R; Jacoby, Barry A; Weiss, Paul B; Buckles, Robert A; Sammons, Timothy J; McPherson, Leroy A; Ruiz, Carlos L; Chandler, Gordon A; Torres, José A; Leeper, Ramon J; Cooper, Gary W; Nelson, Alan J
2008-10-01
A multiinstitution collaboration is developing a neutron imaging system for the Sandia Z facility. The initial system design is for slit aperture imaging system capable of obtaining a one-dimensional image of a 2.45 MeV source producing 5x10(12) neutrons with a resolution of 320 microm along the axial dimension of the plasma, but the design being developed can be modified for two-dimensional imaging and imaging of DT neutrons with other resolutions. This system will allow us to understand the spatial production of neutrons in the plasmas produced at the Z facility.
One-dimensional computational modeling on nuclear reactor problems
International Nuclear Information System (INIS)
Alves Filho, Hermes; Baptista, Josue Costa; Trindade, Luiz Fernando Santos; Heringer, Juan Diego dos Santos
2013-01-01
In this article, we present a computational modeling, which gives us a dynamic view of some applications of Nuclear Engineering, specifically in the power distribution and the effective multiplication factor (keff) calculations. We work with one-dimensional problems of deterministic neutron transport theory, with the linearized Boltzmann equation in the discrete ordinates (SN) formulation, independent of time, with isotropic scattering and then built a software (Simulator) for modeling computational problems used in a typical calculations. The program used in the implementation of the simulator was Matlab, version 7.0. (author)
Ordering phase transition in the one-dimensional Axelrod model
Vilone, D.; Vespignani, A.; Castellano, C.
2002-12-01
We study the one-dimensional behavior of a cellular automaton aimed at the description of the formation and evolution of cultural domains. The model exhibits a non-equilibrium transition between a phase with all the system sharing the same culture and a disordered phase of coexisting regions with different cultural features. Depending on the initial distribution of the disorder the transition occurs at different values of the model parameters. This phenomenology is qualitatively captured by a mean-field approach, which maps the dynamics into a multi-species reaction-diffusion problem.
One-Dimensional Rydberg Gas in a Magnetoelectric Trap
International Nuclear Information System (INIS)
Mayle, Michael; Hezel, Bernd; Lesanovsky, Igor; Schmelcher, Peter
2007-01-01
We study the quantum properties of Rydberg atoms in a magnetic Ioffe-Pritchard trap which is superimposed by a homogeneous electric field. Trapped Rydberg atoms can be created in long-lived electronic states exhibiting a permanent electric dipole moment of several hundred Debye. The resulting dipole-dipole interaction in conjunction with the radial confinement is demonstrated to give rise to an effectively one-dimensional ultracold Rydberg gas with a macroscopic interparticle distance. We derive analytical expressions for the electric dipole moment and the required linear density of Rydberg atoms
One-dimensional inverse problems of mathematical physics
Lavrent'ev, M M; Yakhno, V G; Schulenberger, J R
1986-01-01
This monograph deals with the inverse problems of determining a variable coefficient and right side for hyperbolic and parabolic equations on the basis of known solutions at fixed points of space for all times. The problems are one-dimensional in nature since the desired coefficient of the equation is a function of only one coordinate, while the desired right side is a function only of time. The authors use methods based on the spectral theory of ordinary differential operators of second order and also methods which make it possible to reduce the investigation of the inverse problems to the in
A One-Dimensional Global-Scaling Erosive Burning Model Informed by Blowing Wall Turbulence
Kibbey, Timothy P.
2014-01-01
A derivation of turbulent flow parameters, combined with data from erosive burning test motors and blowing wall tests results in erosive burning model candidates useful in one-dimensional internal ballistics analysis capable of scaling across wide ranges of motor size. The real-time burn rate data comes from three test campaigns of subscale segmented solid rocket motors tested at two facilities. The flow theory admits the important effect of the blowing wall on the turbulent friction coefficient by using blowing wall data to determine the blowing wall friction coefficient. The erosive burning behavior of full-scale motors is now predicted more closely than with other recent models.
Suppressing Klein tunneling in graphene using a one-dimensional array of localized scatterers.
Walls, Jamie D; Hadad, Daniel
2015-02-13
Graphene's unique physical and chemical properties make it an attractive platform for use in micro- and nanoelectronic devices. However, electrostatically controlling the flow of electrons in graphene can be challenging as a result of Klein tunneling, where electrons normally incident to a one-dimensional potential barrier of height V are perfectly transmitted even as V → ∞. In this study, theoretical and numerical calculations predict that the transmission probability for an electron wave normally incident to a one-dimensional array of localized scatterers can be significantly less than unity when the electron wavelength is smaller than the spacing between scatterers. In effect, placing periodic openings throughout a potential barrier can, somewhat counterintuitively, decrease transmission in graphene. Our results suggest that electrostatic potentials with spatial variations on the order of the electron wavelength can suppress Klein tunneling and could find applications in developing graphene electronic devices.
Stopping time of a one-dimensional bounded quantum walk
International Nuclear Information System (INIS)
Luo Hao; Zhang Peng; Zhan Xiang; Xue Peng
2016-01-01
The stopping time of a one-dimensional bounded classical random walk (RW) is defined as the number of steps taken by a random walker to arrive at a fixed boundary for the first time. A quantum walk (QW) is a non-trivial generalization of RW, and has attracted a great deal of interest from researchers working in quantum physics and quantum information. In this paper, we develop a method to calculate the stopping time for a one-dimensional QW. Using our method, we further compare the properties of stopping time for QW and RW. We find that the mean value of the stopping time is the same for both of these problems. However, for short times, the probability for a walker performing a QW to arrive at the boundary is larger than that for a RW. This means that, although the mean stopping time of a quantum and classical walker are the same, the quantum walker has a greater probability of arriving at the boundary earlier than the classical walker. (paper)
One-Dimensional Forward–Forward Mean-Field Games
Energy Technology Data Exchange (ETDEWEB)
Gomes, Diogo A., E-mail: diogo.gomes@kaust.edu.sa; Nurbekyan, Levon; Sedjro, Marc [King Abdullah University of Science and Technology (KAUST), CEMSE Division (Saudi Arabia)
2016-12-15
While the general theory for the terminal-initial value problem for mean-field games (MFGs) has achieved a substantial progress, the corresponding forward–forward problem is still poorly understood—even in the one-dimensional setting. Here, we consider one-dimensional forward–forward MFGs, study the existence of solutions and their long-time convergence. First, we discuss the relation between these models and systems of conservation laws. In particular, we identify new conserved quantities and study some qualitative properties of these systems. Next, we introduce a class of wave-like equations that are equivalent to forward–forward MFGs, and we derive a novel formulation as a system of conservation laws. For first-order logarithmic forward–forward MFG, we establish the existence of a global solution. Then, we consider a class of explicit solutions and show the existence of shocks. Finally, we examine parabolic forward–forward MFGs and establish the long-time convergence of the solutions.
One-Dimensional Forward–Forward Mean-Field Games
Gomes, Diogo A.; Nurbekyan, Levon; Sedjro, Marc
2016-01-01
While the general theory for the terminal-initial value problem for mean-field games (MFGs) has achieved a substantial progress, the corresponding forward–forward problem is still poorly understood—even in the one-dimensional setting. Here, we consider one-dimensional forward–forward MFGs, study the existence of solutions and their long-time convergence. First, we discuss the relation between these models and systems of conservation laws. In particular, we identify new conserved quantities and study some qualitative properties of these systems. Next, we introduce a class of wave-like equations that are equivalent to forward–forward MFGs, and we derive a novel formulation as a system of conservation laws. For first-order logarithmic forward–forward MFG, we establish the existence of a global solution. Then, we consider a class of explicit solutions and show the existence of shocks. Finally, we examine parabolic forward–forward MFGs and establish the long-time convergence of the solutions.
One-Dimensional Forward–Forward Mean-Field Games
Gomes, Diogo A.
2016-11-01
While the general theory for the terminal-initial value problem for mean-field games (MFGs) has achieved a substantial progress, the corresponding forward–forward problem is still poorly understood—even in the one-dimensional setting. Here, we consider one-dimensional forward–forward MFGs, study the existence of solutions and their long-time convergence. First, we discuss the relation between these models and systems of conservation laws. In particular, we identify new conserved quantities and study some qualitative properties of these systems. Next, we introduce a class of wave-like equations that are equivalent to forward–forward MFGs, and we derive a novel formulation as a system of conservation laws. For first-order logarithmic forward–forward MFG, we establish the existence of a global solution. Then, we consider a class of explicit solutions and show the existence of shocks. Finally, we examine parabolic forward–forward MFGs and establish the long-time convergence of the solutions.
Lime Kiln Modeling. CFD and One-dimensional simulations
Energy Technology Data Exchange (ETDEWEB)
Svedin, Kristoffer; Ivarsson, Christofer; Lundborg, Rickard
2009-03-15
The incentives for burning alternative fuels in lime kilns are growing. An increasing demand on thorough investigations of alternative fuel impact on lime kiln performance have been recognized, and the purpose of this project has been to develop a lime kiln CFD model with the possibility to fire fuel oil and lignin. The second part of the project consists of three technical studies. Simulated data from a one-dimensional steady state program has been used to support theories on the impact of biofuels and lime mud dryness. The CFD simulations was carried out in the commercial code FLUENT. Due to difficulties with the convergence of the model the calcination reaction is not included. The model shows essential differences between the two fuels. Lignin gives a different flame shape and a longer flame length compared to fuel oil. Mainly this depends on how the fuel is fed into the combustion chamber and how much combustion air that is added as primary and secondary air. In the case of lignin combustion the required amount of air is more than in the fuel oil case. This generates more combustion gas and a different flow pattern is created. Based on the values from turbulent reaction rate for the different fuels an estimated flame length can be obtained. For fuel oil the combustion is very intense with a sharp peak in the beginning and a rapid decrease. For lignin the combustion starts not as intense as for the fuel oil case and has a smoother shape. The flame length appears to be approximately 2-3 meter longer for lignin than for fuel oil based on turbulent reaction rate in the computational simulations. The first technical study showed that there are many benefits of increasing dry solids content in the lime mud going into a kiln such as increased energy efficiency, reduced TRS, and reduced sodium in the kiln. However, data from operating kilns indicates that these benefits can be offset by increasing exit gas temperature that can limit kiln production capacity. Simulated
Non-equilibrium dynamics of one-dimensional Bose gases
International Nuclear Information System (INIS)
Langen, T.
2013-01-01
Understanding the non-equilibrium dynamics of isolated quantum many-body systems is an open problem on vastly different energy, length, and time scales. Examples range from the dynamics of the early universe and heavy-ion collisions to the subtle coherence and transport properties in condensed matter physics. However, realizations of such quantum many-body systems, which are both well isolated from the environment and accessible to experimental study are scarce. This thesis presents a series of experiments with ultracold one-dimensional Bose gases. These gases combine a nearly perfect isolation from the environment with many well-established methods to manipulate and probe their quantum states. This makes them an ideal model system to explore the physics of quantum many body systems out of equilibrium. In the experiments, a well-defined non-equilibrium state is created by splitting a single one-dimensional gas coherently into two parts. The relaxation of this state is probed using matter-wave interferometry. The Observations reveal the emergence of a prethermalized steady state which differs strongly from thermal equilibrium. Such thermal-like states had previously been predicted for a large variety of systems, but never been observed directly. Studying the relaxation process in further detail shows that the thermal correlations of the prethermalized state emerge locally in their final form and propagate through the system in a light-cone-like evolution. This provides first experimental evidence for the local relaxation conjecture, which links relaxation processes in quantum many-body systems to the propagation of correlations. Furthermore, engineering the initial state of the evolution demonstrates that the prethermalized state is described by a generalized Gibbs ensemble, an observation which substantiates the importance of this ensemble as an extension of standard statistical mechanics. Finally, an experiment is presented, where pairs of gases with an atom
Resonant scattering induced thermopower in one-dimensional disordered systems
Müller, Daniel; Smit, Wilbert J.; Sigrist, Manfred
2015-05-01
This study analyzes thermoelectric properties of a one-dimensional random conductor which shows localization effects and simultaneously includes resonant scatterers yielding sharp conductance resonances. These sharp features give rise to a distinct behavior of the Seebeck coefficient in finite systems and incorporate the degree of localization as a means to enhance thermoelectric performance, in principle. The model for noninteracting electrons is discussed within the Landauer-Büttiker formalism such that analytical treatment is possible for a wide range of properties, if a special averaging scheme is applied. The approximations in the averaging procedure are tested with numerical evaluations showing good qualitative agreement, with some limited quantitative disagreement. The validity of low-temperature Mott's formula is determined and a good approximation is developed for the intermediate temperature range. In both regimes the intricate interplay between Anderson localization due to disorder and conductance resonances of the disorder potential is analyzed.
Testing of a one dimensional model for Field II calibration
DEFF Research Database (Denmark)
Bæk, David; Jensen, Jørgen Arendt; Willatzen, Morten
2008-01-01
Field II is a program for simulating ultrasound transducer fields. It is capable of calculating the emitted and pulse-echoed fields for both pulsed and continuous wave transducers. To make it fully calibrated a model of the transducer’s electro-mechanical impulse response must be included. We...... examine an adapted one dimensional transducer model originally proposed by Willatzen [9] to calibrate Field II. This model is modified to calculate the required impulse responses needed by Field II for a calibrated field pressure and external circuit current calculation. The testing has been performed...... to the calibrated Field II program for 1, 4, and 10 cycle excitations. Two parameter sets were applied for modeling, one real valued Pz27 parameter set, manufacturer supplied, and one complex valued parameter set found in literature, Alguer´o et al. [11]. The latter implicitly accounts for attenuation. Results show...
One-dimensional reactor kinetics model for RETRAN
International Nuclear Information System (INIS)
Gose, G.C.; Peterson, C.E.; Ellis, N.L.; McClure, J.A.
1981-01-01
Previous versions of RETRAN have had only a point kinetics model to describe the reactor core behavior during thermal-hydraulic transients. The principal assumption in deriving the point kinetics model is that the neutron flux may be separated into a time-dependent amplitude funtion and a time-independent shape function. Certain types of transients cannot be correctly analyzed under this assumption, since proper definitions for core average quantities such as reactivity or lifetime include the inner product of the adjoint flux with the perturbed flux. A one-dimensional neutronics model has been included in a preliminary version of RETRAN-02. The ability to account for flux shape changes will permit an improved representation of the thermal and hydraulic feedback effects. This paper describes the neutronics model and discusses some of the analyses
Lateral shifting in one dimensional chiral photonic crystal
International Nuclear Information System (INIS)
You Yuan; Chen Changyuan
2012-01-01
We report the lateral shifts of the transmitted waves in a one dimensional chiral photonic crystal by using the stationary-phase approach. It is revealed that two kinds of lateral shifts are observed due to the existence of cross coupling in chiral materials, which is different from what has been observed in previous non-chiral photonic crystals. Unlike the chiral slab, the positions of lateral shift peaks are closely related to the band edges of band gap characteristics of periodic structure and lateral shifts can be positive as well as negative. Besides, the lateral shifts show a strong dependence on the chiral factor, which varies the lateral shift peaks in both magnitudes and positions. These features are desirable for future device applications.
Magnons in one-dimensional k-component Fibonacci structures
Energy Technology Data Exchange (ETDEWEB)
Costa, C. H., E-mail: carloshocosta@hotmail.com [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN (Brazil); Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN (Brazil); Vasconcelos, M. S. [Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN (Brazil)
2014-05-07
We have studied the magnon transmission through of one-dimensional magnonic k-component Fibonacci structures, where k different materials are arranged in accordance with the following substitution rule: S{sub n}{sup (k)}=S{sub n−1}{sup (k)}S{sub n−k}{sup (k)} (n≥k=0,1,2,…), where S{sub n}{sup (k)} is the nth stage of the sequence. The calculations were carried out in exchange dominated regime within the framework of the Heisenberg model and taking into account the RPA approximation. We have considered multilayers composed of simple cubic spin-S Heisenberg ferromagnets, and, by using the powerful transfer-matrix method, the spin wave transmission is obtained. It is demonstrated that the transmission coefficient has a rich and interesting magnonic pass- and stop-bands structures, which depends on the frequency of magnons and the k values.
One-dimensional Ising model with multispin interactions
Turban, Loïc
2016-09-01
We study the spin-1/2 Ising chain with multispin interactions K involving the product of m successive spins, for general values of m. Using a change of spin variables the zero-field partition function of a finite chain is obtained for free and periodic boundary conditions and we calculate the two-spin correlation function. When placed in an external field H the system is shown to be self-dual. Using another change of spin variables the one-dimensional Ising model with multispin interactions in a field is mapped onto a zero-field rectangular Ising model with first-neighbour interactions K and H. The 2D system, with size m × N/m, has the topology of a cylinder with helical BC. In the thermodynamic limit N/m\\to ∞ , m\\to ∞ , a 2D critical singularity develops on the self-duality line, \\sinh 2K\\sinh 2H=1.
One-dimensional thermodynamical model for poling of ferroelectric ceramics
International Nuclear Information System (INIS)
Bassiouny, E.
1990-11-01
In this work, we use a model developed to deduce a one-dimensional model for the description of the poling of ferroelectric ceramics. This is built within the scheme of the thermodynamical theory of internal variables. The model produces both plastic and electric hysteresis effects in the form of ''plasticity'', i.e., rate-independent evolution equations for the plastic strain, and the residual electric polarization and both mechanical and electric hardenings. The influence of stresses on ferroelectric hysteresis loops through piezoelectricity and electrostriction is a natural outcome of this model. Some simple experimental methods for the determination of the material coefficients of the considered ceramics are suggested. (author). 21 refs, 3 figs
NMR relaxation rate in quasi one-dimensional antiferromagnets
Capponi, Sylvain; Dupont, Maxime; Laflorencie, Nicolas; Sengupta, Pinaki; Shao, Hui; Sandvik, Anders W.
We compare results of different numerical approaches to compute the NMR relaxation rate 1 /T1 in quasi one-dimensional (1d) antiferromagnets. In the purely 1d regime, recent numerical simulations using DMRG have provided the full crossover behavior from classical regime at high temperature to universal Tomonaga-Luttinger liquid at low-energy (in the gapless case) or activated behavior (in the gapped case). For quasi 1d models, we can use mean-field approaches to reduce the problem to a 1d one that can be studied using DMRG. But in some cases, we can also simulate the full microscopic model using quantum Monte-Carlo techniques. This allows to compute dynamical correlations in imaginary time and we will discuss recent advances to perform stochastic analytic continuation to get real frequency spectra. Finally, we connect our results to experiments on various quasi 1d materials.
Quasi one dimensional transport in individual electrospun composite nanofibers
Energy Technology Data Exchange (ETDEWEB)
Avnon, A., E-mail: avnon@phys.fu-berlin.de; Datsyuk, V.; Trotsenko, S. [Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin (Germany); Wang, B.; Zhou, S. [Research Center of Microperipheric Technologies, Technische Universität Berlin, TiB4/2-1, Gustav-Meyer-Allee 25, 13355 Berlin (Germany); Grabbert, N.; Ngo, H.-D. [Microsystem Engineering (FB I), University of Applied Sciences, Wilhelminenhofstr. 74 (C 525), 12459 Berlin (Germany)
2014-01-15
We present results of transport measurements of individual suspended electrospun nanofibers Poly(methyl methacrylate)-multiwalled carbon nanotubes. The nanofiber is comprised of highly aligned consecutive multiwalled carbon nanotubes. We have confirmed that at the range temperature from room temperature down to ∼60 K, the conductance behaves as power-law of temperature with an exponent of α ∼ 2.9−10.2. The current also behaves as power law of voltage with an exponent of β ∼ 2.3−8.6. The power-law behavior is a footprint for one dimensional transport. The possible models of this confined system are discussed. Using the model of Luttinger liquid states in series, we calculated the exponent for tunneling into the bulk of a single multiwalled carbon nanotube α{sub bulk} ∼ 0.06 which agrees with theoretical predictions.
One-dimensional disk model simulation for klystron design
International Nuclear Information System (INIS)
Yonezawa, H.; Okazaki, Y.
1984-05-01
In 1982, one of the authors (Okazaki), of Toshiba Corporation, wrote a one-dimensional, rigid-disk model computer program to serve as a reliable design tool for the 150 MW klystron development project. This is an introductory note for the users of this program. While reviewing the so-called disk programs presently available, hypotheses such as gridded interaction gaps, a linear relation between phase and position, and so on, were found. These hypotheses bring serious limitations and uncertainties into the computational results. JPNDISK was developed to eliminate these defects, to follow the equations of motion as rigorously as possible, and to obtain self-consistent solutions for the gap voltages and the electron motion. Although some inaccuracy may be present in the relativistic region, JPNDISK, in its present form, seems a most suitable tool for klystron design; it is both easy and inexpensive to use
Probing the exchange statistics of one-dimensional anyon models
Greschner, Sebastian; Cardarelli, Lorenzo; Santos, Luis
2018-05-01
We propose feasible scenarios for revealing the modified exchange statistics in one-dimensional anyon models in optical lattices based on an extension of the multicolor lattice-depth modulation scheme introduced in [Phys. Rev. A 94, 023615 (2016), 10.1103/PhysRevA.94.023615]. We show that the fast modulation of a two-component fermionic lattice gas in the presence a magnetic field gradient, in combination with additional resonant microwave fields, allows for the quantum simulation of hardcore anyon models with periodic boundary conditions. Such a semisynthetic ring setup allows for realizing an interferometric arrangement sensitive to the anyonic statistics. Moreover, we show as well that simple expansion experiments may reveal the formation of anomalously bound pairs resulting from the anyonic exchange.
One-dimensional reduction of viscous jets. II. Applications
Pitrou, Cyril
2018-04-01
In a companion paper [Phys. Rev. E 97, 043115 (2018), 10.1103/PhysRevE.97.043115], a formalism allowing to describe viscous fibers as one-dimensional objects was developed. We apply it to the special case of a viscous fluid torus. This allows to highlight the differences with the basic viscous string model and with its viscous rod model extension. In particular, an elliptic deformation of the torus section appears because of surface tension effects, and this cannot be described by viscous string nor viscous rod models. Furthermore, we study the Rayleigh-Plateau instability for periodic deformations around the perfect torus, and we show that the instability is not sufficient to lead to the torus breakup in several droplets before it collapses to a single spherical drop. Conversely, a rotating torus is dynamically attracted toward a stationary solution, around which the instability can develop freely and split the torus in multiple droplets.
Lateral shifting in one dimensional chiral photonic crystal
Energy Technology Data Exchange (ETDEWEB)
You Yuan, E-mail: yctcyouyuan@163.com [School of Physics and Electronics, Yancheng Teachers University, Yancheng, 224002 Jiangsu (China); Chen Changyuan [School of Physics and Electronics, Yancheng Teachers University, Yancheng, 224002 Jiangsu (China)
2012-07-01
We report the lateral shifts of the transmitted waves in a one dimensional chiral photonic crystal by using the stationary-phase approach. It is revealed that two kinds of lateral shifts are observed due to the existence of cross coupling in chiral materials, which is different from what has been observed in previous non-chiral photonic crystals. Unlike the chiral slab, the positions of lateral shift peaks are closely related to the band edges of band gap characteristics of periodic structure and lateral shifts can be positive as well as negative. Besides, the lateral shifts show a strong dependence on the chiral factor, which varies the lateral shift peaks in both magnitudes and positions. These features are desirable for future device applications.
One-Dimensional Time to Explosion (Thermal Sensitivity) of ANPZ
Energy Technology Data Exchange (ETDEWEB)
Hsu, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hust, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McClelland, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gresshoff, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2014-11-12
Incidents caused by fire and combat operations can heat energetic materials that may lead to thermal explosion and result in structural damage and casualty. Some explosives may thermally explode at fairly low temperatures (< 100 C) and the violence from thermal explosion may cause a significant damage. Thus it is important to understand the response of energetic materials to thermal insults. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory has been used for decades to measure times to explosion, threshold thermal explosion temperature, and determine kinetic parameters of energetic materials. Samples of different configurations (pressed part, powder, paste, and liquid) can be tested in the system. The ODTX testing can also provide useful data for assessing the thermal explosion violence of energetic materials. This report summarizes the recent ODTX experimental data and modeling results for 2,6-diamino-3,5-dintropyrazine (ANPZ).
Dynamics of an impurity in a one-dimensional lattice
International Nuclear Information System (INIS)
Massel, F; Kantian, A; Giamarchi, T; Daley, A J; Törmä, P
2013-01-01
We study the non-equilibrium dynamics of an impurity in a harmonic trap that is kicked with a well-defined quasi-momentum, and interacts with a bath of free fermions or interacting bosons in a one-dimensional lattice configuration. Using numerical and analytical techniques we investigate the full dynamics beyond linear response, which allows us to quantitatively characterize states of the impurity in the bath for different parameter regimes. These vary from a tightly bound molecular state in a strongly interacting limit to a polaron (dressed impurity) and a free particle for weak interactions, with composite behaviour in the intermediate regime. These dynamics and different parameter regimes should be readily realizable in systems of cold atoms in optical lattices. (paper)
The transmission probability method in one-dimensional cylindrical geometry
International Nuclear Information System (INIS)
Rubin, I.E.
1983-01-01
The collision probability method widely used in solving the problems of neutron transpopt in a reactor cell is reliable for simple cells with small number of zones. The increase of the number of zones and also taking into account the anisotropy of scattering greatly increase the scope of calculations. In order to reduce the time of calculation the transmission probability method is suggested to be used for flux calculation in one-dimensional cylindrical geometry taking into account the scattering anisotropy. The efficiency of the suggested method is verified using the one-group calculations for cylindrical cells. The use of the transmission probability method allows to present completely angular and spatial dependences is neutrons distributions without the increase in the scope of calculations. The method is especially effective in solving the multi-group problems
Piezoelectric transducer vibrations in a one-dimensional approximation
Hilke, H J
1973-01-01
The theory of piezoelectric transducer vibrations, which may be treated as one-dimensional, is developed in detail for thin discs vibrating in a pure thickness extensional mode. An effort has been made to obtain relations of general validity, which include losses, and which are in a simple explicit form convenient for practical calculations. The behaviour of transducers is discussed with special attention to their characteristics at the two fundamental frequencies, the so-called parallel and series resonances. Several peculiarities occur when transducers are coupled to media with considerably different acoustic impedances. These peculiarities are discussed and illustrated by numerical results for quartz and PZT 4 piezoelectric discs radiating into water, air and liquid hydrogen. The application of the theory to different types of vibrations is briefly illustrated for thin bars vibrating longitudinally. Short discussions are included on compound transducer systems, and on the properties of thin discs as receiv...
Experiment and simulation on one-dimensional plasma photonic crystals
International Nuclear Information System (INIS)
Zhang, Lin; Ouyang, Ji-Ting
2014-01-01
The transmission characteristics of microwaves passing through one-dimensional plasma photonic crystals (PPCs) have been investigated by experiment and simulation. The PPCs were formed by a series of discharge tubes filled with argon at 5 Torr that the plasma density in tubes can be varied by adjusting the discharge current. The transmittance of X-band microwaves through the crystal structure was measured under different discharge currents and geometrical parameters. The finite-different time-domain method was employed to analyze the detailed properties of the microwaves propagation. The results show that there exist bandgaps when the plasma is turned on. The properties of bandgaps depend on the plasma density and the geometrical parameters of the PPCs structure. The PPCs can perform as dynamical band-stop filter to control the transmission of microwaves within a wide frequency range
Analytical models of optical response in one-dimensional semiconductors
International Nuclear Information System (INIS)
Pedersen, Thomas Garm
2015-01-01
The quantum mechanical description of the optical properties of crystalline materials typically requires extensive numerical computation. Including excitonic and non-perturbative field effects adds to the complexity. In one dimension, however, the analysis simplifies and optical spectra can be computed exactly. In this paper, we apply the Wannier exciton formalism to derive analytical expressions for the optical response in four cases of increasing complexity. Thus, we start from free carriers and, in turn, switch on electrostatic fields and electron–hole attraction and, finally, analyze the combined influence of these effects. In addition, the optical response of impurity-localized excitons is discussed. - Highlights: • Optical response of one-dimensional semiconductors including excitons. • Analytical model of excitonic Franz–Keldysh effect. • Computation of optical response of impurity-localized excitons
SUSY-hierarchy of one-dimensional reflectionless potentials
Maydanyuk, Sergei P
2004-01-01
A class of one-dimensional reflectionless potentials, an absolute transparency of which is concerned with their belonging to one SUSY-hierarchy with a constant potential, is studied. An approach for determination of a general form of the reflectionless potential on the basis of construction of such a hierarchy by the recurrent method is proposed. A general form of interdependence between superpotentials with neighboring numbers of this hierarchy, opening a possibility to find new reflectionless potentials, have a simple analytical view and are expressed through finite number of elementary functions (unlike some reflectionless potentials, which are constructed on the basis of soliton solutions or are shape invariant in one or many steps with involving scaling of parameters, and are expressed through series), is obtained. An analysis of absolute transparency existence for the potential which has the inverse power dependence on space coordinate (and here tunneling is possible), i.e. which has the form $V(x) = \\p...
Strongly-Refractive One-Dimensional Photonic Crystal Prisms
Ting, David Z. (Inventor)
2004-01-01
One-dimensional (1D) photonic crystal prisms can separate a beam of polychromatic electromagnetic waves into constituent wavelength components and can utilize unconventional refraction properties for wavelength dispersion over significant portions of an entire photonic band rather than just near the band edges outside the photonic band gaps. Using a ID photonic crystal simplifies the design and fabrication process and allows the use of larger feature sizes. The prism geometry broadens the useful wavelength range, enables better optical transmission, and exhibits angular dependence on wavelength with reduced non-linearity. The properties of the 1 D photonic crystal prism can be tuned by varying design parameters such as incidence angle, exit surface angle, and layer widths. The ID photonic crystal prism can be fabricated in a planar process, and can be used as optical integrated circuit elements.
Well-posedness of one-dimensional Korteweg models
Directory of Open Access Journals (Sweden)
Sylvie Benzoni-Gavage
2006-05-01
Full Text Available We investigate the initial-value problem for one-dimensional compressible fluids endowed with internal capillarity. We focus on the isothermal inviscid case with variable capillarity. The resulting equations for the density and the velocity, consisting of the mass conservation law and the momentum conservation with Korteweg stress, are a system of third order nonlinear dispersive partial differential equations. Additionally, this system is Hamiltonian and admits travelling solutions, representing propagating phase boundaries with internal structure. By change of unknown, it roughly reduces to a quasilinear Schrodinger equation. This new formulation enables us to prove local well-posedness for smooth perturbations of travelling profiles and almost-global existence for small enough perturbations. A blow-up criterion is also derived.
A Reduced Order, One Dimensional Model of Joint Response
Energy Technology Data Exchange (ETDEWEB)
DOHNER,JEFFREY L.
2000-11-06
As a joint is loaded, the tangent stiffness of the joint reduces due to slip at interfaces. This stiffness reduction continues until the direction of the applied load is reversed or the total interface slips. Total interface slippage in joints is called macro-slip. For joints not undergoing macro-slip, when load reversal occurs the tangent stiffness immediately rebounds to its maximum value. This occurs due to stiction effects at the interface. Thus, for periodic loads, a softening and rebound hardening cycle is produced which defines a hysteretic, energy absorbing trajectory. For many jointed sub-structures, this hysteretic trajectory can be approximated using simple polynomial representations. This allows for complex joint substructures to be represented using simple non-linear models. In this paper a simple one dimensional model is discussed.
Capillary condensation in one-dimensional irregular confinement.
Handford, Thomas P; Pérez-Reche, Francisco J; Taraskin, Sergei N
2013-07-01
A lattice-gas model with heterogeneity is developed for the description of fluid condensation in finite sized one-dimensional pores of arbitrary shape. Mapping to the random-field Ising model allows an exact solution of the model to be obtained at zero-temperature, reproducing the experimentally observed dependence of the amount of fluid adsorbed in the pore on external pressure. It is demonstrated that the disorder controls the sorption for long pores and can result in H2-type hysteresis. Finite-temperature Metropolis dynamics simulations support analytical findings in the limit of low temperatures. The proposed framework is viewed as a fundamental building block of the theory of capillary condensation necessary for reliable structural analysis of complex porous media from adsorption-desorption data.
Topologically protected states in one-dimensional systems
Fefferman, C L; Weinstein, M I
2017-01-01
The authors study a class of periodic Schrödinger operators, which in distinguished cases can be proved to have linear band-crossings or "Dirac points". They then show that the introduction of an "edge", via adiabatic modulation of these periodic potentials by a domain wall, results in the bifurcation of spatially localized "edge states". These bound states are associated with the topologically protected zero-energy mode of an asymptotic one-dimensional Dirac operator. The authors' model captures many aspects of the phenomenon of topologically protected edge states for two-dimensional bulk structures such as the honeycomb structure of graphene. The states the authors construct can be realized as highly robust TM-electromagnetic modes for a class of photonic waveguides with a phase-defect.
Interacting Fermi gases in disordered one-dimensional lattices
International Nuclear Information System (INIS)
Xianlong, Gao; Polini, M.; Tosi, M. P.; Tanatar, B.
2006-01-01
Interacting two-component Fermi gases loaded in a one-dimensional (1D) lattice and subject to harmonic trapping exhibit intriguing compound phases in which fluid regions coexist with local Mott-insulator and/or band-insulator regions. Motivated by experiments on cold atoms inside disordered optical lattices, we present a theoretical study of the effects of a random potential on these ground-state phases. Within a density-functional scheme we show that disorder has two main effects: (i) it destroys the local insulating regions if it is sufficiently strong compared with the on-site atom-atom repulsion, and (ii) it induces an anomaly in the compressibility at low density from quenching of percolation
A one-dimensional ice structure built from pentagons
Carrasco, Javier; Michaelides, Angelos
2010-03-01
Heterogeneous nucleation of water plays a key role in fields as diverse as atmospheric chemistry, astrophysics, and biology. Ice nucleation on metal surfaces offers an opportunity to watch this process unfold, providing a molecular-scale description at a well-defined, planar interface. We discuss a density-functional theory study on a metal surface specifically designed to understand such phenomena. Together with our colleges at the University of Liverpool, we found that the nanometer wide water-ice chains experimentally observed to nucleate and grow on Cu(110) are built from a face sharing arrangement of water pentagons [1]. The novel one-dimensional pentagon structure maximizes the water-metal bonding whilst simultaneously maintaining a strong hydrogen bonding network. These results reveal an unanticipated structural adaptability of water-ice films, demonstrating that the presence of the substrate can be sufficient to favor non-conventional structural units. [4pt] [1] J. Carrasco et al., Nature Mater. 8, 427 (2009).
One-dimensional plasma photonic crystals with sinusoidal densities
International Nuclear Information System (INIS)
Qi, L.; Shang, L.; Zhang, S.
2014-01-01
Properties of electromagnetic waves with normal and oblique incidence have been studied for one-dimensional plasma layers with sinusoidal densities. Wave transmittance as a function of wave frequency exhibits photonic band gaps characteristic of photonic crystals. For periodic structures, increasing collision frequency is demonstrated to lead to greater absorption, increasing the modulation factor enlarges the gap width, and increasing incidence angle can change the gap locations of the two polarizations. If a defect layer is introduced by inserting a new plasma layer in the center, a defect mode may appear within the gap. Periodic number, collision frequency, and modulation factor can affect magnitude of the defect mode. The incidence angle enables the frequency to be tuned. Defect layer thickness affects both frequency and number of defect modes. These results may provide theoretical guidance in designing tunable narrow-band filters
Hidden magnetism in periodically modulated one dimensional dipolar fermions
Fazzini, S.; Montorsi, A.; Roncaglia, M.; Barbiero, L.
2017-12-01
The experimental realization of time-dependent ultracold lattice systems has paved the way towards the implementation of new Hubbard-like Hamiltonians. We show that in a one-dimensional two-components lattice dipolar Fermi gas the competition between long range repulsion and correlated hopping induced by periodically modulated on-site interaction allows for the formation of hidden magnetic phases, with degenerate protected edge modes. The magnetism, characterized solely by string-like nonlocal order parameters, manifests in the charge and/or in the spin degrees of freedom. Such behavior is enlighten by employing Luttinger liquid theory and numerical methods. The range of parameters for which hidden magnetism is present can be reached by means of the currently available experimental setups and probes.
Relativistic collective diffusion in one-dimensional systems
Lin, Gui-Wu; Lam, Yu-Yiu; Zheng, Dong-Qin; Zhong, Wei-Rong
2018-05-01
The relativistic collective diffusion in one-dimensional molecular system is investigated through nonequilibrium molecular dynamics with Monte Carlo methods. We have proposed the relationship among the speed, the temperature, the density distribution and the collective diffusion coefficient of particles in a relativistic moving system. It is found that the relativistic speed of the system has no effect on the temperature, but the collective diffusion coefficient decreases to zero as the velocity of the system approaches to the speed of light. The collective diffusion coefficient is modified as D‧ = D(1 ‑w2 c2 )3 2 for satisfying the relativistic circumstances. The present results may contribute to the understanding of the behavior of the particles transport diffusion in a high speed system, as well as enlighten the study of biological metabolism at relativistic high speed situation.
Asymmetrically doped one-dimensional trans-polymers
International Nuclear Information System (INIS)
Caldas, Heron
2009-01-01
More than 30 years ago [H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, A.J. Heeger, J. Chem. Soc. Chem. Comm. 578 (1977); S. Etemad, A.J. Heeger, Ann. Rev. Phys. Chem. 33 (1982) 443] it was discovered that doped trans-polyacetylene (CH) x , a one-dimensional (1D) conjugated polymer, exhibits electrical conductivity. In this work we show that an asymmetrically doped 1D trans-polymer has non-conventional properties, as compared to symmetrically doped systems. Depending on the level of asymmetry between the chemical potentials of the two involved fermionic species, the polymer can be in a partially or fully spin polarized state. Some possible experimental consequences of doped 1D trans-polymers used as 1D organic polarized conductors are discussed.
Explicit Solutions for One-Dimensional Mean-Field Games
Prazeres, Mariana
2017-04-05
In this thesis, we consider stationary one-dimensional mean-field games (MFGs) with or without congestion. Our aim is to understand the qualitative features of these games through the analysis of explicit solutions. We are particularly interested in MFGs with a nonmonotonic behavior, which corresponds to situations where agents tend to aggregate. First, we derive the MFG equations from control theory. Then, we compute explicit solutions using the current formulation and examine their behavior. Finally, we represent the solutions and analyze the results. This thesis main contributions are the following: First, we develop the current method to solve MFG explicitly. Second, we analyze in detail non-monotonic MFGs and discover new phenomena: non-uniqueness, discontinuous solutions, empty regions and unhappiness traps. Finally, we address several regularization procedures and examine the stability of MFGs.
Charge and spin separation in one-dimensional systems
International Nuclear Information System (INIS)
Balseiro, C.A.; Jagla, E.A.; Hallberg, K.
1995-01-01
In this article we discuss charge and spin separation and quantum interference in one-dimensional models. After a short introduction we briefly present the Hubbard and Luttinger models and discuss some of the known exact results. We study numerically the charge and spin separation in the Hubbard model. The time evolution of a wave packet is obtained and the charge and spin densities are evaluated for different times. The charge and spin wave packets propagate with different velocities. The results are interpreted in terms of the Bethe-ansatz solution. In section IV we study the effect of charge and spin separation on the quantum interference in a Aharonov-Bohm experiment. By calculating the one-particle propagators of the Luttinger model for a mesoscopic ring with a magnetic field we calculate the Aharonov-Bohm conductance. The conductance oscillates with the magnetic field with a characteristic frequency that depends on the charge and spin velocities. (author)
One-dimensional central-force problem, including radiation reaction
International Nuclear Information System (INIS)
Kasher, J.C.
1976-01-01
Two equal masses of equal charge magnitude (either attractive or repulsive) are held a certain distance apart for their entire past history. AT t = 0 one of them is either started from rest or given an initial velocity toward or away from the other charge. When the Dirac radiation-reaction force is included in the force equation, our Taylor-series numerical calculations lead to two types of nonphysical results for both the attractive and repulsive cases. In the attractive case, the moving charge either stops and moves back out to infinity, or violates energy conservation as it nears collision with the fixed charge. For the repulsive charges, the moving particle either eventually approaches and collides with the fixed one, or violates energy conservation as it goes out to infinity. These results lead us to conclude that the Lorentz-Dirac equation is not valid for the one-dimensional central-force problem
Periodic transmission peak splitting in one dimensional disordered photonic structures
Kriegel, Ilka; Scotognella, Francesco
2016-08-01
In the present paper we present ways to modulate the periodic transmission peaks arising in disordered one dimensional photonic structures with hundreds of layers. Disordered structures in which the optical length nd (n is the refractive index and d the layer thickness) is the same for each layer show regular peaks in their transmission spectra. A proper variation of the optical length of the layers leads to a splitting of the transmission peaks. Notably, the variation of the occurrence of high and low refractive index layers, gives a tool to tune also the width of the peaks. These results are of highest interest for optical application, such as light filtering, where the manifold of parameters allows a precise design of the spectral transmission ranges.
REVIEW One-Dimensional Dynamical Modeling of Earthquakes: A Review
Directory of Open Access Journals (Sweden)
Jeen-Hwa Wang
2008-01-01
Full Text Available Studies of the power-law relations of seismicity and earthquake source parameters based on the one-dimensional (1-D Burridge-Knopoff¡¦s (BK dynamical lattice model, especially those studies conducted by Taiwan¡¦s scientists, are reviewed in this article. In general, velocity- and/or state-dependent friction is considered to control faulting. A uniform distribution of breaking strengths (i.e., the static friction strength is taken into account in some studies, and inhomogeneous distributions in others. The scaling relations in these studies include: Omori¡¦s law, the magnitude-frequency or energy-frequency relation, the relation between source duration time and seismic moment, the relation between rupture length and seismic moment, the frequency-length relation, and the source power spectra. The main parameters of the one-dimensional (1-D Burridge-Knopoff¡¦s (BK dynamical lattice model include: the decreasing rate (r of dynamic friction strength with sliding velocity; the type and degree of heterogeneous distribution of the breaking strengths, the stiffness ratio (i.e., the ratio between the stiffness of the coil spring connecting two mass elements and that of the leaf spring linking a mass element and the moving plate; the frictional drop ratio of the minimum dynamic friction strength to the breaking strength; and the maximum breaking strength. For some authors, the distribution of the breaking strengths was considered to be a fractal function. Hence, the fractal dimension of such a distribution is also a significant parameter. Comparison between observed scaling laws and simulation results shows that the 1-D BK dynamical lattice model acceptably approaches fault dynamics.
One-dimensional reduction of viscous jets. I. Theory
Pitrou, Cyril
2018-04-01
We build a general formalism to describe thin viscous jets as one-dimensional objects with an internal structure. We present in full generality the steps needed to describe the viscous jets around their central line, and we argue that the Taylor expansion of all fields around that line is conveniently expressed in terms of symmetric trace-free tensors living in the two dimensions of the fiber sections. We recover the standard results of axisymmetric jets and we report the first and second corrections to the lowest order description, also allowing for a rotational component around the axis of symmetry. When applied to generally curved fibers, the lowest order description corresponds to a viscous string model whose sections are circular. However, when including the first corrections, we find that curved jets generically develop elliptic sections. Several subtle effects imply that the first corrections cannot be described by a rod model since it amounts to selectively discard some corrections. However, in a fast rotating frame, we find that the dominant effects induced by inertial and Coriolis forces should be correctly described by rod models. For completeness, we also recover the constitutive relations for forces and torques in rod models and exhibit a missing term in the lowest order expression of viscous torque. Given that our method is based on tensors, the complexity of all computations has been beaten down by using an appropriate tensor algebra package such as xAct, allowing us to obtain a one-dimensional description of curved viscous jets with all the first order corrections consistently included. Finally, we find a description for straight fibers with elliptic sections as a special case of these results, and recover that ellipticity is dynamically damped by surface tension. An application to toroidal viscous fibers is presented in the companion paper [Pitrou, Phys. Rev. E 97, 043116 (2018), 10.1103/PhysRevE.97.043116].
Yujun Yi; Caihong Tang; Zhifeng Yang; Shanghong Zhang; Cheng Zhang
2017-01-01
The long Middle Route of the South to North Water Transfer Project is composed of complex hydraulic structures (aqueduct, tunnel, control gate, diversion, culvert, and diverted siphon), which generate complex flow patterns. It is vital to simulate the flow patterns through hydraulic structures, but it is a challenging work to protect water quality and maintain continuous water transfer. A one-dimensional hydrodynamic and water quality model was built to understand the flow and pollutant movem...
A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers.
de Jong, J A; Wijnant, Y H; de Boer, A
2014-03-01
A one-dimensional (1D) laminar oscillating flow heat transfer model is derived and applied to parallel-plate thermoacoustic heat exchangers. The model can be used to estimate the heat transfer from the solid wall to the acoustic medium, which is required for the heat input/output of thermoacoustic systems. The model is implementable in existing (quasi-)1D thermoacoustic codes, such as DeltaEC. Examples of generated results show good agreement with literature results. The model allows for arbitrary wave phasing; however, it is shown that the wave phasing does not significantly influence the heat transfer.
Wave propagation inside one-dimensional photonic crystals with single-negative materials
International Nuclear Information System (INIS)
Wang Ligang; Chen Hong; Zhu Shiyao
2006-01-01
The propagation of light waves in one-dimensional photonic crystals (1DPCs) composed of alternating layers of two kinds of single-negative materials is investigated theoretically. The phase velocity is negative when the frequency of the light wave is smaller than the certain critical frequency ω cr , while the Poynting vector is always positive. At normal incidence, such 1DPCs may act as equivalent left-handed materials. At the inclined incidence, the effective wave vectors inside such 1DPCs do refract negatively, while the effective energy flows do not refract negatively. Therefore, at the inclined incidence, the 1DPCs are not equivalent to the left-handed materials
BERMUDA-1DG: a one-dimensional photon transport code
International Nuclear Information System (INIS)
Suzuki, Tomoo; Hasegawa, Akira; Nakashima, Hiroshi; Kaneko, Kunio.
1984-10-01
A one-dimensional photon transport code BERMUDA-1DG has been developed for spherical and infinite slab geometries. The purpose of development is to equip the function of gamma rays calculation for the BERMUDA code system, which was developed by 1983 only for neutron transport calculation as a preliminary version. A group constants library has been prepared for 30 nuclides, and it now consists of the 36-group total cross sections and secondary gamma ray yields by the 120-group neutron flux. For the Compton scattering, group-angle transfer matrices are accurately obtained by integrating the Klein-Nishina formula taking into account the energy and scattering angle correlation. The pair production cross sections are now calculated in the code from atomic number and midenergy of each group. To obtain angular flux distribution, the transport equation is solved in the same way as in case of neutron, using the direct integration method in a multigroup model. Both of an independent gamma ray source problem and a neutron-gamma source problem are possible to be solved. This report is written as a user's manual with a brief description of the calculational method. (author)
Spin glasses and algorithm benchmarks: A one-dimensional view
International Nuclear Information System (INIS)
Katzgraber, H G
2008-01-01
Spin glasses are paradigmatic models that deliver concepts relevant for a variety of systems. However, rigorous analytical results are difficult to obtain for spin-glass models, in particular for realistic short-range models. Therefore large-scale numerical simulations are the tool of choice. Concepts and algorithms derived from the study of spin glasses have been applied to diverse fields in computer science and physics. In this work a one-dimensional long-range spin-glass model with power-law interactions is discussed. The model has the advantage over conventional systems in that by tuning the power-law exponent of the interactions the effective space dimension can be changed thus effectively allowing the study of large high-dimensional spin-glass systems to address questions as diverse as the existence of an Almeida-Thouless line, ultrametricity and chaos in short range spin glasses. Furthermore, because the range of interactions can be changed, the model is a formidable test-bed for optimization algorithms
One-dimensional transient radiative transfer by lattice Boltzmann method.
Zhang, Yong; Yi, Hongliang; Tan, Heping
2013-10-21
The lattice Boltzmann method (LBM) is extended to solve transient radiative transfer in one-dimensional slab containing scattering media subjected to a collimated short laser irradiation. By using a fully implicit backward differencing scheme to discretize the transient term in the radiative transfer equation, a new type of lattice structure is devised. The accuracy and computational efficiency of this algorithm are examined firstly. Afterwards, effects of the medium properties such as the extinction coefficient, the scattering albedo and the anisotropy factor, and the shapes of laser pulse on time-resolved signals of transmittance and reflectance are investigated. Results of the present method are found to compare very well with the data from the literature. For an oblique incidence, the LBM results in this paper are compared with those by Monte Carlo method generated by ourselves. In addition, transient radiative transfer in a two-Layer inhomogeneous media subjected to a short square pulse irradiation is investigated. At last, the LBM is further extended to study the transient radiative transfer in homogeneous medium with a refractive index discontinuity irradiated by the short pulse laser. Several trends on the time-resolved signals different from those for refractive index of 1 (i.e. refractive-index-matched boundary) are observed and analysed.
One dimensional coordination polymers: Synthesis, crystal structures and spectroscopic properties
Karaağaç, Dursun; Kürkçüoğlu, Güneş Süheyla; Şenyel, Mustafa; Şahin, Onur
2016-11-01
Two new one dimensional (1D) cyanide complexes, namely [M(4-aepy)2(H2O)2][Pt(CN)4], (4-aepy = 4-(2-aminoethyl)pyridine M = Cu(II) (1) or Zn(II) (2)), have been synthesized and characterized by vibrational (FT-IR and Raman) spectroscopy, single crystal X-ray diffraction, thermal and elemental analyses techniques. The crystallographic analyses reveal that 1 and 2 are isomorphous and isostructural, and crystallize in the monoclinic system and C2 space group. The Pt(II) ions are coordinated by four cyanide-carbon atoms in the square-planar geometry and the [Pt(CN)4]2- ions act as a counter ion. The M(II) ions display an N4O2 coordination sphere with a distorted octahedral geometry, the nitrogen donors belonging to four molecules of the organic 4-aepy that act as unidentate ligands and two oxygen atoms from aqua ligands. The crystal structures of 1 and 2 are similar each other and linked via intermolecular hydrogen bonding, Pt⋯π interactions to form 3D supramolecular network. Vibration assignments of all the observed bands are given and the spectral features also supported to the crystal structures of the complexes.
Tunneling and resonant conductance in one-dimensional molecular structures
International Nuclear Information System (INIS)
Kozhushner, M.A.; Posvyanskii, V.S.; Oleynik, I.I.
2005-01-01
We present a theory of tunneling and resonant transitions in one-dimensional molecular systems which is based on Green's function theory of electron sub-barrier scattering off the structural units (or functional groups) of a molecular chain. We show that the many-electron effects are of paramount importance in electron transport and they are effectively treated using a formalism of sub-barrier scattering operators. The method which calculates the total scattering amplitude of the bridge molecule not only predicts the enhancement of the amplitude of tunneling transitions in course of tunneling electron transfer through onedimensional molecular structures but also allows us to interpret conductance mechanisms by calculating the bound energy spectrum of the tunneling electron, the energies being obtained as poles of the total scattering amplitude of the bridge molecule. We found that the resonant tunneling via bound states of the tunneling electron is the major mechanism of electron conductivity in relatively long organic molecules. The sub-barrier scattering technique naturally includes a description of tunneling in applied electric fields which allows us to calculate I-V curves at finite bias. The developed theory is applied to explain experimental findings such as bridge effect due to tunneling through organic molecules, and threshold versus Ohmic behavior of the conductance due to resonant electron transfer
New Poisson–Boltzmann type equations: one-dimensional solutions
International Nuclear Information System (INIS)
Lee, Chiun-Chang; Lee, Hijin; Hyon, YunKyong; Lin, Tai-Chia; Liu, Chun
2011-01-01
The Poisson–Boltzmann (PB) equation is conventionally used to model the equilibrium of bulk ionic species in different media and solvents. In this paper we study a new Poisson–Boltzmann type (PB n ) equation with a small dielectric parameter ε 2 and non-local nonlinearity which takes into consideration the preservation of the total amount of each individual ion. This equation can be derived from the original Poisson–Nernst–Planck system. Under Robin-type boundary conditions with various coefficient scales, we demonstrate the asymptotic behaviours of one-dimensional solutions of PB n equations as the parameter ε approaches zero. In particular, we show that in case of electroneutrality, i.e. α = β, solutions of 1D PB n equations have a similar asymptotic behaviour as those of 1D PB equations. However, as α ≠ β (non-electroneutrality), solutions of 1D PB n equations may have blow-up behaviour which cannot be found in 1D PB equations. Such a difference between 1D PB and PB n equations can also be verified by numerical simulations
Localization properties of one-dimensional electrified chains
International Nuclear Information System (INIS)
Ouasti, R.; Brezini, A.; Zekri, N.
1993-08-01
A Kronig-Penney model with a constant electric filed for a non-interacting electron is used to study the transmission properties of Anderson transition in one-dimensional (1-D) systems with disordered strengths of δ-function potentials. we examined the cases where the potential varies uniformly from O to W (barriers) or from -W to O (wells) for a given disorder W. Mainly, we observe unexpected abrupt transition at the points E + Fx = n 2 π 2 . However, these transitions are related to the small oscillations observed by Soukoulis et al. in the mixed case (wells and barriers). An interesting feature in the wells is that in the presence of a small field the states become more localized and the localization length decrease up to a minimum for a critical value F m . In the end, we have studied the effect of the disorder on the Anderson transition by the mean of the participation ratio and the localization length. (author). 27 refs, 6 figs
SUSY-hierarchy of one-dimensional reflectionless potentials
International Nuclear Information System (INIS)
Maydanyuk, Sergei P.
2005-01-01
A class of one-dimensional reflectionless potentials is studied. It is found that all possible types of the reflectionless potentials can be combined into one SUSY-hierarchy with a constant potential. An approach for determination of a general form of the reflectionless potential on the basis of construction of such a hierarchy by the recurrent method is proposed. A general integral form of interdependence between superpotentials with neighboring numbers of this hierarchy, opening a possibility to find new reflectionless potentials, is found and has a simple analytical view. It is supposed that any possible type of the reflectionless potential can be expressed through finite number of elementary functions (unlike some presentations of the reflectionless potentials, which are constructed on the basis of soliton solutions or are shape invariant in one or many steps with involving scaling of parameters, and are expressed through series). An analysis of absolute transparency existence for the potential which has the inverse power dependence on space coordinate (and here tunneling is possible), i.e., which has the form V (x) = ± α/ vertical bar x-x 0 vertical bar n (where α and x 0 are constants, n is natural number), is fulfilled. It is shown that such a potential can be reflectionless at n = 2 only. A SUSY-hierarchy of the inverse power reflectionless potentials is constructed. Isospectral expansions of this hierarchy are analyzed
One-Dimensional Electron Transport Layers for Perovskite Solar Cells
Directory of Open Access Journals (Sweden)
Ujwal K. Thakur
2017-04-01
Full Text Available The electron diffusion length (Ln is smaller than the hole diffusion length (Lp in many halide perovskite semiconductors meaning that the use of ordered one-dimensional (1D structures such as nanowires (NWs and nanotubes (NTs as electron transport layers (ETLs is a promising method of achieving high performance halide perovskite solar cells (HPSCs. ETLs consisting of oriented and aligned NWs and NTs offer the potential not merely for improved directional charge transport but also for the enhanced absorption of incoming light and thermodynamically efficient management of photogenerated carrier populations. The ordered architecture of NW/NT arrays affords superior infiltration of a deposited material making them ideal for use in HPSCs. Photoconversion efficiencies (PCEs as high as 18% have been demonstrated for HPSCs using 1D ETLs. Despite the advantages of 1D ETLs, there are still challenges that need to be overcome to achieve even higher PCEs, such as better methods to eliminate or passivate surface traps, improved understanding of the hetero-interface and optimization of the morphology (i.e., length, diameter, and spacing of NWs/NTs. This review introduces the general considerations of ETLs for HPSCs, deposition techniques used, and the current research and challenges in the field of 1D ETLs for perovskite solar cells.
Periodic solutions for one dimensional wave equation with bounded nonlinearity
Ji, Shuguan
2018-05-01
This paper is concerned with the periodic solutions for the one dimensional nonlinear wave equation with either constant or variable coefficients. The constant coefficient model corresponds to the classical wave equation, while the variable coefficient model arises from the forced vibrations of a nonhomogeneous string and the propagation of seismic waves in nonisotropic media. For finding the periodic solutions of variable coefficient wave equation, it is usually required that the coefficient u (x) satisfies ess infηu (x) > 0 with ηu (x) = 1/2 u″/u - 1/4 (u‧/u)2, which actually excludes the classical constant coefficient model. For the case ηu (x) = 0, it is indicated to remain an open problem by Barbu and Pavel (1997) [6]. In this work, for the periods having the form T = 2p-1/q (p , q are positive integers) and some types of boundary value conditions, we find some fundamental properties for the wave operator with either constant or variable coefficients. Based on these properties, we obtain the existence of periodic solutions when the nonlinearity is monotone and bounded. Such nonlinearity may cross multiple eigenvalues of the corresponding wave operator. In particular, we do not require the condition ess infηu (x) > 0.
Integral Transport Theory in One-dimensional Geometries
Energy Technology Data Exchange (ETDEWEB)
Carlvik, I
1966-06-15
A method called DIT (Discrete Integral Transport) has been developed for the numerical solution of the transport equation in one-dimensional systems. The characteristic features of the method are Gaussian integration over the coordinate as described by Kobayashi and Nishihara, and a particular scheme for the calculation of matrix elements in annular and spherical geometry that has been used for collision probabilities in earlier Flurig programmes. The paper gives a general theory including such things as anisotropic scattering and multi-pole fluxes, and it gives a brief description of the Flurig scheme. Annular geometry is treated in some detail, and corresponding formulae are given for spherical and plane geometry. There are many similarities between DIT and the method of collision probabilities. DIT is in many cases faster, because for a certain accuracy in the fluxes DIT often needs fewer space points than the method of collision probabilities needs regions. Several computer codes using DIT, both one-group and multigroup, have been written. It is anticipated that experience gained in calculations with these codes will be reported in another paper.
Quantum one dimensional spin systems. Disorder and impurities
International Nuclear Information System (INIS)
Brunel, V.
1999-01-01
This thesis presents three studies that are respectively the spin-1 disordered chain, the non magnetic impurities in the spin-1/2 chain and the reaction-diffusion process. The spin-1 chain of weak disorder is performed by the Abelian bosonization and the renormalization group. This allows to take into account the competition between the disorder and the interactions and predicts the effects of various spin-1 anisotropy chain phases under many different disorders. A second work uses the non magnetic impurities as local probes of the correlations in the spin-1/2 chain. When the impurities are connected to the chain boundary, the author predicts a temperature dependence of the relaxation rate (1/T) of the nuclear spin impurities, different from the case of these impurities connected to the whole chain. The last work deals with one dimensional reaction-diffusion problem. The Jordan-Wigner transformation allows to consider a fermionic field theory that critical exponents follow from the renormalization group. (A.L.B.)
One-dimensional long-range percolation: A numerical study
Gori, G.; Michelangeli, M.; Defenu, N.; Trombettoni, A.
2017-07-01
In this paper we study bond percolation on a one-dimensional chain with power-law bond probability C /rd +σ , where r is the distance length between distinct sites and d =1 . We introduce and test an order-N Monte Carlo algorithm and we determine as a function of σ the critical value Cc at which percolation occurs. The critical exponents in the range 0 values for Cc are compared with a known exact bound, while the critical exponent ν is compared with results from mean-field theory, from an expansion around the point σ =1 and from the ɛ -expansion used with the introduction of a suitably defined effective dimension deff relating the long-range model with a short-range one in dimension deff. We finally present a formulation of our algorithm for bond percolation on general graphs, with order N efficiency on a large class of graphs including short-range percolation and translationally invariant long-range models in any spatial dimension d with σ >0 .
Magnetic ordering in arrays of one-dimensional nanoparticle chains
International Nuclear Information System (INIS)
Serantes, D; Baldomir, D; Pereiro, M; Hernando, B; Prida, V M; Sanchez Llamazares, J L; Zhukov, A; Ilyn, M; Gonzalez, J
2009-01-01
The magnetic order in parallel-aligned one-dimensional (1D) chains of magnetic nanoparticles is studied using a Monte Carlo technique. If the easy anisotropy axes are collinear along the chains a macroscopic mean-field approach indicates antiferromagnetic (AFM) order even when no interparticle interactions are taken into account, which evidences that a mean-field treatment is inadequate for the study of the magnetic order in these highly anisotropic systems. From the direct microscopic analysis of the evolution of the magnetic moments, we observe spontaneous intra-chain ferromagnetic (FM)-type and inter-chain AFM-type ordering at low temperatures (although not completely regular) for the easy-axes collinear case, whereas a random distribution of the anisotropy axes leads to a sort of intra-chain AFM arrangement with no inter-chain regular order. When the magnetic anisotropy is neglected a perfectly regular intra-chain FM-like order is attained. Therefore it is shown that the magnetic anisotropy, and particularly the spatial distribution of the easy axes, is a key parameter governing the magnetic ordering type of 1D-nanoparticle chains.
Validation and Comparison of One-Dimensional Ground Motion Methodologies
International Nuclear Information System (INIS)
B. Darragh; W. Silva; N. Gregor
2006-01-01
Both point- and finite-source stochastic one-dimensional ground motion models, coupled to vertically propagating equivalent-linear shear-wave site response models are validated using an extensive set of strong motion data as part of the Yucca Mountain Project. The validation and comparison exercises are presented entirely in terms of 5% damped pseudo absolute response spectra. The study consists of a quantitative analyses involving modeling nineteen well-recorded earthquakes, M 5.6 to 7.4 at over 600 sites. The sites range in distance from about 1 to about 200 km in the western US (460 km for central-eastern US). In general, this validation demonstrates that the stochastic point- and finite-source models produce accurate predictions of strong ground motions over the range of 0 to 100 km and for magnitudes M 5.0 to 7.4. The stochastic finite-source model appears to be broadband, producing near zero bias from about 0.3 Hz (low frequency limit of the analyses) to the high frequency limit of the data (100 and 25 Hz for response and Fourier amplitude spectra, respectively)
Transmission properties of one-dimensional ternary plasma photonic crystals
International Nuclear Information System (INIS)
Shiveshwari, Laxmi; Awasthi, S. K.
2015-01-01
Omnidirectional photonic band gaps (PBGs) are found in one-dimensional ternary plasma photonic crystals (PPC) composed of single negative metamaterials. The band characteristics and transmission properties are investigated through the transfer matrix method. We show that the proposed structure can trap light in three-dimensional space due to the elimination of Brewster's angle transmission resonance allowing the existence of complete PBG. The results are discussed in terms of incident angle, layer thickness, dielectric constant of the dielectric material, and number of unit cells (N) for TE and TM polarizations. It is seen that PBG characteristics is apparent even in an N ≥ 2 system, which is weakly sensitive to the incident angle and completely insensitive to the polarization. Finite PPC could be used for multichannel transmission filter without introducing any defect in the geometry. We show that the locations of the multichannel transmission peaks are in the allowed band of the infinite structure. The structure can work as a single or multichannel filter by varying the number of unit cells. Binary PPC can also work as a polarization sensitive tunable filter
Energy Current Cumulants in One-Dimensional Systems in Equilibrium
Dhar, Abhishek; Saito, Keiji; Roy, Anjan
2018-06-01
A recent theory based on fluctuating hydrodynamics predicts that one-dimensional interacting systems with particle, momentum, and energy conservation exhibit anomalous transport that falls into two main universality classes. The classification is based on behavior of equilibrium dynamical correlations of the conserved quantities. One class is characterized by sound modes with Kardar-Parisi-Zhang scaling, while the second class has diffusive sound modes. The heat mode follows Lévy statistics, with different exponents for the two classes. Here we consider heat current fluctuations in two specific systems, which are expected to be in the above two universality classes, namely, a hard particle gas with Hamiltonian dynamics and a harmonic chain with momentum conserving stochastic dynamics. Numerical simulations show completely different system-size dependence of current cumulants in these two systems. We explain this numerical observation using a phenomenological model of Lévy walkers with inputs from fluctuating hydrodynamics. This consistently explains the system-size dependence of heat current fluctuations. For the latter system, we derive the cumulant-generating function from a more microscopic theory, which also gives the same system-size dependence of cumulants.
Electroconvection in one-dimensional liquid crystal cells
Huh, Jong-Hoon
2018-04-01
We investigate the alternating current (ac) -driven electroconvection (EC) in one-dimensional cells (1DCs) under the in-plane switching mode. In 1DCs, defect-free EC can be realized. In the presence and absence of external multiplicative noise, the features of traveling waves (TWs), such as their Hopf frequency fH and velocity, are examined in comparison with those of conventional two-dimensional cells (2DCs) accompanying defects of EC rolls. In particular, we show that the defects significantly contribute to the features of the TWs. Additionally, owing to the defect-free EC in the 1DCs, the effects of the ac and noise fields on the TW are clarified. The ac field linearly increases fH, independent of the ac frequency f . The noise increases fH monotonically, but fH does not vary below a characteristic noise intensity VN*. In addition, soliton-like waves and unfamiliar oscillation of EC vortices in 1DCs are observed, in contrast to the localized EC (called worms) and the oscillation of EC rolls in 2DCs.
17th century treatments of one-dimensional collisions
International Nuclear Information System (INIS)
Goehring, G.D.
1975-01-01
The issue of conservation in the collisions of bodies aroused considerable interest in the period of its initial investigation. Descartes asserted that the quantity of motion, the scalar product of the mass and speed, was the quantity that was conserved. Huygens, with the aid of his relativity of motion principle, recognized that it was not Descartes' scalar quantity that was conserved, but instead another scalar quality, the product of the mass and the square of the speed, whose total remained constant. Newton discovered that Descartes' quantity was conserved if considered a vector quantity, and thereby announced the principle of conservation of momentum. Leibniz recognized the conservation of Newton's momentum, and also the conservation of vis viva, the same scalar quantity that Huygens has earlier proposed. Although recognition of the immense importance of these principles had to await further developments in physics, the original formulation of these conservation principles, resulting from the analysis of one-dimensional collisions, was completed by the end of the 17th century. (U.K.)
Negative refraction angular characterization in one-dimensional photonic crystals.
Directory of Open Access Journals (Sweden)
Jesus Eduardo Lugo
2011-04-01
Full Text Available Photonic crystals are artificial structures that have periodic dielectric components with different refractive indices. Under certain conditions, they abnormally refract the light, a phenomenon called negative refraction. Here we experimentally characterize negative refraction in a one dimensional photonic crystal structure; near the low frequency edge of the fourth photonic bandgap. We compare the experimental results with current theory and a theory based on the group velocity developed here. We also analytically derived the negative refraction correctness condition that gives the angular region where negative refraction occurs.By using standard photonic techniques we experimentally determined the relationship between incidence and negative refraction angles and found the negative refraction range by applying the correctness condition. In order to compare both theories with experimental results an output refraction correction was utilized. The correction uses Snell's law and an effective refractive index based on two effective dielectric constants. We found good agreement between experiment and both theories in the negative refraction zone.Since both theories and the experimental observations agreed well in the negative refraction region, we can use both negative refraction theories plus the output correction to predict negative refraction angles. This can be very useful from a practical point of view for space filtering applications such as a photonic demultiplexer or for sensing applications.
Negative refraction angular characterization in one-dimensional photonic crystals.
Lugo, Jesus Eduardo; Doti, Rafael; Faubert, Jocelyn
2011-04-06
Photonic crystals are artificial structures that have periodic dielectric components with different refractive indices. Under certain conditions, they abnormally refract the light, a phenomenon called negative refraction. Here we experimentally characterize negative refraction in a one dimensional photonic crystal structure; near the low frequency edge of the fourth photonic bandgap. We compare the experimental results with current theory and a theory based on the group velocity developed here. We also analytically derived the negative refraction correctness condition that gives the angular region where negative refraction occurs. By using standard photonic techniques we experimentally determined the relationship between incidence and negative refraction angles and found the negative refraction range by applying the correctness condition. In order to compare both theories with experimental results an output refraction correction was utilized. The correction uses Snell's law and an effective refractive index based on two effective dielectric constants. We found good agreement between experiment and both theories in the negative refraction zone. Since both theories and the experimental observations agreed well in the negative refraction region, we can use both negative refraction theories plus the output correction to predict negative refraction angles. This can be very useful from a practical point of view for space filtering applications such as a photonic demultiplexer or for sensing applications.
One-dimensional quantum walk with a moving boundary
International Nuclear Information System (INIS)
Kwek, Leong Chuan; Setiawan
2011-01-01
Quantum walks are interesting models with potential applications to quantum algorithms and physical processes such as photosynthesis. In this paper, we study two models of one-dimensional quantum walks, namely, quantum walks with a moving absorbing wall and quantum walks with one stationary and one moving absorbing wall. For the former, we calculate numerically the survival probability, the rate of change of average position, and the rate of change of standard deviation of the particle's position in the long time limit for different wall velocities. Moreover, we also study the asymptotic behavior and the dependence of the survival probability on the initial particle's state. While for the latter, we compute the absorption probability of the right stationary wall for different velocities and initial positions of the left wall boundary. The results for these two models are compared with those obtained for the classical model. The difference between the results obtained for the quantum and classical models can be attributed to the difference in the probability distributions.
Numerical modelling of random walk one-dimensional diffusion
International Nuclear Information System (INIS)
Vamos, C.; Suciu, N.; Peculea, M.
1996-01-01
The evolution of a particle which moves on a discrete one-dimensional lattice, according to a random walk low, approximates better the diffusion process smaller the steps of the spatial lattice and time are. For a sufficiently large assembly of particles one can assume that their relative frequency at lattice knots approximates the distribution function of the diffusion process. This assumption has been tested by simulating on computer two analytical solutions of the diffusion equation: the Brownian motion and the steady state linear distribution. To evaluate quantitatively the similarity between the numerical and analytical solutions we have used a norm given by the absolute value of the difference of the two solutions. Also, a diffusion coefficient at any lattice knots and moment of time has been calculated, by using the numerical solution both from the diffusion equation and the particle flux given by Fick's low. The difference between diffusion coefficient of analytical solution and the spatial lattice mean coefficient of numerical solution constitutes another quantitative indication of the similarity of the two solutions. The results obtained show that the approximation depends first on the number of particles at each knot of the spatial lattice. In conclusion, the random walk is a microscopic process of the molecular dynamics type which permits simulations precision of the diffusion processes with given precision. The numerical method presented in this work may be useful both in the analysis of real experiments and for theoretical studies
Fractal geometry in an expanding, one-dimensional, Newtonian universe.
Miller, Bruce N; Rouet, Jean-Louis; Le Guirriec, Emmanuel
2007-09-01
Observations of galaxies over large distances reveal the possibility of a fractal distribution of their positions. The source of fractal behavior is the lack of a length scale in the two body gravitational interaction. However, even with new, larger, sample sizes from recent surveys, it is difficult to extract information concerning fractal properties with confidence. Similarly, three-dimensional N-body simulations with a billion particles only provide a thousand particles per dimension, far too small for accurate conclusions. With one-dimensional models these limitations can be overcome by carrying out simulations with on the order of a quarter of a million particles without compromising the computation of the gravitational force. Here the multifractal properties of two of these models that incorporate different features of the dynamical equations governing the evolution of a matter dominated universe are compared. For each model at least two scaling regions are identified. By employing criteria from dynamical systems theory it is shown that only one of them can be geometrically significant. The results share important similarities with galaxy observations, such as hierarchical clustering and apparent bifractal geometry. They also provide insights concerning possible constraints on length and time scales for fractal structure. They clearly demonstrate that fractal geometry evolves in the mu (position, velocity) space. The observed patterns are simply a shadow (projection) of higher-dimensional structure.
MARG1D: One dimensional outer region matching data code
International Nuclear Information System (INIS)
Tokuda, Shinji; Watanabe, Tomoko.
1995-08-01
A code MARG1D has been developed which computes outer region matching data of the one dimensional Newcomb equation. Matching data play an important role in the resistive (and non ideal) Magneto-hydrodynamic (MHD) stability analysis in a tokamak plasma. The MARG1D code computes matching data by using the boundary value method or by the eigenvalue method. Variational principles are derived for the problems to be solved and a finite element method is applied. Except for the case of marginal stability, the eigenvalue method is equivalent to the boundary value method. However, the eigenvalue method has the several advantages: it is a new method of ideal MHD stability analysis for which the marginally stable state can be identified, and it guarantees numerical stability in computing matching data close to marginal stability. We perform detailed numerical experiments for a model equation with analytical solutions and for the Newcomb equation in the m=1 mode theory. Numerical experiments show that MARG1D code gives the matching data with numerical stability and high accuracy. (author)
Transmission properties of one-dimensional ternary plasma photonic crystals
Energy Technology Data Exchange (ETDEWEB)
Shiveshwari, Laxmi [Department of Physics, K. B. Womens' s College, Hazaribagh 825 301 (India); Awasthi, S. K. [Department of Physics and Material Science and Engineering, Jaypee Institute of Information Technology, Noida 201 304 (India)
2015-09-15
Omnidirectional photonic band gaps (PBGs) are found in one-dimensional ternary plasma photonic crystals (PPC) composed of single negative metamaterials. The band characteristics and transmission properties are investigated through the transfer matrix method. We show that the proposed structure can trap light in three-dimensional space due to the elimination of Brewster's angle transmission resonance allowing the existence of complete PBG. The results are discussed in terms of incident angle, layer thickness, dielectric constant of the dielectric material, and number of unit cells (N) for TE and TM polarizations. It is seen that PBG characteristics is apparent even in an N ≥ 2 system, which is weakly sensitive to the incident angle and completely insensitive to the polarization. Finite PPC could be used for multichannel transmission filter without introducing any defect in the geometry. We show that the locations of the multichannel transmission peaks are in the allowed band of the infinite structure. The structure can work as a single or multichannel filter by varying the number of unit cells. Binary PPC can also work as a polarization sensitive tunable filter.
One-dimensional magnetophotonic crystals with magnetooptical double layers
International Nuclear Information System (INIS)
Berzhansky, V. N.; Shaposhnikov, A. N.; Prokopov, A. R.; Karavainikov, A. V.; Mikhailova, T. V.; Lukienko, I. N.; Kharchenko, Yu. N.; Golub, V. O.; Salyuk, O. Yu.; Belotelov, V. I.
2016-01-01
One-dimensional magnetophotonic microcavity crystals with nongarnet dielectric mirrors are created and investigated. The defect layers in the magnetophotonic crystals are represented by two bismuth-substituted yttrium iron garnet Bi:YIG layers with various bismuth contents in order to achieve a high magnetooptical response of the crystals. The parameters of the magnetophotonic crystal layers are optimized by numerical solution of the Maxwell equations by the transfer matrix method to achieve high values of Faraday rotation angle Θ F and magnetooptical Q factor. The calculated and experimental data agree well with each other. The maximum values of Θ F =–20.6°, Q = 8.1° at a gain t = 16 are obtained for magnetophotonic crystals with m = 7 pairs of layers in Bragg mirrors, and the parameters obtained for crystals with m = 4 and t = 8.5 are Θ F =–12.5° and Q = 14.3°. It is shown that, together with all-garnet and multimicrocavities magnetophotonic crystals, such structures have high magnetooptical characteristics.
One-dimensional magnetophotonic crystals with magnetooptical double layers
Energy Technology Data Exchange (ETDEWEB)
Berzhansky, V. N., E-mail: v.n.berzhansky@gmail.com; Shaposhnikov, A. N.; Prokopov, A. R.; Karavainikov, A. V.; Mikhailova, T. V. [V.I. Vernadsky Crimean Federal University (Russian Federation); Lukienko, I. N.; Kharchenko, Yu. N., E-mail: kharcenko@ilt.kharkov.ua [National Academy of Sciences of Ukraine, Verkin Institute for Low Temperature Physics and Engineering (Ukraine); Golub, V. O., E-mail: v-o-golub@yahoo.com; Salyuk, O. Yu. [National Academy of Sciences of Ukraine, Institute of Magnetism (Ukraine); Belotelov, V. I., E-mail: belotelov@physics.msu.ru [Russian Quantum Center (Russian Federation)
2016-11-15
One-dimensional magnetophotonic microcavity crystals with nongarnet dielectric mirrors are created and investigated. The defect layers in the magnetophotonic crystals are represented by two bismuth-substituted yttrium iron garnet Bi:YIG layers with various bismuth contents in order to achieve a high magnetooptical response of the crystals. The parameters of the magnetophotonic crystal layers are optimized by numerical solution of the Maxwell equations by the transfer matrix method to achieve high values of Faraday rotation angle Θ{sub F} and magnetooptical Q factor. The calculated and experimental data agree well with each other. The maximum values of Θ{sub F} =–20.6°, Q = 8.1° at a gain t = 16 are obtained for magnetophotonic crystals with m = 7 pairs of layers in Bragg mirrors, and the parameters obtained for crystals with m = 4 and t = 8.5 are Θ{sub F} =–12.5° and Q = 14.3°. It is shown that, together with all-garnet and multimicrocavities magnetophotonic crystals, such structures have high magnetooptical characteristics.
Approximate approaches to the one-dimensional finite potential well
International Nuclear Information System (INIS)
Singh, Shilpi; Pathak, Praveen; Singh, Vijay A
2011-01-01
The one-dimensional finite well is a textbook problem. We propose approximate approaches to obtain the energy levels of the well. The finite well is also encountered in semiconductor heterostructures where the carrier mass inside the well (m i ) is taken to be distinct from mass outside (m o ). A relevant parameter is the mass discontinuity ratio β = m i /m o . To correctly account for the mass discontinuity, we apply the BenDaniel-Duke boundary condition. We obtain approximate solutions for two cases: when the well is shallow and when the well is deep. We compare the approximate results with the exact results and find that higher-order approximations are quite robust. For the shallow case, the approximate solution can be expressed in terms of a dimensionless parameter σ l = 2m o V 0 L 2 /ℎ 2 (or σ = β 2 σ l for the deep case). We show that the lowest-order results are related by a duality transform. We also discuss how the energy upscales with L (E∼1/L γ ) and obtain the exponent γ. Exponent γ → 2 when the well is sufficiently deep and β → 1. The ratio of the masses dictates the physics. Our presentation is pedagogical and should be useful to students on a first course on elementary quantum mechanics or low-dimensional semiconductors.
One-Dimensional Electron Transport Layers for Perovskite Solar Cells
Thakur, Ujwal K.; Kisslinger, Ryan; Shankar, Karthik
2017-01-01
The electron diffusion length (Ln) is smaller than the hole diffusion length (Lp) in many halide perovskite semiconductors meaning that the use of ordered one-dimensional (1D) structures such as nanowires (NWs) and nanotubes (NTs) as electron transport layers (ETLs) is a promising method of achieving high performance halide perovskite solar cells (HPSCs). ETLs consisting of oriented and aligned NWs and NTs offer the potential not merely for improved directional charge transport but also for the enhanced absorption of incoming light and thermodynamically efficient management of photogenerated carrier populations. The ordered architecture of NW/NT arrays affords superior infiltration of a deposited material making them ideal for use in HPSCs. Photoconversion efficiencies (PCEs) as high as 18% have been demonstrated for HPSCs using 1D ETLs. Despite the advantages of 1D ETLs, there are still challenges that need to be overcome to achieve even higher PCEs, such as better methods to eliminate or passivate surface traps, improved understanding of the hetero-interface and optimization of the morphology (i.e., length, diameter, and spacing of NWs/NTs). This review introduces the general considerations of ETLs for HPSCs, deposition techniques used, and the current research and challenges in the field of 1D ETLs for perovskite solar cells. PMID:28468280
Stepwise Nanopore Evolution in One-Dimensional Nanostructures
Choi, Jang Wook
2010-04-14
We report that established simple lithium (Li) ion battery cycles can be used to produce nanopores inside various useful one-dimensional (1D) nanostructures such as zinc oxide, silicon, and silver nanowires. Moreover, porosities of these 1D nanomaterials can be controlled in a stepwise manner by the number of Li-battery cycles. Subsequent pore characterization at the end of each cycle allows us to obtain detailed snapshots of the distinct pore evolution properties in each material due to their different atomic diffusion rates and types of chemical bonds. Also, this stepwise characterization led us to the first observation of pore size increases during cycling, which can be interpreted as a similar phenomenon to Ostwald ripening in analogous nanoparticle cases. Finally, we take advantage of the unique combination of nanoporosity and 1D materials and demonstrate nanoporous silicon nanowires (poSiNWs) as excellent supercapacitor (SC) electrodes in high power operations compared to existing devices with activated carbon. © 2010 American Chemical Society.
Validation and Comparison of One-Dimensional Graound Motion Methodologies
Energy Technology Data Exchange (ETDEWEB)
B. Darragh; W. Silva; N. Gregor
2006-06-28
Both point- and finite-source stochastic one-dimensional ground motion models, coupled to vertically propagating equivalent-linear shear-wave site response models are validated using an extensive set of strong motion data as part of the Yucca Mountain Project. The validation and comparison exercises are presented entirely in terms of 5% damped pseudo absolute response spectra. The study consists of a quantitative analyses involving modeling nineteen well-recorded earthquakes, M 5.6 to 7.4 at over 600 sites. The sites range in distance from about 1 to about 200 km in the western US (460 km for central-eastern US). In general, this validation demonstrates that the stochastic point- and finite-source models produce accurate predictions of strong ground motions over the range of 0 to 100 km and for magnitudes M 5.0 to 7.4. The stochastic finite-source model appears to be broadband, producing near zero bias from about 0.3 Hz (low frequency limit of the analyses) to the high frequency limit of the data (100 and 25 Hz for response and Fourier amplitude spectra, respectively).
Multilingualism in Brussels: "I'd Rather Speak English"
O'Donnell, Paul; Toebosch, AnneMarie
2008-01-01
Language is both a divisive and a unifying force in Brussels. Historically predominantly Dutch-speaking, surrounded by the officially Dutch-speaking federal state of Flanders, located in a majority Dutch-speaking nation-state, and with the majority of its Belgian citizens Francophone, Brussels has officially been bilingual Dutch-French since 1962.…
TEDxBrussels broadcast live at CERN
Claudia Marcelloni, TEDxCERN organiser
2012-01-01
In order to give you a taste of a TEDx event, the team of TEDxCERN will show the live webcast of TEDxBrussels at the CERN main restaurant on November 12th from 9 a.m. to 10:30 a.m. and from 2 p.m to 7 p.m. Come and discover the event, in preparation for TEDxCERN, which will take place in May next year. This year the theme for TEDxBrussels is Bits, Atoms, Neurons, Genes (BANG BANG). The digital world and the real world are interconnected like never before. You can send off online for a personal genome readout and control physical objects with your mind. Computer thinking is driving medicine, music and play. With brain-computer interfaces now used in nuclear power stations and bio hackers doing lab biology in their garages, BANG BANG is a concept whose time has come. BANG BANG means the evolving mesh of ideas and practices, a rich mix of citizens, scientists and culture. Among the speakers are Steve Wozniak, Mitch Altman, Neelie Kroes, Xavier Damman, Zoe Laughli...
Kubrak, Elżbieta; Kubrak, Janusz; Rowiński, Paweł
2013-02-01
One-dimensional model for vertical profiles of longitudinal velocities in open-channel flows is verified against laboratory data obtained in an open channel with artificial plants. Those plants simulate Canadian waterweed which in nature usually forms dense stands that reach all the way to the water surface. The model works particularly well for densely spaced plants.
Interfacial Thermal Transport via One-Dimensional Atomic Junction Model
Directory of Open Access Journals (Sweden)
Guohuan Xiong
2018-03-01
Full Text Available In modern information technology, as integration density increases rapidly and the dimension of materials reduces to nanoscale, interfacial thermal transport (ITT has attracted widespread attention of scientists. This review introduces the latest theoretical development in ITT through one-dimensional (1D atomic junction model to address the thermal transport across an interface. With full consideration of the atomic structures in interfaces, people can apply the 1D atomic junction model to investigate many properties of ITT, such as interfacial (Kapitza resistance, nonlinear interface, interfacial rectification, and phonon interference, and so on. For the ballistic ITT, both the scattering boundary method (SBM and the non-equilibrium Green’s function (NEGF method can be applied, which are exact since atomic details of actual interfaces are considered. For interfacial coupling case, explicit analytical expression of transmission coefficient can be obtained and it is found that the thermal conductance maximizes at certain interfacial coupling (harmonic mean of the spring constants of the two leads and the transmission coefficient is not a monotonic decreasing function of phonon frequency. With nonlinear interaction—phonon–phonon interaction or electron–phonon interaction at interface, the NEGF method provides an efficient way to study the ITT. It is found that at weak linear interfacial coupling, the nonlinearity can improve the ITT, but it depresses the ITT in the case of strong-linear coupling. In addition, the nonlinear interfacial coupling can induce thermal rectification effect. For interfacial materials case which can be simulated by a two-junction atomic chain, phonons show interference effect, and an optimized thermal coupler can be obtained by tuning its spring constant and atomic mass.
Fractal spectra in generalized Fibonacci one-dimensional magnonic quasicrystals
Energy Technology Data Exchange (ETDEWEB)
Costa, C.H.O. [Departamento de Fisica Teorica e Experimental, Universidade Federal do Rio grande do Norte, 59072-970 Natal-RN (Brazil); Vasconcelos, M.S., E-mail: manoelvasconcelos@yahoo.com.br [Escola de Ciencias e Tecnologia, Universidade Federal do Rio grande do Norte, 59072-970 Natal-RN (Brazil); Barbosa, P.H.R.; Barbosa Filho, F.F. [Departamento de Fisica, Universidade Federal do Piaui, 64049-550 Teresina-Pi (Brazil)
2012-07-15
In this work we carry out a theoretical analysis of the spectra of magnons in quasiperiodic magnonic crystals arranged in accordance with generalized Fibonacci sequences in the exchange regime, by using a model based on a transfer-matrix method together random-phase approximation (RPA). The generalized Fibonacci sequences are characterized by an irrational parameter {sigma}(p,q), which rules the physical properties of the system. We discussed the magnonic fractal spectra for first three generalizations, i.e., silver, bronze and nickel mean. By varying the generation number, we have found that the fragmentation process of allowed bands makes possible the emergence of new allowed magnonic bulk bands in spectra regions that were magnonic band gaps before, such as which occurs in doped semiconductor devices. This interesting property arises in one-dimensional magnonic quasicrystals fabricated in accordance to quasiperiodic sequences, without the need to introduce some deferent atomic layer or defect in the system. We also make a qualitative and quantitative investigations on these magnonic spectra by analyzing the distribution and magnitude of allowed bulk bands in function of the generalized Fibonacci number F{sub n} and as well as how they scale as a function of the number of generations of the sequences, respectively. - Highlights: Black-Right-Pointing-Pointer Quasiperiodic magnonic crystals are arranged in accordance with the generalized Fibonacci sequence. Black-Right-Pointing-Pointer Heisenberg model in exchange regime is applied. Black-Right-Pointing-Pointer We use a theoretical model based on a transfer-matrix method together random-phase approximation. Black-Right-Pointing-Pointer Fractal spectra are characterized. Black-Right-Pointing-Pointer We analyze the distribution of allowed bulk bands in function of the generalized Fibonacci number.
Development of a particle method of characteristics (PMOC) for one-dimensional shock waves
Hwang, Y.-H.
2018-03-01
In the present study, a particle method of characteristics is put forward to simulate the evolution of one-dimensional shock waves in barotropic gaseous, closed-conduit, open-channel, and two-phase flows. All these flow phenomena can be described with the same set of governing equations. The proposed scheme is established based on the characteristic equations and formulated by assigning the computational particles to move along the characteristic curves. Both the right- and left-running characteristics are traced and represented by their associated computational particles. It inherits the computational merits from the conventional method of characteristics (MOC) and moving particle method, but without their individual deficiencies. In addition, special particles with dual states deduced to the enforcement of the Rankine-Hugoniot relation are deliberately imposed to emulate the shock structure. Numerical tests are carried out by solving some benchmark problems, and the computational results are compared with available analytical solutions. From the derivation procedure and obtained computational results, it is concluded that the proposed PMOC will be a useful tool to replicate one-dimensional shock waves.
One-dimensional spatially dependent solute transport in semi ...
African Journals Online (AJOL)
Initially porous domain is considered solute free and the input source condition is ... parameters for description of solute transport in porous media. ... flow assuming uniform initial concentration with first and third type boundary conditions. Aral.
One-Dimensional Hetero-Nanostructures for Rechargeable Batteries.
Mai, Liqiang; Sheng, Jinzhi; Xu, Lin; Tan, Shuangshuang; Meng, Jiashen
2018-04-17
Rechargeable batteries are regarded as one of the most practical electrochemical energy storage devices that are able to convert and store the electrical energy generated from renewable resources, and they function as the key power sources for electric vehicles and portable electronics. The ultimate goals for electrochemical energy storage devices are high power and energy density, long lifetime, and high safety. To achieve the above goals, researchers have tried to apply various morphologies of nanomaterials as the electrodes to enhance the electrochemical performance. Among them, one-dimensional (1D) materials show unique superiorities, such as cross-linked structures for external stress buffering and large draw ratios for internal stress dispersion. However, a homogeneous single-component electrode material can hardly have the characteristics of high electronic/ionic conductivity and high stability in the electrochemical environment simultaneously. Therefore, designing well-defined functional 1D hetero-nanostructures that combine the advantages and overcome the limitations of different electrochemically active materials is of great significance. This Account summarizes fabrication strategies for 1D hetero-nanostructures, including nucleation and growth, deposition, and melt-casting and electrospinning. Besides, the chemical principles for each strategy are discussed. The nucleation and growth strategy is suitable for growing and constructing 1D hetero-nanostructures of partial transition metal compounds, and the experimental conditions for this strategy are relatively accessible. Deposition is a reliable strategy to synthesize 1D hetero-nanostructures by decorating functional layers on 1D substrate materials, on the condition that the preobtained substrate materials must be stable in the following deposition process. The melt-casting strategy, in which 1D hetero-nanostructures are synthesizes via a melting and molding process, is also widely used. Additionally
Bioinspired one-dimensional materials for directional liquid transport.
Ju, Jie; Zheng, Yongmei; Jiang, Lei
2014-08-19
One-dimensional materials (1D) capable of transporting liquid droplets directionally, such as spider silks and cactus spines, have recently been gathering scientists' attention due to their potential applications in microfluidics, textile dyeing, filtration, and smog removal. This remarkable property comes from the arrangement of the micro- and nanostructures on these organisms' surfaces, which have inspired chemists to develop methods to prepare surfaces with similar directional liquid transport ability. In this Account, we report our recent progress in understanding how this directional transport works, as well our advances in the design and fabrication of bioinspired 1D materials capable of transporting liquid droplets directionally. To begin, we first discuss some basic theories on droplet directional movement. Then, we discuss the mechanism of directional transport of water droplets on natural spider silks. Upon contact with water droplets, the spider silk undergoes what is known as a wet-rebuilt, which forms periodic spindle-knots and joints. We found that the resulting gradient of Laplace pressure and surface free energy between the spindle-knots and joints account for the cooperative driving forces to transport water droplets directionally. Next, we discuss the directional transport of water droplets on desert cactus. The integration of multilevel structures of the cactus and the resulting integration of multiple functions together allow the cactus spine to transport water droplets continuously from tip to base. Based on our studies of natural spider silks and cactus spines, we have prepared a series of artificial spider silks (A-SSs) and artificial cactus spines (A-CSs) with various methods. By changing the surface roughness and chemical compositions of the artificial spider silks' spindle-knots, or by introducing stimulus-responsive molecules, such as thermal-responsive and photoresponsive molecules, onto the spindle-knots, we can reversibly manipulate
Numerical solution of multigroup diffuse equations of one-dimensional geometry
International Nuclear Information System (INIS)
Pavelesku, M.; Adam, S.
1975-01-01
The one-dimensional diffuse theory is used for reactor physics calculations of fast reactors. Computer program based on the one-dimensional diffuse theory is speedy and not memory consuming. The algorithm is described for the three-zone fast reactor criticality computation in one-dimensional diffusion approximation. This algorithm is realised on IBM 370/135 computer. (I.T.)
The physicist's companion to current fluctuations: one-dimensional bulk-driven lattice gases
Lazarescu, Alexandre
2015-12-01
One of the main features of statistical systems out of equilibrium is the currents they exhibit in their stationary state: microscopic currents of probability between configurations, which translate into macroscopic currents of mass, charge, etc. Understanding the general behaviour of these currents is an important step towards building a universal framework for non-equilibrium steady states akin to the Gibbs-Boltzmann distribution for equilibrium systems. In this review, we consider one-dimensional bulk-driven particle gases, and in particular the asymmetric simple exclusion process (ASEP) with open boundaries, which is one of the most popular models of one-dimensional transport. We focus, in particular, on the current of particles flowing through the system in its steady state, and on its fluctuations. We show how one can obtain the complete statistics of that current, through its large deviation function, by combining results from various methods: exact calculation of the cumulants of the current, using the integrability of the model; direct diagonalization of a biased process in the limits of very high or low current; hydrodynamic description of the model in the continuous limit using the macroscopic fluctuation theory. We give a pedagogical account of these techniques, starting with a quick introduction to the necessary mathematical tools, as well as a short overview of the existing works relating to the ASEP. We conclude by drawing the complete dynamical phase diagram of the current. We also remark on a few possible generalizations of these results.
One-dimensional nonlinear self-organized structures in dusty plasmas
International Nuclear Information System (INIS)
Tsytovich, V.N.
2000-01-01
Dusty plasmas, which are open systems, can form stable one-dimensional self-organized structures. Absorption of plasma by dust particles results in the plasma flux from the plasma regions where the dust is absent. It is found that, in a one-dimensional dust layer, this flux is completely determined by the number of dust particles per unit area of the layer surface. This number determines all of the other parameters of the steady-state dust structure; in particular, it determines the spatial distributions of the dust density, dust charge, electron and ion densities, and ion drift velocity. In these structures, a force and electrostatic balance is established that ensures the necessary conditions for confining the dust and plasma particles in the structure. The equilibrium structures exist only for subthermal ion flow velocities. This criterion determines the maximum possible number of dust particles per unit area in the steady-state structure. The structures have a universal thickness, and the dust density changes sharply at the edge of the structure. The structures with a size either less than or larger than the ion mean free path with respect to ion-neutral collisions, quasi-neutral and charged structures, and soliton- and anti-soliton-like structures are investigated. Laboratory experiments and observations in extraterrestrial plasma formation are discussed in relation to dust structures
IMPLODING IGNITION WAVES. I. ONE-DIMENSIONAL ANALYSIS
International Nuclear Information System (INIS)
Kushnir, Doron; Waxman, Eli; Livne, Eli
2012-01-01
We show that converging spherical and cylindrical shock waves may ignite a detonation wave in a combustible medium, provided the radius at which the shocks become strong exceeds a critical radius, R crit . An approximate analytic expression for R crit is derived for an ideal gas equation of state and a simple (power-law-Arrhenius) reaction law, and shown to reproduce the results of numerical solutions. For typical acetylene-air experiments we find R crit ∼ 100 μm (spherical) and R crit ∼ 1 mm (cylindrical). We suggest that the deflagration to detonation transition (DDT) observed in these systems may be due to converging shocks produced by the turbulent deflagration flow, which reaches sub- (but near) sonic velocities on scales >>R crit . Our suggested mechanism differs from that proposed by Zel'dovich et al., in which a fine-tuned spatial gradient in the chemical induction time is required to be maintained within the turbulent deflagration flow. Our analysis may be readily extended to more complicated equations of state and reaction laws. An order of magnitude estimate of R crit within a white dwarf at the pre-detonation conditions believed to lead to Type Ia supernova explosions is 0.1 km, suggesting that our proposed mechanism may be relevant for DDT initiation in these systems. The relevance of our proposed ignition mechanism to DDT initiation may be tested by both experiments and numerical simulations.
An Exact, Compressible One-Dimensional Riemann Solver for General, Convex Equations of State
Energy Technology Data Exchange (ETDEWEB)
Kamm, James Russell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-03-05
This note describes an algorithm with which to compute numerical solutions to the one- dimensional, Cartesian Riemann problem for compressible flow with general, convex equations of state. While high-level descriptions of this approach are to be found in the literature, this note contains most of the necessary details required to write software for this problem. This explanation corresponds to the approach used in the source code that evaluates solutions for the 1D, Cartesian Riemann problem with a JWL equation of state in the ExactPack package [16, 29]. Numerical examples are given with the proposed computational approach for a polytropic equation of state and for the JWL equation of state.
Thermally activated phase slips of one-dimensional Bose gases in shallow optical lattices
Kunimi, Masaya; Danshita, Ippei
2017-03-01
We study the decay of superflow via thermally activated phase slips in one-dimensional Bose gases in a shallow optical lattice. By using the Kramers formula, we numerically calculate the nucleation rate of a thermally activated phase slip for various values of the filling factor and flow velocity in the absence of a harmonic trapping potential. Within the local density approximation, we derive a formula connecting the phase-slip nucleation rate with the damping rate of a dipole oscillation of the Bose gas in the presence of a harmonic trap. We use the derived formula to directly compare our theory with the recent experiment done by the LENS group [L. Tanzi et al., Sci. Rep. 6, 25965 (2016), 10.1038/srep25965]. From the comparison, the observed damping of dipole oscillations in a weakly correlated and small velocity regime is attributed dominantly to thermally activated phase slips rather than quantum phase slips.
Sensitivity analysis explains quasi-one-dimensional current transport in two-dimensional materials
DEFF Research Database (Denmark)
Boll, Mads; Lotz, Mikkel Rønne; Hansen, Ole
2014-01-01
We demonstrate that the quasi-one-dimensional (1D) current transport, experimentally observed in graphene as measured by a collinear four-point probe in two electrode configurations A and B, can be interpreted using the sensitivity functions of the two electrode configurations (configurations...... A and B represents different pairs of electrodes chosen for current sources and potential measurements). The measured sheet resistance in a four-point probe measurement is averaged over an area determined by the sensitivity function. For a two-dimensional conductor, the sensitivity functions for electrode...... configurations A and B are different. But when the current is forced to flow through a percolation network, e.g., graphene with high density of extended defects, the two sensitivity functions become identical. This is equivalent to a four-point measurement on a line resistor, hence quasi-1D transport...
Stable one-dimensional periodic waves in Kerr-type saturable and quadratic nonlinear media
International Nuclear Information System (INIS)
Kartashov, Yaroslav V; Egorov, Alexey A; Vysloukh, Victor A; Torner, Lluis
2004-01-01
We review the latest progress and properties of the families of bright and dark one-dimensional periodic waves propagating in saturable Kerr-type and quadratic nonlinear media. We show how saturation of the nonlinear response results in the appearance of stability (instability) bands in a focusing (defocusing) medium, which is in sharp contrast with the properties of periodic waves in Kerr media. One of the key results discovered is the stabilization of multicolour periodic waves in quadratic media. In particular, dark-type waves are shown to be metastable, while bright-type waves are completely stable in a broad range of energy flows and material parameters. This yields the first known example of completely stable periodic wave patterns propagating in conservative uniform media supporting bright solitons. Such results open the way to the experimental observation of the corresponding self-sustained periodic wave patterns
One dimensional analysis of the end effect of an EM pump
International Nuclear Information System (INIS)
Kim, Hee Reyoung; Nam, Ho Yun; Kim, Yong Kyun; Choi, Byoung Hae; Lee, Yong Bum; Kim, Min Joon; Hong, Sang Hee
1998-01-01
Longitudinal end effect due to finite length of the pump are analyzed one dimensionally on an annular linear induction electromagnetic (EM) pump for the transportation of the electrically conducting liquid metal. The mathematical regions of the modeled pump is divided into three of the inlet, outlet and developing zone in large parts. Solving governing equations with the applied boundary condition, the distributions of magnetic field and developing force are investigated according to the coordinate of axial direction and compared with those of the pump with infinite length. At both ends of the pump, it is shown that the radial magnetic field is distorted and even the opposite force, which may cause local separation of the flow as the velocity of the pumping fluid is increased, is generated at the inlet region. In the present study, frequency control is suggested as one of the methods for the reduction of the end effect of the pump
Statistical properties of nonlinear one-dimensional wave fields
Directory of Open Access Journals (Sweden)
D. Chalikov
2005-01-01
Full Text Available A numerical model for long-term simulation of gravity surface waves is described. The model is designed as a component of a coupled Wave Boundary Layer/Sea Waves model, for investigation of small-scale dynamic and thermodynamic interactions between the ocean and atmosphere. Statistical properties of nonlinear wave fields are investigated on a basis of direct hydrodynamical modeling of 1-D potential periodic surface waves. The method is based on a nonstationary conformal surface-following coordinate transformation; this approach reduces the principal equations of potential waves to two simple evolutionary equations for the elevation and the velocity potential on the surface. The numerical scheme is based on a Fourier transform method. High accuracy was confirmed by validation of the nonstationary model against known solutions, and by comparison between the results obtained with different resolutions in the horizontal. The scheme allows reproduction of the propagation of steep Stokes waves for thousands of periods with very high accuracy. The method here developed is applied to simulation of the evolution of wave fields with large number of modes for many periods of dominant waves. The statistical characteristics of nonlinear wave fields for waves of different steepness were investigated: spectra, curtosis and skewness, dispersion relation, life time. The prime result is that wave field may be presented as a superposition of linear waves is valid only for small amplitudes. It is shown as well, that nonlinear wave fields are rather a superposition of Stokes waves not linear waves. Potential flow, free surface, conformal mapping, numerical modeling of waves, gravity waves, Stokes waves, breaking waves, freak waves, wind-wave interaction.
Statistical properties of nonlinear one-dimensional wave fields
Chalikov, D.
2005-06-01
A numerical model for long-term simulation of gravity surface waves is described. The model is designed as a component of a coupled Wave Boundary Layer/Sea Waves model, for investigation of small-scale dynamic and thermodynamic interactions between the ocean and atmosphere. Statistical properties of nonlinear wave fields are investigated on a basis of direct hydrodynamical modeling of 1-D potential periodic surface waves. The method is based on a nonstationary conformal surface-following coordinate transformation; this approach reduces the principal equations of potential waves to two simple evolutionary equations for the elevation and the velocity potential on the surface. The numerical scheme is based on a Fourier transform method. High accuracy was confirmed by validation of the nonstationary model against known solutions, and by comparison between the results obtained with different resolutions in the horizontal. The scheme allows reproduction of the propagation of steep Stokes waves for thousands of periods with very high accuracy. The method here developed is applied to simulation of the evolution of wave fields with large number of modes for many periods of dominant waves. The statistical characteristics of nonlinear wave fields for waves of different steepness were investigated: spectra, curtosis and skewness, dispersion relation, life time. The prime result is that wave field may be presented as a superposition of linear waves is valid only for small amplitudes. It is shown as well, that nonlinear wave fields are rather a superposition of Stokes waves not linear waves. Potential flow, free surface, conformal mapping, numerical modeling of waves, gravity waves, Stokes waves, breaking waves, freak waves, wind-wave interaction.
GITTAM program for numerical simulation of one-dimensional targets TIS. Part 2
International Nuclear Information System (INIS)
Arpishkin, Yu.P.; Basko, M.M.; Sokolovskij, M.V.
1989-01-01
A finite-difference algorithm for numeric solution of a system of one-dimensional hydrodynamics equation with heat conductivity, radiation diffusion and thermonuclear combustion is considered. The algorithm presented allows one to simulate one-dimensional thermonuclear targets for heavy-ion synthesis (HIS), irradiated with heavy ion beams. A brief description of a complex of GITTAM programs in which finite-difference algorithm for one-dimensional thermonuclear HIS target simulation is used, is given. 5 refs.; 3 figs
Energy Technology Data Exchange (ETDEWEB)
Halawa, E.; Saman, W.; Bruno, F. [Institute for Sustainable Systems and Technologies, School of Advanced Manufacturing and Mechanical Engineering, University of South Australia, Mawson Lakes SA 5095 (Australia)
2010-08-15
A simple yet accurate iterative method for solving a one-dimensional phase change problem with convection boundary is described. The one-dimensional model takes into account the variation in the wall temperature along the direction of the flow as well as the sensible heat during preheating/pre-cooling of the phase change material (PCM). The mathematical derivation of convective boundary conditions has been integrated into a phase change processor (PCP) algorithm that solves the liquid fraction and temperature of the nodes. The algorithm is based on the heat balance at each node as it undergoes heating or cooling which inevitably involves phase change. The paper presents the model and its experimental validation. (author)
Nonstandard Analysis and Shock Wave Jump Conditions in a One-Dimensional Compressible Gas
Energy Technology Data Exchange (ETDEWEB)
Roy S. Baty, F. Farassat, John A. Hargreaves
2007-05-25
Nonstandard analysis is a relatively new area of mathematics in which infinitesimal numbers can be defined and manipulated rigorously like real numbers. This report presents a fairly comprehensive tutorial on nonstandard analysis for physicists and engineers with many examples applicable to generalized functions. To demonstrate the power of the subject, the problem of shock wave jump conditions is studied for a one-dimensional compressible gas. It is assumed that the shock thickness occurs on an infinitesimal interval and the jump functions in the thermodynamic and fluid dynamic parameters occur smoothly across this interval. To use conservations laws, smooth pre-distributions of the Dirac delta measure are applied whose supports are contained within the shock thickness. Furthermore, smooth pre-distributions of the Heaviside function are applied which vary from zero to one across the shock wave. It is shown that if the equations of motion are expressed in nonconservative form then the relationships between the jump functions for the flow parameters may be found unambiguously. The analysis yields the classical Rankine-Hugoniot jump conditions for an inviscid shock wave. Moreover, non-monotonic entropy jump conditions are obtained for both inviscid and viscous flows. The report shows that products of generalized functions may be defined consistently using nonstandard analysis; however, physically meaningful products of generalized functions must be determined from the physics of the problem and not the mathematical form of the governing equations.
One-dimensional treatment of polyatomic crystals by the Laplace transform method
International Nuclear Information System (INIS)
Rosato, A.; Santana, P.H.A.
1976-01-01
The one dimensional periodic potential problem is solved using the Laplace transform method and a condensed expression for the relation E x k and effective mass for one electron in a polyatomic structure is determined. Applications related to the effect of the asymmetry of the potential upon the one dimensional band structure are discussed [pt
International Nuclear Information System (INIS)
Yang Xiao-Gang; Wang Qi; Forest, M. Gregory
2014-01-01
We systematically explore near equilibrium, flow-driven, and flow-activity coupled dynamics of polar active liquid crystals using a continuum model. Firstly, we re-derive the hydrodynamic model to ensure the thermodynamic laws are obeyed and elastic stresses and forces are consistently accounted. We then carry out a linear stability analysis about constant steady states to study near equilibrium dynamics around the steady states, revealing long-wave instability inherent in this model system and how active parameters in the model affect the instability. We then study model predictions for one-dimensional (1D) spatial—temporal structures of active liquid crystals in a channel subject to physical boundary conditions. We discuss the model prediction in two selected regimes, one is the viscous stress dominated regime, also known as the flow-driven regime, while the other is the full regime, in which all active mechanisms are included. In the viscous stress dominated regime, the polarity vector is driven by the prescribed flow field. Dynamics depend sensitively on the physical boundary condition and the type of the driven flow field. Bulk-dominated temporal periodic states and spatially homogeneous states are possible under weak anchoring conditions while spatially inhomogeneous states exist under strong anchoring conditions. In the full model, flow-orientation interaction generates a host of planar as well as out-of-plane spatial—temporal structures related to the spontaneous flows due to the molecular self-propelled motion. These results provide contact with the recent literature on active nematic suspensions. In addition, symmetry breaking patterns emerge as the additional active viscous stress due to the polarity vector is included in the force balance. The inertia effect is found to limit the long-time survival of spatial structures to those with small wave numbers, i.e., an asymptotic coarsening to long wave structures. A rich set of mechanisms for generating
The Brussels Declaration: the need for change in asthma management
DEFF Research Database (Denmark)
Holgate, S.; Bisgaard, H.; Bjermer, L.
2008-01-01
Asthma is a highly prevalent condition across Europe and numerous guidelines have been developed to optimise management. However, asthma can be neither cured nor prevented, treatment choices are limited and many patients have poorly controlled or uncontrolled asthma. The Brussels Declaration on A...... reviews the evidence supporting the need for change in asthma management and summarises the ten key points contained in the Brussels Declaration Udgivelsesdato: 2008/12......Asthma is a highly prevalent condition across Europe and numerous guidelines have been developed to optimise management. However, asthma can be neither cured nor prevented, treatment choices are limited and many patients have poorly controlled or uncontrolled asthma. The Brussels Declaration...... on Asthma, sponsored by The Asthma, Allergy and Inflammation Research Charity, was developed to call attention to the shortfalls in asthma management and to urge European policy makers to recognise that asthma is a public health problem that should be a political priority. The Declaration urges recognition...
One-dimensional low spatial frequency LIPSS with rotating orientation on fused silica
Energy Technology Data Exchange (ETDEWEB)
Schwarz, Simon, E-mail: simon.schwarz@h-ab.de; Rung, Stefan; Hellmann, Ralf
2017-07-31
Highlights: • Generation of one-dimensional low spatial frequency LIPSS on transparent material. • Varying the angle of incidence results in a rotation of the one-dimensional LSFL. • Rotation angle of LSFL decreases with increasing the applied fluence. • Orientation of the LSFL is mirror-inverted when reversing the scanning direction. - Abstract: We report on the generation of one-dimensional low spatial frequency LIPSS on transparent material. The influence of the applied laser fluence and angle of incidence on the periodicity, orientation and quality of the one-dimensional low spatial frequency LIPSS is investigated, facilitating the generation of highly uniform LIPSS alongside a line. Most strikingly, however, we observe a previously unreported effect of a pronounced rotation of the one-dimensional low spatial frequency LIPSS for varying angle of incidence upon inclined laser irradiation.
International arbitration and its exclusion from the Brussels regime
Directory of Open Access Journals (Sweden)
Hamed Alavi
2016-06-01
Full Text Available The Brussels regime, which regulates the matters of transnational litigation excludes arbitration from its scope. Upon formation of the Brussels regime the existing instruments concerning arbitration - the United Nations Convention on Recognition and Enforcement of Foreign Arbitral Awards and the 1961 European Convention on International Commercial Arbitration - were believed to be sufficient. The original Brussels Convention 1968 on recognition and enforcement of judgments delivered in the courts of the EU Member States expressly provided for the exclusion of arbitration. The following Brussels I Regulation followed the trend and reinforced the exclusion of arbitration from their material scopes. The rationale for doing so was primarily the prevention of parallel proceedings and irreconcilable judgments. The arbitration exclusion from the Brussels regime has caused a fair amount of confusion, especially regarding the extent and limits of the exclusion. That is, whether the arbitration agreement, the arbitral award and its consequences are covered by the exclusion or they may fall under the scope of the Brussels regulation if they constitute only an incidental question to the main cause of action? The confusion was illustrated in the ECJ judgment West Tankers, which generated negative feedback from the arbitration community and indicated the need for reform. The recently adopted Recast Regulation took it upon itself to clarify the relationship between arbitration and the EU regime of transnational litigation. The exclusion is reinforced ye again and its boundaries are specified in the Preamble. However, whether or not the concerns about the extent and objectives of arbitration exclusion have been at present eliminated, remains to be seen.
Sanctity of dispute resolution clauses : strategic coherence of the Brussels system / Ilona Nurmela
Nurmela, Ilona, 1976-
2005-01-01
1968. aasta Brüsseli konventsioon kohtualluvuse ja kohtuotsuste täitmise kohta tsiviil- ja kaubandusasjades (1968 Brussels Convention on jurisdiction and the enforcement of judgements in civil and commercial matters ; Brussels I Convention)
International Nuclear Information System (INIS)
Park, Chansaem; Zahid, Umer; Lee, Sangho; Han, Chonghun
2015-01-01
Torrefaction reactor model is required for the development of reactor and process design for biomass torrefaction. In this study, a one-dimensional reactor model is developed based on the kinetic model describing volatiles components and solid evolution and the existing thermochemical model considering the heat and mass balance. The developed reactor model used the temperature and flow rate of the recycled gas as the practical manipulated variables instead of the torrefaction temperature. The temperature profiles of the gas and solid phase were generated, depending on the practical thermal conditions, using developed model. Moreover, the effect of each selected operating variables on the parameters of the torrefaction process and the effect of whole operating variables with particular energy yield were analyzed. Through the results of sensitivity analysis, it is shown that the residence time insignificantly influenced the energy yield when the flow rate of recycled gas is low. Moreover, higher temperature of recycled gas with low flow rate and residence time produces the attractive properties, including HHV and grindability, of torrefied biomass when the energy yield is specified. - Highlights: • A one-dimensional reactor model for biomass torrefaction is developed considering the heat and mass balance. • The developed reactor model uses the temperature and flow rate of the recycled gas as the practical manipulated variables. • The effect of operating variables on the parameters of the torrefaction process is analyzed. • The results of sensitivity analysis represent notable discussions which were not done by the previous researches
Analytical one-dimensional frequency response and stability model for PWR nuclear power plants
International Nuclear Information System (INIS)
Hoeld, A.
1975-01-01
A dynamic model for PWR nuclear power plants is presented. The plant is assumed to consist of one-dimensional single-channel core, a counterflow once-through steam generator (represented by two nodes according to the nonboiling and boiling region) and the necessary connection coolant lines. The model describes analytically the frequency response behaviour of important parameters of such a plant with respect to perturbations in reactivity, subcooling or mass flow (both at the entrances to the reactor core and/or the secondary steam generator side), the perturbations in steam load or system pressure (on the secondary side of the steam generator). From corresponding 'open' loop considerations it can then be concluded - by applying the Nyquist criterion - upon the degree of the stability behaviour of the underlying system. Based on this theoretical model, a computer code named ADYPMO has been established. From the knowledge of the frequency response behaviour of such a system, the corresponding transient behaviour with respect to a stepwise or any other perturbation signal can also be calculated by applying an appropriate retransformation method, e.g. by using digital code FRETI. To demonstrate this procedure, a transient experimental curve measured during the pre-operational test period at the PWR nuclear power plant KKS Stade was recalculated using the combination ADYPMO-FRETI. Good agreement between theoretical calculations and experimental results give an insight into the validity and efficiency of the underlying theoretical model and the applied retransformation method. (Auth.)
Unconventional Andreev reflection on the quasi-one-dimensional superconductor Nb2PdxSe5
Directory of Open Access Journals (Sweden)
Yeping Jiang
2016-04-01
Full Text Available We have carried out Andreev reflection measurements on point contact junctions between normal metal and single crystals of the quasi-one-dimensional (Q1D superconductor Nb2PdxSe5 (Tc ∼ 5.5 K. The contacts of the junctions were made on either self-cleaved surfaces or crystal edges so that the current flow directions in the two types of junctions are different, and the measurements provide a directional probe for the order parameter of the superconductor. Junctions made in both configurations show typical resistances of ∼20-30 Ohms, and a clear double-gap Andreev reflection feature was consistently observed at low temperatures. Quantitative analysis of the conductance spectrum based on a modified Blonder-Tinkham-Klapwijk (BTK model suggests that the amplitudes of two order parameters may have angular dependence in the a-c plane. Moreover, the gap to transition temperature ratio (Δ/TC for the larger gap is substantially higher than the BCS ratio expected for phonon-mediated s-wave superconductors. We argue that the anisotropic superconducting order parameter and the extremely large gap to transition temperature ratio may be associated with an unconventional pairing mechanism in the inorganic Q1D superconductor.
Colloid-colloid hydrodynamic interaction around a bend in a quasi-one-dimensional channel.
Liepold, Christopher; Zarcone, Ryan; Heumann, Tibor; Rice, Stuart A; Lin, Binhua
2017-07-01
We report a study of how a bend in a quasi-one-dimensional (q1D) channel containing a colloid suspension at equilibrium that exhibits single-file particle motion affects the hydrodynamic coupling between colloid particles. We observe both structural and dynamical responses as the bend angle becomes more acute. The structural response is an increasing depletion of particles in the vicinity of the bend and an increase in the nearest-neighbor separation in the pair correlation function for particles on opposite sides of the bend. The dynamical response monitored by the change in the self-diffusion [D_{11}(x)] and coupling [D_{12}(x)] terms of the pair diffusion tensor reveals that the pair separation dependence of D_{12} mimics that of the pair correlation function just as in a straight q1D channel. We show that the observed behavior is a consequence of the boundary conditions imposed on the q1D channel: both the single-file motion and the hydrodynamic flow must follow the channel around the bend.
Menon, Shakti N; Hall, Cameron L; McCue, Scott W; McElwain, D L Sean
2017-10-01
The mechanical behaviour of solid biological tissues has long been described using models based on classical continuum mechanics. However, the classical continuum theories of elasticity and viscoelasticity cannot easily capture the continual remodelling and associated structural changes in biological tissues. Furthermore, models drawn from plasticity theory are difficult to apply and interpret in this context, where there is no equivalent of a yield stress or flow rule. In this work, we describe a novel one-dimensional mathematical model of tissue remodelling based on the multiplicative decomposition of the deformation gradient. We express the mechanical effects of remodelling as an evolution equation for the effective strain, a measure of the difference between the current state and a hypothetical mechanically relaxed state of the tissue. This morphoelastic model combines the simplicity and interpretability of classical viscoelastic models with the versatility of plasticity theory. A novel feature of our model is that while most models describe growth as a continuous quantity, here we begin with discrete cells and develop a continuum representation of lattice remodelling based on an appropriate limit of the behaviour of discrete cells. To demonstrate the utility of our approach, we use this framework to capture qualitative aspects of the continual remodelling observed in fibroblast-populated collagen lattices, in particular its contraction and its subsequent sudden re-expansion when remodelling is interrupted.
One dimensional motion of interstitial clusters and void growth in Ni and Ni alloys
Yoshiie, T.; Ishizaki, T.; Xu, Q.; Satoh, Y.; Kiritani, M.
2002-12-01
One dimensional (1-D) motion of interstitial clusters is important for the microstructural evolution in metals. In this paper, the effect of 2 at.% alloying with elements Si (volume size factor to Ni: -5.81%), Cu (7.18%), Ge (14.76%) and Sn (74.08%) in Ni on 1-D motion of interstitial clusters and void growth was studied. In neutron irradiated pure Ni, Ni-Cu and Ni-Ge, well developed dislocation networks and voids in the matrix, and no defects near grain boundaries were observed at 573 K to a dose of 0.4 dpa by transmission electron microscopy. No voids were formed and only interstitial type dislocation loops were observed near grain boundaries in Ni-Si and Ni-Sn. The reaction kinetics analysis which included the point defect flow into planar sink revealed the existence of 1-D motion of interstitial clusters in Ni, Ni-Cu and Ni-Ge, and lack of such motion in Ni-Si and Ni-Sn. In Ni-Sn and Ni-Si, the alloying elements will trap interstitial clusters and thereby reduce the cluster mobility, which lead to the reduction in void growth.
Energy Technology Data Exchange (ETDEWEB)
Mainka, J. [Laboratorio Nacional de Computacao Cientifica (LNCC), CMC 6097, Av. Getulio Vargas 333, 25651-075 Petropolis, RJ, Caixa Postal 95113 (Brazil); Maranzana, G.; Thomas, A.; Dillet, J.; Didierjean, S.; Lottin, O. [Laboratoire d' Energetique et de Mecanique Theorique et Appliquee (LEMTA), Universite de Lorraine, 2, avenue de la Foret de Haye, 54504 Vandoeuvre-les-Nancy (France); LEMTA, CNRS, 2, avenue de la Foret de Haye, 54504 Vandoeuvre-les-Nancy (France)
2012-10-15
A one-dimensional (1D) model of oxygen transport in the diffusion media of proton exchange membrane fuel cells (PEMFC) is presented, which considers convection perpendicular to the electrode in addition to diffusion. The resulting analytical expression of the convecto-diffusive impedance is obtained using a convection-diffusion equation instead of a diffusion equation in the case of classical Warburg impedance. The main hypothesis of the model is that the convective flux is generated by the evacuation of water produced at the cathode which flows through the porous media in vapor phase. This allows the expression of the convective flux velocity as a function of the current density and of the water transport coefficient {alpha} (the fraction of water being evacuated at the cathode outlet). The resulting 1D oxygen transport impedance neglects processes occurring in the direction parallel to the electrode that could have a significant impact on the cell impedance, like gas consumption or concentration oscillations induced by the measuring signal. However, it enables us to estimate the impact of convection perpendicular to the electrode on PEMFC impedance spectra and to determine in which conditions the approximation of a purely diffusive oxygen transport is valid. Experimental observations confirm the numerical results. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Colloid-Colloid Hydrodynamic Interaction Around a Bend in a Quasi-One-Dimensional Channel
Liepold, Christopher; Zarcone, Ryan; Heumann, Tibor; Lin, Binhua; Rice, Stuart
We report a study of the correlation between a pair of particles in a colloid suspension in a bent quasi-one-dimensional (q1d) channel as a function of bend angle. As the bend angle becomes more acute, we observe an increasing depletion of particles in the vicinity of the bend and an increase in the nearest-neighbor separation in the pair correlation function for particles on opposite sides of the bend. Further, we observe that the peak value of D12, the coupling term in the pair diffusion tensor that characterizes the effect of the motion of particle 1 on particle 2, coincides with the first peak in the pair correlation function, and that the pair separation dependence of D12 mimics that of the pair correlation function. We show that the observed behavior is a consequence of the geometric constraints imposed by the single-file requirement that the particle centers lie on the centerline of the channel and the requirement that the hydrodynamic flow must follow the channel around the bend. We find that the correlation between a pair of particles in a colloidal suspension in a bent q1D channel has the same functional dependence on the pair correlation function as in a straight q1D channel when measured in a coordinate system that follows the centerline of the bent channel. NSF MRSEC (DMR-1420709), Dreyfus Foundation (SI-14-014).
Theoretical models of non-Maxwellian equilibria for one-dimensional collisionless plasmas
Allanson, O.; Neukirch, T.; Wilson, F.; Troscheit, S.
2016-12-01
It is ideal to use exact equilibrium solutions of the steady state Vlasov-Maxwell system to intialise collsionless simulations. However, exact equilibrium distribution functions (DFs) for a given macroscopic configuration are typically unknown, and it is common to resort to using `flow-shifted' Maxwellian DFs in their stead. These DFs may be consistent with a macrosopic system with the target number density and current density, but could well have inaccurate higher order moments. We present recent theoretical work on the `inverse problem in Vlasov-Maxwell equilibria', namely calculating an exact solution of the Vlasov equation for a specific given magnetic field. In particular, we focus on one-dimensional geometries in Cartesian (current sheets) coordinates.1. From 1D fields to Vlasov equilibria: Theory and application of Hermite Polynomials: (O. Allanson, T. Neukirch, S. Troscheit and F. Wilson, Journal of Plasma Physics, 82, 905820306 (2016) [28 pages, Open Access] )2. An exact collisionless equilibrium for the Force-Free Harris Sheet with low plasma beta: (O. Allanson, T. Neukirch, F. Wilson and S. Troscheit, Physics of Plasmas, 22, 102116 (2015) [11 pages, Open Access])3. Neutral and non-neutral collisionless plasma equilibria for twisted flux tubes: The Gold-Hoyle model in a background field (O. Allanson, F. Wilson and T. Neukirch, (2016)) (accepted, Physics of Plasmas)
Comment on "Calculations for the one-dimensional soft Coulomb problem and the hard Coulomb limit".
Carrillo-Bernal, M A; Núñez-Yépez, H N; Salas-Brito, A L; Solis, Didier A
2015-02-01
In the referred paper, the authors use a numerical method for solving ordinary differential equations and a softened Coulomb potential -1/√[x(2)+β(2)] to study the one-dimensional Coulomb problem by approaching the parameter β to zero. We note that even though their numerical findings in the soft potential scenario are correct, their conclusions do not extend to the one-dimensional Coulomb problem (β=0). Their claims regarding the possible existence of an even ground state with energy -∞ with a Dirac-δ eigenfunction and of well-defined parity eigenfunctions in the one-dimensional hydrogen atom are questioned.
The 1968 Brussels convention and liability for nuclear damage
International Nuclear Information System (INIS)
Sands, Ph.; Galizzi, P.
2000-01-01
The legal regime governing civil liability for transboundary nuclear damage is expressly addressed by two instruments adopted in the 1960's: the 1960 Paris Convention on Third Party Liability in the Field of Nuclear Energy and the 1963 Vienna Convention on Civil Liability for Nuclear Damage These establish particular rules governing the jurisdiction of national courts and other matters, including channelling of liability to nuclear operators, definitions of nuclear damage, the applicable standard of care, and limitations on liability. Another instrument - the 1968 Brussels Convention on Jurisdiction and the Enforcement of Judgements in Civil and Commercial Matters (hereinafter referred to as 'the Brussels Convention') - which is not often mentioned in the nuclear context will nevertheless also be applicable in certain cases. It is premised upon different rules as to forum and applicable law, and presents an alternate vision of the appropriate arrangements governing civil liability for nuclear damage. In this paper we consider the relative merits and demerits of the Brussels Convention from the perspective of non-nuclear states which might suffer damage as a result of a nuclear accident in another state. We conclude that in the context of the applicability of the Brussels Convention the dedicated nuclear liability conventions present few attractions to non-nuclear states in Europe. We focus in particular on issues relating to jurisdiction and applicable law, and do so by reference to a hypothetical accident in the United Kingdom which has transboundary effects in Ireland. (author)
Factors affecting seed set in brussels sprouts, radish and cyclamen
Murabaa, El A.I.M.
1957-01-01
If brussels sprouts were, self-fertilized, seed setting increased with age of the flower buds until a maximum some days before buds opened. After that, set decreased rapidly. Warmth shortened the period over which selfing was possible and shortened the period to the opening of the flowers. Most
Bud initiation and optimum harvest date in Brussels sprouts
Everaarts, A.P.; Sukkel, W.
1999-01-01
For six cultivars of Brussels sprouts (Brassica oleracea var. gemmifera) with a decreasing degree of earliness, or optimum harvest date, the time of bud initiation was determined during two seasons. Fifty percent of the plants had initiated buds between 60 and 75 days after planting (DAP) in 1994
Prediction of inorganic superconductors with quasi-one-dimensional crystal structure
International Nuclear Information System (INIS)
Volkova, L M; Marinin, D V
2013-01-01
Models of superconductors having a quasi-one-dimensional crystal structure based on the convoluted into a tube Ginzburg sandwich, which comprises a layered dielectric–metal–dielectric structure, have been suggested. The critical crystal chemistry parameters of the Ginzburg sandwich determining the possibility of the emergence of superconductivity and the T c value in layered high-T c cuprates, which could have the same functions in quasi-one-dimensional fragments (sandwich-type tubes), have been examined. The crystal structures of known low-temperature superconductors, in which one can mark out similar quasi-one-dimensional fragments, have been analyzed. Five compounds with quasi-one-dimensional structures, which can be considered as potential parents of new superconductor families, possibly with high transition temperatures, have been suggested. The methods of doping and modification of these compounds are provided. (paper)
Critical exponents in the transition to chaos in one-dimensional ...
Indian Academy of Sciences (India)
The transition from periodic to chaotic behavior in one-dimensional discrete dynamical systems .... consider the reverse sequence from µb to µ∞, a ... at which the change from one scaling region to another takes place, with the higher order. 12.
Neutron and photon (light) scattering on solitons in the quasi-one-dimensional magnetics
Abdulloev, K O
1999-01-01
The general expression we have found earlier for the dynamics form-factor is used to analyse experiments on the neutron and photon (light) scattering by the gas of solitons in quasi-one-dimensional magnetics (Authors)
Explicit solutions of one-dimensional, first-order, stationary mean-field games with congestion
Gomes, Diogo A.; Nurbekyan, Levon; Prazeres, Mariana
2017-01-01
Here, we consider one-dimensional first-order stationary mean-field games with congestion. These games arise when crowds face difficulty moving in high-density regions. We look at both monotone decreasing and increasing interactions and construct
International Nuclear Information System (INIS)
Shvets', D.V.
2009-01-01
By the first approximation analyzing stability conditions of unperturbed solution of one-dimensional dynamic model with magnetic interaction between two superconducting rings obtained. The stability region in the frozen magnetic flux parameters space was constructed.
Wave Transformation Over Reefs: Evaluation of One-Dimensional Numerical Models
National Research Council Canada - National Science Library
Demirbilek, Zeki; Nwogu, Okey G; Ward, Donald L; Sanchez, Alejandro
2009-01-01
Three one-dimensional (1D) numerical wave models are evaluated for wave transformation over reefs and estimates of wave setup, runup, and ponding levels in an island setting where the beach is fronted by fringing reef and lagoons...
On symmetry reduction and exact solutions of the linear one-dimensional Schroedinger equation
International Nuclear Information System (INIS)
Barannik, L.L.
1996-01-01
Symmetry reduction of the Schroedinger equation with potential is carried out on subalgebras of the Lie algebra which is the direct sum of the special Galilei algebra and one-dimensional algebra. Some new exact solutions are obtained
Ultra-refractive and extended-range one-dimensional photonic crystal superprisms
Ting, D. Z. Y.
2003-01-01
We describe theoretical analysis and design of one-dimensional photonic crystal prisms. We found that inside the photonic crystal, for frequencies near the band edges, light propagation direction is extremely sensitive to the variations in wavelength and incident angle.
One-Dimensional Tunable Photonic-Crystal IR Filter, Phase I
National Aeronautics and Space Administration — MetroLaser proposes to design and develop an innovative narrowband tunable IR filter based on the properties of a one-dimensional photonic crystal structure with a...
One-Dimensional Tunable Photonic-Crystal IR Filter, Phase II
National Aeronautics and Space Administration — MetroLaser proposes to design and develop an innovative narrowband tunable IR filter based on the properties of a one-dimensional photonic crystal structure with a...
A Large Class of Exact Solutions to the One-Dimensional Schrodinger Equation
Karaoglu, Bekir
2007-01-01
A remarkable property of a large class of functions is exploited to generate exact solutions to the one-dimensional Schrodinger equation. The method is simple and easy to implement. (Contains 1 table and 1 figure.)
One dimensional Si/Sn - based nanowires and nanotubes for lithium-ion energy storage materials
Choi, Nam-Soon; Yao, Yan; Cui, Yi; Cho, Jaephil
2011-01-01
There has been tremendous interest in using nanomaterials for advanced Li-ion battery electrodes, particularly to increase the energy density by using high specific capacity materials. Recently, it was demonstrated that one dimensional (1D) Si
One- and Two- Magnon Excitations in a One-Dimensional Antiferromagnet in a Magnetic Field
DEFF Research Database (Denmark)
Heilmann, I.U.; Kjems, Jørgen; Endoh, Y.
1981-01-01
We have carried out a comprehensive experimental and theoretical study of the inelastic scattering in the one-dimensional near-Heisenberg antiferromagnet (CD3)4NMnCl3 (TMMC) at low temperatures, 0.3...
An Angular Leakage Correction for Modeling a Hemisphere, Using One-Dimensional Spherical Coordinates
International Nuclear Information System (INIS)
Schwinkendorf, K.N.; Eberle, C.S.
2003-01-01
A radially dependent, angular leakage correction was applied to a one-dimensional, multigroup neutron diffusion theory computer code to accurately model hemispherical geometry. This method allows the analyst to model hemispherical geometry, important in nuclear criticality safety analyses, with one-dimensional computer codes, which execute very quickly. Rapid turnaround times for scoping studies thus may be realized. This method uses an approach analogous to an axial leakage correction in a one-dimensional cylinder calculation. The two-dimensional Laplace operator was preserved in spherical geometry using a leakage correction proportional to 1/r 2 , which was folded into the one-dimensional spherical calculation on a mesh-by-mesh basis. Hemispherical geometry is of interest to criticality safety because of its similarity to piles of spilled fissile material and accumulations of fissile material in process containers. A hemisphere also provides a more realistic calculational model for spilled fissile material than does a sphere
Spin-zero sound in one- and quasi-one-dimensional 3He
International Nuclear Information System (INIS)
Hernandez, E.S.
2002-01-01
The zero sound spectrum of fluid 3 He confined to a cylindrical shell is examined for configurations characterizing strictly one-dimensional and quasi-one-dimensional regimes. It is shown that the restricted dimensionality makes room to the possibility of spin-zero sound for the attractive particle-hole interaction of liquid helium. This fact can be related to the suppression of phase instabilities and thermodynamic phase transitions in one dimension
One-Dimensional Creativity: A Marcusean Critique of Work and Play in the Video Game Industry
Directory of Open Access Journals (Sweden)
Ergin Bulut
2018-06-01
Full Text Available Creativity is at the heart of the video game industry. Industry professionals, especially those producing blockbuster games for the triple-A market, speak fondly of their creative labour practices, flexible work schedules, and playful workplaces. However, a cursory glance at major triple-A franchises reveals the persistence of sequel game production and a homogeneity in genres and narratives. Herbert Marcuse’s critique of one-dimensionality may help to account for this discrepancy between the workers’ creative aspirations and the dominant homogeneity in game aesthetics. What I call ‘one-dimensional creativity’ defines the essence of triple-A game production. In the name of extolling the pleasure principle at work, one-dimensional creativity eliminates the reality principle, but only superficially. One-dimensional creativity gives game developers the opportunity to express themselves, but it is still framed by a particular technological rationality that prioritises profits over experimental art. One-dimensional creativity negates potential forms of creativity that might emerge outside the industry’s hit-driven logics. Conceptually, ‘one-dimensional creativity’ renders visible the instrumentalisation of play and the conservative design principles of triple-A game production – a production that is heavily structured with technological performance, better graphics, interactivity, and speed. Multi-dimensional video game production and aesthetics, the opposite of one-dimensional creativity, is emerging from the DIY game production scene, which is more invested in game narratives and aesthetics outside the dominant logics of one-dimensionality in triple-A game production.
Effective one-dimensionality of universal ac hopping conduction in the extreme disorder limit
DEFF Research Database (Denmark)
Dyre, Jeppe; Schrøder, Thomas
1996-01-01
A phenomenological picture of ac hopping in the symmetric hopping model (regular lattice, equal site energies, random energy barriers) is proposed according to which conduction in the extreme disorder limit is dominated by essentially one-dimensional "percolation paths." Modeling a percolation path...... as strictly one dimensional with a sharp jump rate cutoff leads to an expression for the universal ac conductivity that fits computer simulations in two and three dimensions better than the effective medium approximation....
Energy Technology Data Exchange (ETDEWEB)
Yu Yafei, E-mail: yfyuks@hotmail.com [Laboratory of Nanophotonic Functional Materials and Devices, LQIT and SIPSE, South China Normal University, Guangzhou 510006 (China); Shan Chuanjia [Laboratory of Nanophotonic Functional Materials and Devices, LQIT and SIPSE, South China Normal University, Guangzhou 510006 (China); College of Physics and Electronic Science, Hubei Normal University, Huangshi 435002 (China); Mei Feng; Zhang Zhiming [Laboratory of Nanophotonic Functional Materials and Devices, LQIT and SIPSE, South China Normal University, Guangzhou 510006 (China)
2012-09-15
We propose a simple but feasible experimental scheme to simulate and detect Dirac fermions with cold atoms trapped in one-dimensional optical lattice. In our scheme, through tuning the laser intensity, the one-dimensional optical lattice can have two sites in each unit cell and the atoms around the low energy behave as massive Dirac fermions. Furthermore, we show that these relativistic quasiparticles can be detected experimentally by using atomic density profile measurements and Bragg scattering.
One-dimensional GIS-based model compared with a two-dimensional model in urban floods simulation.
Lhomme, J; Bouvier, C; Mignot, E; Paquier, A
2006-01-01
A GIS-based one-dimensional flood simulation model is presented and applied to the centre of the city of Nîmes (Gard, France), for mapping flow depths or velocities in the streets network. The geometry of the one-dimensional elements is derived from the Digital Elevation Model (DEM). The flow is routed from one element to the next using the kinematic wave approximation. At the crossroads, the flows in the downstream branches are computed using a conceptual scheme. This scheme was previously designed to fit Y-shaped pipes junctions, and has been modified here to fit X-shaped crossroads. The results were compared with the results of a two-dimensional hydrodynamic model based on the full shallow water equations. The comparison shows that good agreements can be found in the steepest streets of the study zone, but differences may be important in the other streets. Some reasons that can explain the differences between the two models are given and some research possibilities are proposed.
Solution of the equations for one-dimensional, two-phase, immiscible flow by geometric methods
Boronin, Ivan; Shevlyakov, Andrey
2018-03-01
Buckley-Leverett equations describe non viscous, immiscible, two-phase filtration, which is often of interest in modelling of oil production. For many parameters and initial conditions, the solutions of these equations exhibit non-smooth behaviour, namely discontinuities in form of shock waves. In this paper we obtain a novel method for the solution of Buckley-Leverett equations, which is based on geometry of differential equations. This method is fast, accurate, stable, and describes non-smooth phenomena. The main idea of the method is that classic discontinuous solutions correspond to the continuous surfaces in the space of jets - the so-called multi-valued solutions (Bocharov et al., Symmetries and conservation laws for differential equations of mathematical physics. American Mathematical Society, Providence, 1998). A mapping of multi-valued solutions from the jet space onto the plane of the independent variables is constructed. This mapping is not one-to-one, and its singular points form a curve on the plane of the independent variables, which is called the caustic. The real shock occurs at the points close to the caustic and is determined by the Rankine-Hugoniot conditions.
Enhancing phonon flow through one-dimensional interfaces by impedance matching
Polanco, Carlos A.; Ghosh, Avik W.
2014-08-01
We extend concepts from microwave engineering to thermal interfaces and explore the principles of impedance matching in 1D. The extension is based on the generalization of acoustic impedance to nonlinear dispersions using the contact broadening matrix Γ(ω), extracted from the phonon self energy. For a single junction, we find that for coherent and incoherent phonons, the optimal thermal conductance occurs when the matching Γ(ω) equals the Geometric Mean of the contact broadenings. This criterion favors the transmission of both low and high frequency phonons by requiring that (1) the low frequency acoustic impedance of the junction matches that of the two contacts by minimizing the sum of interfacial resistances and (2) the cut-off frequency is near the minimum of the two contacts, thereby reducing the spillage of the states into the tunneling regime. For an ultimately scaled single atom/spring junction, the matching criterion transforms to the arithmetic mean for mass and the harmonic mean for spring constant. The matching can be further improved using a composite graded junction with an exponential varying broadening that functions like a broadband antireflection coating. There is, however, a trade off as the increased length of the interface brings in additional intrinsic sources of scattering.
On the Hughes' model for pedestrian flow: The one-dimensional case
Di Francesco, Marco; Markowich, Peter A.; Pietschmann, Jan-Frederik; Wolfram, Marie-Therese
2011-01-01
of Bardos et al. (1979) [7]. We use BV estimates on the density ρ and stability estimates on the potential Π in order to prove uniqueness. Furthermore, we analyze the evolution of characteristics for the original Hughes' model in one space dimension
Regional application of one-dimensional water flow models for irrigation management
Urso, D' G.; Menenti, M.; Santini, A.
1999-01-01
Numerical models for the simulation of soil water processes can be used to evaluate the spatial and temporal variations of crop water requirements; this information can support the irrigation management in a rationale usage of water resources. This latter objective requires the knowledge of
Long-term stability of a one-dimensional current-driven double layer
International Nuclear Information System (INIS)
Hori, N.; Yamamoto, T.
1988-01-01
Long-term (>an electron transit time over the system) stability of a one-dimensional current-driven double layer is studied by numerical experiments using particles. In these experiments, the potential difference across the system is self-consistently determined by the space charge distributions inside the system. Each boundary of the system supplies a nondrifting half-Maxwellian plasma. The current density is increased by increasing the number density of the source plasma at the injection (right) boundary. A double layer can be developed by injection of a sufficiently high current density. For a fixed level of current injection, plasmas carrying no current with various densities (n/sup ts/ 0 ) are loaded on the left side of the system. Whether or not the generated double layer can maintain its potential drop for a long period depends on the density (n/sup ts/ 0 ) relative to the initial density (n/sup */ 0 ) near the injection boundary: (1) the double layer is found to grow when n/sup ts/ 0 = n/sup */ 0 ; (2) the steady double layer is seen for a long period when n/sup ts/ 0 approx. >n/sup */ 0 ; (3) the double layer is found to decay when n/sup ts/ 0 is even higher than n/sup */ 0 . A new concept of the current polarizability P/sub c/ = J/n/sup number/ is introduced for understanding these results, where J is the current density flowing through the double layer and n/sup number/ is the plasma density at the injection front, i.e., the low-potential edge of the double layer
Pseudo-One-Dimensional Magnonic Crystals for High-Frequency Nanoscale Devices
Banerjee, Chandrima; Choudhury, Samiran; Sinha, Jaivardhan; Barman, Anjan
2017-07-01
The synthetic magnonic crystals (i.e., periodic composites consisting of different magnetic materials) form one fascinating class of emerging research field, which aims to command the process and flow of information by means of spin waves, such as in magnonic waveguides. One of the intriguing features of magnonic crystals is the presence and tunability of band gaps in the spin-wave spectrum, where the high attenuation of the frequency bands can be utilized for frequency-dependent control on the spin waves. However, to find a feasible way of band tuning in terms of a realistic integrated device is still a challenge. Here, we introduce an array of asymmetric saw-tooth-shaped width-modulated nanoscale ferromagnetic waveguides forming a pseudo-one-dimensional magnonic crystal. The frequency dispersion of collective modes measured by the Brillouin light-scattering technique is compared with the band diagram obtained by numerically solving the eigenvalue problem derived from the linearized Landau-Lifshitz magnetic torque equation. We find that the magnonic band-gap width, position, and the slope of dispersion curves are controllable by changing the angle between the spin-wave propagation channel and the magnetic field. The calculated profiles of the dynamic magnetization reveal that the corrugation at the lateral boundary of the waveguide effectively engineers the edge modes, which forms the basis of the interactive control in magnonic circuits. The results represent a prospective direction towards managing the internal field distribution as well as the dispersion properties, which find potential applications in dynamic spin-wave filters and magnonic waveguides in the gigahertz frequency range.
One-dimensional simulation of stratification and dissolved oxygen in McCook Reservoir, Illinois
Robertson, Dale M.
2000-01-01
As part of the Chicagoland Underflow Plan/Tunnel and Reservoir Plan, the U.S. Army Corps of Engineers, Chicago District, plans to build McCook Reservoir.a flood-control reservoir to store combined stormwater and raw sewage (combined sewage). To prevent the combined sewage in the reservoir from becoming anoxic and producing hydrogen sulfide gas, a coarse-bubble aeration system will be designed and installed on the basis of results from CUP 0-D, a zero-dimensional model, and MAC3D, a three-dimensional model. Two inherent assumptions in the application of MAC3D are that density stratification in the simulated water body is minimal or not present and that surface heat transfers are unimportant and, therefore, may be neglected. To test these assumptions, the previously tested, one-dimensional Dynamic Lake Model (DLM) was used to simulate changes in temperature and dissolved oxygen in the reservoir after a 1-in-100-year event. Results from model simulations indicate that the assumptions made in MAC3D application are valid as long as the aeration system, with an air-flow rate of 1.2 cubic meters per second or more, is operated while the combined sewage is stored in the reservoir. Results also indicate that the high biochemical oxygen demand of the combined sewage will quickly consume the dissolved oxygen stored in the reservoir and the dissolved oxygen transferred through the surface of the reservoir; therefore, oxygen must be supplied by either the rising bubbles of the aeration system (a process not incorporated in DLM) or some other technique to prevent anoxia.
Visualizing One-Dimensional Electronic States and their Scattering in Semi-conducting Nanowires
Beidenkopf, Haim; Reiner, Jonathan; Norris, Andrew; Nayak, Abhay Kumar; Avraham, Nurit; Shtrikman, Hadas
One-dimensional electronic systems constitute a fascinating playground for the emergence of exotic electronic effects and phases, within and beyond the Tomonaga-Luttinger liquid paradigm. More recently topological superconductivity and Majorana modes were added to that long list of phenomena. We report scanning tunneling microscopy and spectroscopy measurements conducted on pristine, epitaxialy grown InAs nanowires. We resolve the 1D electronic band structure manifested both via Van-Hove singularities in the local density-of-states, as well as by the quasi-particle interference patterns, induced by scattering from surface impurities. By studying the scattering of the one-dimensional electronic states off various scatterers, including crystallographic defects and the nanowire end, we identify new one-dimensional relaxation regimes and yet unexplored effects of interactions. Some of these may bear implications on the topological superconducting state and Majorana modes therein. The authors acknowledge support from the Israeli Science Foundation (ISF).
One-Dimensional Finite Elements An Introduction to the FE Method
Öchsner, Andreas
2013-01-01
This textbook presents finite element methods using exclusively one-dimensional elements. The aim is to present the complex methodology in an easily understandable but mathematically correct fashion. The approach of one-dimensional elements enables the reader to focus on the understanding of the principles of basic and advanced mechanical problems. The reader easily understands the assumptions and limitations of mechanical modeling as well as the underlying physics without struggling with complex mathematics. But although the description is easy it remains scientifically correct. The approach using only one-dimensional elements covers not only standard problems but allows also for advanced topics like plasticity or the mechanics of composite materials. Many examples illustrate the concepts and problems at the end of every chapter help to familiarize with the topics.
Method and apparatus for the electro-optic convolution of a one-dimensional signal
International Nuclear Information System (INIS)
1979-01-01
Procedure for the electro-optic convolution of a signal and a filter function, whereby the one dimensional electro-optical signal would be portrayed as a line along which the clarity varies and whereby filter function is determined by one or more masks, whilst after each mask is placed a light detector, with which the light passing through the masks may be detected, whilst a one-dimensional portrayal of the signal along the masks will be developed, characterised in that a one dimensional portrayal of the signal, with the aid of an optical system in a direction across the line, will be enlarged, and that this enlarged signal in the direction of the line along the masks will be affected which the masks closing fields will contain, which are either fully transparent or are fully non-transparent. (Auth.)
Synthesis and applications of one-dimensional nano-structured polyaniline: An overview
International Nuclear Information System (INIS)
Zhang Donghua; Wang Yangyong
2006-01-01
This paper summarizes and reviews the various synthesizing approaches of one-dimensional nano-structured polyaniline (PANI) and several potential applications of the nanomaterial. The synthesizing approaches can be generally categorized into template synthesis and non-template synthesis according to whether template(s), hard (physical template) or soft (chemical template), is (are) used or not. However, though the various approaches established, preparation of one-dimensional nano-structured PANI with controllable morphologies and sizes, especially well oriented arrays on a large scale is still a major challenge. Furthermore, the formation mechanisms of the nanostructures are still unclear. On the other hand, one-dimensional nano-structured PANI exhibits high surface area, high conductivity, as well as controllable chemical/physical properties and good environmental stability, rendering the nanomaterial promising candidate for application ranging from sensors, energy storage and flash welding to digital nonvolatile memory
Quantum phase transitions in matrix product states of one-dimensional spin-1 chains
International Nuclear Information System (INIS)
Zhu Jingmin
2014-01-01
We present a new model of quantum phase transitions in matrix product systems of one-dimensional spin-1 chains and study the phases coexistence phenomenon. We find that in the thermodynamic limit the proposed system has three different quantum phases and by adjusting the control parameters we are able to realize any phase, any two phases equal coexistence and the three phases equal coexistence. At every critical point the physical quantities including the entanglement are not discontinuous and the matrix product system has long-range correlation and N-spin maximal entanglement. We believe that our work is helpful for having a comprehensive understanding of quantum phase transitions in matrix product states of one-dimensional spin chains and of certain directive significance to the preparation and control of one-dimensional spin lattice models with stable coherence and N-spin maximal entanglement. (author)
Quantum interference of ballistic carriers in one-dimensional semiconductor rings
International Nuclear Information System (INIS)
Bagraev, N.T.; Buravlev, A.D.; Klyachkin, L.E.; Malyarenko, A.M.; Ivanov, V.K.; Rykov, S.A.; Shelykh, I.A.
2000-01-01
Quantum interference of ballistic carriers has been studied for the first time, using one-dimensional rings formed by quantum wire pairs in self-assembled silicon quantum wells. Energy dependencies of the transmission coefficient is calculated as a function of the length and modulation of the quantum wire pairs separated by a unified drain-source system or the quantum point contacts. The quantum conductance is predicted to be increased by a factor of four using the unified drain-source system as a result of the quantum interference. Theoretical dependencies are revealed by the quantum conductance oscillations created by the deviations of both the drain-source voltage and external magnetic field inside the silicon one-dimensional rings. The results obtained put forward a basis to create the Aharonov-Bohm interferometer using the silicon one-dimensional ring [ru
One dimensional neutron kinetics in the TRAC-BF1 code
International Nuclear Information System (INIS)
Weaver, W.L. III; Wagner, K.C.
1987-01-01
The TRAC-BWR code development program at the Idaho National Engineering Laboratory is developing a version of the TRAC code for the U.S. Nuclear Regulatory Commission (USNRC) to provide a best-estimate analysis capability for the simulation of postulated accidents in boiling water reactor (BWR) power systems and related experimental facilities. Recent development efforts in the TRAC-BWR program have focused on improving the computational efficiency through the incorporation of a hybrid Courant- limit-violating numerical solution scheme in the one-dimensional component models and on improving code accuracy through the development of a one-dimensional neutron kinetics model. Many other improvements have been incorporated into TRAC-BWR to improve code portability, accuracy, efficiency, and maintainability. This paper will describe the one- dimensional neutron kinetics model, the generation of the required input data for this model, and present results of the first calculations using the model
International Nuclear Information System (INIS)
Li Dejun; Mi Xianwu; Deng Ke; Tang Yi
2006-01-01
In the classical lattice theory, solitons and localized modes can exist in many one-dimensional nonlinear lattice chains, however, in the quantum lattice theory, whether quantum solitons and localized modes can exist or not in the one-dimensional lattice chains is an interesting problem. By using the number state method and the Hartree approximation combined with the method of multiple scales, we investigate quantum solitons and localized modes in a one-dimensional lattice chain with the nonlinear substrate potential. It is shown that quantum solitons do exist in this nonlinear lattice chain, and at the boundary of the phonon Brillouin zone, quantum solitons become quantum localized modes, phonons are pinned to the lattice of the vicinity at the central position j = j 0 .
A one-dimensional plasma and impurity transport model for reversed field pinches
International Nuclear Information System (INIS)
Veerasingam, R.
1991-11-01
In this thesis a one-dimensional (1-D) plasma and impurity transport model is developed to address issues related to impurity behavior in Reversed Field Pinch (RFP) fusion plasmas. A coronal non-equilibrium model is used for impurities. The impurity model is incorporated into an existing one dimensional plasma transport model creating a multi-species plasma transport model which treats the plasma and impurity evolution self-consistently. Neutral deuterium particles are treated using a one-dimensional (slab) model of neutral transport. The resulting mode, RFPBI, is then applied to existing RFP devices such as ZT-40M and MST, and also to examine steady state behavior of ZTH based on the design parameters. A parallel algorithm for the impurity transport equations is implemented and tested to determine speedup and efficiency
The one-dimensional Gross-Pitaevskii equation and its some excitation states
Energy Technology Data Exchange (ETDEWEB)
Prayitno, T. B., E-mail: trunk-002@yahoo.com [Physics Department, Faculty of Mathematics and Natural Science, Universitas Negeri Jakarta, Jl. Pemuda Rawamangun no. 10, Jakarta, 13220 (Indonesia)
2015-04-16
We have derived some excitation states of the one-dimensional Gross-Pitaevskii equation coupled by the gravitational potential. The methods that we have used here are taken by pursuing the recent work of Kivshar et. al. by considering the equation as a macroscopic quantum oscillator. To obtain the states, we have made the appropriate transformation to reduce the three-dimensional Gross-Pitaevskii equation into the one-dimensional Gross-Pitaevskii equation and applying the time-independent perturbation theory in the general solution of the one-dimensional Gross-Pitaevskii equation as a linear superposition of the normalized eigenfunctions of the Schrödinger equation for the harmonic oscillator potential. Moreover, we also impose the condition by assuming that some terms in the equation should be so small in order to preserve the use of the perturbation method.
A transient one-dimensional numerical model for kinetic Stirling engine
International Nuclear Information System (INIS)
Wang, Kai; Dubey, Swapnil; Choo, Fook Hoong; Duan, Fei
2016-01-01
Highlights: • A non-equilibrium thermal mode with considering loses is adopted in Stirling engine. • Good agreements are achieved for predicting various critical system parameters. • Differences between helium and hydrogen systems are highlighted and analyzed. • Pressure drop of helium system is much larger and more sensitive to frequency. - Abstract: A third-order numerical model based on one-dimensional computational fluid dynamics is developed for kinetic Stirling engines. Various loss mechanisms in Stirling engines, including gas spring hysteresis loss, shuttle loss, appendix displacer gap loss, gas leakage loss, finite speed loss, piston friction loss, pressure drop loss, heat conduction loss, mechanical loss and imperfect heat transfer, are considered and embedded into the basic control equations. The non-equilibrium thermal model is adopted for the regenerator to capture the oscillating features of the gas and solid temperatures. To improve the numerical stability and accuracy, the implicit second-order time difference scheme and the second-order upwind scheme are adopted for discretizing the time differential terms and convective terms, respectively. Experimental validations are then conducted on a beta-type Stirling engine with the extensive experimental data for diverse working conditions. The results show that the developed model has better accuracies than the previous second-order models. Good agreements are achieved for predicting various critical system parameters, including pressure-volume diagram, indicated power, brake power, indicated efficiency, brake efficiency and mechanical efficiency. In particular, both the experiments and simulations show that the Stirling engine charged with helium tends to have much lower optimal working frequencies and poorer performances compared to the hydrogen system. Based on the analyses of the losses, it reveals that the pressure drop in the flow channels plays a critical role in shaping the different
Apparent destruction of superconductivity in the disordered one-dimensional limit
International Nuclear Information System (INIS)
Graybeal, J.M.; Mankiewich, P.M.; Dynes, R.C.; Beasley, M.R.
1987-01-01
We present the results of a model-system study of the competition between superconductivity and disorder in narrow superconducting wires. As one moves from the two-dimensional regime toward the one-dimensional limit, large and systematic reductions in the superconducting transition temperature are obtained. The observed behavior extrapolates to the total destruction of superconductivity in the disordered one-dimensional limit. Our findings are in clear disagreement with a recent theoretical treatment. In addition, the superconducting fluctuations appear to be modified by disorder for the narrowest samples
Optimally localized Wannier functions for quasi one-dimensional nonperiodic insulators
DEFF Research Database (Denmark)
Cornean, Horia; Nenciu, A.; Nenciu, Gheorghe
2008-01-01
It is proved that for general, not necessarily periodic, quasi one-dimensional systems the band position operator corresponding to an isolated part of the energy spectrum has discrete spectrum and its eigenfunctions have the same spatial localization as the corresponding spectral projection....... As a consequence, an eigenbasis of the band position operator provides a basis of optimally localized (generalized) Wannier functions for quasi one-dimensional systems, and this proves the strong Marzari-Vanderbilt conjecture. If the system has some translation symmetries (e.g. usual translations, screw...
Optimally localized Wannier functions for quasi one-dimensional nonperiodic insulators
DEFF Research Database (Denmark)
Cornean, Horia; Nenciu, A.; Nenciu, Gheorghe
It is proved that for general, not necessarily periodic quasi one dimensional systems, the band position operator corresponding to an isolated part of the energy spectrum has discrete spectrum and its eigenfunctions have the same spatial localization as the corresponding spectral projection....... As a consequence, an eigenbasis of the band position operator provides a basis of optimally localized (generalized) Wannier functions for quasi one dimensional systems. If the system has some translation symmetries (e.g. usual translations, screw transformations), they are "inherited" bythe Wannier basis....
Von Neumann Entropy of an Electron in One-Dimensional Determined Potentials
Institute of Scientific and Technical Information of China (English)
GONG Long-Yan; TONG Pei-Qing
2005-01-01
@@ By using the measure of von Neumann entropy, we numerically investigate quantum entanglement of an electronmoving in the one-dimensional Harper model and in the one-dimensional slowly varying potential model. Thedelocalized and localized eigenstates can be distinguished by von Neumann entropy of the individual eigenstates.There are drastic decreases in yon Neumann entropy of the individual eigenstates at mobility edges. In the curveof the spectrum averaged yon Neumann entropy as a function of potential parameter λ, a sharp transition existsat the metal-insulator transition point λc = 2. It is found that the yon Neumann entropy is a good quantity toreflect localization and metal-insulator transition.
Longitudinal and spin Hall conductance of a one-dimensional Aharonov-Bohm ring
International Nuclear Information System (INIS)
Moca, Catalin Pascu; Marinescu, D C
2006-01-01
The longitudinal and spin Hall conductances of an electron gas with Rashba-Dresselhaus spin-orbit interaction, confined to a quasi-one-dimensional Aharonov-Bohm ring, are studied as functions of disorder and magnetic flux. The system is mapped onto a one-dimensional virtual lattice and is described, in a tight binding approximation, by a Hamiltonian that depends parametrically on the nearest neighbour hopping integral t, the Rashba spin-orbit coupling V R , the Dresselhaus spin-orbit coupling V D and an Anderson-like, on-site disorder energy strength W. Numerical results are obtained within a spin dependent Landauer-Buettiker formalism
On the conductivity of a one-dimensional system of interacting fermions in a random potential
International Nuclear Information System (INIS)
Apel, W.
1981-01-01
A one-dimensional system of interacting fermions in an external potential is studied. The problem was for this purpose transformed to two classical models of statistical mechanics in two dimensions in which occasionally results were found in complementary ranges of the interaction constants of the fermion system. The conductivity appeared as a simple correlation function in both classical models. It was shown that the interaction in a one-dimensional polluted fermion system can cause an isolator-metal transition. (orig./HSI) [de
Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map
Wang, Xing-Yuan; Qin, Xue; Xie, Yi-Xin
2011-08-01
We extend a class of a one-dimensional smooth map. We make sure that for each desired interval of the parameter the map's Lyapunov exponent is positive. Then we propose a novel parameter perturbation method based on the good property of the extended one-dimensional smooth map. We perturb the parameter r in each iteration by the real number xi generated by the iteration. The auto-correlation function and NIST statistical test suite are taken to illustrate the method's randomness finally. We provide an application of this method in image encryption. Experiments show that the pseudo-random sequences are suitable for this application.
Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map
International Nuclear Information System (INIS)
Wang Xing-Yuan; Qin Xue; Xie Yi-Xin
2011-01-01
We extend a class of a one-dimensional smooth map. We make sure that for each desired interval of the parameter the map's Lyapunov exponent is positive. Then we propose a novel parameter perturbation method based on the good property of the extended one-dimensional smooth map. We perturb the parameter r in each iteration by the real number x i generated by the iteration. The auto-correlation function and NIST statistical test suite are taken to illustrate the method's randomness finally. We provide an application of this method in image encryption. Experiments show that the pseudo-random sequences are suitable for this application. (general)
International Nuclear Information System (INIS)
Yang, Zhanfeng; Liu, Guozhi; Shao, Hao; Chen, Changhua; Sun, Jun
2013-01-01
This paper reports the space-charge limited current (SLC) and virtual cathode behaviors in one-dimensional grounded drift space. A simple general analytical solution and an approximate solution for the planar diode are given. Through a semi-analytical method, a general solution for SLC in one-dimensional drift space is obtained. The behaviors of virtual cathode in the drift space, including dominant frequency, electron transit time, position, and transmitted current, are yielded analytically. The relationship between the frequency of the virtual cathode oscillation and the injected current presented may explain previously reported numerical works. Results are significant in facilitating estimations and further analytical studies
Metal-insulator transition in one-dimensional lattices with chaotic energy sequences
International Nuclear Information System (INIS)
Pinto, R.A.; Rodriguez, M.; Gonzalez, J.A.; Medina, E.
2005-01-01
We study electronic transport through a one-dimensional array of sites by using a tight binding Hamiltonian, whose site-energies are drawn from a chaotic sequence. The correlation degree between these energies is controlled by a parameter regulating the dynamic Lyapunov exponent measuring the degree of chaos. We observe the effect of chaotic sequences on the localization length, conductance, conductance distribution and wave function, finding evidence of a metal-insulator transition (MIT) at a critical degree of chaos. The one-dimensional metallic phase is characterized by a Gaussian conductance distribution and exhibits a peculiar non-selfaveraging
On the effect of memory in one-dimensional K=4 automata on networks
Alonso-Sanz, Ramón; Cárdenas, Juan Pablo
2008-12-01
The effect of implementing memory in cells of one-dimensional CA, and on nodes of various types of automata on networks with increasing degrees of random rewiring is studied in this article, paying particular attention to the case of four inputs. As a rule, memory induces a moderation in the rate of changing nodes and in the damage spreading, albeit in the latter case memory turns out to be ineffective in the control of the damage as the wiring network moves away from the ordered structure that features proper one-dimensional CA. This article complements the previous work done in the two-dimensional context.
Hopping transport and electrical conductivity in one-dimensional systems with off-diagonal disorder
International Nuclear Information System (INIS)
Ma Songshan; Xu Hui; Li Yanfeng; Song Zhaoquan
2007-01-01
In this paper, we present a model to describe hopping transport and electrical conductivity of one-dimensional systems with off-diagonal disorder, in which electrons are transported via hopping between localized states. We find that off-diagonal disorder leads to delocalization and drastically enhances the electrical conductivity of systems. The model also quantitatively explains the temperature and electrical field dependence of the conductivity in one-dimensional systems with off-diagonal disorder. In addition, we also show the dependence of the conductivity on the strength of off-diagonal disorder
Metal-insulator transition in one-dimensional lattices with chaotic energy sequences
Energy Technology Data Exchange (ETDEWEB)
Pinto, R.A. [Laboratorio de Fisica Estadistica, Centro de Fisica, Instituto Venezolano de Investigaciones Cientificas, Apartado 21827, Caracas 1020-A (Venezuela)]. E-mail: ripinto@ivic.ve; Rodriguez, M. [Laboratorio de Fisica Estadistica, Centro de Fisica, Instituto Venezolano de Investigaciones Cientificas, Apartado 21827, Caracas 1020-A (Venezuela); Gonzalez, J.A. [Laboratorio de Fisica Computacional, Centro de Fisica, Instituto Venezolano de Investigaciones Cientificas, Apartado 21827, Caracas 1020-A (Venezuela); Medina, E. [Laboratorio de Fisica Estadistica, Centro de Fisica, Instituto Venezolano de Investigaciones Cientificas, Apartado 21827, Caracas 1020-A (Venezuela)
2005-06-20
We study electronic transport through a one-dimensional array of sites by using a tight binding Hamiltonian, whose site-energies are drawn from a chaotic sequence. The correlation degree between these energies is controlled by a parameter regulating the dynamic Lyapunov exponent measuring the degree of chaos. We observe the effect of chaotic sequences on the localization length, conductance, conductance distribution and wave function, finding evidence of a metal-insulator transition (MIT) at a critical degree of chaos. The one-dimensional metallic phase is characterized by a Gaussian conductance distribution and exhibits a peculiar non-selfaveraging.
An Auxiliary Equation for the Bellman Equation in a One-Dimensional Ergodic Control
International Nuclear Information System (INIS)
Fujita, Y.
2001-01-01
In this paper we consider the Bellman equation in a one-dimensional ergodic control. Our aim is to show the existence and the uniqueness of its solution under general assumptions. For this purpose we introduce an auxiliary equation whose solution gives the invariant measure of the diffusion corresponding to an optimal control. Using this solution, we construct a solution to the Bellman equation. Our method of using this auxiliary equation has two advantages in the one-dimensional case. First, we can solve the Bellman equation under general assumptions. Second, this auxiliary equation gives an optimal Markov control explicitly in many examples
GITTAM program for numerical simulation of one-dimensional targets TIS. Part 3
International Nuclear Information System (INIS)
Basko, M.M.; Sokolovskij, M.V.
1989-01-01
Results of testing calculations according to GITTAM program, developed for numeric simulation of one-dimensional thermonuclear targets of heavy-ion synthesis are presented. Finite-difference method for solving a system of one-dimensional hydrodynamics equations with heat conductivity, radiation diffusion and thermonuclear combustion is used in the GITTAM program. In the tests presented, based on simple automodel solutions, adiabatic motion as well as distribution of shock, thermal and radial waves in gas with simple polytron state equation is investigated. 3 refs.; 6 figs
Directory of Open Access Journals (Sweden)
Nicolai Lang, Hans Peter Büchler
2018-01-01
Full Text Available Active quantum error correction on topological codes is one of the most promising routes to long-term qubit storage. In view of future applications, the scalability of the used decoding algorithms in physical implementations is crucial. In this work, we focus on the one-dimensional Majorana chain and construct a strictly local decoder based on a self-dual cellular automaton. We study numerically and analytically its performance and exploit these results to contrive a scalable decoder with exponentially growing decoherence times in the presence of noise. Our results pave the way for scalable and modular designs of actively corrected one-dimensional topological quantum memories.
Quasi-exact solvability of the one-dimensional Holstein model
International Nuclear Information System (INIS)
Pan Feng; Dai Lianrong; Draayer, J P
2006-01-01
The one-dimensional Holstein model of spinless fermions interacting with dispersionless phonons is solved by using a Bethe ansatz in analogue to that for the one-dimensional spinless Fermi-Hubbard model. Excitation energies and the corresponding wavefunctions of the model are determined by a set of partial differential equations. It is shown that the model is, at least, quasi-exactly solvable for the two-site case, when the phonon frequency, the electron-phonon coupling strength and the hopping integral satisfy certain relations. As examples, some quasi-exact solutions of the model for the two-site case are derived. (letter to the editor)
Wave packet fractional revivals in a one-dimensional Rydberg atom
International Nuclear Information System (INIS)
Veilande, Rita; Bersons, Imants
2007-01-01
We investigate many characteristic features of revival and fractional revival phenomena via derived analytic expressions for an autocorrelation function of a one-dimensional Rydberg atom with weighting probabilities modelled by a Gaussian or a Lorentzian distribution. The fractional revival phenomenon in the ionization probabilities of a one-dimensional Rydberg atom irradiated by two short half-cycle pulses is also studied. When many states are involved in the formation of the wave packet, the revival is lower and broader than the initial wave packet and the fractional revivals overlap and disappear with time
One dimensional Si/Sn - based nanowires and nanotubes for lithium-ion energy storage materials
Choi, Nam-Soon
2011-01-01
There has been tremendous interest in using nanomaterials for advanced Li-ion battery electrodes, particularly to increase the energy density by using high specific capacity materials. Recently, it was demonstrated that one dimensional (1D) Si/Sn nanowires (NWs) and nanotubes (NTs) have great potential to achieve high energy density as well as long cycle life for the next generation of advanced energy storage applications. In this feature article, we review recent progress on Si-based NWs and NTs as high capacity anode materials. Fundamental understanding and future challenges on one dimensional nanostructured anode are also discussed. © 2010 The Royal Society of Chemistry.
Accurate correlation energies in one-dimensional systems from small system-adapted basis functions
Baker, Thomas E.; Burke, Kieron; White, Steven R.
2018-02-01
We propose a general method for constructing system-dependent basis functions for correlated quantum calculations. Our construction combines features from several traditional approaches: plane waves, localized basis functions, and wavelets. In a one-dimensional mimic of Coulomb systems, it requires only 2-3 basis functions per electron to achieve high accuracy, and reproduces the natural orbitals. We illustrate its effectiveness for molecular energy curves and chains of many one-dimensional atoms. We discuss the promise and challenges for realistic quantum chemical calculations.
Quantum quenches to the attractive one-dimensional Bose gas: exact results
Directory of Open Access Journals (Sweden)
Lorenzo Piroli, Pasquale Calabrese, Fabian H. L. Essler
2016-09-01
Full Text Available We study quantum quenches to the one-dimensional Bose gas with attractive interactions in the case when the initial state is an ideal one-dimensional Bose condensate. We focus on properties of the stationary state reached at late times after the quench. This displays a finite density of multi-particle bound states, whose rapidity distribution is determined exactly by means of the quench action method. We discuss the relevance of the multi-particle bound states for the physical properties of the system, computing in particular the stationary value of the local pair correlation function $g_2$.
Energy Technology Data Exchange (ETDEWEB)
Olive, J
1995-11-01
This course is part of the ENSTA 3rd year thermal hydraulics program (nuclear power option). Its purpose is to provide the theoretical basis and main physical notions pertaining to two-phase flow, mainly focussed on water-steam flows. The introduction describes the physical specificities of these flows, emphasizing their complexity. The mathematical bases are then presented (partial derivative equations), leading to a one-dimensional type, simplified description. Balances drawn up for a pipe length volume are used to introduce the mass conservation. motion and energy equations for each phase. Various postulates used to simplify two-phase models are presented, culminating in homogeneous model definitions and equations, several common examples of which are given. The model is then applied to the calculation of pressure drops in two-phase flows. This involves presenting the models most frequently used to represent pressure drops by friction or due to pipe irregularities, without giving details (numerical values of parameters). This chapter terminates with a brief description of static and dynamic instabilities in two-phase flows. Finally, heat transfer conditions frequently encountered in liquid-steam flows are described, still in the context of a 1D model. This chapter notably includes reference to under-saturated boiling conditions and the various forms of DNB. The empirical heat transfer laws are not discussed in detail. Additional material is appended, some of which is in the form of corrected exercises. (author). 6 appends.
The physicist's companion to current fluctuations: one-dimensional bulk-driven lattice gases
International Nuclear Information System (INIS)
Lazarescu, Alexandre
2015-01-01
One of the main features of statistical systems out of equilibrium is the currents they exhibit in their stationary state: microscopic currents of probability between configurations, which translate into macroscopic currents of mass, charge, etc. Understanding the general behaviour of these currents is an important step towards building a universal framework for non-equilibrium steady states akin to the Gibbs–Boltzmann distribution for equilibrium systems. In this review, we consider one-dimensional bulk-driven particle gases, and in particular the asymmetric simple exclusion process (ASEP) with open boundaries, which is one of the most popular models of one-dimensional transport. We focus, in particular, on the current of particles flowing through the system in its steady state, and on its fluctuations. We show how one can obtain the complete statistics of that current, through its large deviation function, by combining results from various methods: exact calculation of the cumulants of the current, using the integrability of the model; direct diagonalization of a biased process in the limits of very high or low current; hydrodynamic description of the model in the continuous limit using the macroscopic fluctuation theory. We give a pedagogical account of these techniques, starting with a quick introduction to the necessary mathematical tools, as well as a short overview of the existing works relating to the ASEP. We conclude by drawing the complete dynamical phase diagram of the current. We also remark on a few possible generalizations of these results. (topical review)
An interpolatory ansatz captures the physics of one-dimensional confined Fermi systems
DEFF Research Database (Denmark)
Andersen, Molte Emil Strange; Salami Dehkharghani, Amin; Volosniev, A. G.
2016-01-01
beyond the Bethe ansatz and bosonisation allow us to predict the behaviour of one-dimensional confined systems with strong short-range interactions, and new experiments with cold atomic Fermi gases have already confirmed these theories. Here we demonstrate that a simple linear combination of the strongly...
Polaritonic normal-mode splitting and light localization in a one-dimensional nanoguide
Haakh, Harald R.; Faez, Sanli; Sandoghdar, Vahid
2016-01-01
We theoretically investigate the interaction of light and a collection of emitters in a subwavelength one-dimensional medium (nanoguide), where enhanced emitter-photon coupling leads to efficient multiple scattering of photons. We show that the spectrum of the transmitted light undergoes normal-mode
Simple One-Dimensional Quantum-Mechanical Model for a Particle Attached to a Surface
Fernandez, Francisco M.
2010-01-01
We present a simple one-dimensional quantum-mechanical model for a particle attached to a surface. It leads to the Schrodinger equation for a harmonic oscillator bounded on one side that we solve in terms of Weber functions and discuss the behaviour of the eigenvalues and eigenfunctions. We derive the virial theorem and other exact relationships…
One-dimensional metallic edge states in MoS2
DEFF Research Database (Denmark)
Bollinger, Mikkel; Lauritsen, J.V.; Jacobsen, Karsten Wedel
2001-01-01
By the use of density functional calculations it is shown that the edges of a two-dimensional slab of insulating MoS2 exhibit several metallic states. These edge states can be viewed as one-dimensional conducting wires, and we show that they can be observed directly using scanning tunneling...
A computationally exact method of Dawson's model for hole dynamics of one-dimensional plasma
International Nuclear Information System (INIS)
Kitahara, Kazuo; Tanno, Kohki; Takada, Toshio; Hatori, Tadatsugu; Urata, Kazuhiro; Irie, Haruyuki; Nambu, Mitsuhiro; Saeki, Kohichi.
1990-01-01
We show a simple but computationally exact solution of the one-dimensional plasma model, so-called 'Dawson's model'. Using this solution, we can describe the evolution of the plasma and find the relative stabilization of a big hole after the instability of two streams. (author)
Well-posedness for one-dimensional anisotropic Cahn-Hilliard and Allen-Cahn systems
Directory of Open Access Journals (Sweden)
Ahmad Makki
2015-01-01
Full Text Available Our aim is to prove the existence and uniqueness of solutions for one-dimensional Cahn-Hilliard and Allen-Cahn type equations based on a modification of the Ginzburg-Landau free energy proposed in [8]. In particular, the free energy contains an additional term called Willmore regularization and takes into account strong anisotropy effects.
DEFF Research Database (Denmark)
Johannessen, Kim
2014-01-01
The exact solution to the one-dimensional Poisson–Boltzmann equation with asymmetric boundary conditions can be expressed in terms of the Jacobi elliptic functions. The boundary conditions determine the modulus of the Jacobi elliptic functions. The boundary conditions can not be solved analytically...
PAD: a one-dimensional, coupled neutronic-thermodynamic-hydrodynamic computer code
International Nuclear Information System (INIS)
Peterson, D.M.; Stratton, W.R.; McLaughlin, T.P.
1976-12-01
Theoretical and numerical foundations, utilization guide, sample problems, and program listing and glossary are given for the PAD computer code which describes dynamic systems with interactive neutronics, thermodynamics, and hydrodynamics in one-dimensional spherical, cylindrical, and planar geometries. The code has been applied to prompt critical excursions in various fissioning systems (solution, metal, LMFBR, etc.) as well as to nonfissioning systems
Critical exponents in the transition to chaos in one-dimensional
Indian Academy of Sciences (India)
We report the numerically evaluated critical exponents associated with the scaling of generalized fractal dimensions during the transition from order to chaos. The analysis is carried out in detail in the context of unimodal and bimodal maps representing typical one-dimensional discrete dynamical systems. The behavior of ...
A Simple Proof of the Theorem Concerning Optimality in a One-Dimensional Ergodic Control Problem
International Nuclear Information System (INIS)
Fujita, Y.
2000-01-01
We give a simple proof of the theorem concerning optimality in a one-dimensional ergodic control problem. We characterize the optimal control in the class of all Markov controls. Our proof is probabilistic and does not need to solve the corresponding Bellman equation. This simplifies the proof
DEFF Research Database (Denmark)
Sing, M.; Schwingenschlögl, U.; Claessen, R.
2003-01-01
We have thoroughly characterized the surfaces of the organic charge-transfer salts TTF-TCNQ and (TMTSF)(2)PF6 which are generally acknowledged as prototypical examples of one-dimensional conductors. In particular x-ray-induced photoemission spectroscopy turns out to be a valuable nondestructive...
DEFF Research Database (Denmark)
Rotvig, J.; Smith, H.; Jauho, Antti-Pekka
1996-01-01
We present an analytical study of one-dimensional semiconductor superlattices in external electric fields, which may be time dependent. A number of general results for the (quasi)energies and eigenstates are derived. An equation of motion for the density matrix is obtained for a two-band model...
One-dimensional magnetohydrodynamic calculations of a hydrogen-gas puff
International Nuclear Information System (INIS)
Maxon, S.; Nielsen, P.D.
1981-01-01
A one-dimensional Lagrangian calculation of the implosion of a hydrogen gas puff is presented. At maximum compression, 60% of the mass is located in a density spike .5 mm off the axis with a half width of 40 μm. The temperature on axis reaches 200 eV
International Nuclear Information System (INIS)
Zhang, L.
1981-08-01
With coherent potential approximation method the effect of the substitutional disorder in the pseudo one-dimensional conductors on the Peierls transition temperature (Tsub(p)) and superconductive transition temperature (Tsub(c)) has been calculated. The favourable condition for searching for somewhat high Tsub(c) superconductors in these systems has been discussed. (author)
Theory of superfluidity and drag force in the one-dimensional Bose gas
Cherny, A.Y.; Caux, J.-S.; Brand, J.
2012-01-01
The one-dimensional Bose gas is an unusual superfluid. In contrast to higher spatial dimensions, the existence of non-classical rotational inertia is not directly linked to the dissipationless motion of infinitesimal impurities. Recently, experimental tests with ultracold atoms have begun and
Chiral-nematic liquid crystals as one dimensional photonic materials in optical sensors
Mulder, D.J.; Schenning, A.P.H.J.; Bastiaansen, C.W.M.
2014-01-01
Current developments in the field of thermotropic chiral-nematic liquid crystals as sensors are discussed. These one dimensional photonic materials are based on low molecular weight liquid crystals and chiral-nematic polymeric networks. For both low molecular weight LCs and polymer networks,
International Nuclear Information System (INIS)
Gorelik, V.S.; Voinov, Yu.P.; Shchavlev, V.V.; Bi, Dongxue; Shang, Guo Liang; Fei, Guang Tao
2017-01-01
Mesoporous one-dimensional photonic crystals based on aluminum oxide have been synthesized by electrochemical etching method. Reflection spectra of the obtained mesoporous samples in a wide spectral range that covers several band gaps are presented. Microscopic parameters of photonic crystals are calculated and corresponding reflection spectra for the first six band gaps are presented.
A novel one-dimensional chain built of vanadyl ions and pyrazine-2,5-dicarboxylate
Lankelma, M.; de Boer, J.; Ferbinteanu, M.; Dantas Ramos, A.L.; Tanasa, R.; Rothenberg, G.; Tanase, S.
2015-01-01
We present a new coordination polymer, {[VO(pzdc)(H2O)(2)] H2O}(n), built from vanadyl and pyrazine-2,5-dicarboxylate (pzdc) ions. It consists of a one-dimensional chain of vanadyl ions linked by pzdc ions. The carboxylate groups show monodentate coordination, while the pyrazine ring is present both
Derivation of Ginzburg-Landau theory for a one-dimensional system with contact interaction
DEFF Research Database (Denmark)
Frank, Rupert; Hanizl, Christian; Seiringer, Robert
2013-01-01
In a recent paper we give the first rigorous derivation of the celebrated Ginzburg-Landau (GL) theory, starting from the microscopic Bardeen-Cooper-Schrieffer (BCS) model. Here we present our results in the simplified case of a one-dimensional system of particles interacting via a delta-potential....
An inverse problem for a one-dimensional time-fractional diffusion problem
Jin, Bangti; Rundell, William
2012-01-01
We study an inverse problem of recovering a spatially varying potential term in a one-dimensional time-fractional diffusion equation from the flux measurements taken at a single fixed time corresponding to a given set of input sources. The unique
Stimulated wave of polarization in a one-dimensional Ising chain
International Nuclear Information System (INIS)
Lee, Jae-Seung; Khitrin, A.K.
2005-01-01
It is demonstrated that in a one-dimensional Ising chain with nearest-neighbor interactions, irradiated by a weak resonant transverse field, a stimulated wave of flipped spins can be triggered by a flip of a single spin. This analytically solvable model illustrates mechanisms of quantum amplification and quantum measurement
International Nuclear Information System (INIS)
Clancy, B.E.
1982-05-01
ANAUSN is a general purpose, one-dimensional discrete ordinate transport theory program which has access to AUS datapools. Fixed source, reactivity and a variety of criticality search calculations can be performed. The program can be operated as a module in the AUS scheme or as a stand-alone program
Regularized integrable version of the one-dimensional quantum sine-Gordon model
International Nuclear Information System (INIS)
Japaridze, G.I.; Nersesyan, A.A.; Wiegmann, P.B.
1983-01-01
The authors derive a regularized exactly solvable version of the one-dimensional quantum sine-Gordon model proceeding from the exact solution of the U(1)-symmetric Thirring model. The ground state and the excitation spectrum are obtained in the region ν 2 < 8π. (Auth.)
Observation of Zero-Dimensional States in a One-Dimensional Electron Interferometer
Wees, B.J. van; Kouwenhoven, L.P.; Harmans, C.J.P.M.; Williamson, J.G.; Timmering, C.E.; Broekaart, M.E.I.; Foxon, C.T.; Harris, J.J.
1989-01-01
We have studied the electron transport in a one-dimensional electron interferometer. It consists of a disk-shaped two-dimensional electron gas, to which quantum point contacts are attached. Discrete zero-dimensional states are formed due to constructive interference of electron waves traveling along
One-dimensional organic lead halide perovskites with efficient bluish white-light emission
Yuan, Zhao; Zhou, Chenkun; Tian, Yu; Shu, Yu; Messier, Joshua; Wang, Jamie C.; van de Burgt, Lambertus J.; Kountouriotis, Konstantinos; Xin, Yan; Holt, Ethan; Schanze, Kirk; Clark, Ronald; Siegrist, Theo; Ma, Biwu
2017-01-01
Organic-inorganic hybrid metal halide perovskites, an emerging class of solution processable photoactive materials, welcome a new member with a one-dimensional structure. Herein we report the synthesis, crystal structure and photophysical properties of one-dimensional organic lead bromide perovskites, C4N2H14PbBr4, in which the edge sharing octahedral lead bromide chains [PbBr4 2-]∞ are surrounded by the organic cations C4N2H14 2+ to form the bulk assembly of core-shell quantum wires. This unique one-dimensional structure enables strong quantum confinement with the formation of self-trapped excited states that give efficient bluish white-light emissions with photoluminescence quantum efficiencies of approximately 20% for the bulk single crystals and 12% for the microscale crystals. This work verifies once again that one-dimensional systems are favourable for exciton self-trapping to produce highly efficient below-gap broadband luminescence, and opens up a new route towards superior light emitters based on bulk quantum materials.
Effects of interaction imbalance in a strongly repulsive one-dimensional Bose gas
DEFF Research Database (Denmark)
Barfknecht, Rafael Emilio; Zinner, Nikolaj Thomas; Foerster, Angela
2018-01-01
We calculate the spatial distributions and the dynamics of a few-body two-component strongly interacting Bose gas confined to an effectively one-dimensional trapping potential. We describe the densities for each component in the trap for different interaction and population imbalances. We calculate...
Mahoney, Joyce; And Others
1988-01-01
Evaluates 16 commercially available courseware packages covering topics for introductory physics. Discusses the price, sub-topics, program type, interaction, time, calculus required, graphics, and comments of each program. Recommends two packages in measurement and vectors, and one-dimensional motion respectively. (YP)
Friedel oscillations in one-dimensional metals: From Luttinger's theorem to the Luttinger liquid
International Nuclear Information System (INIS)
Vieira, Daniel; Freire, Henrique J.P.; Campo, V.L.; Capelle, K.
2008-01-01
Charge density and magnetization density profiles of one-dimensional metals are investigated by two complementary many-body methods: numerically exact (Lanczos) diagonalization, and the Bethe-Ansatz local-density approximation with and without a simple self-interaction correction. Depending on the magnetization of the system, local approximations reproduce different Fourier components of the exact Friedel oscillations
One-dimensional simulation of a stirling three-stage pulse-tube refrigerator
Etaati, M.A.; Mattheij, R.M.M.; Tijsseling, A.S.; Waele, de A.T.A.M.
2009-01-01
A one-dimensional mathematical model is derived for a three-stage pulse-tube refrigerator (PTR) that is based on the conservation laws and the ideal gas law. The three-stage PTR is regarded as three separate single-stage PTRs that are coupled via proper junction conditions. At the junctions there
One-dimensional simulation of a Stirling three-stage pulse-tube refrigerator
Etaati, M.A.; Mattheij, R.M.M.; Tijsseling, A.S.; Waele, de A.T.A.M.
2009-01-01
A one-dimensional mathematical model is derived for a three-stage pulse-tube refrigerator (PTR) that is based on the conservation laws and the ideal gas law. The three-stage PTR is regarded as three separate single-stage PTRs that are coupled via proper junction conditions. At the junctions there
Boudin , Laurent; Mathiaud , Julien
2012-01-01
In this work, we discuss some numerical properties of the viscous numerical scheme introduced in [Boudin, Mathiaud, NMPDE 2012] to solve the one-dimensional pressureless gases system, and study in particular, from a computational viewpoint, its asymptotic behavior when the viscosity parameter used in the scheme becomes smaller.
Photon-pair generation in nonlinear metal-dielectric one-dimensional photonic structures
Czech Academy of Sciences Publication Activity Database
Javůrek, D.; Svozilík, J.; Peřina ml., Jan
2014-01-01
Roč. 90, č. 5 (2014), "053813-1"-"053813-14" ISSN 1050-2947 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : photon pairs * nonlinear metal-dielectric * one-dimensional photonic structures Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.808, year: 2014
Organometallic benzene-vanadium wire: A one-dimensional half-metallic ferromagnet
DEFF Research Database (Denmark)
Maslyuk, V.; Bagrets, A.; Meded, V.
2006-01-01
Using density functional theory we perform theoretical investigations of the electronic properties of a freestanding one-dimensional organometallic vanadium-benzene wire. This system represents the limiting case of multidecker V-n(C6H6)(n+1) clusters which can be synthesized with established meth...
High-intensity ionization approximations: test of convergence in a one-dimensional model
International Nuclear Information System (INIS)
Antunes Neto, H.S.; Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro); Davidovich, L.; Marchesin, D.
1983-06-01
By solving numerically a one-dimensional model, the range of validity of some non-perturbative treatments proposed for the problem of atomic ionization by strong laser fields is examined. Some scalling properties of the ionization probability are stablished and a new approximation, which converges to the exact results in the limit of very strong fields is proposed. (Author) [pt
One-dimensional random walk of nanosized liquid Pb inclusions on dislocations in Al
DEFF Research Database (Denmark)
Johnson, E.; Levinsen, M.T.; Steenstrup, S.
2004-01-01
to and perpendicular to the dislocations respectively. Movements parallel to the dislocation lines display properties of partially confined one-dimensional random walks where smaller inclusions can be seen to move over distances that are many times their own sizes. In contrast, the trajectories perpendicular...
One-dimensional numerical simulation of the Stirling-type pulse-tube refrigerator
Etaati, M.; Mattheij, R.M.M.; Tijsseling, A.S.; Waele, de A.T.A.M.
2007-01-01
Change of title: One-dimensional numerical simulation of the Stirling-type pulse-tube cooler. Pulse-tube refrigeration (PTR) is a new technology for cooling down to extremely low temperatures. In this paper a particular type, the so-called Stirling single-stage refrigerator, is considered. A
Explicit solutions of one-dimensional, first-order, stationary mean-field games with congestion
Gomes, Diogo A.
2017-01-05
Here, we consider one-dimensional first-order stationary mean-field games with congestion. These games arise when crowds face difficulty moving in high-density regions. We look at both monotone decreasing and increasing interactions and construct explicit solutions using the current formulation. We observe new phenomena such as discontinuities, unhappiness traps and the non-existence of solutions.
Luo, Liyan; Xu, Luping; Zhang, Hua
2015-07-07
In order to enhance the robustness and accelerate the recognition speed of star identification, an autonomous star identification algorithm for star sensors is proposed based on the one-dimensional vector pattern (one_DVP). In the proposed algorithm, the space geometry information of the observed stars is used to form the one-dimensional vector pattern of the observed star. The one-dimensional vector pattern of the same observed star remains unchanged when the stellar image rotates, so the problem of star identification is simplified as the comparison of the two feature vectors. The one-dimensional vector pattern is adopted to build the feature vector of the star pattern, which makes it possible to identify the observed stars robustly. The characteristics of the feature vector and the proposed search strategy for the matching pattern make it possible to achieve the recognition result as quickly as possible. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition accuracy and robustness by the proposed algorithm are better than those by the pyramid algorithm, the modified grid algorithm, and the LPT algorithm. The theoretical analysis and experimental results show that the proposed algorithm outperforms the other three star identification algorithms.
Nonlinear behavior of a monochromatic wave in a one-dimensional Vlasov plasma
International Nuclear Information System (INIS)
Shoucri, M.M.; Gagne, R.R.J.
1978-01-01
The nonlinear evolution of a monochromatic wave in a one-dimensional Vlasov plasma is studied numerically. The numerical results are carried out far enough in time for phase mixing to dominate the asymptotic state of the system. A qualitative comparison with previously reported simulations is given
One-dimensional modelling of limit-cycle oscillation and H-mode power scaling
DEFF Research Database (Denmark)
Wu, Xingquan; Xu, Guosheng; Wan, Baonian
2015-01-01
To understand the connection between the dynamics of microscopic turbulence and the macroscale power scaling in the L-I-H transition in magnetically confined plasmas, a new time-dependent, one-dimensional (in radius) model has been developed. The model investigates the radial force balance equati...
Rational solutions to two- and one-dimensional multicomponent Yajima–Oikawa systems
International Nuclear Information System (INIS)
Chen, Junchao; Chen, Yong; Feng, Bao-Feng; Maruno, Ken-ichi
2015-01-01
Exact explicit rational solutions of two- and one-dimensional multicomponent Yajima–Oikawa (YO) systems, which contain multi-short-wave components and single long-wave one, are presented by using the bilinear method. For two-dimensional system, the fundamental rational solution first describes the localized lumps, which have three different patterns: bright, intermediate and dark states. Then, rogue waves can be obtained under certain parameter conditions and their behaviors are also classified to above three patterns with different definition. It is shown that the simplest (fundamental) rogue waves are line localized waves which arise from the constant background with a line profile and then disappear into the constant background again. In particular, two-dimensional intermediate and dark counterparts of rogue wave are found with the different parameter requirements. We demonstrate that multirogue waves describe the interaction of several fundamental rogue waves, in which interesting curvy wave patterns appear in the intermediate times. Different curvy wave patterns form in the interaction of different types fundamental rogue waves. Higher-order rogue waves exhibit the dynamic behaviors that the wave structures start from lump and then retreat back to it, and this transient wave possesses the patterns such as parabolas. Furthermore, different states of higher-order rogue wave result in completely distinguishing lumps and parabolas. Moreover, one-dimensional rogue wave solutions with three states are constructed through the further reduction. Specifically, higher-order rogue wave in one-dimensional case is derived under the parameter constraints. - Highlights: • Exact explicit rational solutions of two-and one-dimensional multicomponent Yajima–Oikawa systems. • Two-dimensional rogue wave contains three different patterns: bright, intermediate and dark states. • Multi- and higher-order rogue waves exhibit distinct dynamic behaviors in two-dimensional case
International Nuclear Information System (INIS)
Chiong, M.S.; Rajoo, S.; Romagnoli, A.; Costall, A.W.; Martinez-Botas, R.F.
2014-01-01
Highlights: • Unsteady turbine performance prediction by integrating the 1-D and meanline models. • The optimum discretization length/diameter ratio is identified. • No improvement is gained by increasing the number of rotor entries. • The predicted instantaneous mass flow and output power are analysed in detail. - Abstract: Stringent emission regulations are driving engine manufacturers to increase investment into enabling technologies to achieve better specific fuel consumption, thermal efficiency and most importantly carbon reduction. Engine downsizing is seen as a key enabler to successfully achieve all of these requirements. Boosting through turbocharging is widely regarded as one of the most promising technologies for engine downsizing. However, the wide range of engine speeds and loads requires enhanced quality of engine-turbocharger matching, compared to the conventional approach which considers only the full load condition. Thus, development of computational models capable of predicting the unsteady behaviour of a turbocharger turbine is crucial to the overall matching process. A purely one-dimensional (1D) turbine model is capable of good unsteady swallowing capacity predictions, however it has not been fully exploited to predict instantaneous turbine power. On the contrary, meanline models (zero-dimensional) are regarded as a good tool to determine turbine efficiency in steady state but they do not include any information about the pressure wave action occurring within the turbine. This paper explores an alternative methodology to predict instantaneous turbine power and swallowing capacity by integrating one-dimensional and meanline models. A single entry mixed-flow turbine is modelled using a 1D gas dynamic code to solve the unsteady flow state in the volute, consequently used as the input for a meanline model to evaluate the instantaneous turbine power. The key in the effectiveness of this methodology relies on the synchronisation of the flow
Directory of Open Access Journals (Sweden)
Yujun Yi
2017-01-01
Full Text Available The long Middle Route of the South to North Water Transfer Project is composed of complex hydraulic structures (aqueduct, tunnel, control gate, diversion, culvert, and diverted siphon, which generate complex flow patterns. It is vital to simulate the flow patterns through hydraulic structures, but it is a challenging work to protect water quality and maintain continuous water transfer. A one-dimensional hydrodynamic and water quality model was built to understand the flow and pollutant movement in this project. Preissmann four-point partial-node implicit scheme was used to solve the governing equations in this study. Water flow and pollutant movement were appropriately simulated and the results indicated that this water quality model was comparable to MIKE 11 and had a good performance and accuracy. Simulation accuracy and model uncertainty were analyzed. Based on the validated water quality model, six pollution scenarios (Q1 = 10 m3/s, Q2 = 30 m3/s, and Q3 = 60 m3/s for volatile phenol (VOP and contaminant mercury (Hg were simulated for the MRP. Emergent pollution accidents were forecasted and changes of water quality were analyzed according to the simulations results, which helped to guarantee continuously transferring water for a large water transfer project.
Acts of terrorism in Paris and Brussels: common and different
Directory of Open Access Journals (Sweden)
O. S. Vonsovych
2016-10-01
Full Text Available The article investigates the common and distinctive features of the terrorist attacks in Paris and Brussels in 2015 and 2016. The attacks have confirmed the weakness of European security system in the context of the protection of its citizens from the threat № 1 in the world. The high level of democracy and liberalism are not allowed to use power instruments effectively in the fight against terrorism, which was the result of the fact that the terrorists were able to freely access to the place of their acts and to implement them. It was determined that the common features are the following: in Paris and in Brussels, the attacks were carried out by terrorist militaristic group «The Islamic State of Iraq and the Levant» (ISIL; the places of commission of terrorist acts; guns of terrorists; military units of France and Belgium are parties of the armed conflict in Syria on the side of the Syrian opposition and struggle against ISIL; there were a few terrorist attacks. It is proved that the differences are as follows: in Paris, in addition to explosives, packed with nails, also were used automatic weapons and grenades, but only explosives in Brussels; France is more active in the fight against terrorism in the international arena and in every way opposed to violence against humanity, so there is a terrorist attack can be seen as a blow to the democratic and humanitarian values; Belgium is a «political heart» of the European Union that’s why the terrorist attack on it can be seen as a blow to the political system of the EU; in Paris, the attack was supposed to apply except for the population and for high officials in the name of F. Hollande and F. Steinmeier, and in Brussels – only civilians.conducting effective public diplomacy by means of virtual diplomacy. In the context of the establishment of the global information society the key target groups must be: Diasporas, foreign media (including bloggers, investors, influential foreign
Comparison of one-dimensional and point kinetics for various light water reactor transients
International Nuclear Information System (INIS)
Naser, J.A.; Lin, C.; Gose, G.C.; McClure, J.A.; Matsui, Y.
1985-01-01
The object of this paper is to compare the results from the three kinetics options: 1) point kinetics; 2) point kinetics by not changing the shape function; and 3) one-dimensional kinetics for various transients on both BWRs and PWRs. A systematic evaluation of the one-dimensional kinetics calculation and its alternatives is performed to determine the status of these models and to identify additional development work. In addition, for PWRs, the NODEP-2 - NODETRAN and SIMULATE - SIMTRAN paths for calculating kinetics parameters are compared. This type of comparison has not been performed before and is needed to properly evaluate the RASP methodology of which these codes are a part. It should be noted that RASP is in its early pre-release stage and this is the first serious attempt to examine the consistency between these two similar but different methods of generating physics parameters for the RETRAN computer code
One-dimensional versus two-dimensional electronic states in vicinal surfaces
International Nuclear Information System (INIS)
Ortega, J E; Ruiz-Oses, M; Cordon, J; Mugarza, A; Kuntze, J; Schiller, F
2005-01-01
Vicinal surfaces with periodic arrays of steps are among the simplest lateral nanostructures. In particular, noble metal surfaces vicinal to the (1 1 1) plane are excellent test systems to explore the basic electronic properties in one-dimensional superlattices by means of angular photoemission. These surfaces are characterized by strong emissions from free-electron-like surface states that scatter at step edges. Thereby, the two-dimensional surface state displays superlattice band folding and, depending on the step lattice constant d, it splits into one-dimensional quantum well levels. Here we use high-resolution, angle-resolved photoemission to analyse surface states in a variety of samples, in trying to illustrate the changes in surface state bands as a function of d
International Nuclear Information System (INIS)
Goncalves, G.A.; Vilhena, M.T. de; Bodmann, B.E.J.
2010-01-01
In the present work we propose a heuristic construction of a transport equation for neutrons with anisotropic scattering considering only the radial cylinder dimension. The eigenvalues of the solutions of the equation correspond to the positive values for the one dimensional case. The central idea of the procedure is the application of the S N method for the discretisation of the angular variable followed by the application of the zero order Hankel transformation. The basis the construction of the scattering terms in form of an integro-differential equation for stationary transport resides in the hypothesis that the eigenvalues that compose the elementary solutions are independent of geometry for a homogeneous medium. We compare the solutions for the cartesian one dimensional problem for an infinite cylinder with azimuthal symmetry and linear anisotropic scattering for two cases. (orig.)
International Nuclear Information System (INIS)
Chen Zhongsheng; Yang Yongmin; Lu Zhimiao; Luo Yanting
2013-01-01
Nowadays broadband vibration energy harvesting using piezoelectric effect has become a research hotspot. The innovation in this paper is the widening of the resonant bandwidth of a piezoelectric harvester based on phononic band gaps, which is called one-dimensional phononic piezoelectric cantilever beams (PPCBs). Broadband characteristics of one-dimensional PPCBs are analyzed deeply and the vibration band gap can be calculated. The effects of different parameters on the vibration band gap are presented by both numerical and finite element simulations. Finally experimental tests are conducted to validate the proposed method. It can be concluded that it is feasible to use the PPCB for broadband vibration energy harvesting and there should be a compromise among related parameters for low-frequency vibrations.
International Nuclear Information System (INIS)
Chen Yuan; Song Chuangchuang; Xiang Ying
2010-01-01
In this paper, we apply the two-time Green's function method, and provide a simple way to study the magnetic properties of one-dimensional spin-(S,s) Heisenberg ferromagnets. The magnetic susceptibility and correlation functions are obtained by using the Tyablikov decoupling approximation. Our results show that the magnetic susceptibility and correlation length are a monotonically decreasing function of temperature regardless of the mixed spins. It is found that in the case of S=s, our results of one-dimensional mixed-spin model is reduced to be those of the isotropic ferromagnetic Heisenberg chain in the whole temperature region. Our results for the susceptibility are in agreement with those obtained by other theoretical approaches. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Observation of magnetoelastic effects in a quasi-one-dimensional spiral magnet
Wang, Chong; Yu, Daiwei; Liu, Xiaoqiang; Chen, Rongyan; Du, Xinyu; Hu, Biaoyan; Wang, Lichen; Iida, Kazuki; Kamazawa, Kazuya; Wakimoto, Shuichi; Feng, Ji; Wang, Nanlin; Li, Yuan
2017-08-01
We present a systematic study of spin and lattice dynamics in the quasi-one-dimensional spiral magnet CuBr2, using Raman scattering in conjunction with infrared and neutron spectroscopy. Along with the development of spin correlations upon cooling, we observe a rich set of broad Raman bands at energies that correspond to phonon-dispersion energies near the one-dimensional magnetic wave vector. The low-energy bands further exhibit a distinct intensity maximum at the spiral magnetic ordering temperature. We attribute these unusual observations to two possible underlying mechanisms: (1) formation of hybrid spin-lattice excitations and/or (2) "quadrumerization" of the lattice caused by spin-singlet entanglement in competition with the spiral magnetism.
X-ray imaging device for one-dimensional and two-dimensional radioscopy
International Nuclear Information System (INIS)
1978-01-01
The X-ray imaging device for the selectable one-dimensional or two-dimensional pictures of objects illuminated by X-rays, comprising an X-ray source, an X-ray screen, and an opto-electrical picture development device placed behind the screen, is characterized by an anamorphotic optical system, which is positioned with a one-dimensional illumination between the X-ray screen and the opto-electrical device and that a two-dimensional illumination will be developed, and that in view of the lens system which forms part of the opto-electrical device, there is placed an X-ray screen in a specified beam direction so that a magnified image may be formed by equalisation of the distance between the X-ray screen and the lens system. (G.C.)
Energy Technology Data Exchange (ETDEWEB)
Chen Zhongsheng, E-mail: czs_study@sina.com [Key Laboratory of Science and Technology on Integrated Logistics Support, College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha, Hunan 410073 (China); Yang Yongmin; Lu Zhimiao; Luo Yanting [Key Laboratory of Science and Technology on Integrated Logistics Support, College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha, Hunan 410073 (China)
2013-02-01
Nowadays broadband vibration energy harvesting using piezoelectric effect has become a research hotspot. The innovation in this paper is the widening of the resonant bandwidth of a piezoelectric harvester based on phononic band gaps, which is called one-dimensional phononic piezoelectric cantilever beams (PPCBs). Broadband characteristics of one-dimensional PPCBs are analyzed deeply and the vibration band gap can be calculated. The effects of different parameters on the vibration band gap are presented by both numerical and finite element simulations. Finally experimental tests are conducted to validate the proposed method. It can be concluded that it is feasible to use the PPCB for broadband vibration energy harvesting and there should be a compromise among related parameters for low-frequency vibrations.
Use of one-dimensional Cosserat theory to study instability in a viscous liquid jet
International Nuclear Information System (INIS)
Bogy, D.B.
1978-01-01
The problem of the instability of an incompressible viscous liquid jet is considered within the context of one-dimensional Cosserat equations. Linear stability analyses are performed for both the infinite and semi-infinite jets. The results obtained for the inviscid case are compared with the corresponding results derived from ideal fluid equations. They are also compared with recent results by other authors obtained from a different set of one-dimensional jet equations. Solutions are also obtained, within the framework of the linearized theory, to the jet break-up problems formulated as an initial-value problem for the infinite jet and as a boundary-value problem for the semi-infinite jet
Quantum magnetism in strongly interacting one-dimensional spinor Bose systems
DEFF Research Database (Denmark)
Salami Dehkharghani, Amin; Volosniev, A. G.; Lindgren, E. J.
2015-01-01
-range inter-species interactions much larger than their intra-species interactions and show that they have novel energetic and magnetic properties. In the strongly interacting regime, these systems have energies that are fractions of the basic harmonic oscillator trap quantum and have spatially separated......Strongly interacting one-dimensional quantum systems often behave in a manner that is distinctly different from their higher-dimensional counterparts. When a particle attempts to move in a one-dimensional environment it will unavoidably have to interact and 'push' other particles in order...... ground states with manifestly ferromagnetic wave functions. Furthermore, we predict excited states that have perfect antiferromagnetic ordering. This holds for both balanced and imbalanced systems, and we show that it is a generic feature as one crosses from few- to many-body systems....
International Nuclear Information System (INIS)
Skoczen, A.; Machowski, W.; Kaprzyk, S.
1990-07-01
Computer program aiming at application in quantum mechanics didactics has been proposed. This program can generate the moving pictures of one-dimensional quantum mechanics scattering phenomena. Constructions of this program provide two options. In the first option the wave packet is generated in infinite one-dimensional well which has walls on the borders of graphic window. In the second option the square potential barrier is located in this well and transmission and reflection of wave packet are shown. We have selected a Gaussian wave packet to represent the initial state of the particle. The wave equation is solved numerically by a method discussed in detail. Solutions for the succesive time moments are graphically presented on the monitor screen. In this way observer can watch whole time-development of physical system. Graphically presented results are physically realistic when program parameters satisfy conditions discussed in this paper. (author)
Theory of finite-entanglement scaling at one-dimensional quantum critical points.
Pollmann, Frank; Mukerjee, Subroto; Turner, Ari M; Moore, Joel E
2009-06-26
Studies of entanglement in many-particle systems suggest that most quantum critical ground states have infinitely more entanglement than noncritical states. Standard algorithms for one-dimensional systems construct model states with limited entanglement, which are a worse approximation to quantum critical states than to others. We give a quantitative theory of previously observed scaling behavior resulting from finite entanglement at quantum criticality. Finite-entanglement scaling in one-dimensional systems is governed not by the scaling dimension of an operator but by the "central charge" of the critical point. An important ingredient is the universal distribution of density-matrix eigenvalues at a critical point [P. Calabrese and A. Lefevre, Phys. Rev. A 78, 032329 (2008)10.1103/PhysRevA.78.032329]. The parameter-free theory is checked against numerical scaling at several quantum critical points.
Advances in one-dimensional wave mechanics towards a unified classical view
Cao, Zhuangqi
2014-01-01
Advances in One-Dimensional Wave Mechanics provides a comprehensive description of the motion of microscopic particles in one-dimensional, arbitrary-shaped potentials based on the analogy between Quantum Mechanics and Electromagnetism. Utilizing a deeper understanding of the wave nature of matter, this book introduces the concept of the scattered sub-waves and a series of new analytical results using the Analytical Transfer Matrix (ATM) method. This work will be useful for graduate students majoring in physics, mainly in basic quantum theory, as well as for academic researchers exploring electromagnetism, particle physics, and wave mechanics and for experts in the field of optical waveguide and integrated optics. Prof. Zhuangqi Cao is a Professor of Physics at Shanghai Jiao Tong University, China. Dr. Cheng Yin is a teacher at Jiangsu Key Laboratory of Power Transmission and Distribution Equipment Technology, Hohai University, China.
Enhancement of conductivity due to local disorder in a one-dimensional conductor
International Nuclear Information System (INIS)
Morifuji, Masato; Maeda, Yusuke
2011-01-01
We theoretically investigate electron transport in a one-dimensional conductor with a locally disordered potential by using the non-equilibrium Green’s function theory. It is found that, by changing the energy of a site in a one-dimensional atomic chain, the electron conductivity can be larger when the modulated site energy is smaller than that of the other sites. This contradicts the conventional picture that an electron is scattered by the disorder of the potential, because such a scattering process usually causes resistivity. We show that the enhancement of conductivity that seems contradictory to the conventional picture of electron motion is explained by the change of energy of quasi bound states in the conductor. (paper)
Sufficient conditions for a period incrementing big bang bifurcation in one-dimensional maps
International Nuclear Information System (INIS)
Avrutin, V; Granados, A; Schanz, M
2011-01-01
Typically, big bang bifurcation occurs for one (or higher)-dimensional piecewise-defined discontinuous systems whenever two border collision bifurcation curves collide transversely in the parameter space. At that point, two (feasible) fixed points collide with one boundary in state space and become virtual, and, in the one-dimensional case, the map becomes continuous. Depending on the properties of the map near the codimension-two bifurcation point, there exist different scenarios regarding how the infinite number of periodic orbits are born, mainly the so-called period adding and period incrementing. In our work we prove that, in order to undergo a big bang bifurcation of the period incrementing type, it is sufficient for a piecewise-defined one-dimensional map that the colliding fixed points are attractive and with associated eigenvalues of different signs
One-dimensional flame instability and control of burning in fire-chamber
Directory of Open Access Journals (Sweden)
Victor E. Volkov
2015-03-01
Full Text Available The flame stability with regard to one-dimensional exponential perturbations both for the combustion in the fire-chamber and the flame propagating in closed tubes or chambers is investigated. It is proved that both stability and instability are possible for the combustion process. At the same time the one-dimensional flame instability is guaranteed near the front wall of the fire-chamber where the fuel supply is realized. Therefore the control of combustion in the fire-chamber leads to support of the flame at the maximum possible distance from the front wall of the fire-chamber to prevent the vibratory combustion or to diminish intensity of pulsations if these pulsations are inevitable.
A general one-dimensional model for conduction-controlled rewetting of a surface
International Nuclear Information System (INIS)
Elias, E.; Yadigaroglu, G.
1977-01-01
A computer-oriented analytical method for predicting the rewetting rate of a hot dry wall is proposed. The wall, which is modeled as a thin flat plate with internal heat generation, receives a variable heat flux from one side while it is cooled from the other side. The model accounts for the large variations of the heat transfer coefficient near the wet front and for the temperature dependence of the thermal and physical properties of the wall. The one-dimensional heat-conduction equation is solved by dividing the quenching zone into small segments of arbitrary temperature increment and constant properties and heat transfer coefficient. A trial-and-error method is developed to predict the velocity of the wet front, the length of the quenching zone and the temperature profile. The one-dimensional models of other authors can be obtained as particular cases of the present model. (Auth.)
Broadband slow light in one-dimensional logically combined photonic crystals.
Alagappan, G; Png, C E
2015-01-28
Here, we demonstrate the broadband slow light effects in a new family of one dimensional photonic crystals, which are obtained by logically combining two photonic crystals of slightly different periods. The logical combination slowly destroys the original translational symmetries of the individual photonic crystals. Consequently, the Bloch modes of the individual photonic crystals with different wavevectors couple with each other, creating a vast number of slow modes. Specifically, we describe a photonic crystal architecture that results from a logical "OR" mixture of two one dimensional photonic crystals with a periods ratio of r = R/(R - 1), where R > 2 is an integer. Such a logically combined architecture, exhibits a broad region of frequencies in which a dense number of slow modes with varnishing group velocities, appear naturally as Bloch modes.
One-dimensional silicon nanolines in the Si(001):H surface
International Nuclear Information System (INIS)
Bianco, F.; Köster, S. A.; Longobardi, M.; Owen, J. H.G.; Renner, Ch.; Bowler, D. R.
2013-01-01
We present a detailed study of the structural and electronic properties of a self-assembled silicon nanoline embedded in the monohydride Si(001):H surface, known as the Haiku stripe. The nanoline is a perfectly straight and defect free endotaxial structure of huge aspect ratio; it can grow micrometer long at a constant width of exactly four Si dimers (1.54 nm). Another remarkable property is its capacity to be exposed to air without suffering any degradation. The nanoline grows independently of any step edges at tunable densities, from isolated nanolines to a dense array of nanolines. In addition to these unique structural characteristics, scanning tunnelling microscopy and density functional theory reveal a one-dimensional state confined along the Haiku core. This nanoline is a promising candidate for the long sought after electronic solid-state one-dimensional model system to explore the fascinating quantum properties emerging in such reduced dimensionality
Ultracold atoms in one-dimensional optical lattices approaching the Tonks-Girardeau regime
International Nuclear Information System (INIS)
Pollet, L.; Rombouts, S.M.A.; Denteneer, P.J. H.
2004-01-01
Recent experiments on ultracold atomic alkali gases in a one-dimensional optical lattice have demonstrated the transition from a gas of soft-core bosons to a Tonks-Girardeau gas in the hard-core limit, where one-dimensional bosons behave like fermions in many respects. We have studied the underlying many-body physics through numerical simulations which accommodate both the soft-core and hard-core limits in one single framework. We find that the Tonks-Girardeau gas is reached only at the strongest optical lattice potentials. Results for slightly higher densities, where the gas develops a Mott-like phase already at weaker optical lattice potentials, show that these Mott-like short-range correlations do not enhance the convergence to the hard-core limit
Double and super-exchange model in one-dimensional systems
International Nuclear Information System (INIS)
Vallejo, E.; Navarro, O.; Avignon, M.
2010-01-01
We present an analytical and numerical study of the competition between double and super-exchange interactions in a one-dimensional model. For low super-exchange interaction energy we find phase separation between ferromagnetic and anti-ferromagnetic phases. When the super-exchange interaction energy gets larger, the conduction electrons are self-trapped within separate small magnetic polarons. These magnetic polarons contain a single electron inside two or three sites depending on the conduction electron density and form a Wigner crystallization. A new phase separation is found between these small polarons and the anti-ferromagnetic phase. Spin-glass behavior is obtained consistent with experimental results of the nickelate one-dimensional compound Y 2-x Ca x BaNiO 5 .
An algorithm for engineering regime shifts in one-dimensional dynamical systems
Tan, James P. L.
2018-01-01
Regime shifts are discontinuous transitions between stable attractors hosting a system. They can occur as a result of a loss of stability in an attractor as a bifurcation is approached. In this work, we consider one-dimensional dynamical systems where attractors are stable equilibrium points. Relying on critical slowing down signals related to the stability of an equilibrium point, we present an algorithm for engineering regime shifts such that a system may escape an undesirable attractor into a desirable one. We test the algorithm on synthetic data from a one-dimensional dynamical system with a multitude of stable equilibrium points and also on a model of the population dynamics of spruce budworms in a forest. The algorithm and other ideas discussed here contribute to an important part of the literature on exercising greater control over the sometimes unpredictable nature of nonlinear systems.
International Nuclear Information System (INIS)
Khater, Antoine; Szczesniak, Dominik
2011-01-01
An analytical model is presented for the electronic conductance in a one dimensional atomic chain across an isolated defect. The model system consists of two semi infinite lead atomic chains with the defect atom making the junction between the two leads. The calculation is based on a linear combination of atomic orbitals in the tight-binding approximation, with a single atomic one s-like orbital chosen in the present case. The matching method is used to derive analytical expressions for the scattering cross sections for the reflection and transmission processes across the defect, in the Landauer-Buttiker representation. These analytical results verify the known limits for an infinite atomic chain with no defects. The model can be applied numerically for one dimensional atomic systems supported by appropriate templates. It is also of interest since it would help establish efficient procedures for ensemble averages over a field of impurity configurations in real physical systems.
International Nuclear Information System (INIS)
Kang, Kai; Qin, Shaojing; Wang, Chuilin
2011-01-01
We calculated numerically the localization length of one-dimensional Anderson model with diagonal disorder. For weak disorder, we showed that the localization length changes continuously as the energy changes from the band center to the boundary of the anomalous region near the band edge. We found that all the localization lengths for different disorder strengths and different energies collapse onto a single curve, which can be fitted by a simple equation. Thus the description of the perturbation theory and the band center anomaly were unified into this equation. -- Highlights: → We study the band center anomaly of one-dimensional Anderson localization. → We study numerically the Lyapunov exponent through a parametrization method of the transfer matrix. → We give a unified equation to describe the band center anomaly and perturbation theory.
Boukahil, A.; Huber, D. L.
1989-09-01
The harmonic magnon modes in a one-dimensional Heisenberg spin glass having nearest-neighbor exchange interactions of fixed magnitude and random sign are investigated. The Lyapounov exponent is calculated for chains of 107-108 spins over the interval 0Stinchcombe and Pimentel using transfer-matrix techniques; at higher frequencies, gaps appear in the spectrum. At low frequencies, the localization length diverges as ω-2/3. A formal connection is established between the spin glass and the one-dimensional discretized Schrödinger equation. By making use of the connection, it is shown that the theory of Derrida and Gardner, which was developed for weak potential disorder, can account quantitatively for the distribution and localization of the low-frequency magnon modes in the spin-glass model.
Sufficient conditions for a period incrementing big bang bifurcation in one-dimensional maps
Avrutin, V.; Granados, A.; Schanz, M.
2011-09-01
Typically, big bang bifurcation occurs for one (or higher)-dimensional piecewise-defined discontinuous systems whenever two border collision bifurcation curves collide transversely in the parameter space. At that point, two (feasible) fixed points collide with one boundary in state space and become virtual, and, in the one-dimensional case, the map becomes continuous. Depending on the properties of the map near the codimension-two bifurcation point, there exist different scenarios regarding how the infinite number of periodic orbits are born, mainly the so-called period adding and period incrementing. In our work we prove that, in order to undergo a big bang bifurcation of the period incrementing type, it is sufficient for a piecewise-defined one-dimensional map that the colliding fixed points are attractive and with associated eigenvalues of different signs.
International Nuclear Information System (INIS)
Shen, Yun; Fu, Jiwu; Yu, Guoping
2011-01-01
Highlights: → A simple one-dimensional chirped photonic crystal is proposed to realize rainbow trapping. → The results show different wavelengths can be trapped at different spatial positions. → The structure can be used for optical buffer, memories and filter, sorter, etc. -- Abstract: One-dimensional chirped photonic crystals composed of alternating dielectric slabs are proposed to realize rainbow trapping. We theoretically and numerically demonstrate that not only significantly reduced group velocity can be achieved in the proposed chirped structures, but different wavelengths can be localized in different spatial positions, indicating trapped rainbow. Our results imply a feasible way to slow or even trap light in simple systems, which can be used for optical buffer, memory, data processor and filter, sorter, etc.
Polyacene and a new class of quasi-one-dimensional conductors
International Nuclear Information System (INIS)
Kivelson, S.; Chapman, O.L.
1983-01-01
Most one-dimensional conductors are quite similar since the Fermi surface is a point and the electron energy dispersion relation near the Fermi surface is linear. It is pointed out that in polyacene the Fermi surface lies at the edge of the Brillouin zone, but that an accidental degeneracy between the valence and conduction bands makes it metallic nonetheless. The dispersion relation is therefore quadratic, and the density of states diverges at the Fermi surface. Thus, polyacene [(C 4 H 2 )/sub n/] and its possible derivatives represent a conceptually new class of quasi-one-dimensional conductors. Moreover, we find that this class of materials has the possibility of possessing interesting condensed phases including high-temperature superconductivity and ferromagnetism
Moving Least Squares Method for a One-Dimensional Parabolic Inverse Problem
Directory of Open Access Journals (Sweden)
Baiyu Wang
2014-01-01
Full Text Available This paper investigates the numerical solution of a class of one-dimensional inverse parabolic problems using the moving least squares approximation; the inverse problem is the determination of an unknown source term depending on time. The collocation method is used for solving the equation; some numerical experiments are presented and discussed to illustrate the stability and high efficiency of the method.
Analytical Solution and Application for One-Dimensional Consolidation of Tailings Dam
Liu, Hai-ming; Nan, Gan; Guo, Wei; Yang, Chun-he; Zhang, Chao
2018-01-01
The pore water pressure of tailings dam has a very great influence on the stability of tailings dam. Based on the assumption of one-dimensional consolidation and small strain, the partial differential equation of pore water pressure is deduced. The obtained differential equation can be simplified based on the parameters which are constants. According to the characteristics of the tailings dam, the pore water pressure of the tailings dam can be divided into the slope dam segment, dry beach seg...
A one-dimensional gravitationally interacting gas and the convex minorant of Brownian motion
International Nuclear Information System (INIS)
Suidan, T M
2001-01-01
The surprising connection between a one-dimensional gravitationally interacting gas of sticky particles and the convex minorant process generated by Brownian motion on [0,1] is studied. A study is made of the dynamics of this 1-D gas system by identifying three distinct clustering regimes and the time scales at which they occur. At the critical moment of time the mass distribution of the gas can be computed in terms of functionals of the convex minorant process
Two new types of solvability of the one-dimensional anharmonic oscillators
International Nuclear Information System (INIS)
Znojil, M.
1989-01-01
In the Schroedinger picture, we propose a new modification of the so-called Hill-determinant technique. It is shown to guarantee a proper matching of the two underlying power series Ψ(x) at x=0. In the Heisenberg picture, an evolution of the same one-dimensional polynomially anharmonic oscillator is considered. A modified Peano-Baker method is applied and shown to define the explicit solutions by recurrences. 11 refs
One dimensional Dirac-Moshinsky oscillator-like system and isospectral partners
International Nuclear Information System (INIS)
Contreras-Astorga, A
2015-01-01
Two different exactly solvable systems are constructed using the supersymmetric quantum mechanics formalism and a pseudoscalar one-dimensional version of the Dirac- Moshinsky oscillator as a departing system. One system is built using a first-order SUSY transformation. The second is obtained through the confluent supersymmetry algorithm. The two of them are explicitly designed to have the same spectrum as the departing system and pseudoscalar potentials. (paper)
Electronic correlations and disorder in transport through one-dimensional nanoparticle arrays
Bascones, E.; Estevez, V.; Trinidad, J. A.; MacDonald, A. H.
2007-01-01
We analyze and clarify the transport properties of a one-dimensional metallic nanoparticle array with interaction between charges restricted to charges placed in the same conductor. We study the threshold voltage, the I-V curves and the potential drop through the array and their dependence on the array parameters including the effect of charge and resistance disorder. We show that very close to threshold the current depends linearly on voltage with a slope independent on the array size. At in...
Transverse Kerr effect in one-dimensional magnetophotonic crystals: Experiment and theory
International Nuclear Information System (INIS)
Erokhin, S.; Boriskina, Yu.; Vinogradov, A.; Inoue, M.; Kobayashi, D.; Fedyanin, A.; Gan'shina, E.; Kochneva, M.; Granovsky, A.
2006-01-01
Magneto-optical transverse Kerr and Faraday effects are studied experimentally and theoretically in one-dimensional magnetophotonic crystals fabricated from a stack of four repetitions of layers of Bi-substituted yttrium iron garnet and SiO 2 layers. The results of theoretical calculations in the framework of modified matrices approach are consistent with the obtained experimental data with the exception of the one cusp at 480 nm in the transverse Kerr effect spectra. Possible mechanisms of this disagreement are discussed
Electronic structure of the quasi-one-dimensional organic conductor TTF-TCNQ
DEFF Research Database (Denmark)
Sing, M.; Schwingenschlögl, U.; Claessen, R.
2003-01-01
We study the electronic structure of the quasi-one-dimensional organic conductor TTF-TCNQ by means of density-functional band theory, Hubbard model calculations, and angle-resolved photoelectron spectroscopy (ARPES). The experimental spectra reveal significant quantitative and qualitative......-dimensional Hubbard model for the low-energy spectral behavior is attributed to interchain coupling and the additional effect of electron-phonon interaction....
Topological phase transition in the quench dynamics of a one-dimensional Fermi gas
Wang, Pei; Yi, Wei; Xianlong, Gao
2014-01-01
We study the quench dynamics of a one-dimensional ultracold Fermi gas in an optical lattice potential with synthetic spin-orbit coupling. At equilibrium, the ground state of the system can undergo a topological phase transition and become a topological superfluid with Majorana edge states. As the interaction is quenched near the topological phase boundary, we identify an interesting dynamical phase transition of the quenched state in the long-time limit, characterized by an abrupt change of t...
Localization of the solution of a one-dimensional one-phase Stefan problem
Cortazar, C.; Elgueta, M.; Primicerio, M.
1996-01-01
Studiamo la localizzazione, l'insieme dei punti di blow up ed alcuni aspetti della velocità di propagazione della frontiera libera di soluzioni di un problema di Stefan unidimensionale ad una fase. We study localization, the set of blow up points and some aspects of the speed of the free boundary of solutions of a one-dimensional, one-phase Stefan problem.
International Nuclear Information System (INIS)
Paixao, S.B.; Marzo, M.A.S.; Alvim, A.C.M.
1986-01-01
The calculation method used in WIGLE code is studied. Because of the non availability of such a praiseworthy solution, expounding the method minutely has been tried. This developed method has been applied for the solution of the one-dimensional, two-group, diffusion equations in slab, axial analysis, including non-boiling heat transfer, accountig for feedback. A steady-state program (CITER-1D), written in FORTRAN 4, has been implemented, providing excellent results, ratifying the developed work quality. (Author) [pt
Anomaly in the band centre of the one-dimensional Anderson model
Kappus, M.; Wegner, F.
1981-03-01
We calculate the density of states and various characteristic lengths of the one-dimensional Anderson model in the limit of weak disorder. All these quantities show anomalous fluctuations near the band centre. This has already been observed for the density of states in a different model by Gorkov and Dorokhov, and is in close agreement with a Monte-Carlo calculation for the localization length by Czycholl, Kramer and Mac-Kinnon.
SING-dialoque subsystem for graphical representation of one-dimensional array contents
International Nuclear Information System (INIS)
Karlov, A.A.; Kirilov, A.S.
1979-01-01
General principles of organization and main features of dialogue subsystem for graphical representation of one-dimensional array contents are considered. The subsystem is developed for remote display station of the JINR BESM-6 computer. Some examples of using the subsystem for drawing curves and histograms are given. The subsystem is developed according to modern dialogue systems requirements. It is ''open'' for extension and could be installed into other computers [ru
One-dimensional structures behind twisted and untwisted superYang-Mills theory
Baulieu, Laurent
2011-01-01
We give a one-dimensional interpretation of the four-dimensional twisted N=1 superYang-Mills theory on a Kaehler manifold by performing an appropriate dimensional reduction. We prove the existence of a 6-generator superalgebra, which does not possess any invariant Lagrangian but contains two different subalgebras that determine the twisted and untwisted formulations of the N=1 superYang-Mills theory.
Exact solution of the one-dimensional Hubbard model with arbitrary boundary magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Li, Yuan-Yuan; Cao, Junpeng [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Yang, Wen-Li [Institute of Modern Physics, Northwest University, Xian 710069 (China); Beijing Center for Mathematics and Information Interdisciplinary Sciences, Beijing, 100048 (China); Shi, Kangjie [Institute of Modern Physics, Northwest University, Xian 710069 (China); Wang, Yupeng, E-mail: yupeng@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)
2014-02-15
The one-dimensional Hubbard model with arbitrary boundary magnetic fields is solved exactly via the Bethe ansatz methods. With the coordinate Bethe ansatz in the charge sector, the second eigenvalue problem associated with the spin sector is constructed. It is shown that the second eigenvalue problem can be transformed into that of the inhomogeneous XXX spin chain with arbitrary boundary fields which can be solved via the off-diagonal Bethe ansatz method.
A tetrahedrally coordinated cobalt(II) aminophosphonate containing one-dimensional channels
International Nuclear Information System (INIS)
Gemmill, William R.; Smith, Mark D.; Reisner, Barbara A.
2005-01-01
A tetrahedrally coordinated cobalt(II) phosphonate, Co(O 3 PCH 2 CH 2 NH 2 ), has been synthesized using hydrothermal techniques. X-ray diffraction indicates that this material is a three-dimensional open framework with rings aligned along a single axis forming infinite one-dimensional channels. The framework decomposes just above 400 deg. C. Magnetic susceptibility data are consistent with weak antiferromagnetic ordering at low temperatures
Entanglement growth and simulation efficiency in one-dimensional quantum lattice systems
Perales, Alvaro; Vidal, Guifre
2007-01-01
We study the evolution of one-dimensional quantum lattice systems when the ground state is perturbed by altering one site in the middle of the chain. For a large class of models, we observe a similar pattern of entanglement growth during the evolution, characterized by a moderate increase of significant Schmidt coefficients in all relevant bipartite decompositions of the state. As a result, the evolution can be accurately described by a matrix product state and efficiently simulated using the...
Complex classical paths and the one-dimensional sine-Gordon system
International Nuclear Information System (INIS)
Millard, P.A.
1985-01-01
The semiclassical limit of the Green function for a particle in the one-dimensional sine-Gordon potential is obtained by summing over complex classical paths. The results are the same as those obtained in the less physically intuitive WKB approach. In addition to being of practical utility for solving quantum mechanical problems involving tunnelling, the classical path method may show how to deal with dense configuration of instantons. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Petukhov, B. V., E-mail: petukhov@ns.crys.ras.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” (Russian Federation)
2017-01-15
The state switching in an extended quasi-one-dimensional material is modeled by the stochastic formation of local new-state nuclei and their subsequent growth along the system axis. An analytical approach is developed to describe the influence of defects, dividing a sample into an ensemble of finite-length segments, on its state switching kinetics. As applied to magnetic systems, the method makes it possible to calculate magnetization curves for different defect concentrations and parameters of material.
One-dimensional fluid model for transport in divertor and limiter tokamak scrape-off layers
International Nuclear Information System (INIS)
Lipschultz, B.
1983-11-01
Single-fluid transport in the plasma scrape-off layer is modeled for poloidal divertor and mechanically limited discharges. This numerical model is one-dimensional along a field line and time-independent. Conductive and convective transport, as well as impurity and neutral source (sink) terms are included. A simple shooting method technique is used for obtaining solutions. Results are shown for the case of the proposed Alcator DCT tokamak
One-dimensional structures behind twisted and untwisted super Yang-Mills theory
Energy Technology Data Exchange (ETDEWEB)
Baulieu, Laurent [CERN, Geneve (Switzerland). Theoretical Div.; Toppan, Francesco, E-mail: baulieu@lpthe.jussieu.f, E-mail: toppan@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)
2010-07-01
We give a one-dimensional interpretation of the four-dimensional twisted N = 1 super Yang-Mills theory on a Kaehler manifold by performing an appropriate dimensional reduction. We prove the existence of a 6-generator superalgebra, which does not possess any invariant Lagrangian but contains two different subalgebras that determine the twisted and untwisted formulations of the N = 1 super Yang-Mills theory. (author)
International Nuclear Information System (INIS)
Prasad, S.; Singh, Vivek; Singh, A. K.
2013-01-01
The transfer matrix method is used to study the effect of the permittivity profile on the reflectivity of a one dimensional plasma photonic crystal having exponentially graded material. The analysis shows that the proposed structure works as a perfect mirror within a certain frequency range. These frequency ranges can be completely controlled by the permittivity profile of a graded dielectric layer. As expected we observed that these frequency ranges are also controlled by plasma parameters. (plasma technology)
One-dimensional unstable eigenfunction and manifold computations in delay differential equations
International Nuclear Information System (INIS)
Green, Kirk; Krauskopf, Bernd; Engelborghs, Koen
2004-01-01
In this paper we present a new numerical technique for computing the unstable eigenfunctions of a saddle periodic orbit in a delay differential equation. This is used to obtain the necessary starting data for an established algorithm for computing one-dimensional (1D) unstable manifolds of an associated saddle fixed point of a suitable Poincare map. To illustrate our method, we investigate an intermittent transition to chaos in a delay system describing a semiconductor laser subject to phase-conjugate feedback
Effects of Interaction Imbalance in a Strongly Repulsive One-Dimensional Bose Gas
Barfknecht, R. E.; Foerster, A.; Zinner, N. T.
2018-05-01
We calculate the spatial distributions and the dynamics of a few-body two-component strongly interacting Bose gas confined to an effectively one-dimensional trapping potential. We describe the densities for each component in the trap for different interaction and population imbalances. We calculate the time evolution of the system and show that, for a certain ratio of interactions, the minority population travels through the system as an effective wave packet.
International Nuclear Information System (INIS)
Bobula, E.; Kalicka, Z.
1981-10-01
In the paper we consider the one-dimensional solidification of binary alloys in the finite system. The authors present the sufficient condition for solidification in the liquid in front of the moving solid-liquid interface. The effect may produce a fluctuating concentration distributin in the solid. The convection in the liquid and supercooling required for homogeneous nucleation are omitted. A local-equilibrium approximation at the liquid-solid interface is supposed. (author)
A generalized fluctuation-dissipation theorem for the one-dimensional diffusion process
International Nuclear Information System (INIS)
Okabe, Y.
1985-01-01
The [α,β,γ]-Langevin equation describes the time evolution of a real stationary process with T-positivity (reflection positivity) originating in the axiomatic quantum field theory. For this [α,β,γ]-Langevin equation a generalized fluctuation-dissipation theorem is proved. We shall obtain, as its application, a generalized fluctuation-dissipation theorem for the one-dimensional non-linear diffusion process, which presents one solution of Ryogo Kubo's problem in physics. (orig.)
Investigation of the diffusion of a massive particle in a one-dimensional ideal gas
International Nuclear Information System (INIS)
Khazin, M.L.
1987-01-01
Numerical methods have been used to investigate the dependence of the diffusion coefficient of a massive particle in a one-dimensional ideal gas on its mass. It is shown that the lower limit for the diffusion coefficient obtained by Sinai and Soloveichick and Szasz and Toth is a greatest lower bound. In addition, application of Pearson's x 2 test showed that the limit distribution of a massive particle is not Gaussian with a high significance level
LETTERS AND COMMENTS: Energy in one-dimensional linear waves in a string
Burko, Lior M.
2010-09-01
We consider the energy density and energy transfer in small amplitude, one-dimensional waves on a string and find that the common expressions used in textbooks for the introductory physics with calculus course give wrong results for some cases, including standing waves. We discuss the origin of the problem, and how it can be corrected in a way appropriate for the introductory calculus-based physics course.
Homotopy decomposition method for solving one-dimensional time-fractional diffusion equation
Abuasad, Salah; Hashim, Ishak
2018-04-01
In this paper, we present the homotopy decomposition method with a modified definition of beta fractional derivative for the first time to find exact solution of one-dimensional time-fractional diffusion equation. In this method, the solution takes the form of a convergent series with easily computable terms. The exact solution obtained by the proposed method is compared with the exact solution obtained by using fractional variational homotopy perturbation iteration method via a modified Riemann-Liouville derivative.
One-dimensional adiabatic model of waterhammer; Endodimenzionalni adiabatni model vodnega udara
Energy Technology Data Exchange (ETDEWEB)
Bizjak, S [Institut Jozef Stefan, Ljubljana (Yugoslavia)
1984-07-01
Program WH was developed to calculate transient pressure and velocities in hydraulic networks. It is based on one-dimensional approximation of conservation laws of mass and momentum. the energy equation is ignored which means that heat transfer effects are no included. When calculating the velocity of pressure wave, compressibility of liquid, elasticity of pipe and possible minimal presence of gas in bubble or dissolved form are included. (author)
A study of the one dimensional total generalised variation regularisation problem
Papafitsoros, Konstantinos
2015-03-01
© 2015 American Institute of Mathematical Sciences. In this paper we study the one dimensional second order total generalised variation regularisation (TGV) problem with L2 data fitting term. We examine the properties of this model and we calculate exact solutions using simple piecewise affine functions as data terms. We investigate how these solutions behave with respect to the TGV parameters and we verify our results using numerical experiments.
Fu, Meng; Li, Xiangming; Jiang, Rui; Zhang, Zepeng
2018-05-01
Magnetic nanocomposite composed of attapulgite and Fe3O4 was synthesized by a simple and facile co-precipitation method. Its structure and morphology was verified using X-ray diffraction, transmission electron microscopy, scanning electron microscopy and Fourier transform infrared spectroscopy. Although the difficulty of forming uniform Fe3O4 on the attapulgite surface was discussed in detail in this study, one-dimensional magnetic nanorod with attapulgites as core and Fe3O4 as uniform shell was implemented for the first time using a cationic polymer surfactant, polyethylenimine. Polyethylenimine concentration, Fe3+/Fe2+ concentration and temperature were controlled to investigate the morphological evolutions of this nanocomposite. It was found that a uniform shell could be available with thickness tuning from 10 nm to 40 nm when Fe3+ concentration ranged from 0.01 mol/L to 0.03 mol/L meanwhile the polyethylenimine concentration was kept at 0.2 mg/mL and the temperature was kept at 60-80 °C. Finally, a possible mechanism for the formation of the Fe3O4 shell was suggested. The polyethylenimine on the surface of the attapulgites first adsorbed Fe3+/Fe2+ and then released under the action of alkali. It acted as a linker for the Fe3O4 nanoparticles nucleation in situ. The synthesized one-dimensional nanocomposites exhibit the superparamagnetism and fast response to an external magnetic field. The alignment of attapulgite-Fe3O4 one-dimensional nanocomposite along the external magnetic field was demonstrated. It provides promising candidates for building blocks and functional devices, which are low cost, non-toxic and eco-friendly, and opens the door for the application of attapulgite as one-dimensional nanomaterials.
Yang—Yang thermodynamics of one-dimensional Bose gases with anisotropic transversal confinement
International Nuclear Information System (INIS)
Hao Ya-Jiang; Yin Xiang-Guo
2011-01-01
By combining the thermodynamic Bethe ansatz and local density approximation, we investigate the Yang—Yang thermodynamics of interacting one-dimensional Bose gases with anisotropic transversal confinement. It is shown that with the increase of anisotropic parameter at low temperature, the Bose atoms are distributed over a wider region, while at high temperature the density distribution is not affected obviously. Both the temperature and transversal confinement can strengthen the local pressure of the Bose gases. (general)
One-dimensional structures behind twisted and untwisted super Yang-Mills theory
International Nuclear Information System (INIS)
Baulieu, Laurent
2010-01-01
We give a one-dimensional interpretation of the four-dimensional twisted N = 1 super Yang-Mills theory on a Kaehler manifold by performing an appropriate dimensional reduction. We prove the existence of a 6-generator superalgebra, which does not possess any invariant Lagrangian but contains two different subalgebras that determine the twisted and untwisted formulations of the N = 1 super Yang-Mills theory. (author)
Regularity of the Rotation Number for the One-Dimensional Time-Continuous Schroedinger Equation
Energy Technology Data Exchange (ETDEWEB)
Amor, Sana Hadj, E-mail: sana_hadjamor@yahoo.fr [Ecole Nationale d' Ingenieurs de Monastir (Tunisia)
2012-12-15
Starting from results already obtained for quasi-periodic co-cycles in SL(2, R), we show that the rotation number of the one-dimensional time-continuous Schroedinger equation with Diophantine frequencies and a small analytic potential has the behavior of a 1/2-Hoelder function. We give also a sub-exponential estimate of the length of the gaps which depends on its label given by the gap-labeling theorem.
A numerical scheme for the one-dimensional pressureless gases system
Boudin , Laurent; Mathiaud , Julien
2012-01-01
International audience; In this work, we investigate the numerical solving of the one-dimensional pressureless gases system. After briefly recalling the mathematical framework of the duality solutions introduced by Bouchut and James, we point out that the upwind scheme for the density and momentum does not satisfy the one-sided Lipschitz (OSL) condition on the expansion rate required for the duality solutions. Then we build a diffusive scheme which allows to recover the OSL condition by follo...
Statistics of resonances in a one-dimensional chain: a weak disorder limit
International Nuclear Information System (INIS)
Vinayak
2012-01-01
We study statistics of resonances in a one-dimensional disordered chain coupled to an outer world simulated by a perfect lead. We consider a limiting case for weak disorder and derive some results which are new in these studies. The main focus of this study is to describe the statistics of the scattered complex energies. We derive compact analytic statistical results for long chains. A comparison of these results has been found to be in good agreement with numerical simulations. (paper)
Molecule formation and the Farey tree in the one-dimensional Falicov-Kimball model
International Nuclear Information System (INIS)
Gruber, C.; Ueltschi, D.; Jedrzejewski, J.
1994-01-01
The ground-state configurations of the one-dimensional Falicov-Kimball model are studied exactly with numerical calculations revealing unexpected effects for small interaction strength. In neutral systems we observe molecular formation, phase separation, and changes in the conducting properties; while in nonneutral systems the phase diagram exhibits Farey tree order (Aubry sequence) and a devil's staircase structure. Conjectures are presented for the boundary of the segregated domain and the general structure of the ground states
One-dimensional classical many-body system having a normal thermal conductivity
International Nuclear Information System (INIS)
Casati, G.; Ford, J.; Vivaldi, F.; Visscher, W.M.
1984-01-01
By numerically computing orbits for a chaotic, one-dimensional, many-body system placed between two thermal reservoirs, we verify directly that its energy transport obeys the Fourier heat law and we determine its thermal conductivity K. The same value of K is independently obtained by use of the Green-Kubo formalism. These numerical studies verify that chaos is the essential ingredient of diffusive energy transport, and they validate the Green-Kubo formalism