WorldWideScience

Sample records for oncogene amplification detected

  1. Targeting MET Amplification as a New Oncogenic Driver

    International Nuclear Information System (INIS)

    Kawakami, Hisato; Okamoto, Isamu; Okamoto, Wataru; Tanizaki, Junko; Nakagawa, Kazuhiko; Nishio, Kazuto

    2014-01-01

    Certain genetically defined cancers are dependent on a single overactive oncogene for their proliferation and survival, a phenomenon known as “oncogene addiction”. A new generation of drugs that selectively target such “driver oncogenes” manifests a clinical efficacy greater than that of conventional chemotherapy in appropriate genetically defined patients. MET is a proto-oncogene that encodes a receptor tyrosine kinase, and aberrant activation of MET signaling occurs in a subset of advanced cancers as result of various genetic alterations including gene amplification, polysomy, and gene mutation. Our preclinical studies have shown that inhibition of MET signaling either with the small-molecule MET inhibitor crizotinib or by RNA interference targeted to MET mRNA resulted in marked antitumor effects in cancer cell lines with MET amplification both in vitro and in vivo. Furthermore, patients with non-small cell lung cancer or gastric cancer positive for MET amplification have shown a pronounced clinical response to crizotinib. Accumulating preclinical and clinical evidence thus suggests that MET amplification is an “oncogenic driver” and therefore a valid target for treatment. However, the prevalence of MET amplification has not been fully determined, possibly in part because of the difficulty in evaluating gene amplification. In this review, we provide a rationale for targeting this genetic alteration in cancer therapy

  2. Targeting MET Amplification as a New Oncogenic Driver

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Hisato [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Okamoto, Isamu, E-mail: okamotoi@kokyu.med.kyushu-u.ac.jp [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Center for Clinical and Translational Research, Kyushu University Hospital, 3-1-1 Maidashi, Higashiku, Fukuoka 812-8582 (Japan); Okamoto, Wataru [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Division of Transrlational Research, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577 (Japan); Tanizaki, Junko [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, HIM223, 450 Brookline Avenue, Boston, MA 02215 (United States); Nakagawa, Kazuhiko [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Nishio, Kazuto [Department of Genome Biology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan)

    2014-07-22

    Certain genetically defined cancers are dependent on a single overactive oncogene for their proliferation and survival, a phenomenon known as “oncogene addiction”. A new generation of drugs that selectively target such “driver oncogenes” manifests a clinical efficacy greater than that of conventional chemotherapy in appropriate genetically defined patients. MET is a proto-oncogene that encodes a receptor tyrosine kinase, and aberrant activation of MET signaling occurs in a subset of advanced cancers as result of various genetic alterations including gene amplification, polysomy, and gene mutation. Our preclinical studies have shown that inhibition of MET signaling either with the small-molecule MET inhibitor crizotinib or by RNA interference targeted to MET mRNA resulted in marked antitumor effects in cancer cell lines with MET amplification both in vitro and in vivo. Furthermore, patients with non-small cell lung cancer or gastric cancer positive for MET amplification have shown a pronounced clinical response to crizotinib. Accumulating preclinical and clinical evidence thus suggests that MET amplification is an “oncogenic driver” and therefore a valid target for treatment. However, the prevalence of MET amplification has not been fully determined, possibly in part because of the difficulty in evaluating gene amplification. In this review, we provide a rationale for targeting this genetic alteration in cancer therapy.

  3. N-myc oncogene amplification is correlated to trace metal concentrations in neuroblastoma cultured cells

    International Nuclear Information System (INIS)

    Gouget, B.; Sergeant, C.; Benard, J.; Llabador, Y.; Simonoff, M.

    2000-01-01

    N-myc oncogene amplification is a powerful predictor of aggressive behavior of neuroblastoma (NB), the most common solid tumor of the early childhood. Since N-myc overexpression - subsequent to amplification - determines a phenotype of invasiveness and metastatic spreading, it is assumed that N-myc amplified neuroblasts synthesize zinc metalloenzymes leading to tumor invasion and formation of metastases. In order to test a possible relation between N-myc oncogene amplification and trace metal contents in human NB cells, Fe, Cu and Zn concentrations have been measured by nuclear microprobe analysis in three human neuroblastoma cell lines with various degrees of N-myc amplification. Elemental determinations show uniform distribution of trace metals within the cells, but variations of intracellular trace metal concentrations with respect to the degree of N-myc amplification are highly dependent on the nature of the element. Zinc concentration is higher in both N-myc amplified cell lines (IMR-32 and IGR-N-91) than in the non-amplified cells (SK-N-SH). In contrast, intracellular iron content is particularly low in N-myc amplified cell lines. Moreover, copper concentrations showed an increase with the degree of N-myc amplification. These results indicate that a relationship exists between intracellular trace metals and N-myc oncogene amplification. They further suggest that trace metals very probably play a determinant role in mechanisms of the neuroblastoma invasiveness

  4. Mutation and genomic amplification of the PIK3CA proto-oncogene in pituitary adenomas

    International Nuclear Information System (INIS)

    Murat, C.B.; Braga, P.B.S.; Fortes, M.A.H.Z.; Bronstein, M.D.; Corrêa-Giannella, M.L.C.; Giorgi, R.R.

    2012-01-01

    The tumorigenesis of pituitary adenomas is poorly understood. Mutations of the PIK3CA proto-oncogene, which encodes the p110-α catalytic subunit of PI3K, have been reported in various types of human cancers regarding the role of the gene in cell proliferation and survival through activation of the PI3K/Akt signaling pathway. Only one Chinese study described somatic mutations and amplification of the PIK3CA gene in a large series of pituitary adenomas. The aim of the present study was to determine genetic alterations of PIK3CA in a second series that consisted of 33 pituitary adenomas of different subtypes diagnosed by immunohistochemistry: 6 adrenocorticotropic hormone-secreting microadenomas, 5 growth hormone-secreting macroadenomas, 7 prolactin-secreting macroadenomas, and 15 nonfunctioning macroadenomas. Direct sequencing of exons 9 and 20 assessed by qPCR was employed to investigate the presence of mutations and genomic amplification defined as a copy number ≥4. Previously identified PIK3CA mutations (exon 20) were detected in four cases (12.1%). Interestingly, the Chinese study reported mutations only in invasive tumors, while we found a PIK3CA mutation in one noninvasive corticotroph microadenoma. PIK3CA amplification was observed in 21.2% (7/33) of the cases. This study demonstrates the presence of somatic mutations and amplifications of the PIK3CA gene in a second series of pituitary adenomas, corroborating the previously described involvement of the PI3K/Akt signaling pathway in the tumorigenic process of this gland

  5. Mutation and genomic amplification of the PIK3CA proto-oncogene in pituitary adenomas

    Energy Technology Data Exchange (ETDEWEB)

    Murat, C.B.; Braga, P.B.S.; Fortes, M.A.H.Z. [Laboratório de Endocrinologia Celular e Molecular (LIM-25), Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Bronstein, M.D. [Unidade de Neuroendocrinologia, Serviço de Endocrinologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Corrêa-Giannella, M.L.C.; Giorgi, R.R. [Laboratório de Endocrinologia Celular e Molecular (LIM-25), Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil)

    2012-07-13

    The tumorigenesis of pituitary adenomas is poorly understood. Mutations of the PIK3CA proto-oncogene, which encodes the p110-α catalytic subunit of PI3K, have been reported in various types of human cancers regarding the role of the gene in cell proliferation and survival through activation of the PI3K/Akt signaling pathway. Only one Chinese study described somatic mutations and amplification of the PIK3CA gene in a large series of pituitary adenomas. The aim of the present study was to determine genetic alterations of PIK3CA in a second series that consisted of 33 pituitary adenomas of different subtypes diagnosed by immunohistochemistry: 6 adrenocorticotropic hormone-secreting microadenomas, 5 growth hormone-secreting macroadenomas, 7 prolactin-secreting macroadenomas, and 15 nonfunctioning macroadenomas. Direct sequencing of exons 9 and 20 assessed by qPCR was employed to investigate the presence of mutations and genomic amplification defined as a copy number ≥4. Previously identified PIK3CA mutations (exon 20) were detected in four cases (12.1%). Interestingly, the Chinese study reported mutations only in invasive tumors, while we found a PIK3CA mutation in one noninvasive corticotroph microadenoma. PIK3CA amplification was observed in 21.2% (7/33) of the cases. This study demonstrates the presence of somatic mutations and amplifications of the PIK3CA gene in a second series of pituitary adenomas, corroborating the previously described involvement of the PI3K/Akt signaling pathway in the tumorigenic process of this gland.

  6. Amplification of oncogenes and integrated SV40 sequences in mammalian cells by the decay of incorporated iodine-125

    International Nuclear Information System (INIS)

    Ehrfeld, A.; Planas-Bohne, F.; Luecke-Huhle, C.

    1986-01-01

    Iodine-125, in the form of 5-[ 125 I]iododeoxyuridine (I-UdR), was incorporated into the DNA of SV40 transformed Chinese hamster embryo cells. Disintegration of the 125 I led to increased cell killing with increasing dose as measured by the colony-forming ability of single cells. The D37 (the dose at which 37% of the cells survive) amounts to 95 decays per cell, corresponding to 0.66 Gy. Variations in the copy number of specific DNA sequences was measured by using dispersed cell blotting with sensitive DNA hybridizations. A 13-fold amplification of the viral DNA sequences (SV40) and a twofold amplification of two cellular oncogenes of the ras-family (Ki-ras and Ha-ras) were found. Other cellular genes, like the alpha-actin gene, were not amplified, and no variation in gene copy number was detected after incubation of cells with cold I-UdR. We suggest the observed gene amplifications are induced by the densely ionizing radiation emitted by the decay of the incorporated 125 I atoms

  7. Isothermal Amplification and Lateral-Flow Assay for Detecting Crown-Gall-Causing Agrobacterium spp.

    Science.gov (United States)

    Fuller, Skylar L; Savory, Elizabeth A; Weisberg, Alexandra J; Buser, Jessica Z; Gordon, Michael I; Putnam, Melodie L; Chang, Jeff H

    2017-09-01

    Agrobacterium is a genus of soilborne gram-negative bacteria. Members carrying oncogenic plasmids can cause crown gall disease, which has significant economic costs, especially for the orchard and nursery industries. Early and rapid detection of pathogenic Agrobacterium spp. is key to the management of crown gall disease. To this end, we designed oligonucleotide primers and probes to target virD2 for use in a molecular diagnostic tool that relies on isothermal amplification and lateral-flow-based detection. The oligonucleotide tools were tested in the assay and evaluated for detection limit and specificity in detecting alleles of virD2. One set of primers that successfully amplified virD2 when used with an isothermal recombinase was selected. Both tested probes had detection limits in picogram amounts of DNA. Probe 1 could detect all tested pathogenic isolates that represented most of the diversity of virD2. Finally, the coupling of lateral-flow detection to the use of these oligonucleotide primers in isothermal amplification helped to reduce the onerousness of the process, and alleviated reliance on specialized tools necessary for molecular diagnostics. The assay is an advancement for the rapid molecular detection of pathogenic Agrobacterium spp.

  8. The oncogenic action of ionizing radiation on rat skin

    International Nuclear Information System (INIS)

    Burns, F.J.

    1991-01-01

    Progress has occurred in several areas corresponding to the specific aims of the proposal: (1) Progression and multiple events in radiation carcinogenesis of rat skin as a function of LET; (2) cell cycle kinetics of irradiated rat epidermis as determined by double labeling and double emulsion autoradiography; (3) oncogene activation detected by in situ hybridization in radiation-induced rat skin tumors; (4) amplification of the c-myc oncogene in radiation-induced rat skin tumors as a function of LET; and (5) transformation of rat skin keratinocytes by ionizing radiation in combination with c-Ki-ras and c-myc oncogenes. 111 refs., 13 figs., 12 tabs

  9. Binomial mitotic segregation of MYCN-carrying double minutes in neuroblastoma illustrates the role of randomness in oncogene amplification.

    Directory of Open Access Journals (Sweden)

    Gisela Lundberg

    2008-08-01

    Full Text Available Amplification of the oncogene MYCN in double minutes (DMs is a common finding in neuroblastoma (NB. Because DMs lack centromeric sequences it has been unclear how NB cells retain and amplify extrachromosomal MYCN copies during tumour development.We show that MYCN-carrying DMs in NB cells translocate from the nuclear interior to the periphery of the condensing chromatin at transition from interphase to prophase and are preferentially located adjacent to the telomere repeat sequences of the chromosomes throughout cell division. However, DM segregation was not affected by disruption of the telosome nucleoprotein complex and DMs readily migrated from human to murine chromatin in human/mouse cell hybrids, indicating that they do not bind to specific positional elements in human chromosomes. Scoring DM copy-numbers in ana/telophase cells revealed that DM segregation could be closely approximated by a binomial random distribution. Colony-forming assay demonstrated a strong growth-advantage for NB cells with high DM (MYCN copy-numbers, compared to NB cells with lower copy-numbers. In fact, the overall distribution of DMs in growing NB cell populations could be readily reproduced by a mathematical model assuming binomial segregation at cell division combined with a proliferative advantage for cells with high DM copy-numbers.Binomial segregation at cell division explains the high degree of MYCN copy-number variability in NB. Our findings also provide a proof-of-principle for oncogene amplification through creation of genetic diversity by random events followed by Darwinian selection.

  10. [HER-2 oncogene amplification assessment in invasive breast cancer by dual-color in situ hybridization (dc-CISH): a comparative study with fluorescent in situ hybridization (FISH)].

    Science.gov (United States)

    Akhdar, Abbas; Bronsard, Marc; Lemieux, Renald; Geha, Sameh

    2011-12-01

    The amplification of the gene encoding for the human epidermal growth factor receptor 2 (HER-2 oncogene), located on chromosome 17 (17q21-q22), or the overexpression of this receptor have prognostic and therapeutic implications in invasive breast cancer. An evaluation of the HER-2 status by immunohistochemistry (IHC) is performed on all invasive breast cancer cases. Fluorescent in situ hybridization (FISH) is considered as the gold standard for the detection of HER-2 gene amplification for IHC equivocal cases (score 2+). A more recent in situ hybridization technique, the dual-color chromogenic in situ hybridization (dc-CISH), has been proposed as an alternative to FISH. The aim of this study was to measure the correlation between dc-CISH and FISH for HER-2 oncogene amplification assessment in invasive breast cancer. We built four tissue micro-array (TMA) blocs with 100 breast invasive cancer cases that had been previously tested by IHC for HER-2 detection: 10 score 0 cases, 10 score 3+cases, 39 score 1+and 41 score 2+cases. Both FISH and dc-CISH techniques were applied on all TMA cases as well as on two additional slides serving as controls. Interpretation of dc-CISH was carried out by a pathologist using an optical microscope. For FISH, the interpretation was done by a professional from the medical genetics department using a fluorescent microscope linked to a computer system for image capturing and analysis. The interpretation of the HER-2/CEN-17 ratio for both tests was in accordance with the values of the updated recommendations from the Canadian National Consensus Meeting on HER-2/neu testing in breast cancer and from the ASCO/CAP. Among the 100 cases initially included in the study, eight were excluded from the analysis due to sampling or technical flaws. From the 92 remaining cases, we obtained a concordance of 97.8% (90/92 cases) between the two techniques (Kappa coefficient 0.97, 95% confidence interval). The correlation coefficient (rho) between ratios

  11. A PCA3 gene-based transcriptional amplification system targeting primary prostate cancer

    OpenAIRE

    Neveu, Bertrand; Jain, Pallavi; T?tu, Bernard; Wu, Lily; Fradet, Yves; Pouliot, Fr?d?ric

    2015-01-01

    Targeting specifically primary prostate cancer (PCa) cells for immune therapy, gene therapy or molecular imaging is of high importance. The PCA3 long non-coding RNA is a unique PCa biomarker and oncogene that has been widely studied. This gene has been mainly exploited as an accurate diagnostic urine biomarker for PCa detection. In this study, the PCA3 promoter was introduced into a new transcriptional amplification system named the 3-Step Transcriptional Amplification System (PCA3-3STA) and ...

  12. Assessment of differential expression of oncogenes in adenocarcinoma of stomach with fluorescent labeling and simultaneous amplification of gene transcripts

    International Nuclear Information System (INIS)

    Rajcevic, U.; Hudler, P.; Komel, R.; Mijovski, G.; Gorjanc, G.; Kovac, M.; Hoelzl, G.; Repse, S.; Juvan, R.; Huber, C.G.

    2007-01-01

    Background. Gastric cancer is one of the leading malignancies with a poor prognosis and low survival rates. Although the mechanisms underlying its development are still unknown, there is a consensus that genetic instability, inactivation of tumor suppressor genes and over-expression of oncogenes are involved in the early and late stages of gastric carcinogenesis. In the present study we wanted to display differential expression of seven oncogenes, namely CCNE1, EGF, ERBB3, FGF4, HRG1, HGFR and TDGF1. Patients and methods. We employed a method based on the multiplex reverse transcription polymerase chain (RT-PCR) method with a fluorescence detection. Results. More than half of patients (74.3%) out of total 74 with gastric adenocarcinoma had over-expressed at least one oncogene, with the exception of FGF4, which was expressed in tumor tissue of less than one third of patients. 56.8% of the patients patients showed over-expression of two or more oncogenes. Conclusions. Patients with precancerous lesions had elevated levels of TDGF1 or cripto-1 (64.9%) and CCNE1 (57.1%), suggesting that they could be used as markers for an early detection of malignant changes in stomach. Finally, the fluorescent multiplex RT-PCR method could be of value for rapid assessment of oncogene mRNA levels in small samples of tumor or precancerous biopsies. (author)

  13. Alternative Chemical Amplification Methods for Peroxy Radical Detection

    Science.gov (United States)

    Wood, E. C. D.

    2014-12-01

    Peroxy radicals (HO2, CH3O2, etc.) are commonly detected by the chemical amplification technique, in which ambient air is mixed with high concentrations of CO and NO, initiating a chain reaction that produces 30 - 200 NO2 molecules per sampled peroxy radical. The NO2 is then measured by one of several techniques. With the exception of CIMS-based techniques, the chemical amplification method has undergone only incremental improvements since it was first introduced in 1982. The disadvantages of the technique include the need to use high concentrations of CO and the greatly reduced sensitivity of the amplification chain length in the presence of water vapor. We present a new chemical amplification scheme in which either ethane or acetaldehyde is used in place of CO, with the NO2 product detected using Cavity Attenuated Phase Shift spectroscopy (CAPS). Under dry conditions, the amplification factor of the alternative amplifiers are approximately six times lower than the CO-based amplifier. The relative humidity "penalty" is not as severe, however, such that at typical ambient relative humidity (RH) values the amplification factor is within a factor of three of the CO-based amplifier. Combined with the NO2 sensitivity of CAPS and a dual-channel design, the detection limit of the ethane amplifier is less than 2 ppt (1 minute average, signal-to-noise ratio 2). The advantages of these alternative chemical amplification schemes are improved safety, a reduced RH correction, and increased sensitivity to organic peroxy radicals relative to HO2.

  14. Using 18F FDG PET/CT to Detect an occult Mesenchymal Tumor Causing Oncogenic Osteomalacia

    International Nuclear Information System (INIS)

    Seo, Hyo Jung; Choi, Yun Jung; Kim, Hyun Jeong; Jeong, Yong Hyu; Cho, Arthur; Lee, Jae Hoon; Yun, Mijin; Lee, Jong Doo; Kang, Won Jun

    2011-01-01

    Oncogenic osteomalacia is a rare paraneoplastic syndrome characterized by renal phosphate excretion, hypophosphatemia, and osteomalacia. This syndrome is often caused by tumors of mesenchymal origin. Patients with oncogenic osteomalacia have abnormal bone mineralization, resulting in a high frequency of fractures. Tumor resection is the treatment of choice, as it will often correct the metabolic imbalance. Although oncogenic osteomalacia is a potentially curable disease, diagnosis is difficult and often delayed because of the small size and sporadic location of the tumor. Bone scintigraphy and radiography best characterize osteoma lacia; magnetic resonance imaging findings are nonspecific. Here, we report a case of oncogenic osteomalacia secondary to a phosphaturic mesenchymal tumor that was successfully detected by 18F fluorodeoxyglucose positron emission tomography/computed tomography ( 18F FDG PET/CT). This case illustrates the advantages of 18F FDG PET/CT in detecting the occult mesenchymal tumor that causes oncogenic osteomalacia.

  15. Isothermal amplification detection of nucleic acids by a double-nicked beacon.

    Science.gov (United States)

    Shi, Chao; Zhou, Meiling; Pan, Mei; Zhong, Guilin; Ma, Cuiping

    2016-03-01

    Isothermal and rapid amplification detection of nucleic acids is an important technology in environmental monitoring, foodborne pathogen detection, and point-of-care clinical diagnostics. Here we have developed a novel method of isothermal signal amplification for single-stranded DNA (ssDNA) detection. The ssDNA target could be used as an initiator, coupled with a double-nicked molecular beacon, to originate amplification cycles, achieving cascade signal amplification. In addition, the method showed good specificity and strong anti-jamming capability. Overall, it is a one-pot and isothermal strand displacement amplification method without the requirement of a stepwise procedure, which greatly simplifies the experimental procedure and decreases the probability of contamination of samples. With its advantages, the method would be very useful to detect nucleic acids in point-of-care or field use. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Using {sup 18F} FDG PET/CT to Detect an occult Mesenchymal Tumor Causing Oncogenic Osteomalacia

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Hyo Jung; Choi, Yun Jung; Kim, Hyun Jeong; Jeong, Yong Hyu; Cho, Arthur; Lee, Jae Hoon; Yun, Mijin; Lee, Jong Doo; Kang, Won Jun [Yonsei Univ. College of Medicine, Seoul (Korea, Republic of)

    2011-09-15

    Oncogenic osteomalacia is a rare paraneoplastic syndrome characterized by renal phosphate excretion, hypophosphatemia, and osteomalacia. This syndrome is often caused by tumors of mesenchymal origin. Patients with oncogenic osteomalacia have abnormal bone mineralization, resulting in a high frequency of fractures. Tumor resection is the treatment of choice, as it will often correct the metabolic imbalance. Although oncogenic osteomalacia is a potentially curable disease, diagnosis is difficult and often delayed because of the small size and sporadic location of the tumor. Bone scintigraphy and radiography best characterize osteoma lacia; magnetic resonance imaging findings are nonspecific. Here, we report a case of oncogenic osteomalacia secondary to a phosphaturic mesenchymal tumor that was successfully detected by {sup 18F} fluorodeoxyglucose positron emission tomography/computed tomography ({sup 18F} FDG PET/CT). This case illustrates the advantages of {sup 18F} FDG PET/CT in detecting the occult mesenchymal tumor that causes oncogenic osteomalacia.

  17. Multi-chamber nucleic acid amplification and detection device

    Science.gov (United States)

    Dugan, Lawrence

    2017-10-25

    A nucleic acid amplification and detection device includes an amplification cartridge with a plurality of reaction chambers for containing an amplification reagent and a visual detection reagent, and a plurality of optically transparent view ports for viewing inside the reaction chambers. The cartridge also includes a sample receiving port which is adapted to receive a fluid sample and fluidically connected to distribute the fluid sample to the reaction chamber, and in one embodiment, a plunger is carried by the cartridge for occluding fluidic communication to the reaction chambers. The device also includes a heating apparatus having a heating element which is activated by controller to generate heat when a trigger event is detected. The heating apparatus includes a cartridge-mounting section which positioned a cartridge in thermal communication with the heating element so that visual changes to the contents of the reaction chambers are viewable through the view ports.

  18. Simple system for isothermal DNA amplification coupled to lateral flow detection.

    Directory of Open Access Journals (Sweden)

    Kristina Roskos

    Full Text Available Infectious disease diagnosis in point-of-care settings can be greatly improved through integrated, automated nucleic acid testing devices. We have developed an early prototype for a low-cost system which executes isothermal DNA amplification coupled to nucleic acid lateral flow (NALF detection in a mesofluidic cartridge attached to a portable instrument. Fluid handling inside the cartridge is facilitated through one-way passive valves, flexible pouches, and electrolysis-driven pumps, which promotes a compact and inexpensive instrument design. The closed-system disposable prevents workspace amplicon contamination. The cartridge design is based on standard scalable manufacturing techniques such as injection molding. Nucleic acid amplification occurs in a two-layer pouch that enables efficient heat transfer. We have demonstrated as proof of principle the amplification and detection of Mycobacterium tuberculosis (M.tb genomic DNA in the cartridge, using either Loop Mediated Amplification (LAMP or the Exponential Amplification Reaction (EXPAR, both coupled to NALF detection. We envision that a refined version of this cartridge, including upstream sample preparation coupled to amplification and detection, will enable fully-automated sample-in to answer-out infectious disease diagnosis in primary care settings of low-resource countries with high disease burden.

  19. Genome position and gene amplification

    Czech Academy of Sciences Publication Activity Database

    Jirsová, Pavla; Snijders, A.M.; Kwek, S.; Roydasgupta, R.; Fridlyand, J.; Tokuyasu, T.; Pinkel, D.; Albertson, D. G.

    2007-01-01

    Roč. 8, č. 6 (2007), r120 ISSN 1474-760X Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : gene amplification * array comparative genomic hybridization * oncogene Subject RIV: BO - Biophysics Impact factor: 6.589, year: 2007

  20. NAIMA: target amplification strategy allowing quantitative on-chip detection of GMOs.

    Science.gov (United States)

    Morisset, Dany; Dobnik, David; Hamels, Sandrine; Zel, Jana; Gruden, Kristina

    2008-10-01

    We have developed a novel multiplex quantitative DNA-based target amplification method suitable for sensitive, specific and quantitative detection on microarray. This new method named NASBA Implemented Microarray Analysis (NAIMA) was applied to GMO detection in food and feed, but its application can be extended to all fields of biology requiring simultaneous detection of low copy number DNA targets. In a first step, the use of tailed primers allows the multiplex synthesis of template DNAs in a primer extension reaction. A second step of the procedure consists of transcription-based amplification using universal primers. The cRNA product is further on directly ligated to fluorescent dyes labelled 3DNA dendrimers allowing signal amplification and hybridized without further purification on an oligonucleotide probe-based microarray for multiplex detection. Two triplex systems have been applied to test maize samples containing several transgenic lines, and NAIMA has shown to be sensitive down to two target copies and to provide quantitative data on the transgenic contents in a range of 0.1-25%. Performances of NAIMA are comparable to singleplex quantitative real-time PCR. In addition, NAIMA amplification is faster since 20 min are sufficient to achieve full amplification.

  1. N-Myc knockdown and apigenin treatment controlled growth of malignant neuroblastoma cells having N-Myc amplification.

    Science.gov (United States)

    Hossain, Md Motarab; Banik, Naren L; Ray, Swapan K

    2013-10-15

    Malignant neuroblastomas mostly occur in children and are frequently associated with N-Myc amplification. Oncogene amplification, which is selective increase in copy number of the oncogene, provides survival advantages in solid tumors including malignant neuroblastoma. We have decreased expression of N-Myc oncogene using short hairpin RNA (shRNA) plasmid to increase anti-tumor efficacy of the isoflavonoid apigenin (APG) in human malignant neuroblastoma SK-N-DZ and SK-N-BE2 cell lines that harbor N-Myc amplification. N-Myc knockdown induced morphological and biochemical features of neuronal differentiation. Combination of N-Myc knockdown and APG most effectively induced morphological and biochemical features of apoptotic death. This combination therapy also prevented cell migration and decreased N-Myc driven survival, angiogenic, and invasive factors. Collectively, N-Myc knockdown and APG treatment is a promising strategy for controlling the growth of human malignant neuroblastoma cell lines that harbor N-Myc amplification. © 2013 Elsevier B.V. All rights reserved.

  2. Automated brightfield dual-color in situ hybridization for detection of mouse double minute 2 gene amplification in sarcomas.

    Science.gov (United States)

    Zhang, Wenjun; McElhinny, Abigail; Nielsen, Alma; Wang, Maria; Miller, Melanie; Singh, Shalini; Rueger, Ruediger; Rubin, Brian P; Wang, Zhen; Tubbs, Raymond R; Nagle, Raymond B; Roche, Pat; Wu, Ping; Pestic-Dragovich, Lidija

    2011-01-01

    The human homolog of the mouse double minute 2 (MDM2) oncogene is amplified in about 20% of sarcomas. The measurement of the MDM2 amplification can aid in classification and may provide a predictive value for recently formulated therapies targeting MDM2. We have developed and validated an automated bright field dual-color in situ hybridization application to detect MDM2 gene amplification. A repeat-depleted MDM2 probe was constructed to target the MDM2 gene region at 12q15. A chromosome 12-specific probe (CHR12) was generated from a pα12H8 plasmid. The in situ hybridization assay was developed by using a dinitrophenyl-labeled MDM2 probe and a digoxigenin-labeled CHR12 probe on the Ventana Medical Systems' automated slide-staining platforms. The specificity of the MDM2 and CHR12 probes was shown on metaphase spreads and further validated against controls, including normal human tonsil and known MDM2-amplified samples. The assay performance was evaluated on a cohort of 100 formalin-fixed, paraffin-embedded specimens by using a conventional bright field microscope. Simultaneous hybridization and signal detection for MDM2 and CHR12 showed that both DNA targets were present in the same cells. One hundred soft tissue specimens were stained for MDM2 and CHR12. Although 26 of 29 lipomas were nonamplified and eusomic, MDM2 amplification was noted in 78% of atypical lipomatous tumors or well-differentiated liposarcomas. Five of 6 dedifferentiated liposarcoma cases were amplified for MDM2. MDM2 amplification was observed in 1 of 8 osteosarcomas; 3 showed CHR12 aneusomy. MDM2 amplification was present in 1 of 4 chondrosarcomas. Nine of 10 synovial sarcomas displayed no evidence of MDM2 amplification in most tumor cells. In pleomorphic sarcoma, not otherwise specified (pleomorphic malignant fibrous histiocytoma), MDM2 was amplified in 38% of cases, whereas 92% were aneusomic for CHR12. One alveolar rhabdomyosarcoma and 2 embryonal rhabdomyosarcomas displayed low-level aneusomy

  3. Effects of c-myc oncogene modulation on differentiation of human small cell lung carcinoma cell lines

    NARCIS (Netherlands)

    Van Waardenburg, RCAM; Meijer, C; Pinto-Sietsma, SJ; De Vries, EGE; Timens, W; Mulder, NM

    1998-01-01

    Amplification and over-expression of oncogenes of the myc family are related to the prognosis of certain solid tumors such as small cell lung cancer (SCLC). For SCLC, c-myc is the oncogene most consistently found to correlate with the end stage behaviour of the tumour, in particular with survival

  4. Real-time DNA Amplification and Detection System Based on a CMOS Image Sensor.

    Science.gov (United States)

    Wang, Tiantian; Devadhasan, Jasmine Pramila; Lee, Do Young; Kim, Sanghyo

    2016-01-01

    In the present study, we developed a polypropylene well-integrated complementary metal oxide semiconductor (CMOS) platform to perform the loop mediated isothermal amplification (LAMP) technique for real-time DNA amplification and detection simultaneously. An amplification-coupled detection system directly measures the photon number changes based on the generation of magnesium pyrophosphate and color changes. The photon number decreases during the amplification process. The CMOS image sensor observes the photons and converts into digital units with the aid of an analog-to-digital converter (ADC). In addition, UV-spectral studies, optical color intensity detection, pH analysis, and electrophoresis detection were carried out to prove the efficiency of the CMOS sensor based the LAMP system. Moreover, Clostridium perfringens was utilized as proof-of-concept detection for the new system. We anticipate that this CMOS image sensor-based LAMP method will enable the creation of cost-effective, label-free, optical, real-time and portable molecular diagnostic devices.

  5. Rapid detection of Brucella spp. using loop-mediated isothermal amplification (LAMP).

    Science.gov (United States)

    Chen, Shouyi; Li, Xunde; Li, Juntao; Atwill, Edward R

    2013-01-01

    Brucella spp. are facultative intracellular bacteria that cause zoonotic disease of brucellosis worldwide. Livestock that are most vulnerable to brucellosis include cattle, goats, and pigs. Brucella spp. cause serious health problems to humans and animals and economic losses to the livestock industry. Traditional methods for detection of Brucella spp. take 48-72 h (Kumar et al., J Commun Dis 29:131-137, 1997; Barrouin-Melo et al., Res Vet Sci 83:340-346, 2007) that do not meet the food industry's need of rapid detection. Therefore, there is an urgent need of fast, specific, sensitive, and inexpensive method for diagnosing of Brucella spp. Loop-mediated isothermal amplification (LAMP) is a method to amplify nucleic acid at constant temperatures. Amplification can be detected by visual detection, fluorescent stain, turbidity, and electrophoresis. We targeted at the Brucella-specific gene omp25 and designed LAMP primers for detection of Brucella spp. Amplification of DNA with Bst DNA polymerase can be completed at 65 °C in 60 min. Amplified products can be detected by SYBR Green I stain and 2.0% agarose gel electrophoresis. The LAMP method is feasible for detection of Brucella spp. from blood and milk samples.

  6. Development of an Automated Microfluidic System for DNA Collection, Amplification, and Detection of Pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Hagan, Bethany S.; Bruckner-Lea, Cynthia J.

    2002-12-01

    This project was focused on developing and testing automated routines for a microfluidic Pathogen Detection System. The basic pathogen detection routine has three primary components; cell concentration, DNA amplification, and detection. In cell concentration, magnetic beads are held in a flow cell by an electromagnet. Sample liquid is passed through the flow cell and bacterial cells attach to the beads. These beads are then released into a small volume of fluid and delivered to the peltier device for cell lysis and DNA amplification. The cells are lysed during initial heating in the peltier device, and the released DNA is amplified using polymerase chain reaction (PCR) or strand displacement amplification (SDA). Once amplified, the DNA is then delivered to a laser induced fluorescence detection unit in which the sample is detected. These three components create a flexible platform that can be used for pathogen detection in liquid and sediment samples. Future developments of the system will include on-line DNA detection during DNA amplification and improved capture and release methods for the magnetic beads during cell concentration.

  7. Gene amplification in carcinogenesis

    Directory of Open Access Journals (Sweden)

    Lucimari Bizari

    2006-01-01

    Full Text Available Gene amplification increases the number of genes in a genome and can give rise to karyotype abnormalities called double minutes (DM and homogeneously staining regions (HSR, both of which have been widely observed in human tumors but are also known to play a major role during embryonic development due to the fact that they are responsible for the programmed increase of gene expression. The etiology of gene amplification during carcinogenesis is not yet completely understood but can be considered a result of genetic instability. Gene amplification leads to an increase in protein expression and provides a selective advantage during cell growth. Oncogenes such as CCND1, c-MET, c-MYC, ERBB2, EGFR and MDM2 are amplified in human tumors and can be associated with increased expression of their respective proteins or not. In general, gene amplification is associated with more aggressive tumors, metastases, resistance to chemotherapy and a decrease in the period during which the patient stays free of the disease. This review discusses the major role of gene amplification in the progression of carcinomas, formation of genetic markers and as possible therapeutic targets for the development of drugs for the treatment of some types of tumors.

  8. Detection of genetically modified organisms (GMOs using isothermal amplification of target DNA sequences

    Directory of Open Access Journals (Sweden)

    La Mura Maurizio

    2009-02-01

    Full Text Available Abstract Background The most common method of GMO detection is based upon the amplification of GMO-specific DNA amplicons using the polymerase chain reaction (PCR. Here we have applied the loop-mediated isothermal amplification (LAMP method to amplify GMO-related DNA sequences, 'internal' commonly-used motifs for controlling transgene expression and event-specific (plant-transgene junctions. Results We have tested the specificity and sensitivity of the technique for use in GMO studies. Results show that detection of 0.01% GMO in equivalent background DNA was possible and dilutions of template suggest that detection from single copies of the template may be possible using LAMP. Conclusion This work shows that GMO detection can be carried out using LAMP for routine screening as well as for specific events detection. Moreover, the sensitivity and ability to amplify targets, even with a high background of DNA, here demonstrated, highlights the advantages of this isothermal amplification when applied for GMO detection.

  9. Detection of genetically modified organisms (GMOs) using isothermal amplification of target DNA sequences.

    Science.gov (United States)

    Lee, David; La Mura, Maurizio; Allnutt, Theo R; Powell, Wayne

    2009-02-02

    The most common method of GMO detection is based upon the amplification of GMO-specific DNA amplicons using the polymerase chain reaction (PCR). Here we have applied the loop-mediated isothermal amplification (LAMP) method to amplify GMO-related DNA sequences, 'internal' commonly-used motifs for controlling transgene expression and event-specific (plant-transgene) junctions. We have tested the specificity and sensitivity of the technique for use in GMO studies. Results show that detection of 0.01% GMO in equivalent background DNA was possible and dilutions of template suggest that detection from single copies of the template may be possible using LAMP. This work shows that GMO detection can be carried out using LAMP for routine screening as well as for specific events detection. Moreover, the sensitivity and ability to amplify targets, even with a high background of DNA, here demonstrated, highlights the advantages of this isothermal amplification when applied for GMO detection.

  10. Exploiting evanescent-wave amplification for subwavelength low-contrast particle detection

    Science.gov (United States)

    Roy, S.; Pereira, S. F.; Urbach, H. P.; Wei, Xukang; El Gawhary, O.

    2017-07-01

    The classical problem of subwavelength particle detection on a flat surface is especially challenging when the refractive index of the particle is close to that of the substrate. We demonstrate a method to improve the detection ability several times for such a situation, by enhancing the "forbidden" evanescent waves in the substrate using the principle of super-resolution with evanescent waves amplification. The working mechanism of the system and experimental validation from a design with a thin single dielectric layer is presented. The resulting system is a simple but complete example of evanescent-wave generation, amplification, and the consequent modulation of the far field. This principle can have far reaching impact in the field of particle detection in several applications ranging from contamination control to interferometric scattering microscopy for biological samples.

  11. Detection and Characterization of Viral Species/Subspecies Using Isothermal Recombinase Polymerase Amplification (RPA) Assays.

    Science.gov (United States)

    Glais, Laurent; Jacquot, Emmanuel

    2015-01-01

    Numerous molecular-based detection protocols include an amplification step of the targeted nucleic acids. This step is important to reach the expected sensitive detection of pathogens in diagnostic procedures. Amplifications of nucleic acid sequences are generally performed, in the presence of appropriate primers, using thermocyclers. However, the time requested to amplify molecular targets and the cost of the thermocycler machines could impair the use of these methods in routine diagnostics. Recombinase polymerase amplification (RPA) technique allows rapid (short-term incubation of sample and primers in an enzymatic mixture) and simple (isothermal) amplification of molecular targets. RPA protocol requires only basic molecular steps such as extraction procedures and agarose gel electrophoresis. Thus, RPA can be considered as an interesting alternative to standard molecular-based diagnostic tools. In this paper, the complete procedures to set up an RPA assay, applied to detection of RNA (Potato virus Y, Potyvirus) and DNA (Wheat dwarf virus, Mastrevirus) viruses, are described. The proposed procedure allows developing species- or subspecies-specific detection assay.

  12. Genomic profiling identifies GATA6 as a candidate oncogene amplified in pancreatobiliary cancer.

    Directory of Open Access Journals (Sweden)

    Kevin A Kwei

    2008-05-01

    Full Text Available Pancreatobiliary cancers have among the highest mortality rates of any cancer type. Discovering the full spectrum of molecular genetic alterations may suggest new avenues for therapy. To catalogue genomic alterations, we carried out array-based genomic profiling of 31 exocrine pancreatic cancers and 6 distal bile duct cancers, expanded as xenografts to enrich the tumor cell fraction. We identified numerous focal DNA amplifications and deletions, including in 19% of pancreatobiliary cases gain at cytoband 18q11.2, a locus uncommonly amplified in other tumor types. The smallest shared amplification at 18q11.2 included GATA6, a transcriptional regulator previously linked to normal pancreas development. When amplified, GATA6 was overexpressed at both the mRNA and protein levels, and strong immunostaining was observed in 25 of 54 (46% primary pancreatic cancers compared to 0 of 33 normal pancreas specimens surveyed. GATA6 expression in xenografts was associated with specific microarray gene-expression patterns, enriched for GATA binding sites and mitochondrial oxidative phosphorylation activity. siRNA mediated knockdown of GATA6 in pancreatic cancer cell lines with amplification led to reduced cell proliferation, cell cycle progression, and colony formation. Our findings indicate that GATA6 amplification and overexpression contribute to the oncogenic phenotypes of pancreatic cancer cells, and identify GATA6 as a candidate lineage-specific oncogene in pancreatobiliary cancer, with implications for novel treatment strategies.

  13. Comparison of Chromogenic In Situ Hybridization and Fluorescence In Situ Hybridization for the Evaluation of MDM2 Amplification in Adipocytic Tumors.

    Science.gov (United States)

    Mardekian, Stacey K; Solomides, Charalambos C; Gong, Jerald Z; Peiper, Stephen C; Wang, Zi-Xuan; Bajaj, Renu

    2015-11-01

    Atypical lipomatous tumor/well-differentiated liposarcoma (ALT-WDLPS) and dedifferentiated liposarcoma (DDLPS) are characterized cytogenetically by a 12q13-15 amplification involving the mouse double minute 2 (MDM2) oncogene. Fluorescence in situ hybridization (FISH) is used frequently to detect this amplification and aid with the diagnosis of these entities, which is difficult by morphology alone. Recently, bright-field in situ hybridization techniques such as chromogenic in situ hybridization (CISH) have been introduced for the determination of MDM2 amplification status. The present study compared the results of FISH and CISH for detecting MDM2 amplification in 41 cases of adipocytic tumors. Amplification was defined in both techniques as a MDM2/CEN12 ratio of 2 or greater. Eleven cases showed amplification with both FISH and CISH, and 26 cases showed no amplification with both methods. Two cases had discordant results between CISH and FISH, and two cases were not interpretable by CISH. CISH is advantageous for allowing pathologists to evaluate the histologic and molecular alterations occurring simultaneously in a specimen. Moreover, CISH is found to be more cost- and time-efficient when used with automation, and the signals do not quench over time. CISH technique is a reliable alternative to FISH in the evaluation of adipocytic tumors for MDM2 amplification. © 2014 Wiley Periodicals, Inc.

  14. Detection of biological molecules using chemical amplification and optical sensors

    Science.gov (United States)

    Van Antwerp, William Peter; Mastrototaro, John Joseph

    2000-01-01

    Methods are provided for the determination of the concentration of biological levels of polyhydroxylated compounds, particularly glucose. The methods utilize an amplification system that is an analyte transducer immobilized in a polymeric matrix, where the system is implantable and biocompatible. Upon interrogation by an optical system, the amplification system produces a signal capable of detection external to the skin of the patient. Quantitation of the analyte of interest is achieved by measurement of the emitted signal.

  15. Development of a recombinase polymerase amplification assay for Vibrio parahaemolyticus detection with an internal amplification control.

    Science.gov (United States)

    Yang, Huan-Lan; Wei, Shuang; Gooneratne, Ravi; Mutukumira, Anthony N; Ma, Xue-Jun; Tang, Shu-Ze; Wu, Xi-Yang

    2018-04-01

    A novel RPA-IAC assay using recombinase polymerase and an internal amplification control (IAC) for Vibrio parahaemolyticus detection was developed. Specific primers were designed based on the coding sequence for the toxR gene in V. parahaemolyticus. The recombinase polymerase amplification (RPA) reaction was conducted at a constant low temperature of 37 °C for 20 min. Assay specificity was validated by using 63 Vibrio strains and 10 non-Vibrio bacterial species. In addition, a competitive IAC was employed to avoid false-negative results, which co-amplified simultaneously with the target sequence. The sensitivity of the assay was determined as 3 × 10 3 CFU/mL, which is decidedly more sensitive than the established PCR method. This method was then used to test seafood samples that were collected from local markets. Seven out of 53 different raw seafoods were detected as V. parahaemolyticus-positive, which were consistent with those obtained using traditional culturing method and biochemical assay. This novel RPA-IAC assay provides a rapid, specific, sensitive, and more convenient detection method for V. parahaemolyticus.

  16. Frequent amplification of CENPF, GMNN and CDK13 genes in hepatocellular carcinomas.

    Directory of Open Access Journals (Sweden)

    Hye-Eun Kim

    Full Text Available Genomic changes frequently occur in cancer cells during tumorigenesis from normal cells. Using the Illumina Human NS-12 single-nucleotide polymorphism (SNP chip to screen for gene copy number changes in primary hepatocellular carcinomas (HCCs, we initially detected amplification of 35 genes from four genomic regions (1q21-41, 6p21.2-24.1, 7p13 and 8q13-23. By integrated screening of these genes for both DNA copy number and gene expression in HCC and colorectal cancer, we selected CENPF (centromere protein F/mitosin, GMNN (geminin, DNA replication inhibitor, CDK13 (cyclin-dependent kinase 13, and FAM82B (family with sequence similarity 82, member B as common cancer genes. Each gene exhibited an amplification frequency of ~30% (range, 20-50% in primary HCC (n = 57 and colorectal cancer (n = 12, as well as in a panel of human cancer cell lines (n = 70. Clonogenic and invasion assays of NIH3T3 cells transfected with each of the four amplified genes showed that CENPF, GMNN, and CDK13 were highly oncogenic whereas FAM82B was not. Interestingly, the oncogenic activity of these genes (excluding FAM82B was highly correlated with gene-copy numbers in tumor samples (correlation coefficient, r>0.423, indicating that amplifications of CENPF, GMNN, and CDK13 genes are tightly linked and coincident in tumors. Furthermore, we confirmed that CDK13 gene copy number was significantly associated with clinical onset age in patients with HCC (P = 0.0037. Taken together, our results suggest that coincidently amplified CDK13, GMNN, and CENPF genes can play a role as common cancer-driver genes in human cancers.

  17. Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 Triggered Isothermal Amplification for Site-Specific Nucleic Acid Detection.

    Science.gov (United States)

    Huang, Mengqi; Zhou, Xiaoming; Wang, Huiying; Xing, Da

    2018-02-06

    A novel CRISPR/Cas9 triggered isothermal exponential amplification reaction (CAS-EXPAR) strategy based on CRISPR/Cas9 cleavage and nicking endonuclease (NEase) mediated nucleic acids amplification was developed for rapid and site-specific nucleic acid detection. CAS-EXPAR was primed by the target DNA fragment produced by cleavage of CRISPR/Cas9, and the amplification reaction performed cyclically to generate a large number of DNA replicates which were detected using a real-time fluorescence monitoring method. This strategy that combines the advantages of CRISPR/Cas9 and exponential amplification showed high specificity as well as rapid amplification kinetics. Unlike conventional nucleic acids amplification reactions, CAS-EXPAR does not require exogenous primers, which often cause target-independent amplification. Instead, primers are first generated by Cas9/sgRNA directed site-specific cleavage of target and accumulated during the reaction. It was demonstrated this strategy gave a detection limit of 0.82 amol and showed excellent specificity in discriminating single-base mismatch. Moreover, the applicability of this method to detect DNA methylation and L. monocytogenes total RNA was also verified. Therefore, CAS-EXPAR may provide a new paradigm for efficient nucleic acid amplification and hold the potential for molecular diagnostic applications.

  18. Rapid detection of Mycobacterium tuberculosis by recombinase polymerase amplification.

    Directory of Open Access Journals (Sweden)

    David S Boyle

    Full Text Available Improved access to effective tests for diagnosing tuberculosis (TB has been designated a public health priority by the World Health Organisation. In high burden TB countries nucleic acid based TB tests have been restricted to centralised laboratories and specialised research settings. Requirements such as a constant electrical supply, air conditioning and skilled, computer literate operators prevent implementation of such tests in many settings. Isothermal DNA amplification technologies permit the use of simpler, less energy intensive detection platforms more suited to low resource settings that allow the accurate diagnosis of a disease within a short timeframe. Recombinase Polymerase Amplification (RPA is a rapid, low temperature isothermal DNA amplification reaction. We report here RPA-based detection of Mycobacterium tuberculosis complex (MTC DNA in <20 minutes at 39 °C. Assays for two MTC specific targets were investigated, IS6110 and IS1081. When testing purified MTC genomic DNA, limits of detection of 6.25 fg (IS6110 and 20 fg (IS1081were consistently achieved. When testing a convenience sample of pulmonary specimens from suspected TB patients, RPA demonstrated superior accuracy to indirect fluorescence microscopy. Compared to culture, sensitivities for the IS1081 RPA and microscopy were 91.4% (95%CI: 85, 97.9 and 86.1% (95%CI: 78.1, 94.1 respectively (n = 71. Specificities were 100% and 88.6% (95% CI: 80.8, 96.1 respectively. For the IS6110 RPA and microscopy sensitivities of 87.5% (95%CI: 81.7, 93.2 and 70.8% (95%CI: 62.9, 78.7 were obtained (n = 90. Specificities were 95.4 (95% CI: 92.3,98.1 and 88% (95% CI: 83.6, 92.4 respectively. The superior specificity of RPA for detecting tuberculosis was due to the reduced ability of fluorescence microscopy to distinguish Mtb complex from other acid fast bacteria. The rapid nature of the RPA assay and its low energy requirement compared to other amplification technologies suggest RPA-based TB

  19. Isothermal Amplification for MicroRNA Detection: From the Test Tube to the Cell.

    Science.gov (United States)

    Deng, Ruijie; Zhang, Kaixiang; Li, Jinghong

    2017-04-18

    MicroRNAs (miRNAs) are a class of small noncoding RNAs that act as pivotal post-transcriptional regulators of gene expression, thus involving in many fundamental cellular processes such as cell proliferation, migration, and canceration. The detection of miRNAs has attracted significant interest, as abnormal miRNA expression is identified to contribute to serious human diseases such as cancers. Particularly, miRNAs in peripheral blood have recently been recognized as important biomarkers potential for liquid biopsy. Furthermore, as miRNAs are expressed heterogeneously in different cells, investigations into single-cell miRNA expression will be of great value for resolving miRNA-mediated regulatory circuits and the complexity and heterogeneity of miRNA-related diseases. Thus, the development of miRNA detection methods, especially for complex clinic samples and single cells is in great demand. In this Account, we will present recent progress in the design and application of isothermal amplification enabling miRNA detection transition from the test tube to the clinical sample and single cell, which will significantly advance our knowledge of miRNA functions and disease associations, as well as its translation in clinical diagnostics. miRNAs present a huge challenge in detection because of their extremely short length (∼22 nucleotides) and sequence homology (even with only single-nucleotide variation). The conventional golden method for nucleic acid detection, quantitative PCR (qPCR), is not amenable to directly detecting short RNAs and hardly enables distinguishing between miRNA family members with very similar sequences. Alternatively, isothermal amplification has emerged as a powerful method for quantification of nucleic acids and attracts broad interest for utilization in developing miRNA assays. Compared to PCR, isothermal amplification can be performed without precise control of temperature cycling and is well fit for detecting short RNA or DNA. We and other

  20. Loop-mediated isothermal amplification (LAMP) based detection of ...

    African Journals Online (AJOL)

    SAM

    2014-05-07

    May 7, 2014 ... 2 months for growing in a culture. Therefore, to control .... The LAMP reaction is carried out in a 25 µL reaction mixture containing ..... J. Fish Dis. 32(6):491-497. Goto M, Honda E, Ogura A, Nomoto A, Hanaki K (2009). Colorimetric detection of loop-mediated isothermal amplification reaction by using hydroxy ...

  1. Analytically Sensitive Protein Detection in Microtiter Plates by Proximity Ligation with Rolling Circle Amplification.

    Science.gov (United States)

    Ebai, Tonge; Souza de Oliveira, Felipe Marques; Löf, Liza; Wik, Lotta; Schweiger, Caroline; Larsson, Anders; Keilholtz, Ulrich; Haybaeck, Johannes; Landegren, Ulf; Kamali-Moghaddam, Masood

    2017-09-01

    Detecting proteins at low concentrations in plasma is crucial for early diagnosis. Current techniques in clinical routine, such as sandwich ELISA, provide sensitive protein detection because of a dependence on target recognition by pairs of antibodies, but detection of still lower protein concentrations is often called for. Proximity ligation assay with rolling circle amplification (PLARCA) is a modified proximity ligation assay (PLA) for analytically specific and sensitive protein detection via binding of target proteins by 3 antibodies, and signal amplification via rolling circle amplification (RCA) in microtiter wells, easily adapted to instrumentation in use in hospitals. Proteins captured by immobilized antibodies were detected using a pair of oligonucleotide-conjugated antibodies. Upon target recognition these PLA probes guided oligonucleotide ligation, followed by amplification via RCA of circular DNA strands that formed in the reaction. The RCA products were detected by horseradish peroxidase-labeled oligonucleotides to generate colorimetric reaction products with readout in an absorbance microplate reader. We compared detection of interleukin (IL)-4, IL-6, IL-8, p53, and growth differentiation factor 15 (GDF-15) by PLARCA and conventional sandwich ELISA or immuno-RCA. PLARCA detected lower concentrations of proteins and exhibited a broader dynamic range compared to ELISA and iRCA using the same antibodies. IL-4 and IL-6 were detected in clinical samples at femtomolar concentrations, considerably lower than for ELISA. PLARCA offers detection of lower protein levels and increased dynamic ranges compared to ELISA. The PLARCA procedure may be adapted to routine instrumentation available in hospitals and research laboratories. © 2017 American Association for Clinical Chemistry.

  2. Rapid Newcastle Disease Virus Detection Based on Loop-Mediated Isothermal Amplification and Optomagnetic Readout

    DEFF Research Database (Denmark)

    Tian, Bo; Ma, Jing; Zardán Gómez de la Torre, Teresa

    2016-01-01

    Rapid and sensitive diagnostic methods based on isothermal amplification are ideal substitutes for PCR in out-of-lab settings. However, there are bottlenecks in terms of establishing low-cost and user-friendly readout methods for isothermal amplification schemes. Combining the high amplification...... efficiency of loop-mediated isothermal amplification (LAMP) with an optomagnetic nanoparticle-based readout system, we demonstrate ultrasensitive and rapid detection of Newcastle disease virus RNA. Biotinylated amplicons of LAMP and reverse transcription LAMP (RT-LAMP) bind to streptavidin-coated magnetic...... nanoparticles (MNPs) resulting in a dramatical increase in the hydrodynamic size of the MNPs. This increase was measured by an optomagnetic readout system and provided quantitative information on the amount of LAMP target sequence. Our assay resulted in a limit of detection of 10 aM of target sequence...

  3. Detection of the 35S promoter in transgenic maize via various isothermal amplification techniques: a practical approach.

    Science.gov (United States)

    Zahradnik, Celine; Kolm, Claudia; Martzy, Roland; Mach, Robert L; Krska, Rudolf; Farnleitner, Andreas H; Brunner, Kurt

    2014-11-01

    In 2003 the European Commission introduced a 0.9% threshold for food and feed products containing genetically modified organism (GMO)-derived components. For commodities containing GMO contents higher than this threshold, labelling is mandatory. To provide a DNA-based rapid and simple detection method suitable for high-throughput screening of GMOs, several isothermal amplification approaches for the 35S promoter were tested: strand displacement amplification, nicking-enzyme amplification reaction, rolling circle amplification, loop-mediated isothermal amplification (LAMP) and helicase-dependent amplification (HDA). The assays developed were tested for specificity in order to distinguish between samples containing genetically modified (GM) maize and non-GM maize. For those assays capable of this discrimination, tests were performed to determine the lower limit of detection. A false-negative rate was determined to rule out whether GMO-positive samples were incorrectly classified as GMO-negative. A robustness test was performed to show reliable detection independent from the instrument used for amplification. The analysis of three GM maize lines showed that only LAMP and HDA were able to differentiate between the GMOs MON810, NK603, and Bt11 and non-GM maize. Furthermore, with the HDA assay it was possible to realize a detection limit as low as 0.5%. A false-negative rate of only 5% for 1% GM maize for all three maize lines shows that HDA has the potential to be used as an alternative strategy for the detection of transgenic maize. All results obtained with the LAMP and HDA assays were compared with the results obtained with a previously reported real-time PCR assay for the 35S promoter in transgenic maize. This study presents two new screening assays for detection of the 35S promoter in transgenic maize by applying the isothermal amplification approaches HDA and LAMP.

  4. Two-phase xenon detector with gas amplification and electroluminescent signal detection

    International Nuclear Information System (INIS)

    Akimov, D.Yu.; Burenkov, A.A.; Grishkin, Yu.L.; Kovalenko, A.G.; Lebedenko, V.N.; Stekhanov, V.N.

    2008-01-01

    An optical technique for detecting ionization electrons produced during ionization of the liquid phase has been experimentally tested in two-phase (liquid-gas) xenon. The effects of gas and electroluminescent amplifications at the wire anode are simultaneously used for detection. This method allows construction of a supersensitive detector of small ionization signals-down to those corresponding to the detection of single electrons [ru

  5. Rapid on-site detection of Acidovorax citrulli by cross-priming amplification.

    Science.gov (United States)

    Zhang, Jing; Tian, Qian; Zhu, Shui-fang; Zhao, Wen-jun; Liu, Feng-quan

    2012-08-01

    Cross-priming amplification (CPA) for Acidovorax citrulli detection was evaluated in this study. The sensitivity of CPA assay for pure bacterial culture was 3.7 × 10(3) CFU/ml. Bacteria on naturally infected watermelon seeds were detected using CPA assay, suggesting this method is suitable for A. citrulli on-site detection from watermelon seeds. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Detection of E6/E7 HPV oncogene transcripts as biomarker of cervical intaepithelial displasia

    Directory of Open Access Journals (Sweden)

    Mauro Carcheri

    2009-09-01

    Full Text Available It is widely accepted that only persistent infection with high risk types of Human Papillomavirus (HPV HR is a significant risk factor for the development of an invasive squamous cervical cancer. The overexpression of viral oncogenes E6/E7 of HPV is considered a necessary process for incurring in a malignant phenotype.A HPV infection can be identified by detection of HPV DNA in biological samples, but the DNAbased tests cannot delineate between transient or persistent and potentially transforming infection. Instead there is many evidence to suggest that detection of HPV gene expression may constitute a more specific approach to highlight a clinically significant infection. Especially seems that the detection of E6/E7 transcripts can be usefully used for identify the women with a persistent HPV infection that will can induce a future cervical cancer. The aim of our study is to investigate if the detection of oncogenic viral gene activity by detecting transcripts of the E6 and E7 genes can be most usefull of HPV-DNA test in the triage of ASCUS or low grade cervical lesions. Our results confirm that HPV E6/E7 mRNA test can be considered a promising method to stratify HPV positive women for risk of future high-grade cervical lesions or cervical intaepithelial neoplasia.

  7. Identification of ALV-J associated acutely transforming virus Fu-J carrying complete v-fps oncogene.

    Science.gov (United States)

    Wang, Yixin; Li, Jianliang; Li, Yang; Fang, Lichun; Sun, Xiaolong; Chang, Shuang; Zhao, Peng; Cui, Zhizhong

    2016-06-01

    Transduction of oncogenes by ALVs and generation of acute transforming viruses is common in natural viral infections. In order to understand the molecular basis for the rapid oncogenicity of Fu-J, an acutely transforming avian leukosis virus isolated from fibrosarcomas in crossbreed broilers infected with subgroup J avian leukosis virus (ALV-J) in China, complete genomic structure of Fu-J virus was determined by PCR amplification and compared with those of Fu-J1, Fu-J2, Fu-J3, Fu-J4, and Fu-J5 reported previously. The results showed that the genome of Fu-J was defective, with parts of gag gene replaced by the complete v-fps oncogene and encoded a 137 kDa Gag-fps fusion protein. Sequence analysis revealed that Fu-J and Fu-J1 to Fu-J5 were related quasi-species variants carrying different lengths of v-fps oncogenes generated from recombination between helper virus and c-fps gene. Comparison of virus carrying v-fps oncogene also gave us a glimpse of the molecular characterization and evolution process of the acutely transforming ALV.

  8. Prognostic significance of cyclin D1 protein expression and gene amplification in invasive breast carcinoma.

    Directory of Open Access Journals (Sweden)

    Angela B Ortiz

    Full Text Available The oncogenic capacity of cyclin D1 has long been established in breast cancer. CCND1 amplification has been identified in a subset of patients with poor prognosis, but there are conflicting data regarding the predictive value of cyclin D1 protein overexpression. This study was designed to analyze the expression of cyclin D1 and its correlation with CCND1 amplification and their prognostic implications in invasive breast cancer. By using the tissue microarray technique, we performed an immunohistochemical study of ER, PR, HER2, p53, cyclin D1, Ki67 and p16 in 179 invasive breast carcinoma cases. The FISH method was performed to detect HER2/Neu and CCND1 amplification. High cyclin D1 expression was identified in 94/179 (52% of invasive breast cancers. Cyclin D1 overexpression and CCND1 amplification were significantly associated (p = 0.010. Overexpression of cyclin D1 correlated with ER expression, PR expression and Luminal subtypes (p<0.001, with a favorable impact on overall survival in the whole series. However, in the Luminal A group, high expression of cyclin D1 correlated with shorter disease-free survival, suggesting that the prognostic role of cyclin D1 depends on the molecular subtype. CCND1 gene amplification was detected in 17 cases (9% and correlated significantly with high tumor grade (p = 0.038, high Ki-67 protein expression (p = 0.002, and the Luminal B subtype (p = 0.002. Patients with tumors with high amplification of CCND1 had an increased risk of recurrence (HR = 2.5; 95% CI, 1.2-4.9, p = 0.01. These findings suggest that CCND1 amplification could be useful for predicting recurrence in invasive breast cancer.

  9. HER2 gene amplification in patients with prostate cancer: Evaluating a CISH-based method.

    Science.gov (United States)

    Sharifi, Nazanin; Salmaninejad, Arash; Ferdosi, Samira; Bajestani, Abolfazl Nesaei; Khaleghiyan, Malihe; Estiar, Mehrdad Asghari; Jamali, Mansour; Nowroozi, Mohammad Reza; Shakoori, Abbas

    2016-12-01

    Prostate cancer (PCa) is one of the most widespread malignancies in the world. The role of the human epidermal growth factor receptor 2 (HER2) in the pathogenesis and progression of human PCa remains poorly understood. In contradiction with breast cancer, studies on HER2 overexpression and gene amplification in PCa have produced varying results, although the HER2 oncogene has been implicated in the biology of numerous tumor types, and serves as a prognostic marker and therapeutic target in breast cancer. Technical challenges are considered the main reasons for data discrepancies. Amplification of the HER2 gene has previously been reported in PCa, in which it was associated with tumor progression. The present study aimed to evaluate the prevalence and clinical significance of HER2 amplification in PCa. A total of 32 biopsy samples obtained from human prostate adenocarcinomas were evaluated by chromogenic in situ hybridization (CISH) to determine the frequency of patients with HER2 gene amplifications. High copy numbers of HER2 were detected in 19 of the prostate tumors analyzed. The results of the present study suggested that, in patients without amplification of HER2, high levels of prostate-specific antigen or a high Gleason score were not significantly correlated with a high pathologic stage. Furthermore, amplification levels of the HER2 gene were directly associated with pathologic stage in patients with PCa. Therefore, the potential use of HER2 as a prognostic factor or therapeutic target for PCa warrants further study.

  10. Detection of HIV-1 p24 Gag in plasma by a nanoparticle-based bio-barcode-amplification method.

    Science.gov (United States)

    Kim, Eun-Young; Stanton, Jennifer; Korber, Bette T M; Krebs, Kendall; Bogdan, Derek; Kunstman, Kevin; Wu, Samuel; Phair, John P; Mirkin, Chad A; Wolinsky, Steven M

    2008-06-01

    Detection of HIV-1 in patients is limited by the sensitivity and selectivity of available tests. The nanotechnology-based bio-barcode-amplification method offers an innovative approach to detect specific HIV-1 antigens from diverse HIV-1 subtypes. We evaluated the efficacy of this protein-detection method in detecting HIV-1 in men enrolled in the Chicago component of the Multicenter AIDS Cohort Study (MACS). The method relies on magnetic microparticles with antibodies that specifically bind the HIV-1 p24 Gag protein and nanoparticles that are encoded with DNA and antibodies that can sandwich the target protein captured by the microparticle-bound antibodies. The aggregate sandwich structures are magnetically separated from solution, and treated to remove the conjugated barcode DNA. The DNA barcodes (hundreds per target) were identified by a nanoparticle-based detection method that does not rely on PCR. Of 112 plasma samples from HIV-1-infected subjects, 111 were positive for HIV-1 p24 Gag protein (range: 0.11-71.5 ng/ml of plasma) by the bio-barcode-amplification method. HIV-1 p24 Gag protein was detected in only 23 out of 112 men by the conventional ELISA. A total of 34 uninfected subjects were negative by both tests. Thus, the specificity of the bio-barcode-amplification method was 100% and the sensitivity 99%. The bio-barcode-amplification method detected HIV-1 p24 Gag protein in plasma from all study subjects with less than 200 CD4(+) T cells/microl of plasma (100%) and 19 out of 20 (95%) HIV-1-infected men who had less than 50 copies/ml of plasma of HIV-1 RNA. In a separate group of 60 diverse international isolates, representative of clades A, B, C and D and circulating recombinant forms CRF01_AE and CRF02_AG, the bio-barcode-amplification method identified the presence of virus correctly. The bio-barcode-amplification method was superior to the conventional ELISA assay for the detection of HIV-1 p24 Gag protein in plasma with a breadth of coverage for diverse

  11. Genomic Amplification of an Endogenous Retrovirus in Zebrafish T-Cell Malignancies

    Directory of Open Access Journals (Sweden)

    J. Kimble Frazer

    2012-01-01

    Full Text Available Genomic instability plays a crucial role in oncogenesis. Somatically acquired mutations can disable some genes and inappropriately activate others. In addition, chromosomal rearrangements can amplify, delete, or even fuse genes, altering their functions and contributing to malignant phenotypes. Using array comparative genomic hybridization (aCGH, a technique to detect numeric variations between different DNA samples, we examined genomes from zebrafish (Danio rerio T-cell leukemias of three cancer-prone lines. In all malignancies tested, we identified recurring amplifications of a zebrafish endogenous retrovirus. This retrovirus, ZFERV, was first identified due to high expression of proviral transcripts in thymic tissue from larval and adult fish. We confirmed ZFERV amplifications by quantitative PCR analyses of DNA from wild-type fish tissue and normal and malignant D. rerio T cells. We also quantified ZFERV RNA expression and found that normal and neoplastic T cells both produce retrovirally encoded transcripts, but most cancers show dramatically increased transcription. In aggregate, these data imply that ZFERV amplification and transcription may be related to T-cell leukemogenesis. Based on these data and ZFERV’s phylogenetic relation to viruses of the murine-leukemia-related virus class of gammaretroviridae, we posit that ZFERV may be oncogenic via an insertional mutagenesis mechanism.

  12. Highly sensitive chemiluminescent point mutation detection by circular strand-displacement amplification reaction.

    Science.gov (United States)

    Shi, Chao; Ge, Yujie; Gu, Hongxi; Ma, Cuiping

    2011-08-15

    Single nucleotide polymorphism (SNP) genotyping is attracting extensive attentions owing to its direct connections with human diseases including cancers. Here, we have developed a highly sensitive chemiluminescence biosensor based on circular strand-displacement amplification and the separation by magnetic beads reducing the background signal for point mutation detection at room temperature. This method took advantage of both the T4 DNA ligase recognizing single-base mismatch with high selectivity and the strand-displacement reaction of polymerase to perform signal amplification. The detection limit of this method was 1.3 × 10(-16)M, which showed better sensitivity than that of most of those reported detection methods of SNP. Additionally, the magnetic beads as carrier of immobility was not only to reduce the background signal, but also may have potential apply in high through-put screening of SNP detection in human genome. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Three different signal amplification strategies for the impedimetric sandwich detection of thrombin

    Energy Technology Data Exchange (ETDEWEB)

    Ocaña, Cristina; Valle, Manel del, E-mail: manel.delvalle@uab.cat

    2016-03-17

    In this work, we report a comparative study on three highly specific amplification strategies for the ultrasensitive detection of thrombin with the use of aptamer sandwich protocol. The protocol consisted on the use of a first thrombin aptamer immobilized on the electrode surface, the recognition of thrombin protein, and the reaction with a second biotinylated thrombin aptamer forming the sandwich. Through the exposed biotin end, three variants have been tested to amplify the electrochemical impedance signal. The strategies included (a) silver enhancement treatment, (b) gold enhancement treatment and (c) insoluble product produced by the combination of the enzyme horseradish peroxidase (HRP) and 3-amino-9-ethylcarbazole (AEC). The properties of the sensing surface were probed by electrochemical impedance measurements in the presence of the ferrocyanide/ferricyanide redox marker. Insoluble product strategy and silver enhancement treatment resulted in the lowest detection limit (0.3 pM), while gold enhancement method resulted in the highest reproducibility, 8.8% RSD at the pM thrombin concentration levels. Results of silver and gold enhancement treatment also permitted direct inspection by scanning electron microscopy (SEM). - Highlights: • Aptasensor to detect thrombin reaching the femtomolar level. • Biosensing protocol employs two thrombin aptamers in a sandwich capture scheme. • Use of second biotinylated aptamer allows many amplification and detection variants. • Precipitation reaction provides the highest signal amplification of ca. 3 times. • Double recognition event improves remarkably selectivity for thrombin detection.

  14. Three different signal amplification strategies for the impedimetric sandwich detection of thrombin

    International Nuclear Information System (INIS)

    Ocaña, Cristina; Valle, Manel del

    2016-01-01

    In this work, we report a comparative study on three highly specific amplification strategies for the ultrasensitive detection of thrombin with the use of aptamer sandwich protocol. The protocol consisted on the use of a first thrombin aptamer immobilized on the electrode surface, the recognition of thrombin protein, and the reaction with a second biotinylated thrombin aptamer forming the sandwich. Through the exposed biotin end, three variants have been tested to amplify the electrochemical impedance signal. The strategies included (a) silver enhancement treatment, (b) gold enhancement treatment and (c) insoluble product produced by the combination of the enzyme horseradish peroxidase (HRP) and 3-amino-9-ethylcarbazole (AEC). The properties of the sensing surface were probed by electrochemical impedance measurements in the presence of the ferrocyanide/ferricyanide redox marker. Insoluble product strategy and silver enhancement treatment resulted in the lowest detection limit (0.3 pM), while gold enhancement method resulted in the highest reproducibility, 8.8% RSD at the pM thrombin concentration levels. Results of silver and gold enhancement treatment also permitted direct inspection by scanning electron microscopy (SEM). - Highlights: • Aptasensor to detect thrombin reaching the femtomolar level. • Biosensing protocol employs two thrombin aptamers in a sandwich capture scheme. • Use of second biotinylated aptamer allows many amplification and detection variants. • Precipitation reaction provides the highest signal amplification of ca. 3 times. • Double recognition event improves remarkably selectivity for thrombin detection.

  15. Rapid, highly sensitive and highly specific gene detection by combining enzymatic amplification and DNA chip detection simultaneously

    Directory of Open Access Journals (Sweden)

    Koji Hashimoto

    2016-05-01

    Full Text Available We have developed a novel gene detection method based on the loop-mediated isothermal amplification (LAMP reaction and the DNA dissociation reaction on the same DNA chip surface to achieve a lower detection limit, broader dynamic range and faster detection time than are attainable with a conventional DNA chip. Both FAM- and thiol-labeled DNA probe bound to the complementary sequence accompanying Dabcyl was immobilized on the gold surface via Au/thiol bond. The LAMP reaction was carried out on the DNA probe fixed gold surface. At first, Dabcyl molecules quenched the FAM fluorescence. According to the LAMP reaction, the complementary sequence with Dabcyl was competitively reacted with the amplified targeted sequence. As a result, the FAM fluorescence increased owing to dissociation of the complementary sequence from the DNA probe. The simultaneous reaction of LAMP and DNA chip detection was achieved, and 103 copies of the targeted gene were detected within an hour by measuring fluorescence intensity of the DNA probe. Keywords: Biosensor, DNA chip, Loop-mediated isothermal amplification (LAMP, Fluorescence detection, Gold substrate, Au/thiol bond

  16. Optofluidic analysis system for amplification-free, direct detection of Ebola infection

    Science.gov (United States)

    Cai, H.; Parks, J. W.; Wall, T. A.; Stott, M. A.; Stambaugh, A.; Alfson, K.; Griffiths, A.; Mathies, R. A.; Carrion, R.; Patterson, J. L.; Hawkins, A. R.; Schmidt, H.

    2015-09-01

    The massive outbreak of highly lethal Ebola hemorrhagic fever in West Africa illustrates the urgent need for diagnostic instruments that can identify and quantify infections rapidly, accurately, and with low complexity. Here, we report on-chip sample preparation, amplification-free detection and quantification of Ebola virus on clinical samples using hybrid optofluidic integration. Sample preparation and target preconcentration are implemented on a PDMS-based microfluidic chip (automaton), followed by single nucleic acid fluorescence detection in liquid-core optical waveguides on a silicon chip in under ten minutes. We demonstrate excellent specificity, a limit of detection of 0.2 pfu/mL and a dynamic range of thirteen orders of magnitude, far outperforming other amplification-free methods. This chip-scale approach and reduced complexity compared to gold standard RT-PCR methods is ideal for portable instruments that can provide immediate diagnosis and continued monitoring of infectious diseases at the point-of-care.

  17. A novel method, digital genome scanning detects KRAS gene amplification in gastric cancers: involvement of overexpressed wild-type KRAS in downstream signaling and cancer cell growth

    Directory of Open Access Journals (Sweden)

    Yanagihara Kazuyoshi

    2009-06-01

    Full Text Available Abstract Background Gastric cancer is the third most common malignancy affecting the general population worldwide. Aberrant activation of KRAS is a key factor in the development of many types of tumor, however, oncogenic mutations of KRAS are infrequent in gastric cancer. We have developed a novel quantitative method of analysis of DNA copy number, termed digital genome scanning (DGS, which is based on the enumeration of short restriction fragments, and does not involve PCR or hybridization. In the current study, we used DGS to survey copy-number alterations in gastric cancer cells. Methods DGS of gastric cancer cell lines was performed using the sequences of 5000 to 15000 restriction fragments. We screened 20 gastric cancer cell lines and 86 primary gastric tumors for KRAS amplification by quantitative PCR, and investigated KRAS amplification at the DNA, mRNA and protein levels by mutational analysis, real-time PCR, immunoblot analysis, GTP-RAS pull-down assay and immunohistochemical analysis. The effect of KRAS knock-down on the activation of p44/42 MAP kinase and AKT and on cell growth were examined by immunoblot and colorimetric assay, respectively. Results DGS analysis of the HSC45 gastric cancer cell line revealed the amplification of a 500-kb region on chromosome 12p12.1, which contains the KRAS gene locus. Amplification of the KRAS locus was detected in 15% (3/20 of gastric cancer cell lines (8–18-fold amplification and 4.7% (4/86 of primary gastric tumors (8–50-fold amplification. KRAS mutations were identified in two of the three cell lines in which KRAS was amplified, but were not detected in any of the primary tumors. Overexpression of KRAS protein correlated directly with increased KRAS copy number. The level of GTP-bound KRAS was elevated following serum stimulation in cells with amplified wild-type KRAS, but not in cells with amplified mutant KRAS. Knock-down of KRAS in gastric cancer cells that carried amplified wild

  18. A novel method, digital genome scanning detects KRAS gene amplification in gastric cancers: involvement of overexpressed wild-type KRAS in downstream signaling and cancer cell growth

    International Nuclear Information System (INIS)

    Mita, Hiroaki; Yanagihara, Kazuyoshi; Fujita, Masahiro; Hosokawa, Masao; Kusano, Masanobu; Sabau, Sorin Vasile; Tatsumi, Haruyuki; Imai, Kohzoh; Shinomura, Yasuhisa; Tokino, Takashi; Toyota, Minoru; Aoki, Fumio; Akashi, Hirofumi; Maruyama, Reo; Sasaki, Yasushi; Suzuki, Hiromu; Idogawa, Masashi; Kashima, Lisa

    2009-01-01

    Gastric cancer is the third most common malignancy affecting the general population worldwide. Aberrant activation of KRAS is a key factor in the development of many types of tumor, however, oncogenic mutations of KRAS are infrequent in gastric cancer. We have developed a novel quantitative method of analysis of DNA copy number, termed digital genome scanning (DGS), which is based on the enumeration of short restriction fragments, and does not involve PCR or hybridization. In the current study, we used DGS to survey copy-number alterations in gastric cancer cells. DGS of gastric cancer cell lines was performed using the sequences of 5000 to 15000 restriction fragments. We screened 20 gastric cancer cell lines and 86 primary gastric tumors for KRAS amplification by quantitative PCR, and investigated KRAS amplification at the DNA, mRNA and protein levels by mutational analysis, real-time PCR, immunoblot analysis, GTP-RAS pull-down assay and immunohistochemical analysis. The effect of KRAS knock-down on the activation of p44/42 MAP kinase and AKT and on cell growth were examined by immunoblot and colorimetric assay, respectively. DGS analysis of the HSC45 gastric cancer cell line revealed the amplification of a 500-kb region on chromosome 12p12.1, which contains the KRAS gene locus. Amplification of the KRAS locus was detected in 15% (3/20) of gastric cancer cell lines (8–18-fold amplification) and 4.7% (4/86) of primary gastric tumors (8–50-fold amplification). KRAS mutations were identified in two of the three cell lines in which KRAS was amplified, but were not detected in any of the primary tumors. Overexpression of KRAS protein correlated directly with increased KRAS copy number. The level of GTP-bound KRAS was elevated following serum stimulation in cells with amplified wild-type KRAS, but not in cells with amplified mutant KRAS. Knock-down of KRAS in gastric cancer cells that carried amplified wild-type KRAS resulted in the inhibition of cell growth and

  19. Loop-mediated isothermal amplification (LAMP) shield for Arduino DNA detection

    NARCIS (Netherlands)

    Velders, Aldrik H.; Schoen, Cor; Saggiomo, Vittorio

    2018-01-01

    Objective: Loop-mediated isothermal amplification (LAMP) of DNA is gaining relevance as a method to detect nucleic acids, as it is easier, faster, and more powerful than conventional Polymerase Chain Reaction. However, LAMP is still mostly used in laboratory settings, because of the lack of a cheap

  20. [Investigation of RNA viral genome amplification by multiple displacement amplification technique].

    Science.gov (United States)

    Pang, Zheng; Li, Jian-Dong; Li, Chuan; Liang, Mi-Fang; Li, De-Xin

    2013-06-01

    In order to facilitate the detection of newly emerging or rare viral infectious diseases, a negative-strand RNA virus-severe fever with thrombocytopenia syndrome bunyavirus, and a positive-strand RNA virus-dengue virus, were used to investigate RNA viral genome unspecific amplification by multiple displacement amplification technique from clinical samples. Series of 10-fold diluted purified viral RNA were utilized as analog samples with different pathogen loads, after a series of reactions were sequentially processed, single-strand cDNA, double-strand cDNA, double-strand cDNA treated with ligation without or with supplemental RNA were generated, then a Phi29 DNA polymerase depended isothermal amplification was employed, and finally the target gene copies were detected by real time PCR assays to evaluate the amplification efficiencies of various methods. The results showed that multiple displacement amplification effects of single-strand or double-strand cDNA templates were limited, while the fold increases of double-strand cDNA templates treated with ligation could be up to 6 X 10(3), even 2 X 10(5) when supplemental RNA existed, and better results were obtained when viral RNA loads were lower. A RNA viral genome amplification system using multiple displacement amplification technique was established in this study and effective amplification of RNA viral genome with low load was achieved, which could provide a tool to synthesize adequate viral genome for multiplex pathogens detection.

  1. Double demonstration of oncogenic high risk human papilloma virus DNA and HPV-E7 protein in oral cancers.

    Science.gov (United States)

    Pannone, G; Santoro, A; Carinci, F; Bufo, P; Papagerakis, S M; Rubini, C; Campisi, G; Giovannelli, L; Contaldo, M; Serpico, R; Mazzotta, M; Lo Muzio, L

    2011-01-01

    Oncogenic HPVs are necessarily involved in cervical cancer but their role in oral carcinogenesis is debated. To detect HPV in oral cancer, 38 cases of formalin fixed-paraffin embedded OSCC were studied by both DNA genotyping (MY09/11 L1 consensus primers in combination with GP5-GP6 primer pair followed by sequencing) and immunohistochemistry (monoclonal Abs against capsid protein and HPV-E7 protein, K1H8 DAKO and clone 8C9 INVITROGEN, respectively). HPV-16 tonsil cancer was used as positive control. The overall prevalence of HPV infection in OSCCs was 10.5%. Amplification of DNA samples showed single HPV DNA infection in 3 cases (HPV16; HPV53; HPV70) and double infection in one case of cheek cancer (HPV31/HPV44). The overall HR-HPV prevalence was 7.5%. E-7 antigen was immunohistochemically detected in all HPV-positive cases. HPV+ OSCC cases showed an overall better outcome than HPV negative oral cancers, as evaluated by Kaplan-Meier curves. HPVs exert their oncogenic role after DNA integration, gene expression of E5, E6 and E7 loci and p53/pRb host proteins suppression. This study showed that HPV-E7 protein inactivating pRb is expressed in oral cancer cells infected by oncogenic HPV other than classical HR-HPV-16/18. Interestingly HPV-70, considered a low risk virus with no definite collocation in oncogenic type category, gives rise to the expression of HPV-E7 protein and inactivate pRb in oral cancer. HPV-70, as proved in current literature, is able to inactivates also p53 protein, promoting cell immortalization. HPV-53, classified as a possible high risk virus, expresses E7 protein in OSCC, contributing to oral carcinogenesis. We have identified among OSCCs, a subgroup characterized by HPV infection (10.5%). Finally, we have proved the oncogenic potential of some HPV virus types, not well known in literature.

  2. Detection of biological molecules using boronate-based chemical amplification and optical sensors

    Science.gov (United States)

    Van Antwerp, William Peter; Mastrototaro, John Joseph; Lane, Stephen M.; Satcher, Jr., Joe H.; Darrow, Christopher B.; Peyser, Thomas A.; Harder, Jennifer

    1999-01-01

    Methods are provided for the determination of the concentration of biological levels of polyhydroxylated compounds, particularly glucose. The methods utilize an amplification system that is an analyte transducer immobilized in a polymeric matrix, where the system is implantable and biocompatible. Upon interrogation by an optical system, the amplification system produces a signal capable of detection external to the skin of the patient. Quantitation of the analyte of interest is achieved by measurement of the emitted signal.

  3. New Fpg probe chemistry for direct detection of recombinase polymerase amplification on lateral flow strips.

    Science.gov (United States)

    Powell, Michael L; Bowler, Frank R; Martinez, Aurore J; Greenwood, Catherine J; Armes, Niall; Piepenburg, Olaf

    2018-02-15

    Rapid, cost-effective and sensitive detection of nucleic acids has the ability to improve upon current practices employed for pathogen detection in diagnosis of infectious disease and food testing. Furthermore, if assay complexity can be reduced, nucleic acid amplification tests could be deployed in resource-limited and home use scenarios. In this study, we developed a novel Fpg (Formamidopyrimidine DNA glycosylase) probe chemistry, which allows lateral flow detection of amplification in undiluted recombinase polymerase amplification (RPA) reactions. The prototype nucleic acid lateral flow chemistry was applied to a human genomic target (rs1207445), Campylobacter jejuni 16S rDNA and two genetic markers of the important food pathogen E. coli O157:H7. All four assays have an analytical sensitivity between 10 and 100 copies DNA per amplification. Furthermore, the assay is performed with fewer hands-on steps than using the current RPA Nfo lateral flow method as dilution of amplicon is not required for lateral flow analysis. Due to the simplicity of the workflow, we believe that the lateral flow chemistry for direct detection could be readily adapted to a cost-effective single-use consumable, ideal for use in non-laboratory settings. Copyright © 2017. Published by Elsevier Inc.

  4. Real-Time Fluorescence Loop Mediated Isothermal Amplification for the Detection of Acinetobacter baumannii

    Science.gov (United States)

    Wang, Qinqin; Zhou, Yanbin; Li, Shaoli; Zhuo, Chao; Xu, Siqi; Huang, Lixia; Yang, Ling; Liao, Kang

    2013-01-01

    Background Detection of Acinetobacter baumannii has been relying primarily on bacterial culture that often fails to return useful results in time. Although DNA-based assays are more sensitive than bacterial culture in detecting the pathogen, the molecular results are often inconsistent and challenged by doubts on false positives, such as those due to system- and environment-derived contaminations. In addition, these molecular tools require expensive laboratory instruments. Therefore, establishing molecular tools for field use require simpler molecular platforms. The loop-mediated isothermal amplification method is relatively simple and can be improved for better use in a routine clinical bacteriology laboratory. A simple and portable device capable of performing both the amplification and detection (by fluorescence) of LAMP in the same platform has been developed in recent years. This method is referred to as real-time loop-mediated isothermal amplification. In this study, we attempted to utilize this method for rapid detection of A. baumannii. Methodology and Significant Findings Species-specific primers were designed to test the utility of this method. Clinical samples of A. baumannii were used to determine the sensitivity and specificity of this system compared to bacterial culture and a polymerase chain reaction method. All positive samples isolated from sputum were confirmed to be the species of Acinetobacter by 16S rRNA gene sequencing. The RealAmp method was found to be simpler and allowed real-time detection of DNA amplification, and could distinguish A. baumannii from Acinetobacter calcoaceticus and Acinetobacter genomic species 3. DNA was extracted by simple boiling method. Compared to bacterial culture, the sensitivity and specificity of RealAmp in detecting A. baumannii was 98.9% and 75.0%, respectively. Conclusion The RealAmp assay only requires a single unit, and the assay positivity can be verified by visual inspection. Therefore, this assay has

  5. Isothermal Recombinase Polymerase amplification (RPA) of Schistosoma haematobium DNA and oligochromatographic lateral flow detection.

    Science.gov (United States)

    Rosser, A; Rollinson, D; Forrest, M; Webster, B L

    2015-09-04

    Accurate diagnosis of urogenital schistosomiasis is vital for surveillance/control programs. Amplification of schistosome DNA in urine by PCR is sensitive and specific but requires infrastructure, financial resources and skilled personnel, often not available in endemic areas. Recombinase Polymerase Amplification (RPA) is an isothermal DNA amplification/detection technology that is simple, rapid, portable and needs few resources. Here a Schistosoma haematobium RPA assay was developed and adapted so that DNA amplicons could be detected using oligochromatographic Lateral Flow (LF) strips. The assay successfully amplified S. haematobium DNA at 30-45 °C in 10 mins and was sensitive to a lower limit of 100 fg of DNA. The assay was also successful with the addition of crude urine, up to 5% of the total reaction volume. Cross amplification occurred with other schistosome species but not with other common urine microorganisms. The LF-RPA assay developed here can amplify and detect low levels of S. haematobium DNA. Reactions are rapid, require low temperatures and positive reactions are interpreted using lateral flow strips, reducing the need for infrastructure and resources. This together with an ability to withstand inhibitors within urine makes RPA a promising technology for further development as a molecular diagnostic tool for urogenital schistosomiasis.

  6. Tiny Grains Give Huge Gains: Nanocrystal–Based Signal Amplification for Biomolecule Detection

    Science.gov (United States)

    Tong, Sheng; Ren, Binbin; Zheng, Zhilan; Shen, Han; Bao, Gang

    2013-01-01

    Nanocrystals, despite their tiny sizes, contain thousands to millions of atoms. Here we show that the large number of atoms packed in each metallic nanocrystal can provide a huge gain in signal amplification for biomolecule detection. We have devised a highly sensitive, linear amplification scheme by integrating the dissolution of bound nanocrystals and metal-induced stoichiometric chromogenesis, and demonstrated that signal amplification is fully defined by the size and atom density of nanocrystals, which can be optimized through well-controlled nanocrystal synthesis. Further, the rich library of chromogenic reactions allows implementation of this scheme in various assay formats, as demonstrated by the iron oxide nanoparticle linked immunosorbent assay (ILISA) and blotting assay developed in this study. Our results indicate that, owing to the inherent simplicity, high sensitivity and repeatability, the nanocrystal based amplification scheme can significantly improve biomolecule quantification in both laboratory research and clinical diagnostics. This novel method adds a new dimension to current nanoparticle-based bioassays. PMID:23659350

  7. Evaluation of Nucleic Acid Isothermal Amplification Methods for Human Clinical Microbial Infection Detection

    Directory of Open Access Journals (Sweden)

    Brett E. Etchebarne

    2017-12-01

    Full Text Available Battling infection is a major healthcare objective. Untreated infections can rapidly evolve toward the condition of sepsis in which the body begins to fail and resuscitation becomes critical and tenuous. Identification of infection followed by rapid antimicrobial treatment are primary goals of medical care, but precise identification of offending organisms by current methods is slow and broad spectrum empirical therapy is employed to cover most potential pathogens. Current methods for identification of bacterial pathogens in a clinical setting typically require days of time, or a 4- to 8-h growth phase followed by DNA extraction, purification and PCR-based amplification. We demonstrate rapid (70–120 min genetic diagnostics methods utilizing loop-mediated isothermal amplification (LAMP to test for 15 common infection pathogen targets, called the Infection Diagnosis Panel (In-Dx. The method utilizes filtration to rapidly concentrate bacteria in sample matrices with lower bacterial loads and direct LAMP amplification without DNA purification from clinical blood, urine, wound, sputum and stool samples. The In-Dx panel was tested using two methods of detection: (1 real-time thermocycler fluorescent detection of LAMP amplification and (2 visual discrimination of color change in the presence of Eriochrome Black T (EBT dye following amplification. In total, 239 duplicate samples were collected (31 blood, 122 urine, 73 mucocutaneous wound/swab, 11 sputum and two stool from 229 prospectively enrolled hospital patients with suspected clinical infection and analyzed both at the hospital and by In-Dx. Sensitivity (Se of the In-Dx panel targets pathogens from urine samples by In-Dx was 91.1% and specificity (Sp was 97.3%, with a positive predictive value (PPV of 53.7% and a negative predictive value (NPV of 99.7% as compared to clinical microbial detection methods. Sensitivity of detection of the In-Dx panel from mucocutaneous swab samples was 65.5% with a

  8. The inhibitory NKR-P1B:Clr-b recognition axis facilitates detection of oncogenic transformation and cancer immunosurveillance

    DEFF Research Database (Denmark)

    Tanaka, M; Fine, Jason; Kirkham, Christina

    2018-01-01

    Natural killer (NK) cells express receptors specific for MHC class I (MHC-I) molecules involved in "missing-self" recognition of cancer and virus-infected cells. Here we elucidate the role of MHC-I-independent NKR-P1B:Clr-b interactions in the detection of oncogenic transformation by NK cells. Ras......-b protein, in turn promoting missing-self recognition via the NKR-P1B inhibitory receptor. Both Ras- and c-Myc-mediated Clr-b loss selectively augmented cytotoxicity of oncogene-transformed leukemia cells by NKR-P1B+ NK cells in vitro and enhanced rejection by WT mice in vivo. Interestingly, genetic...

  9. Ras oncogenes in oral cancer: the past 20 years.

    Science.gov (United States)

    Murugan, Avaniyapuram Kannan; Munirajan, Arasambattu Kannan; Tsuchida, Nobuo

    2012-05-01

    Oral squamous cell carcinoma (OSCC) of head and neck is associated with high morbidity and mortality in both Western and Asian countries. Several risk factors for the development of oral cancer are very well established, including tobacco chewing, betel quid, smoking, alcohol drinking and human papilloma virus (HPV) infection. Apart from these risk factors, many genetic factors such as oncogenes, tumor suppressor genes and regulatory genes are identified to involve in oral carcinogenesis with these risk factors dependent and independent manner. Ras is one of the most frequently genetically deregulated oncogene in oral cancer. In this review, we analyze the past 22years of literature on genetic alterations such as mutations and amplifications of the isoforms of the ras oncogene in oral cancer. Further, we addressed the isoform-specific role of the ras in oral carcinogenesis. We also discussed how targeting the Akt and MEK, downstream effectors of the PI3K/Akt and MAPK pathways, respectively, would probably pave the possible molecular therapeutic target for the ras driven tumorigenesis in oral cancer. Analysis of these ras isoforms may critically enlighten specific role of a particular ras isoform in oral carcinogenesis, enhance prognosis and pave the way for isoform-specific molecular targeted therapy in OSCC. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Detection of MDM2/CDK4 amplification in lipomatous soft tissue tumors from formalin-fixed, paraffin-embedded tissue: comparison of multiplex ligation-dependent probe amplification (MLPA) and fluorescence in situ hybridization (FISH).

    Science.gov (United States)

    Creytens, David; van Gorp, Joost; Ferdinande, Liesbeth; Speel, Ernst-Jan; Libbrecht, Louis

    2015-02-01

    In this study, the detection of MDM2 and CDK4 amplification was evaluated in lipomatous soft tissue tumors using multiplex ligation-dependent probe amplification (MLPA), a PCR-based technique, in comparison with fluorescence in situ hybridization (FISH). These 2 techniques were evaluated in a series of 77 formalin-fixed, paraffin-embedded lipomatous tumors (27 benign adipose tumors, 28 atypical lipomatous tumors/well-differentiated liposarcomas, 18 dedifferentiated liposarcomas, and 4 pleomorphic liposarcomas). Using MLPA, with a cut-off ratio of >2, 36/71 samples (22 atypical lipomatous tumors/well-differentiated liposarcomas, and 14 dedifferentiated liposarcomas) showed MDM2 and CDK4 amplification. Using FISH as gold standard, MLPA showed a sensitivity of 90% (36/40) and a specificity of 100% (31/31) in detecting amplification of MDM2 and CDK4 in lipomatous soft tissue tumors. In case of high-level amplification (MDM2-CDK4/CEP12 ratio >5), concordance was 100%. Four cases of atypical lipomatous tumor/well-differentiated liposarcoma (4/26, 15%) with a low MDM2 and CDK4 amplification level (MDM2-CDK4/CEP12 ratio ranging between 2 and 2.5) detected by FISH showed no amplification by MLPA, although gain of MDM2 and CDK4 (ratios ranging between 1.6 and 1.9) was seen with MLPA. No amplification was detected in benign lipomatous tumors and pleomorphic liposarcomas. Furthermore, there was a very high concordance between the ratios obtained by FISH and MLPA. In conclusion, MLPA proves to be an appropriate and straightforward technique for screening MDM2/CDK4 amplification in lipomatous tumors, especially when a correct cut-off value and reference samples are chosen, and could be considered a good alternative to FISH to determine MDM2 and CDK4 amplification in liposarcomas. Moreover, because MLPA, as a multiplex technique, allows simultaneous detection of multiple chromosomal changes of interest, it could be in the future a very reliable and fast molecular analysis on

  11. Duplex recombinase polymerase amplification assays incorporating competitive internal controls for bacterial meningitis detection.

    Science.gov (United States)

    Higgins, Owen; Clancy, Eoin; Forrest, Matthew S; Piepenburg, Olaf; Cormican, Martin; Boo, Teck Wee; O'Sullivan, Nicola; McGuinness, Claire; Cafferty, Deirdre; Cunney, Robert; Smith, Terry J

    2018-04-01

    Recombinase polymerase amplification (RPA) is an isothermal nucleic acid amplification technology that provides rapid and robust infectious disease pathogen detection, ideal for point-of-care (POC) diagnostics in disease-prevalent low-resource countries. We have developed and evaluated three duplex RPA assays incorporating competitive internal controls for the detection of leading bacterial meningitis pathogens. Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae singleplex RPA assays were initially developed and evaluated, demonstrating 100% specificity with limits of detection of 4.1, 8.5 and 3.9 genome copies per reaction, respectively. Each assay was further developed into internally controlled duplex RPA assays via the incorporation of internal amplification control templates. Clinical performance of each internally controlled duplex RPA assay was evaluated by testing 64 archived PCR-positive clinical samples. Compared to real-time PCR, all duplex RPA assays demonstrated 100% diagnostic specificity, with diagnostic sensitivities of 100%, 86.3% and 100% for the S. pneumoniae, N. meningitidis and H. influenzae assays, respectively. This study details the first report of internally controlled duplex RPA assays for the detection of bacterial meningitis pathogens: S. pneumoniae, N. meningitidis and H. influenzae. We have successfully demonstrated the clinical diagnostic utility of each duplex RPA assay, introducing effective diagnostic technology for POC bacterial meningitis identification in disease-prevalent developing countries. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Helicase-dependent isothermal amplification: a novel tool in the development of molecular-based analytical systems for rapid pathogen detection.

    Science.gov (United States)

    Barreda-García, Susana; Miranda-Castro, Rebeca; de-Los-Santos-Álvarez, Noemí; Miranda-Ordieres, Arturo J; Lobo-Castañón, María Jesús

    2018-01-01

    Highly sensitive testing of nucleic acids is essential to improve the detection of pathogens, which pose a major threat for public health worldwide. Currently available molecular assays, mainly based on PCR, have a limited utility in point-of-need control or resource-limited settings. Consequently, there is a strong interest in developing cost-effective, robust, and portable platforms for early detection of these harmful microorganisms. Since its description in 2004, isothermal helicase-dependent amplification (HDA) has been successfully applied in the development of novel molecular-based technologies for rapid, sensitive, and selective detection of viruses and bacteria. In this review, we highlight relevant analytical systems using this simple nucleic acid amplification methodology that takes place at a constant temperature and that is readily compatible with microfluidic technologies. Different strategies for monitoring HDA amplification products are described. In addition, we present technological advances for integrating sample preparation, HDA amplification, and detection. Future perspectives and challenges toward point-of-need use not only for clinical diagnosis but also in food safety testing and environmental monitoring are also discussed. Graphical Abstract Expanding the analytical toolbox for the detection of DNA sequences specific of pathogens with isothermal helicase dependent amplification (HDA).

  13. Multiple strategies to improve sensitivity, speed and robustness of isothermal nucleic acid amplification for rapid pathogen detection

    Directory of Open Access Journals (Sweden)

    Lemieux Bertrand

    2011-05-01

    Full Text Available Abstract Background In the past decades the rapid growth of molecular diagnostics (based on either traditional PCR or isothermal amplification technologies meet the demand for fast and accurate testing. Although isothermal amplification technologies have the advantages of low cost requirements for instruments, the further improvement on sensitivity, speed and robustness is a prerequisite for the applications in rapid pathogen detection, especially at point-of-care diagnostics. Here, we describe and explore several strategies to improve one of the isothermal technologies, helicase-dependent amplification (HDA. Results Multiple strategies were approached to improve the overall performance of the isothermal amplification: the restriction endonuclease-mediated DNA helicase homing, macromolecular crowding agents, and the optimization of reaction enzyme mix. The effect of combing all strategies was compared with that of the individual strategy. With all of above methods, we are able to detect 50 copies of Neisseria gonorrhoeae DNA in just 20 minutes of amplification using a nearly instrument-free detection platform (BESt™ cassette. Conclusions The strategies addressed in this proof-of-concept study are independent of expensive equipments, and are not limited to particular primers, targets or detection format. However, they make a large difference in assay performance. Some of them can be adjusted and applied to other formats of nucleic acid amplification. Furthermore, the strategies to improve the in vitro assays by maximally simulating the nature conditions may be useful in the general field of developing molecular assays. A new fast molecular assay for Neisseria gonorrhoeae has also been developed which has great potential to be used at point-of-care diagnostics.

  14. PAK1 is a breast cancer oncogene that coordinately activates MAPK and MET signaling.

    Science.gov (United States)

    Shrestha, Y; Schafer, E J; Boehm, J S; Thomas, S R; He, F; Du, J; Wang, S; Barretina, J; Weir, B A; Zhao, J J; Polyak, K; Golub, T R; Beroukhim, R; Hahn, W C

    2012-07-19

    Activating mutations in the RAS family or BRAF frequently occur in many types of human cancers but are rarely detected in breast tumors. However, activation of the RAS-RAF-MEK-ERK MAPK pathway is commonly observed in human breast cancers, suggesting that other genetic alterations lead to activation of this signaling pathway. To identify breast cancer oncogenes that activate the MAPK pathway, we screened a library of human kinases for their ability to induce anchorage-independent growth in a derivative of immortalized human mammary epithelial cells (HMLE). We identified p21-activated kinase 1 (PAK1) as a kinase that permitted HMLE cells to form anchorage-independent colonies. PAK1 is amplified in several human cancer types, including 30--33% of breast tumor samples and cancer cell lines. The kinase activity of PAK1 is necessary for PAK1-induced transformation. Moreover, we show that PAK1 simultaneously activates MAPK and MET signaling; the latter via inhibition of merlin. Disruption of these activities inhibits PAK1-driven anchorage-independent growth. These observations establish PAK1 amplification as an alternative mechanism for MAPK activation in human breast cancer and credential PAK1 as a breast cancer oncogene that coordinately regulates multiple signaling pathways, the cooperation of which leads to malignant transformation.

  15. A cascade amplification strategy based on rolling circle amplification and hydroxylamine amplified gold nanoparticles enables chemiluminescence detection of adenosine triphosphate.

    Science.gov (United States)

    Wang, Ping; Zhang, Tonghuan; Yang, Taoyi; Jin, Nan; Zhao, Yanjun; Fan, Aiping

    2014-08-07

    A highly sensitive and selective chemiluminescent (CL) biosensor for adenosine triphosphate (ATP) was developed by taking advantage of the ATP-dependent enzymatic reaction (ATP-DER), the powerful signal amplification capability of rolling circle amplification (RCA), and hydroxylamine-amplified gold nanoparticles (Au NPs). The strategy relies on the ability of ATP, a cofactor of T4 DNA ligase, to trigger the ligation-RCA reaction. In the presence of ATP, the T4 DNA ligase catalyzes the ligation reaction between the two ends of the padlock probe, producing a closed circular DNA template that initiates the RCA reaction with phi29 DNA polymerase and dNTP. Therein, many complementary copies of the circular template can be generated. The ATP-DER is eventually converted into a detectable CL signal after a series of processes, including gold probe hybridization, hydroxylamine amplification, and oxidative gold metal dissolution coupled with a simple and sensitive luminol CL reaction. The CL signal is directly proportional to the ATP level. The results showed that the detection limit of the assay is 100 pM of ATP, which compares favorably with those of other ATP detection techniques. In addition, by taking advantage of ATP-DER, the proposed CL sensing system exhibits extraordinary specificity towards ATP and could distinguish the target molecule ATP from its analogues. The proposed method provides a new and versatile platform for the design of novel DNA ligation reaction-based CL sensing systems for other cofactors. This novel ATP-DER based CL sensing system may find wide applications in clinical diagnosis as well as in environmental and biomedical fields.

  16. Cytological and oncogene alterations in radiation-transformed Syrian hamster embryo cells

    International Nuclear Information System (INIS)

    Trutschler, K.; Hieber, L.; Kellerer, A.M.

    1991-01-01

    Syrian hamster embryo (SHE) cells were neoplastically transformed by different types of ionizing radiation (γ-rays, α-particles or carbon ions). Transformed and tumor cell lines (derived from nude mice tumors) were analysed for alterations of the oncogenes c-Ha-ras and c-myc, i.e. RFLPs, gene amplifications, activation by point mutation, gene expression, and for cytological changes. In addition, the chromosome number and the numbers of micronuclei per cell have been determined in a series of cell lines. (author)

  17. Loop-mediated isothermal amplification (LAMP) shield for Arduino DNA detection.

    Science.gov (United States)

    Velders, Aldrik H; Schoen, Cor; Saggiomo, Vittorio

    2018-02-01

    Loop-mediated isothermal amplification (LAMP) of DNA is gaining relevance as a method to detect nucleic acids, as it is easier, faster, and more powerful than conventional Polymerase Chain Reaction. However, LAMP is still mostly used in laboratory settings, because of the lack of a cheap and easy, one-button device that can perform LAMP experiments. Here we show how to build and program an Arduino shield for a LAMP and detection of DNA. The here described Arduino Shield is cheap, easy to assemble, to program and use, it is battery operated and the detection of DNA is done by naked-eye so that it can be used in field.

  18. Detection of enterovirus 71 gene from clinical specimens by reverse-transcription loop-mediated isothermal amplification.

    Science.gov (United States)

    Wang, D; Wang, X; Geng, Y; An, C

    2014-01-01

    The objective of this study was to develop a sensitive, specific and rapid approach to diagnose hand foot and mouth disease (HFMD) for an early treatment by using loop-mediated isothermal amplification (LAMP) technique. A reverse-transcription loop-mediated isothermal amplification (RT-LAMP) for detecting EV71 virus was developed, the specificity and sensitivity of RT-LAMP was tested, and the clinical specimens was assayed by the RT-LAMP comparing with conventional reverse-transcription polymerase chain reaction (RT-PCR) and real-time PCR. A total of 116 clinical specimens from the suspected HFMD individual were detected with the RT-LAMP. The detection rate for EV71 was 56.89% by RT-LAMP, 41.38% by real-time PCR and 34.48% by RT-PCR. The minimum detection limit of RT-LAMP was 0.01 PFU, both of RT-PCR and real-time PCR was 0.1PFU. Non-cross-reactive amplification with other enteroviruses was detected in the survey reports. The effectiveness of RT-LAMP is higher than RT-PCR and real-time PCR. The protocol is easy to operate and time saving. It was not an expensive instrument, which was needed; it is an applicable method for rapid diagnosis of the disease, especially in resource-poor countries or in developing countries.

  19. Recombinase polymerase amplification (RPA) of CaMV-35S promoter and nos terminator for rapid detection of genetically modified crops.

    Science.gov (United States)

    Xu, Chao; Li, Liang; Jin, Wujun; Wan, Yusong

    2014-10-10

    Recombinase polymerase amplification (RPA) is a novel isothermal DNA amplification and detection technology that enables the amplification of DNA within 30 min at a constant temperature of 37-42 °C by simulating in vivo DNA recombination. In this study, based on the regulatory sequence of the cauliflower mosaic virus 35S (CaMV-35S) promoter and the Agrobacterium tumefaciens nopaline synthase gene (nos) terminator, which are widely incorporated in genetically modified (GM) crops, we designed two sets of RPA primers and established a real-time RPA detection method for GM crop screening and detection. This method could reliably detect as few as 100 copies of the target molecule in a sample within 15-25 min. Furthermore, the real-time RPA detection method was successfully used to amplify and detect DNA from samples of four major GM crops (maize, rice, cotton, and soybean). With this novel amplification method, the test time was significantly shortened and the reaction process was simplified; thus, this method represents an effective approach to the rapid detection of GM crops.

  20. Recombinase Polymerase Amplification (RPA of CaMV-35S Promoter and nos Terminator for Rapid Detection of Genetically Modified Crops

    Directory of Open Access Journals (Sweden)

    Chao Xu

    2014-10-01

    Full Text Available Recombinase polymerase amplification (RPA is a novel isothermal DNA amplification and detection technology that enables the amplification of DNA within 30 min at a constant temperature of 37–42 °C by simulating in vivo DNA recombination. In this study, based on the regulatory sequence of the cauliflower mosaic virus 35S (CaMV-35S promoter and the Agrobacterium tumefaciens nopaline synthase gene (nos terminator, which are widely incorporated in genetically modified (GM crops, we designed two sets of RPA primers and established a real-time RPA detection method for GM crop screening and detection. This method could reliably detect as few as 100 copies of the target molecule in a sample within 15–25 min. Furthermore, the real-time RPA detection method was successfully used to amplify and detect DNA from samples of four major GM crops (maize, rice, cotton, and soybean. With this novel amplification method, the test time was significantly shortened and the reaction process was simplified; thus, this method represents an effective approach to the rapid detection of GM crops.

  1. Homogeneous and label-free detection of microRNAs using bifunctional strand displacement amplification-mediated hyperbranched rolling circle amplification.

    Science.gov (United States)

    Zhang, Li-rong; Zhu, Guichi; Zhang, Chun-yang

    2014-07-01

    MicroRNAs (miRNAs) are an emerging class of biomarkers and therapeutic targets for various diseases including cancers. Here, we develop a homogeneous and label-free method for sensitive detection of let-7a miRNA based on bifunctional strand displacement amplification (SDA)-mediated hyperbranched rolling circle amplification (HRCA). The binding of target miRNA with the linear template initiates the bifunctional SDA reaction, generating two different kinds of triggers which can hybridize with the linear template to initiate new rounds of SDA reaction for the production of more and more triggers. In the meantime, the released two different kinds of triggers can function as the first and the second primers, respectively, to initiate the HRCA reaction whose products can be simply monitored by a standard fluorometer with SYBR Green I as the fluorescent indicator. The proposed method exhibits high sensitivity with a detection limit of as low as 1.8 × 10(-13) M and a large dynamic range of 5 orders of magnitude from 0.1 pM to 10 nM, and it can even discriminate the single-base difference among the miRNA family members. Moreover, this method can be used to analyze the total RNA samples from the human lung tissues and might be further applied for sensitive detection of various proteins, small molecules, and metal ions in combination with specific aptamers.

  2. DNAzyme Feedback Amplification: Relaying Molecular Recognition to Exponential DNA Amplification.

    Science.gov (United States)

    Liu, Meng; Yin, Qingxin; McConnell, Erin M; Chang, Yangyang; Brennan, John D; Li, Yingfu

    2018-03-26

    Technologies capable of linking DNA amplification to molecular recognition are very desirable for ultrasensitive biosensing applications. We have developed a simple but powerful isothermal DNA amplification method, termed DNAzyme feedback amplification (DFA), that is capable of relaying molecular recognition to exponential DNA amplification. The method incorporates both an RNA-cleaving DNAzyme (RCD) and rolling circle amplification (RCA) carried out by a special DNA polymerase using a circular DNA template. DFA begins with a stimulus-dependent RCA reaction, producing tandemly linked RCDs in long-chain DNA products. These RCDs cleave an RNA-containing DNA sequence to form additional primers that hybridize to the circular DNA molecule, giving rise to DNA assemblies that act as the new inputs for RCA. The RCA reaction and the cleavage event keep on feeding each other autonomously, resulting in exponential growth of repetitive DNA sequences that can be easily detected. This method can be used for the detection of both nucleic acid based targets and non-nucleic acid analytes. In this article, we discuss the conceptual framework of the feedback amplification approach, the essential features of this method as well as remaining challenges and possible solutions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Characterization of a human cell line stably over-expressing the candidate oncogene, dual specificity phosphatase 12.

    Directory of Open Access Journals (Sweden)

    Erica L Cain

    2011-04-01

    Full Text Available Analysis of chromosomal rearrangements within primary tumors has been influential in the identification of novel oncogenes. Identification of the "driver" gene(s within cancer-derived amplicons is, however, hampered by the fact that most amplicons contain many gene products. Amplification of 1q21-1q23 is strongly associated with liposarcomas and microarray-based comparative genomic hybridization narrowed down the likely candidate oncogenes to two: the activating transcription factor 6 (atf6 and the dual specificity phosphatase 12 (dusp12. While atf6 is an established transcriptional regulator of the unfolded protein response, the potential role of dusp12 in cancer remains uncharacterized.To evaluate the oncogenic potential of dusp12, we established stable cell lines that ectopically over-express dusp12 in isolation and determined whether this cell line acquired properties frequently associated with transformed cells. Here, we demonstrate that cells over-expressing dusp12 display increased cell motility and resistance to apoptosis. Additionally, over-expression of dusp12 promoted increased expression of the c-met proto-oncogene and the collagen and laminin receptor intergrin alpha 1 (itga1 which is implicated in metastasis.Collectively, these results suggest that dusp12 is oncologically relevant and exposes a potential association between dusp12 and established oncogenes that could be therapeutically targeted.

  4. [Colorimetric detection of HPV6 and HPV16 by loop mediated isothermal amplification].

    Science.gov (United States)

    Lu, Chun-bin; Luo, Le; Yang, Meng-jie; Nie, Kai; Wang, Miao; Ma, Xue-Jun

    2011-01-01

    A simple, rapid and sensitive colorimetric loop mediated isothermal amplification (LAMP) method was established to detect HPV6 and HPV 16 respectively. The method employed a set of four specially designed primers that recognized six distinct sequences of HPV6-E6 or HPV16-E7 for amplification of nucleic acid under isothermal conditions at 63 degrees C for one hour. The amplification process of LAMP was monitored by the addition of HNB (hydroxy naphthol blue) dye prior to amplification. A positive reaction was indicated by a color change from violet to sky blue and confirmed by real-time turbidimeter and agarose electrophoresis. Thirteen cervical swab samples having single infection with 13 different HPV genotypes were examined to evaluate the specificity. A serial dilution of a cloned plasmid containing HPV-E6 or HPV-E7 gene was examined to evaluate the sensitivity. The results showed that no cross-reaction with other HPV genotypes was observed. The colorimetric LAMP assay could achieve a sensitivity of 1000 copies, 10-20 times lower than that of real-time PCR. The assay was further evaluated with 62 clinical specimens and consistent results were obtained compared with the detection using Kai Pu HPV Genotyping Kit. We concluded that this colorimetric LAMP assay had potential usefulness for the rapid screening of the HPV6 or HPV16 infection in the laboratories and hospitals of provincial and municipal region in China.

  5. Detection of Enterovirus 71 gene from clinical specimens by reverse-transcription loop-mediated isothermal amplification

    Directory of Open Access Journals (Sweden)

    D Wang

    2014-01-01

    Full Text Available Purpose : The objective of this study was to develop a sensitive, specific and rapid approach to diagnose hand foot and mouth disease (HFMD for an early treatment by using loop-mediated isothermal amplification (LAMP technique. Materials and Methods : A reverse-transcription loop-mediated isothermal amplification (RT-LAMP for detecting EV71 virus was developed, the specificity and sensitivity of RT-LAMP was tested, and the clinical specimens was assayed by the RT-LAMP comparing with conventional reverse-transcription polymerase chain reaction (RT-PCR and real-time PCR. Results : A total of 116 clinical specimens from the suspected HFMD individual were detected with the RT-LAMP. The detection rate for EV71 was 56.89% by RT-LAMP, 41.38% by real-time PCR and 34.48% by RT-PCR. The minimum detection limit of RT-LAMP was 0.01 PFU, both of RT-PCR and real-time PCR was 0.1PFU. Non-cross-reactive amplification with other enteroviruses was detected in the survey reports. Conclusions : The effectiveness of RT-LAMP is higher than RT-PCR and real-time PCR. The protocol is easy to operate and time saving. It was not an expensive instrument, which was needed; it is an applicable method for rapid diagnosis of the disease, especially in resource-poor countries or in developing countries.

  6. Miniaturized isothermal nucleic acid amplification, a review.

    Science.gov (United States)

    Asiello, Peter J; Baeumner, Antje J

    2011-04-21

    Micro-Total Analysis Systems (µTAS) for use in on-site rapid detection of DNA or RNA are increasingly being developed. Here, amplification of the target sequence is key to increasing sensitivity, enabling single-cell and few-copy nucleic acid detection. The several advantages to miniaturizing amplification reactions and coupling them with sample preparation and detection on the same chip are well known and include fewer manual steps, preventing contamination, and significantly reducing the volume of expensive reagents. To-date, the majority of miniaturized systems for nucleic acid analysis have used the polymerase chain reaction (PCR) for amplification and those systems are covered in previous reviews. This review provides a thorough overview of miniaturized analysis systems using alternatives to PCR, specifically isothermal amplification reactions. With no need for thermal cycling, isothermal microsystems can be designed to be simple and low-energy consuming and therefore may outperform PCR in portable, battery-operated detection systems in the future. The main isothermal methods as miniaturized systems reviewed here include nucleic acid sequence-based amplification (NASBA), loop-mediated isothermal amplification (LAMP), helicase-dependent amplification (HDA), rolling circle amplification (RCA), and strand displacement amplification (SDA). Also, important design criteria for the miniaturized devices are discussed. Finally, the potential of miniaturization of some new isothermal methods such as the exponential amplification reaction (EXPAR), isothermal and chimeric primer-initiated amplification of nucleic acids (ICANs), signal-mediated amplification of RNA technology (SMART) and others is presented.

  7. Influence of Neuroblastoma Stage on Serum-Based Detection of MYCN Amplification

    Science.gov (United States)

    Combaret, Valerie; Hogarty, Michael D; London, Wendy B; McGrady, Patrick; Iacono, Isabelle; Brejon, Stephanie; Swerts, Katrien; Noguera, Rosa; Gross, Nicole; Rousseau, Raphael; Puisieux, Alain

    2010-01-01

    Background MYCN oncogene amplification has been defined as the most important prognostic factor for neuroblastoma, the most common solid extracranial neoplasm in children. High copy numbers are strongly associated with rapid tumor progression and poor outcome, independently of tumor stage or patient age, and this has become an important factor in treatment stratification. Procedure By Real Time Quantitative PCR analysis, we evaluated the clinical relevance of circulating MYCN DNA of 267 patients with locoregional or metastatic neuroblastoma in children less than 18 months of age. Results For patients in this age group with INSS stage 4 or 4S NB and stage 3 patients, serum-based determination of MYCN DNA sequences had good sensitivity (85%, 83% and 75% respectively) and high specificity (100%) when compared to direct tumor gene determination. In contrast, the approach showed low sensitivity patients with stage 1 and 2 disease. Conclusion Our results show that the sensitivity of the serum-based MYCN DNA sequence determination depends on the stage of the disease. However, this simple, reproducible assay may represent a reasonably sensitive and very specific tool to assess tumor MYCN status in cases with stage 3 and metastatic disease for whom a wait and see strategy is often recommended. PMID:19301388

  8. Oncogenes, radiation and cancer; Oncogenes, radiacion y cancer

    Energy Technology Data Exchange (ETDEWEB)

    Michelin, S C

    1999-12-31

    The discovery of the oncogenic virus and the analysis of its nucleic acid, together with the development of new biochemical technology have permitted the partial knowledge of the molecular mechanisms responsible for the cellular neoplastic transformation. This work, besides describing the discovery of the first oncogenic virus and the experiments to demonstrate the existence of the oncogenes, summarizes its activation mechanisms and its intervention in cellular metabolisms. Ionizing radiation is among the external agents that induce the neoplastic process. Its participation in the genesis of this process and the contribution of oncogenes to the cellular radioresistance are among the topics, which are referred to another topic that makes reference. At the same time as the advancement of theoretical knowledge, lines of investigation for the application of the new concepts in diagnosis, prognosis and therapeutical treatment, were developed. An example of this, is the study of the participation of the oncogen c-erbB-2 in human breast cancer and its implications on the anti tumoral therapy. (author) 87 refs., 7 figs., 3 tabs. [Espanol] El descubrimiento de los virus oncogenicos y el analisis de su acido nucleico, junto con el desarrollo de nuevas tecnicas bioquimicas, ha permitido conocer parcialmente los mecanismos moleculares responsables de la transformacion de una celula normal en neoplasica. En este trabajo, ademas de describir el descubrimiento de los primeros virus oncogenicos y las experiencias para demostrar la existencia de los oncogenes, se resumen sus mecanismos de activacion y su intervencion en el metabolismo celular. Entre los agentes expernos que inducen un proceso oncogenico, se encuentran las radiaciones ionizantes. Su participacion en la genesis de este proceso y la contribucion de los oncogenes a la radioresistencia de las celulas tumorales, es otro de los temas a que se hace referencia. Paralelamente al avance del conocimiento teorico, se

  9. Utility of chromogenic in situ hybridization (CISH) for detection of EGFR amplification in glioblastoma: comparison with fluorescence in situ hybridization (FISH).

    Science.gov (United States)

    Fischer, Ingeborg; de la Cruz, Clarissa; Rivera, Andreana L; Aldape, Kenneth

    2008-12-01

    In this study, we test the reliability of chromogenic in situ hybridization (CISH) for the detection of epidermal growth factor receptor (EGFR) gene amplification in glioblastoma. Earlier reports have described EGFR CISH in glioblastoma multiforme, but a comparison of CISH with a "gold standard" testing method, such as fluorescence in situ hybridization (FISH), has not been described. Therapies targeting the EGFR-signaling pathway might increase the importance of assessment of EGFR-amplification status. CISH is a potential alternative to FISH as a testing method. To test its reliability, EGFR-amplification status by CISH was assessed in 89 cases of glioblastoma and compared with FISH results, and correlated with the protein expression using immunohistochemistry (IHC) for EGFR. FISH was scored as being EGFR-amplified in 47/89 tumors, CISH as being amplified in 43/89 tumors. The CISH and FISH results were in agreement in 83/89 cases (93%). Four glioblastomas were scored as being amplified by FISH, but not by CISH; whereas amplification was detected in 2 tumors by CISH that were not amplified using FISH. Forty-eight of the 89 cases were positive for EGFR expression by IHC. EGFR amplification was highly correlated with protein expression by IHC, as 40/48 (83%) EGFR IHC-positive cases were found to be EGFR-amplified. The high concordance of CISH and FISH for the assessment of EGFR gene-amplification status indicates that CISH is a viable alternative to FISH for the detection of EGFR gene amplification in glioblastoma. Detectable EGFR expression by IHC can occur in the absence of gene amplification, but is uncommon.

  10. Detection of hepatitis A virus by the nucleic acid sequence-based amplification technique and comparison with reverse transcription-PCR.

    Science.gov (United States)

    Jean, J; Blais, B; Darveau, A; Fliss, I

    2001-12-01

    A nucleic acid sequence-based amplification (NASBA) technique for the detection of hepatitis A virus (HAV) in foods was developed and compared to the traditional reverse transcription (RT)-PCR technique. Oligonucleotide primers targeting the VP1 and VP2 genes encoding the major HAV capsid proteins were used for the amplification of viral RNA in an isothermal process resulting in the accumulation of RNA amplicons. Amplicons were detected by hybridization with a digoxigenin-labeled oligonucleotide probe in a dot blot assay format. Using the NASBA, as little as 0.4 ng of target RNA/ml was detected per comparison to 4 ng/ml for RT-PCR. When crude HAV viral lysate was used, a detection limit of 2 PFU (4 x 10(2) PFU/ml) was obtained with NASBA, compared to 50 PFU (1 x 10(4) PFU/ml) obtained with RT-PCR. No interference was encountered in the amplification of HAV RNA in the presence of excess nontarget RNA or DNA. The NASBA system successfully detected HAV recovered from experimentally inoculated samples of waste water, lettuce, and blueberries. Compared to RT-PCR and other amplification techniques, the NASBA system offers several advantages in terms of sensitivity, rapidity, and simplicity. This technique should be readily adaptable for detection of other RNA viruses in both foods and clinical samples.

  11. Clinical significance of fluorescence in situ hybridization for detection of hTERC gene amplification in cervical cancer and precancerous tissues cases

    Directory of Open Access Journals (Sweden)

    Shuang LIU

    2012-06-01

    Full Text Available Objective  To detect the human telomerase RNA gene (hTERC amplification in cervical lesions, and explore its clinical significance. Methods  The tissues of the cervical lesions were collected from 195 patients, including 33 of chronic cervicitis, 34 of CINⅠ, 37 of CIN Ⅱ-Ⅲ, 30 of cervical squamous cell carcinoma, and 61 of cervica1 adenocarcinoma, and abnormal hTERC was detected with amplification of fluorescence in situhybridization (FISH. The relationship between hTERC gene amplification and clinicopathological parameters was analyzed. Results  Among the 195 patients, the positive rate of hTERC gene amplification was 3.03% (1/33, 29.41% (10/34, 72.97% (27/37, 100% (30/30, 91.8% (56/61 in chronic cervicitis, CINⅠ, CIN Ⅱ-Ⅲ, cervical squamous cell carcinoma and cervica1 adenocarcinoma respectively, and the results showed that hTERC amplification rate was significantly higher in group CIN Ⅱ-Ⅲthan in group CINⅠ(P 0.05. Conclusion  Detection of gene amplification by FISH technology can be used as a means for accurate diagnosis and prediction of the histologically difficult-to-diagnose lesion and for risk assessment after treatment of cervical precancerous lesions.

  12. Twin target self-amplification-based DNA machine for highly sensitive detection of cancer-related gene.

    Science.gov (United States)

    Xu, Huo; Jiang, Yifan; Liu, Dengyou; Liu, Kai; Zhang, Yafeng; Yu, Suhong; Shen, Zhifa; Wu, Zai-Sheng

    2018-06-29

    The sensitive detection of cancer-related genes is of great significance for early diagnosis and treatment of human cancers, and previous isothermal amplification sensing systems were often based on the reuse of target DNA, the amplification of enzymatic products and the accumulation of reporting probes. However, no reporting probes are able to be transformed into target species and in turn initiate the signal of other probes. Herein we reported a simple, isothermal and highly sensitive homogeneous assay system for tumor suppressor p53 gene detection based on a new autonomous DNA machine, where the signaling probe, molecular beacon (MB), was able to execute the function similar to target DNA besides providing the common signal. In the presence of target p53 gene, the operation of DNA machine can be initiated, and cyclical nucleic acid strand-displacement polymerization (CNDP) and nicking/polymerization cyclical amplification (NPCA) occur, during which the MB was opened by target species and cleaved by restriction endonuclease. In turn, the cleaved fragments could activate the next signaling process as target DNA did. According to the functional similarity, the cleaved fragment was called twin target, and the corresponding fashion to amplify the signal was named twin target self-amplification. Utilizing this newly-proposed DNA machine, the target DNA could be detected down to 0.1 pM with a wide dynamic range (6 orders of magnitude) and single-base mismatched targets were discriminated, indicating a very high assay sensitivity and good specificity. In addition, the DNA machine was not only used to screen the p53 gene in complex biological matrix but also was capable of practically detecting genomic DNA p53 extracted from A549 cell line. This indicates that the proposed DNA machine holds the potential application in biomedical research and early clinical diagnosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Genomic amplification patterns of human telomerase RNA gene and C-MYC in liquid-based cytological specimens used for the detection of high-grade cervical intraepithelial neoplasia

    Directory of Open Access Journals (Sweden)

    Chen Shaomin

    2012-04-01

    Full Text Available Abstract Background The amplification of oncogenes initiated by high-risk human papillomavirus (HPV infection is an early event in cervical carcinogenesis and can be used for cervical lesion diagnosis. We measured the genomic amplification rates and the patterns of human telomerase RNA gene (TERC and C-MYC in the liquid-based cytological specimens to evaluate the diagnostic characteristics for the detection of high-grade cervical lesions. Methods Two hundred and forty-three residual cytological specimens were obtained from outpatients aged 25 to 64 years at Qilu Hospital, Shandong University. The specimens were evaluated by fluorescence in situ hybridization (FISH using chromosome probes to TERC (3q26 and C-MYC (8q24. All of the patients underwent colposcopic examination and histological evaluation. A Chi-square test was used for categorical data analysis. Results In the normal, cervical intraepithelial neoplasia grade 1 (CIN1, grade 2 (CIN2, grade 3 (CIN3 and squamous cervical cancer (SCC cases, the TERC positive rates were 9.2%, 17.2%, 76.2%, 100.0% and 100.0%, respectively; the C-MYC positive rates were 20.7%, 31.0%, 71.4%, 81.8% and 100.0%, respectively. The TERC and C-MYC positive rates were higher in the CIN2+ (CIN2, CIN3 and SCC cases than in the normal and CIN1 cases (p p p > 0.05. Conclusions The TERC test is highly sensitive and is therefore suitable for cervical cancer screening. The C-MYC test is not suitable for cancer screening because of its lower sensitivity. The amplification patterns of TERC become more diverse and complex as the severity of cervical diseases increases, whereas for C-MYC, the amplification patterns are similar between the normal/CIN1 and CIN2+ groups. Virtual slides The virtual slide(s for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1308004512669913.

  14. Predictive value of EGFR overexpression and gene amplification on icotinib efficacy in patients with advanced esophageal squamous cell carcinoma.

    NARCIS (Netherlands)

    Wang, X.; Niu, H.; Fan, Q.; Lu, P.; Ma, C.; Liu, W.; Liu, Y.; Li, W.; Hu, S.; Ling, Y.; Guo, L.; Ying, J.; Huang, J.

    2016-01-01

    This study aimed to search for a molecular marker for targeted epithelial growth factor receptor (EGFR) inhibitor Icotinib by analyzing protein expression and amplification of EGFR proto-oncogene in esophageal squamous cell carcinoma (ESCC) patients.Immunohistochemistry and fluorescence in situ

  15. HER2 amplification, overexpression and score criteria in esophageal adenocarcinoma

    Science.gov (United States)

    Hu, Yingchuan; Bandla, Santhoshi; Godfrey, Tony E.; Tan, Dongfeng; Luketich, James D.; Pennathur, Arjun; Qiu, Xing; Hicks, David G.; Peters, Jeffrey; Zhou, Zhongren

    2011-01-01

    The HER2 oncogene was recently reported to be amplified and overexpressed in esophageal adenocarcinoma. However, the relationship of HER2 amplification in esophageal adenocarcinoma with prognosis has not been well defined. The scoring systems for clinically evaluating HER2 in esophageal adenocarcinoma are not established. The aims of the study were to establish a HER2 scoring system and comprehensively investigate HER2 amplification and overexpression in esophageal adenocarcinoma and its precursor lesion. Using a tissue microarray, containing 116 cases of esophageal adenocarcinoma, 34 cases of BE, 18 cases of low grade dysplasia and 15 cases of high grade dysplasia, HER2 amplification and overexpression were analyzed by HercepTest and CISH methods. The amplification frequency in an independent series of 116 esophageal adenocarcinoma samples was also analyzed using Affymetrix SNP 6.0 microarrays. In our studies, we have found that HER2 amplification does not associate with poor prognosis in total 232 esophageal adenocarcinoma patients by CISH and high density microarrays. We further confirm the similar frequency of HER2 amplification by CISH (18.10%; 21/116) and SNP 6.0 microarrays (16.4%, 19/116) in esophageal adenocarcinoma. HER2 protein overexpression was observed in 12.1 % (14/116) of esophageal adenocarcinoma and 6.67% (1/15) of HGD. No HER2 amplification or overexpression was identified in BE or LGD. All HER2 protein overexpression cases showed HER2 gene amplification. Gene amplification was found to be more frequent by CISH than protein overexpression in esophageal adenocarcinoma (18.10% vs 12.9%). A modified two-step model for esophageal adenocarcinoma HER-2 testing is recommend for clinical esophageal adenocarcinoma HER-2 trial. PMID:21460800

  16. Detection of Enterovirus 71 gene from clinical specimens by reverse-transcription loop-mediated isothermal amplification

    OpenAIRE

    D Wang; X Wang; Y Geng; C An

    2014-01-01

    Purpose : The objective of this study was to develop a sensitive, specific and rapid approach to diagnose hand foot and mouth disease (HFMD) for an early treatment by using loop-mediated isothermal amplification (LAMP) technique. Materials and Methods : A reverse-transcription loop-mediated isothermal amplification (RT-LAMP) for detecting EV71 virus was developed, the specificity and sensitivity of RT-LAMP was tested, and the clinical specimens was assayed by the RT-LAMP comparing with conven...

  17. Loop-mediated isothermal amplification for rapid and convenient detection of Mycoplasma hyopneumoniae.

    Science.gov (United States)

    Li, Jiahe; Minion, F Chris; Petersen, Andrew C; Jiang, Fei; Yang, Sheng; Guo, Panpan; Li, Jinxiang; Wu, Wenxue

    2013-04-01

    Loop-mediated isothermal amplification (LAMP), a novel method of gene amplification, was employed in this study for detecting Mycoplasma hyopneumoniae in the respiratory tract or lungs of swine. The pathogen can be detected in LAMP reactions containing as few as 10 fg purified target DNA (10 copies of M. hyopneumoniae genome) within 30 min, which was comparable to real-time PCR. After 30-min reaction at 63 °C, the addition of a certain amount of dye (SYBR Green I and hydroxyl naphthol blue at a proper ratio) into the LAMP reaction system makes the results easily determined as positive or negative by visual inspection. In addition, the LAMP was able to distinguish between M. hyopneumoniae and other closely-related mycoplasma strains, indicating a high degree of specificity. The LAMP assay was more simple and cheap, since the reaction could be completed under isothermal conditions and less laboratorial infrastructure are required. And, it was proven reliable for M. hyopneumoniae diagnosis of nasal swab and lung samples from the field.

  18. Ultrasensitive quantitation of human papillomavirus type 16 E6 oncogene sequences by nested real time PCR

    Directory of Open Access Journals (Sweden)

    López-Revilla Rubén

    2010-05-01

    Full Text Available Abstract Background We have developed an ultrasensitive method based on conventional PCR preamplification followed by nested amplification through real time PCR (qPCR in the presence of the DNA intercalating agent EvaGreen. Results Amplification mixtures calibrated with a known number of pHV101 copies carrying a 645 base pair (bp-long insert of the human papillomavirus type 16 (HPV16 E6 oncogene were used to generate the E6-1 amplicon of 645 bp by conventional PCR and then the E6-2 amplicon of 237 bp by nested qPCR. Direct and nested qPCR mixtures for E6-2 amplification corresponding to 2.5 × 102-2.5 × 106 initial pHV101 copies had threshold cycle (Ct values in the ranges of 18.7-29.0 and 10.0-25.0, respectively. The Ct of qPCR mixtures prepared with 1/50 volumes of preamplified mixtures containing 50 ng of DNA of the SiHa cell line (derived from an invasive cervical cancer with one HPV16 genome per cell was 19.9. Thermal fluorescence extinction profiles of E6-2 amplicons generated from pHV101 and SiHa DNA were identical, with a peak at 85.5°C. Conclusions Our method based on conventional preamplification for 15 cycles increased 10,750 times the sensitivity of nested qPCR for the quantitation of the E6 viral oncogene and confirmed that the SiHa cell line contains one E6-HPV16 copy per cell.

  19. Toehold-mediated nonenzymatic amplification circuit on graphene oxide fluorescence switching platform for sensitive and homogeneous microRNA detection

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ru; Liao, Yuhui; Zhou, Xiaoming, E-mail: zhouxm@scnu.edu.cn; Xing, Da, E-mail: xingda@scnu.edu.cn

    2015-08-12

    A novel graphene oxide (GO) fluorescence switch-based homogenous system has been developed to solve two problems that are commonly encountered in conventional GO-based biosensors. First, with the assistance of toehold-mediated nonenzymatic amplification (TMNA), the sensitivity of this system greatly surpasses that of previously described GO-based biosensors, which are always limited to the nM range due to the lack of efficient signal amplification. Second, without enzymatic participation in amplification, the unreliability of detection resulting from nonspecific desorption of DNA probes on the GO surface by enzymatic protein can be avoided. Moreover, the interaction mechanism of the double-stranded TMNA products contains several single-stranded toeholds at two ends and GO has also been explored with combinations of atomic force microscopy imaging, zeta potential detection, and fluorescence assays. It has been shown that the hybrids can be anchored to the surface of GO through the end with more unpaired bases, and that the other end, which has weaker interaction with GO, can escape GO adsorption due to the robustness of the central dsDNA structures. We verified this GO fluorescence switch-based detection system by detecting microRNA 21, an overexpressed non-encoding gene in a variety of malignant cells. Rational design of the probes allowed the isothermal nonenzymatic reaction to achieve more than 100-fold amplification efficiency. The detection results showed that our strategy has a detection limit of 10 pM and a detection range of four orders of magnitude. - Highlights: • This paper explored the interaction mechanism of TMNA products with GO surface. • This homogeneous and isothermal system permits a detection limit of 10 pM for microRNA. • This nonenzymatic strategy can avoid nonspecific desorption caused by enzyme protein. • The interaction model can be used to explore the application ability of nonenzymatic circuit.

  20. Development of Reverse Transcription Thermostable Helicase-Dependent DNA Amplification for the Detection of Tomato Spotted Wilt Virus.

    Science.gov (United States)

    Wu, Xinghai; Chen, Chanfa; Xiao, Xizhi; Deng, Ming Jun

    2016-11-01

    A protocol for the reverse transcription-helicase-dependent amplification (RT-HDA) of isothermal DNA was developed for the detection of tomato spotted wilt virus (TSWV). Specific primers, which were based on the highly conserved region of the N gene sequence in TSWV, were used for the amplification of virus's RNA. The LOD of RT-HDA, reverse transcriptase-loop-mediated isothermal amplification (RT-LAMP), and reverse transcriptase-polymerase chain reaction (RT-PCR) assays were conducted using 10-fold serial dilution of RNA eluates. TSWV sensitivity in RT-HDA and RT-LAMP was 4 pg RNA compared with 40 pg RNA in RT-PCR. The specificity of RT-HDA for TSWV was high, showing no cross-reactivity with other tomato and Tospovirus viruses including cucumber mosaic virus (CMV), tomato black ring virus (TBRV), tomato mosaic virus (ToMV), or impatiens necrotic spot virus (INSV). The RT-HDA method is effective for the detection of TSWV in plant samples and is a potential tool for early and rapid detection of TSWV.

  1. Rapid amplification/detection of nucleic acid targets utilizing a HDA/thin film biosensor.

    Science.gov (United States)

    Jenison, Robert; Jaeckel, Heidi; Klonoski, Joshua; Latorra, David; Wiens, Jacinta

    2014-08-07

    Thin film biosensors exploit a flat, optically coated silicon-based surface whereupon formation of nucleic acid hybrids are enzymatically transduced in a molecular thin film that can be detected by the unaided human eye under white light. While the limit of sensitivity for detection of nucleic acid targets is at sub-attomole levels (60 000 copies) many clinical specimens containing bacterial pathogens have much lower levels of analyte present. Herein, we describe a platform, termed HDA/thin film biosensor, which performs helicase-dependant nucleic acid amplification on a thin film biosensor surface to improve the limit of sensitivity to 10 copies of the mecA gene present in methicillin-resistant strains of Staphylococcus. As double-stranded DNA is unwound by helicase it was either bound by solution-phase DNA primers to be copied by DNA polymerase or hybridized to surface immobilized probe on the thin film biosensor surface to be detected. Herein, we show that amplification reactions on the thin film biosensor are equivalent to in standard thin wall tubes, with detection at the limit of sensitivity of the assay occurring after 30 minutes of incubation time. Further we validate the approach by detecting the presence of the mecA gene in methicillin-resistant Staphylococcus aureus (MRSA) from positive blood culture aliquots with high specificity (signal/noise ratio of 105).

  2. Detection of BCR-ABL Fusion mRNA Using Reverse Transcriptase Loop-mediated Isothermal Amplification

    Energy Technology Data Exchange (ETDEWEB)

    Dugan, L C; Hall, S; Kohlgruber, A; Urbin, S; Torres, C; Wilson, P

    2011-12-08

    RT-PCR is commonly used for the detection of Bcr-Abl fusion transcripts in patients diagnosed with chronic myelogenous leukemia, CML. Two fusion transcripts predominate in CML, Br-Abl e13a2 and e14a2. They have developed reverse transcriptase isothermal loop-mediated amplification (RT-LAMP) assays to detect these two fusion transcripts along with the normal Bcr transcript.

  3. Chemically induced DNA hypomethylation in breast carcinoma cells detected by the amplification of intermethylated sites

    International Nuclear Information System (INIS)

    Sadikovic, Bekim; Haines, Thomas R; Butcher, Darci T; Rodenhiser, David I

    2004-01-01

    Compromised patterns of gene expression result in genomic instability, altered patterns of gene expression and tumour formation. Specifically, aberrant DNA hypermethylation in gene promoter regions leads to gene silencing, whereas global hypomethylation events can result in chromosomal instability and oncogene activation. Potential links exist between environmental agents and DNA methylation, but the destabilizing effects of environmental exposures on the DNA methylation machinery are not understood within the context of breast cancer aetiology. We assessed genome-wide changes in methylation patterns using a unique methylation profiling technique called amplification of intermethylated sites (AIMS). This method generates easily readable fingerprints that represent the investigated cell line's methylation profile, based on the differential cleavage of DNA with methylation-specific isoschisomeric restriction endonucleases. We validated this approach by demonstrating both unique and reoccurring sites of genomic hypomethylation in four breast carcinoma cell lines treated with the cytosine analogue 5-azacytidine. Comparison of treated with control samples revealed individual bands that exhibited methylation changes, and these bands were excized and cloned, and the precise genomic location individually identified. In most cases, these regions of hypomethylation coincided with susceptible target regions previously associated with chromosome breakage, rearrangement and gene amplification. Similarly, we observed that acute benzopyrene exposure is associated with altered methylation patterns in these cell lines. These results reinforce the link between environmental exposures, DNA methylation and breast cancer, and support a role for AIMS as a rapid, affordable screening method to identify environmentally induced DNA methylation changes that occur in tumourigenesis

  4. Detection of foot-and-mouth disease virus rna by reverse transcription loop-mediated isothermal amplification

    Directory of Open Access Journals (Sweden)

    Chen Hao-tai

    2011-11-01

    Full Text Available Abstract A reverse transcription loop-mediated isothermal amplification (RT-LAMP assay was developed for foot-and-mouth disease virus (FMDV RNA. The amplification was able to finish in 45 min under isothermal condition at 64°C by employing a set of four primers targeting FMDV 2B. The assay showed higher sensitivity than RT-PCR. No cross reactivity was observed from other RNA viruses including classical swine fever virus, swine vesicular disease, porcine reproductive and respiratory syndrome virus, Japanese encephalitis virus. Furthermore, the assay correctly detected 84 FMDV positive samples but not 65 FMDV negative specimens. The result indicated the potential usefulness of the technique as a simple and rapid procedure for the detection of FMDV infection.

  5. DNA Amplification by Breakage/Fusion/Bridge Cycles Initiated by Spontaneous Telomere Loss in a Human Cancer Cell Line

    Directory of Open Access Journals (Sweden)

    Anthony W.l. Lo

    2002-01-01

    Full Text Available The development of genomic instability is an important step in generatingthe multiple genetic changes required for cancer. One consequence of genomic instability is the overexpression of oncogenes due to gene amplification. One mechanism for gene amplification is the breakagelfusionlbridge (B/F/Bcyclethatinvolvesthe repeated fusion and breakage of chromosomes following the loss of a telomere. B/F/B cycles have been associated with low-copy gene amplification in human cancer cells, and have been proposed to be an initiating event in high-copy gene amplification. We have found that spontaneous telomere loss on a marker chromosome 16 in a human tumor cell line results in sister chromatid fusion and prolonged periods of chromosome instability. The high rate of anaphase bridges involving chromosome 16 demonstrates that this instability results from B/F/B cycles. The amplification of subtelomeric DNA on the marker chromosome provides conclusive evidence that B/F/B cycles initiated by spontaneous telomere loss are a mechanism for gene amplification in human cancer cells.

  6. Amplification of the Ect2 proto-oncogene and over-expression of Ect2 mRNA and protein in nickel compound and methylcholanthrene-transformed 10T1/2 mouse fibroblast cell lines

    International Nuclear Information System (INIS)

    Clemens, Farrah; Verma, Rini; Ramnath, Jamuna; Landolph, Joseph R.

    2005-01-01

    Occupational exposure of humans to mixtures of insoluble and soluble nickel (Ni) compounds correlates with increased incidences of lung, sinus, and pharyngeal tumors. Specific insoluble Ni compounds are carcinogenic to animals by inhalation and induce morphological and neoplastic transformation of cultured rodent cells. Our objectives were to (1) understand mechanisms of nickel ion-induced cell transformation, hence carcinogenesis and (2) develop biomarkers of nickel ion exposure and nickel ion-induced cell transformation. We isolated mRNAs from green nickel oxide (NiO), crystalline nickel monosulfide (NiS), and 3-methylcholanthrene (MCA) transformed C3H/10T1/2 Cl 8 cell lines, and determined by mRNA differential display that nine mRNA fragments were differentially expressed between Ni transformed and non-transformed 10T1/2 cell lines. Fragment R2-5 was expressed at higher steady-state levels in the transformed cell lines. R2-5 had 100% sequence identity to part of the coding region of Ect2, a mouse proto-oncogene encoding a GDP-GTP exchange factor. The 3.9-kb Ect2 transcript was expressed at 1.6- to 3.6-fold higher steady-state levels in four Ni transformed, and in two MCA-transformed, cell lines. Ect2 protein was expressed at 3.0- to 4.5-fold higher steady-state levels in Ni-transformed and in MCA-transformed cell lines. The Ect2 gene was amplified by 3.5- to 10-fold in Ni transformed, and by 2.5- to 3-fold in MCA transformed cell lines. Binding of nickel ions to enzymes of DNA synthesis likely caused amplification of the Ect2 gene. Ect2 gene amplification and over-expression of Ect2 mRNA and protein can cause microtubule disassembly and cytokinesis, contributing to induction and maintenance of morphological, anchorage-independent, and neoplastic transformation of these cell lines. Over-expression of Ect2 protein is a useful biomarker to detect exposure to nickel compounds and nickel ion-induced morphological and neoplastic cell transformation

  7. A new ultrasonic signal amplification method for detection of bacteria

    Science.gov (United States)

    Kant Shukla, Shiva; Resa López, Pablo; Sierra Sánchez, Carlos; Urréjola, José; Segura, Luis Elvira

    2012-10-01

    A new method is presented that increases the sensitivity of ultrasound-based techniques for detection of bacteria. The technique was developed for the detection of catalase-positive microorganisms. It uses a bubble trapping medium containing hydrogen peroxide that is mixed with the sample for microbiological evaluation. The enzyme catalase is present in catalase-positive bacteria, which induces a rapid hydrolysis of hydrogen peroxide, forming bubbles which remain in the medium. This reaction results in the amplification of the mechanical changes that the microorganisms produce in the medium. The effect can be detected by means of ultrasonic wave amplitude continuous measurement since the bubbles increase the ultrasonic attenuation significantly. It is shown that microorganism concentrations of the order of 105 cells ml-1 can be detected using this method. This allows an improvement of three orders of magnitude in the ultrasonic detection threshold of microorganisms in conventional culture media, and is competitive with modern rapid microbiological methods. It can also be used for the characterization of the enzymatic activity.

  8. A new ultrasonic signal amplification method for detection of bacteria

    International Nuclear Information System (INIS)

    Shukla, Shiva Kant; López, Pablo Resa; Sánchez, Carlos Sierra; Segura, Luis Elvira; Urréjola, José

    2012-01-01

    A new method is presented that increases the sensitivity of ultrasound-based techniques for detection of bacteria. The technique was developed for the detection of catalase-positive microorganisms. It uses a bubble trapping medium containing hydrogen peroxide that is mixed with the sample for microbiological evaluation. The enzyme catalase is present in catalase-positive bacteria, which induces a rapid hydrolysis of hydrogen peroxide, forming bubbles which remain in the medium. This reaction results in the amplification of the mechanical changes that the microorganisms produce in the medium. The effect can be detected by means of ultrasonic wave amplitude continuous measurement since the bubbles increase the ultrasonic attenuation significantly. It is shown that microorganism concentrations of the order of 10 5 cells ml −1 can be detected using this method. This allows an improvement of three orders of magnitude in the ultrasonic detection threshold of microorganisms in conventional culture media, and is competitive with modern rapid microbiological methods. It can also be used for the characterization of the enzymatic activity. (paper)

  9. Improved Method for Direct Detection of Environmental Microorganisms Using an Amplification of 16S rDNA Region

    Science.gov (United States)

    Tsujimura, M.; Akutsu, J.; Zhang, Z.; Sasaki, M.; Tajima, H.; Kawarabayasi, Y.

    2004-12-01

    The thermostable proteins or enzymes were expected to be capable to be utilized in many areas of industries. Many thermophilic microorganisms, which possess the thermostable proteins or enzymes, were identified from the extreme environment. However, many unidentified and uncultivable microorganisms are still remaining in the environment on the earth. It is generally said that the cultivable microorganisms are less than 1% of entire microorganisms living in the earth, remaining over 99% are still uncultivable. As an approach to the uncultivable microorganisms, the PCR amplification of 16S rDNA region using primer sets designed from the conserved region has been generally utilized for detection and community analysis of microorganism in the environment. However, the facts, that PCR amplification introduces the mutation in the amplified DNA fragment and efficiency of PCR amplification is depend on the sequences of primer sets, indicated that the improving of PCR analysis was necessary for more correct detection of microorganisms. As the result of evaluation for the quality of DNA polymerases, sequences of primers used for amplification and conditions of PCR amplification, the DNA polymerase, the primer set and the conditions for amplification, which did not amplify the DNA fragment from the DNA contaminated within the DNA polymerase itself, were successfully selected. Also the rate of mutation in the DNA fragment amplified was evaluated using this conditions and the genomic DNA from cultivable microbes as a template. The result indicated the rate of mutation introduced by PCR was approximately 0.1% to 0.125%. The improved method using these conditions and error rate calculated was applied for the analysis of microorganisms in the geothermal environment. The result indicated that four kinds of dominant microorganisms, including both of bacteria and archaea, were alive within soil in the hot spring in Tohoku Area. We would like to apply this improved method to detection

  10. Rapid Simultaneous Amplification and Detection of the MBR/JH Chromosomal Translocation by Fluorescence Melting Curve Analysis

    Science.gov (United States)

    Bohling, Sandra D.; King, Thomas C.; Wittwer, Carl T.; Elenitoba-Johnson, Kojo S. J.

    1999-01-01

    Polymerase chain reaction (PCR) amplification and product analysis for the detection of chromosomal translocations, such as the t(14;18), has traditionally been a two-step process. PCR product detection has generally entailed gel electrophoresis and/or hybridization or sequencing for confirmation of assay specificity. Using a microvolume fluorimeter integrated with a thermal cycler and a PCR-compatible double-stranded DNA (dsDNA) binding fluorescent dye (SYBR Green I), we investigated the feasibility of simultaneous thermal amplification and detection of MBR/JH translocation products by fluorescence melting curve analysis. We analyzed DNA from 30 cases of lymphoproliferative disorders comprising 19 cases of previously documented MBR/JH-positive follicle center lymphoma and 11 reactive lymphadenopathies. The samples were coded and analyzed blindly for the presence of MBR/JH translocations by fluorescence melting curve analysis. We also performed dilutional assays using the MBR/JH-positive cell line SUDHL-6. Multiplex PCR for MBR/JH and β-globin was used to simultaneously assess sample adequacy. All (100%) of the 19 cases previously determined to be MBR/JH positive by conventional PCR analysis showed a characteristic sharp decrease in fluorescence at ∼90°C by melting curve analysis after amplification. Fluorescence melting peaks obtained by plotting the negative derivative of fluorescence over temperature (−dF/dT) versus temperature (T) showed melting temperatures (Tm) at 88.85 ± 1.15°C. In addition, multiplex assays using both MBR/JH and β-globin primers yielded easily distinguishable fluorescence melting peaks at ∼90°C and 81.2°C, respectively. Dilutional assays revealed that fluorescence melting curve analysis was more sensitive than conventional PCR and agarose gel electrophoresis with ultraviolet transillumination by as much as 100-fold. Simultaneous amplification and fluorescence melting curve analysis is a simple, reliable, and sensitive method

  11. Application of a molecular beacon based real-time isothermal amplification (MBRTIA) technology for simultaneous detection of Bacillus cereus and Staphylococcus aureus.

    Science.gov (United States)

    Mandappa, I M; Joglekar, Prasanna; Manonmani, H K

    2015-07-01

    A multiplex real-time isothermal amplification assay was developed using molecular beacons for the detection of Bacillus cereus and Staphylococcus aureus by targeting four important virulence genes. A correlation between targeting highly accessible DNA sequences and isothermal amplification based molecular beacon efficiency and sensitivity was demonstrated using phi(Φ)29 DNA polymerase at a constant isothermal temperature of 30 °C. It was very selective and consistently detected down to 10(1) copies of DNA. The specificity and sensitivity of this assay, when tested with pure culture were high, surpassing those of currently used PCR assays for the detection of these organisms. The molecular beacon based real-time isothermal amplification (MBRTIA) assay could be carried out entirely in 96 well plates or well strips, enabling a rapid and high-throughput detection of food borne pathogens.

  12. Rapid detection of Streptococcus uberis in raw milk by loop-mediated isothermal amplification

    NARCIS (Netherlands)

    Cornelissen, J.B.W.J.; Greeff, De A.; Heuvelink, A.E.; Swarts, M.; Smith, H.E.; Wal, Van der F.J.

    2016-01-01

    A loop-mediated isothermal amplification (LAMP) method to detect Streptococcus uberis in raw milk was developed and evaluated. Three genes (sodA, pauA, cpn60) were assessed for their suitability as targets in LAMP. The analytical sensitivity was 120, 120, and 12 fg per assay for the sodA, pauA,

  13. Enzyme-free and label-free ultrasensitive electrochemical detection of DNA and adenosine triphosphate by dendritic DNA concatamer-based signal amplification.

    Science.gov (United States)

    Liu, Shufeng; Lin, Ying; Liu, Tao; Cheng, Chuanbin; Wei, Wenji; Wang, Li; Li, Feng

    2014-06-15

    Hybridization chain reaction (HCR) strategy has been well developed for the fabrication of various biosensing platforms for signal amplification. Herein, a novel enzyme-free and label-free ultrasensitive electrochemical DNA biosensing platform for the detection of target DNA and adenosine triphosphate (ATP) was firstly proposed, in which three auxiliary DNA probes were ingeniously designed to construct the dendritic DNA concatamer via HCR strategy and used as hexaammineruthenium(III) chloride (RuHex) carrier for signal amplification. With the developed dendritic DNA concatamer-based signal amplification strategy, the DNA biosensor could achieve an ultrasensitive electrochemical detection of DNA and ATP with a superior detection limit as low as 5 aM and 20 fM, respectively, and also demonstrate a high selectivity for DNA and ATP detection. The currently proposed dendritic DNA concatamer opens a promising direction to construct ultrasensitive DNA biosensing platform for biomolecular detection in bioanalysis and clinical biomedicine, which offers the distinct advantages of simplicity and cost efficiency owing to no need of any kind of enzyme, chemical modification or labeling. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Human minisatellite alleles detectable only after PCR amplification.

    Science.gov (United States)

    Armour, J A; Crosier, M; Jeffreys, A J

    1992-01-01

    We present evidence that a proportion of alleles at two human minisatellite loci is undetected by standard Southern blot hybridization. In each case the missing allele(s) can be identified after PCR amplification and correspond to tandem arrays too short to detect by hybridization. At one locus, there is only one undetected allele (population frequency 0.3), which contains just three repeat units. At the second locus, there are at least five undetected alleles (total population frequency 0.9) containing 60-120 repeats; they are not detected because these tandem repeats give very poor signals when used as a probe in standard Southern blot hybridization, and also cross-hybridize with other sequences in the genome. Under these circumstances only signals from the longest tandemly repeated alleles are detectable above the nonspecific background. The structures of these loci have been compared in human and primate DNA, and at one locus the short human allele containing three repeat units is shown to be an intermediate state in the expansion of a monomeric precursor allele in primates to high copy number in the longer human arrays. We discuss the implications of such loci for studies of human populations, minisatellite isolation by cloning, and the evolution of highly variable tandem arrays.

  15. Oncogene mutational profile in nasopharyngeal carcinoma

    Directory of Open Access Journals (Sweden)

    Zhang ZC

    2014-03-01

    Full Text Available Zi-Chen Zhang,1,* Sha Fu,1,* Fang Wang,1 Hai-Yun Wang,1 Yi-Xin Zeng,2 Jian-Yong Shao11Department of Molecular Diagnostics, 2Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, People's Republic of China *These authors contributed equally to this work Abstract: Nasopharyngeal carcinoma (NPC is a common tumor in Southern China, but the oncogene mutational status of NPC patients has not been clarified. Using time-of-flight mass spectrometry, 238 mutation hotspots in 19 oncogenes were examined in 123 NPC patients. The relationships between mutational status and clinical data were assessed with a χ2 or Fisher's exact test. Survival analysis was performed using the Kaplan–Meier method with the log-rank test. In 123 patients, 21 (17.1% NPC tumors were positive for mutations in eight oncogenes: six patients had PIK3CA mutations (4.9%, five NRAS mutations (4.1%, four KIT mutations (3.3%, two PDGFRA mutations (1.6%, two ABL mutations (1.6%, and one with simultaneous mutations in HRAS, EGFR, and BRAF (1%. Patients with mutations were more likely to relapse or develop metastasis than those with wild-type alleles (P=0.019. No differences or correlations were found in other clinical characteristics or in patient survival. No mutations were detected in oncogenes AKT1, AKT2, CDK, ERBB2, FGFR1, FGFR3, FLT3, JAK2, KRAS, MET, and RET. These results demonstrate an association between NPC and mutations in NRAS, KIT, PIK3CA, PDGFRA, and ABL, which are associated with patient relapse and metastasis. Keywords: NPC, oncogene, mutation

  16. Visual Detection of Potato leafroll virus by One-step Reverse Transcription Loop-Mediated Isothermal Amplification of DNA with Hydroxynaphthol Blue Dye

    NARCIS (Netherlands)

    Ahmadi, S.; Almasi, A.M.; Fatehi, F.; Struik, P.C.; Moradi, A.

    2013-01-01

    Loop-mediated isothermal amplification (LAMP) assay is a novel technique for amplifying DNA under constant temperature, with high specificity, sensitivity, rapidity and efficiency. We applied reverse transcription loop-mediated isothermal amplification (RT-LAMP) to visually detect Potato leafroll

  17. Rapid and Sensitive Isothermal Detection of Nucleic-acid Sequence by Multiple Cross Displacement Amplification.

    Science.gov (United States)

    Wang, Yi; Wang, Yan; Ma, Ai-Jing; Li, Dong-Xun; Luo, Li-Juan; Liu, Dong-Xin; Jin, Dong; Liu, Kai; Ye, Chang-Yun

    2015-07-08

    We have devised a novel amplification strategy based on isothermal strand-displacement polymerization reaction, which was termed multiple cross displacement amplification (MCDA). The approach employed a set of ten specially designed primers spanning ten distinct regions of target sequence and was preceded at a constant temperature (61-65 °C). At the assay temperature, the double-stranded DNAs were at dynamic reaction environment of primer-template hybrid, thus the high concentration of primers annealed to the template strands without a denaturing step to initiate the synthesis. For the subsequent isothermal amplification step, a series of primer binding and extension events yielded several single-stranded DNAs and single-stranded single stem-loop DNA structures. Then, these DNA products enabled the strand-displacement reaction to enter into the exponential amplification. Three mainstream methods, including colorimetric indicators, agarose gel electrophoresis and real-time turbidity, were selected for monitoring the MCDA reaction. Moreover, the practical application of the MCDA assay was successfully evaluated by detecting the target pathogen nucleic acid in pork samples, which offered advantages on quick results, modest equipment requirements, easiness in operation, and high specificity and sensitivity. Here we expounded the basic MCDA mechanism and also provided details on an alternative (Single-MCDA assay, S-MCDA) to MCDA technique.

  18. Detection of Colorectal Cancer by a Quantitative Fluorescence Determination of DNA Amplification in Stool

    Directory of Open Access Journals (Sweden)

    Daniele Calistri

    2004-09-01

    Full Text Available DNA amplification of exfoliated cells in stool repre sents an inexpensive and rapid test, but has only 50% to 60% sensitivity. A new quantitative method, calle( fluorescence long DNA, was developed and validate( in our laboratory on stool obtained from 86 patient., with primary colorectal cancer and from 62 health individuals. It consists of the amplification of stoo DNA with fluorescence primers and the quantification of the amplification using a standard curve. Results are arbitrarily expressed in nanograms. The potential of thi new method compared to the conventional approact was analyzed in a subgroup of 94 individuals (51 patients and 38 healthy volunteers. In the presen series, DNA amplification analysis showed a specific ity of 97% and a sensitivity of only 50%. Conversely fluorescence DNA evaluation, using the best cutoff o 25 ng, showed a sensitivity of about 76% and a spec ificity of 93%. Similar sensitivity was observed regard less of Dukes stage, tumor location, and size, thu., also permitting the detection of early-stage tumors The present study seems to indicate that quantitative fluorescence DNA determination in stool successfully identifies colorectal cancer patients with a sensitivity comparable, if not superior, to that of multiple gene analysis but at a lower cost and in a shorter time.

  19. An aptasensor for staphylococcus aureus based on nicking enzyme amplification reaction and rolling circle amplification.

    Science.gov (United States)

    Xu, Jingguo; Guo, Jia; Maina, Sarah Wanjiku; Yang, Yumeng; Hu, Yimin; Li, Xuanxuan; Qiu, Jiarong; Xin, Zhihong

    2018-05-15

    An ultra-sensitive aptamer-based biosensor for the detection of staphylococcus aureus was established by adopting the nicking enzyme amplification reaction (NEAR) and the rolling circle amplification (RCA) technologies. Aptamer-probe (AP), containing an aptamer and a probe sequence, was developed to act as the recognition unit of the biosensor, which was specifically bound to S. aureus. The probe was released from AP and initiated into the subsequent DNA amplification reactions where S. aureus was present, converting the detection of S. aureus to the investigation of probe oligonucleotide. The RCA amplification products contained a G-quadruplex motif and formed a three dimensional structure in presence of hemin. The G4/hemin complex showed horseradish peroxidase (HRP)-mimic activity and catalyzed the chemiluminescence reaction of luminol mediated by H 2 O 2 . The results showed that the established biosensor could detect S. aureus specifically with a good linear correlation at 5-10 4  CFU/mL. The signal values based on NEAR-RCA two-step cycle were boosted acutely, much higher than that relied on one-cycle magnification. The limit of detection (LoD) was determined to be as low as 5 CFU/mL. The established aptasensor exhibited a good discrimination of living against dead S. aureus, and can be applied to detect S. aureus in the food industry. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Detection of Bar Transgenic Sugarcane with a Rapid and Visual Loop-Mediated Isothermal Amplification Assay.

    Science.gov (United States)

    Zhou, Dinggang; Wang, Chunfeng; Li, Zhu; Chen, Yun; Gao, Shiwu; Guo, Jinlong; Lu, Wenying; Su, Yachun; Xu, Liping; Que, Youxiong

    2016-01-01

    Genetic engineering offers an attractive alternative in sugarcane breeding for increasing cane and sugar yields as well as disease and insect resistance. Bar transgenic sugarcane employing the herbicide tolerance is a useful agronomical trait in weed control. In this study, a loop-mediated isothermal amplification (LAMP) assay for rapid detection of the bar gene in transgenic sugarcane has been developed and evaluated. A set of six primers was designed for LAMP-based amplification of the bar gene. The LAMP reaction conditions were optimized as follows: 5.25 mM of Mg(2+), 6:1 ratio of inner vs. outer primer, and 6.0 U of Bst DNA polymerase in a reaction volume of 25.0 μL. The detection limit of the recombinant plasmid 1Ac0229 was as low as 10 copies in the developed LAMP, which was 10-fold higher sensitive than that of conventional PCR. In 100 putative transgenic lines, the bar gene was detected in 100/100 cases (100%) by LAMP and 97/100 cases (97%) by conventional PCR, respectively. In conclusion, the developed LAMP assay is visual, rapid, sensitive, reliable, and cost-effective for detection of the bar specific transgenic sugarcane.

  1. Detection of bar transgenic sugarcane with a rapid and visual loop-mediated isothermal amplification assay

    Directory of Open Access Journals (Sweden)

    Dinggang eZhou

    2016-03-01

    Full Text Available Genetic engineering offers an attractive alternative in sugarcane breeding for increasing cane and sugar yields as well as disease and insect resistance. Bar transgenic sugarcane employing the herbicide tolerance is a useful agronomical trait in weed control. In this study, a loop-mediated isothermal amplification (LAMP assay for rapid detection of the bar gene in transgenic sugarcane has been developed and evaluated. A set of six primers was designed for LAMP-based amplification of the bar gene. The LAMP reaction conditions were optimized as follows: 5.25 mM of Mg2+, 6:1 ratio of inner vs outer primer, and 6.0 U of Bst DNA polymerase in a reaction volume of 25.0 μL. The detection limit of the recombinant plasmid 1Ac0229 was as low as 10 copies in the developed LAMP, which was ten-fold higher sensitive than that of conventional PCR. In 100 putative transgenic lines, the bar gene was detected in 100/100 cases (100% by LAMP and 97/100 cases (97% by conventional PCR, respectively. In conclusion, the developed LAMP assay is visual, rapid, sensitive, reliable and cost-effective for detection of the bar specific transgenic sugarcane.

  2. GMO detection in food and feed through screening by visual loop-mediated isothermal amplification assays.

    Science.gov (United States)

    Wang, Cong; Li, Rong; Quan, Sheng; Shen, Ping; Zhang, Dabing; Shi, Jianxin; Yang, Litao

    2015-06-01

    Isothermal DNA/RNA amplification techniques are the primary methodology for developing on-spot rapid nucleic acid amplification assays, and the loop-mediated isothermal amplification (LAMP) technique has been developed and applied in the detection of foodborne pathogens, plant/animal viruses, and genetically modified (GM) food/feed contents. In this study, one set of LAMP assays targeting on eight frequently used universal elements, marker genes, and exogenous target genes, such as CaMV35S promoter, FMV35S promoter, NOS, bar, cry1Ac, CP4 epsps, pat, and NptII, were developed for visual screening of GM contents in plant-derived food samples with high efficiency and accuracy. For these eight LAMP assays, their specificity was evaluated by testing commercial GM plant events and their limits of detection were also determined, which are 10 haploid genome equivalents (HGE) for FMV35S promoter, cry1Ac, and pat assays, as well as five HGE for CaMV35S promoter, bar, NOS terminator, CP4 epsps, and NptII assays. The screening applicability of these LAMP assays was further validated successfully using practical canola, soybean, and maize samples. The results suggested that the established visual LAMP assays are applicable and cost-effective for GM screening in plant-derived food samples.

  3. Multiple fractions of gamma rays do not induce overexpression of c-myc or c-Ki-ras oncogenes in human cervical carcinoma cells

    International Nuclear Information System (INIS)

    Osmak, M.; Soric, J.; Matulic, M.

    1993-01-01

    Multiple fractions of gamma rays (0.5 Gy daily, 30 fractions) had previously been found to change the sensitivity of human cervical carcinoma HeLa cells to anticancer drugs. Preirradiated cells became resistant to cisplatin, methotrexate and vincristine but retained the same sensitivity to gamma rays and ultraviolet light. Some mechanisms involved in the resistance of preirradiated cells to cisplatin and vincristine were determined, i.e. the increased levels of metallothioneins and increased expression of plasma membrane P glycoprotein. As recent reports indicated that the resistance to cisplatin and ionizing radiation may involve the expression of oncogenes, the problem was studied whether multiple fractions of gamma rays can change the expression of c-myc and c-Ki-ras oncogenes in HeLa cells and whether there is a correlation between the expression of these oncogenes and the sensitivity of preirradiated cells to cisplatin and gamma rays. The expression of c-myc and c-Ki-ras oncogenes was examined using the DNA dot blot, the RNA dot blot and Northern blot analysis. The results show that preirradiation induced neither amplification nor elevated expression of c-myc and c-Ki-ras oncogenes. Furthermore, there is no correlation between the expression of c-myc and c-Ki-ras oncogenes and the acquired resistance to cisplatin. (author) 3 figs., 32 refs

  4. Copy number and loss of heterozygosity detected by SNP array of formalin-fixed tissues using whole-genome amplification.

    Directory of Open Access Journals (Sweden)

    Angela Stokes

    Full Text Available The requirement for large amounts of good quality DNA for whole-genome applications prohibits their use for small, laser capture micro-dissected (LCM, and/or rare clinical samples, which are also often formalin-fixed and paraffin-embedded (FFPE. Whole-genome amplification of DNA from these samples could, potentially, overcome these limitations. However, little is known about the artefacts introduced by amplification of FFPE-derived DNA with regard to genotyping, and subsequent copy number and loss of heterozygosity (LOH analyses. Using a ligation adaptor amplification method, we present data from a total of 22 Affymetrix SNP 6.0 experiments, using matched paired amplified and non-amplified DNA from 10 LCM FFPE normal and dysplastic oral epithelial tissues, and an internal method control. An average of 76.5% of SNPs were called in both matched amplified and non-amplified DNA samples, and concordance was a promising 82.4%. Paired analysis for copy number, LOH, and both combined, showed that copy number changes were reduced in amplified DNA, but were 99.5% concordant when detected, amplifications were the changes most likely to be 'missed', only 30% of non-amplified LOH changes were identified in amplified pairs, and when copy number and LOH are combined ∼50% of gene changes detected in the unamplified DNA were also detected in the amplified DNA and within these changes, 86.5% were concordant for both copy number and LOH status. However, there are also changes introduced as ∼20% of changes in the amplified DNA are not detected in the non-amplified DNA. An integrative network biology approach revealed that changes in amplified DNA of dysplastic oral epithelium localize to topologically critical regions of the human protein-protein interaction network, suggesting their functional implication in the pathobiology of this disease. Taken together, our results support the use of amplification of FFPE-derived DNA, provided sufficient samples are used

  5. Rapid and sensitive detection of canine parvovirus type 2 by recombinase polymerase amplification.

    Science.gov (United States)

    Wang, Jianchang; Liu, Libing; Li, Ruiwen; Wang, Jinfeng; Fu, Qi; Yuan, Wanzhe

    2016-04-01

    A novel recombinase polymerase amplification (RPA)-based method for detection of canine parvovirus type 2 (CPV-2) was developed. Sensitivity analysis showed that the detection limit of RPA was 10 copies of CPV-2 genomic DNA. RPA amplified both CPV-2a and -2b DNA but did not amplify the template of other important dog viruses (CCoV, PRV or CDV), demonstrating high specificity. The method was further validated with 57 canine fecal samples. An outstanding advantage of RPA is that it is an isothermal reaction and can be performed in a water bath, making RPA a potential alternative method for CPV-2 detection in resource-limited settings.

  6. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer.

    Science.gov (United States)

    Slamon, D J; Godolphin, W; Jones, L A; Holt, J A; Wong, S G; Keith, D E; Levin, W J; Stuart, S G; Udove, J; Ullrich, A

    1989-05-12

    Carcinoma of the breast and ovary account for one-third of all cancers occurring in women and together are responsible for approximately one-quarter of cancer-related deaths in females. The HER-2/neu proto-oncogene is amplified in 25 to 30 percent of human primary breast cancers and this alteration is associated with disease behavior. In this report, several similarities were found in the biology of HER-2/neu in breast and ovarian cancer, including a similar incidence of amplification, a direct correlation between amplification and over-expression, evidence of tumors in which overexpression occurs without amplification, and the association between gene alteration and clinical outcome. A comprehensive study of the gene and its products (RNA and protein) was simultaneously performed on a large number of both tumor types. This analysis identified several potential shortcomings of the various methods used to evaluate HER-2/neu in these diseases (Southern, Northern, and Western blots, and immunohistochemistry) and provided information regarding considerations that should be addressed when studying a gene or gene product in human tissue. The data presented further support the concept that the HER-2/neu gene may be involved in the pathogenesis of some human cancers.

  7. Evaluation of a loop-mediated isothermal amplification (LAMP) method for rapid on-site detection of horse meat

    NARCIS (Netherlands)

    Aartse, Aafke; Scholtens-Toma, Ingrid; A, van der Hans J.G.; Boersma-Greve, Monique M.; Prins, Theo W.; Ginkel, van Leen A.; Kok, Esther J.; Bovee, Toine F.H.

    2017-01-01

    Detection of horse DNA by loop-mediated isothermal amplification (LAMP) seems one of the most promising methods to meet the criteria of fast, robust, cost efficient, specific, and sensitive on-site detection. In the present study an assessment of the specificity and sensitivity of the LAMP horse

  8. Activating mutation in MET oncogene in familial colorectal cancer

    Directory of Open Access Journals (Sweden)

    Schildkraut Joellen M

    2011-10-01

    Full Text Available Abstract Background In developed countries, the lifetime risk of developing colorectal cancer (CRC is 5%, and it is the second leading cause of death from cancer. The presence of family history is a well established risk factor with 25-35% of CRCs attributable to inherited and/or familial factors. The highly penetrant inherited colon cancer syndromes account for approximately 5%, leaving greater than 20% without clear genetic definition. Familial colorectal cancer has been linked to chromosome 7q31 by multiple affected relative pair studies. The MET proto-oncogene which resides in this chromosomal region is considered a candidate for genetic susceptibility. Methods MET exons were amplified by PCR from germline DNA of 148 affected sibling pairs with colorectal cancer. Amplicons with altered sequence were detected with high-resolution melt-curve analysis using a LightScanner (Idaho Technologies. Samples demonstrating alternative melt curves were sequenced. A TaqMan assay for the specific c.2975C >T change was used to confirm this mutation in a cohort of 299 colorectal cancer cases and to look for allelic amplification in tumors. Results Here we report a germline non-synonymous change in the MET proto-oncogene at amino acid position T992I (also reported as MET p.T1010I in 5.2% of a cohort of sibling pairs affected with CRC. This genetic variant was then confirmed in a second cohort of individuals diagnosed with CRC and having a first degree relative with CRC at prevalence of 4.1%. This mutation has been reported in cancer cells of multiple origins, including 2.5% of colon cancers, and in Conclusions Although the MET p.T992I genetic mutation is commonly found in somatic colorectal cancer tissues, this is the first report also implicating this MET genetic mutation as a germline inherited risk factor for familial colorectal cancer. Future studies on the cancer risks associated with this mutation and the prevalence in different at-risk populations will

  9. Expression of a fms-related oncogene in carcinogen-induced neoplastic epithelial cells

    International Nuclear Information System (INIS)

    Walker, C.; Nettesheim, P.; Barrett, J.C.; Gilmer, T.M.

    1987-01-01

    Following carcinogen exposure in vitro, normal rat tracheal epithelial cells are transformed in a multistage process in which the cultured cells become immortal and ultimately, neoplastic. Five cell lines derived from tumors produced by neoplastically transformed rat tracheal epithelial cells were examined for the expression of 11 cellular oncogenes previously implicated in pulmonary or epithelial carcinogenesis. RNA homologous to fms was expressed at a level 5-19 times higher than normal tracheal epithelial cells in three of five of the tumor-derived lines. All three lines expressing high levels of fms-related RNA gave rise to invasive tumors of epithelial origin when injected into nude mice. Increased expression of the fms-related mRNA was not due to gene amplification, and no gene rearrangement was detected by Southern analyses. RNA blot analysis using a 3' v-fms probe detected a 9.5-kilobase message in the three tumor-derived lines, whereas both normal rat aveolar macrophages and the human choriocarcinoma line BeWo expressed a fms transcript of ≅ 4 kilobases. The authors conclude from these data that the gene expressed as a 9.5-kilobase transcript in these neoplastic epithelial cells is a member of a fms-related gene family but may be distinct from the gene that encodes the macrophage colony-stimulating factor (CSF-1) receptor

  10. Oncogenes, radiation and cancer

    International Nuclear Information System (INIS)

    Michelin, S.C.

    1998-01-01

    The discovery of the oncogenic virus and the analysis of its nucleic acid, together with the development of new biochemical technology have permitted the partial knowledge of the molecular mechanisms responsible for the cellular neoplastic transformation. This work, besides describing the discovery of the first oncogenic virus and the experiments to demonstrate the existence of the oncogenes, summarizes its activation mechanisms and its intervention in cellular metabolisms. Ionizing radiation is among the external agents that induce the neoplastic process. Its participation in the genesis of this process and the contribution of oncogenes to the cellular radioresistance are among the topics, which are referred to another topic that makes reference. At the same time as the advancement of theoretical knowledge, lines of investigation for the application of the new concepts in diagnosis, prognosis and therapeutical treatment, were developed. An example of this, is the study of the participation of the oncogen c-erbB-2 in human breast cancer and its implications on the anti tumoral therapy. (author) [es

  11. Sensitivity of HER-2/neu antibodies in archival tissue samples: potential source of error in immunohistochemical studies of oncogene expression.

    Science.gov (United States)

    Press, M F; Hung, G; Godolphin, W; Slamon, D J

    1994-05-15

    HER-2/neu oncogene amplification and overexpression of breast cancer tissue has been correlated with poor prognosis in women with both node-positive and node-negative disease. However, several studies have not confirmed this association. Review of these studies reveals the presence of considerable methodological variability including differences in study size, follow-up time, techniques and reagents. The majority of papers with clinical follow-up information are immunohistochemical studies using archival, paraffin-embedded breast cancers, and a variety of HER-2/neu antibodies have been used in these studies. Very little information, however, is available about the ability of the antibodies to detect overexpression following tissue processing for paraffin-embedding. Therefore, a series of antibodies, reported in the literature or commercially available, were evaluated to assess their sensitivity and specificity as immunohistochemical reagents. Paraffin-embedded samples of 187 breast cancers, previously characterized as frozen specimens for HER-2/neu amplification by Southern blot and for overexpression by Northern blot, Western blot, and immunohistochemistry, were used. Two multitumor paraffin-embedded tissue blocks were prepared from the previously analyzed breast cancers as a panel of cases to test a series of previously studied and/or commercially available anti-HER-2/neu antibodies. Immunohistochemical staining results obtained with 7 polyclonal and 21 monoclonal antibodies in sections from paraffin-embedded blocks of these breast cancers were compared. The ability of these antibodies to detect overexpression was extremely variable, providing an important explantation for the variable overexpression rate reported in the literature.

  12. The oncogenic action of ionizing radiation on rat skin: Progress report, February 1, 1987-January 31, 1988

    International Nuclear Information System (INIS)

    Burns, F.J.

    1987-01-01

    The work outlined in this report includes: epidermal DNA strand breaks and radiation penetration; activation of oncogenes in radiation induced rat skin tumors; and rat skin carcinogenesis by neon ions. The effect of radiation penetration on DNA single strand breaks has been studied extensively in rat and mouse epidermis. The results show clearly that the number of strand breaks per unit dose in the epidermal DNA is reduced by 50% to 65% when the radiation penetration is reduced from 1.0 mm to 0.2 mm. This penetration effect on DNA strand breaks was not seen in mouse epidermal cell lines growing in plastic dishes. The results imply that DNA strand breakage in superficial cells is partially dependent on the radiation dose to underlying tissue. The phenomenon is not mediated by systemic interactions as it was observed in irradiated explanted skin. The oncogene activation pattern in the radiation-induced skin tumors was found to be tumor dependent. Either K-ras activation or c-myc amplification or both was observed in each tumor analyzed so far. Even benign fibromas exhibited c-myc amplification. The carcinogenicity of high penetration electrons (2.0 MeV) was determined in preparation for similar studies with a neon ion beam at the Berkeley Bevelac. The principal finding so far is a large excess of connective tissue tumors, fibromas (benign) and sarcomas (malignant). 59 refs., 1 tab

  13. Multiplex, rapid and sensitive isothermal detection of nucleic-acid sequence by endonuclease restriction-mediated real-time multiple cross displacement amplification

    Directory of Open Access Journals (Sweden)

    Yi eWang

    2016-05-01

    Full Text Available We have devised a novel isothermal amplification technology, termed endonuclease restriction-mediated real-time multiple cross displacement amplification (ET-MCDA, which facilitated multiplex, rapid, specific and sensitive detection of nucleic-acid sequences at a constant temperature. The ET-MCDA integrated multiple cross displacement amplification strategy, restriction endonuclease cleavage and real-time fluorescence detection technique. In the ET-MCDA system, the functional cross primer E-CP1 or E-CP2 was constructed by adding a short sequence at the 5’ end of CP1 or CP2, respectively, and the new E-CP1 or E-CP2 primer was labelled at the 5’ end with a fluorophore and in the middle with a dark quencher. The restriction endonuclease Nb.BsrDI specifically recognized the short sequence and digested the newly synthesized double-stranded terminal sequences (5’ end short sequences and their complementary sequences, which released the quenching, resulting on a gain of fluorescence signal. Thus, the ET-MCDA allowed real-time detection of single or multiple targets in only a single reaction, and the positive results were observed in as short as 12 minutes, detecting down to 3.125 fg of genomic DNA per tube. Moreover, the analytical specificity and the practical application of the ET-MCDA were also successfully evaluated in this study. Here we provided the details on the novel ET-MCDA technique and expounded the basic ET-MCDA amplification mechanism.

  14. Multiplex, Rapid, and Sensitive Isothermal Detection of Nucleic-Acid Sequence by Endonuclease Restriction-Mediated Real-Time Multiple Cross Displacement Amplification.

    Science.gov (United States)

    Wang, Yi; Wang, Yan; Zhang, Lu; Liu, Dongxin; Luo, Lijuan; Li, Hua; Cao, Xiaolong; Liu, Kai; Xu, Jianguo; Ye, Changyun

    2016-01-01

    We have devised a novel isothermal amplification technology, termed endonuclease restriction-mediated real-time multiple cross displacement amplification (ET-MCDA), which facilitated multiplex, rapid, specific and sensitive detection of nucleic-acid sequences at a constant temperature. The ET-MCDA integrated multiple cross displacement amplification strategy, restriction endonuclease cleavage and real-time fluorescence detection technique. In the ET-MCDA system, the functional cross primer E-CP1 or E-CP2 was constructed by adding a short sequence at the 5' end of CP1 or CP2, respectively, and the new E-CP1 or E-CP2 primer was labeled at the 5' end with a fluorophore and in the middle with a dark quencher. The restriction endonuclease Nb.BsrDI specifically recognized the short sequence and digested the newly synthesized double-stranded terminal sequences (5' end short sequences and their complementary sequences), which released the quenching, resulting on a gain of fluorescence signal. Thus, the ET-MCDA allowed real-time detection of single or multiple targets in only a single reaction, and the positive results were observed in as short as 12 min, detecting down to 3.125 fg of genomic DNA per tube. Moreover, the analytical specificity and the practical application of the ET-MCDA were also successfully evaluated in this study. Here, we provided the details on the novel ET-MCDA technique and expounded the basic ET-MCDA amplification mechanism.

  15. Gene amplification in Chinese hamster embryo cells by the decay of incorporated iodine-125

    International Nuclear Information System (INIS)

    Luecke-Huhle, Christine; Ehrfeld, Angelika; Rau, Waltraud

    1988-01-01

    Simian Virus 40-transformed Chinese hamster embryo cells (Co631) contain 5 viral copies integrated per cell genome. These SV40 sequences were used as an endogenous indicator gene to study response of mammalian cells to radiation at gene level. Cells were internally irradiated by Auger electrons emitted by Iodine-125 which was incorporated in cell DNA in form of 5-[ 125 I] iododeoxyuridine ( 125 IdU). An increase in gene copy number was measured using dispersed cell blotting and Southern analysis in combination with highly sensitive DNA hybridization. A 13-fold amplification of the SV40 sequences and a 2-fold amplification of two cellular oncogenes of the ras family were found. Other cellular genes, like the α-actin gene, are not amplified and no variation in gene copy number was observed after incubation of cells with cold IdU. Thus, specific gene amplification seems to be the consequence of radiation-induced DNA damage and the resulting cell cycle arrest. (author)

  16. Hybridization chain reaction amplification for highly sensitive fluorescence detection of DNA with dextran coated microarrays.

    Science.gov (United States)

    Chao, Jie; Li, Zhenhua; Li, Jing; Peng, Hongzhen; Su, Shao; Li, Qian; Zhu, Changfeng; Zuo, Xiaolei; Song, Shiping; Wang, Lianhui; Wang, Lihua

    2016-07-15

    Microarrays of biomolecules hold great promise in the fields of genomics, proteomics, and clinical assays on account of their remarkably parallel and high-throughput assay capability. However, the fluorescence detection used in most conventional DNA microarrays is still limited by sensitivity. In this study, we have demonstrated a novel universal and highly sensitive platform for fluorescent detection of sequence specific DNA at the femtomolar level by combining dextran-coated microarrays with hybridization chain reaction (HCR) signal amplification. Three-dimensional dextran matrix was covalently coated on glass surface as the scaffold to immobilize DNA recognition probes to increase the surface binding capacity and accessibility. DNA nanowire tentacles were formed on the matrix surface for efficient signal amplification by capturing multiple fluorescent molecules in a highly ordered way. By quantifying microscopic fluorescent signals, the synergetic effects of dextran and HCR greatly improved sensitivity of DNA microarrays, with a detection limit of 10fM (1×10(5) molecules). This detection assay could recognize one-base mismatch with fluorescence signals dropped down to ~20%. This cost-effective microarray platform also worked well with samples in serum and thus shows great potential for clinical diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Antigen retrieval, blocking, detection and visualisation systems in immunohistochemistry: a review and practical evaluation of tyramide and rolling circle amplification systems.

    Science.gov (United States)

    Warford, Anthony; Akbar, Hameed; Riberio, Deise

    2014-11-01

    To achieve specificity and sensitivity using immunohistochemistry it is necessary to combine the application of validated primary antibodies with optimised pre-treatment, detection and visualisation steps. The influence of these surrounding procedures is reviewed. A practical evaluation of tyramide signal amplification and rolling circle amplification detection methods is provided in which formalin fixed paraffin embedded sections of adenocarcinomas of breast, colon and lung together with squamous metaplasia of lung were immunostained with CD20 and CK19 primary antibodies. The results indicate that the detection systems are of comparable sensitivity and specificity. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Simplified Real-Time Multiplex Detection of Loop-Mediated Isothermal Amplification Using Novel Mediator Displacement Probes with Universal Reporters.

    Science.gov (United States)

    Becherer, Lisa; Bakheit, Mohammed; Frischmann, Sieghard; Stinco, Silvina; Borst, Nadine; Zengerle, Roland; von Stetten, Felix

    2018-04-03

    A variety of real-time detection techniques for loop-mediated isothermal amplification (LAMP) based on the change in fluorescence intensity during DNA amplification enable simultaneous detection of multiple targets. However, these techniques depend on fluorogenic probes containing target-specific sequences. That complicates the adaption to different targets leading to time-consuming assay optimization. Here, we present the first universal real-time detection technique for multiplex LAMP. The novel approach allows simple assay design and is easy to implement for various targets. The innovation features a mediator displacement probe and a universal reporter. During amplification of target DNA the mediator is displaced from the mediator displacement probe. Then it hybridizes to the reporter generating a fluorescence signal. The novel mediator displacement (MD) detection was validated against state-of-the-art molecular beacon (MB) detection by means of a HIV-1 RT-LAMP: MD surpassed MB detection by accelerated probe design (MD: 10 min, MB: 3-4 h), shorter times to positive (MD 4.1 ± 0.1 min shorter than MB, n = 36), improved signal-to-noise fluorescence ratio (MD: 5.9 ± 0.4, MB: 2.7 ± 0.4; n = 15), and showed equally good or better analytical performance parameters. The usability of one universal mediator-reporter set in different multiplex assays was successfully demonstrated for a biplex RT-LAMP of HIV-1 and HTLV-1 and a biplex LAMP of Haemophilus ducreyi and Treponema pallidum, both showing good correlation between target concentration and time to positive. Due to its simple implementation it is suggested to extend the use of the universal mediator-reporter sets to the detection of various other diagnostic panels.

  19. Development of multiple cross displacement amplification label-based gold nanoparticles lateral flow biosensor for detection of Shigella spp.

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2016-11-01

    Full Text Available Shigella spp., the etiological agent of shigellosis or bacillary dysentery, are responsible for considerable morbidity and mortality in excess of a million deaths globally per year. Although PCR-based techniques (such as PCR-based dipstick biosensors have been used for the molecular diagnosis of infectious disease, these assays were restricted due to the need for a sophisticated thermal cycling apparatus to denature target templates. To facilitate simple and rapid detection of target pathogens, we successfully devised an inexpensive, reliable and nearly instrument-free molecular technique, which incorporates multiple cross displacement amplification (MCDA combined with a newly designed lateral flow biosensor (LFB for visual, sensitive and specific detection of Shigella. The MCDA-LFB assay was conducted at 65 ˚C for only 20 min during the amplification stage, and then products were directly analyzed on the biosensor, alleviating the use of special reagents, electrophoresis equipment and amplicon detection instruments. The entire process, including specimen processing (35 min, amplification (20 and detection (2-5 min, can be finished within 1 h. The MCDA-LFB assay demonstrated high specificity for Shigella detection. The analytical sensitivity of the assay was 10 fg of genomic templates per reaction in pure culture and 5.86 CFU per tube in human fecal samples, which was consistent with MCDA by colorimetric indicator, gel electrophoresis, real time turbidity and fluorescence detection. Hence, the simplicity, rapidity and nearly instrument-free platform of the MCDA-LFB assay make it practical for ‘on-site’ diagnosis, point-of-care testing and more. Moreover, the proof-of-concept approach can be reconfigured to detect a wide variety of target sequences by re-designing the specific MCDA primers.

  20. Helicase-dependent amplification of nucleic acids.

    Science.gov (United States)

    Cao, Yun; Kim, Hyun-Jin; Li, Ying; Kong, Huimin; Lemieux, Bertrand

    2013-10-11

    Helicase-dependent amplification (HDA) is a novel method for the isothermal in vitro amplification of nucleic acids. The HDA reaction selectively amplifies a target sequence by extension of two oligonucleotide primers. Unlike the polymerase chain reaction (PCR), HDA uses a helicase enzyme to separate the deoxyribonucleic acid (DNA) strands, rather than heat denaturation. This allows DNA amplification without the need for thermal cycling. The helicase used in HDA is a helicase super family II protein obtained from a thermophilic organism, Thermoanaerobacter tengcongensis (TteUvrD). This thermostable helicase is capable of unwinding blunt-end nucleic acid substrates at elevated temperatures (60° to 65°C). The HDA reaction can also be coupled with reverse transcription for ribonucleic acid (RNA) amplification. The products of this reaction can be detected during the reaction using fluorescent probes when incubations are conducted in a fluorimeter. Alternatively, products can be detected after amplification using a disposable amplicon containment device that contains an embedded lateral flow strip. Copyright © 2013 John Wiley & Sons, Inc.

  1. pH responsive label-assisted click chemistry triggered sensitivity amplification for ultrasensitive electrochemical detection of carbohydrate antigen 24-2.

    Science.gov (United States)

    Zheng, Yun; Zhao, Lihua; Ma, Zhanfang

    2018-05-15

    Sensitivity amplification strategy by implementing click chemistry in the construction of biosensing interface can efficiently improve the performance of immunosensor. Herein, we developed a sandwich-type amperometric immunosensor for ultrasensitive detection of carbohydrate antigen 24-2 (CA 242) based on pH responsive label-assisted click chemistry triggered sensitivity amplification strategy. The sensitivity of amperometric immunosensor relies on the current response differences (ΔI) caused by per unit concentration target analyte. The pH responsive Cu 2+ -loaded polydopamine (CuPDA) particles conjugated with detection antibodies were employed as labels, which can release Cu(II) ions by regulating pH. In the presence of ascorbic acid (reductant), Cu(II) ions were reduced to Cu(I) ions. Azide-functionalized double-stranded DNA (dsDNA) as signal enhancer was immobilized on the substrate through Cu + -catalyzed azide/alkyne cycloaddition reaction. With the help of the click reaction, the ΔI caused by target was elevated prominently, resulting in sensitivity amplification of the immunosensor. Under optimal condition, the proposed immunosensor exhibited excellent performance with linear range from 0.0001 to 100 U mL -1 and ultralow detection limit of 20.74 μU mL -1 . This work successfully combines click chemistry with pH-responsive labels in sandwich-type amperometric immunosensor, providing a promising sensitivity amplification strategy to construct immunosensing platform for analysis of other tumor marker. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. A Closed-tube Loop-Mediated Isothermal Amplification Assay for the Visual Endpoint Detection of Brucella spp. and Mycobacterium avium subsp. paratuberculosis.

    Science.gov (United States)

    Trangoni, Marcos D; Gioffré, Andrea K; Cravero, Silvio L

    2017-01-01

    LAMP (loop-mediated isothermal amplification) is an isothermal nucleic acid amplification technique that is characterized by its efficiency, rapidity, high yield of final product, robustness, sensitivity, and specificity, with the blueprint that it can be implemented in laboratories of low technological complexity. Despite the conceptual complexity underlying the mechanistic basis for the nucleic acid amplification, the technique is simple to use and the amplification and detection can be carried out in just one step. In this chapter, we present a protocol based on LAMP for the rapid identification of isolates of Brucella spp. and Mycobacterium avium subsp. paratuberculosis, two major bacterial pathogens in veterinary medicine.

  3. Rapid and sensitive detection of Didymella bryoniae by visual loop-mediated isothermal amplification assay

    Directory of Open Access Journals (Sweden)

    Xiefeng Yao

    2016-08-01

    Full Text Available Didymella bryoniae is a pathogenic fungus that causes gummy stem blight (GSB in Cucurbitaceae crops (e.g. cantaloupe, muskmelon, cucumber, and watermelon. GSB produces lesions on the stems and leaves, and can also be spread by seeds. Here, we developed a rapid, visual, and sensitive loop-mediated amplification (LAMP assay for D. bryoniae detection based on sequence-characterized amplified regions (GenBank accession nos GQ872461 and GQ872462 common to the two random amplification of polymorphic DNA group genotypes (RGI and RGII of D. bryoniae; ideal conditions for detection were optimized for completion in 45 min at 63°C. The sensitivity and specificity of the LAMP assay were further analyzed in comparison with those of a conventional polymerase chain reaction (PCR. The sensitivity of the LAMP assay was 1000-fold higher than that of conventional PCR with a detection limit of 0.1 fg μL−1 of targeted DNA. The LAMP assay could be accomplished in about 45 min, with the results visible to the naked eye. The assay showed high specificity in discriminating all D. bryoniae isolates from seven other fungal pathogens that occur in Cucurbitaceae crops. The LAMP assay also detected D. bryoniae infection in young muskmelon leaves with suspected early symptoms of GSB disease. Hence, the technique has great potential for developing rapid and sensitive visual detection methods for the D. bryoniae pathogen in crops and seeds. This method has potential application in early prediction of disease and reducing the risk of epidemics.

  4. Microfluidic method for rapid turbidimetric detection of the DNA of Mycobacterium tuberculosis using loop-mediated isothermal amplification in capillary tubes

    International Nuclear Information System (INIS)

    Rafati, Adele; Gill, Pooria

    2015-01-01

    We describe a microfluidic method for rapid isothermal turbidimetric detection of the DNA of Mycobacterium tuberculosis. Loop-mediated isothermal amplification is accomplished in capillary tubes for amplifying DNA in less than 15 min, and sensitivity and specificity were compared to conventional loop-mediated isothermal amplification (LAMP). The method can detect as little as 1 pg mL −1 DNA in a sample. Results obtained with clinical specimens indicated 90 % sensitivity and 95 % specificity for microfluidic LAMP in comparison to culture methods. No interference occurred due to the presence of nonspecific DNAs. The findings demonstrate the power of the new microfluidic LAMP test for rapid molecular detection of microorganisms even when using bare eyes. (author)

  5. MDM2 and CDK4 amplifications are rare events in salivary duct carcinomas.

    Science.gov (United States)

    Grünewald, Inga; Trautmann, Marcel; Busch, Alina; Bauer, Larissa; Huss, Sebastian; Schweinshaupt, Petra; Vollbrecht, Claudia; Odenthal, Margarete; Quaas, Alexander; Büttner, Reinhard; Meyer, Moritz F; Beutner, Dirk; Hüttenbrink, Karl-Bernd; Wardelmann, Eva; Stenner, Markus; Hartmann, Wolfgang

    2016-11-15

    Salivary duct carcinoma (SDC) is an aggressive adenocarcinoma of the salivary glands associated with poor clinical outcome. SDCs are known to carry TP53 mutations in about 50%, however, only little is known about alternative pathogenic mechanisms within the p53 regulatory network. Particularly, data on alterations of the oncogenes MDM2 and CDK4 located in the chromosomal region 12q13-15 are limited in SDC, while genomic rearrangements of the adjacent HMGA2 gene locus are well documented in subsets of SDCs. We here analyzed the mutational status of the TP53 gene, genomic amplification of MDM2, CDK4 and HMGA2 rearrangement/amplification as well as protein expression of TP53 (p53), MDM2 and CDK4 in 51 de novo and ex pleomorphic adenoma SDCs.25 of 51 cases were found to carry TP53 mutations, associated with extreme positive immunohistochemical p53 staining levels in 13 cases. Three out of 51 tumors had an MDM2 amplification, one of them coinciding with a CDK4 amplification and two with a HMGA2 rearrangement/amplification. Two of the MDM2 amplifications occurred in the setting of a TP53 mutation. Two out of 51 cases showed a CDK4 amplification, one synchronously being MDM2 amplified and the other one displaying concurrent low copy number increases of both, MDM2 and HMGA2.In summary, we here show that subgroups of SDCs display genomic amplifications of MDM2 and/or CDK4, partly in association with TP53 mutations and rearrangement/amplification of HMGA2. Further research is necessary to clarify the role of chromosomal region 12q13-15 alterations in SDC tumorigenesis and their potential prognostic and therapeutic relevance.

  6. Restriction Cascade Exponential Amplification (RCEA) assay with an attomolar detection limit: a novel, highly specific, isothermal alternative to qPCR.

    Science.gov (United States)

    Ghindilis, Andrey L; Smith, Maria W; Simon, Holly M; Seoudi, Ihab A; Yazvenko, Nina S; Murray, Iain A; Fu, Xiaoqing; Smith, Kenneth; Jen-Jacobson, Linda; Xu, Shuang-Yong

    2015-01-13

    An alternative to qPCR was developed for nucleic acid assays, involving signal rather than target amplification. The new technology, Restriction Cascade Exponential Amplification (RCEA), relies on specific cleavage of probe-target hybrids by restriction endonucleases (REase). Two mutant REases for amplification (Ramp), S17C BamHI and K249C EcoRI, were conjugated to oligonucleotides, and immobilized on a solid surface. The signal generation was based on: (i) hybridization of a target DNA to a Ramp-oligonucleotide probe conjugate, followed by (ii) specific cleavage of the probe-target hybrid using a non-immobilized recognition REase. The amount of Ramp released into solution upon cleavage was proportionate to the DNA target amount. Signal amplification was achieved through catalysis, by the free Ramp, of a restriction cascade containing additional oligonucleotide-conjugated Ramp and horseradish peroxidase (HRP). Colorimetric quantification of free HRP indicated that the RCEA achieved a detection limit of 10 aM (10(-17) M) target concentration, or approximately 200 molecules, comparable to the sensitivity of qPCR-based assays. The RCEA assay had high specificity, it was insensitive to non-specific binding, and detected target sequences in the presence of foreign DNA. RCEA is an inexpensive isothermal assay that allows coupling of the restriction cascade signal amplification with any DNA target of interest.

  7. A novel CMOS image sensor system for quantitative loop-mediated isothermal amplification assays to detect food-borne pathogens.

    Science.gov (United States)

    Wang, Tiantian; Kim, Sanghyo; An, Jeong Ho

    2017-02-01

    Loop-mediated isothermal amplification (LAMP) is considered as one of the alternatives to the conventional PCR and it is an inexpensive portable diagnostic system with minimal power consumption. The present work describes the application of LAMP in real-time photon detection and quantitative analysis of nucleic acids integrated with a disposable complementary-metal-oxide semiconductor (CMOS) image sensor. This novel system works as an amplification-coupled detection platform, relying on a CMOS image sensor, with the aid of a computerized circuitry controller for the temperature and light sources. The CMOS image sensor captures the light which is passing through the sensor surface and converts into digital units using an analog-to-digital converter (ADC). This new system monitors the real-time photon variation, caused by the color changes during amplification. Escherichia coli O157 was used as a proof-of-concept target for quantitative analysis, and compared with the results for Staphylococcus aureus and Salmonella enterica to confirm the efficiency of the system. The system detected various DNA concentrations of E. coli O157 in a short time (45min), with a detection limit of 10fg/μL. The low-cost, simple, and compact design, with low power consumption, represents a significant advance in the development of a portable, sensitive, user-friendly, real-time, and quantitative analytic tools for point-of-care diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. A novel electrochemical sensing strategy for rapid and ultrasensitive detection of Salmonella by rolling circle amplification and DNA–AuNPs probe

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Dan; Yan, Yurong; Lei, Pinhua; Shen, Bo [Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016 (China); Cheng, Wei [Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016 (China); The Center for Clinical Molecular Medical detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Ju, Huangxian [Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016 (China); State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210093 (China); Ding, Shijia, E-mail: dingshijia@163.com [Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016 (China)

    2014-10-10

    A novel electrochemical sensing strategy was developed for ultrasensitive and rapid detection of Salmonella by combining the rolling circle amplification with DNA–AuNPs probe. - Highlights: • This paper presented a novel sensing strategy for the rapid and ultrasensitive detection for Salmonella. • Combination of rolling circle amplification and DNA–AuNPs probe is the first time for Salmonella electrochemical detection. • The method displayed excellent sensitivity and specificity for detection of Salmonella. • The fabricated biosensor was successfully applied to detect Salmonella in milk samples. - Abstract: A novel electrochemical sensing strategy was developed for ultrasensitive and rapid detection of Salmonella by combining the rolling circle amplification with DNA–AuNPs probe. The target DNA could be specifically captured by probe 1 on the sensing interface. Then the circularization mixture was added to form a typical sandwich structure. In the presence of dNTPs and phi29 DNA polymerase, the RCA was initiated to produce micrometer-long single-strand DNA. Finally, the detection probe (DNA–AuNPs) could recognize RCA product to produce enzymatic electrochemical signal. Under optimal conditions, the calibration curve of synthetic target DNA had good linearity from 10 aM to 10 pM with a detection limit of 6.76 aM (S/N = 3). The developed method had been successfully applied to detect Salmonella as low as 6 CFU mL{sup −1} in real milk sample. This proposed strategy showed great potential for clinical diagnosis, food safety and environmental monitoring.

  9. A novel electrochemical sensing strategy for rapid and ultrasensitive detection of Salmonella by rolling circle amplification and DNA–AuNPs probe

    International Nuclear Information System (INIS)

    Zhu, Dan; Yan, Yurong; Lei, Pinhua; Shen, Bo; Cheng, Wei; Ju, Huangxian; Ding, Shijia

    2014-01-01

    A novel electrochemical sensing strategy was developed for ultrasensitive and rapid detection of Salmonella by combining the rolling circle amplification with DNA–AuNPs probe. - Highlights: • This paper presented a novel sensing strategy for the rapid and ultrasensitive detection for Salmonella. • Combination of rolling circle amplification and DNA–AuNPs probe is the first time for Salmonella electrochemical detection. • The method displayed excellent sensitivity and specificity for detection of Salmonella. • The fabricated biosensor was successfully applied to detect Salmonella in milk samples. - Abstract: A novel electrochemical sensing strategy was developed for ultrasensitive and rapid detection of Salmonella by combining the rolling circle amplification with DNA–AuNPs probe. The target DNA could be specifically captured by probe 1 on the sensing interface. Then the circularization mixture was added to form a typical sandwich structure. In the presence of dNTPs and phi29 DNA polymerase, the RCA was initiated to produce micrometer-long single-strand DNA. Finally, the detection probe (DNA–AuNPs) could recognize RCA product to produce enzymatic electrochemical signal. Under optimal conditions, the calibration curve of synthetic target DNA had good linearity from 10 aM to 10 pM with a detection limit of 6.76 aM (S/N = 3). The developed method had been successfully applied to detect Salmonella as low as 6 CFU mL −1 in real milk sample. This proposed strategy showed great potential for clinical diagnosis, food safety and environmental monitoring

  10. Signal amplification in electrochemical detection of buckwheat allergenic protein using field effect transistor biosensor by introduction of anionic surfactant

    Directory of Open Access Journals (Sweden)

    Sho Hideshima

    2016-03-01

    Full Text Available Food allergens, especially buckwheat proteins, sometimes induce anaphylactic shock in patients after ingestion. Development of a simple and rapid screening method based on a field effect transistor (FET biosensor for food allergens in food facilities or products is in demand. In this study, we achieved the FET detection of a buckwheat allergenic protein (BWp16, which is not charged enough to be electrically detected by FET biosensors, by introducing additional negative charges from anionic surfactants to the target proteins. A change in the FET characteristics reflecting surface potential caused by the adsorption of target charged proteins was observed when the target sample was coupled with the anionic surfactant (sodium dodecyl sulfate; SDS, while no significant response was detected without any surfactant treatment. It was suggested that the surfactant conjugated with the protein could be useful for the charge amplification of the target proteins. The surface plasmon resonance analysis revealed that the SDS-coupled proteins were successfully captured by the receptors immobilized on the sensing surface. Additionally, we obtained the FET responses at various concentrations of BWp16 ranging from 1 ng/mL to 10 μg/mL. These results suggest that a signal amplification method for FET biosensing is useful for allergen detection in the food industry. Keywords: Field effect transistor biosensor, Food allergen, Signal amplification, Ionic surfactant, Intrinsic charge

  11. Loop-mediated isothermal amplification (LAMP): Early detection of Toxoplasma gondii infection in mice

    OpenAIRE

    Kong, Qing-Ming; Lu, Shao-Hong; Tong, Qun-Bo; Lou, Di; Chen, Rui; Zheng, Bin; Kumagai, Takashi; Wen, Li-Yong; Ohta, Nobuo; Zhou, Xiao-Nong

    2012-01-01

    Abstract Background Toxoplasmosis is a widespread zoonotic parasitic disease that occurs in both animals and humans. Traditional molecular assays are often difficult to perform, especially for the early diagnosis of Toxoplasma gondii infections. Here, we established a novel loop-mediated isothermal amplification targeting the 529 bp repeat element (529 bp-LAMP) to detect T. gondii DNA in blood samples of experimental mice infected with tachyzoites of the RH strain. Findings The assay was perf...

  12. Oncogenic HPV among HIV infected female population in West Bengal, India

    Directory of Open Access Journals (Sweden)

    Sengupta Sharmila

    2011-03-01

    Full Text Available Abstract Background Prevalence of both cervical cancer and Human Immunodeficiency Virus (HIV infection are very high in India. Natural history of Human Papilloma Virus (HPV infection is known to be altered in HIV positive women and there is an increased possibility of persistence of HPV infections in this population. Therefore, this study was conducted to understand the epidemiology and circulating genotypes of oncogenic HPV among HIV positive and negative female population in West Bengal, India. Methods In this hospital-based cross-sectional study, 93 known HIV positive females attending a pre-ART registration clinic and 1106 HIV negative females attending a Reproductive and Child Health Care Clinic were subjected to study. Cervical cell samples collected from the study population were tested for the presence of HPV 16, 18 using specific primers. Roche PCR assay was used to detect other specific HPV genotypes in the cervical cells specimens of HIV positive cases only. Results Prevalence of HPV 16, 18 among HIV positive females (32.2%; n = 30 was higher than HIV negative females (9.1%; n = 101. About 53% (23/43 of cases with oncogenic HPV were infected with genotypes other than 16, 18 either as single/multiple infections. HPV 18 and HPV 16 were the predominant genotypes among HIV positive and HIV negative subjects respectively. Oncogenic HPV was not found to be associated with age and duration of sexual exposure. But the presence of HIV was found to a statistically significant predictor oncogenic HPV. Conclusion The currently available HPV vaccines offer protection only against HPV 16 and 18 and some cross- protection to few associated genotypes. These vaccines are therefore less likely to offer protection against cervical cancer in HIV positive women a high percentage of who were infected with non-16 and non-18 oncogenic HPV genotypes. Additionally, there is a lack of sufficient evidence of immunogenicity in HIV infected individuals. Therefore

  13. A sensitive lateral flow biosensor for Escherichia coli O157:H7 detection based on aptamer mediated strand displacement amplification

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wei [College of Food Science and Engineering, Ocean University of China, Qingdao 266003 (China); Zhao, Shiming [Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530 (China); Mao, Yiping [Yueyang Institute for Food and Drug Control, Yueyang 430198 (China); Fang, Zhiyuan [Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou 510095 (China); Lu, Xuewen [Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530 (China); Zeng, Lingwen, E-mail: zeng6@yahoo.com [Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530 (China)

    2015-02-25

    Highlights: • Limit of detection as low as 10 CFU mL{sup −1}Escherichia coli O157:H7. • No need of antibodies and substituted with aptamers. • Isothermal strand displacement amplification for signal amplification. • Results observed by the naked eye. • Great potential application in the area of food control. - Abstract: Foodborne diseases caused by pathogens are one of the major problems in food safety. Convenient and sensitive point-of-care rapid diagnostic tests for food-borne pathogens have been a long-felt need of clinicians. Commonly used methods for pathogen detection rely on conventional culture-based tests, antibody-based assays and polymerase chain reaction (PCR)-based techniques. These methods are costly, laborious and time-consuming. Herein, we present a simple and sensitive aptamer based biosensor for rapid detection of Escherichia coli O157:H7 (E. coli O157:H7). In this assay, two different aptamers specific for the outmembrane of E. coli O157:H7 were used. One of the aptamers was used for magnetic bead enrichment, and the other was used as a signal reporter for this pathogen, which was amplified by isothermal strand displacement amplification (SDA) and further detected by a lateral flow biosensor. Only the captured aptamers on cell membrane were amplified, limitations of conventional DNA amplification based method such as false-positive can be largely reduced. The generated signals (red bands on the test zone of a lateral flow strip) can be unambiguously read out by the naked eye. As low as 10 colony forming units (CFU) of E. coli O157:H7 were detected in this study. Without DNA extraction, the reduced handling and simpler equipment requirement render this assay a simple and rapid alternative to conventional methods.

  14. A sensitive lateral flow biosensor for Escherichia coli O157:H7 detection based on aptamer mediated strand displacement amplification

    International Nuclear Information System (INIS)

    Wu, Wei; Zhao, Shiming; Mao, Yiping; Fang, Zhiyuan; Lu, Xuewen; Zeng, Lingwen

    2015-01-01

    Highlights: • Limit of detection as low as 10 CFU mL −1 Escherichia coli O157:H7. • No need of antibodies and substituted with aptamers. • Isothermal strand displacement amplification for signal amplification. • Results observed by the naked eye. • Great potential application in the area of food control. - Abstract: Foodborne diseases caused by pathogens are one of the major problems in food safety. Convenient and sensitive point-of-care rapid diagnostic tests for food-borne pathogens have been a long-felt need of clinicians. Commonly used methods for pathogen detection rely on conventional culture-based tests, antibody-based assays and polymerase chain reaction (PCR)-based techniques. These methods are costly, laborious and time-consuming. Herein, we present a simple and sensitive aptamer based biosensor for rapid detection of Escherichia coli O157:H7 (E. coli O157:H7). In this assay, two different aptamers specific for the outmembrane of E. coli O157:H7 were used. One of the aptamers was used for magnetic bead enrichment, and the other was used as a signal reporter for this pathogen, which was amplified by isothermal strand displacement amplification (SDA) and further detected by a lateral flow biosensor. Only the captured aptamers on cell membrane were amplified, limitations of conventional DNA amplification based method such as false-positive can be largely reduced. The generated signals (red bands on the test zone of a lateral flow strip) can be unambiguously read out by the naked eye. As low as 10 colony forming units (CFU) of E. coli O157:H7 were detected in this study. Without DNA extraction, the reduced handling and simpler equipment requirement render this assay a simple and rapid alternative to conventional methods

  15. Development of a Novel Loop-Mediated Isothermal Amplification (LAMP) Assay for the Detection of Rickettsia spp.

    Science.gov (United States)

    Hanaoka, Nozomu; Matsutani, Minenosuke; Satoh, Masaaki; Ogawa, Motohiko; Shirai, Mutsunori; Ando, Shuji

    2017-01-24

    We developed a novel loop-mediated isothermal amplification (LAMP) method to detect Rickettsia spp., including Rickettsia prowazekii and R. typhi. Species-specific LAMP primers were developed for orthologous genes conserved among Rickettsia spp. The selected modified primers could detect all the Rickettsia spp. tested. The LAMP method was successfully used to detect 100 DNA copies of Rickettsia spp. within approximately 60 min at 63℃. Therefore, this method may be an excellent tool for the early diagnosis of rickettsiosis in a laboratory or in the field.

  16. Development of one-step Loop-Mediated Isothermal Amplification (LAMP) for the detection of norovirus in oysters

    Science.gov (United States)

    The aim of this study was to develop a simple and rapid technique for detecting human norovirus (NoV). The loop-mediated isothermal amplification (LAMP) technique was evaluated and found to be sensitive, highly specific, and useful for routine oyster testing. Reverse transcription-LAMP (RT-LAMP) pri...

  17. Detection and quantification of Plasmodium falciparum in blood samples using quantitative nucleic acid sequence-based amplification

    NARCIS (Netherlands)

    Schoone, G. J.; Oskam, L.; Kroon, N. C.; Schallig, H. D.; Omar, S. A.

    2000-01-01

    A quantitative nucleic acid sequence-based amplification (QT-NASBA) assay for the detection of Plasmodium parasites has been developed. Primers and probes were selected on the basis of the sequence of the small-subunit rRNA gene. Quantification was achieved by coamplification of the RNA in the

  18. Development of a toxR-based loop-mediated isothermal amplification assay for detecting Vibrio parahaemolyticus

    Directory of Open Access Journals (Sweden)

    Ge Beilei

    2010-02-01

    Full Text Available Abstract Background Vibrio parahaemolyticus is a leading cause of seafood-related bacterial gastroenteritis and outbreaks worldwide. Sensitive and specific detection methods are needed to better control V. parahaemolyticus infections. This study aimed at developing a highly specific and sensitive loop-mediated isothermal amplification (LAMP assay for detecting V. parahaemolyticus in oysters. A set of five LAMP primers, two outer, two inner, and one loop were designed based on the published V. parahaemolyticus toxR sequence. Specificity of the assay was evaluated using a panel of 36 V. parahaemolyticus and 39 other strains. The assay sensitivity was determined using serial dilutions of V. parahaemolyticus ATCC 27969 culture ranging from 108 CFU/ml to extinction. The assay was also tested in experimentally inoculated oyster samples. Results The toxR-based LAMP assay was able to specifically detect all of the 36 V. parahaemolyticus strains without amplification from 39 other strains. The detection limit was 47-470 cells per reaction in pure culture, up to 100-fold more sensitive than that of toxR-PCR. When applied in spiked oysters, the assay was able to detect 1.1 × 105 V. parahaemolyticus cells per gram of oyster without enrichment, up to 100-fold more sensitive than that of toxR-PCR. Standard curves generated for detecting V. parahaemolyticus in both pure culture and spiked oyster samples showed good linear relationship between cell numbers and the fluorescence or turbidity signals. Conclusions The toxR-based LAMP assay developed in this study was sensitive, specific, and quantitative, holding great potential for future field detection of V. parahaemolyticus in raw oysters.

  19. Use of Malachite Green-Loop Mediated Isothermal Amplification for Detection of Plasmodium spp. Parasites

    Science.gov (United States)

    Lucchi, Naomi W.; Ljolje, Dragan; Silva-Flannery, Luciana; Udhayakumar, Venkatachalam

    2016-01-01

    Malaria elimination efforts are hampered by the lack of sensitive tools to detect infections with low-level parasitemia, usually below the threshold of standard diagnostic methods, microscopy and rapid diagnostic tests. Isothermal nucleic acid amplification assays such as the loop-mediated isothermal amplification (LAMP), are well suited for field use as they do not require thermal cyclers to run the test. However, the use of specialized equipment, as described by many groups, reduces the versatility of the LAMP technique as a simple tool for use in endemic countries. In this study, the use of the malachite green (MG) dye, as a visual endpoint readout, together with a simple mini heat block was evaluated for the detection of malaria parasites. The assay was performed for 1 hour at 63°C and the results scored by 3 independent human readers. The limit of detection of the assay was determined using well-quantified Plasmodium spp. infected reference samples and its utility in testing clinical samples was determined using 190 pre-treatment specimens submitted for reference diagnosis of imported malaria in the United States. Use of a simplified boil and spin methods of DNA extraction from whole blood and filter paper was also investigated. We demonstrate the accurate and sensitive detection of malaria parasites using this assay with a detection limit ranging between 1–8 parasites/μL, supporting its applicability for the detection of infections with low parasite burden. This assay is compatible with the use of a simple boil and spin sample preparation method from both whole blood and filter papers without a loss of sensitivity. The MG-LAMP assay described here has great potential to extend the reach of molecular tools to settings where they are needed. PMID:26967908

  20. Use of Malachite Green-Loop Mediated Isothermal Amplification for Detection of Plasmodium spp. Parasites.

    Directory of Open Access Journals (Sweden)

    Naomi W Lucchi

    Full Text Available Malaria elimination efforts are hampered by the lack of sensitive tools to detect infections with low-level parasitemia, usually below the threshold of standard diagnostic methods, microscopy and rapid diagnostic tests. Isothermal nucleic acid amplification assays such as the loop-mediated isothermal amplification (LAMP, are well suited for field use as they do not require thermal cyclers to run the test. However, the use of specialized equipment, as described by many groups, reduces the versatility of the LAMP technique as a simple tool for use in endemic countries. In this study, the use of the malachite green (MG dye, as a visual endpoint readout, together with a simple mini heat block was evaluated for the detection of malaria parasites. The assay was performed for 1 hour at 63°C and the results scored by 3 independent human readers. The limit of detection of the assay was determined using well-quantified Plasmodium spp. infected reference samples and its utility in testing clinical samples was determined using 190 pre-treatment specimens submitted for reference diagnosis of imported malaria in the United States. Use of a simplified boil and spin methods of DNA extraction from whole blood and filter paper was also investigated. We demonstrate the accurate and sensitive detection of malaria parasites using this assay with a detection limit ranging between 1-8 parasites/μL, supporting its applicability for the detection of infections with low parasite burden. This assay is compatible with the use of a simple boil and spin sample preparation method from both whole blood and filter papers without a loss of sensitivity. The MG-LAMP assay described here has great potential to extend the reach of molecular tools to settings where they are needed.

  1. An exonuclease-assisted amplification electrochemical aptasensor for Hg(2+) detection based on hybridization chain reaction.

    Science.gov (United States)

    Bao, Ting; Wen, Wei; Zhang, Xiuhua; Xia, Qinghua; Wang, Shengfu

    2015-08-15

    In this work, a novel electrochemical aptasensor was developed for Hg(2+) detection based on exonuclease-assisted target recycling and hybridization chain reaction (HCR) dual signal amplification strategy. The presence of Hg(2+) induced the T-rich DNA partly folded into duplex-like structure via the Hg(2+) mediated T-Hg(2+)-T base pairs, which triggered the activity of exonuclease III (Exo III). Exo III selectively digested the double-strand DNA containing multiple T-Hg(2+)-T base pairs from its 3'-end, the released Hg(2+) participated analyte recycle. With each digestion cycle, a digestion product named as help DNA was obtained, which acted as a linkage between the capture DNA and auxiliary DNA. The presence of help DNA and two auxiliary DNA collectively facilitated successful HCR process and formed long double-stranded DNA. [Ru(NH3)6](3+) was used as redox indicator, which electrostatically bound to the double strands and produced an electrochemical signal. Exo III-assisted target recycling and HCR dual amplification significantly improved the sensitivity for Hg(2+) with a detection limit of 0.12 pM (S/N=3). Furthermore, the proposed aptasensor had a promising potential for the application of Hg(2+) detection in real aquatic sample analysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Rapid detection of genetically diverse tomato black ring virus isolates using reverse transcription loop-mediated isothermal amplification.

    Science.gov (United States)

    Hasiów-Jaroszewska, Beata; Budzyńska, Daria; Borodynko, Natasza; Pospieszny, Henryk

    2015-12-01

    A reverse transcription loop-mediated isothermal amplification assay (RT-LAMP) has been developed for detection of tomato black ring virus (TBRV) isolates collected from different hosts. One-step RT-LAMP was performed with a set of four primers, the design of which was based on the coat protein gene. Results of RT-LAMP were visualized by direct staining of products with fluorescent dyes, agarose gel electrophoresis, and analysis of amplification curves. The sensitivity of RT-LAMP was 100-fold greater than that of RT-PCR. The RT-LAMP assay developed here is a useful and practical method for diagnosis of TBRV.

  3. Development of Rapid Isothermal Amplification Assays for Detection of Phytophthora spp. in Plant Tissue.

    Science.gov (United States)

    Miles, Timothy D; Martin, Frank N; Coffey, Michael D

    2015-02-01

    Several isothermal amplification techniques recently have been developed that are tolerant of inhibitors present in many plant extracts, which can reduce the need for obtaining purified DNA for running diagnostic assays. One such commercially available technique that has similarities with real-time polymerase chain reaction (PCR) for designing primers and a labeled probe is recombinase polymerase amplification (RPA). This technology was used to develop two simple and rapid approaches for detection of Phytophthora spp.: one genus-specific assay multiplexed with a plant internal control and the other species-specific assays for Phytophthora ramorum and P. kernoviae. All assays were tested for sensitivity (ranging from 3 ng to 1 fg of DNA) and specificity using DNA extracted from more than 136 Phytophthora taxa, 21 Pythium spp., 1 Phytopythium sp., and a wide range of plant species. The lower limit of linear detection using purified DNA was 200 to 300 fg of DNA in all pathogen RPA assays. Six different extraction buffers were tested for use during plant tissue maceration and the assays were validated in the field by collecting 222 symptomatic plant samples from over 50 different hosts. Only 56 samples were culture positive for Phytophthora spp. whereas 91 were positive using the Phytophthora genus-specific RPA test and a TaqMan real-time PCR assay. A technique for the generation of sequencing templates from positive RPA amplifications to confirm species identification was also developed. These RPA assays have added benefits over traditional technologies because they are rapid (results can be obtained in as little as 15 min), do not require DNA extraction or extensive training to complete, use less expensive portable equipment than PCR-based assays, and are significantly more specific than current immunologically based methods. This should provide a rapid, field-deployable capability for pathogen detection that will facilitate point-of-sample collection processing

  4. Target recycling amplification for label-free and sensitive colorimetric detection of adenosine triphosphate based on un-modified aptamers and DNAzymes.

    Science.gov (United States)

    Gong, Xue; Li, Jinfu; Zhou, Wenjiao; Xiang, Yun; Yuan, Ruo; Chai, Yaqin

    2014-05-30

    Based on target recycling amplification, the development of a new label-free, simple and sensitive colorimetric detection method for ATP by using un-modified aptamers and DNAzymes is described. The association of the model target molecules (ATP) with the corresponding aptamers of the dsDNA probes leads to the release of the G-quadruplex sequences. The ATP-bound aptamers can be further degraded by Exonuclease III to release ATP, which can again bind the aptamers of the dsDNA probes to initiate the target recycling amplification process. Due to this target recycling amplification, the amount of the released G-quadruplex sequences is significantly enhanced. Subsequently, these G-quadruplex sequences bind hemin to form numerous peroxidase mimicking DNAzymes, which cause substantially intensified color change of the probe solution for highly sensitive colorimetric detection of ATP down to the sub-nanomolar (0.33nM) level. Our method is highly selective toward ATP against other control molecules and can be performed in one single homogeneous solution, which makes our sensing approach hold great potential for sensitive colorimetric detection of other small molecules and proteins. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Visual detection of West Nile virus using reverse transcription loop-mediated isothermal amplification combined with a vertical flow visualization strip

    Directory of Open Access Journals (Sweden)

    Zengguo eCao

    2016-04-01

    Full Text Available West Nile virus (WNV causes a severe zoonosis, which can lead to a large number of casualties and considerable economic losses. A rapid and accurate identification methodfor WNV for use in field laboratories is urgently needed. Here, a method utilizing reverse transcription loop-mediated isothermal amplification combined with a vertical flow visualization strip (RT-LAMP-VF was developed to detect the envelope (E gene of WNV. The RT-LAMP-VF assay could detect 102 copies/μl ofan WNV RNA standard using a 40 min amplification reaction followed by a 2 min incubationof the amplification product on the visualization strip, and no cross-reaction with other closely related members of theFlavivirus genus was observed. The assay was further evaluated using cells and mouse brain tissues infected with a recombinant rabies virus expressing the E protein of WNV.The assay produced sensitivities of 101.5TCID50/ml and 101.33 TCID50/ml for detection of the recombinant virus in the cells and brain tissues, respectively. Overall, the RT-LAMP-VF assay developed in this study is rapid, simple and effective, and it is therefore suitable for clinical application in the field.

  6. Detecting single DNA copy number variations in complex genomes using one nanogram of starting DNA and BAC-array CGH.

    Science.gov (United States)

    Guillaud-Bataille, Marine; Valent, Alexander; Soularue, Pascal; Perot, Christine; Inda, Maria Mar; Receveur, Aline; Smaïli, Sadek; Roest Crollius, Hugues; Bénard, Jean; Bernheim, Alain; Gidrol, Xavier; Danglot, Gisèle

    2004-07-29

    Comparative genomic hybridization to bacterial artificial chromosome (BAC)-arrays (array-CGH) is a highly efficient technique, allowing the simultaneous measurement of genomic DNA copy number at hundreds or thousands of loci, and the reliable detection of local one-copy-level variations. We report a genome-wide amplification method allowing the same measurement sensitivity, using 1 ng of starting genomic DNA, instead of the classical 1 microg usually necessary. Using a discrete series of DNA fragments, we defined the parameters adapted to the most faithful ligation-mediated PCR amplification and the limits of the technique. The optimized protocol allows a 3000-fold DNA amplification, retaining the quantitative characteristics of the initial genome. Validation of the amplification procedure, using DNA from 10 tumour cell lines hybridized to BAC-arrays of 1500 spots, showed almost perfectly superimposed ratios for the non-amplified and amplified DNAs. Correlation coefficients of 0.96 and 0.99 were observed for regions of low-copy-level variations and all regions, respectively (including in vivo amplified oncogenes). Finally, labelling DNA using two nucleotides bearing the same fluorophore led to a significant increase in reproducibility and to the correct detection of one-copy gain or loss in >90% of the analysed data, even for pseudotriploid tumour genomes.

  7. Amplification-free liquid biopsy by fluorescence approach

    DEFF Research Database (Denmark)

    Uhd, Jesper; Okholm, Anders; Kjems, Jargen

    2017-01-01

    Liquid biopsy is an attractive new paradigm of modern cancer research and clinical oncology. Synergy of fluorescence microscopy with mutation specific molecular probes is a method that we developed for the detection of tumor related circulating DNA, ctDNA. The present detection methods of ctDNA...... samples include amplification-based techniques that have multiple challenges, are often time consuming and rather expensive. In this work, we successfully applied the hybridization assay and advanced microscopy for the reliable amplification-free detection and quantification of cancer associated mutations...... in ctDNA....

  8. Detection and typing of human papillomavirus in archival cervical cancer specimens by DNA amplification with consensus primers

    NARCIS (Netherlands)

    RESNICK, R. M.; Cornelissen, M. T.; WRIGHT, D. K.; EICHINGER, G. H.; FOX, H. S.; ter Schegget, J.; MANOS, M. M.

    1990-01-01

    We developed a polymerase chain reaction DNA amplification system using two distinct consensus oligonucleotide primer sets for the improved detection and typing of a broad spectrum of human genital papillomavirus (HPV) sequences, including those of novel viruses. The system incorporates one primer

  9. A Label-Free and Sensitive Fluorescent Qualitative Assay for Bisphenol A Based on Rolling Circle Amplification/Exonuclease III-Combined Cascade Amplification

    Directory of Open Access Journals (Sweden)

    Xia Li

    2016-10-01

    Full Text Available Bisphenol A (BPA detection in drinking water and food packaging materials has attracted much attention since the discovery that BPA can interfere with normal physiological processes and cause adverse health effects. Here, we constructed a label-free aptamer fluorescent assay for selective and sensitive detection of BPA based on the rolling circle amplification (RCA/Exonuclease III (Exo III-combined cascade amplification strategy. First, the duplex DNA probe (RP with anti-BPA aptamer and trigger sequence was designed for BPA recognition and signal amplification. Next, under the action of BPA, the trigger probe was liberated from RP to initiate RCA reaction as primary amplification. Subsequently, the RCA products were used to trigger Exo III assisted secondary amplification with the help of hairpin probes, producing plenty of “G-quadruplex” in lantern-like structures. Finally, the continuously enriched “G-quadruplex lanterns” were lightened by zinc(II-protoporphyrin IX (ZnPPIX generating enhanced fluorescence signals. By integrating the primary RCA and secondary Exo III mediated cascade amplification strategy, this method displayed an excellent sensitivity with the detection limits of 5.4 × 10−17 M. In addition, the anti-BPA aptamer exhibits high recognition ability with BPA, guaranteeing the specificity of detection. The reporter signal probe (G-quadruplex with ZnPPIX provides a label-free fluorescence signals readout without complicated labeling procedures, making the method simple in design and cost-effective in operation. Moreover, environmental samples analysis was also performed, suggesting that our strategy was reliable and had a great potential application in environmental monitoring.

  10. A Label-Free and Sensitive Fluorescent Qualitative Assay for Bisphenol A Based on Rolling Circle Amplification/Exonuclease III-Combined Cascade Amplification.

    Science.gov (United States)

    Li, Xia; Song, Juan; Xue, Qing-Wang; You, Fu-Heng; Lu, Xia; Kong, Yan-Cong; Ma, Shu-Yi; Jiang, Wei; Li, Chen-Zhong

    2016-10-21

    Bisphenol A (BPA) detection in drinking water and food packaging materials has attracted much attention since the discovery that BPA can interfere with normal physiological processes and cause adverse health effects. Here, we constructed a label-free aptamer fluorescent assay for selective and sensitive detection of BPA based on the rolling circle amplification (RCA)/Exonuclease III (Exo III)-combined cascade amplification strategy. First, the duplex DNA probe (RP) with anti-BPA aptamer and trigger sequence was designed for BPA recognition and signal amplification. Next, under the action of BPA, the trigger probe was liberated from RP to initiate RCA reaction as primary amplification. Subsequently, the RCA products were used to trigger Exo III assisted secondary amplification with the help of hairpin probes, producing plenty of "G-quadruplex" in lantern-like structures. Finally, the continuously enriched "G-quadruplex lanterns" were lightened by zinc(II)-protoporphyrin IX (ZnPPIX) generating enhanced fluorescence signals. By integrating the primary RCA and secondary Exo III mediated cascade amplification strategy, this method displayed an excellent sensitivity with the detection limits of 5.4 × 10 -17 M. In addition, the anti-BPA aptamer exhibits high recognition ability with BPA, guaranteeing the specificity of detection. The reporter signal probe (G-quadruplex with ZnPPIX) provides a label-free fluorescence signals readout without complicated labeling procedures, making the method simple in design and cost-effective in operation. Moreover, environmental samples analysis was also performed, suggesting that our strategy was reliable and had a great potential application in environmental monitoring.

  11. Detection of Yersinia enterocolitica in milk powders by cross-priming amplification combined with immunoblotting analysis.

    Science.gov (United States)

    Zhang, Hongwei; Feng, Shaolong; Zhao, Yulong; Wang, Shuo; Lu, Xiaonan

    2015-12-02

    Yersinia enterocolitica (Y. enterocolitica) is frequently isolated from a wide variety of foods and can cause human yersiniosis. Biochemical and culture-based assays are common detection methods, but require a long incubation time and easily misidentify Y. enterocolitica as other non-pathogenic Yersinia species. Alternatively, cross-priming amplification (CPA) under isothermal conditions combined with immunoblotting analysis enables a more sensitive detection in a relatively short time period. A set of specific displacement primers, cross primers and testing primers was designed on the basis of six specific sequences in Y. enterocolitica 16S-23S rDNA internal transcribed spacer. Under isothermal condition, amplification and hybridization were conducted simultaneously at 63°C for 60 min. The specificity of CPA was tested for 96 different bacterial strains and 165 commercial milk powder samples. Two red lines were developed on BioHelix Express strip for all of the Y. enterocolitica strains, and one red line was shown for non-Y. enterocolitica strains. The limit of detection of CPA was 10(0)fg for genomic DNA (1000 times more sensitive than PCR assay), 10(1) CFU/ml for pure bacterial culture, and 10(0) CFU per 100 g milk powder with pre-enrichment at 37°C for 24 h. CPA combined with immunoblotting analysis can achieve highly specific and sensitive detection of Y. enterocolitica in milk powder in 90 min after pre-enrichment. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Sensitive electrochemiluminescence biosensor based on Au-ITO hybrid bipolar electrode amplification system for cell surface protein detection.

    Science.gov (United States)

    Wu, Mei-Sheng; Yuan, Da-Jing; Xu, Jing-Juan; Chen, Hong-Yuan

    2013-12-17

    Here we developed a novel hybrid bipolar electrode (BPE)-electrochemiluminescence (ECL) biosensor based on hybrid bipolar electrode (BPE) for the measurement of cancer cell surface protein using ferrocence (Fc) labeled aptamer as signal recognition and amplification probe. According to the electric neutrality of BPE, the cathode of U-shaped ITO BPE was electrochemically deposited by Au nanoparticles (NPs) to enhance its conductivity and surface area, decrease the overpotential of O2 reduction, which would correspondingly increase the oxidation current of Ru(bpy)3(2+)/tripropylamine (TPA) on the anode of BPE and resulting a ∼4-fold enhancement of ECL intensity. Then a signal amplification strategy was designed by introducing Fc modified aptamer on the anode surface of BPE through hybridization for detecting the amount of mucin-1 on MCF-7 cells. The presence of Fc could not only inhibit the oxidation of Ru(bpy)3(2+) because of its lower oxidation potential, its oxidation product Fc(+) could also quench the ECL of Ru(bpy)3(2+)/TPA by efficient energy-transfer from the excited-state Ru(bpy)3(2+)* to Fc(+), making the ECL intensity greatly quenched. On the basis of the cathodic Au NPs induced ECL enhancing coupled with anodic Fc induced signal quenching amplification, the approach allowed detection of mucin-1 aptamer at a concentration down to 0.5 fM and was capable of detecting a minimum of 20 MCF-7 cells. Besides, the amount of mucin-1 on MCF-7 cells was calculated to be 9041 ± 388 molecules/cell. This approach therefore shows great promise in bioanalysis.

  13. Cellular oncogene expression following exposure of mice to γ-rays

    International Nuclear Information System (INIS)

    Anderson, A.; Woloschak, G.E.

    1991-01-01

    We examined the effects of total body exposure of BCF1 mice to γ-rays (300 cGy) in modulating expression of cellular oncogenes in both gut and liver tissues. We selected specific cellular oncogenes (c-fos, c-myc, c-src, and c-H-ras), based on their normal expression in liver and gut tissues from untreated mice. As early as 5 min. following whole body exposure of BCF1 mice to γ-rays we detected induction of mRNA specific for c-src and c-H-ras in both liver and gut tissues. c-fos RNA was slightly decreased in accumulation in gut but was unaffected in liver tissue from irradiated mice relative to untreated controls. c-myc mRNA accumulation was unaffected in all tissues examined. These experiments document that modulation of cellular oncogene expression can occur as an early event in tissues following irradiation and suggest that this modulation may play a role in radiation-induced carcinogenesis

  14. Exponential isothermal amplification of nucleic acids and amplified assays for proteins, cells, and enzyme activities.

    Science.gov (United States)

    Reid, Michael S; Le, X Chris; Zhang, Hongquan

    2018-04-27

    Isothermal exponential amplification techniques, such as strand-displacement amplification (SDA), rolling circle amplification (RCA), loop-mediated isothermal amplification (LAMP), nucleic acid sequence-based amplification (NASBA), helicase-dependent amplification (HDA), and recombinase polymerase amplification (RPA), have great potential for on-site, point-of-care, and in-situ assay applications. These amplification techniques eliminate the need for temperature cycling required for polymerase chain reaction (PCR) while achieving comparable amplification yield. We highlight here recent advances in exponential amplification reaction (EXPAR) for the detection of nucleic acids, proteins, enzyme activities, cells, and metal ions. We discuss design strategies, enzyme reactions, detection techniques, and key features. Incorporation of fluorescence, colorimetric, chemiluminescence, Raman, and electrochemical approaches enables highly sensitive detection of a variety of targets. Remaining issues, such as undesirable background amplification resulting from non-specific template interactions, must be addressed to further improve isothermal and exponential amplification techniques. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Loop-mediated isothermal amplification assay for rapid and sensitive detection of sheep pox and goat pox viruses in clinical samples.

    Science.gov (United States)

    Venkatesan, G; Balamurugan, V; Bhanuprakash, V; Singh, R K; Pandey, A B

    2016-06-01

    A Loop-mediated isothermal amplification (LAMP) assay targeting the highly conserved DNA polymerase gene of capripox virus genome was developed and evaluated for rapid detection of sheep pox and goat pox viruses. The optimized LAMP assay is found specific and sensitive for amplification of target DNA with a diagnostic sensitivity and specificity of 96.6% and 100% respectively compared to quantitative PCR. The detection rate of LAMP, PCR and Q-PCR assays is found to be 81.5%, 67% and 83% respectively. This LAMP assay has the potential for rapid clinical diagnosis and surveillance of sheep pox and goat pox in field diagnostic laboratories. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Development of a loop-mediated isothermal amplification assay for detection of Trichomonas vaginalis.

    Science.gov (United States)

    Reyes, John Carlo B; Solon, Juan Antonio A; Rivera, Windell L

    2014-07-01

    A loop-mediated isothermal amplification (LAMP) assay targeting the 2-kbp repeated DNA species-specific sequence was developed for detection of Trichomonas vaginalis, the causative agent of trichomoniasis. The analytical sensitivity and specificity of the LAMP assay were evaluated using pooled genital swab and urine specimens, respectively, spiked with T. vaginalis trophozoites. Genital secretion and urine did not inhibit the detection of the parasite. The sensitivity of the LAMP was 10-1000 times higher than the PCR performed. The detection limit of LAMP was 1 trichomonad for both spiked genital swab and urine specimens. Also, LAMP did not exhibit cross-reactivity with closely-related trichomonads, Trichomonas tenax and Pentatrichomonas hominis, and other enteric and urogenital microorganisms, Entamoeba histolytica, Candida albicans, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. This is the first report of a LAMP assay for the detection of T. vaginalis and has prospective application for rapid diagnosis and control of trichomoniasis. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Ternary Surface Monolayers for Ultrasensitive (Zeptomole) Amperometric Detection of Nucleic-Acid Hybridization without Signal Amplification

    Science.gov (United States)

    Wu, Jie; Campuzano, Susana; Halford, Colin; Haake, David A.; Wang, Joseph

    2010-01-01

    A ternary surface monolayer, consisting of co-assembled thiolated capture probe (SHCP) mercaptohexanol (MCH) and dithiothreitol (DTT), is shown to offer dramatic improvements in the signal-to-noise characteristics of electrochemical DNA hybridization biosensors based on common self-assembled monolayers (SAMs). Remarkably low detection limits down to 40 zmole (in 4 μL samples) as well as only 1 CFU E. coli per sensor are thus obtained without any additional amplification step in connection to the commonly used horseradish peroxidase/3,3′,5,5′-tetramethylbenzidine (HRP/TMB) system. Such dramatic improvements in the detection limits (compared to common binary alkanethiol interfaces and to most electrochemical DNA sensing strategies without target or signal amplification) are attributed primarily to the remarkably higher resistance to non-specific adsorption. This reflects the highly compact layer (with lower pinhole density) produced by the coupling of the cyclic- and linear-configuration ‘backfillers’ that leads to a remarkably low background noise even in the presence of complex sample matrices. A wide range of surface compositions have been investigated and the ternary mixed monolayer has been systematically optimized. Detailed impedance spectroscopy and cyclic voltammetric studies shed useful insights into the surface coverage. The impressive sensitivity and high specificity of the simple developed methodology indicate great promise for a wide range of nucleic acid testing, including clinical diagnostics, biothreat detection, food safety and forensic analysis. PMID:20883023

  18. Ternary surface monolayers for ultrasensitive (zeptomole) amperometric detection of nucleic acid hybridization without signal amplification.

    Science.gov (United States)

    Wu, Jie; Campuzano, Susana; Halford, Colin; Haake, David A; Wang, Joseph

    2010-11-01

    A ternary surface monolayer, consisting of coassembled thiolated capture probe, mercaptohexanol and dithiothreitol, is shown to offer dramatic improvements in the signal-to-noise characteristics of electrochemical DNA hybridization biosensors based on common self-assembled monolayers. Remarkably low detection limits down to 40 zmol (in 4 μL samples) as well as only 1 CFU Escherichia coli per sensor are thus obtained without any additional amplification step in connection to the commonly used horseradish peroxidase/3,3',5,5'-tetramethylbenzidine system. Such dramatic improvements in the detection limits (compared to those of common binary alkanethiol interfaces and to those of most electrochemical DNA sensing strategies without target or signal amplification) are attributed primarily to the remarkably higher resistance to nonspecific adsorption. This reflects the highly compact layer (with lower pinhole density) produced by the coupling of the cyclic- and linear-configuration "backfillers" that leads to a remarkably low background noise even in the presence of complex sample matrixes. A wide range of surface compositions have been investigated, and the ternary mixed monolayer has been systematically optimized. Detailed impedance spectroscopy and cyclic voltammetric studies shed useful insights into the surface coverage. The impressive sensitivity and high specificity of the simple developed methodology indicate great promise for a wide range of nucleic acid testing, including clinical diagnostics, biothreat detection, food safety, and forensic analysis.

  19. Simultaneous amplification of two bacterial genes: more reliable method of Helicobacter pylori detection in microbial rich dental plaque samples.

    Science.gov (United States)

    Chaudhry, Saima; Idrees, Muhammad; Izhar, Mateen; Butt, Arshad Kamal; Khan, Ayyaz Ali

    2011-01-01

    Polymerase Chain reaction (PCR) assay is considered superior to other methods for detection of Helicobacter pylori (H. pylori) in oral cavity; however, it also has limitations when sample under study is microbial rich dental plaque. The type of gene targeted and number of primers used for bacterial detection in dental plaque samples can have a significant effect on the results obtained as there are a number of closely related bacterial species residing in plaque biofilm. Also due to high recombination rate of H. pylori some of the genes might be down regulated or absent. The present study was conducted to determine the frequency of H. pylori colonization of dental plaque by simultaneously amplifying two genes of the bacterium. One hundred dental plaque specimens were collected from dyspeptic patients before their upper gastrointestinal endoscopy and presence of H. pylori was determined through PCR assay using primers targeting two different genes of the bacterium. Eighty-nine of the 100 samples were included in final analysis. With simultaneous amplification of two bacterial genes 51.6% of the dental plaque samples were positive for H. pylori while this prevalence increased to 73% when only one gene amplification was used for bacterial identification. Detection of H. pylori in dental plaque samples is more reliable when two genes of the bacterium are simultaneously amplified as compared to one gene amplification only.

  20. Identifying Breast Cancer Oncogenes

    Science.gov (United States)

    2011-10-01

    cells we observed that it promoted transformation of HMLE cells, suggesting a tumor suppressive role of Merlin in breast cancer (Figure 4B). A...08-1-0767 TITLE: Identifying Breast Cancer Oncogenes PRINCIPAL INVESTIGATOR: Yashaswi Shrestha...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 W81XWH-08-1-0767 Identifying Breast Cancer Oncogenes Yashaswi Shrestha Dana-Farber

  1. Oncogenic cancer/testis antigens

    DEFF Research Database (Denmark)

    Gjerstorff, Morten F; Andersen, Mads H; Ditzel, Henrik J

    2015-01-01

    Recent developments have set the stage for immunotherapy as a supplement to conventional cancer treatment. Consequently, a significant effort is required to further improve efficacy and specificity, particularly the identification of optimal therapeutic targets for clinical testing. Cancer....../testis antigens are immunogenic, highly cancer-specific, and frequently expressed in various types of cancer, which make them promising candidate targets for cancer immunotherapy, including cancer vaccination and adoptive T-cell transfer with chimeric T-cell receptors. Our current understanding of tumor...... immunology and immune escape suggests that targeting oncogenic antigens may be beneficial, meaning that identification of cancer/testis antigens with oncogenic properties is of high priority. Recent work from our lab and others provide evidence that many cancer/testis antigens, in fact, have oncogenic...

  2. Loop-mediated isothermal amplification (LAMP) method for detection of genetically modified maize T25.

    Science.gov (United States)

    Xu, Junyi; Zheng, Qiuyue; Yu, Ling; Liu, Ran; Zhao, Xin; Wang, Gang; Wang, Qinghua; Cao, Jijuan

    2013-11-01

    The loop-mediated isothermal amplification (LAMP) assay indicates a potential and valuable means for genetically modified organism (GMO) detection especially for its rapidity, simplicity, and low cost. We developed and evaluated the specificity and sensitivity of the LAMP method for rapid detection of the genetically modified (GM) maize T25. A set of six specific primers was successfully designed to recognize six distinct sequences on the target gene, including a pair of inner primers, a pair of outer primers, and a pair of loop primers. The optimum reaction temperature and time were verified to be 65°C and 45 min, respectively. The detection limit of this LAMP assay was 5 g kg(-1) GMO component. Comparative experiments showed that the LAMP assay was a simple, rapid, accurate, and specific method for detecting the GM maize T25.

  3. Development of Loop-Mediated Isothermal Amplification Assay for Detection of Entamoeba histolytica▿

    Science.gov (United States)

    Liang, Shih-Yu; Chan, Yun-Hsien; Hsia, Kan-Tai; Lee, Jing-Lun; Kuo, Ming-Chu; Hwa, Kuo-Yuan; Chan, Chi-Wen; Chiang, Ting-Yi; Chen, Jung-Sheng; Wu, Fang-Tzy; Ji, Dar-Der

    2009-01-01

    A novel one-step, closed-tube, loop-mediated isothermal amplification (LAMP) assay for detecting Entamoeba histolytica, one of the leading causes of morbidity in developing countries, was developed. The sensitivity of the LAMP assay is 1 parasite per reaction. A total of 130 clinical samples were analyzed, and the results compared with those of conventional nested PCR to validate the practicability of this assay. No DNA was amplified from other diarrheal pathogens, such as other Entamoeba species, bacteria, and viruses. These results indicate that LAMP is a rapid, simple, and valuable diagnostic tool for epidemiological studies of amebiasis. PMID:19321720

  4. A novel fluorescent biosensor for Adenosine Triphosphate detection based on the polydopamine nanospheres integrating with enzymatic recycling amplification.

    Science.gov (United States)

    Ji, Xiaoting; Yi, Bingqing; Xu, Yujuan; Zhao, Yanan; Zhong, Hua; Ding, Caifeng

    2017-07-01

    Based on the protective performance of polydopamine nanospheres (PDANSs) for DNA against nuclease digestion and the specific recognition characteristic of aptamer, we have developed an enzymatic recycling signal amplification method for highly sensitive and selective detection of adenosine triphosphate (ATP). Fluorescence measurements were carried out to verify the DNA polymerase and exonuclease III (Exo III) assisted target recycling process and fluorescence signal amplification. In the absence of the ATP, initially, the signal DNA-PDANSs complex was in the "off" state due to the efficient fluorescence quenching of 6-carboxyfluorescein (FAM) adjacent to the surface of PDANSs. Due to the binding of the aptamer by ATP, it trigger DNA polymerase and Exo III assisted target recycling process by the product of release, the complex would change into the "on" state as a result of the dissociation of the FAM from the surface of PDANSs, thus providing greatly enhanced fluorescence emission intensity. The method allows quantitative detection of ATP in the range of 20-600nM with a detection limit of 8.32nM. This biosensor requires no complex operations, and is a new high efficiency method for ATP detection. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Detection of Puccinia kuehnii Causing Sugarcane Orange Rust with a Loop-Mediated Isothermal Amplification-Based Assay.

    Science.gov (United States)

    Chandra, Amaresh; Keizerweerd, Amber T; Grisham, Michael P

    2016-03-01

    Puccinia kuehnii is a fungal pathogen that causes orange rust in sugarcane, which is now prevalent in many countries. At the early stage of disease, it is almost indistinguishable from brown rust, which is caused by Puccinia melanocephala. Although several PCR assays are available to detect these diseases, the loop-mediated isothermal amplification (LAMP)-based assay has been reported to be more economical and easier to perform. Under isothermal conditions, DNA is amplified with high specificity and rapidity. Moreover, visual judgment of color change without further post-amplification processing makes the method convenient. The present study was undertaken to detect P. kuehnii genomic DNA using four primers corresponding to a unique DNA sequence of P. kuehnii. The LAMP assay was found to be optimal when 8 mM MgSO4 was used and the reaction was incubated at 63 °C for 90 min. Positive samples showed a color change from orange to green upon SYBR Green I dye addition. Specificity of the LAMP test was checked with DNA of P. melanocephala, which showed no reaction. Sensitivity of the LAMP method was observed to be the same as real-time PCR at 0.1 ng, thus providing a rapid and more affordable option for early disease detection.

  6. Detection of MYCN Gene Amplification in Neuroblastoma by Fluorescence In Situ Hybridization: A Pediatric Oncology Group Study

    Directory of Open Access Journals (Sweden)

    Prasad Mathew

    2001-01-01

    Full Text Available To assess the utility of fluorescence in situ hybridization (FISH for analysis of MYCN gene amplification in neuroblastoma, we compared this assay with Southern blot analysis using tumor specimens collected from 232 patients with presenting characteristics typical of this disease. The FISH technique identified MYCN amplification in 47 cases, compared with 39 by Southern blotting, thus increasing the total number of positive cases by 21%. The major cause of discordancy was a low fraction of tumor cells (≤30% replacement in clinical specimens, which prevented an accurate estimate of MYCN copy number by Southern blotting. With FISH, by contrast, it was possible to analyze multiple interphase nuclei of tumor cells, regardless of the proportion of normal peripheral blood, bone marrow, or stromal cells in clinical samples. Thus, FISH could be performed accurately with very small numbers of tumor cells from touch preparations of needle biopsies. Moreover, this procedure allowed us to discern the heterogeneous pattern of MYCN amplification that is characteristic of neuroblastoma. We conclude that FISH improves the detection of MYCN gene amplification in childhood neuroblastomas in a clinical setting, thus facilitating therapeutic decisions based on the presence or absence of this prognostically important biologic marker.

  7. Toehold-mediated strand displacement reaction triggered isothermal DNA amplification for highly sensitive and selective fluorescent detection of single-base mutation.

    Science.gov (United States)

    Zhu, Jing; Ding, Yongshun; Liu, Xingti; Wang, Lei; Jiang, Wei

    2014-09-15

    Highly sensitive and selective detection strategy for single-base mutations is essential for risk assessment of malignancy and disease prognosis. In this work, a fluorescent detection method for single-base mutation was proposed based on high selectivity of toehold-mediated strand displacement reaction (TSDR) and powerful signal amplification capability of isothermal DNA amplification. A discrimination probe was specially designed with a stem-loop structure and an overhanging toehold domain. Hybridization between the toehold domain and the perfect matched target initiated the TSDR along with the unfolding of the discrimination probe. Subsequently, the target sequence acted as a primer to initiate the polymerization and nicking reactions, which released a great abundant of short sequences. Finally, the released strands were annealed with the reporter probe, launching another polymerization and nicking reaction to produce lots of G-quadruplex DNA, which could bind the N-methyl mesoporphyrin IX to yield an enhanced fluorescence response. However, when there was even a single base mismatch in the target DNA, the TSDR was suppressed and so subsequent isothermal DNA amplification and fluorescence response process could not occur. The proposed approach has been successfully implemented for the identification of the single-base mutant sequences in the human KRAS gene with a detection limit of 1.8 pM. Furthermore, a recovery of 90% was obtained when detecting the target sequence in spiked HeLa cells lysate, demonstrating the feasibility of this detection strategy for single-base mutations in biological samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Detection and differentiation of Fusarium oxysporum f. sp. lycopersici race 1 using loop-mediated isothermal amplification with three primer sets.

    Science.gov (United States)

    Ayukawa, Y; Komatsu, K; Kashiwa, T; Akai, K; Yamada, M; Teraoka, T; Arie, T

    2016-09-01

    Fusarium oxysporum f. sp. lycopersici (Fol) causes tomato wilt. Based on the difference in pathogenicity towards tomato cultivars, Fol is classified into three races. In this study, a rapid method is developed for the detection and discrimination of Fol race 1 using a loop-mediated isothermal amplification (LAMP) assay with two primer sets targeting a region of the nucleotide sequence of the SIX4 gene specific for race 1 and a primer set targeting the SIX5 gene, conserved in all known Fol isolates. Upon LAMP reaction, amplification using all three primer sets was observed only when DNA of Fol race 1 was used as a template, and not when DNA of other Fol races or other fungal species was used. This method could detect 300 fg of Fol race 1 DNA, a 100-fold higher sensitivity than that obtained by conventional PCR. The method can also detect DNA extracted from soil artificially infested with Fol race 1. It is now possible to detect Fol race 1 in colonies and infected tomato stems without DNA isolation. This method is a rapid and simple tool for discrimination of Fol race 1. This study developed a loop-mediated isothermal amplification (LAMP) assay for detection and differentiation of Fusarium oxysporum f. sp. lycopersici (Fol) race 1 by using three primer sets targeting for the SIX4 and SIX5 genes. These genes are present together only in Fol race 1. This method can detect Fol race 1 in infected tomato stems without DNA extraction, affording an efficient diagnosis of Fusarium wilt on tomatoes in the field. © 2016 The Society for Applied Microbiology.

  9. Signal-off Electrochemiluminescence Biosensor Based on Phi29 DNA Polymerase Mediated Strand Displacement Amplification for MicroRNA Detection.

    Science.gov (United States)

    Chen, Anyi; Gui, Guo-Feng; Zhuo, Ying; Chai, Ya-Qin; Xiang, Yun; Yuan, Ruo

    2015-06-16

    A target induced cycling strand displacement amplification (SDA) mediated by phi29 DNA polymerase (phi29) was first investigated and applied in a signal-off electrochemiluminescence (ECL) biosensor for microRNA (miRNA) detection. Herein, the target miRNA triggered the phi29-mediated SDA which could produce amounts of single-stranded DNA (assistant probe) with accurate and comprehensive nucleotide sequence. Then, the assistant probe hybridized with the capture probe and the ferrocene-labeled probe (Fc-probe) to form a ternary "Y" structure for ECL signal quenching by ferrocene. Therefore, the ECL intensity would decrease with increasing concentration of the target miRNA, and the sensitivity of biosensor would be promoted on account of the efficient signal amplification of the target induced cycling reaction. Besides, a self-enhanced Ru(II) ECL system was designed to obtain a stable and strong initial signal to further improve the sensitivity. The ECL assay for miRNA-21 detection is developed with excellent sensitivity of a concentration variation from 10 aM to 1.0 pM and limit of detection down to 3.3 aM.

  10. Expression of proto-oncogene KIT is up-regulated in subset of human meningiomas

    International Nuclear Information System (INIS)

    Saini, Masum; Jha, Ajaya Nand; Abrari, Andleeb; Ali, Sher

    2012-01-01

    KIT is a proto-oncogene involved in diverse neoplastic processes. Aberrant kinase activity of the KIT receptor has been targeted by tyrosine kinase inhibitor (TKI) therapy in different neoplasias. In all the earlier studies, KIT expression was reported to be absent in meningiomas. However, we observed KIT mRNA expression in some meningioma cases. This prompted us to undertake its detailed analyses in meningioma tissues resected during 2008–2009. Tumor tissues and matched peripheral blood samples collected from meningioma patients were used for detailed molecular analyses. KIT expression was ascertained immunohistochemically and validated by immunoblotting. KIT and KITLG transcript levels were discerned by reverse transcription quantitative real-time PCR (RT-qPCR). Similarly, KIT amplification and allele loss were assessed by quantitative real-time (qPCR) and validated by fluorescence in situ hybridization (FISH) on the neoplastic tissues. Possible alterations of the gene at the nucleotide level were analyzed by sequencing. Contrary to earlier reports, KIT expression, was detected immunohistochemically in 20.6% meningioma cases (n = 34). Receptor (KIT) and ligand (KITLG) transcripts monitored by RT-qPCR were found to co-express (p = 0.048) in most of the KIT immunopositive tumors. 1/7 KIT positive meningiomas showed allele loss corroborated by reduced FISH signal in the corresponding neoplastic tissue. Sequence analysis of KIT showed M541L substitution in exon 10, in one of the immunopositive cases. However, its biological consequence remains to be uncovered. This study clearly demonstrates KIT over-expression in the human meningiomas. The data suggest that up-regulated KIT transcription (p < 0.001), instead of gene amplification (p > 0.05), is a likely mechanism responsible for altered KIT expression. Thus, KIT is a potential candidate for detailed investigation in the context of meningioma pathogenesis

  11. A lab-on-a-chip system with integrated sample preparation and loop-mediated isothermal amplification for rapid and quantitative detection of Salmonella spp. in food samples

    DEFF Research Database (Denmark)

    Sun, Yi; Than Linh, Quyen; Hung, Tran Quang

    2015-01-01

    was capable to detect Salmonella at concentration of 50 cells per test within 40 min. The simple design, together with high level of integration, isothermal amplification, and quantitative analysis of multiple samples in short time will greatly enhance the practical applicability of the LOC system for rapid...... amplification (LAMP) for rapid and quantitative detection of Salmonella spp. in food samples. The whole diagnostic procedures including DNA isolation, isothermal amplification, and real-time detection were accomplished in a single chamber. Up to eight samples could be handled simultaneously and the system...... and usually take a few hours to days to complete. In response to the demand for rapid on line or at site detection of pathogens, in this study, we describe for the first time an eight-chamber lab-on-a-chip (LOC) system with integrated magnetic beads-based sample preparation and loop-mediated isothermal...

  12. Role of trace metals in cell proliferation in the human neuroblastoma: relations with the oncogene N-myc

    International Nuclear Information System (INIS)

    Moretto, Ph.; Michelet, C.; Gouget, B.; Ortega, R.; Sergiant, C.; Llabador, Y.; Simonoff, M.; Benard, J.

    1997-01-01

    Neuroblastoma is one of the most common tumors in young children. Iron is known to be necessary for cellular proliferation. Several studies have suggested that neuroblastoma cells appear to be relatively sensitive to growth inhibition by specific Fe chelators, in vitro. In addition, it appeared that an increased serum ferritin level at diagnosis was associated with a poorer outcome than a normal level. On the other hand it was reported that untreated primary neuroblastoma had multiple copies of the N-myc oncogene. A significant association between genomic amplification and rapid tumor progression after diagnosis has been demonstrated. In order to study the relationship between iron N-myc amplification, we propose to determine the trace metal content of neuroblastoma cells. Preliminary results obtained with two distinct cell lines: SK-N-SH, a neuroblastoma cell line with a single copy of N-myc and IGR-N-91, a metastatic cell line exhibiting 60 copies of N-myc are presented. (authors)

  13. Effect of ionizing radiation on the biological activity of activated oncogenes and dormant proto-oncogenes

    International Nuclear Information System (INIS)

    Angenent, G.C.; Berg, K.J. van den.

    1984-01-01

    The authors have studied the effect of ionizing radiation on the cloned human activated Ha-ras oncogene, on the Ha-ras gene in integrated form and on the dormant proto-oncogene murine c-mos using the NIH/3T3 transfection system. NIH/3T3 cells were transfected with DNA from the plasmid pT24 carrying the cloned Ha-ras oncogene of the T24 bladder carcinoma cell line. Various individual foci which developed were injected into nude mice. DNA was isolated from tumours, digested with the restriction enzyme Bam HI, electrophoresed on agarose and blotted onto nitrocellulose filter according to Southern. Hybridization with a pT24 probe showed that all the primary foci of transformed cells contained various fragments of the pT24 plasmid indicating that fibroblast transformation had been induced by introduction of the Ha-ras oncogene. (Auth.)

  14. Multiplex Nucleic Acid Sequence-Based Amplification for Simultaneous Detection of Several Enteric Viruses in Model Ready-To-Eat Foods†

    Science.gov (United States)

    Jean, Julie; D'Souza, Doris H.; Jaykus, Lee-Ann

    2004-01-01

    Human enteric viruses are currently recognized as one of the most important causes of food-borne disease. Implication of enteric viruses in food-borne outbreaks can be difficult to confirm due to the inadequacy of the detection methods available. In this study, a nucleic acid sequence-based amplification (NASBA) method was developed in a multiplex format for the specific, simultaneous, and rapid detection of epidemiologically relevant human enteric viruses. Three previously reported primer sets were used in a single reaction for the amplification of RNA target fragments of 474, 371, and 165 nucleotides for the detection of hepatitis A virus and genogroup I and genogroup II noroviruses, respectively. Amplicons were detected by agarose gel electrophoresis and confirmed by electrochemiluminescence and Northern hybridization. Endpoint detection sensitivity for the multiplex NASBA assay was approximately 10−1 reverse transcription-PCR-detectable units (or PFU, as appropriate) per reaction. When representative ready-to-eat foods (deli sliced turkey and lettuce) were inoculated with various concentrations of each virus and processed for virus detection with the multiplex NASBA method, all three human enteric viruses were simultaneously detected at initial inoculum levels of 100 to 102 reverse transcription-PCR-detectable units (or PFU)/9 cm2 in both food commodities. The multiplex NASBA system provides rapid and simultaneous detection of clinically relevant food-borne viruses in a single reaction tube and may be a promising alternative to reverse transcription-PCR for the detection of viral contamination of foods. PMID:15528524

  15. Multiplex nucleic acid sequence-based amplification for simultaneous detection of several enteric viruses in model ready-to-eat foods.

    Science.gov (United States)

    Jean, Julie; D'Souza, Doris H; Jaykus, Lee-Ann

    2004-11-01

    Human enteric viruses are currently recognized as one of the most important causes of food-borne disease. Implication of enteric viruses in food-borne outbreaks can be difficult to confirm due to the inadequacy of the detection methods available. In this study, a nucleic acid sequence-based amplification (NASBA) method was developed in a multiplex format for the specific, simultaneous, and rapid detection of epidemiologically relevant human enteric viruses. Three previously reported primer sets were used in a single reaction for the amplification of RNA target fragments of 474, 371, and 165 nucleotides for the detection of hepatitis A virus and genogroup I and genogroup II noroviruses, respectively. Amplicons were detected by agarose gel electrophoresis and confirmed by electrochemiluminescence and Northern hybridization. Endpoint detection sensitivity for the multiplex NASBA assay was approximately 10(-1) reverse transcription-PCR-detectable units (or PFU, as appropriate) per reaction. When representative ready-to-eat foods (deli sliced turkey and lettuce) were inoculated with various concentrations of each virus and processed for virus detection with the multiplex NASBA method, all three human enteric viruses were simultaneously detected at initial inoculum levels of 10(0) to 10(2) reverse transcription-PCR-detectable units (or PFU)/9 cm2 in both food commodities. The multiplex NASBA system provides rapid and simultaneous detection of clinically relevant food-borne viruses in a single reaction tube and may be a promising alternative to reverse transcription-PCR for the detection of viral contamination of foods.

  16. Limited role of murine ATM in oncogene-induced senescence and p53-dependent tumor suppression.

    Directory of Open Access Journals (Sweden)

    Alejo Efeyan

    Full Text Available Recent studies in human fibroblasts have provided a new general paradigm of tumor suppression according to which oncogenic signaling produces DNA damage and this, in turn, results in ATM/p53-dependent cellular senescence. Here, we have tested this model in a variety of murine experimental systems. Overexpression of oncogenic Ras in murine fibroblasts efficiently induced senescence but this occurred in the absence of detectable DNA damage signaling, thus suggesting a fundamental difference between human and murine cells. Moreover, lung adenomas initiated by endogenous levels of oncogenic K-Ras presented abundant senescent cells, but undetectable DNA damage signaling. Accordingly, K-Ras-driven adenomas were also senescent in Atm-null mice, and the tumorigenic progression of these lesions was only modestly accelerated by Atm-deficiency. Finally, we have examined chemically-induced fibrosarcomas, which possess a persistently activated DNA damage response and are highly sensitive to the activity of p53. We found that the absence of Atm favored genomic instability in the resulting tumors, but did not affect the persistent DNA damage response and did not impair p53-dependent tumor suppression. All together, we conclude that oncogene-induced senescence in mice may occur in the absence of a detectable DNA damage response. Regarding murine Atm, our data suggest that it plays a minor role in oncogene-induced senescence or in p53-dependent tumor suppression, being its tumor suppressive activity probably limited to the maintenance of genomic stability.

  17. V-cbl, an oncogene from a dual-recombinant murine retrovirus that induces early B-lineage lymphomas

    International Nuclear Information System (INIS)

    Langdon, W.Y.; Klinken, S.P.; Hartley, J.W.; Morse, H.C. III; Ruscetti, S.K.

    1989-01-01

    Cas NS-1 is an acutely transforming murine retrovirus that induces pre-B and pro-B cell lymphomas. Molecular cloning showed it was generated from the ecotropic Cas-Br-M virus by sequential recombinations with endogenous retroviral sequences and a cellular oncogene. The oncogene sequence shows no homology with known oncogenes but some similarity to the yeast transcriptional activator GCN4. A 100-kDa gag-cbl fusion protein, with no detectable kinase activity, is responsible for the cellular transformation. The cellular homologue of v-cbl, present in mouse and human DNA, is expressed in a range of hemopoietic lineages

  18. Recombinase polymerase and enzyme-linked immunosorbent assay as a DNA amplification-detection strategy for food analysis

    Energy Technology Data Exchange (ETDEWEB)

    Santiago-Felipe, S.; Tortajada-Genaro, L.A.; Puchades, R.; Maquieira, A., E-mail: amaquieira@qim.upv.es

    2014-02-06

    Graphical abstract: -- Highlights: •Recombinase polymerase amplification is a powerful DNA method operating at 40 °C. •The combination RPA–ELISA gives excellent performances for high-throughput analysis. •Screening of food safety threats has been done using standard laboratory equipment. •Allergens, GMOs, bacteria, and fungi have been successfully determined. -- Abstract: Polymerase chain reaction in conjunction with enzyme-linked immunosorbent assay (PCR–ELISA) is a well-established technique that provides a suitable rapid, sensitive, and selective method for a broad range of applications. However, the need for precise rapid temperature cycling of PCR is an important drawback that can be overcome by employing isothermal amplification reactions such as recombinase polymerase amplification (RPA). The RPA–ELISA combination is proposed for amplification at a low, constant temperature (40 °C) in a short time (40 min), for the hybridisation of labelled products to specific 5′-biotinylated probes/streptavidin in coated microtiter plates at room temperature, and for detection by colorimetric immunoassay. RPA–ELISA was applied to screen common safety threats in foodstuffs, such as allergens (hazelnut, peanut, soybean, tomato, and maize), genetically modified organisms (P35S and TNOS), pathogenic bacteria (Salmonella sp. and Cronobacter sp.), and fungi (Fusarium sp.). Satisfactory sensitivity and reproducibility results were achieved for all the targets. The RPA–ELISA technique does away with thermocycling and provides a suitable sensitive, specific, and cost-effective method for routine applications, and proves particularly useful for resource-limited settings.

  19. Recombinase polymerase and enzyme-linked immunosorbent assay as a DNA amplification-detection strategy for food analysis

    International Nuclear Information System (INIS)

    Santiago-Felipe, S.; Tortajada-Genaro, L.A.; Puchades, R.; Maquieira, A.

    2014-01-01

    Graphical abstract: -- Highlights: •Recombinase polymerase amplification is a powerful DNA method operating at 40 °C. •The combination RPA–ELISA gives excellent performances for high-throughput analysis. •Screening of food safety threats has been done using standard laboratory equipment. •Allergens, GMOs, bacteria, and fungi have been successfully determined. -- Abstract: Polymerase chain reaction in conjunction with enzyme-linked immunosorbent assay (PCR–ELISA) is a well-established technique that provides a suitable rapid, sensitive, and selective method for a broad range of applications. However, the need for precise rapid temperature cycling of PCR is an important drawback that can be overcome by employing isothermal amplification reactions such as recombinase polymerase amplification (RPA). The RPA–ELISA combination is proposed for amplification at a low, constant temperature (40 °C) in a short time (40 min), for the hybridisation of labelled products to specific 5′-biotinylated probes/streptavidin in coated microtiter plates at room temperature, and for detection by colorimetric immunoassay. RPA–ELISA was applied to screen common safety threats in foodstuffs, such as allergens (hazelnut, peanut, soybean, tomato, and maize), genetically modified organisms (P35S and TNOS), pathogenic bacteria (Salmonella sp. and Cronobacter sp.), and fungi (Fusarium sp.). Satisfactory sensitivity and reproducibility results were achieved for all the targets. The RPA–ELISA technique does away with thermocycling and provides a suitable sensitive, specific, and cost-effective method for routine applications, and proves particularly useful for resource-limited settings

  20. C-MET overexpression and amplification in gliomas.

    Science.gov (United States)

    Kwak, Yoonjin; Kim, Seong-Ik; Park, Chul-Kee; Paek, Sun Ha; Lee, Soon-Tae; Park, Sung-Hye

    2015-01-01

    We investigated c-Met overexpression and MET gene amplification in gliomas to determine their incidence and prognostic significance. c-Met immunohistochemistry and MET gene fluorescence in situ hybridization were carried out on tissue microarrays from 250 patients with gliomas (137 grade IV GBMs and 113 grade II and III diffuse gliomas). Clinicopathological features of these cases were reviewed. c-Met overexpression and MET gene amplification were detected in 13.1% and 5.1% of the GBMs, respectively. All the MET-amplified cases showed c-Met overexpression, but MET amplification was not always concordant with c-Met overexpression. None of grade II and III gliomas demonstrated c-Met overexpression or MET gene amplification. Mean survival of the GBM patients with MET amplification was not significantly different from patients without MET amplification (P=0.155). However, GBM patients with c-Met overexpression survived longer than patients without c-Met overexpression (P=0.035). Although MET amplification was not related to poor GBM prognosis, it is partially associated with the aggressiveness of gliomas, as MET amplification was found only in grade IV, not in grade II and III gliomas. We suggest that MET inhibitor therapy may be beneficial in about 5% GBMs, which was the incidence of MET gene amplification found in the patients included in this study.

  1. Molecular biology III - Oncogenes and tumor suppressor genes

    International Nuclear Information System (INIS)

    Giaccia, Amato J.

    1996-01-01

    Purpose: The purpose of this course is to introduce to radiation oncologists the basic concepts of tumorigenesis, building on the information that will be presented in the first and second part of this series of lectures. Objective: Our objective is to increase the current understanding of radiation oncologists with the process of tumorigenesis, especially focusing on genes that are altered in many tumor types that are potential candidates for novel molecular strategies. As strategies to treat cancer of cancer are becoming more sophisticated, it will be important for both the practitioner and academician to develop a basic understanding of the function of cancer 'genes'. This will be the third in a series of refresher courses that are meant to address recent advances in Cancer Biology in a way that both clinicians without previous knowledge of molecular biology or experienced researchers will find interesting. The lecture will begin with a basic overview of tumorigenesis; methods of detecting chromosome/DNA alterations, approaches used to isolate oncogenes and tumor suppressor genes, and their role in cell killing by apoptosis. Special attention will be given to oncogenes and tumor suppressor genes that are modulated by ionizing radiation and the tumor microenvironment. We will relate the biology of oncogenes and tumor suppressor genes to basic aspects of radiation biology that would be important in clinical practice. Finally, we will review recent studies on the prognostic significance of p53 mutations and apoptosis in tumor specimens. The main point of this lecture is to relate both researcher and clinician what are the therapeutic ramifications of oncogene and tumor suppressor gene mutations found in human neoptasia

  2. Bacteriophage amplification assay for detection of Listeria spp. using virucidal laser treatment

    Directory of Open Access Journals (Sweden)

    I.C. Oliveira

    2012-09-01

    Full Text Available A protocol for the bacteriophage amplification technique was developed for quantitative detection of viable Listeria monocytogenes cells using the A511 listeriophage with plaque formation as the end-point assay. Laser and toluidine blue O (TBO were employed as selective virucidal treatment for destruction of exogenous bacteriophage. Laser and TBO can bring a total reduction in titer phage (ca. 10(8 pfu/mL without affecting the viability of L. monocytogenes cells. Artificially inoculated skimmed milk revealed mean populations of the bacteria as low as between 13 cfu/mL (1.11 log cfu/mL, after a 10-h assay duration. Virucidal laser treatment demonstrated better protection of Listeria cells than the other agents previously tested. The protocol was faster and easier to perform than standard procedures. This protocol constitutes an alternative for rapid, sensitive and quantitative detection of L. monocytogenes.

  3. Loop-mediated isothermal amplification (LAMP) based detection of Colletotrichum falcatum causing red rot in sugarcane.

    Science.gov (United States)

    Chandra, Amaresh; Keizerweerd, Amber T; Que, Youxiong; Grisham, Michael P

    2015-08-01

    Red rot, caused by Colletotrichum falcatum, is a destructive disease prevalent in most sugarcane-producing countries. Disease-free sugarcane planting materials (setts) are essential as the pathogen spreads primarily through infected setts. The present study was undertaken to develop a loop-mediated isothermal amplification (LAMP) assay for the detection of C. falcatum. C. falcatum genomic DNA was isolated from pure mycelium culture and infected tissues. Four sets of primers corresponding to a unique DNA sequence specific to C. falcatum were designed. Specificity of the LAMP test was checked with DNA of another fungal pathogen of sugarcane, Puccinia melanocephala, as well as two closely-related species, Colletotrichum fructivorum and Colletotrichum acutatum. No reaction was found with the three pathogens. When C. falcatum DNA from pure culture was used in a detection limit analysis, sensitivity of the LAMP method was observed to be ten times higher than that of conventional PCR; however, sensitivity was only 5 times higher when DNA from C. falcatum-infected tissues was used. Using the LAMP assay, C. falcatum DNA is amplified with high specificity, efficiency, and rapidity under isothermal conditions. Moreover, visual judgment of color change in <1 h without further post-amplification processing makes the LAMP method convenient, economical, and useful in diagnostic laboratories and the field.

  4. Microfluidic bead-based multienzyme-nanoparticle amplification for detection of circulating tumor cells in the blood using quantum dots labels

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, He, E-mail: mzhang_he@126.com; Fu, Xin; Hu, Jiayi; Zhu, Zhenjun

    2013-05-24

    Graphical abstract: A microfluidic beads-based nucleic acid sensor for sensitive detection of circulating tumor cells (CTCs) in the blood using multienzyme-nanoparticle amplification and quantum dots labels was developed. The chip-based CTCs analysis could detect reverse transcription-polymerase chain reaction (RT-PCR) products of tumor cell as low as 1 tumor cell (e.g. CEA expressing cell) in 1 mL blood sample. This microfluidic beads-based nucleic acid sensor is a promising platform for disease-related nucleic acid molecules at the lowest level at their earliest incidence. -- Highlights: •Combination of microfluidic bead-based platform and enzyme–probe–AuNPs is proposed. •The developed nucleic acid sensor could respond to 5 fM of tumor associated DNA. •Microfluidic platform and multienzyme-labeled AuNPs greatly enhanced sensitivity. •The developed nucleic acid sensor could respond to RT-PCR products of tumor cell as low as 1 tumor cell in 1 mL blood sample. •We report a sensitive nucleic acid sensor for detection of circulating tumor cells. -- Abstract: This study reports the development of a microfluidic bead-based nucleic acid sensor for sensitive detection of circulating tumor cells in blood samples using multienzyme-nanoparticle amplification and quantum dot labels. In this method, the microbeads functionalized with the capture probes and modified electron rich proteins were arrayed within a microfluidic channel as sensing elements, and the gold nanoparticles (AuNPs) functionalized with the horseradish peroxidases (HRP) and DNA probes were used as labels. Hence, two signal amplification approaches are integrated for enhancing the detection sensitivity of circulating tumor cells. First, the large surface area of Au nanoparticle carrier allows several binding events of HRP on each nanosphere. Second, enhanced mass transport capability inherent from microfluidics leads to higher capture efficiency of targets because continuous flow within micro

  5. Homozygous Deletions and Recurrent Amplifications Implicate New Genes Involved in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Wennuan Liu

    2008-08-01

    Full Text Available Prostate cancer cell lines provide ideal in vitro systems for the identification and analysis of prostate tumor suppressors and oncogenes. A detailed characterization of the architecture of prostate cancer cell line genomes would facilitate the study of precise roles of various genes in prostate tumorigenesis in general. To contribute to such a characterization, we used the GeneChip 500K single nucleotide polymorphic (SNP array for analysis of genotypes and relative DNA copy number changes across the genome of 11 cell lines derived from both normal and cancerous prostate tissues. For comparison purposes, we also examined the alterations observed in the cell lines in tumor/normal pairs of clinical samples from 72 patients. Along with genome-wide maps of DNA copy number changes and loss of heterozygosity for these cell lines, we report previously unreported homozygous deletions and recurrent amplifications in prostate cancers in this study. The homozygous deletions affected a number of biologically important genes, including PPP2R2A and BNIP3L identified in this study and CDKN2A/CDKN2B reported previously. Although most amplified genomic regions tended to be large, amplifications at 8q24.21 were of particular interest because the affected regions are relatively small, are found in multiple cell lines, are located near MYC, an oncogene strongly implicated in prostate tumorigenesis, and are known to harbor SNPs that are associated with inherited susceptibility for prostate cancer. The genomic alterations revealed in this study provide an important catalog of positional information relevant to efforts aimed at deciphering the molecular genetic basis of prostate cancer.

  6. Strand displacement amplification for ultrasensitive detection of human pluripotent stem cells.

    Science.gov (United States)

    Wu, Wei; Mao, Yiping; Zhao, Shiming; Lu, Xuewen; Liang, Xingguo; Zeng, Lingwen

    2015-06-30

    Human pluripotent stem cells (hPSCs), such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), provide a powerful model system for studies of cellular identity and early mammalian development, which hold great promise for regenerative medicine. It is necessary to develop a convenient method to discriminate hPSCs from other cells in clinics and basic research. Herein, a simple and reliable biosensor for stem cell detection was established. In this biosensor system, stage-specific embryonic antigen-3 (SSEA-3) and stage-specific embryonic antigen-4 (SSEA-4) were used to mark human pluripotent stem cells (hPSCs). Antibody specific for SSEA-3 was coated onto magnetic beads for hPSCs enrichment, and antibody specific for SSEA-4 was conjugated with carboxyl-modified tDNA sequence which was used as template for strand displacement amplification (SDA). The amplified single strand DNA (ssDNA) was detected with a lateral flow biosensor (LFB). This biosensor is capable of detecting a minimum of 19 human embryonic stem cells by a strip reader and 100 human embryonic stem cells by the naked eye within 80min. This approach has also shown excellent specificity to distinguish hPSCs from other types of cells, showing that it is promising for specific and handy detection of human pluripotent stem cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Real-time sequence-validated loop-mediated isothermal amplification assays for detection of Middle East respiratory syndrome coronavirus (MERS-CoV.

    Directory of Open Access Journals (Sweden)

    Sanchita Bhadra

    Full Text Available The Middle East respiratory syndrome coronavirus (MERS-CoV, an emerging human coronavirus, causes severe acute respiratory illness with a 35% mortality rate. In light of the recent surge in reported infections we have developed asymmetric five-primer reverse transcription loop-mediated isothermal amplification (RT-LAMP assays for detection of MERS-CoV. Isothermal amplification assays will facilitate the development of portable point-of-care diagnostics that are crucial for management of emerging infections. The RT-LAMP assays are designed to amplify MERS-CoV genomic loci located within the open reading frame (ORF1a and ORF1b genes and upstream of the E gene. Additionally we applied one-step strand displacement probes (OSD for real-time sequence-specific verification of LAMP amplicons. Asymmetric amplification effected by incorporating a single loop primer in each assay accelerated the time-to-result of the OSD-RT-LAMP assays. The resulting assays could detect 0.02 to 0.2 plaque forming units (PFU (5 to 50 PFU/ml of MERS-CoV in infected cell culture supernatants within 30 to 50 min and did not cross-react with common human respiratory pathogens.

  8. Proximity hybridization-mediated isothermal exponential amplification for ultrasensitive electrochemical protein detection

    Directory of Open Access Journals (Sweden)

    Yu Y

    2017-08-01

    Full Text Available Yanyan Yu, Gaoxing Su, Hongyan Zhu, Qing Zhu, Yong Chen, Bohui Xu, Yuqin Li, Wei Zhang School of Pharmacy, Nantong University, Nantong, People’s Republic of China Abstract: In this study, we fabricated a novel electrochemical biosensing platform on the basis of target-triggered proximity hybridization-mediated isothermal exponential amplification reaction (EXPAR for ultrasensitive protein analysis. Through rational design, the aptamers for protein recognition were integrated within two DNA probes. Via proximity hybridization principle, the affinity protein-binding event was converted into DNA assembly process. The recognition of protein by aptamers can trigger the strand displacement through the increase of the local concentrations of the involved probes. As a consequence, the output DNA was displaced, which can hybridize with the duplex probes immobilized on the electrode surface subsequently, leading to the initiation of the EXPAR as well as the cleavage of duplex probes. Each cleavage will release the gold nanoparticles (AuNPs binding sequence. With the modification of G-quadruplex sequence, electrochemical signals were yielded by the AuNPs through oxidizing 3,3',5,5'-tetramethylbenzidine in the presence of H2O2. The study we proposed exhibited high sensitivity toward platelet-derived growth factor BB (PDGF-BB with the detection limit of 52 fM. And, this method also showed great selectivity among the PDGF isoforms and performed well in spiked human serum samples. Keywords: electrochemical biosensor, proximity hybridization, PDGF-BB, isothermal exponential amplification, G-quadruplex 

  9. Hairpin DNA-Templated Silver Nanoclusters as Novel Beacons in Strand Displacement Amplification for MicroRNA Detection.

    Science.gov (United States)

    Zhang, Jingpu; Li, Chao; Zhi, Xiao; Ramón, Gabriel Alfranca; Liu, Yanlei; Zhang, Chunlei; Pan, Fei; Cui, Daxiang

    2016-01-19

    MicroRNA (miRNA) biomarkers display great potential for cancer diagnosis and prognosis. The development of rapid and specific methods for miRNA detection has become a hotspot. Herein, hairpin DNA-templated silver nanoclusters (AgNCs/HpDNA) were prepared and integrated into strand-displacement amplification (SDA) as a novel beacon for miRNA detection. The light-up platform was established based on guanine (G)-rich fluorescence enhancement that essentially converted the excitation/emission pair of AgNCs/HpDNAs from a shorter wavelength to a longer wavelength, and then achieved fluorescent enhancement at longer wavelength. On the basis of the validation of the method, the single and duplex detection were conducted in two plasma biomarkers (miR-16-5p and miR-19b-3p) for the diagnosis of gastric cancer. The probe (AgNCs/RED 16(7s)C) utilized for miR-16-5p detection adopted a better conformation with high specificity to recognize single-base mismatches by producing dramatically opposite signals (increase or decrease at 580 nm ex/640 nm em) while the probe (AgNCs/GRE 19b(5s)C) for miR-19b-3p generated dual signals (increase at 490 nm ex/570 nm em and decrease at 430 nm ex/530 nm em) with bright fluorescence in one reaction during the amplification, but unexpectedly was partially digested. This is for the first time to allow the generation of enhanced fluorescent AgNCs and the target recognition integrated into a single process, which offers great opportunity for specific miRNA detection in an easy and rapid way.

  10. [Genotyping of oncogenic human papilloma viruses in women with HG SIL diagnosis].

    Science.gov (United States)

    Kedzia, Witold; Pruski, Dominik; Józefiak, Agata; Rokita, Wojciech; Spaczyński, Marek

    2010-10-01

    Development of primary prevention of cervical cancer in other words a vaccination against selected, oncogenic HPV types, entails an increasing importance of epidemiological studies and prevalence of various types of human papilloma virus. The incidence of HPV varies depending on the geographic location of the population. The effectiveness of primary prevention against HPV 16, 18, in the context of reducing the incidence of cervical cancer will depend, among others, on the prevalence of these types in the population and virus-like antigens, which are partially cross-resistant. Identification of the most frequent, oncogenic HPV types in women with HG SIL diagnosis from Central and Western Poland to assess the merits of the development of primary prevention. For the purpose of molecular tests identifying the presence of 13 DNA oncogenic virus types, swabs were taken with the cyto-brush from 76 women diagnosed with CIN 2 or CIN 3 (HG SIL). Patients eligible for the study were diagnosed at the Laboratory of Pathophysiology of Uterine Cervix, Gynecology and Obstetrics Clinical Hospital of Karol Marcinkowski University of Medical Sciences. Patients came from Central and Western parts of Poland. Cell material in which the method of Amplicor HPV (Roche Diagnostics) identified the presence of DNA of oncogenic HPV types was in each case subsequently subjected to genotyping using the molecular test - Linear Array HPV Genotyping (Roche Diagnostics). Five most common oncogenic HPV types in order of detection included: 16, 33, 18, 31, 56. Together these five types of virus comprised 75.86% (88/116) of all detected HPV types. 1. In women from Central and Western Poland, diagnosed with HG SIL, the most common HPV genotypes were HPV 16, HPV33, HPV 18, HPV31, HPV56. 2. Two HPV types 16 and 18, against which vaccinations are directed, belong to the group of three genotypes of HPV most commonly identified in the evolution of CIN 2, CIN 3 diagnosed in women from Central and Western

  11. The human T-cell leukemia virus type-1 p30II protein activates p53 and induces the TIGAR and suppresses oncogene-induced oxidative stress during viral carcinogenesis.

    Science.gov (United States)

    Romeo, Megan; Hutchison, Tetiana; Malu, Aditi; White, Averi; Kim, Janice; Gardner, Rachel; Smith, Katie; Nelson, Katherine; Bergeson, Rachel; McKee, Ryan; Harrod, Carolyn; Ratner, Lee; Lüscher, Bernhard; Martinez, Ernest; Harrod, Robert

    2018-05-01

    In normal cells, aberrant oncogene expression leads to the accumulation of cytotoxic metabolites, including reactive oxygen species (ROS), which can cause oxidative DNA-damage and apoptosis as an intrinsic barrier against neoplastic disease. The c-Myc oncoprotein is overexpressed in many lymphoid cancers due to c-myc gene amplification and/or 8q24 chromosomal translocations. Intriguingly, p53 is a downstream target of c-Myc and hematological malignancies, such as adult T-cell leukemia/lymphoma (ATL), frequently contain wildtype p53 and c-Myc overexpression. We therefore hypothesized that p53-regulated pro-survival signals may thwart the cell's metabolic anticancer defenses to support oncogene-activation in lymphoid cancers. Here we show that the Tp53-induced glycolysis and apoptosis regulator (TIGAR) promotes c-myc oncogene-activation by the human T-cell leukemia virus type-1 (HTLV-1) latency-maintenance factor p30 II , associated with c-Myc deregulation in ATL clinical isolates. TIGAR prevents the intracellular accumulation of c-Myc-induced ROS and inhibits oncogene-induced cellular senescence in ATL, acute lymphoblastic leukemia, and multiple myeloma cells with elevated c-Myc expression. Our results allude to a pivotal role for p53-regulated antioxidant signals as mediators of c-Myc oncogenic functions in viral and non-viral lymphoid tumors. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Extraction, amplification and detection of DNA in microfluidic chip-based assays

    KAUST Repository

    Wu, Jinbo

    2013-12-20

    This review covers three aspects of PCR-based microfluidic chip assays: sample preparation, target amplification, and product detection. We also discuss the challenges related to the miniaturization and integration of each assay and make a comparison between conventional and microfluidic schemes. In order to accomplish these essential assays without human intervention between individual steps, the micro-components for fluid manipulation become critical. We therefore summarize and discuss components such as microvalves (for fluid regulation), pumps (for fluid driving) and mixers (for blending fluids). By combining the above assays and microcomponents, DNA testing of multi-step bio-reactions in microfluidic chips may be achieved with minimal external control. The combination of assay schemes with the use of micro-components also leads to rapid methods for DNA testing via multi-step bioreactions. Contains 259 references.

  13. GMO detection using a bioluminescent real time reporter (BART of loop mediated isothermal amplification (LAMP suitable for field use

    Directory of Open Access Journals (Sweden)

    Kiddle Guy

    2012-04-01

    Full Text Available Abstract Background There is an increasing need for quantitative technologies suitable for molecular detection in a variety of settings for applications including food traceability and monitoring of genetically modified (GM crops and their products through the food processing chain. Conventional molecular diagnostics utilising real-time polymerase chain reaction (RT-PCR and fluorescence-based determination of amplification require temperature cycling and relatively complex optics. In contrast, isothermal amplification coupled to a bioluminescent output produced in real-time (BART occurs at a constant temperature and only requires a simple light detection and integration device. Results Loop mediated isothermal amplification (LAMP shows robustness to sample-derived inhibitors. Here we show the applicability of coupled LAMP and BART reactions (LAMP-BART for determination of genetically modified (GM maize target DNA at low levels of contamination (0.1-5.0% GM using certified reference material, and compare this to RT-PCR. Results show that conventional DNA extraction methods developed for PCR may not be optimal for LAMP-BART quantification. Additionally, we demonstrate that LAMP is more tolerant to plant sample-derived inhibitors, and show this can be exploited to develop rapid extraction techniques suitable for simple field-based qualitative tests for GM status determination. We also assess the effect of total DNA assay load on LAMP-BART quantitation. Conclusions LAMP-BART is an effective and sensitive technique for GM detection with significant potential for quantification even at low levels of contamination and in samples derived from crops such as maize with a large genome size. The resilience of LAMP-BART to acidic polysaccharides makes it well suited to rapid sample preparation techniques and hence to both high throughput laboratory settings and to portable GM detection applications. The impact of the plant sample matrix and genome loading

  14. Identification of SEC62 as a potential marker for 3q amplification and cellular migration in dysplastic cervical lesions

    International Nuclear Information System (INIS)

    Linxweiler, Maximilian; Bochen, Florian; Schick, Bernhard; Wemmert, Silke; Al Kadah, Basel; Greiner, Markus; Hasenfus, Andrea; Bohle, Rainer-Maria; Juhasz-Böss, Ingolf; Solomayer, Erich-Franz; Takacs, Zoltan Ferenc

    2016-01-01

    Chromosome 3 amplification affecting the 3q26 region is a common genomic alteration in cervical cancer, typically marking the transition of precancerous intraepithelial lesions to an invasive phenotype. Though potential 3q encoded target genes of this amplification have been identified, a functional correlation of potential oncogenic function is still missing. In this study, we investigated copy number changes and the expression level of SEC62 encoded at 3q26.2 as a new potential 3q oncogene in dysplastic cervical lesions and analyzed its role in cervical cancer cell biology. Expression levels of Sec62 and vimentin were analyzed in liquid based cytology specimens from 107 women with varying grades of cervical dysplasia ranging from normal cases to cancer by immunofluorescence cytology. Additionally, a subset of 20 representative cases was used for FISH analyses targeting SEC62. To further explore the functional role of Sec62 in cervical cancer, HeLa cells were transfected with a SEC62 plasmid or SEC62 siRNA and analyzed for their proliferation and migration potential using real-time monitoring and trans-well systems as well as changes in the expression of EMT markers. FISH analyses of the swabbed cells showed a rising number of SEC62 gains and amplifications correlating to the grade of dysplasia with the highest incidence in high grade squamous intraepithelial lesions and squamous cell carcinomas. When analyzing the expression level of Sec62 and vimentin, we found a gradually increasing expression level of both proteins according to the severity of the dysplasia. In functional analyses, SEC62 silencing inhibited and SEC62 overexpression stimulated the migration of HeLa cells with only marginal effects on cell proliferation, the expression level of EMT markers and the cytoskeleton structure. Our study suggests SEC62 as a target gene of 3q26 amplification and a stimulator of cellular migration in dysplastic cervical lesions. Hence, SEC62 could serve as a potential

  15. Detection of Bartonella henselae DNA in clinical samples including peripheral blood of immune competent and immune compromised patients by three nested amplifications

    Directory of Open Access Journals (Sweden)

    Karina Hatamoto Kawasato

    2013-02-01

    Full Text Available Bacteria of the genus Bartonella are emerging pathogens detected in lymph node biopsies and aspirates probably caused by increased concentration of bacteria. Twenty-three samples of 18 patients with clinical, laboratory and/or epidemiological data suggesting bartonellosis were subjected to three nested amplifications targeting a fragment of the 60-kDa heat shock protein (HSP, the internal transcribed spacer 16S-23S rRNA (ITS and the cell division (FtsZ of Bartonella henselae, in order to improve detection in clinical samples. In the first amplification 01, 04 and 05 samples, were positive by HSP (4.3%, FtsZ (17.4% and ITS (21.7%, respectively. After the second round six positive samples were identified by nested-HSP (26%, eight by nested-ITS (34.8% and 18 by nested-FtsZ (78.2%, corresponding to 10 peripheral blood samples, five lymph node biopsies, two skin biopsies and one lymph node aspirate. The nested-FtsZ was more sensitive than nested-HSP and nested-ITS (p < 0.0001, enabling the detection of Bartonella henselae DNA in 15 of 18 patients (83.3%. In this study, three nested-PCR that should be specific for Bartonella henselae amplification were developed, but only the nested-FtsZ did not amplify DNA from Bartonella quintana. We conclude that nested amplifications increased detection of B. henselae DNA, and that the nested-FtsZ was the most sensitive and the only specific to B. henselae in different biological samples. As all samples detected by nested-HSP and nested-ITS, were also by nested-FtsZ, we infer that in our series infections were caused by Bartonella henselae. The high number of positive blood samples draws attention to the use of this biological material in the investigation of bartonellosis, regardless of the immune status of patients. This fact is important in the case of critically ill patients and young children to avoid more invasive procedures such as lymph nodes biopsies and aspirates.

  16. Urine sample used for detection of toxoplasma gondii infection by loop-mediated isothermal amplification (LAMP).

    Science.gov (United States)

    Hu, Xin; Pan, Chang-Wang; Li, Ya-Fei; Wang, Han; Tan, Feng

    2012-02-01

    In this study, a loop-mediated isothermal amplification (LAMP) assay was established to detect Toxoplasma gondii DNA in mice infected with T. gondii PRU strain. This LAMP assay was based on the sequence of highly repetitive B1 gene. The detection limit of T. gondii LAMP assay was 1 pg of T. gondii DNA, which was evaluated using 10-fold serially diluted DNA of cultured parasites. The LAMP assay was also highly specific for T. gondii and able to detect T. gondii DNA in urine of mice treated with dexamethasone at 90 day post infection (p.i.), although this assay could not detect the DNA in mice urine 2-6 days p.i. These results demonstrated that LAMP is effective for evaluation of therapy effectiveness for T. gondii infection. The established LAMP assay may represent a useful and practical tool for the routine diagnosis and therapeutic evaluation of human toxoplasmosis.

  17. Understanding personal risk of oropharyngeal cancer: risk-groups for oncogenic oral HPV infection and oropharyngeal cancer.

    Science.gov (United States)

    D'Souza, G; McNeel, T S; Fakhry, C

    2017-12-01

    Incidence of human papillomavirus (HPV)-related oropharyngeal cancer is increasing. There is interest in identifying healthy individuals most at risk for development of oropharyngeal cancer to inform screening strategies. All data are from 2009 to 2014, including 13 089 people ages 20-69 in the National Health and Nutrition Examination Survey (NHANES), oropharyngeal cancer cases from the Surveillance, Epidemiology, and End Results (SEER 18) registries (representing ∼28% of the US population), and oropharyngeal cancer mortality from National Center for Health Statistics (NCHS). Primary study outcomes are (i) prevalence of oncogenic HPV DNA in an oral rinse and gargle sample, and (ii) incident oropharyngeal squamous cell cancer. Oncogenic oral HPV DNA is detected in 3.5% of all adults age 20-69 years; however, the lifetime risk of oropharyngeal cancer is low (37 per 10 000). Among men 50-59 years old, 8.1% have an oncogenic oral HPV infection, 2.1% have an oral HPV16 infection, yet only 0.7% will 'ever' develop oropharyngeal cancer in their lifetime. Oncogenic oral HPV prevalence was higher in men than women, and increased with number of lifetime oral sexual partners and tobacco use. Men who currently smoked and had ≥5 lifetime oral sexual partners had 'elevated risk' (prevalence = 14.9%). Men with only one of these risk factors (i.e. either smoked and had 2-4 partners or did not smoke and had ≥5 partners) had 'medium risk' (7.3%). Regardless of what other risk factors participants had, oncogenic oral HPV prevalence was 'low' among those with only ≤1 lifetime oral sexual partner (women = 0.7% and men = 1.7%). Screening based upon oncogenic oral HPV detection would be challenging. Most groups have low oncogenic oral HPV prevalence. In addition to the large numbers of individuals who would need to be screened to identify prevalent oncogenic oral HPV, the lifetime risk of developing oropharyngeal caner among those with infection remains

  18. Optimization of loop-mediated isothermal amplification (LAMP) assays for the detection of Leishmania DNA in human blood samples.

    Science.gov (United States)

    Abbasi, Ibrahim; Kirstein, Oscar D; Hailu, Asrat; Warburg, Alon

    2016-10-01

    Visceral leishmaniasis (VL), one of the most important neglected tropical diseases, is caused by Leishmania donovani eukaryotic protozoan parasite of the genus Leishmania, the disease is prevalent mainly in the Indian sub-continent, East Africa and Brazil. VL can be diagnosed by PCR amplifying ITS1 and/or kDNA genes. The current study involved the optimization of Loop-mediated isothermal amplification (LAMP) for the detection of Leishmania DNA in human blood or tissue samples. Three LAMP systems were developed; in two of those the primers were designed based on shared regions of the ITS1 gene among different Leishmania species, while the primers for the third LAMP system were derived from a newly identified repeated region in the Leishmania genome. The LAMP tests were shown to be sufficiently sensitive to detect 0.1pg of DNA from most Leishmania species. The green nucleic acid stain SYTO16, was used here for the first time to allow real-time monitoring of LAMP amplification. The advantage of real time-LAMP using SYTO 16 over end-point LAMP product detection is discussed. The efficacy of the real time-LAMP tests for detecting Leishmania DNA in dried blood samples from volunteers living in endemic areas, was compared with that of qRT-kDNA PCR. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Specific detection of Pectobacterium carotovorum by loop-mediated isothermal amplification.

    Science.gov (United States)

    Yasuhara-Bell, Jarred; Marrero, Glorimar; De Silva, Asoka; Alvarez, Anne M

    2016-12-01

    Potatoes are an important agroeconomic crop worldwide and maceration diseases caused by pectolytic bacterial pathogens result in significant pre- and post-harvest losses. Pectobacterium carotovorum shares a common host range with other Pectobacterium spp. and other members of the Enterobacteriaceae, such as Dickeya spp. As these pathogens cannot be clearly differentiated on the basis of the symptoms they cause, improved methods of identification are critical for the determination of sources of contamination. Current standardized methods for the differentiation of pectolytic species are time consuming and require trained personnel, as they rely on traditional bacteriological practices that do not always produce conclusive results. In this growing world market, there is a need for rapid diagnostic tests that can differentiate between pectolytic pathogens, as well as separate them from non-pectolytic enteric bacteria associated with soft rots of potato. An assay has been designed previously to detect the temperate pathogen Pectobacterium atrosepticum, but there is currently no recognized rapid assay for the detection of the tropical/subtropical counterpart, Pectobacterium carotovorum. This report describes the development of a loop-mediated isothermal amplification (LAMP) assay that detects P. carotovorum with high specificity. The assay was evaluated using all known species of Pectobacterium and only showed positive reactions for P. carotovorum. This assay was also tested against 15 non-target genera of plant-associated bacteria and did not produce any false positives. The LAMP assay described here can be used as a rapid test for the differentiation of P. carotovorum from other pectolytic pathogens, and its gene target can be the basis for the development of other molecular-based detection assays. © 2016 BSPP and John Wiley & Sons Ltd.

  20. Novel reverse transcription loop-mediated isothermal amplification for rapid detection of foot-and-mouth disease virus

    DEFF Research Database (Denmark)

    Dukes, J.P.; King, D.P.; Alexandersen, Søren

    2006-01-01

    Speed is paramount in the diagnosis of foot-and-mouth disease (FMD) and simplicity is required if a test is to be deployed in the field. The development of a one-step, reverse transcription loop-mediated amplification (RT-LAMP) assay enables FMD virus (FMDV) to be detected in under an hour...... in a single tube without thermal cycling. A fragment of the 3D RNA polymerase gene of the virus is amplified at 65 degrees C in the presence of a primer mixture and both reverse transcriptase and Bst DNA polymerase. Compared with real-time RT-PCR, RT-LAMP was consistently faster, and ten copies of FMDV...... vesicular diseases and from that of genetically related picornaviruses. Diagnostic sensitivity was validated by the amplification of reference FMDV strains and archival material from field cases of FMD. In comparison with the performance of the established diagnostic TaqMan (R) assay, RT-LAMP appears...

  1. Label-free and sensitive detection of T4 polynucleotide kinase activity via coupling DNA strand displacement reaction with enzymatic-aided amplification.

    Science.gov (United States)

    Cheng, Rui; Tao, Mangjuan; Shi, Zhilu; Zhang, Xiafei; Jin, Yan; Li, Baoxin

    2015-11-15

    Several fluorescence signal amplification strategies have been developed for sensitive detection of T4 polynucleotide kinase (T4 PNK) activity, but they need fluorescence dye labeled DNA probe. We have addressed the limitation and report here a label-free strategy for sensitive detection of PNK activity by coupling DNA strand displacement reaction with enzymatic-aided amplification. A hairpin oligonucleotide (hpDNA) with blunt ends was used as the substrate for T4 PNK phosphorylation. In the presence of T4 PNK, the stem of hpDNA was phosphorylated and further degraded by lambda exonuclease (λ exo) from 5' to 3' direction to release a single-stranded DNA as a trigger of DNA strand displacement reaction (SDR). The trigger DNA can continuously displace DNA P2 from P1/P2 hybrid with the help of specific cleavage of nicking endonuclease (Nt.BbvCI). Then, DNA P2 can form G-quadruplex in the presence of potassium ions and quadruplex-selective fluorphore, N-methyl mesoporphyrin IX (NMM), resulting in a significant increase in fluorescence intensity of NMM. Thus, the accumulative release of DNA P2 led to fluorescence signal amplification for determining T4 PNK activity with a detection limit of 6.6×10(-4) U/mL, which is superior or comparative with established approaches. By ingeniously utilizing T4 PNK-triggered DNA SDR, T4 PNK activity can be specifically and facilely studied in homogeneous solution containing complex matrix without any external fluorescence labeling. Moreover, the influence of different inhibitors on the T4 PNK activity revealed that it also can be explored to screen T4 PNK inhibitors. Therefore, this label-free amplification strategy presents a facile and cost-effective approach for nucleic acid phosphorylation related research. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Rapid and sensitive detection of canine distemper virus by real-time reverse transcription recombinase polymerase amplification.

    Science.gov (United States)

    Wang, Jianchang; Wang, Jinfeng; Li, Ruiwen; Liu, Libing; Yuan, Wanzhe

    2017-08-15

    Canine distemper, caused by Canine distemper virus (CDV), is a highly contagious and fatal systemic disease in free-living and captive carnivores worldwide. Recombinase polymerase amplification (RPA), as an isothermal gene amplification technique, has been explored for the molecular detection of diverse pathogens. A real-time reverse transcription RPA (RT-RPA) assay for the detection of canine distemper virus (CDV) using primers and exo probe targeting the CDV nucleocapsid protein gene was developed. A series of other viruses were tested by the RT-RPA.Thirty-two field samples were further tested by RT-RPA, and the resuts were compared with those obtained by the real-time RT-PCR. The RT-RPA assay was performed successfully at 40 °C, and the results were obtained within 3 min-12 min. The assay could detect CDV, but did not show cross-detection of canine parvovirus-2 (CPV-2), canine coronavirus (CCoV), canine parainfluenza virus (CPIV), pseudorabies virus (PRV) or Newcastle disease virus (NDV), demonstrating high specificity. The analytical sensitivity of RT-RPA was 31.8 copies in vitro transcribed CDV RNA, which is 10 times lower than the real-time RT-PCR. The assay performance was validated by testing 32 field samples and compared to real-time RT-PCR. The results indicated an excellent correlation between RT-RPA and a reference real-time RT-PCR method. Both assays provided the same results, and R 2 value of the positive results was 0.947. The results demonstrated that the RT-RPA assay offers an alternative tool for simple, rapid, and reliable detection of CDV both in the laboratory and point-of-care facility, especially in the resource-limited settings.

  3. Detection of wild-type EGFR amplification and EGFRvIII mutation in CSF-derived extracellular vesicles of glioblastoma patients.

    Science.gov (United States)

    Figueroa, Javier M; Skog, Johan; Akers, Johnny; Li, Hongying; Komotar, Ricardo; Jensen, Randy; Ringel, Florian; Yang, Isaac; Kalkanis, Steven; Thompson, Reid; LoGuidice, Lori; Berghoff, Emily; Parsa, Andrew; Liau, Linda; Curry, William; Cahill, Daniel; Bettegowda, Chetan; Lang, Frederick F; Chiocca, E Antonio; Henson, John; Kim, Ryan; Breakefield, Xandra; Chen, Clark; Messer, Karen; Hochberg, Fred; Carter, Bob S

    2017-10-19

    RNAs within extracellular vesicles (EVs) have potential as diagnostic biomarkers for patients with cancer and are identified in a variety of biofluids. Glioblastomas (GBMs) release EVs containing RNA into cerebrospinal fluid (CSF). Here we describe a multi-institutional study of RNA extracted from CSF-derived EVs of GBM patients to detect the presence of tumor-associated amplifications and mutations in epidermal growth factor receptor (EGFR). CSF and matching tumor tissue were obtained from patients undergoing resection of GBMs. We determined wild-type (wt)EGFR DNA copy number amplification, as well as wtEGFR and EGFR variant (v)III RNA expression in tumor samples. We also characterized wtEGFR and EGFRvIII RNA expression in CSF-derived EVs. EGFRvIII-positive tumors had significantly greater wtEGFR DNA amplification (P = 0.02) and RNA expression (P = 0.03), and EGFRvIII-positive CSF-derived EVs had significantly more wtEGFR RNA expression (P = 0.004). EGFRvIII was detected in CSF-derived EVs for 14 of the 23 EGFRvIII tissue-positive GBM patients. Conversely, only one of the 48 EGFRvIII tissue-negative patients had the EGFRvIII mutation detected in their CSF-derived EVs. These results yield a sensitivity of 61% and a specificity of 98% for the utility of CSF-derived EVs to detect an EGFRvIII-positive GBM. Our results demonstrate CSF-derived EVs contain RNA signatures reflective of the underlying molecular genetic status of GBMs in terms of wtEGFR expression and EGFRvIII status. The high specificity of the CSF-derived EV diagnostic test gives us an accurate determination of positive EGFRvIII tumor status and is essentially a less invasive "liquid biopsy" that might direct mutation-specific therapies for GBMs. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  4. Silver nanoclusters-assisted ion-exchange reaction with CdTe quantum dots for photoelectrochemical detection of adenosine by target-triggering multiple-cycle amplification strategy.

    Science.gov (United States)

    Zhao, Yang; Tan, Lu; Gao, Xiaoshan; Jie, Guifen; Huang, Tingyu

    2018-07-01

    Herein, we successfully devised a novel photoelectrochemical (PEC) platform for ultrasensitive detection of adenosine by target-triggering cascade multiple cycle amplification based on the silver nanoparticles-assisted ion-exchange reaction with CdTe quantum dots (QDs). In the presence of target adenosine, DNA s1 is released from the aptamer and then hybridizes with hairpin DNA (HP1), which could initiate the cycling cleavage process under the reaction of nicking endonuclease. Then the product (DNA b) of cycle I could act as the "DNA trigger" of cycle II to further generate a large number of DNA s1, which again go back to cycle I, thus a cascade multiple DNA cycle amplification was carried out to produce abundant DNA c. These DNA c fragments with the cytosine (C)-rich loop were captured by magnetic beads, and numerous silver nanoclusters (Ag NCs) were synthesized by AgNO 3 and sodium borohydride. The dissolved AgNCs released numerous silver ions which could induce ion exchange reaction with the CdTe QDs, thus resulting in greatly amplified change of photocurrent for target detection. The detection linear range for adenosine was 1.0 fM ~10 nM with the detection limit of 0.5 fM. The present PEC strategy combining cascade multiple DNA cycle amplification and AgNCs-induced ion-exchange reaction with QDs provides new insight into rapid, and ultrasensitive PEC detection of different biomolecules, which showed great potential for detecting trace amounts in bioanalysis and clinical biomedicine. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Rapid and sensitive detection of Yersinia pestis using amplification of plague diagnostic bacteriophages monitored by real-time PCR.

    Directory of Open Access Journals (Sweden)

    Kirill V Sergueev

    Full Text Available BACKGROUND: Yersinia pestis, the agent of plague, has caused many millions of human deaths and still poses a serious threat to global public health. Timely and reliable detection of such a dangerous pathogen is of critical importance. Lysis by specific bacteriophages remains an essential method of Y. pestis detection and plague diagnostics. METHODOLOGY/PRINCIPAL FINDINGS: The objective of this work was to develop an alternative to conventional phage lysis tests--a rapid and highly sensitive method of indirect detection of live Y. pestis cells based on quantitative real-time PCR (qPCR monitoring of amplification of reporter Y. pestis-specific bacteriophages. Plague diagnostic phages phiA1122 and L-413C were shown to be highly effective diagnostic tools for the detection and identification of Y. pestis by using qPCR with primers specific for phage DNA. The template DNA extraction step that usually precedes qPCR was omitted. phiA1122-specific qPCR enabled the detection of an initial bacterial concentration of 10(3 CFU/ml (equivalent to as few as one Y. pestis cell per 1-microl sample in four hours. L-413C-mediated detection of Y. pestis was less sensitive (up to 100 bacteria per sample but more specific, and thus we propose parallel qPCR for the two phages as a rapid and reliable method of Y. pestis identification. Importantly, phiA1122 propagated in simulated clinical blood specimens containing EDTA and its titer rise was detected by both a standard plating test and qPCR. CONCLUSIONS/SIGNIFICANCE: Thus, we developed a novel assay for detection and identification of Y. pestis using amplification of specific phages monitored by qPCR. The method is simple, rapid, highly sensitive, and specific and allows the detection of only live bacteria.

  6. Development of a loop-mediated Isothermal amplification assay for sensitive and rapid detection of Vibrio parahaemolyticus

    Directory of Open Access Journals (Sweden)

    Kawahara Ryuji

    2008-09-01

    Full Text Available Abstract Background Vibrio parahaemolyticus is a marine seafood-borne pathogen causing gastrointestinal disorders in humans. Thermostable direct hemolysin (TDH and TDH-related hemolysin (TRH are known as major virulence determinants of V. parahaemolyticus. Most V. parahaemolyticus isolates from the environment do not produce TDH or TRH. Total V. parahaemolyticus has been used as an indicator for control of seafood contamination toward prevention of infection. Detection of total V. parahaemolyticus using conventional culture- and biochemical-based assays is time-consuming and laborious, requiring more than three days. Thus, we developed a novel and highly specific loop-mediated isothermal amplification (LAMP assay for the sensitive and rapid detection of Vibrio parahaemolyticus. Results The assay provided markedly more sensitive and rapid detection of V. parahaemolyticus strains than conventional biochemical and PCR assays. The assay correctly identified 143 V. parahaemolyticus strains, but did not detect 33 non-parahaemolyticus Vibrio and 56 non-Vibrio strains. Sensitivity of the LAMP assay for direct detection of V. parahaemolyticus in pure cultures and in spiked shrimp samples was 5.3 × 102 CFU per ml/g (2.0 CFU per reaction. The sensitivity of the LAMP assay was 10-fold more sensitive than that of the conventional PCR assay. The LAMP assay was markedly faster, requiring for amplification 13–22 min in a single colony on TCBS agar from each of 143 V. parahaemolyticus strains and less than 35 min in spiked shrimp samples. The LAMP assay for detection of V. parahaemolyticus required less than 40 min in a single colony on thiosulfate citrate bile salt sucrose (TCBS agar and 60 min in spiked shrimp samples from the beginning of DNA extraction to final determination. Conclusion The LAMP assay is a sensitive, rapid and simple tool for the detection of V. parahaemolyticus and will facilitate the surveillance for control of contamination of V

  7. Multiple displacement amplification as an adjunct to PCR-based detection of Staphylococcus aureus in synovial fluid

    Directory of Open Access Journals (Sweden)

    Johnson Sandra

    2010-10-01

    Full Text Available Abstract Background Detection of bacterial nucleic acids in synovial fluid following total joint arthroplasty with suspected infection can be difficult; among other technical challenges, inhibitors in the specimens require extensive sample preparation and can diminish assay sensitivity even using polymerase chain reaction (PCR-based methods. To address this problem a simple protocol for prior use of multiple displacement amplification (MDA as an adjunct to PCR was established and tested on both purified S. aureus DNA as well as on clinical samples known to contain S. aureus nucleic acids. Findings A single round of MDA on purified nucleic acids resulted in a > 300 thousand-fold increase in template DNA on subsequent quantitative PCR (qPCR analysis. MDA use on clinical samples resulted in at least a 100-fold increase in sensitivity on subsequent qPCR and required no sample preparation other than a simple alkali/heat lysis step. Mixed samples of S. aureus DNA with a 103 - 104-fold excess of human genomic DNA still allowed for MDA amplification of the minor bacterial component to the threshold of detectability. Conclusion MDA is a promising technique that may serve to significantly enhance the sensitivity of molecular assays in cases of suspected joint infection while simultaneously reducing the specimen handling required.

  8. Detection of c-myc amplification in formalin-fixed paraffin-embedded tumor tissue by chromogenic in situ hybridization (CISH).

    Science.gov (United States)

    Todorović-Raković, Nataša

    2013-01-01

    In situ hybridization (ISH) allows evaluation of genetic abnormalities, such as changes in chromosome number, chromosome translocations or gene amplifications, by hybridization of tagged DNA (or RNA) probes with complementary DNA (or RNA) sequences in interphase nuclei of target tissue. However, chromogenic in situ hybridization (CISH) is also applicable to formalin-fixed, paraffin-embedded (FFPE) tissues, besides metaphase chromosome spreads. CISH is similar to fluorescent in situ hybridization (FISH) regarding pretreatments and hybridization protocols but differs in the way of visualization. Indeed, CISH signal detection is similar to that used in immunohistochemistry, making use of a peroxidase-based chromogenic reaction instead of fluorescent dyes. In particular, tagged DNA probes are indirectly detected using an enzyme-conjugated antibody targeting the tags. The enzymatic reaction of the chromogenic substrate leads to the formation of strong permanent brown signals that can be visualized by bright-field microscopy at 40 × magnification. The advantage of CISH is that it allows the simultaneous observation of gene amplification and tissue morphology and the slides can be stored for a long time.

  9. PCR amplification on microarrays of gel immobilized oligonucleotides

    Science.gov (United States)

    Strizhkov, Boris; Tillib, Sergei; Mikhailovich, Vladimir; Mirzabekov, Andrei

    2003-11-04

    The invention relates two general methods for performing PCR amplification, combined with the detection and analysis of the PCR products on a microchip. In the first method, the amplification occurs both outside and within a plurality of gel pads on a microchip, with at least one oligonucleotide primer immobilized in a gel pad. In the second method, PCR amplification also takes place within gel pads on a microchip, but the pads are surrounded by a hydrophobic liquid such as that which separates the individual gel pads into environments which resemble micro-miniaturized test tubes.

  10. Direct Detection of Hardly Detectable Hidden Chirality of Hydrocarbons and Deuterated Isotopomers by a Helical Polyacetylene through Chiral Amplification and Memory.

    Science.gov (United States)

    Maeda, Katsuhiro; Hirose, Daisuke; Okoshi, Natsuki; Shimomura, Kouhei; Wada, Yuya; Ikai, Tomoyuki; Kanoh, Shigeyoshi; Yashima, Eiji

    2018-03-07

    We report the first direct chirality sensing of a series of chiral hydrocarbons and isotopically chiral compounds (deuterated isotopomers), which are almost impossible to detect by conventional optical spectroscopic methods, by a stereoregular polyacetylene bearing 2,2'-biphenol-derived pendants. The polyacetylene showed a circular dichroism due to a preferred-handed helix formation in response to the hardly detectable hidden chirality of saturated tertiary or chiroptical quaternary hydrocarbons, and deuterated isotopomers. In sharp contrast to the previously reported sensory systems, the chirality detection by the polyacetylene relies on an excess one-handed helix formation induced by the chiral hydrocarbons and deuterated isotopomers via significant amplification of the chirality followed by its static memory, through which chiral information on the minute and hidden chirality can be stored as an excess of a single-handed helix memory for a long time.

  11. Development of Loop-Mediated Isothermal Amplification (LAMP) Assay for Rapid Detection of Cannabis sativa.

    Science.gov (United States)

    Kitamura, Masashi; Aragane, Masako; Nakamura, Kou; Watanabe, Kazuhito; Sasaki, Yohei

    2016-07-01

    In many parts of the world, the possession and cultivation of Cannabis sativa L. are restricted by law. As chemical or morphological analyses cannot identify the plant in some cases, a simple yet accurate DNA-based method for identifying C. sativa is desired. We have developed a loop-mediated isothermal amplification (LAMP) assay for the rapid identification of C. sativa. By optimizing the conditions for the LAMP reaction that targets a highly conserved region of tetrahydrocannabinolic acid (THCA) synthase gene, C. sativa was identified within 50 min at 60-66°C. The detection limit was the same as or higher than that of conventional PCR. The LAMP assay detected all 21 specimens of C. sativa, showing high specificity. Using a simple protocol, the identification of C. sativa could be accomplished within 90 min from sample treatment to detection without use of special equipment. A rapid, sensitive, highly specific, and convenient method for detecting and identifying C. sativa has been developed and is applicable to forensic investigations and industrial quality control.

  12. Evidence of high-elevation amplification versus Arctic amplification.

    Science.gov (United States)

    Wang, Qixiang; Fan, Xiaohui; Wang, Mengben

    2016-01-12

    Elevation-dependent warming in high-elevation regions and Arctic amplification are of tremendous interest to many scientists who are engaged in studies in climate change. Here, using annual mean temperatures from 2781 global stations for the 1961-2010 period, we find that the warming for the world's high-elevation stations (>500 m above sea level) is clearly stronger than their low-elevation counterparts; and the high-elevation amplification consists of not only an altitudinal amplification but also a latitudinal amplification. The warming for the high-elevation stations is linearly proportional to the temperature lapse rates along altitudinal and latitudinal gradients, as a result of the functional shape of Stefan-Boltzmann law in both vertical and latitudinal directions. In contrast, neither altitudinal amplification nor latitudinal amplification is found within the Arctic region despite its greater warming than lower latitudes. Further analysis shows that the Arctic amplification is an integrated part of the latitudinal amplification trend for the low-elevation stations (≤500 m above sea level) across the entire low- to high-latitude Northern Hemisphere, also a result of the mathematical shape of Stefan-Boltzmann law but only in latitudinal direction.

  13. Development of a novel loop-mediated isothermal amplification (LAMP) assay for the detection of Salmonella ser. Enteritidis from egg products

    Science.gov (United States)

    Salmonella ser. Enteritidis is a major public health concern worldwide. Loop-mediated isothermal amplification (LAMP) is a novel simple, easy-to-operate detection technology that amplifies DNA with high speed, efficiency, and specificity under isothermal conditions. The objective of this study was t...

  14. Detection of feline Coronavirus in effusions of cats with and without feline infectious peritonitis using loop-mediated isothermal amplification.

    Science.gov (United States)

    Günther, Sonja; Felten, Sandra; Wess, Gerhard; Hartmann, Katrin; Weber, Karin

    2018-06-01

    Feline infectious peritonitis (FIP) is a fatal disease in cats worldwide. The aim of this study was to test two commercially available reaction mixtures in a reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay to detect feline Coronavirus (FCoV) in body cavity effusions of cats with and without FIP, in order to minimize the time from sampling to obtaining results. RNA was extracted from body cavity effusion samples of 71 cats, including 34 samples from cats with a definitive diagnosis of FIP, and 37 samples of control cats with similar clinical signs but other confirmed diseases. Two reaction mixtures (Isothermal Mastermix, OptiGene Ltd.and PCRun™ Molecular Detection Mix, Biogal) were tested using the same primers, which were designed to bind to a conserved region of the FCoV membrane protein gene. Both assays were conducted under isothermal conditions (61 °C-62 °C). Using the Isothermal Mastermix of OptiGene Ltd., amplification times ranged from 4 and 39 min with a sensitivity of 35.3% and a specificity of 94.6% for the reported sample group. Using the PCRun™ Molecular Detection Mix of Biogal, amplification times ranged from 18 to 77 min with a sensitivity of 58.8% and a specificity of 97.3%. Although the RT-LAMP assay is less sensitive than real time reverse transcription PCR (RT-PCR), it can be performed without the need of expensive equipment and with less hands-on time. Further modifications of primers might lead to a suitable in-house test and accelerate the diagnosis of FIP. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Identification of Methicillin-Resistant Staphylococcus aureus (MRSA) Using Simultaneous Detection of mecA, nuc, and femB by Loop-Mediated Isothermal Amplification (LAMP).

    Science.gov (United States)

    Chen, Changguo; Zhao, Qiangyuan; Guo, Jianwei; Li, Yanjun; Chen, Qiuyuan

    2017-08-01

    The aim of this study was to develop a rapid detection assay to identify methicillin-resistant Staphylococcus aureus by simultaneous testing for the mecA, nuc, and femB genes using the loop-mediated isothermal amplification (LAMP) method. LAMP primers were designed using online bio-software ( http://primerexplorer.jp/e/ ), and amplification reactions were performed in an isothermal temperature bath. The products were then examined using 2% agarose gel electrophoresis. MecA, nuc, and femB were confirmed by triplex TaqMan real-time PCR. For better naked-eye inspection of the reaction result, hydroxy naphthol blue (HNB) was added to the amplification system. Within 60 min, LAMP successfully amplified the genes of interest under isothermal conditions at 63 °C. The results of 2% gel electrophoresis indicated that when the Mg 2+ concentration in the reaction system was 6 μmol, the amplification of the mecA gene was relatively good, while the amplification of the nuc and femB genes was better at an Mg 2+ concentration of 8 μmol. Obvious color differences were observed by adding 1 μL (3.75 mM) of HNB into 25 μL reaction system. The LAMP assay was applied to 128 isolates cases of methicillin-resistant Staphylococcus aureus, which were separated from the daily specimens and identified by Vitek microbial identification instruments. The results were identical for both LAMP and PCR. LAMP offers an alternative detection assay for mecA, nuc, and femB and is faster than other methods.

  16. Development of Loop-Mediated Isothermal Amplification for Detection of Leifsonia xyli subsp. xyli in Sugarcane

    Directory of Open Access Journals (Sweden)

    Jing Liu

    2013-01-01

    Full Text Available Ratoon stunt, caused by the xylem-limited coryneform bacterium Leifsonia xyli subsp. xyli (Lxx, is a deep bacteriosis and prevalent in most of sugarcane-producing countries. Based on loop-mediated isothermal amplification (LAMP, we developed a method for detecting Lxx. The major advantages of the LAMP method are visual judgment by color and time saving with only 60 min for identification of Lxx and without the need for costly PCR apparatus and gel scanner. In the present study, positive and negative samples detected by the LAMP method were clearly distinguishable. When total DNA extracted from internode juice was used as the template, the sensitivity of LAMP was 10 times higher than that of the conventional PCR detection. The LAMP assay is a highly specific, rapid, and sensitive method for the diagnosis of ratoon stunt caused by Lxx in sugarcane. This is the first report of LAMP-based assay for the detection of Lxx in sugarcane.

  17. Tungsten disulfide nanosheet and exonuclease III co-assisted amplification strategy for highly sensitive fluorescence polarization detection of DNA glycosylase activity

    International Nuclear Information System (INIS)

    Zhao, Jingjin; Ma, Yefei; Kong, Rongmei; Zhang, Liangliang; Yang, Wen; Zhao, Shulin

    2015-01-01

    Herein, we introduced a tungsten disulfide (WS 2 ) nanosheet and exonuclease III (Exo III) co-assisted signal amplification strategy for highly sensitive fluorescent polarization (FP) assay of DNA glycosylase activity. Two DNA glycosylases, uracil-DNA glycosylase (UDG) and human 8-oxoG DNA glycosylase 1 (hOGG1), were tested. A hairpin-structured probe (HP) which contained damaged bases in the stem was used as the substrate. The removal of damaged bases from substrate by DNA glycosylase would lower the melting temperature of HP. The HP was then opened and hybridized with a FAM dye-labeled single strand DNA (DP), generating a duplex with a recessed 3′-terminal of DP. This design facilitated the Exo III-assisted amplification by repeating the hybridization and digestion of DP, liberating numerous FAM fluorophores which could not be adsorbed on WS 2 nanosheet. Thus, the final system exhibited a small FP signal. However, in the absence of DNA glycosylases, no hybridization between DP and HP was occurred, hampering the hydrolysis of DP by Exo III. The intact DP was then adsorbed on the surface of WS 2 nanosheet that greatly amplified the mass of the labeled-FAM fluorophore, resulting in a large FP value. With the co-assisted amplification strategy, the sensitivity was substantially improved. In addition, this method was applied to detect UDG activity in cell extracts. The study of the inhibition of UDG was also performed. Furthermore, this method is simple in design, easy in implementation, and selective, which holds potential applications in the DNA glycosylase related mechanism research and molecular diagnostics. - Highlights: • A fluorescence polarization strategy for DNA glycosylase activity detection was developed. • The present method was based on WS 2 nanosheet and exonuclease III co-assisted signal amplification. • A high sensitivity and desirable selectivity were achieved. • This method provides a promising universal platform for DNA glycosylase

  18. Tungsten disulfide nanosheet and exonuclease III co-assisted amplification strategy for highly sensitive fluorescence polarization detection of DNA glycosylase activity

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jingjin; Ma, Yefei [Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources of Education Ministry, Guangxi Normal University, Guilin, 541004 (China); Kong, Rongmei [The Key Laboratory of Life-Organic Analysis, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165 (China); Zhang, Liangliang, E-mail: liangzhang319@163.com [Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources of Education Ministry, Guangxi Normal University, Guilin, 541004 (China); Yang, Wen; Zhao, Shulin [Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources of Education Ministry, Guangxi Normal University, Guilin, 541004 (China)

    2015-08-05

    Herein, we introduced a tungsten disulfide (WS{sub 2}) nanosheet and exonuclease III (Exo III) co-assisted signal amplification strategy for highly sensitive fluorescent polarization (FP) assay of DNA glycosylase activity. Two DNA glycosylases, uracil-DNA glycosylase (UDG) and human 8-oxoG DNA glycosylase 1 (hOGG1), were tested. A hairpin-structured probe (HP) which contained damaged bases in the stem was used as the substrate. The removal of damaged bases from substrate by DNA glycosylase would lower the melting temperature of HP. The HP was then opened and hybridized with a FAM dye-labeled single strand DNA (DP), generating a duplex with a recessed 3′-terminal of DP. This design facilitated the Exo III-assisted amplification by repeating the hybridization and digestion of DP, liberating numerous FAM fluorophores which could not be adsorbed on WS{sub 2} nanosheet. Thus, the final system exhibited a small FP signal. However, in the absence of DNA glycosylases, no hybridization between DP and HP was occurred, hampering the hydrolysis of DP by Exo III. The intact DP was then adsorbed on the surface of WS{sub 2} nanosheet that greatly amplified the mass of the labeled-FAM fluorophore, resulting in a large FP value. With the co-assisted amplification strategy, the sensitivity was substantially improved. In addition, this method was applied to detect UDG activity in cell extracts. The study of the inhibition of UDG was also performed. Furthermore, this method is simple in design, easy in implementation, and selective, which holds potential applications in the DNA glycosylase related mechanism research and molecular diagnostics. - Highlights: • A fluorescence polarization strategy for DNA glycosylase activity detection was developed. • The present method was based on WS{sub 2} nanosheet and exonuclease III co-assisted signal amplification. • A high sensitivity and desirable selectivity were achieved. • This method provides a promising universal platform for DNA

  19. Palindromic Molecule Beacon-Based Cascade Amplification for Colorimetric Detection of Cancer Genes.

    Science.gov (United States)

    Shen, Zhi-Fa; Li, Feng; Jiang, Yi-Fan; Chen, Chang; Xu, Huo; Li, Cong-Cong; Yang, Zhe; Wu, Zai-Sheng

    2018-03-06

    A highly sensitive and selective colorimetric assay based on a multifunctional molecular beacon with palindromic tail (PMB) was proposed for the detection of target p53 gene. The PMB probe can serve as recognition element, primer, and polymerization template and contains a nicking site and a C-rich region complementary to a DNAzyme. In the presence of target DNA, the hairpin of PMB is opened, and the released palindromic tails intermolecularly hybridize with each other, triggering the autonomous polymerization/nicking/displacement cycles. Although only one type of probe is involved, the system can execute triple and continuous polymerization strand displacement amplifications, generating large amounts of G-quadruplex fragments. These G-rich fragments can bind to hemin and form the DNAzymes that possess the catalytic activity similar to horseradish peroxidase, catalyzing the oxidation of ABTS by H 2 O 2 and producing the colorimetric signal. Utilizing the newly proposed sensing system, target DNA can be detected down to 10 pM with a linear response range from 10 pM to 200 nM, and mutant target DNAs are able to be distinguished even by the naked eye. The desirable detection sensitivity, high specificity, and operation convenience without any separation step and chemical modification demonstrate that the palindromic molecular beacon holds the potential for detecting and monitoring a variety of nucleic acid-related biomarkers.

  20. Fusion peptides from oncogenic chimeric proteins as putative specific biomarkers of cancer.

    Science.gov (United States)

    Conlon, Kevin P; Basrur, Venkatesha; Rolland, Delphine; Wolfe, Thomas; Nesvizhskii, Alexey I; MacCoss, Michael J; Lim, Megan S; Elenitoba-Johnson, Kojo S J

    2013-10-01

    Chromosomal translocations encoding chimeric fusion proteins constitute one of the most common mechanisms underlying oncogenic transformation in human cancer. Fusion peptides resulting from such oncogenic chimeric fusions, though unique to specific cancer subtypes, are unexplored as cancer biomarkers. Here we show, using an approach termed fusion peptide multiple reaction monitoring mass spectrometry, the direct identification of different cancer-specific fusion peptides arising from protein chimeras that are generated from the juxtaposition of heterologous genes fused by recurrent chromosomal translocations. Using fusion peptide multiple reaction monitoring mass spectrometry in a clinically relevant scenario, we demonstrate the specific, sensitive, and unambiguous detection of a specific diagnostic fusion peptide in clinical samples of anaplastic large cell lymphoma, but not in a diverse array of benign lymph nodes or other forms of primary malignant lymphomas and cancer-derived cell lines. Our studies highlight the utility of fusion peptides as cancer biomarkers and carry broad implications for the use of protein biomarkers in cancer detection and monitoring.

  1. Strand Invasion Based Amplification (SIBA®): a novel isothermal DNA amplification technology demonstrating high specificity and sensitivity for a single molecule of target analyte.

    Science.gov (United States)

    Hoser, Mark J; Mansukoski, Hannu K; Morrical, Scott W; Eboigbodin, Kevin E

    2014-01-01

    Isothermal nucleic acid amplification technologies offer significant advantages over polymerase chain reaction (PCR) in that they do not require thermal cycling or sophisticated laboratory equipment. However, non-target-dependent amplification has limited the sensitivity of isothermal technologies and complex probes are usually required to distinguish between non-specific and target-dependent amplification. Here, we report a novel isothermal nucleic acid amplification technology, Strand Invasion Based Amplification (SIBA). SIBA technology is resistant to non-specific amplification, is able to detect a single molecule of target analyte, and does not require target-specific probes. The technology relies on the recombinase-dependent insertion of an invasion oligonucleotide (IO) into the double-stranded target nucleic acid. The duplex regions peripheral to the IO insertion site dissociate, thereby enabling target-specific primers to bind. A polymerase then extends the primers onto the target nucleic acid leading to exponential amplification of the target. The primers are not substrates for the recombinase and are, therefore unable to extend the target template in the absence of the IO. The inclusion of 2'-O-methyl RNA to the IO ensures that it is not extendible and that it does not take part in the extension of the target template. These characteristics ensure that the technology is resistant to non-specific amplification since primer dimers or mis-priming are unable to exponentially amplify. Consequently, SIBA is highly specific and able to distinguish closely-related species with single molecule sensitivity in the absence of complex probes or sophisticated laboratory equipment. Here, we describe this technology in detail and demonstrate its use for the detection of Salmonella.

  2. Strand Invasion Based Amplification (SIBA®: a novel isothermal DNA amplification technology demonstrating high specificity and sensitivity for a single molecule of target analyte.

    Directory of Open Access Journals (Sweden)

    Mark J Hoser

    Full Text Available Isothermal nucleic acid amplification technologies offer significant advantages over polymerase chain reaction (PCR in that they do not require thermal cycling or sophisticated laboratory equipment. However, non-target-dependent amplification has limited the sensitivity of isothermal technologies and complex probes are usually required to distinguish between non-specific and target-dependent amplification. Here, we report a novel isothermal nucleic acid amplification technology, Strand Invasion Based Amplification (SIBA. SIBA technology is resistant to non-specific amplification, is able to detect a single molecule of target analyte, and does not require target-specific probes. The technology relies on the recombinase-dependent insertion of an invasion oligonucleotide (IO into the double-stranded target nucleic acid. The duplex regions peripheral to the IO insertion site dissociate, thereby enabling target-specific primers to bind. A polymerase then extends the primers onto the target nucleic acid leading to exponential amplification of the target. The primers are not substrates for the recombinase and are, therefore unable to extend the target template in the absence of the IO. The inclusion of 2'-O-methyl RNA to the IO ensures that it is not extendible and that it does not take part in the extension of the target template. These characteristics ensure that the technology is resistant to non-specific amplification since primer dimers or mis-priming are unable to exponentially amplify. Consequently, SIBA is highly specific and able to distinguish closely-related species with single molecule sensitivity in the absence of complex probes or sophisticated laboratory equipment. Here, we describe this technology in detail and demonstrate its use for the detection of Salmonella.

  3. Real-time electrochemical monitoring of isothermal helicase-dependent amplification of nucleic acids.

    Science.gov (United States)

    Kivlehan, Francine; Mavré, François; Talini, Luc; Limoges, Benoît; Marchal, Damien

    2011-09-21

    We described an electrochemical method to monitor in real-time the isothermal helicase-dependent amplification of nucleic acids. The principle of detection is simple and well-adapted to the development of portable, easy-to-use and inexpensive nucleic acids detection technologies. It consists of monitoring a decrease in the electrochemical current response of a reporter DNA intercalating redox probe during the isothermal DNA amplification. The method offers the possibility to quantitatively analyze target nucleic acids in less than one hour at a single constant temperature, and to perform at the end of the isothermal amplification a DNA melt curve analysis for differentiating between specific and non-specific amplifications. To illustrate the potentialities of this approach for the development of a simple, robust and low-cost instrument with high throughput capability, the method was validated with an electrochemical system capable of monitoring up to 48 real-time isothermal HDA reactions simultaneously in a disposable microplate consisting of 48-electrochemical microwells. Results obtained with this approach are comparable to that obtained with a well-established but more sophisticated and expensive fluorescence-based method. This makes for a promising alternative detection method not only for real-time isothermal helicase-dependent amplification of nucleic acid, but also for other isothermal DNA amplification strategies.

  4. Oncogenic osteomalacia presenting as bilateral stress fractures of the tibia

    International Nuclear Information System (INIS)

    Ohashi, Kenjirou; Ohnishi, Takeshi; Ishikawa, Tohru; Tani, Haruo; Uesugi, Keisuke; Takagi, Masayuki

    1999-01-01

    We report on a patient with bilateral stress fractures of the tibia who subsequently showed classic biochemical features of oncogenic osteomalacia. Conventional radiographs were normal. MR imaging revealed symmetric, bilateral, band-like low-signal lesions perpendicular to the medial cortex of the tibiae and corresponding to the only lesions subsequently seen on the bone scan. A maxillary sinus lesion was subsequently detected and surgically removed resulting in prompt alleviation of symptoms and normalization of hypophosphatemia and low 1,25-(OH) 2 vitamin D 3 . The lesion was pathologically diagnosed as a hemangiopericytoma-like tumor. Patients with oncogenic osteomalacia may present with stress fractures limited to the tibia, as seen in athletes. The clue to the real diagnosis lies in paying close attention to the serum phosphate levels, especially in patients suffering generalized symptoms of weakness and not given to unusual physical activity. (orig.)

  5. Amplification of PVT1 contributes to the pathophysiology ofovarian and breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Yinghui; Kuo, Wen-Lin; Stilwell, Jackie; Takano, Hirokuni; Lapuk, Anna; Fridlyand, Jane; Mao, Jian-Hua; Yu, Mami; Ginzinger, David; Gray, Joe W.

    2007-10-09

    Purpose. This study was designed to elucidate the role of amplification at 8q24 in the pathophysiology of ovarian and breast cancer since increased copy number at this locus is one of the most frequent genomic abnormalities in these cancers. Experimental Design. To accomplish this, we assessed the association of amplification at 8q24 with outcome in ovarian cancers using FISH to tissue microarrays and measured responses of ovarian and breast cancer cell lines to specific small interfering RNAs (siRNA) against the oncogene, MYC, and a putative noncoding RNA, PVT1, both of which map to 8q24. Results. Amplification of 8q24 was associated with significantly reduced survival duration. In addition, siRNA-mediated reduction in either PVT1 or MYC expression inhibited proliferation in breast and ovarian cancer cell lines in which they were both amplified and over expressed but not in lines in which they were not amplified/over expressed. Inhibition of PVT1 expression also induced a strong apoptotic response in cell lines in which it was over expressed but not in lines in which it was not amplified/over expressed. Inhibition of MYC, on the other hand, did not induce an apoptotic response in cell lines in which MYC was amplified and over expressed. Conclusions. These results suggest that MYC and PVT1 contribute independently to ovarian and breast pathogenesis when over expressed because of genomic abnormalities. They also suggest that PVT1 mediated inhibition of apoptosis may explain why amplification of 8q24 is associated with reduced survival duration in patients treated with agents that act through apoptotic mechanisms.

  6. Loop-Mediated Isothermal Amplification for Detection of Endogenous Sad1 Gene in Cotton: An Internal Control for Rapid Onsite GMO Testing.

    Science.gov (United States)

    Singh, Monika; Bhoge, Rajesh K; Randhawa, Gurinderjit

    2018-04-20

    Background : Confirming the integrity of seed samples in powdered form is important priorto conducting a genetically modified organism (GMO) test. Rapid onsite methods may provide a technological solution to check for genetically modified (GM) events at ports of entry. In India, Bt cotton is the commercialized GM crop with four approved GM events; however, 59 GM events have been approved globally. GMO screening is required to test for authorized GM events. The identity and amplifiability of test samples could be ensured first by employing endogenous genes as an internal control. Objective : A rapid onsite detection method was developed for an endogenous reference gene, stearoyl acyl carrier protein desaturase ( Sad1 ) of cotton, employing visual and real-time loop-mediated isothermal amplification (LAMP). Methods : The assays were performed at a constant temperature of 63°C for 30 min for visual LAMP and 62ºC for 40 min for real-time LAMP. Positive amplification was visualized as a change in color from orange to green on addition of SYBR ® Green or detected as real-time amplification curves. Results : Specificity of LAMP assays was confirmed using a set of 10 samples. LOD for visual LAMP was up to 0.1%, detecting 40 target copies, and for real-time LAMP up to 0.05%, detecting 20 target copies. Conclusions : The developed methods could be utilized to confirm the integrity of seed powder prior to conducting a GMO test for specific GM events of cotton. Highlights : LAMP assays for the endogenous Sad1 gene of cotton have been developed to be used as an internal control for onsite GMO testing in cotton.

  7. Ultrasensitive electrochemical detection of DNA based on Zn²⁺ assistant DNA recycling followed with hybridization chain reaction dual amplification.

    Science.gov (United States)

    Qian, Yong; Wang, Chunyan; Gao, Fenglei

    2015-01-15

    A new strategy to combine Zn(2+) assistant DNA recycling followed with hybridization chain reaction dual amplification was designed for highly sensitive electrochemical detection of target DNA. A gold electrode was used to immobilize molecular beacon (MB) as the recognition probe and perform the amplification procedure. In the presence of the target DNA, the hairpin probe 1 was opened, and the DNAzyme was liberated from the caged structure. The activated DNAzyme hybridized with the MB and catalyzed its cleavage in the presence of Zn(2+) cofactor and resulting in a free DNAzyme strand. Finally, each target-induced activated DNAzyme underwent many cycles triggering the cleavage of MB, thus forming numerous MB fragments. The MB fragments triggered the HCR and formed a long double-helix DNA structure. Because both H1 and H2 were labeled by biotin, a lot of SA-ALP was captured on the electrode surface, thus catalyzing a silver deposition process for electrochemical stripping analysis. This novel cascade signal amplification strategy can detect target DNA down to the attomolar level with a dynamic range spanning 6 orders of magnitude. This highly sensitive and specific assay has a great potential to become a promising DNA quantification method in biomedical research and clinical diagnosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Parallel solid-phase isothermal amplification and detection of multiple DNA targets in microliter-sized wells of a digital versatile disc

    International Nuclear Information System (INIS)

    Santiago-Felipe, Sara; Tortajada-Genaro, Luis Antonio; Puchades, Rosa; Maquieira, Ángel

    2016-01-01

    An integrated method for the parallelized detection of multiple DNA target sequences is presented by using microstructures in a digital versatile disc (DVD). Samples and reagents were managed by using both the capillary and centrifugal forces induced by disc rotation. Recombinase polymerase amplification (RPA), in a bridge solid phase format, took place in separate wells, which thereby modified their optical properties. Then the DVD drive reader recorded the modifications of the transmitted laser beam. The strategy allowed tens of genetic determinations to be made simultaneously within <2 h, with small sample volumes (3 μL), low manipulation and at low cost. The method was applied to high-throughput screening of relevant safety threats (allergens, GMOs and pathogenic bacteria) in food samples. Satisfactory results were obtained in terms of sensitivity (48.7 fg of DNA) and reproducibility (below 18 %). This scheme warrants cost-effective multiplex amplification and detection and is perceived to represent a viable tool for screening of nucleic acid targets. (author)

  9. Detection and quantitation of HER-2/neu gene amplification in human breast cancer archival material using fluorescence in situ hybridization.

    Science.gov (United States)

    Pauletti, G; Godolphin, W; Press, M F; Slamon, D J

    1996-07-04

    Amplification and overexpression of the HER-2/neu gene occurs in 25-30% of human breast cancers. This genetic alteration is associated with a poor clinical prognosis in women with either node negative or node positive breast cancers. The initial studies testing this association were somewhat controversial and this controversy was due in large part to significant heterogeneity in both the methods and/or reagents used in testing archival material for the presence of the alteration. These methods included a number of solid matrix blotting techniques for DNA, RNA and protein as well as immunohistochemistry. Fluorescence in situ hybridization (FISH) represents the newest methodologic approach for testing for this genetic alteration. In this study, FISH is compared to Southern, Northern and Western blot analyses as well as immunohistochemistry in a large cohort of archival human breast cancer specimens. FISH was found to be superior to all other methodologies tested in assessing formalin fixed, paraffin embedded material for HER-2/neu amplification. The results from this study also confirm that overexpression of HER-2/neu rarely occurs in the absence of gene amplification in breast cancer (approximately 3% of cases). This method of analysis is rapid, reproducible and extremely reliable in detecting presence of HER-2/neu gene amplification and should have clinical utility.

  10. Plasminogen-based capture combined with amplification technology for the detection of PrP(TSE in the pre-clinical phase of infection.

    Directory of Open Access Journals (Sweden)

    Christiane Segarra

    Full Text Available BACKGROUND: Variant Creutzfeldt-Jakob disease (vCJD is a neurodegenerative infectious disorder, characterized by a prominent accumulation of pathological isoforms of the prion protein (PrP(TSE in the brain and lymphoid tissues. Since the publication in the United Kingdom of four apparent vCJD cases following transfusion of red blood cells and one apparent case following treatment with factor VIII, the presence of vCJD infectivity in the blood seems highly probable. For effective blood testing of vCJD individuals in the preclinical or clinical phase of infection, it is considered necessary that assays detect PrP(TSE concentrations in the femtomolar range. METHODOLOGY/PRINCIPAL FINDINGS: We have developed a three-step assay that firstly captures PrP(TSE from infected blood using a plasminogen-coated magnetic-nanobead method prior to its serial amplification via protein misfolding cyclic amplification (PMCA and specific PrP(TSE detection by western blot. We achieved a PrP(TSE capture yield of 95% from scrapie-infected material. We demonstrated the possibility of detecting PrP(TSE in white blood cells, in buffy coat and in plasma isolated from the blood of scrapie-infected sheep collected at the pre-clinical stage of the disease. The test also allowed the detection of PrP(TSE in human plasma spiked with a 10(-8 dilution of vCJD-infected brain homogenate corresponding to the level of sensitivity (femtogram required for the detection of the PrP(TSE in asymptomatic carriers. The 100% specificity of the test was revealed using a blinded panel comprising 96 human plasma samples. CONCLUSION/SIGNIFICANCE: We have developed a sensitive and specific amplification assay allowing the detection of PrP(TSE in the plasma and buffy coat fractions of blood collected at the pre-clinical phase of the disease. This assay represents a good candidate as a confirmatory assay for the presence of PrP(TSE in blood of patients displaying positivity in large scale screening

  11. Detection of oncogenic human papillomavirus genotypes on spermatozoa from male partners of infertile couples.

    Science.gov (United States)

    Schillaci, Rosaria; Capra, Giuseppina; Bellavia, Carmela; Ruvolo, Giovanni; Scazzone, Concetta; Venezia, Renato; Perino, Antonio

    2013-11-01

    To evaluate the prevalence of human papillomavirus (HPV) sperm infection and its correlation with sperm parameters in patients who attended a fertility clinic. Cross-sectional clinical study. University-affiliated reproductive medicine clinic. A total of 308 male partners of couples undergoing in vitro fertilization techniques. Specimens of semen were collected from all patients. Sperm parameters were evaluated according to the World Health Organization manual. The presence of HPV DNA was researched by the combined use of two HPV assays and a highly sensitive nested polymerase chain reaction assay followed by HPV genotyping. To examine whether HPV was associated with the sperm, in situ hybridization (ISH) analysis was performed. Results of HPV investigation were compared with sperm parameters and ISH analysis. Twenty-four out of 308 semen samples (7.8%) were HPV DNA positive, but HPV infection did not seem to affect semen quality. Moreover, ISH revealed a clear HPV localization at the equatorial region of sperm head in infected samples. Oncogenic HPV genotypes were detected on spermatozoa from asymptomatic subjects, but a role of the infection in male infertility was not demonstrated. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  12. Rapid and sensitive detection of Bordetella bronchiseptica by loop-mediated isothermal amplification (LAMP

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    2013-10-01

    Full Text Available Bordetella bronchiseptica causes acute and chronic respiratory infections in diverse animal species and occasionally in humans. In this study, we described the establishment of a simple, sensitive and cost-efficient loop-mediated isothermal amplification (LAMP assay for the detection of B. bronchiseptica. A set of primers towards a 235 bp region within the flagellum gene of B. bronchiseptica was designed with online software.. The specificity of the LAMP assay was examined by using 6 porcine pathogens and 100 nasal swabs collected from healthy pigs and suspect infected pigs. The results indicated that positive reactions were confirmed for all B. bronchiseptica and no cross-reactivity was observed from other non-B. bronchiseptica. In sensitivity evaluations, the technique successfully detected a serial dilutions of extracted B. bronchiseptica DNA with a detection limit of 9 copies, which was 10 times more sensitive than that of PCR. Compared with conventional PCR, the higher sensitivity of LAMP method and no need for the complex instrumentation make this LAMP assay a promising alternative for the diagnosis of B. bronchiseptica in rural areas and developing countries where there lacks of complex laboratory services.

  13. LOOP-MEDIATED ISOTHERMAL AMPLIFICATION (LAMP) FOR THE DETECTION OF SALMONELLA SPP. ISOLATED FROM DIFFERENT FOOD TYPES

    OpenAIRE

    Kostas Papanotas; Petros A. Kokkinos; Panos G. Ziros; Apostolos Vantarakis

    2012-01-01

    The objective of this study was the application and evaluation of a loop-mediated isothermal amplification (LAMP) method for the detection of Salmonella spp. strains isolated from food samples. Salmonella specific invA gene sequences (50 strains, 15 serotypes) were amplified at 65oC in 60 min. All of the strains of Salmonella subsp. Enterica were shown to be positive using the LAMP reaction assay, whereas, all other bacteria, virus and yeasts tested in this study were negative. LAMP products ...

  14. Oncogenes and radiosensitivity: in vitro studies. Potential impact in radiotherapy

    International Nuclear Information System (INIS)

    Alapetite, C.; Moustacchi, E.; Cosset, J.M.

    1992-01-01

    It is of interest to address the question of whether or not activated oncogenes can influence tumorigenic cell response to radiations. Malignant transformation through transfection of oncogenes offers a possibility for in vitro comparison of transformed cells and parental cells. Murin cellular system analysis suggests an acquisition of radioresistance through some oncogenes transfection. In human cells, only a limited number of oncogenes (ras and myc) has been studied so far. To date, no crucial influence could be demonstrated. The extension of the analysis to other oncogenes and suppressor genes could potentially be helpful for the choice and the modalities of cancer treatment

  15. A Portable Automatic Endpoint Detection System for Amplicons of Loop Mediated Isothermal Amplification on Microfluidic Compact Disk Platform

    Directory of Open Access Journals (Sweden)

    Shah Mukim Uddin

    2015-03-01

    Full Text Available In recent years, many improvements have been made in foodborne pathogen detection methods to reduce the impact of food contamination. Several rapid methods have been developed with biosensor devices to improve the way of performing pathogen detection. This paper presents an automated endpoint detection system for amplicons generated by loop mediated isothermal amplification (LAMP on a microfluidic compact disk platform. The developed detection system utilizes a monochromatic ultraviolet (UV emitter for excitation of fluorescent labeled LAMP amplicons and a color sensor to detect the emitted florescence from target. Then it processes the sensor output and displays the detection results on liquid crystal display (LCD. The sensitivity test has been performed with detection limit up to 2.5 × 10−3 ng/µL with different DNA concentrations of Salmonella bacteria. This system allows a rapid and automatic endpoint detection which could lead to the development of a point-of-care diagnosis device for foodborne pathogens detection in a resource-limited environment.

  16. Oncogenic osteomalacia presenting as bilateral stress fractures of the tibia

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Kenjirou; Ohnishi, Takeshi; Ishikawa, Tohru [Department of Radiology, St. Marianna University Hospital, Kanagawa (Japan); Tani, Haruo [Department of Internal Medicine III, St. Marianna University Hospital, Kawasaki City, Kanagawa (Japan); Uesugi, Keisuke [Department of Otolaryngology, St. Marianna University Hospital, Kawasaki City, Kanagawa (Japan); Takagi, Masayuki [Department of Pathology, St. Marianna University Hospital, Kawasaki City, Kanagawa (Japan)

    1999-01-01

    We report on a patient with bilateral stress fractures of the tibia who subsequently showed classic biochemical features of oncogenic osteomalacia. Conventional radiographs were normal. MR imaging revealed symmetric, bilateral, band-like low-signal lesions perpendicular to the medial cortex of the tibiae and corresponding to the only lesions subsequently seen on the bone scan. A maxillary sinus lesion was subsequently detected and surgically removed resulting in prompt alleviation of symptoms and normalization of hypophosphatemia and low 1,25-(OH){sub 2} vitamin D{sub 3}. The lesion was pathologically diagnosed as a hemangiopericytoma-like tumor. Patients with oncogenic osteomalacia may present with stress fractures limited to the tibia, as seen in athletes. The clue to the real diagnosis lies in paying close attention to the serum phosphate levels, especially in patients suffering generalized symptoms of weakness and not given to unusual physical activity. (orig.) With 4 figs., 6 refs.

  17. Optical nano-biosensing interface via nucleic acid amplification strategy: construction and application.

    Science.gov (United States)

    Zhou, Hong; Liu, Jing; Xu, Jing-Juan; Zhang, Shu-Sheng; Chen, Hong-Yuan

    2018-03-21

    Modern optical detection technology plays a critical role in current clinical detection due to its high sensitivity and accuracy. However, higher requirements such as extremely high detection sensitivity have been put forward due to the clinical needs for the early finding and diagnosing of malignant tumors which are significant for tumor therapy. The technology of isothermal amplification with nucleic acids opens up avenues for meeting this requirement. Recent reports have shown that a nucleic acid amplification-assisted modern optical sensing interface has achieved satisfactory sensitivity and accuracy, high speed and specificity. Compared with isothermal amplification technology designed to work completely in a solution system, solid biosensing interfaces demonstrated better performances in stability and sensitivity due to their ease of separation from the reaction mixture and the better signal transduction on these optical nano-biosensing interfaces. Also the flexibility and designability during the construction of these nano-biosensing interfaces provided a promising research topic for the ultrasensitive detection of cancer diseases. In this review, we describe the construction of the burgeoning number of optical nano-biosensing interfaces assisted by a nucleic acid amplification strategy, and provide insightful views on: (1) approaches to the smart fabrication of an optical nano-biosensing interface, (2) biosensing mechanisms via the nucleic acid amplification method, (3) the newest strategies and future perspectives.

  18. A real-time loop-mediated isothermal amplification assay for rapid detection of Shigella species.

    Science.gov (United States)

    Liew, P S; Teh, C S J; Lau, Y L; Thong, K L

    2014-12-01

    Shigellosis is a foodborne illness caused by the genus Shigella and is an important global health issue. The development of effective techniques for rapid detection of this pathogen is essential for breaking the chain of transmission. Therefore, we have developed a novel loop-mediated isothermal amplification (LAMP) assay targeting the invasion plasmid antigen H (ipaH) gene to rapidly detect Shigella species. This assay could be performed in 90 min at an optimal temperature of 64ºC, with endpoint results visualized directly. Notably, the method was found to be more sensitive than conventional PCR. Indeed, the detection limit for the LAMP assay on pure bacterial cultures was 5.9 x 10(5) CFU/ml, while PCR displayed a limit of 5.9 x 10(7) CFU/ml. In spiked lettuce samples, the sensitivity of the LAMP assay was 3.6 x 10(4) CFU/g, whereas PCR was 3.6 x 10(5) CFU/g. Overall, the assay accurately identified 32 Shigella spp. with one enteroinvasive Escherichia coli displaying positive reaction while the remaining 32 non-Shigella strains tested were negative.

  19. Loop-mediated isothermal amplification as an emerging technology for detection of Yersinia ruckeri the causative agent of enteric red mouth disease in fish

    Directory of Open Access Journals (Sweden)

    Soliman Hatem

    2008-08-01

    Full Text Available Abstract Background Enteric Redmouth (ERM disease also known as Yersiniosis is a contagious disease affecting salmonids, mainly rainbow trout. The causative agent is the gram-negative bacterium Yersinia ruckeri. The disease can be diagnosed by isolation and identification of the causative agent, or detection of the Pathogen using fluorescent antibody tests, ELISA and PCR assays. These diagnostic methods are laborious, time consuming and need well trained personnel. Results A loop-mediated isothermal amplification (LAMP assay was developed and evaluated for detection of Y. ruckeri the etiological agent of enteric red mouth (ERM disease in salmonids. The assay was optimised to amplify the yruI/yruR gene, which encodes Y. ruckeri quorum sensing system, in the presence of a specific primer set and Bst DNA polymerase at an isothermal temperature of 63°C for one hour. Amplification products were detected by visual inspection, agarose gel electrophoresis and by real-time monitoring of turbidity resulted by formation of LAMP amplicons. Digestion with HphI restriction enzyme demonstrated that the amplified product was unique. The specificity of the assay was verified by the absence of amplification products when tested against related bacteria. The assay had 10-fold higher sensitivity compared with conventional PCR and successfully detected Y. ruckeri not only in pure bacterial culture but also in tissue homogenates of infected fish. Conclusion The ERM-LAMP assay represents a practical alternative to the microbiological approach for rapid, sensitive and specific detection of Y. ruckeri in fish farms. The assay is carried out in one hour and needs only a heating block or water bath as laboratory furniture. The advantages of the ERM-LAMP assay make it a promising tool for molecular detection of enteric red mouth disease in fish farms.

  20. Loop-mediated isothermal amplification for detection of Staphylococcus aureus in dairy cow suffering from mastitis.

    Science.gov (United States)

    Tie, Zhang; Chunguang, Wang; Xiaoyuan, Wei; Xinghua, Zhao; Xiuhui, Zhong

    2012-01-01

    To develop a rapid detection method of Staphylococcus aureus using loop-mediated isothermal amplification (LAMP), four specific primers were designed according to six distinct sequences of the nuc gene. In addition, the specificity and sensitivity of LAMP were verified and compared with those of PCR. Results showed that the LAMP reaction was completed within 45 min at 62.5°C, and ladder bands were appeared in LAMP products analyzed by gel electrophoresis. After adding 1x SYBR Green l, the positive reaction tube showed green color and the negative reaction tube remained orange, indicating that the LAMP has high specificity. The minimal detectable concentration of LAMP was 1 × 10² CFU/mL and that of PCR was 1 × 10⁴ CFU/mL, indicating that the LAMP was 100 times more sensitive than the PCR. The LAMP method for detection of Staphylococcus aureus has many advantages, such as simple operation, high sensitivity, high specificity, and rapid analysis. Therefore, this method is more suitable for the rapid on-site detection of Staphylococcus aureus.

  1. Detection of HbsAg and hATIII genetically modified goats (Caprahircus) by loop-mediated isothermal amplification.

    Science.gov (United States)

    Tao, Chenyu; Zhang, Qingde; Zhai, Shanli; Liu, Bang

    2013-11-01

    In this study, sensitive and rapid detection systems were designed using a loop-mediated isothermal amplification (LAMP) method to detect the genetically modified goats. A set of 4 primers were designed for each exogenous nucleic acids HBsAg and hATIII. The DNA samples were first amplified with the outer and inner primers and released a single-stranded DNA,of which both ends were stem-loop structure. Then one inner primer hybridized with the loop, and initiated displacement synthesis in less than 1 h. The result could be visualized by both agarose gel electrophoresis and unaided eyes directly after adding SYBR GREEN 1. The detection limit of LAMP was ten copies of target molecules, indicating that LAMP was tenfold more sensitive than the classical PCR. Furthermore, all the samples of genetically modified goats were tested positively by LAMP, and the results demonstrated that the LAMP was a rapid and sensitive method for detecting the genetically modified organism.

  2. The detection of hTERC amplification using fluorescence in situ hybridization in the diagnosis and prognosis of cervical intraepithelial neoplasia: a case control study

    Directory of Open Access Journals (Sweden)

    Yin Geping

    2012-08-01

    Full Text Available Abstract Background Currently the routine non-invasive screening methods for cervical intraepithelial neoplasia (CIN and cervical cancer are Thinprep cytology test (TCT and human papillomavirus testing. However, both methods are limited by the high false positive and false negative rates and lack of association with patients’ prognosis, especially for the early detection of pro-malignant CIN. The aim of the study was to investigate the role of genomic amplification of human telomerase gene (hTERC in the diagnosis and prognosis of CIN. Methods The study group consisted of specimens of exfoliated cervical cells from 151 patients, including 27 with CIN I, 54 with CIN II/III, 17 with carcinoma in situ, and 28 with invasive squamous carcinoma, as well as 25 patients who were at 2-year follow-up after either Loop Electrosurgical Excision treatment (n = 11 or radical surgery (n = 14. hTERC amplification was detected by dual-color interphase fluorescence in situ hybridization (FISH, and the results were compared with TCT and histologic examination. The final diagnosis was determined by the pathological examination. The control group consisted of specimens of exfoliated cervical cells from 40 normal women. Results The percentage of cervical exfoliated cells with positive hTERC amplification and incidence rates of hTERC amplification were 9.2% ± 4.6% and 44.4% (12/27 respectively in patients with CIN I; 16.0% ± 14.4% and 85.1% (46/54 in patients with CIN II/III; 19.7% ± 13.3% and 88.3% (15 /17 in patients with carcinoma in situ; 47.0% ± 25.2% and 100% (28/28in patients with invasive squamous carcinoma. There was statistically significant difference between the control and study group (P Conclusion The detection of genomic amplification of hTERC using FISH is a non-invasive and effective approach for CIN.

  3. [HER2 gene amplification assay: is CISH an alternative to FISH?].

    Science.gov (United States)

    Denoux, Yves; Arnould, Laurent; Fiche, Maryse; Lannes, B; Couturier, Jérôme; Vincent-Salomon, Anne; Penault-Llorca, Frédérique; Antoine, M; Balaton, A; Baranzelli, M C; Becette, V; Bellocq, J P; Bibeau, F; Ettore, F; Fridman, V; Gnassia, J P; Jacquemier, J; MacGrogan, G; Mathieu, M C; Migeon, C; Rigaud, C; Roger, P; Sigal-Zafrani, B; Simony-Lafontaine, J; Trassard, M; Treilleux, I; Verriele, V; Voigt, J J

    2003-12-01

    The HER2 proto-oncogene encodes a transmembrane protein, which is considered to function as a growth factor receptor. Overexpression of this protein found by immunohistochemistry in about 20% of infiltrating breast carcinomas, has a predictive value of response to treatment by trastuzumab, an anti-HER2 humanized monoclonal antibody. Search for HER2 gene amplification is necessary to adapt the immunohistochemical technique quality and also in the cases of delicate analysis or weak overexpression. It is usually carried out by Fluorescence In Situ Hybridization (FISH). A more recent hybridization technique, named CISH because of its chromogenic revelation is an alternative method, which gives highly correlated results with FISH. We present details of this technique, which may be more familiar for the pathologists than FISH, because reading analysis is similar to that of immunohistochemical staining.

  4. Development and evaluation of a novel and rapid detection assay for Botrytis cinerea based on loop-mediated isothermal amplification.

    Directory of Open Access Journals (Sweden)

    Ya-Bing Duan

    Full Text Available Botrytis cinerea is a devastating plant pathogen that causes grey mould disease. In this study, we developed a visual detection method of B. cinerea based on the Bcos5 sequence using loop-mediated isothermal amplification (LAMP with hydroxynaphthol blue dye (HNB. The LAMP reaction was optimal at 63 °C for 45 min. When HNB was added prior to amplification, samples with B. cinerea DNA developed a characteristic sky blue color after the reaction but those without DNA or with DNA of other plant pathogenic fungi did not. Results of HNB staining method were reconfirmed when LAMP products were subjected to gel electrophoresis. The detection limit of this LAMP assay for B. cinerea was 10(-3 ng µL(-1 of genomic DNA per reaction, which was 10-fold more sensitive than conventional PCR (10(-2 ng µL(-1. Detection of the LAMP assay for inoculum of B. cinerea was possible in the inoculated tomato and strawberry petals. In the 191 diseased samples, 180 (94.2% were confirmed as positive by LAMP, 172 (90.1% positive by the tissue separation, while 147 (77.0% positive by PCR. Because the LAMP assay performed well in aspects of sensitivity, specificity, repeatability, reliability, and visibility, it is suitable for rapid detection of B. cinerea in infected plant materials prior to storage and during transportation, such as cut flowers, fruits and vegetables.

  5. Immunodetection of rasP21 and c-myc oncogenes in oral mucosal swab preparation from clove cigarette smokers

    Directory of Open Access Journals (Sweden)

    Silvi Kintawati

    2008-12-01

    Full Text Available Background: Smoking is the biggest factor for oral cavity malignancy. Some carcinogens found in cigar will stimulate epithel cell in oral cavity and cause mechanism disturbance on tissue resistance and produce abnormal genes (oncogenes. Oncogenes ras and myc are found on malignant tumor in oral cavity which are associated with smoking. Purpose: This research is to find the expression of oncogenes rasP21 and c-myc in oral mucosa epithelial of smoker with immunocytochemistry reaction. Methods: An oral mucosal swab was performed to 30 smokers categorized as light, moderate, and chain, and 10 non smokers which was followed by immunocytochemistry reaction using antibody towards oncogene rasP21 and c-myc is reacted to identify the influence of smoking towards malignant tumor in oral cavity. The result is statistically analyzed using Kruskal-Wallis test. Result: Based on the observation result of oncogene rasP21reaction, it shows that there is significant difference between non smoker group and light smoker, compared to moderate and chain smoker group (p < 0.01. On the other side, the observation result of oncogene c-myc indicates that there is no significant difference between the group of non smokers and the group of light, moderate, and chain smokers (p > 0.05. Conclusion: The higher the possibility of oral cavity malignancy and that the antibody for rasP21 oncogene can be used as a marker for early detection of oral cavity malignancy caused by smoking.

  6. Development of Nested PCR, Multiplex PCR, and Loop-Mediated Isothermal Amplification Assays for Rapid Detection of Cylindrocladium scoparium on Eucalyptus

    Directory of Open Access Journals (Sweden)

    Tian-Min Qiao

    2016-10-01

    Full Text Available Eucalyptus dieback disease, caused by Cylindrocladium scoparium, has occurred in last few years in large Eucalyptus planting areas in China and other countries. Rapid, simple, and reliable diagnostic techniques are desired for the early detection of Eucalyptus dieback of C. scoparium prior to formulation of efficient control plan. For this purpose, three PCR-based methods of nested PCR, multiplex PCR, loop-mediated isothermal amplification (LAMP were developed for detection of C. scoparium based on factor 1-alpha (tef1 and beta-tubulin gene in this study. All of the three methods showed highly specific to C. scoparium. The sensitivities of the nested PCR and LAMP were much higher than the multiplex PCR. The sensitivity of multiplex PCR was also higher than regular PCR. C. scoparium could be detected within 60 min from infected Eucalyptus plants by LAMP, while at least 2 h was needed by the rest two methods. Using different Eucalyptus tissues as samples for C. scoparium detection, all of the three PCR-based methods showed much better detection results than regular PCR. Base on the results from this study, we concluded that any of the three PCR-based methods could be used as diagnostic technology for the development of efficient strategies of Eucalyptus dieback disease control. Particularly, LAMP was the most practical method in field application because of its one-step and rapid reaction, simple operation, single-tube utilization, and simple visualization of amplification products.

  7. Development of Nested PCR, Multiplex PCR, and Loop-Mediated Isothermal Amplification Assays for Rapid Detection of Cylindrocladium scoparium on Eucalyptus

    Science.gov (United States)

    Qiao, Tian-Min; Zhang, Jing; Li, Shu-Jiang; Han, Shan; Zhu, Tian-Hui

    2016-01-01

    Eucalyptus dieback disease, caused by Cylindrocladium scoparium, has occurred in last few years in large Eucalyptus planting areas in China and other countries. Rapid, simple, and reliable diagnostic techniques are desired for the early detection of Eucalyptus dieback of C. scoparium prior to formulation of efficient control plan. For this purpose, three PCR-based methods of nested PCR, multiplex PCR, loop-mediated isothermal amplification (LAMP) were developed for detection of C. scoparium based on factor 1-alpha (tef1) and beta-tubulin gene in this study. All of the three methods showed highly specific to C. scoparium. The sensitivities of the nested PCR and LAMP were much higher than the multiplex PCR. The sensitivity of multiplex PCR was also higher than regular PCR. C. scoparium could be detected within 60 min from infected Eucalyptus plants by LAMP, while at least 2 h was needed by the rest two methods. Using different Eucalyptus tissues as samples for C. scoparium detection, all of the three PCR-based methods showed much better detection results than regular PCR. Base on the results from this study, we concluded that any of the three PCR-based methods could be used as diagnostic technology for the development of efficient strategies of Eucalyptus dieback disease control. Particularly, LAMP was the most practical method in field application because of its one-step and rapid reaction, simple operation, single-tube utilization, and simple visualization of amplification products. PMID:27721691

  8. Development of Nested PCR, Multiplex PCR, and Loop-Mediated Isothermal Amplification Assays for Rapid Detection of Cylindrocladium scoparium on Eucalyptus.

    Science.gov (United States)

    Qiao, Tian-Min; Zhang, Jing; Li, Shu-Jiang; Han, Shan; Zhu, Tian-Hui

    2016-10-01

    Eucalyptus dieback disease, caused by Cylindrocladium scoparium , has occurred in last few years in large Eucalyptus planting areas in China and other countries. Rapid, simple, and reliable diagnostic techniques are desired for the early detection of Eucalyptus dieback of C. scoparium prior to formulation of efficient control plan. For this purpose, three PCR-based methods of nested PCR, multiplex PCR, loop-mediated isothermal amplification (LAMP) were developed for detection of C. scoparium based on factor 1-alpha (tef1) and beta-tubulin gene in this study. All of the three methods showed highly specific to C. scoparium . The sensitivities of the nested PCR and LAMP were much higher than the multiplex PCR. The sensitivity of multiplex PCR was also higher than regular PCR. C. scoparium could be detected within 60 min from infected Eucalyptus plants by LAMP, while at least 2 h was needed by the rest two methods. Using different Eucalyptus tissues as samples for C. scoparium detection, all of the three PCR-based methods showed much better detection results than regular PCR. Base on the results from this study, we concluded that any of the three PCR-based methods could be used as diagnostic technology for the development of efficient strategies of Eucalyptus dieback disease control. Particularly, LAMP was the most practical method in field application because of its one-step and rapid reaction, simple operation, single-tube utilization, and simple visualization of amplification products.

  9. A dual amplification strategy for DNA detection combining bio-barcode assay and metal-enhanced fluorescence modality.

    Science.gov (United States)

    Zhou, Zhenpeng; Li, Tian; Huang, Hongduan; Chen, Yang; Liu, Feng; Huang, Chengzhi; Li, Na

    2014-11-11

    Silver-enhanced fluorescence was coupled with a bio-barcode assay to facilitate a dual amplification assay to demonstrate a non-enzymatic approach for simple and sensitive detection of DNA. In the assay design, magnetic nanoparticles seeded with silver nanoparticles were modified with the capture DNA, and silver nanoparticles were modified with the binding of ssDNA and the fluorescently labeled barcode dsDNA. Upon introduction of the target DNA, a sandwich structure was formed because of the hybridization reaction. By simple magnetic separation, silver-enhanced fluorescence of barcode DNAs could be readily measured without the need of a further step to liberate barcode DNAs from silver nanoparticles, endowing the method with simplicity and high sensitivity with a detection limit of 1 pM.

  10. Rapid genome detection of Schmallenberg virus and bovine viral diarrhea virus by use of isothermal amplification methods and high-speed real-time reverse transcriptase PCR.

    Science.gov (United States)

    Aebischer, Andrea; Wernike, Kerstin; Hoffmann, Bernd; Beer, Martin

    2014-06-01

    Over the past few years, there has been an increasing demand for rapid and simple diagnostic tools that can be applied outside centralized laboratories by using transportable devices. In veterinary medicine, such mobile test systems would circumvent barriers associated with the transportation of samples and significantly reduce the time to diagnose important infectious animal diseases. Among a wide range of available technologies, high-speed real-time reverse transcriptase quantitative PCR (RT-qPCR) and the two isothermal amplification techniques loop-mediated isothermal amplification (LAMP) and recombinase polymerase amplification (RPA) represent three promising candidates for integration into mobile pen-side tests. The aim of this study was to investigate the performance of these amplification strategies and to evaluate their suitability for field application. In order to enable a valid comparison, novel pathogen-specific assays have been developed for the detection of Schmallenberg virus and bovine viral diarrhea virus. The newly developed assays were evaluated in comparison with established standard RT-qPCR using samples from experimentally or field-infected animals. Even though all assays allowed detection of the target virus in less than 30 min, major differences were revealed concerning sensitivity, specificity, robustness, testing time, and complexity of assay design. These findings indicated that the success of an assay will depend on the integrated amplification technology. Therefore, the application-specific pros and cons of each method that were identified during this study provide very valuable insights for future development and optimization of pen-side tests. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  11. Loop-Mediated Isothermal Amplification Assay Targeting the MOMP Gene for Rapid Detection of Chlamydia psittaci Abortus Strain

    Directory of Open Access Journals (Sweden)

    Guo-Zhen Lin, Fu-Ying Zheng, Ji-Zhang Zhou, Guang-Hua Wang, Xiao-An Cao, Xiao-Wei Gong and Chang-Qing Qiu*

    2012-05-01

    Full Text Available For rapid detection of the Chlamydia psittaci abortus strain, a loop-mediated isothermal amplification (LAMP assay was developed and evaluated in this study. The primers for the LAMP assay were designed on the basis of the main outer membrane protein (MOMP gene sequence of C. psittaci. Analysis showed that the assay could detect the abortus strain of C. psittaci with adequate specificity. The sensitivity of the test was the same as that of the nested-conventional PCR and higher than that of chick embryo isolation. Testing of 153 samples indicated that the LAMP assay could detect the genome of the C. psittaci abortus strain effectively in clinical samples. This assay is a useful tool for rapid diagnosis of C. psittaci infection in sheep, swine and cattle.

  12. Direct bacterial loop-mediated isothermal amplification detection on the pathogenic features of the nosocomial pathogen - Methicillin resistant Staphylococcus aureus strains with respiratory origins.

    Science.gov (United States)

    Lin, Qun; Xu, Pusheng; Li, Jiaowu; Chen, Yin; Feng, Jieyi

    2017-08-01

    Loop-mediated isothermal amplification based detection assays using bacterial culture or colony for direct detection of methicillin resistant Staphylococcus aureus(MRSA) had been developed and evaluated, followed by its extensive application on a large scale of clinical MRSA isolated from respiratory origins, including nasal swabs and sputums. Six primers, including outer primers, inner primers and loop primers, were specifically designed for recognizing eight distinct sequences on four targets: 16SrRNA, femA, mecA and orfX. Twenty-seven reference strains were used to develop, evaluate and optimize this assay. Then, a total of 532 clinical MRSA isolates were employed for each detected targets. And the results were determined through both visual observation of the color change by naked eye and electrophoresis. The specific of each primer had been confirmed, and the optimal amplification was obtained under 65 °C for 40 min. The limit of detections (LOD) of bacteria culture LAMP assays were determined to be 10 4  CFU/ml for 16S rRNA, femA, as well as orfX and 10 5  CFU/ml for mecA, respectively. The established novel assays on MRSA detection may provide new strategies for rapid detection of foodborne pathogens. Copyright © 2017. Published by Elsevier Ltd.

  13. Rapid diagnostic detection of plum pox virus in Prunus plants by isothermal AmplifyRP(®) using reverse transcription-recombinase polymerase amplification.

    Science.gov (United States)

    Zhang, Shulu; Ravelonandro, Michel; Russell, Paul; McOwen, Nathan; Briard, Pascal; Bohannon, Seven; Vrient, Albert

    2014-10-01

    Plum pox virus (PPV) causes the most destructive viral disease known as plum pox or Sharka disease in stone fruit trees. As an important regulated pathogen, detection of PPV is thus of critical importance to quarantine and eradication of the spreading disease. In this study, the innovative development of two AmplifyRP(®) tests is reported for a rapid isothermal detection of PPV using reverse transcription-recombinase polymerase amplification. In an AmplifyRP(®) test, all specific recombination and amplification reactions occur at a constant temperature without thermal cycling and the test results are either recorded in real-time with a portable fluorescence reader or displayed using a lateral flow strip contained inside an amplicon detection chamber. The major improvement of this assay is that the entire test from sample preparation to result can be completed in as little as 20min and can be performed easily both in laboratories and in the field. The results from this study demonstrated the ability of the AmplifyRP(®) technique to detect all nine PPV strains (An, C, CR, D, EA, M, Rec, T, or W). Among the economic benefits to pathogen surveys is the higher sensitivity of the AmplifyRP(®) to detect PPV when compared to the conventional ELISA and ImmunoStrip(®) assays. This is the first report describing the use of such an innovative technique to detect rapidly plant viruses affecting perennial crops. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Development of a rapid diagnostic assay for the detection of tomato chlorotic dwarf viroid based on isothermal reverse-transcription-recombinase polymerase amplification

    Science.gov (United States)

    A molecular diagnostic assay utilizing reverse transcription-recombinase polymerase amplification (RT-RPA) at an isothermal constant temperature of 39 °C and target-specific primers and probe were developed for the rapid, sensitive, and specific detection of tomato chlorotic dwarf viroid (TCDVd) in ...

  15. Morphology-Controlled 9,10-Diphenylanthracene Nanoblocks as Electrochemiluminescence Emitters for MicroRNA Detection with One-Step DNA Walker Amplification.

    Science.gov (United States)

    Liu, Jia-Li; Tang, Zhi-Ling; Zhang, Jia-Qi; Chai, Ya-Qin; Zhuo, Ying; Yuan, Ruo

    2018-04-17

    The electrochemiluminescence (ECL) properties of polycyclic aromatic hydrocarbons (PAHs) are excellent on account of the high photoluminescence quantum yield. However, the poor solubility and radical instability of PAHs in the aqueous solution severely restricted further biological application. Here 9,10-diphenylanthracene (DPA) nanoblocks (NBs) with good dispersibility and stability in aqueous solution were prepared according to morphology-controlled technology employing water-soluble polymers as a protectant. Furthermore, an ECL "off-on" switch biosensor was developed based on a novel ECL ternary system with DPA NBs as luminophore, dissolved O 2 as coreactant, and Pt-Ag alloy nanoflowers as the coreaction accelerator, which achieved a high-intense initial ECL signal. Subsequently, the Fc-DNA as ECL signal quencher was assembled on the electrode surface to quench the initial ECL signal for a "signal-off" state. Meanwhile, DNA swing arm was modified on the electrode surface for one-step DNA walker amplification. Interestingly, in the presence of miRNA-141 and T7 Exo, the one-step DNA walker amplification was executed to recover a strong ECL signal as a "signal-on" state by the digestion of Fc-DNA. Thus the developed ECL "off-on" switch biosensor possesses a detection limit down to 29.5 aM for ultrasensitive detection of miRNA-141, which is expected to be applicable to the detection of miRNA in clinic tumor cells.

  16. Recombinase polymerase amplification (RPA) combined with lateral flow (LF) strip for detection of Toxoplasma gondii in the environment.

    Science.gov (United States)

    Wu, Y D; Xu, M J; Wang, Q Q; Zhou, C X; Wang, M; Zhu, X Q; Zhou, D H

    2017-08-30

    Toxoplasma gondii infects all warm-blooded vertebrates, resulting in a great threat to human health and significant economic loss to the livestock industry. Ingestion of infectious oocysts of T. gondii from the environment is the major source of transmission. Detection of T. gondii oocysts by existing methods is laborious, time-consuming and expensive. The objective of the present study was to develop a recombinase polymerase amplification (RPA) method combined with a lateral flow (LF) strip for detection of T. gondii oocysts in the soil and water. The DNA of T. gondii oocysts was amplified by a pair of specific primers based on the T. gondii B1 gene over 15min at a constant temperature ranging from 30°C to 45°C using RPA. The amplification product was visualized by the lateral flow (LF) strip within 5min using the specific probe added to the RPA reaction system. The sensitivity of the established assay was 10 times higher than that of nested PCR with a lower detection limit of 0.1 oocyst per reaction, and there was no cross-reactivity with other closely related protozoan species. Fifty environmental samples were further assessed for the detection validity of the LF-RPA assay (B1-LF-RPA) and compared with nested PCR based on the B1 gene sequence. The B1-LF-RPA and nested PCR both showed that 5 out of the 50 environmental samples were positive. The B1-LF-RPA method was also proven to be sufficiently tolerant of existing inhibitors in the environment. In addition, the advantages of simple operation, speediness and cost-effectiveness make B1-LF-RPA a promising molecular detection tool for T. gondii. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. A Network-Based Model of Oncogenic Collaboration for Prediction of Drug Sensitivity

    Directory of Open Access Journals (Sweden)

    Ted G Laderas

    2015-12-01

    Full Text Available Tumorigenesis is a multi-step process, involving the acquisition of multiple oncogenic mutations that transform cells, resulting in systemic dysregulation that enables proliferation, among other cancer hallmarks. High throughput omics techniques are used in precision medicine, allowing identification of these mutations with the goal of identifying treatments that target them. However, the multiplicity of oncogenes required for transformation, known as oncogenic collaboration, makes assigning effective treatments difficult. Motivated by this observation, we propose a new type of oncogenic collaboration where mutations in genes that interact with an oncogene may contribute to its dysregulation, a new genomic feature that we term surrogate oncogenes. By mapping mutations to a protein/protein interaction network, we can determine significance of the observed distribution using permutation-based methods. For a panel of 38 breast cancer cell lines, we identified significant surrogate oncogenes in oncogenes such as BRCA1 and ESR1. In addition, using Random Forest Classifiers, we show that these significant surrogate oncogenes predict drug sensitivity for 74 drugs in the breast cancer cell lines with a mean error rate of 30.9%. Additionally, we show that surrogate oncogenes are predictive of survival in patients. The surrogate oncogene framework incorporates unique or rare mutations on an individual level. Our model has the potential for integrating patient-unique mutations in predicting drug-sensitivity, suggesting a potential new direction in precision medicine, as well as a new approach for drug development. Additionally, we show the prevalence of significant surrogate oncogenes in multiple cancers within the Cancer Genome Atlas, suggesting that surrogate oncogenes may be a useful genomic feature for guiding pancancer analyses and assigning therapies across many tissue types.

  18. Experimental amplification of an entangled photon: what if the detection loophole is ignored?

    International Nuclear Information System (INIS)

    Pomarico, Enrico; Sanguinetti, Bruno; Sekatski, Pavel; Zbinden, Hugo; Gisin, Nicolas

    2011-01-01

    The experimental verification of quantum features, such as entanglement, at large scales is extremely challenging because of environment-induced decoherence. Indeed, measurement techniques for demonstrating the quantumness of multiparticle systems in the presence of losses are difficult to define, and if they are not sufficiently accurate they can provide wrong conclusions. We present a Bell test where one photon of an entangled pair is amplified and then detected by threshold detectors, whose signals undergo postselection. The amplification is performed by a classical machine, which produces a fully separable micro-macro state. However, by adopting such a technique one can surprisingly observe a violation of the Clauser-Horne-Shimony-Holt inequality. This is due to the fact that ignoring the detection loophole opened by the postselection and the system losses can lead to misinterpretations, such as claiming micro-macro entanglement in a setup where evidently it is not present. By using threshold detectors and postselection, one can only infer the entanglement of the initial pair of photons, and so micro-micro entanglement, as is further confirmed by the violation of a nonseparability criterion for bipartite systems. How to detect photonic micro-macro entanglement in the presence of losses with the currently available technology remains an open question.

  19. Robust and efficient direct multiplex amplification method for large-scale DNA detection of blood samples on FTA cards

    International Nuclear Information System (INIS)

    Jiang Bowei; Xiang Fawei; Zhao Xingchun; Wang Lihua; Fan Chunhai

    2013-01-01

    Deoxyribonucleic acid (DNA) damage arising from radiations widely occurred along with the development of nuclear weapons and clinically wide application of computed tomography (CT) scan and nuclear medicine. All ionizing radiations (X-rays, γ-rays, alpha particles, etc.) and ultraviolet (UV) radiation lead to the DNA damage. Polymerase chain reaction (PCR) is one of the most wildly used techniques for detecting DNA damage as the amplification stops at the site of the damage. Improvements to enhance the efficiency of PCR are always required and remain a great challenge. Here we establish a multiplex PCR assay system (MPAS) that is served as a robust and efficient method for direct detection of target DNA sequences in genomic DNA. The establishment of the system is performed by adding a combination of PCR enhancers to standard PCR buffer, The performance of MPAS was demonstrated by carrying out the direct PCR amplification on l.2 mm human blood punch using commercially available primer sets which include multiple primer pairs. The optimized PCR system resulted in high quality genotyping results without any inhibitory effect indicated and led to a full-profile success rate of 98.13%. Our studies demonstrate that the MPAS provides an efficient and robust method for obtaining sensitive, reliable and reproducible PCR results from human blood samples. (authors)

  20. Rapid and Sensitive Detection of sFAT-1 Transgenic Pigs by Visual Loop-Mediated Isothermal Amplification.

    Science.gov (United States)

    Tao, Chenyu; Yang, Yalan; Li, Xunbi; Zheng, Xinmin; Ren, Hongyan; Li, Kui; Zhou, Rong

    2016-07-01

    Genetically modified (GM) livestock have the potential to contribute to improving the environment and human health, with consumption of fewer resources and reduced waste production. However, the transgene process also poses risks. The safety assessment and control of transgenic animal products have drawn wide attention, and the relevant regulations and technology are being developed. Quick testing technology plays a significant role in on-site and customs sampling. Nowadays, loop-mediated isothermal amplification (LAMP) was widely applied in nucleic acid analysis because of its simplicity, rapidity, high efficiency and specificity. In this study, a specific, sensitive detection system for detecting sFAT-1 transgenic pigs was designed. A set of six primers including two loop primers was designed for the target sequence. The DNA samples were amplified in less than 1 h at the optimized temperature and detecting by both Nephelometer LA-320c and unaided eyes directly adding calcein. The detection limit of sFAT-1 LAMP was as low as 1.26 ng/μL. Furthermore, blind tests of transgenic and non-transgenic DNA samples were all correctly detected. Hence, the results in this study demonstrated that LAMP is a very useful tool for transgenic detection.

  1. Endpoint visual detection of three genetically modified rice events by loop-mediated isothermal amplification.

    Science.gov (United States)

    Chen, Xiaoyun; Wang, Xiaofu; Jin, Nuo; Zhou, Yu; Huang, Sainan; Miao, Qingmei; Zhu, Qing; Xu, Junfeng

    2012-11-07

    Genetically modified (GM) rice KMD1, TT51-1, and KF6 are three of the most well known transgenic Bt rice lines in China. A rapid and sensitive molecular assay for risk assessment of GM rice is needed. Polymerase chain reaction (PCR), currently the most common method for detecting genetically modified organisms, requires temperature cycling and relatively complex procedures. Here we developed a visual and rapid loop-mediated isothermal amplification (LAMP) method to amplify three GM rice event-specific junction sequences. Target DNA was amplified and visualized by two indicators (SYBR green or hydroxy naphthol blue [HNB]) within 60 min at an isothermal temperature of 63 °C. Different kinds of plants were selected to ensure the specificity of detection and the results of the non-target samples were negative, indicating that the primer sets for the three GM rice varieties had good levels of specificity. The sensitivity of LAMP, with detection limits at low concentration levels (0.01%−0.005% GM), was 10- to 100-fold greater than that of conventional PCR. Additionally, the LAMP assay coupled with an indicator (SYBR green or HNB) facilitated analysis. These findings revealed that the rapid detection method was suitable as a simple field-based test to determine the status of GM crops.

  2. Endpoint Visual Detection of Three Genetically Modified Rice Events by Loop-Mediated Isothermal Amplification

    Directory of Open Access Journals (Sweden)

    Qing Zhu

    2012-11-01

    Full Text Available Genetically modified (GM rice KMD1, TT51-1, and KF6 are three of the most well known transgenic Bt rice lines in China. A rapid and sensitive molecular assay for risk assessment of GM rice is needed. Polymerase chain reaction (PCR, currently the most common method for detecting genetically modified organisms, requires temperature cycling and relatively complex procedures. Here we developed a visual and rapid loop-mediated isothermal amplification (LAMP method to amplify three GM rice event-specific junction sequences. Target DNA was amplified and visualized by two indicators (SYBR green or hydroxy naphthol blue [HNB] within 60 min at an isothermal temperature of 63 °C. Different kinds of plants were selected to ensure the specificity of detection and the results of the non-target samples were negative, indicating that the primer sets for the three GM rice varieties had good levels of specificity. The sensitivity of LAMP, with detection limits at low concentration levels (0.01%–0.005% GM, was 10- to 100-fold greater than that of conventional PCR. Additionally, the LAMP assay coupled with an indicator (SYBR green or HNB facilitated analysis. These findings revealed that the rapid detection method was suitable as a simple field-based test to determine the status of GM crops.

  3. Detection of Brucellosis in Sika Deer ( Cervus nippon ) through Loop-mediated Isothermal Amplification (LAMP).

    Science.gov (United States)

    Liu, Qianhong; Wei, Jie; Sun, Qingsong; Wang, Ben; Wang, Yuting; Hu, Ying; Wu, Wenrong

    2017-07-01

    Brucellosis (Brucella bovis) in sika deer ( Cervus nippon ) can cause enormous losses to stag breeding, especially in areas in which stag breeding has become an important industry. It also poses a threat to humans because it is a zoonotic disease. Use of the loop-mediated isothermal amplification (LAMP) assay has been poorly described in the diagnosis of brucellosis in deer. We developed a LAMP assay targeting the omp25 gene sequence to detect brucellosis in sika deer. The reaction can be completed in 60 min at 63 C and, with a detection limit of 17 pg, it was more sensitive than conventional PCR, with its detection limit of 1.7 ng. No cross-reactivity was observed with four bacteria: Escherichia coli , Salmonella enterica subsp. enterica, Clostridium pasteurianum , and Pseudomonas aeruginosa . We used 263 samples of blood to evaluate the reaction. The percentage of agreement between LAMP and PCR reached 91%; relative specificity reached 87%, and relative sensitivity reached 100%. The results indicate LAMP can be a simple and rapid diagnostic tool for detecting brucellosis in sika deer, particularly in the field, where it is essential to control brucellosis in deer with a rapid and accurate diagnosis for removal of positive animals.

  4. Dual-signal amplification strategy for ultrasensitive chemiluminescence detection of PDGF-BB in capillary electrophoresis.

    Science.gov (United States)

    Cao, Jun-Tao; Wang, Hui; Ren, Shu-Wei; Chen, Yong-Hong; Liu, Yan-Ming

    2015-12-01

    Many efforts have been made toward the achievement of high sensitivity in capillary electrophoresis coupled with chemiluminescence detection (CE-CL). This work describes a novel dual-signal amplification strategy for highly specific and ultrasensitive CL detection of human platelet-derived growth factor-BB (PDGF-BB) using both aptamer and horseradish peroxidase (HRP) modified gold nanoparticles (HRP-AuNPs-aptamer) as nanoprobes in CE. Both AuNPs and HRP in the nanoprobes could amplify the CL signals in the luminol-H2 O2 CL system, owing to the excellent catalytic behavior of AuNPs and HRP in the CL system. Meanwhile, the high affinity of aptamer modified on the AuNPs allows detection with high specificity. As proof-of-concept, the proposed method was employed to quantify the concentration of PDGF-BB from 0.50 to 250 fm with a detection limit of 0.21 fm. The applicability of the assay was further demonstrated in the analysis of PDGF-BB in human serum samples with acceptable accuracy and reliability. The result of this study exhibits distinct advantages, such as high sensitivity, good specificity, simplicity, and very small sample consumption. The good performances of the proposed strategy provide a powerful avenue for ultrasensitive detection of rare proteins in biological sample, showing great promise in biochemical analysis. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Signal amplification of microRNAs with modified strand displacement-based cycling probe technology.

    Science.gov (United States)

    Jia, Huning; Bu, Ying; Zou, Bingjie; Wang, Jianping; Kumar, Shalen; Pitman, Janet L; Zhou, Guohua; Song, Qinxin

    2016-10-24

    Micro ribose nucleic acids (miRNAs) play an important role in biological processes such as cell differentiation, proliferation and apoptosis. Therefore, miRNAs are potentially a powerful marker for monitoring cancer and diagnosis. Here, we present sensitive signal amplification for miRNAs based on modified cycling probe technology with strand displacement amplification. miRNA was captured by the template coupled with beads, and then the first cycle based on SDA was repeatedly extended to the nicking end, which was produced by the extension reaction of miRNA. The products generated by SDA are captured by a molecular beacon (MB), which is designed to initiate the second amplification cycle, with a similar principle to the cycling probe technology (CPT), which is based on repeated digestion of the DNA-RNA hybrid by the RNase H. After one sample enrichment and two steps of signal amplification, 0.1 pM of let-7a can be detected. The miRNA assay exhibits a great dynamic range of over 100 orders of magnitude and high specificity to clearly discriminate a single base difference in miRNA sequences. This isothermal amplification does not require any special temperature control instrument. The assay is also about signal amplification rather than template amplification, therefore minimising contamination issues. In addition, there is no need for the reverse transcription (RT) process. Thus the amplification is suitable for miRNA detection.

  6. Role of 18F FDG PET scan to localize tumor in patients of oncogenic osteomalacia

    International Nuclear Information System (INIS)

    Malhotra, Gaurav; Mukta, K.; Asopa, V.; Varsha, J.; Vijaya, S.; Shah, Nalini S.; Padmavathy, M.

    2010-01-01

    Full text: Oncogenic osteomalacia is a rare paraneoplastic syndrome of renal phosphate wasting which is usually caused by phosphaturic mesenchymal tumors. Conventional radiologic techniques usually fail to detect these small, slow growing neoplasms located at unusual sites. The objective of this study was to evaluate the role of 18 F FDG PET imaging in patients of oncogenic osteomalacia. Materials and Methods: Fifteen patients (8 males and 7 females) (mean age: 38.5 ± 12.2 years) with clinical and biochemical evidence of oncogenic osteomalacia were subjected to 'total' whole body 18 F FDG PET scan including both limbs and skull views. The images were reconstructed and the final output was displayed as per the standard institution protocol. Results: 18 F FDG PET imaging localized suspicious hypermetabolic foci of SUVmax ranging from 1.4 to 3.8 (Mean ± S.D.: 2.39 ± 0.63) suggesting presence of occult tumor in 11 of 15 patients. The suspected foci were localized in lower limbs in ten patients and in the petrous temporal region of skull in 1 patient. FDG localized tumors were histopathologically correlated in 6 patients who underwent surgical biopsy/excision after correlative radiological investigations. Four of these patients were cured after surgical excision while partial surgical excision/biopsy was performed in two patients. Conclusions: 18 F FDG PET imaging is a promising technique for detection of occult tumors in patients of oncogenic osteomalacia. It is mandatory to include limbs in the field as these tumors are common in limbs and may be easily missed. Preoperative localization increases odds for cure after surgical removal of tumor

  7. A rapid Salmonella detection method involving thermophilic helicase-dependent amplification and a lateral flow assay.

    Science.gov (United States)

    Du, Xin-Jun; Zhou, Tian-Jiao; Li, Ping; Wang, Shuo

    2017-08-01

    Salmonella is a major foodborne pathogen that is widespread in the environment and can cause serious human and animal disease. Since conventional culture methods to detect Salmonella are time-consuming and laborious, rapid and accurate techniques to detect this pathogen are critically important for food safety and diagnosing foodborne illness. In this study, we developed a rapid, simple and portable Salmonella detection strategy that combines thermophilic helicase-dependent amplification (tHDA) with a lateral flow assay to provide a detection result based on visual signals within 90 min. Performance analyses indicated that the method had detection limits for DNA and pure cultured bacteria of 73.4-80.7 fg and 35-40 CFU, respectively. Specificity analyses showed no cross reactions with Escherichia coli, Staphylococcus aureus, Listeria monocytogenes, Enterobacter aerogenes, Shigella and Campylobacter jejuni. The results for detection in real food samples showed that 1.3-1.9 CFU/g or 1.3-1.9 CFU/mL of Salmonella in contaminated chicken products and infant nutritional cereal could be detected after 2 h of enrichment. The same amount of Salmonella in contaminated milk could be detected after 4 h of enrichment. This tHDA-strip can be used for the rapid detection of Salmonella in food samples and is particularly suitable for use in areas with limited equipment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Molecular detection of genotype II grass carp reovirus based on nucleic acid sequence-based amplification combined with enzyme-linked immunosorbent assay (NASBA-ELISA).

    Science.gov (United States)

    Zeng, Weiwei; Yao, Wei; Wang, Yingying; Li, Yingying; Bermann, Sven M; Ren, Yan; Shi, Cunbin; Song, Xinjian; Huang, Qiwen; Zheng, Shuchen; Wang, Qing

    2017-05-01

    Grass carp reovirus (GCRV) is the causative agent of the grass carp hemorrhagic disease that has resulted in severe economic losses in the grass carp (Ctenopharyngodon idella) farming industry in China. Early diagnosis and vaccine administration are important priorities for GCRV control. In this study, a nucleic acid sequence-based amplification with enzyme-linked immunosorbent assay (NASBA-ELISA) was developed for to detect genotype II GCRV (GCRV- II). Primers specifically targeting viral RNA genome segment 6 were utilized for amplification in an isothermal digoxigenin-labeling NASBA process, resulting in DIG-labeled RNA amplicons. The amplicons were hybridized to specific biotinylated DNA probes and the products were detected colorimetrically using horseradish peroxidase and a microplate reader. The new method is able to detect GCRV at 14 copies/μL within 5h and had a diagnostic sensitivity and a specificity of 100% when GCRV-II and non-target virus were tested. This NASBA-ELISA was evaluated using a panel of clinical samples (n=103) to demonstrate that it is a rapid, effective and sensitive method for GCRV detection in grass carp aquaculture. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. A recombinase polymerase amplification assay for rapid detection of Crimean-Congo Haemorrhagic fever Virus infection.

    Directory of Open Access Journals (Sweden)

    Laura C Bonney

    2017-10-01

    Full Text Available Crimean-Congo Haemorrhagic fever Virus (CCHFV is a rapidly emerging vector-borne pathogen and the cause of a virulent haemorrhagic fever affecting large parts of Europe, Africa, the Middle East and Asia.An isothermal recombinase polymerase amplification (RPA assay was successfully developed for molecular detection of CCHFV. The assay showed rapid (under 10 minutes detection of viral extracts/synthetic virus RNA of all 7 S-segment clades of CCHFV, with high target specificity. The assay was shown to tolerate the presence of inhibitors in crude preparations of mock field samples, indicating that this assay may be suitable for use in the field with minimal sample preparation. The CCHFV RPA was successfully used to screen and detect CCHFV positives from a panel of clinical samples from Tajikistan.The assay is a rapid, isothermal, simple-to-perform molecular diagnostic, which can be performed on a light, portable real-time detection device. It is ideally placed therefore for use as a field-diagnostic or in-low resource laboratories, for monitoring of CCHF outbreaks at the point-of-need, such as in remote rural regions in affected countries.

  10. Lab-on-capillary: a rapid, simple and quantitative genetic analysis platform integrating nucleic acid extraction, amplification and detection.

    Science.gov (United States)

    Fu, Yu; Zhou, Xiaoming; Xing, Da

    2017-12-05

    In this work, we describe for the first time a genetic diagnosis platform employing a polydiallyldimethylammonium chloride (PDDA)-modified capillary and a liquid-based thermalization system for rapid, simple and quantitative DNA analysis with minimal user interaction. Positively charged PDDA is modified on the inner surface of the silicon dioxide capillary by using an electrostatic self-assembly approach that allows the negatively charged DNA to be separated from the lysate in less than 20 seconds. The capillary loaded with the PCR mix is incorporated in the thermalization system, which can achieve on-site real-time PCR. This system is based on the circulation of pre-heated liquids in the chamber, allowing for high-speed thermalization of the capillary and fast amplification. Multiple targets can be simultaneously analysed with multiplex spatial melting. Starting with live Escherichia coli (E. coli) cells in milk, as a realistic sample, the current method can achieve DNA extraction, amplification, and detection within 40 min.

  11. Instrument for Real-Time Digital Nucleic Acid Amplification on Custom Microfluidic Devices.

    Directory of Open Access Journals (Sweden)

    David A Selck

    Full Text Available Nucleic acid amplification tests that are coupled with a digital readout enable the absolute quantification of single molecules, even at ultralow concentrations. Digital methods are robust, versatile and compatible with many amplification chemistries including isothermal amplification, making them particularly invaluable to assays that require sensitive detection, such as the quantification of viral load in occult infections or detection of sparse amounts of DNA from forensic samples. A number of microfluidic platforms are being developed for carrying out digital amplification. However, the mechanistic investigation and optimization of digital assays has been limited by the lack of real-time kinetic information about which factors affect the digital efficiency and analytical sensitivity of a reaction. Commercially available instruments that are capable of tracking digital reactions in real-time are restricted to only a small number of device types and sample-preparation strategies. Thus, most researchers who wish to develop, study, or optimize digital assays rely on the rate of the amplification reaction when performed in a bulk experiment, which is now recognized as an unreliable predictor of digital efficiency. To expand our ability to study how digital reactions proceed in real-time and enable us to optimize both the digital efficiency and analytical sensitivity of digital assays, we built a custom large-format digital real-time amplification instrument that can accommodate a wide variety of devices, amplification chemistries and sample-handling conditions. Herein, we validate this instrument, we provide detailed schematics that will enable others to build their own custom instruments, and we include a complete custom software suite to collect and analyze the data retrieved from the instrument. We believe assay optimizations enabled by this instrument will improve the current limits of nucleic acid detection and quantification, improving our

  12. Detection of DNA methylation changes in micropropagated banana plants using methylation-sensitive amplification polymorphism (MSAP).

    Science.gov (United States)

    Peraza-Echeverria, S; Herrera-Valencia, V A.; Kay, A -J.

    2001-07-01

    The extent of DNA methylation polymorphisms was evaluated in micropropagated banana (Musa AAA cv. 'Grand Naine') derived from either the vegetative apex of the sucker or the floral apex of the male inflorescence using the methylation-sensitive amplification polymorphism (MSAP) technique. In all, 465 fragments, each representing a recognition site cleaved by either or both of the isoschizomers were amplified using eight combinations of primers. A total of 107 sites (23%) were found to be methylated at cytosine in the genome of micropropagated banana plants. In plants micropropagated from the male inflorescence explant 14 (3%) DNA methylation events were polymorphic, while plants micropropagated from the sucker explant produced 8 (1.7%) polymorphisms. No DNA methylation polymorphisms were detected in conventionally propagated banana plants. These results demonstrated the usefulness of MSAP to detect DNA methylation events in micropropagated banana plants and indicate that DNA methylation polymorphisms are associated with micropropagation.

  13. Oncogenes and radiation resistance - a review

    International Nuclear Information System (INIS)

    Dritschilo, A.

    1992-01-01

    Oncogenes exert their effects on the genetic programs of cells by regulating signal transduction pathways, resulting in multi-factorial genetic responses. By such actions, the genetic elements responsible for the cellular responses to ionizing radiation may be affected. Reports implicating the association of oncogene expression with modulation of the radiation response include the ras, raf, and myc genes. Experiments overexpressing H-ras and c-raf-1 using genetically engineered constructs result in enhanced post-radiation cellular survival. Conversely, inhibition of raf gene expression has resulted in relative radiation sensitization and delay of human squamous cell carcinoma tumor growth in nude mice. There appears to be a potential strategy for therapeutic intervention. The identification of genes that confer survival advantage following radiation exposure, and understanding their mechanisms of action, may permit a genetically based intervention for radiation sensitization. One such approach employs oligo-deoxynucleotides complementary to oncogene-encoded in RNA's (antisense DNA). (author)

  14. Development of a Reverse Transcription Loop-Mediated Isothermal Amplification Method for the Rapid Detection of Subtype H7N9 Avian Influenza Virus

    Directory of Open Access Journals (Sweden)

    Hongmei Bao

    2014-01-01

    Full Text Available A novel influenza A (H7N9 virus has emerged in China. To rapidly detect this virus from clinical samples, we developed a reverse transcription loop-mediated isothermal amplification (RT-LAMP method for the detection of the H7N9 virus. The minimum detection limit of the RT-LAMP assay was 0.01 PFU H7N9 virus, making this method 100-fold more sensitive to the detection of the H7N9 virus than conventional RT-PCR. The H7N9 virus RT-LAMP assays can efficiently detect different sources of H7N9 influenza virus RNA (from chickens, pigeons, the environment, and humans. No cross-reactive amplification with the RNA of other subtype influenza viruses or of other avian respiratory viruses was observed. The assays can effectively detect H7N9 influenza virus RNA in drinking water, soil, cloacal swab, and tracheal swab samples that were collected from live poultry markets, as well as human H7N9 virus, in less than 30 min. These results suggest that the H7N9 virus RT-LAMP assays were efficient, practical, and rapid diagnostic methods for the epidemiological surveillance and diagnosis of influenza A (H7N9 virus from different resource samples.

  15. Immunocapture loop-mediated isothermal amplification assays for the detection of canine parvovirus.

    Science.gov (United States)

    Sun, Yu-Ling; Yen, Chon-Ho; Tu, Ching-Fu

    2017-11-01

    A loop-mediated isothermal amplification (LAMP) assay was used for rapid canine parvovirus (CPV) diagnosis. To reduce the time required and increase the sensitivity of the assay, an immunocapture (IC) technique was developed in this study to exclude the DNA extraction step in molecular diagnostic procedures for CPV. A polyclonal rabbit anti-CPV serum was produced against VP2-EpC that was cloned via DNA recombination. The polyclonal anti-VP2-EpC serum was used for virus capture to prepare microtubes. IC-LAMP was performed to amplify a specific CPV target gene sequence from the CPV viral particles that were captured on the microtubes, and the amplicons were analyzed using agarose electrophoresis or enzyme-linked immunosorbent assay (IC-LAMP-ELISA) and lateral-flow dipstick (IC-LAMP-LFD). The detection sensitivities of IC-LAMP, IC-LAMP-ELISA, and IC-LAMP-LFD were 10 -1 , 10 -1 , and 10 -1 TCID 50 /mL, respectively. Using the IC-LAMP-ELISA and IC-LAMP-LFD assays, the complete CPV diagnostic process can be achieved within 1.5h. Both of the developed IC-LAMP-based assays are simple, direct visual and efficient techniques that are applicable to the detection of CPV. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Genomic Profiling on an Unselected Solid Tumor Population Reveals a Highly Mutated Wnt/β-Catenin Pathway Associated with Oncogenic EGFR Mutations

    Directory of Open Access Journals (Sweden)

    Jingrui Jiang

    2018-04-01

    Full Text Available Oncogenic epidermal growth factor receptors (EGFRs can recruit key effectors in diverse cellular processes to propagate oncogenic signals. Targeted and combinational therapeutic strategies have been successfully applied for treating EGFR-driven cancers. However, a main challenge in EGFR therapies is drug resistance due to mutations, oncogenic shift, alternative signaling, and other potential mechanisms. To further understand the genetic alterations associated with oncogenic EGFRs and to provide further insight into optimal and personalized therapeutic strategies, we applied a proprietary comprehensive next-generation sequencing (NGS-based assay of 435 genes to systematically study the genomic profiles of 1565 unselected solid cancer patient samples. We found that activating EGFR mutations were predominantly detected in lung cancer, particularly in non-small cell lung cancer (NSCLC. The mutational landscape of EGFR-driven tumors covered most key signaling pathways and biological processes. Strikingly, the Wnt/β-catenin pathway was highly mutated (48 variants detected in 46% of the EGFR-driven tumors, and its variant number topped that in the TP53/apoptosis and PI3K-AKT-mTOR pathways. Furthermore, an analysis of mutation distribution revealed a differential association pattern of gene mutations between EGFR exon 19del and EGFR L858R. Our results confirm the aggressive nature of the oncogenic EGFR-driven tumors and reassure that a combinational strategy should have advantages over an EGFR-targeted monotherapy and holds great promise for overcoming drug resistance.

  17. Ratiometric fluorescence transduction by hybridization after isothermal amplification for determination of zeptomole quantities of oligonucleotide biomarkers with a paper-based platform and camera-based detection

    Energy Technology Data Exchange (ETDEWEB)

    Noor, M. Omair; Hrovat, David [Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 (Canada); Moazami-Goudarzi, Maryam [Department of Cell and Systems Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 (Canada); Espie, George S. [Department of Cell and Systems Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 (Canada); Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 (Canada); Krull, Ulrich J., E-mail: ulrich.krull@utoronto.ca [Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 (Canada)

    2015-07-23

    Highlights: • Solid-phase QD-FRET transduction of isothermal tHDA amplicons on paper substrates. • Ratiometric QD-FRET transduction improves assay precision and lowers the detection limit. • Zeptomole detection limit by an iPad camera after isothermal amplification. • Tunable assay sensitivity by immobilizing different amounts of QD–probe bioconjugates. - Abstract: Paper is a promising platform for the development of decentralized diagnostic assays owing to the low cost and ease of use of paper-based analytical devices (PADs). It can be challenging to detect on PADs very low concentrations of nucleic acid biomarkers of lengths as used in clinical assays. Herein we report the use of thermophilic helicase-dependent amplification (tHDA) in combination with a paper-based platform for fluorescence detection of probe-target hybridization. Paper substrates were patterned using wax printing. The cellulosic fibers were chemically derivatized with imidazole groups for the assembly of the transduction interface that consisted of immobilized quantum dot (QD)–probe oligonucleotide conjugates. Green-emitting QDs (gQDs) served as donors with Cy3 as the acceptor dye in a fluorescence resonance energy transfer (FRET)-based transduction method. After probe-target hybridization, a further hybridization event with a reporter sequence brought the Cy3 acceptor dye in close proximity to the surface of immobilized gQDs, triggering a FRET sensitized emission that served as an analytical signal. Ratiometric detection was evaluated using both an epifluorescence microscope and a low-cost iPad camera as detectors. Addition of the tHDA method for target amplification to produce sequences of ∼100 base length allowed for the detection of zmol quantities of nucleic acid targets using the two detection platforms. The ratiometric QD-FRET transduction method not only offered improved assay precision, but also lowered the limit of detection of the assay when compared with the non

  18. Ratiometric fluorescence transduction by hybridization after isothermal amplification for determination of zeptomole quantities of oligonucleotide biomarkers with a paper-based platform and camera-based detection

    International Nuclear Information System (INIS)

    Noor, M. Omair; Hrovat, David; Moazami-Goudarzi, Maryam; Espie, George S.; Krull, Ulrich J.

    2015-01-01

    Highlights: • Solid-phase QD-FRET transduction of isothermal tHDA amplicons on paper substrates. • Ratiometric QD-FRET transduction improves assay precision and lowers the detection limit. • Zeptomole detection limit by an iPad camera after isothermal amplification. • Tunable assay sensitivity by immobilizing different amounts of QD–probe bioconjugates. - Abstract: Paper is a promising platform for the development of decentralized diagnostic assays owing to the low cost and ease of use of paper-based analytical devices (PADs). It can be challenging to detect on PADs very low concentrations of nucleic acid biomarkers of lengths as used in clinical assays. Herein we report the use of thermophilic helicase-dependent amplification (tHDA) in combination with a paper-based platform for fluorescence detection of probe-target hybridization. Paper substrates were patterned using wax printing. The cellulosic fibers were chemically derivatized with imidazole groups for the assembly of the transduction interface that consisted of immobilized quantum dot (QD)–probe oligonucleotide conjugates. Green-emitting QDs (gQDs) served as donors with Cy3 as the acceptor dye in a fluorescence resonance energy transfer (FRET)-based transduction method. After probe-target hybridization, a further hybridization event with a reporter sequence brought the Cy3 acceptor dye in close proximity to the surface of immobilized gQDs, triggering a FRET sensitized emission that served as an analytical signal. Ratiometric detection was evaluated using both an epifluorescence microscope and a low-cost iPad camera as detectors. Addition of the tHDA method for target amplification to produce sequences of ∼100 base length allowed for the detection of zmol quantities of nucleic acid targets using the two detection platforms. The ratiometric QD-FRET transduction method not only offered improved assay precision, but also lowered the limit of detection of the assay when compared with the non

  19. Activation and amplification of c-Ki-ras in a chemically induced transplantable human pancreas carcinoma

    International Nuclear Information System (INIS)

    Parsa, I.; Maheshwari, K.K.

    1986-01-01

    Increasing evidence suggests that carcinogenesis is associated with the stepwise activation of oncogenes. The c-Ki-ras oncogene has been demonstrated in several human solid tumors and is shown to be amplified in tumor cell lines. The authors have probed endonuclease cleaved human pancreas (HP) DNAs and DNAs from an in vitro induced transplantable human pancreas carcinoma (HP-T1) for the presence and/or amplification of c-Ki-ras oncogene. The DNAs were cleaved with BamHI, BgIII, EcoRI, HhaI, HinfI, KpnI, PSTI, PvuII, SaII, SstI, TaqI or XbaI and were subjected to Southern blot analysis using 32 P-labelled EcoRI fragments from HiHi3 clone. The hybridization profiles were similar in both DNAs when digested with BamHI, BgIII, HinfI, KpnI, SaII, SstI, or TaqI. The EcoRI cleaved DNAs from HP and HP-T1 revealed two hybridizing fragments of 6.8 and 3.0 kbp. The 3.0 kbp fragments in DNA from HP-T1 showed more than a 100 folds enhancement as compared to that of HP. The 6.8 hybridizing fragments also appeared 10 fold greater in HP-T1 DNA. Similar enhancements were also present in HP-T1 DNA cleaved with PstI and PvuII. Preliminary results from comparison of poly(A) + RNAs, prepared from total HP and HP-T1 RNAs, by Northern blot analysis using the same probe reflect similar enhancement in RNA from transplantable pancreas carcinoma

  20. [High oncogenic risk human papillomavirus and urinary bladder cancer].

    Science.gov (United States)

    Loran, O B; Sinyakova, L A; Gundorova, L V; Kosov, V A; Kosova, I V; Pogodina, I E; Kolbasov, D N

    2017-07-01

    To determine the role of human papillomavirus (HPV) of high oncogenic risk in the development of urinary bladder cancer. 100 patients (72 men and 28 women) aged 38 to 90 years (mean age 65+/-10 years) diagnosed with bladder cancer were examined and underwent treatment. Clinical assessment was complemented by enzyme-linked immunosorbent assays for the presence of antiviral antibodies to herpes simplex virus (HSV) type 1 and type 2, cytomegalovirus (CMV), Epstein-Barr virus (EBV), urethra scraping for detecting high oncogenic risk HPV. Tumor tissue was sampled for PCR virus detection. Semi-quantitative analysis was used to evaluate the components of lymphocyte-plasmocyte and leukocyte infiltrates and cytopathic changes in tumor tissue. There were positive correlations between cytopathic cell changes (koylocytosis and intranuclear inclusions, as manifestations of HPV) and the level of antiviral antibodies, the presence of viruses in the tumor, as well as with the components of the lymphoid-plasmocyte infiltrate. Negative correlations were found between the presence of papillomatosis and the above changes. Human papillomavirus is believed to be a trigger for the initiation of a tumor in young patients with a latent infection (CMV and EBV, HSV, HPV). Cytopathic changes (kylocytosis and intranuclear inclusions) were associated with the activity and morphological features of herpes-viral infections. Their degree varied depending on the stage of the process, but not on the anaplasia degree. Papillomatosis is associated with a more favorable course of the tumor process.

  1. MSH3-deficiency initiates EMAST without oncogenic transformation of human colon epithelial cells.

    Directory of Open Access Journals (Sweden)

    Christoph Campregher

    Full Text Available BACKGROUND/AIM: Elevated microsatellite instability at selected tetranucleotide repeats (EMAST is a genetic signature in certain cases of sporadic colorectal cancer and has been linked to MSH3-deficiency. It is currently controversial whether EMAST is associated with oncogenic properties in humans, specifically as cancer development in Msh3-deficient mice is not enhanced. However, a mutator phenotype is different between species as the genetic positions of repetitive sequences are not conserved. Here we studied the molecular effects of human MSH3-deficiency. METHODS: HCT116 and HCT116+chr3 (both MSH3-deficient and primary human colon epithelial cells (HCEC, MSH3-wildtype were stably transfected with an EGFP-based reporter plasmid for the detection of frameshift mutations within an [AAAG]17 repeat. MSH3 was silenced by shRNA and changes in protein expression were analyzed by shotgun proteomics. Colony forming assay was used to determine oncogenic transformation and double strand breaks (DSBs were assessed by Comet assay. RESULTS: Despite differential MLH1 expression, both HCT116 and HCT116+chr3 cells displayed comparable high mutation rates (about 4×10(-4 at [AAAG]17 repeats. Silencing of MSH3 in HCECs leads to a remarkable increased frameshift mutations in [AAAG]17 repeats whereas [CA]13 repeats were less affected. Upon MSH3-silencing, significant changes in the expression of 202 proteins were detected. Pathway analysis revealed overexpression of proteins involved in double strand break repair (MRE11 and RAD50, apoptosis, L1 recycling, and repression of proteins involved in metabolism, tRNA aminoacylation, and gene expression. MSH3-silencing did not induce oncogenic transformation and DSBs increased 2-fold. CONCLUSIONS: MSH3-deficiency in human colon epithelial cells results in EMAST, formation of DSBs and significant changes of the proteome but lacks oncogenic transformation. Thus, MSH3-deficiency alone is unlikely to drive human colon

  2. Time Course of Detection of Human Male DNA from Stained Blood Sample on Various Surfaces by Loop Mediated Isothermal Amplification and Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    Panan Kanchanaphum

    2018-01-01

    Full Text Available This study explores determining the sex of humans from blood stains taken from different surfaces and compares the time course of detection with the conventional PCR, Conventional Loop Mediated Isothermal Amplification (LAMP, and LAMP-Lateral Flow Dipstick (LFD. For the DNA templates, 7 male and 7 female blood stained samples were extracted and added to LAMP and PCR reaction solution to amplify the SRY gene. The DNA samples were extracted from the following blood stained materials: cloth, wood, clay, and tile. Then, the samples were stored at room temperature for 1, 7, 30, and 60 day(s. After the DNA amplification, the gel electrophoresis process was applied to detect LAMP product. The LFD was combined with the LAMP to detect LAMP product on the male cloth samples. For the male samples, the time course of detection on the first and seventh days indicated positive for both LAMP and PCR products on all the surfaces while no DNA amplification was found on any of the female samples. On day 30, positive LAMP product was still found on all the male samples. However, it had faded on the tiles. Moreover, all the male samples, which had tested positive for PCR product, were blurred and unclear. On day 60, LAMP product was still found on all the male samples. Conversely, the PCR method resulted in no bands showing for any of the male samples. However, the LAMP-LFD method detected product on all the male samples of cloth. The results show that the LAMP is an effective, practical, and reliable molecular-biological method. Moreover, the LFD can increase the efficiency and sensitivity of the LAMP, making it more suitable for field studies because gel electrophoresis apparatus is not required.

  3. Yoctomole electrochemical genosensing of Ebola virus cDNA by rolling circle and circle to circle amplification.

    Science.gov (United States)

    Carinelli, S; Kühnemund, M; Nilsson, M; Pividori, M I

    2017-07-15

    This work addresses the design of an Ebola diagnostic test involving a simple, rapid, specific and highly sensitive procedure based on isothermal amplification on magnetic particles with electrochemical readout. Ebola padlock probes were designed to detect a specific L-gene sequence present in the five most common Ebola species. Ebola cDNA was amplified by rolling circle amplification (RCA) on magnetic particles. Further re-amplification was performed by circle-to-circle amplification (C2CA) and the products were detected in a double-tagging approach using a biotinylated capture probe for immobilization on magnetic particles and a readout probe for electrochemical detection by square-wave voltammetry on commercial screen-printed electrodes. The electrochemical genosensor was able to detect as low as 200 ymol, corresponding to 120 cDNA molecules of L-gene Ebola virus with a limit of detection of 33 cDNA molecules. The isothermal double-amplification procedure by C2CA combined with the electrochemical readout and the magnetic actuation enables the high sensitivity, resulting in a rapid, inexpensive, robust and user-friendly sensing strategy that offers a promising approach for the primary care in low resource settings, especially in less developed countries. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Catechol-chitosan redox capacitor for added amplification in electrochemical immunoanalysis.

    Science.gov (United States)

    Yan, Kun; Liu, Yi; Guan, Yongguang; Bhokisham, Narendranath; Tsao, Chen-Yu; Kim, Eunkyoung; Shi, Xiao-Wen; Wang, Qin; Bentley, William E; Payne, Gregory F

    2018-05-22

    Antibodies are common recognition elements for molecular detection but often the signals generated by their stoichiometric binding must be amplified to enhance sensitivity. Here, we report that an electrode coated with a catechol-chitosan redox capacitor can amplify the electrochemical signal generated from an alkaline phosphatase (AP) linked immunoassay. Specifically, the AP product p-aminophenol (PAP) undergoes redox-cycling in the redox capacitor to generate amplified oxidation currents. We estimate an 8-fold amplification associated with this redox-cycling in the capacitor (compared to detection by a bare electrode). Importantly, this capacitor-based amplification is generic and can be coupled to existing amplification approaches based on enzyme-linked catalysis or magnetic nanoparticle-based collection/concentration. Thus, the capacitor should enhance sensitivities in conventional immunoassays and also provide chemical to electrical signal transduction for emerging applications in molecular communication. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Quantum tomography enhanced through parametric amplification

    Science.gov (United States)

    Knyazev, E.; Spasibko, K. Yu; Chekhova, M. V.; Khalili, F. Ya

    2018-01-01

    Quantum tomography is the standard method of reconstructing the Wigner function of quantum states of light by means of balanced homodyne detection. The reconstruction quality strongly depends on the photodetectors quantum efficiency and other losses in the measurement setup. In this article we analyze in detail a protocol of enhanced quantum tomography, proposed by Leonhardt and Paul [1] which allows one to reduce the degrading effect of detection losses. It is based on phase-sensitive parametric amplification, with the phase of the amplified quadrature being scanned synchronously with the local oscillator phase. Although with sufficiently strong amplification the protocol enables overcoming any detection inefficiency, it was so far not implemented in the experiment, probably due to the losses in the amplifier. Here we discuss a possible proof-of-principle experiment with a traveling-wave parametric amplifier. We show that with the state-of-the-art optical elements, the protocol enables high fidelity tomographic reconstruction of bright non-classical states of light. We consider two examples: bright squeezed vacuum and squeezed single-photon state, with the latter being a non-Gaussian state and both strongly affected by the losses.

  6. Rapid detection of Puccinia triticina causing leaf rust of wheat by PCR and loop mediated isothermal amplification.

    Science.gov (United States)

    Manjunatha, C; Sharma, Sapna; Kulshreshtha, Deepika; Gupta, Sangeeta; Singh, Kartar; Bhardwaj, Subhash C; Aggarwal, Rashmi

    2018-01-01

    Leaf rust of wheat caused by Puccinia triticina has significant impact on wheat production worldwide. Effective and quick detection methodologies are required to mitigate yield loss and time constraints associated with monitoring and management of leaf rust of wheat. In the present study, detection of P. triticina has been simplified by developing a rapid, reliable, efficient and visual colorimetric method i.e., loop mediated isothermal amplification of DNA (LAMP). Based on in silico analysis of P. triticina genome, PTS68, a simple sequence repeat was found highly specific to leaf rust fungus. A marker (PtRA68) was developed and its specificity was validated through PCR technique which gave a unique and sharp band of 919 bp in P. triticina pathotypes only. A novel gene amplification method LAMP which enables visual detection of pathogen by naked eye was developed for leaf rust pathogen. A set of six primers was designed from specific region of P. triticina and conditions were optimised to complete the observation process in 60 minutes at 65o C. The assay developed in the study could detect presence of P. triticina on wheat at 24 hpi (pre-symptomatic stage) which was much earlier than PCR without requiring thermal cycler. Sensitivity of LAMP assay developed in the study was 100 fg which was more sensitive than conventional PCR (50 pg) and equivalent to qPCR (100 fg). The protocol developed in the study was utilized for detection of leaf rust infected samples collected from different wheat fields. LAMP based colorimetric detection assay showed sky blue color in positive reaction and violet color in negative reaction after addition of 120 μM hydroxyl napthol blue (HNB) solution to reaction mixture. Similarly, 0.6 mg Ethidium bromide/ml was added to LAMP products, placed on transilluminator to witness full brightness in positive reaction and no such brightness could be seen in negative reaction mixture. Further, LAMP products spread in a ladder like banding pattern in

  7. Cascaded strand displacement for non-enzymatic target recycling amplification and label-free electronic detection of microRNA from tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Kai; Dou, Baoting; Yang, Jianmei; Yuan, Ruo; Xiang, Yun, E-mail: yunatswu@swu.edu.cn

    2016-04-15

    The monitoring of microRNA (miRNA) expression levels is of great importance in cancer diagnosis. In the present work, based on two cascaded toehold-mediated strand displacement reactions (TSDRs), we have developed a label- and enzyme-free target recycling signal amplification approach for sensitive electronic detection of miRNA-21 from human breast cancer cells. The junction probes containing the locked G-quadruplex forming sequences are self-assembled on the senor surface. The presence of the target miRNA-21 initiates the first TSDR and results in the disassembly of the junction probes and the release of the active G-quadruplex forming sequences. Subsequently, the DNA fuel strand triggers the second TSDR and leads to cyclic reuse of the target miRNA-21. The cascaded TSDRs thus generate many active G-quadruplex forming sequences on the sensor surface, which associate with hemin to produce significantly amplified current response for sensitive detection of miRNA-21 at 1.15 fM. The sensor is also selective and can be employed to monitor miRNA-21 from human breast cancer cells. - Highlights: • Amplified and sensitive detection of microRNA from tumor cells is achieved. • Signal amplification is realized by two cascaded strand displacement reactions. • The developed sensor is selective and label-free without involving any enzymes.

  8. Development of a loop-mediated isothermal amplification assay for the detection of Streptococcus agalactiae in bovine milk.

    Science.gov (United States)

    Bosward, Katrina L; House, John K; Deveridge, Amber; Mathews, Karen; Sheehy, Paul A

    2016-03-01

    Streptococcus agalactiae is a well-characterized bovine mastitis pathogen that is known to be highly contagious and capable of spreading rapidly in affected dairy herds. Loop-mediated isothermal amplification (LAMP) is a novel molecular diagnostic method that has the capability to provide rapid, cost-effective screening for pathogens to support on-farm disease control and eradication programs. In the current study, a LAMP test was developed to detect S. agalactiae in milk. The assay was validated on a bank of existing clinical mastitis milk samples that had previously been identified as S. agalactiae positive via traditional microbiological culture techniques and PCR. The LAMP assay was conducted on bacterial colonies and DNA extracted from milk in tube- and plate-based formats using multiple detection platforms. The 1-h assay conducted at 64 °C exhibited repeatability (coefficient of variation) of 2.07% (tube) and 8.3% (plate), sensitivity to ~20 pg of extracted DNA/reaction, and specificity against a panel of known bacterial mastitis pathogens. Of the 109 known S. agalactiae isolates assessed by LAMP directly from bacterial cells in culture, 108 were identified as positive, in accordance with PCR analysis. The LAMP analysis from the corresponding milk samples indicated that 104 of these milks exhibited a positive amplification curve. Although exhibiting some limitations, this assay provides an opportunity for rapid screening of milk samples to facilitate on-farm management of this pathogen. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Telomerase Repeated Amplification Protocol (TRAP).

    Science.gov (United States)

    Mender, Ilgen; Shay, Jerry W

    2015-11-20

    Telomeres are found at the end of eukaryotic linear chromosomes, and proteins that bind to telomeres protect DNA from being recognized as double-strand breaks thus preventing end-to-end fusions (Griffith et al. , 1999). However, due to the end replication problem and other factors such as oxidative damage, the limited life span of cultured cells (Hayflick limit) results in progressive shortening of these protective structures (Hayflick and Moorhead, 1961; Olovnikov, 1973). The ribonucleoprotein enzyme complex telomerase-consisting of a protein catalytic component hTERT and a functional RNA component hTR or hTERC - counteracts telomere shortening by adding telomeric repeats to the end of chromosomes in ~90% of primary human tumors and in some transiently proliferating stem-like cells (Shay and Wright, 1996; Shay and Wright, 2001). This results in continuous proliferation of cells which is a hallmark of cancer. Therefore, telomere biology has a central role in aging, cancer progression/metastasis as well as targeted cancer therapies. There are commonly used methods in telomere biology such as Telomere Restriction Fragment (TRF) (Mender and Shay, 2015b), Telomere Repeat Amplification Protocol (TRAP) and Telomere dysfunction Induced Foci (TIF) analysis (Mender and Shay, 2015a). In this detailed protocol we describe Telomere Repeat Amplification Protocol (TRAP). The TRAP assay is a popular method to determine telomerase activity in mammalian cells and tissue samples (Kim et al. , 1994). The TRAP assay includes three steps: extension, amplification, and detection of telomerase products. In the extension step, telomeric repeats are added to the telomerase substrate (which is actually a non telomeric oligonucleotide, TS) by telomerase. In the amplification step, the extension products are amplified by the polymerase chain reaction (PCR) using specific primers (TS upstream primer and ACX downstream primer) and in the detection step, the presence or absence of telomerase is

  10. Preliminary validation of direct detection of foot-and-mouth disease virus within clinical samples using reverse transcription loop-mediated isothermal amplification coupled with a simple lateral flow device for detection.

    Directory of Open Access Journals (Sweden)

    Ryan A Waters

    Full Text Available Rapid, field-based diagnostic assays are desirable tools for the control of foot-and-mouth disease (FMD. Current approaches involve either; 1 Detection of FMD virus (FMDV with immuochromatographic antigen lateral flow devices (LFD, which have relatively low analytical sensitivity, or 2 portable RT-qPCR that has high analytical sensitivity but is expensive. Loop-mediated isothermal amplification (LAMP may provide a platform upon which to develop field based assays without these drawbacks. The objective of this study was to modify an FMDV-specific reverse transcription-LAMP (RT-LAMP assay to enable detection of dual-labelled LAMP products with an LFD, and to evaluate simple sample processing protocols without nucleic acid extraction. The limit of detection of this assay was demonstrated to be equivalent to that of a laboratory based real-time RT-qPCR assay and to have a 10,000 fold higher analytical sensitivity than the FMDV-specific antigen LFD currently used in the field. Importantly, this study demonstrated that FMDV RNA could be detected from epithelial suspensions without the need for prior RNA extraction, utilising a rudimentary heat source for amplification. Once optimised, this RT-LAMP-LFD protocol was able to detect multiple serotypes from field epithelial samples, in addition to detecting FMDV in the air surrounding infected cattle, pigs and sheep, including pre-clinical detection. This study describes the development and evaluation of an assay format, which may be used as a future basis for rapid and low cost detection of FMDV. In addition it provides providing "proof of concept" for the future use of LAMP assays to tackle other challenging diagnostic scenarios encompassing veterinary and human health.

  11. Colorimetric Nucleic Acid Detection on Paper Microchip Using Loop Mediated Isothermal Amplification and Crystal Violet Dye.

    Science.gov (United States)

    Roy, Sharmili; Mohd-Naim, Noor Faizah; Safavieh, Mohammadali; Ahmed, Minhaz Uddin

    2017-11-22

    Nucleic acid detection is of paramount importance in monitoring of microbial pathogens in food safety and infectious disease diagnostic applications. To address these challenges, a rapid, cost-effective label-free technique for nucleic acid detection with minimal instrumentations is highly desired. Here, we present paper microchip to detect and quantify nucleic acid using colorimetric sensing modality. The extracted DNA from food samples of meat as well as microbial pathogens was amplified utilizing loop-mediated isothermal amplification (LAMP). LAMP amplicon was then detected and quantified on a paper microchip fabricated in a cellulose paper and a small wax chamber utilizing crystal violet dye. The affinity of crystal violet dye toward dsDNA and positive signal were identified by changing the color from colorless to purple. Using this method, detection of Sus scrofa (porcine) and Bacillus subtilis (bacteria) DNA was possible at concentrations as low as 1 pg/μL (3.43 × 10 -1 copies/μL) and 10 pg/μL (2.2 × 10 3 copies/μL), respectively. This strategy can be adapted for detection of other DNA samples, with potential for development of a new breed of simple and inexpensive paper microchip at the point-of-need.

  12. Rapid detection of Prunus necrotic ringspot virus using magnetic nanoparticle-assisted reverse transcription loop-mediated isothermal amplification.

    Science.gov (United States)

    Zong, Xiaojuan; Wang, Wenwen; Wei, Hairong; Wang, Jiawei; Chen, Xin; Xu, Li; Zhu, Dongzi; Tan, Yue; Liu, Qingzhong

    2014-11-01

    Prunus necrotic ringspot virus (PNRSV) has seriously reduced the yield of Prunus species worldwide. In this study, a highly efficient and specific two-step reverse transcription loop-mediated isothermal amplification (RT-LAMP) was developed to detect PNRSV. Total RNA was extracted from sweet cherry leaf samples using a commercial kit based on a magnetic nanoparticle technique. Transcripts were used as the templates for the assay. The results of this assay can be detected using agarose gel electrophoresis or by assessing in-tube fluorescence after adding SYBR Green I. The assay is highly specific for PNRSV, and it is more sensitive than reverse-transcription polymerase chain reaction (RT-PCR). Restriction enzyme digestion verified further the reliability of this RT-LAMP assay. To our knowledge, this is the first report of the application of RT-LAMP to PNRSV detection in Prunus species. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Use of FTA elute card impregnated with cervicovaginal sample directly into the amplification reaction increases the detection of human papillomavirus DNA.

    Science.gov (United States)

    Santos, Carla R; Franciscatto, Laura G; Barcellos, Regina B; Almeida, Sabrina E M; Rossetti, Maria Lucia R

    2012-01-01

    This study aimed to evaluate the use of the FTA elute card(TM) impregnated with cervicovaginal sample directly in the PCR amplification for detection of HPV-DNA. The results were compared to a reference technique. This method was more efficient than the protocol indicated by the manufacturer, identifying 91.7% against 54.2% of the positive samples.

  14. Use of FTA elute card impregnated with cervicovaginal sample directly into the amplification reaction increases the detection of human papillomavirus DNA

    OpenAIRE

    Santos, Carla R.; Franciscatto, Laura G.; Barcellos, Regina B.; Almeida, Sabrina E. M; Rossetti, Maria Lucia R.

    2012-01-01

    This study aimed to evaluate the use of the FTA elute cardTM impregnated with cervicovaginal sample directly in the PCR amplification for detection of HPV-DNA. The results were compared to a reference technique. This method was more efficient than the protocol indicated by the manufacturer, identifying 91.7% against 54.2% of the positive samples.

  15. A Screen Identifies the Oncogenic Micro-RNA miR-378a-5p as a Negative Regulator of Oncogene-Induced Senescence

    DEFF Research Database (Denmark)

    Kooistra, Susanne Marije; Rudkjær, Lise Christine; Lees, Michael James

    2014-01-01

    Oncogene-induced senescence (OIS) can occur in response to hyperactive oncogenic signals and is believed to be a fail-safe mechanism protecting against tumorigenesis. To identify new factors involved in OIS, we performed a screen for microRNAs that can overcome or inhibit OIS in human diploid fib...

  16. Invading stacking primer: A trigger for high-efficiency isothermal amplification reaction with superior selectivity for detecting microRNA variants.

    Science.gov (United States)

    Liu, Weipeng; Zhu, Minjun; Liu, Hongxing; Wei, Jitao; Zhou, Xiaoming; Xing, Da

    2016-07-15

    Searching for a strategy to enhance the efficiency of nucleic acid amplification and achieve exquisite discrimination of nucleic acids at the single-base level for biological detection has become an exciting research direction in recent years. Here, we have developed a simple and universal primer design strategy which produces a fascinating effect on isothermal strand displacement amplification (iSDA). We refer to the resultant primer as "invading stacking primer (IS-Primer)" which is based on contiguous stacking hybridization and toehold-mediated exchange reaction and function by merely changing the hybridization location of the primer. Using the IS-Primer, the sensitivity in detecting the target miR-21 is improved approximately five fold compared with the traditional iSDA reaction. It was further demonstrated that the IS-Primer acts as an invading strand to initiate branch migration which can increase the efficiency of the untwisting of the hairpin probe. This effect is equivalent to reducing the free energy of the stem, and the technique shows superior selectivity for single-base mismatches. By demonstrating the enhanced effect of the IS-Primer in the iSDA reaction, this work may provide a potentially new avenue for developing more sensitive and selective nucleic acids assays. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Amplification factor variable amplifier

    NARCIS (Netherlands)

    Akitsugu, Oshita; Nauta, Bram

    2007-01-01

    PROBLEM TO BE SOLVED: To provide an amplification factor variable amplifier capable of achieving temperature compensation of an amplification factor over a wide variable amplification factor range. ; SOLUTION: A Gilbert type amplification factor variable amplifier 11 amplifies an input signal and

  18. DNA damage and repair in oncogenic transformation by heavy ion radiation

    Science.gov (United States)

    Yang, T. C.; Mei, M.; George, K. A.; Craise, L. M.

    1996-01-01

    Energetic heavy ions are present in galactic cosmic rays and solar particle events. One of the most important late effects in risk assessment is carcinogenesis. We have studied the carcinogenic effects of heavy ions at the cellular and molecular levels and have obtained quantitative data on dose-response curves and on the repair of oncogenic lesions for heavy particles with various charges and energies. Studies with repair inhibitors and restriction endonucleases indicated that for oncogenic transformation DNA is the primary target. Results from heavy ion experiments showed that the cross section increased with LET and reached a maximum value of about 0.02 micrometer2 at about 500 keV/micrometer. This limited size of cross section suggests that only a fraction of cellular genomic DNA is important in radiogenic transformation. Free radical scavengers, such as DMSO, do not give any effect on induction of oncogenic transformation by 600 MeV/u iron particles, suggesting most oncogenic damage induced by high-LET heavy ions is through direct action. Repair studies with stationary phase cells showed that the amount of reparable oncogenic lesions decreased with an increase of LET and that heavy ions with LET greater than 200 keV/micrometer produced only irreparable oncogenic damage. An enhancement effect for oncogenic transformation was observed in cells irradiated by low-dose-rate argon ions (400 MeV/u; 120 keV/micrometer). Chromosomal aberrations, such as translocation and deletion, but not sister chromatid exchange, are essential for heavy-ion-induced oncogenic transformation. The basic mechanism(s) of misrepair of DNA damage, which form oncogenic lesions, is unknown.

  19. Amplification factor variable amplifier

    NARCIS (Netherlands)

    Akitsugu, Oshita; Nauta, Bram

    2010-01-01

    PROBLEM TO BE SOLVED: To provide an amplification factor variable amplifier capable of achieving temperature compensation of an amplification factor over a wide variable amplification factor range. ;SOLUTION: A Gilbert type amplification factor variable amplifier 11 amplifies an input signal and can

  20. A unique dual recognition hairpin probe mediated fluorescence amplification method for sensitive detection of uracil-DNA glycosylase and endonuclease IV activities.

    Science.gov (United States)

    Wu, Yushu; Yan, Ping; Xu, Xiaowen; Jiang, Wei

    2016-03-07

    Uracil-DNA glycosylase (UDG) and endonuclease IV (Endo IV) play cooperative roles in uracil base-excision repair (UBER) and inactivity of either will interrupt the UBER to cause disease. Detection of UDG and Endo IV activities is crucial to evaluate the UBER process in fundamental research and diagnostic application. Here, a unique dual recognition hairpin probe mediated fluorescence amplification method was developed for sensitively and selectively detecting UDG and Endo IV activities. For detecting UDG activity, the uracil base in the probe was excised by the target enzyme to generate an apurinic/apyrimidinic (AP) site, achieving the UDG recognition. Then, the AP site was cleaved by a tool enzyme Endo IV, releasing a primer to trigger rolling circle amplification (RCA) reaction. Finally, the RCA reaction produced numerous repeated G-quadruplex sequences, which interacted with N-methyl-mesoporphyrin IX to generate an enhanced fluorescence signal. Alternatively, for detecting Endo IV activity, the uracil base in the probe was first converted into an AP site by a tool enzyme UDG. Next, the AP site was cleaved by the target enzyme, achieving the Endo IV recognition. The signal was then generated and amplified in the same way as those in the UDG activity assay. The detection limits were as low as 0.00017 U mL(-1) for UDG and 0.11 U mL(-1) for Endo IV, respectively. Moreover, UDG and Endo IV can be well distinguished from their analogs. This method is beneficial for properly evaluating the UBER process in function studies and disease prognoses.

  1. An ultrasensitive colorimeter assay strategy for p53 mutation assisted by nicking endonuclease signal amplification.

    Science.gov (United States)

    Lin, Zhenyu; Yang, Weiqiang; Zhang, Guiyun; Liu, Qida; Qiu, Bin; Cai, Zongwei; Chen, Guonan

    2011-08-28

    A novel catalytic colorimetric assay assisted by nicking endonuclease signal amplification (NESA) was developed. With the signal amplification, the detection limit of the p53 target gene can be as low as 1 pM, which is nearly 5 orders of magnitude lower than that of other previously reported colorimetric DNA detection strategies based on catalytic DNAzyme.

  2. Electrochemical Branched-DNA Assay for Polymerase Chain Reaction-Free Detection and Quantification of Oncogenes in Messenger RNA

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ai Cheng; Dai, Ziyu; Chen, Baowei; Wu, Hong; Wang, Jun; Zhang, Aiguo; Zhang, Lurong; Lim, Tit-Meng; Lin, Yuehe

    2008-12-01

    We describe a novel electrochemical branched-DNA (bDNA) assay for polymerase chain reaction (PCR)-free detection and quantification of p185 BCR-ABL leukemia fusion transcript in the population of messenger RNA (mRNA) extracted from cell lines. The bDNA amplifier carrying high loading of alkaline phosphatase (ALP) tracers was used to amplify targets signal. The targets were captured on microplate well surfaces through cooperative sandwich hybridization prior to the labeling of bDNA. The activity of captured ALP was monitored by square-wave voltammetric (SWV) analysis of the electroactive enzymatic product in the presence of 1-napthyl-phosphate. The specificity and sensitivity of assay enabled direct detection of target transcript in as little as 4.6 ng mRNA without PCR amplification. In combination with the use of a well-quantified standard, the electrochemical bDNA assay was capable of direct use for a PCR-free quantitative analysis of target transcript in total mRNA population. The approach thus provides a simple, sensitive, accurate and quantitative tool alternate to the RQ-PCR for early disease diagnosis.

  3. Label-free fluorescence strategy for sensitive microRNA detection based on isothermal exponential amplification and graphene oxide.

    Science.gov (United States)

    Li, Wei; Hou, Ting; Wu, Min; Li, Feng

    2016-01-01

    MicroRNAs (miRNAs) play an important role in many biological processes, and have been regarded as potential targets and biomarkers in cancer diagnosis and therapy. Also, to meet the big challenge imposed by the characteristics of miRNAs, such as small size and vulnerability to enzymatic digestion, it is of great importance to develop accurate, sensitive and simple miRNA assays. Herein, we developed a label-free fluorescence strategy for sensitive miRNA detection by combining isothermal exponential amplification and the unique features of SYBR Green I (SG) and graphene oxide (GO), in which SG gives significantly enhanced fluorescence upon intercalation into double-stranded DNAs (dsDNAs), and GO selectively adsorbs miRNA, single-stranded DNA and SG, to protect miRNA from enzymatic digestion, and to quench the fluorescence of the adsorbed SG. In the presence of the target miRNA, the ingeniously designed hairpin probe (HP) is unfolded and the subsequent polymerization and strand displacement reaction takes place to initiate the target recycling process. The newly formed dsDNAs are then recognized and cleaved by the nicking enzyme, generating new DNA triggers with the same sequence as the target miRNA, which hybridize with intact HPs to initiate new extension reactions. As a result, the circular exponential amplification for target miRNA is achieved and large amount of dsDNAs are formed to generate significantly enhanced fluorescence upon the intercalation of SG. Thus sensitive and selective fluorescence miRNA detection is realized, and the detection limit of 3 fM is obtained. Besides, this method exhibits additional advantages of simplicity and low cost, since expensive and tedious labeling process is avoided. Therefore, the as-proposed label-free fluorescence strategy has great potential in the applications in miRNA-related clinical practices and biochemical researches. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Development of a highly sensitive loop-mediated isothermal amplification (LAMP) method for the detection of Loa loa.

    Science.gov (United States)

    Fernández-Soto, Pedro; Mvoulouga, Prosper Obolo; Akue, Jean Paul; Abán, Julio López; Santiago, Belén Vicente; Sánchez, Miguel Cordero; Muro, Antonio

    2014-01-01

    The filarial parasite Loa loa, the causative agent of loiasis, is endemic in Central and Western Africa infecting 3-13 million people. L. loa has been associated with fatal encephalopathic reactions in high Loa-infected individuals receiving ivermectin during mass drug administration programs for the control of onchocerciasis and lymphatic filariasis. In endemic areas, the only diagnostic method routinely used is the microscopic examination of mid-day blood samples by thick blood film. Improved methods for detection of L. loa are needed in endemic regions with limited resources, where delayed diagnosis results in high mortality. We have investigated the use of a loop-mediated isothermal amplification (LAMP) assay to facilitate rapid, inexpensive, molecular diagnosis of loiasis. Primers for LAMP were designed from a species-specific repetitive DNA sequence from L. loa retrieved from GenBank. Genomic DNA of a L. loa adult worm was used to optimize the LAMP conditions using a thermocycler or a conventional heating block. Amplification of DNA in the LAMP mixture was visually inspected for turbidity as well as addition of fluorescent dye. LAMP specificity was evaluated using DNA from other parasites; sensitivity was evaluated using DNA from L. loa 10-fold serially diluted. Simulated human blood samples spiked with DNA from L. loa were also tested for sensitivity. Upon addition of fluorescent dye, all positive reactions turned green while the negative controls remained orange under ambient light. After electrophoresis on agarose gels, a ladder of multiple bands of different sizes could be observed in positive samples. The detection limit of the assay was found to be as little as 0.5 ag of L. loa genomic DNA when using a heating block. We have designed, for the first time, a highly sensitive LAMP assay for the detection of L. loa which is potentially adaptable for field diagnosis and disease surveillance in loiasis-endemic areas.

  5. A rapid and sensitive loop-mediated isothermal amplification procedure (LAMP) for Mycoplasma hyopneumoniae detection based on the p36 gene.

    Science.gov (United States)

    Liu, M J; Du, G M; Bai, F F; Wu, Y Z; Xiong, Q Y; Feng, Z X; Li, B; Shao, G Q

    2015-05-04

    The aim of this study was to establish a method for sensitive and rapid diagnosis of Mycoplasma hyopneumoniae in clinical specimens. To this effect, we employed three sets of primers specifically designed for amplification of nucleic acids under isothermal conditions. After optimization of reaction conditions, M. hyopneumoniae could be successfully detected at 63°C in 45 min through use of the loop-mediated isothermal amplification (LAMP) assay. A positive reaction was identified visually as white precipitate and confirmed by gel electrophoresis. The detection limit for this assay was 10 copies/μL, as observed by electrophoretic analysis. The accuracy of the LAMP reaction was confirmed by restriction endonuclease digestion as well as by direct sequencing of the amplified product. This method can specifically detect M. hyopneumoniae; other species with high homology and other bacterial and virus strains gave negative results. To test the utility of this procedure, the LAMP assay was applied to 40 clinical samples collected from swine lung tissues experimentally challenged with M. hyopneumoniae isolates, and compared to the results from a real-time polymerase chain reaction (PCR) assay. A concordance of 100% was observed between the two assays. In conclusion, the results from our study demonstrated that the LAMP assay provided a rapid reaction and was inexpensive to perform, with no need of complex instruments or systems such as Geneamp PCR. The LAMP assay may therefore be applied in routine diagnosis in the clinical laboratory and for in-field detection of M. hyopneumoniae infection.

  6. Diagnosis of brugian filariasis by loop-mediated isothermal amplification.

    Directory of Open Access Journals (Sweden)

    Catherine B Poole

    Full Text Available In this study we developed and evaluated a Brugia Hha I repeat loop-mediated isothermal amplification (LAMP assay for the rapid detection of Brugia genomic DNA. Amplification was detected using turbidity or fluorescence as readouts. Reactions generated a turbidity threshold value or a clear visual positive within 30 minutes using purified genomic DNA equivalent to one microfilaria. Similar results were obtained using DNA isolated from blood samples containing B. malayi microfilariae. Amplification was specific to B. malayi and B. timori, as no turbidity was observed using DNA from the related filarial parasites Wuchereria bancrofti, Onchocerca volvulus or Dirofilaria immitis, or from human or mosquito. Furthermore, the assay was most robust using a new strand-displacing DNA polymerase termed Bst 2.0 compared to wild-type Bst DNA polymerase, large fragment. The results indicate that the Brugia Hha I repeat LAMP assay is rapid, sensitive and Brugia-specific with the potential to be developed further as a field tool for diagnosis and mapping of brugian filariasis.

  7. Molecular Alterations of KIT Oncogene in Gliomas

    Directory of Open Access Journals (Sweden)

    Ana L. Gomes

    2007-01-01

    Full Text Available Gliomas are the most common and devastating primary brain tumours. Despite therapeutic advances, the majority of gliomas do not respond either to chemo or radiotherapy. KIT, a class III receptor tyrosine kinase (RTK, is frequently involved in tumourigenic processes. Currently, KIT constitutes an attractive therapeutic target. In the present study we assessed the frequency of KIT overexpression in gliomas and investigated the genetic mechanisms underlying KIT overexpression. KIT (CD117 immunohistochemistry was performed in a series of 179 gliomas of various grades. KIT activating gene mutations (exons 9, 11, 13 and 17 and gene amplification analysis, as defined by chromogenic in situ hybridization (CISH and quantitative real-time PCR (qRT-PCR were performed in CD117 positive cases. Tumour cell immunopositivity was detected in 15.6% (28/179 of cases, namely in 25% (1/4 of pilocytic astrocytomas, 25% (5/20 of diffuse astrocytomas, 20% (1/5 of anaplastic astrocytomas, 19.5% (15/77 of glioblastomas and one third (3/9 of anaplastic oligoastrocytomas. Only 5.7% (2/35 of anaplastic oligodendrogliomas showed CD117 immunoreactivity. No association was found between tumour CD117 overexpression and patient survival. In addition, we also observed CD117 overexpression in endothelial cells, which varied from 0–22.2% of cases, being more frequent in high-grade lesions. No KIT activating mutations were identified. Interestingly, CISH and/or qRT-PCR analysis revealed the presence of KIT gene amplification in 6 glioblastomas and 2 anaplastic oligoastrocytomas, corresponding to 33% (8/24 of CD117 positive cases. In conclusion, our results demonstrate that KIT gene amplification rather than gene mutation is a common genetic mechanism underlying KIT expression in subset of malignant gliomas. Further studies are warranted to determine whether glioma patients exhibiting KIT overexpression and KIT gene amplification may benefit from therapy with anti-KIT RTK

  8. Differential transimpedance amplifier circuit for correlated differential amplification

    Science.gov (United States)

    Gresham, Christopher A [Albuquerque, NM; Denton, M Bonner [Tucson, AZ; Sperline, Roger P [Tucson, AZ

    2008-07-22

    A differential transimpedance amplifier circuit for correlated differential amplification. The amplifier circuit increase electronic signal-to-noise ratios in charge detection circuits designed for the detection of very small quantities of electrical charge and/or very weak electromagnetic waves. A differential, integrating capacitive transimpedance amplifier integrated circuit comprising capacitor feedback loops performs time-correlated subtraction of noise.

  9. A quantitative comparison of single-cell whole genome amplification methods.

    Directory of Open Access Journals (Sweden)

    Charles F A de Bourcy

    Full Text Available Single-cell sequencing is emerging as an important tool for studies of genomic heterogeneity. Whole genome amplification (WGA is a key step in single-cell sequencing workflows and a multitude of methods have been introduced. Here, we compare three state-of-the-art methods on both bulk and single-cell samples of E. coli DNA: Multiple Displacement Amplification (MDA, Multiple Annealing and Looping Based Amplification Cycles (MALBAC, and the PicoPLEX single-cell WGA kit (NEB-WGA. We considered the effects of reaction gain on coverage uniformity, error rates and the level of background contamination. We compared the suitability of the different WGA methods for the detection of copy-number variations, for the detection of single-nucleotide polymorphisms and for de-novo genome assembly. No single method performed best across all criteria and significant differences in characteristics were observed; the choice of which amplifier to use will depend strongly on the details of the type of question being asked in any given experiment.

  10. Expression of oncogen c-erbB-2 (neu/HER-2) in human breast cancer

    International Nuclear Information System (INIS)

    Michelin, Severino C.; Mayo, Jose

    2000-01-01

    Breast cancer continues to be one of the leading causes of death from cancer among women and represents the most serious challenge to therapeutic control. Amplification and overexpression of the c-erbB-2 proto-oncogene occurs in as many as 30 % of all breast cancers and has been correlated with lymph node metastasis and poor prognosis in breast cancer patients. This gene know as neu, HER-2 or c-erbB-2 in among those most frequently altered in human cancer. It was first identified as a transforming gene activated in chemically induced rat neuroectodermal tumors. Early critical studies linked changes in erbB-2 expression and gene copy number to several human cancer, notably breast, ovarian and gastric cancer. Owing to its accessible location at the cell surface, erbB-2 is now under intensive scrutiny as a therapeutic target. In this review we will summarize the involvement of the c-erbB-2 gene in tumorigenesis. (author)

  11. Amplification of 9q34 in childhood adrenocortical tumors: a specific feature unrelated to ethnic origin or living conditions

    Directory of Open Access Journals (Sweden)

    Figueiredo B.C.

    2000-01-01

    Full Text Available Adrenocortical tumors (ACT in children under 15 years of age exhibit some clinical and biological features distinct from ACT in adults. Cell proliferation, hypertrophy and cell death in adrenal cortex during the last months of gestation and the immediate postnatal period seem to be critical for the origin of ACT in children. Studies with large numbers of patients with childhood ACT have indicated a median age at diagnosis of about 4 years. In our institution, the median age was 3 years and 5 months, while the median age for first signs and symptoms was 2 years and 5 months (N = 72. Using the comparative genomic hybridization technique, we have reported a high frequency of 9q34 amplification in adenomas and carcinomas. This finding has been confirmed more recently by investigators in England. The lower socioeconomic status, the distinctive ethnic groups and all the regional differences in Southern Brazil in relation to patients in England indicate that these differences are not important to determine 9q34 amplification. Candidate amplified genes mapped to this locus are currently being investigated and Southern blot results obtained so far have discarded amplification of the abl oncogene. Amplification of 9q34 has not been found to be related to tumor size, staging, or malignant histopathological features, nor does it seem to be responsible for the higher incidence of ACT observed in Southern Brazil, but could be related to an ACT from embryonic origin.

  12. A signal amplification assay for HSV type 1 viral DNA detection using nanoparticles and direct acoustic profiling

    Directory of Open Access Journals (Sweden)

    Hammond Richard

    2010-02-01

    Full Text Available Abstract Background Nucleic acid based recognition of viral sequences can be used together with label-free biosensors to provide rapid, accurate confirmation of viral infection. To enhance detection sensitivity, gold nanoparticles can be employed with mass-sensitive acoustic biosensors (such as a quartz crystal microbalance by either hybridising nanoparticle-oligonucleotide conjugates to complimentary surface-immobilised ssDNA probes on the sensor, or by using biotin-tagged target oligonucleotides bound to avidin-modified nanoparticles on the sensor. We have evaluated and refined these signal amplification assays for the detection from specific DNA sequences of Herpes Simplex Virus (HSV type 1 and defined detection limits with a 16.5 MHz fundamental frequency thickness shear mode acoustic biosensor. Results In the study the performance of semi-homogeneous and homogeneous assay formats (suited to rapid, single step tests were evaluated utilising different diameter gold nanoparticles at varying DNA concentrations. Mathematical models were built to understand the effects of mass transport in the flow cell, the binding kinetics of targets to nanoparticles in solution, the packing geometries of targets on the nanoparticle, the packing of nanoparticles on the sensor surface and the effect of surface shear stiffness on the response of the acoustic sensor. This lead to the selection of optimised 15 nm nanoparticles that could be used with a 6 minute total assay time to achieve a limit of detection sensitivity of 5.2 × 10-12 M. Larger diameter nanoparticles gave poorer limits of detection than smaller particles. The limit of detection was three orders of magnitude lower than that observed using a hybridisation assay without nanoparticle signal amplification. Conclusions An analytical model was developed to determine optimal nanoparticle diameter, concentration and probe density, which allowed efficient and rapid optimisation of assay parameters

  13. Comparison of DNA probe, PCR amplification, ELISA and culture methods for the rapid detection of Salmonella in poultry

    International Nuclear Information System (INIS)

    Qasem, J.A.; Al-Mouqati, S.; Rajkumar, G.

    2005-01-01

    The identification of Salmonella spp. from poultry meat was studied by comparing bacterial detection using the Gene-Trak colorimetric hybridization method, a PCR amplification kit and an Enzyme Linked Immunosorbent Assay (ELISA), and these methods were compared with the conventional methodology proposed by the United States Food and Drug Administration (US FDA) for detection of Salmonella in food samples. Forty positive and negative samples were studied. The three methods yielded similar results with levels of Salmonella greater than 10 CFU per sample, even when the samples were highly contaminated with competing bacteria. In contrast, 20 CFU of seed inoculum per sample was the lowest level of Salmonella detectable with all three methods and the standard culture method. The detection limits of the PCR and ELISA assays were 5 CFU/g after enrichment at 37 deg. C for 6 and 9 hours, respectively. Compared with conventional bacteriology, all three methods here demonstrated high sensitivity and specificity for Salmonella. (author)

  14. Use of FTA elute card impregnated with cervicovaginal sample directly into the amplification reaction increases the detection of human papillomavirus DNA

    Directory of Open Access Journals (Sweden)

    Carla R. Santos

    2012-03-01

    Full Text Available This study aimed to evaluate the use of the FTA elute cardTM impregnated with cervicovaginal sample directly in the PCR amplification for detection of HPV-DNA. The results were compared to a reference technique. This method was more efficient than the protocol indicated by the manufacturer, identifying 91.7% against 54.2% of the positive samples.

  15. Amplification of HER2 is a marker for global genomic instability

    Directory of Open Access Journals (Sweden)

    Love Brad

    2008-10-01

    Full Text Available Abstract Background Genomic alterations of the proto-oncogene c-erbB-2 (HER-2/neu are associated with aggressive behavior and poor prognosis in patients with breast cancer. The variable clinical outcomes seen in patients with similar HER2 status, given similar treatments, suggests that the effects of amplification of HER2 can be influenced by other genetic changes. To assess the broader genomic implications of structural changes at the HER2 locus, we investigated relationships between genomic instability and HER2 status in patients with invasive breast cancer. Methods HER2 status was determined using the PathVysion® assay. DNA was extracted after laser microdissection from the 181 paraffin-embedded HER2 amplified (n = 39 or HER2 negative (n = 142 tumor specimens with sufficient tumor available to perform molecular analysis. Allelic imbalance (AI was assessed using a panel of microsatellite markers representing 26 chromosomal regions commonly altered in breast cancer. Student t-tests and partial correlations were used to investigate relationships between genomic instability and HER2 status. Results The frequency of AI was significantly higher (P P Conclusion The poor prognosis associated with HER2 amplification may be attributed to global genomic instability as cells with high frequencies of chromosomal alterations have been associated with increased cellular proliferation and aggressive behavior. In addition, high levels of DNA damage may render tumor cells refractory to treatment. In addition, specific alterations at chromosomes 11q13, 16q22-q24, and 18q21, all of which have been associated with aggressive tumor behavior, may serve as genetic modifiers to HER2 amplification. These data not only improve our understanding of HER in breast pathogenesis but may allow more accurate risk profiles and better treatment options to be developed.

  16. Rapid detection of Piper yellow mottle virus and Cucumber mosaic virus infecting black pepper (Piper nigrum) by loop-mediated isothermal amplification (LAMP).

    Science.gov (United States)

    Bhat, A I; Siljo, A; Deeshma, K P

    2013-10-01

    The loop-mediated isothermal amplification (LAMP) assay for Piper yellow mottle virus and the reverse transcription (RT) LAMP assay for Cucumber mosaic virus each consisted of a set of five primers designed against the conserved sequences in the viral genome. Both RNA and DNA isolated from black pepper were used as a template for the assay. The results were assessed visually by checking turbidity, green fluorescence and pellet formation in the reaction tube and also by gel electrophoresis. The assay successfully detected both viruses in infected plants whereas no cross-reactions were recorded with healthy plants. Optimum conditions for successful amplification were determined in terms of the concentrations of magnesium sulphate and betaine, temperature, and duration. The detection limit for both LAMP and RT-LAMP was up to 100 times that for conventional PCR and up to one-hundredth of that for real-time PCR. The optimal conditions arrived at were validated by testing field samples of infected vines of three species from different regions. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Towards the use of protein A-tagged gold nanoparticles for signal amplification of electrochemical immunosensors in virus detection

    International Nuclear Information System (INIS)

    Huy Tran, Quang; Thuy Nguyen, Thanh; Chung Pham, Van; Hong Hanh Nguyen, Thi; Tuan Mai, Anh

    2012-01-01

    In this paper we represent a study on the potential use of protein A-tagged gold nanoparticles applied for signal amplification of electrochemical immunosensors. Gold nanoparticles (GNPs) were synthesized by the chemical reduction of tetrachloroauric (III) acid trihydrate using sodium ascorbate, and then tagged with protein A (PrA) via ultracentrifugation. UV-Vis spectroscopy and transmission electron microscopy were used to verify the characteristics of formed GNPs/PrA complex. The analyzed results indicate that GNPs were found spherically, homogeneously, and with an average diameter of about 10 nm. Immunoelectron microscopy was then used to investigate the bioactivity of the GNPs/PrA complex in solution by the effective binding of GNPs to viral particles. Scanning electron and fluorescence microscopies were also used to investigate the distribution and the bioactivity of the GNPs/PrA complex on the surface of the interdigitated sensor. Consequently, this study provided some assumptions of the potential application of protein A-tagged gold nanoparticles for signal amplification of electrochemical immunosensors in virus detection from clinical samples

  18. Ultrasmall volume molecular isothermal amplification in microfluidic chip with advanced surface processing

    International Nuclear Information System (INIS)

    Huang Guoliang; Yang Xiaoyong; Ma Li; Yang Xu

    2011-01-01

    In this paper, we developed a metal micro-fluidic chip with advanced surface processing for ultra-small volume molecular isothermal amplification. This method takes advantages of the nucleic acid amplification with good stability and consistency, high sensitivity about 31 genomic DNA copies and bacteria specific gene identification. Based on the advanced surface processing, the bioreaction assays of nucleic acid amplification was dropped about 392nl in volume. A high numerical aperture confocal optical detection system was advanced to sensitively monitor the DNA amplification with low noise and high power collecting fluorescence near to the optical diffraction limit. A speedy nucleic acid isothermal amplification was performed in the ultra-small volume microfluidic chip, where the time at the inflexions of second derivative to DNA exponential amplified curves was brought forward and the sensitivity was improved about 65 folds to that of in current 25μl Ep-tube amplified reaction, which indicates a promising clinic molecular diagnostics in the droplet amplification.

  19. Reliability of nucleic acid amplification methods for detection of Chlamydia trachomatis in urine: results of the first international collaborative quality control study among 96 laboratories

    NARCIS (Netherlands)

    R.P.A.J. Verkooyen (Roel); G.T. Noordhoek; P.E. Klapper; J. Reid; J. Schirm; G.M. Cleator; M. Ieven; G. Hoddevik

    2003-01-01

    textabstractThe first European Quality Control Concerted Action study was organized to assess the ability of laboratories to detect Chlamydia trachomatis in a panel of urine samples by nucleic acid amplification tests (NATs). The panel consisted of lyophilized urine samples,

  20. Simple Approaches to Minimally-Instrumented, Microfluidic-Based Point-of-Care Nucleic Acid Amplification Tests

    Science.gov (United States)

    Mauk, Michael G.; Song, Jinzhao; Liu, Changchun; Bau, Haim H.

    2018-01-01

    Designs and applications of microfluidics-based devices for molecular diagnostics (Nucleic Acid Amplification Tests, NAATs) in infectious disease testing are reviewed, with emphasis on minimally instrumented, point-of-care (POC) tests for resource-limited settings. Microfluidic cartridges (‘chips’) that combine solid-phase nucleic acid extraction; isothermal enzymatic nucleic acid amplification; pre-stored, paraffin-encapsulated lyophilized reagents; and real-time or endpoint optical detection are described. These chips can be used with a companion module for separating plasma from blood through a combined sedimentation-filtration effect. Three reporter types: Fluorescence, colorimetric dyes, and bioluminescence; and a new paradigm for end-point detection based on a diffusion-reaction column are compared. Multiplexing (parallel amplification and detection of multiple targets) is demonstrated. Low-cost detection and added functionality (data analysis, control, communication) can be realized using a cellphone platform with the chip. Some related and similar-purposed approaches by others are surveyed. PMID:29495424

  1. Simple Approaches to Minimally-Instrumented, Microfluidic-Based Point-of-Care Nucleic Acid Amplification Tests

    Directory of Open Access Journals (Sweden)

    Michael G. Mauk

    2018-02-01

    Full Text Available Designs and applications of microfluidics-based devices for molecular diagnostics (Nucleic Acid Amplification Tests, NAATs in infectious disease testing are reviewed, with emphasis on minimally instrumented, point-of-care (POC tests for resource-limited settings. Microfluidic cartridges (‘chips’ that combine solid-phase nucleic acid extraction; isothermal enzymatic nucleic acid amplification; pre-stored, paraffin-encapsulated lyophilized reagents; and real-time or endpoint optical detection are described. These chips can be used with a companion module for separating plasma from blood through a combined sedimentation-filtration effect. Three reporter types: Fluorescence, colorimetric dyes, and bioluminescence; and a new paradigm for end-point detection based on a diffusion-reaction column are compared. Multiplexing (parallel amplification and detection of multiple targets is demonstrated. Low-cost detection and added functionality (data analysis, control, communication can be realized using a cellphone platform with the chip. Some related and similar-purposed approaches by others are surveyed.

  2. Rapid and Sensitive Isothermal Detection of Nucleic-acid Sequence by Multiple Cross Displacement Amplification

    OpenAIRE

    Yi Wang; Yan Wang; Ai-Jing Ma; Dong-Xun Li; Li-Juan Luo; Dong-Xin Liu; Dong Jin; Kai Liu; Chang-Yun Ye

    2015-01-01

    We have devised a novel amplification strategy based on isothermal strand-displacement polymerization reaction, which was termed multiple cross displacement amplification (MCDA). The approach employed a set of ten specially designed primers spanning ten distinct regions of target sequence and was preceded at a constant temperature (61?65??C). At the assay temperature, the double-stranded DNAs were at dynamic reaction environment of primer-template hybrid, thus the high concentration of primer...

  3. Development and implementation of real-time nucleic acid amplification for the detection of enterovirus infections in comparison to rapid culture of various clinical specimens

    NARCIS (Netherlands)

    van Doornum, G J J; Schutten, Martin; Voermans, J; Guldemeester, G J J; Niesters, H G M

    2007-01-01

    Several real-time PCR and nucleic acid sequence-based amplification (NASBA) primer pairs and a modified real-time PCR primer pair for the detection of enteroviruses were compared. The modified real-time PCR primer pair was evaluated on clinical samples in comparison with cell culture using the

  4. Copy Number Analysis of 24 Oncogenes: MDM4 Identified as a Putative Marker for Low Recurrence Risk in Non Muscle Invasive Bladder Cancer

    Directory of Open Access Journals (Sweden)

    Samanta Salvi

    2014-07-01

    Full Text Available Patients with non-muscle invasive bladder cancer (NMIBC generally have a high risk of relapsing locally after primary tumor resection. The search for new predictive markers of local recurrence thus represents an important goal for the management of this disease. We studied the copy number variations (CNVs of 24 oncogenes (MDM4, MYCN, ALK, PDGFRA, KIT, KDR, DHFR, EGFR, MET, SMO, FGFR1, MYC, ABL1, RET, CCND1, CCND2, CDK4, MDM2, AURKB, ERBB2, TOP2A, AURKA, AR and BRAF using multiplex ligation probe amplification technique to verify their role as predictive markers of recurrence. Formalin-fixed paraffin-embedded tissue samples from 43 patients who underwent transurethral resection of the bladder (TURB were used; 23 patients had relapsed and 20 were disease-free after 5 years. Amplification frequencies were analyzed for all genes and MDM4 was the only gene that showed significantly higher amplification in non recurrent patients than in recurrent ones (0.65 vs. 0.3; Fisher’s test p = 0.023. Recurrence-free survival analysis confirmed the predictive role of MDM4 (log-rank test p = 0.041. Our preliminary results indicate a putative role for the MDM4 gene in predicting local recurrence of bladder cancer. Confirmation of this hypothesis is needed in a larger cohort of NMIBC patients.

  5. Direct RNA detection without nucleic acid purification and PCR: Combining sandwich hybridization with signal amplification based on branched hybridization chain reaction.

    Science.gov (United States)

    Xu, Yao; Zheng, Zhi

    2016-05-15

    We have developed a convenient, robust and low-cost RNA detection system suitable for high-throughput applications. This system uses a highly specific sandwich hybridization to capture target RNA directly onto solid support, followed by on-site signal amplification via 2-dimensional, branched hybridizing chain polymerization through toehold-mediated strand displacement reaction. The assay uses SYBR Green to detect targets at concentrations as low as 1 pM, without involving nucleic acid purification or any enzymatic reaction, using ordinary oligonucleotides without modification or labeling. The system was demonstrated in the detection of malaria RNA in blood and GAPDH gene expression in cell lysate. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Gold nanoparticles and the corresponding filter membrane as chemosensors and adsorbents for dual signal amplification detection and fast removal of mercury(ii).

    Science.gov (United States)

    Chen, Gaosong; Hai, Jun; Wang, Hao; Liu, Weisheng; Chen, Fengjuan; Wang, Baodui

    2017-03-02

    Nowadays, the development of a multifunction system for the simultaneous multiple signal amplification detection and fast removal of Hg 2+ remains a major challenge. Herein, we for the first time used gold nanoparticles (Au NPs) and the corresponding filter membrane as chemosensors and adsorbents for dual signal amplification detection and fast removal of Hg 2+ . Such a system was based on the formation of gold amalgam and a gold amalgam-based reaction between rhodamine B (RhB) and NaBH 4 with fluorescence and colorimetric sensing functions. When the gold amalgam catalyzes the reduction of RhB, the red color and orange fluorescence of RhB gradually changed to colorless by switching the amount of Hg 2+ deposited on 13 nm Au NPs. The detection limit of the fluorescence assay and colorimetric assay is 1.16 nM and 2.54 nM for Hg 2+ , respectively. Interestingly, the color and fluorescence of RhB could be recovered when the above colorless reaction solution was exposed to air for about 2 hours. Taking advantage of the above optical phenomenon, a recyclable paper-based sensor has been developed by immobilizing the Au NPs and RhB dye on filter paper and has been successfully used for detection of Hg 2+ in real water samples. In addition, the filter membrane immobilized Au NPs could allow fast removal of mercury ions in Yellow river water and tap water with the removal efficiency close to 99%.

  7. Direct duplex real-time loop mediated isothermal amplification assay for the simultaneous detection of cow and goat species origin of milk and yogurt products for field use.

    Science.gov (United States)

    Kim, Mi-Ju; Kim, Hae-Yeong

    2018-04-25

    A multiple loop-mediated isothermal amplification (LAMP) method was developed to detect cow and goat milk in the field using a portable fluorescence device. For rapid on-site detection, this duplex LAMP assay was used in combination with direct amplification, without DNA extraction. The cow- and goat-specific LAMP primer sets were designed based on the mitochondrial cytochrome b gene, and showed specificity against 13 other animal species in the reactions. The sensitivity of the duplex LAMP assay for cow and goat was 0.1 and 1 pg, respectively. The detection limit for both target species in milk mixtures was 2%. This assay successfully amplified and identified the two target species in 24 samples of commercial milk and yogurt products, with 30 min sampling-to-result analysis time. Therefore, this direct duplex real-time LAMP assay is useful for on-site simultaneous detection of cow and goat milk in commercial products, a capability needed to confirm accurate labeling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The role of DNA amplification and cultural growth in complicated acute appendicitis

    Directory of Open Access Journals (Sweden)

    Francesca Tocchioni

    2016-09-01

    Full Text Available Bacterial growth of peritoneal fluid specimens obtained during surgical procedures for acute appendicitis may be useful to optimize further antibiotic therapy in complicated cases. DNA amplification represents a fast technique to detect microbial sequences. We aimed to compare the potential of DNA amplification versus traditional bacterial growth culture highlighting advantages and drawbacks in a surgical setting. Peritoneal fluid specimens were collected during surgery from 36 children who underwent appendectomy between May and December 2012. Real-time polymerase chain reaction (RT-PCR and cultures were performed on each sample. RT-PCR showed an amplification of 16S in 18/36 samples, Escherichia coli (in 7 cases, Pseudomonas aeruginosa (3, Fusobacterium necrophorum (3, Adenovirus (2, E.coli (1, Klebsiella pneumoniae (1, Serratia marcescens/Enterobacter cloacae (1. Bacterial growth was instead observed only in four patients (3 E.coli and 1 P.aeruginosa and Bacteroides ovatus. Preoperative C-reactive protein and inflammation degree, the most reliable indicators of bacterial translocation, were elevated as expected. DNA amplification was a quick and useful method to detect pathogens and it was even more valuable in detecting aggressive pathogens such as anaerobes, difficult to preserve in biological cultures; its drawbacks were the lack of biological growths and of antibiograms. In our pilot study RT-PCR and cultures did not influence the way patients were treated.

  9. High expression of ZNF703 independent of amplification indicates worse prognosis in patients with luminal B breast cancer

    International Nuclear Information System (INIS)

    Reynisdottir, Inga; Arason, Adalgeir; Einarsdottir, Berglind O; Gunnarsson, Haukur; Staaf, Johan; Vallon-Christersson, Johan; Jonsson, Goran; Ringnér, Markus; Agnarsson, Bjarni A; Olafsdottir, Kristrun; Fagerholm, Rainer; Einarsdottir, Thorbjorg; Johannesdottir, Gudrun; Johannsson, Oskar Thor; Nevanlinna, Heli; Borg, Ake; Barkardottir, Rosa Bjork

    2013-01-01

    Amplification of 8p12-p11 is relatively common in breast cancer and several genes within the region have been suggested to affect breast tumor progression. The aim of the study was to map the amplified 8p12-p11 region in a large set of breast tumors in an effort to identify the genetic driver and to explore its impact on tumor progression and prognosis. Copy number alterations (CNAs) were mapped in 359 tumors, and gene expression data from 577 tumors (359 tumors included) were correlated with CNA, clinical–pathological factors, and protein expression (39 tumors). 8p12-p11 was amplified in 11.4% of tumors. The smallest region of amplification harbored one full-length gene, ZNF703. ZNF703 mRNA expression was significantly higher in estrogen receptor (ER)-positive than ER-negative tumors (P = 2 × 10 −16 ), a reflection of high expression in luminal tumors. Forty-eight percent of tumors with ZNF703 amplification were luminal B tumors in which the best correlation between DNA copy number and mRNA was seen (P = 1.2 × 10 −7 ) as well as correlation between mRNA and protein expression (P = 0.02). High ZNF703 mRNA correlated with poor survival in patients with ER-positive luminal B tumors (log rank P = 0.04). Furthermore, high ZNF703 mRNA expression correlated with poor outcome in patients with ZNF703 copy number neutral, ER-positive, luminal B tumors (log rank P = 0.004). The results support ZNF703 as the driver gene of the 8p12 amplification and suggest that independent of amplification, high expression of the gene affects prognosis in luminal B tumors. Our mapping of 8p12-p11 and analyses of ZNF703 mRNA and protein expression in breast tumors support ZNF703 as an oncogene in luminal B tumors. High ZNF703 expression, independent of the amplification, correlated with worse prognosis for the breast cancer patients with ER-positive luminal tumors, particularly of the luminal B subtype

  10. Development of multiple cross displacement amplification label-based gold nanoparticles lateral flow biosensor for detection of Listeria monocytogenes

    Directory of Open Access Journals (Sweden)

    Wang Y

    2017-01-01

    Full Text Available Yi Wang,1 Hui Li,1,2 Yan Wang,1 Hua Li,1 Lijuan Luo,1 Jianguo Xu,1 Changyun Ye1 1State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Changping, Beijing, 2Department of Microbiology, GuiZhou Medical University, Guiyang, Guizhou, People’s Republic of China Abstract: Listeria monocytogenes, one of most problematic foodborne pathogens, is responsible for listeriosis in both humans and animals and mainly transmitted through the food chain. In this report, we propose a simple, rapid, and nearly instrument-free molecular technique using multiple cross displacement amplification (MCDA label-based gold nanoparticles lateral flow biosensor (LFB for specific, sensitive, and visual detection of L. monocytogenes. The MCDA-LFB method was carried out at a constant temperature (61°C for only 20 min during the reaction stage, and then the amplification mixtures were directly detected by using LFB, eliminating the use of an electrophoresis instrument, special reagents, or amplicon analysis equipment. The whole procedure, from sample processing to result indicating, was finished within 1 h. The analytical specificity of MCDA-LFB method was successfully determined by distinguishing the target bacterium from other pathogens. The analytical sensitivity of the MCDA-LFB assay was 10 fg of genomic templates per reaction in pure culture, which was in complete accordance with MCDA by gel electrophoresis, real-time turbidity, and colorimetric indicator. The assay was also successfully applied to detecting L. monocytogenes in pork samples. Therefore, the rapidity, simplicity, and nearly equipment-free platform of the MCDA-LFB technique make it possible for food control, clinical diagnosis, and more. The proof-of-concept assay can be reconfigured to detect

  11. Human papillomavirus detection with genotyping by the cobas and Aptima assays: Significant differences in HPV 16 detection?

    Science.gov (United States)

    Chorny, Joseph A; Frye, Teresa C; Fisher, Beth L; Remmers, Carol L

    2018-03-23

    The primary high-risk human papillomavirus (hrHPV) assays in the United States are the cobas (Roche) and the Aptima (Hologic). The cobas assay detects hrHPV by DNA analysis while the Aptima detects messenger RNA (mRNA) oncogenic transcripts. As the Aptima assay identifies oncogenic expression, it should have a lower rate of hrHPV and genotype detection. The Kaiser Permanente Regional Reference Laboratory in Denver, Colorado changed its hrHPV assay from the cobas to the Aptima assay. The rates of hrHPV detection and genotyping were compared over successive six-month periods. The overall hrHPV detection rates by the two platforms were similar (9.5% versus 9.1%) and not statistically different. For genotyping, the HPV 16 rate by the cobas was 1.6% and by the Aptima it was 1.1%. These differences were statistically different with the Aptima detecting nearly one-third less HPV 16 infections. With the HPV 18 and HPV 18/45, there was a slightly higher detection rate of HPV 18/45 by the Aptima platform (0.5% versus 0.9%) and this was statistically significant. While HPV 16 represents a low percentage of hrHPV infections, it was detected significantly less by the Aptima assay compared to the cobas assay. This has been previously reported, although not highlighted. Given the test methodologies, one would expect the Aptima to detect less HPV 16. This difference appears to be mainly due to a significantly increased number of non-oncogenic HPV 16 infections detected by the cobas test as there were no differences in HPV 16 detection rates in the high-grade squamous intraepithelial lesions indicating that the two tests have similar sensitivities for oncogenic HPV 16. © 2018 Wiley Periodicals, Inc.

  12. Digital Microfluidics for Nucleic Acid Amplification

    Directory of Open Access Journals (Sweden)

    Beatriz Coelho

    2017-06-01

    Full Text Available Digital Microfluidics (DMF has emerged as a disruptive methodology for the control and manipulation of low volume droplets. In DMF, each droplet acts as a single reactor, which allows for extensive multiparallelization of biological and chemical reactions at a much smaller scale. DMF devices open entirely new and promising pathways for multiplex analysis and reaction occurring in a miniaturized format, thus allowing for healthcare decentralization from major laboratories to point-of-care with accurate, robust and inexpensive molecular diagnostics. Here, we shall focus on DMF platforms specifically designed for nucleic acid amplification, which is key for molecular diagnostics of several diseases and conditions, from pathogen identification to cancer mutations detection. Particular attention will be given to the device architecture, materials and nucleic acid amplification applications in validated settings.

  13. Highly parallel and short-acting amplification with locus-specific primers to detect single nucleotide polymorphisms by the DigiTag2 assay.

    Directory of Open Access Journals (Sweden)

    Nao Nishida

    Full Text Available The DigiTag2 assay enables analysis of a set of 96 SNPs using Kapa 2GFast HotStart DNA polymerase with a new protocol that has a total running time of about 7 hours, which is 6 hours shorter than the previous protocol. Quality parameters (conversion rate, call rate, reproducibility and concordance were at the same levels as when genotype calls were acquired using the previous protocol. Multiplex PCR with 192 pairs of locus-specific primers was available for target preparation in the DigiTag2 assay without the optimization of reaction conditions, and quality parameters had the same levels as those acquired with 96-plex PCR. The locus-specific primers were able to achieve sufficient (concentration of target amplicon ≥5 nM and specific (concentration of unexpected amplicons <2 nM amplification within 2 hours, were also able to achieve detectable amplifications even when working in a 96-plex or 192-plex form. The improved DigiTag2 assay will be an efficient platform for screening an intermediate number of SNPs (tens to hundreds of sites in the replication analysis after genome-wide association study. Moreover, highly parallel and short-acting amplification with locus-specific primers may thus facilitate widespread application to other PCR-based assays.

  14. Oncogenic osteomalacia associated with soft tissue chondromyxoid fibroma

    International Nuclear Information System (INIS)

    Park, Jeong Mi; Woo, Young Kyun; Kang, Moo Il; Kang, Chang Suk; Hahn, Seong Tae

    2001-01-01

    Oncogenic osteomalacia is a rarely described clinical entity characterized by hypophosphatemia, phosphaturia, and a low concentration of 1,25-dihydroxyvitamin D 3 . It is most often associated with benign mesenchymal tumor and can be cured with surgical removal of the tumor. In this paper, we present a case of oncogenic osteomalacia caused by chondromyxoid fibroma in the soft tissue of the sole of the foot in a 56-year-old woman

  15. Nucleic acid detection system and method for detecting influenza

    Science.gov (United States)

    Cai, Hong; Song, Jian

    2015-03-17

    The invention provides a rapid, sensitive and specific nucleic acid detection system which utilizes isothermal nucleic acid amplification in combination with a lateral flow chromatographic device, or DNA dipstick, for DNA-hybridization detection. The system of the invention requires no complex instrumentation or electronic hardware, and provides a low cost nucleic acid detection system suitable for highly sensitive pathogen detection. Hybridization to single-stranded DNA amplification products using the system of the invention provides a sensitive and specific means by which assays can be multiplexed for the detection of multiple target sequences.

  16. Factors influencing Recombinase polymerase amplification (RPA) assay outcomes at point of care.

    Science.gov (United States)

    Lillis, Lorraine; Siverson, Joshua; Lee, Arthur; Cantera, Jason; Parker, Mathew; Piepenburg, Olaf; Lehman, Dara A; Boyle, David S

    2016-04-01

    Recombinase Polymerase Amplification (RPA) can be used to detect pathogen-specific DNA or RNA in under 20 min without the need for complex instrumentation. These properties enable its potential use in resource limited settings. However, there are concerns that deviations from the manufacturer's protocol and/or storage conditions could influence its performance in low resource settings. RPA amplification relies upon viscous crowding agents for optimal nucleic acid amplification, and thus an interval mixing step after 3-6 min of incubation is recommended to distribute amplicons and improve performance. In this study we used a HIV-1 RPA assay to evaluate the effects of this mixing step on assay performance. A lack of mixing led to a longer time to amplification and inferior detection signal, compromising the sensitivity of the assay. However lowering the assay volume from 50 μL to 5 μL showed similar sensitivity with or without mixing. We present the first peer-reviewed study that assesses long term stability of RPA reagents without a cold chain. Reagents stored at -20 °C, and 25 °C for up to 12 weeks were able to detect 10 HIV-1 DNA copies. Reagents stored at 45 °C for up to 3 weeks were able to detect 10 HIV-1 DNA copies, with reduced sensitivity only after >3 weeks at 45 °C. Together our results show that reducing reaction volumes bypassed the need for the mixing step and that RPA reagents were stable even when stored for 3 weeks at very high temperatures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Amplification of HER2 is a marker for global genomic instability

    International Nuclear Information System (INIS)

    Ellsworth, Rachel E; Ellsworth, Darrell L; Patney, Heather L; Deyarmin, Brenda; Love, Brad; Hooke, Jeffrey A; Shriver, Craig D

    2008-01-01

    Genomic alterations of the proto-oncogene c-erbB-2 (HER-2/neu) are associated with aggressive behavior and poor prognosis in patients with breast cancer. The variable clinical outcomes seen in patients with similar HER2 status, given similar treatments, suggests that the effects of amplification of HER2 can be influenced by other genetic changes. To assess the broader genomic implications of structural changes at the HER2 locus, we investigated relationships between genomic instability and HER2 status in patients with invasive breast cancer. HER2 status was determined using the PathVysion ® assay. DNA was extracted after laser microdissection from the 181 paraffin-embedded HER2 amplified (n = 39) or HER2 negative (n = 142) tumor specimens with sufficient tumor available to perform molecular analysis. Allelic imbalance (AI) was assessed using a panel of microsatellite markers representing 26 chromosomal regions commonly altered in breast cancer. Student t-tests and partial correlations were used to investigate relationships between genomic instability and HER2 status. The frequency of AI was significantly higher (P < 0.005) in HER2 amplified (27%) compared to HER2 negative tumors (19%). Samples with HER2 amplification showed significantly higher levels of AI (P < 0.05) at chromosomes 11q23, 16q22-q24 and 18q21. Partial correlations including ER status and tumor grade supported associations between HER2 status and alterations at 11q13.1, 16q22-q24 and 18q21. The poor prognosis associated with HER2 amplification may be attributed to global genomic instability as cells with high frequencies of chromosomal alterations have been associated with increased cellular proliferation and aggressive behavior. In addition, high levels of DNA damage may render tumor cells refractory to treatment. In addition, specific alterations at chromosomes 11q13, 16q22-q24, and 18q21, all of which have been associated with aggressive tumor behavior, may serve as genetic modifiers to HER2

  18. A Complementary Isothermal Amplification Method to the U.S. EPA Quantitative Polymerase Chain Reaction Approach for the Detection of Enterococci in Environmental Waters.

    Science.gov (United States)

    Kolm, Claudia; Martzy, Roland; Brunner, Kurt; Mach, Robert L; Krska, Rudolf; Heinze, Georg; Sommer, Regina; Reischer, Georg H; Farnleitner, Andreas H

    2017-06-20

    We report a novel molecular assay, based on helicase-dependent amplification (HDA), for the detection of enterococci as markers for fecal pollution in water. This isothermal assay targets the same Enterococcus 23S rRNA gene region as the existing quantitative polymerase chain reaction (qPCR) assays of U.S. Environmental Protection Agency Methods 1611 and 1609 but can be entirely performed on a simple heating block. The developed Enterococcus HDA assay successfully discriminated 15 enterococcal from 15 non-enterococcal reference strains and reliably detected 48 environmental isolates of enterococci. The limit of detection was 25 target copies per reaction, only 3 times higher than that of qPCR. The applicability of the assay was tested on 30 environmental water sample DNA extracts, simulating a gradient of fecal pollution. Despite the isothermal nature of the reaction, the HDA results were consistent with those of the qPCR reference. Given this performance, we conclude that the developed Enterococcus HDA assay has great potential as a qualitative molecular screening method for resource-limited settings when combined with compatible up- and downstream processes. This amplification strategy can pave the way for developing a new generation of rapid, low-cost, and field-deployable molecular diagnostic tools for water quality monitoring.

  19. Colorimetric detection of genetically modified organisms based on exonuclease III-assisted target recycling and hemin/G-quadruplex DNAzyme amplification.

    Science.gov (United States)

    Zhang, Decai; Wang, Weijia; Dong, Qian; Huang, Yunxiu; Wen, Dongmei; Mu, Yuejing; Yuan, Yong

    2017-12-21

    An isothermal colorimetric method is described for amplified detection of the CaMV 35S promoter sequence in genetically modified organism (GMO). It is based on (a) target DNA-triggered unlabeled molecular beacon (UMB) termini binding, and (b) exonuclease III (Exo III)-assisted target recycling, and (c) hemin/G-quadruplex (DNAzyme) based signal amplification. The specific binding of target to the G-quadruplex sequence-locked UMB triggers the digestion of Exo III. This, in turn, releases an active G-quadruplex segment and target DNA for successive hybridization and cleavage. The Exo III impellent recycling of targets produces numerous G-quadruplex sequences. These further associate with hemin to form DNAzymes and hence will catalyze H 2 O 2 -mediated oxidation of the chromogenic enzyme substrate ABTS 2- causing the formation of a green colored product. This finding enables a sensitive colorimetric determination of GMO DNA (at an analytical wavelength of 420 nm) at concentrations as low as 0.23 nM. By taking advantage of isothermal incubation, this method does not require sophisticated equipment or complicated syntheses. Analyses can be performed within 90 min. The method also discriminates single base mismatches. In our perception, it has a wide scope in that it may be applied to the detection of many other GMOs. Graphical abstract An isothermal and sensitive colorimetric method is described for amplified detection of CaMV 35S promoter sequence in genetically modified organism (GMO). It is based on target DNA-triggered molecular beacon (UMB) termini-binding and exonuclease III assisted target recycling, and on hemin/G-quadruplex (DNAzyme) signal amplification.

  20. Rolling cycle amplification based single-color quantum dots–ruthenium complex assembling dyads for homogeneous and highly selective detection of DNA

    Energy Technology Data Exchange (ETDEWEB)

    Su, Chen; Liu, Yufei; Ye, Tai; Xiang, Xia; Ji, Xinghu; He, Zhike, E-mail: zhkhe@whu.edu.cn

    2015-01-01

    Graphical abstract: A universal, label-free, homogeneous, highly sensitive, and selective fluorescent biosensor for DNA detection is developed by using rolling-circle amplification (RCA) based single-color quantum dots–ruthenium complex (QDs–Ru) assembling dyads. - Highlights: • The single-color QDs–Ru assembling dyads were applied in homogeneous DNA assay. • This biosensor exhibited high selectivity against base mismatched sequences. • This biosensor could be severed as universal platform for the detection of ssDNA. • This sensor could be used to detect the target in human serum samples. • This DNA sensor had a good selectivity under the interference of other dsDNA. - Abstract: In this work, a new, label-free, homogeneous, highly sensitive, and selective fluorescent biosensor for DNA detection is developed by using rolling-circle amplification (RCA) based single-color quantum dots–ruthenium complex (QDs–Ru) assembling dyads. This strategy includes three steps: (1) the target DNA initiates RCA reaction and generates linear RCA products; (2) the complementary DNA hybridizes with the RCA products to form long double-strand DNA (dsDNA); (3) [Ru(phen){sub 2}(dppx)]{sup 2+} (dppx = 7,8-dimethyldipyrido [3,2-a:2′,3′-c] phenanthroline) intercalates into the long dsDNA with strong fluorescence emission. Due to its strong binding propensity with the long dsDNA, [Ru(phen){sub 2}(dppx)]{sup 2+} is removed from the surface of the QDs, resulting in restoring the fluorescence of the QDs, which has been quenched by [Ru(phen){sub 2}(dppx)]{sup 2+} through a photoinduced electron transfer process and is overlaid with the fluorescence of dsDNA bonded Ru(II) polypyridyl complex (Ru-dsDNA). Thus, high fluorescence intensity is observed, and is related to the concentration of target. This sensor exhibits not only high sensitivity for hepatitis B virus (HBV) ssDNA with a low detection limit (0.5 pM), but also excellent selectivity in the complex matrix. Moreover

  1. A sensitive electrochemical aptasensor for ATP detection based on exonuclease III-assisted signal amplification strategy.

    Science.gov (United States)

    Bao, Ting; Shu, Huawei; Wen, Wei; Zhang, Xiuhua; Wang, Shengfu

    2015-03-03

    A target-induced structure-switching electrochemical aptasensor for sensitive detection of ATP was successfully constructed which was based on exonuclease III-catalyzed target recycling for signal amplification. With the existence of ATP, methylene blue (MB) labeled hairpin DNA formed G-quadruplex with ATP, which led to conformational changes of the hairpin DNA and created catalytic cleavage sites for exonuclease III (Exo III). Then the structure-switching DNA hybridized with capture DNA which made MB close to electrode surface. Meanwhile, Exo III selectively digested aptamer from its 3'-end, thus G-quadruplex structure was destroyed and ATP was released for target recycling. The Exo III-assisted target recycling amplified electrochemical signal significantly. Fluorescence experiment was performed to confirm the structure-switching process of the hairpin DNA. In fluorescence experiment, AuNPs-aptamer conjugates were synthesized, AuNPs quenched fluorescence of MB, the target-induced structure-switching made Exo III digested aptamer, which restored fluorescence. Under optimized conditions, the proposed aptasensor showed a linear range of 0.1-20 nM with a detection limit of 34 pM. In addition, the proposed aptasensor had good stability and selectivity, offered promising choice for the detection of other small molecules. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Improved detection limit in rapid detection of human enterovirus 71 and coxsackievirus A16 by a novel reverse transcription-isothermal multiple-self-matching-initiated amplification assay.

    Science.gov (United States)

    Ding, Xiong; Nie, Kai; Shi, Lei; Zhang, Yong; Guan, Li; Zhang, Dan; Qi, Shunxiang; Ma, Xuejun

    2014-06-01

    Rapid detection of human enterovirus 71 (EV71) and coxsackievirus A16 (CVA16) is important in the early phase of hand-foot-and-mouth disease (HFMD). In this study, we developed and evaluated a novel reverse transcription-isothermal multiple-self-matching-initiated amplification (RT-IMSA) assay for the rapid detection of EV71 and CVA16 by use of reverse transcriptase, together with a strand displacement DNA polymerase. Real-time RT-IMSA assays using a turbidimeter and visual RT-IMSA assays to detect EV71 and CVA16 were established and completed in 1 h, and the reported corresponding real-time reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assays targeting the same regions of the VP1 gene were adopted as parallel tests. Through testing VP1 RNAs transcribed in vitro, the real-time RT-IMSA assays exhibited better linearity of quantification, with R(2) values of 0.952 (for EV71) and 0.967 (for CVA16), than the real-time RT-LAMP assays, which had R(2) values of 0.803 (for EV71) and 0.904 (for CVA16). Additionally, the detection limits of the real-time RT-IMSA assays (approximately 937 for EV71 and 67 for CVA16 copies/reaction) were higher than those of real-time RT-LAMP assays (approximately 3,266 for EV71 and 430 for CVA16 copies/reaction), and similar results were observed in the visual RT-IMSA assays. The new approaches also possess high specificities for the corresponding targets, with no cross-reactivity observed. In clinical assessment, compared to commercial reverse transcription-quantitative PCR (qRT-PCR) kits, the diagnostic sensitivities of the real-time RT-IMSA assays (96.4% for EV71 and 94.6% for CVA16) were higher than those of the real-time RT-LAMP assays (91.1% for EV71 and 90.8% for CVA16). The visual RT-IMSA assays also exhibited the same results. In conclusion, this proof-of-concept study suggests that the novel RT-IMSA assay is superior to the RT-LAMP assay in terms of detection limit and has the potential to rapidly detect EV71

  3. Development of a Rapid Detection Method for Potato virus X by Reverse Transcription Loop-Mediated Isothermal Amplification

    Directory of Open Access Journals (Sweden)

    Joojin Jeong

    2015-09-01

    Full Text Available The primary step for efficient control of viral diseases is the development of simple, rapid, and sensitive virus detection. Reverse transcription loop-mediated isothermal amplification (RT-LAMP has been used to detect viral RNA molecules because of its simplicity and high sensitivity for a number of viruses. RT-LAMP for the detection of Potato virus X (PVX was developed and compared with conventional reverse transcription polymerase chain reaction (RT-PCR to demonstrate its advantages over RT-PCR. RT-LAMP reactions were conducted with or without a set of loop primers since one out of six primers showed PVX specificity. Based on real-time monitoring, RT-LAMP detected PVX around 30 min, compared to 120 min for RT-PCR. By adding a fluorescent reagent during the reaction, the extra step of visualization by gel electrophoresis was not necessary. RT-LAMP was conducted using simple inexpensive instruments and a regular incubator to evaluate whether RNA could be amplified at a constant temperature instead of using an expensive thermal cycler. This study shows the potential of RT-LAMP for the diagnosis of viral diseases and PVX epidemiology because of its simplicity and rapidness compared to RT-PCR.

  4. Rapid and sensitive detection of Plesiomonas shigelloides by loop-mediated isothermal amplification of the hugA gene.

    Directory of Open Access Journals (Sweden)

    Shuang Meng

    Full Text Available Plesiomonas shigelloides is one of the causative agents of human gastroenteritis, with increasing number of reports describing such infections in recent years. In this study, the hugA gene was chosen as the target to design loop-mediated isothermal amplification (LAMP assays for the rapid, specific, and sensitive detection of P. shigelloides. The performance of the assay with reference plasmids and spiked human stools as samples was evaluated and compared with those of quantitative PCR (qPCR. No false-positive results were observed for the 32 non-P. shigelloides strains used to evaluate assay specificity. The limit of detection for P. shigelloides was approximately 20 copies per reaction in reference plasmids and 5×10(3 CFU per gram in spiked human stool, which were more sensitive than the results of qPCR. When applied in human stool samples spiked with 2 low levels of P. shigelloides, the LAMP assays achieved accurate detection after 6-h enrichment. In conclusion, the LAMP assay developed in this study is a valuable method for rapid, cost-effective, and simple detection of P. shigelloides in basic clinical and field laboratories in the rural areas of China.

  5. The development of a loop-mediated isothermal amplification assay for rapid and sensitive detection of abalone herpesvirus DNA.

    Science.gov (United States)

    Chen, M H; Kuo, S T; Renault, T; Chang, P H

    2014-02-01

    A loop-mediated isothermal amplification (LAMP) assay was developed for the detection of abalone herpesvirus DNA. Two pairs of primers were designed, based on the sequence of the DNA polymerase gene of abalone herpesvirus. The reaction temperature and time were optimized to 63°C and 60min, respectively. LAMP amplicons were analyzed by 2% agarose gel electrophoresis or by visual inspection of a colour change emitted by fluorescent dye. The method developed was specific for the detection of abalone herpesvirus, without cross-reactions with other tested herpesviruses including ostreid herpesvirus 1 (OsHV-1), European eel herpesvirus, koi herpesvirus (KHV) and an avian herpesvirus. The LAMP assay was 100 folds more sensitive than a conventional PCR and 10 folds less sensitive than a SYBR Green PCR. These results indicate that the developed LAMP assay is a simple, rapid, sensitive, specific and reliable technique for the detection of abalone herpesvirus. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Overexpressed Genes/ESTs and Characterization of Distinct Amplicons on 17823 in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ayse E. Erson

    2001-01-01

    Full Text Available 17823 is a frequent site of gene amplification in breast cancer. Several lines of evidence suggest the presence of multiple amplicons on 17823. To characterize distinct amplicons on 17823 and localize putative oncogenes, we screened genes and expressed sequence tags (ESTs in existing physical and radiation hybrid maps for amplification and overexpression in breast cancer cell lines by semiquantitative duplex PCR, semiquantitative duplex RT-PCR, Southern blot, Northern blot analyses. We identified two distinct amplicons on 17823, one including TBX2 and another proximal region including RPS6KB1 (PS6K and MUL. In addition to these previously reported overexpressed genes, we also identified amplification and overexpression of additional uncharacterized genes and ESTs, some of which suggest potential oncogenic activity. In conclusion, we have further defined two distinct regions of gene amplification and overexpression on 17823 with identification of new potential oncogene candidates. Based on the amplification and overexpression patterns of known and as of yet unrecognized genes on 17823, it is likely that some of these genes mapping to the discrete amplicons function as oncogenes and contribute to tumor progression in breast cancer cells.

  7. Rapid detection of ERG11 gene mutations in clinical Candida albicans isolates with reduced susceptibility to fluconazole by rolling circle amplification and DNA sequencing

    OpenAIRE

    Wang, Huiping; Kong, Fanrong; Sorrell, Tania C; Wang, Bin; McNicholas, Paul; Pantarat, Namfon; Ellis, David; Xiao, Meng; Widmer, Fred; Chen, Sharon CA

    2009-01-01

    Abstract Background Amino acid substitutions in the target enzyme Erg11p of azole antifungals contribute to clinically-relevant azole resistance in Candida albicans. A simple molecular method for rapid detection of ERG11 gene mutations would be an advantage as a screening tool to identify potentially-resistant strains and to track their movement. To complement DNA sequencing, we developed a padlock probe and rolling circle amplification (RCA)-based method to detect a series of mutations in th...

  8. Detection of Babesia bovis carrier cattle by using polymerase chain reaction amplification of parasite DNA.

    Science.gov (United States)

    Fahrimal, Y; Goff, W L; Jasmer, D P

    1992-01-01

    Carrier cattle infected with Babesia bovis are difficult to detect because of the low numbers of parasites that occur in peripheral blood. However, diagnosis of low-level infections with the parasite is important for evaluating the efficacies of vaccines and in transmission and epidemiological studies. We used the polymerase chain reaction (PCR) to amplify a portion of the apocytochrome b gene from the parasite and tested the ability of this method to detect carrier cattle. The target sequence is associated with a 7.4-kb DNA element in undigested B. bovis genomic DNA (as shown previously), and the amplified product was detected by Southern and dot blot hybridization. The assay was specific for B. bovis, since no amplification was detected with Babesia bigemina, Trypanosoma brucei, Anaplasma marginale, or leukocyte DNA. The target sequence was amplified in DNA from B. bovis Mexico, Texas, and Australia S and L strains, demonstrating the applicability of the method to strains from different geographic regions. The sensitivity of the method ranged from 1 to 10 infected erythrocytes extracted from 0.5 ml of blood. This sensitivity was about 1,000 times greater than that from the use of unamplified parasite DNA. By the PCR method, six B. bovis carrier cattle were detected 86% of the time (range, 66 to 100%) when they were tested 11 times, while with microscopic examination of thick blood smears, the same carrier cattle were detected only 36% of the time (range, 17 to 66%). The method provides a useful diagnostic tool for detecting B. bovis carrier cattle, and the sensitivity is significantly improved over that of current methods. The results also suggest that characteristics of the apocytchrome b gene may make this a valuable target DNA for PCR-based detection of other hemoparasites. Images PMID:1624551

  9. Direct detection of Mycobacterium avium in environmental water and scale samples by loop-mediated isothermal amplification.

    Science.gov (United States)

    Nishiuchi, Yukiko; Tamaru, Aki; Suzuki, Yasuhiko; Kitada, Seigo; Maekura, Ryoji; Tateishi, Yoshitaka; Niki, Mamiko; Ogura, Hisashi; Matsumoto, Sohkichi

    2014-06-01

    We previously demonstrated the colonization of Mycobacterium avium complex in bathrooms by the conventional culture method. In the present study, we aimed to directly detect M. avium organisms in the environment using loop-mediated isothermal amplification (LAMP), and to demonstrate the efficacy of LAMP by comparing the results with those obtained by culture. Our data showed that LAMP analysis has detection limits of 100 fg DNA/reaction for M. avium. Using an FTA(®) elute card, DNA templates were extracted from environmental samples from bathrooms in the residences of 29 patients with pulmonary M. avium disease. Of the 162 environmental samples examined, 143 (88%) showed identical results by both methods; 20 (12%) and 123 (76%) samples were positive and negative, respectively, for M. avium. Of the remaining 19 samples (12%), seven (5%) and 12 (7%) samples were positive by the LAMP and culture methods, respectively. All samples that contained over 20 colony forming units/primary isolation plate, as measured by the culture method, were also positive by the LAMP method. Our data demonstrate that the combination of the FTA elute card and LAMP can facilitate prompt detection of M. avium in the environment.

  10. Biochip for Real-Time Monitoring of Hepatitis B Virus (HBV) by Combined Loop-Mediated Isothermal Amplification and Solution-Phase Electrochemical Detection

    Science.gov (United States)

    Tien, Bui Quang; Ngoc, Nguyen Thy; Loc, Nguyen Thai; Thu, Vu Thi; Lam, Tran Dai

    2017-06-01

    Accurate in situ diagnostic tests play a key role in patient management and control of most infectious diseases. To achieve this, use of handheld biochips that implement sample handling, sample analysis, and result readout together is an ideal approach. We present herein a fluid-handling biochip for real-time electrochemical monitoring of nucleic acid amplification based on loop-mediated isothermal amplification and real-time electrochemical detection on a microfluidic platform. Intercalation between amplifying DNA and free redox probe in solution phase was used to monitor the number of DNA copies. The whole diagnostic process is completed within 70 min. Our platform offers a fast and easy tool for quantification of viral pathogens in shorter time and with limited risk of all potential forms of cross-contamination. Such diagnostic tools have potential to make a huge difference to the lives of millions of people worldwide.

  11. [Individual Identification of Cartilage by Direct Amplification in Mass Disasters].

    Science.gov (United States)

    Wang, C H; Xu, C; Li, X Q; Wu, Y; Du, Z

    2017-06-01

    To explore the effectiveness of direct amplification for the STR analysis of cartilage, and to accelerate the effectiveness of disaster victim identification. Eighty-eight cartilage samples were directly amplified by PowerPle® 21 kit, and the results of genotyping were compared with that obtained by the magnetic beads method. In 88 cartilage samples, the STR genotypes were successfully detected from 84 samples by direct amplification and magnetic beads method, and both the results of genotyping by two method were consistent. Direct amplification with PowerPlex® 21 kit can be used for STR genotyping of cartilages. This method is operated easily and promptly, which has a potential application in the individual identification of mass disasters. Copyright© by the Editorial Department of Journal of Forensic Medicine

  12. Oncogenic osteomalacia associated with soft tissue chondromyxoid fibroma

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeong Mi E-mail: jmpark@cmc.cuk.ac.kr; Woo, Young Kyun; Kang, Moo Il; Kang, Chang Suk; Hahn, Seong Tae

    2001-08-01

    Oncogenic osteomalacia is a rarely described clinical entity characterized by hypophosphatemia, phosphaturia, and a low concentration of 1,25-dihydroxyvitamin D{sub 3}. It is most often associated with benign mesenchymal tumor and can be cured with surgical removal of the tumor. In this paper, we present a case of oncogenic osteomalacia caused by chondromyxoid fibroma in the soft tissue of the sole of the foot in a 56-year-old woman.

  13. Development of loop-mediated isothermal amplification method for ...

    African Journals Online (AJOL)

    A novel assay method to detect the highly virulent Porcine reproductive and respiratory syndrome virus (PRRSV) termed reverse transcriptase loop-mediated isothermal amplification (RT-LAMP), was reported by using hydroxynaphthol blue (HNB) as the LAMP product colorimetric judgment. By the set of special primers, ...

  14. PCR amplification of repetitive sequences as a possible approach in relative species quantification

    DEFF Research Database (Denmark)

    Ballin, Nicolai Zederkopff; Vogensen, Finn Kvist; Karlsson, Anders H

    2012-01-01

    Abstract Both relative and absolute quantifications are possible in species quantification when single copy genomic DNA is used. However, amplification of single copy genomic DNA does not allow a limit of detection as low as one obtained from amplification of repetitive sequences. Amplification...... of repetitive sequences is therefore frequently used in absolute quantification but problems occur in relative quantification as the number of repetitive sequences is unknown. A promising approach was developed where data from amplification of repetitive sequences were used in relative quantification of species...... to relatively quantify the amount of chicken DNA in a binary mixture of chicken DNA and pig DNA. However, the designed PCR primers lack the specificity required for regulatory species control....

  15. Development of Loop-Mediated Isothermal Amplification (LAMP) assay for rapid detection of Fusarium oxysporum f. sp. ciceris - wilt pathogen of chickpea.

    Science.gov (United States)

    Ghosh, Raju; Nagavardhini, Avuthu; Sengupta, Anindita; Sharma, Mamta

    2015-02-11

    Fusarium oxysporum f. sp. ciceris (Foc), the causal agent of Fusarium wilt is a devastating pathogen of chickpea. In chickpea, various soil borne pathogens produce (s) similar symptoms, therefore cannot be distinguished easily at field level. There is real need for a rapid, inexpensive, and easy to operate and maintain genotyping tool to facilitate accurate disease diagnosis and surveillance for better management of Fusarium wilt outbreaks. In this study, we developed a loop-mediated isothermal amplification (LAMP) assay targeting the elongation factor 1 alpha gene sequence for visual detection of Foc. The LAMP reaction was optimal at 63°C for 60 min. When hydroxynaphthol blue (HNB) was added before amplification, samples with Foc DNA developed a characteristic sky blue colour but those without DNA or with the DNA of six other plant pathogenic fungi did not. Results obtained with LAMP and HNB were confirmed when LAMP products were subjected to gel electrophoresis. The detection limit of this LAMP assay for Foc was 10 fg of genomic DNA per reaction, while that of conventional PCR was 100 pg. In conclusion, it was found that a LAMP assay combined with HNB is simple, rapid, sensitive, and specific. The LAMP assay does not require specialized equipment, hence can be used in the field for the rapid detection of Foc. This is the first report of the use of LAMP assay for the detection of Foc. The presented LAMP method provides a specific, sensitive and rapid diagnostic tool for the distinction of Foc, with the potential to be standardized as a detection method for Foc in endemic areas and will be very useful for monitoring the disease complex in the field further suggesting the management strategies.

  16. Detection of Coconut cadang-cadang viroid (CCCVd) in oil palm by reverse transcription loop-mediated isothermal amplification (RT-LAMP).

    Science.gov (United States)

    Thanarajoo, Sathis Sri; Kong, Lih Ling; Kadir, Jugah; Lau, Wei Hongi; Vadamalai, Ganesan

    2014-06-01

    A reverse transcription loop-mediated isothermal amplification (RT-LAMP) detected Coconut cadang-cadang viroid (CCCVd) within 60 min at 60 °C in total nucleic acid extracted from oil palm leaves infected with CCCVd. Positive reactions showed colour change from orange to green in the reaction mix after the addition of fluorescent reagent, and a laddering pattern band on 2% agarose gel electrophoresis. Conventional RT-PCR with LAMP primers produced amplicons with a sequence identical to the 297-nt CCCVd oil palm variant with the primers being specific for CCCVd and not for other viroids such as PSTVd and CEVd. RT-LAMP was found to be rapid and specific for detecting oil palm CCCVd. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Rat embryo cells immortalized with transfected oncogenes are transformed by gamma irradiation.

    Science.gov (United States)

    Endlich, B; Salavati, R; Sullivan, T; Ling, C C

    1992-12-01

    Cesium-137 gamma rays were used to transform rat embryo cells (REC) which were first transfected with activated c-myc or c-Ha-ras oncogenes to produce immortal cell lines (REC:myc and REC:ras). When exposed to 6 Gy of 137Cs gamma rays, some cells became morphologically transformed with focus formation frequencies of approximately 3 x 10(-4) for REC:myc and approximately 1 x 10(-4) for REC:ras, respectively. Cells isolated from foci of gamma-ray-transformed REC:myc (REC:myc:gamma) formed anchorage-independent colonies and were tumorigenic in nude mice, but foci from gamma-ray-transformed REC:ras (REC:ras:gamma) did not exhibit either of these criteria of transformation. Similar to the results with gamma irradiation, we observed a sequence-dependent phenomenon when myc and ras were transfected into REC, one at a time. REC immortalized by ras transfection were not converted to a tumorigenic phenotype by secondary transfection with myc, but REC transfected with myc were very susceptible to transformation by subsequent ras transfection. This suggests that myc-immortalized cells are more permissive to transformation via secondary treatments. In sequentially transfected REC, myc expression was high whether it was transfected first or second, whereas ras expression was highest when the ras gene was transfected secondarily into myc-containing REC. Molecular analysis of REC:ras:gamma transformants showed no alterations in structure of the transfected ras or of the endogenous ras, myc, p53, or fos genes. The expression of ras and p53 was increased in some isolates of REC:ras:gamma, but myc and fos expression were not affected. Similarly, REC:myc:gamma transformants did not demonstrate rearrangement or amplification of the transfected or the endogenous myc genes, or of the potentially cooperating Ha-, Ki-, or N-ras genes. Northern hybridization analysis revealed increased expression of N-ras in two isolates, REC:myc:gamma 33 and gamma 41, but no alterations in the expression

  18. Visual detection and microplate assay for Staphylococcus aureus based on aptamer recognition coupled to tyramine signal amplification

    International Nuclear Information System (INIS)

    Yuan, Jinglei; Li, Can; Ma, Xiaoyuan; Xia, Yu; Chen, Jie; Wang, Zhouping; Yu, Ye

    2014-01-01

    We have developed a specific method for the visual detection of Staphylococcus aureus based on aptamer recognition coupled to tyramine signal amplification technology. A biotinylated aptamer specific for S. aureus was immobilized on the surface of the wells of a microplate via biotin-avidin binding. Then, the target bacteria (S. aureus), the biotinylated-aptamer-streptavidin-HRP conjugates, biotinylated tyramine, hydrogen peroxide and streptavidin-HRP were successively placed in the wells of the microplate. After adding TMB reagent and stop solution, the intensity of the yellow reaction product can be visually inspected or measured with a plate reader. Under optimized conditions, there is a linear relationship between absorbance at 450 nm and the concentration of S. aureus in the 10 to 107 cfu mL −1 concentration range (with an R 2 of 0.9976). The limit of detection is 8 cfu mL −1 . (author)

  19. Detection and characterization of Newcastle disease virus in clinical samples using real time RT-PCR and melting curve analysis based on matrix and fusion genes amplification

    Directory of Open Access Journals (Sweden)

    Saad Sharawi

    2013-10-01

    Full Text Available Aim: Newcastle disease is still one of the major threats for poultry industry allover the world. Therefore, attempt was made in this study to use the SYBR Green I real-time PCR with melting curves analysis as for detection and differentiation of NDV strains in suspected infected birds. Materials and Methods: Two sets of primers were used to amplify matrix and fusion genes in samples collected from suspectly infected birds (chickens and pigeons. Melting curve analysis in conjunction with real time PCR was conducted for identifying different pathotypes of the isolated NDVs. Clinical samples were propagated on specific pathogen free ECE and tested for MDT and ICIP. Results: The velogenic NDVs isolated from chickens and pigeons were distinguished with mean T 85.03±0.341 and m 83.78±0.237 respectively for M-gene amplification and for F-gene amplification the mean T were 84.04±0.037 and m 84.53±0.223. On the other hand the lentogenic NDV isolates including the vaccinal strains (HB1 and LaSota have a higher mean T (86.99±0.021 for M-gene amplification and 86.50±0.063 for F-gene amplification. The test showed no reaction with m unrelated RNA samples. In addition, the results were in good agreement with both virus isolation and biological pathotyping (MDT and ICIP. The assay offers an attractive alternative method for the diagnosis of NDV that can be easily applied in laboratory diagnosis as a screening test for the detection and differentiation of NDV infections. Conclusion: As was shown by the successful rapid detection and pathotyping of 15 NDV strains in clinical samples representing velogenic and lentogenic NDV strains, and the agreement with the results of virus isolation , biological pathotyping and pathogenicity indices. The results of this report suggests that the described SybrGreen I real-time RT-PCR assay in conjunction with Melting curve analysis used as a rapid, specific and simple diagnostic tools for detection and pathotyping of

  20. Epigenetic Pathways of Oncogenic Viruses: Therapeutic Promises.

    Science.gov (United States)

    El-Araby, Amr M; Fouad, Abdelrahman A; Hanbal, Amr M; Abdelwahab, Sara M; Qassem, Omar M; El-Araby, Moustafa E

    2016-02-01

    Cancerous transformation comprises different events that are both genetic and epigenetic. The ultimate goal for such events is to maintain cell survival and proliferation. This transformation occurs as a consequence of different features such as environmental and genetic factors, as well as some types of infection. Many viral infections are considered to be causative agents of a number of different malignancies. To convert normal cells into cancerous cells, oncogenic viruses must function at the epigenetic level to communicate with their host cells. Oncogenic viruses encode certain epigenetic factors that lead to the immortality and proliferation of infected cells. The epigenetic effectors produced by oncogenic viruses constitute appealing targets to prevent and treat malignant diseases caused by these viruses. In this review, we highlight the importance of epigenetic reprogramming for virus-induced oncogenesis, with special emphasis on viral epigenetic oncoproteins as therapeutic targets. The discovery of molecular components that target epigenetic pathways, especially viral factors, is also discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Loop-mediated isothermal amplification (LAMP): early detection of Toxoplasma gondii infection in mice.

    Science.gov (United States)

    Kong, Qing-Ming; Lu, Shao-Hong; Tong, Qun-Bo; Lou, Di; Chen, Rui; Zheng, Bin; Kumagai, Takashi; Wen, Li-Yong; Ohta, Nobuo; Zhou, Xiao-Nong

    2012-01-03

    Toxoplasmosis is a widespread zoonotic parasitic disease that occurs in both animals and humans. Traditional molecular assays are often difficult to perform, especially for the early diagnosis of Toxoplasma gondii infections. Here, we established a novel loop-mediated isothermal amplification targeting the 529 bp repeat element (529 bp-LAMP) to detect T. gondii DNA in blood samples of experimental mice infected with tachyzoites of the RH strain. The assay was performed with Bst DNA polymerase at 65°C for 1 h. The detection limit of the 529 bp-LAMP assay was as low as 0.6 fg of T. gondii DNA. The sensitivity of this assay was 100 and 1000 fold higher than that of the LAMP targeting B1 gene (B1-LAMP) and nested PCR targeting 529 bp repeat element (529 bp-nested PCR), respectively. The specificity of the 529 bp-LAMP assay was determined using the DNA samples of Trypanosoma evansi, Plasmodium falciparum, Paragonimus westermani, Schistosoma japonicum, Fasciola hepatica and Angiostrongylus cantonensis. No cross-reactivity with the DNA of any parasites was found. The assay was able to detect T. gondii DNA in all mouse blood samples at one day post infection (dpi). We report the following findings: (i) The detection limit of the 529 bp-LAMP assay is 0.6 fg of T. gondii DNA; (ii) The assay does not involve any cross-reactivity with the DNA of other parasites; (iii) This is the first report on the application of the LAMP assay for early diagnosis of toxoplasmosis in blood samples from experimentally infected mice. Due to its simplicity, sensitivity and cost-effectiveness for common use, we suggest that this assay should be used as an early diagnostic tool for health control of toxoplasmosis.

  2. Detection of Cucurbit chlorotic yellows virus from Bemisia tabaci captured on sticky traps using reverse transcription loop-mediated isothermal amplification (RT-LAMP) and simple template preparation.

    Science.gov (United States)

    Okuda, Mitsuru; Okuda, Shiori; Iwai, Hisashi

    2015-09-01

    Cucurbit chlorotic yellows virus (CCYV) of the genus Crinivirus within the family Closteroviridae is an emerging infectious agent of cucurbits leading to severe disease and significant economic losses. Effective detection and identification methods for this virus are urgently required. In this study, a reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed to detect CCYV from its vector Bemisia tabaci. LAMP primer sets to detect CCYV were evaluated for their sensitivity and specificity, and a primer set designed from the HSP70h gene with corresponding loop primers were selected. The RT-LAMP assay was applied to detect CCYV from viruliferous B. tabaci trapped on sticky traps. A simple extraction procedure using RNAsecure™ was developed for template preparation. CCYV was detected in all of the B. tabaci 0, 1, 7 and 14 days after they were trapped. Although the rise of turbidity was delayed in reactions using RNA from B. tabaci trapped for 7 and 14 days compared with those from 0 and 1 day, the DNA amplification was sufficient to detect CCYV in all of the samples. These findings therefore present a simple template preparation method and an effective RT-LAMP assay, which can be easily and rapidly performed to monitor CCYV-viruliferous B. tabaci in the field. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Development of a real-time fluorescence loop-mediated isothermal amplification assay for rapid and quantitative detection of Fusarium oxysporum f. sp. cubense tropical race 4 in soil.

    Science.gov (United States)

    Zhang, Xin; Zhang, He; Pu, Jinji; Qi, Yanxiang; Yu, Qunfang; Xie, Yixian; Peng, Jun

    2013-01-01

    Fusarium oxysporum f. sp. cubense (Foc), the causal agent of Fusarium wilt (Panama disease), is one of the most devastating diseases of banana (Musa spp.). The Foc tropical race 4 (TR4) is currently known as a major concern in global banana production. No effective resistance is known in Musa to Foc, and no effective measures for controlling Foc once banana plants have been infected in place. Early and accurate detection of Foc TR4 is essential to protect banana industry and guide banana planting. A real-time fluorescence loop-mediated isothermal amplification assay (RealAmp) was developed for the rapid and quantitative detection of Foc TR4 in soil. The detection limit of the RealAmp assay was approximately 0.4 pg/µl plasmid DNA when mixed with extracted soil DNA or 10(3) spores/g of artificial infested soil, and no cross-reaction with other relative pathogens were observed. The RealAmp assay for quantifying genomic DNA of TR4 was confirmed by testing both artificially and naturally infested samples. Quantification of the soil-borne pathogen DNA of Foc TR4 in naturally infested samples was no significant difference compared to classic real-time PCR (P>0.05). Additionally, RealAmp assay was visual with an improved closed-tube visual detection system by adding SYBR Green I fluorescent dye to the inside of the lid prior to amplification, which avoided the inhibitory effects of the stain on DNA amplification and makes the assay more convenient in the field and could thus become a simple, rapid and effective technique that has potential as an alternative tool for the detection and monitoring of Foc TR4 in field, which would be a routine DNA-based testing service for the soil-borne pathogen in South China.

  4. Development of a real-time fluorescence loop-mediated isothermal amplification assay for rapid and quantitative detection of Fusarium oxysporum f. sp. cubense tropical race 4 in soil.

    Directory of Open Access Journals (Sweden)

    Xin Zhang

    Full Text Available Fusarium oxysporum f. sp. cubense (Foc, the causal agent of Fusarium wilt (Panama disease, is one of the most devastating diseases of banana (Musa spp.. The Foc tropical race 4 (TR4 is currently known as a major concern in global banana production. No effective resistance is known in Musa to Foc, and no effective measures for controlling Foc once banana plants have been infected in place. Early and accurate detection of Foc TR4 is essential to protect banana industry and guide banana planting. A real-time fluorescence loop-mediated isothermal amplification assay (RealAmp was developed for the rapid and quantitative detection of Foc TR4 in soil. The detection limit of the RealAmp assay was approximately 0.4 pg/µl plasmid DNA when mixed with extracted soil DNA or 10(3 spores/g of artificial infested soil, and no cross-reaction with other relative pathogens were observed. The RealAmp assay for quantifying genomic DNA of TR4 was confirmed by testing both artificially and naturally infested samples. Quantification of the soil-borne pathogen DNA of Foc TR4 in naturally infested samples was no significant difference compared to classic real-time PCR (P>0.05. Additionally, RealAmp assay was visual with an improved closed-tube visual detection system by adding SYBR Green I fluorescent dye to the inside of the lid prior to amplification, which avoided the inhibitory effects of the stain on DNA amplification and makes the assay more convenient in the field and could thus become a simple, rapid and effective technique that has potential as an alternative tool for the detection and monitoring of Foc TR4 in field, which would be a routine DNA-based testing service for the soil-borne pathogen in South China.

  5. Fine needle aspiration biopsy diagnosis of dedifferentiated liposarcoma: Cytomorphology and MDM2 amplification by FISH

    Directory of Open Access Journals (Sweden)

    Al-Maghraby Hatem

    2010-01-01

    Full Text Available Lipomatous mesenchymal tumors constitute the most common type of soft tissue tumors. Well-differentiated liposarcoma (WDLS can undergo dedifferentiation to a nonlipogenic sarcoma of variable histologic grade. In the recent literature, amplification of the murine double minute 2 (MDM2 oncogene, which has a role in cell cycle control, has been successful in distinguishing WDLS from benign lesions. We present a case of dedifferentiated liposarcoma diagnosed by fine-needle aspiration (FNA, using cytomorphology and ancillary studies (immunocytochemistry and fluorescent in-situ hybridization. An 85-year old female presented to our institution with a firm soft tissue mass of the right buttock. The FNA showed atypical spindle cells, osteoclast-like giant cells and extracellular dense matrix material. The cell block showed cellular groups of highly atypical spindle cells with osteoid and adipose tissue. Fluorescence in situ hybridization (FISH studies performed on the cell block demonstrated amplification of the MDM2 gene. In addition, the findings were morphologically compatible with the previously resected retroperitoneal dedifferentiated liposarcoma with areas of osteosarcoma. This rare case illustrates the usefulness of FNA and ancillary studies in the diagnosis and subclassification of soft tissue tumors. To the best of our knowledge, this is the first report of MDM2 FISH positivity in a liposarcoma diagnosed by FNA.

  6. Rapid, simple and direct detection of Meloidogyne hapla from infected root galls using loop-mediated isothermal amplification combined with FTA technology

    OpenAIRE

    Peng, Huan; Long, Haibo; Huang, Wenkun; Liu, Jing; Cui, Jiangkuan; Kong, Lingan; Hu, Xianqi; Gu, Jianfeng; Peng, Deliang

    2017-01-01

    The northern root-knot nematode (Meloidogyne hapla) is a damaging nematode that has caused serious economic losses worldwide. In the present study, a sensitive, simple and rapid method was developed for detection of M. hapla in infested plant roots by combining a Flinders Technology Associates (FTA) card with loop-mediated isothermal amplification (LAMP). The specific primers of LAMP were designed based on the distinction of internal transcribed spacer (ITS) sequences between M. hapla and oth...

  7. Detection of bovine mastitis pathogens by loop-mediated isothermal amplification and an electrochemical DNA chip.

    Science.gov (United States)

    Kawai, Kazuhiro; Inada, Mika; Ito, Keiko; Hashimoto, Koji; Nikaido, Masaru; Hata, Eiji; Katsuda, Ken; Kiku, Yoshio; Tagawa, Yuichi; Hayashi, Tomohito

    2017-12-22

    Bovine mastitis causes significant economic losses in the dairy industry. Effective prevention of bovine mastitis requires an understanding of the infection status of a pathogenic microorganism in a herd that has not yet shown clinical signs of mastitis and appropriate treatment specific for the pathogenic microorganism. However, bacterial identification by culture has drawbacks in that the sensitivity may be low and the procedure can be complex. In this study, we developed a genetic detection method to identify mastitis pathogens using a simple and highly sensitive electrochemical DNA chip which can specifically detect bacterial DNA in milk specimens. First, we selected microorganisms belonging to 12 families and/or genera associated with mastitis for which testing should be performed. Next, we optimized the conditions for amplifying microorganism DNA by loop-mediated isothermal amplification (LAMP) using 32 primers and the use of a DNA chip capable of measuring all pathogens simultaneously. Sample detection could be completed in just a few hours using this method. Comparison of the results obtained with our DNA chip method and those obtained by bacterial culture verified that when the culture method was set to 100%, the total positive concordance rate of the DNA chip was 85.0% and the total negative concordance rate was 86.9%. Furthermore, the proposed method allows both rapid and highly sensitive detection of mastitis pathogens. We believe that this method will contribute to the development of an effective mastitis control program.

  8. The successes and future prospects of the linear antisense RNA amplification methodology.

    Science.gov (United States)

    Li, Jifen; Eberwine, James

    2018-05-01

    It has been over a quarter of a century since the introduction of the linear RNA amplification methodology known as antisense RNA (aRNA) amplification. Whereas most molecular biology techniques are rapidly replaced owing to the fast-moving nature of development in the field, the aRNA procedure has become a base that can be built upon through varied uses of the technology. The technique was originally developed to assess RNA populations from small amounts of starting material, including single cells, but over time its use has evolved to include the detection of various cellular entities such as proteins, RNA-binding-protein-associated cargoes, and genomic DNA. In this Perspective we detail the linear aRNA amplification procedure and its use in assessing various components of a cell's chemical phenotype. This procedure is particularly useful in efforts to multiplex the simultaneous detection of various cellular processes. These efforts are necessary to identify the quantitative chemical phenotype of cells that underlies cellular function.

  9. Electrochemical DNA biosensor based on MNAzyme-mediated signal amplification

    International Nuclear Information System (INIS)

    Diao, Wei; Tang, Min; Ding, Xiaojuan; Zhang, Ye; Yang, Jianru; Cheng, Wenbin; Mo, Fei; Wen, Bo; Xu, Lulu; Yan, Yurong

    2016-01-01

    The authors describe an electrochemical sensing strategy for highly sensitive and specific detection of target (analyte) DNA based on an amplification scheme mediated by a multicomponent nucleic acid enzyme (MNAzyme). MNAzymes were formed by multicomponent complexes which produce amplified “output” signals in response to specific “input” signal. In the presence of target nucleic acid, multiple partial enzymes (partzymes) oligonucleotides are assembled to form active MNAzymes. These can cleave H0 substrate into two pieces, thereby releasing the activated MNAzyme to undergo an additional cycle of amplification. Here, the two pieces contain a biotin-tagged sequence and a byproduct. The biotin-tagged sequences are specifically captured by the detection probes immobilized on the gold electrode. By employing streptavidinylated alkaline phosphatase as an enzyme label, an electrochemical signal is obtained. The electrode, if operated at a working potential of 0.25 V (vs. Ag/AgCl) in solution of pH 7.5, covers the 100 pM to 0.25 μM DNA concentration range, with a 79 pM detection limit. In our perception, the strategy introduced here has a wider potential in that it may be applied to molecular diagnostics and pathogen detection. (author)

  10. Development and application of loop-mediated isothermal amplification methods targeting the seM gene for detection of Streptococcus equi subsp. equi.

    Science.gov (United States)

    Hobo, Seiji; Niwa, Hidekazu; Oku, Kazuomi

    2012-03-01

    Loop-mediated isothermal amplification (LAMP) constitutes a potentially valuable diagnostic tool for rapid diagnosis of contagious diseases. In this study, we developed a novel LAMP method (seM-LAMP) to detect the seM gene of Streptococcus equi subsp. equi (S. equi), the causative agent of strangles in equids. The seM-LAMP successfully amplified the target sequence of the seM gene at 63°C within 60 min. The sensitivity of the seM-LAMP was slightly lower than the 2nd reaction of the seM semi-nested PCR. To evaluate the species specificity of the seM-LAMP, we tested 100 S. equi and 189 non-S. equi strains. Significant amplification of the DNA originating from S. equi was observed within 60 min incubation, but no amplification of non-S. equi DNA occurred. The results were identical to those of seM semi-nested PCR. To investigate the clinical usefulness of the methods, the seM-LAMP and the seM semi-nested PCR were used to screen 590 nasal swabs obtained during an outbreak of strangles. Both methods showed that 79 and 511 swabs were S. equi positive and negative, respectively, and the results were identical to those of the culture examination. These results indicate that the seM-LAMP is potentially useful for the reliable routine diagnosis of Streptococcus equi subsp. equi infections.

  11. Rapid Detection of Prunus Necrotic Ringspot Virus by Reverse Transcription-cross-priming Amplification Coupled with Nucleic Acid Test Strip Cassette.

    Science.gov (United States)

    Huo, Ya-Yun; Li, Gui-Fen; Qiu, Yan-Hong; Li, Wei-Min; Zhang, Yong-Jiang

    2017-11-23

    Prunus necrotic ringspot virus (PNRSV) is one of the most devastating viruses to Prunus spp. In this study, we developed a diagnostic system RT-CPA-NATSC, wherein reverse transcription-cross-priming amplification (RT-CPA) is coupled with nucleic acid test strip cassette (NATSC), a vertical flow (VF) visualization, for PNRSV detection. The RT-CPA-NATSC assay targets the encoding gene of the PNRSV coat protein with a limit of detection of 72 copies per reaction and no cross-reaction with the known Prunus pathogenic viruses and viroids, demonstrating high sensitivity and specificity. The reaction is performed on 60 °C and can be completed less than 90 min with the prepared template RNA. Field sample test confirmed the reliability of RT-CPA-NATSC, indicating the potential application of this simple and rapid detection method in routine test of PNRSV.

  12. Transformation and oncogenicity by Adenoviruses

    NARCIS (Netherlands)

    Bernards, R.A.; Eb, A.J. van der

    1984-01-01

    Adenoviruses have attracted considerable attention since it was discovered by TRENTIN et all. and HUEBNER et al. that certain species (formerly called serotypes) are oncogenic when injected into newborn hamsters. Since then, adenoviruses have been used extensively as a model for studies on tumor

  13. Detection of Panton-Valentine Leukocidin DNA from methicillin-resistant Staphylococcus aureus by resistive pulse sensing and loop-mediated isothermal amplification with gold nanoparticles

    International Nuclear Information System (INIS)

    Yang, Alice Kar Lai; Lu, Haifei; Wu, Shu Yuen; Kwok, Ho Chin; Ho, Ho Pui; Yu, Samuel; Cheung, Anthony Ka Lun; Kong, Siu Kai

    2013-01-01

    Graphical abstract: -- Highlights: •A novel diagnostic assay is developed to detect the MRSA's Panton-Valentine Leukocidin toxin. •Detection is based on target DNA amplification at one single temperature at 65 °C by LAMP. •Amplicons are then hybridized with 2 Au-nanoparticles with specific DNA probes for sensing. •The supra-assemblies are subsequently sensed by resistive pulse sensing. •Detection limit: ∼200 copies of DNA; time for detection: completed within 2 h. -- Abstract: This report describes a novel diagnostic assay for rapid detection of the Panton-Valentine Leukocidin (PVL) toxin of methicillin-resistant Staphylococcus aureus (MRSA) utilizing resistive pulse sensing (RPS), loop-mediated isothermal DNA amplification (LAMP) in combination with gold nanoparticles (AuNPs). The PVL DNA from MRSA was specifically amplified by LAMP using four primers at one temperature (65 °C). The DNA products with biotin were then conjugated to a first AuNP1 (55 ± 2 nm) through biotin–avidin binding. A second AuNP2 (30 ± 1.5 nm) coated with a specific DNA probe hybridized with the LAMP DNA products at the loop region to enhance assay sensitivity and specificity, to generate supra-AuNP1-DNA-AuNP2 assemblies. Scanning electron microscopy confirmed the presence of these supra-assemblies. Using RPS, detection and quantitation of the agglomerated AuNPs were performed by a tunable fluidic nanopore sensor. The results demonstrate that the LAMP-based RPS sensor is sensitive and rapid for detecting the PVL DNA. This technique could achieve a limit of detection (LOD) up to about 500 copies of genomic DNA from the bacteria MRSA MW2 and the detection can be completed within two hours with a straightforward signal-to-readout setup. It is anticipated that this LAMP-based AuNP RPS may become an effective tool for MRSA detection and a potential platform in clinical laboratory to report the presence or absence of other types of infectious agents

  14. [Combined G-banded karyotyping and multiplex ligation-dependent probe amplification for the detection of chromosomal abnormalities in fetuses with congenital heart defects].

    Science.gov (United States)

    Liu, Yang; Xie, Jiansheng; Geng, Qian; Xu, Zhiyong; Wu, Weiqin; Luo, Fuwei; Li, Suli; Wang, Qin; Chen, Wubin; Tan, Hongxi; Zhang, Hu

    2017-02-10

    To assess the value of G-banded karyotyping in combination with multiplex ligation-dependent probe amplification (MLPA) as a tool for the detection of chromosomal abnormalities in fetuses with congenital heart defects. The combined method was used to analyze 104 fetuses with heart malformations identified by ultrasonography. Abnormal findings were confirmed with chromosomal microarray analysis (CMA). Nineteen (18%) fetuses were found to harbor chromosomal aberrations by G-banded karyotyping and MLPA. For 93 cases, CMA has detected abnormalities in 14 cases including 10 pathogenic copy number variations (CNVs) and 4 CNVs of uncertain significance (VOUS). MLPA was able to detect all of the pathogenic CNVs and 1 VOUS CNV. Combined use of G-banded karyotyping and MLPA is a rapid, low-cost and effective method to detect chromosomal abnormalities in fetuses with various heart malformations.

  15. Evaluation of an Internally Controlled Multiplex Tth Endonuclease Cleavage Loop-Mediated Isothermal Amplification (TEC-LAMP Assay for the Detection of Bacterial Meningitis Pathogens

    Directory of Open Access Journals (Sweden)

    Owen Higgins

    2018-02-01

    Full Text Available Bacterial meningitis infection is a leading global health concern for which rapid and accurate diagnosis is essential to reduce associated morbidity and mortality. Loop-mediated isothermal amplification (LAMP offers an effective low-cost diagnostic approach; however, multiplex LAMP is difficult to achieve, limiting its application. We have developed novel real-time multiplex LAMP technology, TEC-LAMP, using Tth endonuclease IV and a unique LAMP primer/probe. This study evaluates the analytical specificity, limit of detection (LOD and clinical application of an internally controlled multiplex TEC-LAMP assay for detection of leading bacterial meningitis pathogens: Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae. Analytical specificities were established by testing 168 bacterial strains, and LODs were determined using Probit analysis. The TEC-LAMP assay was 100% specific, with LODs for S. pneumoniae, N. meningitidis and H. influenzae of 39.5, 17.3 and 25.9 genome copies per reaction, respectively. Clinical performance was evaluated by testing 65 archived PCR-positive samples. Compared to singleplex real-time PCR, the multiplex TEC-LAMP assay demonstrated diagnostic sensitivity and specificity of 92.3% and 100%, respectively. This is the first report of a single-tube internally controlled multiplex LAMP assay for bacterial meningitis pathogen detection, and the first report of Tth endonuclease IV incorporation into nucleic acid amplification diagnostic technology.

  16. Evaluation of an Internally Controlled Multiplex Tth Endonuclease Cleavage Loop-Mediated Isothermal Amplification (TEC-LAMP) Assay for the Detection of Bacterial Meningitis Pathogens

    Science.gov (United States)

    Clancy, Eoin; Cormican, Martin; Boo, Teck Wee; Cunney, Robert

    2018-01-01

    Bacterial meningitis infection is a leading global health concern for which rapid and accurate diagnosis is essential to reduce associated morbidity and mortality. Loop-mediated isothermal amplification (LAMP) offers an effective low-cost diagnostic approach; however, multiplex LAMP is difficult to achieve, limiting its application. We have developed novel real-time multiplex LAMP technology, TEC-LAMP, using Tth endonuclease IV and a unique LAMP primer/probe. This study evaluates the analytical specificity, limit of detection (LOD) and clinical application of an internally controlled multiplex TEC-LAMP assay for detection of leading bacterial meningitis pathogens: Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae. Analytical specificities were established by testing 168 bacterial strains, and LODs were determined using Probit analysis. The TEC-LAMP assay was 100% specific, with LODs for S. pneumoniae, N. meningitidis and H. influenzae of 39.5, 17.3 and 25.9 genome copies per reaction, respectively. Clinical performance was evaluated by testing 65 archived PCR-positive samples. Compared to singleplex real-time PCR, the multiplex TEC-LAMP assay demonstrated diagnostic sensitivity and specificity of 92.3% and 100%, respectively. This is the first report of a single-tube internally controlled multiplex LAMP assay for bacterial meningitis pathogen detection, and the first report of Tth endonuclease IV incorporation into nucleic acid amplification diagnostic technology. PMID:29425124

  17. Oncogene expression in primary lung tumors in dogs that inhaled 239PuO2

    International Nuclear Information System (INIS)

    Kelly, G.; Kerkof, P.R.; Haley, P.J.

    1988-01-01

    Ten radiation-induced and three spontaneous lung tumors were analyzed for aberrant expression of known oncogenes. In 12 of 13 tumors tested, sequences hybridizing to the c-myc oncogene were expressed at levels 1.5 times higher than sequences hybridizing to β-actin. This level of oncogene expression was also observed in 9 of 13 tumors for 1 or more members of the ras family of oncogenes. Seven of thirteen tumors examined express sequences that hybridize with clones of v-ros or c-met. The ros and met clones both code for oncogenes whose normal homologues are transmembrane proteins related to the insulin receptor. (author)

  18. LED-FISH: Fluorescence microscopy based on light emitting diodes for the molecular analysis of Her-2/neu oncogene amplification

    Directory of Open Access Journals (Sweden)

    Vollmer Ekkehard

    2008-12-01

    Full Text Available Abstract Light emitting diodes (LED, which are available as small monochromatic light sources with characteristic features such as maximum illumination power combined with minimum energy consumption and extremely long lifespan have already proved as a highly potential low-cost alternative for specific diagnostic applications in clinical medicine such as tuberculosis fluorescence microscopy. Likewise, the most reliable evaluation of Her-2/neu (c-erbB2 gene amplification, which has been established in the last few years for routine diagnosis in clinical pathology as determinant towards Herceptin-based treatment of patients with breast cancer, is based on fluorescence in situ hybridization (FISH and corresponding high priced fluorescence equipment. In order to test the possibility to utilize the advantages of low-cost LED technology on FISH analysis of c-erbB2 gene expression for routine diagnostic purposes, the applicability of a standard bright field Carl Zeiss Axiostar Plus microscope equipped with a Fraen AFTER* LED Fluorescence Microscope Kit for the detection of Her-2/neu gene signals was compared to an advanced Nikon Eclipse 80i fluorescence microscope in combination with a conventional 100W mercury vapor lamp. Both microscopes were fitted with the same Quicam FAST CCD digital camera to unequivocally compare the quality of the captured images. C-erbB2 gene expression was analyzed in 30 different human tissue samples of primary invasive breast cancer, following formalin fixation and subsequent paraffin-embedding. The Her2/neu gene signals (green were identifiable in the tumor cells in all cases and images of equal quality were captured under almost identical conditions by 480 nm (blue LED module equipped standard Axiostar microscope as compared to conventional fluorescence microscopy. In this first attempt, these monochromatic LED elements proved in principle to be suitable for the detection of Her-2/neu gene expression by FISH. Thus, our own

  19. Targeting oncogenic Myc as a strategy for cancer treatment.

    Science.gov (United States)

    Chen, Hui; Liu, Hudan; Qing, Guoliang

    2018-01-01

    The MYC family oncogene is deregulated in >50% of human cancers, and this deregulation is frequently associated with poor prognosis and unfavorable patient survival. Myc has a central role in almost every aspect of the oncogenic process, orchestrating proliferation, apoptosis, differentiation, and metabolism. Although Myc inhibition would be a powerful approach for the treatment of many types of cancers, direct targeting of Myc has been a challenge for decades owing to its "undruggable" protein structure. Hence, alternatives to Myc blockade have been widely explored to achieve desirable anti-tumor effects, including Myc/Max complex disruption, MYC transcription and/or translation inhibition, and Myc destabilization as well as the synthetic lethality associated with Myc overexpression. In this review, we summarize the latest advances in targeting oncogenic Myc, particularly for cancer therapeutic purposes.

  20. Modulating factors in the expression of radiation-induced oncogenic transformation

    International Nuclear Information System (INIS)

    Hall, E.J.; Hei, T.K.

    1990-01-01

    Many assays for oncogenic transformation have been developed ranging from those in established rodent cell lines where morphological alteration is scored, to those in human cells growing in nude mice where tumor invasiveness is scored. In general, systems that are most quantitaive are also the least relevant in terms of human carcinogenesis and human risk estimation. The development of cell culture systems has made it possible to assess at the cellular level the oncogenic potential of a variety of chemical, physical and viral agents. Cell culture systems afford the opportunity to identify factors and conditions that may prevent or enhance cellular transformation by radiation and chemicals. Permissive and protective factors in radiation-induced transformation include thyroid hormone and the tumor promoter TPA that increase the transformation incidence for a given dose of radiation, and retinoids, selenium, vitamin E, and 5-aminobenzamide that inhibit the expression of transformation. Densely ionizing α-particles, similar to those emitted by radon daughters, are highly effective in inducing transformations and appear to interact in a supra-additive fashion with asbestos fibers. The activation of a known dominant oncogene has not yet been demonstrated in radiation-induced oncogenic transformation. The most likely mechanism for radiation activation of an oncogene would be via the production of a chromosomal translocation. Radiation also efficiently induces deletions and may thus lead to the loss of a suppressor gene

  1. Whole genome amplification - Review of applications and advances

    Energy Technology Data Exchange (ETDEWEB)

    Hawkins, Trevor L.; Detter, J.C.; Richardson, Paul

    2001-11-15

    The concept of Whole Genome Amplification is something that has arisen in the past few years as modifications to the polymerase chain reaction (PCR) have been adapted to replicate regions of genomes which are of biological interest. The applications here are many--forensics, embryonic disease diagnosis, bio terrorism genome detection, ''imoralization'' of clinical samples, microbial diversity, and genotyping. The key question is if DNA can be replicated a genome at a time without bias or non random distribution of the target. Several papers published in the last year and currently in preparation may lead to the conclusion that whole genome amplification may indeed be possible and therefore open up a new avenue to molecular biology.

  2. Single Cell Analysis of Dystrophin and SRY Gene by Using Whole Genome Amplification

    Institute of Scientific and Technical Information of China (English)

    徐晨明; 金帆; 黄荷凤; 陶冶; 叶英辉

    2001-01-01

    Objective To develop a reliable and sensitive method for detection of sex and multiloci of Duchenne muscular dystrophy (DMD) gene in single cell Materials & methods Whole genome of single cell were amplified by using 15-base random primers (primer extension preamplification, PEP), then a small aliquot of PEP product were analyzed by using locus-specific nest PCR amplification. The procedure was evaluated by detection dystrophin exons 8, 17, 19, 44, 45, 48 and human testis-determining gene (SRY)in single lymphocytes from known sources and single blastomeres from the couples with no family history of DMD.Results The amplification efficiency rate of six dystrophin exons from single lymphocytes and single blastomeres were 97. 2% (175/180) and 100% (60/60) respectively.Results of SRY showed that 100% (15/15) amplification in single male-derived lymphocytes and 0% (0/15) amplification in single female-derived lymphocytes. Conclusion The technique of single cell PEP-nest PCR for dystrophin exons 8, 17,19, 44, 45, 48 and SRY is highly specifc. PEP-nest PCR is suitable for Preimplantation genetic diagnosis (PGD) of DMD at single cell level.

  3. Ultrasensitive electrochemical biosensor for detection of DNA from Bacillus subtilis by coupling target-induced strand displacement and nicking endonuclease signal amplification.

    Science.gov (United States)

    Hu, Yuhua; Xu, Xueqin; Liu, Qionghua; Wang, Ling; Lin, Zhenyu; Chen, Guonan

    2014-09-02

    A simple, ultrasensitive, and specific electrochemical biosensor was designed to determine the given DNA sequence of Bacillus subtilis by coupling target-induced strand displacement and nicking endonuclease signal amplification. The target DNA (TD, the DNA sequence from the hypervarient region of 16S rDNA of Bacillus subtilis) could be detected by the differential pulse voltammetry (DPV) in a range from 0.1 fM to 20 fM with the detection limit down to 0.08 fM at the 3s(blank) level. This electrochemical biosensor exhibits high distinction ability to single-base mismatch, double-bases mismatch, and noncomplementary DNA sequence, which may be expected to detect single-base mismatch and single nucleotide polymorphisms (SNPs). Moreover, the applicability of the designed biosensor for detecting the given DNA sequence from Bacillus subtilis was investigated. The result obtained by electrochemical method is approximately consistent with that by a real-time quantitative polymerase chain reaction detecting system (QPCR) with SYBR Green.

  4. Oncogenic transformation with radiation and chemicals: review

    International Nuclear Information System (INIS)

    Hall, E.J.; Hei, T.K.

    1985-01-01

    Quantitative in vitro assay systems for oncogenic transformation are a powerful research tool. They may be based on short-term cultures of hamster embryo cells, or established cell lines of mouse origin. While X-ray-induced transformation of human cells has been demonstrated, it has proved difficult to develop quantitative assay systems based on cells of human origin. The presently available quantitative assays have two quite distinct basic uses. First, they may be useful to accumulate data which is essentially pragmatic in nature. For example, they may be used to compare and contrast the oncogenic potential of chemotherapeutic agents or hypoxic cell sensitizers used or proposed in the clinic. They may be used to identify compounds that inhibit or suppress the transformation incidence resulting from known oncogenic agents, or they may be used to demonstrate the interaction between two different agents, such as radiation and asbestos. Second, they may prove to be invaluable in the study of the basic mechanisms of carcinogenesis, inasmuch as they represent models of tumourigenesis in which the various steps can be manipulated and modified more readily and in a controlled way. (author)

  5. Targeting helicase-dependent amplification products with an electrochemical genosensor for reliable and sensitive screening of genetically modified organisms.

    Science.gov (United States)

    Moura-Melo, Suely; Miranda-Castro, Rebeca; de-Los-Santos-Álvarez, Noemí; Miranda-Ordieres, Arturo J; Dos Santos Junior, J Ribeiro; da Silva Fonseca, Rosana A; Lobo-Castañón, Maria Jesús

    2015-08-18

    Cultivation of genetically modified organisms (GMOs) and their use in food and feed is constantly expanding; thus, the question of informing consumers about their presence in food has proven of significant interest. The development of sensitive, rapid, robust, and reliable methods for the detection of GMOs is crucial for proper food labeling. In response, we have experimentally characterized the helicase-dependent isothermal amplification (HDA) and sequence-specific detection of a transgene from the Cauliflower Mosaic Virus 35S Promoter (CaMV35S), inserted into most transgenic plants. HDA is one of the simplest approaches for DNA amplification, emulating the bacterial replication machinery, and resembling PCR but under isothermal conditions. However, it usually suffers from a lack of selectivity, which is due to the accumulation of spurious amplification products. To improve the selectivity of HDA, which makes the detection of amplification products more reliable, we have developed an electrochemical platform targeting the central sequence of HDA copies of the transgene. A binary monolayer architecture is built onto a thin gold film where, upon the formation of perfect nucleic acid duplexes with the amplification products, these are enzyme-labeled and electrochemically transduced. The resulting combined system increases genosensor detectability up to 10(6)-fold, allowing Yes/No detection of GMOs with a limit of detection of ∼30 copies of the CaMV35S genomic DNA. A set of general utility rules in the design of genosensors for detection of HDA amplicons, which may assist in the development of point-of-care tests, is also included. The method provides a versatile tool for detecting nucleic acids with extremely low abundance not only for food safety control but also in the diagnostics and environmental control areas.

  6. [Prognostic significance of MYCN amplification in children neuroblastic tumors].

    Science.gov (United States)

    Niu, Huilin; Xu, Tao; Wang, Fenghua; Chen, Zhengrong; Gao, Qiu; Yi, Peng; Xia, Jianqing

    2015-02-01

    To summarize the clinicopathologic features of neuroblastic tumors (NT), and to explore the prognostic significance of MYCN amplification in NT. The clinicopathologic data of 267 NT were reviewed. MYCN gene amplification was detected by fluorescence in situ hybridization (FISH) in 119 cases and the relationship with pathological characteristics and prognostic significance were analyzed. The study included 267 cases of children NT from patients aged from 1 day to 13 years (median 27 months). The male to female ratio was 1.43. There were 38 cases (14.2%), 43 cases (16.1%), 71 cases (26.6%), and 115 cases (43.1%) of INSS stages I, II, III and IV respectively.Favorable histology group had 157 cases (59.9%); unfavorable histology group had 110 cases (40.1%).Of the 119 NT cases with MYCN FISH performed, 18 cases (15.1%) showed amplification and the signal ratio of MYCN to CEP2 was 4.08-43.29. One hundred and one cases of non-amplified MYCN included MYCN gain in 79 cases (66.3%) and MYCN negative in 22 cases (18.5%). MYCN expression showed significant difference (P = 0.000) between ages, gender, NT type and MKI, but not INPC and clinical stage (P > 0.05).Of the 18 cases with MYCN amplification, 3 were undifferentiated, and 15 poorly differentiated; 17 had high MKI and one moderate MKI. All 18 cases were in unfavorable histology group; the overall survival rate was 3/18, with an average survival time of (17.9 ± 2.4) months.Of the 101 MYCN non-amplification cases, the overall survival rate was 68.3% (69/101), with an average survival time of (29.8 ± 1.3) months. Survival analysis showed the cases with MYCN amplification had worse prognosis (P < 0.05). NT were commonly diagnosed in early ages and easily to metastasize. Most of cases with favorable histology. The cases of MYCN amplification showed unfavorable histology, and the majority cases with high MKI; The patients with MYCN gene amplification had poor prognosis.

  7. Oncogenic osteomalacia diagnosed by blood pool scintigraphy

    International Nuclear Information System (INIS)

    Palaniswamy, Shanmuga Sundaram; Subramanyam, Padma; Kumar, Harish

    2011-01-01

    Oncogenic osteomalacia is a rare metabolic bone disease characterized by phosphaturia and hypophosphatemia. Certain tumors secrete a phosphaturic factor, which results in this metabolic abnormality; this factor called as phosphatonin, is in fact a fibroblast growth factor 23 (FGF-23) involved closely in phosphate homeostasis and skeletogenesis. Complete excision of these tumors facilitates reversal of the problem. We have reported here the case of a patient who was crippled with this disease and on thorough investigation revealed an oncogenic osteomalacia with tumor focus in the right tibia. The tumor was identified as a mesenchymal tumor, i.e., hemangiopericytoma. Tumor excision alleviated patient symptoms with rapid symptomatic and biochemical improvement

  8. Extracellular vesicle communication pathways as regulatory targets of oncogenic transformation.

    Science.gov (United States)

    Choi, Dongsic; Lee, Tae Hoon; Spinelli, Cristiana; Chennakrishnaiah, Shilpa; D'Asti, Esterina; Rak, Janusz

    2017-07-01

    Pathogenesis of human cancers bridges intracellular oncogenic driver events and their impact on intercellular communication. Among multiple mediators of this 'pathological connectivity' the role of extracellular vesicles (EVs) and their subsets (exosomes, ectosomes, oncosomes) is of particular interest for several reasons. The release of EVs from cancer cells represents a unique mechanism of regulated expulsion of bioactive molecules, a process that also mediates cell-to-cell transfer of lipids, proteins, and nucleic acids. Biological effects of these processes have been implicated in several aspects of cancer-related pathology, including tumour growth, invasion, angiogenesis, metastasis, immunity and thrombosis. Notably, the emerging evidence suggests that oncogenic mutations may impact several aspects of EV-mediated cell-cell communication including: (i) EV release rate and protein content; (ii) molecular composition of cancer EVs; (iii) the inclusion of oncogenic and mutant macromolecules in the EV cargo; (iv) EV-mediated release of genomic DNA; (v) deregulation of mechanisms responsible for EV biogenesis (vesiculome) and (vi) mechanisms of EV uptake by cancer cells. Intriguingly, EV-mediated intercellular transfer of mutant and oncogenic molecules between subpopulations of cancer cells, their indolent counterparts and stroma may exert profound biological effects that often resemble (but are not tantamount to) oncogenic transformation, including changes in cell growth, clonogenicity and angiogenic phenotype, or cause cell stress and death. However, several biological barriers likely curtail a permanent horizontal transformation of normal cells through EV-mediated mechanisms. The ongoing analysis and targeting of EV-mediated intercellular communication pathways can be viewed as a new therapeutic paradigm in cancer, while the analysis of oncogenic cargo contained in EVs released from cancer cells into biofluids is being developed for clinical use as a biomarker

  9. G.I.S. Surveillance of Chronic Non-occupational Exposure to Heavy Metals as Oncogenic Risk

    Directory of Open Access Journals (Sweden)

    Mariana Vlad

    2016-02-01

    Full Text Available Introduction: The potential oncogenic effect of some heavy metals in people occupationally and non-occupationally exposed to such heavy metals is already well demonstrated. This study seeks to clarify the potential role of these heavy metals in the living environment, in this case in non-occupational multifactorial aetiology of malignancies in the inhabitants of areas with increased prevalent environmental levels of heavy metals. Methods: Using a multidisciplinary approach throughout a complex epidemiological study, we investigated the potential oncogenic role of non-occupational environmental exposure to some heavy metals [chrome (Cr, nickel (Ni, copper (Cu, zinc (Zn, cadmium (Cd, lead (Pb and arsenic (As—in soil, drinking water, and food, as significant components of the environment] in populations living in areas with different environmental levels (high vs. low of the above-mentioned heavy metals. The exposures were evaluated by identifying the exposed populations, the critical elements of the ecosystems, and as according to the means of identifying the types of exposure. The results were interpreted both epidemiologically (causal inference, statistical significance, mathematical modelling and by using a GIS approach, which enabled indirect surveillance of oncogenic risks in each population. Results: The exposure to the investigated heavy metals provides significant risk factors of cancer in exposed populations, in both urban and rural areas [χ² test (p < 0.05]. The GIS approach enables indirect surveillance of oncogenic risk in populations. Conclusions: The role of non-occupational environmental exposure to some heavy metals in daily life is among the more significant oncogenic risk factors in exposed populations. The statistically significant associations between environmental exposure to such heavy metals and frequency of neoplasia in exposed populations become obvious when demonstrated on maps using the GIS system. Environmental

  10. Electrochemical aptasensor for highly sensitive determination of cocaine using a supramolecular aptamer and rolling circle amplification

    International Nuclear Information System (INIS)

    Shen, Bo; Yan, Yurong; Tang, Renkuan; Li, Yongguo; Li, Jianbo; Cheng, Wei; Ju, Huangxian; Ding, Shijia

    2015-01-01

    We report on a novel strategy for the electrochemical detection of cocaine. It is based on the use of a supramolecular aptamer, rolling circle amplification (RCA), and multiplex binding of a biotin-strepavidin system. The aptamer fragments were assembled to a supramolecular aptamer which, in the presence of cocaine, conjugates to streptavidin for anchoring of biotinylated circular DNA. This initiates RCA and enables sensitive electrochemical-enzymatic readout. A significant signal amplification was obtained by using streptavidin linked to alkaline phosphatase that binds to the remaining biotinylated detection probes and catalyzes the hydrolysis of the synthetic enzyme substrate α-naphthylphosphate. This dual amplification strategy tremendously increases the detection limit of the aptasensor. Under optimal conditions and using differential pulse voltammetry, cocaine can be detected in the concentration range between 2 and 500 nM with a detection limit as low as 1.3 nM (at S/N = 3). The method is specific and acceptably reproducible. It was successfully applied to the detection of cocaine in (spiked) urine samples. The data were in good agreement with those obtained by the GC-MS reference method. (author)

  11. Expression of proto-oncogene KIT is up-regulated in subset of human meningiomas

    Directory of Open Access Journals (Sweden)

    Saini Masum

    2012-06-01

    Full Text Available Abstract Background KIT is a proto-oncogene involved in diverse neoplastic processes. Aberrant kinase activity of the KIT receptor has been targeted by tyrosine kinase inhibitor (TKI therapy in different neoplasias. In all the earlier studies, KIT expression was reported to be absent in meningiomas. However, we observed KIT mRNA expression in some meningioma cases. This prompted us to undertake its detailed analyses in meningioma tissues resected during 2008–2009. Methods Tumor tissues and matched peripheral blood samples collected from meningioma patients were used for detailed molecular analyses. KIT expression was ascertained immunohistochemically and validated by immunoblotting. KIT and KITLG transcript levels were discerned by reverse transcription quantitative real-time PCR (RT-qPCR. Similarly, KIT amplification and allele loss were assessed by quantitative real-time (qPCR and validated by fluorescence in situ hybridization (FISH on the neoplastic tissues. Possible alterations of the gene at the nucleotide level were analyzed by sequencing. Results Contrary to earlier reports, KIT expression, was detected immunohistochemically in 20.6% meningioma cases (n = 34. Receptor (KIT and ligand (KITLG transcripts monitored by RT-qPCR were found to co-express (p = 0.048 in most of the KIT immunopositive tumors. 1/7 KIT positive meningiomas showed allele loss corroborated by reduced FISH signal in the corresponding neoplastic tissue. Sequence analysis of KIT showed M541L substitution in exon 10, in one of the immunopositive cases. However, its biological consequence remains to be uncovered. Conclusions This study clearly demonstrates KIT over-expression in the human meningiomas. The data suggest that up-regulated KIT transcription (p  0.05, is a likely mechanism responsible for altered KIT expression. Thus, KIT is a potential candidate for detailed investigation in the context of meningioma pathogenesis.

  12. Peripheral position of CCND1 and HER-2/neu oncogenes within chromosome territories in esophageal and gastric cancers non-related to amplification and overexpression

    Directory of Open Access Journals (Sweden)

    Lucimari Bizari

    2009-01-01

    Full Text Available Interphase chromosomes have been shown to occupy discrete regions of the nucleus denominated chromosome territories (CTs, their active genes being preferentially positioned on the surfaces of these CTs, where they are accessible to transcriptional machinery. By means of FISH (Fluorescence in situ Hybridization, we analyzed the CCND1 and HER-2/neu gene positions within the CTs and their relationship with gene amplification and protein over-expression in esophageal and gastric cancers. The CCND1 and HER-2/Neu genes were more often positioned at the periphery (mean frequency of 60%-83% of the CTs in tumor tissues of the esophagus and stomach. Moreover, this positioning revealed no association with either gene amplification or the protein over-expression status of these genes, although, in esophageal carcinoma, Kappa statistics showed a moderate agreement between amplification of the CCND1 gene (Kappa = 0.400 and its location within the CT, as well as with over-expression of the corresponding protein (Kappa = 0.444. Thus, our results suggest that gene positioning in interphase chromosomes does not follow a definitive pattern neither does it depend only on gene transcriptional activity. Apparently, this positioning could be both gene- and tissue-specific, and depends on other factors acting together, such as dense-gene, chromosome size, chromatin structure, and the level and stability of its expression.

  13. Affinity-Mediated Homogeneous Electrochemical Aptasensor on a Graphene Platform for Ultrasensitive Biomolecule Detection via Exonuclease-Assisted Target-Analog Recycling Amplification.

    Science.gov (United States)

    Ge, Lei; Wang, Wenxiao; Sun, Ximei; Hou, Ting; Li, Feng

    2016-02-16

    As is well-known, graphene shows a remarkable difference in affinity toward nonstructured single-stranded (ss) DNA and double-stranded (ds) DNA. This property makes it popular to prepare DNA-based optical sensors. In this work, taking this unique property of graphene in combination with the sensitive electrochemical transducer, we report a novel affinity-mediated homogeneous electrochemical aptasensor using graphene modified glassy carbon electrode (GCE) as the sensing platform. In this approach, the specific aptamer-target recognition is converted into an ultrasensitive electrochemical signal output with the aid of a novel T7 exonuclease (T7Exo)-assisted target-analog recycling amplification strategy, in which the ingeniously designed methylene blue (MB)-labeled hairpin DNA reporters are digested in the presence of target and, then, converted to numerous MB-labeled long ssDNAs. The distinct difference in differential pulse voltammetry response between the designed hairpin reporters and the generated long ssDNAs on the graphene/GCE allows ultrasensitive detection of target biomolecules. Herein, the design and working principle of this homogeneous electrochemical aptasensor were elucidated, and the working conditions were optimized. The gel electrophoresis results further demonstrate that the designed T7Exo-assisted target-analog recycling amplification strategy can work well. This electrochemical aptasensor realizes the detection of biomolecule in a homogeneous solution without immobilization of any bioprobe on electrode surface. Moreover, this versatile homogeneous electrochemical sensing system was used for the determination of biomolecules in real serum samples with satisfying results.

  14. Intragenic origins due to short G1 phases underlie oncogene-induced DNA replication stress.

    Science.gov (United States)

    Macheret, Morgane; Halazonetis, Thanos D

    2018-03-01

    Oncogene-induced DNA replication stress contributes critically to the genomic instability that is present in cancer. However, elucidating how oncogenes deregulate DNA replication has been impeded by difficulty in mapping replication initiation sites on the human genome. Here, using a sensitive assay to monitor nascent DNA synthesis in early S phase, we identified thousands of replication initiation sites in cells before and after induction of the oncogenes CCNE1 and MYC. Remarkably, both oncogenes induced firing of a novel set of DNA replication origins that mapped within highly transcribed genes. These ectopic origins were normally suppressed by transcription during G1, but precocious entry into S phase, before all genic regions had been transcribed, allowed firing of origins within genes in cells with activated oncogenes. Forks from oncogene-induced origins were prone to collapse, as a result of conflicts between replication and transcription, and were associated with DNA double-stranded break formation and chromosomal rearrangement breakpoints both in our experimental system and in a large cohort of human cancers. Thus, firing of intragenic origins caused by premature S phase entry represents a mechanism of oncogene-induced DNA replication stress that is relevant for genomic instability in human cancer.

  15. Oncogenic osteomalacia due to FGF23-expressing colon adenocarcinoma.

    Science.gov (United States)

    Leaf, David E; Pereira, Renata C; Bazari, Hasan; Jüppner, Harald

    2013-03-01

    Oncogenic osteomalacia, a paraneoplastic syndrome associated with hypophosphatemia due to increased urinary phosphate excretion, is caused by excessive synthesis and secretion of fibroblast growth factor 23 (FGF23), a phosphaturic hormone that is normally produced by osteocytes. Most cases of oncogenic osteomalacia have been associated with benign tumors of bone or soft tissue; however, whether malignant neoplasms can also produce and secrete FGF23 is currently unknown. The aim was to determine whether a malignant neoplasm could cause oncogenic osteomalacia through excessive production and secretion of FGF23. We describe an 80-year-old woman with stage IV colon adenocarcinoma who presented with severe hypophosphatemia (0.4 mg/dL; reference, 2.6-4.5 mg/dL). Fractional excretion of phosphate was 34% (reference, osteomalacia should be considered in the differential diagnosis for patients with a malignant tumor who present with hypophosphatemia.

  16. Prion Amplification and Hierarchical Bayesian Modeling Refine Detection of Prion Infection

    Science.gov (United States)

    Wyckoff, A. Christy; Galloway, Nathan; Meyerett-Reid, Crystal; Powers, Jenny; Spraker, Terry; Monello, Ryan J.; Pulford, Bruce; Wild, Margaret; Antolin, Michael; Vercauteren, Kurt; Zabel, Mark

    2015-02-01

    Prions are unique infectious agents that replicate without a genome and cause neurodegenerative diseases that include chronic wasting disease (CWD) of cervids. Immunohistochemistry (IHC) is currently considered the gold standard for diagnosis of a prion infection but may be insensitive to early or sub-clinical CWD that are important to understanding CWD transmission and ecology. We assessed the potential of serial protein misfolding cyclic amplification (sPMCA) to improve detection of CWD prior to the onset of clinical signs. We analyzed tissue samples from free-ranging Rocky Mountain elk (Cervus elaphus nelsoni) and used hierarchical Bayesian analysis to estimate the specificity and sensitivity of IHC and sPMCA conditional on simultaneously estimated disease states. Sensitivity estimates were higher for sPMCA (99.51%, credible interval (CI) 97.15-100%) than IHC of obex (brain stem, 76.56%, CI 57.00-91.46%) or retropharyngeal lymph node (90.06%, CI 74.13-98.70%) tissues, or both (98.99%, CI 90.01-100%). Our hierarchical Bayesian model predicts the prevalence of prion infection in this elk population to be 18.90% (CI 15.50-32.72%), compared to previous estimates of 12.90%. Our data reveal a previously unidentified sub-clinical prion-positive portion of the elk population that could represent silent carriers capable of significantly impacting CWD ecology.

  17. Prion amplification and hierarchical Bayesian modeling refine detection of prion infection.

    Science.gov (United States)

    Wyckoff, A Christy; Galloway, Nathan; Meyerett-Reid, Crystal; Powers, Jenny; Spraker, Terry; Monello, Ryan J; Pulford, Bruce; Wild, Margaret; Antolin, Michael; VerCauteren, Kurt; Zabel, Mark

    2015-02-10

    Prions are unique infectious agents that replicate without a genome and cause neurodegenerative diseases that include chronic wasting disease (CWD) of cervids. Immunohistochemistry (IHC) is currently considered the gold standard for diagnosis of a prion infection but may be insensitive to early or sub-clinical CWD that are important to understanding CWD transmission and ecology. We assessed the potential of serial protein misfolding cyclic amplification (sPMCA) to improve detection of CWD prior to the onset of clinical signs. We analyzed tissue samples from free-ranging Rocky Mountain elk (Cervus elaphus nelsoni) and used hierarchical Bayesian analysis to estimate the specificity and sensitivity of IHC and sPMCA conditional on simultaneously estimated disease states. Sensitivity estimates were higher for sPMCA (99.51%, credible interval (CI) 97.15-100%) than IHC of obex (brain stem, 76.56%, CI 57.00-91.46%) or retropharyngeal lymph node (90.06%, CI 74.13-98.70%) tissues, or both (98.99%, CI 90.01-100%). Our hierarchical Bayesian model predicts the prevalence of prion infection in this elk population to be 18.90% (CI 15.50-32.72%), compared to previous estimates of 12.90%. Our data reveal a previously unidentified sub-clinical prion-positive portion of the elk population that could represent silent carriers capable of significantly impacting CWD ecology.

  18. Comparison of the Soil Dynamic Amplification Factor and Soil Amplification by Using Microtremor and MASW Methods Respectively

    Science.gov (United States)

    Tuncel, Aykut; Cevdet Özdag, Özkan; Pamuk, Eren; Akgün, Mustafa

    2017-12-01

    Single Station Microtremor method, which is widely used nowadays, is an effective and easy applicable method. In this study, dynamic amplification factor distributions of the study area were obtained using scenario earthquake parameters with single station microtremor data gathered at 112 points. In addition, a surface wave active method, which is known as MASW (Multichannel Analysis of Surface Waves), was applied at 43 profiles to calculate the soil amplification values. Dynamic amplification factor (DAF), soil amplification, the predominant soil period (PSP), geology and topography data of the study area were analysed together. Dynamic amplification factor and soil amplification values were obtained 2 or higher at about sea level parts of the study area which are generally composed of alluvial units. Additionally, in high altitude regions that are composed of volcanic rocks, relatively lower dynamic amplification factor and soil amplification values were obtained. The minimum amplification value in the study area was 1.15, while the maximum amplification value was 3.05 according to the dynamic amplification results and the soil amplification values were between 1.16 and 3.85 in harmony. It is seen that the obtained DAF values and the soil amplification values calculated from the seismic velocities are very similar to each other numerically and regionally. Because of this, it is concluded that the values of the soil amplification obtained by the MASW method and the calculated DAF values in this study are in harmony with each other. Although the depths of research in these two calculation methods are different from each other, the similarity of the results allows us to arrive at the result of how effective the ground layer is on the amplification. It has a great importance to calculate the amplification values and other dynamic parameters by in situ measurements for a planned plot because geological units can vary even at very short distances in heterogeneously

  19. Development of a loop-mediated isothermal amplification (LAMP) assay for rapid and specific detection of common genetically modified organisms (GMOs).

    Science.gov (United States)

    Feng, Jiawang; Tang, Shiming; Liu, Lideng; Kuang, Xiaoshan; Wang, Xiaoyu; Hu, Songnan; You, Shuzhu

    2015-03-01

    Here, we developed a loop-mediated isothermal amplification (LAMP) assay for 11 common transgenic target DNA in GMOs. Six sets of LAMP primer candidates for each target were designed and their specificity, sensitivity, and reproductivity were evaluated. With the optimized LAMP primers, this LAMP assay was simply run within 45-60 min to detect all these targets in GMOs tested. The sensitivity, specificity, and reproductivity of the LAMP assay were further analyzed in comparison with those of Real-Time PCR. In consistent with real-time PCR, detection of 0.5% GMOs in equivalent background DNA was possible using this LAMP assay for all targets. In comparison with real-time PCR, the LAMP assay showed the same results with simple instruments. Hence, the LAMP assay developed can provide a rapid and simple approach for routine screening as well as specific events detection of many GMOs.

  20. Oncogene-inducible organoids as a miniature platform to assess cancer characteristics

    NARCIS (Netherlands)

    Mizutani, Tomohiro; Tsukamoto, Yoshiyuki; Clevers, Hans

    2017-01-01

    Direct effects of oncogenic proteins or inhibitor treatments on signaling pathways are difficult to assess in transgenic mice. In this issue, Riemer et al. (2017. J. Cell Biol. https://doi.org/10.1083/jcb.201610058) demonstrate that oncogene-inducible organoids offer the experimental versatility of

  1. MYC and MYCN amplification can be reliably assessed by aCGH in medulloblastoma.

    Science.gov (United States)

    Bourdeaut, Franck; Grison, Camille; Maurage, Claude-Alain; Laquerriere, Annie; Vasiljevic, Alexandre; Delisle, Marie-Bernadette; Michalak, Sophie; Figarella-Branger, Dominique; Doz, François; Richer, Wilfrid; Pierron, Gaelle; Miquel, Catherine; Delattre, Olivier; Couturier, Jérôme

    2013-04-01

    As prognostic factors, MYC and MYCN amplifications are routinely assessed in medulloblastomas. Fluorescence in situ hybridization (FISH) is currently considered as the technique of reference. Recently, array comparative genomic hybridization (aCGH) has been developed as an alternative technique to evaluate genomic abnormalities in other tumor types; however, this technique has not been widely adopted as a replacement for FISH in medulloblastoma. In this study, 34 tumors were screened by both FISH and aCGH. In all cases showing amplification by FISH, aCGH also unambiguously revealed the abnormality. The aCGH technique was also performed on tumors showing no amplification by FISH, and the absence of amplification was confirmed in all cases. Interestingly, one tumor showed a subclonal MYC amplification by FISH. This subclonal amplification was observed in approximately 20% of tumor cells and was clearly evident on aCGH. In conclusion, our analysis confirms that aCGH is as safe as FISH for the detection of MYC/MYCN gene amplification. Given its cost efficiency in comparison to two FISH tests and the global genomic information additionally provided by an aCGH experiment, this reproducible technique can be safely retained as an alternative to FISH for routine investigation of medulloblastoma. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Droplet digital polymerase chain reaction detection of HER2 amplification in formalin fixed paraffin embedded breast and gastric carcinoma samples.

    Science.gov (United States)

    Zhu, Yazhen; Lu, Dan; Lira, Maruja E; Xu, Qing; Du, Yunzhi; Xiong, Jianghong; Mao, Mao; Chung, Hyun Cheol; Zheng, Guangjuan

    2016-04-01

    Human epidermal growth factor receptor 2 (HER2) is a key driver of tumorigenesis, and over-expression as a result of HER2 gene amplification has been observed in a number of solid tumors. Recently HER2 has become an important biomarker for the monoclonal antibody treatment of HER2-positive metastatic breast and advanced gastric cancer. The HER2 targeting antibody trastuzumab treatment requires accurate measurement of HER2 levels for proper diagnosis. Droplet digital PCR (ddPCR) with highly direct, precise and absolute nucleic acid quantification could be used to detect HER2 amplification levels. Our objective was to evaluate a robust, accurate and less subjective application of ddPCR for HER2 amplification levels and test the assay performance in clinical formalin-fixed paraffin-embedded (FFPE) breast and gastric carcinoma samples. Genomic DNA from HER2 amplified cell line SK-BR-3 was used to set up the ddPCR assays. The copy number of HER2 was compared to the chromosome 17 centromere reference gene (CEP17), expressed as HER2:CEP17 ratio. Genomic DNAs of FFPE specimens from 145 Asian patients with breast and gastric carcinomas were assayed using both standard methods, immunohistochemistry (IHC) and/or fluorescence in situ hybridization (FISH), and ddPCR. Based on 145 clinical breast and gastric carcinoma cases, our study demonstrated a high concordance of ddPCR results to FISH and IHC. In breast cancer specimens, the ddPCR results had high concordance with FISH and IHC defined HER2 status with a sensitivity of 90.9% (30/33) and a specificity of 100% (77/77). In gastric cancer specimens that were concordant in both FISH and IHC, our assay was 95.5% concordant with FISH and IHC (21/22). ddPCR has the advantage of automation and also allows levels of HER2 amplification to be easily evaluated in large numbers of samples, and presents a potential option to define HER2 status. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. The detection of T-Nos, a genetic element present in GMOs, by cross-priming isothermal amplification with real-time fluorescence.

    Science.gov (United States)

    Zhang, Fang; Wang, Liu; Fan, Kai; Wu, Jian; Ying, Yibin

    2014-05-01

    An isothermal cross-priming amplification (CPA) assay for Agrobacterium tumefaciens nopaline synthase terminator (T-Nos) was established and investigated in this work. A set of six specific primers, recognizing eight distinct regions on the T-Nos sequence, was designed. The CPA assay was performed at a constant temperature, 63 °C, and detected by real-time fluorescence. The results indicated that real-time fluorescent CPA had high specificity, and the limit of detection was 1.06 × 10(3) copies of rice genomic DNA, which could be detected in 40 min. Comparison of real-time fluorescent CPA and conventional polymerase chain reaction (PCR) was also performed. Results revealed that real-time fluorescent CPA had a comparable sensitivity to conventional real-time PCR and had taken a shorter time. In addition, different contents of genetically modified (GM)-contaminated rice seed powder samples were detected for practical application. The result showed real-time fluorescent CPA could detect 0.5 % GM-contaminated samples at least, and the whole reaction could be finished in 35 min. Real-time fluorescent CPA is sensitive enough to monitor labeling systems and provides an attractive method for the detection of GMO.

  4. Predictive value of EGFR overexpression and gene amplification on icotinib efficacy in patients with advanced esophageal squamous cell carcinoma.

    Science.gov (United States)

    Wang, Xi; Niu, Haitao; Fan, Qingxia; Lu, Ping; Ma, Changwu; Liu, Wei; Liu, Ying; Li, Weiwei; Hu, Shaoxuan; Ling, Yun; Guo, Lei; Ying, Jianming; Huang, Jing

    2016-04-26

    This study aimed to search for a molecular marker for targeted epithelial growth factor receptor (EGFR) inhibitor Icotinib by analyzing protein expression and amplification of EGFR proto-oncogene in esophageal squamous cell carcinoma (ESCC) patients.Immunohistochemistry and fluorescence in situ hybridization (FISH) was used to assess EGFR expression and gene amplification status in 193 patients with ESCC. We also examined the association between EGFR overexpression and the efficacy of a novel EGFR TKI, icotinib, in 62 ESCC patients.Of the 193 patients, 95 (49.2%) patients showed EGFR overexpression (3+), and 47(24.4%) patients harbored EGFR FISH positivity. EGFR overexpression was significantly correlated with clinical stage and lymph node metastasis (picotinib, the response rate was 17.6% for patients with high EGFR-expressing tumors, which was markedly higher than the rate (0%) for patients with low to moderate EGFR-expressing tumors (p=0.341). Furthermore, all cases responded to icotinib showed EGFR overexpression.In conclusion, our study suggests that EGFR overexpression might potentially be used in predicting the efficacy in patients treated with Icotinib. These data have implications for both clinical trial design and therapeutic strategies.

  5. Increased centrosome amplification in aged stem cells of the Drosophila midgut

    International Nuclear Information System (INIS)

    Park, Joung-Sun; Pyo, Jung-Hoon; Na, Hyun-Jin; Jeon, Ho-Jun; Kim, Young-Shin; Arking, Robert; Yoo, Mi-Ae

    2014-01-01

    Highlights: • Increased centrosome amplification in ISCs of aged Drosophila midguts. • Increased centrosome amplification in ISCs of oxidative stressed Drosophila midguts. • Increased centrosome amplification in ISCs by overexpression of PVR, EGFR, and AKT. • Supernumerary centrosomes can be responsible for abnormal ISC polyploid cells. • Supernumerary centrosomes can be a useful marker for aging stem cells. - Abstract: Age-related changes in long-lived tissue-resident stem cells may be tightly linked to aging and age-related diseases such as cancer. Centrosomes play key roles in cell proliferation, differentiation and migration. Supernumerary centrosomes are known to be an early event in tumorigenesis and senescence. However, the age-related changes of centrosome duplication in tissue-resident stem cells in vivo remain unknown. Here, using anti-γ-tubulin and anti-PH3, we analyzed mitotic intestinal stem cells with supernumerary centrosomes in the adult Drosophila midgut, which may be a versatile model system for stem cell biology. The results showed increased centrosome amplification in intestinal stem cells of aged and oxidatively stressed Drosophila midguts. Increased centrosome amplification was detected by overexpression of PVR, EGFR, and AKT in intestinal stem cells/enteroblasts, known to mimic age-related changes including hyperproliferation of intestinal stem cells and hyperplasia in the midgut. Our data show the first direct evidence for the age-related increase of centrosome amplification in intestinal stem cells and suggest that the Drosophila midgut is an excellent model for studying molecular mechanisms underlying centrosome amplification in aging adult stem cells in vivo

  6. Increased centrosome amplification in aged stem cells of the Drosophila midgut

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joung-Sun; Pyo, Jung-Hoon; Na, Hyun-Jin; Jeon, Ho-Jun; Kim, Young-Shin [Department of Molecular Biology, Pusan National University, Busan 609-735 (Korea, Republic of); Arking, Robert, E-mail: aa2210@wayne.edu [Department of Biological Sciences, Wayne State University, Detroit, MI 48202 (United States); Yoo, Mi-Ae, E-mail: mayoo@pusan.ac.kr [Department of Molecular Biology, Pusan National University, Busan 609-735 (Korea, Republic of)

    2014-07-25

    Highlights: • Increased centrosome amplification in ISCs of aged Drosophila midguts. • Increased centrosome amplification in ISCs of oxidative stressed Drosophila midguts. • Increased centrosome amplification in ISCs by overexpression of PVR, EGFR, and AKT. • Supernumerary centrosomes can be responsible for abnormal ISC polyploid cells. • Supernumerary centrosomes can be a useful marker for aging stem cells. - Abstract: Age-related changes in long-lived tissue-resident stem cells may be tightly linked to aging and age-related diseases such as cancer. Centrosomes play key roles in cell proliferation, differentiation and migration. Supernumerary centrosomes are known to be an early event in tumorigenesis and senescence. However, the age-related changes of centrosome duplication in tissue-resident stem cells in vivo remain unknown. Here, using anti-γ-tubulin and anti-PH3, we analyzed mitotic intestinal stem cells with supernumerary centrosomes in the adult Drosophila midgut, which may be a versatile model system for stem cell biology. The results showed increased centrosome amplification in intestinal stem cells of aged and oxidatively stressed Drosophila midguts. Increased centrosome amplification was detected by overexpression of PVR, EGFR, and AKT in intestinal stem cells/enteroblasts, known to mimic age-related changes including hyperproliferation of intestinal stem cells and hyperplasia in the midgut. Our data show the first direct evidence for the age-related increase of centrosome amplification in intestinal stem cells and suggest that the Drosophila midgut is an excellent model for studying molecular mechanisms underlying centrosome amplification in aging adult stem cells in vivo.

  7. Preliminary application and evaluation of loop-mediated isothermal amplification (LAMP for detection of bovine theileriosis and trypanosomosis in Tanzania : research communication

    Directory of Open Access Journals (Sweden)

    O.M.M. Thekisoe

    2007-09-01

    Full Text Available The sensitivity of LAMP, PCR and microscopy to detect Theileria spp. and Trypanosoma congolense in field-derived bovine blood samples from Tanzania was evaluated and compared. No parasites were detected by microscopy. Furthermore, no bovine Theileria spp. were detected by LAMP and PCR from all the 24 samples collected from Arusha. Four and one out of 24 samples were positive for Theileria congolense infection by LAMP and PCR respectively while, 18 and nine out of 40 samples from Dar es Salaam were positive by LAMP and PCR for Theileria spp. Infection, respectively. Although all samples from Dar es Salaam were negative for Trypanosoma congolense infections by PCR, 12 out of 40 samples were LAMP positive. Whilst PCR is an established gene amplification method for the detection of Theileria and trypanosome parasites, this study introduces LAMP as an alternative molecular diagnostic tool that could be used in large-scale epidemiological surveys.

  8. The Development and Evaluation of a Loop-Mediated Isothermal Amplification Method for the Rapid Detection of Salmonella enterica serovar Typhi.

    Directory of Open Access Journals (Sweden)

    Fenxia Fan

    Full Text Available Typhoid fever remains a public health threat in many countries. A positive result in traditional culture is a gold-standard for typhoid diagnosis, but this method is time consuming and not sensitive enough for detection of samples containing a low copy number of the target organism. The availability of the loop-mediated isothermal amplification (LAMP assay, which offers high speed and simplicity in detection of specific targets, has vastly improved the diagnosis of numerous infectious diseases. However, little research efforts have been made on utilizing this approach for diagnosis of Salmonella enterica serovar Typhi by targeting a single and specific gene. In this study, a LAMP assay for rapid detection of S. Typhi based on a novel marker gene, termed STY2879-LAMP, was established and evaluated with real-time PCR (RT-PCR. The specificity tests showed that STY2879 could be amplified in all S. Typhi strains isolated in different years and regions in China, whereas no amplification was observable in non-typhoidal strains covering 34 Salmonella serotypes and other pathogens causing febrile illness. The detection limit of STY2879-LAMP for S. Typhi was 15 copies/reaction in reference plasmids, 200 CFU/g with simple heat-treatment of DNA extracted from simulated stool samples and 20 CFU/ml with DNA extracted from simulated blood samples, which was 10 fold more sensitive than the parallel RT-PCR control experiment. Furthermore, the sensitivity of STY2879-LAMP and RT-PCR combining the traditional culture enrichment method for simulated stool and blood spiked with lower S. Typhi count during the 10 h enrichment time was also determined. In comparison with LAMP, the positive reaction time for RT-PCR required additional 2-3 h enrichment time for either simulated stool or blood specimens. Therefore, STY2879-LAMP is of practical value in the clinical settings and has a good potential for application in developing regions due to its easy-to-use protocol.

  9. An "off-on" electrochemiluminescent biosensor based on DNAzyme-assisted target recycling and rolling circle amplifications for ultrasensitive detection of microRNA.

    Science.gov (United States)

    Zhang, Pu; Wu, Xiaoyan; Yuan, Ruo; Chai, Yaqin

    2015-03-17

    In this study, an off-on switching of a dual amplified electrochemiluminescence (ECL) biosensor based on Pb(2+)-induced DNAzyme-assisted target recycling and rolling circle amplification (RCA) was constructed for microRNA (miRNA) detection. First, the primer probe with assistant probe and miRNA formed Y junction which was cleaved with the addition of Pb(2+) to release miRNA. Subsequently, the released miRNA could initiate the next recycling process, leading to the generation of numerous intermediate DNA sequences (S2). Afterward, bare glassy carbon electrode (GCE) was immersed into HAuCl4 solution to electrodeposit a Au nanoparticle layer (depAu), followed by the assembly of a hairpin probe (HP). Then, dopamine (DA)-modified DNA sequence (S1) was employed to hybridize with HP, which switching off the sensing system. This is the first work that employs DA to quench luminol ECL signal, possessing the biosensor ultralow background signal. Afterward, S2 produced by the target recycling process was loaded onto the prepared electrode to displace S1 and served as an initiator for RCA. With rational design, numerous repeated DNA sequences coupling with hemin to form hemin/G-quadruplex were generated, which could exhibit strongly catalytic toward H2O2, thus amplified the ECL signal and switched the ON state of the sensing system. The liner range for miRNA detection was from 1.0 fM to 100 pM with a low detection limit down to 0.3 fM. Moreover, with the high sensitivity and specificity induced by the dual signal amplification, the proposed miRNA biosensor holds great potential for analysis of other interesting tumor markers.

  10. The Effect of Storage and Extraction Methods on Amplification of Plasmodium falciparum DNA from Dried Blood Spots

    NARCIS (Netherlands)

    Schwartz, A.; Baidjoe, A.Y.; Rosenthal, P.J.; Dorsey, G.; Bousema, T.; Greenhouse, B.

    2015-01-01

    Extraction and amplification of DNA from dried blood spots (DBS) collected in field studies is commonly used for detection of Plasmodium falciparum. However, there have been few systematic efforts to determine the effects of storage and extraction methods on the sensitivity of DNA amplification. We

  11. Fluorescence immunophenotyping and interphase cytogenetics (FICTION) detects BCL6 abnormalities, including gene amplification, in most cases of nodular lymphocyte-predominant Hodgkin lymphoma.

    Science.gov (United States)

    Bakhirev, Alexei G; Vasef, Mohammad A; Zhang, Qian-Yun; Reichard, Kaaren K; Czuchlewski, David R

    2014-04-01

    BCL6 translocations are a frequent finding in B-cell lymphomas of diverse subtypes, including some cases of nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL). However, reliable analysis of BCL6 rearrangements using fluorescence in situ hybridization is difficult in NLPHL because of the relative paucity of neoplastic cells. Combined immunofluorescence microscopy and fluorescence in situ hybridization, or fluorescence immunophenotyping and interphase cytogenetics as a tool for the investigation of neoplasms (FICTION), permits targeted analysis of neoplastic cells. To better define the spectrum of BCL6 abnormalities in NLPHL using FICTION analysis. We performed an optimized FICTION analysis of 24 lymph nodes, including 11 NLPHL, 5 follicular hyperplasia with prominent progressive transformation of germinal centers, and 8 follicular hyperplasia without progressive transformation of germinal centers. BCL6 rearrangement was identified in 5 of 11 cases of NLPHL (46%). In addition, BCL6 gene amplification, with large clusters of BCL6 signals in the absence of chromosome 3 aneuploidy, was detected in 3 of 11 cases of NLPHL (27%). One NLPHL showed extra copies of BCL6 present in conjunction with multiple copies of chromosome 3. Altogether, we detected BCL6 abnormalities in 9 of 11 cases of NLPHL (82%). None of the progressive transformation of germinal centers or follicular hyperplasia cases showed BCL6 abnormalities by FICTION. To our knowledge, this is the first report of BCL6 gene amplification in NLPHL. Our optimized protocol for FICTION permits detection of cytogenetic abnormalities in most NLPHL cases and may represent a useful ancillary diagnostic technique.

  12. Identification of Novel Ovarian Cancer Oncogenes that Function by Regulating Exosome Function

    Science.gov (United States)

    2017-09-01

    Novel Ovarian Cancer Oncogenes that Function by Regulating Exosome Function September 2017 x 1Sep2016...31Aug2017 Email: mbirrer@partners.org 6 Identification of Novel Ovarian Cancer Oncogenes that Function by Regulating Exosome Function xx

  13. Isothermal amplification detection of miRNA based on the catalysis of nucleases and voltammetric characteristics of silver nanoparticles.

    Science.gov (United States)

    Xu, Jianhua; Han, Kun; Liu, Dongdong; Lin, Li; Miao, Peng

    2016-11-15

    MiRNAs are a fascinating kind of biomolecule due to their vital functions in gene regulation and potential value as biomarkers for serious diseases including cancers. Exploiting convenient and sensitive methods for miRNA expression assays is imperative. In this study, we employ an exonuclease (RecJ f ) and a nicking endonuclease (Nt.BbvCI) to catalyse isothermal reactions for the amplified detection of miRNA. The degree of cyclical enzymatic amplification depends on the initial target miRNA level, which can determine the density of DNA probes bound on the electrode surface. Since DNA probes with an amino group at the 3' end are able to locate silver nanoparticles on the electrode, which provide intense stripping responses, the sensitive quantification of miRNA can be achieved. The proposed method has a limit of detection as low as 35 aM, with remarkable specificity, which offers a new approach for investigating miRNA networks and for clinical diagnosis applications.

  14. Development of RNA-FISH Assay for Detection of Oncogenic FGFR3-TACC3 Fusion Genes in FFPE Samples.

    Directory of Open Access Journals (Sweden)

    Masahiro Kurobe

    Full Text Available Oncogenic FGFR3-TACC3 fusions and FGFR3 mutations are target candidates for small molecule inhibitors in bladder cancer (BC. Because FGFR3 and TACC3 genes are located very closely on chromosome 4p16.3, detection of the fusion by DNA-FISH (fluorescent in situ hybridization is not a feasible option. In this study, we developed a novel RNA-FISH assay using branched DNA probe to detect FGFR3-TACC3 fusions in formaldehyde-fixed paraffin-embedded (FFPE human BC samples.The RNA-FISH assay was developed and validated using a mouse xenograft model with human BC cell lines. Next, we assessed the consistency of the RNA-FISH assay using 104 human BC samples. In this study, primary BC tissues were stored as frozen and FFPE tissues. FGFR3-TACC3 fusions were independently detected in FFPE sections by the RNA-FISH assay and in frozen tissues by RT-PCR. We also analyzed the presence of FGFR3 mutations by targeted sequencing of genomic DNA extracted from deparaffinized FFPE sections.FGFR3-TACC3 fusion transcripts were identified by RNA-FISH and RT-PCR in mouse xenograft FFPE tissues using the human BC cell lines RT112 and RT4. These cell lines have been reported to be fusion-positive. Signals for FGFR3-TACC3 fusions by RNA-FISH were positive in 2/60 (3% of non-muscle-invasive BC (NMIBC and 2/44 (5% muscle-invasive BC (MIBC patients. The results of RT-PCR of all 104 patients were identical to those of RNA-FISH. FGFR3 mutations were detected in 27/60 (45% NMIBC and 8/44 (18% MIBC patients. Except for one NMIBC patient, FGFR3 mutation and FGFR3-TACC3 fusion were mutually exclusive.We developed an RNA-FISH assay for detection of the FGFR3-TACC3 fusion in FFPE samples of human BC tissues. Screening for not only FGFR3 mutations, but also for FGFR3-TACC3 fusion transcripts has the potential to identify additional patients that can be treated with FGFR inhibitors.

  15. Attempts on producing lymphoid cell line from Penaeus monodon by induction with SV40-T and 12S EIA oncogenes.

    Science.gov (United States)

    Puthumana, Jayesh; Prabhakaran, Priyaja; Philip, Rosamma; Singh, I S Bright

    2015-12-01

    In an attempt of in vitro transformation, transfection mediated expression of Simian virus-40 (T) antigen (SV40-T) and transduction mediated expression of Adenovirus type 12 early region 1A (12S E1A) oncogene were performed in Penaeus monodon lymphoid cells. pSV3-neo vector encoding SV40-T oncogene and a recombinant baculovirus BacP2-12S E1A-GFP encoding 12S E1A oncogene under the control of hybrid promoters were used. Electroporation and lipofection mediated transformation of SV40-T in lymphoid cells confirmed the transgene expression by phenotypic variation and the expression of GFP in co-transfection experiment. The cells transfected by lipofection (≥ 5%) survived for 14 days with lower toxicity (30%), whilst on electroporation, most of the cells succumbed to death (60%) and survived cells lived up to 7 days. Transduction efficiency in primary lymphoid cells was more than 80% within 14 days of post-transduction, however, an incubation period of 7 days post-transduction was observed without detectable expression of 12S E1A. High level of oncogenic 12S E1A expression were observed after 14 day post-transduction and the proliferating cells survived for more than 90 days with GFP expression, however, without in vitro transformation and immortalization. The study put forth the requirement of transduction mediated 'specific' oncogene expression along with telomerase activation and epigenetic induction for the immortalization and establishment of shrimp cell line. Copyright © 2015. Published by Elsevier Ltd.

  16. PAK1 is a breast cancer oncogene that coordinately activates MAPK and MET signaling

    OpenAIRE

    Shrestha, Yashaswi; Schafer, Eric J.; Boehm, Jesse S.; Thomas, Sapana R.; He, Frank; Du, Jinyan; Wang, Shumei; Barretina, Jordi; Weir, Barbara A.; Zhao, Jean J.; Polyak, Kornelia; Golub, Todd R.; Beroukhim, Rameen; Hahn, William C.

    2011-01-01

    Activating mutations in the RAS family or BRAF frequently occur in many types of human cancers but are rarely detected in breast tumors. However, activation of the RAS-RAF-MEK-ERK Mitogen-Activated Protein Kinase (MAPK) pathway is commonly observed in human breast cancers, suggesting that other genetic alterations lead to activation of this signaling pathway. To identify breast cancer oncogenes that activate the MAPK pathway, we screened a library of human kinases for their ability to induce ...

  17. The Oncogenic Risks of Diagnostic CT Scam Studies in Children

    International Nuclear Information System (INIS)

    Brent, R.

    2004-01-01

    Brenner et al (2001) reported that estimates of the exposure to children from CT scans indicates that the exposures are both higher than from conventional radiographic studies and higher than is necessary to obtain quality examinations. utilizing the oncogenic risk data from the RERF study in Japan, Brenner et al estimated that the oncogenic risk in this population of CT exposed children exposed each year would result in an additional 500 cases of cancer. This risk estimate is supported by the RERF epidemiological data obtained from the populations exposed in Hiroshima and Nagasaki. the increased risks associated with the increased exposure from CT scans have raised concern and stimulated discussion. Although there is little doubt about the benefits of CT scans in improving the health care of children, there is concern about the estimated oncogenic risk, especially since the frequency of CT studies has been increasing. Applying the oncogenic risks of ionizing radiation from the RERF data may not be appropriate for all types of radiation exposure for accurately predicting the incidence of cancer in exposed children because of the impact of 1) partial versus whole-body irradiation, and 2) the protraction of the exposure. Other population of children who have been exposed to radiation and whose incidence of cancer has been studied will be presented and those studies indicate that the risk of cancer is much lower or not increased at all with exposures in the diagnostic range. finally, the dramatic impact of the use of CT scans in clinical pediatric practice saves lives and improves diagnostic accuracy. Therefore, it is crucial that a scholarly evaluation of the risks and benefits should be initiated. The radiology community and the manufacturers have already initiated programs to decrease the exposure significantly. But it is essential that well-planned, retrospective and prospective epidemiology studies should be initiated to study the oncogenic risks. If you want to

  18. Graphene oxide based fluorescence resonance energy transfer and loop-mediated isothermal amplification for white spot syndrome virus detection.

    Science.gov (United States)

    Waiwijit, U; Phokaratkul, D; Kampeera, J; Lomas, T; Wisitsoraat, A; Kiatpathomchai, W; Tuantranont, A

    2015-10-20

    Graphene oxide (GO) is attractived for biological or medical applications due to its unique electrical, physical, optical and biological properties. In particular, GO can adsorb DNA via π-π stacking or non-covalent interactions, leading to fluorescence quenching phenomenon applicable for bio-molecular detection. In this work, a new method for white spot syndrome virus (WSSV)-DNA detection is developed based on loop-mediated isothermal amplification (LAMP) combined with fluorescence resonance energy transfer (FRET) between GO and fluorescein isothiocyanate-labeled probe (FITC-probe). The fluorescence quenching efficiency of FITC-probe was found to increase with increasing GO concentration and reached 98.7% at a GO concentration of 50 μg/ml. The fluorescence intensity of FITC-probe was recovered after hybridization with WSSV LAMP product with an optimal hybridization time of 10 min and increased accordingly with increasing amount of LAMP products. The detection limit was estimated to be as low as 10 copies of WSSV plasmid DNA or 0.6 fg of the total DNA extracted from shrimp infected with WSSV. In addition, no cross reaction was observed with other common shrimp viral pathogens. Therefore, the GO-FRET-LAMP technique is promising for fast, sensitive and specific detection of DNAs. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Electrochemical immunosensor with nanocellulose-Au composite assisted multiple signal amplification for detection of avian leukosis virus subgroup J.

    Science.gov (United States)

    Liu, Chao; Dong, Jing; Waterhouse, Geoffrey I N; Cheng, Ziqiang; Ai, Shiyun

    2018-03-15

    A sensitive sandwich-type electrochemical immunosensor was developed for the detection of avian leukosis virus subgroup J (ALV-J), which benefitted from multiple signal amplification involving graphene-perylene-3,4,9,10-tetracarboxylic acid nanocomposites (GR-PTCA), nanocellulose-Au NP composites (NC-Au) and the alkaline phosphatase (ALP) catalytic reaction. GR-PTCA nanocomposites on glassy carbon electrodes served as the immunosensor platform. Due to their excellent electrical conductivity and abundant polycarboxylic sites, the GR-PTCA nanocomposites allowed fast electron transfer and good immobilization of primary antibodies, thereby affording a strong immunosensor signal in the presence of ALV-J. The detected signal could be further amplified by the introduction of NC-Au composites as a carrier of secondary antibodies (Ab 2 ) and by harnessing the catalytic properties of Au and ALP. Under optimized testing conditions, the electrochemical immunosensor displayed excellent analytical performance for the detection of ALV-J, showing a linear current response from 10 2.08 to 10 4.0 TCID 50 /mL (TCID 50 : 50% tissue culture infective dose) with a low detection limit of 10 1.98 TCID 50 /mL (S/N = 3). In addition to high sensitivity, the immunosensor showed very good selectivity, reproducibility and operational stability, demonstrating potential application for the quantitative detection of ALV-J in clinical diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. RNA amplification for successful gene profiling analysis

    Directory of Open Access Journals (Sweden)

    Wang Ena

    2005-07-01

    Full Text Available Abstract The study of clinical samples is often limited by the amount of material available to study. While proteins cannot be multiplied in their natural form, DNA and RNA can be amplified from small specimens and used for high-throughput analyses. Therefore, genetic studies offer the best opportunity to screen for novel insights of human pathology when little material is available. Precise estimates of DNA copy numbers in a given specimen are necessary. However, most studies investigate static variables such as the genetic background of patients or mutations within pathological specimens without a need to assess proportionality of expression among different genes throughout the genome. Comparative genomic hybridization of DNA samples represents a crude exception to this rule since genomic amplification or deletion is compared among different specimens directly. For gene expression analysis, however, it is critical to accurately estimate the proportional expression of distinct RNA transcripts since such proportions directly govern cell function by modulating protein expression. Furthermore, comparative estimates of relative RNA expression at different time points portray the response of cells to environmental stimuli, indirectly informing about broader biological events affecting a particular tissue in physiological or pathological conditions. This cognitive reaction of cells is similar to the detection of electroencephalographic patterns which inform about the status of the brain in response to external stimuli. As our need to understand human pathophysiology at the global level increases, the development and refinement of technologies for high fidelity messenger RNA amplification have become the focus of increasing interest during the past decade. The need to increase the abundance of RNA has been met not only for gene specific amplification, but, most importantly for global transcriptome wide, unbiased amplification. Now gene

  1. Application of a loop-mediated isothermal amplification (LAMP) assay targeting cox1 gene for the detection of Clonorchis sinensis in human fecal samples.

    Science.gov (United States)

    Rahman, S M Mazidur; Song, Hyun Beom; Jin, Yan; Oh, Jin-Kyoung; Lim, Min Kyung; Hong, Sung-Tae; Choi, Min-Ho

    2017-10-01

    Clonorchiasis is prevalent in the Far East, and a major health problem in endemic areas. Infected persons may experience, if not treated, serious complications such as bile stone formation, pyogenic cholangitis, and even cholangiocarcinoma. Early diagnosis and treatment are important to prevent serious complications and, therefore, the simple and reliable diagnostic method is necessary to control clonorchiasis in endemic areas, where resources for the diagnosis are limited. The loop-mediated isothermal amplification (LAMP) assay has been applied for the detection of Clonorchis sinensis DNA. Six primers targeting eight locations on the cytochrome c oxidase subunit 1 gene of C. sinensis were designed for species-specific amplification using the LAMP assay. The LAMP assay was sensitive enough to detect as little as 100 fg of C. sinensis genomic DNA and the detection limit in 100 mg of stool was as low as one egg. The assay was highly specific because no cross-reactivity was observed with the DNA of other helminths, protozoa or Escherichia coli. Then, LAMP assay was applied to human fecal samples collected from an endemic area of clonorchiasis in Korea. Using samples showing consistent results by both Kato-Katz method and real-time PCR as reference standards, the LAMP assay showed 97.1% (95% CI, 90.1-99.2) of sensitivity and 100% (95% CI, 92.9-100) of specificity. In stool samples with more than 100 eggs per gram of feces, the sensitivity achieved 100%. To detect C. sinensis in human fecal samples, the LAMP assay was applied and achieved high sensitivity and specificity. The LAMP assay can be utilized in field laboratories as a powerful tool for diagnosis and epidemiological survey of clonorchiasis.

  2. Isothermal amplification of environmental DNA (eDNA for direct field-based monitoring and laboratory confirmation of Dreissena sp.

    Directory of Open Access Journals (Sweden)

    Maggie R Williams

    Full Text Available Loop-mediated isothermal amplification (LAMP of aquatic invasive species environmental DNA (AIS eDNA was used for rapid, sensitive, and specific detection of Dreissena sp. relevant to the Great Lakes (USA basin. The method was validated for two uses including i direct amplification of eDNA using a hand filtration system and ii confirmation of the results after DNA extraction using a conventional thermal cycler run at isothermal temperatures. Direct amplification eliminated the need for DNA extraction and purification and allowed detection of target invasive species in grab or concentrated surface water samples, containing both free DNA as well as larger cells and particulates, such as veligers, eggs, or seeds. The direct amplification method validation was conducted using Dreissena polymorpha and Dreissena bugensis and uses up to 1 L grab water samples for high target abundance (e.g., greater than 10 veligers (larval mussels per L for Dreissena sp. or 20 L samples concentrated through 35 μm nylon screens for low target abundance, at less than 10 veligers per liter water. Surface water concentrate samples were collected over a period of three years, mostly from inland lakes in Michigan with the help of a network of volunteers. Field samples collected from 318 surface water locations included i filtered concentrate for direct amplification validation and ii 1 L grab water sample for eDNA extraction and confirmation. Though the extraction-based protocol was more sensitive (resulting in more positive detections than direct amplification, direct amplification could be used for rapid screening, allowing for quicker action times. For samples collected between May and August, results of eDNA direct amplification were consistent with known presence/absence of selected invasive species. A cross-platform smartphone application was also developed to disseminate the analyzed results to volunteers. Field tests of the direct amplification protocol using a

  3. Broad-Range Bacterial Capture from Fluid-Samples: Implications for Amplification-Free Contamination Detection

    Directory of Open Access Journals (Sweden)

    Monika WEBER

    2016-08-01

    Full Text Available Fluid-Screen, Inc. presents a bacterial concentration and filtration method based on dielectrophoresis and alternating current kinetics. Dielectrophoresis has been previously shown to induce particle motion; however, bacterial capture efficiency and reproducibility have consistently been low, reducing its potential for practical applications. In this study, we introduce a novel, patent-pending electrode system optimized to simultaneously capture a wide range of bacterial species from a variety of aqueous solutions. Specifically, we show that the method of dielectrophoresis used induces responses in both characteristic Gram- negative Escherichia coli and Gram-positive Enterococcus faecalis bacteria, as well as with Bacillus subtilis and Aestuariimicrobium kwangyangense. We have adapted the electrode design to create a bacterial sample preparatio unit, termed the sample sorter, that is able to capture multiple bacterial species and release them simultaneously for bacterial concentration and exchange from complex matrices to defined buffer media. This technology can be used on its own or in conjunction with standard bacterial detection methods such as mass spectroscopy. The Fluid-Screen product will dramatically improve testing and identification of bacterial contaminants in various industrial settings by eliminating the need for amplification of samples and by reducing the time to identification.

  4. Modified beacon probe assisted dual signal amplification for visual detection of microRNA.

    Science.gov (United States)

    Sun, Xiuwei; Ying, Na; Ju, Chuanjing; Li, Zhongyi; Xu, Na; Qu, Guijuan; Liu, Wensen; Wan, Jiayu

    2018-04-21

    In a recent study, we reported a novel assay for the detection of microRNA-21 based on duplex-specific nuclease (DSN)-assisted isothermal cleavage and hybridization chain reaction (HCR) dual signal amplification. The Fam modified double-stranded DNA products were generated after the HCR, another biotin modified probe was digested by DSN and released from the magnetic beads after the addition of the target miRNA. The released sequence was then combined with HCR products to form a double-tagging dsDNA, which can be recognized by the lateral flow strips. In this study, we introduced a 2-OMethyl-RNA modified beacon probe (2-OMe-MB) to make some improvements based on the previous study. Firstly, the substitution of modified probe combined on magnetic beads avoids the fussy washing steps for the separation of un-reacted probes. Furthermore, the modification of 2-OMe on the stem of the probe avoided the unnecessary cleavage by DSN, which greatly reduce the background signal. Compared to the previous work, these improvements save us a lot of steps but possess the comparable sensitivity and selectivity. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Gold nanoparticle labeling with tyramide signal amplification for highly sensitive detection of alpha fetoprotein in human serum by ICP-MS.

    Science.gov (United States)

    Li, Xiaoting; Chen, Beibei; He, Man; Xiao, Guangyang; Hu, Bin

    2018-01-01

    In this work, we developed an immunoassay based on tyramide signal amplification (TSA) and gold nanoparticles (Au NPs) labeling for highly sensitive detection of alpha fetoprotein (AFP) by inductively coupled plasma mass spectrometry (ICP-MS). AFP was captured by anti-AFP1 coating on the 96-well plate and labeled by anti-AFP2-horseradish peroxidase (HRP), in which the HRP can catalyze the deposition of biotinylated tyramine on the nearby protein. Then the streptavidin (SA)-Au NPs was labeled on the deposited biotinylated tyramine as the intensive signal probe for ICP-MS measurement. Under the optimal experimental conditions, the limit of detection of the developed method for AFP was 1.85pg/mL and the linear range was 0.005-2ng/mL. The relative standard deviation for seven replicate detections of 0.01ng/mL AFP was 5.2%. The proposed method was successfully applied to the detection of AFP in human serum with good recoveries. This strategy is highly sensitive and easy to operate, and can be extended to the sensitive detection of other biomolecules in human serum. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Rapid screening method for male DNA by using the loop-mediated isothermal amplification assay.

    Science.gov (United States)

    Kitamura, Masashi; Kubo, Seiji; Tanaka, Jin; Adachi, Tatsushi

    2017-08-12

    Screening for male-derived biological material from collected samples plays an important role in criminal investigations, especially those involving sexual assaults. We have developed a loop-mediated isothermal amplification (LAMP) assay targeting multi-repeat sequences of the Y chromosome for detecting male DNA. Successful amplification occurred with 0.5 ng of male DNA under isothermal conditions of 61 to 67 °C, but no amplification occurred with up to 10 ng of female DNA. Under the optimized conditions, the LAMP reaction initiated amplification within 10 min and amplified for 20 min. The LAMP reaction was sensitive at levels as low as 1-pg male DNA, and a quantitative LAMP assay could be developed because of the strong correlation between the reaction time and the amount of template DNA in the range of 10 pg to 10 ng. Furthermore, to apply the LAMP assay to on-site screening for male-derived samples, we evaluated a protocol using a simple DNA extraction method and a colorimetric intercalating dye that allows detection of the LAMP reaction by evaluating the change in color of the solution. Using this protocol, samples of male-derived blood and saliva stains were processed in approximately 30 min from DNA extraction to detection. Because our protocol does not require much hands-on time or special equipment, this LAMP assay promises to become a rapid and simple screening method for male-derived samples in forensic investigations.

  7. Loop-mediated isothermal amplification (LAMP) as an alternative to PCR: A rapid on-site detection of gene doping.

    Science.gov (United States)

    Salamin, Olivier; Kuuranne, Tiia; Saugy, Martial; Leuenberger, Nicolas

    2017-11-01

    Innovation in medical research has been diverted at multiple occasions to enhance human performance. The predicted great progress in gene therapy has raised some concerns regarding its misuse in the world of sports (gene doping) for several years now. Even though there is no evidence that gene doping has ever been used in sports, the continuous improvement of gene therapy techniques increases the likelihood of abuse. Therefore, since 2004, efforts have been invested by the anti-doping community and WADA for the development of detection methods. Several nested PCR and qPCR-based strategies exploiting the absence of introns in the transgenic DNA have been proposed for the long-term detection of transgene in blood. Despite their great sensitivity, those protocols are hampered by limitations of the techniques that can be cumbersome and costly. The purpose of this perspective is to describe a new approach based on loop-mediated isothermal amplification (LAMP) for the detection of gene doping. This protocol enables a rapid and simple method to amplify nucleic acids with a high sensitivity and specificity and with a simple visual detection of the results. LAMP is already being used in clinical application for the detection of viruses or mutations. Therefore, this technique has the potential to be further developed for the detection of foreign genetic material in elite athletes. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  8. A view on EGFR-targeted therapies from the oncogene-addiction perspective.

    Science.gov (United States)

    Perez, Rolando; Crombet, Tania; de Leon, Joel; Moreno, Ernesto

    2013-01-01

    Tumor cell growth and survival can often be impaired by inactivating a single oncogen- a phenomenon that has been called as "oncogene addiction." It is in such scenarios that molecular targeted therapies may succeed. among known oncogenes, the epidermal growth factor receptor (EGFR) has become the target of different cancer therapies. So far, however, the clinical benefit from EGFR-targeted therapies has been rather limited. a critical review of the large amount of clinical data obtained with anti-EGFR agents, carried out from the perspective of the oncogene addiction concept, may help to understand the causes of the unsatisfactory results. In this article we intend to do such an exercise taking as basis for the analysis a few case studies of anti-EGFR agents that are currently in the clinic. There, the "EGFR addiction" phenomenon becomes apparent in high-responder patients. We further discuss how the concept of oncogene addiction needs to be interpreted on the light of emerging experimental evidences and ideas; in particular, that EGFR addiction may reflect the interconnection of several cellular pathways. In this regard we set forth several hypotheses; namely, that requirement of higher glucose uptake by hypoxic tumor cells may reinforce EGFR addiction; and that chronic use of EGFR-targeted antibodies in EGFR-addicted tumors would induce stable disease by reversing the malignant phenotype of cancer stem cells and also by sustaining an anti-tumor T cell response. Finally, we discuss possible reasons for the failure of certain combinatorial therapies involving anti-EGFR agents, arguing that some of these agents might produce either a negative or a positive trans-modulation effect on other oncogenes. It becomes evident that we need operational definitions of EGFR addiction in order to determine which patient populations may benefit from treatment with anti-EGFR drugs, and to improve the design of these therapies.

  9. A view on EGFR-targeted therapies from the oncogene-addiction perspective

    Directory of Open Access Journals (Sweden)

    Rolando ePerez

    2013-04-01

    Full Text Available Tumor cell growth and survival can often be impaired by inactivating a single oncogen – a phenomenon that has been called as 'oncogene addiction'. It is in such scenarios that molecular targeted therapies may succeed. Among known oncogenes, the epidermal growth factor receptor (EGFR has become the target of different cancer therapies. So far, however, the clinical benefit from EGFR-targeted therapies has been rather limited. A critical review of the large amount of clinical data obtained with anti-EGFR agents, carried out from the perspective of the oncogene addiction concept, may help to understand the causes of the unsatisfactory results. In this article we intend to do such an exercise taking as basis for the analysis a few case studies of anti-EGFR agents that are currently in the clinic. There, the 'EGFR addiction' phenomenon becomes apparent in high-responder patients. We further discuss how the concept of oncogene addiction needs to be interpreted on the light of emerging experimental evidences and ideas; in particular, that EGFR addiction may reflect the interconnection of several cellular pathways. In this regard we set forth several hypotheses; namely, that requirement of higher glucose uptake by hypoxic tumor cells may reinforce EGFR addiction; and that chronic use of EGFR-targeted antibodies in EGFR-addicted tumors would induce stable disease by reversing the malignant phenotype of cancer stem cells and also by sustaining an anti-tumor T cell response. Finally, we discuss possible reasons for the failure of certain combinatorial therapies involving anti-EGFR agents, arguing that some of these agents might produce either a negative or a positive trans-modulation effect on other oncogenes. It becomes evident that we need operational definitions of EGFR addiction in order to determine which patient populations may benefit from treatment with anti-EGFR drugs, and to improve the design of these therapies.

  10. Oncogenic MYC Activates a Feedforward Regulatory Loop Promoting Essential Amino Acid Metabolism and Tumorigenesis.

    Science.gov (United States)

    Yue, Ming; Jiang, Jue; Gao, Peng; Liu, Hudan; Qing, Guoliang

    2017-12-26

    Most tumor cells exhibit obligatory demands for essential amino acids (EAAs), but the regulatory mechanisms whereby tumor cells take up EAAs and EAAs promote malignant transformation remain to be determined. Here, we show that oncogenic MYC, solute carrier family (SLC) 7 member 5 (SLC7A5), and SLC43A1 constitute a feedforward activation loop to promote EAA transport and tumorigenesis. MYC selectively activates Slc7a5 and Slc43a1 transcription through direct binding to specific E box elements within both genes, enabling effective EAA import. Elevated EAAs, in turn, stimulate Myc mRNA translation, in part through attenuation of the GCN2-eIF2α-ATF4 amino acid stress response pathway, leading to MYC-dependent transcriptional amplification. SLC7A5/SLC43A1 depletion inhibits MYC expression, metabolic reprogramming, and tumor cell growth in vitro and in vivo. These findings thus reveal a MYC-SLC7A5/SLC43A1 signaling circuit that underlies EAA metabolism, MYC deregulation, and tumorigenesis. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Detection of lead(II) ions with a DNAzyme and isothermal strand displacement signal amplification.

    Science.gov (United States)

    Li, Wenying; Yang, Yue; Chen, Jian; Zhang, Qingfeng; Wang, Yan; Wang, Fangyuan; Yu, Cong

    2014-03-15

    A DNAzyme based method for the sensitive and selective quantification of lead(II) ions has been developed. A DNAzyme that requires Pb(2+) for activation was selected. An RNA containing DNA substrate was cleaved by the DNAzyme in the presence of Pb(2+). The 2',3'-cyclic phosphate of the cleaved 5'-part of the substrate was efficiently removed by Exonuclease III. The remaining part of the single stranded DNA (9 or 13 base long) was subsequently used as the primer for the strand displacement amplification reaction (SDAR). The method is highly sensitive, 200 pM lead(II) could be easily detected. A number of interference ions were tested, and the sensor showed good selectivity. Underground water samples were also tested, which demonstrated the feasibility of the current approach for real sample applications. It is feasible that our method could be used for DNAzyme or aptazyme based new sensing method developments for the quantification of other target analytes with high sensitivity and selectivity. © 2013 Elsevier B.V. All rights reserved.

  12. Development of an electronic system for signals amplification

    International Nuclear Information System (INIS)

    Santos, Italo S.; Tobias, Carmen C.B.

    2009-01-01

    This paper presents the obtained results with a spectrometer for electromagnetic radiation whose detector, a Si PIN type diode, was directly coupled to a signal amplification system developed in this project for scientific initiation. The linearity conditions and the gain operational limits, constituted of two stages of amplification based on the employment of devices from AMTEK A225 and A206, were determined using a precision pulse generator. The obtained results shown that the developed system is stable and linear in the gain range of 50-150. The spectrometric response of the electronic system coupled to the Siemens SFH-00206 type diode, were studied in view of the register of the 59.5 keV gamma ray spectra proceeding from 241 Am as function of the reversal polarization voltage. The influence pf the voltage and the electronic contribution in the energy resolution of the registered spectra under room temperature (22 degree Celsius) had also investigated considering the more adequate value of the coupling capacitance of the amplification system diode. Up to the present. the best energy resolution (FWHM = 4.85 keV) of the 59.5 keV line was obtained for the condition of the detector polarization at 16 V. This result proves that the signal amplification system developed coupled to the SFH00206 diode, besides the low cost, excellent operational condition for the detection and spectrometry or low energy electromagnetic radiation

  13. Silencing Agrobacterium oncogenes in transgenic grapevine results in strain-specific crown gall resistance.

    Science.gov (United States)

    Galambos, A; Zok, A; Kuczmog, A; Oláh, R; Putnoky, P; Ream, W; Szegedi, E

    2013-11-01

    Grapevine rootstock transformed with an Agrobacterium oncogene-silencing transgene was resistant to certain Agrobacterium strains but sensitive to others. Thus, genetic diversity of Agrobacterium oncogenes may limit engineering crown gall resistance. Crown gall disease of grapevine induced by Agrobacterium vitis or Agrobacterium tumefaciens causes serious economic losses in viticulture. To establish crown gall-resistant lines, somatic proembryos of Vitis berlandieri × V. rupestris cv. 'Richter 110' rootstock were transformed with an oncogene-silencing transgene based on iaaM and ipt oncogene sequences from octopine-type, tumor-inducing (Ti) plasmid pTiA6. Twenty-one transgenic lines were selected, and their transgenic nature was confirmed by polymerase chain reaction (PCR). These lines were inoculated with two A. tumefaciens and three A. vitis strains. Eight lines showed resistance to octopine-type A. tumefaciens A348. Resistance correlated with the expression of the silencing genes. However, oncogene silencing was mostly sequence specific because these lines did not abolish tumorigenesis by A. vitis strains or nopaline-type A. tumefaciens C58.

  14. Visual detection of human enterovirus 71 subgenotype C4 and Coxsackievirus A16 by reverse transcription loop-mediated isothermal amplification with the hydroxynaphthol blue dye.

    Science.gov (United States)

    Nie, Kai; Zhang, Yong; Luo, Le; Yang, Meng-Jie; Hu, Xiu-Mei; Wang, Miao; Zhu, Shuang-Li; Han, Feng; Xu, Wen-Bo; Ma, Xue-Jun

    2011-08-01

    A sensitive reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed for rapid visual detection of human enterovirus 71 subgenotype C4 (EV71-C4) and Coxsackievirus A16 (CVA16) infection, respectively. The reaction was performed in one step in a single tube at 65°C for 60 min with the addition of the hydroxynaphthol blue (HNB) dye prior to amplification. The detection limits of the RT-LAMP assay were 0.33 and 1.58 of a 50% tissue culture infective dose (TCID(50)) per reaction based on 10-fold dilutions of a titrated EV71 or CVA16 strain, respectively. No cross-reaction was observed with Coxsackievirus A (CVA) viruses (CVA2, 4, 5, 7, 9, 10, 14, and 24), Coxsackievirus B (CVB) viruses (CVB1,2,3,4, and 5) or ECHO viruses (ECHO3, 6, 11, and 19). The assay was further evaluated with 47 clinical stool specimens diagnosed previously with EV71, CVA16 or other human enterovirus infections. Virus isolates from stool samples were confirmed by virus neutralization testing and sequencing. RT-LAMP with HNB dye was demonstrated to be a sensitive and cost-effective assay for rapid visual detection of human EV71-C4 and CVA16. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Retroviruses Hijack Chromatin Loops to Drive Oncogene Expression and Highlight the Chromatin Architecture around Proto-Oncogenic Loci

    Science.gov (United States)

    Pattison, Jillian M.; Wright, Jason B.; Cole, Michael D.

    2015-01-01

    The majority of the genome consists of intergenic and non-coding DNA sequences shown to play a major role in different gene regulatory networks. However, the specific potency of these distal elements as well as how these regions exert function across large genomic distances remains unclear. To address these unresolved issues, we closely examined the chromatin architecture around proto-oncogenic loci in the mouse and human genomes to demonstrate a functional role for chromatin looping in distal gene regulation. Using cell culture models, we show that tumorigenic retroviral integration sites within the mouse genome occur near existing large chromatin loops and that this chromatin architecture is maintained within the human genome as well. Significantly, as mutagenesis screens are not feasible in humans, we demonstrate a way to leverage existing screens in mice to identify disease relevant human enhancers and expose novel disease mechanisms. For instance, we characterize the epigenetic landscape upstream of the human Cyclin D1 locus to find multiple distal interactions that contribute to the complex cis-regulation of this cell cycle gene. Furthermore, we characterize a novel distal interaction upstream of the Cyclin D1 gene which provides mechanistic evidence for the abundant overexpression of Cyclin D1 occurring in multiple myeloma cells harboring a pathogenic translocation event. Through use of mapped retroviral integrations and translocation breakpoints, our studies highlight the importance of chromatin looping in oncogene expression, elucidate the epigenetic mechanisms crucial for distal cis-regulation, and in one particular instance, explain how a translocation event drives tumorigenesis through upregulation of a proto-oncogene. PMID:25799187

  16. bcr-abl oncogene activation in Philadelphia chromosome-positive acute lymphoblastic leukemia

    NARCIS (Netherlands)

    Hermans, A.; Gow, J.; Selleri, L.; von Lindern, M.; Hagemeijer, A.; Wiedemann, L. M.; Grosveld, G.

    1988-01-01

    Tumor-specific alterations in oncogenes are thought to play a central role in the development of cancer. An example is the consistent fusion of the bcr gene to the c-abl oncogene on the Ph chromosome in CML. The Ph chromosome can also be observed in ALL. About 50% of Ph+ ALL cases, in contrast to

  17. Sensitive and fast detection of fructose in complex media via symmetry breaking and signal amplification using surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Sun, Fang; Bai, Tao; Zhang, Lei; Ella-Menye, Jean-Rene; Liu, Sijun; Nowinski, Ann K; Jiang, Shaoyi; Yu, Qiuming

    2014-03-04

    A new strategy is proposed to sensitively and rapidly detect analytes with weak Raman signals in complex media using surface-enhanced Raman spectroscopy (SERS) via detecting the SERS signal changes of the immobilized probe molecules on SERS-active substrates upon binding of the analytes. In this work, 4-mercaptophenylboronic acid (4-MPBA) was selected as the probe molecule which was immobilized on the gold surface of a quasi-three-dimensional plasmonic nanostructure array (Q3D-PNA) SERS substrate to detect fructose. The molecule of 4-MPBA possesses three key functions: molecule recognition and reversible binding of the analyte via the boronic acid group, amplification of SERS signals by the phenyl group and thus shielding of the background noise of complex media, and immobilization on the surface of SERS-active substrates via the thiol group. Most importantly, the symmetry breaking of the 4-MPBA molecule upon fructose binding leads to the change of area ratio between totally symmetric 8a ring mode and nontotally symmetric 8b ring mode, which enables the detection. The detection curves were obtained in phosphate-buffered saline (PBS) and in undiluted artificial urine at clinically relevant concentrations, and the limit of detection of 0.05 mM was achieved.

  18. Loop-mediated isothermal amplification (LAMP) test for specific and rapid detection of Brucella abortus in cattle.

    Science.gov (United States)

    Karthik, K; Rathore, Rajesh; Thomas, Prasad; Arun, T R; Viswas, K N; Agarwal, R K; Manjunathachar, H V; Dhama, Kuldeep

    2014-01-01

    Brucella abortus, the major causative agent of abortion in cattle and a zoonotic pathogen, needs to be diagnosed at an early stage. Loop-mediated isothermal amplification (LAMP) test is easy to perform and also promising to be adapted at field level. To develop a LAMP assay for specific and rapid detection of B. abortus from clinical samples of cattle. LAMP primers were designed targeting BruAb2_0168 region using specific software tool and LAMP was optimized. The developed LAMP was tested for its specificity with 3 Brucella spp. and 11 other non-Brucella spp. Sensitivity of the developed LAMP was also carried out with known quantity of DNA. Cattle whole blood samples and aborted fetal stomach contents were collected and used for testing with developed LAMP assay and results were compared with polymerase chain reaction (PCR). The developed LAMP assay works at 61 °C for 60 min and the detection limit was observed to be 100-fold more than the conventional PCR that is commonly used for diagnosis of B. abortus. Clinical sensitivity and specificity of the developed LAMP assay was 100% when compared with Rose Bengal plate test and standard tube agglutination test. SYB® green dye I was used to visualize the result with naked eye. The novelty of the developed LAMP assay for specifically detecting B. abortus infection in cattle along with its inherent rapidness and high sensitivity can be employed for detecting this economically important pathogen of cattle at field level as well be exploited for screening of human infections.

  19. Imaging manifestations and its clinical significance in patients with oncogenic osteomalacia

    International Nuclear Information System (INIS)

    Yu Wei; Lin Qiang; Zhang Yunqing; Jiang Bo; Jin Jin; Jiang Yan; Li Mei; Li Fang

    2006-01-01

    Objective: To compare images from different modality for detecting lesions in patients with oncogenic osteomalacia. Methods: Eight patients with oncogenic osteomalacia were recruited in this study. The age ranged from 28 to 69 years (mean age 44.1, 5 men and 3 women). All patients were diagnosed as osteomalacia according to their clinical and radiographic manifestations. Main laboratory tests included serum calcium, phosphorus, alkaline phosphatase activity, parathyroid hormone, urinary phosphorus as well as liver and renal functions. Octreotide scans were performed for all patients according to clinical request for confirming the oncogenic osteomalacia. Further examinations of MR imaging in 8 patients, spiral CT in four patients and conventional radiography in four patients were obtained after the octreotide scans respectively. All patients had operation for their tumor resections and for the pathologic diagnostic findings. Results: Abnormal laboratory findings in all patients included low serum phosphorus level (ranged from 0.29 to 0.65 mmol·L -1 ), elevated alkaline phosphatase activity (ranged from 36. 6 to 310.6 μmol·s -1 ·L -1 ) as well as urinary phosphorus level (ranged from 11.5 to 40. 9 mmol·L -1 ). Normal results included parathyroid hormone level, liver and renal functions. Pathology confirmed the diagnosis of 4 soft tissue tumors including 1 hemangiomas, 1 giant-cell tumor of tendon sheath, 1 hemangiopericytoma and 1 mesenchymal tumor, as well as 4 bone tumors including 1 malignant neurofibroma, 2 mesenchymal tumors and 1 fibroblastoma. All lesions were shown abnormal region of increasing uptake tracer on octreotide scans. However, the octreotide scans could not determine where (bone or soft tissues) the lesions located. MR imaging could differentiate the lesions within the bone or within the soft tissues in all patients. All lesions had hypo- or iso- signal intensity on T 1 WI and high signal intensity on T 2 WI with heterogeneous in 6 tumors and

  20. Change of mitotic cycle and DNA repair in embryonic cells of rat, immortalized by E1 A oncogene and transformated by E1 A and c-Ha-Ras oncogenes under ionizing radiation action

    International Nuclear Information System (INIS)

    Kirillova, T.V.

    1997-01-01

    Comparison investigation into the repair of mitotic cycle and the reunion of DN single- and double-strand breaks in gamma-ray irradiated initial E1 A oncogene immortalized and E1 A and c-Ha-Ras oncogene transformed (mutant form) lines of rat embryonic fibroblasts was carried out. Possible involvement of Ras gene product in DNA repair speed governing and absence of tumor suppression function of p 53 protein in the embryonic and E1 A oncogene immortalized cells of rat fibroblast, as well as, presence of the mentioned function of p 53 protein in E1 A and c-Ha-Ras oncogene transformed cells were studied [ru

  1. Oncogene expression in primary lung tumors in dogs that inhaled {sup 239}PuO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, G; Kerkof, P R; Haley, P J

    1988-12-01

    Ten radiation-induced and three spontaneous lung tumors were analyzed for aberrant expression of known oncogenes. In 12 of 13 tumors tested, sequences hybridizing to the c-myc oncogene were expressed at levels 1.5 times higher than sequences hybridizing to {beta}-actin. This level of oncogene expression was also observed in 9 of 13 tumors for 1 or more members of the ras family of oncogenes. Seven of thirteen tumors examined express sequences that hybridize with clones of v-ros or c-met. The ros and met clones both code for oncogenes whose normal homologues are transmembrane proteins related to the insulin receptor. (author)

  2. Early bichemical markers of effects: Enzyme induction, oncogene activation and markers of oxidative damage

    DEFF Research Database (Denmark)

    Poulsen, Henrik E.; Loft, Steffen

    1995-01-01

    Early bichemical marker, enzyme induction, oncogene activation, oxidative damage, low-density lipoprotein......Early bichemical marker, enzyme induction, oncogene activation, oxidative damage, low-density lipoprotein...

  3. Branched-DNA signal amplification combined with paper chromatography hybridization assay and used in hepatitis B virus DNA detection

    International Nuclear Information System (INIS)

    Fu, F.Z.; Liu, L.X.; Wang, W.Q.; Sun, S. H.; Liu, L.B.

    2002-01-01

    Nucleic acids detection method is vital to the clinical pathogen diagnosis. The established method can be classified into target direct amplification and signal amplification format according to the target DNA or RNA being directly amplified or not. Those methods have advantages and disadvantages respectively in the clinical application. In the United States of American, branched-DNA as a strong signal amplifier is broadly used in the quantification of the nucleic acids. To gain satisfied sensitivity, some expensive label molecular and instruments should be adopted. Personnel should be special trained to perform. Hence, those can't be widely carried out in the Third World. To avoid those disadvantages, we used the branched-DNA amplifier in the paper chromatography hybridization assay. Methods: Branched DNA signal amplifier and series of probes complementary to the nucleic acid sequence of hepatitis B virus (HBV) have been synthesized. HBV-DNA or it's capture probe were immobilized on the high flow nitrocellulose strip. Having loaded at one end of the strip in turn, probes or HBV-DNA in the hybridization solution migrate to the opposite end of the strip by capillary forces and hybridizes to the immobilized DNA. The branched-DNA signal amplifier and probe labeled with biotin or 32P were then loaded. Through streptavidin-alkaline phosphatase (SA-AP) conjugate and NBT/BCIP ( the specific chromogenic substrate of AP) or autoradiography, the result can be visualized by color reaction or image production on the X-ray film. Results: The sensitivity of this HBV-DNA detection method used probe labeled with biotin and 32P are 1ng and 10pg. The method using the probe labeled with biotin is simple and rapid (2h) without depending on special instruments, it also avoids the pollution of EtBr which can lead to tumor. And the method using the probe labeled with 32P is simple and sensitive, with the exception of long time autoradiography and the inconvenient isotopic disposal

  4. The DNA damage checkpoint precedes activation of ARF in response to escalating oncogenic stress during tumorigenesis

    DEFF Research Database (Denmark)

    Evangelou, K.; Bartkova, J.; Kotsinas, A.

    2013-01-01

    oncogenes showed that the delayed upregulation of ARF reflected a requirement for a higher, transcriptionally based threshold of oncogenic stress, elicited by at least two oncogenic 'hits', compared with lower activation threshold for DDR. We propose that relative to DDR activation, ARF provides...

  5. New closed tube loop mediated isothermal amplification assay for prevention of product cross-contamination

    OpenAIRE

    Karthik, K.; Rathore, Rajesh; Thomas, Prasad; Arun, T.R.; Viswas, K.N.; Dhama, Kuldeep; Agarwal, R.K.

    2014-01-01

    Loop mediated isothermal amplification (LAMP) assay, a promising diagnostic test, has been developed for detection of different pathogens of human as well as animals. Various positive points support its use as a field level test but the major problem is product cross contamination leading to false positive results. Different methods were adopted by various researchers to control this false positive amplification due to cross contamination but all have their own advantages and disadvantages. A...

  6. Protein detection using biobarcodes.

    Science.gov (United States)

    Müller, Uwe R

    2006-10-01

    Over the past 50 years the development of assays for the detection of protein analytes has been driven by continuing demands for higher levels of sensitivity and multiplexing. The result has been a progression of sandwich-type immunoassays, starting with simple radioisotopic, colorimetric, or fluorescent labeling systems to include various enzymatic or nanostructure-based signal amplification schemes, with a concomitant sensitivity increase of over 1 million fold. Multiplexing of samples and tests has been enabled by microplate and microarray platforms, respectively, or lately by various molecular barcoding systems. Two different platforms have emerged as the current front-runners by combining a nucleic acid amplification step with the standard two-sided immunoassay. In both, the captured protein analyte is replaced by a multiplicity of oligonucleotides that serve as surrogate targets. One of these platforms employs DNA or RNA polymerases for the amplification step, while detection is by fluorescence. The other is based on gold nanoparticles for both amplification as well as detection. The latter technology, now termed Biobarcode, is completely enzyme-free and offers potentially much higher multiplexing power.

  7. The oncogenic properties of EWS/WT1 of desmoplastic small round cell tumors are unmasked by loss of p53 in murine embryonic fibroblasts

    International Nuclear Information System (INIS)

    Bandopadhayay, Pratiti; Thomas, David M; Algar, Elizabeth; Ekert, Paul G; Jabbour, Anissa M; Riffkin, Christopher; Salmanidis, Marika; Gordon, Lavinia; Popovski, Dean; Rigby, Lin; Ashley, David M; Watkins, David N

    2013-01-01

    Desmoplastic small round cell tumor (DSRCT) is characterized by the presence of a fusion protein EWS/WT1, arising from the t (11;22) (p13;q12) translocation. Here we examine the oncogenic properties of two splice variants of EWS/WT1, EWS/WT1-KTS and EWS/WT1 + KTS. We over-expressed both EWS/WT1 variants in murine embryonic fibroblasts (MEFs) of wild-type, p53 +/- and p53 -/- backgrounds and measured effects on cell-proliferation, anchorage-independent growth, clonogenicity after serum withdrawal, and sensitivity to cytotoxic drugs and gamma irradiation in comparison to control cells. We examined gene expression profiles in cells expressing EWS/WT1. Finally we validated our key findings in a small series of DSRCT. Neither isoform of EWS/WT1 was sufficient to transform wild-type MEFs however the oncogenic potential of both was unmasked by p53 loss. Expression of EWS/WT1 in MEFs lacking at least one allele of p53 enhanced cell-proliferation, clonogenic survival and anchorage-independent growth. EWS/WT1 expression in wild-type MEFs conferred resistance to cell-cycle arrest after irradiation and daunorubicin induced apoptosis. We show DSRCT commonly have nuclear localization of p53, and copy-number amplification of MDM2/MDMX. Expression of either isoform of EWS/WT1 induced characteristic mRNA expression profiles. Gene-set enrichment analysis demonstrated enrichment of WNT pathway signatures in MEFs expressing EWS/WT1 + KTS. Wnt-activation was validated in cell lines with over-expression of EWS/WT1 and in DSRCT. In conclusion, we show both isoforms of EWS/WT1 have oncogenic potential in MEFs with loss of p53. In addition we provide the first link between EWS/WT1 and Wnt-pathway signaling. These data provide novel insights into the function of the EWS/WT1 fusion protein which characterize DSRCT

  8. Application of a loop-mediated isothermal amplification (LAMP assay targeting cox1 gene for the detection of Clonorchis sinensis in human fecal samples.

    Directory of Open Access Journals (Sweden)

    S M Mazidur Rahman

    2017-10-01

    Full Text Available Clonorchiasis is prevalent in the Far East, and a major health problem in endemic areas. Infected persons may experience, if not treated, serious complications such as bile stone formation, pyogenic cholangitis, and even cholangiocarcinoma. Early diagnosis and treatment are important to prevent serious complications and, therefore, the simple and reliable diagnostic method is necessary to control clonorchiasis in endemic areas, where resources for the diagnosis are limited.The loop-mediated isothermal amplification (LAMP assay has been applied for the detection of Clonorchis sinensis DNA. Six primers targeting eight locations on the cytochrome c oxidase subunit 1 gene of C. sinensis were designed for species-specific amplification using the LAMP assay. The LAMP assay was sensitive enough to detect as little as 100 fg of C. sinensis genomic DNA and the detection limit in 100 mg of stool was as low as one egg. The assay was highly specific because no cross-reactivity was observed with the DNA of other helminths, protozoa or Escherichia coli. Then, LAMP assay was applied to human fecal samples collected from an endemic area of clonorchiasis in Korea. Using samples showing consistent results by both Kato-Katz method and real-time PCR as reference standards, the LAMP assay showed 97.1% (95% CI, 90.1-99.2 of sensitivity and 100% (95% CI, 92.9-100 of specificity. In stool samples with more than 100 eggs per gram of feces, the sensitivity achieved 100%.To detect C. sinensis in human fecal samples, the LAMP assay was applied and achieved high sensitivity and specificity. The LAMP assay can be utilized in field laboratories as a powerful tool for diagnosis and epidemiological survey of clonorchiasis.

  9. Characterization of TRPS1 and ERAS as oncogenes implicated in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Gonzalez, L.

    2015-07-01

    New high throughput technologies have made possible to identify putative oncogenes in breast cancer. In this project we aim to relate and characterise two novel putative oncogenes, ERAS and TRPS1, in their role in human breast cancer. TRPS1, an atypical GATA factor, modulates cell proliferation and controls cell cycle progression through repression of GATA-regulated genes, therefore acting as a tumour suppressor gene. Conversely, TRPS1 expression has been shown to be significantly elevated in luminal and in a lesser extent in basal breast cancer cells, presenting roles both as an oncogene and as a tumour suppressor gene in breast cancer development. The aim of this project is therefore to determine the characteristics of TRPS1 either as a putative novel human oncogene or as a tumour suppressor gene in breast cancer cells. To this aim, we have cloned a novel isoform of TRPS1 and introduced it into several breast cancer cell lines. Our results show that overexpression of this isoform of TRPS1 results in variations in motility in non-carcinogenic cell lines, as well as in a series of EMT-like changes such as the down-regulation of the EMT marker E-cadherin, both of which can be associated to an increase in malignancy, suggesting an oncogenic behaviour for TRPS1. Furthermore, our results suggest that constitutively active members of the RAS protein family induce the expression of TRPS1, establishing a relationship between both genes. We can conclude that the effects of TRPS1 overexpression are moderate, inducing some changes but not fully transforming the cells. Therefore we cannot confirm that TRPS1 is a putative oncogene in breast cancer. (Author)

  10. Electrochemical DNA probe for Hg(2+) detection based on a triple-helix DNA and Multistage Signal Amplification Strategy.

    Science.gov (United States)

    Wang, Huan; Zhang, Yihe; Ma, Hongmin; Ren, Xiang; Wang, Yaoguang; Zhang, Yong; Wei, Qin

    2016-12-15

    In this work, an ultrasensitive electrochemical sensor was developed for detection of Hg(2+). Gold nanoparticles decorated bovine serum albumin reduction of graphene oxide (AuNP-BSA-rGO) were used as subsurface material for the immobilization of triple-helix DNA. The triple-helix DNA containing a thiol labelled single-stranded DNA (sDNA) and a thymine-rich DNA (T-rich DNA), which could be unwinded in the present of Hg(2+) to form more stable thymine-Hg(2+)-thymine (T-Hg(2+)-T) complex. T-Hg(2+)-T complex was then removed and the sDNA was left on the electrode. At this time, gold nanoparticle carrying thiol labelled cytosine-rich complementary DNA (cDNA-AuNP) could bind with the free sDNA. Meanwhile, the other free cDNA on AuNP could bind with each other in the present of Ag(+) to form the stable cytosine-Ag(+)-cytosine (C-Ag(+)-C) complex and circle amplification. Plenty of C-Ag(+)-C could form silver nanoclusters by electrochemical reduction and the striping signal of Ag could be measured for purpose of the final electrochemical detection of Hg(2+). This sensor could detect Hg(2+) over a wide concentration range from 0.1 to 130nM with a detection limit of 0.03nM. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. A sensitive detection assay based on signal amplification technology for Alzheimer's disease's early biomarker in exosome.

    Science.gov (United States)

    Zhou, Jie; Meng, Lingchang; Ye, Weiran; Wang, Qiaolei; Geng, Shizhen; Sun, Chong

    2018-08-31

    Alzheimer's disease (AD) considered as the third health "killer" has seriously threatened the health of the elderly. However, the modern diagnostic strategies of AD present several disadvantages: the low accuracy and specificity resulting in some false-negative diagnoses, and the poor sensitivity leading to a delayed treatment. In view of this situation, a enzyme-free and target-triggered signal amplification strategy, based on graphene oxide (GO) and entropy-driven strand displacement reaction (ESDR) principle, was proposed. In this strategy, when the hairpin structure probes (H)specially binds with beta-amyloid-(1-42) oligomers (Aβ42 oligomers), it's structure will be opened, causing the bases complementary to FAM-labeled replacement probes R (R1 and R2) exposed. At this time, R1 and R2 will hybridize with H, resulting in the bound Aβ42 oligomers released. The released Aβ42 oligomers would participate in the next cycle reaction, making the signal amplified. As a quencher, GO could absorb the free single-stranded DNA R1 and R2 and quench their fluorescence; however, the DNA duplex still exists free and keeps its signal-on. Through the detection of Aβ42 oligomers in exosomes, this ultrasensitive detection method with the advantages of low limit of detection (LOD, 20 pM), great accuracy, excellent precision and convenience provides an excellent prospect for AD's early diagnosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Recombinase Polymerase Amplification Compared to Real-Time Polymerase Chain Reaction Test for the Detection of Fasciola hepatica in Human Stool

    Science.gov (United States)

    Cabada, Miguel M.; Malaga, Jose L.; Castellanos-Gonzalez, Alejandro; Bagwell, Kelli A.; Naeger, Patrick A.; Rogers, Hayley K.; Maharsi, Safa; Mbaka, Maryann; White, A. Clinton

    2017-01-01

    Fasciola hepatica is the most widely distributed trematode infection in the world. Control efforts may be hindered by the lack of diagnostic capacity especially in remote endemic areas. Polymerase chain reaction (PCR)–based methods offer high sensitivity and specificity but require expensive technology. However, the recombinase polymerase amplification (RPA) is an efficient isothermal method that eliminates the need for a thermal cycler and has a high deployment potential to resource-limited settings. We report on the characterization of RPA and PCR tests to detect Fasciola infection in clinical stool samples with low egg burdens. The sensitivity of the RPA and PCR were 87% and 66%, respectively. Both tests were 100% specific showing no cross-reactivity with trematode, cestode, or nematode parasites. In addition, RPA and PCR were able to detect 47% and 26% of infections not detected by microscopy, respectively. The RPA adapted to a lateral flow platform was more sensitive than gel-based detection of the reaction products. In conclusion, the Fasciola RPA is a highly sensitive and specific test to diagnose chronic infection using stool samples. The Fasciola RPA lateral flow has the potential for deployment to endemic areas after further characterization. PMID:27821691

  13. Photoelectrochemical sensitive detection of insulin based on CdS/polydopamine co-sensitized WO3 nanorod and signal amplification of carbon nanotubes@polydopamine.

    Science.gov (United States)

    Wang, Rongyu; Ma, Hongmin; Zhang, Yong; Wang, Qi; Yang, Zhongping; Du, Bin; Wu, Dan; Wei, Qin

    2017-10-15

    An ultrasensitive photoelectrochemical sandwich immunosensor was designed for detection of insulin based on WO 3 /CdS/polydopamine (WO 3 /CdS/PDA) co-sensitized and PDA@carbon nanotubes (PDA@CNT) conjugates for signal amplification. The CdS nanoparticles were first deposited on the WO 3 nanorods via sequential chemical bath deposition to form the WO 3 /CdS structure to enhance photocurrent. Then equipped with PDA to form the WO 3 /CdS/PDA photosensitive structure. The PDA was used not only to reduce the toxicity of CdS but also adsorb insulin primary antibodies (Ab 1 ). Meanwhile, insulin secondary antibodies (Ab 2 ) were decorated by PDA@CNT conjugates for signal amplification and further enhance photocurrent. Different photocurrent intensities were obtained by the photoelectrochemical workstation at applied bias of 0V due to the different amount of the PDA@CNT conjugates introduced by the different concentrations of insulin. A good linear relationship was obtained between the increased photocurrent and insulin concentrations range from 0.01ngmL -1 to 50ngmL -1 . And a detection limit of 2.8pgmL -1 was obtained. The proposed sensor was applied to the determination of the insulin in human serum sample, and satisfactory results were obtained. The sensor presented good specificity, reproducibility and stability, thus it might find application in the clinical diagnosis of insulin or other biomarkers in the near future. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Improved amplification efficiency on stool samples by addition of spermidine and its use for non-invasive detection of colorectal cancer

    KAUST Repository

    Roperch, Jean-Pierre

    2015-05-29

    Background Using quantitative methylation-specific PCR (QM-MSP) is a promising method for colorectal cancer (CRC) diagnosis from stool samples. Difficulty in eliminating PCR inhibitors of this body fluid has been extensively reported. Here, spermidine is presented as PCR facilitator for the detection of stool DNA methylation biomarkers using QM-MSP. We examined its effectiveness with NPY, PENK and WIF1, three biomarkers which we have previously shown to be of relevance to CRC. Results We determined an optimal window for the amplification of the albumin (Alb) gene (100 ng of bisulfite-treated stool DNA added of 1 mM spermidine) at which we report that spermidine acts as a PCR facilitator (AE = 1680%) for SG RT-PCR. We show that the amplification of methylated PENK, NPY and WIF1 is considerably facilitated by QM-MSP as measured by an increase of CMI (Cumulative Methylation Index, i.e. the sum of the three methylation values) by a factor of 1.5 to 23 fold in individual samples, and of 10 fold in a pool of five samples. Conclusions We contend that spermidine greatly reduces the problems of PCR inhibition in stool samples. This observed feature, after validation on a larger sampling, could be used in the development of stool-based CRC diagnosis tests.

  15. Advanced DNA-Based Point-of-Care Diagnostic Methods for Plant Diseases Detection

    Directory of Open Access Journals (Sweden)

    Han Yih Lau

    2017-12-01

    Full Text Available Diagnostic technologies for the detection of plant pathogens with point-of-care capability and high multiplexing ability are an essential tool in the fight to reduce the large agricultural production losses caused by plant diseases. The main desirable characteristics for such diagnostic assays are high specificity, sensitivity, reproducibility, quickness, cost efficiency and high-throughput multiplex detection capability. This article describes and discusses various DNA-based point-of care diagnostic methods for applications in plant disease detection. Polymerase chain reaction (PCR is the most common DNA amplification technology used for detecting various plant and animal pathogens. However, subsequent to PCR based assays, several types of nucleic acid amplification technologies have been developed to achieve higher sensitivity, rapid detection as well as suitable for field applications such as loop-mediated isothermal amplification, helicase-dependent amplification, rolling circle amplification, recombinase polymerase amplification, and molecular inversion probe. The principle behind these technologies has been thoroughly discussed in several review papers; herein we emphasize the application of these technologies to detect plant pathogens by outlining the advantages and disadvantages of each technology in detail.

  16. Molecular Biology: Conference on Genetic Engineering Techniques (2nd) Held in London (United Kingdom) on 20-21 November 1986.

    Science.gov (United States)

    1987-05-27

    or lipopolysaccharides tinely produced a yield of 25 to 50 per- (LPS) in the cell wall. LPS is pyrogenic cent of the expressed enzyme in a solu- and...coding for the enzyme. Over induce oncogenic transformation so that 10 cases of endogenous gene amplification cells grow as dense foci on a monolayer...oncogenic transformation so that 10 cases of endogenous gene amplification cells grow as dense foci on a monolayer, have definitely been identified in

  17. Biomaterials in light amplification

    Science.gov (United States)

    Mysliwiec, Jaroslaw; Cyprych, Konrad; Sznitko, Lech; Miniewicz, Andrzej

    2017-03-01

    Biologically produced or inspired materials can serve as optical gain media, i.e. they can exhibit the phenomenon of light amplification. Some of these materials, under suitable dye-doping and optical pumping conditions, show lasing phenomena. The emerging branch of research focused on obtaining lasing action in highly disordered and highly light scattering materials, i.e. research on random lasing, is perfectly suited for biological materials. The use of biomaterials in light amplification has been extensively reported in the literature. In this review we attempt to report on progress in the development of biologically derived systems able to show the phenomena of light amplification and random lasing together with the contribution of our group to this field. The rich world of biopolymers modified with molecular aggregates and nanocrystals, and self-organized at the nanoscale, offers a multitude of possibilities for tailoring luminescent and light scattering properties that are not easily replicated in conventional organic or inorganic materials. Of particular importance and interest are light amplification and lasing, or random lasing studies in biological cells and tissues. In this review we will describe nucleic acids and their complexes employed as gain media due to their favorable optical properties and ease of manipulation. We will report on research conducted on various biomaterials showing structural analogy to nucleic acids such as fluorescent proteins, gelatins in which the first distributed feedback laser was realized, and also amyloids or silks, which, due to their dye-doped fiber-like structure, allow for light amplification. Other materials that were investigated in that respect include polysaccharides, like starch exhibiting favorable photostability in comparison to other biomaterials, and chitosan, which forms photonic crystals or cellulose. Light amplification and random lasing was not only observed in processed biomaterials but also in living

  18. Rapid detection of microbial DNA by a novel isothermal genome exponential amplification reaction (GEAR) assay.

    Science.gov (United States)

    Prithiviraj, Jothikumar; Hill, Vincent; Jothikumar, Narayanan

    2012-04-20

    In this study we report the development of a simple target-specific isothermal nucleic acid amplification technique, termed genome exponential amplification reaction (GEAR). Escherichia coli was selected as the microbial target to demonstrate the GEAR technique as a proof of concept. The GEAR technique uses a set of four primers; in the present study these primers targeted 5 regions on the 16S rRNA gene of E. coli. The outer forward and reverse Tab primer sequences are complementary to each other at their 5' end, whereas their 3' end sequences are complementary to their respective target nucleic acid sequences. The GEAR assay was performed at a constant temperature 60 °C and monitored continuously in a real-time PCR instrument in the presence of an intercalating dye (SYTO 9). The GEAR assay enabled amplification of as few as one colony forming units of E. coli per reaction within 30 min. We also evaluated the GEAR assay for rapid identification of bacterial colonies cultured on agar media directly in the reaction without DNA extraction. Cells from E. coli colonies were picked and added directly to GEAR assay mastermix without prior DNA extraction. DNA in the cells could be amplified, yielding positive results within 15 min. Published by Elsevier Inc.

  19. Evaluation of colorimetric loop-mediated isothermal amplification assay for visual detection of Streptococcus agalactiae and Streptococcus iniae in tilapia.

    Science.gov (United States)

    Suebsing, R; Kampeera, J; Tookdee, B; Withyachumnarnkul, B; Turner, W; Kiatpathomchai, W

    2013-10-01

    Streptococcus agalactiae and Strep. iniae are bacterial pathogens that cause streptococcosis in many fish species. An accelerated colorimetric loop-mediated isothermal amplification (LAMP) assay with pre-addition of calcein was established, and the transmission and detection of Strep. agalactiae and Strep. iniae in tilapia under natural aquatic environment were investigated. A positive reaction was observed by a colour change from orange to green through the naked eyes after completion at 63°C for 30 min with 10 times higher sensitivity than that of nested PCR assays and without cross-amplification with other fish bacterial pathogens. All sample types of Nile and red tilapia (broodstock, fertilized egg, fry) were Strep. agalactiae- and Strep. iniae positive by this new method, implying that they could be vertically transmitted. With its application for screening broodstock and fry before stocking and for monitoring fish health in grow-out ponds, the method would become very useful in fish farming industry. The application of colorimetric LAMP with pre-addition of calcein offers simple, rapid and sensitive technique with applicability for small field laboratories. This technique explored the possible vertical transmission mode of Strep. agalactiae and Strep. iniae under natural aquatic environment. It could be such preliminary data provided for the screening broodstock before breeding and/or the specific-pathogen-free production. © 2013 The Society for Applied Microbiology.

  20. Nonspecific amplification of human DNA by Streptococcus pneumoniae LytA primer

    Directory of Open Access Journals (Sweden)

    Helen Hencida Thangamony

    2018-01-01

    Full Text Available Background: Determination of various analytical parameters is essential for the validation of primers used for in-house nucleic acid amplification tests. While standardising a high-resolution melt analysis (HRMA for detection of Streptococcus pneumoniae in acute pyogenic meningitis, we encountered non-specific amplification of certain base pair sequences of human DNA by Centers for Disease Control & Prevention, USA recommended S. pneumoniae LytA primer. Materials and Methods: HRMA was standardised using DNA extracted from an ATCC strain of S. pneumoniae using SP LytA F373 primer and Type-it HRMTM polymerase chain reaction kit in Rotor-Gene Q Thermal Cycler according to the manufacturer's instructions. Specificity of the primers was determined in dry and wet laboratory experiments against diverse related and unrelated microbial pathogens by HRMA and on DNA extracted from unspiked clinical samples negative for SP DNA. Sensitivity was determined by calculating lower limit of detection threshold in experiments with spiked samples. The amplicon from spiked experiments was sequenced and analysed through Gene Bank. Results: Our dry/wet laboratory experiments showed two separate curves and different Tm values indicating certain non-specific amplification by the primer. Basic Local Alignment Search Tool (BLAST analysis of the amplicon obtained in the spiked experiment showed sequences of human chromosome 20 associated with Homo sapiens protein tyrosine phosphatase, receptor type T gene. The problem was resolved by stopping the reaction at 30th Ct cycle and observing the Tm values. Conclusion: Since HRMA is done without a specific probe, one should be aware of non-specific amplifications while using primers for HRMA of human clinical samples.

  1. GAB2 Amplification in Squamous Cell Lung Cancer of Non-Smokers.

    Science.gov (United States)

    Park, Yu Rang; Bae, Soo Hyeon; Ji, Wonjun; Seo, Eul Ju; Lee, Jae Cheol; Kim, Hyeong Ryul; Jang, Se Jin; Choi, Chang Min

    2017-11-01

    Lung squamous cell cancer (SCC) is typically found in smokers and has a very low incidence in non-smokers, indicating differences in the tumor biology of lung SCC in smokers and non-smokers. However, the specific mutations that drive tumor growth in non-smokers have not been identified. To identify mutations in lung SCC of non-smokers, we performed a genetic analysis using arrays comparative genomic hybridization (ArrayCGH). We analyzed 19 patients with lung SCC who underwent surgical treatment between April 2005 and April 2015. Clinical characteristics were reviewed, and DNA was extracted from fresh frozen lung cancer specimens. All of copy number alterations from ArrayCGH were validated using The Cancer Genome Atlas (TCGA) copy number variation (CNV) data of lung SCC. We examined the frequency of copy number changes according to the smoking status (non-smoker [n = 8] or smoker [n = 11]). We identified 16 significantly altered regions from ArrayCGH data, three gain and four loss regions overlapped with the TCGA lung squamous cell carcinoma (LUSC) patients. Within these overlapped significant regions, we detected 15 genes that have been reported in the Cancer Gene census. We also found that the proto-oncogene GAB2 (11q14.1) was significantly amplified in non-smokers patients and vice versa in both ArrayCGH and TCGA data. Immunohistochemical analyses showed that GAB2 protein was relatively upregulated in non-smoker than smoker tissues (37.5% vs. 9.0%, P = 0.007). GAB2 amplification may have an important role in the development of lung SCC in non-smokers. GAB2 may represent a potential biomarker for lung SCC in non-smokers. © 2017 The Korean Academy of Medical Sciences.

  2. P53 suppresses expression of the 14-3-3gamma oncogene

    Directory of Open Access Journals (Sweden)

    Qi Wenqing

    2011-08-01

    Full Text Available Abstract Background 14-3-3 proteins are a family of highly conserved proteins that are involved in a wide range of cellular processes. Recent evidence indicates that some of these proteins have oncogenic activity and that they may promote tumorigenesis. We previously showed that one of the 14-3-3 family members, 14-3-3gamma, is over expressed in human lung cancers and that it can induce transformation of rodent cells in vitro. Methods qRTPCR and Western blot analysis were performed to examine 14-3-3gamma expression in non-small cell lung cancers (NSCLC. Gene copy number was analyzed by qPCR. P53 mutations were detected by direct sequencing and also by western blot. CHIP and yeast one hybrid assays were used to detect p53 binding to 14-3-3gamma promoter. Results Quantitative rtPCR results showed that the expression level of 14-3-3gamma was elevated in the majority of NSCLC that we examined which was also consistent with protein expression. Further analysis of the expression pattern of 14-3-3gamma in lung tumors showed a correlation with p53 mutations suggesting that p53 might suppress 14-3-3 gamma expression. Analysis of the gamma promoter sequence revealed the presence of a p53 consensus binding motif and in vitro assays demonstrated that wild-type p53 bound to this motif when activated by ionizing radiation. Deletion of the p53 binding motif eliminated p53's ability to suppress 14-3-3gamma expression. Conclusion Increased expression of 14-3-3gamma in lung cancer coincides with loss of functional p53. Hence, we propose that 14-3-3gamma's oncogenic activities cooperate with loss of p53 to promote lung tumorigenesis.

  3. Development and Comparison of a Rapid Isothermal Nucleic Acid Amplification Test for Typing of Herpes Simplex Virus Types 1 and 2 on a Portable Fluorescence Detector

    Science.gov (United States)

    Tong, Yanhong; McCarthy, Kaitlin; Kong, Huimin; Lemieux, Bertrand

    2013-01-01

    We have developed a rapid and simple molecular test, the IsoGlow HSV Typing assay, for the detection and typing of herpes simplex virus (type 1 and 2) from genital or oral lesions. Clinical samples suspended in viral transport mediums are simply diluted and then added to a helicase-dependent amplification master mix. The amplification and detection were performed on a portable fluorescence detector called the FireFly instrument. Detection of amplification products is based on end-point analysis using cycling probe technology. An internal control nucleic acid was included in the amplification master mix to monitor the presence of amplification inhibitors in the samples. Because the device has only two fluorescence detection channels, two strategies were developed and compared to detect the internal control template: internal control detected by melting curve analysis using a dual-labeled probe, versus internal control detection using end-point fluorescence release by a CPT probe at a lower temperature. Both have a total turnaround time of about 1 hour. Clinical performance relative to herpes viral culture was evaluated using 176 clinical specimens. Both formats of the IsoGlow HSV typing assay had sensitivities comparable to that of the Food and Drug Administration–cleared IsoAmp HSV (BioHelix Corp., Beverly MA) test and specificity for the two types of HSV comparable to that of ELVIS HSV (Diagnostic Hybrids, Athens, OH). PMID:22951487

  4. Detecting DNA double-stranded breaks in mammalian genomes by linear amplification-mediated high-throughput genome-wide translocation sequencing.

    Science.gov (United States)

    Hu, Jiazhi; Meyers, Robin M; Dong, Junchao; Panchakshari, Rohit A; Alt, Frederick W; Frock, Richard L

    2016-05-01

    Unbiased, high-throughput assays for detecting and quantifying DNA double-stranded breaks (DSBs) across the genome in mammalian cells will facilitate basic studies of the mechanisms that generate and repair endogenous DSBs. They will also enable more applied studies, such as those to evaluate the on- and off-target activities of engineered nucleases. Here we describe a linear amplification-mediated high-throughput genome-wide sequencing (LAM-HTGTS) method for the detection of genome-wide 'prey' DSBs via their translocation in cultured mammalian cells to a fixed 'bait' DSB. Bait-prey junctions are cloned directly from isolated genomic DNA using LAM-PCR and unidirectionally ligated to bridge adapters; subsequent PCR steps amplify the single-stranded DNA junction library in preparation for Illumina Miseq paired-end sequencing. A custom bioinformatics pipeline identifies prey sequences that contribute to junctions and maps them across the genome. LAM-HTGTS differs from related approaches because it detects a wide range of broken end structures with nucleotide-level resolution. Familiarity with nucleic acid methods and next-generation sequencing analysis is necessary for library generation and data interpretation. LAM-HTGTS assays are sensitive, reproducible, relatively inexpensive, scalable and straightforward to implement with a turnaround time of <1 week.

  5. Specific detection of Angiostrongylus cantonensis in the snail Achatina fulica using a loop-mediated isothermal amplification (LAMP) assay.

    Science.gov (United States)

    Liu, Chun-Yan; Song, Hui-Qun; Zhang, Ren-Li; Chen, Mu-Xin; Xu, Min-Jun; Ai, Lin; Chen, Xiao-Guang; Zhan, Xi-Mei; Liang, Shao-Hui; Yuan, Zi-Guo; Lin, Rui-Qing; Zhu, Xing-Quan

    2011-08-01

    Angiostrongylus cantonensis, a rat lungworm, can cause eosinophilic meningitis and angiostrongyliasis in humans following ingestion of contaminated foods or intermediate/paratenic hosts with infective larvae. The snail Achatina fulica is one of the important intermediate hosts of A. cantonensis and is commonly eaten by humans in some countries. In the present study, we developed a loop-mediated isothermal amplification (LAMP) method for the specific detection of A. cantonensis in Ac. fulica. Primers for LAMP were designed based on the first internal transcribed spacer (ITS-1) of nuclear ribosomal DNA (rDNA) of A. cantonensis. Specificity tests showed that only the products of A. cantonensis were detected when DNA samples of A. cantonensis and the heterologous control samples Anisakis simplex s.s, Trichuris trichiura, Toxocara canis, Trichinella spiralis and Ascaris lumbricoides were amplified by LAMP. Sensitivity evaluation indicated that the LAMP assay is 10 times more sensitive than the conventional polymerase chain reaction (PCR) assay. The established LAMP assay is rapid, inexpensive and easy to be performed. It can be used in clinical applications for rapid and sensitive detection of A. cantonensis in snails, which has implications for the effective control of angiostrongyliasis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. MET amplification, expression, and exon 14 mutations in colorectal adenocarcinoma.

    Science.gov (United States)

    Zhang, Meng; Li, Guichao; Sun, Xiangjie; Ni, Shujuan; Tan, Cong; Xu, Midie; Huang, Dan; Ren, Fei; Li, Dawei; Wei, Ping; Du, Xiang

    2018-04-08

    MET amplification, expression, and splice mutations at exon 14 result in dysregulation of the MET signaling pathway. The aim of this study was to identify the relationship between MET amplification, protein or mRNA expression, and mutations in colorectal cancer (CRC). MET immunohistochemistry (IHC) was used for MET protein expression analysis and fluorescence in situ hybridization (FISH) was used for MET amplification detection. Both analyses were performed in tissue microarrays (TMA) containing 294 of colorectal adenocarcinoma tissue samples and 131 samples of adjacent normal epithelial tissue. MET mRNA expression was examined by real-time quantitative polymerase chain reaction (qRT-PCR) in 72 fresh colorectal adenocarcinoma tissue samples and adjacent normal colon tissue. PCR sequencing was performed to screen for MET exon 14 splice mutations in 59 fresh CRC tissue samples. Our results showed that MET protein expression was higher in colorectal tumor tissue than in adjacent normal intestinal epithelium. Positive MET protein expression was associated with significantly poorer overall survival (OS) and disease-free survival (DFS). Multivariate analysis revealed that positive MET protein expression was an independent risk factor for DFS, but not for OS. MET mRNA expression was upregulated in tumor tissues compared with the adjacent normal tissues. The incidence of MET amplification was 4.4%. None of the patients was positive for MET mutation. Collectively, MET was overexpressed in colorectal adenocarcinoma, and its positive protein expression predicted a poorer outcome in CRC patients. Furthermore, according to our results, MET amplification and 14 exon mutation are extremely rare events in colorectal adenocarcinoma. Copyright © 2018. Published by Elsevier Inc.

  7. A loop-mediated isothermal amplification (LAMP assay for early detection of Schistosoma mansoni in stool samples: a diagnostic approach in a murine model.

    Directory of Open Access Journals (Sweden)

    Pedro Fernández-Soto

    2014-09-01

    Full Text Available Human schistosomiasis, mainly due to Schistosoma mansoni species, is one of the most prevalent parasitic diseases worldwide. To overcome the drawbacks of classical parasitological and serological methods in detecting S. mansoni infections, especially in acute stage of the disease, development of cost-effective, simple and rapid molecular methods is still needed for the diagnosis of schistosomiasis. A promising approach is the loop-mediated isothermal amplification (LAMP technology. Compared to PCR-based assays, LAMP has the advantages of reaction simplicity, rapidity, specificity, cost-effectiveness and higher amplification efficiency. Additionally, as results can be inspected by the naked eye, the technique has great potential for use in low-income countries.A sequence corresponding to a mitochondrial S. mansoni minisatellite DNA region was selected as a target for designing a LAMP-based method to detect S. mansoni DNA in stool samples. We used a S. mansoni murine model to obtain well defined stool and sera samples from infected mice with S. mansoni cercariae. Samples were taken weekly from week 0 to 8 post-infection and the Kato-Katz and ELISA techniques were used for monitoring the infection. Primer set designed were tested using a commercial reaction mixture for LAMP assay and an in house mixture to compare results. Specificity of LAMP was tested using 16 DNA samples from different parasites, including several Schistosoma species, and no cross-reactions were found. The detection limit of our LAMP assay (SmMIT-LAMP was 1 fg of S. mansoni DNA. When testing stool samples from infected mice the SmMIT-LAMP detected S. mansoni DNA as soon as 1 week post-infection.We have developed, for the first time, a cost-effective, easy to perform, specific and sensitive LAMP assay for early detection of S. mansoni in stool samples. The method is potentially and readily adaptable for field diagnosis and disease surveillance in schistosomiasis-endemic areas.

  8. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer.

    Science.gov (United States)

    Kamerkar, Sushrut; LeBleu, Valerie S; Sugimoto, Hikaru; Yang, Sujuan; Ruivo, Carolina F; Melo, Sonia A; Lee, J Jack; Kalluri, Raghu

    2017-06-22

    The mutant form of the GTPase KRAS is a key driver of pancreatic cancer but remains a challenging therapeutic target. Exosomes are extracellular vesicles generated by all cells, and are naturally present in the blood. Here we show that enhanced retention of exosomes, compared to liposomes, in the circulation of mice is likely due to CD47-mediated protection of exosomes from phagocytosis by monocytes and macrophages. Exosomes derived from normal fibroblast-like mesenchymal cells were engineered to carry short interfering RNA or short hairpin RNA specific to oncogenic Kras G12D , a common mutation in pancreatic cancer. Compared to liposomes, the engineered exosomes (known as iExosomes) target oncogenic KRAS with an enhanced efficacy that is dependent on CD47, and is facilitated by macropinocytosis. Treatment with iExosomes suppressed cancer in multiple mouse models of pancreatic cancer and significantly increased overall survival. Our results demonstrate an approach for direct and specific targeting of oncogenic KRAS in tumours using iExosomes.

  9. Low cost extraction and isothermal amplification of DNA for infectious diarrhea diagnosis.

    Directory of Open Access Journals (Sweden)

    Shichu Huang

    Full Text Available In order to counter the common perception that molecular diagnostics are too complicated to work in low resource settings, we have performed a difficult sample preparation and DNA amplification protocol using instrumentation designed to be operated without wall or battery power. In this work we have combined a nearly electricity-free nucleic acid extraction process with an electricity-free isothermal amplification assay to detect the presence of Clostridium difficile (C. difficile DNA in the stool of infected patients. We used helicase-dependent isothermal amplification (HDA to amplify the DNA in a low-cost, thermoplastic reaction chip heated with a pair of commercially available toe warmers, while using a simple Styrofoam insulator. DNA was extracted from known positive and negative stool samples. The DNA extraction protocol utilized an air pressure driven solid phase extraction device run using a standard bicycle pump. The simple heater setup required no electricity or battery and was capable of maintaining the temperature at 65°C±2°C for 55 min, suitable for repeatable HDA amplification. Experiments were performed to explore the adaptability of the system for use in a range of ambient conditions. When compared to a traditional centrifuge extraction protocol and a laboratory thermocycler, this disposable, no power platform achieved approximately the same lower limit of detection (1.25×10(-2 pg of C. difficile DNA while requiring much less raw material and a fraction of the lab infrastructure and cost. This proof of concept study could greatly impact the accessibility of molecular assays for applications in global health.

  10. Low Cost Extraction and Isothermal Amplification of DNA for Infectious Diarrhea Diagnosis

    Science.gov (United States)

    Huang, Shichu; Do, Jaephil; Mahalanabis, Madhumita; Fan, Andy; Zhao, Lei; Jepeal, Lisa; Singh, Satish K.; Klapperich, Catherine M.

    2013-01-01

    In order to counter the common perception that molecular diagnostics are too complicated to work in low resource settings, we have performed a difficult sample preparation and DNA amplification protocol using instrumentation designed to be operated without wall or battery power. In this work we have combined a nearly electricity-free nucleic acid extraction process with an electricity-free isothermal amplification assay to detect the presence of Clostridium difficile (C. difficile) DNA in the stool of infected patients. We used helicase-dependent isothermal amplification (HDA) to amplify the DNA in a low-cost, thermoplastic reaction chip heated with a pair of commercially available toe warmers, while using a simple Styrofoam insulator. DNA was extracted from known positive and negative stool samples. The DNA extraction protocol utilized an air pressure driven solid phase extraction device run using a standard bicycle pump. The simple heater setup required no electricity or battery and was capable of maintaining the temperature at 65°C±2°C for 55 min, suitable for repeatable HDA amplification. Experiments were performed to explore the adaptability of the system for use in a range of ambient conditions. When compared to a traditional centrifuge extraction protocol and a laboratory thermocycler, this disposable, no power platform achieved approximately the same lower limit of detection (1.25×10−2 pg of C. difficile DNA) while requiring much less raw material and a fraction of the lab infrastructure and cost. This proof of concept study could greatly impact the accessibility of molecular assays for applications in global health. PMID:23555883

  11. Time Course of Detection of Human Male DNA from Stained Blood Sample on Various Surfaces by Loop Mediated Isothermal Amplification and Polymerase Chain Reaction

    OpenAIRE

    Panan Kanchanaphum

    2018-01-01

    This study explores determining the sex of humans from blood stains taken from different surfaces and compares the time course of detection with the conventional PCR, Conventional Loop Mediated Isothermal Amplification (LAMP), and LAMP-Lateral Flow Dipstick (LFD). For the DNA templates, 7 male and 7 female blood stained samples were extracted and added to LAMP and PCR reaction solution to amplify the SRY gene. The DNA samples were extracted from the following blood stained materials: cloth, w...

  12. Generation of sequence signatures from DNA amplification fingerprints with mini-hairpin and microsatellite primers.

    Science.gov (United States)

    Caetano-Anollés, G; Gresshoff, P M

    1996-06-01

    DNA amplification fingerprinting (DAF) with mini-hairpins harboring arbitrary "core" sequences at their 3' termini were used to fingerprint a variety of templates, including PCR products and whole genomes, to establish genetic relationships between plant tax at the interspecific and intraspecific level, and to identify closely related fungal isolates and plant accessions. No correlation was observed between the sequence of the arbitrary core, the stability of the mini-hairpin structure and DAF efficiency. Mini-hairpin primers with short arbitrary cores and primers complementary to simple sequence repeats present in microsatellites were also used to generate arbitrary signatures from amplification profiles (ASAP). The ASAP strategy is a dual-step amplification procedure that uses at least one primer in each fingerprinting stage. ASAP was able to reproducibly amplify DAF products (representing about 10-15 kb of sequence) following careful optimization of amplification parameters such as primer and template concentration. Avoidance of primer sequences partially complementary to DAF product termini was necessary in order to produce distinct fingerprints. This allowed the combinatorial use of oligomers in nucleic acid screening, with numerous ASAP fingerprinting reactions based on a limited number of primer sequences. Mini-hairpin primers and ASAP analysis significantly increased detection of polymorphic DNA, separating closely related bermudagrass (Cynodon) cultivars and detecting putatively linked markers in bulked segregant analysis of the soybean (Glycine max) supernodulation (nitrate-tolerant symbiosis) locus.

  13. Pervasive transcription read-through promotes aberrant expression of oncogenes and RNA chimeras in renal carcinoma

    Science.gov (United States)

    Grosso, Ana R; Leite, Ana P; Carvalho, Sílvia; Matos, Mafalda R; Martins, Filipa B; Vítor, Alexandra C; Desterro, Joana MP; Carmo-Fonseca, Maria; de Almeida, Sérgio F

    2015-01-01

    Aberrant expression of cancer genes and non-canonical RNA species is a hallmark of cancer. However, the mechanisms driving such atypical gene expression programs are incompletely understood. Here, our transcriptional profiling of a cohort of 50 primary clear cell renal cell carcinoma (ccRCC) samples from The Cancer Genome Atlas (TCGA) reveals that transcription read-through beyond the termination site is a source of transcriptome diversity in cancer cells. Amongst the genes most frequently mutated in ccRCC, we identified SETD2 inactivation as a potent enhancer of transcription read-through. We further show that invasion of neighbouring genes and generation of RNA chimeras are functional outcomes of transcription read-through. We identified the BCL2 oncogene as one of such invaded genes and detected a novel chimera, the CTSC-RAB38, in 20% of ccRCC samples. Collectively, our data highlight a novel link between transcription read-through and aberrant expression of oncogenes and chimeric transcripts that is prevalent in cancer. DOI: http://dx.doi.org/10.7554/eLife.09214.001 PMID:26575290

  14. Comparison of loop-mediated isothermal amplification (LAMP) and nested-PCR assay targeting the RE and B1 gene for detection of Toxoplasma gondii in blood samples of children with leukaemia.

    Science.gov (United States)

    Fallahi, Shirzad; Seyyed Tabaei, Seyyed Javad; Pournia, Yadollah; Zebardast, Nozhat; Kazemi, Bahram

    2014-07-01

    Toxoplasmosis diagnosis constitutes an important measure for disease prevention and control. In this paper, a newly described DNA amplification technique, loop-mediated isothermal amplification (LAMP), and nested-PCR targeting the repeated element (RE) and B1 gene, were compared to each other for the detection of Toxoplasma gondii DNA in blood samples of children with leukaemia. One hundred ten blood samples from these patients were analyzed by LAMP and nested-PCR. Out of 50 seropositive samples (IgM+, IgG+), positive results were obtained with 92% and 86% on RE, B1-LAMP and 82% and 68% on RE, B1-nested PCR analyses, respectively. Of the 50 seronegative samples, three, two and one samples were detected positive by RE-LAMP, B1-LAMP and RE-nested PCR assays, respectively, while none were detected positive by B1-nested PCR. None of the 10 IgM-, IgG+ samples was detected positive after testing LAMP and nested-PCR assays in duplicate. This is the first report of a study in which the LAMP method was applied with high sensitivity and efficacy for the diagnosis of T. gonii in blood samples of children with leukaemia. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Detection of natural infection of infectious spleen and kidney necrosis virus in farmed tilapia by hydroxynapthol blue-loop-mediated isothermal amplification assay.

    Science.gov (United States)

    Suebsing, R; Pradeep, P J; Jitrakorn, S; Sirithammajak, S; Kampeera, J; Turner, W A; Saksmerprome, V; Withyachumnarnkul, B; Kiatpathomchai, W

    2016-07-01

    Infectious spleen and kidney necrosis virus (ISKNV) has recently been recognized as a causative agent of serious systemic disease in tilapia. Our objective was to establish a new colorimetric loop-mediated isothermal amplification (LAMP) assay with pre-addition of hydroxynapthol blue (blue-LAMP) to investigate ISKNV transmission in tilapia. The blue-LAMP, targeting a major capsid protein gene of ISKNV, was conducted at 65°C for 45 min, allowing unaided visual detection of the pathogen based on colour change without cross-amplification of other known fish pathogens tested. Comparison of blue-LAMP and PCR assays revealed a higher detection level for blue-LAMP assay (41·33%) in a population of farmed tilapia infected with ISKNV. The investigation of ISKNV transmission pattern in farmed red tilapia using the blue-LAMP revealed a possible matroclinical form. The presence of ISKNV in the gonad samples was confirmed by in situ LAMP assay. Positive signals only appeared in ovarian follicles, and not in oocytes. Moreover, tissue tropism assay revealed that the brain was the main target organ in both farmed red tilapia (40%) and Nile tilapia (20%). The developed blue-LAMP assay has the potential to be used as a viable tool for screening covert and natural infections of ISKNV in tilapia. The evidence of vertical transmission of ISKNV infection in tilapia indicates the seriousness of this disease and will require a close attention and collaboration between tilapia hatcheries and disease experts in order to find a solution. The new blue-LAMP assay is a time-saving and economically viable detection tool, which allows unaided visual detection for ISKNV in tilapia, and it could be applicable for field applications. Evidence on the vertical transmission of ISKNV in farmed tilapia suggests a need for developing farm management practices to control the spread of virus in aquaculture industries. © 2016 The Society for Applied Microbiology.

  16. chipPCR: an R package to pre-process raw data of amplification curves.

    Science.gov (United States)

    Rödiger, Stefan; Burdukiewicz, Michał; Schierack, Peter

    2015-09-01

    Both the quantitative real-time polymerase chain reaction (qPCR) and quantitative isothermal amplification (qIA) are standard methods for nucleic acid quantification. Numerous real-time read-out technologies have been developed. Despite the continuous interest in amplification-based techniques, there are only few tools for pre-processing of amplification data. However, a transparent tool for precise control of raw data is indispensable in several scenarios, for example, during the development of new instruments. chipPCR is an R: package for the pre-processing and quality analysis of raw data of amplification curves. The package takes advantage of R: 's S4 object model and offers an extensible environment. chipPCR contains tools for raw data exploration: normalization, baselining, imputation of missing values, a powerful wrapper for amplification curve smoothing and a function to detect the start and end of an amplification curve. The capabilities of the software are enhanced by the implementation of algorithms unavailable in R: , such as a 5-point stencil for derivative interpolation. Simulation tools, statistical tests, plots for data quality management, amplification efficiency/quantification cycle calculation, and datasets from qPCR and qIA experiments are part of the package. Core functionalities are integrated in GUIs (web-based and standalone shiny applications), thus streamlining analysis and report generation. http://cran.r-project.org/web/packages/chipPCR. Source code: https://github.com/michbur/chipPCR. stefan.roediger@b-tu.de Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Intracortical osteoblastic osteosarcoma with oncogenic rickets

    International Nuclear Information System (INIS)

    Hasegawa, T.; Hirohashi, Setsuo; Shimoda, Tadakazu; Yokoyama, Ryohei; Beppu, Yasuo; Maeda, Shotaro

    1999-01-01

    Intracortical osteosarcoma is the rarest variant of osteosarcoma, occurring within, and usually confined to, the cortical bone. Oncogenic osteomalacia, or rickets, is an unusual clinicopathologic entity in which vitamin D-resistant osteomalacia, or rickets, occurs in association with some tumors of soft tissue or bone. We present a case of oncogenic rickets associated with intracortical osteosarcoma of the tibia in a 9-year-old boy, whose roentgenographic abnormalities of rickets disappeared and pertinent laboratory data except for serum alkaline phosphatase became normal after surgical resection of the tumor. Histologically, the tumor was an osteosarcoma with a prominent osteoblastic pattern. An unusual microscopic feature was the presence of matrix mineralization showing rounded calcified structures (calcified spherules). Benign osteoblastic tumors, such as osteoid osteoma and osteoblastoma, must be considered in the differential diagnosis because of the relatively low cellular atypia and mitotic activity of this tumor. The infiltrating pattern with destruction or engulfment of normal bone is a major clue to the correct diagnosis of intracortical osteosarcoma. The co-existing radiographic changes of rickets were due to the intracortical osteosarcoma. (orig.)

  18. Tip-enhanced fluorescence with radially polarized illumination for monitoring loop-mediated isothermal amplification on Hepatitis C virus cDNA

    Science.gov (United States)

    Wei, Shih-Chung; Chuang, Tsung-Liang; Wang, Da-Shin; Lu, Hui-Hsin; Gu, Frank X.; Sung, Kung-Bin; Lin, Chii-Wann

    2015-02-01

    A tip nanobiosensor for monitoring DNA replication was presented. The effects of excitation power and polarization on tip-enhanced fluorescence (TEF) were assessed with the tip immersed in fluorescein isothiocyanate solution first. The photon count rose on average fivefold with radially polarized illumination at 50 mW. We then used polymerase-functionalized tips for monitoring loop-mediated isothermal amplification on Hepatitis C virus cDNA. The amplicon-SYBR Green I complex was detected and compared to real-time loop-mediated isothermal amplification. The signals of the reaction using 4 and 0.004 ng/μl templates were detected 10 and 30 min earlier, respectively. The results showed the potential of TEF in developing a nanobiosensor for real-time DNA amplification.

  19. A novel monoclonal antibody for detection of galectin-9 in tissue sections: application to human tissues infected by oncogenic viruses

    Directory of Open Access Journals (Sweden)

    Barjon Clément

    2012-07-01

    Full Text Available Abstract Background Galectin-9 is a mammalian lectin which possesses immunosuppressive properties. Excessive production of galectin-9 has been reported in two types of human virus-associated diseases chronic hepatitis C and nasopharyngeal carcinoma associated to the Epstein-Barr virus. The objective of this study was to produce new monoclonal antibodies targeting galectin-9 in order to improve its detection in clinical samples, especially on tissue sections analysed by immunohistochemistry. Methods Hybridomas were produced through immunization of mice with the recombinant c-terminus part of galectin-9 (residues 191 to 355 of the long isoform and semi-solid fusion of spleen cells with Sp2/0 cells. Monoclonal antibodies were characterized using ELISA, epitope mapping, western blot and immunohistochemistry. Results We selected seven hybridomas producing antibodies reacting with our recombinant c-terminus galectin-9 in ELISA. Five of them reacted with the epitope “TPAIPPMMYPHPA” (common to all isoforms, residues 210 to 222 of the long isoform and stained all three isoforms of galectin-9 analysed by western blot. One of them, 1G3,demonstrated very good sensitivity and specificity when used for immunohistochemistry. Using 1G3, we could confirm the intense and constant expression of galectin-9 by Epstein-Barr virus positive malignant cells from nasopharyngeal carcinomas. In most samples, specific staining was detected in both cytoplasm and nuclei. Galectin-9 was also detected in liver biopsies from patients infected by the human hepatitis C or B viruses with expression not only in inflammatory leucocytes and Kupffer cells, but also in hepatocytes. In contrast, galectin-9 was virtually absent in non-infected liver specimens. Conclusion The 1G3 monoclonal antibody will be a powerful tool to assess galectin-9 expression and distribution especially in diseases related to oncogenic viruses.

  20. Novel Combinatorial Chemistry-Derived Inhibitors of Oncogenic Phosphatases

    National Research Council Canada - National Science Library

    Lazo, John

    1999-01-01

    Our overall goal of this US Army Breast Cancer Grant entitled "Novel Combinatorial Chemistry-Derived Inhibitors of Oncogenic Phosphatases" is to identity and develop novel therapeutic agents for human breast cancer...