WorldWideScience

Sample records for oncogenic k-ras-induced lung

  1. Oncogene expression in primary lung tumors in dogs that inhaled 239PuO2

    Kelly, G.; Kerkof, P.R.; Haley, P.J.

    1988-01-01

    Ten radiation-induced and three spontaneous lung tumors were analyzed for aberrant expression of known oncogenes. In 12 of 13 tumors tested, sequences hybridizing to the c-myc oncogene were expressed at levels 1.5 times higher than sequences hybridizing to β-actin. This level of oncogene expression was also observed in 9 of 13 tumors for 1 or more members of the ras family of oncogenes. Seven of thirteen tumors examined express sequences that hybridize with clones of v-ros or c-met. The ros and met clones both code for oncogenes whose normal homologues are transmembrane proteins related to the insulin receptor. (author)

  2. Bioinformatics of non small cell lung cancer and the ras proto-oncogene

    Kashyap, Amita; Babu M, Naresh

    2015-01-01

    Cancer is initiated by activation of oncogenes or inactivation of tumor suppressor genes. Mutations in the K-ras proto-oncogene are responsible for 10–30% of adenocarcinomas. Clinical Findings point to a wide variety of other cancers contributing to lung cancer incidence. Such a scenario makes identification of lung cancer difficult and thus identifying its mechanisms can contribute to the society. Identifying unique conserved patterns common to contributing proto-oncogenes may further be a boon to Pharmacogenomics and pharmacoinformatics. This calls for ab initio/de novo drug discovery that in turn will require a comprehensive in silico approach of Sequence, Domain, Phylogenetic and Structural analysis of the receptors, ligand screening and optimization and detailed Docking studies. This brief involves extensive role of the RAS subfamily that includes a set of proteins, which cause an over expression of cancer-causing genes like M-ras and initiate tumour formation in lungs. SNP Studies and Structure based ...

  3. Oncogene expression in primary lung tumors in dogs that inhaled {sup 239}PuO{sub 2}

    Kelly, G; Kerkof, P R; Haley, P J

    1988-12-01

    Ten radiation-induced and three spontaneous lung tumors were analyzed for aberrant expression of known oncogenes. In 12 of 13 tumors tested, sequences hybridizing to the c-myc oncogene were expressed at levels 1.5 times higher than sequences hybridizing to {beta}-actin. This level of oncogene expression was also observed in 9 of 13 tumors for 1 or more members of the ras family of oncogenes. Seven of thirteen tumors examined express sequences that hybridize with clones of v-ros or c-met. The ros and met clones both code for oncogenes whose normal homologues are transmembrane proteins related to the insulin receptor. (author)

  4. Effects of c-myc oncogene modulation on differentiation of human small cell lung carcinoma cell lines

    Van Waardenburg, RCAM; Meijer, C; Pinto-Sietsma, SJ; De Vries, EGE; Timens, W; Mulder, NM

    1998-01-01

    Amplification and over-expression of oncogenes of the myc family are related to the prognosis of certain solid tumors such as small cell lung cancer (SCLC). For SCLC, c-myc is the oncogene most consistently found to correlate with the end stage behaviour of the tumour, in particular with survival

  5. Prediction of lung cells oncogenic transformation for induced radon progeny alpha particles using sugarscape cellular automata.

    Baradaran, Samaneh; Maleknasr, Niaz; Setayeshi, Saeed; Akbari, Mohammad Esmaeil

    2014-01-01

    Alpha particle irradiation from radon progeny is one of the major natural sources of effective dose in the public population. Oncogenic transformation is a biological effectiveness of radon progeny alpha particle hits. The biological effects which has caused by exposure to radon, were the main result of a complex series of physical, chemical, biological and physiological interactions. The cellular and molecular mechanisms for radon-induced carcinogenesis have not been clear yet. Various biological models, including cultured cells and animals, have been found useful for studying the carcinogenesis effects of radon progeny alpha particles. In this paper, sugars cape cellular automata have been presented for computational study of complex biological effect of radon progeny alpha particles in lung bronchial airways. The model has included mechanism of DNA damage, which has been induced alpha particles hits, and then formation of transformation in the lung cells. Biomarkers were an objective measure or evaluation of normal or abnormal biological processes. In the model, the metabolism rate of infected cell has been induced alpha particles traversals, as a biomarker, has been followed to reach oncogenic transformation. The model results have successfully validated in comparison with "in vitro oncogenic transformation data" for C3H 10T1/2 cells. This model has provided an opportunity to study the cellular and molecular changes, at the various stages in radiation carcinogenesis, involving human cells. It has become well known that simulation could be used to investigate complex biomedical systems, in situations where traditional methodologies were difficult or too costly to employ.

  6. Enhanced inflammation and attenuated tumor suppressor pathways are associated with oncogene-induced lung tumors in aged mice

    Aging is often accompanied by a dramatic increase in cancer susceptibility. To gain insights into how aging affects tumor susceptibility, we generated a conditional mouse model in which oncogenic KrasG12D was activated specifically in lungs of young (3-5 months) and old (19-24 months) mice. Activati...

  7. Orphan receptor GPR110, an oncogene overexpressed in lung and prostate cancer

    Lum, Amy M; Wang, Bruce B; Beck-Engeser, Gabriele B; Li, Lauri; Channa, Namitha; Wabl, Matthias

    2010-01-01

    GPR110 is an orphan G protein-coupled receptor--a receptor without a known ligand, a known signaling pathway, or a known function. Despite the lack of information, one can assume that orphan receptors have important biological roles. In a retroviral insertion mutagenesis screen in the mouse, we identified GPR110 as an oncogene. This prompted us to study the potential isoforms that can be gleaned from known GPR110 transcripts, and the expression of these isoforms in normal and transformed human tissues. Various epitope-tagged isoforms of GPR110 were expressed in cell lines and assayed by western blotting to determine cleavage, surface localization, and secretion patterns. GPR110 transcript and protein levels were measured in lung and prostate cancer cell lines and clinical samples, respectively, by quantitative PCR and immunohistochemistry. We found four potential splice variants of GPR110. Of these variants, we confirmed three as being expressed as proteins on the cell surface. Isoform 1 is the canonical form, with a molecular mass of about 100 kD. Isoforms 2 and 3 are truncated products of isoform 1, and are 25 and 23 kD, respectively. These truncated isoforms lack the seven-span transmembrane domain characteristic of GPR proteins and thus are not likely to be membrane anchored; indeed, isoform 2 can be secreted. Compared with the median gene expression of ~200 selected genes, GPR110 expression was low in most tissues. However, it had higher than average gene expression in normal kidney tissue and in prostate tissues originating from older donors. Although identified as an oncogene in murine T lymphomas, GPR110 is greatly overexpressed in human lung and prostate cancers. As detected by immunohistochemistry, GPR110 was overexpressed in 20 of 27 (74%) lung adenocarcinoma tissue cores and in 17 of 29 (59%) prostate adenocarcinoma tissue cores. Additionally, staining with a GPR110 antibody enabled us to differentiate between benign prostate hyperplasia and potential

  8. The non-small cell lung cancer EGFR extracellular domain mutation, M277E, is oncogenic and drug-sensitive

    Yu S

    2017-09-01

    Full Text Available Su Yu,1,2 Yang Zhang,1 Yunjian Pan,1 Chao Cheng,1,3 Yihua Sun,1,3 Haiquan Chen1–4 1Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; 2Cancer Research Center, Fudan University Shanghai Cancer Center, Shanghai, China; 3Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; 4Institutes of Biomedical Sciences, Fudan University, Shanghai, China Purpose: To identify novel oncogenic mutations in non-small cell lung cancer patient specimens that lack mutations in known targetable genes (“pan-negative” patients.Methods: Comprehensive mutational analyses were performed on 1,356 lung adenocarcinoma specimens. In this cohort of patients, common lung cancer oncogenic driver mutations were detected in the epidermal growth factor receptor (EGFR kinase domain, the human epidermal growth factor receptor 2 kinase domain, as well as the KRAS, BRAF, ALK, ROS1 and RET genes. A sub-cohort of pan-negative patient specimens was assayed for mutations in the EGFR extracellular domain (ECD. Additionally, EGFR mutant NIH-3T3 stable cell lines were constructed and assessed for protein content, anchorage-independent growth, and tumor formation in xenograft models to identify oncogenic mutations. BaF3 lymphocytes were also used to test sensitivities of the mutations to tyrosine kinase inhibitors.Results: In pan-negative lung adenocarcinoma cases, a novel oncogenic EGFR ECD mutation was identified (M277E. EGFR M277E mutations encoded oncoproteins that transformed NIH-3T3 cells to grow in the absence of exogenous epidermal growth factor. Transformation was further evidenced by anchorage-independent growth and tumor formation in immunocompromised xenograft mouse models. Finally, as seen in the canonical EGFR L858R mutation, the M277E mutation conferred sensitivity to both erlotinib and cetuximab in BaF3 cell lines and to erlotinib in xenograft models.Conclusion: Here, a new EGFR driver mutation, M277E

  9. INDUCTION OF DNA ADDUCTS, TUMORS, AND KI-RAS ONCOGENE MUTATIONS IN STRAIN A/J MOUSE LUNG BY IP. ADMINISTRATION OF DIBENZ[A,H]ANTHRACENE

    Induction of DNA adducts, tumors, and Ki-ras oncogene mutations in strain AlJ mouse lung by ip. administration of dibenz[a,h]anthracene Previous studies of polycyclic aromatic hydrocarbon (P AH) induced lung tumors in the strain NJ mouse model system have demonstrated qua...

  10. Localisation of lung cancer by a radiolabelled monoclonal antibody against the c-myc oncogene product

    Chan, S Y.T.; Evan, G I; Ritson, A; Watson, J; Wraight, P; Sikora, K

    1986-11-01

    A set of mouse monoclonal antibodies against the c-myc oncogene product, a 62,000 dalton nuclear binding protein involved in cell cycle control, has been constructed by immunisation with synthetic peptide fragments. One such antibody, CT14, was radiolabelled with /sup 131/I and administered to 20 patients with different malignant diseases. Good tumour localisation was observed in 12 out of 14 patients with primary bronchial carcinoma but not in patients with pulmonary metastases from primary tumours elsewhere. Successfully localised tumours were all 3 cm or more in diameter. Monoclonal antibodies against oncogene products may provide novel selective tools for the diagnosis and therapy of cancer.

  11. MicroRNA-133a suppresses multiple oncogenic membrane receptors and cell invasion in non-small cell lung carcinoma.

    Lu-Kai Wang

    Full Text Available Non-small cell lung cancers (NSCLCs cause high mortality worldwide, and the cancer progression can be activated by several genetic events causing receptor dysregulation, including mutation or amplification. MicroRNAs are a group of small non-coding RNA molecules that function in gene silencing and have emerged as the fine-tuning regulators during cancer progression. MiR-133a is known as a key regulator in skeletal and cardiac myogenesis, and it acts as a tumor suppressor in various cancers. This study demonstrates that miR-133a expression negatively correlates with cell invasiveness in both transformed normal bronchial epithelial cells and lung cancer cell lines. The oncogenic receptors in lung cancer cells, including insulin-like growth factor 1 receptor (IGF-1R, TGF-beta receptor type-1 (TGFBR1, and epidermal growth factor receptor (EGFR, are direct targets of miR-133a. MiR-133a can inhibit cell invasiveness and cell growth through suppressing the expressions of IGF-1R, TGFBR1 and EGFR, which then influences the downstream signaling in lung cancer cell lines. The cell invasive ability is suppressed in IGF-1R- and TGFBR1-repressed cells and this phenomenon is mediated through AKT signaling in highly invasive cell lines. In addition, by using the in vivo animal model, we find that ectopically-expressing miR-133a dramatically suppresses the metastatic ability of lung cancer cells. Accordingly, patients with NSCLCs who have higher expression levels of miR-133a have longer survival rates compared with those who have lower miR-133a expression levels. In summary, we identified the tumor suppressor role of miR-133a in lung cancer outcome prognosis, and we demonstrated that it targets several membrane receptors, which generally produce an activating signaling network during the progression of lung cancer.

  12. Akt2 and nucleophosmin/B23 function as an oncogenic unit in human lung cancer cells

    Kim, Chung Kwon; Nguyen, Truong L.X.; Lee, Sang Bae; Park, Sang Bum; Lee, Kyung-Hoon; Cho, Sung-Woo; Ahn, Jee-Yin

    2011-01-01

    The signaling network of protein kinase B(PKB)/Akt has been implicated in survival of lung cancer cells. However, understanding the relative contribution of the different isoform of Akt network is nontrival. Here, we report that Akt2 is highly expressed in human lung adenocarcinoma cell line A549 cells. Suppression of Akt2 expression in A549 cells results in notable inhibition of cell poliferation, soft agar growth, and invasion, accompanying by a decrease of nucleophosmin/B23 protein. Overexpression of Akt1 restores cancerous growth of A549 cells in B23-knockdown (KD) cells while Akt2 overexpression did not restore proliferating potential in cells with downregulated B23, thus suggesting Akt2 requires B23 to drive proliferation of lung cancer cell. Loss of functional Akt2 and B23 has similar defects on cell proliferation, apoptotic resistance and cell cycle regulation, while loss of Akt1 has less defects on cell proliferation, survial and cell cycle progression in A549 cells. Moreover, overexpression of B23 rescues the proliferative block induced as a consequence of loss of Akt2. Thus our data suggest that Akt2/B23 functions as an oncogenic unit to drive tumorigenesis of A549 lung cancer cells.

  13. Identifying novel targets of oncogenic EGF receptor signaling in lung cancer through global phosphoproteomics.

    Zhang, Xu; Belkina, Natalya; Jacob, Harrys Kishore Charles; Maity, Tapan; Biswas, Romi; Venugopalan, Abhilash; Shaw, Patrick G; Kim, Min-Sik; Chaerkady, Raghothama; Pandey, Akhilesh; Guha, Udayan

    2015-01-01

    Mutations in the epidermal growth factor receptor (EGFR) kinase domain occur in 10-30% of lung adenocarcinoma and are associated with tyrosine kinase inhibitor (TKI) sensitivity. We sought to identify the immediate direct and indirect phosphorylation targets of mutant EGFRs in lung adenocarcinoma. We undertook SILAC strategy, phosphopeptide enrichment, and quantitative MS to identify dynamic changes of phosphorylation downstream of mutant EGFRs in lung adenocarcinoma cells harboring EGFR(L858R) and EGFR(L858R/T790M) , the TKI-sensitive, and TKI-resistant mutations, respectively. Top canonical pathways that were inhibited upon erlotinib treatment in sensitive cells, but not in the resistant cells include EGFR, insulin receptor, hepatocyte growth factor, mitogen-activated protein kinase, mechanistic target of rapamycin, ribosomal protein S6 kinase beta 1, and Janus kinase/signal transducer and activator of transcription signaling. We identified phosphosites in proteins of the autophagy network, such as ULK1 (S623) that is constitutively phosphorylated in these lung adenocarcinoma cells; phosphorylation is inhibited upon erlotinib treatment in sensitive cells, but not in resistant cells. Finally, kinase-substrate prediction analysis from our data indicated that substrates of basophilic kinases from, AGC and Calcium and calmodulin-dependent kinase groups, as well as STE group kinases were significantly enriched and those of proline-directed kinases from, CMGC and Casein kinase groups were significantly depleted among substrates that exhibited increased phosphorylation upon EGF stimulation and reduced phosphorylation upon TKI inhibition. This is the first study to date to examine global phosphorylation changes upon erlotinib treatment of lung adenocarcinoma cells and results from this study provide new insights into signaling downstream of mutant EGFRs in lung adenocarcinoma. All MS data have been deposited in the ProteomeXchange with identifier PXD001101 (http

  14. Former smokers with non-small-cell lung cancers: a comprehensive investigation of clinicopathologic characteristics, oncogenic drivers, and prognosis.

    Zheng, Shanbo; Wang, Rui; Zhang, Yang; Pan, Yunjian; Cheng, Chao; Zheng, Difan; Sun, Yihua; Chen, Haiquan

    2016-08-01

    The aim of this present investigation was to evaluate the clinicopathologic characteristics, oncogenic drivers, and prognosis of former smokers with non-small-cell lung cancer (NSCLC), and to compare them with those of the current and never smokers. This investigation was a single-institution retrospective study of 2289 NSCLC patients, who were classified as former, current, or never smokers. A collection was made of the clinicopathological characteristics, spectra of well-identified driver genes and survival rates. The survival rates were compared using log-rank test, and independent prognostic factors, identified using Cox regression analysis. Of 2289 NSCLC patients, 257 (11.2%) were former smokers; 868 (37.9%), current smokers; and 1164 (50.9%), never smokers. Compared with the current, the former were characterized by older age at diagnosis (64.3y vs. 59.9y; P vs. 39.5%; P = 0.017), fewer solid predominance in adenocarcinomas (16.2% vs. 29.5%; P = 0.005), and more EGFR mutation (33.2% vs. 20.7%; P vs. 11.9%, P = 0.041). No statistically significant survival differences were observed between the former and current. However, the light former smokers presented favorable overall survival when compared with the light current and heavy former or current (the light former vs. the heavy former, P = 0.028; the light former vs. the light current, P = 0.048; and the light former vs. the heavy current, P = 0.048). Our findings suggest that the former smokers with NSCLCs can have distinctive clinicopathologic characteristics, oncogenic drivers, and prognosis, and they, especially the light former, can benefit from smoking cessation. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  15. Epithelial–mesenchymal transition during oncogenic transformation induced by hexavalent chromium involves reactive oxygen species-dependent mechanism in lung epithelial cells

    Ding, Song-Ze, E-mail: dingsongze@hotmail.com [Department of Internal Medicine, Henan Provincial People’s Hospital, Zhengzhou University, Wei-Wu Road, Zhengzhou, Henan 450000 (China); Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Yang, Yu-Xiu; Li, Xiu-Ling [Department of Internal Medicine, Henan Provincial People’s Hospital, Zhengzhou University, Wei-Wu Road, Zhengzhou, Henan 450000 (China); Michelli-Rivera, Audrey [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Han, Shuang-Yin [Department of Internal Medicine, Henan Provincial People’s Hospital, Zhengzhou University, Wei-Wu Road, Zhengzhou, Henan 450000 (China); Wang, Lei; Pratheeshkumar, Poyil; Wang, Xin; Lu, Jian; Yin, Yuan-Qin; Budhraja, Amit; Hitron, Andrew J. [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States)

    2013-05-15

    Hexavalent chromium [Cr(VI)] is an important human carcinogen associated with pulmonary diseases and lung cancer. Exposure to Cr(VI) induces DNA damage, cell morphological change and malignant transformation in human lung epithelial cells. Despite extensive studies, the molecular mechanisms remain elusive, it is also not known if Cr(VI)-induced transformation might accompany with invasive properties to facilitate metastasis. We aimed to study Cr(VI)-induced epithelial–mesenchymal transition (EMT) and invasion during oncogenic transformation in lung epithelial cells. The results showed that Cr(VI) at low doses represses E-cadherin mRNA and protein expression, enhances mesenchymal marker vimentin expression and transforms the epithelial cell into fibroblastoid morphology. Cr(VI) also increases cell invasion and promotes colony formation. Further studies indicated that Cr(VI) uses multiple mechanisms to repress E-cadherin expression, including activation of E-cadherin repressors such as Slug, ZEB1, KLF8 and enhancement the binding of HDAC1 in E-cadherin gene promoter, but DNA methylation is not responsible for the loss of E-cadherin. Catalase reduces Cr(VI)-induced E-cadherin and vimentin protein expression, attenuates cell invasion in matrigel and colony formation on soft agar. These results demonstrate that exposure to a common human carcinogen, Cr(VI), induces EMT and invasion during oncogenic transformation in lung epithelial cells and implicate in cancer metastasis and prevention. - Graphical abstract: Epithelial–mesenchymal transition during oncogenic transformation induced by hexavalent chromium involves reactive oxygen species-dependent mechanisms in lung epithelial cells. - Highlights: • We study if Cr(VI) might induce EMT and invasion in epithelial cells. • Cr(VI) induces EMT by altering E-cadherin and vimentin expression. • It also increases cell invasion and promotes oncogenic transformation. • Catalase reduces Cr(VI)-induced EMT, invasion and

  16. Oncogenic transformation of rat lung epithelioid cells by SV40 DNA and restriction enzyme fragments

    Daya-Grosjean, L.; Lasne, C.; Nardeux, P.; Chouroulinkov, I.; Monier, R.

    1979-01-01

    Rat epithelioid lung cells were transformed with various preparations of SV40 DNA using the Ca 2+ -precipitation technique. The amount of SV40 genetic information integrated into transformed clones was evaluated by DNA-DNA renaturation kinetics. The growth properties on plastic and in soft-agar were examined, as well as the ability to induce tumors in syngeneic newborn animals or in adult nude mice. One particular transformed line, which had received the HpaII/BamHIA (59 per cent) fragment, was found to contain about 3 integrated copies of this fragment per cell and no significant amount of the HpaII/BamHIB (41 per cent fragment). This line which grew to high saturatio densities and efficiently formed clones in low serum on plastic, produced tumors in both syngeneic rats and nude mice. Thus the HpaII/BamHIA fragment, which mainly includes early viral information, was sufficient to impart these properties to rat epithelioid lung cells. (author)

  17. Intrinsic and Extrinsic Regulation of PD-L2 Expression in Oncogene-Driven Non-Small Cell Lung Cancer.

    Shibahara, Daisuke; Tanaka, Kentaro; Iwama, Eiji; Kubo, Naoki; Ota, Keiichi; Azuma, Koichi; Harada, Taishi; Fujita, Jiro; Nakanishi, Yoichi; Okamoto, Isamu

    2018-03-27

    The interaction of programmed cell death ligand 2 (PD-L2) with programmed cell death 1 is implicated in tumor immune escape. The regulation of PD-L2 expression in tumor cells has remained unclear, however. We here examined intrinsic and extrinsic regulation of PD-L2 expression in NSCLC. PD-L2 expression was evaluated by reverse transcription and real-time polymerase chain reaction analysis and by flow cytometry. BEAS-2B cells stably expressing an activated mutant form of EGFR or the echinoderm microtubule associated protein like 4 (EML4)-ALK receptor tyrosine kinase fusion oncoprotein manifested increased expression of PD-L2 at both the mRNA and protein levels. Furthermore, treatment of NSCLC cell lines that harbor such driver oncogenes with corresponding EGFR or ALK tyrosine kinase inhibitors or depletion of EGFR or ALK by small interfering RNA transfection suppressed expression of PD-L2, demonstrating that activating EGFR mutations or echinoderm microtubule associated protein like 4 gene (EML4)-ALK receptor tyrosine kinase gene (ALK) fusion intrinsically induce PD-L2 expression. We also found that interferon gamma (IFN-γ) extrinsically induced expression of PD-L2 through signal transducer and activator of transcription 1 signaling in NSCLC cells. Oncogene-driven expression of PD-L2 in NSCLC cells was inhibited by knockdown of the transcription factors signal transducer and activator of transcription 3 (STAT3) or c-FOS. IFN-γ also activated STAT3 and c-FOS, suggesting that these proteins may also contribute to the extrinsic induction of PD-L2 expression. Expression of PD-L2 is induced intrinsically by activating EGFR mutations or EML4-ALK fusion and extrinsically by IFN-γ, with STAT3 and c-FOS possibly contributing to both intrinsic and extrinsic pathways. Our results thus provide insight into the complexity of tumor immune escape in NSCLC. Copyright © 2018 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  18. KRAS oncogene in lung cancer: focus on molecularly driven clinical trials

    Emmanuelle Kempf

    2016-03-01

    Full Text Available KRAS mutations are the most frequent molecular abnormalities found in one out of four nonsmall cell lung cancers (NSCLC. Their incidence increases in cases of adenocarcinoma, smokers and Caucasian patients. Their negative value in terms of prognosis and responsiveness to both standard chemotherapy and targeted therapies remains under debate. Many drugs have been developed specifically for KRAS-mutated NSCLC patients. Direct inhibition of RAS activation failed to show any clinical efficacy. Inhibition of downstream targets of the mitogen-activated protein kinase (MEK pathway is a promising strategy: phase II combinations of MEK 1/2 kinase inhibitors with chemotherapy doubled patients’ clinical outcomes. One phase III trial in such a setting is ongoing. Double inhibition of MEK and epidermal growth factor receptor proteins is currently being assessed in early-phase trials. The association with mammalian target of rapamycin pathway inhibition leads to non-manageable toxicity. Other strategies, such as inhibition of molecular heat-shock proteins 90 or focal adhesion kinase are currently assessed. Abemaciclib, a cyclin-dependent kinase 4/6 inhibitor, showed promising results in a phase I trial, with a 54% disease control rate. Results of an ongoing phase III trial are warranted. Immunotherapy might be the next relevant step in KRAS-mutated NSCLC management due to the high burden of associated mutations and neo-antigens.

  19. Dual paraneoplastic syndromes: small cell lung carcinoma-related oncogenic osteomalacia, and syndrome of inappropriate antidiuretic hormone secretion: report of a case and review of the literature.

    Tantisattamo, Ekamol; Ng, Roland C K

    2011-07-01

    Acquired isolated renal phosphate wasting associated with a tumor, known as oncogenic osteomalacia or tumor-induced osteomalacia, is a rare paraneoplastic syndrome caused by overproduction of fibroblast growth factor 23. Oncogenic osteomalacia is usually associated with benign mesenchymal tumors. Syndrome of inappropriate antidiuretic hormone secretion (SIADH), on the other hand, is a common paraneoplastic syndrome caused by small cell carcinoma (SCC). Concomitant oncogenic osteomalacia and SIADH associated with SCC is very rare with only 4 other cases reported in the literature. The authors report a case of small cell lung cancer (SCLC)-related renal wasting hypophosphatemia and concurrent SIADH, and review the literature reporting 9 other cases of SCC associated with oncogenic osteomalacia. Almost half of reported cases of renal phosphate wasting associated with SCC concomitantly presented with SIADH. These cases had initial serum phosphorus level lower and survival periods shorter than those without SIADH. This rare combination of a dual paraneoplastic syndrome and low serum phosphorus may be a poor prognostic sign. In addition, both renal phosphate wasting and SIADH usually occur in a short period of time before identification of SCC. Therefore, renal wasting hypophosphatemia with concomitant SIADH/hyponatremia should prompt a search for SCC rather than a benign mesenchymal tumor.

  20. USP22 acts as an oncogene by regulating the stability of cyclooxygenase-2 in non-small cell lung cancer

    Xiao, Haibo [Department of Cardiothoracic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092 (China); Tian, Yue [Institute of Orthopaedics, Chinese PLA General Hospital, Beijing 100853 (China); Yang, Yang; Hu, Fengqing; Xie, Xiao; Mei, Ju [Department of Cardiothoracic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092 (China); Ding, Fangbao, E-mail: drnail@sina.com [Department of Cardiothoracic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092 (China)

    2015-05-08

    The histone ubiquitin hydrolase ubiquitin-specific protease 22 (USP22) is an epigenetic modifier and an oncogene that is upregulated in many types of cancer. In non-small cell lung cancer (NSCLC), aberrant expression of USP22 is a predictor of poor survival, as is high expression of cyclooxygenase-2 (COX-2). Despite its oncogenic role, few substrates of USP22 have been identified and its mechanism of action in cancer remains unclear. Here, we identified COX-2 as a direct substrate of USP22 and showed that its levels are modulated by USP22 mediated deubiquitination. Silencing of USP22 downregulated COX-2, decreased its half-life, and inhibited lung carcinoma cell proliferation by directly interacting with and modulating the stability and activity of COX-2 through the regulation of its ubiquitination status. The findings of the present study suggest a potential mechanism underlying the oncogenic role of USP22 mediated by the modulation of the stability and activity of COX-2. - Highlights: • USP22 interacts with COX-2. • USP22 deubiquitinates and stabilizes COX-2. • USP22 is required for COX-2-mediated upregulation of prostaglandin E2.

  1. Therapeutic strategies to overcome crizotinib resistance in non-small cell lung cancers harboring the fusion oncogene EML4-ALK

    Katayama, Ryohei; Khan, Tahsin M.; Benes, Cyril; Lifshits, Eugene; Ebi, Hiromichi; Rivera, Victor M.; Shakespeare, William C.; Iafrate, A. John; Engelman, Jeffrey A.; Shaw, Alice T.

    2011-01-01

    The echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) fusion oncogene represents a molecular target in a small subset of non-small cell lung cancers (NSCLCs). This fusion leads to constitutive ALK activation with potent transforming activity. In a pivotal phase 1 clinical trial, the ALK tyrosine kinase inhibitor (TKI) crizotinib (PF-02341066) demonstrated impressive antitumor activity in the majority of patients with NSCLC harboring ALK fusions. However, despite these remarkable initial responses, cancers eventually develop resistance to crizotinib, usually within 1 y, thereby limiting the potential clinical benefit. To determine how cancers acquire resistance to ALK inhibitors, we established a model of acquired resistance to crizotinib by exposing a highly sensitive EML4-ALK–positive NSCLC cell line to increasing doses of crizotinib until resistance emerged. We found that cells resistant to intermediate doses of crizotinib developed amplification of the EML4-ALK gene. Cells resistant to higher doses (1 μM) also developed a gatekeeper mutation, L1196M, within the kinase domain, rendering EML4-ALK insensitive to crizotinib. This gatekeeper mutation was readily detected using a unique and highly sensitive allele-specific PCR assay. Although crizotinib was ineffectual against EML4-ALK harboring the gatekeeper mutation, we observed that two structurally different ALK inhibitors, NVP-TAE684 and AP26113, were highly active against the resistant cancer cells in vitro and in vivo. Furthermore, these resistant cells remained highly sensitive to the Hsp90 inhibitor 17-AAG. Thus, we have developed a model of acquired resistance to ALK inhibitors and have shown that second-generation ALK TKIs or Hsp90 inhibitors are effective in treating crizotinib-resistant tumors harboring secondary gatekeeper mutations. PMID:21502504

  2. A novel long noncoding RNA AK001796 acts as an oncogene and is involved in cell growth inhibition by resveratrol in lung cancer

    Yang, Qiaoyuan [Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou 510182 (China); Xu, Enwu [Department of Thoracic Surgery, General Hospital of Guangzhou Military Command of Chinese People' s Liberation Army, Guangzhou 510010 (China); Dai, Jiabin; Liu, Binbin; Han, Zhiyuan; Wu, Jianjun; Zhang, Shaozhu; Peng, Baoying [Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou 510182 (China); Zhang, Yajie [Department of Pathology, Guangzhou Medical University, Guangzhou 510182 (China); Jiang, Yiguo, E-mail: jiangyiguo@vip.163.com [Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou 510182 (China)

    2015-06-01

    Lung cancer is the most common form of cancer throughout the world. The specific targeting of long noncoding RNAs (lncRNAs) by resveratrol opened a new avenue for cancer chemoprevention. In this study, we found that 21 lncRNAs were upregulated and 19 lncRNAs were downregulated in lung cancer A549 cells with 25 μmol/L resveratrol treatment determined by microarray analysis. AK001796, the lncRNA with the most clearly altered expression, was overexpressed in lung cancer tissues and cell lines, but its expression was downregulated in resveratrol-treated lung cancer cells. By monitoring cell proliferation and growth in vitro and tumor growth in vivo, we observed a significant reduction in cell viability in lung cancer cells and a slow growth in the tumorigenesis following AK001796 knockdown. We also found that AK001796 knockdown caused a cell-cycle arrest, with significant increases in the percentage of cells in G{sub 0}/G{sub 1} in lung cancer cells. By using cell cycle pathway-specific PCR arrays, we detected changes in a number of cell cycle-related genes related to lncRNA AK001796 knockdown. We further investigated whether AK001796 participated in the anticancer effect of resveratrol and the results showed that reduced lncRNA AK001796 level potentially impaired the inhibitory effect of resveratrol on cell proliferation. To our knowledge, this is the first study to report the changes in an lncRNA expression profile induced by resveratrol in lung cancer. - Highlights: • LncRNA AK001796 played an oncogenic role in lung carcinogenesis. • LncRNA AK001796 was downregulated in resveratrol-treated lung cancer cells. • LncRNA AK001796 was involved in the inhibition of cell growth by resveratrol.

  3. A novel long noncoding RNA AK001796 acts as an oncogene and is involved in cell growth inhibition by resveratrol in lung cancer

    Yang, Qiaoyuan; Xu, Enwu; Dai, Jiabin; Liu, Binbin; Han, Zhiyuan; Wu, Jianjun; Zhang, Shaozhu; Peng, Baoying; Zhang, Yajie; Jiang, Yiguo

    2015-01-01

    Lung cancer is the most common form of cancer throughout the world. The specific targeting of long noncoding RNAs (lncRNAs) by resveratrol opened a new avenue for cancer chemoprevention. In this study, we found that 21 lncRNAs were upregulated and 19 lncRNAs were downregulated in lung cancer A549 cells with 25 μmol/L resveratrol treatment determined by microarray analysis. AK001796, the lncRNA with the most clearly altered expression, was overexpressed in lung cancer tissues and cell lines, but its expression was downregulated in resveratrol-treated lung cancer cells. By monitoring cell proliferation and growth in vitro and tumor growth in vivo, we observed a significant reduction in cell viability in lung cancer cells and a slow growth in the tumorigenesis following AK001796 knockdown. We also found that AK001796 knockdown caused a cell-cycle arrest, with significant increases in the percentage of cells in G 0 /G 1 in lung cancer cells. By using cell cycle pathway-specific PCR arrays, we detected changes in a number of cell cycle-related genes related to lncRNA AK001796 knockdown. We further investigated whether AK001796 participated in the anticancer effect of resveratrol and the results showed that reduced lncRNA AK001796 level potentially impaired the inhibitory effect of resveratrol on cell proliferation. To our knowledge, this is the first study to report the changes in an lncRNA expression profile induced by resveratrol in lung cancer. - Highlights: • LncRNA AK001796 played an oncogenic role in lung carcinogenesis. • LncRNA AK001796 was downregulated in resveratrol-treated lung cancer cells. • LncRNA AK001796 was involved in the inhibition of cell growth by resveratrol

  4. Long Intergenic Noncoding RNA 00511 Acts as an Oncogene in Non–small-cell Lung Cancer by Binding to EZH2 and Suppressing p57

    Cheng-Cao Sun

    2016-01-01

    Full Text Available Long noncoding RNAs (lncRNAs play crucial roles in carcinogenesis. However, the function and mechanism of lncRNAs in human non–small-cell lung cancer (NSCLC are still remaining largely unknown. Long intergenic noncoding RNA 00511 (LINC00511 has been found to be upregulated and acts as an oncogene in breast cancer, but little is known about its expression pattern, biological function and underlying mechanism in NSCLC. Herein, we identified LINC00511 as an oncogenic lncRNA by driving tumorigenesis in NSCLC. We found LINC00511 was upregulated and associated with oncogenesis, tumor size, metastasis, and poor prognosis in NSCLC. Moreover, LINC00511 affected cell proliferation, invasiveness, metastasis, and apoptosis in multiple NSCLC cell lines. Mechanistically, LINC00511 bound histone methyltransferase enhancer of zeste homolog 2 ((EZH2, the catalytic subunit of the polycomb repressive complex 2 (PRC2, a highly conserved protein complex that regulates gene expression by methylating lysine 27 on histone H3, and acted as a modular scaffold of EZH2/PRC2 complexes, coordinated their localization, and specified the histone modification pattern on the target genes, including p57, and consequently altered NSCLC cell biology. Thus, LINC00511 is mechanistically, functionally, and clinically oncogenic in NSCLC. Targeting LINC00511 and its pathway may be meaningful for treating patients with NSCLC.

  5. NF-κB-Activating Complex Engaged in Response to EGFR Oncogene Inhibition Drives Tumor Cell Survival and Residual Disease in Lung Cancer

    Collin M. Blakely

    2015-04-01

    Full Text Available Although oncogene-targeted therapy often elicits profound initial tumor responses in patients, responses are generally incomplete because some tumor cells survive initial therapy as residual disease that enables eventual acquired resistance. The mechanisms underlying tumor cell adaptation and survival during initial therapy are incompletely understood. Here, through the study of EGFR mutant lung adenocarcinoma, we show that NF-κB signaling is rapidly engaged upon initial EGFR inhibitor treatment to promote tumor cell survival and residual disease. EGFR oncogene inhibition induced an EGFR-TRAF2-RIP1-IKK complex that stimulated an NF-κB-mediated transcriptional survival program. The direct NF-κB inhibitor PBS-1086 suppressed this adaptive survival program and increased the magnitude and duration of initial EGFR inhibitor response in multiple NSCLC models, including a patient-derived xenograft. These findings unveil NF-κB activation as a critical adaptive survival mechanism engaged by EGFR oncogene inhibition and provide rationale for EGFR and NF-κB co-inhibition to eliminate residual disease and enhance patient responses.

  6. An integrative approach unveils FOSL1 as an oncogene vulnerability in KRAS-driven lung and pancreatic cancer

    Vallejo, Adrian; Perurena, Naiara; Guruceaga, Elisabet

    2017-01-01

    KRAS mutated tumours represent a large fraction of human cancers, but the vast majority remains refractory to current clinical therapies. Thus, a deeper understanding of the molecular mechanisms triggered by KRAS oncogene may yield alternative therapeutic strategies. Here we report the identifica...

  7. v-Ha-ras oncogene insertion: A model for tumor progression of human small cell lung cancer

    Mabry, M.; Nakagawa, Toshitaro; Nelkin, B.D.; McDowell, E.; Gesell, M.; Eggleston, J.C.; Casero, R.A. Jr.; Baylin, S.B.

    1988-01-01

    Small cell lung cancer (SCLC) manifests a range of phenotypes in culture that may be important in understanding its relationship to non-SCLCs and to tumor progression events in patients. Most SCLC-derived cell lines, termed classic SCLC lines, have properties similar to SCLC tumors in patients. To delineate further the relationships between these phenotypes and the molecular events involved, the authors inserted the v-Ha-ras gene in SCLC cell lines with (biochemical variant) and without (classic) an amplified c-myc gene. These two SCLC subtypes had markedly different phenotypic responses to similar levels of expression of v-Ha-ras RNA. No biochemical or morphologic changes were observed in classic SCLC cells. In contrast, in biochemical variant SCLC cells, v-Ha-ras expression induced features typical of large cell undifferentiated lung carcinoma. Expression of v-Ha-ras in biochemical variant SCLC cells directly demonstrates that important transitions can occur between phenotypes of human lung cancer cells and that these may play a critical role in tumor progression events in patients. The finding provide a model system to study molecular events involved in tumor progression steps within a series of related tumor types

  8. Deep Sequence Analysis of Non-Small Cell Lung Cancer: Integrated Analysis of Gene Expression, Alternative Splicing, and Single Nucleotide Variations in Lung Adenocarcinomas with and without Oncogenic KRAS Mutations

    Kalari, Krishna R.; Rossell, David; Necela, Brian M.; Asmann, Yan W.; Nair, Asha

    2012-01-01

    KRAS mutations are highly prevalent in non-small cell lung cancer (NSCLC), and tumors harboring these mutations tend to be aggressive and resistant to chemotherapy. We used next-generation sequencing technology to identify pathways that are specifically altered in lung tumors harboring a KRAS mutation. Paired-end RNA-sequencing of 15 primary lung adenocarcinoma tumors (8 harboring mutant KRAS and 7 with wild-type KRAS) were performed. Sequences were mapped to the human genome, and genomic features, including differentially expressed genes, alternate splicing isoforms and single nucleotide variants, were determined for tumors with and without KRAS mutation using a variety of computational methods. Network analysis was carried out on genes showing differential expression (374 genes), alternate splicing (259 genes), and SNV-related changes (65 genes) in NSCLC tumors harboring a KRAS mutation. Genes exhibiting two or more connections from the lung adenocarcinoma network were used to carry out integrated pathway analysis. The most significant signaling pathways identified through this analysis were the NFκB, ERK1/2, and AKT pathways. A 27 gene mutant KRAS-specific sub network was extracted based on gene–gene connections from the integrated network, and interrogated for druggable targets. Our results confirm previous evidence that mutant KRAS tumors exhibit activated NFκB, ERK1/2, and AKT pathways and may be preferentially sensitive to target therapeutics toward these pathways. In addition, our analysis indicates novel, previously unappreciated links between mutant KRAS and the TNFR and PPARγ signaling pathways, suggesting that targeted PPARγ antagonists and TNFR inhibitors may be useful therapeutic strategies for treatment of mutant KRAS lung tumors. Our study is the first to integrate genomic features from RNA-Seq data from NSCLC and to define a first draft genomic landscape model that is unique to tumors with oncogenic KRAS mutations.

  9. THE MYC FAMILY OF ONCOGENES AND THEIR PRESENCE AND IMPORTANCE IN SMALL-CELL LUNG-CARCINOMA AND OTHER TUMOR TYPES

    DEVRIES, EGE; MULDER, NH

    1993-01-01

    The myc family of cellular oncogenes, c - myr, N - myc, encodes three highly related, cell cycle specific, nuclear phosphoproteins. All are able to transform primary rat embryo fibroblasts when cotransfected with the c - ras oncogene. Myc family genes am differentially expressed with respect to

  10. VEGF controls lung Th2 inflammation via the miR-1–Mpl (myeloproliferative leukemia virus oncogene)–P-selectin axis

    Vasavada, Hema; Zhang, Jian-ge; Ahangari, Farida; Niu, Naiqian; Liu, Qing; Lee, Chun Geun; Cohn, Lauren

    2013-01-01

    Asthma, the prototypic Th2-mediated inflammatory disorder of the lung, is an emergent disease worldwide. Vascular endothelial growth factor (VEGF) is a critical regulator of pulmonary Th2 inflammation, but the underlying mechanism and the roles of microRNAs (miRNAs) in this process have not been defined. Here we show that lung-specific overexpression of VEGF decreases miR-1 expression in the lung, most prominently in the endothelium, and a similar down-regulation occurs in lung endothelium in Th2 inflammation models. Intranasal delivery of miR-1 inhibited inflammatory responses to ovalbumin, house dust mite, and IL-13 overexpression. Blocking VEGF inhibited Th2-mediated lung inflammation, and this was restored by antagonizing miR-1. Using mRNA arrays, Argonaute pull-down assays, luciferase expression assays, and mutational analysis, we identified Mpl as a direct target of miR-1 and showed that VEGF controls the expression of endothelial Mpl during Th2 inflammation via the regulation of miR-1. In vivo knockdown of Mpl inhibited Th2 inflammation and indirectly inhibited the expression of P-selectin in lung endothelium. These experiments define a novel VEGF–miR-1–Mpl–P-selectin effector pathway in lung Th2 inflammation and herald the utility of miR-1 and Mpl as potential therapeutic targets for asthma. PMID:24043765

  11. VEGF controls lung Th2 inflammation via the miR-1-Mpl (myeloproliferative leukemia virus oncogene)-P-selectin axis.

    Takyar, Seyedtaghi; Vasavada, Hema; Zhang, Jian-ge; Ahangari, Farida; Niu, Naiqian; Liu, Qing; Lee, Chun Geun; Cohn, Lauren; Elias, Jack A

    2013-09-23

    Asthma, the prototypic Th2-mediated inflammatory disorder of the lung, is an emergent disease worldwide. Vascular endothelial growth factor (VEGF) is a critical regulator of pulmonary Th2 inflammation, but the underlying mechanism and the roles of microRNAs (miRNAs) in this process have not been defined. Here we show that lung-specific overexpression of VEGF decreases miR-1 expression in the lung, most prominently in the endothelium, and a similar down-regulation occurs in lung endothelium in Th2 inflammation models. Intranasal delivery of miR-1 inhibited inflammatory responses to ovalbumin, house dust mite, and IL-13 overexpression. Blocking VEGF inhibited Th2-mediated lung inflammation, and this was restored by antagonizing miR-1. Using mRNA arrays, Argonaute pull-down assays, luciferase expression assays, and mutational analysis, we identified Mpl as a direct target of miR-1 and showed that VEGF controls the expression of endothelial Mpl during Th2 inflammation via the regulation of miR-1. In vivo knockdown of Mpl inhibited Th2 inflammation and indirectly inhibited the expression of P-selectin in lung endothelium. These experiments define a novel VEGF-miR-1-Mpl-P-selectin effector pathway in lung Th2 inflammation and herald the utility of miR-1 and Mpl as potential therapeutic targets for asthma.

  12. MicroRNA-31 functions as an oncogenic microRNA in mouse and human lung cancer cells by repressing specific tumor suppressors

    Liu, Xi; Sempere, Lorenzo F; Ouyang, Haoxu

    2010-01-01

    MicroRNAs (miRNAs) regulate gene expression. It has been suggested that obtaining miRNA expression profiles can improve classification, diagnostic, and prognostic information in oncology. Here, we sought to comprehensively identify the miRNAs that are overexpressed in lung cancer by conducting mi...

  13. Identifying Breast Cancer Oncogenes

    2011-10-01

    cells we observed that it promoted transformation of HMLE cells, suggesting a tumor suppressive role of Merlin in breast cancer (Figure 4B). A...08-1-0767 TITLE: Identifying Breast Cancer Oncogenes PRINCIPAL INVESTIGATOR: Yashaswi Shrestha...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 W81XWH-08-1-0767 Identifying Breast Cancer Oncogenes Yashaswi Shrestha Dana-Farber

  14. Oncogenes, radiation and cancer

    Michelin, S.C.

    1998-01-01

    The discovery of the oncogenic virus and the analysis of its nucleic acid, together with the development of new biochemical technology have permitted the partial knowledge of the molecular mechanisms responsible for the cellular neoplastic transformation. This work, besides describing the discovery of the first oncogenic virus and the experiments to demonstrate the existence of the oncogenes, summarizes its activation mechanisms and its intervention in cellular metabolisms. Ionizing radiation is among the external agents that induce the neoplastic process. Its participation in the genesis of this process and the contribution of oncogenes to the cellular radioresistance are among the topics, which are referred to another topic that makes reference. At the same time as the advancement of theoretical knowledge, lines of investigation for the application of the new concepts in diagnosis, prognosis and therapeutical treatment, were developed. An example of this, is the study of the participation of the oncogen c-erbB-2 in human breast cancer and its implications on the anti tumoral therapy. (author) [es

  15. Smoking status and self-reported race affect the frequency of clinically relevant oncogenic alterations in non-small-cell lung cancers at a United States-based academic medical practice.

    Yamaguchi, Norihiro; Vanderlaan, Paul A; Folch, Erik; Boucher, David H; Canepa, Hannah M; Kent, Michael S; Gangadharan, Sidharta P; Majid, Adnan; Kocher, Olivier N; Goldstein, Michael A; Huberman, Mark S; Costa, Daniel B

    2013-10-01

    The identification of somatic genomic aberrations in non-small-cell lung cancer (NSCLC) is part of evidence-based practice guidelines for care of patients with NSCLC. We sought to establish the frequency and correlates with these changes in routine patient-tumor sample pairs. Clinicopathologic data and tumor genotype were retrospectively compiled and analyzed from an overall cohort of 381 patient-tumor samples. Of these patients, 75.9% self-reported White race, 13.1% Asian, 6.5% Black, 27.8% were never-smokers, 54.9% former-smokers and 17.3% current-smokers. The frequency of EGFR mutations was 23.9% (86/359), KRAS mutations 34.2% (71/207) and ALK FISH positivity 9.1% (23/252) in tumor samples, and almost all had mutually exclusive results for these oncogenes. In tumors from White, Black and Asian patients, the frequencies of EGFR mutations were 18.4%, 18.2% and 62%, respectively; of ALK FISH positivity 7.81%, 0% and 14.8%, respectively; and of KRAS mutations 41.6%, 20% and 0%. These patterns changed significant with increasing pack-year history of smoking. In White patients, the frequencies of EGFR mutations and ALK FISH positivity decreased with increasing pack-year cohorts; while the frequencies of KRAS mutations increased. Interestingly, in Asian patients the frequencies of EGFR mutations were similar in never smokers and in the cohorts with less than 45pack-year histories of smoking and only decreased in the 45pack-year plus cohort. The frequencies of somatic EGFR, KRAS, and ALK gene abnormalities using routine lung cancer tissue samples from our United States-based academic medical practice reflect the diverse ethnicity (with a higher frequency of EGFR mutations in Asian patients) and smoking patterns (with an inverse correlation between EGFR mutation and ALK rearrangement) of our tested population. These results may help other medical practices appreciate the expected results from introduction of routine tumor genotyping techniques into their day-to-day care

  16. [Clinical utility of real-time fluorescent PCR for combined detection of anaplastic lymphoma kinase and c-ros oncogene 1 receptor tyrosine kinase in non-small cell lung cancer].

    Bai, D Y; Zhang, H P; Zhong, S; Suo, W H; Gao, D H; Ding, Y; Tu, J H

    2016-12-23

    Objective: To investigate the clinical application value of combined detection of ALK fusion gene and c-ros oncogene 1 receptor tyrosine kinase (ROS1) fusion gene in non-small cell lung cancer (NSCLC) using real-time fluorescent PCR. Methods: A kit for combined detection of ALK fusion gene and ROS1 fusion gene based on fluorescent PCR was used to simultaneously detect the two fusion genes in 302 cases of NSCLC specimens. The results were validated through Sanger sequencing. The consistency of the two detection methods was analyzed. Results: All 302 cases of NSCLC specimens were successfully analyzed through fluorescent PCR (302/302). 12 cases (4.0%) were found to contain ALK fusion gene, including 3 cases with ALK-M1, 3 with ALK-M2, 3 with ALK-M3, 1 with ALK-M4, and 2 with ALK-M6 fusion gene.12 cases (4.0%) were found to contain ROS1 fusion gene, including 1 case with ROS1-M7, 8 cases with ROS1-M8, 1 case with ROS1-M12, 1 case with ROS1-M14, and 1 case with double-positive ROS1-M3 and ROS1-M8 fusion genes. The total detection rate of ALK fusion gene and ROS1 fusion gene was 7.9% (24/302) and 278 cases showed to be negative for ALK fusion gene and ROS1 fusion gene. The successful detection rates for Sanger DNA sequencing were also 100%. The positive, negative and total coincidence rates obtained by real-time fluorescent PCR and by Sanger DNA sequencing were all 100%. Conclusions: The results of Sanger DNA sequencing demonstrate that the real-time fluorescent PCR assay is equally effective in detecting ALK and ROS1 fusion genes in NSCLC tissues. Furthermore, real-time fluorescent PCR assay can be used to detect trace ALK and ROS1 fusion gene simultaneously in tiny samples, and can save time and avoid repeated sampling. It is worthy of recommendation as a rapid and reliable detection technique.

  17. Oncogenes, radiation and cancer; Oncogenes, radiacion y cancer

    Michelin, S C

    1999-12-31

    The discovery of the oncogenic virus and the analysis of its nucleic acid, together with the development of new biochemical technology have permitted the partial knowledge of the molecular mechanisms responsible for the cellular neoplastic transformation. This work, besides describing the discovery of the first oncogenic virus and the experiments to demonstrate the existence of the oncogenes, summarizes its activation mechanisms and its intervention in cellular metabolisms. Ionizing radiation is among the external agents that induce the neoplastic process. Its participation in the genesis of this process and the contribution of oncogenes to the cellular radioresistance are among the topics, which are referred to another topic that makes reference. At the same time as the advancement of theoretical knowledge, lines of investigation for the application of the new concepts in diagnosis, prognosis and therapeutical treatment, were developed. An example of this, is the study of the participation of the oncogen c-erbB-2 in human breast cancer and its implications on the anti tumoral therapy. (author) 87 refs., 7 figs., 3 tabs. [Espanol] El descubrimiento de los virus oncogenicos y el analisis de su acido nucleico, junto con el desarrollo de nuevas tecnicas bioquimicas, ha permitido conocer parcialmente los mecanismos moleculares responsables de la transformacion de una celula normal en neoplasica. En este trabajo, ademas de describir el descubrimiento de los primeros virus oncogenicos y las experiencias para demostrar la existencia de los oncogenes, se resumen sus mecanismos de activacion y su intervencion en el metabolismo celular. Entre los agentes expernos que inducen un proceso oncogenico, se encuentran las radiaciones ionizantes. Su participacion en la genesis de este proceso y la contribucion de los oncogenes a la radioresistencia de las celulas tumorales, es otro de los temas a que se hace referencia. Paralelamente al avance del conocimiento teorico, se

  18. Oncogenic cancer/testis antigens

    Gjerstorff, Morten F; Andersen, Mads H; Ditzel, Henrik J

    2015-01-01

    Recent developments have set the stage for immunotherapy as a supplement to conventional cancer treatment. Consequently, a significant effort is required to further improve efficacy and specificity, particularly the identification of optimal therapeutic targets for clinical testing. Cancer....../testis antigens are immunogenic, highly cancer-specific, and frequently expressed in various types of cancer, which make them promising candidate targets for cancer immunotherapy, including cancer vaccination and adoptive T-cell transfer with chimeric T-cell receptors. Our current understanding of tumor...... immunology and immune escape suggests that targeting oncogenic antigens may be beneficial, meaning that identification of cancer/testis antigens with oncogenic properties is of high priority. Recent work from our lab and others provide evidence that many cancer/testis antigens, in fact, have oncogenic...

  19. Lung

    DeNardo, G.L.; Blankenship, W.J.; Burdine, J.A. Jr.; DeNardo, S.J.

    1975-01-01

    At present no simple statement can be made relative to the role of radionuclidic lung studies in the pediatric population. It is safe to assume that they will be used with increasing frequency for research and clinical applications because of their sensitivity and ready applicability to the pediatric patient. Methods comparable to those used in adults can be used in children older than 4 years. In younger children, however, a single injection of 133 Xe in solution provides an index of both regional perfusion and ventilation which is easier to accomplish. This method is particularly valuable in infants and neonates because it is rapid, requires no patient cooperation, results in a very low radiation dose, and can be repeated in serial studies. Radionuclidic studies of ventilation and perfusion can be performed in almost all children if the pediatrician and the nuclear medicine specialist have motivation and ingenuity. S []ontaneous pulmonary vascular occlusive disease which occurs in infants and pulmonary emboli in children are easily detected using radionuclides. The pathophysiologic defects of pulmonary agenesis, bronchopulmonary sequestration, and foreign body aspiration may be demonstrated by these techniques. These techniques also appear to be useful in following patients with bronchial asthma, cystic fibrosis, congenital emphysema, and postinfection pulmonary abnormalities. (auth)

  20. Targeting MET Amplification as a New Oncogenic Driver

    Kawakami, Hisato [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Okamoto, Isamu, E-mail: okamotoi@kokyu.med.kyushu-u.ac.jp [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Center for Clinical and Translational Research, Kyushu University Hospital, 3-1-1 Maidashi, Higashiku, Fukuoka 812-8582 (Japan); Okamoto, Wataru [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Division of Transrlational Research, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577 (Japan); Tanizaki, Junko [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, HIM223, 450 Brookline Avenue, Boston, MA 02215 (United States); Nakagawa, Kazuhiko [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Nishio, Kazuto [Department of Genome Biology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan)

    2014-07-22

    Certain genetically defined cancers are dependent on a single overactive oncogene for their proliferation and survival, a phenomenon known as “oncogene addiction”. A new generation of drugs that selectively target such “driver oncogenes” manifests a clinical efficacy greater than that of conventional chemotherapy in appropriate genetically defined patients. MET is a proto-oncogene that encodes a receptor tyrosine kinase, and aberrant activation of MET signaling occurs in a subset of advanced cancers as result of various genetic alterations including gene amplification, polysomy, and gene mutation. Our preclinical studies have shown that inhibition of MET signaling either with the small-molecule MET inhibitor crizotinib or by RNA interference targeted to MET mRNA resulted in marked antitumor effects in cancer cell lines with MET amplification both in vitro and in vivo. Furthermore, patients with non-small cell lung cancer or gastric cancer positive for MET amplification have shown a pronounced clinical response to crizotinib. Accumulating preclinical and clinical evidence thus suggests that MET amplification is an “oncogenic driver” and therefore a valid target for treatment. However, the prevalence of MET amplification has not been fully determined, possibly in part because of the difficulty in evaluating gene amplification. In this review, we provide a rationale for targeting this genetic alteration in cancer therapy.

  1. Targeting MET Amplification as a New Oncogenic Driver

    Kawakami, Hisato; Okamoto, Isamu; Okamoto, Wataru; Tanizaki, Junko; Nakagawa, Kazuhiko; Nishio, Kazuto

    2014-01-01

    Certain genetically defined cancers are dependent on a single overactive oncogene for their proliferation and survival, a phenomenon known as “oncogene addiction”. A new generation of drugs that selectively target such “driver oncogenes” manifests a clinical efficacy greater than that of conventional chemotherapy in appropriate genetically defined patients. MET is a proto-oncogene that encodes a receptor tyrosine kinase, and aberrant activation of MET signaling occurs in a subset of advanced cancers as result of various genetic alterations including gene amplification, polysomy, and gene mutation. Our preclinical studies have shown that inhibition of MET signaling either with the small-molecule MET inhibitor crizotinib or by RNA interference targeted to MET mRNA resulted in marked antitumor effects in cancer cell lines with MET amplification both in vitro and in vivo. Furthermore, patients with non-small cell lung cancer or gastric cancer positive for MET amplification have shown a pronounced clinical response to crizotinib. Accumulating preclinical and clinical evidence thus suggests that MET amplification is an “oncogenic driver” and therefore a valid target for treatment. However, the prevalence of MET amplification has not been fully determined, possibly in part because of the difficulty in evaluating gene amplification. In this review, we provide a rationale for targeting this genetic alteration in cancer therapy

  2. Transformation and oncogenicity by Adenoviruses

    Bernards, R.A.; Eb, A.J. van der

    1984-01-01

    Adenoviruses have attracted considerable attention since it was discovered by TRENTIN et all. and HUEBNER et al. that certain species (formerly called serotypes) are oncogenic when injected into newborn hamsters. Since then, adenoviruses have been used extensively as a model for studies on tumor

  3. [Oncogenic action of ionizing radiation

    1990-01-01

    An extensive experiment involving approximately 400 rats exposed to the neon ion beam at the Bevalac in Berkeley, CA and to electrons is nearing completion. The carcinogenicity of energetic electrons was determined for comparison with the neon ion results. As in past reports we will describe progress in three areas corresponding to the specific aims of the proposal: (1) carcinogenesis and DNA strand breaks in rat skin following exposure by the neon ions or electrons; (2) DNA strand breaks in the epidermis as a function of radiation penetration; (3) oncogene activation in radiation-induced rat skin cancers. 72 refs., 6 tabs

  4. DA-Raf, a dominant-negative antagonist of the Ras-ERK pathway, is a putative tumor suppressor.

    Kanno, Emiri; Kawasaki, Osamu; Takahashi, Kazuya; Takano, Kazunori; Endo, Takeshi

    2018-01-01

    Activating mutations of RAS genes, particularly KRAS, are detected with high frequency in human tumors. Mutated Ras proteins constitutively activate the ERK pathway (Raf-MEK-ERK phosphorylation cascade), leading to cellular transformation and tumorigenesis. DA-Raf1 (DA-Raf) is a splicing variant of A-Raf and contains the Ras-binding domain (RBD) but lacks the kinase domain. Accordingly, DA-Raf antagonizes the Ras-ERK pathway in a dominant-negative fashion and suppresses constitutively activated K-Ras-induced cellular transformation. Thus, we have addressed whether DA-Raf serves as a tumor suppressor of Ras-induced tumorigenesis. DA-Raf(R52Q), which is generated from a single nucleotide polymorphism (SNP) in the RBD, and DA-Raf(R52W), a mutant detected in a lung cancer, neither bound to active K-Ras nor interfered with the activation of the ERK pathway. They were incapable of suppressing activated K-Ras-induced cellular transformation and tumorigenesis in mice, in which K-Ras-transformed cells were transplanted. Furthermore, although DA-Raf was highly expressed in lung alveolar epithelial type 2 (AE2) cells, its expression was silenced in AE2-derived lung adenocarcinoma cell lines with oncogenic KRAS mutations. These results suggest that DA-Raf represents a tumor suppressor protein against Ras-induced tumorigenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. TAD disruption as oncogenic driver.

    Valton, Anne-Laure; Dekker, Job

    2016-02-01

    Topologically Associating Domains (TADs) are conserved during evolution and play roles in guiding and constraining long-range regulation of gene expression. Disruption of TAD boundaries results in aberrant gene expression by exposing genes to inappropriate regulatory elements. Recent studies have shown that TAD disruption is often found in cancer cells and contributes to oncogenesis through two mechanisms. One mechanism locally disrupts domains by deleting or mutating a TAD boundary leading to fusion of the two adjacent TADs. The other mechanism involves genomic rearrangements that break up TADs and creates new ones without directly affecting TAD boundaries. Understanding the mechanisms by which TADs form and control long-range chromatin interactions will therefore not only provide insights into the mechanism of gene regulation in general, but will also reveal how genomic rearrangements and mutations in cancer genomes can lead to misregulation of oncogenes and tumor suppressors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Limited role of murine ATM in oncogene-induced senescence and p53-dependent tumor suppression.

    Alejo Efeyan

    Full Text Available Recent studies in human fibroblasts have provided a new general paradigm of tumor suppression according to which oncogenic signaling produces DNA damage and this, in turn, results in ATM/p53-dependent cellular senescence. Here, we have tested this model in a variety of murine experimental systems. Overexpression of oncogenic Ras in murine fibroblasts efficiently induced senescence but this occurred in the absence of detectable DNA damage signaling, thus suggesting a fundamental difference between human and murine cells. Moreover, lung adenomas initiated by endogenous levels of oncogenic K-Ras presented abundant senescent cells, but undetectable DNA damage signaling. Accordingly, K-Ras-driven adenomas were also senescent in Atm-null mice, and the tumorigenic progression of these lesions was only modestly accelerated by Atm-deficiency. Finally, we have examined chemically-induced fibrosarcomas, which possess a persistently activated DNA damage response and are highly sensitive to the activity of p53. We found that the absence of Atm favored genomic instability in the resulting tumors, but did not affect the persistent DNA damage response and did not impair p53-dependent tumor suppression. All together, we conclude that oncogene-induced senescence in mice may occur in the absence of a detectable DNA damage response. Regarding murine Atm, our data suggest that it plays a minor role in oncogene-induced senescence or in p53-dependent tumor suppression, being its tumor suppressive activity probably limited to the maintenance of genomic stability.

  7. A Genomics-Based Classification of Human Lung Tumors

    Seidel, Danila; Zander, Thomas; Heukamp, Lukas C.; Peifer, Martin; Bos, Marc; Fernandez-Cuesta, Lynnette; Leenders, Frauke; Lu, Xin; Ansen, Sascha; Gardizi, Masyar; Nguyen, Chau; Berg, Johannes; Russell, Prudence; Wainer, Zoe; Schildhaus, Hans-Ulrich; Rogers, Toni-Maree; Solomon, Benjamin; Pao, William; Carter, Scott L.; Getz, Gad; Hayes, D. Neil; Wilkerson, Matthew D.; Thunnissen, Erik; Travis, William D.; Perner, Sven; Wright, Gavin; Brambilla, Elisabeth; Buettner, Reinhard; Wolf, Juergen; Thomas, Roman; Gabler, Franziska; Wilkening, Ines; Mueller, Christian; Dahmen, Ilona; Menon, Roopika; Koenig, Katharina; Albus, Kerstin; Merkelbach-Bruse, Sabine; Fassunke, Jana; Schmitz, Katja; Kuenstlinger, Helen; Kleine, Michaela; Binot, Elke; Querings, Silvia; Altmueller, Janine; Boessmann, Ingelore; Nuemberg, Peter; Schneider, Peter; Groen, Harry; Timens, Wim

    2013-01-01

    We characterized genome alterations in 1255 clinically annotated lung tumors of all histological subgroups to identify genetically defined and clinically relevant subtypes. More than 55% of all cases had at least one oncogenic genome alteration potentially amenable to specific therapeutic

  8. Oncogenes and radiation resistance - a review

    Dritschilo, A.

    1992-01-01

    Oncogenes exert their effects on the genetic programs of cells by regulating signal transduction pathways, resulting in multi-factorial genetic responses. By such actions, the genetic elements responsible for the cellular responses to ionizing radiation may be affected. Reports implicating the association of oncogene expression with modulation of the radiation response include the ras, raf, and myc genes. Experiments overexpressing H-ras and c-raf-1 using genetically engineered constructs result in enhanced post-radiation cellular survival. Conversely, inhibition of raf gene expression has resulted in relative radiation sensitization and delay of human squamous cell carcinoma tumor growth in nude mice. There appears to be a potential strategy for therapeutic intervention. The identification of genes that confer survival advantage following radiation exposure, and understanding their mechanisms of action, may permit a genetically based intervention for radiation sensitization. One such approach employs oligo-deoxynucleotides complementary to oncogene-encoded in RNA's (antisense DNA). (author)

  9. Oncogenic osteomalacia diagnosed by blood pool scintigraphy

    Palaniswamy, Shanmuga Sundaram; Subramanyam, Padma; Kumar, Harish

    2011-01-01

    Oncogenic osteomalacia is a rare metabolic bone disease characterized by phosphaturia and hypophosphatemia. Certain tumors secrete a phosphaturic factor, which results in this metabolic abnormality; this factor called as phosphatonin, is in fact a fibroblast growth factor 23 (FGF-23) involved closely in phosphate homeostasis and skeletogenesis. Complete excision of these tumors facilitates reversal of the problem. We have reported here the case of a patient who was crippled with this disease and on thorough investigation revealed an oncogenic osteomalacia with tumor focus in the right tibia. The tumor was identified as a mesenchymal tumor, i.e., hemangiopericytoma. Tumor excision alleviated patient symptoms with rapid symptomatic and biochemical improvement

  10. Effect of ionizing radiation on the biological activity of activated oncogenes and dormant proto-oncogenes

    Angenent, G.C.; Berg, K.J. van den.

    1984-01-01

    The authors have studied the effect of ionizing radiation on the cloned human activated Ha-ras oncogene, on the Ha-ras gene in integrated form and on the dormant proto-oncogene murine c-mos using the NIH/3T3 transfection system. NIH/3T3 cells were transfected with DNA from the plasmid pT24 carrying the cloned Ha-ras oncogene of the T24 bladder carcinoma cell line. Various individual foci which developed were injected into nude mice. DNA was isolated from tumours, digested with the restriction enzyme Bam HI, electrophoresed on agarose and blotted onto nitrocellulose filter according to Southern. Hybridization with a pT24 probe showed that all the primary foci of transformed cells contained various fragments of the pT24 plasmid indicating that fibroblast transformation had been induced by introduction of the Ha-ras oncogene. (Auth.)

  11. Oncogene mutational profile in nasopharyngeal carcinoma

    Zhang ZC

    2014-03-01

    Full Text Available Zi-Chen Zhang,1,* Sha Fu,1,* Fang Wang,1 Hai-Yun Wang,1 Yi-Xin Zeng,2 Jian-Yong Shao11Department of Molecular Diagnostics, 2Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, People's Republic of China *These authors contributed equally to this work Abstract: Nasopharyngeal carcinoma (NPC is a common tumor in Southern China, but the oncogene mutational status of NPC patients has not been clarified. Using time-of-flight mass spectrometry, 238 mutation hotspots in 19 oncogenes were examined in 123 NPC patients. The relationships between mutational status and clinical data were assessed with a χ2 or Fisher's exact test. Survival analysis was performed using the Kaplan–Meier method with the log-rank test. In 123 patients, 21 (17.1% NPC tumors were positive for mutations in eight oncogenes: six patients had PIK3CA mutations (4.9%, five NRAS mutations (4.1%, four KIT mutations (3.3%, two PDGFRA mutations (1.6%, two ABL mutations (1.6%, and one with simultaneous mutations in HRAS, EGFR, and BRAF (1%. Patients with mutations were more likely to relapse or develop metastasis than those with wild-type alleles (P=0.019. No differences or correlations were found in other clinical characteristics or in patient survival. No mutations were detected in oncogenes AKT1, AKT2, CDK, ERBB2, FGFR1, FGFR3, FLT3, JAK2, KRAS, MET, and RET. These results demonstrate an association between NPC and mutations in NRAS, KIT, PIK3CA, PDGFRA, and ABL, which are associated with patient relapse and metastasis. Keywords: NPC, oncogene, mutation

  12. Oncogenes and radiosensitivity: in vitro studies. Potential impact in radiotherapy

    Alapetite, C.; Moustacchi, E.; Cosset, J.M.

    1992-01-01

    It is of interest to address the question of whether or not activated oncogenes can influence tumorigenic cell response to radiations. Malignant transformation through transfection of oncogenes offers a possibility for in vitro comparison of transformed cells and parental cells. Murin cellular system analysis suggests an acquisition of radioresistance through some oncogenes transfection. In human cells, only a limited number of oncogenes (ras and myc) has been studied so far. To date, no crucial influence could be demonstrated. The extension of the analysis to other oncogenes and suppressor genes could potentially be helpful for the choice and the modalities of cancer treatment

  13. Oncogenic transformation with radiation and chemicals: review

    Hall, E.J.; Hei, T.K.

    1985-01-01

    Quantitative in vitro assay systems for oncogenic transformation are a powerful research tool. They may be based on short-term cultures of hamster embryo cells, or established cell lines of mouse origin. While X-ray-induced transformation of human cells has been demonstrated, it has proved difficult to develop quantitative assay systems based on cells of human origin. The presently available quantitative assays have two quite distinct basic uses. First, they may be useful to accumulate data which is essentially pragmatic in nature. For example, they may be used to compare and contrast the oncogenic potential of chemotherapeutic agents or hypoxic cell sensitizers used or proposed in the clinic. They may be used to identify compounds that inhibit or suppress the transformation incidence resulting from known oncogenic agents, or they may be used to demonstrate the interaction between two different agents, such as radiation and asbestos. Second, they may prove to be invaluable in the study of the basic mechanisms of carcinogenesis, inasmuch as they represent models of tumourigenesis in which the various steps can be manipulated and modified more readily and in a controlled way. (author)

  14. Epigenetic Pathways of Oncogenic Viruses: Therapeutic Promises.

    El-Araby, Amr M; Fouad, Abdelrahman A; Hanbal, Amr M; Abdelwahab, Sara M; Qassem, Omar M; El-Araby, Moustafa E

    2016-02-01

    Cancerous transformation comprises different events that are both genetic and epigenetic. The ultimate goal for such events is to maintain cell survival and proliferation. This transformation occurs as a consequence of different features such as environmental and genetic factors, as well as some types of infection. Many viral infections are considered to be causative agents of a number of different malignancies. To convert normal cells into cancerous cells, oncogenic viruses must function at the epigenetic level to communicate with their host cells. Oncogenic viruses encode certain epigenetic factors that lead to the immortality and proliferation of infected cells. The epigenetic effectors produced by oncogenic viruses constitute appealing targets to prevent and treat malignant diseases caused by these viruses. In this review, we highlight the importance of epigenetic reprogramming for virus-induced oncogenesis, with special emphasis on viral epigenetic oncoproteins as therapeutic targets. The discovery of molecular components that target epigenetic pathways, especially viral factors, is also discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. P53 suppresses expression of the 14-3-3gamma oncogene

    Qi Wenqing

    2011-08-01

    Full Text Available Abstract Background 14-3-3 proteins are a family of highly conserved proteins that are involved in a wide range of cellular processes. Recent evidence indicates that some of these proteins have oncogenic activity and that they may promote tumorigenesis. We previously showed that one of the 14-3-3 family members, 14-3-3gamma, is over expressed in human lung cancers and that it can induce transformation of rodent cells in vitro. Methods qRTPCR and Western blot analysis were performed to examine 14-3-3gamma expression in non-small cell lung cancers (NSCLC. Gene copy number was analyzed by qPCR. P53 mutations were detected by direct sequencing and also by western blot. CHIP and yeast one hybrid assays were used to detect p53 binding to 14-3-3gamma promoter. Results Quantitative rtPCR results showed that the expression level of 14-3-3gamma was elevated in the majority of NSCLC that we examined which was also consistent with protein expression. Further analysis of the expression pattern of 14-3-3gamma in lung tumors showed a correlation with p53 mutations suggesting that p53 might suppress 14-3-3 gamma expression. Analysis of the gamma promoter sequence revealed the presence of a p53 consensus binding motif and in vitro assays demonstrated that wild-type p53 bound to this motif when activated by ionizing radiation. Deletion of the p53 binding motif eliminated p53's ability to suppress 14-3-3gamma expression. Conclusion Increased expression of 14-3-3gamma in lung cancer coincides with loss of functional p53. Hence, we propose that 14-3-3gamma's oncogenic activities cooperate with loss of p53 to promote lung tumorigenesis.

  16. Genomic Profiling on an Unselected Solid Tumor Population Reveals a Highly Mutated Wnt/β-Catenin Pathway Associated with Oncogenic EGFR Mutations

    Jingrui Jiang

    2018-04-01

    Full Text Available Oncogenic epidermal growth factor receptors (EGFRs can recruit key effectors in diverse cellular processes to propagate oncogenic signals. Targeted and combinational therapeutic strategies have been successfully applied for treating EGFR-driven cancers. However, a main challenge in EGFR therapies is drug resistance due to mutations, oncogenic shift, alternative signaling, and other potential mechanisms. To further understand the genetic alterations associated with oncogenic EGFRs and to provide further insight into optimal and personalized therapeutic strategies, we applied a proprietary comprehensive next-generation sequencing (NGS-based assay of 435 genes to systematically study the genomic profiles of 1565 unselected solid cancer patient samples. We found that activating EGFR mutations were predominantly detected in lung cancer, particularly in non-small cell lung cancer (NSCLC. The mutational landscape of EGFR-driven tumors covered most key signaling pathways and biological processes. Strikingly, the Wnt/β-catenin pathway was highly mutated (48 variants detected in 46% of the EGFR-driven tumors, and its variant number topped that in the TP53/apoptosis and PI3K-AKT-mTOR pathways. Furthermore, an analysis of mutation distribution revealed a differential association pattern of gene mutations between EGFR exon 19del and EGFR L858R. Our results confirm the aggressive nature of the oncogenic EGFR-driven tumors and reassure that a combinational strategy should have advantages over an EGFR-targeted monotherapy and holds great promise for overcoming drug resistance.

  17. Intracortical osteoblastic osteosarcoma with oncogenic rickets

    Hasegawa, T.; Hirohashi, Setsuo; Shimoda, Tadakazu; Yokoyama, Ryohei; Beppu, Yasuo; Maeda, Shotaro

    1999-01-01

    Intracortical osteosarcoma is the rarest variant of osteosarcoma, occurring within, and usually confined to, the cortical bone. Oncogenic osteomalacia, or rickets, is an unusual clinicopathologic entity in which vitamin D-resistant osteomalacia, or rickets, occurs in association with some tumors of soft tissue or bone. We present a case of oncogenic rickets associated with intracortical osteosarcoma of the tibia in a 9-year-old boy, whose roentgenographic abnormalities of rickets disappeared and pertinent laboratory data except for serum alkaline phosphatase became normal after surgical resection of the tumor. Histologically, the tumor was an osteosarcoma with a prominent osteoblastic pattern. An unusual microscopic feature was the presence of matrix mineralization showing rounded calcified structures (calcified spherules). Benign osteoblastic tumors, such as osteoid osteoma and osteoblastoma, must be considered in the differential diagnosis because of the relatively low cellular atypia and mitotic activity of this tumor. The infiltrating pattern with destruction or engulfment of normal bone is a major clue to the correct diagnosis of intracortical osteosarcoma. The co-existing radiographic changes of rickets were due to the intracortical osteosarcoma. (orig.)

  18. Intracortical osteoblastic osteosarcoma with oncogenic rickets

    Hasegawa, T.; Hirohashi, Setsuo [Pathology Division, National Cancer Center Research Institute, Tokyo (Japan); Shimoda, Tadakazu [Clinical Laboratory Division, National Cancer Center Hospital, Tokyo (Japan); Yokoyama, Ryohei; Beppu, Yasuo [Orthopedic Division, National Cancer Center Hospital, Tokyo (Japan); Maeda, Shotaro [Department of Pathology, Nippon Medical School Hospital, Tokyo (Japan)

    1999-01-01

    Intracortical osteosarcoma is the rarest variant of osteosarcoma, occurring within, and usually confined to, the cortical bone. Oncogenic osteomalacia, or rickets, is an unusual clinicopathologic entity in which vitamin D-resistant osteomalacia, or rickets, occurs in association with some tumors of soft tissue or bone. We present a case of oncogenic rickets associated with intracortical osteosarcoma of the tibia in a 9-year-old boy, whose roentgenographic abnormalities of rickets disappeared and pertinent laboratory data except for serum alkaline phosphatase became normal after surgical resection of the tumor. Histologically, the tumor was an osteosarcoma with a prominent osteoblastic pattern. An unusual microscopic feature was the presence of matrix mineralization showing rounded calcified structures (calcified spherules). Benign osteoblastic tumors, such as osteoid osteoma and osteoblastoma, must be considered in the differential diagnosis because of the relatively low cellular atypia and mitotic activity of this tumor. The infiltrating pattern with destruction or engulfment of normal bone is a major clue to the correct diagnosis of intracortical osteosarcoma. The co-existing radiographic changes of rickets were due to the intracortical osteosarcoma. (orig.) With 8 figs., 25 refs.

  19. mTORC1 is a critical mediator of oncogenic Semaphorin3A signaling

    Yamada, Daisuke; Kawahara, Kohichi; Maeda, Takehiko, E-mail: maeda@nupals.ac.jp

    2016-08-05

    Aberration of signaling pathways by genetic mutations or alterations in the surrounding tissue environments can result in tumor development or metastasis. However, signaling molecules responsible for these processes have not been completely elucidated. Here, we used mouse Lewis lung carcinoma cells (LLC) to explore the mechanism by which the oncogenic activity of Semaphorin3A (Sema3A) signaling is regulated. Sema3A knockdown by shRNA did not affect apoptosis, but decreased cell proliferation in LLCs; both the mammalian target of rapamycin complex 1 (mTORC1) level and glycolytic activity were also decreased. In addition, Sema3A knockdown sensitized cells to inhibition of oxidative phosphorylation by oligomycin, but conferred resistance to decreased cell viability induced by glucose starvation. Furthermore, recombinant SEMA3A rescued the attenuation of cell proliferation and glycolytic activity in LLCs after Sema3A knockdown, whereas mTORC1 inhibition by rapamycin completely counteracted this effect. These results demonstrate that Sema3A signaling exerts its oncogenic effect by promoting an mTORC1-mediated metabolic shift from oxidative phosphorylation to aerobic glycolysis. -- Highlights: •Sema3A knockdown decreased proliferation of Lewis lung carcinoma cells (LLCs). •Sema3A knockdown decreased mTORC1 levels and glycolytic activity in LLCs. •Sema3A knockdown sensitized cells to inhibition of oxidative phosphorylation. •Sema3A promotes shift from oxidative phosphorylation to aerobic glycolysis via mTORC1.

  20. GSK3 is required for rapalogs to induce degradation of some oncogenic proteins and to suppress cancer cell growth.

    Koo, Junghui; Wang, Xuerong; Owonikoko, Taofeek K; Ramalingam, Suresh S; Khuri, Fadlo R; Sun, Shi-Yong

    2015-04-20

    The single-agent activity of rapalogs (rapamycin and its analogues) in most tumor types has been modest at best. The underlying mechanisms are largely unclear. In this report, we have uncovered a critical role of GSK3 in regulating degradation of some oncogenic proteins induced by rapalogs and cell sensitivity to rapalogs. The basal level of GSK3 activity was positively correlated with cell sensitivity of lung cancer cell lines to rapalogs. GSK3 inhibition antagonized rapamycin's growth inhibitory effects both in vitro and in vivo, while enforced activation of GSK3β sensitized cells to rapamycin. GSK3 inhibition rescued rapamcyin-induced reduction of several oncogenic proteins such as cyclin D1, Mcl-1 and c-Myc, without interfering with the ability of rapamycin to suppress mTORC1 signaling and cap binding. Interestingly, rapamycin induces proteasomal degradation of these oncogenic proteins, as evidenced by their decreased stabilities induced by rapamcyin and rescue of their reduction by proteasomal inhibition. Moreover, acute or short-time rapamycin treatment dissociated not only raptor, but also rictor from mTOR in several tested cell lines, suggesting inhibition of both mTORC1 and mTORC2. Thus, induction of GSK3-dependent degradation of these oncogenic proteins is likely secondary to mTORC2 inhibition; this effect should be critical for rapamycin to exert its anticancer activity.

  1. Early bichemical markers of effects: Enzyme induction, oncogene activation and markers of oxidative damage

    Poulsen, Henrik E.; Loft, Steffen

    1995-01-01

    Early bichemical marker, enzyme induction, oncogene activation, oxidative damage, low-density lipoprotein......Early bichemical marker, enzyme induction, oncogene activation, oxidative damage, low-density lipoprotein...

  2. Lung cancer

    Aisner, J.

    1985-01-01

    This book contains 13 chapters. Some of the chapter titles are: The Pathology of Lung Cancer; Radiotherapy for Non-Small-Cell Cancer of the Lung; Chemotherapy for Non-Small-Cell Lung Cancer; Immunotherapy in the Management of Lung Cancer; Preoperative Staging and Surgery for Non-Small-Cell Lung Cancer; and Prognostic Factors in Lung Cancer

  3. The oncogenic action of ionizing radiation on rat skin

    Burns, F.J.

    1991-01-01

    Progress has occurred in several areas corresponding to the specific aims of the proposal: (1) Progression and multiple events in radiation carcinogenesis of rat skin as a function of LET; (2) cell cycle kinetics of irradiated rat epidermis as determined by double labeling and double emulsion autoradiography; (3) oncogene activation detected by in situ hybridization in radiation-induced rat skin tumors; (4) amplification of the c-myc oncogene in radiation-induced rat skin tumors as a function of LET; and (5) transformation of rat skin keratinocytes by ionizing radiation in combination with c-Ki-ras and c-myc oncogenes. 111 refs., 13 figs., 12 tabs

  4. Bleomycin Can Cleave an Oncogenic Noncoding RNA.

    Angelbello, Alicia J; Disney, Matthew D

    2018-01-04

    Noncoding RNAs are pervasive in cells and contribute to diseases such as cancer. A question in biomedical research is whether noncoding RNAs are targets of medicines. Bleomycin is a natural product that cleaves DNA; however, it is known to cleave RNA in vitro. Herein, an in-depth analysis of the RNA cleavage preferences of bleomycin A5 is presented. Bleomycin A5 prefers to cleave RNAs with stretches of AU base pairs. Based on these preferences and bioinformatic analysis, the microRNA-10b hairpin precursor was identified as a potential substrate for bleomycin A5. Both in vitro and cellular experiments demonstrated cleavage. Importantly, chemical cleavage by bleomycin A5 in the microRNA-10b hairpin precursors occurred near the Drosha and Dicer enzymatic processing sites and led to destruction of the microRNA. Evidently, oncogenic noncoding RNAs can be considered targets of cancer medicines and might elicit their pharmacological effects by targeting noncoding RNA. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. An Anti-Oncogenic Role for Decorin in Mammary Carcinoma

    Iozzo, Renato V

    2004-01-01

    .... In the preliminary data that support the basis of this proposal, we discovered that decorin causes a functional inactivation of the oncogenic ErbB2 protein in mammary carcinoma cells overexpressing ErbB2...

  6. Novel Combinatorial Chemistry-Derived Inhibitors of Oncogenic Phosphatases

    Lazo, John

    1999-01-01

    Our overall goal of this US Army Breast Cancer Grant entitled "Novel Combinatorial Chemistry-Derived Inhibitors of Oncogenic Phosphatases" is to identity and develop novel therapeutic agents for human breast cancer...

  7. Oncogenic osteomalacia associated with soft tissue chondromyxoid fibroma

    Park, Jeong Mi E-mail: jmpark@cmc.cuk.ac.kr; Woo, Young Kyun; Kang, Moo Il; Kang, Chang Suk; Hahn, Seong Tae

    2001-08-01

    Oncogenic osteomalacia is a rarely described clinical entity characterized by hypophosphatemia, phosphaturia, and a low concentration of 1,25-dihydroxyvitamin D{sub 3}. It is most often associated with benign mesenchymal tumor and can be cured with surgical removal of the tumor. In this paper, we present a case of oncogenic osteomalacia caused by chondromyxoid fibroma in the soft tissue of the sole of the foot in a 56-year-old woman.

  8. Oncogenic osteomalacia associated with soft tissue chondromyxoid fibroma

    Park, Jeong Mi; Woo, Young Kyun; Kang, Moo Il; Kang, Chang Suk; Hahn, Seong Tae

    2001-01-01

    Oncogenic osteomalacia is a rarely described clinical entity characterized by hypophosphatemia, phosphaturia, and a low concentration of 1,25-dihydroxyvitamin D 3 . It is most often associated with benign mesenchymal tumor and can be cured with surgical removal of the tumor. In this paper, we present a case of oncogenic osteomalacia caused by chondromyxoid fibroma in the soft tissue of the sole of the foot in a 56-year-old woman

  9. Lung Emergencies

    ... The Marfan Foundation Marfan & Related Disorders What is Marfan Syndrome? What are Related Disorders? What are the Signs? ... Emergencies Lung Emergencies Surgeries Lung Emergencies People with Marfan syndrome can be at increased risk of sudden lung ...

  10. Human cancers converge at the HIF-2alpha oncogenic axis.

    Franovic, Aleksandra; Holterman, Chet E; Payette, Josianne; Lee, Stephen

    2009-12-15

    Cancer development is a multistep process, driven by a series of genetic and environmental alterations, that endows cells with a set of hallmark traits required for tumorigenesis. It is broadly accepted that growth signal autonomy, the first hallmark of malignancies, can be acquired through multiple genetic mutations that activate an array of complex, cancer-specific growth circuits [Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57-70; Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10:789-799]. The superfluous nature of these pathways is thought to severely limit therapeutic approaches targeting tumor proliferation, and it has been suggested that this strategy be abandoned in favor of inhibiting more systemic hallmarks, including angiogenesis (Ellis LM, Hicklin DJ (2008) VEGF-targeted therapy: Mechanisms of anti-tumor activity. Nat Rev Cancer 8:579-591; Stommel JM, et al. (2007) Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science 318:287-290; Kerbel R, Folkman J (2002) Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2:727-739; Kaiser J (2008) Cancer genetics: A detailed genetic portrait of the deadliest human cancers. Science 321:1280-1281]. Here, we report the unexpected observation that genetically diverse cancers converge at a common and obligatory growth axis instigated by HIF-2alpha, an element of the oxygen-sensing machinery. Inhibition of HIF-2alpha prevents the in vivo growth and tumorigenesis of highly aggressive glioblastoma, colorectal, and non-small-cell lung carcinomas and the in vitro autonomous proliferation of several others, regardless of their mutational status and tissue of origin. The concomitant deactivation of select receptor tyrosine kinases, including the EGFR and IGF1R, as well as downstream ERK/Akt signaling, suggests that HIF-2alpha exerts its proliferative effects by endorsing these major pathways. Consistently

  11. Nutrition for Lung Cancer

    ... Become An Advocate Volunteer Ways To Give Lung Cancer www.lung.org > Lung Health and Diseases > Lung Disease Lookup > ... Cancer Learn About Lung Cancer What Is Lung Cancer Lung Cancer Basics Causes & Risk Factors Lung Cancer Staging ...

  12. Targeting oncogenic Myc as a strategy for cancer treatment.

    Chen, Hui; Liu, Hudan; Qing, Guoliang

    2018-01-01

    The MYC family oncogene is deregulated in >50% of human cancers, and this deregulation is frequently associated with poor prognosis and unfavorable patient survival. Myc has a central role in almost every aspect of the oncogenic process, orchestrating proliferation, apoptosis, differentiation, and metabolism. Although Myc inhibition would be a powerful approach for the treatment of many types of cancers, direct targeting of Myc has been a challenge for decades owing to its "undruggable" protein structure. Hence, alternatives to Myc blockade have been widely explored to achieve desirable anti-tumor effects, including Myc/Max complex disruption, MYC transcription and/or translation inhibition, and Myc destabilization as well as the synthetic lethality associated with Myc overexpression. In this review, we summarize the latest advances in targeting oncogenic Myc, particularly for cancer therapeutic purposes.

  13. Oncogenic osteomalacia due to FGF23-expressing colon adenocarcinoma.

    Leaf, David E; Pereira, Renata C; Bazari, Hasan; Jüppner, Harald

    2013-03-01

    Oncogenic osteomalacia, a paraneoplastic syndrome associated with hypophosphatemia due to increased urinary phosphate excretion, is caused by excessive synthesis and secretion of fibroblast growth factor 23 (FGF23), a phosphaturic hormone that is normally produced by osteocytes. Most cases of oncogenic osteomalacia have been associated with benign tumors of bone or soft tissue; however, whether malignant neoplasms can also produce and secrete FGF23 is currently unknown. The aim was to determine whether a malignant neoplasm could cause oncogenic osteomalacia through excessive production and secretion of FGF23. We describe an 80-year-old woman with stage IV colon adenocarcinoma who presented with severe hypophosphatemia (0.4 mg/dL; reference, 2.6-4.5 mg/dL). Fractional excretion of phosphate was 34% (reference, osteomalacia should be considered in the differential diagnosis for patients with a malignant tumor who present with hypophosphatemia.

  14. Evolution and clinical impact of co-occurring genetic alterations in advanced-stage EGFR-mutant lung cancers. | Office of Cancer Genomics

    A widespread approach to modern cancer therapy is to identify a single oncogenic driver gene and target its mutant-protein product (for example, EGFR-inhibitor treatment in EGFR-mutant lung cancers). However, genetically driven resistance to targeted therapy limits patient survival. Through genomic analysis of 1,122 EGFR-mutant lung cancer cell-free DNA samples and whole-exome analysis of seven longitudinally collected tumor samples from a patient with EGFR-mutant lung cancer, we identified critical co-occurring oncogenic events present in most advanced-stage EGFR-mutant lung cancers.

  15. Extracellular vesicle communication pathways as regulatory targets of oncogenic transformation.

    Choi, Dongsic; Lee, Tae Hoon; Spinelli, Cristiana; Chennakrishnaiah, Shilpa; D'Asti, Esterina; Rak, Janusz

    2017-07-01

    Pathogenesis of human cancers bridges intracellular oncogenic driver events and their impact on intercellular communication. Among multiple mediators of this 'pathological connectivity' the role of extracellular vesicles (EVs) and their subsets (exosomes, ectosomes, oncosomes) is of particular interest for several reasons. The release of EVs from cancer cells represents a unique mechanism of regulated expulsion of bioactive molecules, a process that also mediates cell-to-cell transfer of lipids, proteins, and nucleic acids. Biological effects of these processes have been implicated in several aspects of cancer-related pathology, including tumour growth, invasion, angiogenesis, metastasis, immunity and thrombosis. Notably, the emerging evidence suggests that oncogenic mutations may impact several aspects of EV-mediated cell-cell communication including: (i) EV release rate and protein content; (ii) molecular composition of cancer EVs; (iii) the inclusion of oncogenic and mutant macromolecules in the EV cargo; (iv) EV-mediated release of genomic DNA; (v) deregulation of mechanisms responsible for EV biogenesis (vesiculome) and (vi) mechanisms of EV uptake by cancer cells. Intriguingly, EV-mediated intercellular transfer of mutant and oncogenic molecules between subpopulations of cancer cells, their indolent counterparts and stroma may exert profound biological effects that often resemble (but are not tantamount to) oncogenic transformation, including changes in cell growth, clonogenicity and angiogenic phenotype, or cause cell stress and death. However, several biological barriers likely curtail a permanent horizontal transformation of normal cells through EV-mediated mechanisms. The ongoing analysis and targeting of EV-mediated intercellular communication pathways can be viewed as a new therapeutic paradigm in cancer, while the analysis of oncogenic cargo contained in EVs released from cancer cells into biofluids is being developed for clinical use as a biomarker

  16. Peptide hormones and lung cancer.

    Moody, T W

    2006-03-01

    Several peptide hormones have been identified which alter the proliferation of lung cancer. Small cell lung cancer (SCLC), which is a neuroendocrine cancer, produces and secretes gastrin releasing peptide (GRP), neurotensin (NT) and adrenomedullin (AM) as autocrine growth factors. GRP, NT and AM bind to G-protein coupled receptors causing phosphatidylinositol turnover or elevated cAMP in SCLC cells. Addition of GRP, NT or AM to SCLC cells causes altered expression of nuclear oncogenes, such as c-fos, and stimulation of growth. Antagonists have been developed for GRP, NT and AM receptors which function as cytostatic agents and inhibit SCLC growth. Growth factor antagonists, such as the NT1 receptor antagonist SR48692, facilitate the ability of chemotherapeutic drugs to kill lung cancer cells. It remains to be determined if GRP, NT and AM receptors will served as molecular targets, for development of new therapies for the treatment of SCLC patients. Non-small cell lung cancer (NSCLC) cells also have a high density of GRP, NT, AM and epidermal growth factor (EGF) receptors. Several NSCLC patients with EGF receptor mutations respond to gefitinib, a tyrosine kinase inhibitor. Gefitinib relieves NSCLC symptoms, maintaining stable disease in patients who are not eligible for systemic chemotherapy. It is important to develop new therapeutic approaches using translational research techniques for the treatment of lung cancer patients.

  17. Identification of Novel Ovarian Cancer Oncogenes that Function by Regulating Exosome Function

    2017-09-01

    Novel Ovarian Cancer Oncogenes that Function by Regulating Exosome Function September 2017 x 1Sep2016...31Aug2017 Email: mbirrer@partners.org 6 Identification of Novel Ovarian Cancer Oncogenes that Function by Regulating Exosome Function xx

  18. Oncogenic and incidental HPV types associated with histologically ...

    Background. In Africa, data on the relationship between oncogenic human papillomavirus (HPV) types, immune status and cervical preinvasive lesions are lacking. Methods. We investigated low-risk (lrHPV) and high-risk (hrHPV) HPV types in a cohort of women with cervical intraepithelial neoplasia (CIN) II/III confirmed on ...

  19. Machine Learning Identifies Stemness Features Associated with Oncogenic Dedifferentiation

    Malta, Tathiane M.; Sokolov, Artem; Gentles, Andrew J.; Burzykowski, Tomasz; Poisson, Laila; Weinstein, John N.; Kamińska, Bożena; Huelsken, Joerg; Omberg, Larsson; Gevaert, Olivier; Colaprico, Antonio; Czerwińska, Patrycja; Mazurek, Sylwia; Mishra, Lopa; Heyn, Holger; Krasnitz, Alex; Godwin, Andrew K.; Lazar, Alexander J.; Caesar-Johnson, Samantha J.; Demchok, John A.; Felau, Ina; Kasapi, Melpomeni; Ferguson, Martin L.; Hutter, Carolyn M.; Sofia, Heidi J.; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean C.; Zhang, Jiashan (Julia); Chudamani, Sudha; Liu, Jia; Lolla, Laxmi; Naresh, Rashi; Pihl, Todd; Sun, Qiang; Wan, Yunhu; Wu, Ye; Cho, Juok; DeFreitas, Timothy; Frazer, Scott; Gehlenborg, Nils; Getz, Gad; Heiman, David I.; Kim, Jaegil; Lawrence, Michael S.; Lin, Pei; Meier, Sam; Noble, Michael S.; Saksena, Gordon; Voet, Doug; Zhang, Hailei; Bernard, Brady; Chambwe, Nyasha; Dhankani, Varsha; Knijnenburg, Theo; Kramer, Roger; Leinonen, Kalle; Liu, Yuexin; Miller, Michael; Reynolds, Sheila; Shmulevich, Ilya; Thorsson, Vesteinn; Zhang, Wei; Akbani, Rehan; Broom, Bradley M.; Hegde, Apurva M.; Ju, Zhenlin; Kanchi, Rupa S.; Korkut, Anil; Li, Jun; Liang, Han; Ling, Shiyun; Liu, Wenbin; Lu, Yiling; Mills, Gordon B.; Ng, Kwok Shing; Rao, Arvind; Ryan, Michael; Wang, Jing; Weinstein, John N.; Zhang, Jiexin; Abeshouse, Adam; Armenia, Joshua; Chakravarty, Debyani; Chatila, Walid K.; de Bruijn, Ino; Gao, Jianjiong; Gross, Benjamin E.; Heins, Zachary J.; Kundra, Ritika; La, Konnor; Ladanyi, Marc; Luna, Augustin; Nissan, Moriah G.; Ochoa, Angelica; Phillips, Sarah M.; Reznik, Ed; Sanchez-Vega, Francisco; Sander, Chris; Schultz, Nikolaus; Sheridan, Robert; Sumer, S. Onur; Sun, Yichao; Taylor, Barry S.; Wang, Jioajiao; Zhang, Hongxin; Anur, Pavana; Peto, Myron; Spellman, Paul; Benz, Christopher; Stuart, Joshua M.; Wong, Christopher K.; Yau, Christina; Hayes, D. Neil; Parker, Joel S.; Wilkerson, Matthew D.; Ally, Adrian; Balasundaram, Miruna; Bowlby, Reanne; Brooks, Denise; Carlsen, Rebecca; Chuah, Eric; Dhalla, Noreen; Holt, Robert; Jones, Steven J.M.; Kasaian, Katayoon; Lee, Darlene; Ma, Yussanne; Marra, Marco A.; Mayo, Michael; Moore, Richard A.; Mungall, Andrew J.; Mungall, Karen; Robertson, A. Gordon; Sadeghi, Sara; Schein, Jacqueline E.; Sipahimalani, Payal; Tam, Angela; Thiessen, Nina; Tse, Kane; Wong, Tina; Berger, Ashton C.; Beroukhim, Rameen; Cherniack, Andrew D.; Cibulskis, Carrie; Gabriel, Stacey B.; Gao, Galen F.; Ha, Gavin; Meyerson, Matthew; Schumacher, Steven E.; Shih, Juliann; Kucherlapati, Melanie H.; Kucherlapati, Raju S.; Baylin, Stephen; Cope, Leslie; Danilova, Ludmila; Bootwalla, Moiz S.; Lai, Phillip H.; Maglinte, Dennis T.; Van Den Berg, David J.; Weisenberger, Daniel J.; Auman, J. Todd; Balu, Saianand; Bodenheimer, Tom; Fan, Cheng; Hoadley, Katherine A.; Hoyle, Alan P.; Jefferys, Stuart R.; Jones, Corbin D.; Meng, Shaowu; Mieczkowski, Piotr A.; Mose, Lisle E.; Perou, Amy H.; Perou, Charles M.; Roach, Jeffrey; Shi, Yan; Simons, Janae V.; Skelly, Tara; Soloway, Matthew G.; Tan, Donghui; Veluvolu, Umadevi; Fan, Huihui; Hinoue, Toshinori; Laird, Peter W.; Shen, Hui; Zhou, Wanding; Bellair, Michelle; Chang, Kyle; Covington, Kyle; Creighton, Chad J.; Dinh, Huyen; Doddapaneni, Harsha Vardhan; Donehower, Lawrence A.; Drummond, Jennifer; Gibbs, Richard A.; Glenn, Robert; Hale, Walker; Han, Yi; Hu, Jianhong; Korchina, Viktoriya; Lee, Sandra; Lewis, Lora; Li, Wei; Liu, Xiuping; Morgan, Margaret; Morton, Donna; Muzny, Donna; Santibanez, Jireh; Sheth, Margi; Shinbrot, Eve; Wang, Linghua; Wang, Min; Wheeler, David A.; Xi, Liu; Zhao, Fengmei; Hess, Julian; Appelbaum, Elizabeth L.; Bailey, Matthew; Cordes, Matthew G.; Ding, Li; Fronick, Catrina C.; Fulton, Lucinda A.; Fulton, Robert S.; Kandoth, Cyriac; Mardis, Elaine R.; McLellan, Michael D.; Miller, Christopher A.; Schmidt, Heather K.; Wilson, Richard K.; Crain, Daniel; Curley, Erin; Gardner, Johanna; Lau, Kevin; Mallery, David; Morris, Scott; Paulauskis, Joseph; Penny, Robert; Shelton, Candace; Shelton, Troy; Sherman, Mark; Thompson, Eric; Yena, Peggy; Bowen, Jay; Gastier-Foster, Julie M.; Gerken, Mark; Leraas, Kristen M.; Lichtenberg, Tara M.; Ramirez, Nilsa C.; Wise, Lisa; Zmuda, Erik; Corcoran, Niall; Costello, Tony; Hovens, Christopher; Carvalho, Andre L.; de Carvalho, Ana C.; Fregnani, José H.; Longatto-Filho, Adhemar; Reis, Rui M.; Scapulatempo-Neto, Cristovam; Silveira, Henrique C.S.; Vidal, Daniel O.; Burnette, Andrew; Eschbacher, Jennifer; Hermes, Beth; Noss, Ardene; Singh, Rosy; Anderson, Matthew L.; Castro, Patricia D.; Ittmann, Michael; Huntsman, David; Kohl, Bernard; Le, Xuan; Thorp, Richard; Andry, Chris; Duffy, Elizabeth R.; Lyadov, Vladimir; Paklina, Oxana; Setdikova, Galiya; Shabunin, Alexey; Tavobilov, Mikhail; McPherson, Christopher; Warnick, Ronald; Berkowitz, Ross; Cramer, Daniel; Feltmate, Colleen; Horowitz, Neil; Kibel, Adam; Muto, Michael; Raut, Chandrajit P.; Malykh, Andrei; Barnholtz-Sloan, Jill S.; Barrett, Wendi; Devine, Karen; Fulop, Jordonna; Ostrom, Quinn T.; Shimmel, Kristen; Wolinsky, Yingli; Sloan, Andrew E.; De Rose, Agostino; Giuliante, Felice; Goodman, Marc; Karlan, Beth Y.; Hagedorn, Curt H.; Eckman, John; Harr, Jodi; Myers, Jerome; Tucker, Kelinda; Zach, Leigh Anne; Deyarmin, Brenda; Hu, Hai; Kvecher, Leonid; Larson, Caroline; Mural, Richard J.; Somiari, Stella; Vicha, Ales; Zelinka, Tomas; Bennett, Joseph; Iacocca, Mary; Rabeno, Brenda; Swanson, Patricia; Latour, Mathieu; Lacombe, Louis; Têtu, Bernard; Bergeron, Alain; McGraw, Mary; Staugaitis, Susan M.; Chabot, John; Hibshoosh, Hanina; Sepulveda, Antonia; Su, Tao; Wang, Timothy; Potapova, Olga; Voronina, Olga; Desjardins, Laurence; Mariani, Odette; Roman-Roman, Sergio; Sastre, Xavier; Stern, Marc Henri; Cheng, Feixiong; Signoretti, Sabina; Berchuck, Andrew; Bigner, Darell; Lipp, Eric; Marks, Jeffrey; McCall, Shannon; McLendon, Roger; Secord, Angeles; Sharp, Alexis; Behera, Madhusmita; Brat, Daniel J.; Chen, Amy; Delman, Keith; Force, Seth; Khuri, Fadlo; Magliocca, Kelly; Maithel, Shishir; Olson, Jeffrey J.; Owonikoko, Taofeek; Pickens, Alan; Ramalingam, Suresh; Shin, Dong M.; Sica, Gabriel; Van Meir, Erwin G.; Zhang, Hongzheng; Eijckenboom, Wil; Gillis, Ad; Korpershoek, Esther; Looijenga, Leendert; Oosterhuis, Wolter; Stoop, Hans; van Kessel, Kim E.; Zwarthoff, Ellen C.; Calatozzolo, Chiara; Cuppini, Lucia; Cuzzubbo, Stefania; DiMeco, Francesco; Finocchiaro, Gaetano; Mattei, Luca; Perin, Alessandro; Pollo, Bianca; Chen, Chu; Houck, John; Lohavanichbutr, Pawadee; Hartmann, Arndt; Stoehr, Christine; Stoehr, Robert; Taubert, Helge; Wach, Sven; Wullich, Bernd; Kycler, Witold; Murawa, Dawid; Wiznerowicz, Maciej; Chung, Ki; Edenfield, W. Jeffrey; Martin, Julie; Baudin, Eric; Bubley, Glenn; Bueno, Raphael; De Rienzo, Assunta; Richards, William G.; Kalkanis, Steven; Mikkelsen, Tom; Noushmehr, Houtan; Scarpace, Lisa; Girard, Nicolas; Aymerich, Marta; Campo, Elias; Giné, Eva; Guillermo, Armando López; Van Bang, Nguyen; Hanh, Phan Thi; Phu, Bui Duc; Tang, Yufang; Colman, Howard; Evason, Kimberley; Dottino, Peter R.; Martignetti, John A.; Gabra, Hani; Juhl, Hartmut; Akeredolu, Teniola; Stepa, Serghei; Hoon, Dave; Ahn, Keunsoo; Kang, Koo Jeong; Beuschlein, Felix; Breggia, Anne; Birrer, Michael; Bell, Debra; Borad, Mitesh; Bryce, Alan H.; Castle, Erik; Chandan, Vishal; Cheville, John; Copland, John A.; Farnell, Michael; Flotte, Thomas; Giama, Nasra; Ho, Thai; Kendrick, Michael; Kocher, Jean Pierre; Kopp, Karla; Moser, Catherine; Nagorney, David; O'Brien, Daniel; O'Neill, Brian Patrick; Patel, Tushar; Petersen, Gloria; Que, Florencia; Rivera, Michael; Roberts, Lewis; Smallridge, Robert; Smyrk, Thomas; Stanton, Melissa; Thompson, R. Houston; Torbenson, Michael; Yang, Ju Dong; Zhang, Lizhi; Brimo, Fadi; Ajani, Jaffer A.; Gonzalez, Ana Maria Angulo; Behrens, Carmen; Bondaruk, Jolanta; Broaddus, Russell; Czerniak, Bogdan; Esmaeli, Bita; Fujimoto, Junya; Gershenwald, Jeffrey; Guo, Charles; Lazar, Alexander J.; Logothetis, Christopher; Meric-Bernstam, Funda; Moran, Cesar; Ramondetta, Lois; Rice, David; Sood, Anil; Tamboli, Pheroze; Thompson, Timothy; Troncoso, Patricia; Tsao, Anne; Wistuba, Ignacio; Carter, Candace; Haydu, Lauren; Hersey, Peter; Jakrot, Valerie; Kakavand, Hojabr; Kefford, Richard; Lee, Kenneth; Long, Georgina; Mann, Graham; Quinn, Michael; Saw, Robyn; Scolyer, Richard; Shannon, Kerwin; Spillane, Andrew; Stretch, Jonathan; Synott, Maria; Thompson, John; Wilmott, James; Al-Ahmadie, Hikmat; Chan, Timothy A.; Ghossein, Ronald; Gopalan, Anuradha; Levine, Douglas A.; Reuter, Victor; Singer, Samuel; Singh, Bhuvanesh; Tien, Nguyen Viet; Broudy, Thomas; Mirsaidi, Cyrus; Nair, Praveen; Drwiega, Paul; Miller, Judy; Smith, Jennifer; Zaren, Howard; Park, Joong Won; Hung, Nguyen Phi; Kebebew, Electron; Linehan, W. Marston; Metwalli, Adam R.; Pacak, Karel; Pinto, Peter A.; Schiffman, Mark; Schmidt, Laura S.; Vocke, Cathy D.; Wentzensen, Nicolas; Worrell, Robert; Yang, Hannah; Moncrieff, Marc; Goparaju, Chandra; Melamed, Jonathan; Pass, Harvey; Botnariuc, Natalia; Caraman, Irina; Cernat, Mircea; Chemencedji, Inga; Clipca, Adrian; Doruc, Serghei; Gorincioi, Ghenadie; Mura, Sergiu; Pirtac, Maria; Stancul, Irina; Tcaciuc, Diana; Albert, Monique; Alexopoulou, Iakovina; Arnaout, Angel; Bartlett, John; Engel, Jay; Gilbert, Sebastien; Parfitt, Jeremy; Sekhon, Harman; Thomas, George; Rassl, Doris M.; Rintoul, Robert C.; Bifulco, Carlo; Tamakawa, Raina; Urba, Walter; Hayward, Nicholas; Timmers, Henri; Antenucci, Anna; Facciolo, Francesco; Grazi, Gianluca; Marino, Mirella; Merola, Roberta; de Krijger, Ronald; Gimenez-Roqueplo, Anne Paule; Piché, Alain; Chevalier, Simone; McKercher, Ginette; Birsoy, Kivanc; Barnett, Gene; Brewer, Cathy; Farver, Carol; Naska, Theresa; Pennell, Nathan A.; Raymond, Daniel; Schilero, Cathy; Smolenski, Kathy; Williams, Felicia; Morrison, Carl; Borgia, Jeffrey A.; Liptay, Michael J.; Pool, Mark; Seder, Christopher W.; Junker, Kerstin; Omberg, Larsson; Dinkin, Mikhail; Manikhas, George; Alvaro, Domenico; Bragazzi, Maria Consiglia; Cardinale, Vincenzo; Carpino, Guido; Gaudio, Eugenio; Chesla, David; Cottingham, Sandra; Dubina, Michael; Moiseenko, Fedor; Dhanasekaran, Renumathy; Becker, Karl Friedrich; Janssen, Klaus Peter; Slotta-Huspenina, Julia; Abdel-Rahman, Mohamed H.; Aziz, Dina; Bell, Sue; Cebulla, Colleen M.; Davis, Amy; Duell, Rebecca; Elder, J. Bradley; Hilty, Joe; Kumar, Bahavna; Lang, James; Lehman, Norman L.; Mandt, Randy; Nguyen, Phuong; Pilarski, Robert; Rai, Karan; Schoenfield, Lynn; Senecal, Kelly; Wakely, Paul; Hansen, Paul; Lechan, Ronald; Powers, James; Tischler, Arthur; Grizzle, William E.; Sexton, Katherine C.; Kastl, Alison; Henderson, Joel; Porten, Sima; Waldmann, Jens; Fassnacht, Martin; Asa, Sylvia L.; Schadendorf, Dirk; Couce, Marta; Graefen, Markus; Huland, Hartwig; Sauter, Guido; Schlomm, Thorsten; Simon, Ronald; Tennstedt, Pierre; Olabode, Oluwole; Nelson, Mark; Bathe, Oliver; Carroll, Peter R.; Chan, June M.; Disaia, Philip; Glenn, Pat; Kelley, Robin K.; Landen, Charles N.; Phillips, Joanna; Prados, Michael; Simko, Jeffry; Smith-McCune, Karen; VandenBerg, Scott; Roggin, Kevin; Fehrenbach, Ashley; Kendler, Ady; Sifri, Suzanne; Steele, Ruth; Jimeno, Antonio; Carey, Francis; Forgie, Ian; Mannelli, Massimo; Carney, Michael; Hernandez, Brenda; Campos, Benito; Herold-Mende, Christel; Jungk, Christin; Unterberg, Andreas; von Deimling, Andreas; Bossler, Aaron; Galbraith, Joseph; Jacobus, Laura; Knudson, Michael; Knutson, Tina; Ma, Deqin; Milhem, Mohammed; Sigmund, Rita; Godwin, Andrew K.; Madan, Rashna; Rosenthal, Howard G.; Adebamowo, Clement; Adebamowo, Sally N.; Boussioutas, Alex; Beer, David; Giordano, Thomas; Mes-Masson, Anne Marie; Saad, Fred; Bocklage, Therese; Landrum, Lisa; Mannel, Robert; Moore, Kathleen; Moxley, Katherine; Postier, Russel; Walker, Joan; Zuna, Rosemary; Feldman, Michael; Valdivieso, Federico; Dhir, Rajiv; Luketich, James; Pinero, Edna M.Mora; Quintero-Aguilo, Mario; Carlotti, Carlos Gilberto; Dos Santos, Jose Sebastião; Kemp, Rafael; Sankarankuty, Ajith; Tirapelli, Daniela; Catto, James; Agnew, Kathy; Swisher, Elizabeth; Creaney, Jenette; Robinson, Bruce; Shelley, Carl Simon; Godwin, Eryn M.; Kendall, Sara; Shipman, Cassaundra; Bradford, Carol; Carey, Thomas; Haddad, Andrea; Moyer, Jeffey; Peterson, Lisa; Prince, Mark; Rozek, Laura; Wolf, Gregory; Bowman, Rayleen; Fong, Kwun M.; Yang, Ian; Korst, Robert; Rathmell, W. Kimryn; Fantacone-Campbell, J. Leigh; Hooke, Jeffrey A.; Kovatich, Albert J.; Shriver, Craig D.; DiPersio, John; Drake, Bettina; Govindan, Ramaswamy; Heath, Sharon; Ley, Timothy; Van Tine, Brian; Westervelt, Peter; Rubin, Mark A.; Lee, Jung Il; Aredes, Natália D.; Mariamidze, Armaz; Stuart, Joshua M.; Hoadley, Katherine A.; Laird, Peter W.; Noushmehr, Houtan; Wiznerowicz, Maciej

    2018-01-01

    Cancer progression involves the gradual loss of a differentiated phenotype and acquisition of progenitor and stem-cell-like features. Here, we provide novel stemness indices for assessing the degree of oncogenic dedifferentiation. We used an innovative one-class logistic regression (OCLR)

  20. The DNA damage checkpoint precedes activation of ARF in response to escalating oncogenic stress during tumorigenesis

    Evangelou, K.; Bartkova, J.; Kotsinas, A.

    2013-01-01

    oncogenes showed that the delayed upregulation of ARF reflected a requirement for a higher, transcriptionally based threshold of oncogenic stress, elicited by at least two oncogenic 'hits', compared with lower activation threshold for DDR. We propose that relative to DDR activation, ARF provides...

  1. Lung scintigraphy

    Dalenz, Roberto.

    1994-01-01

    A review of lung scintigraphy, perfusion scintigraphy with SPECT, lung ventilation SPECT, blood pool SPECT. The procedure of lung perfusion studies, radiopharmaceutical, administration and clinical applications, imaging processing .Results encountered and evaluation criteria after Biello and Pioped. Recommendations and general considerations have been studied about relation of this radiopharmaceutical with other pathologies

  2. The Oncogenic Risks of Diagnostic CT Scam Studies in Children

    Brent, R.

    2004-01-01

    Brenner et al (2001) reported that estimates of the exposure to children from CT scans indicates that the exposures are both higher than from conventional radiographic studies and higher than is necessary to obtain quality examinations. utilizing the oncogenic risk data from the RERF study in Japan, Brenner et al estimated that the oncogenic risk in this population of CT exposed children exposed each year would result in an additional 500 cases of cancer. This risk estimate is supported by the RERF epidemiological data obtained from the populations exposed in Hiroshima and Nagasaki. the increased risks associated with the increased exposure from CT scans have raised concern and stimulated discussion. Although there is little doubt about the benefits of CT scans in improving the health care of children, there is concern about the estimated oncogenic risk, especially since the frequency of CT studies has been increasing. Applying the oncogenic risks of ionizing radiation from the RERF data may not be appropriate for all types of radiation exposure for accurately predicting the incidence of cancer in exposed children because of the impact of 1) partial versus whole-body irradiation, and 2) the protraction of the exposure. Other population of children who have been exposed to radiation and whose incidence of cancer has been studied will be presented and those studies indicate that the risk of cancer is much lower or not increased at all with exposures in the diagnostic range. finally, the dramatic impact of the use of CT scans in clinical pediatric practice saves lives and improves diagnostic accuracy. Therefore, it is crucial that a scholarly evaluation of the risks and benefits should be initiated. The radiology community and the manufacturers have already initiated programs to decrease the exposure significantly. But it is essential that well-planned, retrospective and prospective epidemiology studies should be initiated to study the oncogenic risks. If you want to

  3. Lung density

    Garnett, E S; Webber, C E; Coates, G

    1977-01-01

    The density of a defined volume of the human lung can be measured in vivo by a new noninvasive technique. A beam of gamma-rays is directed at the lung and, by measuring the scattered gamma-rays, lung density is calculated. The density in the lower lobe of the right lung in normal man during quiet...... breathing in the sitting position ranged from 0.25 to 0.37 g.cm-3. Subnormal values were found in patients with emphsema. In patients with pulmonary congestion and edema, lung density values ranged from 0.33 to 0.93 g.cm-3. The lung density measurement correlated well with the findings in chest radiographs...... but the lung density values were more sensitive indices. This was particularly evident in serial observations of individual patients....

  4. What Is Lung Cancer?

    ... Shareable Graphics Infographics “African-American Men and Lung Cancer” “Lung Cancer Is the Biggest Cancer Killer in Both ... starts in the lungs, it is called lung cancer. Lung cancer begins in the lungs and may spread ...

  5. Abscess in the Lungs

    ... Home Lung and Airway Disorders Abscess in the Lungs Abscess in the Lungs Causes Symptoms Diagnosis Treatment Resources ... here for the Professional Version Abscess in the Lungs Abscess in the Lungs A lung abscess is a ...

  6. Comparison of the oncogenic potential of several chemotherapeutic agents

    Miller, R.C.; Hall, E.J.; Osmak, R.S.

    1981-01-01

    Several chemotherapeutic drugs that have been routinely used in cancer treatment were tested for their carcinogenic potential. Two antitumor antibiotics (adriamycin and vincristine), an alkalating agent (melphalan), 5-azacytidine and the bifunctional agent cis-platinum that mimics alkylating agents and/or binds Oxygen-6 or Nitrogen-7 atoms of quanine were tested. Cell killing and cancer induction was assessed using in vitro transformation system. C3H/10T 1/2 cells, while normally exhibiting contact inhibition, can undergo transformation from normal contact inhibited cells to tumorgenic cells when exposed to chemical carcinogens. These cells have been used in the past by this laboratory to study oncogenic transformation of cells exposed to ionizing radiation and electron affinic compounds that sensitize hypoxic cells to x-rays. The endpoints of cell killing and oncogenic transformation presented here give an estimate of the carcinogenic potential of these agents

  7. Malignant transformation of diploid human fibroblasts by transfection of oncogenes

    McCormick, J.J.

    1992-01-01

    This document consist of brief reports prepared by postdoctoral students supported by the project, each describing his accomplishments under the grant. Topics include (1) Malignant Transformation of MSU-1. 1 Cells by Gamma Radiation, (2) Correlation between Levels of ras Expression and Presence of Transformed Phenotypes Including Tumorigenicity, Using a Modulatable Promoter, (3) Relation between Specific rad Oncogene Expression, (4) Correlation of Genetic Changes in Fibroblastic Tumors with Malignancies, (5)Transformation of MSU-1.1 Cells by sis Oncogene, (6) Malignant Transformation of MSU-1.0 Cells, (7) Correlation of Urokinase Plasminogen Activation (mu-PA) with Malignant Phenotype, (8)Two Dimensional Gel Electrophoresis Studies of the Proteins of the Major Cell Strains of the MSU-1 Family of Cells, and (9) Correlation between Proteinase Activity Levels and Malignancy.

  8. Malignant transformation of diploid human fibroblasts by transfection of oncogenes

    McCormick, J.J.

    1992-01-01

    This document consist of brief reports prepared by postdoctoral students supported by the project, each describing his accomplishments under the grant. Topics include (1) Malignant Transformation of MSU-1. 1 Cells by Gamma Radiation, (2) Correlation between Levels of ras Expression and Presence of Transformed Phenotypes Including Tumorigenicity, Using a Modulatable Promoter, (3) Relation between Specific rad Oncogene Expression, (4) Correlation of Genetic Changes in Fibroblastic Tumors with Malignancies, (5)Transformation of MSU-1.1 Cells by sis Oncogene, (6) Malignant Transformation of MSU-1.0 Cells, (7) Correlation of Urokinase Plasminogen Activation (mu-PA) with Malignant Phenotype, (8)Two Dimensional Gel Electrophoresis Studies of the Proteins of the Major Cell Strains of the MSU-1 Family of Cells, and (9) Correlation between Proteinase Activity Levels and Malignancy

  9. Oncogenic osteomalacia presenting as bilateral stress fractures of the tibia

    Ohashi, Kenjirou; Ohnishi, Takeshi; Ishikawa, Tohru [Department of Radiology, St. Marianna University Hospital, Kanagawa (Japan); Tani, Haruo [Department of Internal Medicine III, St. Marianna University Hospital, Kawasaki City, Kanagawa (Japan); Uesugi, Keisuke [Department of Otolaryngology, St. Marianna University Hospital, Kawasaki City, Kanagawa (Japan); Takagi, Masayuki [Department of Pathology, St. Marianna University Hospital, Kawasaki City, Kanagawa (Japan)

    1999-01-01

    We report on a patient with bilateral stress fractures of the tibia who subsequently showed classic biochemical features of oncogenic osteomalacia. Conventional radiographs were normal. MR imaging revealed symmetric, bilateral, band-like low-signal lesions perpendicular to the medial cortex of the tibiae and corresponding to the only lesions subsequently seen on the bone scan. A maxillary sinus lesion was subsequently detected and surgically removed resulting in prompt alleviation of symptoms and normalization of hypophosphatemia and low 1,25-(OH){sub 2} vitamin D{sub 3}. The lesion was pathologically diagnosed as a hemangiopericytoma-like tumor. Patients with oncogenic osteomalacia may present with stress fractures limited to the tibia, as seen in athletes. The clue to the real diagnosis lies in paying close attention to the serum phosphate levels, especially in patients suffering generalized symptoms of weakness and not given to unusual physical activity. (orig.) With 4 figs., 6 refs.

  10. Oncogenic osteomalacia presenting as bilateral stress fractures of the tibia

    Ohashi, Kenjirou; Ohnishi, Takeshi; Ishikawa, Tohru; Tani, Haruo; Uesugi, Keisuke; Takagi, Masayuki

    1999-01-01

    We report on a patient with bilateral stress fractures of the tibia who subsequently showed classic biochemical features of oncogenic osteomalacia. Conventional radiographs were normal. MR imaging revealed symmetric, bilateral, band-like low-signal lesions perpendicular to the medial cortex of the tibiae and corresponding to the only lesions subsequently seen on the bone scan. A maxillary sinus lesion was subsequently detected and surgically removed resulting in prompt alleviation of symptoms and normalization of hypophosphatemia and low 1,25-(OH) 2 vitamin D 3 . The lesion was pathologically diagnosed as a hemangiopericytoma-like tumor. Patients with oncogenic osteomalacia may present with stress fractures limited to the tibia, as seen in athletes. The clue to the real diagnosis lies in paying close attention to the serum phosphate levels, especially in patients suffering generalized symptoms of weakness and not given to unusual physical activity. (orig.)

  11. Characterization of IKBKE as a Breast Cancer Oncogene

    2011-10-01

    HMLE -MEKDD cells stably expressing either pWZL or MF-IKKε. Immunoblot analysis by IKKε antibody. (D) IP with an IKK antibody from MCF-7 breast cancer ...summary is presented of research performed during three years of a project to further characterize the breast cancer oncogene IKKε. Two specific aims...constitutive IKKε transgenic mouse model to study the role of IKKε in breast cancer initiation and maintenance. The long term goals of this research

  12. Molecular biology III - Oncogenes and tumor suppressor genes

    Giaccia, Amato J.

    1996-01-01

    Purpose: The purpose of this course is to introduce to radiation oncologists the basic concepts of tumorigenesis, building on the information that will be presented in the first and second part of this series of lectures. Objective: Our objective is to increase the current understanding of radiation oncologists with the process of tumorigenesis, especially focusing on genes that are altered in many tumor types that are potential candidates for novel molecular strategies. As strategies to treat cancer of cancer are becoming more sophisticated, it will be important for both the practitioner and academician to develop a basic understanding of the function of cancer 'genes'. This will be the third in a series of refresher courses that are meant to address recent advances in Cancer Biology in a way that both clinicians without previous knowledge of molecular biology or experienced researchers will find interesting. The lecture will begin with a basic overview of tumorigenesis; methods of detecting chromosome/DNA alterations, approaches used to isolate oncogenes and tumor suppressor genes, and their role in cell killing by apoptosis. Special attention will be given to oncogenes and tumor suppressor genes that are modulated by ionizing radiation and the tumor microenvironment. We will relate the biology of oncogenes and tumor suppressor genes to basic aspects of radiation biology that would be important in clinical practice. Finally, we will review recent studies on the prognostic significance of p53 mutations and apoptosis in tumor specimens. The main point of this lecture is to relate both researcher and clinician what are the therapeutic ramifications of oncogene and tumor suppressor gene mutations found in human neoptasia

  13. The oncogenic action of ionizing radiation on rat skin

    Burns, F.J.; Garte, S.J.

    1990-01-01

    An extensive experiment involving approximately 400 rats exposed to the neon ion beam at the Bevalac in Berkeley, CA and to electrons is nearing completion. Progress is described in three areas corresponding to the specific aims of the proposal: (1) carcinogenesis and DNA strand breaks in rat skin following exposure by the neon ions or electrons; (2) oncogene activation in radiation-induced rat skin cancers; (3) DNA strand breaks in the epidermis as a function of radiation penetration. 59 refs., 4 tabs

  14. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer.

    Kamerkar, Sushrut; LeBleu, Valerie S; Sugimoto, Hikaru; Yang, Sujuan; Ruivo, Carolina F; Melo, Sonia A; Lee, J Jack; Kalluri, Raghu

    2017-06-22

    The mutant form of the GTPase KRAS is a key driver of pancreatic cancer but remains a challenging therapeutic target. Exosomes are extracellular vesicles generated by all cells, and are naturally present in the blood. Here we show that enhanced retention of exosomes, compared to liposomes, in the circulation of mice is likely due to CD47-mediated protection of exosomes from phagocytosis by monocytes and macrophages. Exosomes derived from normal fibroblast-like mesenchymal cells were engineered to carry short interfering RNA or short hairpin RNA specific to oncogenic Kras G12D , a common mutation in pancreatic cancer. Compared to liposomes, the engineered exosomes (known as iExosomes) target oncogenic KRAS with an enhanced efficacy that is dependent on CD47, and is facilitated by macropinocytosis. Treatment with iExosomes suppressed cancer in multiple mouse models of pancreatic cancer and significantly increased overall survival. Our results demonstrate an approach for direct and specific targeting of oncogenic KRAS in tumours using iExosomes.

  15. Activation of oncogenes by radon progeny and x-rays

    Ling, C.C.

    1990-01-01

    The overall goal of this proposal is to study the carcinogenic effect of both high and low LET radiation at the molecular level, utilizing techniques developed in molecular biology, cancer cell biology and radiation biology. The underlying assumption is that malignant transformation of normal cells is a multistep process requiring two or more molecular events in the genomic DNA. We hypothesize that radiation may induce such events in one or more steps of the multistep process. We will use in vitro models of transformation that reproduce the stepwise progression of normal cells toward the transformed phenotype and ask whether radiation can provide the necessary activating function at discrete steps along this path. Our strategy involves transfecting into normal primary cells a variety of cloned oncogenes that are known to supply only some of the functions necessary for full transformation. These partially transformed'' cells will be the targets for irradiation by x-rays and alpha particles. The results will provide the basis for assessing the ability of ionizing radiation to activate oncogenic functions that complement'' the oncogene already present in the transfected cells and produce the fully transformed phenotype. Progress is described. 121 refs.

  16. Activation of oncogenes by radon progeny and x-rays

    Ling, C.C.

    1990-01-01

    The overall goal of this proposal is to study the carcinogenic effect of both high and low LET radiation at the molecular level, utilizing techniques developed in molecular biology, cancer cell biology and radiation biology. The underlying assumption is that malignant transformation of normal cells is a multistep process requiring two or more molecular events in the genomic DNA. We hypothesize that radiation may induce such events in one or more steps of the multistep process. We will use in vitro models of transformation that reproduce the stepwise progression of normal cells toward the transformed phenotype and ask whether radiation can provide the necessary activating function at discrete steps along this path. Our strategy involves transfecting into normal primary cells a variety of cloned oncogenes that are known to supply only some of the functions necessary for full transformation. These ''partially transformed'' cells will be the targets for irradiation by x-rays and alpha particles. The results will provide the basis for assessing the ability of ionizing radiation to activate oncogenic functions that ''complement'' the oncogene already present in the transfected cells and produce the fully transformed phenotype. Progress is described. 121 refs

  17. Ras oncogenes in oral cancer: the past 20 years.

    Murugan, Avaniyapuram Kannan; Munirajan, Arasambattu Kannan; Tsuchida, Nobuo

    2012-05-01

    Oral squamous cell carcinoma (OSCC) of head and neck is associated with high morbidity and mortality in both Western and Asian countries. Several risk factors for the development of oral cancer are very well established, including tobacco chewing, betel quid, smoking, alcohol drinking and human papilloma virus (HPV) infection. Apart from these risk factors, many genetic factors such as oncogenes, tumor suppressor genes and regulatory genes are identified to involve in oral carcinogenesis with these risk factors dependent and independent manner. Ras is one of the most frequently genetically deregulated oncogene in oral cancer. In this review, we analyze the past 22years of literature on genetic alterations such as mutations and amplifications of the isoforms of the ras oncogene in oral cancer. Further, we addressed the isoform-specific role of the ras in oral carcinogenesis. We also discussed how targeting the Akt and MEK, downstream effectors of the PI3K/Akt and MAPK pathways, respectively, would probably pave the possible molecular therapeutic target for the ras driven tumorigenesis in oral cancer. Analysis of these ras isoforms may critically enlighten specific role of a particular ras isoform in oral carcinogenesis, enhance prognosis and pave the way for isoform-specific molecular targeted therapy in OSCC. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Lung cancer in never smokers Epidemiology and risk prediction models

    McCarthy, William J.; Meza, Rafael; Jeon, Jihyoun; Moolgavkar, Suresh

    2012-01-01

    In this chapter we review the epidemiology of lung cancer incidence and mortality among never smokers/ nonsmokers and describe the never smoker lung cancer risk models used by CISNET modelers. Our review focuses on those influences likely to have measurable population impact on never smoker risk, such as secondhand smoke, even though the individual-level impact may be small. Occupational exposures may also contribute importantly to the population attributable risk of lung cancer. We examine the following risk factors in this chapter: age, environmental tobacco smoke, cooking fumes, ionizing radiation including radon gas, inherited genetic susceptibility, selected occupational exposures, preexisting lung disease, and oncogenic viruses. We also compare the prevalence of never smokers between the three CISNET smoking scenarios and present the corresponding lung cancer mortality estimates among never smokers as predicted by a typical CISNET model. PMID:22882894

  19. A Screen Identifies the Oncogenic Micro-RNA miR-378a-5p as a Negative Regulator of Oncogene-Induced Senescence

    Kooistra, Susanne Marije; Rudkjær, Lise Christine; Lees, Michael James

    2014-01-01

    Oncogene-induced senescence (OIS) can occur in response to hyperactive oncogenic signals and is believed to be a fail-safe mechanism protecting against tumorigenesis. To identify new factors involved in OIS, we performed a screen for microRNAs that can overcome or inhibit OIS in human diploid fib...

  20. A Network-Based Model of Oncogenic Collaboration for Prediction of Drug Sensitivity

    Ted G Laderas

    2015-12-01

    Full Text Available Tumorigenesis is a multi-step process, involving the acquisition of multiple oncogenic mutations that transform cells, resulting in systemic dysregulation that enables proliferation, among other cancer hallmarks. High throughput omics techniques are used in precision medicine, allowing identification of these mutations with the goal of identifying treatments that target them. However, the multiplicity of oncogenes required for transformation, known as oncogenic collaboration, makes assigning effective treatments difficult. Motivated by this observation, we propose a new type of oncogenic collaboration where mutations in genes that interact with an oncogene may contribute to its dysregulation, a new genomic feature that we term surrogate oncogenes. By mapping mutations to a protein/protein interaction network, we can determine significance of the observed distribution using permutation-based methods. For a panel of 38 breast cancer cell lines, we identified significant surrogate oncogenes in oncogenes such as BRCA1 and ESR1. In addition, using Random Forest Classifiers, we show that these significant surrogate oncogenes predict drug sensitivity for 74 drugs in the breast cancer cell lines with a mean error rate of 30.9%. Additionally, we show that surrogate oncogenes are predictive of survival in patients. The surrogate oncogene framework incorporates unique or rare mutations on an individual level. Our model has the potential for integrating patient-unique mutations in predicting drug-sensitivity, suggesting a potential new direction in precision medicine, as well as a new approach for drug development. Additionally, we show the prevalence of significant surrogate oncogenes in multiple cancers within the Cancer Genome Atlas, suggesting that surrogate oncogenes may be a useful genomic feature for guiding pancancer analyses and assigning therapies across many tissue types.

  1. Lung Cancer

    Maghfoor, Irfan; Perry, M.C.

    2005-01-01

    Lung cancer is the leading cause of cancer-related mortality. Since tobacco smoking is the cause in vast majority of cases, the incidence of lung cancer is expected to rise in those countries with high or rising incidence of tobacco smoking. Even though population at a risk of developing lung cancer are easily identified, mass screening for lung cancer is not supported by currently available evidence. In case of non-small cell lung cancer, a cure may be possible with surgical resection followed by post-operative chemotherapy in those diagnosed at an early stage. A small minority of patients who present with locally advanced disease may also benefit from preoperative chemotherapy and/or radiation therapy to down stage the tumor to render it potentially operable. In a vast majority of patients, however, lung cancer presents at an advanced stage and a cure is not possible with currently available therapeutic strategies. Similarly small cell lung cancer confined to one hemi-thorax may be curable with a combination of chemotherapy and thoracic irradiation followed by prophylactic cranial irradiation, if complete remission is achieved at the primary site. Small cell lung cancer that is spread beyond the confines of one hemi-thorax is however, considered incurable. In this era of molecular targeted therapies, new agents are constantly undergoing pre-clinical and clinical testing with the aim of targeting the molecular pathways thought to involved in etiology and pathogenesis of lung cancer. (author)

  2. Molecular biology of the lung cancer

    Panov, S.Z.

    2005-01-01

    Background. Lung cancer is one of the most common malignant diseases and leading cause of cancer death worldwide. The advances in molecular biology and genetics, including the modern microarray technology and rapid sequencing techniques, have enabled a remarkable progress into elucidating the lung cancer ethiopathogenesis. Numerous studies suggest that more than 20 different genetic and epigenetic alterations are accumulating during the pathogenesis of clinically evident pulmonary cancers as a clonal, multistep process. Thus far, the most investigated alterations are the inactivational mutations and losses of tumour suppressor genes and the overexpression of growth-promoting oncogenes. More recently, the acquired epigenetic inactivation of tumour suppressor genes by promoter hypermethylation has been recognized. The early clonal genetic abnormalities that occur in preneoplastic bronchial epithelium damaged by smoking or other carcinogenes are being identified. The molecular distinctions between small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC), as well as between tumors with different clinical outcomes have been described. These investigations lead to the h allmarks of lung cancer . Conclusions. It is realistic to expect that the molecular and cell culture-based investigations will lead to discoveries of new clinical applications with the potential to provide new avenues for early diagnosis, risk assessment, prevention, and most important, new more effective treatment approaches for the lung cancer patients. (author)

  3. Gene therapy for lung cancer.

    Toloza, Eric M; Morse, Michael A; Lyerly, H Kim

    2006-09-01

    Lung cancer patients suffer a 15% overall survival despite advances in chemotherapy, radiation therapy, and surgery. This unacceptably low survival rate is due to the usual finding of advanced disease at diagnosis. However, multimodality strategies using conventional therapies only minimally improve survival rates even in early stages of lung cancer. Attempts to improve survival in advanced disease using various combinations of platinum-based chemotherapy have demonstrated that no regimen is superior, suggesting a therapeutic plateau and the need for novel, more specific, and less toxic therapeutic strategies. Over the past three decades, the genetic etiology of cancer has been gradually delineated, albeit not yet completely. Understanding the molecular events that occur during the multistep process of bronchogenic carcinogenesis may make these tasks more surmountable. During these same three decades, techniques have been developed which allow transfer of functional genes into mammalian cells. For example, blockade of activated tumor-promoting oncogenes or replacement of inactivated tumor-suppressing or apoptosis-promoting genes can be achieved by gene therapy. This article will discuss the therapeutic implications of these molecular changes associated with bronchogenic carcinomas and will then review the status of gene therapies for treatment of lung cancer. (c) 2006 Wiley-Liss, Inc.

  4. TUG1: a pivotal oncogenic long non-coding RNA of human cancers.

    Li, Zheng; Shen, Jianxiong; Chan, Matthew T V; Wu, William Ka Kei

    2016-08-01

    Long non-coding RNAs (lncRNAs) are a group greater than 200 nucleotides in length. An increasing number of studies has shown that lncRNAs play important roles in diverse cellular processes, including proliferation, differentiation, apoptosis, invasion and chromatin remodelling. In this regard, deregulation of lncRNAs has been documented in human cancers. TUG1 is a recently identified oncogenic lncRNA whose aberrant upregulation has been detected in different types of cancer, including B-cell malignancies, oesophageal squamous cell carcinoma, bladder cancer, hepatocellular carcinoma and osteosarcoma. In these malignancies, knock-down of TUG1 has been shown to suppress cell proliferation, invasion and/or colony formation. Interestingly, TUG1 has been found to be downregulated in non-small cell lung carcinoma, indicative of its tissue-specific function in tumourigenesis. Pertinent to clinical practice, TUG1 may act as a prognostic biomarker for tumours. In this review, we summarize current knowledge concerning the role of TUG1 in tumour progression and discuss mechanisms associated with it. © 2016 John Wiley & Sons Ltd.

  5. TRAP1 Regulation of Cancer Metabolism: Dual Role as Oncogene or Tumor Suppressor

    Danilo Swann Matassa

    2018-04-01

    Full Text Available Metabolic reprogramming is an important issue in tumor biology. An unexpected inter- and intra-tumor metabolic heterogeneity has been strictly correlated to tumor outcome. Tumor Necrosis Factor Receptor-Associated Protein 1 (TRAP1 is a molecular chaperone involved in the regulation of energetic metabolism in cancer cells. This protein is highly expressed in several cancers, such as glioblastoma, colon, breast, prostate and lung cancers and is often associated with drug resistance. However, TRAP1 is also downregulated in specific tumors, such as ovarian, bladder and renal cancers, where its lower expression is correlated with the worst prognoses and chemoresistance. TRAP1 is the only mitochondrial member of the Heat Shock Protein 90 (HSP90 family that directly interacts with respiratory complexes, contributing to their stability and activity but it is still unclear if such interactions lead to reduced or increased respiratory capacity. The role of TRAP1 is to enhance or suppress oxidative phosphorylation; the effects of such regulation on tumor development and progression are controversial. These observations encourage the study of the mechanisms responsible for the dualist role of TRAP1 as an oncogene or oncosuppressor in specific tumor types. In this review, TRAP1 puzzling functions were recapitulated with a special focus on the correlation between metabolic reprogramming and tumor outcome. We wanted to investigate whether metabolism-targeting drugs can efficiently interfere with tumor progression and whether they might be combined with chemotherapeutics or molecular-targeted agents to counteract drug resistance and reduce therapeutic failure.

  6. Reversal of oncogene transformation and suppression of tumor growth by the novel IGF1R kinase inhibitor A-928605

    Pappano, William N; Sheppard, George S; Donawho, Cherrie; Buchanan, Fritz G; Davidsen, Steven K; Bell, Randy L; Wang, Jieyi; Jung, Paul M; Meulbroek, Jonathan A; Wang, Yi-Chun; Hubbard, Robert D; Zhang, Qian; Grudzien, Meagan M; Soni, Niru B; Johnson, Eric F

    2009-01-01

    The insulin-like growth factor (IGF) axis is an important signaling pathway in the growth and survival of many cell and tissue types. This pathway has also been implicated in many aspects of cancer progression from tumorigenesis to metastasis. The multiple roles of IGF signaling in cancer suggest that inhibition of the pathway might yield clinically effective therapeutics. We describe A-928605, a novel pyrazolo [3,4-d]pyrimidine small molecule inhibitor of the receptor tyrosine kinases (IGF1R and IR) responsible for IGF signal transduction. This compound was first tested for its activity and selectivity via conventional in vitro kinome profiling and cellular IGF1R autophosphorylation. Additionally, cellular selectivity and efficacy of A-928605 were analyzed in an IGF1R oncogene-addicted cell line by proliferation, signaling and microarray studies. Finally, in vivo efficacy of A-928605 was assessed in the oncogene-addicted cell line and in a neuroblastoma model as a single agent as well as in combination with clinically approved therapeutics targeting EGFR in models of pancreatic and non-small cell lung cancers. A-928605 is a selective IGF1R inhibitor that is able to abrogate activation of the pathway both in vitro and in vivo. This novel compound dosed as a single agent is able to produce significant growth inhibition of neuroblastoma xenografts in vivo. A-928605 is also able to provide additive effects when used in combination with clinically approved agents directed against EGFR in non-small cell lung and human pancreatic tumor models. These results suggest that a selective IGF1R inhibitor such as A-928605 may provide a useful clinical therapeutic for IGF pathway affected tumors and warrants further investigation

  7. Lung Cancer

    Lung cancer is one of the most common cancers in the world. It is a leading cause of cancer death in men and women in the United States. Cigarette smoking causes most lung cancers. The more cigarettes you smoke per day and ...

  8. Co-chaperone BAG2 Determines the Pro-oncogenic Role of Cathepsin B in Triple-Negative Breast Cancer Cells

    Kyung-Min Yang

    2017-12-01

    Full Text Available Summary: Triple-negative breast cancer (TNBC is considered incurable with currently available treatments, highlighting the need for therapeutic targets and predictive biomarkers. Here, we report a unique role for Bcl-2-associated athanogene 2 (BAG2, which is significantly overexpressed in TNBC, in regulating the dual functions of cathepsin B as either a pro- or anti-oncogenic enzyme. Silencing BAG2 suppresses tumorigenesis and lung metastasis and induces apoptosis by increasing the intracellular mature form of cathepsin B, whereas BAG2 expression induces metastasis by blocking the auto-cleavage processing of pro-cathepsin B via interaction with the propeptide region. BAG2 regulates pro-cathepsin B/annexin II complex formation and facilitates the trafficking of pro-cathespin-B-containing TGN38-positive vesicles toward the cell periphery, leading to the secretion of pro-cathepsin B, which induces metastasis. Collectively, our results uncover BAG2 as a regulator of the oncogenic function of pro-cathepsin B and a potential diagnostic and therapeutic target that may reduce the burden of metastatic breast cancer. : The mechanisms controlling the pro- and anti-oncogenic roles of cathepsin B are unclear. Yang et al. find that BAG2 is a regulator of the dual functions of its client protein, CTSB, facilitating the progression of TNBC. Keywords: BAG2, cathepsin B, TNBC, tumorigenesis, metastasis, breast cancer, TGN38

  9. In vitro studies of human lung carcinogenesis.

    Harris, C C; Lechner, J F; Yoakum, G H; Amstad, P; Korba, B E; Gabrielson, E; Grafstrom, R; Shamsuddin, A; Trump, B F

    1985-01-01

    Advances in the methodology to culture normal human lung cells have provided opportunities to investigate fundamental problems in biomedical research, including the mechanism(s) of carcinogenesis. Using the strategy schematically shown in Figure 1, we have initiated studies of the effects of carcinogens on the normal progenitor cells of the human cancers caused by these carcinogens. Extended lifespans and aneuploidy were found after exposure of mesothelial cells to asbestos and bronchial epithelial cells to nickel sulfate. These abnormal cells may be considered to be preneoplastic and at an intermediate position in the multistage process of carcinogenesis. Human bronchial epithelial cells can also be employed to investigate the role of specific oncogenes in carcinogenesis and tumor progression. Using the protoplast fusion method for high frequency gene transfection, vHa-ras oncogene initiates a cascade of events in the normal human bronchial cells leading to their apparent immortality, aneuploidy, and tumorigenicity in athymic nude mice. These results suggest that oncogenes may play an important role in human carcinogenesis.

  10. ERBB oncogene proteins as targets for monoclonal antibodies.

    Polanovski, O L; Lebedenko, E N; Deyev, S M

    2012-03-01

    General properties of the family of tyrosine kinase ERBB receptors are considered in connection with their role in the generation of cascades of signal transduction in normal and tumor cells. Causes of acquisition of oncogene features by genes encoding these receptors and their role in tumorigenesis are analyzed. Anti-ERBB monoclonal antibodies approved for therapy are described in detail, and mechanisms of their antitumor activity and development of resistance to them are reviewed. The existing and the most promising strategies for creating and using monoclonal antibodies and their derivatives for therapy of cancer are discussed.

  11. Lung Cancer Screening

    ... factors increase or decrease the risk of lung cancer. Lung cancer is a disease in which malignant (cancer) ... following PDQ summaries for more information about lung cancer: Lung Cancer Prevention Non-Small Cell Lung Cancer Treatment ...

  12. Personalizing Therapy in Advanced Non–Small Cell Lung Cancer

    Villaruz, Liza C.; Burns, Timothy F.; Ramfidis, Vasilis S.; Socinski, Mark A.

    2016-01-01

    The recognition that non–small cell lung cancer (NSCLC) is not a single disease entity, but rather a collection of distinct molecularly driven neoplasms, has permanently shifted the therapeutic landscape of NSCLC to a personalized approach. This personalization of NSCLC therapy is typified by the dramatic response rates seen in EGFR mutant NSCLC when treated with targeted tyrosine kinase inhibitor therapy and in ALK translocation–driven NSCLC when treated with ALK inhibitors. Targeted therapeutic approaches in NSCLC necessitate consideration of more invasive biopsy techniques aimed at providing sufficient tissue for both histological determination and molecular profiling in all patients with stage IV disease both at the time of diagnosis and at the time of disease progression. Comprehensive genotyping efforts have identified oncogenic drivers in 62% lung adenocarcinomas and an increasing proportion of squamous cell carcinomas of the lung. The identification of these oncogenic drivers and the triage of patients to clinical trials evaluating novel targeted therapeutic approaches will increasingly mold a landscape of personalized lung cancer therapy where each genotype has an associated targeted therapy. This review outlines the state of personalized lung cancer therapy as it pertains to individual NSCLC genotypes. PMID:24258572

  13. Retroviruses Hijack Chromatin Loops to Drive Oncogene Expression and Highlight the Chromatin Architecture around Proto-Oncogenic Loci

    Pattison, Jillian M.; Wright, Jason B.; Cole, Michael D.

    2015-01-01

    The majority of the genome consists of intergenic and non-coding DNA sequences shown to play a major role in different gene regulatory networks. However, the specific potency of these distal elements as well as how these regions exert function across large genomic distances remains unclear. To address these unresolved issues, we closely examined the chromatin architecture around proto-oncogenic loci in the mouse and human genomes to demonstrate a functional role for chromatin looping in distal gene regulation. Using cell culture models, we show that tumorigenic retroviral integration sites within the mouse genome occur near existing large chromatin loops and that this chromatin architecture is maintained within the human genome as well. Significantly, as mutagenesis screens are not feasible in humans, we demonstrate a way to leverage existing screens in mice to identify disease relevant human enhancers and expose novel disease mechanisms. For instance, we characterize the epigenetic landscape upstream of the human Cyclin D1 locus to find multiple distal interactions that contribute to the complex cis-regulation of this cell cycle gene. Furthermore, we characterize a novel distal interaction upstream of the Cyclin D1 gene which provides mechanistic evidence for the abundant overexpression of Cyclin D1 occurring in multiple myeloma cells harboring a pathogenic translocation event. Through use of mapped retroviral integrations and translocation breakpoints, our studies highlight the importance of chromatin looping in oncogene expression, elucidate the epigenetic mechanisms crucial for distal cis-regulation, and in one particular instance, explain how a translocation event drives tumorigenesis through upregulation of a proto-oncogene. PMID:25799187

  14. Determination of the transforming activities of adenovirus oncogenes.

    Speiseder, Thomas; Nevels, Michael; Dobner, Thomas

    2014-01-01

    The last 50 years of molecular biological investigations into human adenoviruses (Ads) have contributed enormously to our understanding of the basic principles of normal and malignant cell growth. Much of this knowledge stems from analyses of the Ad productive infection cycle in permissive host cells. Also, initial observations concerning the transforming potential of human Ads subsequently revealed decisive insights into the molecular mechanisms of the origins of cancer and established Ads as a model system for explaining virus-mediated transformation processes. Today it is well established that cell transformation by human Ads is a multistep process involving several gene products encoded in early transcription units 1A (E1A) and 1B (E1B). Moreover, a large body of evidence now indicates that alternative or additional mechanisms are engaged in Ad-mediated oncogenic transformation involving gene products encoded in early region 4 (E4) as well as epigenetic changes resulting from viral DNA integration. In particular, studies on the transforming potential of several E4 gene products have now revealed new pathways that point to novel general mechanisms of virus-mediated oncogenesis. In this chapter we describe in vitro and in vivo assays to determine the transforming and oncogenic activities of the E1A, E1B, and E4 oncoproteins in primary baby rat kidney cells, human amniotic fluid cells and athymic nude mice.

  15. [High oncogenic risk human papillomavirus and urinary bladder cancer].

    Loran, O B; Sinyakova, L A; Gundorova, L V; Kosov, V A; Kosova, I V; Pogodina, I E; Kolbasov, D N

    2017-07-01

    To determine the role of human papillomavirus (HPV) of high oncogenic risk in the development of urinary bladder cancer. 100 patients (72 men and 28 women) aged 38 to 90 years (mean age 65+/-10 years) diagnosed with bladder cancer were examined and underwent treatment. Clinical assessment was complemented by enzyme-linked immunosorbent assays for the presence of antiviral antibodies to herpes simplex virus (HSV) type 1 and type 2, cytomegalovirus (CMV), Epstein-Barr virus (EBV), urethra scraping for detecting high oncogenic risk HPV. Tumor tissue was sampled for PCR virus detection. Semi-quantitative analysis was used to evaluate the components of lymphocyte-plasmocyte and leukocyte infiltrates and cytopathic changes in tumor tissue. There were positive correlations between cytopathic cell changes (koylocytosis and intranuclear inclusions, as manifestations of HPV) and the level of antiviral antibodies, the presence of viruses in the tumor, as well as with the components of the lymphoid-plasmocyte infiltrate. Negative correlations were found between the presence of papillomatosis and the above changes. Human papillomavirus is believed to be a trigger for the initiation of a tumor in young patients with a latent infection (CMV and EBV, HSV, HPV). Cytopathic changes (kylocytosis and intranuclear inclusions) were associated with the activity and morphological features of herpes-viral infections. Their degree varied depending on the stage of the process, but not on the anaplasia degree. Papillomatosis is associated with a more favorable course of the tumor process.

  16. Oncogenes Activate an Autonomous Transcriptional Regulatory Circuit That Drives Glioblastoma

    Dinesh K. Singh

    2017-01-01

    Full Text Available Efforts to identify and target glioblastoma (GBM drivers have primarily focused on receptor tyrosine kinases (RTKs. Clinical benefits, however, have been elusive. Here, we identify an SRY-related box 2 (SOX2 transcriptional regulatory network that is independent of upstream RTKs and capable of driving glioma-initiating cells. We identified oligodendrocyte lineage transcription factor 2 (OLIG2 and zinc-finger E-box binding homeobox 1 (ZEB1, which are frequently co-expressed irrespective of driver mutations, as potential SOX2 targets. In murine glioma models, we show that different combinations of tumor suppressor and oncogene mutations can activate Sox2, Olig2, and Zeb1 expression. We demonstrate that ectopic co-expression of the three transcription factors can transform tumor-suppressor-deficient astrocytes into glioma-initiating cells in the absence of an upstream RTK oncogene. Finally, we demonstrate that the transcriptional inhibitor mithramycin downregulates SOX2 and its target genes, resulting in markedly reduced proliferation of GBM cells in vivo.

  17. Oncogenic programmes and Notch activity: an 'organized crime'?

    Dominguez, Maria

    2014-04-01

    The inappropriate Notch signalling can influence virtually all aspect of cancer, including tumour-cell growth, survival, apoptosis, angiogenesis, invasion and metastasis, although it does not do this alone. Hence, elucidating the partners of Notch that are active in cancer is now the focus of much intense research activity. The genetic toolkits available, coupled to the small size and short life of the fruit fly Drosophila melanogaster, makes this an inexpensive and effective animal model, suited to large-scale cancer gene discovery studies. The fly eye is not only a non-vital organ but its stereotyped size and disposition also means it is easy to screen for mutations that cause tumours and metastases and provides ample opportunities to test cancer theories and to unravel unanticipated nexus between Notch and other cancer genes, or to discover unforeseen Notch's partners in cancer. These studies suggest that Notch's oncogenic capacity is brought about not simply by increasing signal strength but through partnerships, whereby oncogenes gain more by cooperating than acting individually, as in a ring 'organized crime'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Lung abscess

    Ha, H.K.; Kang, M.W.; Park, J.M.; Yang, W.J.; Shinn, K.S.; Bahk, Y.W.

    1993-01-01

    Lung abscess was successfully treated with percutaneous drainage in 5 of 6 patients. Complete abscess resolution occurred in 4 patients, partial resolution in one, and no response in one. The duration of drainage ranged from 7 to 18 days (mean 15.5 days) in successful cases. The failure of drainage in one neurologicall impaired patient was attributed to persistent aspiration. In 2 patients, concurrent pleural empyema was also cured. CT provided the anatomic details necessary for choosing the puncture site and avoiding puncture of the lung parenchyma. Percutaneous catheter drainage is a safe and effective method for treating lung abscess. (orig.)

  19. [Landscape of Lung Cancer with Oligometastasis].

    Goto, Yasushi; Sato, Jun

    2017-10-01

    Lung cancer with a few to several metastases is so-called oligometastatic disease. Patient with recurrence only to limited site is also known as oligo-recurrence, and may be included as oligometastatic disease. From biological aspect, any existence of metastases is a sign of systemic disease. Due to the reports of long survival with only local treatment and without systemic disease in oligometastatic lung cancer, word of oligometastasis is used with fascinating expectation of cure to advanced lung cancer. Most of the previous reports are retrospective and no comprehensive data exists for selecting patient for local treatment to oligometastasis. Recent positive result of randomize phase II study is followed up with phase III study. Progress in treatment of advanced non-small cell lung cancer with targeted therapy to oncogenic-driver(EGFR, ALK, ROS1 and others) and immune-checkpoint inhibitor(PD-1 pathway inhibitors)makes it difficult to define the appropriate indication of local treatment to oligometastatic lung cancer.

  20. Dabrafenib plus trametinib in patients with previously untreated BRAF(V600E)-mutant metastatic non-small-cell lung cancer : An open-label, phase 2 trial

    Planchard, David; Smit, Egbert F.; Groen, Harry J. M.; Mazieres, Julien; Besse, Benjamin; Helland, Aslaug; Giannone, Vanessa; D'Amelio, Anthony M.; Zhang, Pingkuan; Mookerjee, Bijoyesh; Johnson, Bruce E.

    2017-01-01

    Background: BRAF(V600E) mutation occurs in 1-2% of lung adenocarcinomas and acts as an oncogenic driver. Dabrafenib, alone or combined with trametinib, has shown substantial antitumour activity in patients with previously treated BRAF(V600E)-mutant metastatic non-small-cell lung cancer (NSCLC). We

  1. Lung cancer

    ... causing chemicals such as uranium, beryllium, vinyl chloride, nickel chromates, coal products, mustard gas, chloromethyl ethers, gasoline, and diesel exhaust Exposure to radon gas Family history of lung cancer ...

  2. Lung surgery

    ... are thoracotomy and video-assisted thoracoscopic surgery (VATS). Robotic surgery may also be used. Lung surgery using ... Center-Shreveport, Shreveport, LA. Review provided by VeriMed Healthcare Network. Also reviewed by David Zieve, MD, MHA, ...

  3. Unexpandable lung.

    Pereyra, Marco F; Ferreiro, Lucía; Valdés, Luis

    2013-02-01

    Unexpandable lung is a mechanical complication by which the lung does not expand to the chest wall, impeding a normal apposition between the two pleural layers. The main mechanism involved is the restriction of the visceral pleura due to the formation of a fibrous layer along this pleural membrane. This happens because of the presence of an active pleural disease (lung entrapment), which can be resolved if proper therapeutic measures are taken, or a remote disease (trapped lung), in which an irreversible fibrous pleural layer has been formed. The clinical suspicion arises with the presence of post-thoracocentesis hydropneumothorax or a pleural effusion that cannot be drained due to the appearance of thoracic pain. The diagnosis is based on the analysis of the pleural liquid, the determination of pleural pressures as we drain the effusion and on air-contrast chest CT. As both represent the continuity of one same process, the results will depend on the time at which these procedures are done. If, when given a lung that is becoming entrapped, the necessary therapeutic measures are not taken, the final result will be a trapped lung. In this instance, most patients are asymptomatic or have mild exertional dyspnea and therefore they do not require treatment. Nevertheless, in cases of incapacitating dyspnea, it may be necessary to use pleural decortication in order to resolve the symptoms. Copyright © 2012 SEPAR. Published by Elsevier Espana. All rights reserved.

  4. Mutational landscape of EGFR-, MYC-, and Kras-driven genetically engineered mouse models of lung adenocarcinoma.

    McFadden, David G; Politi, Katerina; Bhutkar, Arjun; Chen, Frances K; Song, Xiaoling; Pirun, Mono; Santiago, Philip M; Kim-Kiselak, Caroline; Platt, James T; Lee, Emily; Hodges, Emily; Rosebrock, Adam P; Bronson, Roderick T; Socci, Nicholas D; Hannon, Gregory J; Jacks, Tyler; Varmus, Harold

    2016-10-18

    Genetically engineered mouse models (GEMMs) of cancer are increasingly being used to assess putative driver mutations identified by large-scale sequencing of human cancer genomes. To accurately interpret experiments that introduce additional mutations, an understanding of the somatic genetic profile and evolution of GEMM tumors is necessary. Here, we performed whole-exome sequencing of tumors from three GEMMs of lung adenocarcinoma driven by mutant epidermal growth factor receptor (EGFR), mutant Kirsten rat sarcoma viral oncogene homolog (Kras), or overexpression of MYC proto-oncogene. Tumors from EGFR- and Kras-driven models exhibited, respectively, 0.02 and 0.07 nonsynonymous mutations per megabase, a dramatically lower average mutational frequency than observed in human lung adenocarcinomas. Tumors from models driven by strong cancer drivers (mutant EGFR and Kras) harbored few mutations in known cancer genes, whereas tumors driven by MYC, a weaker initiating oncogene in the murine lung, acquired recurrent clonal oncogenic Kras mutations. In addition, although EGFR- and Kras-driven models both exhibited recurrent whole-chromosome DNA copy number alterations, the specific chromosomes altered by gain or loss were different in each model. These data demonstrate that GEMM tumors exhibit relatively simple somatic genotypes compared with human cancers of a similar type, making these autochthonous model systems useful for additive engineering approaches to assess the potential of novel mutations on tumorigenesis, cancer progression, and drug sensitivity.

  5. Mutational landscape of EGFR-, MYC-, and Kras-driven genetically engineered mouse models of lung adenocarcinoma

    McFadden, David G.; Politi, Katerina; Bhutkar, Arjun; Chen, Frances K.; Song, Xiaoling; Pirun, Mono; Santiago, Philip M.; Kim-Kiselak, Caroline; Platt, James T.; Lee, Emily; Hodges, Emily; Rosebrock, Adam P.; Bronson, Roderick T.; Socci, Nicholas D.; Hannon, Gregory J.; Jacks, Tyler; Varmus, Harold

    2016-01-01

    Genetically engineered mouse models (GEMMs) of cancer are increasingly being used to assess putative driver mutations identified by large-scale sequencing of human cancer genomes. To accurately interpret experiments that introduce additional mutations, an understanding of the somatic genetic profile and evolution of GEMM tumors is necessary. Here, we performed whole-exome sequencing of tumors from three GEMMs of lung adenocarcinoma driven by mutant epidermal growth factor receptor (EGFR), mutant Kirsten rat sarcoma viral oncogene homolog (Kras), or overexpression of MYC proto-oncogene. Tumors from EGFR- and Kras-driven models exhibited, respectively, 0.02 and 0.07 nonsynonymous mutations per megabase, a dramatically lower average mutational frequency than observed in human lung adenocarcinomas. Tumors from models driven by strong cancer drivers (mutant EGFR and Kras) harbored few mutations in known cancer genes, whereas tumors driven by MYC, a weaker initiating oncogene in the murine lung, acquired recurrent clonal oncogenic Kras mutations. In addition, although EGFR- and Kras-driven models both exhibited recurrent whole-chromosome DNA copy number alterations, the specific chromosomes altered by gain or loss were different in each model. These data demonstrate that GEMM tumors exhibit relatively simple somatic genotypes compared with human cancers of a similar type, making these autochthonous model systems useful for additive engineering approaches to assess the potential of novel mutations on tumorigenesis, cancer progression, and drug sensitivity. PMID:27702896

  6. bcr-abl oncogene activation in Philadelphia chromosome-positive acute lymphoblastic leukemia

    Hermans, A.; Gow, J.; Selleri, L.; von Lindern, M.; Hagemeijer, A.; Wiedemann, L. M.; Grosveld, G.

    1988-01-01

    Tumor-specific alterations in oncogenes are thought to play a central role in the development of cancer. An example is the consistent fusion of the bcr gene to the c-abl oncogene on the Ph chromosome in CML. The Ph chromosome can also be observed in ALL. About 50% of Ph+ ALL cases, in contrast to

  7. Oncogene-inducible organoids as a miniature platform to assess cancer characteristics

    Mizutani, Tomohiro; Tsukamoto, Yoshiyuki; Clevers, Hans

    2017-01-01

    Direct effects of oncogenic proteins or inhibitor treatments on signaling pathways are difficult to assess in transgenic mice. In this issue, Riemer et al. (2017. J. Cell Biol. https://doi.org/10.1083/jcb.201610058) demonstrate that oncogene-inducible organoids offer the experimental versatility of

  8. Using 18F FDG PET/CT to Detect an occult Mesenchymal Tumor Causing Oncogenic Osteomalacia

    Seo, Hyo Jung; Choi, Yun Jung; Kim, Hyun Jeong; Jeong, Yong Hyu; Cho, Arthur; Lee, Jae Hoon; Yun, Mijin; Lee, Jong Doo; Kang, Won Jun

    2011-01-01

    Oncogenic osteomalacia is a rare paraneoplastic syndrome characterized by renal phosphate excretion, hypophosphatemia, and osteomalacia. This syndrome is often caused by tumors of mesenchymal origin. Patients with oncogenic osteomalacia have abnormal bone mineralization, resulting in a high frequency of fractures. Tumor resection is the treatment of choice, as it will often correct the metabolic imbalance. Although oncogenic osteomalacia is a potentially curable disease, diagnosis is difficult and often delayed because of the small size and sporadic location of the tumor. Bone scintigraphy and radiography best characterize osteoma lacia; magnetic resonance imaging findings are nonspecific. Here, we report a case of oncogenic osteomalacia secondary to a phosphaturic mesenchymal tumor that was successfully detected by 18F fluorodeoxyglucose positron emission tomography/computed tomography ( 18F FDG PET/CT). This case illustrates the advantages of 18F FDG PET/CT in detecting the occult mesenchymal tumor that causes oncogenic osteomalacia.

  9. A Novel Role for Keratin 17 in Coordinating Oncogenic Transformation and Cellular Adhesion in Ewing Sarcoma

    Sankar, Savita; Tanner, Jason M.; Bell, Russell; Chaturvedi, Aashi; Randall, R. Lor; Beckerle, Mary C.

    2013-01-01

    Oncogenic transformation in Ewing sarcoma is caused by EWS/FLI, an aberrant transcription factor fusion oncogene. Glioma-associated oncogene homolog 1 (GLI1) is a critical target gene activated by EWS/FLI, but the mechanism by which GLI1 contributes to the transformed phenotype of Ewing sarcoma was unknown. In this work, we identify keratin 17 (KRT17) as a direct downstream target gene upregulated by GLI1. We demonstrate that KRT17 regulates cellular adhesion by activating AKT/PKB (protein kinase B) signaling. In addition, KRT17 is necessary for oncogenic transformation in Ewing sarcoma and accounts for much of the GLI1-mediated transformation function but via a mechanism independent of AKT signaling. Taken together, our data reveal previously unknown molecular functions for a cytoplasmic intermediate filament protein, KRT17, in coordinating EWS/FLI- and GLI1-mediated oncogenic transformation and cellular adhesion in Ewing sarcoma. PMID:24043308

  10. ATM protein is deficient in over 40% of lung adenocarcinomas.

    Villaruz, Liza C; Jones, Helen; Dacic, Sanja; Abberbock, Shira; Kurland, Brenda F; Stabile, Laura P; Siegfried, Jill M; Conrads, Thomas P; Smith, Neil R; O'Connor, Mark J; Pierce, Andrew J; Bakkenist, Christopher J

    2016-09-06

    Lung cancer is the leading cause of cancer-related mortality in the USA and worldwide, and of the estimated 1.2 million new cases of lung cancer diagnosed every year, over 30% are lung adenocarcinomas. The backbone of 1st-line systemic therapy in the metastatic setting, in the absence of an actionable oncogenic driver, is platinum-based chemotherapy. ATM and ATR are DNA damage signaling kinases activated at DNA double-strand breaks (DSBs) and stalled and collapsed replication forks, respectively. ATM protein is lost in a number of cancer cell lines and ATR kinase inhibitors synergize with cisplatin to resolve xenograft models of ATM-deficient lung cancer. We therefore sought to determine the frequency of ATM loss in a tissue microarray (TMA) of lung adenocarcinoma. Here we report the validation of a commercial antibody (ab32420) for the identification of ATM by immunohistochemistry and estimate that 61 of 147 (41%, 95% CI 34%-50%) cases of lung adenocarcinoma are negative for ATM protein expression. As a positive control for ATM staining, nuclear ATM protein was identified in stroma and immune infiltrate in all evaluable cases. ATM loss in lung adenocarcinoma was not associated with overall survival. However, our preclinical findings in ATM-deficient cell lines suggest that ATM could be a predictive biomarker for synergy of an ATR kinase inhibitor with standard-of-care cisplatin. This could improve clinical outcome in 100,000's of patients with ATM-deficient lung adenocarcinoma every year.

  11. Chemically Induced Degradation of the Oncogenic Transcription Factor BCL6

    Nina Kerres

    2017-09-01

    Full Text Available The transcription factor BCL6 is a known driver of oncogenesis in lymphoid malignancies, including diffuse large B cell lymphoma (DLBCL. Disruption of its interaction with transcriptional repressors interferes with the oncogenic effects of BCL6. We used a structure-based drug design to develop highly potent compounds that block this interaction. A subset of these inhibitors also causes rapid ubiquitylation and degradation of BCL6 in cells. These compounds display significantly stronger induction of expression of BCL6-repressed genes and anti-proliferative effects than compounds that merely inhibit co-repressor interactions. This work establishes the BTB domain as a highly druggable structure, paving the way for the use of other members of this protein family as drug targets. The magnitude of effects elicited by this class of BCL6-degrading compounds exceeds that of our equipotent non-degrading inhibitors, suggesting opportunities for the development of BCL6-based lymphoma therapeutics.

  12. Use of glycolytic pathways for inhibiting or measuring oncogenic signaling

    Onodera, Yasuhito; Bissell, Mina

    2017-06-27

    Disclosed are methods in which glucose metabolism is correlated to oncogenesis through certain specific pathways; inhibition of certain enzymes is shown to interfere with oncogenic signaling, and measurement of certain enzyme levels is correlated with patient survival. The present methods comprise measuring level of expression of at least one of the enzymes involved in glucose uptake or metabolism, wherein increased expression of the at least one of the enzymes relative to expression in a normal cell correlates with poor prognosis of disease in a patient. Preferably the genes whose expression level is measured include GLUT3, PFKP, GAPDH, ALDOC, LDHA and GFPT2. Also disclosed are embodiments directed towards downregulating the expression of some genes in glucose uptake and metabolism.

  13. Mutations of the KRAS oncogene in endometrial hyperplasia and carcinoma.

    Wiesława Niklińska

    2009-05-01

    Full Text Available The aim of this study was to examine the prevalence and clinicopathological significance of KRAS point mutation in endometrial hyperplasia and carcinoma. We analysed KRAS in 11 cases of complex atypical hyperplasia and in 49 endometrial carcinomas using polymerase chain reaction associated with restriction fragment length polymorphism (PCR-RFPL. Point mutations at codon 12 of KRAS oncogene were identified in 7 of 49 (14,3% tumor specimens and in 2 of 11 (18,2% hyperplasias. No correlation was found between KRAS gene mutation and age at onset, histology, grade of differentiation and clinical stage. We conclude that KRAS mutation is a relatively common event in endometrial carcinogenesis, but with no prognostic value.

  14. Oncogenic osteomalacia: a clinicopathologic study of 17 bone lesions.

    Park, Y. K.; Unni, K. K.; Beabout, J. W.; Hodgson, S. F.

    1994-01-01

    Oncogenic osteomalacia is an unusual and rare clinicopathologic syndrome characterized by mesenchymal tumors that apparently produce osteomalacia and biochemical abnormalities consisting of hypophosphatemia, normocalcemia, and increased levels of alkaline phosphatase. We collected from the Mayo Clinic files and from our consultation files the records for 17 cases of osteomalacia associated with bone lesions. There were five cases of fibrous dysplasia, three of hemangiopericytoma, and two of phosphaturic mesenchymal tumor. There was one case each of osteosarcoma, chondroblastoma, chondromyxoid fibroma, malignant fibrous histiocytoma, giant cell tumor, metaphyseal fibrous defect, and hemangioma. In this study we can figure out that the most common characteristic histologic features of our cases were hemangiopericytomatous vascular proliferation, fine lace-like stromal calcification, and stromal giant cells. In most of the cases, the clinical and biochemical symptoms and signs resolved soon after complete resection of the lesion. When the lesion recurred or metastasized, the symptoms and signs also recurred. PMID:7848576

  15. Oncogenic signalling pathways in benign odontogenic cysts and tumours.

    Diniz, Marina Gonçalves; Gomes, Carolina Cavalieri; de Sousa, Sílvia Ferreira; Xavier, Guilherme Machado; Gomez, Ricardo Santiago

    2017-09-01

    The first step towards the prevention of cancer is to develop an in-depth understanding of tumourigenesis and the molecular basis of malignant transformation. What drives tumour initiation? Why do most benign tumours fail to metastasize? Oncogenic mutations, previously considered to be the hallmark drivers of cancers, are reported in benign cysts and tumours, including those that have an odontogenic origin. Despite the presence of such alterations, the vast majority of odontogenic lesions are benign and never progress to the stage of malignant transformation. As these lesions are likely to develop due to developmental defects, it is possible that they harbour quiet genomes. Now the question arises - do they result from DNA replication errors? Specific candidate genes have been sequenced in odontogenic lesions, revealing recurrent BRAF mutation in the case of ameloblastoma, KRAS mutation in adenomatoid odontogenic tumours, PTCH1 mutation in odontogenic keratocysts, and CTNNB1 (Beta-catenin) mutation in calcifying odontogenic cysts. Studies on these benign and rare entities might reveal important information about the tumorigenic process and the mechanisms that hinder/halt neoplastic progression. This is because the role of relatively common oncogenic mutations seems to be context dependent. In this review, each mutation signature of the odontogenic lesion and the affected signalling pathways are discussed in the context of tooth development and tumorigenesis. Furthermore, behavioural differences between different types of odontogenic lesions are explored and discussed based on the molecular alteration described. This review also includes the employment of molecular results for guiding therapeutic approaches towards odontogenic lesions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Oncogenic Radiation Abscopal Effects In Vivo: Interrogating Mouse Skin

    Mancuso, Mariateresa, E-mail: mariateresa.mancuso@enea.it [Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l' Energia e lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Centre, Rome (Italy); Leonardi, Simona [Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l' Energia e lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Centre, Rome (Italy); Giardullo, Paola; Pasquali, Emanuela [Department of Radiation Physics, Guglielmo Marconi University, Rome (Italy); Tanori, Mirella [Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l' Energia e lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Centre, Rome (Italy); De Stefano, Ilaria [Department of Radiation Physics, Guglielmo Marconi University, Rome (Italy); Casciati, Arianna [Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l' Energia e lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Centre, Rome (Italy); Naus, Christian C. [Department of Cellular and Physiological Sciences, The Life Sciences Institute, University of British Columbia, Vancouver, British Columbia (Canada); Pazzaglia, Simonetta; Saran, Anna [Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l' Energia e lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Centre, Rome (Italy)

    2013-08-01

    Purpose: To investigate the tissue dependence in transmission of abscopal radiation signals and their oncogenic consequences in a radiosensitive mouse model and to explore the involvement of gap junction intercellular communication (GJIC) in mediating radiation tumorigenesis in off-target mouse skin. Methods and Materials: Patched1 heterozygous (Ptch1{sup +/−}) mice were irradiated at postnatal day 2 (P2) with 10 Gy of x-rays. Individual lead cylinders were used to protect the anterior two-thirds of the body, whereas the hindmost part was directly exposed to radiation. To test the role of GJICs and their major constituent connexin43 (Cx43), crosses between Ptch1{sup +/−} and Cx43{sup +/−} mice were similarly irradiated. These mouse groups were monitored for their lifetime, and skin basal cell carcinomas (BCCs) were counted and recorded. Early responses to DNA damage - Double Strand Breaks (DSBs) and apoptosis - were also evaluated in shielded and directly irradiated skin areas. Results: We report abscopal tumor induction in the shielded skin of Ptch1{sup +/−} mice after partial-body irradiation. Endpoints were induction of early nodular BCC-like tumors and macroscopic infiltrative BCCs. Abscopal tumorigenesis was significantly modulated by Cx43 status, namely, Cx43 reduction was associated with decreased levels of DNA damage and oncogenesis in out-of-field skin, suggesting a key role of GJIC in transmission of oncogenic radiation signals to unhit skin. Conclusions: Our results further characterize the nature of abscopal responses and the implications they have on pathologic processes in different tissues, including their possible underlying mechanistic bases.

  17. Oncogenic Radiation Abscopal Effects In Vivo: Interrogating Mouse Skin

    Mancuso, Mariateresa; Leonardi, Simona; Giardullo, Paola; Pasquali, Emanuela; Tanori, Mirella; De Stefano, Ilaria; Casciati, Arianna; Naus, Christian C.; Pazzaglia, Simonetta; Saran, Anna

    2013-01-01

    Purpose: To investigate the tissue dependence in transmission of abscopal radiation signals and their oncogenic consequences in a radiosensitive mouse model and to explore the involvement of gap junction intercellular communication (GJIC) in mediating radiation tumorigenesis in off-target mouse skin. Methods and Materials: Patched1 heterozygous (Ptch1 +/− ) mice were irradiated at postnatal day 2 (P2) with 10 Gy of x-rays. Individual lead cylinders were used to protect the anterior two-thirds of the body, whereas the hindmost part was directly exposed to radiation. To test the role of GJICs and their major constituent connexin43 (Cx43), crosses between Ptch1 +/− and Cx43 +/− mice were similarly irradiated. These mouse groups were monitored for their lifetime, and skin basal cell carcinomas (BCCs) were counted and recorded. Early responses to DNA damage - Double Strand Breaks (DSBs) and apoptosis - were also evaluated in shielded and directly irradiated skin areas. Results: We report abscopal tumor induction in the shielded skin of Ptch1 +/− mice after partial-body irradiation. Endpoints were induction of early nodular BCC-like tumors and macroscopic infiltrative BCCs. Abscopal tumorigenesis was significantly modulated by Cx43 status, namely, Cx43 reduction was associated with decreased levels of DNA damage and oncogenesis in out-of-field skin, suggesting a key role of GJIC in transmission of oncogenic radiation signals to unhit skin. Conclusions: Our results further characterize the nature of abscopal responses and the implications they have on pathologic processes in different tissues, including their possible underlying mechanistic bases

  18. Deciphering hepatocellular responses to metabolic and oncogenic stress

    Kathrina L. Marcelo

    2015-08-01

    Full Text Available Each cell type responds uniquely to stress and fractionally contributes to global and tissue-specific stress responses. Hepatocytes, liver macrophages (MΦ, and sinusoidal endothelial cells (SEC play functionally important and interdependent roles in adaptive processes such as obesity and tumor growth. Although these cell types demonstrate significant phenotypic and functional heterogeneity, their distinctions enabling disease-specific responses remain understudied. We developed a strategy for the simultaneous isolation and quantification of these liver cell types based on antigenic cell surface marker expression. To demonstrate the utility and applicability of this technique, we quantified liver cell-specific responses to high-fat diet (HFD or diethylnitrosamine (DEN, a liver-specific carcinogen, and found that while there was only a marginal increase in hepatocyte number, MΦ and SEC populations were quantitatively increased. Global gene expression profiling of hepatocytes, MΦ and SEC identified characteristic gene signatures that define each cell type in their distinct physiological or pathological states. Integration of hepatic gene signatures with available human obesity and liver cancer microarray data provides further insight into the cell-specific responses to metabolic or oncogenic stress. Our data reveal unique gene expression patterns that serve as molecular “fingerprints” for the cell-centric responses to pathologic stimuli in the distinct microenvironment of the liver. The technical advance highlighted in this study provides an essential resource for assessing hepatic cell-specific contributions to metabolic and oncogenic stress, information that could unveil previously unappreciated molecular mechanisms for the cellular crosstalk that underlies the continuum from metabolic disruption to obesity and ultimately hepatic cancer.

  19. Lung function

    Sorichter, S.

    2009-01-01

    The term lung function is often restricted to the assessment of volume time curves measured at the mouth. Spirometry includes the assessment of lung volumes which can be mobilised with the corresponding flow-volume curves. In addition, lung volumes that can not be mobilised, such as the residual volume, or only partially as FRC and TLC can be measured by body plethysmography combined with the determination of the airway resistance. Body plethysmography allows the correct positioning of forced breathing manoeuvres on the volume-axis, e.g. before and after pharmacotherapy. Adding the CO single breath transfer factor (T LCO ), which includes the measurement of the ventilated lung volume using He, enables a clear diagnosis of different obstructive, restrictive or mixed ventilatory defects with and without trapped air. Tests of reversibility and provocation, as well as the assessment of inspiratory mouth pressures (PI max , P 0.1 ) help to classify the underlying disorder and to clarify treatment strategies. For further information and to complete the diagnostic of disturbances of the ventilation, diffusion and/or perfusion (capillar-)arterial bloodgases at rest and under physical strain sometimes amended by ergospirometry are recommended. Ideally, lung function measurements are amended by radiological and nuclear medicine techniques. (orig.) [de

  20. Repression of transcription mediated at a thyroid hormone response element by the v-erb-A oncogene product

    Sap, J; Muñoz, A; Schmitt, J

    1989-01-01

    Several recent observations, such as the identification of the cellular homologue of the v-erb-A oncogene as a thyroid-hormone receptor, have strongly implicated nuclear oncogenes in transcriptional control mechanisms. The v-erb-A oncogene blocks the differentiation of erythroid cells, and changes...

  1. Hepatoma SK Hep-1 cells exhibit characteristics of oncogenic mesenchymal stem cells with highly metastatic capacity.

    Jong Ryeol Eun

    Full Text Available SK Hep-1 cells (SK cells derived from a patient with liver adenocarcinoma have been considered a human hepatoma cell line with mesenchymal origin characteristics, however, SK cells do not express liver genes and exhibit liver function, thus, we hypothesized whether mesenchymal cells might contribute to human liver primary cancers. Here, we characterized SK cells and its tumourigenicity.We found that classical mesenchymal stem cell (MSC markers were presented on SK cells, but endothelial marker CD31, hematopoietic markers CD34 and CD45 were negative. SK cells are capable of differentiate into adipocytes and osteoblasts as adipose-derived MSC (Ad-MSC and bone marrow-derived MSC (BM-MSC do. Importantly, a single SK cell exhibited a substantial tumourigenicity and metastatic capacity in immunodefficient mice. Metastasis not only occurred in circulating organs such as lung, liver, and kidneys, but also in muscle, outer abdomen, and skin. SK cells presented greater in vitro invasive capacity than those of Ad-MSC and BM-MSC. The xenograft cells from subcutaneous and metastatic tumors exhibited a similar tumourigenicity and metastatic capacity, and showed the same relatively homogenous population with MSC characteristics when compared to parental SK cells. SK cells could unlimitedly expand in vitro without losing MSC characteristics, its tumuorigenicity and metastatic capacity, indicating that SK cells are oncogenic MSC with enhanced self-renewal capacity. We believe that this is the first report that human MSC appear to be transformed into cancer stem cells (CSC, and that their derivatives also function as CSCs.Our findings demonstrate that SK cells represent a transformation mechanism of normal MSC into an enhanced self-renewal CSC with metastasis capacity, SK cells and their xenografts represent a same relative homogeneity of CSC with substantial metastatic capacity. Thus, it represents a novel mechanism of tumor initiation, development and

  2. Open lung biopsy

    Biopsy - open lung ... An open lung biopsy is done in the hospital using general anesthesia . This means you will be asleep and ... The open lung biopsy is done to evaluate lung problems seen on x-ray or CT scan .

  3. Lung Cancer: Glossary

    ... professional support team today. Learn More . Find more lung cancer resources. Learn More Donate Today! What is Lung ... to Give How Your Support Helps Events Lung Cancer Awareness © Lung Cancer Alliance. The information presented in this website ...

  4. Lung Cancer Prevention

    ... Colorectal Cancer Kidney (Renal Cell) Cancer Leukemia Liver Cancer Lung Cancer Lymphoma Pancreatic Cancer Prostate Cancer Skin Cancer ... following PDQ summaries for more information about lung cancer: Lung Cancer Screening Non-Small Cell Lung Cancer Treatment ...

  5. Lung cancer - small cell

    Cancer - lung - small cell; Small cell lung cancer; SCLC ... About 15% of all lung cancer cases are SCLC. Small cell lung cancer is slightly more common in men than women. Almost all cases of SCLC are ...

  6. [Lung scintigraphy].

    Schümichen, Carl; Schmidt, Matthias; Krause, Thomas

    2018-06-01

    The S1 guideline for lung scintigraphy has been updated and extended in order to emphasize the advantages oft the method in detecting acute pulmonary embolism (PE) in the periphery oft the lung (subsegmental PE), in underlying subacute and chronic pulmonary disorders, as well as in detecting chronic LE (CTEPH). Method of choice is ventilation / perfusion (V/P) SPECT or V/P SPECT/CT with even higher specificity. Because of its high sensitivity, a threshold (V/P mismatch in at least one segment or two subsegments) is introduced to avoid overtreatment. In case of a change in the therapeutic approach (observation only instead of anticoaculation) the threshold can be omitted. New data concerning the clinical and therapeutical impact of subsegmental PE are included, the chapters open questions have been extented. Other indications for V/P SPECT (secondary diagnoses, abnormalities in pulmonary perfusion, prediction of postoperative lung function) are presented with new data. Schattauer GmbH.

  7. Advances in molecular biology of lung disease: aiming for precision therapy in non-small cell lung cancer.

    Rooney, Claire; Sethi, Tariq

    2015-10-01

    Lung cancer is the principal cause of cancer-related mortality in the developed world, accounting for almost one-quarter of all cancer deaths. Traditional treatment algorithms have largely relied on histologic subtype and have comprised pragmatic chemotherapy regimens with limited efficacy. However, because our understanding of the molecular basis of disease in non-small cell lung cancer (NSCLC) has improved exponentially, it has become apparent that NSCLC can be radically subdivided, or molecularly characterized, based on recurrent driver mutations occurring in specific oncogenes. We know that the presence of such mutations leads to constitutive activation of aberrant signaling proteins that initiate, progress, and sustain tumorigenesis. This persistence of the malignant phenotype is referred to as "oncogene addiction." On this basis, a paradigm shift in treatment approach has occurred. Rational, targeted therapies have been developed, the first being tyrosine kinase inhibitors (TKIs), which entered the clinical arena > 10 years ago. These were tremendously successful, significantly affecting the natural history of NSCLC and improving patient outcomes. However, the benefits of these drugs are somewhat limited by the emergence of adaptive resistance mechanisms, and efforts to tackle this phenomenon are ongoing. A better understanding of all types of oncogene-driven NSCLC and the occurrence of TKI resistance will help us to further develop second- and third-generation small molecule inhibitors and will expand our range of precision therapies for this disease.

  8. Lung radiopharmaceuticals

    Gonzalez, B.M.

    1994-01-01

    Indication or main clinical use of Lung radiopharmaceuticals is presented and clasification of radiopharmaceuticals as ventilation and perfusion studies. Perfusion radiopharmaceuticals, main controls for administration quality acceptance. Clearence after blood administration and main clinical applications. Ventilation radiopharmaceuticals, gases and aerosols, characteristics of a ideal radioaerosol, techniques of good inhalation procedure, clinical applications. Comparison of several radiopharmaceuticals reflering to retention time as 50% administered dose, percent administered dose at 6 hours post inhalation, blood activity at 30 and 60 minutes post inhalation, initial lung absorbed dose, cumulated activity.Kinetic description of two radiopharmaceuticals, 99mTcDTPA and 99mTc-PYP

  9. Intragenic origins due to short G1 phases underlie oncogene-induced DNA replication stress.

    Macheret, Morgane; Halazonetis, Thanos D

    2018-03-01

    Oncogene-induced DNA replication stress contributes critically to the genomic instability that is present in cancer. However, elucidating how oncogenes deregulate DNA replication has been impeded by difficulty in mapping replication initiation sites on the human genome. Here, using a sensitive assay to monitor nascent DNA synthesis in early S phase, we identified thousands of replication initiation sites in cells before and after induction of the oncogenes CCNE1 and MYC. Remarkably, both oncogenes induced firing of a novel set of DNA replication origins that mapped within highly transcribed genes. These ectopic origins were normally suppressed by transcription during G1, but precocious entry into S phase, before all genic regions had been transcribed, allowed firing of origins within genes in cells with activated oncogenes. Forks from oncogene-induced origins were prone to collapse, as a result of conflicts between replication and transcription, and were associated with DNA double-stranded break formation and chromosomal rearrangement breakpoints both in our experimental system and in a large cohort of human cancers. Thus, firing of intragenic origins caused by premature S phase entry represents a mechanism of oncogene-induced DNA replication stress that is relevant for genomic instability in human cancer.

  10. Long Noncoding RNAs in Lung Cancer.

    Roth, Anna; Diederichs, Sven

    2016-01-01

    Despite great progress in research and treatment options, lung cancer remains the leading cause of cancer-related deaths worldwide. Oncogenic driver mutations in protein-encoding genes were defined and allow for personalized therapies based on genetic diagnoses. Nonetheless, diagnosis of lung cancer mostly occurs at late stages, and chronic treatment is followed by a fast onset of chemoresistance. Hence, there is an urgent need for reliable biomarkers and alternative treatment options. With the era of whole genome and transcriptome sequencing technologies, long noncoding RNAs emerged as a novel class of versatile, functional RNA molecules. Although for most of them the mechanism of action remains to be defined, accumulating evidence confirms their involvement in various aspects of lung tumorigenesis. They are functional on the epigenetic, transcriptional, and posttranscriptional level and are regulators of pathophysiological key pathways including cell growth, apoptosis, and metastasis. Long noncoding RNAs are gaining increasing attention as potential biomarkers and a novel class of druggable molecules. It has become clear that we are only beginning to understand the complexity of tumorigenic processes. The clinical integration of long noncoding RNAs in terms of prognostic and predictive biomarker signatures and additional cancer targets could provide a chance to increase the therapeutic benefit. Here, we review the current knowledge about the expression, regulation, biological function, and clinical relevance of long noncoding RNAs in lung cancer.

  11. Characterizing the cancer genome in lung adenocarcinoma

    Weir, Barbara A.; Woo, Michele S.; Getz, Gad; Perner, Sven; Ding, Li; Beroukhim, Rameen; Lin, William M.; Province, Michael A.; Kraja, Aldi; Johnson, Laura A.; Shah, Kinjal; Sato, Mitsuo; Thomas, Roman K.; Barletta, Justine A.; Borecki, Ingrid B.; Broderick, Stephen; Chang, Andrew C.; Chiang, Derek Y.; Chirieac, Lucian R.; Cho, Jeonghee; Fujii, Yoshitaka; Gazdar, Adi F.; Giordano, Thomas; Greulich, Heidi; Hanna, Megan; Johnson, Bruce E.; Kris, Mark G.; Lash, Alex; Lin, Ling; Lindeman, Neal; Mardis, Elaine R.; McPherson, John D.; Minna, John D.; Morgan, Margaret B.; Nadel, Mark; Orringer, Mark B.; Osborne, John R.; Ozenberger, Brad; Ramos, Alex H.; Robinson, James; Roth, Jack A.; Rusch, Valerie; Sasaki, Hidefumi; Shepherd, Frances; Sougnez, Carrie; Spitz, Margaret R.; Tsao, Ming-Sound; Twomey, David; Verhaak, Roel G. W.; Weinstock, George M.; Wheeler, David A.; Winckler, Wendy; Yoshizawa, Akihiko; Yu, Soyoung; Zakowski, Maureen F.; Zhang, Qunyuan; Beer, David G.; Wistuba, Ignacio I.; Watson, Mark A.; Garraway, Levi A.; Ladanyi, Marc; Travis, William D.; Pao, William; Rubin, Mark A.; Gabriel, Stacey B.; Gibbs, Richard A.; Varmus, Harold E.; Wilson, Richard K.; Lander, Eric S.; Meyerson, Matthew

    2008-01-01

    Somatic alterations in cellular DNA underlie almost all human cancers1. The prospect of targeted therapies2 and the development of high-resolution, genome-wide approaches3–8 are now spurring systematic efforts to characterize cancer genomes. Here we report a large-scale project to characterize copy-number alterations in primary lung adenocarcinomas. By analysis of a large collection of tumors (n = 371) using dense single nucleotide polymorphism arrays, we identify a total of 57 significantly recurrent events. We find that 26 of 39 autosomal chromosome arms show consistent large-scale copy-number gain or loss, of which only a handful have been linked to a specific gene. We also identify 31 recurrent focal events, including 24 amplifications and 7 homozygous deletions. Only six of these focal events are currently associated with known mutations in lung carcinomas. The most common event, amplification of chromosome 14q13.3, is found in ~12% of samples. On the basis of genomic and functional analyses, we identify NKX2-1 (NK2 homeobox 1, also called TITF1), which lies in the minimal 14q13.3 amplification interval and encodes a lineage-specific transcription factor, as a novel candidate proto-oncogene involved in a significant fraction of lung adenocarcinomas. More generally, our results indicate that many of the genes that are involved in lung adenocarcinoma remain to be discovered. PMID:17982442

  12. DNA damage and repair in oncogenic transformation by heavy ion radiation

    Yang, T. C.; Mei, M.; George, K. A.; Craise, L. M.

    1996-01-01

    Energetic heavy ions are present in galactic cosmic rays and solar particle events. One of the most important late effects in risk assessment is carcinogenesis. We have studied the carcinogenic effects of heavy ions at the cellular and molecular levels and have obtained quantitative data on dose-response curves and on the repair of oncogenic lesions for heavy particles with various charges and energies. Studies with repair inhibitors and restriction endonucleases indicated that for oncogenic transformation DNA is the primary target. Results from heavy ion experiments showed that the cross section increased with LET and reached a maximum value of about 0.02 micrometer2 at about 500 keV/micrometer. This limited size of cross section suggests that only a fraction of cellular genomic DNA is important in radiogenic transformation. Free radical scavengers, such as DMSO, do not give any effect on induction of oncogenic transformation by 600 MeV/u iron particles, suggesting most oncogenic damage induced by high-LET heavy ions is through direct action. Repair studies with stationary phase cells showed that the amount of reparable oncogenic lesions decreased with an increase of LET and that heavy ions with LET greater than 200 keV/micrometer produced only irreparable oncogenic damage. An enhancement effect for oncogenic transformation was observed in cells irradiated by low-dose-rate argon ions (400 MeV/u; 120 keV/micrometer). Chromosomal aberrations, such as translocation and deletion, but not sister chromatid exchange, are essential for heavy-ion-induced oncogenic transformation. The basic mechanism(s) of misrepair of DNA damage, which form oncogenic lesions, is unknown.

  13. The Expression, Purification, and Characterization of a Ras Oncogene (Bras2) in Silkworm (Bombyx mori)

    Lv, Zhengbing; Wang, Tao; Zhuang, Wenhua; Wang, Dan; Chen, Jian; Nie, Zuoming; Liu, Lili; Zhang, Wenping; Wang, Lisha; Wang, Deming; Wu, Xiangfu; Li, Jun; Qian, Lian; Zhang, Yaozhou

    2013-01-01

    The Ras oncogene of silkworm pupae (Bras2) may belong to the Ras superfamily. It shares 77% of its amino acid identity with teratocarcinoma oncogene 21 (TC21) related ras viral oncogene homolog-2 (R-Ras2) and possesses an identical core effector region. The mRNA of Bombyx mori Bras2 has 1412 bp. The open reading frame contains 603 bp, which encodes 200 amino acid residues. This recombinant BmBras2 protein was subsequently used as an antigen to raise a rabbit polyclonal antibody. Western blott...

  14. Lung Transplant

    ... Severity of the recipient's lung disease Recipient's overall health Likelihood that the transplant will be successful Immediately before ... will begin within days of your surgery. Your health care team will likely work with you to design an exercise program that's right for you. Your doctor may ...

  15. Lung cancer

    Hansen, H H; Rørth, M

    1999-01-01

    The results of the many clinical trials published in 1997 had only modest impact on the treatment results using either cytostatic agents alone or combined with radiotherapy in lung cancer. In SCLC, combination chemotherapy including platin-compounds (cisplatin, carboplatin) and the podophyllotoxins...

  16. Exosomes derived from mesenchymal non-small cell lung cancer cells promote chemoresistance.

    Lobb, Richard J; van Amerongen, Rosa; Wiegmans, Adrian; Ham, Sunyoung; Larsen, Jill E; Möller, Andreas

    2017-08-01

    Non-small cell lung cancer (NSCLC) is the most common lung cancer type and the most common cause of mortality in lung cancer patients. NSCLC is often associated with resistance to chemotherapeutics and together with rapid metastatic spread, results in limited treatment options and poor patient survival. NSCLCs are heterogeneous, and consist of epithelial and mesenchymal NSCLC cells. Mesenchymal NSCLC cells are thought to be responsible for the chemoresistance phenotype, but if and how this phenotype can be transferred to other NSCLC cells is currently not known. We hypothesised that small extracellular vesicles, exosomes, secreted by mesenchymal NSCLC cells could potentially transfer the chemoresistance phenotype to surrounding epithelial NSCLC cells. To explore this possibility, we used a unique human bronchial epithelial cell (HBEC) model in which the parental cells were transformed from an epithelial to mesenchymal phenotype by introducing oncogenic alterations common in NSCLC. We found that exosomes derived from the oncogenically transformed, mesenchymal HBECs could transfer chemoresistance to the parental, epithelial HBECs and increase ZEB1 mRNA, a master EMT transcription factor, in the recipient cells. Additionally, we demonstrate that exosomes from mesenchymal, but not epithelial HBECs contain the ZEB1 mRNA, thereby providing a potential mechanism for the induction of a mesenchymal phenotype in recipient cells. Together, this work demonstrates for the first time that exosomes derived from mesenchymal, oncogenically transformed lung cells can transfer chemoresistance and mesenchymal phenotypes to recipient cells, likely via the transfer of ZEB1 mRNA in exosomes. © 2017 UICC.

  17. Activating mutation in MET oncogene in familial colorectal cancer

    Schildkraut Joellen M

    2011-10-01

    Full Text Available Abstract Background In developed countries, the lifetime risk of developing colorectal cancer (CRC is 5%, and it is the second leading cause of death from cancer. The presence of family history is a well established risk factor with 25-35% of CRCs attributable to inherited and/or familial factors. The highly penetrant inherited colon cancer syndromes account for approximately 5%, leaving greater than 20% without clear genetic definition. Familial colorectal cancer has been linked to chromosome 7q31 by multiple affected relative pair studies. The MET proto-oncogene which resides in this chromosomal region is considered a candidate for genetic susceptibility. Methods MET exons were amplified by PCR from germline DNA of 148 affected sibling pairs with colorectal cancer. Amplicons with altered sequence were detected with high-resolution melt-curve analysis using a LightScanner (Idaho Technologies. Samples demonstrating alternative melt curves were sequenced. A TaqMan assay for the specific c.2975C >T change was used to confirm this mutation in a cohort of 299 colorectal cancer cases and to look for allelic amplification in tumors. Results Here we report a germline non-synonymous change in the MET proto-oncogene at amino acid position T992I (also reported as MET p.T1010I in 5.2% of a cohort of sibling pairs affected with CRC. This genetic variant was then confirmed in a second cohort of individuals diagnosed with CRC and having a first degree relative with CRC at prevalence of 4.1%. This mutation has been reported in cancer cells of multiple origins, including 2.5% of colon cancers, and in Conclusions Although the MET p.T992I genetic mutation is commonly found in somatic colorectal cancer tissues, this is the first report also implicating this MET genetic mutation as a germline inherited risk factor for familial colorectal cancer. Future studies on the cancer risks associated with this mutation and the prevalence in different at-risk populations will

  18. Long non-coding RNA UCA1 promotes lung cancer cell proliferation and migration via microRNA-193a/HMGB1 axis.

    Wu, Hongyu; Zhou, Caicun

    2018-02-05

    Lung cancer is a leading cause of death worldwide. Long non-coding RNAs have been documented aberrantly expressed and exerted crucial role in variety of cancers. Urothelial carcinoma associated 1 (UCA1) is a potential new type of biomarkers for tumor diagnosis and exerts oncogenic effect on various human cancers. However, the mechanism of oncogenic role of UCA1 in lung cancer remains unclear. In this study, we firstly confirmed the role of UCA1 in lung cancer and found that UCA1 down-regulation inhibited cell proliferation and migration in both SKMES-1 and H520 lung cancer cells. Then we demonstrated that repressed UCA1 promoted the miR-193a expression and miR-193a could bind to the predicted binding site of UCA1. We then dissected the role of miR-193a in lung cancer and proved the anti-tumor role of miR-193a. Furthermore, we found that miR-193a displayed its role in lung cancer via modulating the HMGB1 expression. In addition, we found that over-expression of HMGB1 could restore the UCA1 knockdown induced repression of cell proliferation and migration. In summary, our study demonstrated that UCA1 exerts oncogenes activity in lung cancer, acting mechanistically by upregulating HMGB1 expression through 'sponging' miR-193a. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Oncogenic Signaling by Leukemia-Associated Mutant Cbl Proteins

    Nadeau, Scott; An, Wei; Palermo, Nick; Feng, Dan; Ahmad, Gulzar; Dong, Lin; Borgstahl, Gloria E. O.; Natarajan, Amarnath; Naramura, Mayumi; Band, Vimla; Band, Hamid

    2013-01-01

    Members of the Cbl protein family (Cbl, Cbl-b, and Cbl-c) are E3 ubiquitin ligases that have emerged as critical negative regulators of protein tyrosine kinase (PTK) signaling. This function reflects their ability to directly interact with activated PTKs and to target them as well as their associated signaling components for ubiquitination. Given the critical roles of PTK signaling in driving oncogenesis, recent studies in animal models and genetic analyses in human cancer have firmly established that Cbl proteins function as tumor suppressors. Missense mutations or small in-frame deletions within the regions of Cbl protein that are essential for its E3 activity have been identified in nearly 5% of leukemia patients with myelodysplastic/myeloproliferative disorders. Based on evidence from cell culture studies, in vivo models and clinical data, we discuss the potential signaling mechanisms of mutant Cbl-driven oncogenesis. Mechanistic insights into oncogenic Cbl mutants and associated animal models are likely to enhance our understanding of normal hematopoietic stem cell homeostasis and provide avenues for targeted therapy of mutant Cbl-driven cancers. PMID:23997989

  20. Neutron-energy-dependent cell survival and oncogenic transformation.

    Miller, R C; Marino, S A; Martin, S G; Komatsu, K; Geard, C R; Brenner, D J; Hall, E J

    1999-12-01

    Both cell lethality and neoplastic transformation were assessed for C3H10T1/2 cells exposed to neutrons with energies from 0.040 to 13.7 MeV. Monoenergetic neutrons with energies from 0.23 to 13.7 MeV and two neutron energy spectra with average energies of 0.040 and 0.070 MeV were produced with a Van de Graaff accelerator at the Radiological Research Accelerator Facility (RARAF) in the Center for Radiological Research of Columbia University. For determination of relative biological effectiveness (RBE), cells were exposed to 250 kVp X rays. With exposures to 250 kVp X rays, both cell survival and radiation-induced oncogenic transformation were curvilinear. Irradiation of cells with neutrons at all energies resulted in linear responses as a function of dose for both biological endpoints. Results indicate a complex relationship between RBEm and neutron energy. For both survival and transformation, RBEm was greatest for cells exposed to 0.35 MeV neutrons. RBEm was significantly less at energies above or below 0.35 MeV. These results are consistent with microdosimetric expectation. These results are also compatible with current assessments of neutron radiation weighting factors for radiation protection purposes. Based on calculations of dose-averaged LET, 0.35 MeV neutrons have the greatest LET and therefore would be expected to be more biologically effective than neutrons of greater or lesser energies.

  1. Melanoma Suppressor Functions of the Carcinoma Oncogene FOXQ1

    Archis Bagati

    2017-09-01

    Full Text Available Lineage-specific regulation of tumor progression by the same transcription factor is understudied. We find that levels of the FOXQ1 transcription factor, an oncogene in carcinomas, are decreased during melanoma progression. Moreover, in contrast to carcinomas, FOXQ1 suppresses epithelial-to-mesenchymal transition, invasion, and metastasis in melanoma cells. We find that these lineage-specific functions of FOXQ1 largely depend on its ability to activate (in carcinomas or repress (in melanoma transcription of the N-cadherin gene (CDH2. We demonstrate that FOXQ1 interacts with nuclear β-catenin and TLE proteins, and the β-catenin/TLE ratio, which is higher in carcinoma than melanoma cells, determines the effect of FOXQ1 on CDH2 transcription. Accordingly, other FOXQ1-dependent phenotypes can be manipulated by altering nuclear β-catenin or TLE proteins levels. Our data identify FOXQ1 as a melanoma suppressor and establish a mechanism underlying its inverse lineage-specific transcriptional regulation of transformed phenotypes.

  2. FOXM1 is an oncogenic mediator in Ewing Sarcoma.

    Laura Christensen

    Full Text Available Ewing Family Tumors (Ewing Sarcoma and peripheral Primitive Neuroectodermal Tumor are common bone and soft tissue malignancies of childhood, adolescence and young adulthood. Chromosomal translocation in these tumors produces fusion oncogenes of the EWS/ETS class, with EWS/FLI1 being by far the most common. EWS/ETS chimera are the only well established driver mutations in these tumors and they function as aberrant transcription factors. Understanding the downstream genes whose expression is modified has been a central approach to the study of these tumors. FOXM1 is a proliferation associated transcription factor which has increasingly been found to play a role in the pathogenesis of a wide range of human cancers. Here we demonstrate that FOXM1 is expressed in Ewing primary tumors and cell lines. Reduction in FOXM1 expression in Ewing cell lines results in diminished potential for anchorage independent growth. FOXM1 expression is enhanced by EWS/FLI1, though, unlike other tumor systems, it is not driven by expression of the EWS/FLI1 target GLI1. Thiostrepton is a compound known to inhibit FOXM1 by direct binding. We show that Thiostrepton diminishes FOXM1 expression in Ewing cell lines and this reduction reduces cell viability through an apoptotic mechanism. FOXM1 is involved in Ewing tumor pathogenesis and may prove to be a useful therapeutic target in Ewing tumors.

  3. ARF and ATM/ATR cooperate in p53-mediated apoptosis upon oncogenic stress

    Pauklin, Siim; Kristjuhan, Arnold; Maimets, Toivo; Jaks, Viljar

    2005-01-01

    Induction of apoptosis is pivotal for eliminating cells with damaged DNA or deregulated proliferation. We show that tumor suppressor ARF and ATM/ATR kinase pathways cooperate in the induction of apoptosis in response to elevated expression of c-myc, β-catenin or human papilloma virus E7 oncogenes. Overexpression of oncogenes leads to the formation of phosphorylated H2AX foci, induction of Rad51 protein levels and ATM/ATR-dependent phosphorylation of p53. Inhibition of ATM/ATR kinases abolishes both induction of Rad51 and phosphorylation of p53, and remarkably reduces the level of apoptosis induced by co-expression of oncogenes and ARF. However, the induction of apoptosis is downregulated in p53-/- cells and does not depend on activities of ATM/ATR kinases, indicating that efficient induction of apoptosis by oncogene activation depends on coordinated action of ARF and ATM/ATR pathways in the regulation of p53

  4. Oncogenic K-Ras Activates p38 to Maintain Colorectal Cancer Cell Proliferation during MEK Inhibition

    Winan J. van Houdt

    2010-01-01

    Full Text Available Background: Colon carcinomas frequently contain activating mutations in the K-ras proto-oncogene. K-ras itself is a poor drug target and drug development efforts have mostly focused on components of the classical Ras-activated MEK/ERK pathway. Here we have studied whether endogenous oncogenic K-ras affects the dependency of colorectal tumor cells on MEK/ERK signaling.

  5. The biology, function and clinical implications of exosomes in lung cancer.

    Zhou, Li; Lv, Tangfeng; Zhang, Qun; Zhu, Qingqing; Zhan, Ping; Zhu, Suhua; Zhang, Jianya; Song, Yong

    2017-10-28

    Exosomes are 30-100 nm small membrane vesicles of endocytic origin that are secreted by all types of cells, and can also be found in various body fluids. Increasing evidence implicates that exosomes confer stability and can deliver their cargos such as proteins and nucleic acids to specific cell types, which subsequently serve as important messengers and carriers in lung carcinogenesis. Here, we describe the biogenesis and components of exosomes mainly in lung cancer, we summarize their function in lung carcinogenesis (epithelial mesenchymal transition, oncogenic cell transformation, angiogenesis, metastasis and immune response in tumor microenvironment), and importantly we focus on the clinical potential of exosomes as biomarkers and therapeutics in lung cancer. In addition, we also discuss current challenges that might impede the clinical use of exosomes. Further studies on the functional roles of exosomes in lung cancer requires thorough research. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. The lungs

    Macey, D.J.; Marshall, R.

    1982-01-01

    Currently emission tomography of the lungs is only practical for perfusion images with sup(99m)Tc microaggregates and ventilation images with sup(81m)Kr. The following topics are touched on: the rotating gamma camera single photon ECT system, spatial resolution and linearity, resolution in phantom studies, area and volume studies, quantitation studies, with particular reference to the authors' experience of perfusion and ventilation in investigations of pulmonary embolism. (U.K.)

  7. Hyperlucent lung

    Jimenez-Gutierrez, Florana; Soto-Quiros, Manuel E.

    2007-01-01

    Unilateral hyperlucent lung is also known as Swyer-James Syndrome, Macleod Syndrome or lobular or unilateral emphysema. It is an uncommon disease characterized by lung or unilateral lobe hiperlucency associated to an air trapping upon expiration. As regards to etiology, this syndrome is considered to be an acquired disease that appears secondary to respiratory infections during the early years of life, probably bronchiolitis and/ or viral pneumonia. The clinical presentation varies among patients. Some of them are asymptomatic, others present a history of recurrent episodes of pulmonary infections from early years of life or present effort dyspnea. The diagnosis is usually made accidentally by a chest radiograph in a child with history of respiratory infections or in an adult during a routine chest x- ray in an asymptomatic person. It is important to differentiate this syndrome from other causes of unilateral pulmonary hiperlucency on conventional chest x-rays. Few cases of Swyer-James Syndrome in children have been reported, it is presented the clinical case of a patient who had a parainfluenza 3 bronchopneumonia when he was a month and eighteen days of age. The differential diagnosis of this syndrome should be done with other thoracic entities that diminish the radiological pulmonary unilateral density. A case of a child who is the bearer of hyperlucent lung is described. (author) [es

  8. IQGAP1 is an oncogenic target in canine melanoma.

    Becky H Lee

    Full Text Available Canine oral mucosal melanoma is an aggressive malignant neoplasm and is characterized by local infiltration and a high metastatic potential. The disease progression is similar to that of human oral melanomas. Whereas human cutaneous melanoma is primarily driven by activating mutations in Braf (60% or Nras (20%, human mucosal melanoma harbors these mutations much less frequently. This makes therapeutic targeting and research modeling of the oral form potentially different from that of the cutaneous form in humans. Similarly, research has found only rare Nras mutations and no activating Braf mutations in canine oral melanomas, but they are still reliant on MAPK signaling. IQGAP1 is a signaling scaffold that regulates oncogenic ERK1/2 MAPK signaling in human Ras- and Raf- driven cancers, including melanomas. To investigate whether IQGAP1 is a potential target in canine melanoma, we examined the expression and localization of IQGAP1 in primary canine melanomas and canine oral melanoma cell lines obtained from the University of California-Davis. Using CRISPR/Cas9 knockout of IQGAP1, we examined effects on downstream ERK1/2 pathway activity and assayed proliferation of cell lines when treated with a peptide that blocks the interaction between IQGAP1 and ERK1/2. We observed that canine IQGAP1 is expressed and localizes to a similar extent in both human and canine melanoma by qPCR, Western blot, and immunofluorescence. Deletion of IQGAP1 reduces MAPK pathway activation in cell lines, similar to effects seen in human BrafV600E cell lines. Additionally, we demonstrated reduced proliferation when these cells are treated with a blocking peptide in vitro.

  9. SUMOylation Confers Posttranslational Stability on NPM-ALK Oncogenic Protein

    Deeksha Vishwamitra

    2015-09-01

    Full Text Available Nucleophosmin-anaplastic lymphoma kinase–expressing (NPM-ALK+ T-cell lymphoma is an aggressive form of cancer that commonly affects children and adolescents. The expression of NPM-ALK chimeric oncogene results from the chromosomal translocation t(2;5(p23;q35 that causes the fusion of the ALK and NPM genes. This translocation generates the NPM-ALK protein tyrosine kinase that forms the constitutively activated NPM-ALK/NPM-ALK homodimers. In addition, NPM-ALK is structurally associated with wild-type NPM to form NPM/NPM-ALK heterodimers, which can translocate to the nucleus. The mechanisms that sustain the stability of NPM-ALK are not fully understood. SUMOylation is a posttranslational modification that is characterized by the reversible conjugation of small ubiquitin-like modifiers (SUMOs with target proteins. SUMO competes with ubiquitin for substrate binding and therefore, SUMOylation is believed to protect target proteins from proteasomal degradation. Moreover, SUMOylation contributes to the subcellular distribution of target proteins. Herein, we found that the SUMOylation pathway is deregulated in NPM-ALK+ T-cell lymphoma cell lines and primary lymphoma tumors from patients. We also identified Lys24 and Lys32 within the NPM domain as the sites where NPM-ALK conjugates with SUMO-1 and SUMO-3. Importantly, antagonizing SUMOylation by the SENP1 protease decreased the accumulation of NPM-ALK and suppressed lymphoma cell viability, proliferation, and anchorage-independent colony formation. One possible mechanism for the SENP1-mediated decrease in NPM-ALK levels was the increase in NPM-ALK association with ubiquitin, which facilitates its degradation. Our findings propose a model in which aberrancies in SUMOylation contribute to the pathogenesis of NPM-ALK+ T-cell lymphoma. Unraveling such pathogenic mechanisms may lead to devising novel strategies to eliminate this aggressive neoplasm.

  10. Metastatic tumors of lungs

    Rozenshtraukh, L.C.; Rybakova, N.I.; Vinner, M.G.

    1987-01-01

    Roentgenologic semiotics of lung metastases and their complications, as well as peculiarities of lung metastases of separate localization tumours are presented. Definition table for primary tumour by roentgenologic aspect of lung metastases is given

  11. How Lungs Work

    ... Diseases > How Lungs Work How Lungs Work The Respiratory System Your lungs are part of the respiratory system, ... your sense of smell. The Parts of the Respiratory System and How They Work Airways SINUSES are hollow ...

  12. Protecting Your Lungs

    ... lung capacity. Specific breathing exercises can also help improve your lung function if you have certain lung diseases, like COPD. Exercise and breathing techniques are also great for improving your mood and helping you relax. Public Health and Your ...

  13. Non-oncogenic Acute Viral Infections Disrupt Anti-cancer Responses and Lead to Accelerated Cancer-Specific Host Death

    Frederick J. Kohlhapp

    2016-10-01

    Full Text Available In light of increased cancer prevalence and cancer-specific deaths in patients with infections, we investigated whether infections alter anti-tumor immune responses. We report that acute influenza infection of the lung promotes distal melanoma growth in the dermis and leads to accelerated cancer-specific host death. Furthermore, we show that during influenza infection, anti-melanoma CD8+ T cells are shunted from the tumor to the infection site, where they express high levels of the inhibitory receptor programmed cell death protein 1 (PD-1. Immunotherapy to block PD-1 reverses this loss of anti-tumor CD8+ T cells from the tumor and decreases infection-induced tumor growth. Our findings show that acute non-oncogenic infection can promote cancer growth, raising concerns regarding acute viral illness sequelae. They also suggest an unexpected role for PD-1 blockade in cancer immunotherapy and provide insight into the immune response when faced with concomitant challenges.

  14. HIV-Associated Lung Cancer.

    Kiderlen, Til R; Siehl, Jan; Hentrich, Marcus

    2017-01-01

    Lung cancer (LC) is one of the most common non-AIDS (acquired immune deficiency syndrome)-defining malignancies. It occurs more frequently in persons living with human immunodeficiency virus (PLWHIV) than in the HIV-negative population. Compared to their HIV-negative counterparts, patients are usually younger and diagnosed at more advanced stages. The pathogenesis of LC in PLWHIV is not fully understood, but immunosuppression in combination with chronic infection and the oncogenic effects of smoking and HIV itself all seem to play a role. Currently, no established preventive screening is available, making smoking cessation the most promising preventive measure. Treatment protocols and standards are the same as for the general population. Notably, immuno-oncology will also become standard of care in a significant subset of HIV-infected patients with LC. As drug interactions and hematological toxicity must be taken into account, a multidisciplinary approach should include a physician experienced in the treatment of HIV. Only limited data is available on novel targeted therapies and checkpoint inhibitors in the setting of HIV. © 2017 S. Karger GmbH, Freiburg.

  15. Change of mitotic cycle and DNA repair in embryonic cells of rat, immortalized by E1 A oncogene and transformated by E1 A and c-Ha-Ras oncogenes under ionizing radiation action

    Kirillova, T.V.

    1997-01-01

    Comparison investigation into the repair of mitotic cycle and the reunion of DN single- and double-strand breaks in gamma-ray irradiated initial E1 A oncogene immortalized and E1 A and c-Ha-Ras oncogene transformed (mutant form) lines of rat embryonic fibroblasts was carried out. Possible involvement of Ras gene product in DNA repair speed governing and absence of tumor suppression function of p 53 protein in the embryonic and E1 A oncogene immortalized cells of rat fibroblast, as well as, presence of the mentioned function of p 53 protein in E1 A and c-Ha-Ras oncogene transformed cells were studied [ru

  16. Lung PET scan

    ... Chest PET scan; Lung positron emission tomography; PET - chest; PET - lung; PET - tumor imaging; ... Grainger & Allison's Diagnostic Radiology: A Textbook of Medical Imaging . 6th ed. Philadelphia, ...

  17. Extravascular Lung Water and Acute Lung Injury

    Ritesh Maharaj

    2012-01-01

    Full Text Available Acute lung injury carries a high burden of morbidity and mortality and is characterised by nonhydrostatic pulmonary oedema. The aim of this paper is to highlight the role of accurate quantification of extravascular lung water in diagnosis, management, and prognosis in “acute lung injury” and “acute respiratory distress syndrome”. Several studies have verified the accuracy of both the single and the double transpulmonary thermal indicator techniques. Both experimental and clinical studies were searched in PUBMED using the term “extravascular lung water” and “acute lung injury”. Extravascular lung water measurement offers information not otherwise available by other methods such as chest radiography, arterial blood gas, and chest auscultation at the bedside. Recent data have highlighted the role of extravascular lung water in response to treatment to guide fluid therapy and ventilator strategies. The quantification of extravascular lung water may predict mortality and multiorgan dysfunction. The limitations of the dilution method are also discussed.

  18. RASOnD - A comprehensive resource and search tool for RAS superfamily oncogenes from various species

    Singh Tej P

    2011-07-01

    Full Text Available Abstract Background The Ras superfamily plays an important role in the control of cell signalling and division. Mutations in the Ras genes convert them into active oncogenes. The Ras oncogenes form a major thrust of global cancer research as they are involved in the development and progression of tumors. This has resulted in the exponential growth of data on Ras superfamily across different public databases and in literature. However, no dedicated public resource is currently available for data mining and analysis on this family. The present database was developed to facilitate straightforward accession, retrieval and analysis of information available on Ras oncogenes from one particular site. Description We have developed the RAS Oncogene Database (RASOnD as a comprehensive knowledgebase that provides integrated and curated information on a single platform for oncogenes of Ras superfamily. RASOnD encompasses exhaustive genomics and proteomics data existing across diverse publicly accessible databases. This resource presently includes overall 199,046 entries from 101 different species. It provides a search tool to generate information about their nucleotide and amino acid sequences, single nucleotide polymorphisms, chromosome positions, orthologies, motifs, structures, related pathways and associated diseases. We have implemented a number of user-friendly search interfaces and sequence analysis tools. At present the user can (i browse the data (ii search any field through a simple or advance search interface and (iii perform a BLAST search and subsequently CLUSTALW multiple sequence alignment by selecting sequences of Ras oncogenes. The Generic gene browser, GBrowse, JMOL for structural visualization and TREEVIEW for phylograms have been integrated for clear perception of retrieved data. External links to related databases have been included in RASOnD. Conclusions This database is a resource and search tool dedicated to Ras oncogenes. It has

  19. Silencing Agrobacterium oncogenes in transgenic grapevine results in strain-specific crown gall resistance.

    Galambos, A; Zok, A; Kuczmog, A; Oláh, R; Putnoky, P; Ream, W; Szegedi, E

    2013-11-01

    Grapevine rootstock transformed with an Agrobacterium oncogene-silencing transgene was resistant to certain Agrobacterium strains but sensitive to others. Thus, genetic diversity of Agrobacterium oncogenes may limit engineering crown gall resistance. Crown gall disease of grapevine induced by Agrobacterium vitis or Agrobacterium tumefaciens causes serious economic losses in viticulture. To establish crown gall-resistant lines, somatic proembryos of Vitis berlandieri × V. rupestris cv. 'Richter 110' rootstock were transformed with an oncogene-silencing transgene based on iaaM and ipt oncogene sequences from octopine-type, tumor-inducing (Ti) plasmid pTiA6. Twenty-one transgenic lines were selected, and their transgenic nature was confirmed by polymerase chain reaction (PCR). These lines were inoculated with two A. tumefaciens and three A. vitis strains. Eight lines showed resistance to octopine-type A. tumefaciens A348. Resistance correlated with the expression of the silencing genes. However, oncogene silencing was mostly sequence specific because these lines did not abolish tumorigenesis by A. vitis strains or nopaline-type A. tumefaciens C58.

  20. Differential p53 engagement in response to oxidative and oncogenic stresses in Fanconi anemia mice

    Rani, Reena; Li, Jie; Pang, Qishen

    2008-01-01

    Members of the Fanconi anemia (FA) protein family are involved in repair of genetic damage caused by DNA cross-linkers. It is not clear whether the FA proteins function in oxidative DNA damage and oncogenic stress response. Here we report that deficiency in the Fanca gene in mice elicits a p53-dependent growth arrest and DNA damage response to oxidative DNA damage and oncogenic stress. Using a Fanca-/- Trp53-/- double knockout model and a functionally switchable p53 retrovirus, we define the kinetics, dependence, and persistence of p53-mediated response to oxidative and oncogenic stresses in Fanca-/- cells. Notably, oxidative stress induces persistent p53 response in Fanca-/- cells, likely due to accumulation of unrepaired DNA damage. On the other hand, whereas WT cells exhibit prolonged response to oncogene activation, the p53-activating signals induced by oncogenic ras are short-lived in Fanca-/- cells, suggesting that Fanca may be required for the cell to engage p53 during constitutive ras activation. We propose that the FA proteins protect cells from stress-induced proliferative arrest and tumor evolution by acting as a modulator of the signaling pathways that link FA to p53. PMID:19047147

  1. Modulating factors in the expression of radiation-induced oncogenic transformation

    Hall, E.J.; Hei, T.K.

    1990-01-01

    Many assays for oncogenic transformation have been developed ranging from those in established rodent cell lines where morphological alteration is scored, to those in human cells growing in nude mice where tumor invasiveness is scored. In general, systems that are most quantitaive are also the least relevant in terms of human carcinogenesis and human risk estimation. The development of cell culture systems has made it possible to assess at the cellular level the oncogenic potential of a variety of chemical, physical and viral agents. Cell culture systems afford the opportunity to identify factors and conditions that may prevent or enhance cellular transformation by radiation and chemicals. Permissive and protective factors in radiation-induced transformation include thyroid hormone and the tumor promoter TPA that increase the transformation incidence for a given dose of radiation, and retinoids, selenium, vitamin E, and 5-aminobenzamide that inhibit the expression of transformation. Densely ionizing α-particles, similar to those emitted by radon daughters, are highly effective in inducing transformations and appear to interact in a supra-additive fashion with asbestos fibers. The activation of a known dominant oncogene has not yet been demonstrated in radiation-induced oncogenic transformation. The most likely mechanism for radiation activation of an oncogene would be via the production of a chromosomal translocation. Radiation also efficiently induces deletions and may thus lead to the loss of a suppressor gene

  2. Differential p53 engagement in response to oxidative and oncogenic stresses in Fanconi anemia mice.

    Rani, Reena; Li, Jie; Pang, Qishen

    2008-12-01

    Members of the Fanconi anemia (FA) protein family are involved in repair of genetic damage caused by DNA cross-linkers. It is not clear whether the FA proteins function in oxidative DNA damage and oncogenic stress response. Here, we report that deficiency in the Fanca gene in mice elicits a p53-dependent growth arrest and DNA damage response to oxidative DNA damage and oncogenic stress. Using a Fanca-/-Trp53-/- double knockout model and a functionally switchable p53 retrovirus, we define the kinetics, dependence, and persistence of p53-mediated response to oxidative and oncogenic stresses in Fanca-/- cells. Notably, oxidative stress induces persistent p53 response in Fanca-/- cells, likely due to accumulation of unrepaired DNA damage. On the other hand, whereas wild-type cells exhibit prolonged response to oncogene activation, the p53-activating signals induced by oncogenic ras are short-lived in Fanca-/- cells, suggesting that Fanca may be required for the cell to engage p53 during constitutive ras activation. We propose that the FA proteins protect cells from stress-induced proliferative arrest and tumor evolution by acting as a modulator of the signaling pathways that link FA to p53.

  3. Intersections of lung progenitor cells, lung disease and lung cancer.

    Kim, Carla F

    2017-06-30

    The use of stem cell biology approaches to study adult lung progenitor cells and lung cancer has brought a variety of new techniques to the field of lung biology and has elucidated new pathways that may be therapeutic targets in lung cancer. Recent results have begun to identify the ways in which different cell populations interact to regulate progenitor activity, and this has implications for the interventions that are possible in cancer and in a variety of lung diseases. Today's better understanding of the mechanisms that regulate lung progenitor cell self-renewal and differentiation, including understanding how multiple epigenetic factors affect lung injury repair, holds the promise for future better treatments for lung cancer and for optimising the response to therapy in lung cancer. Working between platforms in sophisticated organoid culture techniques, genetically engineered mouse models of injury and cancer, and human cell lines and specimens, lung progenitor cell studies can begin with basic biology, progress to translational research and finally lead to the beginnings of clinical trials. Copyright ©ERS 2017.

  4. Intersections of lung progenitor cells, lung disease and lung cancer

    Carla F. Kim

    2017-06-01

    Full Text Available The use of stem cell biology approaches to study adult lung progenitor cells and lung cancer has brought a variety of new techniques to the field of lung biology and has elucidated new pathways that may be therapeutic targets in lung cancer. Recent results have begun to identify the ways in which different cell populations interact to regulate progenitor activity, and this has implications for the interventions that are possible in cancer and in a variety of lung diseases. Today's better understanding of the mechanisms that regulate lung progenitor cell self-renewal and differentiation, including understanding how multiple epigenetic factors affect lung injury repair, holds the promise for future better treatments for lung cancer and for optimising the response to therapy in lung cancer. Working between platforms in sophisticated organoid culture techniques, genetically engineered mouse models of injury and cancer, and human cell lines and specimens, lung progenitor cell studies can begin with basic biology, progress to translational research and finally lead to the beginnings of clinical trials.

  5. Lung cancer

    Kato, Toshio

    1982-01-01

    Based on the own experience and world literatures, contribution of radiation in the treatment of lung cancer was reviewed and discussed. Although the patients with advanced cancer were referred to radiation usually, the results of radiotherapy were superior to those by chemotherapy. Of course the radiotherapy was a local one, radiation combined with chemotherapy was highly recommended, besides systemic administration of chemotherapeutics, special methods such as bronchial arterial infusion (BAI) and chemoembolization would be more favourable in selected patients. Treatment of undifferentiated small cell carcinoma was becoming more dependent on chemotherapy, radiation showed as excellent local control as ever. To treat locally extended cancer patients with involvement of the thoracic wall and Pancoast's syndrome, external radiation alone were not successful, interstitial radiation or a single exposure with a large dose during the thoracotomy would be promising. Finally, data indicated that aged and poor risk patients in early stage of cancer might be treated by radiation instead of unjustifiable operation. (author)

  6. Bilateral insufficiency fracture of the femoral head and neck in a case of oncogenic osteomalacia.

    Chouhan, V; Agrawal, K; Vinothkumar, T K; Mathesul, A

    2010-07-01

    We describe a case of oncogenic osteomalacia in an adult male who presented with low back pain and bilateral hip pain. Extensive investigations had failed to find a cause. A plain pelvic radiograph showed Looser's zones in both femoral necks. MRI confirmed the presence of insufficiency fractures bilaterally in the femoral head and neck. Biochemical investigations confirmed osteomalacia which was unresponsive to treatment with vitamin D and calcium. A persistently low serum phosphate level suggested a diagnosis of hypophosphataemic osteomalacia. The level of fibroblast growth factor-23 was highly raised, indicating the cause as oncogenic osteomalacia. This was confirmed on positron-emission tomography, MRI and excision of a benign fibrous histiocytoma following a rapid recovery. The diagnosis of oncogenic osteomalacia may be delayed due to the non-specific presenting symptoms. Subchondral insufficiency fractures of the femoral head may be missed unless specifically looked for.

  7. Staging of Lung Cancer

    ... LUNG CANCER MINI-SERIES #2 Staging of Lung Cancer Once your lung cancer is diagnosed, staging tells you and your health care provider about ... at it under a microscope. The stages of lung cancer are listed as I, II, III, and IV ...

  8. Lung needle biopsy

    ... if you have certain lung diseases such as emphysema. Usually, a collapsed lung after a biopsy does not need treatment. But ... any type Bullae (enlarged alveoli that occur with emphysema) Cor pulmonale (condition ... of the lung High blood pressure in the lung arteries Severe ...

  9. A view on EGFR-targeted therapies from the oncogene-addiction perspective.

    Perez, Rolando; Crombet, Tania; de Leon, Joel; Moreno, Ernesto

    2013-01-01

    Tumor cell growth and survival can often be impaired by inactivating a single oncogen- a phenomenon that has been called as "oncogene addiction." It is in such scenarios that molecular targeted therapies may succeed. among known oncogenes, the epidermal growth factor receptor (EGFR) has become the target of different cancer therapies. So far, however, the clinical benefit from EGFR-targeted therapies has been rather limited. a critical review of the large amount of clinical data obtained with anti-EGFR agents, carried out from the perspective of the oncogene addiction concept, may help to understand the causes of the unsatisfactory results. In this article we intend to do such an exercise taking as basis for the analysis a few case studies of anti-EGFR agents that are currently in the clinic. There, the "EGFR addiction" phenomenon becomes apparent in high-responder patients. We further discuss how the concept of oncogene addiction needs to be interpreted on the light of emerging experimental evidences and ideas; in particular, that EGFR addiction may reflect the interconnection of several cellular pathways. In this regard we set forth several hypotheses; namely, that requirement of higher glucose uptake by hypoxic tumor cells may reinforce EGFR addiction; and that chronic use of EGFR-targeted antibodies in EGFR-addicted tumors would induce stable disease by reversing the malignant phenotype of cancer stem cells and also by sustaining an anti-tumor T cell response. Finally, we discuss possible reasons for the failure of certain combinatorial therapies involving anti-EGFR agents, arguing that some of these agents might produce either a negative or a positive trans-modulation effect on other oncogenes. It becomes evident that we need operational definitions of EGFR addiction in order to determine which patient populations may benefit from treatment with anti-EGFR drugs, and to improve the design of these therapies.

  10. A view on EGFR-targeted therapies from the oncogene-addiction perspective

    Rolando ePerez

    2013-04-01

    Full Text Available Tumor cell growth and survival can often be impaired by inactivating a single oncogen – a phenomenon that has been called as 'oncogene addiction'. It is in such scenarios that molecular targeted therapies may succeed. Among known oncogenes, the epidermal growth factor receptor (EGFR has become the target of different cancer therapies. So far, however, the clinical benefit from EGFR-targeted therapies has been rather limited. A critical review of the large amount of clinical data obtained with anti-EGFR agents, carried out from the perspective of the oncogene addiction concept, may help to understand the causes of the unsatisfactory results. In this article we intend to do such an exercise taking as basis for the analysis a few case studies of anti-EGFR agents that are currently in the clinic. There, the 'EGFR addiction' phenomenon becomes apparent in high-responder patients. We further discuss how the concept of oncogene addiction needs to be interpreted on the light of emerging experimental evidences and ideas; in particular, that EGFR addiction may reflect the interconnection of several cellular pathways. In this regard we set forth several hypotheses; namely, that requirement of higher glucose uptake by hypoxic tumor cells may reinforce EGFR addiction; and that chronic use of EGFR-targeted antibodies in EGFR-addicted tumors would induce stable disease by reversing the malignant phenotype of cancer stem cells and also by sustaining an anti-tumor T cell response. Finally, we discuss possible reasons for the failure of certain combinatorial therapies involving anti-EGFR agents, arguing that some of these agents might produce either a negative or a positive trans-modulation effect on other oncogenes. It becomes evident that we need operational definitions of EGFR addiction in order to determine which patient populations may benefit from treatment with anti-EGFR drugs, and to improve the design of these therapies.

  11. Characterization of TRPS1 and ERAS as oncogenes implicated in breast cancer

    Lopez Gonzalez, L.

    2015-07-01

    New high throughput technologies have made possible to identify putative oncogenes in breast cancer. In this project we aim to relate and characterise two novel putative oncogenes, ERAS and TRPS1, in their role in human breast cancer. TRPS1, an atypical GATA factor, modulates cell proliferation and controls cell cycle progression through repression of GATA-regulated genes, therefore acting as a tumour suppressor gene. Conversely, TRPS1 expression has been shown to be significantly elevated in luminal and in a lesser extent in basal breast cancer cells, presenting roles both as an oncogene and as a tumour suppressor gene in breast cancer development. The aim of this project is therefore to determine the characteristics of TRPS1 either as a putative novel human oncogene or as a tumour suppressor gene in breast cancer cells. To this aim, we have cloned a novel isoform of TRPS1 and introduced it into several breast cancer cell lines. Our results show that overexpression of this isoform of TRPS1 results in variations in motility in non-carcinogenic cell lines, as well as in a series of EMT-like changes such as the down-regulation of the EMT marker E-cadherin, both of which can be associated to an increase in malignancy, suggesting an oncogenic behaviour for TRPS1. Furthermore, our results suggest that constitutively active members of the RAS protein family induce the expression of TRPS1, establishing a relationship between both genes. We can conclude that the effects of TRPS1 overexpression are moderate, inducing some changes but not fully transforming the cells. Therefore we cannot confirm that TRPS1 is a putative oncogene in breast cancer. (Author)

  12. Aberrant status and clinicopathologic characteristic associations of 11 target genes in 1,321 Chinese patients with lung adenocarcinoma.

    Zhao, Mengnan; Zhan, Cheng; Li, Ming; Yang, Xiaodong; Yang, Xinyu; Zhang, Yong; Lin, Miao; Xia, Yifeng; Feng, Mingxiang; Wang, Qun

    2018-01-01

    The aberrant status of target genes and their associations with clinicopathologic characteristics are still unclear in primary lung adenocarcinoma. The common mutations and translocations of nine target genes were evaluated in 1,247 specimens of surgically-resected primary lung adenocarcinoma. Immunohistochemistry was used to analyze the expressions of programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) in 731 specimens. The frequency of the aberrations and their associations with clinicopathologic characteristics were analyzed. Overall, 952 (76.3%) of 1,247 patients harbored at least one target mutation or translocation: epidermal growth factor receptor ( EGFR ) (729, 58.5%), v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog ( KRAS ) (83, 6.7%), human epidermal growth factor receptor 2 ( HER2 ) (82, 6.6%), anaplastic lymphoma kinase ( ALK) (23, 1.8%), phosphoinositide-3-kinase catalytic alpha polypeptide ( PIK3CA ) (20, 1.6%), Ret proto-oncogene RET (15, 1.2%), ROS proto-oncogene 1 receptor tyrosine kinase ( ROS1 ) (12, 1.0%), B-raf proto-oncogene ( BRAF ) (9, 0.7%), neuroblastoma RAS viral (v-ras) oncogene homolog ( NRAS ) (3, 0.2%). Fourteen (1.9%) of 731 patients were PD-1 positive and 95 (13.0%) were PD-L1 positive in tumor cells. In men and smokers, there were more frequent KRAS mutations (both Ppatients, while HER2 (Ppatients with EGFR mutations (all Ppatients with primary lung adenocarcinoma harbored target gene aberrations. The frequency of each alteration differed in patients depending on clinicopathologic characteristics.

  13. Oncogene-induced progression of preneoplastic rat tracheal epithelial cells to neoplasia

    Thomassen, D.G.; Kelly, G.

    1988-01-01

    N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) induced preneoplastic variants of rat tracheal epithelial (RTE) cells can be neo plastically transformed following transfection with oncogenic DNA. Variants differ with respect to the oncogenes required for neoplastic conversion. Polyma virus DNA transformed each of four variants neo plastically, whereas viral ras DNA only transformed two of four variants. These data demonstrate that preneoplastic variants of RTE cells differ with respect to the changes needed for conversion to neoplastic cells and that the variants tested are either at different stages or on different pathways of progression to neoplasia. (author)

  14. Differential p53 engagement in response to oxidative and oncogenic stresses in Fanconi anemia mice

    Rani, Reena; Li, Jie; Pang, Qishen

    2008-01-01

    Members of the Fanconi anemia (FA) protein family are involved in repair of genetic damage caused by DNA cross-linkers. It is not clear whether the FA proteins function in oxidative DNA damage and oncogenic stress response. Here we report that deficiency in the Fanca gene in mice elicits a p53-dependent growth arrest and DNA damage response to oxidative DNA damage and oncogenic stress. Using a Fanca-/- Trp53-/- double knockout model and a functionally switchable p53 retrovirus, we define the ...

  15. Oncogenic osteomalacia secondary to a hemangiopericytoma of the hip: case report

    Baronofsky, S.I.; Kalbhen, C.L.; Demos, T.C.; Sizemore, G.W.

    1999-01-01

    Osteomalacia is characterized by abnormally increased unmineralized osteoid within the bone matrix. This metabolic bone disease is usually the result of decreased uptake or abnormal metabolism of vitamin D or of renal tubular phosphate loss. Dietary deficiency, malabsorption, cirrhosis, renal tubular acidosis and certain drugs can cause osteomalacia., Oncogenic osteomalacia - osteomalacia secondary to tumours - is rare, and the exact mechanisms by which neoplasms induce osteomalacia are not known. We describe a patient with chronic osteomalacia of unknown origin who was subsequently found to have oncogenic osteomalacia secondary to a hemangiopericytoma of the hip. (author)

  16. Tc-99m-HYNIC-TOC SPECT/CT in Oncogenic Osteomalacia

    Pusuwan, Pawana; Sriwijitkamol, Apiradee; Muangsomboon, Kobkun; Jantanayingyong, Jantanaras; Muangsomboon, Soranart; Poramatikul, Nipavan

    2009-07-01

    Full text: Oncogenic osteomalacia is a rare condition characterized by progressive bone pain, muscle weakness and multiple biochemical abnormalities such as hypophosphataemia, hyper phosphaturia and elevated serum alkaline phosphatase. The cause of this syndrome is most commonly from a benign mesenchymal tumor. The tumor is usually small and difficult to localize. We report two patients with oncogenic osteomalacia diagnosed and localized of the tumors by Tc-99m HYNIC-TOC SPECT/CT imaging. The tumors were localized at right thigh and right inguinal region. Tumor removal was successfully done

  17. Oncogenic osteomalacia secondary to a hemangiopericytoma of the hip: case report

    Baronofsky, S.I.; Kalbhen, C.L.; Demos, T.C.; Sizemore, G.W. [Loyola Univ. Medical Center, Dept. of Medicine, Maywood, IL (United States)

    1999-02-01

    Osteomalacia is characterized by abnormally increased unmineralized osteoid within the bone matrix. This metabolic bone disease is usually the result of decreased uptake or abnormal metabolism of vitamin D or of renal tubular phosphate loss. Dietary deficiency, malabsorption, cirrhosis, renal tubular acidosis and certain drugs can cause osteomalacia., Oncogenic osteomalacia - osteomalacia secondary to tumours - is rare, and the exact mechanisms by which neoplasms induce osteomalacia are not known. We describe a patient with chronic osteomalacia of unknown origin who was subsequently found to have oncogenic osteomalacia secondary to a hemangiopericytoma of the hip. (author)

  18. Bacterial lung abscess

    Groskin, S.A.; Panicek, D.M.; Ewing, D.K.; Rivera, F.; Math, K.; Teixeira, J.; Heitzman, E.R.

    1987-01-01

    A retrospective review of patients with bacterial lung abscess was carried out. Demographic, clinical, and radiographical features of this patient group are compared with similar data from patients with empyema and/or cavitated lung carcinoma; differential diagnostic points are stressed. The entity of radiographically occult lung abscess is discussed. Complications associated with bacterial lung abscess are discussed. Current therapeutic options and treatment philosophy for patients with bacterial lung abscess are noted

  19. [Inheritable phenotypic normalization of rodent cells transformed by simian adenovirus SA7 E1 oncogenes by singled-stranded oligonucleotides complementary to a long region of integrated oncogenes].

    Grineva, N I; Borovkova, T V; Sats, N V; Kurabekova, R M; Rozhitskaia, O S; Solov'ev, G Ia; Pantin, V I

    1995-08-01

    G11 mouse cells and SH2 rat cells transformed with simian adenovirus SA7 DNA showed inheritable oncogen-specific phenotypic normalization when treated with sense and antisense oligonucleotides complementary to long RNA sequences, plus or minus strands of the integrated adenovirus oncogenes E1A and E1B. Transitory treatment of the cells with the oligonucleotides in the absence of serum was shown to cause the appearance of normalized cell lines with fibroblastlike morphology, slower cell proliferation, and lack of ability to form colonies in soft agar. Proliferative activity and adhesion of the normalized cells that established cell lines were found to depend on the concentration of growth factors in the cultural medium. In some of the cell lines, an inhibition of transcription of the E1 oncogenes was observed. The normalization also produced cells that divided 2 - 5 times and died and cells that reverted to a transformed phenotype in 2 - 10 days. The latter appeared predominantly upon the action of the antisense oligonucleotides.

  20. Lung Cancer—Patient Version

    The two main types of lung cancer are non-small cell lung cancer and small cell lung cancer. Smoking causes most lung cancers, but nonsmokers can also develop lung cancer. Start here to find information on lung cancer treatment, causes and prevention, screening, research, and statistics on lung cancer.

  1. The non-coding RNAs of the H19-IGF2 imprinted loci: a focus on biological roles and therapeutic potential in Lung Cancer.

    Matouk, Imad J; Halle, David; Gilon, Michal; Hochberg, Abraham

    2015-04-09

    Since it was first described, the imprinted cluster 11p15.5 has been reported to be deregulated in a variety of pediatric and adult cancers including that of the lung. Both protein coding and non-coding genes functioning as oncogenes or as tumor suppressor genes reside within this cluster. Oncomirs that can function as oncogenes or as tumor suppressors have also been reported. While a complete account of the role played by the 11p15.5 imprinted cluster in lung cancer is beyond the scope of this review, we will focus on the role of the non-coding RNAs processed from the H19-IGF2 loci. A special emphasis will be given to the H19/miR-675 gene locus. Their potential diagnostic and therapeutic use in lung cancer will be described.

  2. Differential splicing of oncogenes and tumor suppressor genes in African and Caucasian American populations: contributing factor in prostate cancer disparities

    2017-12-01

    populations: contributing factor in prostate cancer disparities? PRINCIPAL INVESTIGATOR: Norman H Lee, PhD CONTRACTING ORGANIZATION: George Washington...splicing of oncogenes and tumor suppressor genes in African and Caucasian American populations: contributing factor in prostate cancer disparities? 5b...American (AA) versus Caucasian American (CA) prostate cancer (PCa). We focused our efforts on two oncogenes, phosphatidylinositol-4,5-bisphosphate 3

  3. p53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC

    Christoffersen, N R; Shalgi, R; Frankel, L B

    2010-01-01

    Aberrant oncogene activation induces cellular senescence, an irreversible growth arrest that acts as a barrier against tumorigenesis. To identify microRNAs (miRNAs) involved in oncogene-induced senescence, we examined the expression of miRNAs in primary human TIG3 fibroblasts after constitutive...

  4. Deletion mutants of region E1 a of AD12 E1 plasmids: Effect on oncogenic transformation

    Bos, J.L.; Jochemsen, A.G.; Bernards, R.A.; Schrier, P.I.; Ormondt, H. van; Eb, A.J. van der

    1983-01-01

    Plasmids containing the El region of Ad12 DNA can transform certain rodent cells into oncogenic cells. To study the role of the Ela subregion in the process of oncogenic transformation, Ad12 region El mutants carrying deletions in the Ela region were constructed. Deletion mutants pR7 and pR8 affect

  5. Using {sup 18F} FDG PET/CT to Detect an occult Mesenchymal Tumor Causing Oncogenic Osteomalacia

    Seo, Hyo Jung; Choi, Yun Jung; Kim, Hyun Jeong; Jeong, Yong Hyu; Cho, Arthur; Lee, Jae Hoon; Yun, Mijin; Lee, Jong Doo; Kang, Won Jun [Yonsei Univ. College of Medicine, Seoul (Korea, Republic of)

    2011-09-15

    Oncogenic osteomalacia is a rare paraneoplastic syndrome characterized by renal phosphate excretion, hypophosphatemia, and osteomalacia. This syndrome is often caused by tumors of mesenchymal origin. Patients with oncogenic osteomalacia have abnormal bone mineralization, resulting in a high frequency of fractures. Tumor resection is the treatment of choice, as it will often correct the metabolic imbalance. Although oncogenic osteomalacia is a potentially curable disease, diagnosis is difficult and often delayed because of the small size and sporadic location of the tumor. Bone scintigraphy and radiography best characterize osteoma lacia; magnetic resonance imaging findings are nonspecific. Here, we report a case of oncogenic osteomalacia secondary to a phosphaturic mesenchymal tumor that was successfully detected by {sup 18F} fluorodeoxyglucose positron emission tomography/computed tomography ({sup 18F} FDG PET/CT). This case illustrates the advantages of {sup 18F} FDG PET/CT in detecting the occult mesenchymal tumor that causes oncogenic osteomalacia.

  6. Lung growth and development.

    Joshi, Suchita; Kotecha, Sailesh

    2007-12-01

    Human lung growth starts as a primitive lung bud in early embryonic life and undergoes several morphological stages which continue into postnatal life. Each stage of lung growth is a result of complex and tightly regulated events governed by physical, environmental, hormonal and genetic factors. Fetal lung liquid and fetal breathing movements are by far the most important determinants of lung growth. Although timing of the stages of lung growth in animals do not mimic that of human, numerous animal studies, mainly on sheep and rat, have given us a better understanding of the regulators of lung growth. Insight into the genetic basis of lung growth has helped us understand and improve management of complex life threatening congenital abnormalities such as congenital diaphragmatic hernia and pulmonary hypoplasia. Although advances in perinatal medicine have improved survival of preterm infants, premature birth is perhaps still the most important factor for adverse lung growth.

  7. Epidemiology of Lung Cancer

    Brock, Malcolm V.; Ford, Jean G.; Samet, Jonathan M.; Spivack, Simon D.

    2013-01-01

    Background: Ever since a lung cancer epidemic emerged in the mid-1900s, the epidemiology of lung cancer has been intensively investigated to characterize its causes and patterns of occurrence. This report summarizes the key findings of this research. Methods: A detailed literature search provided the basis for a narrative review, identifying and summarizing key reports on population patterns and factors that affect lung cancer risk. Results: Established environmental risk factors for lung cancer include smoking cigarettes and other tobacco products and exposure to secondhand tobacco smoke, occupational lung carcinogens, radiation, and indoor and outdoor air pollution. Cigarette smoking is the predominant cause of lung cancer and the leading worldwide cause of cancer death. Smoking prevalence in developing nations has increased, starting new lung cancer epidemics in these nations. A positive family history and acquired lung disease are examples of host factors that are clinically useful risk indicators. Risk prediction models based on lung cancer risk factors have been developed, but further refinement is needed to provide clinically useful risk stratification. Promising biomarkers of lung cancer risk and early detection have been identified, but none are ready for broad clinical application. Conclusions: Almost all lung cancer deaths are caused by cigarette smoking, underscoring the need for ongoing efforts at tobacco control throughout the world. Further research is needed into the reasons underlying lung cancer disparities, the causes of lung cancer in never smokers, the potential role of HIV in lung carcinogenesis, and the development of biomarkers. PMID:23649439

  8. A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia

    Gröschel, Stefan; Sanders, Mathijs A; Hoogenboezem, Remco; de Wit, Elzo; Bouwman, Britta A M; Erpelinck, Claudia; van der Velden, Vincent H J; Havermans, Marije; Avellino, Roberto; van Lom, Kirsten; Rombouts, Elwin J; van Duin, Mark; Döhner, Konstanze; Beverloo, H Berna; Bradner, James E; Döhner, Hartmut; Löwenberg, Bob; Valk, Peter J M; Bindels, Eric M J; de Laat, Wouter; Delwel, Ruud

    2014-01-01

    Chromosomal rearrangements without gene fusions have been implicated in leukemogenesis by causing deregulation of proto-oncogenes via relocation of cryptic regulatory DNA elements. AML with inv(3)/t(3;3) is associated with aberrant expression of the stem-cell regulator EVI1. Applying functional

  9. Oncogenicity by adenovirus is not determined by the transforming region only

    Bernards, R.A.; Leeuw, M.G.W. de; Vaessen, M.J.; Houweling, A.; Eb, A.J. van der

    1984-01-01

    We have constructed a nondefective recombinant virus between the nononcogenic adenovirus 5 (Ad5) and the highly oncogenic Ad12. The recombinant genome consists essentially of Ad5 sequences, with the exception of the transforming early region 1 (E1) which is derived from Ad12. HeLa cells infected

  10. Oncogenic N-Ras Stimulates SRF-Mediated Transactivation via H3 Acetylation at Lysine 9

    Sun-Ju Yi

    2018-01-01

    Full Text Available Signal transduction pathways regulate the gene expression by altering chromatin dynamics in response to mitogens. Ras proteins are key regulators linking extracellular stimuli to a diverse range of biological responses associated with gene regulation. In mammals, the three ras genes encode four Ras protein isoforms: H-Ras, K-Ras4A, K-Ras4B, and N-Ras. Although emerging evidence suggests that Ras isoforms differentially regulate gene expressions and are functionally nonredundant, the mechanisms underlying Ras specificity and Ras signaling effects on gene expression remain unclear. Here, we show that oncogenic N-Ras acts as the most potent regulator of SRF-, NF-κB-, and AP-1-dependent transcription. N-Ras-RGL2 axis is a distinct signaling pathway for SRF target gene expression such as Egr1 and JunB, as RGL2 Ras binding domain (RBD significantly impaired oncogenic N-Ras-induced SRE activation. By monitoring the effect of Ras isoforms upon the change of global histone modifications in oncogenic Ras-overexpressed cells, we discovered that oncogenic N-Ras elevates H3K9ac/H3K23ac levels globally in the chromatin context. Importantly, chromatin immunoprecipitation (ChIP assays revealed that H3K9ac is significantly enriched at the promoter and coding regions of Egr1 and JunB. Collectively, our findings define an undocumented role of N-Ras in modulating of H3 acetylation and in gene regulation.

  11. The Leukemic Stem Cell Niche: Adaptation to “Hypoxia” versus Oncogene Addiction

    Giulia Cheloni

    2017-01-01

    Full Text Available Previous studies based on low oxygen concentrations in the incubation atmosphere revealed that metabolic factors govern the maintenance of normal hematopoietic or leukemic stem cells (HSC and LSC. The physiological oxygen concentration in tissues ranges between 0.1 and 5.0%. Stem cell niches (SCN are placed in tissue areas at the lower end of this range (“hypoxic” SCN, to which stem cells are metabolically adapted and where they are selectively hosted. The data reported here indicated that driver oncogenic proteins of several leukemias are suppressed following cell incubation at oxygen concentration compatible with SCN physiology. This suppression is likely to represent a key positive regulator of LSC survival and maintenance (self-renewal within the SCN. On the other hand, LSC committed to differentiation, unable to stand suppression because of addiction to oncogenic signalling, would be unfit to home in SCN. The loss of oncogene addiction in SCN-adapted LSC has a consequence of crucial practical relevance: the refractoriness to inhibitors of the biological activity of oncogenic protein due to the lack of their molecular target. Thus, LSC hosted in SCN are suited to sustain the long-term maintenance of therapy-resistant minimal residual disease.

  12. A germline RET proto-oncogene mutation in multiple members of an ...

    Background: Multiple endocrine neoplasia type 2A (MEN2A) is a rare cancer associated-syndrome, inherited in an autosomal dominant fashion and caused by germline mutation in RET proto-oncogene. Clinical diagnosis depends on the manifestation of two or more certain endocrine tumors in an individual, such as ...

  13. Oncogenic LINE-1 Retroelements Sustain Prostate Tumor Cells and Promote Metastatic Progression

    2015-10-01

    limit to 20 words ). 3. ACCOMPLISHMENTS: The PI is reminded that the recipient organization is required to obtain prior written approval...activating novel oncogenic transcriptional pathways and by acting as a telomerase thereby contributing to immortalization of the metastases. We also

  14. Skin carcinomas in organ-transplant recipients : from early oncogenic events to therapy

    Graaf, Ymke Grete Leontien de

    2008-01-01

    Skin carcinomas develop at a high rate in organ-transplant recipients who are kept on immune suppressive drugs to prevent graft rejection. The present study dealt with a broad range of aspects of this elevated carcinoma risk, starting from the earliest oncogenic events to the ultimate therapy.

  15. The Homeodomain Transcription Factor Cdx1 Does Not Behave as an Oncogene in Normal Mouse Intestine

    Mary Ann S. Crissey

    2008-01-01

    Full Text Available The Caudal-related homeobox genes Cdx1 and Cdx2 are intestine-specific transcription factors that regulate differentiation of intestinal cell types. Previously, we have shown Cdx1 to be antiproliferative and to promote cell differentiation. However, other studies have suggested that Cdx1 may be an oncogene. To test for oncogenic behavior, we used the murine villin promoter to ectopically express Cdx1 in the small intestinal villi and colonic surface epithelium. No changes in intestinal architecture, cell differentiation, or lineage selection were observed with expression of the transgene. Classic oncogenes enhance proliferation and induce tumors when ectopically expressed. However, the Cdx1 transgene neither altered intestinal proliferation nor induced spontaneous intestinal tumors. In a murine model for colitis-associated cancer, the Cdx1 transgene decreased, rather than increased, the number of adenomas that developed. In the polyps, the expression of the endogenous and the transgenic Cdx1 proteins was largely absent, whereas endogenous Villin expression was retained. This suggests that transgene silencing was specific and not due to a general Villin inactivation. In conclusion, neither the ectopic expression of Cdx1 was associated with changes in intestinal cell proliferation or differentiation nor was there increased intestinal cancer susceptibility. Our results therefore suggest that Cdx1 is not an oncogene in normal intestinal epithelium.

  16. Suppressor of cytokine signaling 1 interacts with oncogenic lymphocyte-specific protein tyrosine kinase.

    Venkitachalam, Srividya; Chueh, Fu-Yu; Leong, King-Fu; Pabich, Samantha; Yu, Chao-Lan

    2011-03-01

    Lymphocyte-specific protein tyrosine kinase (Lck) plays a key role in T cell signal transduction and is tightly regulated by phosphorylation and dephosphorylation. Lck can function as an oncoprotein when overexpressed or constantly activated by mutations. Our previous studies showed that Lck-induced cellular transformation could be suppressed by enforced expression of suppressor of cytokine signaling 1 (SOCS1), a SOCS family member involved in the negative feedback control of cytokine signaling. We observed attenuated Lck kinase activity in SOCS1-expressing cells, suggesting an important role of SOCS in regulating Lck functions. It remains largely unknown whether and how SOCS proteins interact with the oncogenic Lck kinase. Here, we report that among four SOCS family proteins, SOCS1, SOCS2, SOCS3 and CIS (cytokine-inducible SH2 domain containing protein), SOCS1 has the highest affinity in binding to the oncogenic Lck kinase. We identified the positive regulatory phosphotyrosine 394 residue in the kinase domain as the key interacting determinant in Lck. Additionally, the Lck kinase domain alone is sufficient to bind SOCS1. While the SH2 domain in SOCS1 is important in its association with the oncogenic Lck kinase, other functional domains may also contribute to overall binding affinity. These findings provide important mechanistic insights into the role of SOCS proteins as tumor suppressors in cells transformed by oncogenic protein tyrosine kinases.

  17. [Genotyping of oncogenic human papilloma viruses in women with HG SIL diagnosis].

    Kedzia, Witold; Pruski, Dominik; Józefiak, Agata; Rokita, Wojciech; Spaczyński, Marek

    2010-10-01

    Development of primary prevention of cervical cancer in other words a vaccination against selected, oncogenic HPV types, entails an increasing importance of epidemiological studies and prevalence of various types of human papilloma virus. The incidence of HPV varies depending on the geographic location of the population. The effectiveness of primary prevention against HPV 16, 18, in the context of reducing the incidence of cervical cancer will depend, among others, on the prevalence of these types in the population and virus-like antigens, which are partially cross-resistant. Identification of the most frequent, oncogenic HPV types in women with HG SIL diagnosis from Central and Western Poland to assess the merits of the development of primary prevention. For the purpose of molecular tests identifying the presence of 13 DNA oncogenic virus types, swabs were taken with the cyto-brush from 76 women diagnosed with CIN 2 or CIN 3 (HG SIL). Patients eligible for the study were diagnosed at the Laboratory of Pathophysiology of Uterine Cervix, Gynecology and Obstetrics Clinical Hospital of Karol Marcinkowski University of Medical Sciences. Patients came from Central and Western parts of Poland. Cell material in which the method of Amplicor HPV (Roche Diagnostics) identified the presence of DNA of oncogenic HPV types was in each case subsequently subjected to genotyping using the molecular test - Linear Array HPV Genotyping (Roche Diagnostics). Five most common oncogenic HPV types in order of detection included: 16, 33, 18, 31, 56. Together these five types of virus comprised 75.86% (88/116) of all detected HPV types. 1. In women from Central and Western Poland, diagnosed with HG SIL, the most common HPV genotypes were HPV 16, HPV33, HPV 18, HPV31, HPV56. 2. Two HPV types 16 and 18, against which vaccinations are directed, belong to the group of three genotypes of HPV most commonly identified in the evolution of CIN 2, CIN 3 diagnosed in women from Central and Western

  18. [Expression and clinical significance of Pokemon in non-small cell lung cancer].

    Zhao, Zhihong; Wang, Shengfa; Zhang, Tiewa

    2007-12-20

    Proto-oncogene Pokemon is the special transcription inhibitor of ARF,which can regulate cell growth and differentiation by ARF-P53 path.It may be the important monitoring target of tumor because of being upstream region of many tumor suppressor genes and proto-oncogenes.The aim of this study is to explore the clinical significance of Pokemon gene in non-small cell lung cancer(NSCLC). Immunohistochemistry was applied to detect the expression of Pokemon protein in 92 cases of NSCLC and 20 cases of paracancerous lung tissues.Correlation between abnormal expression of Pokemon with pathologic characteristics and prognosis of NSCLC was analyzed. Pokemon was not expressed in paracancerous lung tissues and was found in 66 of 92(71.7%) cases of lung cancer tissues.Expression of Pokemon was closely related to TNM stages(P=0.011).Survival rate of patients with negative Pokemon expression was significantly higher than that of those with positive Pokemon expression(P=0.0015).Pokemon expression was demonstrated as independent prognostic factor of NSCLC. Pokemon is expressed in NSCLC and it may be identified as a new diagnostic marker.High expression of Pokemon may indicate poor prognosis of patients with NSCLC.

  19. Radiotherapy for Oligometastatic Lung Cancer

    Derek P. Bergsma

    2017-09-01

    Full Text Available Non-small cell lung cancer (NSCLC typically presents at an advanced stage, which is often felt to be incurable, and such patients are usually treated with a palliative approach. Accumulating retrospective and prospective clinical evidence, including a recently completed randomized trial, support the existence of an oligometastatic disease state wherein select individuals with advanced NSCLC may experience historically unprecedented prolonged survival with aggressive local treatments, consisting of radiotherapy and/or surgery, to limited sites of metastatic disease. This is reflected in the most recent AJCC staging subcategorizing metastatic disease into intra-thoracic (M1a, a single extra thoracic site (M1b, and more diffuse metastases (M1c. In the field of radiation oncology, recent technological advances have allowed for the delivery of very high, potentially ablative, doses of radiotherapy to both intra- and extra-cranial disease sites, referred to as stereotactic radiosurgery and stereotactic body radiotherapy (or SABR, in much shorter time periods compared to conventional radiation and with minimal associated toxicity. At the same time, significant improvements in systemic therapy, including platinum-based doublet chemotherapy, molecular agents targeting oncogene-addicted NSCLC, and immunotherapy in the form of checkpoint inhibitors, have led to improved control of micro-metastatic disease and extended survival sparking newfound interest in combining these agents with ablative local therapies to provide additive, and in the case of radiation and immunotherapy, potentially synergistic, effects in order to further improve progression-free and overall survival. Currently, despite the tantalizing potential associated with aggressive local therapy in the setting of oligometastatic NSCLC, well-designed prospective randomized controlled trials sufficiently powered to detect and measure the possible added benefit afforded by this approach are

  20. Targeted Therapies for Lung Cancer.

    Stinchcombe, Thomas E

    Targeted therapies have become standard therapies for patients with non-small cell lung cancer (NSCLC). A phase III trial of carboplatin and paclitaxel with and without bevacizumab in patients with advanced NSCLC with non-squamous histology demonstrated a statistically significant improvement in efficacy. In patients with NSCLC with an activating epidermal growth factor receptor (EGFR) mutation (defined as exon 19 deletion and exon 21 L858R point mutation), phase III trials of EGFR tyrosine kinase inhibitors (TKI) compared to platinum-based chemotherapy have demonstrated superior efficacy in the first-line setting. In patients with NSCLC with anaplastic lymphoma kinase (ALK) rearrangements, phase III trials of crizotinib have demonstrated superior efficacy compared to platinum-pemetrexed in the first-line setting and standard chemotherapy in the second-line setting. A second-generation ALK inhibitor, ceritinib, is available for patients who have progressed after or were intolerant of crizotinib. Crizotinib has also demonstrated activity on patients with ROS1 rearrangements, and BRAF inhibitors (dabrafenib, vemurafenib) have demonstrated activity in patients with NSCLC with BRAF V600E mutation. The oncogenic mutations that are susceptible to targeted therapy are mainly found in non-squamous NSCLC. The development of targeted therapy in patients with squamous NSCLC has been more challenging due to the genomic complexity observed in the squamous histology and the low prevalence of EGFR, ALK, and ROS1 molecular alterations. A phase III trial of cisplatin and gemcitabine with and without necitumumab in patients with advanced NSCLC with squamous histology demonstrated a statistically significant improvement in progression-free and overall survival.

  1. Genetics Home Reference: lung cancer

    ... Share: Email Facebook Twitter Home Health Conditions Lung cancer Lung cancer Printable PDF Open All Close All Enable Javascript ... cancer, childhood Additional NIH Resources (3 links) National Cancer Institute: Lung Cancer Overview National Cancer Institute: Lung Cancer Prevention ...

  2. Radiation Therapy for Lung Cancer

    ... is almost always due to smoking. TREATING LUNG CANCER Lung cancer treatment depends on several factors, including the ... org TARGETING CANCER CARE Radiation Therapy for Lung Cancer Lung cancer is the second most common cancer in ...

  3. Lungs and Respiratory System

    ... Videos for Educators Search English Español Lungs and Respiratory System KidsHealth / For Parents / Lungs and Respiratory System ... ll have taken at least 600 million breaths. Respiratory System Basics All of this breathing couldn't ...

  4. Childhood Interstitial Lung Disease

    ... rule out conditions such as asthma , cystic fibrosis , acid reflux, heart disease, neuromuscular disease, and immune deficiency. Various ... a lung infection. Acid-blocking medicines can prevent acid reflux, which can lead to aspiration. Lung Transplant A ...

  5. Interstitial Lung Disease

    ... propranolol (Inderal, Innopran), may harm lung tissue. Some antibiotics. Nitrofurantoin (Macrobid, Macrodantin, others) and ethambutol (Myambutol) can cause lung damage. Anti-inflammatory drugs. Certain anti-inflammatory drugs, such as rituximab ( ...

  6. Eosinophilic Lung Disorders

    ... problems characterized by having an increased number of eosinophils (white blood cells) in the lungs. These white ... category of pneumonias that feature increased numbers of eosinophils in the lung tissue. Pneumonia is an inflammatory ...

  7. Immunodetection of rasP21 and c-myc oncogenes in oral mucosal swab preparation from clove cigarette smokers

    Silvi Kintawati

    2008-12-01

    Full Text Available Background: Smoking is the biggest factor for oral cavity malignancy. Some carcinogens found in cigar will stimulate epithel cell in oral cavity and cause mechanism disturbance on tissue resistance and produce abnormal genes (oncogenes. Oncogenes ras and myc are found on malignant tumor in oral cavity which are associated with smoking. Purpose: This research is to find the expression of oncogenes rasP21 and c-myc in oral mucosa epithelial of smoker with immunocytochemistry reaction. Methods: An oral mucosal swab was performed to 30 smokers categorized as light, moderate, and chain, and 10 non smokers which was followed by immunocytochemistry reaction using antibody towards oncogene rasP21 and c-myc is reacted to identify the influence of smoking towards malignant tumor in oral cavity. The result is statistically analyzed using Kruskal-Wallis test. Result: Based on the observation result of oncogene rasP21reaction, it shows that there is significant difference between non smoker group and light smoker, compared to moderate and chain smoker group (p < 0.01. On the other side, the observation result of oncogene c-myc indicates that there is no significant difference between the group of non smokers and the group of light, moderate, and chain smokers (p > 0.05. Conclusion: The higher the possibility of oral cavity malignancy and that the antibody for rasP21 oncogene can be used as a marker for early detection of oral cavity malignancy caused by smoking.

  8. An Interaction with Ewing's Sarcoma Breakpoint Protein EWS Defines a Specific Oncogenic Mechanism of ETS Factors Rearranged in Prostate Cancer.

    Kedage, Vivekananda; Selvaraj, Nagarathinam; Nicholas, Taylor R; Budka, Justin A; Plotnik, Joshua P; Jerde, Travis J; Hollenhorst, Peter C

    2016-10-25

    More than 50% of prostate tumors have a chromosomal rearrangement resulting in aberrant expression of an oncogenic ETS family transcription factor. However, mechanisms that differentiate the function of oncogenic ETS factors expressed in prostate tumors from non-oncogenic ETS factors expressed in normal prostate are unknown. Here, we find that four oncogenic ETS (ERG, ETV1, ETV4, and ETV5), and no other ETS, interact with the Ewing's sarcoma breakpoint protein, EWS. This EWS interaction was necessary and sufficient for oncogenic ETS functions including gene activation, cell migration, clonogenic survival, and transformation. Significantly, the EWS interacting region of ERG has no homology with that of ETV1, ETV4, and ETV5. Therefore, this finding may explain how divergent ETS factors have a common oncogenic function. Strikingly, EWS is fused to various ETS factors by the chromosome translocations that cause Ewing's sarcoma. Therefore, these findings link oncogenic ETS function in both prostate cancer and Ewing's sarcoma. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. Lung nodules after whole lung radiation

    Cohen, M.D.; Mirkin, D.L.; Provisor, A.; Hornback, N.B.; Smith, J.A.; Slabaugh, R.D.

    1983-01-01

    It is essential to recognize radiation pneumonitis after whole lung irradiation, or nodular changes in response to chemotherapy, so that such conditions are not mistaken for tumor metastases, causing grave error in patient management and the possibility of further lung damage

  10. Lung cancer in Asian women - the environment and genes

    Lam, W.K. [University of Hong Kong, Pokfulam (China). Queen Mary Hospital

    2005-09-15

    The mortality rate of lung cancer in Asian women has increased significantly in the past few decades. Environmental factors include tobacco smoke (active and environmental), other indoor pollutions (cooking oil vapours, coal burning, fungus spores), diet, and infections. Active tobacco smoking is not the major factor. Cooking oil vapours associated with high temperature wok cooking and indoor coal burning for heating and cooking in unvented homes, particularly in rural areas, are risk factors for Chinese women. Chronic benign respiratory diseases due to the fungus Microsporum canis probably accounts for the high incidence of lung cancer in northern Thai women at Sarapee. Diets rich in fruits, leafy green vegetables, and vitamin A are protective, while cured meat (Chinese sausage, pressed duck and cured pork), deep-fried cooking, and chili increased the risk. Tuberculosis is associated with lung cancer. Also, a Taiwanese study showed that the odds ratio of papillomavirus (HPV) 16/18 infection in non-smoking female lung cancer patients was 10.1, strongly suggesting a causative role. Genetic factors have also been studied in Chinese women, including human leucocyte antigens, K-ras oncogene activation, p53 mutation, polymorphisms of phase I activating enzymes (cytochrome P450, N-acetyltransferase slow acetylator status), and phase II detoxifying enzymes (glutathione-S-transferases, N-acetyltransferase rapid acetylator status).

  11. Lung scintigraphy; Centellograma pulmonar

    Dalenz, Roberto

    1994-12-31

    A review of lung scintigraphy, perfusion scintigraphy with SPECT, lung ventilation SPECT, blood pool SPECT. The procedure of lung perfusion studies, radiopharmaceutical, administration and clinical applications, imaging processing .Results encountered and evaluation criteria after Biello and Pioped. Recommendations and general considerations have been studied about relation of this radiopharmaceutical with other pathologies.

  12. American Lung Association

    ... see if you should get screened. Learn more EDUCATION ADVOCACY RESEARCH Our vision is a world free of lung disease The American Lung Association is ... by lung disease. Help us continue to deliver education, advocacy and research to those who need it. $250 $100 $50 Your best gift Donate now Learn More ... nonprofit software

  13. SARS – Lung Pathology

    Dry nonproductive cough – may show minimal lung infiltration. Recovery; * Lungs get fluid in bronchi- droplets infective and +ve for virus in culture and PCR. May also have co-infection with chlamydia/metapneumoviruses. Recovery; * Lung tissue destroyed due to ? immunological/cytokine mediated damage-Recovery ...

  14. V-cbl, an oncogene from a dual-recombinant murine retrovirus that induces early B-lineage lymphomas

    Langdon, W.Y.; Klinken, S.P.; Hartley, J.W.; Morse, H.C. III; Ruscetti, S.K.

    1989-01-01

    Cas NS-1 is an acutely transforming murine retrovirus that induces pre-B and pro-B cell lymphomas. Molecular cloning showed it was generated from the ecotropic Cas-Br-M virus by sequential recombinations with endogenous retroviral sequences and a cellular oncogene. The oncogene sequence shows no homology with known oncogenes but some similarity to the yeast transcriptional activator GCN4. A 100-kDa gag-cbl fusion protein, with no detectable kinase activity, is responsible for the cellular transformation. The cellular homologue of v-cbl, present in mouse and human DNA, is expressed in a range of hemopoietic lineages

  15. Oncogenic HPV among HIV infected female population in West Bengal, India

    Sengupta Sharmila

    2011-03-01

    Full Text Available Abstract Background Prevalence of both cervical cancer and Human Immunodeficiency Virus (HIV infection are very high in India. Natural history of Human Papilloma Virus (HPV infection is known to be altered in HIV positive women and there is an increased possibility of persistence of HPV infections in this population. Therefore, this study was conducted to understand the epidemiology and circulating genotypes of oncogenic HPV among HIV positive and negative female population in West Bengal, India. Methods In this hospital-based cross-sectional study, 93 known HIV positive females attending a pre-ART registration clinic and 1106 HIV negative females attending a Reproductive and Child Health Care Clinic were subjected to study. Cervical cell samples collected from the study population were tested for the presence of HPV 16, 18 using specific primers. Roche PCR assay was used to detect other specific HPV genotypes in the cervical cells specimens of HIV positive cases only. Results Prevalence of HPV 16, 18 among HIV positive females (32.2%; n = 30 was higher than HIV negative females (9.1%; n = 101. About 53% (23/43 of cases with oncogenic HPV were infected with genotypes other than 16, 18 either as single/multiple infections. HPV 18 and HPV 16 were the predominant genotypes among HIV positive and HIV negative subjects respectively. Oncogenic HPV was not found to be associated with age and duration of sexual exposure. But the presence of HIV was found to a statistically significant predictor oncogenic HPV. Conclusion The currently available HPV vaccines offer protection only against HPV 16 and 18 and some cross- protection to few associated genotypes. These vaccines are therefore less likely to offer protection against cervical cancer in HIV positive women a high percentage of who were infected with non-16 and non-18 oncogenic HPV genotypes. Additionally, there is a lack of sufficient evidence of immunogenicity in HIV infected individuals. Therefore

  16. 67Ga lung scan

    Niden, A.H.; Mishkin, F.S.; Khurana, M.M.L.; Pick, R.

    1977-01-01

    Twenty-three patients with clinical signs of pulmonary embolic disease and lung infiltrates were studied to determine the value of gallium citrate 67 Ga lung scan in differentiating embolic from inflammatory lung disease. In 11 patients without angiographically proved embolism, only seven had corresponding ventilation-perfusion defects compatible with inflammatory disease. In seven of these 11 patients, the 67 Ga concentration indicated inflammatory disease. In the 12 patients with angiographically proved embolic disease, six had corresponding ventilation-perfusion defects compatible with inflammatory disease. None had an accumulation of 67 Ga in the area of pulmonary infiltrate. Thus, ventilation-perfusion lung scans are of limited value when lung infiltrates are present. In contrast, the accumulation of 67 Ga in the lung indicates an inflammatory process. Gallium imaging can help select those patients with lung infiltrates who need angiography

  17. A comparison of oncogene-induced senescence and replicative senescence: implications for tumor suppression and aging.

    Nelson, David M; McBryan, Tony; Jeyapalan, Jessie C; Sedivy, John M; Adams, Peter D

    2014-06-01

    Cellular senescence is a stable proliferation arrest associated with an altered secretory pathway, the senescence-associated secretory phenotype. However, cellular senescence is initiated by diverse molecular triggers, such as activated oncogenes and shortened telomeres, and is associated with varied and complex physiological endpoints, such as tumor suppression and tissue aging. The extent to which distinct triggers activate divergent modes of senescence that might be associated with different physiological endpoints is largely unknown. To begin to address this, we performed gene expression profiling to compare the senescence programs associated with two different modes of senescence, oncogene-induced senescence (OIS) and replicative senescence (RS [in part caused by shortened telomeres]). While both OIS and RS are associated with many common changes in gene expression compared to control proliferating cells, they also exhibit substantial differences. These results are discussed in light of potential physiological consequences, tumor suppression and aging.

  18. An oncogenic MYB feedback loop drives alternate cell fates in adenoid cystic carcinoma

    Drier, Yotam; Cotton, Matthew J.; Williamson, Kaylyn E.; Gillespie, Shawn M.; Ryan, Russell J.H.; Kluk, Michael J.; Carey, Christopher D.; Rodig, Scott J.; Sholl, Lynette M; Afrogheh, Amir H.; Faquin, William C.; Queimado, Lurdes; Qi, Jun; Wick, Michael J.; El-Naggar, Adel K.; Bradner, James E.; Moskaluk, Christopher A.; Aster, Jon C.; Knoechel, Birgit; Bernstein, Bradley E.

    2016-01-01

    Translocation events are frequent in cancer and may create chimeric fusions or ‘regulatory rearrangements’ that drive oncogene overexpression. Here we identify super-enhancer translocations that drive overexpression of the oncogenic transcription factor MYB as a recurrent theme in adenoid cystic carcinoma (ACC). Whole-genome sequencing data and chromatin maps reveal distinct chromosomal rearrangements that juxtapose super-enhancers to the MYB locus. Chromosome conformation capture confirms that the translocated enhancers interact with the MYB promoter. Remarkably, MYB protein binds to the translocated enhancers, creating a positive feedback loop that sustains its expression. MYB also binds enhancers that drive different regulatory programs in alternate cell lineages in ACC, cooperating with TP63 in myoepithelial cells and a Notch program in luminal epithelial cells. Bromodomain inhibitors slow tumor growth in ACC primagraft models in vivo. Thus, our study identifies super-enhancer translocations that drive MYB expression and provides insight into downstream MYB functions in the alternate ACC lineages. PMID:26829750

  19. Plac8 Links Oncogenic Mutations to Regulation of Autophagy and Is Critical to Pancreatic Cancer Progression

    Conan Kinsey

    2014-05-01

    Full Text Available Mutations in p53 and RAS potently cooperate in oncogenic transformation, and correspondingly, these genetic alterations frequently coexist in pancreatic ductal adenocarcinoma (PDA and other human cancers. Previously, we identified a set of genes synergistically activated by combined RAS and p53 mutations as frequent downstream mediators of tumorigenesis. Here, we show that the synergistically activated gene Plac8 is critical for pancreatic cancer growth. Silencing of Plac8 in cell lines suppresses tumor formation by blocking autophagy, a process essential for maintaining metabolic homeostasis in PDA, and genetic inactivation in an engineered mouse model inhibits PDA progression. We show that Plac8 is a critical regulator of the autophagic machinery, localizing to the lysosomal compartment and facilitating lysosome-autophagosome fusion. Plac8 thus provides a mechanistic link between primary oncogenic mutations and the induction of autophagy, a central mechanism of metabolic reprogramming, during PDA progression.

  20. DNA Oncogenic Virus-Induced Oxidative Stress, Genomic Damage, and Aberrant Epigenetic Alterations

    Mankgopo Magdeline Kgatle

    2017-01-01

    Full Text Available Approximately 20% of human cancers is attributable to DNA oncogenic viruses such as human papillomavirus (HPV, hepatitis B virus (HBV, and Epstein-Barr virus (EBV. Unrepaired DNA damage is the most common and overlapping feature of these DNA oncogenic viruses and a source of genomic instability and tumour development. Sustained DNA damage results from unceasing production of reactive oxygen species and activation of inflammasome cascades that trigger genomic changes and increased propensity of epigenetic alterations. Accumulation of epigenetic alterations may interfere with genome-wide cellular signalling machineries and promote malignant transformation leading to cancer development. Untangling and understanding the underlying mechanisms that promote these detrimental effects remain the major objectives for ongoing research and hope for effective virus-induced cancer therapy. Here, we review current literature with an emphasis on how DNA damage influences HPV, HVB, and EBV replication and epigenetic alterations that are associated with carcinogenesis.

  1. Menin-MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia.

    Grembecka, Jolanta; He, Shihan; Shi, Aibin; Purohit, Trupta; Muntean, Andrew G; Sorenson, Roderick J; Showalter, Hollis D; Murai, Marcelo J; Belcher, Amalia M; Hartley, Thomas; Hess, Jay L; Cierpicki, Tomasz

    2012-01-29

    Translocations involving the mixed lineage leukemia (MLL) gene result in human acute leukemias with very poor prognosis. The leukemogenic activity of MLL fusion proteins is critically dependent on their direct interaction with menin, a product of the multiple endocrine neoplasia (MEN1) gene. Here we present what are to our knowledge the first small-molecule inhibitors of the menin-MLL fusion protein interaction that specifically bind menin with nanomolar affinities. These compounds effectively reverse MLL fusion protein-mediated leukemic transformation by downregulating the expression of target genes required for MLL fusion protein oncogenic activity. They also selectively block proliferation and induce both apoptosis and differentiation of leukemia cells harboring MLL translocations. Identification of these compounds provides a new tool for better understanding MLL-mediated leukemogenesis and represents a new approach for studying the role of menin as an oncogenic cofactor of MLL fusion proteins. Our findings also highlight a new therapeutic strategy for aggressive leukemias with MLL rearrangements.

  2. Risk scaling factors from inactivation to chromosome aberrations, mutations and oncogenic transformations in mammalian cells

    Alkaharam, A.S.; Watt, D.E.

    1997-01-01

    Analyses of bio-effect mechanisms of damage to mammalian cells in terms of the quality parameter 'mean free path for primary ionisation', for heavy charged particles, strongly suggests that there is a common mechanism for the biological endpoints of chromosome aberrations, mutations and oncogenic transformation. The lethal lesions are identified as unrepaired double-strand breaks in the intracellular DNA. As data for the various endpoints studied can be represented in a unified scheme, for any radiation type, it follows that radiation risk factors can be determined on the basis of simple ratios to the inactivation cross sections. There are intrinsic physical reasons why neutrons can never reach the saturation level of heavier particles for equal fluences. The probabilities of risk with respect to inactivation, for chromosome dicentrics, mutation of the HPRT gene and of oncogenic transformation are respectively 0.24, 5.8 x 10 -5 , and 4.1 x 10 -3 . (author)

  3. A Poly-ADP-Ribose Trigger Releases the Auto-Inhibition of a Chromatin Remodeling Oncogene

    Singh, Hari R; Nardozza, Aurelio P; Möller, Ingvar R

    2017-01-01

    DNA damage triggers chromatin remodeling by mechanisms that are poorly understood. The oncogene and chromatin remodeler ALC1/CHD1L massively decompacts chromatin in vivo yet is inactive prior to DNA-damage-mediated PARP1 induction. We show that the interaction of the ALC1 macrodomain......-macrodomain interactions, promotes an ungated conformation, and activates the remodeler's ATPase. ALC1 fragments lacking the regulatory macrodomain relax chromatin in vivo without requiring PARP1 activation. Further, the ATPase restricts the macrodomain's interaction with PARP1 under non-DNA damage conditions. Somatic...... cancer mutants disrupt ALC1's auto-inhibition and activate chromatin remodeling. Our data show that the NAD+-metabolite and nucleic acid PAR triggers ALC1 to drive chromatin relaxation. Modular allostery in this oncogene tightly controls its robust, DNA-damage-dependent activation....

  4. Oncogene activation and surface markers in mouse lymphomas induced by radiation and nitrosomethylurea

    Guerrero, I.; Villasante, A.; Diamond, L.; Berman, J.W.; Newcomb, E.W.; Steinberg, J.J.; Lake, R.; Pellicer, A.

    1986-01-01

    Thymic lymphomas have been induced by ..gamma..-radiation and treatment with the chemical nitrosomethylurea in different mice strains. As indicated by the NIH 3T3 focus forming assay, a significant percentage of the tumors contain activated oncogenes of the ras family (K or N). Cloning and sequencing has enabled us to identify single base mutations as the only significant alteration present in the activated oncogenes. These alterations result in the substitution of amino-acid 12 or 61 of the p21 product of the ras genes. With the use of synthetic oligonucleotides it has been found that the tumors do not all contain the same mutation and in one case so far the normal allele is absent.

  5. Radiosensitivity and ras oncogene expression in preneoplastic rat tracheal epithelial cells

    Thomassen, D.G.; Wuensch, S.A.; Kelly, G.

    1988-01-01

    The sensitivity of preneoplastic rat tracheal epithelial (RTE) cells to the cytotoxic effects of high- and low-LET radiation, and the modulating effect of the viral ras oncogene on this sensitivity were determined. Two lines of preneoplastic RTE cells have the same responsiveness to high-LET radiation, but differ in their responsiveness to a transfected ras oncogene and in their sensitivities to low-LET radiation. Cells that respond to ras by becoming neoplastic are more resistant to the cytotoxic effects of low-LET radiation than cells that are not transformable by ras. The radiosensitivity of ras-responsive cells was not altered by transfection with ras. However, transfection of ras-non responsive cells with ras decreased their sensitivity to low-LET radiation. These data suggest that the ability of cells to repair radiation damage changes as they progress to neoplasia. (author)

  6. Oncogenes and tumor suppressors in the molecular pathogenesis of acute promyelocytic leukemia.

    Pandolfi, P P

    2001-04-01

    Acute promyelocytic leukemia (APL) is associated with reciprocal chromosomal translocations always involving the retinoic acid receptor alpha (RARalpha) gene on chromosome 17 and variable partner genes (X genes) on distinct chromosomes. RARalpha fuses to the PML gene in the vast majority of APL cases, and in a few cases to the PLZF, NPM, NuMA and Stat5b genes, respectively, leading to the generation of RARalpha-X: and X:-RARalpha fusion genes. Both fusion proteins can exert oncogenic functions through their ability to interfere with the activities of X and RARalpha proteins. Here, it will be discussed in detail how an extensive biochemical analysis as well as a systematic in vivo genetic approach in the mouse has allowed the definition of the multiple oncogenic activities of PML-RARalpha, and how it has become apparent that this oncoprotein is able to impair RARalpha at the transcription level and the tumor suppressive function of the PML protein.

  7. PAK1 is a breast cancer oncogene that coordinately activates MAPK and MET signaling

    Shrestha, Yashaswi; Schafer, Eric J.; Boehm, Jesse S.; Thomas, Sapana R.; He, Frank; Du, Jinyan; Wang, Shumei; Barretina, Jordi; Weir, Barbara A.; Zhao, Jean J.; Polyak, Kornelia; Golub, Todd R.; Beroukhim, Rameen; Hahn, William C.

    2011-01-01

    Activating mutations in the RAS family or BRAF frequently occur in many types of human cancers but are rarely detected in breast tumors. However, activation of the RAS-RAF-MEK-ERK Mitogen-Activated Protein Kinase (MAPK) pathway is commonly observed in human breast cancers, suggesting that other genetic alterations lead to activation of this signaling pathway. To identify breast cancer oncogenes that activate the MAPK pathway, we screened a library of human kinases for their ability to induce ...

  8. Pro-oncogene Pokemon promotes breast cancer progression by upregulating survivin expression

    Zu, Xuyu; Ma, Jun; Liu, Hongxia; Liu, Feng; Tan, Chunyan; Yu, Lingling; Wang, Jue; Xie, Zhenhua; Cao, Deliang; Jiang, Yuyang

    2011-01-01

    Introduction Pokemon is an oncogenic transcription factor involved in cell growth, differentiation and oncogenesis, but little is known about its role in human breast cancer. In this study, we aimed to reveal the role of Pokemon in breast cancer progression and patient survival and to understand its underlying mechanisms. Methods Tissue microarray analysis of breast cancer tissues from patients with complete clinicopathological data and more than 20 years of follow-up were used to evaluate Po...

  9. MSH3-deficiency initiates EMAST without oncogenic transformation of human colon epithelial cells.

    Christoph Campregher

    Full Text Available BACKGROUND/AIM: Elevated microsatellite instability at selected tetranucleotide repeats (EMAST is a genetic signature in certain cases of sporadic colorectal cancer and has been linked to MSH3-deficiency. It is currently controversial whether EMAST is associated with oncogenic properties in humans, specifically as cancer development in Msh3-deficient mice is not enhanced. However, a mutator phenotype is different between species as the genetic positions of repetitive sequences are not conserved. Here we studied the molecular effects of human MSH3-deficiency. METHODS: HCT116 and HCT116+chr3 (both MSH3-deficient and primary human colon epithelial cells (HCEC, MSH3-wildtype were stably transfected with an EGFP-based reporter plasmid for the detection of frameshift mutations within an [AAAG]17 repeat. MSH3 was silenced by shRNA and changes in protein expression were analyzed by shotgun proteomics. Colony forming assay was used to determine oncogenic transformation and double strand breaks (DSBs were assessed by Comet assay. RESULTS: Despite differential MLH1 expression, both HCT116 and HCT116+chr3 cells displayed comparable high mutation rates (about 4×10(-4 at [AAAG]17 repeats. Silencing of MSH3 in HCECs leads to a remarkable increased frameshift mutations in [AAAG]17 repeats whereas [CA]13 repeats were less affected. Upon MSH3-silencing, significant changes in the expression of 202 proteins were detected. Pathway analysis revealed overexpression of proteins involved in double strand break repair (MRE11 and RAD50, apoptosis, L1 recycling, and repression of proteins involved in metabolism, tRNA aminoacylation, and gene expression. MSH3-silencing did not induce oncogenic transformation and DSBs increased 2-fold. CONCLUSIONS: MSH3-deficiency in human colon epithelial cells results in EMAST, formation of DSBs and significant changes of the proteome but lacks oncogenic transformation. Thus, MSH3-deficiency alone is unlikely to drive human colon

  10. Clinical Implication of Elevated Human Cervical Cancer Oncogene-1 Expression in Esophageal Squamous Cell Carcinoma

    Liu, Ying; Li, Ke; Ren, Zhonghai; Li, Shenglei; Zhang, Hongyan; Fan, Qingxia

    2012-01-01

    The human cervical cancer oncogene 1 (HCCR-1), a novel human oncoprotein, has been shown to be upregulated in various human tumors and plays a critical role in tumorigenesis and tumor progression. Here, the authors investigated HCCR-1 level in esophageal squamous cell carcinoma (ESCC) tissues and assessed the correlation between HCCR-1 level and prognosis of the patients with ESCC. HCCR-1 levels were investigated by immunohistochemistry, in situ hybridization, real-time quantit...

  11. Oncogenic action of beta, proton, alpha and electron radiation on the rat skin

    Burns, F.J.

    1980-01-01

    Rat skin is being utilized as an empirical model for testing dose and time related aspects of the oncogenic action of ionizing radiation, ultraviolet light, and polycyclic aromatic hydrocarbons. Molecular lesions in the skin DNA, including, strand breaks and thymine dimers, are being measured and compared to tumor induction. The induction and repair kinetics of molcular lesions are being compared to split dose repair. Modifiers and radiosensitizers are being utilized to test specific aspects of a chromosome breakage theory of radiation oncogenesis

  12. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints

    Bartkova, Jirina; Rezaei, Nousin; Liontos, Michalis

    2006-01-01

    Recent studies have indicated the existence of tumorigenesis barriers that slow or inhibit the progression of preneoplastic lesions to neoplasia. One such barrier involves DNA replication stress, which leads to activation of the DNA damage checkpoint and thereby to apoptosis or cell cycle arrest...... and senescence markers cosegregate closely. Thus, senescence in human preneoplastic lesions is a manifestation of oncogene-induced DNA replication stress and, together with apoptosis, provides a barrier to malignant progression....

  13. Role of 18F FDG PET scan to localize tumor in patients of oncogenic osteomalacia

    Malhotra, Gaurav; Mukta, K.; Asopa, V.; Varsha, J.; Vijaya, S.; Shah, Nalini S.; Padmavathy, M.

    2010-01-01

    Full text: Oncogenic osteomalacia is a rare paraneoplastic syndrome of renal phosphate wasting which is usually caused by phosphaturic mesenchymal tumors. Conventional radiologic techniques usually fail to detect these small, slow growing neoplasms located at unusual sites. The objective of this study was to evaluate the role of 18 F FDG PET imaging in patients of oncogenic osteomalacia. Materials and Methods: Fifteen patients (8 males and 7 females) (mean age: 38.5 ± 12.2 years) with clinical and biochemical evidence of oncogenic osteomalacia were subjected to 'total' whole body 18 F FDG PET scan including both limbs and skull views. The images were reconstructed and the final output was displayed as per the standard institution protocol. Results: 18 F FDG PET imaging localized suspicious hypermetabolic foci of SUVmax ranging from 1.4 to 3.8 (Mean ± S.D.: 2.39 ± 0.63) suggesting presence of occult tumor in 11 of 15 patients. The suspected foci were localized in lower limbs in ten patients and in the petrous temporal region of skull in 1 patient. FDG localized tumors were histopathologically correlated in 6 patients who underwent surgical biopsy/excision after correlative radiological investigations. Four of these patients were cured after surgical excision while partial surgical excision/biopsy was performed in two patients. Conclusions: 18 F FDG PET imaging is a promising technique for detection of occult tumors in patients of oncogenic osteomalacia. It is mandatory to include limbs in the field as these tumors are common in limbs and may be easily missed. Preoperative localization increases odds for cure after surgical removal of tumor

  14. The 5T mouse multiple myeloma model: Absence of c-myc oncogene rearrangement in early transplant generations

    Radl, J.; Punt, Y.A.; Enden-Vieveen, M.H.M. van den; Bentvelzen, P.A.J.; Bakkus, M.H.C.; Akker T., W. van den; Benner, R.

    1990-01-01

    Consistent chromosomal translocations involving the c-myc cellular oncogene and one of the three immunoglobulin loci are typical for human Burkitt's lymphoma, induced mouse plasmacytoma (MPC) and spontaneously arising rat immunocytoma (RIC). Another plasma cell malignancy, multiple myeloma (MM),

  15. Aging-associated inflammation promotes selection for adaptive oncogenic events in B cell progenitors.

    Henry, Curtis J; Casás-Selves, Matias; Kim, Jihye; Zaberezhnyy, Vadym; Aghili, Leila; Daniel, Ashley E; Jimenez, Linda; Azam, Tania; McNamee, Eoin N; Clambey, Eric T; Klawitter, Jelena; Serkova, Natalie J; Tan, Aik Choon; Dinarello, Charles A; DeGregori, James

    2015-12-01

    The incidence of cancer is higher in the elderly; however, many of the underlying mechanisms for this association remain unexplored. Here, we have shown that B cell progenitors in old mice exhibit marked signaling, gene expression, and metabolic defects. Moreover, B cell progenitors that developed from hematopoietic stem cells (HSCs) transferred from young mice into aged animals exhibited similar fitness defects. We further demonstrated that ectopic expression of the oncogenes BCR-ABL, NRAS(V12), or Myc restored B cell progenitor fitness, leading to selection for oncogenically initiated cells and leukemogenesis specifically in the context of an aged hematopoietic system. Aging was associated with increased inflammation in the BM microenvironment, and induction of inflammation in young mice phenocopied aging-associated B lymphopoiesis. Conversely, a reduction of inflammation in aged mice via transgenic expression of α-1-antitrypsin or IL-37 preserved the function of B cell progenitors and prevented NRAS(V12)-mediated oncogenesis. We conclude that chronic inflammatory microenvironments in old age lead to reductions in the fitness of B cell progenitor populations. This reduced progenitor pool fitness engenders selection for cells harboring oncogenic mutations, in part due to their ability to correct aging-associated functional defects. Thus, modulation of inflammation--a common feature of aging--has the potential to limit aging-associated oncogenesis.

  16. Oncogenic fusion proteins adopt the insulin-like growth factor signaling pathway.

    Werner, Haim; Meisel-Sharon, Shilhav; Bruchim, Ilan

    2018-02-19

    The insulin-like growth factor-1 receptor (IGF1R) has been identified as a potent anti-apoptotic, pro-survival tyrosine kinase-containing receptor. Overexpression of the IGF1R gene constitutes a typical feature of most human cancers. Consistent with these biological roles, cells expressing high levels of IGF1R are expected not to die, a quintessential feature of cancer cells. Tumor specific chromosomal translocations that disrupt the architecture of transcription factors are a common theme in carcinogenesis. Increasing evidence gathered over the past fifteen years demonstrate that this type of genomic rearrangements is common not only among pediatric and hematological malignancies, as classically thought, but may also provide a molecular and cytogenetic foundation for an ever-increasing portion of adult epithelial tumors. In this review article we provide evidence that the mechanism of action of oncogenic fusion proteins associated with both pediatric and adult malignancies involves transactivation of the IGF1R gene, with ensuing increases in IGF1R levels and ligand-mediated receptor phosphorylation. Disrupted transcription factors adopt the IGF1R signaling pathway and elicit their oncogenic activities via activation of this critical regulatory network. Combined targeting of oncogenic fusion proteins along with the IGF1R may constitute a promising therapeutic approach.

  17. N-myc oncogene amplification is correlated to trace metal concentrations in neuroblastoma cultured cells

    Gouget, B.; Sergeant, C.; Benard, J.; Llabador, Y.; Simonoff, M.

    2000-01-01

    N-myc oncogene amplification is a powerful predictor of aggressive behavior of neuroblastoma (NB), the most common solid tumor of the early childhood. Since N-myc overexpression - subsequent to amplification - determines a phenotype of invasiveness and metastatic spreading, it is assumed that N-myc amplified neuroblasts synthesize zinc metalloenzymes leading to tumor invasion and formation of metastases. In order to test a possible relation between N-myc oncogene amplification and trace metal contents in human NB cells, Fe, Cu and Zn concentrations have been measured by nuclear microprobe analysis in three human neuroblastoma cell lines with various degrees of N-myc amplification. Elemental determinations show uniform distribution of trace metals within the cells, but variations of intracellular trace metal concentrations with respect to the degree of N-myc amplification are highly dependent on the nature of the element. Zinc concentration is higher in both N-myc amplified cell lines (IMR-32 and IGR-N-91) than in the non-amplified cells (SK-N-SH). In contrast, intracellular iron content is particularly low in N-myc amplified cell lines. Moreover, copper concentrations showed an increase with the degree of N-myc amplification. These results indicate that a relationship exists between intracellular trace metals and N-myc oncogene amplification. They further suggest that trace metals very probably play a determinant role in mechanisms of the neuroblastoma invasiveness

  18. Scintigraphic imaging of oncogenes with antisense probes: does it make sense?

    Urbain, J.L.C.; Shore, S.K.; Vekemans, M.C.; Cosenza, S.C.; DeRiel, K.; Patel, G.V.; Charkes, N.D.; Malmud, L.S.; Reddy, E.P.

    1995-01-01

    The aim of this study was to demonstrate that cells which are expressing a particular mRNA transcript do preferentially and specifically retain the antisense probe targeting that mRNA. Using a mouse plasmacytoma cell line (MOPC315) which produces high levels of IgA heavy chain mRNA, a control mouse pre B cell line (7OZ/3B), a human mammary cell line (MCF7) which expresses the erbB2 or neu oncogene, MOPC315 cells as neu-negative controls, and antisense DNA oligonucleotides complementary to the 5' region of the mRNAs and the sense sequence, we have shown that there is a preferential, specific retention of the IgA and neu antisense sequence in MOPC315 and MCF7 cells, respectively. We have further demonstrated that this retention is time and concentration dependent with a maximum at 24 h. We conclude that cancer cells which express a particular oncogene are suitable targets for radiolabeled antisense deoxyoligonucleotides directed toward the oncogene transcript. (orig.)

  19. The Expression, Purification, and Characterization of a Ras Oncogene (Bras2 in Silkworm (Bombyx mori

    Zhengbing Lv

    2013-01-01

    Full Text Available The Ras oncogene of silkworm pupae (Bras2 may belong to the Ras superfamily. It shares 77% of its amino acid identity with teratocarcinoma oncogene 21 (TC21 related ras viral oncogene homolog-2 (R-Ras2 and possesses an identical core effector region. The mRNA of Bombyx mori Bras2 has 1412 bp. The open reading frame contains 603 bp, which encodes 200 amino acid residues. This recombinant BmBras2 protein was subsequently used as an antigen to raise a rabbit polyclonal antibody. Western blotting and real-time PCR analyses showed that BmBras2 was expressed during four developmental stages. The BmBras2 expression level was the highest in the pupae and was low in other life cycle stages. BmBras2 was expressed in all eight tested tissues, and it was highly expressed in the head, intestine, and epidermis. Subcellular localization studies indicated that BmBras2 was predominantly localized in the nuclei of Bm5 cells, although cytoplasmic staining was also observed to a lesser extent. A cell proliferation assay showed that rBmBras2 could stimulate the proliferation of hepatoma cells. The higher BmBras2 expression levels in the pupal stage, tissue expression patterns, and a cell proliferation assay indicated that BmBras2 promotes cell division and proliferation, most likely by influencing cell signal transduction.

  20. Oncogenic Human Papillomavirus: Application of CRISPR/Cas9 Therapeutic Strategies for Cervical Cancer

    Shuai Zhen

    2017-12-01

    Full Text Available Oncogenic human papillomaviruses (HPVs cause different types of cancer especially cervical cancer. HPV-associated carcinogenesis provides a classical model system for clustered regularly interspaced short palindromic repeats (CRISPR/Cas9 based cancer therapies since the viral oncogenes E6 and E7 are exclusively expressed in cancerous cells. Sequence-specific gene knockdown/knockout using CRISPR/Cas9 shows promise as a novel therapeutic approach for the treatment of a variety of diseases that currently lack effective treatments. However, CRISPR/Cas9-based targeting therapy requires further validation of its efficacy in vitro and in vivo to eliminate the potential off-target effects, necessitates verification of the delivery vehicles and the combinatory use of conventional therapies with CRISPR/Cas9 to ensure the feasibility and safety. In this review we discuss the potential of combining CRISPR/Cas9 with other treatment options as therapies for oncogenic HPVs-associated carcinogenesis. and present our assessment of the promising path to the development of CRISPR/Cas9 therapeutic strategies for clinical settings.

  1. Decomposing Oncogenic Transcriptional Signatures to Generate Maps of Divergent Cellular States.

    Kim, Jong Wook; Abudayyeh, Omar O; Yeerna, Huwate; Yeang, Chen-Hsiang; Stewart, Michelle; Jenkins, Russell W; Kitajima, Shunsuke; Konieczkowski, David J; Medetgul-Ernar, Kate; Cavazos, Taylor; Mah, Clarence; Ting, Stephanie; Van Allen, Eliezer M; Cohen, Ofir; Mcdermott, John; Damato, Emily; Aguirre, Andrew J; Liang, Jonathan; Liberzon, Arthur; Alexe, Gabriella; Doench, John; Ghandi, Mahmoud; Vazquez, Francisca; Weir, Barbara A; Tsherniak, Aviad; Subramanian, Aravind; Meneses-Cime, Karina; Park, Jason; Clemons, Paul; Garraway, Levi A; Thomas, David; Boehm, Jesse S; Barbie, David A; Hahn, William C; Mesirov, Jill P; Tamayo, Pablo

    2017-08-23

    The systematic sequencing of the cancer genome has led to the identification of numerous genetic alterations in cancer. However, a deeper understanding of the functional consequences of these alterations is necessary to guide appropriate therapeutic strategies. Here, we describe Onco-GPS (OncoGenic Positioning System), a data-driven analysis framework to organize individual tumor samples with shared oncogenic alterations onto a reference map defined by their underlying cellular states. We applied the methodology to the RAS pathway and identified nine distinct components that reflect transcriptional activities downstream of RAS and defined several functional states associated with patterns of transcriptional component activation that associates with genomic hallmarks and response to genetic and pharmacological perturbations. These results show that the Onco-GPS is an effective approach to explore the complex landscape of oncogenic cellular states across cancers, and an analytic framework to summarize knowledge, establish relationships, and generate more effective disease models for research or as part of individualized precision medicine paradigms. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. The Expression, Purification, and Characterization of a Ras Oncogene (Bras2) in Silkworm (Bombyx mori).

    Lv, Zhengbing; Wang, Tao; Zhuang, Wenhua; Wang, Dan; Chen, Jian; Nie, Zuoming; Liu, Lili; Zhang, Wenping; Wang, Lisha; Wang, Deming; Wu, Xiangfu; Li, Jun; Qian, Lian; Zhang, Yaozhou

    2013-01-01

    The Ras oncogene of silkworm pupae (Bras2) may belong to the Ras superfamily. It shares 77% of its amino acid identity with teratocarcinoma oncogene 21 (TC21) related ras viral oncogene homolog-2 (R-Ras2) and possesses an identical core effector region. The mRNA of Bombyx mori Bras2 has 1412 bp. The open reading frame contains 603 bp, which encodes 200 amino acid residues. This recombinant BmBras2 protein was subsequently used as an antigen to raise a rabbit polyclonal antibody. Western blotting and real-time PCR analyses showed that BmBras2 was expressed during four developmental stages. The BmBras2 expression level was the highest in the pupae and was low in other life cycle stages. BmBras2 was expressed in all eight tested tissues, and it was highly expressed in the head, intestine, and epidermis. Subcellular localization studies indicated that BmBras2 was predominantly localized in the nuclei of Bm5 cells, although cytoplasmic staining was also observed to a lesser extent. A cell proliferation assay showed that rBmBras2 could stimulate the proliferation of hepatoma cells. The higher BmBras2 expression levels in the pupal stage, tissue expression patterns, and a cell proliferation assay indicated that BmBras2 promotes cell division and proliferation, most likely by influencing cell signal transduction.

  3. Proto-oncogene expression: a predictive assay for radiation biodosimetry applications

    Miller, A.C.; Luo, L.; Chin, W.K.; Director-Myska, A.E.; Prasanna, P.G.S.; Blakely, W.F

    2002-07-01

    Using a model system of in vitro human peripheral blood lymphocytes, the effect of low-dose (0.25 to 1.50 Gy) 250-kV{sub p} X ray radiation (1 Gy.min{sup -1}) on the expression of several proto-oncogenes was examined (c-Haras, c-src, c-met, c-jun, c-fos, and c-myc) and {beta}-actin from 0.25 to 17 h post-radiation. RNA was extracted from cells harvested at various times after exposure and examined for levels of particular mRNAs by northern blot hybridisation. A progressive time- and dose-dependent increase in mRNA levels was observed for c-Haras mRNA, while the other proto-oncogenes (c-src, c-met, c-fos, c-jun, and c-myc) examined were variable during the same time period. {beta}-actin levels were initially decreased but at 17 h post-radiation had returned to control levels. A comparison of the rate of c-Haras transcription at 5 and 17 h post-irradiation revealed that c-Haras transcription was higher at 5 h than at 17 h. These findings suggest that the level of specific proto-oncogene expression, particularly c-Haras, may be useful early diagnostic molecular biomarkers for biodosimetry applications. The use of real-time PCR technologies to quantify gene expression changes will also be discussed. (author)

  4. Development of Novel Therapeutic Agents by Inhibition of Oncogenic MicroRNAs

    Dinh-Duc Nguyen

    2017-12-01

    Full Text Available MicroRNAs (miRs, miRNAs are regulatory small noncoding RNAs, with their roles already confirmed to be important for post-transcriptional regulation of gene expression affecting cell physiology and disease development. Upregulation of a cancer-causing miRNA, known as oncogenic miRNA, has been found in many types of cancers and, therefore, represents a potential new class of targets for therapeutic inhibition. Several strategies have been developed in recent years to inhibit oncogenic miRNAs. Among them is a direct approach that targets mature oncogenic miRNA with an antisense sequence known as antimiR, which could be an oligonucleotide or miRNA sponge. In contrast, an indirect approach is to block the biogenesis of miRNA by genome editing using the CRISPR/Cas9 system or a small molecule inhibitor. The development of these inhibitors is straightforward but involves significant scientific and therapeutic challenges that need to be resolved. In this review, we summarize recent relevant studies on the development of miRNA inhibitors against cancer.

  5. Mutant p53 - heat shock response oncogenic cooperation: a new mechanism of cancer cell survival

    Evguenia eAlexandrova

    2015-04-01

    Full Text Available The main tumor suppressor function of p53 as a ‘guardian of the genome’ is to respond to cellular stress by transcriptional activation of apoptosis, growth arrest or senescence in damaged cells. Not surprisingly, mutations in the p53 gene are the most frequent genetic alteration in human cancers. Importantly, mutant p53 (mutp53 proteins not only lose their wild-type tumor suppressor activity, but also can actively promote tumor development. Two main mechanisms accounting for mutp53 proto-oncogenic activity are inhibition of the wild-type p53 in a dominant-negative fashion and gain of additional oncogenic activities known as gain-of-function (GOF. Here we discuss a novel mechanism of mutp53 GOF, which relies on its oncogenic cooperation with the heat shock machinery. This coordinated adaptive mechanism renders cancer cells more resistant to proteotoxic stress and provides both, a strong survival advantage to cancer cells and a promising means for therapeutic intervention.

  6. Oncogenic Notch signaling in T-cell and B-cell lymphoproliferative disorders.

    Chiang, Mark Y; Radojcic, Vedran; Maillard, Ivan

    2016-07-01

    This article highlights recent discoveries about Notch activation and its oncogenic functions in lymphoid malignancies, and discusses the therapeutic potential of Notch inhibition. NOTCH mutations arise in a broad spectrum of lymphoid malignancies and are increasingly scrutinized as putative therapeutic targets. In T-cell acute lymphoblastic leukemia (T-ALL), NOTCH1 mutations affect the extracellular negative regulatory region and lead to constitutive Notch activation, although mutated receptors remain sensitive to Notch ligands. Other NOTCH1 mutations in T-ALL and NOTCH1/2 mutations in multiple B-cell malignancies truncate the C-terminal proline (P), glutamic acid (E), serine (S), threonine (T)-rich (PEST) domain, leading to decreased Notch degradation after ligand-mediated activation. Thus, targeting Notch ligand-receptor interactions could provide therapeutic benefits. In addition, we discuss recent reports on clinical testing of Notch inhibitors in T-ALL that influenced contemporary thinking on the challenges of targeting Notch in cancer. We review advances in the laboratory to address these challenges in regards to drug targets, the Notch-driven metabolome, and the sophisticated protein-protein interactions at Notch-dependent superenhancers that underlie oncogenic Notch functions. Notch signaling is a recurrent oncogenic pathway in multiple T- and B-cell lymphoproliferative disorders. Understanding the complexity and consequences of Notch activation is critical to define optimal therapeutic strategies targeting the Notch pathway.

  7. Oncogenic activation of v-kit involves deletion of a putative tyrosine-substrate interaction site.

    Herbst, R; Munemitsu, S; Ullrich, A

    1995-01-19

    The transforming gene of the Hardy-Zuckerman-4 strain of feline sarcoma virus, v-kit, arose by transduction of the cellular c-kit gene, which encodes the receptor tyrosine kinase (RTK) p145c-kit. To gain insight into the molecular basis of the v-kit transforming potential, we characterized the feline c-kit by cDNA cloning. Comparison of the feline v-kit and c-kit sequences revealed, in addition to deletions of the extracellular and transmembrane domains, three additional mutations in the v-kit oncogene product: deletion of tyrosine-569 and valine-570, the exchange of aspartate at position 761 to glycine, and replacement of the C-terminal 50 amino acids by five unrelated residues. Examinations of individual v-kit mutations in the context of chimeric receptors yielded inhibitory effects for some mutants on both autophosphorylation and substrate phosphorylation functions. In contrast, deletion of tyrosine-569 and valine-570 significantly enhanced transforming and mitogenic activities of p145c-kit, while the other mutations had no significant effects. Conservation in subclass III RTKs and the identification of the corresponding residue in beta PDGF-R, Y579, as a binding site for src family tyrosine kinases suggests an important role for Y568 in kit signal regulation and the definition of its oncogenic potential. Repositioning of Y571 by an inframe two codon deletion may be the crucial alteration resulting in enhancement of v-kit oncogenic activity.

  8.  Oncogenic osteomalacia and its symptoms: hypophosphatemia, bone pain and pathological fractures

    Sonia Kaniuka-Jakubowska

    2012-08-01

    Full Text Available  Oncogenic osteomalacia (OOM is a rare paraneoplastic syndrome induced by tumor produced phosphaturic factors, i.e. phosphatonins. The disorder is characterized by renal tubular phosphate loss, secondary to this process hypophosphatemia and defective production of active form of vitamin D. The clinical course of oncogenic osteomalacia is characterized by bone pain, pathological fractures, muscle weakness and general fatigue. Osteomalacia-associated tumors are usually located in the upper and lower limbs, with half of the lesions primarily situated in the bones. Most of them are small, slow-growing tumors. Their insignificant size and various location coupled with rare occurrence of the disease and non-specificity of clinical symptoms lead to difficulties in reaching a diagnosis, which is often time-consuming and requires a number of additional tests. The average time between the appearance of the first symptoms and the establishment of an accurate diagnosis and the beginning of treatment is over 2.5 years. The aim of this study is to discuss the pathophysiology of disease symptoms, pathomorphology of tumors, diagnostic methods and treatment of oncogenic osteomalacia.

  9. Cellular oncogene expression following exposure of mice to γ-rays

    Anderson, A.; Woloschak, G.E.

    1991-01-01

    We examined the effects of total body exposure of BCF1 mice to γ-rays (300 cGy) in modulating expression of cellular oncogenes in both gut and liver tissues. We selected specific cellular oncogenes (c-fos, c-myc, c-src, and c-H-ras), based on their normal expression in liver and gut tissues from untreated mice. As early as 5 min. following whole body exposure of BCF1 mice to γ-rays we detected induction of mRNA specific for c-src and c-H-ras in both liver and gut tissues. c-fos RNA was slightly decreased in accumulation in gut but was unaffected in liver tissue from irradiated mice relative to untreated controls. c-myc mRNA accumulation was unaffected in all tissues examined. These experiments document that modulation of cellular oncogene expression can occur as an early event in tissues following irradiation and suggest that this modulation may play a role in radiation-induced carcinogenesis

  10. Engineering and Functional Characterization of Fusion Genes Identifies Novel Oncogenic Drivers of Cancer. | Office of Cancer Genomics

    Oncogenic gene fusions drive many human cancers, but tools to more quickly unravel their functional contributions are needed. Here we describe methodology permitting fusion gene construction for functional evaluation. Using this strategy, we engineered the known fusion oncogenes, BCR-ABL1, EML4-ALK, and ETV6-NTRK3, as well as 20 previously uncharacterized fusion genes identified in TCGA datasets.

  11. Human microRNA oncogenes and tumor suppressors show significantly different biological patterns: from functions to targets.

    Dong Wang

    Full Text Available MicroRNAs (miRNAs are small noncoding RNAs which play essential roles in many important biological processes. Therefore, their dysfunction is associated with a variety of human diseases, including cancer. Increasing evidence shows that miRNAs can act as oncogenes or tumor suppressors, and although there is great interest in research into these cancer-associated miRNAs, little is known about them. In this study, we performed a comprehensive analysis of putative human miRNA oncogenes and tumor suppressors. We found that miRNA oncogenes and tumor suppressors clearly show different patterns in function, evolutionary rate, expression, chromosome distribution, molecule size, free energy, transcription factors, and targets. For example, miRNA oncogenes are located mainly in the amplified regions in human cancers, whereas miRNA tumor suppressors are located mainly in the deleted regions. miRNA oncogenes tend to cleave target mRNAs more frequently than miRNA tumor suppressors. These results indicate that these two types of cancer-associated miRNAs play different roles in cancer formation and development. Moreover, the patterns identified here can discriminate novel miRNA oncogenes and tumor suppressors with a high degree of accuracy. This study represents the first large-scale bioinformatic analysis of human miRNA oncogenes and tumor suppressors. Our findings provide help for not only understanding of miRNAs in cancer but also for the specific identification of novel miRNAs as miRNA oncogenes and tumor suppressors. In addition, the data presented in this study will be valuable for the study of both miRNAs and cancer.

  12. Oncogenic RAS enables DNA damage- and p53-dependent differentiation of acute myeloid leukemia cells in response to chemotherapy.

    Mona Meyer

    Full Text Available Acute myeloid leukemia (AML is a clonal disease originating from myeloid progenitor cells with a heterogeneous genetic background. High-dose cytarabine is used as the standard consolidation chemotherapy. Oncogenic RAS mutations are frequently observed in AML, and are associated with beneficial response to cytarabine. Why AML-patients with oncogenic RAS benefit most from high-dose cytarabine post-remission therapy is not well understood. Here we used bone marrow cells expressing a conditional MLL-ENL-ER oncogene to investigate the interaction of oncogenic RAS and chemotherapeutic agents. We show that oncogenic RAS synergizes with cytotoxic agents such as cytarabine in activation of DNA damage checkpoints, resulting in a p53-dependent genetic program that reduces clonogenicity and increases myeloid differentiation. Our data can explain the beneficial effects observed for AML patients with oncogenic RAS treated with higher dosages of cytarabine and suggest that induction of p53-dependent differentiation, e.g. by interfering with Mdm2-mediated degradation, may be a rational approach to increase cure rate in response to chemotherapy. The data also support the notion that the therapeutic success of cytotoxic drugs may depend on their ability to promote the differentiation of tumor-initiating cells.

  13. Lung cancer in elderly

    Wagnerova, M.

    2007-01-01

    Lung cancer is the leading cause of cancer deaths in Europe and USA. The median age of diagnosis is currently 69 years, however this is gradually increasing with the aging population. Patients over age of 70 represent 40 % of all patients with non-small cell lung cancer. Age alone has not been found to be a significant prognostic factor in many malignancies, including lung cancer with performance status and stage being of greater importance. In lung cancer it is also evident that older patients gain equivalent benefit from cancer therapies as their younger counterparts. Elderly patients are under-treated in all aspects of their disease course from histological diagnosis to active therapy with surgical resection, radiotherapy or chemotherapy, irrespective of performance status or co-morbidities. Elderly patients are also underrepresented in lung cancer clinical trials. In this review is presented knowledge about lung cancer in elderly. (author)

  14. Diet and lung cancer

    Fabricius, P; Lange, Peter

    2003-01-01

    Lung cancer is the leading cause of cancer-related deaths worldwide. While cigarette smoking is of key importance, factors such as diet also play a role in the development of lung cancer. MedLine and Embase were searched with diet and lung cancer as the key words. Recently published reviews...... and large well designed original articles were preferred to form the basis for the present article. A diet rich in fruit and vegetables reduces the incidence of lung cancer by approximately 25%. The reduction is of the same magnitude in current smokers, ex-smokers and never smokers. Supplementation...... with vitamins A, C and E and beta-carotene offers no protection against the development of lung cancer. On the contrary, beta-carotene supplementation has, in two major randomised intervention trials, resulted in an increased mortality. Smoking remains the leading cause of lung cancer. The adverse effects...

  15. Epidemiology of Lung Cancer.

    Schwartz, Ann G; Cote, Michele L

    2016-01-01

    Lung cancer continues to be one of the most common causes of cancer death despite understanding the major cause of the disease: cigarette smoking. Smoking increases lung cancer risk 5- to 10-fold with a clear dose-response relationship. Exposure to environmental tobacco smoke among nonsmokers increases lung cancer risk about 20%. Risks for marijuana and hookah use, and the new e-cigarettes, are yet to be consistently defined and will be important areas for continued research as use of these products increases. Other known environmental risk factors include exposures to radon, asbestos, diesel, and ionizing radiation. Host factors have also been associated with lung cancer risk, including family history of lung cancer, history of chronic obstructive pulmonary disease and infections. Studies to identify genes associated with lung cancer susceptibility have consistently identified chromosomal regions on 15q25, 6p21 and 5p15 associated with lung cancer risk. Risk prediction models for lung cancer typically include age, sex, cigarette smoking intensity and/or duration, medical history, and occupational exposures, however there is not yet a risk prediction model currently recommended for general use. As lung cancer screening becomes more widespread, a validated model will be needed to better define risk groups to inform screening guidelines.

  16. Nonrespiratory lung function

    Isawa, Toyoharu

    1994-01-01

    The function of the lungs is primarily the function as a gas exchanger: the venous blood returning to the lungs is arterialized with oxygen in the lungs and the arterialized blood is sent back again to the peripheral tissues of the whole body to be utilized for metabolic oxygenation. Besides the gas exchanging function which we call ''respiratory lung function'' the lungs have functions that have little to do with gas exchange itself. We categorically call the latter function of the lungs as ''nonrespiratory lung function''. The lungs consist of the conductive airways, the gas exchanging units like the alveoli, and the interstitial space that surrounds the former two compartments. The interstitial space contains the blood and lymphatic capillaries, collagen and elastic fibers and cement substances. The conductive airways and the gas exchanging units are directly exposed to the atmosphere that contains various toxic and nontoxic gases, fume and biological or nonbiological particles. Because the conductive airways are equipped with defense mechanisms like mucociliary clearance or coughs to get rid of these toxic gases, particles or locally produced biological debris, we are usually free from being succumbed to ill effects of inhaled materials. By use of nuclear medicine techniques, we can now evaluate mucociliary clearance function, and other nonrespiratory lung functions as well in vivo

  17. Cervical lung hernia

    Lightwood, Robin G.; Cleland, W. P.

    1974-01-01

    Lightwood, R. G., and Cleland, W. P. (1974).Thorax, 29, 349-351. Cervical lung hernia. Lung hernias occur in the cervical position in about one third of cases. The remainder appear through the chest wall. Some lung hernias are congenital, but trauma is the most common cause. The indications for surgery depend upon the severity of symptoms. Repair by direct suture can be used for small tears in Sibson's (costovertebral) fascia while larger defects have been closed using prosthetic materials. Four patients with cervical lung hernia are described together with an account of their operations. PMID:4850946

  18. Nonrespiratory lung function

    Isawa, Toyoharu [Tohoku University Research Institute for Chest Disease and Cancer, Sendai (Japan)

    1994-07-01

    The function of the lungs is primarily the function as a gas exchanger: the venous blood returning to the lungs is arterialized with oxygen in the lungs and the arterialized blood is sent back again to the peripheral tissues of the whole body to be utilized for metabolic oxygenation. Besides the gas exchanging function which we call ''respiratory lung function'' the lungs have functions that have little to do with gas exchange itself. We categorically call the latter function of the lungs as ''nonrespiratory lung function''. The lungs consist of the conductive airways, the gas exchanging units like the alveoli, and the interstitial space that surrounds the former two compartments. The interstitial space contains the blood and lymphatic capillaries, collagen and elastic fibers and cement substances. The conductive airways and the gas exchanging units are directly exposed to the atmosphere that contains various toxic and nontoxic gases, fume and biological or nonbiological particles. Because the conductive airways are equipped with defense mechanisms like mucociliary clearance or coughs to get rid of these toxic gases, particles or locally produced biological debris, we are usually free from being succumbed to ill effects of inhaled materials. By use of nuclear medicine techniques, we can now evaluate mucociliary clearance function, and other nonrespiratory lung functions as well in vivo.

  19. Parasitic diseases of lungs

    Rozenshtraukh, L.C.; Rybakova, N.I.; Vinner, M.G.

    1987-01-01

    Roentgenologic semiotics of the main parasitic diseases of lungs is described: echinococcosis, paragonimiasis, cysticercosis, toxoplasmosis, ascariasis, amebiosis and some rarely met parasitic diseases

  20. The HSP90 Inhibitor Ganetespib Radiosensitizes Human Lung Adenocarcinoma Cells

    Roberto Gomez-Casal

    2015-05-01

    Full Text Available The molecular chaperone HSP90 is involved in stabilization and function of multiple client proteins, many of which represent important oncogenic drivers in NSCLC. Utilization of HSP90 inhibitors as radiosensitizing agents is a promising approach. The antitumor activity of ganetespib, HSP90 inhibitor, was evaluated in human lung adenocarcinoma (AC cells for its ability to potentiate the effects of IR treatment in both in vitro and in vivo. The cytotoxic effects of ganetespib included; G2/M cell cycle arrest, inhibition of DNA repair, apoptosis induction, and promotion of senescence. All of these antitumor effects were both concentration- and time-dependent. Both pretreatment and post-radiation treatment with ganetespib at low nanomolar concentrations induced radiosensitization in lung AC cells in vitro. Ganetespib may impart radiosensitization through multiple mechanisms: such as down regulation of the PI3K/Akt pathway; diminished DNA repair capacity and promotion of cellular senescence. In vivo, ganetespib reduced growth of T2821 tumor xenografts in mice and sensitized tumors to IR. Tumor irradiation led to dramatic upregulation of β-catenin expression in tumor tissues, an effect that was mitigated in T2821 xenografts when ganetespib was combined with IR treatments. These data highlight the promise of combining ganetespib with IR therapies in the treatment of AC lung tumors.

  1. A growth hormone receptor SNP promotes lung cancer by impairment of SOCS2-mediated degradation

    Chhabra, Y.; Wong, H. Y.; Nikolajsen, Louise Fletcher

    2018-01-01

    Both humans and mice lacking functional growth hormone (GH) receptors are known to be resistant to cancer. Further, autocrine GH has been reported to act as a cancer promoter. Here we present the first example of a variant of the GH receptor (GHR) associated with cancer promotion, in this case lu......-mesenchymal transition and metastases (TWIST1, SNAI2, EGFR, MYC and CCND1) at 2 h after a GH pulse. This is consistent with prolonged GH signalling acting to promote cancer progression in lung cancer.Oncogene advance online publication, 2 October 2017; doi:10.1038/onc.2017.352....

  2. Targeting Transcriptional Addictions in Small Cell Lung Cancer with a Covalent CDK7 Inhibitor

    Christensen, Camilla L; Kwiatkowski, Nicholas; Abraham, Brian J

    2014-01-01

    Small cell lung cancer (SCLC) is an aggressive disease with high mortality, and the identification of effective pharmacological strategies to target SCLC biology represents an urgent need. Using a high-throughput cellular screen of a diverse chemical library, we observe that SCLC is sensitive...... to transcription-targeting drugs, in particular to THZ1, a recently identified covalent inhibitor of cyclin-dependent kinase 7. We find that expression of super-enhancer-associated transcription factor genes, including MYC family proto-oncogenes and neuroendocrine lineage-specific factors, is highly vulnerability...

  3. Radiofrequency Ablation of Lung Tumors

    ... News Physician Resources Professions Site Index A-Z Radiofrequency Ablation (RFA) / Microwave Ablation (MWA) of Lung Tumors ... and Microwave Ablation of Lung Tumors? What are Radiofrequency and Microwave Ablation of Lung Tumors? Radiofrequency ablation, ...

  4. 6 Common Cancers - Lung Cancer

    ... Bar Home Current Issue Past Issues 6 Common Cancers - Lung Cancer Past Issues / Spring 2007 Table of Contents ... Desperate Housewives. (Photo ©2005 Kathy Hutchins / Hutchins) Lung Cancer Lung cancer causes more deaths than the next three ...

  5. Multistep carcinogenesis of normal human fibroblasts. Human fibroblasts immortalized by repeated treatment with Co-60 gamma rays were transformed into tumorigenic cells with Ha-ras oncogenes.

    Namba, M; Nishitani, K; Fukushima, F; Kimoto, T

    1988-01-01

    Two normal mortal human fibroblast cell strains were transformed into immortal cell lines, SUSM-1 and KMST-6, by treatment with 4-nitroquinoline 1-oxide (4NQO) and Co-60 gamma rays, respectively. These immortalized cell lines showed morphological changes of cells and remarkable chromosome aberrations, but neither of them grew in soft agar or formed tumors in nude mice. The immortal cell line, KMST-6, was then converted into neoplastic cells by treatment with Harvey murine sarcoma virus (Ha-MSV) or the c-Ha-ras oncogene derived from a human lung carcinoma. These neoplastically transformed cells acquired anchorage-independent growth potential and developed tumors when transplanted into nude mice. All the tumors grew progressively without regression until the animals died of tumors. In addition, the tumors were transplantable into other nude mice. Normal human fibroblasts, on the other hand, were not transformed into either immortal or tumorigenic cells by treatment with Ha-MSV or c-Ha-ras alone. Our present data indicate that (1) the chemical carcinogen, 4NQO, or gamma rays worked as an initiator of carcinogenesis in normal human cells, giving rise to immortality, and (2) the ras gene played a role in the progression of the immortally transformed cells to more malignant cells showing anchorage-independent growth and tumorigenicity. In other words, the immortalization process of human cells seems to be a pivotal or rate-limiting step in the carcinogenesis of human cells.

  6. Acidosis Decreases c-Myc Oncogene Expression in Human Lymphoma Cells: A Role for the Proton-Sensing G Protein-Coupled Receptor TDAG8

    Zhigang Li

    2013-10-01

    Full Text Available Acidosis is a biochemical hallmark of the tumor microenvironment. Here, we report that acute acidosis decreases c-Myc oncogene expression in U937 human lymphoma cells. The level of c-Myc transcripts, but not mRNA or protein stability, contributes to c-Myc protein reduction under acidosis. The pH-sensing receptor TDAG8 (GPR65 is involved in acidosis-induced c-Myc downregulation. TDAG8 is expressed in U937 lymphoma cells, and the overexpression or knockdown of TDAG8 further decreases or partially rescues c-Myc expression, respectively. Acidic pH alone is insufficient to reduce c-Myc expression, as it does not decrease c-Myc in H1299 lung cancer cells expressing very low levels of pH-sensing G protein-coupled receptors (GPCRs. Instead, c-Myc is slightly increased by acidosis in H1299 cells, but this increase is completely inhibited by ectopic overexpression of TDAG8. Interestingly, TDAG8 expression is decreased by more than 50% in human lymphoma samples in comparison to non-tumorous lymph nodes and spleens, suggesting a potential tumor suppressor function of TDAG8 in lymphoma. Collectively, our results identify a novel mechanism of c-Myc regulation by acidosis in the tumor microenvironment and indicate that modulation of TDAG8 and related pH-sensing receptor pathways may be exploited as a new approach to inhibit Myc expression.

  7. GAB2 Amplification in Squamous Cell Lung Cancer of Non-Smokers.

    Park, Yu Rang; Bae, Soo Hyeon; Ji, Wonjun; Seo, Eul Ju; Lee, Jae Cheol; Kim, Hyeong Ryul; Jang, Se Jin; Choi, Chang Min

    2017-11-01

    Lung squamous cell cancer (SCC) is typically found in smokers and has a very low incidence in non-smokers, indicating differences in the tumor biology of lung SCC in smokers and non-smokers. However, the specific mutations that drive tumor growth in non-smokers have not been identified. To identify mutations in lung SCC of non-smokers, we performed a genetic analysis using arrays comparative genomic hybridization (ArrayCGH). We analyzed 19 patients with lung SCC who underwent surgical treatment between April 2005 and April 2015. Clinical characteristics were reviewed, and DNA was extracted from fresh frozen lung cancer specimens. All of copy number alterations from ArrayCGH were validated using The Cancer Genome Atlas (TCGA) copy number variation (CNV) data of lung SCC. We examined the frequency of copy number changes according to the smoking status (non-smoker [n = 8] or smoker [n = 11]). We identified 16 significantly altered regions from ArrayCGH data, three gain and four loss regions overlapped with the TCGA lung squamous cell carcinoma (LUSC) patients. Within these overlapped significant regions, we detected 15 genes that have been reported in the Cancer Gene census. We also found that the proto-oncogene GAB2 (11q14.1) was significantly amplified in non-smokers patients and vice versa in both ArrayCGH and TCGA data. Immunohistochemical analyses showed that GAB2 protein was relatively upregulated in non-smoker than smoker tissues (37.5% vs. 9.0%, P = 0.007). GAB2 amplification may have an important role in the development of lung SCC in non-smokers. GAB2 may represent a potential biomarker for lung SCC in non-smokers. © 2017 The Korean Academy of Medical Sciences.

  8. History of Lung Transplantation.

    Dabak, Gül; Şenbaklavacı, Ömer

    2016-04-01

    History of lung transplantation in the world can be traced back to the early years of the 20 th century when experimental vascular anastomotic techniques were developed by Carrel and Guthrie, followed by transplantation of thoracic organs on animal models by Demikhov and finally it was James Hardy who did the first lung transplantation attempt on human. But it was not until the discovery of cyclosporine and development of better surgical techniques that success could be achieved in that field by the Toronto Lung Transplant Group led by Joel Cooper. Up to the present day, over 51.000 lung transplants were performed in the world at different centers. The start of lung transplantation in Turkey has been delayed for various reasons. From 1998 on, there were several attempts but the first successful lung transplant was performed at Sureyyapasa Hospital in 2009. Today there are four lung transplant centers in Turkey; two in Istanbul, one in Ankara and another one in Izmir. Three lung transplant centers from Istanbul which belong to private sector have newly applied for licence from the Ministry of Health.

  9. Lung Cancer Indicators Recurrence

    This study describes prognostic factors for lung cancer spread and recurrence, as well as subsequent risk of death from the disease. The investigators observed that regardless of cancer stage, grade, or type of lung cancer, patients in the study were more

  10. Lung Cancer Screening

    ... detected on a lung CT scan. If your doctor finds another health problem, you may undergo further testing and, possibly, invasive treatments that wouldn't have been pursued if you hadn't had lung cancer ... need to: Inform your doctor if you have a respiratory tract infection. If ...

  11. Lung cancer in women

    Barrera-Rodriguez R

    2012-12-01

    Full Text Available Raúl Barrera-Rodriguez,1 Jorge Morales-Fuentes2 1Biochemistry and Environmental Medicine Laboratory, National Institute of Respiratory Disease, 2Lung Cancer Medical Service, National Institute of Respiratory Disease, Tlalpan, Mexico City, Distrito Federal, Mexico Both authors contributed equally to this workAbstract: Recent biological advances in tumor research provide clear evidence that lung cancer in females is different from that in males. These differences appear to have a direct impact on the clinical presentation, histology, and outcomes of lung cancer. Women are more likely to present with lung adenocarcinoma, tend to receive a diagnosis at an earlier age, and are more likely to be diagnosed with localized disease. Women may also be more predisposed to molecular aberrations resulting from the carcinogenic effects of tobacco, but do not appear to be more susceptible than men to developing lung cancer. The gender differences found in female lung cancer make it mandatory that gender stratification is used in clinical trials in order to improve the survival rates of patients with lung cancer.Keywords: lung cancer, adenocarcinoma, women, genetic susceptibility, genetic differences, tobacco

  12. Screening for lung cancer

    Infante, Maurizio V; Pedersen, Jesper H

    2010-01-01

    In lung cancer screening with low-dose spiral computed tomography (LDCT), the proportion of stage I disease is 50-85%, and the survival rate for resected stage I disease can exceed 90%, but proof of real benefit in terms of lung cancer mortality reduction must come from the several randomized...

  13. MRI of the lung

    Kauczor, Hans-Ulrich (ed.) [University Clinic Heidelberg (Germany). Diagnostic and Interventional Radiology

    2009-07-01

    For a long time, only chest X-ray and CT were used to image lung structure, while nuclear medicine was employed to assess lung function. During the past decade significant developments have been achieved in the field of magnetic resonance imaging (MRI), enabling MRI to enter the clinical arena of chest imaging. Standard protocols can now be implemented on up-to-date scanners, allowing MRI to be used as a first-line imaging modality for various lung diseases, including cystic fibrosis, pulmonary hypertension and even lung cancer. The diagnostic benefits stem from the ability of MRI to visualize changes in lung structure while simultaneously imaging different aspects of lung function, such as perfusion, respiratory motion, ventilation and gas exchange. On this basis, novel quantitative surrogates for lung function can be obtained. This book provides a comprehensive overview of how to use MRI for imaging of lung disease. Special emphasis is placed on benign diseases requiring regular monitoring, given that it is patients with these diseases who derive the greatest benefit from the avoidance of ionizing radiation. (orig.)

  14. Arsenic trioxide inhibits cell proliferation and human papillomavirus oncogene expression in cervical cancer cells

    Wang, Hongtao; Gao, Peng; Zheng, Jie

    2014-01-01

    Highlights: • As 2 O 3 inhibits growth of cervical cancer cells and expression of HPV oncogenes in these cells. • HPV-negative cervical cancer cells are more sensitive to As 2 O 3 than HPV-positive cervical cancer cells. • HPV-18 positive cervical cancer cells are more sensitive to As 2 O 3 than HPV-16 positive cancer cells. • Down-regulation of HPV oncogenes by As 2 O 3 is partially due to the diminished AP-1 binding. - Abstract: Arsenic trioxide (As 2 O 3 ) has shown therapeutic effects in some leukemias and solid cancers. However, the molecular mechanisms of its anticancer efficacy have not been clearly elucidated, particularly in solid cancers. Our previous data showed that As 2 O 3 induced apoptosis of human papillomavirus (HPV) 16 DNA-immortalized human cervical epithelial cells and cervical cancer cells and inhibited the expression of HPV oncogenes in these cells. In the present study, we systemically examined the effects of As 2 O 3 on five human cervical cancer cell lines and explored the possible molecular mechanisms. MTT assay showed that HPV-negative C33A cells were more sensitive to growth inhibition induced by As 2 O 3 than HPV-positive cervical cancer cells, and HPV 18-positive HeLa and C4-I cells were more sensitive to As 2 O 3 than HPV 16-positive CaSki and SiHa cells. After As 2 O 3 treatment, both mRNA and protein levels of HPV E6 and E7 obviously decreased in all HPV positive cell lines. In contrast, p53 and Rb protein levels increased in all tested cell lines. Transcription factor AP-1 protein expression decreased significantly in HeLa, CaSki and C33A cells with ELISA method. These results suggest that As 2 O 3 is a potential anticancer drug for cervical cancer

  15. Vav3 oncogene activates estrogen receptor and its overexpression may be involved in human breast cancer

    Lee, Kiwon; Liu, Yin; Mo, Jun Qin; Zhang, Jinsong; Dong, Zhongyun; Lu, Shan

    2008-01-01

    Our previous study revealed that Vav3 oncogene is overexpressed in human prostate cancer, activates androgen receptor, and stimulates growth in prostate cancer cells. The current study is to determine a potential role of Vav3 oncogene in human breast cancer and impact on estrogen receptor a (ERα)-mediated signaling axis. Immunohistochemistry analysis was performed in 43 breast cancer specimens and western blot analysis was used for human breast cancer cell lines to determine the expression level of Vav3 protein. The impact of Vav3 on breast cancer cell growth was determined by siRNA knockdown of Vav3 expression. The role of Vav3 in ERα activation was examined in luciferase reporter assays. Deletion mutation analysis of Vav3 protein was performed to localize the functional domain involved in ERα activation. Finally, the interaction of Vav3 and ERα was assessed by GST pull-down analysis. We found that Vav3 was overexpressed in 81% of human breast cancer specimens, particularly in poorly differentiated lesions. Vav3 activated ERα partially via PI3K-Akt signaling and stimulated growth of breast cancer cells. Vav3 also potentiated EGF activity for cell growth and ERα activation in breast cancer cells. More interestingly, we found that Vav3 complexed with ERα. Consistent with its function for AR, the DH domain of Vav3 was essential for ERα activation. Vav3 oncogene is overexpressed in human breast cancer. Vav3 complexes with ERα and enhances ERα activity. These findings suggest that Vav3 overexpression may aberrantly enhance ERα-mediated signaling axis and play a role in breast cancer development and/or progression

  16. Macrophage colony-stimulating factor, CSF-1, and its proto-oncogene-encoded receptor

    Sherr, C.J.; Rettenmier, C.W.; Roussel, M.F.

    1988-01-01

    The macrophage colony-stimulating factor, CSF-1, or M-CSF, is one of a family of hematopoietic growth factors that stimulates the proliferation of monocytes, macrophages, and their committed bone marrow progenitors. Unlike pluripotent hemopoietins such as granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-3 (IL-3 or multi-CSF), which affect the growth of myeloid cells of several different hematopoietic lineages, CSF-1 acts only on cells of the mononuclear phagocyte series to stimulate their growth and enhance their survival. Retroviral transduction of the feline c-fms gene in the Susan McDonough and Hardy Zuckerman-5 (HZ-5) strains of feline sarcoma virus (FeSV) led to genetic alterations that endowed the recombined viral oncogene (v-fms) with the ability to transform cells in culture morphologically and to induce firbrosarcomas and hematopoietic neoplasms in susceptible animals. The v-fms oncogene product differs from the normal CSF-1 receptor in certain of its cardinal biochemical properties, most notably in exhibiting constitutively high basal levels of tyrosine kinase activity in the absence of its ligand. Comparative studies of the c-fms and v-fms genes coupled with analyses of engineered mutants and receptor chimeras have begun to pinpoint pertinent genetic alterations in the normal receptor gene that unmask its latent oncogenic potential. In addition, the availability of biologically active c-fms, v-fms, and CSF-1 cDNAs has allowed these genes to be mobilized and expressed in naive cells, thereby facilitating assays for receptor coupling with downstream components of the mitogenic pathway in diverse cell types

  17. Characterization of ERAS, a putative novel human oncogene, in skin and breast

    Peña Avalos, B.L. de la

    2014-07-01

    Most human tumors have mutations in genes of the RAS small GTPase protein family. RAS works as a molecular switch for signaling pathways that modulate many aspects of cell behavior, including proliferation, differentiation, motility and death. Oncogenic mutations in RAS prevent GTP hydrolysis, locking RAS in a permanently active state, being the most common mutations in HRAS, KRAS and NRAS. The human RAS family consists of at least 36 different genes, many of which have been scarcely studied. One of these relatively unknown genes is ERAS (ES cell-expressed RAS), which is a constitutively active RAS protein, localized in chromosome X and expressed only in embryonic cells, being undetectable in adult tissues. New high throughput technologies have made it possible to screen complete cancer genomes for identification of mutations associated to cancer. Using the Sleeping Beauty (SB) transposon system, ERAS was identified as a putative novel oncogene in non-melanoma skin and breast cancers. The major aim of this project is to determine the general characteristics of ERAS as a putative novel human oncogene in skin and breast cells. Forced expression of ERAS results in drastic changes in cell shape, proliferation and motility. When ERAS is overexpressed in skin and breast human cells it is mainly localized in the cytoplasmic membrane. ERAS activates the phosphatidylinositol-3-OH kinase (PI3K) pathway but not the mitogen-activated protein kinase (MAPK) pathway. ERAS-expressing cells suffer spontaneous morphologic and phenotypic EMT-like changes, including cytoskeleton reorganization, vimentin and N-cadherin up-regulation and down-regulation of E-cadherin, which can be associated with increased malignancy, and invasive and metastatic potential. Our results suggest that inappropriate expression of ERAS lead to transformation of human cells. (Author)

  18. The APC/C E3 Ligase Complex Activator FZR1 Restricts BRAF Oncogenic Function.

    Wan, Lixin; Chen, Ming; Cao, Juxiang; Dai, Xiangpeng; Yin, Qing; Zhang, Jinfang; Song, Su-Jung; Lu, Ying; Liu, Jing; Inuzuka, Hiroyuki; Katon, Jesse M; Berry, Kelsey; Fung, Jacqueline; Ng, Christopher; Liu, Pengda; Song, Min Sup; Xue, Lian; Bronson, Roderick T; Kirschner, Marc W; Cui, Rutao; Pandolfi, Pier Paolo; Wei, Wenyi

    2017-04-01

    BRAF drives tumorigenesis by coordinating the activation of the RAS/RAF/MEK/ERK oncogenic signaling cascade. However, upstream pathways governing BRAF kinase activity and protein stability remain undefined. Here, we report that in primary cells with active APC FZR1 , APC FZR1 earmarks BRAF for ubiquitination-mediated proteolysis, whereas in cancer cells with APC-free FZR1, FZR1 suppresses BRAF through disrupting BRAF dimerization. Moreover, we identified FZR1 as a direct target of ERK and CYCLIN D1/CDK4 kinases. Phosphorylation of FZR1 inhibits APC FZR1 , leading to elevation of a cohort of oncogenic APC FZR1 substrates to facilitate melanomagenesis. Importantly, CDK4 and/or BRAF/MEK inhibitors restore APC FZR1 E3 ligase activity, which might be critical for their clinical effects. Furthermore, FZR1 depletion cooperates with AKT hyperactivation to transform primary melanocytes, whereas genetic ablation of Fzr1 synergizes with Pten loss, leading to aberrant coactivation of BRAF/ERK and AKT signaling in mice. Our findings therefore reveal a reciprocal suppression mechanism between FZR1 and BRAF in controlling tumorigenesis. Significance: FZR1 inhibits BRAF oncogenic functions via both APC-dependent proteolysis and APC-independent disruption of BRAF dimers, whereas hyperactivated ERK and CDK4 reciprocally suppress APC FZR1 E3 ligase activity. Aberrancies in this newly defined signaling network might account for BRAF hyperactivation in human cancers, suggesting that targeting CYCLIN D1/CDK4, alone or in combination with BRAF/MEK inhibition, can be an effective anti-melanoma therapy. Cancer Discov; 7(4); 424-41. ©2017 AACR. See related commentary by Zhang and Bollag, p. 356 This article is highlighted in the In This Issue feature, p. 339 . ©2017 American Association for Cancer Research.

  19. The role of hypoxia inducible factor-1 alpha in bypassing oncogene-induced senescence.

    Mehtap Kilic Eren

    Full Text Available Oncogene induced senescence (OIS is a sustained anti-proliferative response acutely induced in primary cells via activation of mitogenic oncogenes such as Ras/BRAF. This mechanism acts as an initial barrier preventing normal cells transformation into malignant cell. Besides oncogenic activation and DNA damage response (DDR, senescence is modulated by a plethora of other factors, and one of the most important one is oxygen tension of the tissue. The aim of this study was to determine the impact of hypoxia on RasV12-induced senescence in human diploid fibroblasts (HDFs. We showed here that hypoxia prevents execution of oncogene induced senescence (OIS, through a strong down-regulation of senescence hallmarks, such as SA- β-galactosidase, H3K9me3, HP1γ, p53, p21CIP1 and p16INK4a in association with induction of hypoxia inducible factor-1α (HIF-1α. In addition, hypoxia also decreased marks of H-RasV12-induced DDR in both cell lines through down-regulation of ATM/ATR, Chk1 and Chk2 phosphorylation as well as decreased γ-H2AX positivity. Utilizing shRNA system targeting HIF-1α we show that HIF-1α is directly involved in down regulation of p53 and its target p21CIP1 but not p16INK4a. In line with this finding we found that knock down of HIF-1α leads to a strong induction of apoptotic response, but not restoration of senescence in Ras expressing HDFs in hypoxia. This indicates that HIF-1α is an important player in early steps of tumorigenesis, leading to suppression of senescence through its negative regulation of p53 and p21CIP1. In our work we describe a mechanism through which hypoxia and specifically HIF-1α preclude cells from maintaining senescence-driven anti proliferative response. These findings indicate the possible mechanism through which hypoxic environment helps premalignant cells to evade impingement of cellular failsafe pathways.

  20. Role of micro-RNAs in LRF and BCL6 oncogenes regulation

    Rainaldi, G.

    2009-01-01

    Micro RNAs (miRNAs) are short 20-22 nucleotide RNA molecules with an important role in the regulation of gene expression at the post-transcriptional level. MiRNA levels have been shown to change markedly in tumors and their expression profile is currently used to classify and diagnose some tumours. MiRNAs have been classified either as oncogenes (overespressed in tumors) or as tumor suppressor (down regulated), and in certain cases they can behave as both depending on the type of tumor. In many cases miRNAs and transcription factors interact directly so that transcriptional and post-transcriptional regulation of gene expression are finely regulated

  1. Long-range effects of direct-hit ultraviolet and particle radiation in oncogene activation

    Ladik, J.J.

    1990-01-01

    A simple statistical analysis shows that the oncogene-activation effect of chemical carcinogens cannot be explained if one takes into account only short-range effects. As one of the most probable solid state physical long-range effects, the generation at the site of carcinogen binding of travelling solitary waves, which can interfere with DNA-blocking protein interactions, is discussed. It has been shown that the direct hit carcinogenic effects on DNA by ultraviolet--or particle radiation can also be explained by the generation of solitary waves (in the latter case the first step is a collective plasma oscillation which decays to individual local excitations and ionizations)

  2. Cytological and oncogene alterations in radiation-transformed Syrian hamster embryo cells

    Trutschler, K.; Hieber, L.; Kellerer, A.M.

    1991-01-01

    Syrian hamster embryo (SHE) cells were neoplastically transformed by different types of ionizing radiation (γ-rays, α-particles or carbon ions). Transformed and tumor cell lines (derived from nude mice tumors) were analysed for alterations of the oncogenes c-Ha-ras and c-myc, i.e. RFLPs, gene amplifications, activation by point mutation, gene expression, and for cytological changes. In addition, the chromosome number and the numbers of micronuclei per cell have been determined in a series of cell lines. (author)

  3. FOXP3 is a novel transcriptional repressor for the breast cancer oncogene SKP2

    Zuo, Tao; Liu, Runhua; Zhang, Huiming; Chang, Xing; Liu, Yan; Wang, Lizhong; Zheng, Pan; Liu, Yang

    2007-01-01

    S-phase kinase-associated protein 2 (SKP2) is a component of the E3 ubiquitin ligase SKP1-Cul1-Fbox complex. Overexpression of SKP2 results in cell cycle dysregulation and carcinogenesis; however, the genetic lesions that cause this upregulation are poorly understood. We recently demonstrated that forkhead box P3 (FOXP3) is an X-linked breast cancer suppressor and an important repressor of the oncogene ERBB2/HER2. Since FOXP3 suppresses tumor growth regardless of whether the tumors overexpres...

  4. Imaging manifestations and its clinical significance in patients with oncogenic osteomalacia

    Yu Wei; Lin Qiang; Zhang Yunqing; Jiang Bo; Jin Jin; Jiang Yan; Li Mei; Li Fang

    2006-01-01

    Objective: To compare images from different modality for detecting lesions in patients with oncogenic osteomalacia. Methods: Eight patients with oncogenic osteomalacia were recruited in this study. The age ranged from 28 to 69 years (mean age 44.1, 5 men and 3 women). All patients were diagnosed as osteomalacia according to their clinical and radiographic manifestations. Main laboratory tests included serum calcium, phosphorus, alkaline phosphatase activity, parathyroid hormone, urinary phosphorus as well as liver and renal functions. Octreotide scans were performed for all patients according to clinical request for confirming the oncogenic osteomalacia. Further examinations of MR imaging in 8 patients, spiral CT in four patients and conventional radiography in four patients were obtained after the octreotide scans respectively. All patients had operation for their tumor resections and for the pathologic diagnostic findings. Results: Abnormal laboratory findings in all patients included low serum phosphorus level (ranged from 0.29 to 0.65 mmol·L -1 ), elevated alkaline phosphatase activity (ranged from 36. 6 to 310.6 μmol·s -1 ·L -1 ) as well as urinary phosphorus level (ranged from 11.5 to 40. 9 mmol·L -1 ). Normal results included parathyroid hormone level, liver and renal functions. Pathology confirmed the diagnosis of 4 soft tissue tumors including 1 hemangiomas, 1 giant-cell tumor of tendon sheath, 1 hemangiopericytoma and 1 mesenchymal tumor, as well as 4 bone tumors including 1 malignant neurofibroma, 2 mesenchymal tumors and 1 fibroblastoma. All lesions were shown abnormal region of increasing uptake tracer on octreotide scans. However, the octreotide scans could not determine where (bone or soft tissues) the lesions located. MR imaging could differentiate the lesions within the bone or within the soft tissues in all patients. All lesions had hypo- or iso- signal intensity on T 1 WI and high signal intensity on T 2 WI with heterogeneous in 6 tumors and

  5. Estimation of Lung Ventilation

    Ding, Kai; Cao, Kunlin; Du, Kaifang; Amelon, Ryan; Christensen, Gary E.; Raghavan, Madhavan; Reinhardt, Joseph M.

    Since the primary function of the lung is gas exchange, ventilation can be interpreted as an index of lung function in addition to perfusion. Injury and disease processes can alter lung function on a global and/or a local level. MDCT can be used to acquire multiple static breath-hold CT images of the lung taken at different lung volumes, or with proper respiratory control, 4DCT images of the lung reconstructed at different respiratory phases. Image registration can be applied to this data to estimate a deformation field that transforms the lung from one volume configuration to the other. This deformation field can be analyzed to estimate local lung tissue expansion, calculate voxel-by-voxel intensity change, and make biomechanical measurements. The physiologic significance of the registration-based measures of respiratory function can be established by comparing to more conventional measurements, such as nuclear medicine or contrast wash-in/wash-out studies with CT or MR. An important emerging application of these methods is the detection of pulmonary function change in subjects undergoing radiation therapy (RT) for lung cancer. During RT, treatment is commonly limited to sub-therapeutic doses due to unintended toxicity to normal lung tissue. Measurement of pulmonary function may be useful as a planning tool during RT planning, may be useful for tracking the progression of toxicity to nearby normal tissue during RT, and can be used to evaluate the effectiveness of a treatment post-therapy. This chapter reviews the basic measures to estimate regional ventilation from image registration of CT images, the comparison of them to the existing golden standard and the application in radiation therapy.

  6. Characterization of a human cell line stably over-expressing the candidate oncogene, dual specificity phosphatase 12.

    Erica L Cain

    2011-04-01

    Full Text Available Analysis of chromosomal rearrangements within primary tumors has been influential in the identification of novel oncogenes. Identification of the "driver" gene(s within cancer-derived amplicons is, however, hampered by the fact that most amplicons contain many gene products. Amplification of 1q21-1q23 is strongly associated with liposarcomas and microarray-based comparative genomic hybridization narrowed down the likely candidate oncogenes to two: the activating transcription factor 6 (atf6 and the dual specificity phosphatase 12 (dusp12. While atf6 is an established transcriptional regulator of the unfolded protein response, the potential role of dusp12 in cancer remains uncharacterized.To evaluate the oncogenic potential of dusp12, we established stable cell lines that ectopically over-express dusp12 in isolation and determined whether this cell line acquired properties frequently associated with transformed cells. Here, we demonstrate that cells over-expressing dusp12 display increased cell motility and resistance to apoptosis. Additionally, over-expression of dusp12 promoted increased expression of the c-met proto-oncogene and the collagen and laminin receptor intergrin alpha 1 (itga1 which is implicated in metastasis.Collectively, these results suggest that dusp12 is oncologically relevant and exposes a potential association between dusp12 and established oncogenes that could be therapeutically targeted.

  7. Assessment of differential expression of oncogenes in adenocarcinoma of stomach with fluorescent labeling and simultaneous amplification of gene transcripts

    Rajcevic, U.; Hudler, P.; Komel, R.; Mijovski, G.; Gorjanc, G.; Kovac, M.; Hoelzl, G.; Repse, S.; Juvan, R.; Huber, C.G.

    2007-01-01

    Background. Gastric cancer is one of the leading malignancies with a poor prognosis and low survival rates. Although the mechanisms underlying its development are still unknown, there is a consensus that genetic instability, inactivation of tumor suppressor genes and over-expression of oncogenes are involved in the early and late stages of gastric carcinogenesis. In the present study we wanted to display differential expression of seven oncogenes, namely CCNE1, EGF, ERBB3, FGF4, HRG1, HGFR and TDGF1. Patients and methods. We employed a method based on the multiplex reverse transcription polymerase chain (RT-PCR) method with a fluorescence detection. Results. More than half of patients (74.3%) out of total 74 with gastric adenocarcinoma had over-expressed at least one oncogene, with the exception of FGF4, which was expressed in tumor tissue of less than one third of patients. 56.8% of the patients patients showed over-expression of two or more oncogenes. Conclusions. Patients with precancerous lesions had elevated levels of TDGF1 or cripto-1 (64.9%) and CCNE1 (57.1%), suggesting that they could be used as markers for an early detection of malignant changes in stomach. Finally, the fluorescent multiplex RT-PCR method could be of value for rapid assessment of oncogene mRNA levels in small samples of tumor or precancerous biopsies. (author)

  8. Identification of ALV-J associated acutely transforming virus Fu-J carrying complete v-fps oncogene.

    Wang, Yixin; Li, Jianliang; Li, Yang; Fang, Lichun; Sun, Xiaolong; Chang, Shuang; Zhao, Peng; Cui, Zhizhong

    2016-06-01

    Transduction of oncogenes by ALVs and generation of acute transforming viruses is common in natural viral infections. In order to understand the molecular basis for the rapid oncogenicity of Fu-J, an acutely transforming avian leukosis virus isolated from fibrosarcomas in crossbreed broilers infected with subgroup J avian leukosis virus (ALV-J) in China, complete genomic structure of Fu-J virus was determined by PCR amplification and compared with those of Fu-J1, Fu-J2, Fu-J3, Fu-J4, and Fu-J5 reported previously. The results showed that the genome of Fu-J was defective, with parts of gag gene replaced by the complete v-fps oncogene and encoded a 137 kDa Gag-fps fusion protein. Sequence analysis revealed that Fu-J and Fu-J1 to Fu-J5 were related quasi-species variants carrying different lengths of v-fps oncogenes generated from recombination between helper virus and c-fps gene. Comparison of virus carrying v-fps oncogene also gave us a glimpse of the molecular characterization and evolution process of the acutely transforming ALV.

  9. Diet and lung cancer

    Fabricius, P; Lange, Peter

    2003-01-01

    Lung cancer is the leading cause of cancer-related deaths worldwide. While cigarette smoking is of key importance, factors such as diet also play a role in the development of lung cancer. MedLine and Embase were searched with diet and lung cancer as the key words. Recently published reviews and l...... are only ameliorated to a minor degree by a healthy diet.......Lung cancer is the leading cause of cancer-related deaths worldwide. While cigarette smoking is of key importance, factors such as diet also play a role in the development of lung cancer. MedLine and Embase were searched with diet and lung cancer as the key words. Recently published reviews...... and large well designed original articles were preferred to form the basis for the present article. A diet rich in fruit and vegetables reduces the incidence of lung cancer by approximately 25%. The reduction is of the same magnitude in current smokers, ex-smokers and never smokers. Supplementation...

  10. Rab22a enhances CD147 recycling and is required for lung cancer cell migration and invasion.

    Zhou, Yang; Wu, Bo; Li, Jiang-Hua; Nan, Gang; Jiang, Jian-Li; Chen, Zhi-Nan

    2017-08-01

    Rab22a is a member of the Ras-related small GTPase family, which plays a key role in regulating the recycling of cargo proteins entering cells through clathrin-independent endocytosis (CIE). Rab22a is overexpressed in different cancer types, including liver cancer, malignant melanoma, ovarian cancer and osteosarcoma. However, its oncogenic role remains unknown. In this study, we found that silencing of Rab22a suppressed the migration and invasion of lung cancer cells. Furthermore, Rab22a interacts with CD147, and knockdown of Rab22a blocks CD147 recycling and promotes CD147 degradation. Taken together, our findings indicate that Rab22a enhances recycling of CD147, which is required for lung cancer cell migration and invasion,and targeting CD147 recycling may be a rational strategy for lung cancer therapy. Copyright © 2017. Published by Elsevier Inc.

  11. PAK1 is a breast cancer oncogene that coordinately activates MAPK and MET signaling.

    Shrestha, Y; Schafer, E J; Boehm, J S; Thomas, S R; He, F; Du, J; Wang, S; Barretina, J; Weir, B A; Zhao, J J; Polyak, K; Golub, T R; Beroukhim, R; Hahn, W C

    2012-07-19

    Activating mutations in the RAS family or BRAF frequently occur in many types of human cancers but are rarely detected in breast tumors. However, activation of the RAS-RAF-MEK-ERK MAPK pathway is commonly observed in human breast cancers, suggesting that other genetic alterations lead to activation of this signaling pathway. To identify breast cancer oncogenes that activate the MAPK pathway, we screened a library of human kinases for their ability to induce anchorage-independent growth in a derivative of immortalized human mammary epithelial cells (HMLE). We identified p21-activated kinase 1 (PAK1) as a kinase that permitted HMLE cells to form anchorage-independent colonies. PAK1 is amplified in several human cancer types, including 30--33% of breast tumor samples and cancer cell lines. The kinase activity of PAK1 is necessary for PAK1-induced transformation. Moreover, we show that PAK1 simultaneously activates MAPK and MET signaling; the latter via inhibition of merlin. Disruption of these activities inhibits PAK1-driven anchorage-independent growth. These observations establish PAK1 amplification as an alternative mechanism for MAPK activation in human breast cancer and credential PAK1 as a breast cancer oncogene that coordinately regulates multiple signaling pathways, the cooperation of which leads to malignant transformation.

  12. Overexpression of the human DEK oncogene reprograms cellular metabolism and promotes glycolysis

    Watanabe, Miki; Muraleedharan, Ranjithmenon; Lambert, Paul F.; Lane, Andrew N.; Romick-Rosendale, Lindsey E.; Wells, Susanne I.

    2017-01-01

    The DEK oncogene is overexpressed in many human malignancies including at early tumor stages. Our reported in vitro and in vivo models of squamous cell carcinoma have demonstrated that DEK contributes functionally to cellular and tumor survival and to proliferation. However, the underlying molecular mechanisms remain poorly understood. Based on recent RNA sequencing experiments, DEK expression was necessary for the transcription of several metabolic enzymes involved in anabolic pathways. This identified a possible mechanism whereby DEK may drive cellular metabolism to enable cell proliferation. Functional metabolic Seahorse analysis demonstrated increased baseline and maximum extracellular acidification rates, a readout of glycolysis, in DEK-overexpressing keratinocytes and squamous cell carcinoma cells. DEK overexpression also increased the maximum rate of oxygen consumption and therefore increased the potential for oxidative phosphorylation (OxPhos). To detect small metabolites that participate in glycolysis and the tricarboxylic acid cycle (TCA) that supplies substrate for OxPhos, we carried out NMR-based metabolomics studies. We found that high levels of DEK significantly reprogrammed cellular metabolism and altered the abundances of amino acids, TCA cycle intermediates and the glycolytic end products lactate, alanine and NAD+. Taken together, these data support a scenario whereby overexpression of the human DEK oncogene reprograms keratinocyte metabolism to fulfill energy and macromolecule demands required to enable and sustain cancer cell growth. PMID:28558019

  13. Pervasive transcription read-through promotes aberrant expression of oncogenes and RNA chimeras in renal carcinoma

    Grosso, Ana R; Leite, Ana P; Carvalho, Sílvia; Matos, Mafalda R; Martins, Filipa B; Vítor, Alexandra C; Desterro, Joana MP; Carmo-Fonseca, Maria; de Almeida, Sérgio F

    2015-01-01

    Aberrant expression of cancer genes and non-canonical RNA species is a hallmark of cancer. However, the mechanisms driving such atypical gene expression programs are incompletely understood. Here, our transcriptional profiling of a cohort of 50 primary clear cell renal cell carcinoma (ccRCC) samples from The Cancer Genome Atlas (TCGA) reveals that transcription read-through beyond the termination site is a source of transcriptome diversity in cancer cells. Amongst the genes most frequently mutated in ccRCC, we identified SETD2 inactivation as a potent enhancer of transcription read-through. We further show that invasion of neighbouring genes and generation of RNA chimeras are functional outcomes of transcription read-through. We identified the BCL2 oncogene as one of such invaded genes and detected a novel chimera, the CTSC-RAB38, in 20% of ccRCC samples. Collectively, our data highlight a novel link between transcription read-through and aberrant expression of oncogenes and chimeric transcripts that is prevalent in cancer. DOI: http://dx.doi.org/10.7554/eLife.09214.001 PMID:26575290

  14. Pokemon proto-oncogene in oral cancer: potential role in the early phase of tumorigenesis.

    Sartini, D; Lo Muzio, L; Morganti, S; Pozzi, V; Di Ruscio, G; Rocchetti, R; Rubini, C; Santarelli, A; Emanuelli, M

    2015-05-01

    Oral squamous cell carcinoma (OSCC) represents about 90% of all oral neoplasms with a poor clinical prognosis. To improve survival of OSCC patients, it is fundamental to understand the basic molecular mechanisms characterizing oral carcinogenesis. Dysregulation of oncogenes and tumor suppressor genes seems to play a central role in tumorigenesis, including malignant transformation of the oral cavity. We analyzed the expression levels of the pro-oncogenic transcription factor Pokemon through real-time PCR, Western blot and immunohistochemistry in tumor, and normal oral tissue samples obtained from 22 patients with OSCC. The relationship between tumor characteristics and the level of Pokemon intratumor expression was also analyzed. Pokemon was significantly downregulated in OSCC. In particular, both mRNA and protein levels (tumor vs normal tissue) inversely correlated with histological grading, suggesting its potential role as a prognostic factor for OSCC. Moreover, a significant inverse correlation was found between Pokemon protein expression levels (OSCC vs normal oral mucosa) and tumor size, supporting the hypothesis that Pokemon could play an important role in the early phase of tumor expansion. This work shows that reduced expression of Pokemon is a peculiar feature of OSCC. Additional studies may establish the effective role of Pokemon in oral tumorigenesis. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Fusion peptides from oncogenic chimeric proteins as putative specific biomarkers of cancer.

    Conlon, Kevin P; Basrur, Venkatesha; Rolland, Delphine; Wolfe, Thomas; Nesvizhskii, Alexey I; MacCoss, Michael J; Lim, Megan S; Elenitoba-Johnson, Kojo S J

    2013-10-01

    Chromosomal translocations encoding chimeric fusion proteins constitute one of the most common mechanisms underlying oncogenic transformation in human cancer. Fusion peptides resulting from such oncogenic chimeric fusions, though unique to specific cancer subtypes, are unexplored as cancer biomarkers. Here we show, using an approach termed fusion peptide multiple reaction monitoring mass spectrometry, the direct identification of different cancer-specific fusion peptides arising from protein chimeras that are generated from the juxtaposition of heterologous genes fused by recurrent chromosomal translocations. Using fusion peptide multiple reaction monitoring mass spectrometry in a clinically relevant scenario, we demonstrate the specific, sensitive, and unambiguous detection of a specific diagnostic fusion peptide in clinical samples of anaplastic large cell lymphoma, but not in a diverse array of benign lymph nodes or other forms of primary malignant lymphomas and cancer-derived cell lines. Our studies highlight the utility of fusion peptides as cancer biomarkers and carry broad implications for the use of protein biomarkers in cancer detection and monitoring.

  16. Oncogene Mimicry as a Mechanism of Primary Resistance to BRAF Inhibitors

    Martin L. Sos

    2014-08-01

    Full Text Available Despite the development of potent RAF/mitogen-activated protein kinase (MAPK pathway inhibitors, only a fraction of BRAF-mutant patients benefit from treatment with these drugs. Using a combined chemogenomics and chemoproteomics approach, we identify drug-induced RAS-RAF-MEK complex formation in a subset of BRAF-mutant cancer cells characterized by primary resistance to vemurafenib. In these cells, autocrine interleukin-6 (IL-6 secretion may contribute to the primary resistance phenotype via induction of JAK/STAT3 and MAPK signaling. In a subset of cell lines, combined IL-6/MAPK inhibition is able to overcome primary resistance to BRAF-targeted therapy. Overall, we show that the signaling plasticity exerted by primary resistant BRAF-mutant cells is achieved by their ability to mimic signaling features of oncogenic RAS, a strategy that we term “oncogene mimicry.” This model may guide future strategies for overcoming primary resistance observed in these tumors.

  17. Activation of the JNK pathway is essential for transformation by the Met oncogene.

    Rodrigues, G A; Park, M; Schlessinger, J

    1997-05-15

    The Met/Hepatocyte Growth Factor (HGF) receptor tyrosine kinase is oncogenically activated through a rearrangement that creates a hybrid gene Tpr-Met. The resultant chimeric p65(Tpr-Met) protein is constitutively phosphorylated on tyrosine residues in vivo and associates with a number of SH2-containing signaling molecules including the p85 subunit of PI-3 kinase and the Grb2 adaptor protein, which couples receptor tyrosine kinases to the Ras signaling pathway. Mutation of the binding site for Grb2 impairs the ability of Tpr-Met oncoprotein to transform fibroblasts, suggesting that the activation of the Ras/MAP kinase signaling pathway through Grb2 may be essential for cellular transformation. To test this hypothesis dominant-negative mutants of Grb2 with deletions of the SH3 domains were introduced into Tpr-Met transformed fibroblasts. Cells overexpressing the mutants were found to be morphologically reverted and exhibited reduced growth in soft agar. Surprisingly, the Grb2 mutants blocked activation of the JNK/SAPK but not MAP kinase activity induced by the Tpr-Met oncoprotein. Additionally, cells expressing dominant-negative Grb2 mutants had reduced PI-3-kinase activity and dominant-negative mutants of Rac1 blocked both Tpr-Met-induced transformation and activation of JNK. These experiments reveal a novel link between Met and the JNK pathway, which is essential for transformation by this oncogene.

  18. Disruption of PH–kinase domain interactions leads to oncogenic activation of AKT in human cancers

    Parikh, Chaitali; Janakiraman, Vasantharajan; Wu, Wen-I; Foo, Catherine K.; Kljavin, Noelyn M.; Chaudhuri, Subhra; Stawiski, Eric; Lee, Brian; Lin, Jie; Li, Hong; Lorenzo, Maria N.; Yuan, Wenlin; Guillory, Joseph; Jackson, Marlena; Rondon, Jesus; Franke, Yvonne; Bowman, Krista K.; Sagolla, Meredith; Stinson, Jeremy; Wu, Thomas D.; Wu, Jiansheng; Stokoe, David; Stern, Howard M.; Brandhuber, Barbara J.; Lin, Kui; Skelton, Nicholas J.; Seshagiri, Somasekar

    2012-01-01

    The protein kinase v-akt murine thymoma viral oncogene homolog (AKT), a key regulator of cell survival and proliferation, is frequently hyperactivated in human cancers. Intramolecular pleckstrin homology (PH) domain–kinase domain (KD) interactions are important in maintaining AKT in an inactive state. AKT activation proceeds after a conformational change that dislodges the PH from the KD. To understand these autoinhibitory interactions, we generated mutations at the PH–KD interface and found that most of them lead to constitutive activation of AKT. Such mutations are likely another mechanism by which activation may occur in human cancers and other diseases. In support of this likelihood, we found somatic mutations in AKT1 at the PH–KD interface that have not been previously described in human cancers. Furthermore, we show that the AKT1 somatic mutants are constitutively active, leading to oncogenic signaling. Additionally, our studies show that the AKT1 mutants are not effectively inhibited by allosteric AKT inhibitors, consistent with the requirement for an intact PH–KD interface for allosteric inhibition. These results have important implications for therapeutic intervention in patients with AKT mutations at the PH–KD interface. PMID:23134728

  19. Chromosome breakage at sites of oncogenes in a population accidentally exposed to radioactive chemical pollution

    Ilyinskikh, N.N.; IIlyinskikh, I.N.; Ilyinskikh, E.N.

    2003-01-01

    The purpose of the present study was to investigate the level of aberrations at fragile sites of chromosomes in peripheral blood lymphocytes of the population of an area polluted with radionuclides, following an accident at the Siberian Chemical Plant (SCP). We carried out the micro-nucleus test to screen people with radiation-related cytogenetic effects. Of the 1246 examined inhabitants of the settlement of Samus, 148 showed a significantly increased frequency of micro-nucleated erythrocytes and were selected for the chromosome analysis as a radiation-exposed group. Additional analysis was carried out on 40 patients with gastric cancer and atrophic gastritis with stage II-III epithelial dysplasia. Eighty six individuals from a non-polluted area were used as a control group. Chromosomal breaks and exchanges occurred preferentially in chromosomes 3 and 6 among radiation-exposed persons and patients. The regions 3p14-3p25 and 6p23 were damaged most often. There was a tendency towards preferential involvement at q21-q25 of chromosome 6 in patients with gastric cancer and atrophic gastritis. Specific damage at certain chromosome sites was observed in the radiation-exposed population as well as in patients with gastric cancer. Most often this damage were located near oncogene loci which could imply that chromosome damage induced by radiation is likely to be a predisposing factor to the expression of oncogenes and malignant transformation of cells in exposed individuals. (author)

  20. Detection of E6/E7 HPV oncogene transcripts as biomarker of cervical intaepithelial displasia

    Mauro Carcheri

    2009-09-01

    Full Text Available It is widely accepted that only persistent infection with high risk types of Human Papillomavirus (HPV HR is a significant risk factor for the development of an invasive squamous cervical cancer. The overexpression of viral oncogenes E6/E7 of HPV is considered a necessary process for incurring in a malignant phenotype.A HPV infection can be identified by detection of HPV DNA in biological samples, but the DNAbased tests cannot delineate between transient or persistent and potentially transforming infection. Instead there is many evidence to suggest that detection of HPV gene expression may constitute a more specific approach to highlight a clinically significant infection. Especially seems that the detection of E6/E7 transcripts can be usefully used for identify the women with a persistent HPV infection that will can induce a future cervical cancer. The aim of our study is to investigate if the detection of oncogenic viral gene activity by detecting transcripts of the E6 and E7 genes can be most usefull of HPV-DNA test in the triage of ASCUS or low grade cervical lesions. Our results confirm that HPV E6/E7 mRNA test can be considered a promising method to stratify HPV positive women for risk of future high-grade cervical lesions or cervical intaepithelial neoplasia.

  1. Colocalization of somatic and meiotic double strand breaks near the Myc oncogene on mouse chromosome 15.

    Ng, Siemon H; Maas, Sarah A; Petkov, Petko M; Mills, Kevin D; Paigen, Kenneth

    2009-10-01

    Both somatic and meiotic recombinations involve the repair of DNA double strand breaks (DSBs) that occur at preferred locations in the genome. Improper repair of DSBs during either mitosis or meiosis can lead to mutations, chromosomal aberration such as translocations, cancer, and/or cell death. Currently, no model exists that explains the locations of either spontaneous somatic DSBs or programmed meiotic DSBs or relates them to each other. One common class of tumorigenic translocations arising from DSBs is chromosomal rearrangements near the Myc oncogene. Myc translocations have been associated with Burkitt lymphoma in humans, plasmacytoma in mice, and immunocytoma in rats. Comparing the locations of somatic and meiotic DSBs near the mouse Myc oncogene, we demonstrated that the placement of these DSBs is not random and that both events clustered in the same short discrete region of the genome. Our work shows that both somatic and meiotic DSBs tend to occur in proximity to each other within the Myc region, suggesting that they share common originating features. It is likely that some regions of the genome are more susceptible to both somatic and meiotic DSBs, and the locations of meiotic hotspots may be an indicator of genomic regions more susceptible to DNA damage. (c) 2009 Wiley-Liss, Inc.

  2. WSB1 overcomes oncogene-induced senescence by targeting ATM for degradation

    Kim, Jung Jin; Lee, Seung Baek; Yi, Sang-Yeop; Han, Sang-Ah; Kim, Sun-Hyun; Lee, Jong-Min; Tong, Seo-Yun; Yin, Ping; Gao, Bowen; Zhang, Jun; Lou, Zhenkun

    2017-01-01

    Oncogene-induced senescence (OIS) or apoptosis through the DNA-damage response is an important barrier of tumorigenesis. Overcoming this barrier leads to abnormal cell proliferation, genomic instability, and cellular transformation, and finally allows cancers to develop. However, it remains unclear how the OIS barrier is overcome. Here, we show that the E3 ubiquitin ligase WD repeat and SOCS box-containing protein 1 (WSB1) plays a role in overcoming OIS. WSB1 expression in primary cells helps the bypass of OIS, leading to abnormal proliferation and cellular transformation. Mechanistically, WSB1 promotes ATM ubiquitination, resulting in ATM degradation and the escape from OIS. Furthermore, we identify CDKs as the upstream kinase of WSB1. CDK-mediated phosphorylation activates WSB1 by promoting its monomerization. In human cancer tissue and in vitro models, WSB1-induced ATM degradation is an early event during tumorigenic progression. We suggest that WSB1 is one of the key players of early oncogenic events through ATM degradation and destruction of the tumorigenesis barrier. Our work establishes an important mechanism of cancer development and progression in premalignant lesions. PMID:27958289

  3. Overexpression of the human DEK oncogene reprograms cellular metabolism and promotes glycolysis.

    Marie C Matrka

    Full Text Available The DEK oncogene is overexpressed in many human malignancies including at early tumor stages. Our reported in vitro and in vivo models of squamous cell carcinoma have demonstrated that DEK contributes functionally to cellular and tumor survival and to proliferation. However, the underlying molecular mechanisms remain poorly understood. Based on recent RNA sequencing experiments, DEK expression was necessary for the transcription of several metabolic enzymes involved in anabolic pathways. This identified a possible mechanism whereby DEK may drive cellular metabolism to enable cell proliferation. Functional metabolic Seahorse analysis demonstrated increased baseline and maximum extracellular acidification rates, a readout of glycolysis, in DEK-overexpressing keratinocytes and squamous cell carcinoma cells. DEK overexpression also increased the maximum rate of oxygen consumption and therefore increased the potential for oxidative phosphorylation (OxPhos. To detect small metabolites that participate in glycolysis and the tricarboxylic acid cycle (TCA that supplies substrate for OxPhos, we carried out NMR-based metabolomics studies. We found that high levels of DEK significantly reprogrammed cellular metabolism and altered the abundances of amino acids, TCA cycle intermediates and the glycolytic end products lactate, alanine and NAD+. Taken together, these data support a scenario whereby overexpression of the human DEK oncogene reprograms keratinocyte metabolism to fulfill energy and macromolecule demands required to enable and sustain cancer cell growth.

  4. Prostate-derived Ets factor, an oncogenic driver in breast cancer.

    Sood, Ashwani K; Geradts, Joseph; Young, Jessica

    2017-05-01

    Prostate-derived Ets factor (PDEF), a member of the Ets family of transcription factors, differs from other family members in its restricted expression in normal tissues and its unique DNA-binding motif. These interesting attributes coupled with its aberrant expression in cancer have rendered PDEF a focus of increasing interest by tumor biologists. This review provides a current understanding of the characteristics of PDEF expression and its role in breast cancer. The bulk of the evidence is consistent with PDEF overexpression in most breast tumors and an oncogenic role for this transcription factor in breast cancer. In addition, high PDEF expression in estrogen receptor-positive breast tumors showed significant correlation with poor overall survival in several independent cohorts of breast cancer patients. Together, these findings demonstrate PDEF to be an oncogenic driver of breast cancer and a biomarker of poor prognosis in this cancer. Based on this understanding and the limited expression of PDEF in normal human tissues, the development of PDEF-based therapeutics for prevention and treatment of breast cancer is also discussed.

  5. Engineering CHO cells with an oncogenic KIT improves cells growth, resilience to stress, and productivity.

    Mahameed, Mohamed; Tirosh, Boaz

    2017-11-01

    An optimized biomanufacturing process in mammalian cells is contingent on the ability of the producing cells to reach high viable cell densities. In addition, at the peak of growth, cells need to continue producing the biological entity at a consistent quality. Thus, engineering cells with robust growth performance and resilience to variable stress conditions is highly desirable. The tyrosine kinase receptor, KIT, plays a key role in cell differentiation and the survival of several immune cell types. Its oncogenic mutant, D816V, endows cells with high proliferation capacity, and resistance to kinase inhibitors. Importantly, this onco-KIT mutant when introduced into various cell types is arrested in the endoplasmic reticulum in a constitutively active form. Here, we investigated the effect of oncogenic D816V KIT on the performance of CHO-K1 cells under conventional tissue culture growth settings and when adapted, to shaking conditions. The onco-KIT promoted global protein synthesis, elevated the expression of a secretable transgene, enhanced proliferation, and improved the overall titers of a model glycoprotein. Moreover, the expression of the onco-KIT endowed the cells with a remarkable resistance to various stress conditions. Our data suggest that the introduction of onco-KIT can serve as a strategy for improving glycoprotein biomanufacturing. Biotechnol. Bioeng. 2017;114: 2560-2570. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Large-scale analysis by SAGE reveals new mechanisms of v-erbA oncogene action

    Faure Claudine

    2007-10-01

    Full Text Available Abstract Background: The v-erbA oncogene, carried by the Avian Erythroblastosis Virus, derives from the c-erbAα proto-oncogene that encodes the nuclear receptor for triiodothyronine (T3R. v-ErbA transforms erythroid progenitors in vitro by blocking their differentiation, supposedly by interference with T3R and RAR (Retinoic Acid Receptor. However, v-ErbA target genes involved in its transforming activity still remain to be identified. Results: By using Serial Analysis of Gene Expression (SAGE, we identified 110 genes deregulated by v-ErbA and potentially implicated in the transformation process. Bioinformatic analysis of promoter sequence and transcriptional assays point out a potential role of c-Myb in the v-ErbA effect. Furthermore, grouping of newly identified target genes by function revealed both expected (chromatin/transcription and unexpected (protein metabolism functions potentially deregulated by v-ErbA. We then focused our study on 15 of the new v-ErbA target genes and demonstrated by real time PCR that in majority their expression was activated neither by T3, nor RA, nor during differentiation. This was unexpected based upon the previously known role of v-ErbA. Conclusion: This paper suggests the involvement of a wealth of new unanticipated mechanisms of v-ErbA action.

  7. Overexpression of hepatoma-derived growth factor in melanocytes does not lead to oncogenic transformation

    Sedlmaier, Angela; Wernert, Nicolas; Gallitzendörfer, Rainer; Abouzied, Mekky M; Gieselmann, Volkmar; Franken, Sebastian

    2011-01-01

    HDGF is a growth factor which is overexpressed in a wide range of tumors. Importantly, expression levels were identified as a prognostic marker in some types of cancer such as melanoma. To investigate the presumed oncogenic/transforming capacity of HDGF, we generated transgenic mice overexpressing HDGF in melanocytes. These mice were bred with mice heterozygous for a defective copy of the Ink4a tumor suppressor gene and were exposed to UV light to increase the risk for tumor development both genetically and physiochemically. Mice were analyzed by immunohistochemistry and Western blotting. Furthermore, primary melanocytes were isolated from different strains created. Transgenic animals overexpressed HDGF in hair follicle melanocytes. Interestingly, primary melanocytes isolated from transgenic animals were not able to differentiate in vitro whereas cells isolated from wild type and HDGF-deficient animals were. Although, HDGF -/- /Ink4a +/- mice displayed an increased number of epidermoid cysts after exposure to UV light, no melanomas or premelanocytic alterations could be detected in this mouse model. The results therefore provide no evidence that HDGF has a transforming capacity in tumor development. Our results in combination with previous findings point to a possible role in cell differentiation and suggest that HDGF promotes tumor progression after secondary upregulation and may represent another protein fitting into the concept of non-oncogene addiction of tumor tissue

  8. A Poly-ADP-Ribose Trigger Releases the Auto-Inhibition of a Chromatin Remodeling Oncogene.

    Singh, Hari R; Nardozza, Aurelio P; Möller, Ingvar R; Knobloch, Gunnar; Kistemaker, Hans A V; Hassler, Markus; Harrer, Nadine; Blessing, Charlotte; Eustermann, Sebastian; Kotthoff, Christiane; Huet, Sébastien; Mueller-Planitz, Felix; Filippov, Dmitri V; Timinszky, Gyula; Rand, Kasper D; Ladurner, Andreas G

    2017-12-07

    DNA damage triggers chromatin remodeling by mechanisms that are poorly understood. The oncogene and chromatin remodeler ALC1/CHD1L massively decompacts chromatin in vivo yet is inactive prior to DNA-damage-mediated PARP1 induction. We show that the interaction of the ALC1 macrodomain with the ATPase module mediates auto-inhibition. PARP1 activation suppresses this inhibitory interaction. Crucially, release from auto-inhibition requires a poly-ADP-ribose (PAR) binding macrodomain. We identify tri-ADP-ribose as a potent PAR-mimic and synthetic allosteric effector that abrogates ATPase-macrodomain interactions, promotes an ungated conformation, and activates the remodeler's ATPase. ALC1 fragments lacking the regulatory macrodomain relax chromatin in vivo without requiring PARP1 activation. Further, the ATPase restricts the macrodomain's interaction with PARP1 under non-DNA damage conditions. Somatic cancer mutants disrupt ALC1's auto-inhibition and activate chromatin remodeling. Our data show that the NAD + -metabolite and nucleic acid PAR triggers ALC1 to drive chromatin relaxation. Modular allostery in this oncogene tightly controls its robust, DNA-damage-dependent activation. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Gene activated by growth factors is related to the oncogene v-jun

    Ryder, K.; Lau, L.F.; Nathans, D.

    1988-01-01

    The authors have recently identified by cDNA cloning a set of genes that are rapidly activated in cultured mouse cells by protein growth factors. Here they report that the nucleotide sequence of a cDNA (clone 465) derived from one of these immediate early genes (hereafter called jun-B) encodes a protein homologous to that encoded by the avian sarcoma virus 17 oncogene v-jun. Homology between the jun-B and v-jun proteins is in two regions: one near the N terminus and the other at the C terminus. The latter sequence was shown to have regions of sequence similarity to the DNA-binding domain of the yeast transcriptional regulatory protein GCN4 and to the oncogenic protein fos. Southern blots of human, mouse, and chicken DNA demonstrate that jun-B and c-jun are different genes and that there may be other vertebrate genes related to jun-B and c-jun. These findings suggest that there is a jun family of genes encoding related transcriptional regulatory proteins. The jun-B protein, and perhaps other members of the jun family, may play a role in regulating the genomic response to growth factors

  10. Oncogenic Viral Prevalence in Invasive Vulvar Cancer Specimens from HIV Positive and Negative Women in Botswana

    Tesfalul, Martha; Simbiri, Kenneth; Wheat, Chikoti M.; Motsepe, Didintle; Goldbach, Hayley; Armstrong, Kathleen; Hudson, Kathryn; Kayembe, Mukendi K.; Robertson, Erle; Kovarik, Carrie

    2014-01-01

    Objective The primary aim of this study is to describe the prevalence of select oncogenic viruses within vulvar squamous cell carcinoma (VSCC) and their association with Human Immunodeficiency Virus (HIV) status in women in Botswana, where the national HIV prevalence is the third highest in the world. Methods/materials A cross-sectional study of biopsy-confirmed VSCC specimens and corresponding clinical data was conducted in Gaborone, Botswana. Polymerase Chain Reaction (PCR) and Immunohistochemistry (IHC) viral testing were done for Epstein-Barr Virus (EBV), Human Papilloma Virus (HPV) strains, and Kaposi's Sarcoma Herpesvirus (KSHV), and PCR viral testing alone was done for John Cunningham Virus (JCV). Results HPV prevalence by PCR was 100% (39/39 35/35) among tested samples. HPV16 was the most prevalent HPV strain (82.9% by PCR, 94.7% by either PCR or IHC). KSHV prevalence by PCR had a significant association with HIV status (p = 0.013), but not by IHC (p = 0.650). Conclusions The high burden of HPV, specifically HPV16, in VSCC in Botswana suggests a distinct HPV profile that differs from other studied populations, which provides increased motivation for HPV vaccination efforts. Oncogenic viruses KSHV and EBV were also more prevalent in our study population though their potential role in VSCC pathology is unclear. PMID:24651632

  11. Antineoplastic Effects of siRNA against TMPRSS2-ERG Junction Oncogene in Prostate Cancer.

    Giorgia Urbinati

    Full Text Available TMPRSS2-ERG junction oncogene is present in more than 50% of patients with prostate cancer and its expression is frequently associated with poor prognosis. Our aim is to achieve gene knockdown by siRNA TMPRSS2-ERG and then to assess the biological consequences of this inhibition. First, we designed siRNAs against the two TMPRSS2-ERG fusion variants (III and IV, most frequently identified in patients' biopsies. Two of the five siRNAs tested were found to efficiently inhibit mRNA of both TMPRSS2-ERG variants and to decrease ERG protein expression. Microarray analysis further confirmed ERG inhibition by both siRNAs TMPRSS2-ERG and revealed one common down-regulated gene, ADRA2A, involved in cell proliferation and migration. The siRNA against TMPRSS2-ERG fusion variant IV showed the highest anti-proliferative effects: Significantly decreased cell viability, increased cleaved caspase-3 and inhibited a cluster of anti-apoptotic proteins. To propose a concrete therapeutic approach, siRNA TMPRSS2-ERG IV was conjugated to squalene, which can self-organize as nanoparticles in water. The nanoparticles of siRNA TMPRSS2-ERG-squalene injected intravenously in SCID mice reduced growth of VCaP xenografted tumours, inhibited oncoprotein expression and partially restored differentiation (decrease in Ki67. In conclusion, this study offers a new prospect of treatment for prostate cancer based on siRNA-squalene nanoparticles targeting TMPRSS2-ERG junction oncogene.

  12. Interaction of x-rays and food pyrolysis products in producing oncogenic transformation in vitro

    Borek, C.; Ong, A.

    1981-01-01

    In recent years it has become evident from epidemiological and experimental data that a large number of environmental factors, including diet, play a role in modifying the incidence of cancer. Cell culture systems in which oncogenic transformation serves as an end point are powerful tools for evaluating these questions. Using such systems it has been shown recently that pyrolysis products from charred surfaces of broiled meat and fish can transform hamster embryo cells in vitro as well as produce tumors in the animal. Our studies in vitro have demonstrated the oncogenic potential of ionizing radiation in both hamster and human cells and have established in hamster cells the dose response relationship at doses ranging from 1 to 600 rad for x-rays and 0.1 to 150 rad for neutrons. The present work was aimed at evaluating whether there exists a cocarcinogenic interaction between a pyrolysis product and x-rays in their ability to transform hamster embryo cells in vitro. We have found that when cells are exposed to x-rays prior to treatment with the pyrolysis product there appears to be a synergistic interaction between the two agents in their ability to transform the cells

  13. Viral Interactions with PDZ Domain-Containing Proteins-An Oncogenic Trait?

    James, Claire D; Roberts, Sally

    2016-01-18

    Many of the human viruses with oncogenic capabilities, either in their natural host or in experimental systems (hepatitis B and C, human T cell leukaemia virus type 1, Kaposi sarcoma herpesvirus, human immunodeficiency virus, high-risk human papillomaviruses and adenovirus type 9), encode in their limited genome the ability to target cellular proteins containing PSD95/ DLG/ZO-1 (PDZ) interaction modules. In many cases (but not always), the viruses have evolved to bind the PDZ domains using the same short linear peptide motifs found in host protein-PDZ interactions, and in some cases regulate the interactions in a similar fashion by phosphorylation. What is striking is that the diverse viruses target a common subset of PDZ proteins that are intimately involved in controlling cell polarity and the structure and function of intercellular junctions, including tight junctions. Cell polarity is fundamental to the control of cell proliferation and cell survival and disruption of polarity and the signal transduction pathways involved is a key event in tumourigenesis. This review focuses on the oncogenic viruses and the role of targeting PDZ proteins in the virus life cycle and the contribution of virus-PDZ protein interactions to virus-mediated oncogenesis. We highlight how many of the viral associations with PDZ proteins lead to deregulation of PI3K/AKT signalling, benefitting virus replication but as a consequence also contributing to oncogenesis.

  14. Viral Interactions with PDZ Domain-Containing Proteins—An Oncogenic Trait?

    Claire D. James

    2016-01-01

    Full Text Available Many of the human viruses with oncogenic capabilities, either in their natural host or in experimental systems (hepatitis B and C, human T cell leukaemia virus type 1, Kaposi sarcoma herpesvirus, human immunodeficiency virus, high-risk human papillomaviruses and adenovirus type 9, encode in their limited genome the ability to target cellular proteins containing PSD95/ DLG/ZO-1 (PDZ interaction modules. In many cases (but not always, the viruses have evolved to bind the PDZ domains using the same short linear peptide motifs found in host protein-PDZ interactions, and in some cases regulate the interactions in a similar fashion by phosphorylation. What is striking is that the diverse viruses target a common subset of PDZ proteins that are intimately involved in controlling cell polarity and the structure and function of intercellular junctions, including tight junctions. Cell polarity is fundamental to the control of cell proliferation and cell survival and disruption of polarity and the signal transduction pathways involved is a key event in tumourigenesis. This review focuses on the oncogenic viruses and the role of targeting PDZ proteins in the virus life cycle and the contribution of virus-PDZ protein interactions to virus-mediated oncogenesis. We highlight how many of the viral associations with PDZ proteins lead to deregulation of PI3K/AKT signalling, benefitting virus replication but as a consequence also contributing to oncogenesis.

  15. FOXP3 is a novel transcriptional repressor for the breast cancer oncogene SKP2.

    Zuo, Tao; Liu, Runhua; Zhang, Huiming; Chang, Xing; Liu, Yan; Wang, Lizhong; Zheng, Pan; Liu, Yang

    2007-12-01

    S-phase kinase-associated protein 2 (SKP2) is a component of the E3 ubiquitin ligase SKP1-Cul1-Fbox complex. Overexpression of SKP2 results in cell cycle dysregulation and carcinogenesis; however, the genetic lesions that cause this upregulation are poorly understood. We recently demonstrated that forkhead box P3 (FOXP3) is an X-linked breast cancer suppressor and an important repressor of the oncogene ERBB2/HER2. Since FOXP3 suppresses tumor growth regardless of whether the tumors overexpress ERBB2/HER2, additional FOXP3 targets may be involved in its tumor suppressor activity. Here, we show that mammary carcinomas from mice heterozygous for a Foxp3 mutation exhibited increased Skp2 expression. Ectopic expression of FOXP3 in mouse mammary cancer cells repressed SKP2 expression with a corresponding increase in p27 and polyploidy. Conversely, siRNA silencing of the FOXP3 gene in human mammary epithelial cells increased SKP2 expression. We also show that Foxp3 directly interacted with and repressed the Skp2 promoter. Moreover, the analysis of over 200 primary breast cancer samples revealed an inverse correlation between FOXP3 and SKP2 levels. Finally, we demonstrated that downregulation of SKP2 was critical for FOXP3-mediated growth inhibition in breast cancer cells that do not overexpress ERBB2/HER2. Our data provide genetic, biochemical, and functional evidence that FOXP3 is a novel transcriptional repressor for the oncogene SKP2.

  16. Genomic profiling identifies GATA6 as a candidate oncogene amplified in pancreatobiliary cancer.

    Kevin A Kwei

    2008-05-01

    Full Text Available Pancreatobiliary cancers have among the highest mortality rates of any cancer type. Discovering the full spectrum of molecular genetic alterations may suggest new avenues for therapy. To catalogue genomic alterations, we carried out array-based genomic profiling of 31 exocrine pancreatic cancers and 6 distal bile duct cancers, expanded as xenografts to enrich the tumor cell fraction. We identified numerous focal DNA amplifications and deletions, including in 19% of pancreatobiliary cases gain at cytoband 18q11.2, a locus uncommonly amplified in other tumor types. The smallest shared amplification at 18q11.2 included GATA6, a transcriptional regulator previously linked to normal pancreas development. When amplified, GATA6 was overexpressed at both the mRNA and protein levels, and strong immunostaining was observed in 25 of 54 (46% primary pancreatic cancers compared to 0 of 33 normal pancreas specimens surveyed. GATA6 expression in xenografts was associated with specific microarray gene-expression patterns, enriched for GATA binding sites and mitochondrial oxidative phosphorylation activity. siRNA mediated knockdown of GATA6 in pancreatic cancer cell lines with amplification led to reduced cell proliferation, cell cycle progression, and colony formation. Our findings indicate that GATA6 amplification and overexpression contribute to the oncogenic phenotypes of pancreatic cancer cells, and identify GATA6 as a candidate lineage-specific oncogene in pancreatobiliary cancer, with implications for novel treatment strategies.

  17. Drug induced lung disease

    Schaefer-Prokop, Cornelia; Eisenhuber, Edith

    2010-01-01

    There is an ever increasing number of drugs that can cause lung disease. Imaging plays an important role in the diagnosis, since the clinical symptoms are mostly nonspecific. Various HRCT patterns can be correlated - though with overlaps - to lung changes caused by certain groups of drugs. Alternative diagnosis such as infection, edema or underlying lung disease has to be excluded by clinical-radiological means. Herefore is profound knowledge of the correlations of drug effects and imaging findings essential. History of drug exposure, suitable radiological findings and response to treatment (corticosteroids and stop of medication) mostly provide the base for the diagnosis. (orig.)

  18. Disentegrating lung tumor

    Mamedbekov, Eh.N.; Kyazimova, L.G.; Mamed''yarova, F.A.

    1992-01-01

    Clinical and roentgenological appearances of tuberculosis and tumoral lesions of bronchi and lungs are similar. It makes possible of wrong diagnosis of disease. Complications in diagnosis are connected with that fact that increase of frequency of pulmonary carcinoma both in patients with active tuberculosis and in persons with residual posttuberculous changes in respiratory organs is observed. Patients with specific processes in the lungs was presented. Additional X-ray examination was carried out on the base of clinical symptoms and results of X-ray examination. The diagnosis was established: disintegrating blastoma of the right lung with metastases to mediastinum lymph nodes

  19. Insulin and the Lung

    Singh, Suchita; Prakash, Y S; Linneberg, Allan

    2013-01-01

    , molecular understanding is necessary. Insulin resistance is a strong, independent risk factor for asthma development, but it is unknown whether a direct effect of insulin on the lung is involved. This review summarizes current knowledge regarding the effect of insulin on cellular components of the lung...... and highlights the molecular consequences of insulin-related metabolic signaling cascades that could adversely affect lung structure and function. Examples include airway smooth muscle proliferation and contractility and regulatory signaling networks that are associated with asthma. These aspects of insulin...

  20. Overexpression of K-p21Ras play a prominent role in lung cancer

    Zhang, Peng-bo; Zhou, Xin-liang; Yang, Ju-lun

    2018-06-01

    The proto-oncogene ras product, p21Ras, has been found overexpression in many human tumors. However, the subtypes of overexpressed p21Ras still remain unclear. The purpose of this study was to investigate overexpressed isoforms of p21Ras and their roles in the progress of lung cancer. Method: The expression of total p21Ras in normal lung tissues and lung cancers was determined by immunohistochemically staining with monoclonal antibody (Mab) KGHR-1 which could recognize and broad spectrum reaction with the (K/H/N) ras protein. Then, the isoforms of p21Ras was examined by specific Mab for each p21Ras subtypes. Results: Low expression of total p21Ras was found in 26.67% (8/30) of normal lung tissues, and 81.31% (87/107) of adenocarcinoma harbored overexpressed total p21Ras. Besides, 70.00% (35/50) of squamous cell carcinoma were detected overexpressed total p21Ras. In addition, 122 lung cancer tissues from overexpression of total p21Ras protein were selected to detect the expression of each subtype. And all the 122 lung cancer tissues were K-p21Ras overexpression. Moreover, there was a statistical significance difference between the expression level of total p21Ras and differentiation, and the same results were observed between the expression level of total p21Ras and lymph node metastasis (P0.05). Conclusions: Overexpression of K-p21Ras plays a prominent role in the progress of lung cancer and it is suggested that the p21Ras could serve as a promising treatment target in lung cancer.

  1. Lung volumes and emphysema in smokers with interstitial lung abnormalities.

    Washko, George R; Hunninghake, Gary M; Fernandez, Isis E; Nishino, Mizuki; Okajima, Yuka; Yamashiro, Tsuneo; Ross, James C; Estépar, Raúl San José; Lynch, David A; Brehm, John M; Andriole, Katherine P; Diaz, Alejandro A; Khorasani, Ramin; D'Aco, Katherine; Sciurba, Frank C; Silverman, Edwin K; Hatabu, Hiroto; Rosas, Ivan O

    2011-03-10

    Cigarette smoking is associated with emphysema and radiographic interstitial lung abnormalities. The degree to which interstitial lung abnormalities are associated with reduced total lung capacity and the extent of emphysema is not known. We looked for interstitial lung abnormalities in 2416 (96%) of 2508 high-resolution computed tomographic (HRCT) scans of the lung obtained from a cohort of smokers. We used linear and logistic regression to evaluate the associations between interstitial lung abnormalities and HRCT measurements of total lung capacity and emphysema. Interstitial lung abnormalities were present in 194 (8%) of the 2416 HRCT scans evaluated. In statistical models adjusting for relevant covariates, interstitial lung abnormalities were associated with reduced total lung capacity (-0.444 liters; 95% confidence interval [CI], -0.596 to -0.292; Ppulmonary disease (COPD) (odds ratio, 0.53; 95% CI, 0.37 to 0.76; P<0.001). The effect of interstitial lung abnormalities on total lung capacity and emphysema was dependent on COPD status (P<0.02 for the interactions). Interstitial lung abnormalities were positively associated with both greater exposure to tobacco smoke and current smoking. In smokers, interstitial lung abnormalities--which were present on about 1 of every 12 HRCT scans--were associated with reduced total lung capacity and a lesser amount of emphysema. (Funded by the National Institutes of Health and the Parker B. Francis Foundation; ClinicalTrials.gov number, NCT00608764.).

  2. Identification of Novel Targets for Lung Cancer Therapy Using an Induced Pluripotent Stem Cell Model.

    Shukla, Vivek; Rao, Mahadev; Zhang, Hongen; Beers, Jeanette; Wangsa, Darawalee; Wangsa, Danny; Buishand, Floryne O; Wang, Yonghong; Yu, Zhiya; Stevenson, Holly; Reardon, Emily; McLoughlin, Kaitlin C; Kaufman, Andrew; Payabyab, Eden; Hong, Julie A; Zhang, Mary; Davis, Sean R; Edelman, Daniel C; Chen, Guokai; Miettinen, Markku; Restifo, Nicholas; Ried, Thomas; Meltzer, Paul S; Schrump, David S

    2018-04-01

    Despite extensive studies, the genetic and epigenetic mechanisms that mediate initiation and progression of lung cancers have not been fully elucidated. Previously, we have demonstrated that via complementary mechanisms, including DNA methylation, polycomb repressive complexes, and noncoding RNAs, cigarette smoke induces stem-like phenotypes that coincide with progression to malignancy in normal respiratory epithelia as well as enhanced growth and metastatic potential of lung cancer cells. To further investigate epigenetic mechanisms contributing to stemness/pluripotency in lung cancers and potentially identify novel therapeutic targets in these malignancies, induced pluripotent stem cells were generated from normal human small airway epithelial cells. Lung induced pluripotent stem cells were generated by lentiviral transduction of small airway epithelial cells of OSKM (Yamanaka) factors (octamer-binding transcription factor 4 [Oct4], sex-determining region Y box 2 [SOX2], Kruppel-like factor 4 [KLF4], and MYC proto-oncogene, bHLH transcription factor [MYC]). Western blot, real-time polymerase chain reaction, and chromatin immunoprecipitation sequencing analysis were performed. The lung induced pluripotent stem cells exhibited hallmarks of pluripotency, including morphology, surface antigen and stem cell gene expression, in vitro proliferation, and teratoma formation. In addition, lung induced pluripotent stem cells exhibited no chromosomal aberrations, complete silencing of reprogramming transgenes, genomic hypermethylation, upregulation of genes encoding components of polycomb repressive complex 2, hypermethylation of stem cell polycomb targets, and modulation of more than 15,000 other genes relative to parental small airway epithelial cells. Additional sex combs like-3 (ASXL3), encoding a polycomb repressive complex 2-associated protein not previously described in reprogrammed cells, was markedly upregulated in lung induced pluripotent stem cell as well as human

  3. Genomic profiling toward precision medicine in non-small cell lung cancer: getting beyond EGFR

    Richer AL

    2015-02-01

    Full Text Available Amanda L Richer,1 Jacqueline M Friel,1 Vashti M Carson,2 Landon J Inge,1 Timothy G Whitsett2 1Norton Thoracic Institute, St Joseph’s Hospital and Medical Center, 2Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA Abstract: Lung cancer remains the leading cause of cancer-related mortality worldwide. The application of next-generation genomic technologies has offered a more comprehensive look at the mutational landscape across the different subtypes of non-small cell lung cancer (NSCLC. A number of recurrent mutations such as TP53, KRAS, and epidermal growth factor receptor (EGFR have been identified in NSCLC. While targeted therapeutic successes have been demonstrated in the therapeutic targeting of EGFR and ALK, the majority of NSCLC tumors do not harbor these genomic events. This review looks at the current treatment paradigms for lung adenocarcinomas and squamous cell carcinomas, examining genomic aberrations that dictate therapy selection, as well as novel therapeutic strategies for tumors harboring mutations in KRAS, TP53, and LKB1 which, to date, have been considered “undruggable”. A more thorough understanding of the molecular alterations that govern NSCLC tumorigenesis, aided by next-generation sequencing, will lead to targeted therapeutic options expected to dramatically reduce the high mortality rate observed in lung cancer. Keywords: non-small cell lung cancer, precision medicine, epidermal growth factor receptor, Kirsten rat sarcoma viral oncogene homolog, serine/threonine kinase 11, tumor protein p53

  4. Clinical and genetic features of lung squamous cell cancer in never-smokers

    Zhang, Yang; Li, Hang; Cheng, Chao; Zheng, Difan; Zheng, Shanbo; Li, Yuan; Shen, Xuxia; Hu, Haichuan; Cai, Deng; Wang, Shengfei; Zhang, Yawei; Xiang, Jiaqing; Sun, Yihua; Zhang, Jie; Chen, Haiquan

    2016-01-01

    To evaluate the importance of specific driver mutations to the development and outcome of lung squamous cell cancer (SQCC) in never-smokers, we assessed the clinicopathological characteristics and outcomes of 597 patients who underwent complete resection of SQCCs. In total, 88 (14.7%) never-smokers and 509 (85.3%) ever-smokers were compared. The never-smokers included more females (42.05% vs. 1.57%, P never-smokers were more often poorly differentiated (70.45% vs. 53.24%, P = 0.010) and more often contained oncogenic mutations (21.05% vs 11.05%, P = 0.023), particularly EGFR mutations (13.16% vs 3.40%, P = 0.001). Never-smokers also tended to have poorer OS than smokers. Our results suggest lung SQCCs in never-smokers are a subtype distinct from SQCCs occurring in smokers. PMID:27092882

  5. Clinical and genetic features of lung squamous cell cancer in never-smokers.

    Huang, Yangle; Wang, Rui; Pan, Yunjian; Zhang, Yang; Li, Hang; Cheng, Chao; Zheng, Difan; Zheng, Shanbo; Li, Yuan; Shen, Xuxia; Hu, Haichuan; Cai, Deng; Wang, Shengfei; Zhang, Yawei; Xiang, Jiaqing; Sun, Yihua; Zhang, Jie; Chen, Haiquan

    2016-06-14

    To evaluate the importance of specific driver mutations to the development and outcome of lung squamous cell cancer (SQCC) in never-smokers, we assessed the clinicopathological characteristics and outcomes of 597 patients who underwent complete resection of SQCCs. In total, 88 (14.7%) never-smokers and 509 (85.3%) ever-smokers were compared. The never-smokers included more females (42.05% vs. 1.57%, P smokers were more often poorly differentiated (70.45% vs. 53.24%, P = 0.010) and more often contained oncogenic mutations (21.05% vs 11.05%, P = 0.023), particularly EGFR mutations (13.16% vs 3.40%, P = 0.001). Never-smokers also tended to have poorer OS than smokers. Our results suggest lung SQCCs in never-smokers are a subtype distinct from SQCCs occurring in smokers.

  6. Understanding personal risk of oropharyngeal cancer: risk-groups for oncogenic oral HPV infection and oropharyngeal cancer.

    D'Souza, G; McNeel, T S; Fakhry, C

    2017-12-01

    Incidence of human papillomavirus (HPV)-related oropharyngeal cancer is increasing. There is interest in identifying healthy individuals most at risk for development of oropharyngeal cancer to inform screening strategies. All data are from 2009 to 2014, including 13 089 people ages 20-69 in the National Health and Nutrition Examination Survey (NHANES), oropharyngeal cancer cases from the Surveillance, Epidemiology, and End Results (SEER 18) registries (representing ∼28% of the US population), and oropharyngeal cancer mortality from National Center for Health Statistics (NCHS). Primary study outcomes are (i) prevalence of oncogenic HPV DNA in an oral rinse and gargle sample, and (ii) incident oropharyngeal squamous cell cancer. Oncogenic oral HPV DNA is detected in 3.5% of all adults age 20-69 years; however, the lifetime risk of oropharyngeal cancer is low (37 per 10 000). Among men 50-59 years old, 8.1% have an oncogenic oral HPV infection, 2.1% have an oral HPV16 infection, yet only 0.7% will 'ever' develop oropharyngeal cancer in their lifetime. Oncogenic oral HPV prevalence was higher in men than women, and increased with number of lifetime oral sexual partners and tobacco use. Men who currently smoked and had ≥5 lifetime oral sexual partners had 'elevated risk' (prevalence = 14.9%). Men with only one of these risk factors (i.e. either smoked and had 2-4 partners or did not smoke and had ≥5 partners) had 'medium risk' (7.3%). Regardless of what other risk factors participants had, oncogenic oral HPV prevalence was 'low' among those with only ≤1 lifetime oral sexual partner (women = 0.7% and men = 1.7%). Screening based upon oncogenic oral HPV detection would be challenging. Most groups have low oncogenic oral HPV prevalence. In addition to the large numbers of individuals who would need to be screened to identify prevalent oncogenic oral HPV, the lifetime risk of developing oropharyngeal caner among those with infection remains

  7. Preanalytics in lung cancer.

    Warth, Arne; Muley, Thomas; Meister, Michael; Weichert, Wilko

    2015-01-01

    Preanalytic sampling techniques and preparation of tissue specimens strongly influence analytical results in lung tissue diagnostics both on the morphological but also on the molecular level. However, in contrast to analytics where tremendous achievements in the last decade have led to a whole new portfolio of test methods, developments in preanalytics have been minimal. This is specifically unfortunate in lung cancer, where usually only small amounts of tissue are at hand and optimization in all processing steps is mandatory in order to increase the diagnostic yield. In the following, we provide a comprehensive overview on some aspects of preanalytics in lung cancer from the method of sampling over tissue processing to its impact on analytical test results. We specifically discuss the role of preanalytics in novel technologies like next-generation sequencing and in the state-of the-art cytology preparations. In addition, we point out specific problems in preanalytics which hamper further developments in the field of lung tissue diagnostics.

  8. Lung surgery - discharge

    ... Lung biopsy - discharge; Thoracoscopy - discharge; Video-assisted thoracoscopic surgery - discharge; VATS - discharge ... milk) for 2 weeks after video-assisted thoracoscopic surgery and 6 to 8 weeks after open surgery. ...

  9. Diffuse cavitary lung lesions

    Grunzke, Mindy; Garrington, Timothy [University of Colorado Denver, Department of Pediatrics, Aurora, CO (United States); The Children' s Hospital, Rick Wilson Center for Cancer and Blood Disorders, Aurora, CO (United States); Hayes, Kari [The Children' s Hospital, Pediatric Radiology, Aurora, CO (United States); Bourland, Wendy [Children' s Hospital at St. Francis, Warren Clinic, Inc., Tulsa, OK (United States)

    2010-02-15

    An 11-year-old girl presented with a 2-month history of progressively worsening cough, daily fevers, and weight loss. A chest radiograph revealed multiple cystic cavitary lung lesions. An extensive infectious work-up was negative. Chest CT verified multiple cavitary lung lesions bilaterally, and [F-18]2-fluoro-2-deoxy-D-glucose ({sup 18}F-FDG) positron emission tomography with CT (PET/CT) showed increased uptake in the lung lesions as well as regional lymph nodes. Subsequent biopsy of an involved lymph node confirmed classical Hodgkin lymphoma, nodular sclerosis type. This case represents an unusual presentation for a child with Hodgkin lymphoma and demonstrates a role for {sup 18}F-FDG PET/CT in evaluating a child with cavitary lung lesions. (orig.)

  10. Diffuse cavitary lung lesions

    Grunzke, Mindy; Garrington, Timothy; Hayes, Kari; Bourland, Wendy

    2010-01-01

    An 11-year-old girl presented with a 2-month history of progressively worsening cough, daily fevers, and weight loss. A chest radiograph revealed multiple cystic cavitary lung lesions. An extensive infectious work-up was negative. Chest CT verified multiple cavitary lung lesions bilaterally, and [F-18]2-fluoro-2-deoxy-D-glucose ( 18 F-FDG) positron emission tomography with CT (PET/CT) showed increased uptake in the lung lesions as well as regional lymph nodes. Subsequent biopsy of an involved lymph node confirmed classical Hodgkin lymphoma, nodular sclerosis type. This case represents an unusual presentation for a child with Hodgkin lymphoma and demonstrates a role for 18 F-FDG PET/CT in evaluating a child with cavitary lung lesions. (orig.)

  11. Lungs in TSC

    ... must be done in the hospital under general anesthesia. In general, lung biopsy is not required to ... be helpful for some LAM patients who have asthma like symptoms of wheezing and intermittent shortness of ...

  12. Traumatic lung hernia

    Rabaza, M. J.; Alcazar, P. P.; Touma, C.

    2001-01-01

    Lung hernia is an uncommon entity that is defined as the protrusion of the lung parenchyma through a defect in the thoracic cavity. It is classified on the basis of its location (cervical, intercostal and diaphragmatic) and etiology (congenital and acquired). Acquired lung hernias can be further grouped as spontaneous, traumatic or pathological, depending on the responsible mechanism. Nearly half of them are secondary to chest trauma, whether penetrating or blunt. We present a case of lung hernia in a patient with penetrating chest trauma. The diagnosis was suspected from the radiographic images and was confirmed by computed tomography. We also review the literature concerning its classification and incidence, diagnostic methods used and treatment. (Author) 9 refs

  13. PEComa of the lung

    Vijayabhaskar R

    2010-01-01

    Full Text Available Perivascular epithelioid cell tumor (PEComa, also called clear cell ′′sugar′′ tumor of the lung, is a rare benign tumor arising from perivascular epithelioid cells (PECs. We report a case of a 15-year-old boy who presented with right lower lobe lesion which turned out to be a clear cell tumor of the lung. An [18F]-fluoro-2-deoxy-D-glucose (FDG - positron emission tomography (PET scan revealed mild FDG uptake in the lung lesion (SUV< 1 with no active uptake elsewhere in the body. We discuss the clinical, radiologic and immunohistochemical features of clear cell ′′sugar′′ tumor of lung and compare them with published literature.

  14. Arterioscanning of lungs

    Petrovskij, B.V.; Rabkin, I.Kh.; Matevosov, A.L.

    1980-01-01

    Studied is lung microcirculation by means of introducting radioactive albumin (MAA 131 I introduction through a catheter) in bronchial vessels. Arterioscanning technique and its peculiarities are described in detail. It is established that results of arterioscanning must be estimated taking into account the nature of MAA 131 I distribution and fixation, counting rate and duration of radioactive registration in the range of pathologic neoplasms. It is shown that arterioscanning permits to reveal the 20-80 μm diameter vessels . This method can be one of the most important ones in the early diagnosis of lung cancer. The data on the diagnostic effectiveness of lung bronchial arteriography and arterioscanning in the cases of chronic inflammatory diseases, tuberculosis and some benigh lung tumours and neoplasms are also presented

  15. Lung cancer imaging

    Ravenel, James G

    2013-01-01

    This book provides a guide to the diagnosis, staging and overview of the management of lung cancer relevant to practicing radiologists so that they can better understand the decision making issues and provide more useful communication to treating physicians.

  16. Lung Cancer Trends

    ... the Biggest Cancer Killer in Both Men and Women” Stay Informed Trends for Other Kinds of Cancer Breast Cervical Colorectal (Colon) Ovarian Prostate Skin Cancer Home Lung Cancer Trends Language: English Español (Spanish) Recommend ...

  17. PTPRZ1 regulates calmodulin phosphorylation and tumor progression in small-cell lung carcinoma

    Makinoshima, Hideki; Ishii, Genichiro; Kojima, Motohiro; Fujii, Satoshi; Higuchi, Youichi; Kuwata, Takeshi; Ochiai, Atsushi

    2012-01-01

    Small-cell lung carcinoma (SCLC) is a neuroendocrine tumor subtype and comprises approximately 15% of lung cancers. Because SCLC is still a disease with a poor prognosis and limited treatment options, there is an urgent need to develop targeted molecular agents for this disease. We screened 20 cell lines from a variety of pathological phenotypes established from different organs by RT-PCR. Paraffin-embedded tissue from 252 primary tumors was examined for PTPRZ1 expression using immunohistochemistry. shRNA mediated PTPRZ1 down-regulation was used to study impact on tyrosine phosphorylation and in vivo tumor progression in SCLC cell lines. Here we show that PTPRZ1, a member of the protein tyrosine- phosphatase receptor (PTPR) family, is highly expressed in SCLC cell lines and specifically exists in human neuroendocrine tumor (NET) tissues. We also demonstrate that binding of the ligand of PTPRZ1, pleiotrophin (PTN), activates the PTN/PTPRZ1 signaling pathway to induce tyrosine phosphorylation of calmodulin (CaM) in SCLC cells, suggesting that PTPRZ1 is a regulator of tyrosine phosphorylation in SCLC cells. Furthermore, we found that PTPRZ1 actually has an important oncogenic role in tumor progression in the murine xenograft model. PTPRZ1 was highly expressed in human NET tissues and PTPRZ1 is an oncogenic tyrosine phosphatase in SCLCs. These results imply that a new signaling pathway involving PTPRZ1 could be a feasible target for treatment of NETs

  18. Dosimetric lung models

    James, A.C.; Roy, M.

    1986-01-01

    The anatomical and physiological factors that vary with age and influence the deposition of airborne radionuclides in the lung are reviewed. The efficiency with which aerosols deposit in the lung for a given exposure at various ages from birth to adulthood is evaluated. Deposition within the lung is considered in relation to the clearance mechanisms acting in different regions or compartments. The procedure for evaluating dose to sensitive tissues in lung and transfer to other organs that is being considered by the Task Group established by ICRP to review the Lung Model is outlined. Examples of the application of this modelling procedure to evaluate lung dose as a function of age are given, for exposure to radon daughters in dwellings, and for exposure to an insoluble 239 Pu aerosol. The former represents exposure to short-lived radionuclides that deliver relatively high doses to bronchial tissue. In this case, dose rates are marginally higher in children than in adults. Plutonium exposure represents the case where dose is predominantly delivered to respiratory tissue and lymph nodes. In this case, the life-time doses tend to be lower for exposure in childhood. Some of the uncertainties in this modelling procedure are noted

  19. Induction of non-apoptotic programmed cell death by oncogenic RAS in human epithelial cells and its suppression by MYC overexpression.

    Dendo, Kasumi; Yugawa, Takashi; Nakahara, Tomomi; Ohno, Shin-Ichi; Goshima, Naoki; Arakawa, Hirofumi; Kiyono, Tohru

    2018-02-09

    Oncogenic mutations of RAS genes, found in about 30% of human cancers, are considered to play important roles in cancer development. However, oncogenic RAS can also induce senescence in mouse and human normal fibroblasts. In some cell lines, oncogenic RAS has been reported to induce non-apoptotic programed cell death (PCD). Here, we investigated effects of oncogenic RAS expression in several types of normal human epithelial cells. Oncogenic RAS but not wild-type RAS stimulated macropinocytosis with accumulation of large-phase lucent vacuoles in the cytoplasm, subsequently leading to cell death which was indistinguishable from a recently proposed new type of PCD, methuosis. A RAC1 inhibitor suppressed accumulation of macropinosomes and overexpression of MYC attenuated oncogenic RAS-induced such accumulation, cell cycle arrest and cell death. MYC suppression or rapamycin treatment in some cancer cell lines harbouring oncogenic mutations in RAS genes induced cell death with accumulation of macropinosomes. These results suggest that this type of non-apoptotic PCD is a tumour-suppressing mechanism acting against oncogenic RAS mutations in normal human epithelial cells, which can be overcome by MYC overexpression, raising the possibility that its induction might be a novel approach to treatment of RAS-mutated human cancers. © The Author(s) 2017. Published by Oxford University Press.

  20. Marek’s disease herpesvirus vaccines integrate into chicken host chromosomes yet lack a virus-host phenotype associated with oncogenic transformation

    Marek's disease (MD) is a lymphotrophic and oncogenic disease of chickens that can lead to death in susceptible and unimmunized host birds. The causative pathogen, Marek's disease virus (MDV), a highly oncogenic alphaherpesvirus, integrates into host genome near the telomeres during viral latency an...

  1. FACTORES PRONOSTICOS DEL CANCER DE MAMA Y ONCOGEN HER2/NEU

    F.J. Martín Gil

    2006-08-01

    Full Text Available ABSTRACT: PRONOSTIC FACTORS OF BREAST CANCER AND HER2/NEUThe breast cancer constitutes the main cause of death by cancer in women of our country. In spite of the efforts directed in campaigns of precocious detection, the incidence continues increasing in a 1% approximately per year and the rate of mortality stay constant. Therefore it is of great importance to consolidate efforts directed towards the development and use of therapeutic and diagnostic methods. The development of neoplasia is directly related to successive genetic mutations in which cellular oncogenes are involved.It is known that in case of breast cancer the Her2/neu oncogene (Human epidermal growth receptor-2 factor is amplified and/or overexpressed in approximately a 30% of the cases. The knowledge of a positive result for Her2/neu overexpression has an important value in prognosis as it is associated to a greater aggressiveness of the disease. Also, this gene can be an answer marker to certain treatments like trastuzumab. RESUMEN:El cáncer de mama (CM constituye la principal causa de muerte por cáncer en mujeres de nuestro país. A pesar de los esfuerzos dirigidos hacia las campañas de detección precoz, la incidencia sigue aumentando aproximadamente en un 1% por año y la tasa de mortalidad sigue manteniéndose constante.Es por ello de gran importancia aunar esfuerzos dirigidos al desarrollo y utilización de métodos diagnósticos y terapéuticos. El desarrollo de una neoplasia está directamente relacionado con mutaciones genéticas sucesivas en las que están involucrados oncogenes celulares.En el caso del cáncer de mama se sabe que el encogen Her2/neu (Human epidermal growth factor receptor-2 está amplificado y/o sobreexpresado en aproximadamente un 30% de los casos. El conocimiento de la positividad del mismo tiene un importante valor pronóstico asociándose a una mayor agresividad de la enfermedad. Así mismo dicho gen puede ser un marcador predictivo de respuesta

  2. Role of cannabinoid receptor CB2 in HER2 pro-oncogenic signaling in breast cancer.

    Pérez-Gómez, Eduardo; Andradas, Clara; Blasco-Benito, Sandra; Caffarel, María M; García-Taboada, Elena; Villa-Morales, María; Moreno, Estefanía; Hamann, Sigrid; Martín-Villar, Ester; Flores, Juana M; Wenners, Antonia; Alkatout, Ibrahim; Klapper, Wolfram; Röcken, Christoph; Bronsert, Peter; Stickeler, Elmar; Staebler, Annette; Bauer, Maret; Arnold, Norbert; Soriano, Joaquim; Pérez-Martínez, Manuel; Megías, Diego; Moreno-Bueno, Gema; Ortega-Gutiérrez, Silvia; Artola, Marta; Vázquez-Villa, Henar; Quintanilla, Miguel; Fernández-Piqueras, José; Canela, Enric I; McCormick, Peter J; Guzmán, Manuel; Sánchez, Cristina

    2015-06-01

    Pharmacological activation of cannabinoid receptors elicits antitumoral responses in different cancer models. However, the biological role of these receptors in tumor physio-pathology is still unknown. We analyzed CB2 cannabinoid receptor protein expression in two series of 166 and 483 breast tumor samples operated in the University Hospitals of Kiel, Tübingen, and Freiburg between 1997 and 2010 and CB2 mRNA expression in previously published DNA microarray datasets. The role of CB2 in oncogenesis was studied by generating a mouse line that expresses the human V-Erb-B2 Avian Erythroblastic Leukemia Viral Oncogene Homolog 2 (HER2) rat ortholog (neu) and lacks CB2 and by a variety of biochemical and cell biology approaches in human breast cancer cells in culture and in vivo, upon modulation of CB2 expression by si/shRNAs and overexpression plasmids. CB2-HER2 molecular interaction was studied by colocalization, coimmunoprecipitation, and proximity ligation assays. Statistical tests were two-sided. We show an association between elevated CB2 expression in HER2+ breast tumors and poor patient prognosis (decreased overall survival, hazard ratio [HR] = 0.29, 95% confidence interval [CI] = 0.09 to 0.71, P = .009) and higher probability to suffer local recurrence (HR = 0.09, 95% CI = 0.049 to 0.54, P = .003) and to develop distant metastases (HR = 0.33, 95% CI = 0.13 to 0.75, P = .009). We also demonstrate that genetic inactivation of CB2 impairs tumor generation and progression in MMTV-neu mice. Moreover, we show that HER2 upregulates CB2 expression by activating the transcription factor ELK1 via the ERK cascade and that an increased CB2 expression activates the HER2 pro-oncogenic signaling at the level of the tyrosine kinase c-SRC. Finally, we show HER2 and CB2 form heteromers in cancer cells. Our findings reveal an unprecedented role of CB2 as a pivotal regulator of HER2 pro-oncogenic signaling in breast cancer, and they suggest that CB2 may be a biomarker with

  3. Resting potential, oncogene-induced tumorigenesis, and metastasis: the bioelectric basis of cancer in vivo

    Lobikin, Maria; Chernet, Brook; Lobo, Daniel; Levin, Michael

    2012-12-01

    Cancer may result from localized failure of instructive cues that normally orchestrate cell behaviors toward the patterning needs of the organism. Steady-state gradients of transmembrane voltage (Vmem) in non-neural cells are instructive, epigenetic signals that regulate pattern formation during embryogenesis and morphostatic repair. Here, we review molecular data on the role of bioelectric cues in cancer and present new findings in the Xenopus laevis model on how the microenvironment's biophysical properties contribute to cancer in vivo. First, we investigated the melanoma-like phenotype arising from serotonergic signaling by ‘instructor’ cells—a cell population that is able to induce a metastatic phenotype in normal melanocytes. We show that when these instructor cells are depolarized, blood vessel patterning is disrupted in addition to the metastatic phenotype induced in melanocytes. Surprisingly, very few instructor cells need to be depolarized for the hyperpigmentation phenotype to occur; we present a model of antagonistic signaling by serotonin receptors that explains the unusual all-or-none nature of this effect. In addition to the body-wide depolarization-induced metastatic phenotype, we investigated the bioelectrical properties of tumor-like structures induced by canonical oncogenes and cancer-causing compounds. Exposure to carcinogen 4-nitroquinoline 1-oxide (4NQO) induces localized tumors, but has a broad (and variable) effect on the bioelectric properties of the whole body. Tumors induced by oncogenes show aberrantly high sodium content, representing a non-invasive diagnostic modality. Importantly, depolarized transmembrane potential is not only a marker of cancer but is functionally instructive: susceptibility to oncogene-induced tumorigenesis is significantly reduced by forced prior expression of hyperpolarizing ion channels. Importantly, the same effect can be achieved by pharmacological manipulation of endogenous chloride channels, suggesting

  4. Arsenic trioxide inhibits cell proliferation and human papillomavirus oncogene expression in cervical cancer cells

    Wang, Hongtao [Department of Pathology, School of Medicine, Southeast University, Nanjing 210009 (China); Gao, Peng [Department of Internal Medicine, University of Iowa, Iowa City, IA 52242 (United States); Zheng, Jie, E-mail: jiezheng54@126.com [Department of Pathology, School of Medicine, Southeast University, Nanjing 210009 (China)

    2014-09-05

    Highlights: • As{sub 2}O{sub 3} inhibits growth of cervical cancer cells and expression of HPV oncogenes in these cells. • HPV-negative cervical cancer cells are more sensitive to As{sub 2}O{sub 3} than HPV-positive cervical cancer cells. • HPV-18 positive cervical cancer cells are more sensitive to As{sub 2}O{sub 3} than HPV-16 positive cancer cells. • Down-regulation of HPV oncogenes by As{sub 2}O{sub 3} is partially due to the diminished AP-1 binding. - Abstract: Arsenic trioxide (As{sub 2}O{sub 3}) has shown therapeutic effects in some leukemias and solid cancers. However, the molecular mechanisms of its anticancer efficacy have not been clearly elucidated, particularly in solid cancers. Our previous data showed that As{sub 2}O{sub 3} induced apoptosis of human papillomavirus (HPV) 16 DNA-immortalized human cervical epithelial cells and cervical cancer cells and inhibited the expression of HPV oncogenes in these cells. In the present study, we systemically examined the effects of As{sub 2}O{sub 3} on five human cervical cancer cell lines and explored the possible molecular mechanisms. MTT assay showed that HPV-negative C33A cells were more sensitive to growth inhibition induced by As{sub 2}O{sub 3} than HPV-positive cervical cancer cells, and HPV 18-positive HeLa and C4-I cells were more sensitive to As{sub 2}O{sub 3} than HPV 16-positive CaSki and SiHa cells. After As{sub 2}O{sub 3} treatment, both mRNA and protein levels of HPV E6 and E7 obviously decreased in all HPV positive cell lines. In contrast, p53 and Rb protein levels increased in all tested cell lines. Transcription factor AP-1 protein expression decreased significantly in HeLa, CaSki and C33A cells with ELISA method. These results suggest that As{sub 2}O{sub 3} is a potential anticancer drug for cervical cancer.

  5. Genetic variations and alternative splicing. The Glioma associated oncogene 1, GLI1.

    Peter eZaphiropoulos

    2012-07-01

    Full Text Available Alternative splicing is a post-transcriptional regulatory process that is attaining stronger recognition as a modulator of gene expression. Alternative splicing occurs when the primary RNA transcript is differentially processed into more than one mature RNAs. This is the result of a variable definition/inclusion of the exons, the sequences that are excised from the primary RNA to form the mature RNAs. Consequently, RNA expression can generate a collection of differentially spliced RNAs, which may distinctly influence subsequent biological events, such as protein synthesis or other biomolecular interactions. Still the mechanisms that control exon definition and exon inclusion are not fully clarified. This mini-review highlights advances in this field as well as the impact of single nucleotide polymorphisms in affecting splicing decisions. The Glioma associated oncogene 1, GLI1, is taken as an example in addressing the role of nucleotide substitutions for splicing regulation.

  6. Comparison of the incidence of oncogenic transformation produced by x-rays, misonidazole, and chemotherapy agents

    Hall, E.J.; Miller, R.C.; Osmak, R.; Zimmerman, M.

    1982-01-01

    An established line of mouse fibroblasts (10T1/2 cells) cultured in vitro was used to compare the incidence of oncogenic transformation produced by x rays, the hypoxic cell radiosensitizer misonidazole, and a range of commonly used chemotherapy agents. A 3-day exposure to misonidazole at a concentration obtainable during treatment produced an incidence of transformation similar to that of about 50 rad. When chemotherapy agents were tested at concentrations comparable to those used clinically and matched to produce similar cell killing, the incidence of transformation varied widely: some agents, such as vincristine, did not produce transformation at a level detectable above background, while others, such as cis-plantinum, appear to be potent carcinogens and produce transformation at a rate orders of magnitude higher than that achieved with x rays

  7. Luminal epithelial cells within the mammary gland can produce basal cells upon oncogenic stress.

    Hein, S M; Haricharan, S; Johnston, A N; Toneff, M J; Reddy, J P; Dong, J; Bu, W; Li, Y

    2016-03-17

    In the normal mammary gland, the basal epithelium is known to be bipotent and can generate either basal or luminal cells, whereas the luminal epithelium has not been demonstrated to contribute to the basal compartment in an intact and normally developed mammary gland. It is not clear whether cellular heterogeneity within a breast tumor results from transformation of bipotent basal cells or from transformation and subsequent basal conversion of the more differentiated luminal cells. Here we used a retroviral vector to express an oncogene specifically in a small number of the mammary luminal epithelial cells and tested their potential to produce basal cells during tumorigenesis. This in-vivo lineage-tracing work demonstrates that luminal cells are capable of producing basal cells on activation of either polyoma middle T antigen or ErbB2 signaling. These findings reveal the plasticity of the luminal compartment during tumorigenesis and provide an explanation for cellular heterogeneity within a cancer.

  8. A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region.

    Bellacosa, A; Testa, J R; Staal, S P; Tsichlis, P N

    1991-10-11

    The v-akt oncogene codes for a 105-kilodalton fusion phosphoprotein containing Gag sequences at its amino terminus. Sequence analysis of v-akt and biochemical characterization of its product revealed that it codes for a protein kinase C-related serine-threonine kinase whose cellular homolog is expressed in most tissues, with the highest amount found in thymus. Although Akt is a serine-threonine kinase, part of its regulatory region is similar to the Src homology-2 domain, a structural motif characteristic of cytoplasmic tyrosine kinases that functions in protein-protein interactions. This suggests that Akt may form a functional link between tyrosine and serine-threonine phosphorylation pathways.

  9. Oncogenic driver genes and the inflammatory microenvironment dictate liver tumor phenotype

    Matter, Matthias S; Marquardt, Jens U; Andersen, Jesper B

    2016-01-01

    The majority of hepatocellular carcinoma (HCC) develops in the background of chronic liver inflammation caused by viral hepatitis and alcoholic or non-alcoholic steatohepatitis. However, the impact of different types of chronic inflammatory microenvironments on the phenotypes of tumors generated...... with transcriptome profiles from human HCCs further demonstrated that AKT-CAT tumors generated in the context of chronic liver inflammation showed enrichment of poor prognosis gene sets or decrease of good prognosis gene sets. In contrast, DDC had a more subtle effect on AKT-NRAS(G12V) tumors and primarily enhanced...... by distinct oncogenes is largely unresolved. To address this issue, we generated murine liver tumors by constitutively active AKT-1 (AKT) and β-catenin (CAT) followed by induction of chronic liver inflammation by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) and carbon tetrachloride (CCl4 ). Also...

  10. Characterization of a novel oncogenic K-ras mutation in colon cancer

    Akagi, Kiwamu; Uchibori, Ryosuke; Yamaguchi, Kensei; Kurosawa, Keiko; Tanaka, Yoichiro; Kozu, Tomoko

    2007-01-01

    Activating mutations of RAS are frequently observed in subsets of human cancers, indicating that RAS activation is involved in tumorigenesis. Here, we identified and characterized a novel G to T transversion mutation of the K-ras gene at the third position of codon 19 (TTG) which substituted phenylalanine for leucine in 3 primary colon carcinomas. Biological and biochemical activity was examined using transformed NIH3T3 cells expressing mutant or wild-type K-ras. Transformants harboring the K-ras mutation at codon 19 showed proliferative capacity under serum-starved conditions, less contact inhibition, anchorage-independent growth, tumorigenicity in nude mice and elevation of active Ras-GTP levels. These results indicated that this novel mutation possesses high oncogenic activity

  11. STAT5-mediated expression of oncogenic miR-155 in cutaneous T-cell lymphoma

    Kopp, Katharina L; Ralfkiaer, Ulrik; Gjerdrum, Lise Mette R

    2013-01-01

    show that malignant T cells constitutively express high levels of miR-155 and its host gene BIC (B cell integration cluster). Using ChIP-seq, we identify BIC as a target of transcription factor STAT5, which is aberrantly activated in malignant T cells and induced by IL-2/IL-15 in non-malignant T cells...... of BIC/miR-155 expression by STAT5 is highly specific. Malignant proliferation is significantly inhibited by an antisense-miR-155 as well as by knockdown of STAT5 and BIC.   In conclusion, we provide the first evidence that STAT5 drives expression of oncogenic BIC/miR-155 in cancer. Moreover, our data...

  12. Enhancer-Mediated Oncogenic Function of the Menin Tumor Suppressor in Breast Cancer

    Koen M.A. Dreijerink

    2017-03-01

    Full Text Available While the multiple endocrine neoplasia type 1 (MEN1 gene functions as a tumor suppressor in a variety of cancer types, we explored its oncogenic role in breast tumorigenesis. The MEN1 gene product menin is involved in H3K4 trimethylation and co-activates transcription. We integrated ChIP-seq and RNA-seq data to identify menin target genes. Our analysis revealed that menin-dependent target gene promoters display looping to distal enhancers that are bound by menin, FOXA1 and GATA3. In this fashion, MEN1 co-regulates a proliferative breast cancer-specific gene expression program in ER+ cells. In primary mammary cells, MEN1 exerts an anti-proliferative function by regulating a distinct expression signature. Our findings clarify the cell-type-specific functions of MEN1 and inform the development of menin-directed treatments for breast cancer.

  13. Conditional Selection of Genomic Alterations Dictates Cancer Evolution and Oncogenic Dependencies.

    Mina, Marco; Raynaud, Franck; Tavernari, Daniele; Battistello, Elena; Sungalee, Stephanie; Saghafinia, Sadegh; Laessle, Titouan; Sanchez-Vega, Francisco; Schultz, Nikolaus; Oricchio, Elisa; Ciriello, Giovanni

    2017-08-14

    Cancer evolves through the emergence and selection of molecular alterations. Cancer genome profiling has revealed that specific events are more or less likely to be co-selected, suggesting that the selection of one event depends on the others. However, the nature of these evolutionary dependencies and their impact remain unclear. Here, we designed SELECT, an algorithmic approach to systematically identify evolutionary dependencies from alteration patterns. By analyzing 6,456 genomes from multiple tumor types, we constructed a map of oncogenic dependencies associated with cellular pathways, transcriptional readouts, and therapeutic response. Finally, modeling of cancer evolution shows that alteration dependencies emerge only under conditional selection. These results provide a framework for the design of strategies to predict cancer progression and therapeutic response. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. The Role of the PAX8/PPARγ Fusion Oncogene in Thyroid Cancer

    Kimberly A. Placzkowski

    2008-01-01

    Full Text Available Thyroid cancer is uncommon and exhibits relatively low mortality rates. However, a subset of patients experience inexorable growth, metastatic spread, and mortality. Unfortunately, for these patients, there have been few significant advances in treatment during the last 50 years. While substantial advances have been made in recent years about the molecular genetic events underlying papillary thyroid cancer, the more aggressive follicular thyroid cancer remains poorly understood. The recent discovery of the PAX8/PPARγ translocation in follicular thyroid carcinoma has promoted progress in the role of PPARγ as a tumor suppressor and potential therapeutic target. The PAX8/PPARγ fusion gene appears to be an oncogene. It is most often expressed in follicular carcinomas and exerts a dominant-negative effect on wild-type PPARγ, and stimulates transcription of PAX8-responsive promoters. PPARγ agonists have shown promising results in vitro, although very few studies have been conducted to assess the clinical impact of these agents.

  15. Expression of ras oncogene and major histocompatibility complex (MHC) antigen in carcinomas of the uterine cervix

    Cho, Kyung Ja; Jang, Ja June; Kim, Yong Dae; Ha, Chang Won; Koh, Jae Soo

    1993-01-01

    Consecutive 50 cases of squamous cell carcinomas of the uterine cervix diagnosed in 1992 were subjected to immunohistochemical study for ras oncogene product (p21) and MHC class II (DR) antigen using a microprobe immunostainer. Activated ras and aberrant DR expression were noted in 26 cases (52%) and 11 cases (22%) of cervical squamous cell carcinomas, respectively, without difference among histologic types. The reaction was mainly intracytoplasmic, with granular staining pattern and diffuse distribution. No direct histologic correlation between ras and DR expression was found. Four cases with HPV 16/18 DNA in superficial koilocytotic cells, revealed by in situ hybridization, showed various expression of ras and DR, and these 3 factors histologically did not seem to be affected one another. (Author)

  16. Loss of heterozygosity of chromosome 15 in human lung carcinomas

    Mitchell, C.E.; Palmisano, W.A.; Lechner, J.F.

    1994-01-01

    Loss of heterozygosity (LOH) in tumors may be associated with the inactivation of tumor suppressor genes. A tumor suppressor gene for lung cancer may reside on chromosome 15, because deletions in this chromosome are frequently observed. Recently, it was reported that a newly discovered gene, GTPase-activating protein-3 (GAP3) maps to chromosome 15. GAP3 is a member of a family of GAP-related genes. Although the precise function of GAP3 is not known, it is thought that GAP3 is involved in the regulation of ras-like GTPase activities. Ras proteins have a low intrinsic activity, and their inactivation is dependent on GAPS in vivo. Oncogenic mutants of ras proteins, for example, at codons 12, 13, or 61, are resistant to GAP-mediated GTPase stimulation and are constituitively locked in their active, GTP-bound states. The purpose of this investigation was to determine the frequency and extent of LOH of GAP3 in a group of patients with lung cancer

  17. The aging lung

    Lowery EM

    2013-11-01

    Full Text Available Erin M Lowery,1 Aleah L Brubaker,2 Erica Kuhlmann,1 Elizabeth J Kovacs31Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine at Loyola University Medical Center, 2Loyola University Stritch School of Medicine, 3Department of Surgery, Loyola University Medical Center, Maywood, IL, USAAbstract: There are many age-associated changes in the respiratory and pulmonary immune system. These changes include decreases in the volume of the thoracic cavity, reduced lung volumes, and alterations in the muscles that aid respiration. Muscle function on a cellular level in the aging population is less efficient. The elderly population has less pulmonary reserve, and cough strength is decreased in the elderly population due to anatomic changes and muscle atrophy. Clearance of particles from the lung through the mucociliary elevator is decreased and associated with ciliary dysfunction. Many complex changes in immunity with aging contribute to increased susceptibility to infections including a less robust immune response from both the innate and adaptive immune systems. Considering all of these age-related changes to the lungs, pulmonary disease has significant consequences for the aging population. Chronic lower respiratory tract disease is the third leading cause of death in people aged 65 years and older. With a large and growing aging population, it is critical to understand how the body changes with age and how this impacts the entire respiratory system. Understanding the aging process in the lung is necessary in order to provide optimal care to our aging population. This review focuses on the nonpathologic aging process in the lung, including structural changes, changes in muscle function, and pulmonary immunologic function, with special consideration of obstructive lung disease in the elderly.Keywords: aging, lung, pulmonary immunology, COPD

  18. Complete coding sequence of the human raf oncogene and the corresponding structure of the c-raf-1 gene

    Bonner, T I; Oppermann, H; Seeburg, P; Kerby, S B; Gunnell, M A; Young, A C; Rapp, U R

    1986-01-24

    The complete 648 amino acid sequence of the human raf oncogene was deduced from the 2977 nucleotide sequence of a fetal liver cDNA. The cDNA has been used to obtain clones which extend the human c-raf-1 locus by an additional 18.9 kb at the 5' end and contain all the remaining coding exons.

  19. Analysis of nucleo-cytoplasmic shuttling of the proto-oncogene SET/I2PP2A

    Lam, B. Daniel; Anthony, Eloise C.; Hordijk, Peter L.

    2012-01-01

    SET/I2PP2A is a nuclear protein that was initially identified as an oncogene in human undifferentiated acute myeloid leukemia, fused to the nuclear porin Nup-214. In addition, SET is a potent inhibitior of the phosphatase PP2A. Previously, we proposed a model in which the small GTPase Rac1 recruits

  20. Reverse engineering of TLX oncogenic transcriptional networks identifies RUNX1 as tumor suppressor in T-ALL.

    Della Gatta, Giusy; Palomero, Teresa; Perez-Garcia, Arianne; Ambesi-Impiombato, Alberto; Bansal, Mukesh; Carpenter, Zachary W; De Keersmaecker, Kim; Sole, Xavier; Xu, Luyao; Paietta, Elisabeth; Racevskis, Janis; Wiernik, Peter H; Rowe, Jacob M; Meijerink, Jules P; Califano, Andrea; Ferrando, Adolfo A

    2012-02-26

    The TLX1 and TLX3 transcription factor oncogenes have a key role in the pathogenesis of T cell acute lymphoblastic leukemia (T-ALL). Here we used reverse engineering of global transcriptional networks to decipher the oncogenic regulatory circuit controlled by TLX1 and TLX3. This systems biology analysis defined T cell leukemia homeobox 1 (TLX1) and TLX3 as master regulators of an oncogenic transcriptional circuit governing T-ALL. Notably, a network structure analysis of this hierarchical network identified RUNX1 as a key mediator of the T-ALL induced by TLX1 and TLX3 and predicted a tumor-suppressor role for RUNX1 in T cell transformation. Consistent with these results, we identified recurrent somatic loss-of-function mutations in RUNX1 in human T-ALL. Overall, these results place TLX1 and TLX3 at the top of an oncogenic transcriptional network controlling leukemia development, show the power of network analyses to identify key elements in the regulatory circuits governing human cancer and identify RUNX1 as a tumor-suppressor gene in T-ALL.

  1. Oncogene alterations in carcinomas of the uterine cervix: overexpression of the epidermal growth factor receptor is associated with poor prognosis

    Kersemaekers, A. M.; Fleuren, G. J.; Kenter, G. G.; van den Broek, L. J.; Uljee, S. M.; Hermans, J.; van de Vijver, M. J.

    1999-01-01

    The involvement of human papillomavirus (HPV) in the development of carcinomas of the uterine cervix has been firmly established. However, other genetic alterations also play an important role in the pathogenesis of cervical cancer. Therefore, we have investigated the role of several (onco)genes in

  2. Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Schaub, Franz X.; Dhankani, Varsha; Berger, Ashton C.; Trivedi, Mihir; Richardson, Anne B.; Shaw, Reid; Zhao, Wei; Zhang, Xiaoyang; Ventura, Andrea; Liu, Yuexin; Ayer, Donald E.; Hurlin, Peter J.; Cherniack, Andrew D.; Eisenman, Robert N.; Bernard, Brady; Grandori, Carla; Caesar-Johnson, Samantha J.; Demchok, John A.; Felau, Ina; Kasapi, Melpomeni; Ferguson, Martin L.; Hutter, Carolyn M.; Sofia, Heidi J.; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean C.; Zhang, Jiashan (Julia); Chudamani, Sudha; Liu, Jia; Lolla, Laxmi; Naresh, Rashi; Pihl, Todd; Sun, Qiang; Wan, Yunhu; Wu, Ye; Cho, Juok; DeFreitas, Timothy; Frazer, Scott; Gehlenborg, Nils; Getz, Gad; Heiman, David I.; Kim, Jaegil; Lawrence, Michael S.; Lin, Pei; Meier, Sam; Noble, Michael S.; Saksena, Gordon; Voet, Doug; Zhang, Hailei; Bernard, Brady; Chambwe, Nyasha; Dhankani, Varsha; Knijnenburg, Theo; Kramer, Roger; Leinonen, Kalle; Liu, Yuexin; Miller, Michael; Reynolds, Sheila; Shmulevich, Ilya; Thorsson, Vesteinn; Zhang, Wei; Akbani, Rehan; Broom, Bradley M.; Hegde, Apurva M.; Ju, Zhenlin; Kanchi, Rupa S.; Korkut, Anil; Li, Jun; Liang, Han; Ling, Shiyun; Liu, Wenbin; Lu, Yiling; Mills, Gordon B.; Ng, Kwok Shing; Rao, Arvind; Ryan, Michael; Wang, Jing; Weinstein, John N.; Zhang, Jiexin; Abeshouse, Adam; Armenia, Joshua; Chakravarty, Debyani; Chatila, Walid K.; de Bruijn, Ino; Gao, Jianjiong; Gross, Benjamin E.; Heins, Zachary J.; Kundra, Ritika; La, Konnor; Ladanyi, Marc; Luna, Augustin; Nissan, Moriah G.; Ochoa, Angelica; Phillips, Sarah M.; Reznik, Ed; Sanchez-Vega, Francisco; Sander, Chris; Schultz, Nikolaus; Sheridan, Robert; Sumer, S. Onur; Sun, Yichao; Taylor, Barry S.; Wang, Jioajiao; Zhang, Hongxin; Anur, Pavana; Peto, Myron; Spellman, Paul; Benz, Christopher; Stuart, Joshua M.; Wong, Christopher K.; Yau, Christina; Hayes, D. Neil; Parker, Joel S.; Wilkerson, Matthew D.; Ally, Adrian; Balasundaram, Miruna; Bowlby, Reanne; Brooks, Denise; Carlsen, Rebecca; Chuah, Eric; Dhalla, Noreen; Holt, Robert; Jones, Steven J.M.; Kasaian, Katayoon; Lee, Darlene; Ma, Yussanne; Marra, Marco A.; Mayo, Michael; Moore, Richard A.; Mungall, Andrew J.; Mungall, Karen; Robertson, A. Gordon; Sadeghi, Sara; Schein, Jacqueline E.; Sipahimalani, Payal; Tam, Angela; Thiessen, Nina; Tse, Kane; Wong, Tina; Berger, Ashton C.; Beroukhim, Rameen; Cherniack, Andrew D.; Cibulskis, Carrie; Gabriel, Stacey B.; Gao, Galen F.; Ha, Gavin; Meyerson, Matthew; Schumacher, Steven E.; Shih, Juliann; Kucherlapati, Melanie H.; Kucherlapati, Raju S.; Baylin, Stephen; Cope, Leslie; Danilova, Ludmila; Bootwalla, Moiz S.; Lai, Phillip H.; Maglinte, Dennis T.; Van Den Berg, David J.; Weisenberger, Daniel J.; Auman, J. Todd; Balu, Saianand; Bodenheimer, Tom; Fan, Cheng; Hoadley, Katherine A.; Hoyle, Alan P.; Jefferys, Stuart R.; Jones, Corbin D.; Meng, Shaowu; Mieczkowski, Piotr A.; Mose, Lisle E.; Perou, Amy H.; Perou, Charles M.; Roach, Jeffrey; Shi, Yan; Simons, Janae V.; Skelly, Tara; Soloway, Matthew G.; Tan, Donghui; Veluvolu, Umadevi; Fan, Huihui; Hinoue, Toshinori; Laird, Peter W.; Shen, Hui; Zhou, Wanding; Bellair, Michelle; Chang, Kyle; Covington, Kyle; Creighton, Chad J.; Dinh, Huyen; Doddapaneni, Harsha Vardhan; Donehower, Lawrence A.; Drummond, Jennifer; Gibbs, Richard A.; Glenn, Robert; Hale, Walker; Han, Yi; Hu, Jianhong; Korchina, Viktoriya; Lee, Sandra; Lewis, Lora; Li, Wei; Liu, Xiuping; Morgan, Margaret; Morton, Donna; Muzny, Donna; Santibanez, Jireh; Sheth, Margi; Shinbrot, Eve; Wang, Linghua; Wang, Min; Wheeler, David A.; Xi, Liu; Zhao, Fengmei; Hess, Julian; Appelbaum, Elizabeth L.; Bailey, Matthew; Cordes, Matthew G.; Ding, Li; Fronick, Catrina C.; Fulton, Lucinda A.; Fulton, Robert S.; Kandoth, Cyriac; Mardis, Elaine R.; McLellan, Michael D.; Miller, Christopher A.; Schmidt, Heather K.; Wilson, Richard K.; Crain, Daniel; Curley, Erin; Gardner, Johanna; Lau, Kevin; Mallery, David; Morris, Scott; Paulauskis, Joseph; Penny, Robert; Shelton, Candace; Shelton, Troy; Sherman, Mark; Thompson, Eric; Yena, Peggy; Bowen, Jay; Gastier-Foster, Julie M.; Gerken, Mark; Leraas, Kristen M.; Lichtenberg, Tara M.; Ramirez, Nilsa C.; Wise, Lisa; Zmuda, Erik; Corcoran, Niall; Costello, Tony; Hovens, Christopher; Carvalho, Andre L.; de Carvalho, Ana C.; Fregnani, José H.; Longatto-Filho, Adhemar; Reis, Rui M.; Scapulatempo-Neto, Cristovam; Silveira, Henrique C.S.; Vidal, Daniel O.; Burnette, Andrew; Eschbacher, Jennifer; Hermes, Beth; Noss, Ardene; Singh, Rosy; Anderson, Matthew L.; Castro, Patricia D.; Ittmann, Michael; Huntsman, David; Kohl, Bernard; Le, Xuan; Thorp, Richard; Andry, Chris; Duffy, Elizabeth R.; Lyadov, Vladimir; Paklina, Oxana; Setdikova, Galiya; Shabunin, Alexey; Tavobilov, Mikhail; McPherson, Christopher; Warnick, Ronald; Berkowitz, Ross; Cramer, Daniel; Feltmate, Colleen; Horowitz, Neil; Kibel, Adam; Muto, Michael; Raut, Chandrajit P.; Malykh, Andrei; Barnholtz-Sloan, Jill S.; Barrett, Wendi; Devine, Karen; Fulop, Jordonna; Ostrom, Quinn T.; Shimmel, Kristen; Wolinsky, Yingli; Sloan, Andrew E.; De Rose, Agostino; Giuliante, Felice; Goodman, Marc; Karlan, Beth Y.; Hagedorn, Curt H.; Eckman, John; Harr, Jodi; Myers, Jerome; Tucker, Kelinda; Zach, Leigh Anne; Deyarmin, Brenda; Hu, Hai; Kvecher, Leonid; Larson, Caroline; Mural, Richard J.; Somiari, Stella; Vicha, Ales; Zelinka, Tomas; Bennett, Joseph; Iacocca, Mary; Rabeno, Brenda; Swanson, Patricia; Latour, Mathieu; Lacombe, Louis; Têtu, Bernard; Bergeron, Alain; McGraw, Mary; Staugaitis, Susan M.; Chabot, John; Hibshoosh, Hanina; Sepulveda, Antonia; Su, Tao; Wang, Timothy; Potapova, Olga; Voronina, Olga; Desjardins, Laurence; Mariani, Odette; Roman-Roman, Sergio; Sastre, Xavier; Stern, Marc Henri; Cheng, Feixiong; Signoretti, Sabina; Berchuck, Andrew; Bigner, Darell; Lipp, Eric; Marks, Jeffrey; McCall, Shannon; McLendon, Roger; Secord, Angeles; Sharp, Alexis; Behera, Madhusmita; Brat, Daniel J.; Chen, Amy; Delman, Keith; Force, Seth; Khuri, Fadlo; Magliocca, Kelly; Maithel, Shishir; Olson, Jeffrey J.; Owonikoko, Taofeek; Pickens, Alan; Ramalingam, Suresh; Shin, Dong M.; Sica, Gabriel; Van Meir, Erwin G.; Zhang, Hongzheng; Eijckenboom, Wil; Gillis, Ad; Korpershoek, Esther; Looijenga, Leendert; Oosterhuis, Wolter; Stoop, Hans; van Kessel, Kim E.; Zwarthoff, Ellen C.; Calatozzolo, Chiara; Cuppini, Lucia; Cuzzubbo, Stefania; DiMeco, Francesco; Finocchiaro, Gaetano; Mattei, Luca; Perin, Alessandro; Pollo, Bianca; Chen, Chu; Houck, John; Lohavanichbutr, Pawadee; Hartmann, Arndt; Stoehr, Christine; Stoehr, Robert; Taubert, Helge; Wach, Sven; Wullich, Bernd; Kycler, Witold; Murawa, Dawid; Wiznerowicz, Maciej; Chung, Ki; Edenfield, W. Jeffrey; Martin, Julie; Baudin, Eric; Bubley, Glenn; Bueno, Raphael; De Rienzo, Assunta; Richards, William G.; Kalkanis, Steven; Mikkelsen, Tom; Noushmehr, Houtan; Scarpace, Lisa; Girard, Nicolas; Aymerich, Marta; Campo, Elias; Giné, Eva; Guillermo, Armando López; Van Bang, Nguyen; Hanh, Phan Thi; Phu, Bui Duc; Tang, Yufang; Colman, Howard; Evason, Kimberley; Dottino, Peter R.; Martignetti, John A.; Gabra, Hani; Juhl, Hartmut; Akeredolu, Teniola; Stepa, Serghei; Hoon, Dave; Ahn, Keunsoo; Kang, Koo Jeong; Beuschlein, Felix; Breggia, Anne; Birrer, Michael; Bell, Debra; Borad, Mitesh; Bryce, Alan H.; Castle, Erik; Chandan, Vishal; Cheville, John; Copland, John A.; Farnell, Michael; Flotte, Thomas; Giama, Nasra; Ho, Thai; Kendrick, Michael; Kocher, Jean Pierre; Kopp, Karla; Moser, Catherine; Nagorney, David; O'Brien, Daniel; O'Neill, Brian Patrick; Patel, Tushar; Petersen, Gloria; Que, Florencia; Rivera, Michael; Roberts, Lewis; Smallridge, Robert; Smyrk, Thomas; Stanton, Melissa; Thompson, R. Houston; Torbenson, Michael; Yang, Ju Dong; Zhang, Lizhi; Brimo, Fadi; Ajani, Jaffer A.; Angulo Gonzalez, Ana Maria; Behrens, Carmen; Bondaruk, Jolanta; Broaddus, Russell; Czerniak, Bogdan; Esmaeli, Bita; Fujimoto, Junya; Gershenwald, Jeffrey; Guo, Charles; Lazar, Alexander J.; Logothetis, Christopher; Meric-Bernstam, Funda; Moran, Cesar; Ramondetta, Lois; Rice, David; Sood, Anil; Tamboli, Pheroze; Thompson, Timothy; Troncoso, Patricia; Tsao, Anne; Wistuba, Ignacio; Carter, Candace; Haydu, Lauren; Hersey, Peter; Jakrot, Valerie; Kakavand, Hojabr; Kefford, Richard; Lee, Kenneth; Long, Georgina; Mann, Graham; Quinn, Michael; Saw, Robyn; Scolyer, Richard; Shannon, Kerwin; Spillane, Andrew; Stretch, Jonathan; Synott, Maria; Thompson, John; Wilmott, James; Al-Ahmadie, Hikmat; Chan, Timothy A.; Ghossein, Ronald; Gopalan, Anuradha; Levine, Douglas A.; Reuter, Victor; Singer, Samuel; Singh, Bhuvanesh; Tien, Nguyen Viet; Broudy, Thomas; Mirsaidi, Cyrus; Nair, Praveen; Drwiega, Paul; Miller, Judy; Smith, Jennifer; Zaren, Howard; Park, Joong Won; Hung, Nguyen Phi; Kebebew, Electron; Linehan, W. Marston; Metwalli, Adam R.; Pacak, Karel; Pinto, Peter A.; Schiffman, Mark; Schmidt, Laura S.; Vocke, Cathy D.; Wentzensen, Nicolas; Worrell, Robert; Yang, Hannah; Moncrieff, Marc; Goparaju, Chandra; Melamed, Jonathan; Pass, Harvey; Botnariuc, Natalia; Caraman, Irina; Cernat, Mircea; Chemencedji, Inga; Clipca, Adrian; Doruc, Serghei; Gorincioi, Ghenadie; Mura, Sergiu; Pirtac, Maria; Stancul, Irina; Tcaciuc, Diana; Albert, Monique; Alexopoulou, Iakovina; Arnaout, Angel; Bartlett, John; Engel, Jay; Gilbert, Sebastien; Parfitt, Jeremy; Sekhon, Harman; Thomas, George; Rassl, Doris M.; Rintoul, Robert C.; Bifulco, Carlo; Tamakawa, Raina; Urba, Walter; Hayward, Nicholas; Timmers, Henri; Antenucci, Anna; Facciolo, Francesco; Grazi, Gianluca; Marino, Mirella; Merola, Roberta; de Krijger, Ronald; Gimenez-Roqueplo, Anne Paule; Piché, Alain; Chevalier, Simone; McKercher, Ginette; Birsoy, Kivanc; Barnett, Gene; Brewer, Cathy; Farver, Carol; Naska, Theresa; Pennell, Nathan A.; Raymond, Daniel; Schilero, Cathy; Smolenski, Kathy; Williams, Felicia; Morrison, Carl; Borgia, Jeffrey A.; Liptay, Michael J.; Pool, Mark; Seder, Christopher W.; Junker, Kerstin; Omberg, Larsson; Dinkin, Mikhail; Manikhas, George; Alvaro, Domenico; Bragazzi, Maria Consiglia; Cardinale, Vincenzo; Carpino, Guido; Gaudio, Eugenio; Chesla, David; Cottingham, Sandra; Dubina, Michael; Moiseenko, Fedor; Dhanasekaran, Renumathy; Becker, Karl Friedrich; Janssen, Klaus Peter; Slotta-Huspenina, Julia; Abdel-Rahman, Mohamed H.; Aziz, Dina; Bell, Sue; Cebulla, Colleen M.; Davis, Amy; Duell, Rebecca; Elder, J. Bradley; Hilty, Joe; Kumar, Bahavna; Lang, James; Lehman, Norman L.; Mandt, Randy; Nguyen, Phuong; Pilarski, Robert; Rai, Karan; Schoenfield, Lynn; Senecal, Kelly; Wakely, Paul; Hansen, Paul; Lechan, Ronald; Powers, James; Tischler, Arthur; Grizzle, William E.; Sexton, Katherine C.; Kastl, Alison; Henderson, Joel; Porten, Sima; Waldmann, Jens; Fassnacht, Martin; Asa, Sylvia L.; Schadendorf, Dirk; Couce, Marta; Graefen, Markus; Huland, Hartwig; Sauter, Guido; Schlomm, Thorsten; Simon, Ronald; Tennstedt, Pierre; Olabode, Oluwole; Nelson, Mark; Bathe, Oliver; Carroll, Peter R.; Chan, June M.; Disaia, Philip; Glenn, Pat; Kelley, Robin K.; Landen, Charles N.; Phillips, Joanna; Prados, Michael; Simko, Jeffry; Smith-McCune, Karen; VandenBerg, Scott; Roggin, Kevin; Fehrenbach, Ashley; Kendler, Ady; Sifri, Suzanne; Steele, Ruth; Jimeno, Antonio; Carey, Francis; Forgie, Ian; Mannelli, Massimo; Carney, Michael; Hernandez, Brenda; Campos, Benito; Herold-Mende, Christel; Jungk, Christin; Unterberg, Andreas; von Deimling, Andreas; Bossler, Aaron; Galbraith, Joseph; Jacobus, Laura; Knudson, Michael; Knutson, Tina; Ma, Deqin; Milhem, Mohammed; Sigmund, Rita; Godwin, Andrew K.; Madan, Rashna; Rosenthal, Howard G.; Adebamowo, Clement; Adebamowo, Sally N.; Boussioutas, Alex; Beer, David; Giordano, Thomas; Mes-Masson, Anne Marie; Saad, Fred; Bocklage, Therese; Landrum, Lisa; Mannel, Robert; Moore, Kathleen; Moxley, Katherine; Postier, Russel; Walker, Joan; Zuna, Rosemary; Feldman, Michael; Valdivieso, Federico; Dhir, Rajiv; Luketich, James; Mora Pinero, Edna M.; Quintero-Aguilo, Mario; Carlotti, Carlos Gilberto; Dos Santos, Jose Sebastião; Kemp, Rafael; Sankarankuty, Ajith; Tirapelli, Daniela; Catto, James; Agnew, Kathy; Swisher, Elizabeth; Creaney, Jenette; Robinson, Bruce; Shelley, Carl Simon; Godwin, Eryn M.; Kendall, Sara; Shipman, Cassaundra; Bradford, Carol; Carey, Thomas; Haddad, Andrea; Moyer, Jeffey; Peterson, Lisa; Prince, Mark; Rozek, Laura; Wolf, Gregory; Bowman, Rayleen; Fong, Kwun M.; Yang, Ian; Korst, Robert; Rathmell, W. Kimryn; Fantacone-Campbell, J. Leigh; Hooke, Jeffrey A.; Kovatich, Albert J.; Shriver, Craig D.; DiPersio, John; Drake, Bettina; Govindan, Ramaswamy; Heath, Sharon; Ley, Timothy; Van Tine, Brian; Westervelt, Peter; Rubin, Mark A.; Lee, Jung Il; Aredes, Natália D.; Mariamidze, Armaz

    2018-01-01

    Although the MYC oncogene has been implicated in cancer, a systematic assessment of alterations of MYC, related transcription factors, and co-regulatory proteins, forming the proximal MYC network (PMN), across human cancers is lacking. Using computational approaches, we define genomic and proteomic

  3. The oncogenic action of ionizing radiation on rat skin: Progress report, February 1, 1988-January 31, 1989

    Burns, F.J.; Garte, S.J.

    1988-01-01

    Progress is described in 3 general areas corresponding to the specific aims of the proposal, including DNA strand breaks in the epidermis as a function of radiation penetration; oncogene activation in radiation-induced rat skin cancers; and carcinogenesis in rat skin induced by the neon ion beam. Numerous experiments have established that DNA strand breaks per unit dose in the rat epidermis are reduced by about 60% when the radiation penetration is reduced from 1.0 mm to 0.2 mm. The activation of oncogenes in the radiation-induced rat skin cancers followed a pattern. Four highly malignant cancers exhibited activation of K-ras and c-myc oncogenes, while the remaining 8 cancers exhibited only one or the other of these 2 oncogenes. Of 5 squamous carcinomas, 4 showed K-ras activation and 1 showed c-myc activation. Approximately 200 rats were exposed to the neon ion beam at the Bevalac in Berkeley, CA. The carcinogenicity of energetic electrons (2.0 MeV) was determined in conjunction with the neon ion experiment. It is too early to evaluate tumor incidence in the neon ion experiment, but for electrons an unusually large excess of connective tissue tumors, fibromas and sarcomas, have been observed so far. 59 refs., 2 tabs

  4. Expression of hepatocyte growth factor and the proto-oncogenic receptor c-Met in canine osteosarcoma

    Fieten, H; Spee, B; Ijzer, J; Kik, M J; Penning, L C; Kirpensteijn, J

    Hepatocyte growth factor (HGF) and the proto-oncogenic receptor c-Met are implicated in growth, invasion, and metastasis in human cancer. Little information is available on the expression and role of both gene products in canine osteosarcoma. We hypothesized that the expression of c-Met is

  5. Selective elimination of high constitutive activity or chemokine binding in the human herpesvirus 8 encoded seven transmembrane oncogene ORF74

    Rosenkilde, M M; Kledal, T N; Holst, Peter Johannes

    2000-01-01

    Open reading frame 74 (ORF74) encoded by human herpesvirus 8 is a highly constitutively active seven transmembrane (7TM) receptor stimulated by angiogenic chemokines, e.g. growth-related oncogene-alpha, and inhibited by angiostatic chemokines e.g. interferon-gamma-inducible protein. Transgenic mice...

  6. Agonists and inverse agonists for the herpesvirus 8-encoded constitutively active seven-transmembrane oncogene product, ORF-74

    Rosenkilde, M M; Kledal, T N; Bräuner-Osborne, Hans

    1999-01-01

    A number of CXC chemokines competed with similar, nanomolar affinity against 125I-interleukin-8 (IL-8) binding to ORF-74, a constitutively active seven-transmembrane receptor encoded by human herpesvirus 8. However, in competition against 125I-labeled growth-related oncogene (GRO)-alpha, the ORF-74...

  7. The Homeodomain Transcription Factor Cdx1 Does Not Behave as an Oncogene in Normal Mouse Intestine1

    Crissey, Mary Ann S; Guo, Rong-Jun; Fogt, Franz; Li, Hong; Katz, Jonathan P; Silberg, Debra G; Suh, Eun Ran; Lynch, John P

    2008-01-01

    The Caudal-related homeobox genes Cdx1 and Cdx2 are intestine-specific transcription factors that regulate differentiation of intestinal cell types. Previously, we have shown Cdx1 to be antiproliferative and to promote cell differentiation. However, other studies have suggested that Cdx1 may be an oncogene. To test for oncogenic behavior, we used the murine villin promoter to ectopically express Cdx1 in the small intestinal villi and colonic surface epithelium. No changes in intestinal architecture, cell differentiation, or lineage selection were observed with expression of the transgene. Classic oncogenes enhance proliferation and induce tumors when ectopically expressed. However, the Cdx1 transgene neither altered intestinal proliferation nor induced spontaneous intestinal tumors. In a murine model for colitis-associated cancer, the Cdx1 transgene decreased, rather than increased, the number of adenomas that developed. In the polyps, the expression of the endogenous and the transgenic Cdx1 proteins was largely absent, whereas endogenous Villin expression was retained. This suggests that transgene silencing was specific and not due to a general Villin inactivation. In conclusion, neither the ectopic expression of Cdx1 was associated with changes in intestinal cell proliferation or differentiation nor was there increased intestinal cancer susceptibility. Our results therefore suggest that Cdx1 is not an oncogene in normal intestinal epithelium. PMID:18231635

  8. Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor

    Copp& #233; , Jean-Philippe; Patil, Christopher; Rodier, Francis; Sun, Yu; Munoz, Denise; Goldstein, Joshua; Nelson, Peter; Desprez, Pierre-Yves; Campisi, Judith

    2008-10-24

    Cellular senescence suppresses cancer by arresting cell proliferation, essentially permanently, in response to oncogenic stimuli, including genotoxic stress. We modified the use of antibody arrays to provide a quantitative assessment of factors secreted by senescent cells. We show that human cells induced to senesce by genotoxic stress secrete myriad factors associated with inflammation and malignancy. This senescence-associated secretory phenotype (SASP) developed slowly over several days and only after DNA damage of sufficient magnitude to induce senescence. Remarkably similar SASPs developed in normal fibroblasts, normal epithelial cells, and epithelial tumor cells after genotoxic stress in culture, and in epithelial tumor cells in vivo after treatment of prostate cancer patients with DNA-damaging chemotherapy. In cultured premalignant epithelial cells, SASPs induced an epithelial-mesenchyme transition and invasiveness, hallmarks of malignancy, by a paracrine mechanism that depended largely on the SASP factors interleukin (IL)-6 and IL-8. Strikingly, two manipulations markedly amplified, and accelerated development of, the SASPs: oncogenic RAS expression, which causes genotoxic stress and senescence in normal cells, and functional loss of the p53 tumor suppressor protein. Both loss of p53 and gain of oncogenic RAS also exacerbated the promalignant paracrine activities of the SASPs. Our findings define a central feature of genotoxic stress-induced senescence. Moreover, they suggest a cell-nonautonomous mechanism by which p53 can restrain, and oncogenic RAS can promote, the development of age-related cancer by altering the tissue microenvironment.

  9. Ultrasensitive quantitation of human papillomavirus type 16 E6 oncogene sequences by nested real time PCR

    López-Revilla Rubén

    2010-05-01

    Full Text Available Abstract Background We have developed an ultrasensitive method based on conventional PCR preamplification followed by nested amplification through real time PCR (qPCR in the presence of the DNA intercalating agent EvaGreen. Results Amplification mixtures calibrated with a known number of pHV101 copies carrying a 645 base pair (bp-long insert of the human papillomavirus type 16 (HPV16 E6 oncogene were used to generate the E6-1 amplicon of 645 bp by conventional PCR and then the E6-2 amplicon of 237 bp by nested qPCR. Direct and nested qPCR mixtures for E6-2 amplification corresponding to 2.5 × 102-2.5 × 106 initial pHV101 copies had threshold cycle (Ct values in the ranges of 18.7-29.0 and 10.0-25.0, respectively. The Ct of qPCR mixtures prepared with 1/50 volumes of preamplified mixtures containing 50 ng of DNA of the SiHa cell line (derived from an invasive cervical cancer with one HPV16 genome per cell was 19.9. Thermal fluorescence extinction profiles of E6-2 amplicons generated from pHV101 and SiHa DNA were identical, with a peak at 85.5°C. Conclusions Our method based on conventional preamplification for 15 cycles increased 10,750 times the sensitivity of nested qPCR for the quantitation of the E6 viral oncogene and confirmed that the SiHa cell line contains one E6-HPV16 copy per cell.

  10. Long-range gap junctional signaling controls oncogene-mediated tumorigenesis in Xenopus laevis embryos

    Brook T Chernet

    2015-01-01

    Full Text Available In addition to the immediate microenvironment, long-range signaling may be an important component of cancer. Molecular-genetic analyses have implicated gap junctions – key mediators of cell-cell communication – in carcinogenesis. We recently showed that the resting voltage potential of distant cell groups is a key determinant of metastatic transformation and tumor induction. Here, we show in the Xenopus laevis model that gap junctional communication (GJC is a modulator of the long-range bioelectric signaling that regulates tumor formation. Genetic disruption of GJC taking place within tumors, within remote host tissues, or between the host and tumors – significantly lowers the incidence of tumors induced by KRAS mutations. The most pronounced suppression of tumor incidence was observed upon GJC disruption taking place farther away from oncogene-expressing cells, revealing a role for GJC in distant cells in the control of tumor growth. In contrast, enhanced GJC communication through the overexpression of wild-type connexin Cx26 increased tumor incidence. Our data confirm a role for GJC in tumorigenesis, and reveal that this effect is non-local. Based on these results and on published data on movement of ions through GJs, we present a quantitative model linking the GJC coupling and bioelectrical state of cells to the ability of oncogenes to initiate tumorigenesis. When integrated with data on endogenous bioelectric signaling during left-right patterning, the model predicts differential tumor incidence outcomes depending on the spatial configurations of gap junction paths relative to tumor location and major anatomical body axes. Testing these predictions, we found that the strongest influence of GJ modulation on tumor suppression by hyperpolarization occurred along the embryonic left-right axis. Together, these data reveal new, long-range aspects of cancer control by the host’s physiological parameters.

  11. Identification of an intracellular protein that specifically interacts with photoaffinity-labeled oncogenic p21 protein

    Lee, G.; Ronai, Z.A.; Pincus, M.R.; Brandt-Rauf, P.W.; Weinstein, I.B.; Murphy, R.B.; Delohery, T.M.; Nishimura, S.; Yamaizumi, Z.

    1989-01-01

    An oncogenic 21-kDa (p21) protein (Harvey RAS protein with Val-12) has been covalently modified with a functional reagent that contains a photoactivatable aromatic azide group. This modified p21 protein has been introduced quantitatively into NIH 3T3 cells using an erythrocyte-mediated fusion technique. The introduced p21 protein was capable of inducing enhanced pinocytosis and DNA synthesis in the recipient cells. To identify the putative intracellular protein(s) that specifically interact with modified p21 protein, the cells were pulsed with [ 35 S]methionine at selected times after fusion and then UV-irradiated to activate the azide group. The resulting nitrene covalently binds to amino acid residues in adjacent proteins, thus linking the p21 protein to these proteins. The cells were then lysed, and the lysate was immunoprecipitated with the anti-p21 monoclonal antibody Y13-259. The immunoprecipitate was analyzed by SDS/PAGE to identify p21 - protein complexes. By using this technique, the authors found that three protein complexes of 51, 64, and 82 kDa were labeled specifically and reproducibly. The most prominent band is the 64-kDa protein complex that shows a time-dependent rise and fall, peaking within a 5-hr period after introduction of the p21 protein the cells. These studies provide evidence that in vitro the p21 protein becomes associated with a protein whose mass is about 43 kDa. They suggest that the formation of this complex may play a role in mediating early events involved with cell transformation induced by RAS oncogenes

  12. Identification of an intracellular protein that specifically interacts with photoaffinity-labeled oncogenic p21 protein.

    Lee, G; Ronai, Z A; Pincus, M R; Brandt-Rauf, P W; Murphy, R B; Delohery, T M; Nishimura, S; Yamaizumi, Z; Weinstein, I B

    1989-11-01

    An oncogenic 21-kDa (p21) protein (Harvey RAS protein with Val-12) has been covalently modified with a functional reagent that contains a photoactivatable aromatic azide group. This modified p21 protein has been introduced quantitatively into NIH 3T3 cells using an erythrocyte-mediated fusion technique. The introduced p21 protein was capable of inducing enhanced pinocytosis and DNA synthesis in the recipient cells. To identify the putative intracellular protein(s) that specifically interact with the modified p21 protein, the cells were pulsed with [35S]methionine at selected times after fusion and then UV-irradiated to activate the azide group. The resulting nitrene covalently binds to amino acid residues in adjacent proteins, thus linking the p21 protein to these proteins. The cells were then lysed, and the lysate was immunoprecipitated with the anti-p21 monoclonal antibody Y13-259. The immunoprecipitate was analyzed by SDS/PAGE to identify p21-protein complexes. By using this technique, we found that three protein complexes of 51, 64, and 82 kDa were labeled specifically and reproducibly. The most prominent band is the 64-kDa protein complex that shows a time-dependent rise and fall, peaking within a 5-hr period after introduction of the p21 protein into the cells. These studies provide evidence that in vitro the p21 protein becomes associated with a protein whose mass is about 43 kDa. We suggest that the formation of this complex may play a role in mediating early events involved with cell transformation induced by RAS oncogenes.

  13. Malignant transformation of diploid human fibroblasts by transfection of oncogenes: Progress report, July 1986--June 1989

    McCormick, J.J.; Maher, V.M.

    1989-01-01

    Although there is good evidence that carcinogen exposure is a major cause of human cancer, it has proven impossible to transform normal human fibroblasts or epithelial cells in culture into malignant cells by treating them with carcinogens. This failure may reflect an inability to identify and isolate cells containing one or more premalignant changes so that these can be expanded and exposed to carcinogens a second time to induce additional required changes. A second serious roadblock to the sequential introduction of changes and expansion of clonally-derived cells containing such premalignant changes in the finite life span of human cells in culture. Using transfection of specific human oncogenes in a series of specially-selected vectors, we have overcome these obstacles and have recently succeeded in generating an infinite life span diploid human cell strain MSU-1.0, which appears to be normal in all other characteristics. From that cell a second cell strain, MSU-1.1, was generated which we have been able to transform into a malignant state not only by transfecting the cells with oncogenes but also by treating them with chemical carcinogens. We now have evidence that there is not just a single linear process which results in malignant transformation. Rather, cells appear to progress to malignancy on a series of parallel, sometimes overlapping tracks. We now propose to carry out detailed studies of the specific mechanisms of malignant cell transformation using the cell strains available in this laboratory to achieve the goal of building relevant quantitative models of carcinogenesis. 29 refs

  14. Computational design of selective peptides to discriminate between similar PDZ domains in an oncogenic pathway.

    Zheng, Fan; Jewell, Heather; Fitzpatrick, Jeremy; Zhang, Jian; Mierke, Dale F; Grigoryan, Gevorg

    2015-01-30

    Reagents that target protein-protein interactions to rewire signaling are of great relevance in biological research. Computational protein design may offer a means of creating such reagents on demand, but methods for encoding targeting selectivity are sorely needed. This is especially challenging when targeting interactions with ubiquitous recognition modules--for example, PDZ domains, which bind C-terminal sequences of partner proteins. Here we consider the problem of designing selective PDZ inhibitor peptides in the context of an oncogenic signaling pathway, in which two PDZ domains (NHERF-2 PDZ2-N2P2 and MAGI-3 PDZ6-M3P6) compete for a receptor C-terminus to differentially modulate oncogenic activities. Because N2P2 has been shown to increase tumorigenicity and M3P6 to decreases it, we sought to design peptides that inhibit N2P2 without affecting M3P6. We developed a structure-based computational design framework that models peptide flexibility in binding yet is efficient enough to rapidly analyze tradeoffs between affinity and selectivity. Designed peptides showed low-micromolar inhibition constants for N2P2 and no detectable M3P6 binding. Peptides designed for reverse discrimination bound M3P6 tighter than N2P2, further testing our technology. Experimental and computational analysis of selectivity determinants revealed significant indirect energetic coupling in the binding site. Successful discrimination between N2P2 and M3P6, despite their overlapping binding preferences, is highly encouraging for computational approaches to selective PDZ targeting, especially because design relied on a homology model of M3P6. Still, we demonstrate specific deficiencies of structural modeling that must be addressed to enable truly robust design. The presented framework is general and can be applied in many scenarios to engineer selective targeting. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Lack of evidence for KRAS oncogenic mutations in triple-negative breast cancer

    Sánchez-Muñoz, Alfonso; Gallego, Elena; Luque, Vanessa de; Pérez-Rivas, Luís G; Vicioso, Luís; Ribelles, Nuria; Lozano, José; Alba, Emilio

    2010-01-01

    Mutational analysis of the KRAS gene has recently been established as a complementary in vitro diagnostic tool for the identification of patients with colorectal cancer who will not benefit from anti-epidermal growth factor receptor (EGFR) therapies. Assessment of the mutation status of KRAS might also be of potential relevance in other EGFR-overexpressing tumors, such as those occurring in breast cancer. Although KRAS is mutated in only a minor fraction of breast tumors (5%), about 60% of the basal-like subtype express EGFR and, therefore could be targeted by EGFR inhibitors. We aimed to study the mutation frequency of KRAS in that subtype of breast tumors to provide a molecular basis for the evaluation of anti-EGFR therapies. Total, genomic DNA was obtained from a group of 35 formalin-fixed paraffin-embedded, triple-negative breast tumor samples. Among these, 77.1% (27/35) were defined as basal-like by immunostaining specific for the established surrogate markers cytokeratin (CK) 5/6 and/or EGFR. KRAS mutational status was determined in the purified DNA samples by Real Time (RT)-PCR using primers specific for the detection of wild-type KRAS or the following seven oncogenic somatic mutations: Gly12Ala, Gly12Asp, Gly12Arg, Gly12Cys, Gly12Ser, Gly12Val and Gly13Asp. We found no evidence of KRAS oncogenic mutations in all analyzed tumors. This study indicates that KRAS mutations are very infrequent in triple-negative breast tumors and that EGFR inhibitors may be of potential benefit in the treatment of basal-like breast tumors, which overexpress EGFR in about 60% of all cases

  16. Reprogramming Antagonizes the Oncogenicity of HOXA13-Long Noncoding RNA HOTTIP Axis in Gastric Cancer Cells.

    Wu, Deng-Chyang; Wang, Sophie S W; Liu, Chung-Jung; Wuputra, Kenly; Kato, Kohsuke; Lee, Yen-Liang; Lin, Ying-Chu; Tsai, Ming-Ho; Ku, Chia-Chen; Lin, Wen-Hsin; Wang, Shin-Wei; Kishikawa, Shotaro; Noguchi, Michiya; Wu, Chu-Chieh; Chen, Yi-Ting; Chai, Chee-Yin; Lin, Chen-Lung Steve; Kuo, Kung-Kai; Yang, Ya-Han; Miyoshi, Hiroyuki; Nakamura, Yukio; Saito, Shigeo; Nagata, Kyosuke; Lin, Chang-Shen; Yokoyama, Kazunari K

    2017-10-01

    Reprogramming of cancer cells into induced pluripotent stem cells (iPSCs) is a compelling idea for inhibiting oncogenesis, especially through modulation of homeobox proteins in this reprogramming process. We examined the role of various long noncoding RNAs (lncRNAs)-homeobox protein HOXA13 axis on the switching of the oncogenic function of bone morphogenetic protein 7 (BMP7), which is significantly lost in the gastric cancer cell derived iPS-like cells (iPSLCs). BMP7 promoter activation occurred through the corecruitment of HOXA13, mixed-lineage leukemia 1 lysine N-methyltransferase, WD repeat-containing protein 5, and lncRNA HoxA transcript at the distal tip (HOTTIP) to commit the epigenetic changes to the trimethylation of lysine 4 on histone H3 in cancer cells. By contrast, HOXA13 inhibited BMP7 expression in iPSLCs via the corecruitment of HOXA13, enhancer of zeste homolog 2, Jumonji and AT rich interactive domain 2, and lncRNA HoxA transcript antisense RNA (HOTAIR) to various cis-element of the BMP7 promoter. Knockdown experiments demonstrated that HOTTIP contributed positively, but HOTAIR regulated negatively to HOXA13-mediated BMP7 expression in cancer cells and iPSLCs, respectively. These findings indicate that the recruitment of HOXA13-HOTTIP and HOXA13-HOTAIR to different sites in the BMP7 promoter is crucial for the oncogenic fate of human gastric cells. Reprogramming with octamer-binding protein 4 and Jun dimerization protein 2 can inhibit tumorigenesis by switching off BMP7. Stem Cells 2017;35:2115-2128. © 2017 The Authors Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  17. Natural immune responses against eight oncogenic human papillomaviruses in the ASCUS-LSIL triage study

    Wilson, Lauren E.; Pawlita, Michael; Castle, Phillip E.; Waterboer, Tim; Sahasrabuddhe, Vikrant; Gravitt, Patti E.; Schiffman, Mark; Wentzensen, Nicolas

    2014-01-01

    Only a subset of women with human papillomavirus (HPV) infections will become seropositive, and the factors influencing seroconversion are not well-understood. We used a multiplex serology assay in women with mildly abnormal cytology results to examine seroreactivity to oncogenic HPV genotypes. An unbiased subset of women in the atypical squamous cell of undetermined significance /low-grade squamous intraepithelial lesion Triage Study (ALTS) provided blood samples at trial enrollment for serological testing. A Luminex assay based on GST-L1 fusion proteins as antigens was used to test seroreactivity against eight carcinogenic HPV genotypes (16, 18, 31, 33, 35, 45, 52, 58). We analyzed the relationship between seroprevalence in women free of precancer (N=2464) and HPV DNA status, age, sexual behavior, and other HPV-related risk factors. The overall seroprevalence was 24.5% for HPV16 L1 and ~ 20% for 18L1 and 31L1. Among women free of precancer, seroprevalence peaked in women less than 29 years and decreased with age. Type-specific seroprevalence was associated with baseline DNA detection for HPV16 (OR= 1.36, 95%CI: 1.04–1.79) and HPV18 (OR= 2.31, 95%CI: 1.61–3.32), as well as for HPV52 and HPV58. Correlates of sexual exposure were associated with increased seroprevalence across most genotypes. Women who were current or former smokers were less likely to be seropositive for all eight of the tested oncogenic genotypes. The multiplex assay showed associations between seroprevalence and known risk factors for HPV infection across nearly all tested HPV genotypes but associations between DNA- and serostatus were weak, suggesting possible misclassification of the participants’ HPV serostatus. PMID:23588935

  18. p53 Loss Synergizes with Estrogen and Papillomaviral Oncogenes to Induce Cervical and Breast Cancers

    Shai, Anny; Pitot, Henry C.; Lambert, Paul F.

    2010-01-01

    Whereas the tumor suppressor p53 gene is frequently mutated in most human cancers, this is not the case in human papillomavirus (HPV)-associated cancers, presumably because the viral E6 oncoprotein inactivates the p53 protein. The ability of E6 to transform cells in tissue culture and induce cancers in mice correlates in part with its ability to inactivate p53. In this study, we compared the expression of the HPV16 E6 oncogene to the conditional genetic disruption of p53 in the context of a mouse model for cervical cancer in which estrogen is a critical cofactor. Nearly all of the K14Crep53f/f mice treated with estrogen developed cervical cancer, a stark contrast to its complete absence in like-treated K14E6WTp53f/f mice, indicating that HPV16 E6 must only partially inactivate p53. p53-independent activities of E6 also contributed to carcinogenesis, but in the female reproductive tract, these activities were manifested only in the presence of the HPV16 E7 oncogene. Interestingly, treatment of K14Crep53f/f mice with estrogen also resulted in mammary tumors after only a short latency, many of which were positive for estrogen receptor α. The majority of these mammary tumors were of mixed cell types, suggestive of their originating from a multipotent progenitor. Furthermore, a subset of mammary tumors arising in the estrogen-treated, p53-deficient mammary glands exhibited evidence of an epithelial to mesenchymal transition. These data show the importance of the synergy between estrogen and p53 insufficiency in determining basic properties of carcinogenesis in hormone-responsive tissues, such as the breast and the reproductive tract. PMID:18413729

  19. A sparse regulatory network of copy-number driven gene expression reveals putative breast cancer oncogenes.

    Yuan, Yinyin; Curtis, Christina; Caldas, Carlos; Markowetz, Florian

    2012-01-01

    Copy number aberrations are recognized to be important in cancer as they may localize to regions harboring oncogenes or tumor suppressors. Such genomic alterations mediate phenotypic changes through their impact on expression. Both cis- and transacting alterations are important since they may help to elucidate putative cancer genes. However, amidst numerous passenger genes, trans-effects are less well studied due to the computational difficulty in detecting weak and sparse signals in the data, and yet may influence multiple genes on a global scale. We propose an integrative approach to learn a sparse interaction network of DNA copy-number regions with their downstream transcriptional targets in breast cancer. With respect to goodness of fit on both simulated and real data, the performance of sparse network inference is no worse than other state-of-the-art models but with the advantage of simultaneous feature selection and efficiency. The DNA-RNA interaction network helps to distinguish copy-number driven expression alterations from those that are copy-number independent. Further, our approach yields a quantitative copy-number dependency score, which distinguishes cis- versus trans-effects. When applied to a breast cancer data set, numerous expression profiles were impacted by cis-acting copy-number alterations, including several known oncogenes such as GRB7, ERBB2, and LSM1. Several trans-acting alterations were also identified, impacting genes such as ADAM2 and BAGE, which warrant further investigation. An R package named lol is available from www.markowetzlab.org/software/lol.html.

  20. Characterization of new cell line stably expressing CHI3L1 oncogene

    Chekhonin V. P.

    2011-06-01

    Full Text Available Aim. To characterize the immortalized 293 cell line after stable transfection with human oncogene (CHI3L1. Methods. 293 cells, stably transfected with pcDNA3.1_CHI3L1, and 293 cells, stably transfected with pcDNA3.1 as a negative control, were used throughout all experiments. The clones of CHI3L1-expressing 293 cells and 293 cells, transfected with pcDNA3.1, were analyzed by immunofluorescence and confocal microscopy. Cell proliferation was measured using MTT assay; analyses of ERK1/2 and AKT activation and their cellular localization were performed with anti-phospho-ERK and anti-phospho-AKT antibodies. Specific activation of MAP and PI3 kinases was measured by densitometric analysis of Western-blot signals. Results. The obtained results show quite modest ability of CHI3L1 to stimulate cell growth and reflect rather an improved cellular plating efficiency of the 293 cells stably transfected with pcDNA3.1_CHI3L1 as compared to the 293 cells transfected with an «empty» vector. ERK1/2 and AKT are activated in the 293_CHI3L1 cells. In these cells phosphorylated ERK1/2 were localized in both cell cytoplasm and nuclei while AKT only in cytoplasm. The 293_CHI3L1 cells differed from the 293 cells, transfected with an «empty» vector, in their size and ability to adhere to the culture plates. Conclusions. The overexpression of CHI3L1 is likely to have an important role in tumorigenesis via a mechanism which involves activation of PI3K and ERK1/2 pathways. The tumors which can be induced by orthotopic implantation of the transformed human cells with overexpressed human oncogene CHI3L1 into the rat brain can be used as a target for anticancer drug development.

  1. SCD1 Expression is dispensable for hepatocarcinogenesis induced by AKT and Ras oncogenes in mice.

    Lei Li

    Full Text Available Increased de novo lipogenesis is one of the major metabolic events in cancer. In human hepatocellular carcinoma (HCC, de novo lipogenesis has been found to be increased and associated with the activation of AKT/mTOR signaling. In mice, overexpression of an activated form of AKT results in increased lipogenesis and hepatic steatosis, ultimately leading to liver tumor development. Hepatocarcinogenesis is dramatically accelerated when AKT is co-expressed with an oncogenic form of N-Ras. SCD1, the major isoform of stearoyl-CoA desaturases, catalyzing the conversion of saturated fatty acids (SFA into monounsaturated fatty acids (MUFA, is a key enzyme involved in de novo lipogenesis. While many studies demonstrated the requirement of SCD1 for tumor cell growth in vitro, whether SCD1 is necessary for tumor development in vivo has not been previously investigated. Here, we show that genetic ablation of SCD1 neither inhibits lipogenesis and hepatic steatosis in AKT-overexpressing mice nor affects liver tumor development in mice co-expressing AKT and Ras oncogenes. Molecular analysis showed that SCD2 was strongly upregulated in liver tumors from AKT/Ras injected SCD1(-/- mice. Noticeably, concomitant silencing of SCD1 and SCD2 genes was highly detrimental for the growth of AKT/Ras cells in vitro. Altogether, our study provides the evidence, for the first time, that SCD1 expression is dispensable for AKT/mTOR-dependent hepatic steatosis and AKT/Ras-induced hepatocarcinogenesis in mice. Complete inhibition of stearoyl-CoA desaturase activity may be required to efficiently suppress liver tumor development.

  2. WIP-YAP/TAZ as A New Pro-Oncogenic Pathway in Glioma

    Sergio Rivas

    2018-06-01

    Full Text Available Wild-type p53 (wtp53 is described as a tumour suppressor gene, and mutations in p53 occur in many human cancers. Indeed, in high-grade malignant glioma, numerous molecular genetics studies have established central roles of RTK-PI3K-PTEN and ARF-MDM2-p53 INK4a-RB pathways in promoting oncogenic capacity. Deregulation of these signalling pathways, among others, drives changes in the glial/stem cell state and environment that permit autonomous growth. The initially transformed cell may undergo subsequent modifications, acquiring a more complete tumour-initiating phenotype responsible for disease advancement to stages that are more aggressive. We recently established that the oncogenic activity of mutant p53 (mtp53 is driven by the actin cytoskeleton-associated protein WIP (WASP-interacting protein, correlated with tumour growth, and more importantly that both proteins are responsible for the tumour-initiating cell phenotype. We reported that WIP knockdown in mtp53-expressing glioblastoma greatly reduced proliferation and growth capacity of cancer stem cell (CSC-like cells and decreased CSC-like markers, such as hyaluronic acid receptor (CD44, prominin-1 (CD133, yes-associated protein (YAP and transcriptional co-activator with PDZ-binding motif (TAZ. We thus propose a new CSC signalling pathway downstream of mtp53 in which Akt regulates WIP and controls YAP/TAZ stability. WIP drives a mechanism that stimulates growth signals, promoting YAP/TAZ and β-catenin stability in a Hippo-independent fashion, which allows cells to coordinate processes such as proliferation, stemness and invasiveness, which are key factors in cancer progression. Based on this multistep tumourigenic model, it is tantalizing to propose that WIP inhibitors may be applied as an effective anti-cancer therapy.

  3. Kita driven expression of oncogenic HRAS leads to early onset and highly penetrant melanoma in zebrafish.

    Cristina Santoriello

    2010-12-01

    Full Text Available Melanoma is the most aggressive and lethal form of skin cancer. Because of the increasing incidence and high lethality of melanoma, animal models for continuously observing melanoma formation and progression as well as for testing pharmacological agents are needed.Using the combinatorial Gal4-UAS system, we have developed a zebrafish transgenic line that expresses oncogenic HRAS under the kita promoter. Already at 3 days transgenic kita-GFP-RAS larvae show a hyper-pigmentation phenotype as earliest evidence of abnormal melanocyte growth. By 2-4 weeks, masses of transformed melanocytes form in the tail stalk of the majority of kita-GFP-RAS transgenic fish. The adult tumors evident between 1-3 months of age faithfully reproduce the immunological, histological and molecular phenotypes of human melanoma, but on a condensed time-line. Furthermore, they show transplantability, dependence on mitfa expression and do not require additional mutations in tumor suppressors. In contrast to kita expressing melanocyte progenitors that efficiently develop melanoma, mitfa expressing progenitors in a second Gal4-driver line were 4 times less efficient in developing melanoma during the three months observation period.This indicates that zebrafish kita promoter is a powerful tool for driving oncogene expression in the right cells and at the right level to induce early onset melanoma in the presence of tumor suppressors. Thus our zebrafish model provides a link between kita expressing melanocyte progenitors and melanoma and offers the advantage of a larval phenotype suitable for large scale drug and genetic modifier screens.

  4. B-cell lymphoma 6 protein stimulates oncogenicity of human breast cancer cells

    Wu, Qiang; Kong, Xiang-jun; Xu, Xiao-chun; Lobie, Peter E; Zhu, Tao; Wu, Zheng-sheng; Liu, Xue; Yan, Hong; He, Yin-huan; Ye, Shan; Cheng, Xing-wang; Zhu, Gui-lu; Wu, Wen-yong; Wang, Xiao-nan

    2014-01-01

    B-cell lymphoma 6 (BCL6) protein, an evolutionarily conserved zinc finger transcription factor, showed to be highly expressed in various human cancers in addition to malignancies in the lymphoid system. This study investigated the role of BCL6 expression in breast cancer and its clinical significance in breast cancer patients. Expression of BCL6 protein was assessed using in situ hybridization and immunohistochemistry in 127 breast cancer patients and 50 patients with breast benign disease as well as in breast cell lines. Expression of BCL6 was restored or knocked down in two breast cancer cell lines (MCF-7 and T47D) using BCL6 cDNA and siRNA, respectively. The phenotypic change of these breast cancer cell lines was assessed using cell viability MTT, Transwell invasion, colony formation, and flow cytometry assays and in a xenograft mice model. Luciferase reporter gene, immunoblot, and qRT-PCR were used to investigate the molecular events after manipulated BCL6 expression in breast cancer cells. BCL6 protein was highly expressed in breast cancer cell lines and tissue specimens and expression of BCL6 protein was associated with disease progression and poor survival of breast cancer patients. In vitro, the forced expression of BCL6 results in increased proliferation, anchorage-independent growth, migration, invasion and survival of breast cancer cell lines, whereas knockdown of BCL6 expression reduced these oncogenic properties of breast cancer cells. Moreover, forced expression of BCL6 increased tumor growth and invasiveness in a nude mouse xenograft model. At the gene level, BCL6 was a target gene of miR-339-5p. Expression of BCL6 induced expression of CXCR4 and cyclinD1 proteins. The current study demonstrated the oncogenic property of BCL6 in breast cancer and further study could target BCL6 as a novel potential therapeutic strategy for breast cancer

  5. Mitochondrial clearance by the STK38 kinase supports oncogenic Ras-induced cell transformation

    Bettoun, Audrey; Surdez, Didier; Vallerand, David; Gundogdu, Ramazan; Sharif, Ahmad A.D.; Gomez, Marta; Cascone, Ilaria; Meunier, Brigitte; White, Michael A.; Codogno, Patrice; Parrini, Maria Carla; Camonis, Jacques H.; Hergovich, Alexander

    2016-01-01

    Oncogenic Ras signalling occurs frequently in many human cancers. However, no effective targeted therapies are currently available to treat patients suffering from Ras-driven tumours. Therefore, it is imperative to identify downstream effectors of Ras signalling that potentially represent promising new therapeutic options. Particularly, considering that autophagy inhibition can impair the survival of Ras-transformed cells in tissue culture and mouse models, an understanding of factors regulating the balance between autophagy and apoptosis in Ras-transformed human cells is needed. Here, we report critical roles of the STK38 protein kinase in oncogenic Ras transformation. STK38 knockdown impaired anoikis resistance, anchorage-independent soft agar growth, and in vivo xenograft growth of Ras-transformed human cells. Mechanistically, STK38 supports Ras-driven transformation through promoting detachment-induced autophagy. Even more importantly, upon cell detachment STK38 is required to sustain the removal of damaged mitochondria by mitophagy, a selective autophagic process, to prevent excessive mitochondrial reactive oxygen species production that can negatively affect cancer cell survival. Significantly, knockdown of PINK1 or Parkin, two positive regulators of mitophagy, also impaired anoikis resistance and anchorage-independent growth of Ras-transformed human cells, while knockdown of USP30, a negative regulator of PINK1/Parkin-mediated mitophagy, restored anchorage-independent growth of STK38-depleted Ras-transformed human cells. Therefore, our findings collectively reveal novel molecular players that determine whether Ras-transformed human cells die or survive upon cell detachment, which potentially could be exploited for the development of novel strategies to target Ras-transformed cells. PMID:27283898

  6. Prox1-Heterozygosis Sensitizes the Pancreas to Oncogenic Kras-Induced Neoplastic Transformation

    Yiannis Drosos

    2016-03-01

    Full Text Available The current paradigm of pancreatic neoplastic transformation proposes an initial step whereby acinar cells convert into acinar-to-ductal metaplasias, followed by progression of these lesions into neoplasias under sustained oncogenic activity and inflammation. Understanding the molecular mechanisms driving these processes is crucial to the early diagnostic and prevention of pancreatic cancer. Emerging evidence indicates that transcription factors that control exocrine pancreatic development could have either, protective or facilitating roles in the formation of preneoplasias and neoplasias in the pancreas. We previously identified that the homeodomain transcription factor Prox1 is a novel regulator of mouse exocrine pancreas development. Here we investigated whether Prox1 function participates in early neoplastic transformation using in vivo, in vitro and in silico approaches. We found that Prox1 expression is transiently re-activated in acinar cells undergoing dedifferentiation and acinar-to-ductal metaplastic conversion. In contrast, Prox1 expression is largely absent in neoplasias and tumors in the pancreas of mice and humans. We also uncovered that Prox1-heterozygosis markedly increases the formation of acinar-to-ductal-metaplasias and early neoplasias, and enhances features associated with inflammation, in mouse pancreatic tissues expressing oncogenic Kras. Furthermore, we discovered that Prox1-heterozygosis increases tissue damage and delays recovery from inflammation in pancreata of mice injected with caerulein. These results are the first demonstration that Prox1 activity protects pancreatic cells from acute tissue damage and early neoplastic transformation. Additional data in our study indicate that this novel role of Prox1 involves suppression of pathways associated with inflammatory responses and cell invasiveness.

  7. EphrinB1 expression is dysregulated and promotes oncogenic signaling in medulloblastoma.

    McKinney, Nicole; Yuan, Liangping; Zhang, Hongying; Liu, Jingbo; Cho, Yoon-Jae; Rushing, Elisabeth; Schniederjan, Matthew; MacDonald, Tobey J

    2015-01-01

    Eph receptors and ephrin ligands are master regulators of oncogenic signaling required for proliferation, migration, and metastasis. Yet, Eph/ephrin expression and activity in medulloblastoma (MB), the most common malignant brain tumor of childhood, remains poorly defined. We hypothesized that Eph/ephrins are differentially expressed by sonic hedgehog (SHH) and non-SHH MB and that specific members contribute to the aggressive phenotype. Affymetrix gene expression profiling of 29 childhood MB, separated into SHH (N = 11) and non-SHH (N = 18), was performed followed by protein validation of selected Eph/ephrins in another 60 MB and two MB cell lines (DAOY, D556). Functional assays were performed using MB cells overexpressing or deleted for selected ephrins. We found EPHB4 and EFNA4 almost exclusively expressed by SHH MB, whereas EPHA2, EPHA8, EFNA1 and EFNA3 are predominantly expressed by non-SHH MB. The remaining family members, except EFNB1, are ubiquitously expressed by over 70-90 % MB, irrespective of subgroup. EFNB1 is the only member differentially expressed by 28 % of SHH and non-SHH MB. Corresponding protein expression for EphB/ephrinB1 and B2 was validated in MB. Only ephrinB2 was also detected in fetal cerebellum, indicating that EphB/ephrinB1 expression is MB-specific. EphrinB1 immunopositivity localizes to tumor cells within MB with the highest proliferative index. EphrinB1 overexpression promotes EphB activation, alters F-actin distribution and morphology, decreases adhesion, and significantly promotes proliferation. Either silencing or overexpression of ephrinB1 impairs migration. These results indicate that EphrinB1 is uniquely dysregulated in MB and promotes oncogenic responses in MB cells, implicating ephrinB1 as a potential target.

  8. Molecular and cytogenetic characterization of radon-induced lung tumors in the rat

    Dano, Laurent

    2000-01-01

    Radon is a natural radioactive gas. This radioelement, which is an α-particle emitter, is omnipresent in the environment. Inhalation of atmospheric radon is the major exposure route in man of natural radioactivity which results in respiratory tract contamination. An increased lung cancer risk associated with radon inhalation has been shown both in humans and animals by epidemiological and experimental studies, respectively. In rats, characterization of dose-effect relationships has led to the construction of statistical models that may help theoretically in the prediction of human health involvements of both occupational and domestic chronic exposure to radon. However, little is known about the cellular and molecular mechanisms of radon-induced lung carcinogenesis. In the laboratory, a model of lung cancers induced in rats after radon inhalation is available. This model represents a good tool to identify and characterize the genetic events contributing to the development of radon-induced lung tumors. Carrying out a global approach based on the combined use of classical and molecular cytogenetic methods, the analysis of 17 neoplasms allowed the identification of chromosomal regions frequently altered in these tumors. Numerous similarities have been found between our results and the cytogenetic data for human lung cancers, suggesting common underlying genetic molecular mechanisms for lung cancer development in both species. Moreover, our study has allowed to point to tumor suppressor genes and proto-oncogenes potentially involved in radon-induced lung carcinogenesis. Thus, our results may aid further molecular studies aimed either at confirming the role of these candidate genes or at demonstrating the involvement of yet to be identified genes. (author) [fr

  9. Lung Development and Aging.

    Bush, Andrew

    2016-12-01

    The onset of chronic obstructive pulmonary disease (COPD) can arise either from failure to attain the normal spirometric plateau or from an accelerated decline in lung function. Despite reports from numerous big cohorts, no single adult life factor, including smoking, accounts for this accelerated decline. By contrast, five childhood risk factors (maternal and paternal asthma, maternal smoking, childhood asthma and respiratory infections) are strongly associated with an accelerated rate of lung function decline and COPD. Among adverse effects on lung development are transgenerational (grandmaternal smoking), antenatal (exposure to tobacco and pollution), and early childhood (exposure to tobacco and pollution including pesticides) factors. Antenatal adverse events can operate by causing structural changes in the developing lung, causing low birth weight and prematurity and altered immunological responses. Also important are mode of delivery, early microbiological exposures, and multiple early atopic sensitizations. Early bronchial hyperresponsiveness, before any evidence of airway inflammation, is associated with adverse respiratory outcomes. Overlapping cohort studies established that spirometry tracks from the preschool years to late middle age, and those with COPD in the sixth decade already had the worst spirometry at age 10 years. Alveolar development is now believed to continue throughout somatic growth and is adversely impacted by early tobacco smoke exposure. Genetic factors are also important, with genes important in lung development and early wheezing also being implicated in COPD. The inescapable conclusion is that the roots of COPD are in early life, and COPD is a disease of childhood adverse factors interacting with genetic factors.

  10. Lung cancer screening: Update

    Kim, Hyea Young [Dept. of Radiology, Center for Lung Cancer, National Cancer Center, Goyang (Korea, Republic of)

    2015-09-15

    Lung cancer is the leading cause of cancer deaths worldwide as well as in Korea. A recent National Lung Screening Trial in U.S. revealed that low-dose CT (LDCT) screening reduced lung cancer specific mortality by 20% in high risk individuals as compared to chest radiograph screening. Based on this evidence, several expert societies in U.S. and Korean multisociety collaborative committee developed guidelines for recommendation of lung cancer screening using annual LDCT in high risk populations. In most of the societies high risk groups are defined as persons aged 55 to 74 years, who are current smokers with history of smoking of more than 30 packs per year or ex-smokers, who quit smoking up to 15 or more years ago. The benefits of LDCT screening are modestly higher than the harms in high risk individuals. The harms included a high rate of false-positive findings, over-diagnosis and radiation-related deaths. Invasive diagnostic procedure due to false positive findings may lead to complications. LDCT should be performed in qualified hospitals and interpreted by expert radiologists. Recently, the American College of Radiology released the current version of Lung cancer CT screening Reporting and Data Systems. Education and actions to stop smoking must be offered to current smokers.

  11. Recent lung imaging studies

    Taplin, G.V.; Chopra, S.K.

    1976-01-01

    Radionuclide lung imaging procedures have been available for 11 years but only the perfusion examination has been used extensively and mainly for the diagnosis of pulmonary embolism (P.E.). Its ability to reveal localized ischemia makes it a valuable test of regional lung function as well as a useful diagnostic aid in P.E. Although it had been recognized for several years that chronic obstructive pulmonary disease (COPD) can cause lung perfusion defects which may simulate pulmonary embolism, relatively little use has been made of either the radioxenon or the radioaerosol inhalation lung imaging procedures until the last few years as a means of distinguishing P.E. from COPD. In this review emphasis is placed on our recent experience with both of these inhalation procedures in comparison with pulmonary function tests and roentgenography for the early detection of COPD in population studies. Equal emphasis is given to simultaneous aerosol ventilation-perfusion (V/P) imaging for a functional diagnosis of P.E. Two new developments in regional lung diffusion imaging, performed after the inhalation of radioactive gases and/or rapidly absorbed radioaerosols are described. The experimental basis for their potential clinical application in pulmonary embolism detection is presented

  12. Lung cancer screening: Update

    Kim, Hyea Young

    2015-01-01

    Lung cancer is the leading cause of cancer deaths worldwide as well as in Korea. A recent National Lung Screening Trial in U.S. revealed that low-dose CT (LDCT) screening reduced lung cancer specific mortality by 20% in high risk individuals as compared to chest radiograph screening. Based on this evidence, several expert societies in U.S. and Korean multisociety collaborative committee developed guidelines for recommendation of lung cancer screening using annual LDCT in high risk populations. In most of the societies high risk groups are defined as persons aged 55 to 74 years, who are current smokers with history of smoking of more than 30 packs per year or ex-smokers, who quit smoking up to 15 or more years ago. The benefits of LDCT screening are modestly higher than the harms in high risk individuals. The harms included a high rate of false-positive findings, over-diagnosis and radiation-related deaths. Invasive diagnostic procedure due to false positive findings may lead to complications. LDCT should be performed in qualified hospitals and interpreted by expert radiologists. Recently, the American College of Radiology released the current version of Lung cancer CT screening Reporting and Data Systems. Education and actions to stop smoking must be offered to current smokers

  13. Lung Mass in Smokers.

    Washko, George R; Kinney, Gregory L; Ross, James C; San José Estépar, Raúl; Han, MeiLan K; Dransfield, Mark T; Kim, Victor; Hatabu, Hiroto; Come, Carolyn E; Bowler, Russell P; Silverman, Edwin K; Crapo, James; Lynch, David A; Hokanson, John; Diaz, Alejandro A

    2017-04-01

    Emphysema is characterized by airspace dilation, inflammation, and irregular deposition of elastin and collagen in the interstitium. Computed tomographic studies have reported that lung mass (LM) may be increased in smokers, a finding attributed to inflammatory and parenchymal remodeling processes observed on histopathology. We sought to examine the epidemiologic and clinical associations of LM in smokers. Baseline epidemiologic, clinical, and computed tomography (CT) data (n = 8156) from smokers enrolled into the COPDGene Study were analyzed. LM was calculated from the CT scan. Changes in lung function at 5 years' follow-up were available from 1623 subjects. Regression analysis was performed to assess for associations of LM with forced expiratory volume in 1 second (FEV 1 ) and FEV 1 decline. Subjects with Global Initiative for Chronic Obstructive Lung Disease (GOLD) 1 chronic obstructive pulmonary disease had greater LM than either smokers with normal lung function or those with GOLD 2-4 chronic obstructive pulmonary disease (P smokers: the presence of such nonlinearity must be accounted for in longitudinal computed tomographic studies. Baseline LM predicts the decline in lung function. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  14. G.I.S. Surveillance of Chronic Non-occupational Exposure to Heavy Metals as Oncogenic Risk

    Mariana Vlad

    2016-02-01

    Full Text Available Introduction: The potential oncogenic effect of some heavy metals in people occupationally and non-occupationally exposed to such heavy metals is already well demonstrated. This study seeks to clarify the potential role of these heavy metals in the living environment, in this case in non-occupational multifactorial aetiology of malignancies in the inhabitants of areas with increased prevalent environmental levels of heavy metals. Methods: Using a multidisciplinary approach throughout a complex epidemiological study, we investigated the potential oncogenic role of non-occupational environmental exposure to some heavy metals [chrome (Cr, nickel (Ni, copper (Cu, zinc (Zn, cadmium (Cd, lead (Pb and arsenic (As—in soil, drinking water, and food, as significant components of the environment] in populations living in areas with different environmental levels (high vs. low of the above-mentioned heavy metals. The exposures were evaluated by identifying the exposed populations, the critical elements of the ecosystems, and as according to the means of identifying the types of exposure. The results were interpreted both epidemiologically (causal inference, statistical significance, mathematical modelling and by using a GIS approach, which enabled indirect surveillance of oncogenic risks in each population. Results: The exposure to the investigated heavy metals provides significant risk factors of cancer in exposed populations, in both urban and rural areas [χ² test (p < 0.05]. The GIS approach enables indirect surveillance of oncogenic risk in populations. Conclusions: The role of non-occupational environmental exposure to some heavy metals in daily life is among the more significant oncogenic risk factors in exposed populations. The statistically significant associations between environmental exposure to such heavy metals and frequency of neoplasia in exposed populations become obvious when demonstrated on maps using the GIS system. Environmental

  15. Attempts on producing lymphoid cell line from Penaeus monodon by induction with SV40-T and 12S EIA oncogenes.

    Puthumana, Jayesh; Prabhakaran, Priyaja; Philip, Rosamma; Singh, I S Bright

    2015-12-01

    In an attempt of in vitro transformation, transfection mediated expression of Simian virus-40 (T) antigen (SV40-T) and transduction mediated expression of Adenovirus type 12 early region 1A (12S E1A) oncogene were performed in Penaeus monodon lymphoid cells. pSV3-neo vector encoding SV40-T oncogene and a recombinant baculovirus BacP2-12S E1A-GFP encoding 12S E1A oncogene under the control of hybrid promoters were used. Electroporation and lipofection mediated transformation of SV40-T in lymphoid cells confirmed the transgene expression by phenotypic variation and the expression of GFP in co-transfection experiment. The cells transfected by lipofection (≥ 5%) survived for 14 days with lower toxicity (30%), whilst on electroporation, most of the cells succumbed to death (60%) and survived cells lived up to 7 days. Transduction efficiency in primary lymphoid cells was more than 80% within 14 days of post-transduction, however, an incubation period of 7 days post-transduction was observed without detectable expression of 12S E1A. High level of oncogenic 12S E1A expression were observed after 14 day post-transduction and the proliferating cells survived for more than 90 days with GFP expression, however, without in vitro transformation and immortalization. The study put forth the requirement of transduction mediated 'specific' oncogene expression along with telomerase activation and epigenetic induction for the immortalization and establishment of shrimp cell line. Copyright © 2015. Published by Elsevier Ltd.

  16. Lung cancer - non-small cell

    Cancer - lung - non-small cell; Non-small cell lung cancer; NSCLC; Adenocarcinoma - lung; Squamous cell carcinoma - lung ... Research shows that smoking marijuana may help cancer cells grow. But there is no direct link between ...

  17. General Information about Small Cell Lung Cancer

    ... Lung Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health Professional Version Key Points Small ...

  18. Stages of Small Cell Lung Cancer

    ... Lung Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health Professional Version Key Points Small ...

  19. Stat3 is a positive regulator of gap junctional intercellular communication in cultured, human lung carcinoma cells

    Geletu Mulu

    2012-12-01

    Full Text Available Abstract Background Neoplastic transformation of cultured cells by a number of oncogenes such as src suppresses gap junctional, intercellular communication (GJIC; however, the role of Src and its effector Signal transducer and activator of transcription-3 (Stat3 upon GJIC in non small cell lung cancer (NSCLC has not been defined. Immunohistochemical analysis revealed high Src activity in NSCLC biopsy samples compared to normal tissues. Here we explored the potential effect of Src and Stat3 upon GJIC, by assessing the levels of tyr418-phosphorylated Src and tyr705-phosphorylated Stat3, respectively, in a panel of NSCLC cell lines. Methods Gap junctional communication was examined by electroporating the fluorescent dye Lucifer yellow into cells grown on a transparent electrode, followed by observation of the migration of the dye to the adjacent, non-electroporated cells under fluorescence illumination. Results An inverse relationship between Src activity levels and GJIC was noted; in five lines with high Src activity GJIC was absent, while two lines with extensive GJIC (QU-DB and SK-LuCi6 had low Src levels, similar to a non-transformed, immortalised lung epithelial cell line. Interestingly, examination of the mechanism indicated that Stat3 inhibition in any of the NSCLC lines expressing high endogenous Src activity levels, or in cells where Src was exogenously transduced, did not restore GJIC. On the contrary, Stat3 downregulation in immortalised lung epithelial cells or in the NSCLC lines displaying extensive GJIC actually suppressed junctional permeability. Conclusions Our findings demonstrate that although Stat3 is generally growth promoting and in an activated form it can act as an oncogene, it is actually required for gap junctional communication both in nontransformed lung epithelial cells and in certain lung cancer lines that retain extensive GJIC.

  20. Advances in lung ultrasound

    Francisco Neto, Miguel Jose; Rahal Junior, Antonio; Vieira, Fabio Augusto Cardillo; Silva, Paulo Savoia Dias da; Funari, Marcelo Buarque de Gusmao

    2016-01-01

    Ultrasound examination of the chest has advanced in recent decades. This imaging modality is currently used to diagnose several pathological conditions and provides qualitative and quantitative information. Acoustic barriers represented by the aerated lungs and the bony framework of the chest generate well-described sonographic artifacts that can be used as diagnostic aids. The normal pleural line and A, B, C, E and Z lines (also known as false B lines) are artifacts with specific characteristics. Lung consolidation and pneumothorax sonographic patterns are also well established. Some scanning protocols have been used in patient management. The Blue, FALLS and C.A.U.S.E. protocols are examples of algorithms using artifact combinations to achieve accurate diagnoses. Combined chest ultrasonography and radiography are often sufficient to diagnose and manage lung and chest wall conditions. Chest ultrasonography is a highly valuable diagnostic tool for radiologists, emergency and intensive care physicians. (author)

  1. Mitochondria in Lung Diseases

    Aravamudan, Bharathi; Thompson, Michael A.; Pabelick, Christina M.; Prakash, Y. S.

    2014-01-01

    Summary Mitochondria are autonomous cellular organelles that oversee a variety of functions such as metabolism, energy production, calcium buffering, and cell fate determination. Regulation of their morphology and diverse activities beyond energy production are being recognized as playing major roles in cellular health and dysfunction. This review is aimed at summarizing what is known regarding mitochondrial contributions to pathogenesis of lung diseases. Emphasis is given to understanding the importance of structural and functional aspects of mitochondria in both normal cellular function (based on knowledge from other cell types) and in development and modulation of lung diseases such as asthma, COPD, cystic fibrosis and cancer. Emerging techniques that allow examination of mitochondria, and potential strategies to target mitochondria in the treatment of lung diseases are also discussed. PMID:23978003

  2. Occupational lung diseases.

    Furlow, Bryant

    2011-01-01

    Chest radiography and high-resolution computed tomography are indispensable tools in the detection, classification and characterization of occupational lung diseases that are caused by inhaling mineral particles such as asbestos, silicon-containing rock dust and other tissue-damaging antigens, nanomaterials and toxins. Radiographic evidence of occupational lung disease is interpreted with a patient's clinical signs and symptoms and a detailed occupational history in mind because of high variability in radiographic findings. This Directed Reading reviews the history, epidemiology, functional anatomy, pathobiology and medical diagnostic imaging of occupational lung diseases associated with inhalation of fine particulates in the workplace. This article is a Directed Reading. Your access to Directed Reading quizzes for continuing education credit is determined by your CE preference. For access to other quizzes, go to www.asrt.org/store.

  3. Rare lung cancers

    Berzinec, P.

    2013-01-01

    The RARECARE Project (Rare Cancers in the Europe) supported by the European Union defined the rare cancers by the incidence rate of less than 6/100 000. There are several variants of lung cancer which are rare according to this definition. From the clinical point of view the most interesting are the rare adenocarcinomas and large cell neuroendocrine carcinoma. There are important differences in the diagnostic probability of EGFR and ALK mutations in the mutinous and non-mucin ous adenocarcinomas, in the signet ring cell adenocarcinomas, and large cell carcinomas. The optimal chemotherapy for neuroendocrine large cell carcinomas remains undefined. There is only very limited number of clinical trials aimed on the rare lung cancers and actually none phase III trial. Rare lung cancers continue to be a challenge both for the laboratory and the clinical research. (author)

  4. [Management of Lung Abscess].

    Marra, A; Hillejan, L; Ukena, D

    2015-10-01

    A lung abscess is an infectious pulmonary disease characterised by the presence of a pus-filled cavity within the lung parenchyma. The content of an abscess often drains into the airways spontaneously, leading to an air-fluid level visible on chest X-rays and CT scans. Primary lung abscesses occur in patients who are prone to aspiration or in otherwise healthy individuals; secondary lung abscesses typically develop in association with a stenosing lung neoplasm or a systemic disease that compromises immune defences, such as AIDS, or after organ transplantation. The organisms found in abscesses caused by aspiration pneumonia reflect the resident flora of the oropharynx. The most commonly isolated organisms are anaerobic bacteria (Prevotella, Bacteroides, Fusobacterium, Peptostreptococcus) or streptococci; in alcoholics with poor oral hygiene, the spectrum of pathogens includes Staphylococcus aureus, Streptococcus pyogenes and Actinomyces. Chest radiography and computed tomography (CT) are mandatory procedures in the diagnostic algorithm. Standard treatment for a lung abscess consists of systemic antibiotic therapy, which is based on the anticipated or proven bacterial spectrum of the abscess. In most cases, primary abscesses are successfully treated by calculated empiric antibiotic therapy, with an estimated lethality rate of less than 10 %. Secondary abscesses, despite targeted antimicrobial therapy, are associated with a poor prognosis, which depends on the patient's general condition and underlying disease; lethality is as high as 75 %. Negative prognostic factors are old age, severe comorbidities, immunosuppression, bronchial obstruction, and neoplasms. Surgical intervention due to failure of conservative treatment is required in only 10 % of patients, with a success rate of up to 90 % and postoperative mortality rates ranging between 0 and 33 %. Treatment success after endoscopic or percutaneous drainage is achieved in 73 to 100 % of cases, with an

  5. Lung Cancer Precision Medicine Trials

    Patients with lung cancer are benefiting from the boom in targeted and immune-based therapies. With a series of precision medicine trials, NCI is keeping pace with the rapidly changing treatment landscape for lung cancer.

  6. Lung commitment in Tuberous Sclerosis

    Carrillo B, Jorge A; Araque G, Julio Mario; Camargo P, Carlos B

    1992-01-01

    Tuberous sclerosis is a rare hereditary anomaly characterized by hamartomas in many parts of the body. Lung involvement is found in only one of 100 cases. In this case report we present a patient with lung involvement in tuberous sclerosis

  7. Smoking Marijuana and the Lungs

    ... C O P Y PATIENT EDUCATION | INFORMATION SERIES Smoking Marijuana and the Lungs Marijuana, also known as ... a safe way to smoke marijuana. How can smoking marijuana damage my lungs? Tobacco smoke of any ...

  8. Risks of Lung Cancer Screening

    ... in women. Different factors increase or decrease the risk of lung cancer. Anything that increases your chance ... been studied to see if they decrease the risk of dying from lung cancer. The following screening ...

  9. Can Lung Nodules Be Cancerous?

    ... lung nodules be cancerous? Answers from Eric J. Olson, M.D. Yes, lung nodules can be cancerous, ... to determine if it's cancerous. With Eric J. Olson, M.D. AskMayoExpert. Pulmonary nodules. Rochester, Minn.: Mayo ...

  10. Lung radiopharmaceuticals; Radioformacos pulmonares

    Gonzalez, B M [Instituto Nacional de Pediatroa (Mexico)

    1994-12-31

    Indication or main clinical use of Lung radiopharmaceuticals is presented and clasification of radiopharmaceuticals as ventilation and perfusion studies. Perfusion radiopharmaceuticals, main controls for administration quality acceptance. Clearence after blood administration and main clinical applications. Ventilation radiopharmaceuticals, gases and aerosols, characteristics of a ideal radioaerosol, techniques of good inhalation procedure, clinical applications. Comparison of several radiopharmaceuticals reflering to retention time as 50% administered dose, percent administered dose at 6 hours post inhalation, blood activity at 30 and 60 minutes post inhalation, initial lung absorbed dose, cumulated activity.Kinetic description of two radiopharmaceuticals, 99mTcDTPA and 99mTc-PYP.

  11. Staging of lung cancer.

    de Groot, Patricia M; Carter, Brett W; Betancourt Cuellar, Sonia L; Erasmus, Jeremy J

    2015-06-01

    Primary lung cancer is the leading cause of cancer mortality in the world. Thorough clinical staging of patients with lung cancer is important, because therapeutic options and management are to a considerable degree dependent on stage at presentation. Radiologic imaging is an essential component of clinical staging, including chest radiography in some cases, computed tomography, MRI, and PET. Multiplanar imaging modalities allow assessment of features that are important for surgical, oncologic, and radiation therapy planning, including size of the primary tumor, location and relationship to normal anatomic structures in the thorax, and existence of nodal and/or metastatic disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. A case of lung adenocarcinoma harboring EGFR mutation and EML4-ALK fusion gene

    Tanaka, Hisashi; Hayashi, Akihito; Morimoto, Takeshi; Taima, Kageaki; Tanaka, Yoshihito; Shimada, Michiko; Kurose, Akira; Takanashi, Shingo; Okumura, Ken

    2012-01-01

    Lung cancer is the leading cause of cancer-related death worldwide. Epidermal growth factor receptor (EGFR) - tyrosine kinase inhibitor (TKI) is used for the patients with EGFR-mutant lung cancer. Recently, phase III studies in the patients with EGFR-mutant demonstrated that EGFR-TKI monotherapy improved progression-free survival compared with platinum-doublet chemotherapy. The echinoderm microtubule-associated protein-like 4 (EML4) - anaplastic lymphoma kinase (ALK) fusion oncogene represents one of the newest molecular targets in non-small cell lung cancer (NSCLC). Patients who harbor EML4-ALK fusions have been associated with a lack of EGFR or KRAS mutations. We report a 39-year-old patient diagnosed as adenocarcinoma harboring EGFR mutation and EML4-ALK fusion gene. We treated this patient with erlotinib as the third line therapy, but no clinical benefit was obtained. We experienced a rare case with EGFR mutation and EML4-ALK. Any clinical benefit using EGFR-TKI was not obtained in our case. The therapeutic choice for the patients with more than one driver mutations is unclear. We needs further understanding of the lung cancer molecular biology and the biomarker infomation

  13. LungMAP: The Molecular Atlas of Lung Development Program.

    Ardini-Poleske, Maryanne E; Clark, Robert F; Ansong, Charles; Carson, James P; Corley, Richard A; Deutsch, Gail H; Hagood, James S; Kaminski, Naftali; Mariani, Thomas J; Potter, Steven S; Pryhuber, Gloria S; Warburton, David; Whitsett, Jeffrey A; Palmer, Scott M; Ambalavanan, Namasivayam

    2017-11-01

    The National Heart, Lung, and Blood Institute is funding an effort to create a molecular atlas of the developing lung (LungMAP) to serve as a research resource and public education tool. The lung is a complex organ with lengthy development time driven by interactive gene networks and dynamic cross talk among multiple cell types to control and coordinate lineage specification, cell proliferation, differentiation, migration, morphogenesis, and injury repair. A better understanding of the processes that regulate lung development, particularly alveologenesis, will have a significant impact on survival rates for premature infants born with incomplete lung development and will facilitate lung injury repair and regeneration in adults. A consortium of four research centers, a data coordinating center, and a human tissue repository provides high-quality molecular data of developing human and mouse lungs. LungMAP includes mouse and human data for cross correlation of developmental processes across species. LungMAP is generating foundational data and analysis, creating a web portal for presentation of results and public sharing of data sets, establishing a repository of young human lung tissues obtained through organ donor organizations, and developing a comprehensive lung ontology that incorporates the latest findings of the consortium. The LungMAP website (www.lungmap.net) currently contains more than 6,000 high-resolution lung images and transcriptomic, proteomic, and lipidomic human and mouse data and provides scientific information to stimulate interest in research careers for young audiences. This paper presents a brief description of research conducted by the consortium, database, and portal development and upcoming features that will enhance the LungMAP experience for a community of users. Copyright © 2017 the American Physiological Society.

  14. Radiodiagnosis of lung picture changes

    Kamenetskij, M.S.; Lezova, T.F.

    1988-01-01

    The roentgenological picture of changes of the lung picture in the case of different pathological states in the lungs and the heart, is described. A developed diagnostic algorithm for the syndrome of lung picture change and the rules of its application are given. 5 refs.; 9 figs

  15. Histone Code Modulation by Oncogenic PWWP-Domain Protein in Breast Cancers

    2014-08-01

    the pathogenesis of a wide range of human cancers, including colon, lung, glioblastoma and mela - noma (Ostman et al., 2006; Solomon et al., 2008...Beroukhim R, Mermel CH, Loda M, Ait-Si-Ali S, Garraway LA, Young RA and Zon LI. The histone methyltrans- ferase SETDB1 is recurrently amplified in mela

  16. Pediatric acute lung injury

    Dahlem, P.; van Aalderen, W. M. C.; Bos, A. P.

    2007-01-01

    Among ventilated children, the incidence of acute lung injury (ALI) was 9%; of that latter group 80% developed the acute respiratory distress syndrome (ARDS). The population-based prevalence of pediatric ARDS was 5.5 cases/100.000 inhabitants. Underlying diseases in children were septic shock (34%),

  17. Tuberculosis mimicking lung cancer

    I. Hammen

    2015-01-01

    Our case report presents two patients, who were referred to the Thorax diagnostic centre at the Department of Respiratory Medicine, Odense University Hospital, with presumptive diagnosis of neoplasm and had proved lung TB with no evidence of malignancy instead. In the first case diagnosis was confirmed after thoracotomy, in the second case after bronchoscopy.

  18. Chemoprevention of Lung Cancer

    Szabo, Eva; Mao, Jenny T.; Lam, Stephen; Reid, Mary E.

    2013-01-01

    Background: Lung cancer is the most common cause of cancer death in men and women in the United States. Cigarette smoking is the main risk factor. Former smokers are at a substantially increased risk of developing lung cancer compared with lifetime never smokers. Chemoprevention refers to the use of specific agents to reverse, suppress, or prevent the process of carcinogenesis. This article reviews the major agents that have been studied for chemoprevention. Methods: Articles of primary, secondary, and tertiary prevention trials were reviewed and summarized to obtain recommendations. Results: None of the phase 3 trials with the agents β-carotene, retinol, 13-cis-retinoic acid, α-tocopherol, N-acetylcysteine, acetylsalicylic acid, or selenium has demonstrated beneficial and reproducible results. To facilitate the evaluation of promising agents and to lessen the need for a large sample size, extensive time commitment, and expense, surrogate end point biomarker trials are being conducted to assist in identifying the most promising agents for later-stage chemoprevention trials. With the understanding of important cellular signaling pathways and the expansion of potentially important targets, agents (many of which target inflammation and the arachidonic acid pathway) are being developed and tested which may prevent or reverse lung carcinogenesis. Conclusions: By integrating biologic knowledge, additional early-phase trials can be performed in a reasonable time frame. The future of lung cancer chemoprevention should entail the evaluation of single agents or combinations that target various pathways while working toward identification and validation of intermediate end points. PMID:23649449

  19. Decline and infiltrated lung

    Giraldo Estrada, Horacio; Arboleda Casas, Felipe; Duarte, Monica; Triana Harker, Ricardo

    2001-01-01

    The paper describes the decline and infiltrated lung in a patient of 45 years, with diagnosis of arthritis rheumatoid from the 43 years, asymptomatic, without treatment, married, of the 15 to the 35 years of 3 to 10 cigarettes daily, she refers of 7 months of evolution episodes of moderate dyspnoea with exercises and dry cough with occasional mucous expectoration between others

  20. Lung Cancer Survivorship

    2016-10-20

    A lung cancer survivor shares her story about diagnosis, treatment, and community support. She also gives advice for other cancer survivors.  Created: 10/20/2016 by National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP).   Date Released: 10/20/2016.

  1. What Are the Lungs?

    ... and the muscles that enable breathing. The Respiratory System Figure A shows the location of the respiratory ... buildup in the lung tissues. These sensors are thought to trigger rapid, shallow breathing. Sensors in your ... is a complex process. If injury, disease, or other factors affect any ...

  2. Diffuse infiltrative lung disease

    Niden, A.H.; Mishkin, F.S.

    1984-01-01

    The authors discuss their approach to the diagnosis and management of patients with DILD. Gallium scans play a central role in this process. Not only do they help them decide whom to biopsy, but also where to biopsy. The scans can be used for the early detection of disease in a high-risk population, for following the progression and regression of disease, for the regulation of medication, and for the evaluation of therapy. Bronchoalveolar lung lavage appears to be equally sensitive. However, patients are less willing to undergo repeated fiberoptic bronchoscopies than lung scans. Both tests may prove useful, one complementing the other. Gallium imaging has also been utilized by the authors in select patients with questionable diffuse lung infiltrates roentgenographically or with a normal chest roentgenogram, chronic respiratory symptoms, and abnormal pulmonary function studies. An abnormal gallium lung scan in these clinical situations helps them select which patients have a diffuse active pulmonary process meriting transbronchial biopsies. This has proven to be of particular value in the management of older patients

  3. MicroRNA-205 downregulates mixed-lineage-AF4 oncogene expression in acute lymphoblastic leukemia

    Dou L

    2013-08-01

    Full Text Available Liping Dou,1,* Jingxin Li,1,* Dehua Zheng,2,* Yonghui Li,1 Xiaoning Gao,1 Chengwang Xu,1 Li Gao,1 Lili Wang,1 Li Yu1 1Department of Hematology, Chinese PLA General Hospital, Beijing, People's Republic of China; 2Department of Hepatobiliary Surgery, Organ Transplant Center, Chinese PLA 309th Hospital, Beijing, People's Republic of China*These authors contributed equally to this workAbstract: Myeloid/lymphoid or mixed-lineage AF4 acute lymphoblastic leukemia (MLL-AF4 ALL is a pediatric leukemia that occurs rarely in adults. MLL-AF4 ALL is typically characterized by the presence of chromosomal translocation (t(4;11(q21;q23, leading to expression of MLL-AF4 fusion protein. Although MLL-AF4 fusion protein triggers a molecular pathogenesis and hematological presentations that are unique to leukemias, the precise role of this oncogene in leukemogenesis remains unclear. Previous studies have indicated that microRNAs (miRs might modulate the expression of MLL-AF4 ALL fusion protein, thereby suggesting the involvement of miR in progression or suppression of MLL-AF4 ALL. We have previously demonstrated that miR-205 negatively regulates transcription of an MLL-AF4 luciferase reporter. Here, we report that exogenous expression of miR-205 in MLL-AF4 human cell lines (RS4;11 and MV4-11 inversely regulates the expression of MLL-AF4 at both messenger RNA (mRNA and protein level. Furthermore, miR-205 significantly induced apoptosis in MLL-AF4 cells as evidenced by Annexin V staining using fluorescence-activated cell sorting (FACS analysis. The proliferative capacity of leukemic cells was suppressed by miR-205. The addition of an miR-205 inhibitor was able to restore the observed effects. In conclusion, these findings demonstrate that miR-205 may have potential value as a novel therapeutic agent in the treatment of MLL-AF4 ALL.Keywords: miR-205, MLL-AF4, leukemia, microRNA, oncogene expression, untranslated regions, proliferation

  4. Minor Capsid Protein L2 Polytope Induces Broad Protection against Oncogenic and Mucosal Human Papillomaviruses.

    Pouyanfard, Somayeh; Spagnoli, Gloria; Bulli, Lorenzo; Balz, Kathrin; Yang, Fan; Odenwald, Caroline; Seitz, Hanna; Mariz, Filipe C; Bolchi, Angelo; Ottonello, Simone; Müller, Martin

    2018-02-15

    The amino terminus of the human papillomavirus (HPV) minor capsid protein L2 contains a major cross-neutralization epitope which provides the basis for the development of a broadly protecting HPV vaccine. A wide range of protection against different HPV types would eliminate one of the major drawbacks of the commercial, L1-based prophylactic vaccines. Previously, we have reported that insertion of the L2 epitope into a scaffold composed of bacterial thioredoxin protein generates a potent antigen inducing comprehensive protection against different animal and human papillomaviruses. We also reported, however, that although protection is broad, some oncogenic HPV types escape the neutralizing antibody response, if L2 epitopes from single HPV types are used as immunogen. We were able to compensate for this by applying a mix of thioredoxin proteins carrying L2 epitopes from HPV16, -31, and -51. As the development of a cost-efficient HPV prophylactic vaccines is one of our objectives, this approach is not feasible as it requires the development of multiple good manufacturing production processes in combination with a complex vaccine formulation. Here, we report the development of a thermostable thioredoxin-based single-peptide vaccine carrying an L2 polytope of up to 11 different HPV types. The L2 polytope antigens have excellent abilities in respect to broadness of protection and robustness of induced immune responses. To further increase immunogenicity, we fused the thioredoxin L2 polytope antigen with a heptamerization domain. In the final vaccine design, we achieve protective responses against all 14 oncogenic HPV types that we have analyzed plus the low-risk HPVs 6 and 11 and a number of cutaneous HPVs. IMPORTANCE Infections by a large number of human papillomaviruses lead to malignant and nonmalignant disease. Current commercial vaccines based on virus-like particles (VLPs) effectively protect against some HPV types but fail to do so for most others. Further, only

  5. Identification of a Novel Proto-oncogenic Network in Head and Neck Squamous Cell Carcinoma.

    Georgy, Smitha R; Cangkrama, Michael; Srivastava, Seema; Partridge, Darren; Auden, Alana; Dworkin, Sebastian; McLean, Catriona A; Jane, Stephen M; Darido, Charbel

    2015-09-01

    The developmental transcription factor Grainyhead-like 3 (GRHL3) plays a critical tumor suppressor role in the mammalian epidermis through direct regulation of PTEN and the PI3K/AKT/mTOR signaling pathway. GRHL3 is highly expressed in all tissues derived from the surface ectoderm, including the oral cavity, raising a question about its potential role in suppression of head and neck squamous cell carcinoma (HNSCC). We explored the tumor suppressor role of Grhl3 in HNSCC using a conditional knockout (Grhl3 (∆/-) /K14Cre (+) ) mouse line (n = 26) exposed to an oral chemical carcinogen. We defined the proto-oncogenic pathway activated in the HNSCC derived from these mice and assessed it in primary human HNSCC samples, normal oral epithelial cell lines carrying shRNA to GRHL3, and human HNSCC cell lines. Data were analyzed with two-sided chi square and Student's t tests. Deletion of Grhl3 in oral epithelium in mice did not perturb PTEN/PI3K/AKT/mTOR signaling, but instead evoked loss of GSK3B expression, resulting in stabilization and accumulation of c-MYC and aggressive HNSCC. This molecular signature was also evident in a subset of primary human HNSCC and HNSCC cell lines. Loss of Gsk3b in mice, independent of Grhl3, predisposed to chemical-induced HNSCC. Restoration of GSK3B expression blocked proliferation of normal oral epithelial cell lines carrying shRNA to GRHL3 (cell no., Day 8: Scramble ctl, 616±21.8 x 10(3) vs GRHL3-kd, 1194±44 X 10(3), P < .001; GRHL3-kd vs GRHL3-kd + GSK3B, 800±98.84 X 10(3), P = .003) and human HNSCC cells. We defined a novel molecular signature in mammalian HNSCC, suggesting new treatment strategies targeting the GRHL3/GSK3B/c-MYC proto-oncogenic network. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. EGFR, ALK, RET, KRAS and BRAF alterations in never-smokers with non-small cell lung cancer.

    Dong, Y U; Ren, Weihong; Qi, Jun; Jin, B O; Li, Ying; Tao, Huiqing; Xu, Ren; Li, Yanqing; Zhang, Qinxian; Han, Baohui

    2016-04-01

    Non-small cell lung cancer (NSCLC), caused by various mutations in a spectrum of cancer driver genes, may have distinct pathological characteristics and drug responses. Extensive genetic screening and pathological characterization is required for the design of customized therapies to improve patient outcomes. Notably, NSCLC in never-smokers exhibits distinctive clinicopathological features, which are frequently associated with tumorigenic mutations, and thus may be treated as a unique disease entity. However, to the best of our knowledge, these mutations have not been extensively and accurately characterized in an NSCLC study with a large sample size. Therefore, the present study enrolled a large cohort of NSCLC patients, which consisted of 358 never-smokers, for the screening of genetic alterations in the epidermal growth factor receptor (EGFR), ret proto-oncogene (RET), anaplastic lymphoma kinase (ALK), Kirsten rat sarcoma viral oncogene homolog (KRAS) and B-Raf proto-oncogene serine/threonine kinase (BRAF) tumorigenic genes. It was identified that the mutation rate was 47.8, 7.5, 3.6, 1.4 and 0.3% for EGFR, ALK, KRAS, RET and BRAF, respectively. In addition, clinicopathological features associated with these mutations were characterized. EGFR mutations were more frequently observed in female and older patients. By contrast, KRAS mutations were more frequently detected in male patients, and ALK and RET translocations in younger patients. The cancer cells were frequently well-differentiated in carcinoma cases exhibiting EGFR mutations, however, were less differentiated in those with ALK translocations. In conclusion, the present study determined the frequency of oncogenic alterations and associated clinicopathological features in NSCLC exhibited by never-smokers using a large sample size. The results of the present study may enrich our knowledge of NSCLC in never-smokers and provide useful insights for improvement of the outcome of molecularly targeted therapies

  7. Statistical lung model for microdosimetry

    Fisher, D.R.; Hadley, R.T.

    1984-03-01

    To calculate the microdosimetry of plutonium in the lung, a mathematical description is needed of lung tissue microstructure that defines source-site parameters. Beagle lungs were expanded using a glutaraldehyde fixative at 30 cm water pressure. Tissue specimens, five microns thick, were stained with hematoxylin and eosin then studied using an image analyzer. Measurements were made along horizontal lines through the magnified tissue image. The distribution of air space and tissue chord lengths and locations of epithelial cell nuclei were recorded from about 10,000 line scans. The distribution parameters constituted a model of lung microstructure for predicting the paths of random alpha particle tracks in the lung and the probability of traversing biologically sensitive sites. This lung model may be used in conjunction with established deposition and retention models for determining the microdosimetry in the pulmonary lung for a wide variety of inhaled radioactive materials

  8. Telomerase in lung cancer diagnostics

    Kovkarova, E.; Stefanovski, T.; Dimov, A.; Naumovski, J.

    2003-01-01

    Background. Telomerase is a ribonucleoprotein that looks after the telomeric cap of the linear chromosomes maintaining its length. It is over expressed in tumour tissues, but not in normal somatic cells. Therefore the aim of this study was to determine the telomerase activity in lung cancer patients as novel marker for lung cancer detection evaluating the influence of tissue/cell obtaining technique. Material and methods. Using the TRAP (telomeric repeat amplification protocol), telomerase activity was determined in material obtained from bronchobiopsy (60 lung cancer patients compared with 20 controls) and washings from transthoracic fine needle aspiration biopsy performed in 10 patients with peripheral lung tumours. Results. Telomerase activity was detected in 75% of the lung cancer bronchobyopsies, and in 100% in transthoracic needle washings. Conclusions. Measurement of telomerase activity can contribute in fulfilling the diagnosis of lung masses and nodules suspected for lung cancer. (author)

  9. The Danish Lung Cancer Registry

    Jakobsen, Erik; Rasmussen, Torben Riis

    2016-01-01

    AIM OF DATABASE: The Danish Lung Cancer Registry (DLCR) was established by the Danish Lung Cancer Group. The primary and first goal of the DLCR was to improve survival and the overall clinical management of Danish lung cancer patients. STUDY POPULATION: All Danish primary lung cancer patients since...... 2000 are included into the registry and the database today contains information on more than 50,000 cases of lung cancer. MAIN VARIABLES: The database contains information on patient characteristics such as age, sex, diagnostic procedures, histology, tumor stage, lung function, performance...... the results are commented for local, regional, and national audits. Indicator results are supported by descriptive reports with details on diagnostics and treatment. CONCLUSION: DLCR has since its creation been used to improve the quality of treatment of lung cancer in Denmark and it is increasingly used...

  10. /sup 67/Ga lung scan

    Niden, A.H.; Mishkin, F.S.; Khurana, M.M.L.; Pick, R.

    1977-03-21

    Twenty-three patients with clinical signs of pulmonary embolic disease and lung infiltrates were studied to determine the value of gallium citrate /sup 67/Ga lung scan in differentiating embolic from inflammatory lung disease. In 11 patients without angiographically proved embolism, only seven had corresponding ventilation-perfusion defects compatible with inflammatory disease. In seven of these 11 patients, the /sup 67/Ga concentration indicated inflammatory disease. In the 12 patients with angiographically proved embolic disease, six had corresponding ventilation-perfusion defects compatible with inflammatory disease. None had an accumulation of /sup 67/Ga in the area of pulmonary infiltrate. Thus, ventilation-perfusion lung scans are of limited value when lung infiltrates are present. In contrast, the accumulation of /sup 67/Ga in the lung indicates an inflammatory process. Gallium imaging can help select those patients with lung infiltrates who need angiography.

  11. The inhibitory NKR-P1B:Clr-b recognition axis facilitates detection of oncogenic transformation and cancer immunosurveillance

    Tanaka, M; Fine, Jason; Kirkham, Christina

    2018-01-01

    Natural killer (NK) cells express receptors specific for MHC class I (MHC-I) molecules involved in "missing-self" recognition of cancer and virus-infected cells. Here we elucidate the role of MHC-I-independent NKR-P1B:Clr-b interactions in the detection of oncogenic transformation by NK cells. Ras......-b protein, in turn promoting missing-self recognition via the NKR-P1B inhibitory receptor. Both Ras- and c-Myc-mediated Clr-b loss selectively augmented cytotoxicity of oncogene-transformed leukemia cells by NKR-P1B+ NK cells in vitro and enhanced rejection by WT mice in vivo. Interestingly, genetic...

  12. High-Risk Human Papillomaviral Oncogenes E6 and E7 Target Key Cellular Pathways to Achieve Oncogenesis.

    Yeo-Teh, Nicole S L; Ito, Yoshiaki; Jha, Sudhakar

    2018-06-08

    Infection with high-risk human papillomavirus (HPV) has been linked to several human cancers, the most prominent of which is cervical cancer. The integration of the viral genome into the host genome is one of the manners in which the viral oncogenes E6 and E7 achieve persistent expression. The most well-studied cellular targets of the viral oncogenes E6 and E7 are p53 and pRb, respectively. However, recent research has demonstrated the ability of these two viral factors to target many more cellular factors, including proteins which regulate epigenetic marks and splicing changes in the cell. These have the ability to exert a global change, which eventually culminates to uncontrolled proliferation and carcinogenesis.

  13. ΔNp63α is an oncogene that induces Lsh expression and promotes stem-like proliferation

    Keyes, William M.; Pecoraro, Matteo; Aranda, Victoria; Vernersson-Lindahl, Emma; Li, Wangzhi; Vogel, Hannes; Guo, Xuecui; Garcia, Elvin L.; Michurina, Tatyana V.; Enikolopov, Grigori; Muthuswamy, Senthil K.; Mills, Alea A.

    2014-01-01

    SUMMARY The p53 homolog p63 is essential for development, yet its role in cancer is not clear. We discovered that p63 deficiency evokes the tumor suppressive mechanism of cellular senescence, causing a striking absence of stratified epithelia such as the skin. Here we identify the predominant p63 isoform, ΔNp63α, as a protein that bypasses oncogene induced senescence to drive tumorigenesis in vivo. Interestingly, bypass of senescence promotes stem-like proliferation and maintains survival of the keratin 15-positive stem cell population. Furthermore, we identify the chromatin remodeling protein Lsh as a new target of ΔNp63α that is an essential mediator of senescence bypass. These findings indicate that ΔNp63α is an oncogene that cooperates with Ras to promote tumor-initiating stem-like proliferation, and suggest that Lsh-mediated chromatin remodeling events are critical to this process. PMID:21295273

  14. Malignant transformation of diploid human fibroblasts by transfection of oncogenes. Part 2, Progress report, July 1989--June 1992

    McCormick, J.J.

    1992-12-31

    This document consist of brief reports prepared by postdoctoral students supported by the project, each describing his accomplishments under the grant. Topics include (1) Malignant Transformation of MSU-1. 1 Cells by Gamma Radiation, (2) Correlation between Levels of ras Expression and Presence of Transformed Phenotypes Including Tumorigenicity, Using a Modulatable Promoter, (3) Relation between Specific rad Oncogene Expression, (4) Correlation of Genetic Changes in Fibroblastic Tumors with Malignancies, (5)Transformation of MSU-1.1 Cells by sis Oncogene, (6) Malignant Transformation of MSU-1.0 Cells, (7) Correlation of Urokinase Plasminogen Activation (mu-PA) with Malignant Phenotype, (8)Two Dimensional Gel Electrophoresis Studies of the Proteins of the Major Cell Strains of the MSU-1 Family of Cells, and (9) Correlation between Proteinase Activity Levels and Malignancy.

  15. An Oncogenic Role for Alternative NF-κB Signaling in DLBCL Revealed upon Deregulated BCL6 Expression

    Baochun Zhang

    2015-05-01

    Full Text Available Diffuse large B cell lymphoma (DLBCL is a complex disease comprising diverse subtypes and genetic profiles. Possibly because of the prevalence of genetic alterations activating canonical NF-κB activity, a role for oncogenic lesions that activate the alternative NF-κB pathway in DLBCL has remained elusive. Here, we show that deletion/mutation of TRAF3, a negative regulator of the alternative NF-κB pathway, occurs in ∼15% of DLBCLs and that it often coexists with BCL6 translocation, which prevents terminal B cell differentiation. Accordingly, in a mouse model constitutive activation of the alternative NF-κB pathway cooperates with BCL6 deregulation in DLBCL development. This work demonstrates a key oncogenic role for the alternative NF-κB pathway in DLBCL development.

  16. Oncogenic MYC Activates a Feedforward Regulatory Loop Promoting Essential Amino Acid Metabolism and Tumorigenesis.

    Yue, Ming; Jiang, Jue; Gao, Peng; Liu, Hudan; Qing, Guoliang

    2017-12-26

    Most tumor cells exhibit obligatory demands for essential amino acids (EAAs), but the regulatory mechanisms whereby tumor cells take up EAAs and EAAs promote malignant transformation remain to be determined. Here, we show that oncogenic MYC, solute carrier family (SLC) 7 member 5 (SLC7A5), and SLC43A1 constitute a feedforward activation loop to promote EAA transport and tumorigenesis. MYC selectively activates Slc7a5 and Slc43a1 transcription through direct binding to specific E box elements within both genes, enabling effective EAA import. Elevated EAAs, in turn, stimulate Myc mRNA translation, in part through attenuation of the GCN2-eIF2α-ATF4 amino acid stress response pathway, leading to MYC-dependent transcriptional amplification. SLC7A5/SLC43A1 depletion inhibits MYC expression, metabolic reprogramming, and tumor cell growth in vitro and in vivo. These findings thus reveal a MYC-SLC7A5/SLC43A1 signaling circuit that underlies EAA metabolism, MYC deregulation, and tumorigenesis. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. Stat1 phosphorylation determines Ras oncogenicity by regulating p27 kip1.

    Shuo Wang

    Full Text Available Inactivation of p27 Kip1 is implicated in tumorigenesis and has both prognostic and treatment-predictive values for many types of human cancer. The transcription factor Stat1 is essential for innate immunity and tumor immunosurveillance through its ability to act downstream of interferons. Herein, we demonstrate that Stat1 functions as a suppressor of Ras transformation independently of an interferon response. Inhibition of Ras transformation and tumorigenesis requires the phosphorylation of Stat1 at tyrosine 701 but is independent of Stat1 phosphorylation at serine 727. Stat1 induces p27 Kip1 expression in Ras transformed cells at the transcriptional level through mechanisms that depend on Stat1 phosphorylation at tyrosine 701 and activation of Stat3. The tumor suppressor properties of Stat1 in Ras transformation are reversed by the inactivation of p27 Kip1. Our work reveals a novel functional link between Stat1 and p27 Kip1, which act in coordination to suppress the oncogenic properties of activated Ras. It also supports the notion that evaluation of Stat1 phosphorylation in human tumors may prove a reliable prognostic factor for patient outcome and a predictor of treatment response to anticancer therapies aimed at activating Stat1 and its downstream effectors.

  18. Expression of the Pokemon proto-oncogene in nasopharyngeal carcinoma cell lines and tissues.

    Jiao, Wei; Liu, Fei; Tang, Feng-Zhu; Lan, Jiao; Xiao, Rui-Ping; Chen, Xing-Zhou; Ye, Hui-Lan; Cai, Yong-Lin

    2013-01-01

    To study the differentiated expression of the proto-oncogene Pokemon in nasopharyngeal carcinoma (NPC) cell lines and tissues, mRNA and protein expression levels of CNE1, CNE2, CNE3 and C666-1 were detected separately by reverse transcription polymerase chain reaction (RT-PCR), real-time PCR and Western-blotting. The immortalized nasopharyngeal epithelial cell line NP69 was used as a control. The Pokemon protein expression level in biopsy specimens from chronic rhinitis patients and undifferentiated non keratinizing NPC patients was determined by Western-blotting and arranged from high to low: C666-1>CNE1>CNE2> CNE3>NP69. The Pokemon mRNA expression level was also arranged from high to low: CNE1>CNE2>NP69>C666-1>CNE3. Pokemon expression of NP69 and C666-1 obviously varied from mRNA to protein. The Pokemon protein level of NPC biopsy specimens was obviously higher than in chronic rhinitis. The data suggest that high Pokemon protein expression is closely associated with undifferentiated non-keratinizing NPC and may provide useful information for NPC molecular target therapy.

  19. The putative oncogene Pim-1 in the mouse: its linkage and variation among t haplotypes.

    Nadeau, J H; Phillips, S J

    1987-11-01

    Pim-1, a putative oncogene involved in T-cell lymphomagenesis, was mapped between the pseudo-alpha globin gene Hba-4ps and the alpha-crystallin gene Crya-1 on mouse chromosome 17 and therefore within the t complex. Pim-1 restriction fragment variants were identified among t haplotypes. Analysis of restriction fragment sizes obtained with 12 endonucleases demonstrated that the Pim-1 genes in some t haplotypes were indistinguishable from the sizes for the Pim-1b allele in BALB/c inbred mice. There are now three genes, Pim-1, Crya-1 and H-2 I-E, that vary among independently derived t haplotypes and that have indistinguishable alleles in t haplotypes and inbred strains. These genes are closely linked within the distal inversion of the t complex. Because it is unlikely that these variants arose independently in t haplotypes and their wild-type homologues, we propose that an exchange of chromosomal segments, probably through double crossingover, was responsible for indistinguishable Pim-1 genes shared by certain t haplotypes and their wild-type homologues. There was, however, no apparent association between variant alleles of these three genes among t haplotypes as would be expected if a single exchange introduced these alleles into t haplotypes. If these variant alleles can be shown to be identical to the wild-type allele, then lack of association suggests that multiple exchanges have occurred during the evolution of the t complex.

  20. The crucial role of the proto-oncogene c-mos in regulation of oocyte maturation

    Irena Jałocha

    2010-12-01

    Full Text Available Meiosis arrest before fertilization is a common and unique feature of oogenesis in many animal species. On account of the unclear biological significance of meiosis arrest at various stages and for different durations in different animal species, this process and its regulation are the subject of many scientific studies. Studies on the development of ovarian teratomas proved to be helpful in defining the role of particular genes and biochemical cycles in control of the cell cycle in animals. These benign tumors are a valuable source of information on oocyte maturation. The [i]c-mos[/i] proto-oncogene, which is specifically expressed in female and male germ cells, plays a crucial role in control of meiotic cell division in mammals. Its product – Mos protein kinase – acting through mitogen-activated protein kinases (MAPKs regulates critical cellular functions required for homeostasis and decides about cell survival or apoptosis. The MAPK kinase kinase – MAPK kinase – MAPK (MKKK-MKK-MAPK phosphorelay system, in view of its role in cells, seems to be the ideal target for therapeutic intervention in cancer and other diseases. The recent research on human oocytes suggests that the basic mechanisms regulating various stages of oocyte maturation are similar to those described in animals.

  1. RECQL5 Suppresses Oncogenic JAK2-Induced Replication Stress and Genomic Instability

    Edwin Chen

    2015-12-01

    Full Text Available JAK2V617F is the most common oncogenic lesion in patients with myeloproliferative neoplasms (MPNs. Despite the ability of JAK2V617F to instigate DNA damage in vitro, MPNs are nevertheless characterized by genomic stability. In this study, we address this paradox by identifying the DNA helicase RECQL5 as a suppressor of genomic instability in MPNs. We report increased RECQL5 expression in JAK2V617F-expressing cells and demonstrate that RECQL5 is required to counteract JAK2V617F-induced replication stress. Moreover, RECQL5 depletion sensitizes JAK2V617F mutant cells to hydroxyurea (HU, a pharmacological inducer of replication stress and the most common treatment for MPNs. Using single-fiber chromosome combing, we show that RECQL5 depletion in JAK2V617F mutant cells impairs replication dynamics following HU treatment, resulting in increased double-stranded breaks and apoptosis. Cumulatively, these findings identify RECQL5 as a critical regulator of genome stability in MPNs and demonstrate that replication stress-associated cytotoxicity can be amplified specifically in JAK2V617F mutant cells through RECQL5-targeted synthetic lethality.

  2. CD147 reinforces [Ca2+]i oscillations and promotes oncogenic progression in hepatocellular carcinoma.

    Tang, Juan; Guo, Yun-Shan; Yu, Xiao-Ling; Huang, Wan; Zheng, Ming; Zhou, Ying-Hui; Nan, Gang; Wang, Jian-Chao; Yang, Hai-Jiao; Yu, Jing-Min; Jiang, Jian-Li; Chen, Zhi-Nan

    2015-10-27

    Oscillations in intracellular Ca2+ concentrations ([Ca2+]i) mediate various cellular function. Although it is known that [Ca2+]i oscillations are susceptible to dysregulation in tumors, the tumor-specific regulators of [Ca2+]i oscillations are poorly characterized. We discovered that CD147 promotes hepatocellular carcinoma (HCC) metastasis and proliferation by enhancing the amplitude and frequency of [Ca2+]i oscillations in HCC cells. CD147 activates two distinct signaling pathways to regulate [Ca2+]i oscillations. By activating FAK-Src-IP3R1 signaling pathway, CD147 promotes Ca2+ release from endoplasmic reticulum (ER) and enhances the amplitude of [Ca2+]i oscillations. Furthermore, CD147 accelerates ER Ca2+refilling and enhances the frequency of [Ca2+]i oscillations through activating CaMKP-PAK1-PP2A-PLB-SERCA signaling pathway. Besides, CD147-promoted ER Ca2+ release and refilling are tightly regulated by changing [Ca2+]i. CD147 may activate IP3R1 channel under low [Ca2+]i conditions and CD147 may activate SERCA pump under high [Ca2+]i conditions. CD147 deletion suppresses HCC tumorigenesis and increases the survival rate of liver-specific CD147 knockout mice by regulating [Ca2+]i oscillations in vivo. Together, these results reveal that CD147 functions as a critical regulator of ER-dependent [Ca2+]i oscillations to promote oncogenic progression in HCC.

  3. AZIN1 RNA editing confers cancer stemness and enhances oncogenic potential in colorectal cancer.

    Shigeyasu, Kunitoshi; Okugawa, Yoshinaga; Toden, Shusuke; Miyoshi, Jinsei; Toiyama, Yuji; Nagasaka, Takeshi; Takahashi, Naoki; Kusunoki, Masato; Takayama, Tetsuji; Yamada, Yasuhide; Fujiwara, Toshiyoshi; Chen, Leilei; Goel, Ajay

    2018-06-21

    Adenosine-to-inosine (A-to-I) RNA editing, a process mediated by adenosine deaminases that act on the RNA (ADAR) gene family, is a recently discovered epigenetic modification dysregulated in human cancers. However, the clinical significance and the functional role of RNA editing in colorectal cancer (CRC) remain unclear. We have systematically and comprehensively investigated the significance of the expression status of ADAR1 and of the RNA editing levels of antizyme inhibitor 1 (AZIN1), one of the most frequently edited genes in cancers, in 392 colorectal tissues from multiple independent CRC patient cohorts. Both ADAR1 expression and AZIN1 RNA editing levels were significantly elevated in CRC tissues when compared with corresponding normal mucosa. High levels of AZIN1 RNA editing emerged as a prognostic factor for overall survival and disease-free survival and were an independent risk factor for lymph node and distant metastasis. Furthermore, elevated AZIN1 editing identified high-risk stage II CRC patients. Mechanistically, edited AZIN1 enhances stemness and appears to drive the metastatic processes. We have demonstrated that edited AZIN1 functions as an oncogene and a potential therapeutic target in CRC. Moreover, AZIN1 RNA editing status could be used as a clinically relevant prognostic indicator in CRC patients.

  4. Inactivation and inducible oncogenic mutation of p53 in gene targeted pigs.

    Simon Leuchs

    Full Text Available Mutation of the tumor suppressor p53 plays a major role in human carcinogenesis. Here we describe gene-targeted porcine mesenchymal stem cells (MSCs and live pigs carrying a latent TP53(R167H mutant allele, orthologous to oncogenic human mutant TP53(R175H and mouse Trp53(R172H, that can be activated by Cre recombination. MSCs carrying the latent TP53(R167H mutant allele were analyzed in vitro. Homozygous cells were p53 deficient, and on continued culture exhibited more rapid proliferation, anchorage independent growth, and resistance to the apoptosis-inducing chemotherapeutic drug doxorubicin, all characteristic of cellular transformation. Cre mediated recombination activated the latent TP53(R167H allele as predicted, and in homozygous cells expressed mutant p53-R167H protein at a level ten-fold greater than wild-type MSCs, consistent with the elevated levels found in human cancer cells. Gene targeted MSCs were used for nuclear transfer and fifteen viable piglets were produced carrying the latent TP53(R167H mutant allele in heterozygous form. These animals will allow study of p53 deficiency and expression of mutant p53-R167H to model human germline, or spontaneous somatic p53 mutation. This work represents the first inactivation and mutation of the gatekeeper tumor suppressor gene TP53 in a non-rodent mammal.

  5. Extracting Fitness Relationships and Oncogenic Patterns among Driver Genes in Cancer.

    Zhang, Xindong; Gao, Lin; Jia, Songwei

    2017-12-25

    Driver mutation provides fitness advantage to cancer cells, the accumulation of which increases the fitness of cancer cells and accelerates cancer progression. This work seeks to extract patterns accumulated by driver genes ("fitness relationships") in tumorigenesis. We introduce a network-based method for extracting the fitness relationships of driver genes by modeling the network properties of the "fitness" of cancer cells. Colon adenocarcinoma (COAD) and skin cutaneous malignant melanoma (SKCM) are employed as case studies. Consistent results derived from different background networks suggest the reliability of the identified fitness relationships. Additionally co-occurrence analysis and pathway analysis reveal the functional significance of the fitness relationships with signaling transduction. In addition, a subset of driver genes called the "fitness core" is recognized for each case. Further analyses indicate the functional importance of the fitness core in carcinogenesis, and provide potential therapeutic opportunities in medicinal intervention. Fitness relationships characterize the functional continuity among driver genes in carcinogenesis, and suggest new insights in understanding the oncogenic mechanisms of cancers, as well as providing guiding information for medicinal intervention.

  6. Oncogenic KRAS activates an embryonic stem cell-like program in human colon cancer initiation.

    Le Rolle, Anne-France; Chiu, Thang K; Zeng, Zhaoshi; Shia, Jinru; Weiser, Martin R; Paty, Philip B; Chiu, Vi K

    2016-01-19

    Colorectal cancer is the third most frequently diagnosed cancer worldwide. Prevention of colorectal cancer initiation represents the most effective overall strategy to reduce its associated morbidity and mortality. Activating KRAS mutation (KRASmut) is the most prevalent oncogenic driver in colorectal cancer development, and KRASmut inhibition represents an unmet clinical need. We apply a systems-level approach to study the impact of KRASmut on stem cell signaling during human colon cancer initiation by performing gene set enrichment analysis on gene expression from human colon tissues. We find that KRASmut imposes the embryonic stem cell-like program during human colon cancer initiation from colon adenoma to stage I carcinoma. Expression of miR145, an embryonic SC program inhibitor, promotes cell lineage differentiation marker expression in KRASmut colon cancer cells and significantly suppresses their tumorigenicity. Our data support an in vivo plasticity model of human colon cancer initiation that merges the intrinsic stem cell properties of aberrant colon stem cells with the embryonic stem cell-like program induced by KRASmut to optimize malignant transformation. Inhibition of the embryonic SC-like program in KRASmut colon cancer cells reveals a novel therapeutic strategy to programmatically inhibit KRASmut tumors and prevent colon cancer.

  7. Regulation of expression of the c-sis proto-oncogene

    Ratner, L. (Washington Univ., St. Louis, MO (USA))

    1989-06-12

    Regulation of expression of platelet derived growth factor polypeptide B encoded by the c-sis proto-oncogene is important in a number of physiological and pathological conditions. Sequences in the 1,028 nucleotide long 5{prime} untranslated region of the c-sis mRNA were found to inhibit protein synthesis. The inhibition is relieved by deletion of nucleotides 154-378 or 398-475. Sequences within 375 nucleotides upstream of the RNA initiation sites are important for transcriptional activity. Sequences in two portions of this region, between {minus}375 and {minus}235 nucleotides and between {minus}235 and {minus}99 nucleotides relative to the RNA CAP site are important for full activity. A transcriptional enhancer activity is demonstrated by its ability to increase the activity of the human T lymphotropic virus type (HTLV) I promoter at a distance and in an orientation-independent manner. Furthermore, sequences upstream of the c-sis RNA CAP site respond to the HTLV I transactivator protein to increase RNA synthesis from either the c-sis or HTLV I promoter.

  8. c-Myc oncogene expression in selected odontogenic cysts and tumors: An immunohistochemical study

    Moosvi, Zama; Rekha, K

    2013-01-01

    Aim: To investigate the role of c-Myc oncogene in selected odontogenic cysts and tumors. Materials and Methods: Ten cases each of ameloblastoma, adenomatoid odontogenic tumor (AOT), odontogenic keratocyst (OKC), dentigerous cyst, and radicular cyst were selected and primary monoclonal mouse anti-human c-Myc antibody was used in a dilution of 1: 50. Statistical Analysis was performed using Mann Whitney U test. Results: 80% positivity was observed in ameloblastoma, AOT and OKC; 50% positivity in radicular cyst and 20% positivity in dentigerous cyst. Comparison of c-Myc expression between ameloblastoma and AOT did not reveal significant results. Similarly, no statistical significance was observed when results of OKC were compared with ameloblastoma and AOT. In contrast, significant differences were seen on comparison of dentigerous cyst with ameloblastoma and AOT and radicular cyst with AOT. Conclusion: From the above data we conclude that (1) Ameloblastoma and AOT have similar proliferative potential and their biologic behavior cannot possibly be attributed to it. (2) OKC has an intrinsic growth potential which is absent in other cysts and reinforces its classification as keratocystic odontogenic tumor. PMID:23798830

  9. Primary structure of the human fgr proto-oncogene product p55/sup c-fgr/

    Katamine, S.; Notario, V.; Rao, C.D.; Miki, T.; Cheah, M.S.C.; Tronick, S.R.; Robbins, K.C.

    1988-01-01

    Normal human c-fgr cDNA clones were constructed by using normal peripheral blood mononuclear cell mRNA as a template. Nucleotide sequence analysis of two such clones revealed a 1,587-base-pair-long open reading frame which predicted the primary amino acid sequence of the c-fgr translational product. Homology of this protein with the v-fgr translational product stretched from codons 128 to 516, where 32 differences among 388 codons were observed. Sequence similarity with human c-src, c-yes, and fyn translations products began at amino acid position 76 of the predicted c-fgr protein and extended nearly to its C-terminus. In contrast, the stretch of 75 amino acids at the N-terminus demonstrated a greatly reduced degree of relatedness to these same proteins. To verify the deduced amino acid sequence, antibodies were prepared against peptides representing amino- and carboxy-terminal regions of the predicted c-fgr translational product. Both antibodies specifically recognized a 55-kilodalton protein expressed in COS-1 cells transfected with a c-fgr cDNA expression plasmid. Moreover, the same protein was immunoprecipitated from an Epstein-Barr virus-infected Burkitt's lymphoma cell line which expressed c-fgr mRNA but not in its uninfected fgr mRNA-negative counterpart. These findings identified the 55-kilodalton protein as the product of the human fgr proto-oncogene.

  10. Methamphetamine induces apoptosis in immortalized neural cells: protection by the proto-oncogene, bcl-2.

    Cadet, J L; Ordonez, S V; Ordonez, J V

    1997-02-01

    Methamphetamine (METH) is an amphetamine analog that produces degeneration of the dopaminergic system in mammals. The neurotoxic effects of the drug are thought to be mediated by oxygen-based free radicals. In the present report, we have used immortalized neural cells obtained from rat mesencephalon in order to further assess the role of oxidative stress in METH-induced neurotoxicity. We thus tested if the anti-death proto-oncogene, bcl-2 could protect against METH-induced cytotoxicity. METH caused dose-dependent loss of cellular viability in control cells while bcl-2-expressing cells were protected against these deleterious effects. Using flow cytometry, immunofluorescent staining, and DNA electrophoresis, we also show that METH exposure can cause DNA strand breaks, chromatin condensation, nuclear fragmentation, and DNA laddering. All these changes were prevented by bcl-2 expression. These observations provide further support for the involvement of oxidative stress in the toxic effects of amphetamine analogs. They also document that METH-induced cytotoxicity is secondary to apoptosis. These findings may be of relevance to the cause(s) of Parkinson's disease which involves degeneration of the nigrostriatal dopaminergic pathway.

  11. Clinical implication of elevated human cervical cancer oncogene-1 expression in esophageal squamous cell carcinoma.

    Liu, Ying; Li, Ke; Ren, Zhonghai; Li, Shenglei; Zhang, Hongyan; Fan, Qingxia

    2012-07-01

    The human cervical cancer oncogene 1 (HCCR-1), a novel human oncoprotein, has been shown to be upregulated in various human tumors and plays a critical role in tumorigenesis and tumor progression. Here, the authors investigated HCCR-1 level in esophageal squamous cell carcinoma (ESCC) tissues and assessed the correlation between HCCR-1 level and prognosis of the patients with ESCC. HCCR-1 levels were investigated by immunohistochemistry, in situ hybridization, real-time quantitative RT-PCR and Western blotting methods; Kaplan-Meier curve was used to evaluate the prognostic value of HCCR-1 level in patients with ESCC using log-rank test. HCCR-1 displayed high levels in ESCC tissues compared to squamous dysplasia tissues and normal esophageal epithelial tissues. No significant correlation was observed between the levels of HCCR-1 mRNA and protein and gender and age (all p>0.05) but obviously related to histological grade, clinical stage, and lymph node metastasis (all p<0.001). Moreover, the survival rate of the patients with low HCCR-1 levels was higher than that of the patients with high HCCR-1 levels (both p<0.05). These data demonstrate that HCCR-1 may be used as a novel predictor for the prognosis of the patients with ESCC.

  12. An identity crisis for fps/fes: oncogene or tumor suppressor?

    Sangrar, Waheed; Zirgnibl, Ralph A; Gao, Yan; Muller, William J; Jia, Zongchao; Greer, Peter A

    2005-05-01

    Fps/Fes proteins were among the first members of the protein tyrosine kinase family to be characterized as dominant-acting oncoproteins. Addition of retroviral GAG sequences or other experimentally induced mutations activated the latent transforming potential of Fps/Fes. However, activating mutations in fps/fes had not been found in human tumors until recently, when mutational analysis of a panel of colorectal cancers identified four somatic mutations in sequences encoding the Fps/Fes kinase domain. Here, we report biochemical and theoretical structural analysis demonstrating that three of these mutations result in inactivation, not activation, of Fps/Fes, whereas the fourth mutation compromised in vivo activity. These results did not concur with a classic dominant-acting oncogenic role for fps/fes involving activating somatic mutations but instead raised the possibility that inactivating fps/fes mutations might promote tumor progression in vivo. Consistent with this, we observed that tumor onset in a mouse model of breast epithelial cancer occurred earlier in mice targeted with either null or kinase-inactivating fps/fes mutations. Furthermore, a fps/fes transgene restored normal tumor onset kinetics in targeted fps/fes null mice. These data suggest a novel and unexpected tumor suppressor role for Fps/Fes in epithelial cells.

  13. Exosomes enriched in stemness/metastatic-related mRNAS promote oncogenic potential in breast cancer.

    Rodríguez, Marta; Silva, Javier; Herrera, Alberto; Herrera, Mercedes; Peña, Cristina; Martín, Paloma; Gil-Calderón, Beatriz; Larriba, María Jesús; Coronado, M Josés; Soldevilla, Beatriz; Turrión, Víctor S; Provencio, Mariano; Sánchez, Antonio; Bonilla, Félix; García-Barberán, Vanesa

    2015-12-01

    Cancer cells efficiently transfer exosome contents (essentially mRNAs and microRNAs) to other cell types, modifying immune responses, cell growth, angiogenesis and metastasis. Here we analyzed the exosomes release by breast tumor cells with different capacities of stemness/metastasis based on CXCR4 expression, and evaluated their capacity to generate oncogenic features in recipient cells. Breast cancer cells overexpressing CXCR4 showed an increase in stemness-related markers, and in proliferation, migration and invasion capacities. Furthermore, recipient cells treated with exosomes from CXCR4-cells showed increased in the same abilities. Moreover, inoculation of CXCR4-cell-derived exosomes in immunocompromised mice stimulated primary tumor growth and metastatic potential. Comparison of nucleic acids contained into exosomes isolated from patients revealed a "stemness and metastatic" signature in exosomes of patients with worse prognosis. Finally, our data supported the view that cancer cells with stem-like properties show concomitant metastatic behavior, and their exosomes stimulate tumor progression and metastasis. Exosomes-derived nucleic acids from plasma of breast cancer patients are suitable markers in the prognosis of such patients.

  14. Characterization of the oncogenic function of centromere protein F in hepatocellular carcinoma

    Dai, Yongdong; Liu, Lulu; Zeng, Tingting; Zhu, Ying-Hui [State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou (China); Li, Jiangchao [Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou (China); Chen, Leilei [Department of Clinical Oncology, The University of Hong Kong, Pokfulam, Hong Kong (China); Li, Yan; Yuan, Yun-Fei [State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou (China); Ma, Stephanie, E-mail: stefma@hku.hk [Department of Clinical Oncology, The University of Hong Kong, Pokfulam, Hong Kong (China); State Key Laboratory for Liver Research, The University of Hong Kong, Pokfulam, Hong Kong (China); Guan, Xin-Yuan, E-mail: xyguan@hkucc.hku.hk [State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou (China); Department of Clinical Oncology, The University of Hong Kong, Pokfulam, Hong Kong (China); State Key Laboratory for Liver Research, The University of Hong Kong, Pokfulam, Hong Kong (China)

    2013-07-12

    Highlights: •Overexpression of CENPF is frequently detected in HCC. •Upregulation of CENPF serves as an independent prognosis factor in HCC patients. •CENPF functions as an oncogene in HCC by promoting cell G2/M transition. -- Abstract: Centromere protein F (CENPF) is an essential nuclear protein associated with the centromere-kinetochore complex and plays a critical role in chromosome segregation during mitosis. Up-regulation of CENPF expression has previously been detected in several solid tumors. In this study, we aim to study the expression and functional role of CENPF in hepatocellular carcinoma (HCC). We found CENPF was frequently overexpressed in HCC as compared with non-tumor tissue. Up-regulated CENPF expression in HCC was positively correlated with serum AFP, venous invasion, advanced differentiation stage and a shorter overall survival. Cox regression analysis found that overexpression of CENPF was an independent prognosis factor in HCC. Functional studies found that silencing CENPF could decrease the ability of the cells to proliferate, form colonies and induce tumor formation in nude mice. Silencing CENPF also resulted in the cell cycle arrest at G2/M checkpoint by down-regulating cell cycle proteins cdc2 and cyclin B1. Our data suggest that CENPF is frequently overexpressed in HCC and plays a critical role in driving HCC tumorigenesis.

  15. Mitochondrial dysfunctions in cancer: genetic defects and oncogenic signaling impinging on TCA cycle activity.

    Desideri, Enrico; Vegliante, Rolando; Ciriolo, Maria Rosa

    2015-01-28

    The tricarboxylic acid (TCA) cycle is a central route for oxidative metabolism. Besides being responsible for the production of NADH and FADH2, which fuel the mitochondrial electron transport chain to generate ATP, the TCA cycle is also a robust source of metabolic intermediates required for anabolic reactions. This is particularly important for highly proliferating cells, like tumour cells, which require a continuous supply of precursors for the synthesis of lipids, proteins and nucleic acids. A number of mutations among the TCA cycle enzymes have been discovered and their association with some tumour types has been established. In this review we summarise the current knowledge regarding alterations of the TCA cycle in tumours, with particular attention to the three germline mutations of the enzymes succinate dehydrogenase, fumarate hydratase and isocitrate dehydrogenase, which are involved in the pathogenesis of tumours, and to the aberrant regulation of TCA cycle components that are under the control of oncogenes and tumour suppressors. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Multiple oncogenic viruses identified in Ocular surface squamous neoplasia in HIV-1 patients

    Bisson Gregory

    2010-03-01

    Full Text Available Abstract Background Ocular surface squamous neoplasia (OSSN is a rare cancer that has increased in incidence with the HIV pandemic in Africa. The underlying cause of this cancer in HIV-infected patients from Botswana is not well defined. Results Tissues were obtained from 28 OSSN and 8 pterygia patients. The tissues analyzed from OSSN patients were 83% positive for EBV, 75% were HPV positive, 70% were KSHV positive, 75% were HSV-1/2 positive, and 61% were CMV positive by PCR. Tissues from pterygium patients were 88% positive for EBV, 75% were HPV positive, 50% were KSHV positive, and 60% were CMV positive. None of the patients were JC or BK positive. In situ hybridization and immunohistochemistry analyses further identified HPV, EBV, and KSHV in a subset of the tissue samples. Conclusion We identified the known oncogenic viruses HPV, KSHV, and EBV in OSSN and pterygia tissues. The presence of these tumor viruses in OSSN suggests that they may contribute to the development of this malignancy in the HIV population. Further studies are necessary to characterize the molecular mechanisms associated with viral antigens and their potential role in the development of OSSN.

  17. Enhanced human papillomavirus type 8 oncogene expression levels are crucial for skin tumorigenesis in transgenic mice

    Hufbauer, M.; Lazic, D.; Akguel, B.; Brandsma, J.L.; Pfister, H.; Weissenborn, S.J.

    2010-01-01

    Human papillomavirus 8 (HPV8) is involved in skin cancer development in epidermodysplasia verruciformis patients. Transgenic mice expressing HPV8 early genes (HPV8-CER) developed papillomas, dysplasias and squamous cell carcinomas. UVA/B-irradiation and mechanical wounding of HPV8-CER mouse skin led to prompt papilloma induction in about 3 weeks. The aim of this study was to analyze the kinetics and level of transgene expression in response to skin irritations. Transgene expression was already enhanced 1 to 2 days after UVA/B-irradiation or tape-stripping and maintained during papilloma development. The enhanced transgene expression could be assigned to UVB and not to UVA. Papilloma development was thus always paralleled by an increased transgene expression irrespective of the type of skin irritation. A knock-down of E6 mRNA by tattooing HPV8-E6-specific siRNA led to a delay and a lower incidence of papilloma development. This indicates that the early increase of viral oncogene expression is crucial for induction of papillomatosis.

  18. B lymphoma Moloney murine leukemia virus insertion region 1: An oncogenic mediator in prostate cancer.

    Liu, Qipeng; Li, Qiaqia; Zhu, Sen; Yi, Yang; Cao, Qi

    2018-06-01

    B lymphoma Moloney murine leukemia virus insertion region 1 (BMI1), a core member of polycomb repressive complex 1 (PRC1), has been intensely investigated in the field of cancer epigenetics for decades. Widely known as a critical regulator in cellular physiology, BMI1 is essential in self-renewal and differentiation in different lineages of stem cells. BMI1 also plays a significant role in cancer etiology for its involvement in pathological progress such as epithelial-mesenchymal transition (EMT) and cancer stem cell maintenance, propagation, and differentiation. Importantly, overexpression of BMI1 is predictive for drug resistance, tumor recurrence, and eventual therapy failure of various cancer subtypes, which renders the pharmacological targeting at BMI1 as a novel and promising therapeutic approach. The study on prostate cancer, a prevalent hormone-related cancer among men, has promoted enormous research advancements in cancer genetics and epigenetics. This review summarizes the role of BMI1 as an oncogenic and epigenetic regulator in tumor initiation, progression, and relapse of prostate cancer.

  19. Expression of a fms-related oncogene in carcinogen-induced neoplastic epithelial cells

    Walker, C.; Nettesheim, P.; Barrett, J.C.; Gilmer, T.M.

    1987-01-01

    Following carcinogen exposure in vitro, normal rat tracheal epithelial cells are transformed in a multistage process in which the cultured cells become immortal and ultimately, neoplastic. Five cell lines derived from tumors produced by neoplastically transformed rat tracheal epithelial cells were examined for the expression of 11 cellular oncogenes previously implicated in pulmonary or epithelial carcinogenesis. RNA homologous to fms was expressed at a level 5-19 times higher than normal tracheal epithelial cells in three of five of the tumor-derived lines. All three lines expressing high levels of fms-related RNA gave rise to invasive tumors of epithelial origin when injected into nude mice. Increased expression of the fms-related mRNA was not due to gene amplification, and no gene rearrangement was detected by Southern analyses. RNA blot analysis using a 3' v-fms probe detected a 9.5-kilobase message in the three tumor-derived lines, whereas both normal rat aveolar macrophages and the human choriocarcinoma line BeWo expressed a fms transcript of ≅ 4 kilobases. The authors conclude from these data that the gene expressed as a 9.5-kilobase transcript in these neoplastic epithelial cells is a member of a fms-related gene family but may be distinct from the gene that encodes the macrophage colony-stimulating factor (CSF-1) receptor

  20. Lipoprotein internalisation induced by oncogenic AMPK activation is essential to maintain glioblastoma cell growth.

    Ríos, M; Foretz, M; Viollet, B; Prieto, A; Fraga, M; García-Caballero, T; Costoya, J A; Señarís, R

    2014-12-01

    Metabolic adaptations are essential during tumour growth to maintain the high proliferation levels exhibited by cancer cells. In this study, we examined the transformations that occurred in the lipid metabolism in astrocytic tumours, and the possible role of the fuel-sensing enzyme AMPK. Metabolic targets might help design new and effective drugs for cancer. To accomplish this objective, we studied both mice and human astrocytic tumours. We first used a mouse model of astrocytoma driven by oncogenic H-RasV12 and/or with PTEN deletion based on the common constitutive activation of the Raf/MEK/ERK and PI3K/AKT cascades in human astrocytomas. We then confirmed the results in human glioblastoma cell lines and in glioblastoma tissue samples from patients. We show that the high levels of activated AMPK, observed in astrocytic tumours, increase extracellular lipid internalisation and reduce energy expenditure by inhibiting 'de novo' fatty acid (FA) synthesis, which allows tumour cells to obtain building blocks and energy to be able to create new organelles and new cells. Our findings demonstrate that AMPK plays a crucial role in glioblastoma cell growth and suggest that blocking lipoprotein receptors could potentially be used as a plausible therapeutic approach for these and other type of tumours with high levels of AMPK. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Expression of oncogen c-erbB-2 (neu/HER-2) in human breast cancer

    Michelin, Severino C.; Mayo, Jose

    2000-01-01

    Breast cancer continues to be one of the leading causes of death from cancer among women and represents the most serious challenge to therapeutic control. Amplification and overexpression of the c-erbB-2 proto-oncogene occurs in as many as 30 % of all breast cancers and has been correlated with lymph node metastasis and poor prognosis in breast cancer patients. This gene know as neu, HER-2 or c-erbB-2 in among those most frequently altered in human cancer. It was first identified as a transforming gene activated in chemically induced rat neuroectodermal tumors. Early critical studies linked changes in erbB-2 expression and gene copy number to several human cancer, notably breast, ovarian and gastric cancer. Owing to its accessible location at the cell surface, erbB-2 is now under intensive scrutiny as a therapeutic target. In this review we will summarize the involvement of the c-erbB-2 gene in tumorigenesis. (author)

  2. Oncogenic mutations in melanomas and benign melanocytic nevi of the female genital tract.

    Tseng, Diane; Kim, Julie; Warrick, Andrea; Nelson, Dylan; Pukay, Marina; Beadling, Carol; Heinrich, Michael; Selim, Maria Angelica; Corless, Christopher L; Nelson, Kelly

    2014-08-01

    The genetic heterogeneity of melanomas and melanocytic nevi of the female genital tract is poorly understood. We aim to characterize the frequency of mutations of the following genes: BRAF, NRAS, KIT, GNA11, and GNAQ in female genital tract melanomas. We also characterize the frequency of BRAF mutations in female genital tract melanomas compared with melanocytic nevi. Mutational screening was performed on the following female genital tract melanocytic neoplasms: 25 melanomas, 7 benign melanocytic nevi, and 4 atypical melanocytic nevi. Of the 25 female genital tract melanoma specimens queried, KIT mutations were detected in 4 (16.0%), NRAS mutations in 4 (16.0%), and BRAF mutations in 2 (8.0%) samples. Two of the tumors with KIT mutations harbored double mutations in the same exon. No GNAQ or GNA11 mutations were identified among 11 melanomas screened. BRAF V600E mutations were detected in 7 of 7 benign melanocytic genital nevi (100%) and 3 of 4 atypical genital nevi (75%). Our study is limited by the small sample size of this rare subset of melanomas. KIT, NRAS, and BRAF mutations are found in a subset of female genital tract melanomas. Screening for oncogenic mutations is important for developing and applying clinical therapies for melanomas of the female genital tract. Copyright © 2014 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  3. FoxA1 as a lineage-specific oncogene in luminal type breast cancer

    Yamaguchi, Noritaka; Ito, Emi; Azuma, Sakura; Honma, Reiko; Yanagisawa, Yuka; Nishikawa, Akira; Kawamura, Mika; Imai, Jun-ichi

    2008-01-01

    The forkhead transcription factor FoxA1 is thought to be involved in mammary tumorigenesis. However, the precise role of FoxA1 in breast cancer development is controversial. We examined expression of FoxA1 in 35 human breast cancer cell lines and compared it with that of ErbB2, a marker of poor prognosis in breast cancer. We found that FoxA1 is expressed at high levels in all ErbB2-positive cell lines and a subset of ErbB2-negative cell lines. Down-regulation of FoxA1 by RNA interference significantly suppressed proliferation of ErbB2-negative and FoxA1-positive breast cancer cell lines. Down-regulation of FoxA1 also enhanced the toxic effect of Herceptin on ErbB2-positive cell lines through induction of apoptosis. Taken together with previous data that FoxA1 is a marker of luminal cells in mammary gland, our present results suggest that FoxA1 plays an important role as a lineage-specific oncogene in proliferation of cancer cells derived from mammary luminal cells

  4. Nucleolus-derived mediators in oncogenic stress response and activation of p53-dependent pathways.

    Stępiński, Dariusz

    2016-08-01

    Rapid growth and division of cells, including tumor ones, is correlated with intensive protein biosynthesis. The output of nucleoli, organelles where translational machineries are formed, depends on a rate of particular stages of ribosome production and on accessibility of elements crucial for their effective functioning, including substrates, enzymes as well as energy resources. Different factors that induce cellular stress also often lead to nucleolar dysfunction which results in ribosome biogenesis impairment. Such nucleolar disorders, called nucleolar or ribosomal stress, usually affect cellular functioning which in fact is a result of p53-dependent pathway activation, elicited as a response to stress. These pathways direct cells to new destinations such as cell cycle arrest, damage repair, differentiation, autophagy, programmed cell death or aging. In the case of impaired nucleolar functioning, nucleolar and ribosomal proteins mediate activation of the p53 pathways. They are also triggered as a response to oncogenic factor overexpression to protect tissues and organs against extensive proliferation of abnormal cells. Intentional impairment of any step of ribosome biosynthesis which would direct the cells to these destinations could be a strategy used in anticancer therapy. This review presents current knowledge on a nucleolus, mainly in relation to cancer biology, which is an important and extremely sensitive element of the mechanism participating in cellular stress reaction mediating activation of the p53 pathways in order to counteract stress effects, especially cancer development.

  5. Intracranial phosphaturic mesenchymal tumor, mixed connective tissue variant presenting without oncogenic osteomalacia.

    Bower, Regina S; Daugherty, Wilson P; Giannini, Caterina; Parney, Ian F

    2012-01-01

    Phosphaturic mesenchymal tumor, mixed connective tissue variant (PMTMCT) is a rare tumor typically occurring in soft tissues and bone, causing oncogenic (tumor-induced) osteomalacia (TIO) through secretion of the phosphaturic hormone, fibroblast growth factor-23 (FGF-23). Rare tumors identical to PMTMCT occur without known TIO. Intracranial localization of PMTMCT is extremely rare, with only two cases reported in the literature. We present a very unusual case of a patient with an intracranial PMTMCT that presented with neurologic changes without osteomalacia. A 67-year-old woman presented with progressive incontinence, apathy, and abulia after having undergone a total knee replacement 1 month earlier. Imaging disclosed a large left frontal anterior fossa mass. She underwent uncomplicated surgical resection of this tumor. Surprisingly, histopathology suggested PMTMCT. Reverse transcription polymerase chain reaction (RT-PCR) assay demonstrating FGF-23 expression in the tumor confirmed the diagnosis. Serum FGF-23 levels postoperatively were normal and she had no clinical or laboratory evidence of osteomalacia or phosphaturia. This report should serve to alert clinicians to the possibility that PMTMCT can be included in the differential diagnosis of intracranial masses even in the absence of tumor-induced osteomalacia.

  6. Concurrent mutation in exons 1 and 2 of the K-ras oncogene in colorectal cancer

    Fiorella Guadagni

    2012-01-01

    Full Text Available The K-ras gene is frequently mutated in colorectal cancer and has been associated with tumor initiation and progression; approximately 90% of the activating mutations are found in codons 12 and 13 of exon 1 and just under 5% in codon 61 located in exon 2. These mutations determine single aminoacidic substitutions in the GTPase pocket leading to a block of the GTP hydrolytic activity of the K-ras p21 protein, and therefore to its constitutive activation. Point mutations in sites of the K-ras gene, other than codons 12, 13 and 61, and other types of genetic alterations, may occur in a minority of cases, such as in the less frequent cases of double mutations in the K-ras gene. However, all mutations in this gene, even those which occur in non-canonical sites or double mutations, are relevant oncogenic alterations in colorectal cancer and may underlie K-ras pathway hyperactivation. In the present study, we report the case of a patient with colorectal cancer presenting a concurrent point mutation in exons 1 and 2 of the K-ras gene, a GGT to TGT substitution (Glycine to Cysteine at codon 12, and a GAC to AAC substitution (Aspartic Acid to Asparagine at codon 57. In addition, we found in the same patient’s sample a silent polymorphism at codon 11 (Ala11Ala of exon 1. (Folia Histochemica et Cytobiologica 2011; Vol. 49, No. 4, pp. 729–733

  7. Chemo-elastic modeling of invasive carcinoma development accompanied by oncogenic epithelial-mesenchymal transition

    Bratsun, D. A.; Krasnyakov, I. V.; Pismen, L.

    2017-09-01

    We present a further development of a multiscale chemo-mechanical model of carcinoma growth in the epithelium tissue proposed earlier. The epithelium is represented by an elastic 2D array of polygonal cells, each with its own gene regulation dynamics. The model allows the simulation of evolution of multiple cells interacting via the chemical signaling or mechanically induced strain. The algorithm takes into account the division and intercalation of cells. The latter is most important since, first of all, carcinoma cells lose cell-cell adhesion and polarity via the oncogenic variant of the epithelial-mesenchymal transition (EMT) at which cells gain migratory and invasive properties. This process is mediated by E-cadherin repression and requires the differentiation of tumor cells with respect to the edge of the tumor that means that front cells should be most mobile. Taking into account this suggestion, we present the results of simulations demonstrating different patterns of carcinoma invasion. The comparison of our results with recent experimental observations is given and discussed.

  8. Rapid internalization of the oncogenic K+ channel K(V10.1.

    Tobias Kohl

    Full Text Available K(V10.1 is a mammalian brain voltage-gated potassium channel whose ectopic expression outside of the brain has been proven relevant for tumor biology. Promotion of cancer cell proliferation by K(V10.1 depends largely on ion flow, but some oncogenic properties remain in the absence of ion permeation. Additionally, K(V10.1 surface populations are small compared to large intracellular pools. Control of protein turnover within cells is key to both cellular plasticity and homeostasis, and therefore we set out to analyze how endocytic trafficking participates in controlling K(V10.1 intracellular distribution and life cycle. To follow plasma membrane K(V10.1 selectively, we generated a modified channel of displaying an extracellular affinity tag for surface labeling by α-bungarotoxin. This modification only minimally affected K(V10.1 electrophysiological properties. Using a combination of microscopy and biochemistry techniques, we show that K(V10.1 is constitutively internalized involving at least two distinct pathways of endocytosis and mainly sorted to lysosomes. This occurs at a relatively fast rate. Simultaneously, recycling seems to contribute to maintain basal K(V10.1 surface levels. Brief K(V10.1 surface half-life and rapid lysosomal targeting is a relevant factor to be taken into account for potential drug delivery and targeting strategies directed against K(V10.1 on tumor cells.

  9. USP22 regulates oncogenic signaling pathways to drive lethal cancer progression.

    Schrecengost, Randy S; Dean, Jeffry L; Goodwin, Jonathan F; Schiewer, Matthew J; Urban, Mark W; Stanek, Timothy J; Sussman, Robyn T; Hicks, Jessica L; Birbe, Ruth C; Draganova-Tacheva, Rossitza A; Visakorpi, Tapio; DeMarzo, Angelo M; McMahon, Steven B; Knudsen, Karen E

    2014-01-01

    Increasing evidence links deregulation of the ubiquitin-specific proteases 22 (USP22) deubitiquitylase to cancer development and progression in a select group of tumor types, but its specificity and underlying mechanisms of action are not well defined. Here we show that USP22 is a critical promoter of lethal tumor phenotypes that acts by modulating nuclear receptor and oncogenic signaling. In multiple xenograft models of human cancer, modeling of tumor-associated USP22 deregulation demonstrated that USP22 controls androgen receptor accumulation and signaling, and that it enhances expression of critical target genes coregulated by androgen receptor and MYC. USP22 not only reprogrammed androgen receptor function, but was sufficient to induce the transition to therapeutic resistance. Notably, in vivo depletion experiments revealed that USP22 is critical to maintain phenotypes associated with end-stage disease. This was a significant finding given clinical evidence that USP22 is highly deregulated in tumors, which have achieved therapeutic resistance. Taken together, our findings define USP22 as a critical effector of tumor progression, which drives lethal phenotypes, rationalizing this enzyme as an appealing therapeutic target to treat advanced disease.

  10. Unexpected functional similarities between gatekeeper tumour suppressor genes and proto-oncogenes revealed by systems biology.

    Zhao, Yongzhong; Epstein, Richard J

    2011-05-01

    Familial tumor suppressor genes comprise two subgroups: caretaker genes (CTs) that repair DNA, and gatekeeper genes (GKs) that trigger cell death. Since GKs may also induce cell cycle delay and thus enhance cell survival by facilitating DNA repair, we hypothesized that the prosurvival phenotype of GKs could be selected during cancer progression, and we used a multivariable systems biology approach to test this. We performed multidimensional data analysis, non-negative matrix factorization and logistic regression to compare the features of GKs with those of their putative antagonists, the proto-oncogenes (POs), as well as with control groups of CTs and functionally unrelated congenital heart disease genes (HDs). GKs and POs closely resemble each other, but not CTs or HDs, in terms of gene structure (Pexpression level and breadth (Pimplied suggest a common functional attribute that is strongly negatively selected-that is, a shared phenotype that enhances cell survival. The counterintuitive finding of similar evolutionary pressures affecting GKs and POs raises an intriguing possibility: namely, that cancer microevolution is accelerated by an epistatic cascade in which upstream suppressor gene defects subvert the normal bifunctionality of wild-type GKs by constitutively shifting the phenotype away from apoptosis towards survival. If correct, this interpretation would explain the hitherto unexplained phenomenon of frequent wild-type GK (for example, p53) overexpression in tumors.

  11. Shared Oncogenic Pathways Implicated in Both Virus-Positive and UV-Induced Merkel Cell Carcinomas.

    González-Vela, María Del Carmen; Curiel-Olmo, Soraya; Derdak, Sophia; Beltran, Sergi; Santibañez, Miguel; Martínez, Nerea; Castillo-Trujillo, Alfredo; Gut, Martha; Sánchez-Pacheco, Roxana; Almaraz, Carmen; Cereceda, Laura; Llombart, Beatriz; Agraz-Doblas, Antonio; Revert-Arce, José; López Guerrero, José Antonio; Mollejo, Manuela; Marrón, Pablo Isidro; Ortiz-Romero, Pablo; Fernandez-Cuesta, Lynnette; Varela, Ignacio; Gut, Ivo; Cerroni, Lorenzo; Piris, Miguel Ángel; Vaqué, José Pedro

    2017-01-01

    Merkel cell carcinoma (MCC) is a highly malignant neuroendocrine tumor of the skin whose molecular pathogenesis is not completely understood, despite the role that Merkel cell polyomavirus can play in 55-90% of cases. To study potential mechanisms driving this disease in clinically characterized cases, we searched for somatic mutations using whole-exome sequencing, and extrapolated our findings to study functional biomarkers reporting on the activity of the mutated pathways. Confirming previous results, Merkel cell polyomavirus-negative tumors had higher mutational loads with UV signatures and more frequent mutations in TP53 and RB compared with their Merkel cell polyomavirus-positive counterparts. Despite important genetic differences, the two Merkel cell carcinoma etiologies both exhibited nuclear accumulation of oncogenic transcription factors such as NFAT or nuclear factor of activated T cells (NFAT), P-CREB, and P-STAT3, indicating commonly deregulated pathogenic mechanisms with the potential to serve as targets for therapy. A multivariable analysis identified phosphorylated CRE-binding protein as an independent survival factor with respect to clinical variables and Merkel cell polyomavirus status in our cohort of Merkel cell carcinoma patients. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Detection of oncogenic human papillomavirus genotypes on spermatozoa from male partners of infertile couples.

    Schillaci, Rosaria; Capra, Giuseppina; Bellavia, Carmela; Ruvolo, Giovanni; Scazzone, Concetta; Venezia, Renato; Perino, Antonio

    2013-11-01

    To evaluate the prevalence of human papillomavirus (HPV) sperm infection and its correlation with sperm parameters in patients who attended a fertility clinic. Cross-sectional clinical study. University-affiliated reproductive medicine clinic. A total of 308 male partners of couples undergoing in vitro fertilization techniques. Specimens of semen were collected from all patients. Sperm parameters were evaluated according to the World Health Organization manual. The presence of HPV DNA was researched by the combined use of two HPV assays and a highly sensitive nested polymerase chain reaction assay followed by HPV genotyping. To examine whether HPV was associated with the sperm, in situ hybridization (ISH) analysis was performed. Results of HPV investigation were compared with sperm parameters and ISH analysis. Twenty-four out of 308 semen samples (7.8%) were HPV DNA positive, but HPV infection did not seem to affect semen quality. Moreover, ISH revealed a clear HPV localization at the equatorial region of sperm head in infected samples. Oncogenic HPV genotypes were detected on spermatozoa from asymptomatic subjects, but a role of the infection in male infertility was not demonstrated. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  13. Oncogenic events associated with endometrial and ovarian cancers are rare in endometriosis

    Vestergaard, Anna Lindeløv; Thorup, Katrine; Knudsen, Ulla Breth

    2011-01-01

    Endometriosis displays some features that resemble malignant processes, including invasive growth, resistance to apoptosis, and distant implantation. The objective of this study was to investigate whether gene alterations that are frequent in endometrial and/or ovarian cancers contribute to the p......Endometriosis displays some features that resemble malignant processes, including invasive growth, resistance to apoptosis, and distant implantation. The objective of this study was to investigate whether gene alterations that are frequent in endometrial and/or ovarian cancers contribute...... to the pathogenesis of endometriosis. Biopsies were obtained from ectopic endometriosis lesions from 23 patients with revised American Fertility Score (rAFS) stage 1 (N=1), 2 (N=10), 3 (N=11), or 4 (N=1) endometriosis. Six genes (APC, CDKN2A, PYCARD, RARB, RASSF1, and ESR1) were analyzed for promoter hypermethylation...... in a single lesion. No gene alterations were found in the remaining samples. Our data suggest that genetic and epigenetic events contributing to endometrial and ovarian cancers are rare in endometriosis. However, other proto-oncogenes and tumor suppressor genes should be tested for alterations in order...

  14. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer.

    Slamon, D J; Godolphin, W; Jones, L A; Holt, J A; Wong, S G; Keith, D E; Levin, W J; Stuart, S G; Udove, J; Ullrich, A

    1989-05-12

    Carcinoma of the breast and ovary account for one-third of all cancers occurring in women and together are responsible for approximately one-quarter of cancer-related deaths in females. The HER-2/neu proto-oncogene is amplified in 25 to 30 percent of human primary breast cancers and this alteration is associated with disease behavior. In this report, several similarities were found in the biology of HER-2/neu in breast and ovarian cancer, including a similar incidence of amplification, a direct correlation between amplification and over-expression, evidence of tumors in which overexpression occurs without amplification, and the association between gene alteration and clinical outcome. A comprehensive study of the gene and its products (RNA and protein) was simultaneously performed on a large number of both tumor types. This analysis identified several potential shortcomings of the various methods used to evaluate HER-2/neu in these diseases (Southern, Northern, and Western blots, and immunohistochemistry) and provided information regarding considerations that should be addressed when studying a gene or gene product in human tissue. The data presented further support the concept that the HER-2/neu gene may be involved in the pathogenesis of some human cancers.

  15. Oncogenous osteomalacia and myopericytoma of the thoracic spine: a case report.

    Brunschweiler, Benoit; Guedj, Nathalie; Lenoir, Thibault; Faillot, Thierry; Rillardon, Ludovic; Guigui, Pierre

    2009-11-01

    A case report. To illustrate a rare case of oncogenous osteomalacia caused by a spinal thoracic myopericytoma. Osteomalacia related to a tumor is well known. The cause of the disorder is usually a highly vascularized, benign tumor of mesenchymal origin. Location of the tumor in the spine is very rare. Removal of the tumor is followed by resolution of osteomalacia. Diagnosis of oseomalacia was established on the presence of cardinal clinical, biologic, and radiologic features of osteomalacia. Localization of the tumor at T5 and T6 levels was obtained by magnetic resonance imaging. Surgical treatment consisted in a circumferential correction-fusion with hemivertebrectomy of T5 and T6 and tumor removal. Tumor removal was rapidly followed by disappearance of the clinical symptoms of osteomalacia, and by correction of hypophosphatemia. At 2-years follow-up, no recurrence of the tumor was detectable on imaging studies-the correction fusion remained stable. Histologically, the tumor was classified as a myopericytoma. There was no relapse of the clinical features of osteomalacia. However, secondary recurrence of the biologic markers due to an incomplete tumor removal was disclosed. Removal of the tumor was followed by healing of the clinical features of osteomalacia, demonstrating the causal connection between the myopericytoma and the osteopathy.

  16. Oncogenic Osteomalacia Caused by a Phosphaturic Mesenchymal Tumor of the Oral Cavity: A Case Report

    Yang, In Myung; Park, Yong Koo; Hyun, Yong Jun; Kim, Deog Yoon; Woo, Jeong Taek; Kim, Sung Woon; Kim, Jin Woo; Kim, Young Seol; Choi, Young Kil

    1997-01-01

    We report a case of oncogenic osteomalacia associated with a phosphaturic mesenchymal tumor in a 31-year-old woman. She was presented with severe generalized bone and muscle pain and was restricted to bed. She lost 20cm in height over the 8 years since she had first noticed a pain in her thigh. A walnut-sized, hard, soft tissue tumor was found very easily beside her lower molar teeth. Radiologic examination revealed a remarkable decrease in bone density and multiple pathologic fractures of spine, femur and phalangeal bones. Severe hypophosphatemia, hyperphosphaturia, low plasma 1,25-dihydroxyvitamin D3 level and high plasma PTH level were disclosed at presentation. Histomorphometric examination revealed an extensive area of unmineralized osteoid and little mineralizing activity. A pharmacologic dose of 1α-hydroxyvitamin D3 or 1,25-dihydroxyvitamin D3 slightly increased the serum phosphate level and renal tubular reabsorption of phosphate, and slightly decreased plasma PTH level without any symptomatic improvement. Histologic examination of the tumor revealed a mixed connective tissue tumor that consisted of central woveh bones and surrounding primitive spindle cells with prominent vascularities. After removal of the tumor, all biochemical, hormonal and radiologic abnormalities disappeared with remarkable symptomatic improvement. PMID:9159046

  17. Increased mean lung density: Another independent predictor of lung cancer?

    Sverzellati, Nicola, E-mail: nicola.sverzellati@unipr.it [Department of Department of Surgical Sciences, Section of Diagnostic Imaging, University of Parma, Padiglione Barbieri, University Hospital of Parma, V. Gramsci 14, 43100 Parma (Italy); Randi, Giorgia, E-mail: giorgia.randi@marionegri.it [Department of Epidemiology, Mario Negri Institute, Via La Masa 19, 20156 Milan (Italy); Spagnolo, Paolo, E-mail: paolo.spagnolo@unimore.it [Respiratory Disease Unit, Center for Rare Lung Disease, Department of Oncology, Hematology and Respiratory Disease, University of Modena and Reggio Emilia, Via del Pozzo 71, 44124 Modena (Italy); Marchianò, Alfonso, E-mail: alfonso.marchiano@istitutotumori.mi.it [Department of Radiology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan (Italy); Silva, Mario, E-mail: mac.mario@hotmail.it [Department of Department of Surgical Sciences, Section of Diagnostic Imaging, University of Parma, Padiglione Barbieri, University Hospital of Parma, V. Gramsci 14, 43100 Parma (Italy); Kuhnigk, Jan-Martin, E-mail: Jan-Martin.Kuhnigk@mevis.fraunhofer.de [Fraunhofer MEVIS, Universitaetsallee 29, 28359 Bremen (Germany); La Vecchia, Carlo, E-mail: carlo.lavecchia@marionegri.it [Department of Occupational Health, University of Milan, Via Venezian 1, 20133 Milan (Italy); Zompatori, Maurizio, E-mail: maurizio.zompatori@unibo.it [Department of Radiology, Cardio-Thoracic Section, S. Orsola-Malpighi Hospital, Via Albertoni 15, 40138 Bologna (Italy); Pastorino, Ugo, E-mail: ugo.pastorino@istitutotumori.mi.it [Department of Surgery, Section of Thoracic Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan (Italy)

    2013-08-15

    Objectives: To investigate the relationship between emphysema phenotype, mean lung density (MLD), lung function and lung cancer by using an automated multiple feature analysis tool on thin-section computed tomography (CT) data. Methods: Both emphysema phenotype and MLD evaluated by automated quantitative CT analysis were compared between outpatients and screening participants with lung cancer (n = 119) and controls (n = 989). Emphysema phenotype was defined by assessing features such as extent, distribution on core/peel of the lung and hole size. Adjusted multiple logistic regression models were used to evaluate independent associations of CT densitometric measurements and pulmonary function test (PFT) with lung cancer risk. Results: No emphysema feature was associated with lung cancer. Lung cancer risk increased with decreasing values of forced expiratory volume in 1 s (FEV{sub 1}) independently of MLD (OR 5.37, 95% CI: 2.63–10.97 for FEV{sub 1} < 60% vs. FEV{sub 1} ≥ 90%), and with increasing MLD independently of FEV{sub 1} (OR 3.00, 95% CI: 1.60–5.63 for MLD > −823 vs. MLD < −857 Hounsfield units). Conclusion: Emphysema per se was not associated with lung cancer whereas decreased FEV{sub 1} was confirmed as being a strong and independent risk factor. The cross-sectional association between increased MLD and lung cancer requires future validations.

  18. Lung cancer mimicking lung abscess formation on CT images.

    Taira, Naohiro; Kawabata, Tsutomu; Gabe, Atsushi; Ichi, Takaharu; Kushi, Kazuaki; Yohena, Tomofumi; Kawasaki, Hidenori; Yamashiro, Toshimitsu; Ishikawa, Kiyoshi

    2014-01-01

    Male, 64 FINAL DIAGNOSIS: Lung pleomorphic carcinoma Symptoms: Cough • fever - Clinical Procedure: - Specialty: Oncology. Unusual clinical course. The diagnosis of lung cancer is often made based on computed tomography (CT) image findings if it cannot be confirmed on pathological examinations, such as bronchoscopy. However, the CT image findings of cancerous lesions are similar to those of abscesses.We herein report a case of lung cancer that resembled a lung abscess on CT. We herein describe the case of 64-year-old male who was diagnosed with lung cancer using surgery. In this case, it was quite difficult to distinguish between the lung cancer and a lung abscess on CT images, and a lung abscess was initially suspected due to symptoms, such as fever and coughing, contrast-enhanced CT image findings showing a ring-enhancing mass in the right upper lobe and the patient's laboratory test results. However, a pathological diagnosis of lung cancer was confirmed according to the results of a rapid frozen section biopsy of the lesion. This case suggests that physicians should not suspect both a lung abscesses and malignancy in cases involving masses presenting as ring-enhancing lesions on contrast-enhanced CT.

  19. Interplay between the lung microbiome and lung cancer.

    Mao, Qixing; Jiang, Feng; Yin, Rong; Wang, Jie; Xia, Wenjie; Dong, Gaochao; Ma, Weidong; Yang, Yao; Xu, Lin; Hu, Jianzhong

    2018-02-28

    The human microbiome confers benefits or disease susceptibility to the human body through multiple pathways. Disruption of the symbiotic balance of the human microbiome is commonly found in systematic diseases such as diabetes, obesity, and chronic gastric diseases. Emerging evidence has suggested that dysbiosis of the microbiota may also play vital roles in carcinogenesis at multiple levels, e.g., by affecting metabolic, inflammatory, or immune pathways. Although the impact of the gut microbiome on the digestive cancer has been widely explored, few studies have investigated the interplay between the microbiome and lung cancer. Some recent studies have shown that certain microbes and microbiota dysbiosis are correlated with development of lung cancer. In this mini-review, we briefly summarize current research findings describing the relationship between the lung microbiome and lung cancer. We further discuss the potential mechanisms through which the lung microbiome may play a role in lung carcinogenesis and impact lung cancer treatment. A better knowledge of the interplay between the lung microbiome and lung cancer may promote the development of innovative strategies for early prevention and personalized treatment in lung cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Expression of PFKFB3 and Ki67 in lung adenocarcinomas and targeting PFKFB3 as a therapeutic strategy.

    Li, Xiaoli; Liu, Jian; Qian, Li; Ke, Honggang; Yao, Chan; Tian, Wei; Liu, Yifei; Zhang, Jianguo

    2018-01-11

    Phosphofructokinase-2/fructose-2, 6-bisphosphatase 3 (PFKFB3) catalyzes the synthesis of F2,6BP, which is an allosteric activator of 6-phosphofructo-1-kinase (PFK-1): the rate-limiting enzyme of glycolysis. During tumorigenesis, PFKFB3 increases glycolysis, angiogenesis, and tumor progression. In this study, our aim was to investigate the significance of PFKFB3 and Ki67 in human lung adenocarcinomas and to target PFKFB3 as a therapeutic strategy. In this study, we determined the expression levels of PFKFB3 mRNA and proteins in cancerous and normal lung adenocarcinomas by quantitative reverse transcription PCR (qRT-PCR), Western blot analysis, and tissue microarray immunohistochemistry analysis, respectively. In human adenocarcinoma tissues, PFKFB3 and Ki67 protein levels were related to the clinical characteristics and overall survival. Both PFKFB3 mRNA and protein were significantly higher in lung adenocarcinoma cells (all P targeting PFKFB3, it inhibited cell viability and glycolytic activity. It also caused apoptosis and induced cell cycle arrest. Furthermore, the migration and invasion of A549 cells was inhibited. We conclude that PFKFB3 bears an oncogene-like regulatory element in lung adenocarcinoma progression. In the treatment of lung adenocarcinoma, targeting PFKFB3 would be a promising therapeutic strategy.