WorldWideScience

Sample records for on-load corrosion creep-rupture

  1. Creep rupture of structures subjected to variable loading and temperature

    International Nuclear Information System (INIS)

    Wojewodzki, W.

    1975-01-01

    The aim of the present paper is to show on the basis of equations and the analysis of creep mechanisms the possibilities of a description of the creep behavior of material under variable temperature and loading conditions. Also the influence of cyclic proportional loading and temperature gradient upon the rupture life and strains of a thick cylinder is investigated in detail. The obtained theoretical creep curves coincide with the experimental results for investigated steel in the temperature range from 500 0 C to 575 0 C. The constitutive equations together with the functions determined previously are applied to solve the problem of thick cylinder subjected to cyclic proportional pressure and temperature gradient. Numerical results for the thick steel cylinder are presented both in diagrammatical and tabular form. The obtained new results clearly show the significant influence of temperature gradient, cyclic temperature gradient, and cyclic pressure upon the stress redistribution, the magnitude of deformation, the propagation of the front damage and the rupture life. It was found that small temperature fluctuations at elevated temperature can shorten the rupture life very considerably. The introduced description of the creep rupture behavior of material under variable temperature and loading conditions together with the results for the thick cylinder indicate the possibilities of solutions of practical problems encountered in structural mechanics of reactor technology

  2. Creep rupture properties under varying load/temperature conditions on a nickel-base heat-resistant alloy strengthened by boron addition

    International Nuclear Information System (INIS)

    Tsuji, Hirokazu; Tanabe, Tatsuhiko; Nakajima, Hajime

    1994-01-01

    A series of constant load and temperature creep rupture tests and varying load and temperature creep rupture tests was carried out on Hastelloy XR whose boron content level is 60 mass ppm at 900 and 1000 C in order to examine the behavior of the alloy under varying load and temperature conditions. The life fraction rule completely fails in the prediction of the creep rupture life under varying load and temperature conditions though the rule shows good applicability for Hastelloy XR whose boron content level is below 10 mass ppm. The modified life fraction rule has been proposed based on the dependence of the creep rupture strength on the boron content level of the alloy. The modified rule successfully predicts the creep rupture life under the test conditions from 1000 to 900 C. The trend observed in the tests from 900 to 1000 C can be qualitatively explained by the mechanism that the oxide film which is formed during the prior exposure to 900 C plays the role of the protective barrier against the boron dissipation into the environment. (orig.)

  3. Creep rupture properties under varying load/temperature conditions on a nickel-base heat-resistant alloy strengthened by boron addition

    International Nuclear Information System (INIS)

    Tsuji, Hirokazu; Nakajima, Hajime; Tanabe, Tatsuhiko.

    1993-09-01

    A series of constant load and temperature creep rupture tests and varying load and temperature creep rupture tests was carried out on Hastelloy XR whose boron content level is 60 mass ppm at 900 and 1000degC in order to examine the behavior of the alloy under varying load and temperature conditions. The life fraction rule completely fails in the prediction of the creep rupture life under varying load and temperature conditions though the rule shows good applicability for Hastelloy XR whose boron content level is below 10 mass ppm. The modified life fraction rule has been proposed based on the dependence of the creep rupture strength on the born content level of the alloy. The modified rule successfully predicts the creep rupture life under the test conditions from 1000degC to 900degC. The trend observed in the tests from 900degC to 1000degC can be qualitatively explained by the mechanism that the oxide film which is formed during the prior exposure to 900degC plays the role of the protective barrier against the boron dissipation into the environment. (author)

  4. Creep Rupture Life Prediction Based on Analysis of Large Creep Deformation

    Directory of Open Access Journals (Sweden)

    YE Wenming

    2016-08-01

    Full Text Available A creep rupture life prediction method for high temperature component was proposed. The method was based on a true stress-strain elastoplastic creep constitutive model and the large deformation finite element analysis method. This method firstly used the high-temperature tensile stress-strain curve expressed by true stress and strain and the creep curve to build materials' elastoplastic and creep constitutive model respectively, then used the large deformation finite element method to calculate the deformation response of high temperature component under a given load curve, finally the creep rupture life was determined according to the change trend of the responsive curve.The method was verified by durable test of TC11 titanium alloy notched specimens under 500 ℃, and was compared with the three creep rupture life prediction methods based on the small deformation analysis. Results show that the proposed method can accurately predict the high temperature creep response and long-term life of TC11 notched specimens, and the accuracy is better than that of the methods based on the average effective stress of notch ligament, the bone point stress and the fracture strain of the key point, which are all based on small deformation finite element analysis.

  5. Cyclic creep-rupture behavior of three high-temperature alloys.

    Science.gov (United States)

    Halford, G. R.

    1972-01-01

    Study of some important characteristics of the cyclic creep-rupture curves for the titanium alloy 6Al-2Sn-4Zr-2Mo at 900 and 1100 F (755 and 865 K), the cobalt-base alloy L-605 at 1180 F (910 K), and for two hardness levels of 316 stainless steel at 1300 F (980 K). The cyclic creep-rupture curve relates tensile stress and tensile time-to-rupture for strain-limited cyclic loading and has been found to be independent of the total strain range and the level of compressive stress employed in the cyclic creep-rupture tests. The cyclic creep-rupture curve was always found to be above and to the right of the conventional (constant load) monotonic creep-rupture curve by factors ranging from 2 to 10 in time-to-rupture. This factor tends to be greatest when the creep ductility is large. Cyclic creep acceleration was observed in every cyclic creep-rupture test conducted. The phenomenon was most pronounced at the highest stress levels and when the tensile and compressive stresses were completely reversed. In general, creep rates were found to be lower in compression than in tension for equal true stresses. The differences, however, were strongly material-dependent.

  6. Creep rupture behavior of unidirectional advanced composites

    Science.gov (United States)

    Yeow, Y. T.

    1980-01-01

    A 'material modeling' methodology for predicting the creep rupture behavior of unidirectional advanced composites is proposed. In this approach the parameters (obtained from short-term tests) required to make the predictions are the three principal creep compliance master curves and their corresponding quasi-static strengths tested at room temperature (22 C). Using these parameters in conjunction with a failure criterion, creep rupture envelopes can be generated for any combination of in-plane loading conditions and ambient temperature. The analysis was validated experimentally for one composite system, the T300/934 graphite-epoxy system. This was done by performing short-term creep tests (to generate the principal creep compliance master curves with the time-temperature superposition principle) and relatively long-term creep rupture tensile tests of off-axis specimens at 180 C. Good to reasonable agreement between experimental and analytical results is observed.

  7. Effect of loading rate on creep of phosphorous doped copper

    Energy Technology Data Exchange (ETDEWEB)

    Andersson-Oestling, Henrik C.M.; Sandstroem, Rolf (Swerea KIMAB (Sweden))

    2011-12-15

    Creep testing of copper intended for nuclear waste disposal has been performed on continuous creep tests machines at a temperature of 75 deg C. The loading time has been varied from 1 hour to 6 months. The rupture strain including both loading and creep strains does not differ from traditional dead weight lever creep test rigs. The loading strain increases with increasing loading time, at the expense of the creep strain. The time dependence of the creep strain has been modelled taking athermal plastic deformation and creep into account. During loading the contribution to the strain from the athermal plastic deformation dominates until the stress is close to the constant load level. When the constant load has been reached there is no more athermal strain and all of the strain comes from creep

  8. Consistent creep and rupture properties for creep-fatigue evaluation

    International Nuclear Information System (INIS)

    Schultz, C.C.

    1978-01-01

    The currently accepted practice of using inconsistent representations of creep and rupture behaviors in the prediction of creep-fatigue life is shown to introduce a factor of safety beyond that specified in current ASME Code design rules for 304 stainless steel Class 1 nuclear components. Accurate predictions of creep-fatigue life for uniaxial tests on a given heat of material are obtained by using creep and rupture properties for that same heat of material. The use of a consistent representation of creep and rupture properties for a mininum strength heat is also shown to provide adequate predictions. The viability of using consistent properties (either actual or those of a minimum heat) to predict creep-fatigue life thus identifies significant design uses for the results of characterization tests and improved creep and rupture correlations

  9. Consistent creep and rupture properties for creep-fatigue evaluation

    International Nuclear Information System (INIS)

    Schultz, C.C.

    1979-01-01

    The currently accepted practice of using inconsistent representations of creep and rupture behaviors in the prediction of creep-fatigue life is shown to introduce a factor of safety beyond that specified in current ASME Code design rules for 304 stainless steel Class 1 nuclear components. Accurate predictions of creep-fatigue life for uniaxial tests on a given heat of material are obtained by using creep and rupture properties for that same heat of material. The use of a consistent representation of creep and rupture properties for a minimum strength heat is also shown to provide reasonable predictions. The viability of using consistent properties (either actual or those of a minimum strength heat) to predict creep-fatigue life thus identifies significant design uses for the results of characterization tests and improved creep and rupture correlations. 12 refs

  10. New considerations on variability of creep rupture data and life prediction

    International Nuclear Information System (INIS)

    Kim, Seon Jin; Jeong, Won Taek; Kong, Yu Sik

    2009-01-01

    This paper deals with the variability analysis of short term creep rupture test data based on the previous creep rupture tests and the possibility of the creep life prediction. From creep tests performed by constant uniaxial stresses at 600, 650 and 700 .deg. C elevated temperature, in order to investigate the variability of short-term creep rupture data, the creep curves were analyzed for normalized creep strain divided by initial strain. There are some variability in thee creep rupture data. And, the difference between general creep curves and normalized creep curves were obtained. The effects of the creep rupture time and state steady creep rate on the Weibull distribution parameters were investigated. There were good relation between normal Weibull parameters and normalized Weibull parameters. Finally, the predicted creep life were compared with the Monkman-Grant model.

  11. New Considerations on Variability of Creep Rupture Data and Life Prediction

    International Nuclear Information System (INIS)

    Jung, Won Taek; Kong, Yu Sik; Kim, Seon Jin

    2009-01-01

    This paper deals with the variability analysis of short term creep rupture test data based on the previous creep rupture tests and the possibility of the creep life prediction. From creep tests performed by constant uniaxial stresses at 600, 650 and 700 .deg. C elevated temperature, in order to investigate the variability of short-term creep rupture data, the creep curves were analyzed for normalized creep strain divided by initial strain. There are some variability in the creep rupture data. And, the difference between general creep curves and normalized creep curves were obtained. The effects of the creep rupture time (RT) and steady state creep rate (SSCR) on the Weibull distribution parameters were investigated. There were good relation between normal Weibull parameters and normalized Weibull parameters. Finally, the predicted creep life were compared with the Monkman-Grant model

  12. Examples illustrating the effects of high-temperature corrosion and protective coatings on the creep-to-rupture behaviour of materials resistant to very high temperatures

    International Nuclear Information System (INIS)

    Sachova, E.; Hougardy, H.P.; Granacher, J.

    1989-01-01

    Assessing the creep stress, it is assumed in general that the sub-surface effects in a specimen correspond to those at the surface. Particularly in very high temperature environments, however, oxidation is an additional effect to be taken into account, and there are other operational stresses to be reckoned with, as e.g. hot gas corrosion of gas turbine blades. The reduction of the effective cross section due to corrosion for instance of the material affected by long-term creep leads to an increase in stresses and thus shortens the period up to rupture. Protective coatings will prevent or at least delay corrosion. The paper reports the performance of various protective coatings. Pt-Al coatings have have been found to remain intact even on specimens with the longest testing periods up to rupture, to an extent that there was no oxidation at the grain boundaries proceeding from the surface to the sub-surface material. The same applies to the plasma-sprayed coatings, although in some cases pores had developed in the coating. The chromium alitizations were used up irregularly over the surface of some specimens tested at 1000deg C. Chromizing layers have been found to be more strongly damaged than the other coatings tested under comparable conditions. (orig./RHM) [de

  13. Influenced prior loading on the creep fatigue damage accumulation of heat resistant steels

    International Nuclear Information System (INIS)

    Kloos, K.H.; Granacher, J.; Scholz, A.

    1990-01-01

    On two heat resistant power plant steels the influence of prior strain cycling on the creep rupture behaviour and the influence of prior creep loading on the strain cycling behaviour is investigated. These influences concern the number of cycles to failure and the rupture time being the reference values of the generalized damage accumulation rule and they are used for a creep fatigue analysis of the results of long term service-type strain cycling tests. (orig.) [de

  14. Creep strength and rupture ductility of creep strength enhanced ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Kushima, Hideaki; Sawada, Kota; Kimura, Kazuhiro [National Inst. for Materials Science, Tsukuba, Ibaraki (Japan)

    2010-07-01

    Creep strength and rupture ductility of Creep Strength Enhanced Ferritic (CSEF) steels were investigated from a viewpoint of stress dependence in comparison with conventional low alloy ferritic creep resistant steels. Inflection of stress vs. time to rupture curve was observed at 50% of 0.2% offset yield stress for both CSEF and conventional ferritic steels. Creep rupture ductility tends to decrease with increase in creep exposure time, however, those of conventional low alloy steels indicate increase in the long-term. Creep rupture ductility of the ASME Grades 92 and 122 steels indicates drastic decrease with decrease in stress at 50% of 0.2% offset yield stress. Stress dependence of creep rupture ductility of the ASME Grades 92 and 122 steels is well described by stress ratio to 0.2% offset yield stress, regardless of temperature. Drop of creep rupture ductility is caused by inhomogeneous recovery at the vicinity of prior austenite grain boundary, and remarkable drop of creep rupture ductility of CSEF steels should be derived from those stabilized microstructure. (orig.)

  15. The importance of the strain rate and creep on the stress corrosion cracking mechanisms and models

    International Nuclear Information System (INIS)

    Aly, Omar F.; Mattar Neto, Miguel; Schvartzman, Monica M.A.M.

    2011-01-01

    Stress corrosion cracking is a nuclear, power, petrochemical, and other industries equipment and components (like pressure vessels, nozzles, tubes, accessories) life degradation mode, involving fragile fracture. The stress corrosion cracking failures can produce serious accidents, and incidents which can put on risk the safety, reliability, and efficiency of many plants. These failures are of very complex prediction. The stress corrosion cracking mechanisms are based on three kinds of factors: microstructural, mechanical and environmental. Concerning the mechanical factors, various authors prefer to consider the crack tip strain rate rather than stress, as a decisive factor which contributes to the process: this parameter is directly influenced by the creep strain rate of the material. Based on two KAPL-Knolls Atomic Power Laboratory experimental studies in SSRT (slow strain rate test) and CL (constant load) test, for prediction of primary water stress corrosion cracking in nickel based alloys, it has done a data compilation of the film rupture mechanism parameters, for modeling PWSCC of Alloy 600 and discussed the importance of the strain rate and the creep on the stress corrosion cracking mechanisms and models. As derived from this study, a simple theoretical model is proposed, and it is showed that the crack growth rate estimated with Brazilian tests results with Alloy 600 in SSRT, are according with the KAPL ones and other published literature. (author)

  16. Creep and creep-rupture behavior of Alloy 718

    International Nuclear Information System (INIS)

    Brinkman, C.R.; Booker, M.K.; Ding, J.L.

    1991-01-01

    Data obtained from creep and creep-rupture tests conducted on 18 heats of Alloy 718 were used to formulate models for predicting high temperature time dependent behavior of this alloy. Creep tests were conducted on specimens taken from a number of commercial product forms including plate, bar, and forgoing material that had been procured and heat treated in accordance with ASTM specifications B-670 or B-637. Data were obtained over the temperature range of 427 to 760 degree C ad at test times to about 87,000 h. Comparisons are given between experimental data and the analytical models. The analytical models for creep-rupture included one based on lot-centering regression analysis and two based on the Minimum Commitment Method. A ''master'' curve approach was used to develop and equation for estimating creep deformation up to the onset of tertiary creep. 11 refs., 13 figs

  17. Predicting creep rupture from early strain data

    International Nuclear Information System (INIS)

    Holmstroem, Stefan; Auerkari, Pertti

    2009-01-01

    To extend creep life modelling from classical rupture modelling, a robust and effective parametric strain model has been developed. The model can reproduce with good accuracy all parts of the creep curve, economically utilising the available rupture models. The resulting combined model can also be used to predict rupture from the available strain data, and to further improve the rupture models. The methodology can utilise unfailed specimen data for life assessment at lower stress levels than what is possible from rupture data alone. Master curves for creep strain and rupture have been produced for oxygen-free phosphorus-doped (OFP) copper with a maximum testing time of 51,000 h. Values of time to specific strain at given stress (40-165 MPa) and temperature (125-350 deg. C) were fitted to the models in the strain range of 0.1-38%. With typical inhomogeneous multi-batch creep data, the combined strain and rupture modelling involves the steps of investigation of the data quality, extraction of elastic and creep strain response, rupture modelling, data set balancing and creep strain modelling. Finally, the master curves for strain and rupture are tested and validated for overall fitting efficiency. With the Wilshire equation as the basis for the rupture model, the strain model applies classical parametric principles with an Arrhenius type of thermal activation and a power law type of stress dependence for the strain rate. The strain model also assumes that the processes of primary and secondary creep can be reasonably correlated. The rupture model represents a clear improvement over previous models in the range of the test data. The creep strain information from interrupted and running tests were assessed together with the rupture data investigating the possibility of rupture model improvement towards lower stress levels by inverse utilisation of the combined rupture based strain model. The developed creep strain model together with the improved rupture model is

  18. Analytical evaluation of the environment effect on creep rupture strength

    International Nuclear Information System (INIS)

    Tamura, Manabu; Ogawa, Yutaka; Kurata, Yuji; Kondo, Tatsuo

    1982-04-01

    An analytical approach was made in evaluating semi-quantitatively the effect of environment on rupture strength of materials. In the analysis the zone formed in the material by reaction with the environment was assumed to bear the applied load as one of the strength members. In calculations a law of mixtures of creep strength and the linear damage rule were applied. In the modeling of the load bearing by the composite structure of the environment-affected and intact zones, both parallel and series models were considered to formulate the equations. The equation for the parallel-loaded model was properly adopted in explaining semi-quantitatively the case of Incoloy alloy 800 crept in air, which was strengthened with the layer formed by nitrization. The equation for the serially loaded model was more successfully adopted to the evaluation of the rupture strength of dissimilar weld joints. The latter was also considered to be potentially adoptable to the problems of the effect of specimen size and shape on rupture strength, which had been often taken into account in evaluating the environment effect. For application of the developed method, examination was made to the possible decrease in rupture strength of Hastelloy alloy XR in long term tests by the formation of Cr depleted zone due to oxidation in HTGR impure helium, and the results were compared with the values obtained by experiments. (author)

  19. Creep and stress rupture behaviour of zircaloy-2 and Zr-2.5% Nb alloy tubes at 573 K

    International Nuclear Information System (INIS)

    Laha, K.; Bhanu Sankara Rao, K.; Chandravathi, K.S.; Mannan, S.L.

    1992-01-01

    Zirconium alloys are extensively used for coolant tubes of pressurised heavy water reactors. The choice of these materials is based on their good corrosion resistance in water, low capture cross section for thermal neutrons and good mechanical properties. In this paper the results of an investigation performed on the creep and rupture behaviour of indigenously produced zircaloy-2 and Zr-2.5% Nb alloy are presented. Samples for creep testing were cut longitudinally from finished pressure tubes. Creep rupture tests were carried out in air under constant load conditions at 300 C employing five stress levels in the range 300-360 MPa. Zr-2.5% Nb alloy displayed higher rupture lives at all stress levels compared to zircaloy-2. Steady state creep rate of Zr-2.5%Nb was lower than that zircaloy-2 at identical stress levels. In the stress range of the experiments, the dependence of the steady state creep rate (ε s ) on applied stress (σ) for both the alloys could be represented by a power law, ε s =A σ n The stress sensitivity (n) for Zr-2.5% Nb was lower than that of zircaloy-2. For both the alloys the time to creep rupture t r was found related to the steady state creep rate through the modified Monkman-Grant relation (ε s ) α . t r = constant. Similar value of α was obtained for both the materials. Zr-2.5%Nb exhibited higher ductility (% elongation to rupture) compared to zircaloy-2 at stress levels ≥ 320 MPa. At lower stresses significant difference in ductility was not noticed. Percentage reduction in area was lower in Zr-2.5%Nb at all stress levels indicating better resistance for necking. The time for onset of tertiary was longer for Zr-2.5% Nb alloy. The proportion of life spent by Zr-2.5% Nb in steady state creep regime was higher compared to that of zircaloy-2. Metallographic investigations on longitudinal sections in both the alloys showed large number of intragranular pores close to the fracture surface. A few number of cracks which are characteristic of

  20. Eccentric pressurized tube for measuring creep rupture

    International Nuclear Information System (INIS)

    Schwab, P.R.

    1981-01-01

    Creep rupture is a long term failure mode in structural materials that occurs at high temperatures and moderate stress levels. The deterioration of the material preceding rupture, termed creep damage, manifests itself in the formation of small cavities on grain boundaries. To measure creep damage, sometimes uniaxial tests are performed, sometimes density measurements are made, and sometimes the grain boundary cavities are measured by microscopy techniques. The purpose of the present research is to explore a new method of measuring creep rupture, which involves measuring the curvature of eccentric pressurized tubes. Theoretical investigations as well as the design, construction, and operation of an experimental apparatus are included in this research

  1. Computational simulation of the creep-rupture process in filamentary composite materials

    Science.gov (United States)

    Slattery, Kerry T.; Hackett, Robert M.

    1991-01-01

    A computational simulation of the internal damage accumulation which causes the creep-rupture phenomenon in filamentary composite materials is developed. The creep-rupture process involves complex interactions between several damage mechanisms. A statistically-based computational simulation using a time-differencing approach is employed to model these progressive interactions. The finite element method is used to calculate the internal stresses. The fibers are modeled as a series of bar elements which are connected transversely by matrix elements. Flaws are distributed randomly throughout the elements in the model. Load is applied, and the properties of the individual elements are updated at the end of each time step as a function of the stress history. The simulation is continued until failure occurs. Several cases, with different initial flaw dispersions, are run to establish a statistical distribution of the time-to-failure. The calculations are performed on a supercomputer. The simulation results compare favorably with the results of creep-rupture experiments conducted at the Lawrence Livermore National Laboratory.

  2. Reliability assessment of creep rupture life for Gr. 91 steel

    International Nuclear Information System (INIS)

    Kim, Woo-Gon; Park, Jae-Young; Kim, Seon-Jin; Jang, Jinsung

    2013-01-01

    Highlights: • Statistical analysis of a number of creep rupture data based on Z parameter. • Determination of the constant C in LM parameter and long-term creep life prediction. • Generation of random variables for Z s and Z cr by Monte-Carlo simulation in a SCRI model. • Examples for design application were reasonably drawn from the viewpoints of reliability. - Abstract: This paper presents reliability assessment of the long-term creep life of Gr. 91 steel, which is a major structural material for high temperature structural components of Generation-IV reactor systems. A number of creep rupture data for Gr. 91 steel were collected through literature surveys, and the long-term creep life was predicted by Larson–Miller parameter. A “Z parameter” method was used to describe the magnitude of the deviation of the creep rupture data to a master curve. A “Service Condition-creep Rupture property Interference (SCRI) model” based on the Z parameter was used to simultaneously consider the scattering of the creep rupture data of materials and the fluctuations of service conditions in reliability assessment. A statistical analysis of the creep rupture data was conducted by the Z parameter. To carry out the SCRI model, a number of random variables for Z s describing service conditions and Z cr describing the dispersion of the creep rupture data were generated using a Monte-Carlo simulation technique. As examples for application, the creep rupture life under a certain service conditions of Gr. 91 steel was reasonably drawn from the viewpoints of reliability

  3. Creep testing and creep loading experiments on friction stir welds in copper at 75 deg C

    International Nuclear Information System (INIS)

    Andersson, Henrik C.M.; Seitisleam, Facredin; Sandstroem, Rolf

    2007-08-01

    Specimens cut from friction stir welds in copper canisters for nuclear waste have been used for creep experiments at 75 deg C. The specimens were taken from a cross-weld position as well as heat affected zone and weld metal. The parent metal specimens exhibited longer creep lives than the weld specimens by a factor of three in time. They in turn were longer than those for the crossweld and HAZ specimens by an order of magnitude. The creep exponent was in the interval 50 to 69 implying that the material was well inside the power-law breakdown regime. The ductility properties expressed as reduction in area were not significantly different and all the rupture specimens demonstrated values exceeding 80%. Experiments were also carried out on the loading procedure of a creep test. Similar parent metal specimens and test conditions were used and the results show that the loading method has a large influence on the strain response of the specimen

  4. Creep testing and creep loading experiments on friction stir welds in copper at 75 deg C

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Henrik C.M.; Seitisleam, Facredin; Sandstroem, Rolf [Corrosion an d Metals Research Institute, Stockholm (Sweden)

    2007-08-15

    Specimens cut from friction stir welds in copper canisters for nuclear waste have been used for creep experiments at 75 deg C. The specimens were taken from a cross-weld position as well as heat affected zone and weld metal. The parent metal specimens exhibited longer creep lives than the weld specimens by a factor of three in time. They in turn were longer than those for the crossweld and HAZ specimens by an order of magnitude. The creep exponent was in the interval 50 to 69 implying that the material was well inside the power-law breakdown regime. The ductility properties expressed as reduction in area were not significantly different and all the rupture specimens demonstrated values exceeding 80%. Experiments were also carried out on the loading procedure of a creep test. Similar parent metal specimens and test conditions were used and the results show that the loading method has a large influence on the strain response of the specimen.

  5. Effect of sodium on the creep-rupture behavior of type 304 stainless steel

    International Nuclear Information System (INIS)

    Natesan, K.; Chopra, O.K.; Kassner, T.F.

    1976-01-01

    Uniaxial creep-rupture data have been obtained for Type 304 stainless steel in the solution-annealed condition and after exposure to a flowing sodium environment at temperatures of 700, 650, and 600 0 C.The specimens were exposed to sodium for time periods between 120 and 5012 h to produce carbon penetration depths of approximately 0.010, 0.020, and 0.038 cm in the steel. Results showed that, as the depth of carbon penetration and the average carbon concentration in the steel increase, the rupture life increases and the minimum creep rate decreases. Creep correlations that relate rupture life, minimum creep rate, and time-to-tertiary creep were developed for the steel in both the solution-annealed and sodium-exposed conditions. Isochronous stress-creep strain curves and results on the calculations of the stress levels for 1 percent creep strain and long-term rupture life are also presented. 11 fig

  6. Consideration on evaluation of internal pressure creep rupture for tube with circumferential joint

    International Nuclear Information System (INIS)

    Nagato, Kotaro; Satoh, Keisuke

    1983-01-01

    The behavior of internal pressure creep rupture of the thin-walled cylinders with circumferential joints is affected by the combination of creep characteristics of parent materials and weld metals. In particular, the compatibility of the creep strain rate of parent materials and weld metals becomes an important controlling factor. The behavior of internal pressure creep of the welded parts in circumferential joint cylinders can be evaluated simply with the uniaxial creep data of parent materials and weld metals, considering it by approximately substituting with the creep behavior of a uniaxial longitudinal joint. The method of evaluation is, first, to analyze the breaking behavior of uniaxial longitudinal joints using the uniaxial creep characteristic values of parent materials and weld metals, and next, by combining the equation for the relation between the rupture times of uniaxial creep and internal pressure creep with the analyzed breaking behavior of uniaxial joints, the internal pressure creep rupture behavior of the cylinders with circumferential joints can be evaluated. The internal pressure creep behavior of the thin-walled cylinders with circumferential joints, their rupture life and the uniaxial creep rupture life of longitudinal joints, and the examination of Hastelloy X cylinders are reported. (Kako, I.)

  7. Creep-rupture behavior of candidate Stirling engine iron supperalloys in high-pressure hydrogen. Volume 2: Hydrogen creep-rupture behavior

    Science.gov (United States)

    Bhattacharyya, S.; Peterman, W.; Hales, C.

    1984-01-01

    The creep rupture behavior of nine iron base and one cobalt base candidate Stirling engine alloys is evaluated. Rupture life, minimum creep rate, and time to 1% strain data are analyzed. The 3500 h rupture life stress and stress to obtain 1% strain in 3500 h are also estimated.

  8. Creep rupture behavior of welded Grade 91 steel

    Energy Technology Data Exchange (ETDEWEB)

    Shrestha, Triratna [Department of Chemical and Materials Engineering, University of Idaho, Moscow, ID 83844 (United States); Basirat, Mehdi [Department of Mechanical Engineering, University of Idaho, Moscow, ID 83844 (United States); Alsagabi, Sultan; Sittiho, Anumat [Department of Chemical and Materials Engineering, University of Idaho, Moscow, ID 83844 (United States); Charit, Indrajit, E-mail: icharit@uidaho.edu [Department of Chemical and Materials Engineering, University of Idaho, Moscow, ID 83844 (United States); Potirniche, Gabriel P. [Department of Mechanical Engineering, University of Idaho, Moscow, ID 83844 (United States)

    2016-07-04

    Creep rupture behavior of fusion welded Grade 91 steel was studied in the temperature range of 600 – 700 °C and at stresses of 50–200 MPa. The creep data were analyzed in terms of the Monkman-Grant relation and Larson-Miller parameter. The creep damage tolerance factor was used to identify the origin of creep damage. The creep damage was identified as the void growth in combination with microstructural degradation. The fracture surface morphology of the ruptured specimens was studied by scanning electron microscopy and deformed microstructure examined by transmission electron microscopy, to further elucidate the rupture mechanisms.

  9. Influences of cyclic deformation on creep property and creep-fatigue life prediction considering them

    International Nuclear Information System (INIS)

    Takahashi, Yukio

    2009-01-01

    Evaluation of creep-fatigue is essential in design and life management of high-temperature components in power generation plants. Cyclic deformation may alter creep property of the materials and its consideration may improve predictability of creep-fatigue failure life. To understand them, creep tests were conducted for the materials subjected to cyclic loading and their creep rupture and deformation behaviors were compared with those of as-received materials. Both 316FR and modified 9Cr-1Mo steel were tested. (1) Creep rupture time and elongation generally tend to decrease with cyclic loading in both materials, and especially elongation of 316FR drastically decreases by being cyclically deformed. (2) Amount of primary creep deformation decreases by cyclic loading and the ways to improve its predictability were developed. (3) Use of creep rupture ductility after cyclic deformation, instead of that of as-received material, brought about clear improvement of life prediction in a modified ductility exhaustion approach. (author)

  10. Comparison of creep behavior under varying load/temperature conditions between Hastelloy XR alloys with different boron content levels

    International Nuclear Information System (INIS)

    Tsuji, Hirokazu; Nakajima, Hajime; Shindo, Masami; Tanabe, Tatsuhiko; Nakasone, Yuji.

    1996-01-01

    In the design of the high-temperature components, it is often required to predict the creep rupture life under the conditions in which the stress and/or temperature may vary by using the data obtained with the constant load and temperature creep rupture tests. Some conventional creep damage rules have been proposed to meet the above-mentioned requirement. Currently only limited data are available on the behavior of Hastelloy XR, which is a developed alloy as the structural material for high-temperature components of the High-Temperature Engineering Test Reactor (HTTR), under varying stress and/or temperature creep conditions. Hence a series of constant load and temperature creep rupture tests as well as varying load and temperature creep rupture tests was carried out on two kinds of Hastelloy XR alloys whose boron content levels are different, i.e., below 10 and 60 mass ppm. The life fraction rule completely fails in the prediction of the creep rupture life of Hastelloy XR with 60 mass ppm boron under varying load and temperature conditions though the rule shows good applicability for Hastelloy XR with below 10 mass ppm boron. The change of boron content level of the material during the tests is the most probable source of impairing the applicability of the life fraction rule to Hastelloy XR whose boron content level is 60 mass ppm. The modified life fraction rule has been proposed based on the dependence of the creep rupture strength on the boron content level of the alloy. The modified rule successfully predicts the creep rupture life under the two stage creep test conditions from 1000 to 900degC. The trend observed in the two stage creep tests from 900 to 1000degC can be qualitatively explained by the mechanism that the oxide film which is formed during the prior exposure to 900degC plays the role of the protective barrier against the boron dissipation into the environment. (J.P.N.)

  11. Shakedown Tests for Refurbished and Upgraded Frames and Initiation of Alloy 709 Creep Rupture Tests

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moser, Jeremy L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hawkins, Charles S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lara-Curzio, Edgar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    This report describes the shakedown tests conducted on the upgraded frames, and initiation of creep rupture tests on refurbished frames. SS316H, a reference material for Alloy 709, was used in shakedown tests, and the tests were conducted at 816 degree C under three stress levels to accumulate 1% creep strain. 1/4” gage diameter specimen design was used. The creep rupture tests on Alloy 709 were initiated at 600 degree C under 330 MPa to target 1,500 h rupture time. 12 specimens with 3/8” gage diameter were prepared from the materials with 6 heat treatment conditions, 2 from each. The required mechanical load under 330MPa was calculated to be 5,286 lb for the 3/8” gage diameter specimen. Among the ART frames, 7 frames are equipped with 10,000 lb load cell including #5 to 8 and #88 to 90, and can be used. 7 tests were thus started in this stage of project, and remaining 5 will be continued whenever any of the 7 tests is completed.

  12. Monotonic, Creep-Rupture, and Fatigue Behavior of Carbon Fiber Reinforced Silicon Carbide (C/SiC) at an Elevated Temperature

    National Research Council Canada - National Science Library

    Engesser, John

    2004-01-01

    .... Cyclic loading of C/SiC was investigated at frequencies of 375 Hz, 10 Hz, 1 Hz, and 0.1 Hz. Creep-Rupture tests and tests that were combinations of creep-rupture and fatigue were also accomplished...

  13. Microstructural observation on helium injected and creep ruptured JPCA

    International Nuclear Information System (INIS)

    Yamamoto, N.; Shiraishi, H.; Hishinuma, A.

    1986-01-01

    Detailed and quantitative TEM observation was performed on high temperature helium injected and creep ruptured JPCA to seek the prominent TiC distribution developed for suppression of helium embrittlement. Three different preinjection treatments were adopted for changing the TiC distribution. Considerable degradation in creep rupture strength by helium occurred in solution-annealed specimens, although there was much less effect of other treatments which included aging prior to injection. The concentration of helium at grain boundaries and the promotion of precipitation by helium during injection were responsible for the degradation. Therefore, the presence of TiC precipitates before helium introduction will help prevent degradation. On the other hand, the rupture elongation was reduced by helium after all treatments, although helium trapping by TiC precipitates in the matrix was successfully achieved. Consequently, the combined use of several methods may be necessary for further suppression of helium embrittlement. (orig.)

  14. Prediction of creep-fatigue life by use of creep rupture ductility

    International Nuclear Information System (INIS)

    Yamaguchi, Koji; Suzuki, Naoyuki; Ijima, Kiyoshi; Kanazawa, Kenji

    1985-01-01

    It was clarified that tension strain hold reduced creep-fatigue life of many engineering materials in different degrees depending on material, temperature and test duration. However the reduction in the life due to holding for various durations could be correlated to the fraction of intergranular facets on fracture surfaces which was considered to be an index of the damage introduced during strain hold. This fraction of intergranular facets by creep-fatigue failure exhibited a direct relation to the creep rupture ductility of the material tested at the same temperature and for the same creep-fatigue life-time. From these results an empirical equation has been derived as follow; (Δ sub(epsilonsub(i)))/Dsub(c).(N sub(h sup(α))) = C, where Δ sub(epsilonsub(i)) is inelastic strain range, Dsub(c) is the creep rupture ductility for the same duration as creep-fatigue life time, Nsub(h) is the creep-fatigue life under tension strain hold conditions, and α and C are constants depending on the material and testing temperature. From the equation the life prediction is possible for a given inelastic strain range Δ sub(epsilonsub(i)) if the constants α and C, and Dsub(c) are known. The value of α was found to be 0.62 and 0.74 for various austenitic stainless steels and NCF800 at 600 0 C and 700 0 C, respectively, and 0.69 for 1 1/4Cr-1/2Mo steel at 600 0 C. The value of C was found to be 0.50 and 0.59 for various austenitic stainless steels and NCF800 at 600 0 C and 700 0 C, respectively, and 0.49 for 1 1/4Cr-1/2Mo steel at 600 0 C. The creep rupture ductility Dsub(c) is available in the NRIM Creep Data Sheets up to 10 5 h for multi-heats of many kinds of heat resistant alloys. (author)

  15. The effect of oxidation on the creep behavior of austenitic stainless steels

    International Nuclear Information System (INIS)

    Assis, A.M.C.A.; Monteiro, S.N.

    1979-01-01

    The manifestation of superficial oxidation in creep rupture tests performed with three austenitic, stainless steels under constant load in furnaces open to the atmosphere, between the temperature of 550 0 C and 800 0 C is discussed. There is experimental evidence that the superficial oxidation effects are associated, in each material, to the testing temperature, to the duration of the test and to the degree of deformation reached. The influence of the oxidatio is related to the acting deformation mechanisms. The possible corrosion action on the characteristics of the mechanical behavior of the materials under creep is analysed. (Author) [pt

  16. Creep resistance and material degradation of a candidate Ni–Mo–Cr corrosion resistant alloy

    Energy Technology Data Exchange (ETDEWEB)

    Shrestha, Sachin L., E-mail: sachin@ansto.gov.au [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Bhattacharyya, Dhriti [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Yuan, Guangzhou; Li, Zhijun J. [Center of Thorium Molten Salts Reactor System, Shanghai Institute of Applied Physics, Chinese Academy of Sciences (China); Budzakoska-Testone, Elizabeth; De Los Reyes, Massey; Drew, Michael; Edwards, Lyndon [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia)

    2016-09-30

    This study investigated the creep deformation properties of GH3535, a Ni–Mo–Cr corrosion resistant structural alloy being considered for use in future Gen IV molten salt nuclear reactors (MSR) operating at around 700 °C. Creep testing of the alloy was conducted at 650–750 °C under applied stresses between 85–380 MPa. From the creep rupture results the long term creep strain and rupture life of the alloy were estimated by applying the Dorn Shepard and Larson Miller time-temperature parameters and the alloy's allowable ASME design stresses at the MSR's operating temperature were evaluated. The material's microstructural degradation at creep rupture was characterised using scanning electron microscopy (SEM), electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). The microstructural study revealed that the material failure was due to wedge cracking at triple grain boundary points and cavitation at coarse secondary grain boundary precipitates, nucleated and grown during high temperature exposure, leading to intergranular crack propagation. EBSD local misorientation maps clearly show that the root cause of cavitation and crack propagation was due to large strain localisation at the grain boundaries and triple points instigated by grain boundary sliding during creep deformation. This caused the grain boundary decohesion and subsequent material failure.

  17. Creep and creep rupture properties of unalloyed vanadium and solid-solution-strengthened vanadium-base alloys

    International Nuclear Information System (INIS)

    Kainuma, T.; Iwao, N.; Suzuki, T.; Watanabe, R.

    1982-01-01

    The creep and creep rupture properties of vanadium and vanadium-base alloys were studied at 700 and 1000 0 C. The alloys were vanadium-base binary alloys containing about 5 - 21 at.% Al, Ti, Nb, Ta, Cr, Mo or Fe, three V-20wt.%Nb-base ternary alloys containing 5 or 10 wt.% Al, Cr or Mo, V-10wt.%Ta-10wt.%Al and V-25wt.%Cr-0.8wt.%Zr. The creep rupture stress of the binary alloys, except the V-Al and V-Ti alloys, increased linearly with increasing concentration of the alloying elements. The V-Nb alloy had the best properties with respect to the rupture stress and creep rate at 700 0 C and the rupture stress at 1000 0 C, but the V-Mo alloy appeared likely to have better creep properties at longer times and higher temperatures. Of the five ternary alloys, V-20wt.%Nb-5wt.%Cr and V-20wt.%Nb-10wt.%Mo showed the best creep properties. The creep properties of these two alloys were compared with those of other vanadium alloys and of type 316 stainless steel. (Auth.)

  18. Analysis of localized damage in creep rupture

    International Nuclear Information System (INIS)

    Wang Zhengdong; Wu Dongdi

    1992-01-01

    Continuum Damage Mechanics studies the effect of distributed defects, whereas the failure of engineering structures is usually caused by local damage. In this paper, an analysis of localized damage in creep rupture is carried out. The material tested is a 2 1/4Cr-1Mo pressure vessel steel and the material constants necessary for damage analysis are evaluated. Notched specimens are used to reflect localized damage in creep rupture and the amount of damage is measured using DCPD method. Through FEM computation, stress components and effective stress in the region of notch root are evaluated and it is found that the von Mises effective stress can represent the damage effective stress in the analysis of localized creep damage. It is possible to develop a method for the assessment of safety of pressure vessels under creep through localized creep damage analysis. (orig.)

  19. Loading History Effect on Creep Deformation of Rock

    Directory of Open Access Journals (Sweden)

    Wendong Yang

    2018-06-01

    Full Text Available The creep characteristics of rocks are very important for assessing the long-term stability of rock engineering structures. Two loading methods are commonly used in creep tests: single-step loading and multi-step loading. The multi-step loading method avoids the discrete influence of rock specimens on creep deformation and is relatively time-efficient. It has been widely accepted by researchers in the area of creep testing. However, in the process of multi-step loading, later deformation is affected by earlier loading. This is a key problem in considering the effects of loading history. Therefore, we intend to analyze the deformation laws of rock under multi-step loading and propose a method to correct the disturbance of the preceding load. Based on multi-step loading creep tests, the memory effect of creep deformation caused by loading history is discussed in this paper. A time-affected correction method for the creep strains under multi-step loading is proposed. From this correction method, the creep deformation under single-step loading can be estimated by the super-position of creeps obtained by the dissolution of a multistep creep. We compare the time-affected correction method to the coordinate translation method without considering loading history. The results show that the former results are more consistent with the experimental results. The coordinate translation method produces a large error which should be avoided.

  20. Viscoelastic characterization of carbon fiber-epoxy composites by creep and creep rupture tests

    International Nuclear Information System (INIS)

    Farina, Luis Claudio

    2009-01-01

    One of the main requirements for the use of fiber-reinforced polymer matrix composites in structural applications is the evaluation of their behavior during service life. The warranties of the integrity of these structural components demand a study of the time dependent behavior of these materials due to viscoelastic response of the polymeric matrix and of the countless possibilities of design configurations. In the present study, creep and creep rupture test in stress were performed in specimens of unidirectional carbon fiber-reinforced epoxy composites with fibers orientations of 60 degree and 90 degree, at temperatures of 25 and 70 degree C. The aim is the viscoelastic characterization of the material through the creep curves to some levels of constant tension during periods of 1000 h, the attainment of the creep rupture envelope by the creep rupture curves and the determination of the transition of the linear for non-linear behavior through isochronous curves. In addition, comparisons of creep compliance curves with a viscoelastic behavior prediction model based on Schapery equation were also performed. For the test, a modification was verified in the behavior of the material, regarding the resistance, stiffness and deformation, demonstrating that these properties were affected for the time and tension level, especially in work temperature above the ambient. The prediction model was capable to represent the creep behavior, however the determination of the equations terms should be considered, besides the variation of these with the applied tension and the elapsed time of test. (author)

  1. Influence of flowing sodium on creep deformation and rupture behaviour of 316L(N) austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Ravi, S., E-mail: sravi@igcar.gov.in [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Laha, K.; Mathew, M.D. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Vijayaraghavan, S.; Shanmugavel, M.; Rajan, K.K. [Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Jayakumar, T. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)

    2012-08-15

    The influence of flowing sodium on creep deformation and rupture behaviour of AISI 316L(N) austenitic stainless steel has been investigated at 873 K over a stress range of 235-305 MPa. The results were compared with those obtained from testing in air environment. The steady state creep rates of the material were not influenced appreciably by the testing environments. The time to onset of tertiary stage of creep deformation was delayed in sodium environment. The creep-rupture lives of the material increased in sodium environment, which became more pronounced at lower applied stresses. The increase in rupture life of the material in flowing sodium was accompanied by an increase in rupture ductility. The creep damage on specimen surface as well as inside the specimen was less in specimen tested in sodium. SEM fractographic investigation revealed predominantly transgranular dimple failure for the specimen tested in sodium, whereas predominantly intergranular creep failure was observed in the air tested specimens. Almost no oxidation was observed in the specimens creep tested in the sodium environment. Absence of oxidation and less creep damage cavitation extended the secondary state in liquid sodium tests and lead to increase in creep rupture life and ductility of the material as compared to in air.

  2. Effect of cold works on creep-rupture life of type 316LN stainless steel

    International Nuclear Information System (INIS)

    Kim, W. G.; Han, C. H.; Ryu, W. S.

    2003-01-01

    Effect of cold works on creep-rupture life of the cold-worked type 316LN stainless steels, which are fabricated with the various reductions ; 0%(solution annealing), 20%, 30%, 40%, and 50%, was investigated. The creep-rupture time increased gradually up to 30% reduction, but it decreased inversely over 30% reduction. The longest rupture time exhibited at cold-worked reduction of 30%. The reason for this is that fine carbide precipitates are uniformly generated in grain boundary and the dislocations are pinned in the precipitates and the dislocations are sustained for a long time at high temperature. However, it is assumed that the higher cold-work reductions over 30% lead to excessive generation of deformation faults. The SEM fractrographs of the cold-worked specimens showed dense fracture micrographs, and they did not show intergranular structures in creep fracture mode. From this result, it is believed that the cold-worked specimens were superior in creep-rupture time to solution annealed ones

  3. Creep rupture strength and creep behavior of low-activation martensitic OPTIFER alloys. Final report

    International Nuclear Information System (INIS)

    Schirra, M.; Falkenstein, A.; Heger, S.; Lapena, J.

    2001-07-01

    The creep rupture strength and creep experiments performed on low-activation OPTIFER alloys in the temperature range of 450-700 C shall be summarized in the present report. Together with the reference alloy of the type 9.5Cr1W-Mn-V-Ta, W-free variants (+Ge) with a more favorable activation and decay behavior shall be studied. Their smaller strength values are compensated by far better toughness characteristics. Of each development line, several batches of slightly varying chemical composition have been investigated over service lives of up to 40,000 h. Apart from the impact of a reference thermal treatment at a hardening temperature of 1075 C and an annealing temperature of 750 C, the influence of reduced hardening temperatures (up to 950 C) has been determined. A long-term use at increased temperatures (max. 550 C-20,000 h) produces an aging effect with strength being decreased in the annealed state. To determine this aging effect quantitatively, creep rupture experiments have been performed using specimens that were subjected to variable types of T/t annealing (550 -650 C, 330-5000 h). Based on all test results, minimum values for the 1% time-strain limit and creep rupture in the T range of 400-600 C can be given as design curves for 20,000 h. The minimum creep rates obtained from the creep curves recorded as a function of the experimental stress yield the stress exponent n (n=Norton) for the individual test temperatures. Creep behavior as a function of the test temperature yields the values for the effective activation energy of creeping Q K . The influence of a preceding temperature transient up to 800 C (≤Ac 1b ) or 840 C (>Ac 1b ) with subsequent creep rupture tests at 500 C and 550 C, respectively, shall be described. The results obtained for the OPTIFER alloys shall be compared with the results achieved for the Japanese 2% W-containing F82H-mod. alloy. (orig.) [de

  4. Irradiation creep and creep rupture of titanium-modified austenitic stainless steels and their dependence on cold work level

    International Nuclear Information System (INIS)

    Garner, F.A.; Hamilton, M.L.; Eiholzer, C.R.; Toloczko, M.B.; Kumar, A.S.

    1991-11-01

    A titanium-modified austenitic type stainless steel was tested at three cold work levels to determine its creep and creep rupture properties under both thermal aging and neutron irradiation conditions. Both the thermal and irradiation creep behavior exhibit a complex non-monotonic relationship with cold work level that reflects the competition between a number of stress-sensitive and temperature-dependent microstructural processes. Increasing the degree of cold work to 30% from the conventional 20% level was detrimental to its performance, especially for applications above 550 degrees c. The 20% cold work level is preferable to the 10% level, in terms of both in-reactor creep rupture response and initial strength

  5. Evaluation of creep rupture property of high strength ferritic/martensitic steel (PNC-FMS)

    International Nuclear Information System (INIS)

    Uehira, Akihiro; Mizuno, Tomoyasu; Ukai, Shigeharu; Yoshida, Eiichi

    1999-04-01

    High Strength Ferritic/Martensitic Steel (PNC-FMS : 11Cr-0.5Mo-2W,Nb,V), developed by JNC, is one of the candidate materials for the long-life core of large-scale fast breeder reactor. The material design base standard (tentative) of PNC-FMS was established and the creep rupture strength reduction factor in the standard was determined in 1992. This factor was based on only evaluation of decarburization effect on tensile strength after sodium exposure. In this study, creep rupture properties of PNC-FMS under out of pile sodium exposure and in pile were evaluated, using recent test results as well as previous ones. The evaluation results are summarized as follows : a. Decarburization rate constant of pressurized tubes under sodium exposure is identical with stress free specimens. b. In case of the same decarburization content under out of pile sodium exposure, creep strength tends to decrease more significantly than tensile strength. c. Creep strength under out of pile sodium exposure showed significant decrease in high temperature and long exposure time, but in pile (MOTA) creep strength showed little decrease. A new creep rupture strength reduction factor, which is the ratio of creep rupture strength under sodium exposure or in pile to in air, was made by correlating the creep rupture strength. This new method directly using the ratio of creep rupture strength was evaluated and discussed from the viewpoint of design applicability, compared with the conventional method based on decarburization effect on tensile strength. (author)

  6. Effect of Post-Weld Heat Treatment on Creep Rupture Properties of Grade 91 Steel Heavy Section Welds

    Energy Technology Data Exchange (ETDEWEB)

    Li, Leijun

    2012-11-02

    This project will conduct a systematic metallurgical study on the effect of post-weld heat treatment (PWHT) on the creep rupture properties of P91 heavy section welds. The objective is to develop a technical guide for selecting PWHT parameters, and to predict expected creep-rupture life based on the selection of heat treatment parameters. The project consists of four interdependent tasks: Experimentally and numerically characterize the temperature fields of typical post-weld heat treatment procedures for various weld and joint configurations to be used in Gen IV systems. Characterize the microstructure of various regions, including the weld fusion zone, coarse-grain heat-affected zone, and fine-grain heat affected zone, in the welds that underwent the various welding and PWHT thermal histories. Conduct creep and creep-rupture testing of coupons extracted from actual and physically simulated welds. Establish the relationship among PWHT parameters, thermal histories, microstructure, creep, and creep-rupture properties.

  7. Tensile and Creep-Rupture Evaluation of a New Heat of Haynes Alloy 25

    International Nuclear Information System (INIS)

    Shingledecker, J.P.; Glanton, D.B.; Martin, R.L.; Sparks, B.L.; Swindeman, R.W.

    2007-01-01

    From 1999 to 2006, a program was undertaken within the Materials Science and Technology Division, formerly the Metals and Ceramics Division, of Oak Ridge National Laboratory to characterize the tensile and creep-rupture properties of a newly produced heat of Haynes alloy 25 (L-605). Tensile properties from room temperature to 1100 C were evaluated for base material and welded joints aged up to 12,000 hours at 675 C. Creep and creep-rupture tests were conducted on base metal and cross-weldments from 650 to 950 C. Pressurized tubular creep tests were conducted to evaluate multiaxial creep-rupture response of the material. Over 800,000 hours of creep test data were generated during the test program with the longest rupture tests extending beyond 38,000 hours, and the longest creep-rate experiments exceeding 40,000 hours

  8. A method of creep rupture data extrapolation based on physical processes

    International Nuclear Information System (INIS)

    Leinster, M.G.

    2008-01-01

    There is a need for a reliable method to extrapolate generic creep rupture data to failure times in excess of the currently published times. A method based on well-understood and mathematically described physical processes is likely to be stable and reliable. Creep process descriptions have been developed based on accepted theory, to the extent that good fits with published data have been obtained. Methods have been developed to apply these descriptions to extrapolate creep rupture data to stresses below the published values. The relationship creep life parameter=f(ln(sinh(stress))) has been shown to be justifiable over the stress ranges of most interest, and gives realistic results at high temperatures and long times to failure. In the interests of continuity with past and present practice, the suggested method is intended to extend existing polynomial descriptions of life parameters at low stress. Where no polynomials exist, the method can be used to describe the behaviour of life parameters throughout the full range of a particular failure mode in the published data

  9. Growth Kinetics of Laves Phase and Its Effect on Creep Rupture Behavior in 9Cr Heat Resistant Steel

    Institute of Scientific and Technical Information of China (English)

    Zhi-xin XIA; Chuan-yang WANG; Chen LEI; Yun-ting LAI; Yan-fen ZHAO; Lu ZHANG

    2016-01-01

    The effects of Laves phase formation and growth on creep rupture behaviors of P92 steel at 883 K were studied.The microstructural evolution was characterized using scanning electron microscopy and transmission elec-tron microscopy.Kinetic modeling was carried out using the software DICTRA.The results indicated Fe2 (W,Mo) Laves phase has formed during creep with 200 MPa applied stress at 883 K for 243 h.The experimental results showed a good agreement with thermodynamic calculations.The plastic deformation of laths is the main reason of creep rupture under the applied stress beyond 160 MPa,whereas,creep voids initiated by coarser Laves phase play an effective role in creep rupture under the applied stress lower than 160 MPa.Laves phase particles with the mean size of 243 nm lead to the change of creep rupture feature.Microstructures at the vicinity of fracture surface,the gage portion and the threaded ends of creep rupture specimens were also observed,indicating that creep tensile stress enhances the coarsening of Laves phase.

  10. Creep and creep rupture properties of cladding tube (type 316) in high temperature sodium

    International Nuclear Information System (INIS)

    Atsumo, H.

    1977-01-01

    The thin walled small sized seamless AISI 316 steel tubes, which are designated to be domestically used as the fuel cladding tube for sodium cooled fast breeder reactors in Japan, are irradiated in the following sodium of high temperature in the range of 370 deg. C to 700 deg. C, and receive gradually increased internal pressure caused by the fission produced gas generating from the nuclear fuel burn-up inside the cladding tube. Consequently, the creep behavior of fuel cladding tubes under a high temperature sodium environment is an important problem which must be determined and clarified together with their characteristic features under irradiation and in air. In relation to the creep performance of fuel cladding tubes made of AISI 316 steel and other comparable austenitic stainless steels, hardly any studies are found that are made systematically to examine the effect of sodium with sodium purity as parameter or any comparative studies with in-air data at various different temperatures. The present research work was aimed to obtain certain basic design data relating to in-sodium creep performance of the domestic made fuel cladding tubes for fast breeder reactors, and also to gain further date as considered necessary under several sodium conditions. That is, together with establishment of the technology for tensile creep test and internal pressure creep rupture test in flowing sodium of high temperature, a series of tests and studies were performed on the trial made cladding tubes of AISI Type-316 steel. In the first place, two kinds of purity conditions of sodium, close to the actual reactor-operating condition, (oxygen concentration of 10 ppm and 5 ppm respectively) were established, and then uniaxial tensile creep test and rupture test under various temperatures were performed and the resulting data were compared and evaluated against the in-air data. Then, secondly, an internal pressure creep rupture test was conducted under a single purity sodium environment

  11. The effect of vacuum environment on creep rupture properties of Inconel 617 at 1000 deg C

    International Nuclear Information System (INIS)

    Ohnami, Masateru; Imamura, Riuzo

    1981-01-01

    The creep rupture strength of nickel-base superalloy in weakly acidic gas at high temperature above 1000 deg C lowers remarkably as compared with that in the atmosphere, and this problem is one of the important subjects in connection with the research and development of high temperature heat exchangers for multi-purpose high temperature gas-cooled reactor system being developed in Japan. In the case of Inconel 617, abnormal decarbonization phenomenon occurs in weakly acidic gas, and this is regarded as the cause of lowering the creep strength. In this study, the effects of the decarbonization in weak vacuum at 1000 deg C and the oxidation of Inconel 617 on its crack occurrence and propagation were clarified experimentally with notched plate test pieces. The material used was Inconel 617 nickel-base superalloy made by Huntington Alloys Inc. in the U.S. The creep rupture experiment was carried out with a simple tension creep tester. At the nominal stress of 3.5 kg/mm 2 , the creep rupture time in 0.3 Torr was the shortest when the grain size was 78 μm, and the creep rupture time increased as the grain size became larger. The creep rupture time in 0.3 Torr decreased to a half of that in the atmosphere. In 0.3 Torr, cracks occurred early, and propagated fast as compared with in the atmosphere. This is because the local creep velocity at the bottom of notches and in front of creep cracks is fast owing to the lack of protective oxide film. (Kako, I.)

  12. Investigations on the creep-rupture behaviour of the austenitic stainless steel AISI 316 NET

    International Nuclear Information System (INIS)

    Schirra, M.; Ritter, B.

    1988-12-01

    The report describes the creep-rupture tests carried out with a 17/13/2 CrNiMo-steel in the frame of the German-Spanish collaboration (KfK-CIEMAT). The material studied is the austenitic steel AISI 316(L) selected as potential first-wall material for NET (Next European Torus). The test programme on base material with a NET specified batch encompasses until now in the temperature range 500-750 0 C the rupture-time-range till 20 000 h. The results permit statements to the creep- and creep-rupture behaviour and ductility. Metallography examinations give information about fracture behaviour and demonstrate the complex precipitation happening. The results are compared with the literature and own test results from two batches of the Fast-Breeder-Program. (orig.) [de

  13. Creep-rupture behavior of iron superalloys in high-pressure hydrogen

    Science.gov (United States)

    Bhattacharyya, S.; Peterman, W.

    1984-01-01

    The creep-rupture properties of five iron-base and one cobalt-base high temperature alloys were investigated to assess the feasibility of using the alloys as construction materials in a Stirling engine. The alloys were heat treated and hardness measurements were taken. Typical microstructures of the alloys are shown. The creep-rupture properties of the alloys were determined at 760 and 815 C in 15.0 MPa H2 for 200 to 1000 hours. Plots of rupture life versus stress for the six superalloys are presented along with creep strain-time plots.

  14. Creep rupture behavior of Stirling engine materials

    Science.gov (United States)

    Titran, R. H.; Scheuerman, C. M.; Stephens, J. R.

    1985-01-01

    The automotive Stirling engine, being investigated jointly by the Department of Energy and NASA Lewis as an alternate to the internal combustion engine, uses high-pressure hydrogen as the working fluid. The long-term effects of hydrogen on the high temperature strength properties of materials is relatively unknown. This is especially true for the newly developed low-cost iron base alloy NASAUT 4G-A1. This iron-base alloy when tested in air has creep-rupture strengths in the directionally solidified condition comparable to the cobalt base alloy HS-31. The equiaxed (investment cast) NASAUT 4G-A1 has superior creep-rupture to the equiaxed iron-base alloy XF-818 both in air and 15 MPa hydrogen.

  15. Thermal ratcheting and creep damage

    International Nuclear Information System (INIS)

    Clement, G.; Cousseran, P.; Roche, R.L.

    1983-08-01

    Creep is a cause of deformation; it may also result in rupture in time. Although LMFBR structures are not heavily loaded, they are subjected to large thermal transients. Can structure lifetime be shortened by such transients. Several proposals have been made to assist adesigners with thermal ratcheting in the creep range. Unfortunately these methods are not validated by experiments, and they take only inelastic distorsion into consideration as creep effects. The aim of the work presented here is to correct these deficiencies in providing an experimental basis to ratcheting analysis rules in the creep range, and in considering the effect of cyclic straining (like cyclic thermal stresses) on the time to rupture by creep. Experimental tests have been performed on austenitic stainless steel at 650 0 C for the first item. Results of these tests and results available in the open literature have been used to built a practical rule of ratcheting analysis. This rule giving a conservative value of the creep distortion, is based on the concept of effective primary stress which is an amplification of the primary stress really applied. Concerning the second point (time to rupture), it was necessary to obtain real creep rupture and not instability. According to the proposal of Pr LECKIE, tests were performed on specimen made out of copper, and of aluminium alloys at temperatures between 150 0 C and 300 0 C. With such materials creep rupture is obtained without necking. Experimental tests show that cyclic straining reduces the time to creep rupture under load controlled stress. Caution must be given to the designer: cyclic thermal stress can lead to premature creep rupture

  16. Material Parameters for Creep Rupture of Austenitic Stainless Steel Foils

    Science.gov (United States)

    Osman, H.; Borhana, A.; Tamin, M. N.

    2014-08-01

    Creep rupture properties of austenitic stainless steel foil, 347SS, used in compact recuperators have been evaluated at 700 °C in the stress range of 54-221 MPa to establish the baseline behavior for its extended use. Creep curves of the foil show that the primary creep stage is brief and creep life is dominated by tertiary creep deformation with rupture lives in the range of 10-2000 h. Results are compared with properties of bulk specimens tested at 98 and 162 MPa. Thin foil 347SS specimens were found to have higher creep rates and higher rupture ductility than their bulk specimen counterparts. Power law relationship was obtained between the minimum creep rate and the applied stress with stress exponent value, n = 5.7. The value of the stress exponent is indicative of the rate-controlling deformation mechanism associated with dislocation creep. Nucleation of voids mainly occurred at second-phase particles (chromium-rich M23C6 carbides) that are present in the metal matrix by decohesion of the particle-matrix interface. The improvement in strength is attributed to the precipitation of fine niobium carbides in the matrix that act as obstacles to the movement of dislocations.

  17. The creep and stress-rupture behaviour under internal pressure of tubes made from austenitic stainless steel X8 CrNiMoNb 1616 (Material No. 1.4981)

    International Nuclear Information System (INIS)

    Schaefer, L.; Polifka, F.; Kempe, H.

    1979-05-01

    Creep and stress rupture tests have been performed at 600, 650, 700 and 750 0 C on tubes made from three different heats from the austenitic stainless steel X8 CrNiMoNb 1616 (Material No. 1.4981). The tubes were loaded by internal pressure and the tangential (hoop) creep strain was measured continuously. The results are presented in form of creep curves, stress-time to rupture curves and curves for a creep limit. The average and minimum creep rates as a function of the applied stress have been evaluated and are described with a creep law analogous to Norton's creep law. An interpolation and extrapolation of the stress-rupture-strength and the creep strength are possible using the time-temperature-parameter-plot after Larson and Miller. (orig.) [de

  18. Rupture of Al matrix in U-Mo/Al dispersion fuel by fission induced creep

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Gwan Yoon; Sohn, Dong Seong [UNIST, Daejeon (Korea, Republic of); Kim, Yeon Soo [Argonne National Laboratory, Argonnge (United States); Lee, Kyu Hong [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    This phenomenon was found specifically in the dispersion fuel plate with Si addition in the Al matrix to suppress interaction layer (IL) formation between UMo and Al. It is known that the stresses induced by fission induced swelling in U-Mo fuel particles are relieved by creep deformation of the IL, surrounding the fuel particles, that has a much higher creep rate than the Al matrix. Thus, when IL growth is suppressed, the stress is instead exerted on the Al matrix. The observed rupture in the Al matrix is believed to be caused when the stress exceeded the rupture strength of the Al matrix. In this study, the possibility of creep rupture of the Al matrix between the neighboring U-Mo fuel particles was examined using the ABAQUS finite element analysis (FEA) tool. The predicted rupture time for a plate was much shorter than its irradiation life indicating a rupture during the irradiation. The higher stress leads Al matrix to early creep rupture in this plate for which the Al matrix with lower creep strain rate does not effectively relieve the stress caused by the swelling of the U-Mo fuel particles. For the other plate, no rupture was predicted for the given irradiation condition. The effect of creeping of the continuous phase on the state of stress is significant.

  19. Influence of Hold Time and Stress Ratio on Cyclic Creep Properties Under Controlled Tension Loading Cycles of Grade 91 Steel

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Park, Jae Young; Jang, Jin Sung; Ekaputra, I Made Wicaksana; Kim, Seon Jin

    2017-01-01

    Influences of hold time and stress ratio on cyclic creep properties of Grade 91 steel were systemically investigated using a wide range of cyclic creep tests, which were performed with hold times (HTs) of 1 minute, 3 minutes, 5 minutes, 10 minutes, 20 minutes, and 30 minutes and stress ratios (R) of 0.5, 0.8, 0.85, 0.90, and 0.95 under tension loading cycles at 600°C. Under the influence of HT, the rupture time increased to HT = 5 minutes at R = 0.90 and R = 0.95, but there was no influence at R = 0.50, 0.80, and 0.85. The creep rate was constant regardless of an increase in the HT, except for the case of HT = 5 minutes at R = 0.90 and R = 0.95. Under the influence of stress ratio, the rupture time increased with an increase in the stress ratio, but the creep rate decreased. The cyclic creep led to a reduction in the rupture time and an acceleration in the creep rate compared with the case of monotonic creep. Cyclic creep was found to depend dominantly on the stress ratio rather than on the HT. Fracture surfaces displayed transgranular fractures resulting from microvoid coalescence, and the amount of microvoids increased with an increase in the stress ratio. Enhanced coarsening of the precipitates in the cyclic creep test specimens was found under all conditions

  20. Creep-rupture tests on chromium-containing conventional and ODS steels in oxygen-controlled Pb and air at 650 °C

    International Nuclear Information System (INIS)

    Yurechko, Mariya; Schroer, Carsten; Wedemeyer, Olaf; Skrypnik, Aleksandr; Konys, Jürgen

    2014-01-01

    Highlights: • Generally superior creep performance of ODS steels with 12–14% Cr is indicated. • Strength of 9Cr-ODS at 650°C approaches conventional 9Cr steels at decreasing load. • ODS steels show brittle primary and ductile residual fracture. • Apparent link between secondary creep rate and fracture mode of ODS steels. • Clear impact of liquid Pb at low load, corresponding to long time-to-rupture. - Abstract: Conventional martensitic steels with 9 mass% chromium (Cr), namely T91 and P92, and ODS steels with 9, 12 and 14 mass% Cr, respectively, were subjected to creep-rupture tests in stagnant oxygen-controlled lead (Pb) at 650 °C and c o = 10 −6 mass% dissolved oxygen. The 9Cr conventional steels were tested in the liquid metal at static engineering stress in the range from 75 to 200 MPa. 12 and 14Cr ODS were tested at 190–400 MPa, and 9Cr ODS at 75–300 MPa. Reference tests in stagnant air were carried out in the same stress ranges. The ODS steels with 12 or 14 mass% Cr, mainly tested in oxygen containing Pb, clearly exhibit a change in the stress-dependence of secondary creep rate and appearance of fracture surface at 330–400 MPa. No such change has been observed for 9Cr ODS so far. The conventional martensitic steel P92 shows a significant drop in creep strength accompanied by reduced necking and a change from ductile to brittle fracture when tested in Pb at 75 MPa (time-to-rupture t R = 13,090 h)

  1. Prediction of long time creep rupture properties of welded joints using the results of short duration creep crack incubation tests

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, E.

    2013-07-01

    This dissertation submitted to the Swiss Federal Institute of Technology ETH in Zurich examines the applicability of the LICON methodology for the prediction of long-time creep rupture strength of a dissimilar metal weld. The LICON methodology is an approach for predicting the lifetime of materials under creep loading conditions. It predicts long-time uniaxial creep strength using the results from several short duration creep crack incubation tests in conjunction with the outcome of a mechanical analysis on the test-piece. This study has re-examined the previous application of the LICON methodology for 9%Cr and 1CrMoV steels. It has shown that application of the original Lion method (based on reference stress solutions) for certain materials is not appropriate. This study therefore proposes a new development for the Lion approach which uses finite-element analysis to account for the generated multiaxial stress states within welded uniaxial test-pieces.

  2. Prediction of long time creep rupture properties of welded joints using the results of short duration creep crack incubation tests

    International Nuclear Information System (INIS)

    Hosseini, E.

    2013-01-01

    This dissertation submitted to the Swiss Federal Institute of Technology ETH in Zurich examines the applicability of the LICON methodology for the prediction of long-time creep rupture strength of a dissimilar metal weld. The LICON methodology is an approach for predicting the lifetime of materials under creep loading conditions. It predicts long-time uniaxial creep strength using the results from several short duration creep crack incubation tests in conjunction with the outcome of a mechanical analysis on the test-piece. This study has re-examined the previous application of the LICON methodology for 9%Cr and 1CrMoV steels. It has shown that application of the original Lion method (based on reference stress solutions) for certain materials is not appropriate. This study therefore proposes a new development for the Lion approach which uses finite-element analysis to account for the generated multiaxial stress states within welded uniaxial test-pieces

  3. Effects of cobalt on creep rupture properties and dislocation structures in nickel base superalloys

    International Nuclear Information System (INIS)

    Wang, W.Z.; Jin, T.; Jia, J.H.; Liu, J.L.; Hu, Z.Q.

    2015-01-01

    The influences of cobalt (Co) on creep rupture lives and dislocation structures in nickel base superalloys with and without rhenium (Re) are investigated. The creep rupture test conditions were high temperature low stress (1100 °C/150 MPa), intermediate temperature and stress (982 °C, 1010 °C) and low temperature high stress (850 °C/586 MPa). The results show that increasing Co content could enhance the creep rupture lives at low and intermediate temperature, and does not degrade the creep rupture lives of alloys at high temperature. In Re-containing alloys, at high temperature low stress (1100 °C/150 MPa), the effects of Co on the dislocation structures are negligible, while at low temperature high stress (850 °C/586 MPa), stacking faults are generated in alloy with 12% Co, and in alloy with 3% Co and free of Co, gamma prime particles are sheared by dislocation pairs. In Re-free alloys, at intermediate temperature and stress (1010 °C/248 MPa), large quantities of stacking faults appear in alloy without Co, while in alloy having 12% Co, gamma prime particles are sheared by dislocation pairs coupled by anti-phase boundary (APB). The gamma prime sheared by stacking faults or by dislocation pairs coupled by APB depends on the competition of stacking faults energy and APB energy which is affected by temperature and the interaction of Re and Co

  4. Creep and rupture of an ODS alloy with high stress rupture ductility. [Oxide Dispersion Strengthened

    Science.gov (United States)

    Mcalarney, M. E.; Arsons, R. M.; Howson, T. E.; Tien, J. K.; Baranow, S.

    1982-01-01

    The creep and stress rupture properties of an oxide (Y2O3) dispersion strengthened nickel-base alloy, which also is strengthened by gamma-prime precipitates, was studied at 760 and 1093 C. At both temperatures, the alloy YDNiCrAl exhibits unusually high stress rupture ductility as measured by both elongation and reduction in area. Failure was transgranular, and different modes of failure were observed including crystallographic fracture at intermediate temperatures and tearing or necking almost to a chisel point at higher temperatures. While the rupture ductility was high, the creep strength of the alloy was low relative to conventional gamma prime strengthened superalloys in the intermediate temperature range and to ODS alloys in the higher temperature range. These findings are discussed with respect to the alloy composition; the strengthening oxide phases, which are inhomogeneously dispersed; the grain morphology, which is coarse and elongated and exhibits many included grains; and the second phase inclusion particles occurring at grain boundaries and in the matrix. The creep properties, in particular the high stress dependencies and high creep activation energies measured, are discussed with respect to the resisting stress model of creep in particle strengthened alloys.

  5. Creep rupture behavior of candidate materials for nuclear process heat applications

    International Nuclear Information System (INIS)

    Schubert, F.; te Heesen, E.; Bruch, U.; Cook, R.; Diehl, H.; Ennis, P.J.; Jakobeit, W.; Penkalla, H.J.; Ullrich, G.

    1984-01-01

    Creep and stress rupture properties are determined for the candidate materials to be used in hightemperature gas-cooled reactor (HTGR) components. The materials and test methods are briefly described based on experimental results of test durations of about20000 h. The medium creep strengths of the alloys Inconel-617, Hastelloy-X, Nimonic-86, Hastelloy-S, Manaurite-36X, IN-519, and Incoloy-800H are compared showing that Inconel-617 has the best creep rupture properties in the temperature range above 800 0 C. The rupture time of welded joints is in the lower range of the scatterband of the parent metal. The properties determined in different simulated HTGR atmospheres are within the scatterband of the properties obtained in air. Extrapolation methods are discussed and a modified minimum commitment method is favored

  6. Microstructure-based assessment of creep rupture behaviour of cast-forged P91 steel

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Chandan, E-mail: chandanpy.1989@gmail.com [Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Uttrakhand 247667 (India); Mahapatra, M.M. [School of Mechanical Sciences, Indian Institute of Technology Bhubaneswar, Odisha 751013 (India); Kumar, Pradeep; Vidyrathy, R.S. [Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Uttrakhand 247667 (India); Srivastava, A. [Senior Engineer, HEEP Section, BHEL Haridwar (India)

    2017-05-17

    The work presented in this study was performed with the intent to characterize the microstructure evolution for short term creep exposure of cast-forged P91 steel. The short-term creep test was performed at temperature range of 620–650 °C and stresses ranging from 120 to 200 MPa. To characterize the sample after creep exposure, field emission scanning electron microscopy (FESEM) with energy dispersive X-ray spectroscopy (EDS), optical microscope and micro-hardness testing were utilized. Creep tests were performed on round creep specimens. For low temperature service condition, longer creep life was obtained. The fracture surface of creep ruptured specimen were characterized by using the FESEM. The transgranular fracture mode was noticed in all the tests condition. The creep rupture life was found to be decreased with increase in applied stress. The maximum rupture life was measured about to be 3329.28 h for the sample exposed at 620 °C for 120 MPa. A negligible microstructural change was measured in gripping area compared to the gauge area (necking area) of crept sample. The laves phase formation was also noticed along the grain boundaries for creep exposure life of 3329.28 h.

  7. Microstructure-based assessment of creep rupture behaviour of cast-forged P91 steel

    International Nuclear Information System (INIS)

    Pandey, Chandan; Mahapatra, M.M.; Kumar, Pradeep; Vidyrathy, R.S.; Srivastava, A.

    2017-01-01

    The work presented in this study was performed with the intent to characterize the microstructure evolution for short term creep exposure of cast-forged P91 steel. The short-term creep test was performed at temperature range of 620–650 °C and stresses ranging from 120 to 200 MPa. To characterize the sample after creep exposure, field emission scanning electron microscopy (FESEM) with energy dispersive X-ray spectroscopy (EDS), optical microscope and micro-hardness testing were utilized. Creep tests were performed on round creep specimens. For low temperature service condition, longer creep life was obtained. The fracture surface of creep ruptured specimen were characterized by using the FESEM. The transgranular fracture mode was noticed in all the tests condition. The creep rupture life was found to be decreased with increase in applied stress. The maximum rupture life was measured about to be 3329.28 h for the sample exposed at 620 °C for 120 MPa. A negligible microstructural change was measured in gripping area compared to the gauge area (necking area) of crept sample. The laves phase formation was also noticed along the grain boundaries for creep exposure life of 3329.28 h.

  8. The analytical description of high temperature tensile creep for cavitating materials subjected to time variable loads

    International Nuclear Information System (INIS)

    Bocek, M.

    A phenomenological cavitation model is presented by means of which the life time as well as the creep curve equations can be calculated for cavitating materials subjected to time variable tensile loads. The model precludes the proportionality between the damage A and the damage rate (dA/dt) resp. Both are connected by the life time function tau. The latter is derived from static stress rupture tests and contains the loading conditions. From this model the life fraction rule (LFR) is derived. The model is used to calculate the creep curves of cavitating materials subjected at high temperatures to non-stationary tensile loading conditions. In the present paper the following loading procedures are considered: creep at constant load F and true stress s; creep at linear load increase ((dF/dt)=const) and creep at constant load amplitude cycling (CLAC). For these loading procedures the creep equations for cavitating and non-cavitating specimens are derived. Under comparable conditions the creep rate of cavitating materials are higher than for non-cavitating ones. (author)

  9. Creep-Fatigue Life Design with Various Stress and Temperature Conditions on the Basis of Lethargy Coefficient

    International Nuclear Information System (INIS)

    Park, Jung Eun; Yang, Sung Mo; Han, Jae Hee; Yu, Hyo Sun

    2011-01-01

    High temperature and stress are encounted in power plants and vehicle engines. Therefore, determination of the creep-fatigue life of a material is necessary prior to fabricating equipment. In this study, life design was determined on the basis of the lethargy coefficient for different temperatures, stress and rupture times. SP-Creep test data was compared with computed data. The SP-Creep test was performed to obtain the rupture time for X20CrMoV121 steel. The integration life equation was considered for three cases with various load, temperature and load-temperature. First, the lethargy coefficient was calculated by using the obtained rupture stress and the rupture time that were determined by carrying out the SP-Creep test. Next, life was predicted on the basis of the temperature condition. Finally, it was observed that life decreases considerably due to the coupling effect that results when fatigue and creep occur simultaneously

  10. Creep-rupture Behaviors of a Diffusionally Aluminized Alloy 617

    Energy Technology Data Exchange (ETDEWEB)

    Sah, Injin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Sung Hwan; Jang, Chang Heui [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    In light of the surface reaction, a sufficient Cr content in the matrix leads to an external chromia (Cr{sub 2}O{sub 3}) layer on the surface with the occurrence of internal oxides (Al{sub 2}O{sub 3}) into the matrix. It is well known that the internal oxides will reduce the effective cross-sectional area and/or be a notch under the loading condition. Thus, there have been extensive efforts to improve the oxidation resistance by imposing an aluminized layer (βNiAl or γ-Ni{sub 3}Al) for Ni-Cr alloys. In particular, the extensively formed carbide free zone below the affected substrate will reduce the creep-rupture strengths because the inter-granular carbides present along the grain boundaries effectively impede the grain boundary sliding under high-temperature tensile loading conditions.

  11. Effect of inclusion content on the creep rupture properties of type 17Cr-8Ni-2Mo weld metals

    International Nuclear Information System (INIS)

    Senior, B.A.

    1988-01-01

    It has been known for some time that austenitic weldments exhibit low and variable creep rupture properties, but many of the factors controlling these properties are not well understood. In this investigation, two welds (Type 316) with similar compositions and fabricated using the same welding parameters, but with different electrode coatings, have been examined after creep testing. The results indicate that the inclusion and silicon content of type 316 welds can strongly influence their creep rupture properties, a high inclusion density being associated with poor creep rupture properties, and a low silicon content with a higher creep rate. This has been explained with reference to the micromechanism of creep failure operating in these welds. (author)

  12. Creep rupture strength of activated-TIG welded 316L(N) stainless steel

    International Nuclear Information System (INIS)

    Sakthivel, T.; Vasudevan, M.; Laha, K.; Parameswaran, P.; Chandravathi, K.S.; Mathew, M.D.; Bhaduri, A.K.

    2011-01-01

    316L(N) stainless steel plates were joined using activated-tungsten inert gas (A-TIG) welding and conventional TIG welding process. Creep rupture behavior of 316L(N) base metal, and weld joints made by A-TIG and conventional TIG welding process were investigated at 923 K over a stress range of 160-280 MPa. Creep test results showed that the enhancement in creep rupture strength of weld joint fabricated by A-TIG welding process over conventional TIG welding process. Both the weld joints fractured in the weld metal. Microstructural observation showed lower δ-ferrite content, alignment of columnar grain with δ-ferrite along applied stress direction and less strength disparity between columnar and equiaxed grains of weld metal in A-TIG joint than in MP-TIG joint. These had been attributed to initiate less creep cavitation in weld metal of A-TIG joint leading to improvement in creep rupture strength.

  13. Creep rupture strength of activated-TIG welded 316L(N) stainless steel

    Science.gov (United States)

    Sakthivel, T.; Vasudevan, M.; Laha, K.; Parameswaran, P.; Chandravathi, K. S.; Mathew, M. D.; Bhaduri, A. K.

    2011-06-01

    316L(N) stainless steel plates were joined using activated-tungsten inert gas (A-TIG) welding and conventional TIG welding process. Creep rupture behavior of 316L(N) base metal, and weld joints made by A-TIG and conventional TIG welding process were investigated at 923 K over a stress range of 160-280 MPa. Creep test results showed that the enhancement in creep rupture strength of weld joint fabricated by A-TIG welding process over conventional TIG welding process. Both the weld joints fractured in the weld metal. Microstructural observation showed lower δ-ferrite content, alignment of columnar grain with δ-ferrite along applied stress direction and less strength disparity between columnar and equiaxed grains of weld metal in A-TIG joint than in MP-TIG joint. These had been attributed to initiate less creep cavitation in weld metal of A-TIG joint leading to improvement in creep rupture strength.

  14. Creep rupture strength of activated-TIG welded 316L(N) stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Sakthivel, T., E-mail: tsakthivel@igcar.gov.in [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Vasudevan, M.; Laha, K.; Parameswaran, P.; Chandravathi, K.S.; Mathew, M.D.; Bhaduri, A.K. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)

    2011-06-01

    316L(N) stainless steel plates were joined using activated-tungsten inert gas (A-TIG) welding and conventional TIG welding process. Creep rupture behavior of 316L(N) base metal, and weld joints made by A-TIG and conventional TIG welding process were investigated at 923 K over a stress range of 160-280 MPa. Creep test results showed that the enhancement in creep rupture strength of weld joint fabricated by A-TIG welding process over conventional TIG welding process. Both the weld joints fractured in the weld metal. Microstructural observation showed lower {delta}-ferrite content, alignment of columnar grain with {delta}-ferrite along applied stress direction and less strength disparity between columnar and equiaxed grains of weld metal in A-TIG joint than in MP-TIG joint. These had been attributed to initiate less creep cavitation in weld metal of A-TIG joint leading to improvement in creep rupture strength.

  15. Influence of pretreatment on creep-rupture-strength and creep-behaviour of a matrix-hardening Ni-base-alloy

    International Nuclear Information System (INIS)

    Schirra, M.

    1982-01-01

    The creep and time-to-rupture behaviour of the matrix hardening Nickel base alloy Inconel 625 was investigated in the temperature range 650-800 0 C. Three different thermo-mechanical pretreatment were used: I = Hot rolled finish; II = 870 0 C annealed; III = Sol. treatment 1150 0 C 1 h. The temperature range of this study is for samples which have undergone treatment I and II well above the temperatures normally used. The results show an anomalous stress dependence of creep and time-to-rupture at around 750 0 C. The reason is to be found in the very complex precipitation processes occurring while the stress is applied. The results are explained according to findings about precipitation in this type of alloy. (orig.) [de

  16. Creep-rupture behavior of 2-1/4 Cr-1 Mo steel, Alloy 800H and Hastelloy Alloy X in a simulated HTGR helium environment

    International Nuclear Information System (INIS)

    Lai, G.Y.; Wolwowicz, R.J.

    1979-12-01

    Creep-rupture testing was conducted on 1 1/4 Cr-1 Mo steel, Alloy 800H and Hastelloy Alloy X in flowing helium containing nominal concentration of following gases: 1500 μatm H 2 , 450 μatm CO, 50 μatm CH 4 , 50 μatm H 2 O and 5 μatm CO 2 . This environment is believed to represent maximum permissible levels of impurities in the primary coolant for the steam-cycle system of a high-temperature gas-cooled reactor (HTGR) when it is operating continuously with a water and/or steam leak at technical specification limits. Two or three heats of material for each alloy were investigated. Tests were conducted at 482 0 C and 760 0 C (1200 0 F and 1400 0 F) for Alloy 800H, and at 760 0 C and 871 0 C (1400 0 F and 1600 0 F) for Hastelloy Alloy X for times up to 10,000 h. Selected tests were performed on same heat of material in both air and helium environments to make a direct comparison of creep-rupture behaviors between two environments. Metallurgical evaluation was performed on selected post test specimens with respect to gas-metal interactions which included oxidation, carburization and/or decarburization. Correlation between gaseous corrosion and creep-rupture behavior was attempted. Limited tests were also performed to investigate the specimen size effects on creep-rupture behavior in the helium environment

  17. Creep Rupture Properties for Base and Weld Metals of Alloy 617

    International Nuclear Information System (INIS)

    Kim, Woo-Gon; Kim, Min-Hwan; Park, Jae-Young; Ekaputra, I. M. W.

    2015-01-01

    The allowable deformation in the welds is also restricted to half the deformation permitted for the base metal, since the ductility of the welds at elevated temperatures is generally low. For a design use, the data of the tensile and creep properties for Alloy 617 WM should be sufficiently provided, and in particular, to develop a design code of Alloy 617 WM. However, the data for the WM are very rare and limited until now, although the data for the BM are available in the ASME draft code case, which was suspended at the end of the 1980s owing to a lack of support and interes. In this report, the creep data for Alloy 617 WM, which was fabricated by a gas tungsten arc welding (GTAW) procedure, were obtained by a series of creep tests at 800 .deg. C, and the creep properties of the WM were compared with those of the BM. The high-temperature creep properties for Alloy 617 WM, fabricated by a gas tungsten arc welding (GTAW) procedure, were investigated by a series of creep tests with different stress levels at 800 .deg. C, and the creep test data for the WM were compared with those of the BM. From the results, it was found that the WM had a slightly longer creep rupture life and lower creep rate than the BM, and a particularly lower rupture elongation. The lower creep rate in the WM was due to the lower rupture elongation than the BM

  18. Online interferometric study of viscoelastic rupture and necking deformation of as-spun (iPP) fibres due to creep process.

    Science.gov (United States)

    Sokkar, Taha; El-Farahaty, Kermal; Azzam, Amira

    2015-01-01

    Creep deformation under constant load leads to rupture when the polymer chains can no longer separate and accommodate the load. This fracture phenomenon is investigated interferometrically. The creep behaviour of as-spun isotactic Polypropylene (iPP) fibres is studied at different stresses, different initial lengths and different radii. The creep rate, which defines the velocity of the creep deformation and the dimensional stability of the material, is studied. The failure time and stress of iPP due to creep process is determined. The necking deformation was in situ detected during creep process. The mean refractive indices (n(P) andn⊥) profiles of iPP fibres were determined at different positions along the fibre axis before and after necking. The relation between the creep behaviour and different optical and structural parameters is investigated. Microinterferograms are given for illustration. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  19. Thermal ratcheting and creep damage

    International Nuclear Information System (INIS)

    Clement, G.; Cousseran, P.; Roche, R.L.

    1983-01-01

    Several proposals have been made to assist adesigners with thermal ratcheting in the creep range, the more known has been made by O'DONNELL and POROWSKY. Unfortunately these methods are not validated by experiments, and they take only inelastic distortion into consideration as creep effects. The aim of the work presented here is to correct these deficiencies - in providing an experimental basis to ratcheting analysis rules in the creep range, - in considering the effect of cyclic straining (like cyclic thermal stresses) on the time to rupture by creep. Experimental tests have been performed on austenitic stainless steel at 650 0 C for the first item. Results of these tests and results available in the open literature have been used to built a practical rule of ratcheting analysis. This rule giving a conservative value of the creep distortion, is based on the concept of effective primary stress which is an amplification of the primary stress really applied. Concerning the second point (time to rupture), it was necessary to obtain real creep rupture and not instability. According to the proposal of Pr LECKIE, tests were performed on specimens made out of copper, and of aluminium alloys at temperatures between 150 0 C and 300 0 C. With such materials creep rupture is obtained without necking. Experimental tests show that cyclic straining reduces the time to creep rupture under load controlled stress. Caution must be given to the designer: cyclic thermal stress can lead to premature creep rupture. (orig./GL)

  20. Improvement in the long term creep rupture strength of SUS 316 steel for fast breeder reactors by nitrogen addition

    International Nuclear Information System (INIS)

    Nakazawa, Takanori; Abo, Hideo; Tanino, Mitsuru; Komatsu, Hazime; Tashimo, Masanori; Nishida, Takashi.

    1989-01-01

    Improvement of creep fatigue property of structural materials for fast breeder reactors. In order to improve the resistance to creep fatigue of SUS 316 steels, the effects of nitrogen, carbon, and molybdenum on creep properties have been investigated, under the concept that creep fatigue endurance is correspond to creep rupture ductility. Creep rupture tests and slow strain rate tensile tests were conducted at 550degC and extensive microstructural works were performed. The strengthening by nitrogen is much greater than carbon. Moreover, while carbon reduces rupture ductility, nitrogen does not change it. The addition of carbon results in coarse carbide formation on grain boundaries during creep, but with nitrogen very fine Fe 2 Mo particles precipitate on grain boundaries. The difference between the effects of nitrogen and carbon on creep properties is arise from the different morphology of precipitation. Strengthening by molybdenum brings about a slight decrease in rupture ductility. On the basis of these results, 0.01%C-0.07%N-11%Ni-16.5%Cr-2%Mo steel is selected as a promising material for fast breeder reactors. This steel has higher rupture ductility and strength than SUS 316 steel. It is also confirmed that this steel has a higher resistance to creep fatigue. (author)

  1. Investigation of creep rupture properties in air and He environments of alloy 617 at 800 °C

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woo-Gon, E-mail: wgkim@kaeri.re.k [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Ekaputra, I.M.W.; Park, Jae-Young [Pukyong National University, Busan 608-739 (Korea, Republic of); Kim, Min-Hwan; Kim, Yong-Wan [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2016-09-15

    Creep rupture properties for Alloy 617 were investigated by a series of creep tests under different applied stresses in air and He environments at 800 °C. The creep rupture time in air and He environments exhibited almost similar life in a short rupture time. However, when the creep rupture time reaches above 3000 h, the creep life in the He environment reduced compared with those of the air environment. The creep strain rate in the He environment was a little faster than that in the air environment above 3000 h. The reduction of creep life in the He environment was due to the difference of various microstructure features such as the carbide depleted zone, oxidation structures, surface cracking, voids below the surface, and voids in the matrix in air and He environments. Alloy 617 followed Norton’s power law and the Monkman–Grant relationship well. As the stress decreased, the creep ductility decreased slightly. The thickness of the outer and internal oxide layers presented the trend of a parabolic increase with an increase in creep rupture time in both the air and He environments. The thickness in the He environment was found to be thicker than in the air environment, although pure helium gas of 99.999% was used in the present investigation. The differences in the oxide-layer thickness caused detrimental effects on the creep resistance, even in a low oxygen-containing He agent.

  2. Investigation of creep rupture properties in air and He environments of alloy 617 at 800 °C

    International Nuclear Information System (INIS)

    Kim, Woo-Gon; Ekaputra, I.M.W.; Park, Jae-Young; Kim, Min-Hwan; Kim, Yong-Wan

    2016-01-01

    Creep rupture properties for Alloy 617 were investigated by a series of creep tests under different applied stresses in air and He environments at 800 °C. The creep rupture time in air and He environments exhibited almost similar life in a short rupture time. However, when the creep rupture time reaches above 3000 h, the creep life in the He environment reduced compared with those of the air environment. The creep strain rate in the He environment was a little faster than that in the air environment above 3000 h. The reduction of creep life in the He environment was due to the difference of various microstructure features such as the carbide depleted zone, oxidation structures, surface cracking, voids below the surface, and voids in the matrix in air and He environments. Alloy 617 followed Norton’s power law and the Monkman–Grant relationship well. As the stress decreased, the creep ductility decreased slightly. The thickness of the outer and internal oxide layers presented the trend of a parabolic increase with an increase in creep rupture time in both the air and He environments. The thickness in the He environment was found to be thicker than in the air environment, although pure helium gas of 99.999% was used in the present investigation. The differences in the oxide-layer thickness caused detrimental effects on the creep resistance, even in a low oxygen-containing He agent.

  3. Multiregion analysis of creep rupture data of 316 stainless steel

    International Nuclear Information System (INIS)

    Maruyama, Kouichi; Armaki, Hassan Ghassemi; Yoshimi, Kyosuke

    2007-01-01

    A creep rupture data set of 316 stainless steel containing 319 data points at nine heats was subjected to a conventional single-region analysis and a multiregion analysis. In the former, the conventional Larson-Miller analysis was applied to the whole data set. In the latter, a data set of a single heat is divided into several data sets, so that the Orr-Sherby-Dorn (OSD) constant Q takes a unique value in each data set, and the conventional OSD analysis was applied to each divided data set. A region with a low value of Q appears in long-term creep of eight heats. Predicted values of the 10 5 h creep rupture stress of three heats were lower than the 99% confidence limit evaluated by the single-region analysis, suggesting that the single-region analysis is error prone. The multiregion analysis is necessary for the correct evaluation of the long-term creep properties of 316 stainless steel

  4. Technique for the residual life assessment of high temperature components based on creep-rupture testing on welded miniature specimens

    Energy Technology Data Exchange (ETDEWEB)

    Garzillo, A.; Guardamagna, C.; Moscotti, L.; Ranzani, L. [Ente Nazionale per l`Energia Elettrica, Milan (Italy)

    1995-06-01

    Following the present trend in the development of advanced methodologies for residual life assessment of high temperature components operating in power plants, particularly in non destructive methods, a testing technique has been set up at ENEL-CRAM based on creep-rupture testa in an argon on welded miniature specimens. Five experimental systems for creep-rupture tests in an argon atmosphere have been set up which include high accuracy systems, vacuum chambers and exrwnsometer devices. With the aim of establishing and validating the suitability of the experimental methodology, creep-rupture and interrupted creep testing programmes have been performed on miniature specimens (2 mm diameter and 10 mm gauge lenght). On the basis of experience gathered by various European research laboratories, a miniature specimen construction procedure has been developed using a laser welding technique for joining threaded heads to sample material. Low alloy ferritic steels, such as virgin 2.25CrlMo, 0.5Cr 0.5Mo 0.25V, and IN 738 superalloy miniature specimens have been investigated and the results, compared with those from standard specimens, show a regular trend in deformation vs time. Additional efforts to provide guidelines for material sampling from each plant component will be required in order to reduce uncertainties in residual life prediction.

  5. Elevated temperature design of KALIMER reactor internals accounting for creep and stress-rupture effects

    International Nuclear Information System (INIS)

    Koo, Gyeong Hoi; Yoo, Bong

    2000-01-01

    In most LMFBR (Liquid Metal Fast Breed Reactor) design, the operating temperature is very high and the time-dependent creep and stress-rupture effects become so important in reactor structural design. Therefore, unlike with conventional PWR, the normal operating conditions can be basically dominant design loading because the hold time at elevated temperature condition is so long and enough to result in severe total creep ratcheting strains during total service lifetime. In this paper, elevated temperature design of the conceptually designed baffle annulus regions of KALIMER (Korea Advanced Liquid Metal Reactor) reactor internal structures is carried out for normal operating conditions which have the operating temperature 530 deg. C and the total service lifetime of 30 years. For the elevated temperature design of reactor internal structures, the ASME Code Case N-201-4 is used. Using this code, the time-dependent stress limits, the accumulated total inelastic strain during service lifetime, and the creep-fatigue damages are evaluated with the calculation results by the elastic analysis under conservative assumptions. The application procedures of elevated temperature design of the reactor internal structures using ASME code case N-201-4 with the elastic analysis method are described step by step in detail. This paper will be useful guide for actual application of elevated temperature design of various reactor types accounting for creep and stress-rupture effects. (author)

  6. Assessment of Creep Deformation, Damage, and Rupture Life of 304HCu Austenitic Stainless Steel Under Multiaxial State of Stress

    Science.gov (United States)

    Sahoo, K. C.; Goyal, Sunil; Parameswaran, P.; Ravi, S.; Laha, K.

    2018-03-01

    The role of the multiaxial state of stress on creep deformation and rupture behavior of 304HCu austenitic stainless steel was assessed by performing creep rupture tests on both smooth and notched specimens of the steel. The multiaxial state of stress was introduced by incorporating circumferential U-notches of different root radii ranging from 0.25 to 5.00 mm on the smooth specimens of the steel. Creep tests were carried out at 973 K over the stress range of 140 to 220 MPa. In the presence of notch, the creep rupture strength of the steel was found to increase with the associated decrease in rupture ductility. Over the investigated stress range and notch sharpness, the strengthening was found to increase drastically with notch sharpness and tended toward saturation. The fractographic studies revealed the mixed mode of failure consisting of transgranular dimples and intergranular creep cavitation for shallow notches, whereas the failure was predominantly intergranular for relatively sharper notches. Detailed finite element analysis of stress distribution across the notch throat plane on creep exposure was carried out to assess the creep failure of the material in the presence of notch. The reduction in von-Mises stress across the notch throat plane, which was greater for sharper notches, increased the creep rupture strength of the material. The variation in fracture behavior of the material in the presence of notch was elucidated based on the von-Mises, maximum principal, and hydrostatic stresses. Electron backscatter diffraction analysis of creep strain distribution across the notch revealed localized creep straining at the notch root for sharper notches. A master curve for predicting creep rupture life under the multiaxial state of stress was generated considering the representative stress having contributions from both the von-Mises and principal stress components of the stress field in the notch throat plane. Rupture ductility was also predicted based on the

  7. Long-time rupture strength and creep behaviour of welded joints on heat-resistant CrMoV steels with 1 and 12% chrome

    International Nuclear Information System (INIS)

    Maier, G.; Maile, K.; Theofel, H.

    1985-01-01

    Power plant components in the creep range are damaged frequently in the weld joint zones. The investigation concentrated therefore on the reliability of the information supplied by tests on small- and large-size samples. Creep rupture tests of dissimilar welded joints (1% with 12% chrome) with variations of heat input and weld metal have been conducted. At creep rupture times of about 10 4 h all joints failed in the outside heat affected zone of the weaker base metal. Large-size samples, proved in comparison at same stresses, showed distinctly longer times to rupture. (orig.) [de

  8. Developing of corrosion and creep property test database system

    International Nuclear Information System (INIS)

    Park, S. J.; Jun, I.; Kim, J. S.; Ryu, W. S.

    2004-01-01

    The corrosion and creep characteristics database systems were constructed using the data produced from corrosion and creep test and designed to hold in common the data and programs of tensile, impact, fatigue characteristics database that was constructed since 2001 and others characteristics databases that will be constructed in future. We can easily get the basic data from the corrosion and creep characteristics database systems when we prepare the new experiment and can produce high quality result by compare the previous test result. The development part must be analysis and design more specific to construct the database and after that, we can offer the best quality to customers various requirements. In this thesis, we describe the procedure about analysis, design and development of the impact and fatigue characteristics database systems developed by internet method using jsp(Java Server pages) tool

  9. Behavior of X 6 CrNi 18 11 under sequential testing of creep and fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Husslage, W [TNO, Apeldoorn (Netherlands); Breitling, H [INTERATOM, Bergisch Gladbach (Germany)

    1977-07-01

    The behaviour of the austenitic stainless steel X 6 CrNi 18 11 with about 0.05% C, 18% Cr and 11% Ni was investigated under combined creep and cyclic loading at 550 degrees C. Base metal specimens and specimens containing a weld were tested by: prior cyclic loading followed by creep loading to rupture; prior creep loading followed by cyclic loading to rupture; alternating periods of creep and cyclic loading to rupture. The results were evaluated using the linear cumulative fatigue and creep damage rule. The damage factor D determined on basis of the respective behaviour of base material and welds varied between 0.5 and 1.6 if specimens containing a weld defect were not taken into consideration. Weld defects, which had predominantly an influence on fatigue, lowered the damage factor D up to 0.2. Evaluation of the results on welds with the pure creep and fatigue behaviour of base material shows damage factors between 0.4 and 0.9. By the high margins between allowable creep and fatigue life and life measured with specimens, the cumulative damages of base material and welded joints are much better than the allowable values according to CCI 1592 of the ASME Boiler and Pressure Vessel Code. (author)

  10. Effect of nitrogen on creep properties of type 316L(N) stainless steels

    International Nuclear Information System (INIS)

    Kim, Dae Whan; Lee, Yoon Kyu; Kim, Woo Gon; Ryu, Woo Seog

    2001-01-01

    The effects of nitrogen on the creep properties of type 316(N) stainless steels with three different nitrogen contents from 0.04% to 0.15% were investigated. Creep tests were carried out using constant-load single-lever machines at 550∼650 .deg. C in the air. The time to rupture increased and the minimum creep rate decreased with the addition of nitrogen. At constant stress, the rupture elongation decreased with the addition of nitrogen. Intergranular and transgranular fracture mode were mixed in all specimens. Cavity and carbides were nucleated at grain boundary and the number of cavity and carbide at constant stress was increased with the addition of nitrogen because of the increase in the time to rupture and carbide precipitation due to the addition of nitrogen. The increase of rupture time with the addition of nitrogen for type 316L(N) stainless steel was attributed to the combined effect of the decrease of minimum creep rate due to the increase of tensile strength and the rupture elongation due to the precipitation at grain boundaries

  11. Creep strength of reduced activation ferritic/martensitic steel Eurofer'97

    International Nuclear Information System (INIS)

    Fernandez, P.; Lancha, A.M.; Lapena, J.; Lindau, R.; Rieth, M.; Schirra, M.

    2005-01-01

    Creep rupture strength of tempered martensitic steel Eurofer'97 has been investigated. Different products form (plate and bar) have been tested in the temperature range from 450 deg. C to 650 deg. C at different loads. No significant differences in the creep rupture properties have been found between the studied product forms. The Eurofer'97 has shown adequate creep rupture strength levels at short creep rupture tests, similar to those of the F-82 H mod. steel. However, for long testing times (>9000 h) the results available up to now at 500 deg. C and 550 deg. C seem to indicate a change in the creep degradation mechanism

  12. The influence of Boron on creep-rupture behaviour of austenitic unstabilized and Nb-stabilized stainless steel X8CrNi 1613 in unirradiated and irradiated condition

    International Nuclear Information System (INIS)

    Sen, Susant Kumar.

    1976-10-01

    The present study deals with influence of boron on creep-rupture behaviour in unirradiated condition at 650 0 C along with precipitation behaviour, heat-treatment and recrystallization of unstabilized and stabilized steel. The results of creep-rupture tests on unirradiated specimens show that boron exerts a beneficial effect on the rupture life and ductility. Boron losses its beneficial effect on creep properties in unstabilized steel by prolong creeping. The magnitude of beneficial effect of Boron on creep properties depends upon the initial boron distribution which influences the number, size and distribution of the precipitates. Boron promotes the precipitation of type M 23 C 6 Carbides in the grain as well as at the grain boundary. Boron segregates in atomic form during slow cooling from austenitizing temperature. The recrystallization will be delayed by the presence of boron. The results of creep tests at 650 0 C shows that boron exerts a beneficial effect on creep life of irradiated steels. (orig./GSC) [de

  13. Creep-rupture-strength and creep-behaviour of stainless steel X6CrNi 1811 (DIN 1.4948)

    International Nuclear Information System (INIS)

    Solano, R.R.; Rivas, M. de las; Seith, B.; Schirra, M.

    1977-01-01

    The steel X6CrNi 1811 (DIN 1.4948) that will be used as a structure material for the german fast breder reactor SNR 300, was creep-tested in a temperature range of 550-650 deg C under base material condition as well as welded material condition. Tests are foreseen up to 30.000 hours with a continous measuring of the elongation. The test results up to about 4.000 hours is described. Taking into account the results of other programs carried out with the same material between 550 and 600 deg C at similar rupture time, were defined the stresses for the longterm test. The main point of this program (''Extrapolation Program'') lies in the knowledge of the creep-rupture-strength and creep behaviour of the structure materials up to 3.10 4 h at high temperature in order to extrapolate up to 10 5 h for reactor operating temperatures. (author) [es

  14. Creep-rupture-strength and creep-behaviour of stainless steel X6CrNi 1811(DIN 1.4948)

    International Nuclear Information System (INIS)

    Solano, R. R.; Schirra, M.; Rivas, M. de la; Seith, B.

    1977-01-01

    The steel X6CrNi 1811 (DIN 1.4948) that will be used as a structure material for the German Fast Breeder Reactor SNR 300 was creep-tested in a temperature range of 550-650 degree centigree under base material condition as well as welded material condition. Tests are foreseen up to 30.000 hours with a continuous measuring of the elongation. The present report describes the test results up to about 4-000 hours. Taking into account the results of other programs carried out with the same material between 550- and 600 degree centigree at similar rupture time, were defined the stresses for the long term tests. The main point of this program (Extrapolation Program) lies in the knowledge of the creep-rupture-strength and creep behaviour of the structure materials up to 3.10 4 h at high temperature in order to extrapolate up to 10 5 h. for reactor operating temperatures. (Author) 14 refs

  15. Inaccuracy of reference curves used in the structures design by creep rupture indices

    International Nuclear Information System (INIS)

    Couto, P.R.G.; Silveira, T.L. da; Monteiro, S.N.; Rio de Janeiro Univ.

    1980-01-01

    The majority of Project Codes considers explicity rupture as one of the critereas for the extinction of the life of structures which operate at high temperatures. The modifications of the materials deformation and fracture mechanisms, are discussed. Their effects on the creep rupture indices used on projects are also considered in terms of parametric methods. (Author) [pt

  16. Investigation programme and procedure for creep and long-term rupture strength in materials with accounting for stress deviator and loading history

    International Nuclear Information System (INIS)

    Mozharovskaya, T.N.

    1984-01-01

    A programme and procedure are given to study 08Kh18N9 steel at 600 deg C and 15Kh2MFA steel at 550 deg C for creep and long-term strength at different parameters of proportional loading as well as at different parameters under loading in two-link irregular trajectories. This makes it possible to estimate the effect of the kind of a stress deviator, history and prehistory of loading on plastic deformation in creep and on failure under long-term loading

  17. Investigation programme and procedure for creep and long-term rupture strength in materials with accounting for stress deviator and loading history

    Energy Technology Data Exchange (ETDEWEB)

    Mozharovskaya, T N [AN Ukrainskoj SSR, Kiev. Inst. Problem Prochnosti

    1984-11-01

    A programme and procedure are given to study 08Kh18N9 steel at 600 deg C and 15Kh2MFA steel at 550 deg C for creep and long-term strength at different parameters of proportional loading as well as at different parameters under loading in two-link irregular trajectories. This makes it possible to estimate the effect of the kind of a stress deviator, history and prehistory of loading on plastic deformation in creep and on failure under long-term loading.

  18. Validation of statistical models for creep rupture by parametric analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, J., E-mail: john.bolton@uwclub.net [65, Fisher Ave., Rugby, Warks CV22 5HW (United Kingdom)

    2012-01-15

    Statistical analysis is an efficient method for the optimisation of any candidate mathematical model of creep rupture data, and for the comparative ranking of competing models. However, when a series of candidate models has been examined and the best of the series has been identified, there is no statistical criterion to determine whether a yet more accurate model might be devised. Hence there remains some uncertainty that the best of any series examined is sufficiently accurate to be considered reliable as a basis for extrapolation. This paper proposes that models should be validated primarily by parametric graphical comparison to rupture data and rupture gradient data. It proposes that no mathematical model should be considered reliable for extrapolation unless the visible divergence between model and data is so small as to leave no apparent scope for further reduction. This study is based on the data for a 12% Cr alloy steel used in BS PD6605:1998 to exemplify its recommended statistical analysis procedure. The models considered in this paper include a) a relatively simple model, b) the PD6605 recommended model and c) a more accurate model of somewhat greater complexity. - Highlights: Black-Right-Pointing-Pointer The paper discusses the validation of creep rupture models derived from statistical analysis. Black-Right-Pointing-Pointer It demonstrates that models can be satisfactorily validated by a visual-graphic comparison of models to data. Black-Right-Pointing-Pointer The method proposed utilises test data both as conventional rupture stress and as rupture stress gradient. Black-Right-Pointing-Pointer The approach is shown to be more reliable than a well-established and widely used method (BS PD6605).

  19. Creep Deformation and Rupture Behavior of Single- and Dual-Pass 316LN Stainless-Steel-Activated TIG Weld Joints

    Science.gov (United States)

    Vijayanand, V. D.; Vasudevan, M.; Ganesan, V.; Parameswaran, P.; Laha, K.; Bhaduri, A. K.

    2016-06-01

    Creep deformation and rupture behavior of single-pass and dual-pass 316LN stainless steel (SS) weld joints fabricated by an autogenous activated tungsten inert gas welding process have been assessed by performing metallography, hardness, and conventional and impression creep tests. The fusion zone of the single-pass joint consisted of columnar zones adjacent to base metals with a central equiaxed zone, which have been modified extensively by the thermal cycle of the second pass in the dual-pass joint. The equiaxed zone in the single-pass joint, as well as in the second pass of the dual-pass joint, displayed the lowest hardness in the joints. In the dual-pass joint, the equiaxed zone of the first pass had hardness comparable to the columnar zone. The hardness variations in the joints influenced the creep deformation. The equiaxed and columnar zone in the first pass of the dual-pass joint was more creep resistant than that of the second pass. Both joints possessed lower creep rupture life than the base metal. However, the creep rupture life of the dual-pass joint was about twofolds more than that of the single-pass joint. Creep failure in the single-pass joint occurred in the central equiaxed fusion zone, whereas creep cavitation that originated in the second pass was blocked at the weld pass interface. The additional interface and strength variation between two passes in the dual-pass joint provides more restraint to creep deformation and crack propagation in the fusion zone, resulting in an increase in the creep rupture life of the dual-pass joint over the single-pass joint. Furthermore, the differences in content, morphology, and distribution of delta ferrite in the fusion zone of the joints favors more creep cavitation resistance in the dual-pass joint over the single-pass joint with the enhancement of creep rupture life.

  20. Effect of some thermomechanical variables on plastic flow and creep-rupture of type 304 stainless steel at 5930C

    International Nuclear Information System (INIS)

    Swindeman, R.W.

    1977-01-01

    As part of an effort to examine sources of variability in the creep-rupture behavior of type 304 stainless steel, specimens subjected to a variety of prior thermomechanical treatments were tested. Included were different reannealing temperatures, cooling rates, types of prior straining, and a 24-hr age at 816 0 C. Two product forms of a single heat (heat 9T2796) were involved, and most testing was at 593 0 C. For material with coarse grain size, reannealing temperature had no pronounced influence. However, slow cooling rates and the 816 0 C aging significantly extended the rupture life. On the other hand, cold working by an equivalent of 4% tensile strain had very little influence on rupture life. Slow cooling or aging increased rupture life as a result of greatly improved creep ductility. This finding is consistent with similar observations in the literature for this and other stainless steels, and is believed to be due to the development of coarse, beneficial carbides on grain boundaries before stressing. The creep response in the primary and secondary stages was influenced by nearly all the thermomechanical treatments, but the variability in the response at relatively high stresses was scarcely greater than the variability observed in multiple tests on specimens having a common thermomechanical history. 10 figures, 1 table

  1. Preliminary microstructural examination of high and low ductility type 316 creep rupture specimens

    International Nuclear Information System (INIS)

    Bolton, C.J.; Cordwell, J.E.; Hooper, A.J.; Marshall, P.; Steeds, J.; Wickens, A.

    1977-09-01

    A preliminary report is presented dealing with the examination of creep specimens from five casts of AISI Type 316 stainless steel which ruptured with variable ductility. Specimen microstructures and attempts to identify factors responsible for high or low creep ductility are discussed. (author)

  2. Effects of carbon content and chromium segregation on creep rupture properties of low carbon and medium nitrogen type 316 stainless steel

    International Nuclear Information System (INIS)

    Nakazawa, Takanori; Fujita, Nobuhiro; Kimura, Hidetaka; Komatsu, Hajime; Kotoh, Hiroyuki; Kaguchi, Hitoshi.

    1997-01-01

    The creep rupture properties of type 316 stainless steels containing 0.005-0.022%C and 0.07%N have been investigated at 550degC and 600degC from the aspect of the grain boundary carbide precipitation which was changed with carbon content and chromium segregation. A small amount of carbide precipitated on grain boundaries during creep, because the solubility limit of the carbide is less than 0.005%. The creep rupture ductility of this steel increased with the reduction of carbon content from 0.010% to 0.005% while it decreased with increasing carbon content from 0.010% to 0.020%. Since the amount of grain boundary carbide decreased with reducing carbon content, the increase in ductility was due to the suppression of grain boundary embrittlement caused by the carbide. The creep rupture ductility of this steel was also improved by reducing chromium segregation. This behavior was attributed to the change in carbide morphology from concentrated type to dispersed one, which reduced the grain boundary embrittlement. (author)

  3. Creep life assessment of Mod.9Cr-1Mo steel. Pt. 1. Quantitative evaluation of microstructural damage in creep rupture specimens

    International Nuclear Information System (INIS)

    Sawada, Kota; Maruyama, Kouichi; Komine, Ryuji; Nagae, Yuji

    1997-03-01

    Several microstructural changes take place in a material during the course of creep. These changes can be a measure of creep life consumption. In this paper, microstructural changes in Mod.9Cr-1Mo steel were studied in order to examine their ability as the measure of creep life consumption. Macroscopic structural changes, such as void growth, rotation of lath structure toward the tensile axis and elongation of grains, are evident only in the necked portion of ruptured specimens. These macroscopic structural changes are not useful for creep life assessment. Lath width increases and dislocation density within lath decreases with increasing creep duration. These changes in dislocation substructure start in the early stage of creep life, and cause the increase of strain rate in the tertiary creep stage. The lath width and the dislocation density reach a stationary value before rupture. The stationary values are independent of temperature, and uniquely related to creep stress normalized by shear modulus. The extent of these microstructural changes are greater at lower stresses under which the material is practically used. These facts suggest that the lath width and the dislocation density within lath can be a useful measure of creep life consumption. Hardness of crept specimens is closely related to the lath width and the dislocation density within lath. The changes of these microstructural features can be evaluated by the measurement of hardness. (author)

  4. Creep and time to rupture of a 16/16 Cr Ni Steel

    International Nuclear Information System (INIS)

    Solano, R.; Garcia, R.; Bohm, H.; Schirra, M.

    1972-01-01

    The influence of different thermal-mechanical treatments on the creep and time to rupture of a 16/16 Cr.Ni steel is studied. The solution treated material after annealing at 700-800 degree centigree did not affect time to rupture. At the contrary a 12% cold-working and annealing at 800 degree centigree improve the time to rupture. This treatment is preserved up to 700 degree centigree 10 4 hours. The ductility is not strongly affected. A metallographic study of the fracture was carried out. (Author) 23 refs

  5. Effect of cold work on creep properties of oxygen-free copper

    International Nuclear Information System (INIS)

    Martinsson, Aasa; Andersson-Oestling, Henrik C.M.

    2009-03-01

    Spent nuclear fuel is in Sweden planned to be disposed by encapsulating in waste packages consisting of a cast iron insert surrounded by a copper canister. The cast iron is load bearing and the copper canister gives corrosion protection. The waste package is heavy. Throughout the manufacturing process from the extrusion/pierce-and-draw manufacturing to the final placement in the repository, the copper is subjected to handling which could introduce cold work in the material. It is well known that the creep properties of engineering materials at higher temperatures are affected by cold working. The study includes creep testing of four series of cold worked, oxygen-free, phosphorus doped copper (Cu-OFP) at 75 deg C. The results are compared to reference series for as series of copper cold worked in tension (12 and 24 %) and two series cold worked in compression (12 % parallel to creep load axis and 15 % perpendicular to creep load axis) were tested. The results show that pre-straining in tension of copper leads to prolonged creep life at 75 deg C. The creep rate and ductility are reduced. The influence on the creep properties increases with the amount of cold work. Cold work in compression applied along the creep load axis has no effect on the creep life or the creep rate. Nonetheless the ductility is still impaired. However, cold work in compression applied perpendicular to the creep load direction has a positive effect on the creep life. Cold work in both tension and compression results in a pronounced reduction of the initial creep strain, which is the strain obtained from the beginning of the loading until full creep load is achieved. Yet the area reduction is unaffected by the degree of cold work

  6. Creep of plain weave polymer matrix composites

    Science.gov (United States)

    Gupta, Abhishek

    Polymer matrix composites are increasingly used in various industrial sectors to reduce structural weight and improve performance. Woven (also known as textile) composites are one class of polymer matrix composites with increasing market share mostly due to their lightweight, their flexibility to form into desired shape, their mechanical properties and toughness. Due to the viscoelasticity of the polymer matrix, time-dependent degradation in modulus (creep) and strength (creep rupture) are two of the major mechanical properties required by engineers to design a structure reliably when using these materials. Unfortunately, creep and creep rupture of woven composites have received little attention by the research community and thus, there is a dire need to generate additional knowledge and prediction models, given the increasing market share of woven composites in load bearing structural applications. Currently, available creep models are limited in scope and have not been validated for any loading orientation and time period beyond the experimental time window. In this thesis, an analytical creep model, namely the Modified Equivalent Laminate Model (MELM), was developed to predict tensile creep of plain weave composites for any orientation of the load with respect to the orientation of the fill and warp fibers, using creep of unidirectional composites. The ability of the model to predict creep for any orientation of the load is a "first" in this area. The model was validated using an extensive experimental involving the tensile creep of plain weave composites under varying loading orientation and service conditions. Plain weave epoxy (F263)/ carbon fiber (T300) composite, currently used in aerospace applications, was procured as fabrics from Hexcel Corporation. Creep tests were conducted under two loading conditions: on-axis loading (0°) and off-axis loading (45°). Constant load creep, in the temperature range of 80-240°C and stress range of 1-70% UTS of the

  7. Corrosion and Rupture of Steam Generator Tubings in PWRs

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Seong Sik; Kim, Hong Pyo

    2007-08-15

    This report is intended to provide corrosion engineers in the filed of nuclear energy with information on the corrosion and rupture behavior of steam generator tubing in PWRs. Various types of corrosion in PWR steam generator tubing have been reported all around the world, and countermeasures such as the addition of corrosion inhibitors, a water chemistry control, a tube plugging and sleeving have been applied. Steam generators equipped with alloy 600 tubing, which are not so resistant to a stress corrosion cracking (SCC), have generally been replaced with new steam generators made of alloy 690 TT (Thermally treated). Pull tube examination results which were performed of KAERI are summarized. The tubes were affected by a pitting, SCC, and a denting. Nondestructive examination method for the tubes and repair techniques are also reviewed. In addition, the regulatory guidance of some countries are reviewed. As a part of a tube integrity project in Korea, some results on a tube rupture and leak behaviors for axial cracks are also mentioned.

  8. Corrosion and Rupture of Steam Generator Tubings in PWRs

    International Nuclear Information System (INIS)

    Hwang, Seong Sik; Kim, Hong Pyo

    2007-08-01

    This report is intended to provide corrosion engineers in the filed of nuclear energy with information on the corrosion and rupture behavior of steam generator tubing in PWRs. Various types of corrosion in PWR steam generator tubing have been reported all around the world, and countermeasures such as the addition of corrosion inhibitors, a water chemistry control, a tube plugging and sleeving have been applied. Steam generators equipped with alloy 600 tubing, which are not so resistant to a stress corrosion cracking (SCC), have generally been replaced with new steam generators made of alloy 690 TT (Thermally treated). Pull tube examination results which were performed of KAERI are summarized. The tubes were affected by a pitting, SCC, and a denting. Nondestructive examination method for the tubes and repair techniques are also reviewed. In addition, the regulatory guidance of some countries are reviewed. As a part of a tube integrity project in Korea, some results on a tube rupture and leak behaviors for axial cracks are also mentioned

  9. Creep-rupture correlations for type 304 stainless steel heat 9T2796

    International Nuclear Information System (INIS)

    Swindeman, R.W.

    1975-01-01

    Creep-rupture data are presented for a reference heat of type 304 stainless steel tested at temperatures between 482 and 816 0 C (900-1500 0 F) and for times to 10,000 hr. The ability of several popular time-temperature parameters to correlate the rupture data is examined, and it shows that the Orr-Sherby-Dorn parameter provides a slightly better fit to the data than the Larson-Miller, Manson-Haferd, and Manson-Succop parameters. An alternative model is developed, based on the Barrett-Ardell-Sherby parameter, which makes use of modulus-compensated true stresses. These stresses are approximated on the basis of the strain about halfway through the test. Although the parameter does not fit the data quite as well as the Orr-Sherby-Dorn parameter, the activation energy associated with the parameter approaches the value expected for solute element diffusion in stainless steel. In the very high-stress region the master curve generated by the parameter is used to examine the interface between the results of tensile tests, described in terms of the Voce equation, and the creep-rupture tests. The tensile data can be correlated with the Barrett-Ardel-Sherby parameter when the tensile testing conditions are such that rupture is initiated by grain boundary failures

  10. Reliability analysis for the creep rupture mode of failure

    International Nuclear Information System (INIS)

    Vaidyanathan, S.

    1975-01-01

    An analytical study has been carried out to relate the factors of safety employed in the design of a component to the probability of failure in the thermal creep rupture mode. The analysis considers the statistical variations in the operating temperature, stress and rupture time, and applies the life fraction damage criterion as the indicator of failure. Typical results for solution annealed type 304-stainless steel material for the temperature and stress variations expected in an LMFBR environment have been obtained. The analytical problem was solved by considering the joint distribution of the independent variables and deriving the distribution for the function associated with the probability of failure by integrating over proper regions as dictated by the deterministic design rule. This leads to a triple integral for the final probability of failure where the coefficients of variation associated with the temperature, stress and rupture time distributions can be specified by the user. The derivation is general, and can be used for time varying stress histories and the case of irradiated material where the rupture time varies with accumulated fluence. Example calculations applied to solution annealed type 304 stainless steel material have been carried out for an assumed coefficient of variation of 2% for temperature and 6% for stress. The results show that the probability of failure associated with dependent stress intensity limits specified in the ASME Boiler and Pressure Vessel Section III Code Case 1592 is less than 5x10 -8 . Rupture under thermal creep conditions is a highly complicated phenomenon. It is believed that the present study will help in quantizing the reliability to be expected with deterministic design factors of safety

  11. Comparison of extrapolation methods for creep rupture stresses of 12Cr and 18Cr10NiTi steels

    International Nuclear Information System (INIS)

    Ivarsson, B.

    1979-01-01

    As a part of a Soviet-Swedish research programme the creep rupture properties of two heat resisting steels namely a 12% Cr steel and an 18% Cr12% Ni titanium stabilized steel have been studied. One heat from each country of both steels were creep tested. The strength of the 12% Cr steels was similar to earlier reported strength values, the Soviet steel being some-what stronger due to a higher tungsten content. The strength of the Swedish 18/12 Ti steel agreed with earlier results, while the properties of the Soviet steel were inferior to those reported from earlier Soviet creep testings. Three extrapolation methods were compared on creep rupture data collected in both countries. Isothermal extrapolation and an algebraic method of Soviet origin gave in many cases rather similar results, while the parameter method recommended by ISO resulted in higher rupture strength values at longer times. (author)

  12. A study on stress analysis of small punch-creep test and its experimental correlations with uniaxial-creep test

    International Nuclear Information System (INIS)

    Lee, Song In; Baek, Seoung Se; Kwon, Il Hyun; Yu, Hyo Sun

    2002-01-01

    A basic research was performed to ensure the usefulness of Small Punch-creep(SP-creep) test for residual life evaluation of heat resistant components effectively. This paper presents analytical results of initial stress and strain distributions in SP specimen caused by constant loading for SP-creep test and its experimental correlations with uniaxial creep(Ten-creep) test on 9CrlMoVNb steel. It was shown that the initial maximum equivalent stress, σ eq · max from FE analysis was correlated with steady-state equivalent creep strain rate, ε qf-ss , rupture time, t r , activation energy, Q and Larson-Miller parameter, LMP during SP-creep deformation. The simple correlation laws, σ SP - σ TEN , P SP -σ TEN and Q SP -Q TEN adopted to established a quantitative correlation between SP-creep and Ten-creep test data. Especially, the activation energy obtained from SP-creep test is linearly related to that from Ten-creep test at 650 deg. C as follows : Q SP-P =1.37 Q TEN , Q SP-σ =1.53 Q TEN

  13. Influence of helium embrittlement on post-irradiation creep rupture behaviour of austenitic and martensitic stainless steels

    International Nuclear Information System (INIS)

    Wassilew, C.

    1982-01-01

    The author has investigated the influence of helium embrittlement on the creep rupture properties of the austenitic stainless steels 1.4970 and 1.4962 and the martensitic stainless steel 1.4914 after irradiation in the BR-2 reactor in Mol, Belgium. The results show that austenitic steels react much more strongly to the embrittlement effect of the helium than do martensitic steels. The causes of the lower embrittlement tendency of the martensitic than of both austenitic stainless steels were analysed carefully. A new embrittlement model was developed on the basis of data derived from the creep rupture experiments, and reinforced by a simple metallographic investigation of the fracture zone and its immediate environment. This model pays specific attention to the role of the twin planes as the most efficient area of increased vacancy production, and takes into account the ability of the twin boundaries to transport these vacancies with reduced energy and low loss into the high-angle grain boundaries. (author)

  14. Predictions of creep behavior of some stainless steels on the basis of short-term tensile properties

    International Nuclear Information System (INIS)

    Bui-Quoc, T.; Biron, A.

    1979-01-01

    A concept of cumulative damage has recently been developed for evaluating the amount of damage incurred by the material under the creep process. The damage accumulation is stress-dependent and is a non-linear function of time. This new approach allows one to establish the creep curve in the sigma-T diagram (sigma:applied stress, T:time at rupture) as well as to evaluate the remaining time to rupture when the material is subjected to several specified conditions of creep loading. The method takes into account the order effect of creep loading which has been observed experimentally and reported recently in the literature. Only the procedure related to the determination of the creep curve is discussed in the present paper. The isothermal creep behavior is represented by a single equation in which two material constants must be known in order to describe the complete creep curve. A good fit with experimental results for some materials is observed when these constants are evaluated by means of two reference data points chosen in the sigma/T diagram. (orig.)

  15. Thermal creep effects on 20% cold worked AISI 316 mechanical properties

    International Nuclear Information System (INIS)

    Duncan, D.R.

    1980-09-01

    The effects of thermal creep on subsequent mechanical properties of 20% cold worked AISI 316 pressurized tubes were investigated. Specimens were subjected to temperatures of 811 to 977 0 K and stresses of 86 MPa to 276 MPa. This resulted in strains up to 1.3%. Subsequent mechanical property tests included load change stress rupture tests (original test pressure increased or decreased), uniaxial tensile tests, and temperature ramp burst tests. Load change stress rupture tests were consistent with predictions from isobaric tests, and thus, consistent with the linear life fraction rule. Tests with large stress increases and tests at 866 0 K displayed a tendency for earlier than predicted failure. Tensile and temperature ramp burst tests had only slight effects on material properties (property changes were attributed to thermal recovery). The test results showed that, under the conditions of investigation, dislocation structure recovery was the most significant effect of creep. 9 figures, 5 tables

  16. Creep deformation and rupture behavior of CLAM steel at 823 K and 873 K

    Science.gov (United States)

    Zhong, Boyu; Huang, Bo; Li, Chunjing; Liu, Shaojun; Xu, Gang; Zhao, Yanyun; Huang, Qunying

    2014-12-01

    China Low Activation Martensitic (CLAM) steel is selected as the candidate structural material in Fusion Design Study (FDS) series fusion reactor conceptual designs. The creep property of CLAM steel has been studied in this paper. Creep tests have been carried out at 823 K and 873 K over a stress range of 150-230 MPa. The creep curves showed three creep regimes, primary creep, steady-state creep and tertiary creep. The relationship between minimum creep rate (ε˙min) and the applied stress (σ) could be described by Norton power law, and the stress exponent n was decreased with the increase of the creep temperature. The creep mechanism was analyzed with the fractographes of the rupture specimens which were examined by scanning electron microscopy (SEM). The coarsening of precipitates observed with transmission electron microscope (TEM) indicated the microstructural degradation after creep test.

  17. Creep deformation and rupture behavior of CLAM steel at 823 K and 873 K

    International Nuclear Information System (INIS)

    Zhong, Boyu; Huang, Bo; Li, Chunjing; Liu, Shaojun; Xu, Gang; Zhao, Yanyun; Huang, Qunying

    2014-01-01

    China Low Activation Martensitic (CLAM) steel is selected as the candidate structural material in Fusion Design Study (FDS) series fusion reactor conceptual designs. The creep property of CLAM steel has been studied in this paper. Creep tests have been carried out at 823 K and 873 K over a stress range of 150–230 MPa. The creep curves showed three creep regimes, primary creep, steady-state creep and tertiary creep. The relationship between minimum creep rate (ε-dot min ) and the applied stress (σ) could be described by Norton power law, and the stress exponent n was decreased with the increase of the creep temperature. The creep mechanism was analyzed with the fractographes of the rupture specimens which were examined by scanning electron microscopy (SEM). The coarsening of precipitates observed with transmission electron microscope (TEM) indicated the microstructural degradation after creep test

  18. Creep to inertia dominated stick-slip behavior in sliding friction modulated by tilted non-uniform loading

    Science.gov (United States)

    Tian, Pengyi; Tao, Dashuai; Yin, Wei; Zhang, Xiangjun; Meng, Yonggang; Tian, Yu

    2016-09-01

    Comprehension of stick-slip motion is very important for understanding tribological principles. The transition from creep-dominated to inertia-dominated stick-slip as the increase of sliding velocity has been described by researchers. However, the associated micro-contact behavior during this transition has not been fully disclosed yet. In this study, we investigated the stick-slip behaviors of two polymethyl methacrylate blocks actively modulated from the creep-dominated to inertia-dominated dynamics through a non-uniform loading along the interface by slightly tilting the angle of the two blocks. Increasing the tilt angle increases the critical transition velocity from creep-dominated to inertia-dominated stick-slip behaviors. Results from finite element simulation disclosed that a positive tilt angle led to a higher normal stress and a higher temperature on blocks at the opposite side of the crack initiating edge, which enhanced the creep of asperities during sliding friction. Acoustic emission (AE) during the stick-slip has also been measured, which is closely related to the different rupture modes regulated by the distribution of the ratio of shear to normal stress along the sliding interface. This study provided a more comprehensive understanding of the effect of tilted non-uniform loading on the local stress ratio, the local temperature, and the stick-slip behaviors.

  19. Creep deformation and rupture behaviour of 9Cr–1W–0.2V–0.06Ta Reduced Activation Ferritic–Martensitic steel

    International Nuclear Information System (INIS)

    Vanaja, J.; Laha, K.; Mythili, R.; Chandravathi, K.S.; Saroja, S.; Mathew, M.D.

    2012-01-01

    Highlights: ► Creep tests on broad temperature and stress ranges were carried out. ► Microstructural instability on creep and thermal exposures were studied using TEM. ► Creep damage tolerance factor of the material was estimated. - Abstract: This paper presents the creep deformation and rupture behaviour of indigenously produced 9Cr–1W–0.2V–0.06Ta Reduced Activation Ferritic–Martensitic (RAFM) steel for fusion reactor application. Creep studies were carried out at 773, 823 and 873 K over a stress range of 100–300 MPa. The creep deformation of the steel was found to proceed with relatively shorter primary regime followed by an extended tertiary regime with virtually no secondary regime. The variation of minimum creep rate of the material with applied stress followed a power law relation, ε m = Aσ n , with stress exponent value ‘n’ decreasing with increase in temperature. The product of minimum creep rate and creep rupture life was found to obey the modified Monkman–Grant relation. The time to onset of tertiary stage of deformation was directly proportional to rupture life. TEM studies revealed relatively large changes in martensitic sub-structure and coarsening of precipitates in the steel on creep exposure as compared to thermal exposure. Microstructural degradation was considered as the prime cause of extended tertiary stage of creep deformation, which was also reflected in the damage tolerance factor λ with a value more than 2.5. In view of the microstructural instability of the material on creep exposure, the variation of minimum creep rate with stress and temperature did not obey Dorn's equation modified by invoking Lagneborg and Bergman's concepts of back stress.

  20. Creep rupture behavior of 9Cr–1.8W–0.5Mo–VNb (ASME grade 92) ferritic steel weld joint

    Energy Technology Data Exchange (ETDEWEB)

    Sakthivel, T., E-mail: tsakthivel@igcar.gov.in; Vasudevan, M.; Laha, K., E-mail: laha@igcar.gov.in; Parameswaran, P.; Chandravathi, K.S.; Panneer Selvi, S.; Maduraimuthu, V.; Mathew, M.D.

    2014-01-03

    Creep rupture behavior of 9Cr–1.8W–0.5Mo–VNb (ASME grade 92) ferritic steel weld joint fabricated by activated TIG (A-TIG) welding process have been investigated at 923 K over a stress range of 80–150 MPa. The weld joint was comprise of fusion zone, heat affected zone (HAZ) and base metal. The HAZ consisted of coarse prior-austenite grain (CGHAZ), fine prior-austenite grain (FGHAZ) and intercritical (ICHAZ) regions in an order away from the fusion zone to base metal. A hardness trough was observed at the outer edge of HAZ of the weld joint. TEM investigation revealed the presence of coarse M{sub 23}C{sub 6} precipitates and recovery of martensite lath structure into subgrain in the ICHAZ of the weld joint, leading to the hardness trough. The weld joint exhibited lower creep rupture lives than the base metal at relatively lower stresses. Creep rupture failure location of the weld joint was found to shift with applied stress. At high stresses fracture occurred in the base metal, whereas failure location shifted to FGHAZ at lower stresses with significant decrease in rupture ductility. SEM investigation of the creep ruptured specimens revealed precipitation of Laves phase across the joint, more extensively in the FGHAZ. On creep exposure, the hardness trough was found to shift from the ICHAZ to FGHAZ. Extensive creep cavitation was observed in the FGHAZ and was accompanied with the Laves phase, leading to the premature type IV failure of the steel weld joint at the FGHAZ.

  1. A preliminary assessment of the effects of heat flux distribution and penetration on the creep rupture of a reactor vessel lower head

    International Nuclear Information System (INIS)

    Chu, T.Y.; Bentz, J.; Simpson, R.; Witt, R.

    1997-01-01

    The objective of the Lower Head Failure (LHF) Experiment Program is to experimentally investigate and characterize the failure of the reactor vessel lower head due to thermal and pressure loads under severe accident conditions. The experiment is performed using 1/5-scale models of a typical PWR pressure vessel. Experiments are performed for various internal pressure and imposed heat flux distributions with and without instrumentation guide tube penetrations. The experimental program is complemented by a modest modeling program based on the application of vessel creep rupture codes developed in the TMI Vessel Investigation Project. The first three experiments under the LHF program investigated the creep rupture of simulated reactor pressure vessels without penetrations. The heat flux distributions for the three experiments are uniform (LHF-1), center-peaked (LHF-2), and side-peaked (LHF-3), respectively. For all the experiments, appreciable vessel deformation was observed to initiate at vessel wall temperatures above 900K and the vessel typically failed at approximately 1000K. The size of failure was always observed to be smaller than the heated region. For experiments with non-uniform heat flux distributions, failure typically occurs in the region of peak temperature. A brief discussion of the effect of penetration is also presented

  2. Creep deformation and rupture behavior of type 304/308 stainless steel structural weldments

    International Nuclear Information System (INIS)

    McAfee, W.J.; Richardson, M.; Sartory, W.K.

    1977-01-01

    The creep deformation and rupture of type 304/308 stainless steel structural weldments at 593 0 C (1100 0 F) was experimentally investigated to study the comparative behavior of the base metal and weld metal constituents. The tests were conducted in support of ORNL's program to develop high-temperature structural design methods applicable to liquid-metal fast breeder reactor (LMFBR) system components that operate in the creep range. The specimens used were thin-walled, right circular cylinders capped with either flat or hemispherical heads and tested under internal gas pressure. Circumferential welds were located in different regions of the cylinder or head and, with one exception, were geometrically duplicated by all base metal regions in companion specimens. Results are presented on the comparative deformation and rupture behavior of selected points in the base metal and weldment regions of the different specimens and on the overall surface strains for selected specimens

  3. Corrosion and Creep Characteristics of the HANA-4 Alloy with the various Manufacturing Processes

    International Nuclear Information System (INIS)

    Kim, Hyun-Gil; Choi, Byung-Kwan; Park, Jeong-Yong; Jeong, Yong-Hwan

    2008-01-01

    Zirconium alloys have been used as a fuel cladding material for several decades, since these alloys have revealed a good corrosion resistance and mechanical properties in reactor operating conditions. The development of an advanced Zr-based alloy with an improved corrosion and creep resistance is necessary for the high burn-up operating conditions in PWRs. The alloying element effects of the Nb, Sn, Fe, Cr, Cu etc as well as an optimization of the manufacturing processes such as the reduction ratio and annealing temperatures have been studied to improve the corrosion and creep properties. A high Nb-containing Zr-based alloy named HANA-4 was designed at KAERI and its nominal composition is Zr-1.5Nb-0.4Sn-0.2Fe-0.1Cr in wt.%. For high Nb-containing Zr alloys, their corrosion resistance is very sensitive to their microstructural characteristics which are determined by a manufacturing process. In order to obtain the best manufacturing process for the HANA-4 alloy, various evaluations such as corrosion and creep tests, a microstructural analysis, and a texture analysis were performed on the HANA-4 alloy with various manufacturing processes

  4. Creep and rupture behavior of weld-deposited Type 16-8-2 stainless steel at 5930C

    International Nuclear Information System (INIS)

    Ward, A.L.; Blackburn, L.D.

    1976-03-01

    The creep and rupture behavior of weld-deposited Type 16-8-2 stainless steel at 593 0 C was investigated over the time range from 3.6 x 10 4 s to 2.5 x 10 7 s. Equations relating stress to the time to rupture, the time to the onset of tertiary creep, and the time to produce a given creep strain were obtained. The experimental results indicate that the control of welding parameters (e.g. current, voltage and travel speed) within reasonable ranges can yield weld deposits with consistent time-dependent properties. Limited data suggest that high temperature (1065 0 C) post-weld annealing significantly alters only the flow curve for plastic deformation, while long-term thermal exposure at an intermediate temperature (565 0 C) produces only minor changes in either the plastic deformation or creep behavior of the weld materials

  5. Influence of flowing sodium on the creep rupture behavior of type 304 SS at 550 degrees C

    Energy Technology Data Exchange (ETDEWEB)

    Huthmann, H; Grosser, E D [INTERATOM, Bergisch Gladbach (Germany); Tas, H [SCK/CEN, Mol (Belgium); Borgstedt, H U [GfK, Karlsruhe (Germany)

    1977-07-01

    Substantial components of Liquid Metal Fast Breeder Reactors operate in a temperature range, where the knowledge of time dependent properties is necessary for design purposes. Current high temperature design rules for this temperature range are based on material properties data, which have been obtained in air tests. During the exposure to the flowing sodium environment at elevated temperatures the structural materials are subjected to compositional and microstructural changes, which could alter the mechanical behavior as compared to that in air tests. Within the SNR 300 project a cooperative program between INTERATOM (Federal Republic of Germany), the Nuclear Research Center, GfK, of Karlsruhe and the Studiecentrum voor Kernenergie, SCK/CEN, in Belgium Is conducted to determine quantitatively the influence of sodium environment on the creep-rupture behavior of Type 304 stainless steel. This program is aimed to identify design properties reflecting the possible influence of the coolant. In the present paper, preliminary data are presented on the effect of dynamic un-isothermal sodium on the uniaxial creep-rupture behavior of Type 304 stainless steel at 550 deg. C.

  6. Improvement of creep-rupture properties by serrated grain boundaries in high-tungsten cobalt-base superalloys

    International Nuclear Information System (INIS)

    Tanaka, Manabu

    1993-01-01

    The improvement of creep-rupture properties by serrated grain boundaries was investigated using cobalt-base superalloys containing about 14 to 20 wt.% tungsten at 1089 and 1311 K. Serrated grain boundaries improved both the rupture life and the ductility, especially under lower stresses at 1089 K. The increase in rupture life was larger in the alloys containing a larger amount of W. Ductile grain boundary fracture surfaces, which involved dimple patterns and grain boundary ledges, were observed in the specimens with serrated grain boundaries whereas brittle grain boundary facets were observed in the specimens with normal straight grain boundaries ruptured at 1089 K. The strengthening by serrated grain boundaries was also effective at 1311 K, but there was little difference in rupture life between the specimens with serrated grain boundaries and those with straight grain boundaries under lower stresses, since serrated grain boundaries developed also in the specimens with straight grain boundaries according to grain boundary precipitates forming during creep at 1311 K. The increase in W content of the alloys led to the increase in rupture life of the specimens with serrated grain boundaries at 1089 and 1311 K. (orig.) [de

  7. Simulation of creep test on 316FR stainless steel in sodium environment at 550degC

    International Nuclear Information System (INIS)

    Satmoko, A.; Asayama, Tai

    1999-04-01

    In sodium environment, material 316FR stainless steel risks to suffer from carburization. In this study, an analysis using a Fortran program is conducted to evaluate the carbon influence on the creep behavior of 316FR based on experimental results from uni-axial creep test that had been performed at temperature 550degC in sodium environment simulating Fast Breeder Reactor condition. As performed in experiments, two parts are distinguished. At first, elastic-plastic behavior is used to simulate the fact that just before the beginning of creep test, specimen suffers from load or stress much higher than initial yield stress. In second part, creep condition occurs in which the applied load is kept constant. The plastic component should be included, since stresses increase due to section area reduction. For this reason, elastic-plastic-creep behavior is considered. Through time carbon penetration occurs and its concentration is evaluated empirically. This carburization phenomena are assumed to affect in increasing yield stress, decreasing creep strain rate, and increasing creep rupture strength of material. The model is capable of simulating creep test in sodium environment. Material near from surface risks to be carburized. Its material properties change leading to non-uniform distribution of stresses. Those layers of material suffer from stress concentration, and are subject to damage. By introducing a damage criteria, crack initialization can thus be predicted. And even, crack growth can be evaluated. For high stress levels, tensile strength criterion is more important than creep damage criterion. But in low stress levels, the latter gives more influence in fracture. Under high stress, time to rupture of a specimen in sodium environment is shorter than in air. But for stresses lower than 26 kgf/mm 2 , the time to rupture of creep in sodium environment is the same or little longer than in air. Quantitatively, the carburization effect at 550degC is not important. This

  8. Microstructural Evolution and Creep-Rupture Behavior of A-USC Alloy Fusion Welds

    Science.gov (United States)

    Bechetti, Daniel H.; DuPont, John N.; Siefert, John A.; Shingledecker, John P.

    2016-09-01

    Characterization of the microstructural evolution of fusion welds in alloys slated for use in advanced ultrasupercritical (A-USC) boilers during creep has been performed. Creep-rupture specimens involving INCONEL® 740, NIMONIC® 263 (INCONEL and NIMONIC are registered trademarks of Special Metals Corporation), and Haynes® 282® (Haynes and 282 are registered trademarks of Haynes International) have been analyzed via light optical microscopy, scanning electron microscopy, X-ray diffraction, and thermodynamic and kinetic modeling. Focus has been given to the microstructures that develop along the grain boundaries in these alloys during creep at temperatures relevant to the A-USC process cycle, and particular attention has been paid to any evidence of the formation of local γ'-denuded or γ'-free zones. This work has been performed in an effort to understand the microstructural changes that lead to a weld strength reduction factor (WSRF) in these alloys as compared to solution annealed and aged alloy 740 base metal. γ' precipitate-free zones have been identified in alloy 740 base metal, solution annealed alloy 740 weld metal, and alloy 263 weld metal after creep. Their development during long-term thermal exposure is correlated with the stabilization of phases that are rich in γ'-forming elements ( e.g., η and G) and is suppressed by precipitation of phases that do not contain the γ' formers ( e.g., M23C6 and μ). The location of failure and creep performance in terms of rupture life and WSRF for each welded joint is presented and discussed.

  9. The Bree problem with different yield stresses on-load and off-load and application to creep ratcheting

    International Nuclear Information System (INIS)

    Bradford, R.A.W.; Ure, J.; Chen, H.F.

    2014-01-01

    The ratchet boundaries and ratchet strains are derived for the Bree problem and an elastic-perfectly plastic material with different yield stresses on-load and off-load. The Bree problem consists of a constant uniaxial primary membrane stress and a cycling thermal bending stress. The ratchet problem with differing yield stresses is also solved for a modified loading in which both the primary membrane and thermal bending stresses cycle in-phase. The analytic solutions for the ratchet boundaries are compared with the results of deploying the linear matching method (LMM) and excellent agreement is found. Whilst these results are of potential utility for purely elastic–plastic behaviour, since yield stresses will often differ at the two ends of the cycle, the solution is also proposed as a means of assessing creep ratcheting via a creep ductility exhaustion approach. -- Highlights: • The Bree problem is solved for differing yield stresses on and off load. • The modified Bree problem with cycling primary load is also solved. • These solutions can be applied to creep ratcheting using a pseudo-yield stress

  10. The effects of some factors on the creep behavior of type 304 stainless steel

    International Nuclear Information System (INIS)

    Nakazawa, Takanori; Abo, Hideo

    1977-01-01

    The effects of some factors on the creep behavior of type 304 stainless steel have been studied, and relationships between the strength and the structures in the steel have been discussed. Main results obtained were as follows: (1) Creep strength and creep rupture strength at 550, 600, and 650 0 C increased with cold working rate up to 20%, but creep rupture elongation decreased. These facts were explained by the strengthening of matrix by dislocations which acted as precipitation sites of carbides during creep. (2) The steel was aged for up to 3000h at 550-700 0 C. Carbides precipitated on grain boundary and in the neighborhood of grain boundary. With long time or high temperature aging creep strength and creep rupture strength decreased, but creep rupture elongation increased. (3) Creep strength at 600 0 C was independent of the grain size. Initiation of crack was accelerated with growth of grains, and therefore the creep rupture strength and elongation became lower. (4) Creep strength of type 304 stainless steel stemed from uniformly distributed fine carbieds (Cr, Fe) 23 -C 6 which precipitated on dislocations during creep. (auth.)

  11. Evaluation of creep-fatigue life prediction methods for low-carbon/nitrogen-added SUS316

    International Nuclear Information System (INIS)

    Takahashi, Yukio

    1998-01-01

    Low-carbon/medium nitrogen 316 stainless steel called 316FR is a principal candidate for the high-temperature structural materials of a demonstration fast reactor plant. Because creep-fatigue damage is a dominant failure mechanism of the high-temperature materials subjected to thermal cycles, it is important to establish a reliable creep-fatigue life prediction method for this steel. Long-term creep tests and strain-controlled creep-fatigue tests have been conducted at various conditions for two different heats of the steel. In the constant load creep tests, both materials showed similar creep rupture strength but different ductility. The material with lower ductility exhibited shorter life under creep-fatigue loading conditions and correlation of creep-fatigue life with rupture ductility, rather than rupture strength, was made clear. Two kinds of creep-fatigue life prediction methods, i.e. time fraction rule and ductility exhaustion method were applied to predict the creep-fatigue life. Accurate description of stress relaxation behavior was achieved by an addition of 'viscous' strain to conventional creep strain and only the latter of which was assumed to contribute to creep damage in the application of ductility exhaustion method. The current version of the ductility exhaustion method was found to have very good accuracy in creep-fatigue life prediction, while the time fraction rule overpredicted creep-fatigue life as large as a factor of 30. To make a reliable estimation of the creep damage in actual components, use of ductility exhaustion method is strongly recommended. (author)

  12. A creep life assessment method for boiler pipes using small punch creep test

    International Nuclear Information System (INIS)

    Izaki, Toru; Kobayashi, Toshimi; Kusumoto, Junichi; Kanaya, Akihiro

    2009-01-01

    The small punch creep (SPC) test is considered as a highly useful method for creep life assessment for high temperature plant components. SPC uses miniature-sized specimens and does not cause any serious sampling damages, and its assessment accuracy is at a high level. However, in applying the SPC test to the residual creep life assessment of the boiler in service, there are some issues to be studied. In order to apply SPC test to the residual creep life assessment of the 2.25Cr-1Mo steel boiler pipe, the relationship between uniaxial creep stress and the SPC test load has been studied. The virgin material, pre-crept, weldment and service aged samples of 2.25Cr-1Mo steel were tested. It was confirmed that the relationship between uniaxial creep stress and the SPC test load at the same rupture time can be described as a single straight line independent of test conditions and materials. Therefore a life assessment is possible by using SPC test in place of uniaxial creep tests. The creep life assessment using SPC was applied to actual thermal power plant components which are in service.

  13. Reliability Evaluation on Creep Life Prediction of Alloy 617 for a Very High Temperature Reactor

    International Nuclear Information System (INIS)

    Kim, Woo-Gon; Hong, Sung-Deok; Kim, Yong-Wan; Park, Jae-Young; Kim, Seon-Jin

    2012-01-01

    This paper evaluates the reliability of creep rupture life under service conditions of Alloy 617, which is considered as one of the candidate materials for use in a very high temperature reactor (VHTR) system. A Z-parameter, which represents the deviation of creep rupture data from the master curve, was used for the reliability analysis of the creep rupture data of Alloy 617. A Service-condition Creep Rupture Interference (SCRI) model, which can consider both the scattering of the creep rupture data and the fluctuations of temperature and stress under any service conditions, was also used for evaluating the reliability of creep rupture life. The statistical analysis showed that the scattering of creep rupture data based on Z-parameter was supported by normal distribution. The values of reliability decreased rapidly with increasing amplitudes of temperature and stress fluctuations. The results established that the reliability decreased with an increasing service time.

  14. The effects of some factors on the creep behavior of type 304 stainless steel

    International Nuclear Information System (INIS)

    Nakazawa, Takanori; Abo, Hideo

    1978-01-01

    The effects of some factors on the creep behavior of Type 304 stainless steel have been studied and the relations between the strength and the structure of the steel have been discussed. The main results obtained are as follows. (1) The creep and creep rupture strengths at 550 0 , 600 0 and 650 0 C increased with the increase in cold working rate up to 20%, but the creep rupture elongation decreased. These facts could be explained by the strengthening of matrix by dislocations which acted as precipitation sites of carbides during creep. (2) The steel was aged for up to 3000 hr at 550 0 to 700 0 C. Carbides precipitated on the grain boundaries and in the neighborhood of the grain boundaries. With long-time or high-temperature aging, the creep strength and creep rupture strength decreased, but the creep rupture elongation increased. (3) The creep strength at 600 0 C was independent of the grain size. Crack initiation was accelerated by the growth of grains, and therefore the creep rupture strength and elongation were decreased. (4) The creep strength of Type 304 stainless steel was increased by uniformly distributed fine carbides (Cr, Fe) 23 C 6 which precipitated on dislocations during creep. (author)

  15. NORA-2, a model for creep deformation and rupture of zircaloy at high temperatures

    International Nuclear Information System (INIS)

    Raff, S.; Meyder, R.

    1983-01-01

    A model has been developed to describe Zircaloy cladding behaviour under LOCA and small leak conditions within specified temperature range and strain rates. The deformation model consists of a strain rate equation with two components representing strain rate controlled contributions from different deformation mechanisms. Transition from one mechanism to the other produces the strain rate dependence of the stress exponent of steady state creep. During transient creep the change of creep mechanisms produces a flow softening behaviour which induces unstable creep. Together with a strain hardening model, the strain history can be described for low and high strain values. The influence of oxidation is taken into account by modelling hardening due to solid solution of oxygen, cracking of the brittle oxide and oxygen stabilised α-phase layers, and by an oxidation-induced creep component in steam atmosphere. The rupture criterion is based on a strain fraction rule whose variables are temperature, strain rate or applied stress, and oxygen content. (author)

  16. Microstructural Evolution and Creep-Rupture Behavior of Fusion Welds Involving Alloys for Advanced Ultrasupercritical Power Generation

    Science.gov (United States)

    Bechetti, Daniel H., Jr.

    determine the correlation of discontinuous coarsening of the gamma' phase with time at temperature, creep strain, plastic prestrain, post-weld heat treatment, and compositional modification. The discontinuous coarsening reaction was shown to depend most strongly on the total strain experienced during creep. Post-weld homogenization and compositional modification had mixed effects on fusion weld rupture life and the rate of discontinuous coarsening. The differences in rupture life and discontinuous coarsening across a large matrix of creep specimens were related to the differences in strain at rupture and the relative ease of grain boundary motion in the samples. Finally, in-depth characterization of the discontinuous coarsening reaction products in alloy 740H creep specimens was performed. The effects of solute partitioning during non-equilibrium solidification on the variation in the volume fraction of strengthening precipitates along the length of the grain boundaries has been linked to the propensity for discontinuous coarsening. Evidence for the preferential development of discontinuous coarsening along grain boundary segments with sharp variations in gamma' content was presented. In addition, evidence for the preferred growth of colonies of discontinuous coarsening into regions of lower gamma' content was documented. Scanning transmission electron microscopy determined the compositions of the matrix and precipitate phases within the colonies and quantified the segregation of alloying elements to the reaction front. Thermodynamic and kinetic modeling using commercially available software packages were leaned on extensively throughout this research, both as a way to provide theoretical bases for experimental observations and as a way to design and guide experimentation. Overall, the results presented in this work offer detailed observations on the evolution of deleterious grain boundary features in A-USC alloy fusion welds and provide insight for changes that may improve

  17. A simplified model for cumulative damage with interaction effect for creep loading

    International Nuclear Information System (INIS)

    Gomuc, R.; Bui-Quoc, T.; Biron, A.

    1989-01-01

    This paper explains that the basic creep-rupture behavior of a material at high temperature is obtained with constant stresses under isothermal conditions. Structural components operating at high temperature are, however, usually subjected to fluctuations of stresses and/or temperatures. Experimental conditions cannot cover all possible combinations of these parameters and, in addition, systematic investigations on cumulative creep damage are very limited due to long-term testing. The authors suggest that there is a need to establish a reliable procedure for evaluating the cumulative creep damage effect under non-steady stresses and temperatures

  18. Dynamic rupture models of earthquakes on the Bartlett Springs Fault, Northern California

    Science.gov (United States)

    Lozos, Julian C.; Harris, Ruth A.; Murray, Jessica R.; Lienkaemper, James J.

    2015-01-01

    The Bartlett Springs Fault (BSF), the easternmost branch of the northern San Andreas Fault system, creeps along much of its length. Geodetic data for the BSF are sparse, and surface creep rates are generally poorly constrained. The two existing geodetic slip rate inversions resolve at least one locked patch within the creeping zones. We use the 3-D finite element code FaultMod to conduct dynamic rupture models based on both geodetic inversions, in order to determine the ability of rupture to propagate into the creeping regions, as well as to assess possible magnitudes for BSF ruptures. For both sets of models, we find that the distribution of aseismic creep limits the extent of coseismic rupture, due to the contrast in frictional properties between the locked and creeping regions.

  19. Creep-rupture-strength and creep-behaviour of stainless steel X6CrNi 1811 (DIN 1.4948)

    International Nuclear Information System (INIS)

    Solano, R.R.; Rivas, M. de las; Schirra, M.; Seith, B.

    1976-10-01

    The steel X6CrNi 1811 (DIN 1.4948) that will be used as a structure material for the German fast breeder reactor SNR 300 was creep-tested in a temperature range of 550-650 0 C under base material condition as well as welded material condition. Tests are foreseen up to 30.000 hours with a continuous measuring of the elongation. The present report describes the test results up to about 5.000 hours. Taking into account the results of other programs carried out with the same material between 550 and 600 0 C at similar rupture times, were defined the stresses for the long term tests. The main point of this program ('Extrapolation Program') lies in the knowledge of the creep time and creep behaviour of the structure materials up to 3 x 10 4 h at high temperature in order to extrapolate up to 10 5 h for operating temperatures. (orig.) [de

  20. Creep curve formularization at 950degC for Hastelloy XR

    International Nuclear Information System (INIS)

    Kaji, Yoshiyuki; Muto, Yasushi

    1991-03-01

    Creep tests under constant stress were conducted on a nickel-base heat-resistant alloy, Hastelloy XR, in air at 950degC. Minimum creep strain rate, time to the onset of tertiary creep and time to rupture were obtained as a function of applied stress. Then, a creep constitutive equation was made based on the Garofalo formula for primary and secondary creep and based on the Kachanov-Rabotnov formula for tertiary creep, which could represent fairly well the experimental creep deformation curves under the constant stress conditions. The creep deformation under the constant load condition corresponding to the stress increment was analysed using the creep constitutive equation and strain hardening law. Then the calculated creep strain showed slightly higher value than the experimental creep strain, and the calculated life was shorter than the experimental one. (author)

  1. Applicability of creep damage rules to a nickel-base heat-resistant alloy Hastelloy XR

    International Nuclear Information System (INIS)

    Tsuji, Hirokazu; Nakajima, Najime; Tanabe, Tatsuhiko; Nakasone, Yuji

    1992-01-01

    A series of constant load and temperature creep rupture tests and varying load and/or temperature creep rupture tests was carried out on a nickel-base heat-resistant alloy Hastelloy XR, which was developed for applications in the High-Temperature Engineering Test Reactor, at temperatures ranging from 850 to 1000deg C in order to examine the applicability of the conventional creep damage rules, i.e., the life fraction, the strain fraction and their mixed rules. The life fraction rule showed the best applicability of these three criteria. The good applicability of the rule was considered to result from the fact that the creep strength of Hastelloy XR was not strongly affected by the change of the chemical composition and/or the microstructure during exposure to the high-temperature simulated HTGR helium environment. In conclusion the life fraction rule is applicable in engineering design of high-temperature components made of Hastelloy XR. (orig.)

  2. Creep-rupture-tests on thestainless steel X6 CrNi1811 (DIN 1.4948) in the frame of the ''Extrapolation-Program'' Pt. 2

    International Nuclear Information System (INIS)

    Solano, R.R.; Barroso, S.; Rivas, M. de las; Schirra, M.; Seith, B.

    1979-01-01

    The austenitic stainless steel X6 CrNi 1811 (DIN 1.4948) that is used as a structure material for the German Fast Breeder Reactor SNR 300 was creep tested in a temperature range of 550-650 deg under base material condition as well as welded material condition. The main point of this program (''Extrapolation-Program'') lies in the knowledge of the cree-rupture-strength and creep-behaviour up to 3X10 - 4 hours at higher temperatures in order to extrapolate up to (>=)10 5 hours for operating temperatures. In order to study the stress dependency of the minimum creep rate additional tests were carried out over temperature range 550 deg - 750 deg C. The present report describes the state in the running program with test-time up to 35.000 hours. Besides the cree-rupture behaviour it is possible to make a distinct quantitative statement for the creep-behaviour and ductility. Extensive metallographic examinations show the fracture behaviour and changes in structure. (author)

  3. Influence of variations in creep curve on creep behavior of a high-temperature structure

    International Nuclear Information System (INIS)

    Hada, Kazuhiko

    1986-01-01

    It is one of the key issues for a high-temperature structural design guideline to evaluate the influence of variations in creep curve on the creep behavior of a high-temperature structure. In the present paper, a comparative evaluation was made to clarify such influence. Additional consideration was given to the influence of the relationship between creep rupture life and minimum creep rate, i.e., the Monkman-Grant's relationship, on the creep damage evaluation. The consideration suggested that the Monkman-Grant's relationship be taken into account in evaluating the creep damage behavior, especially the creep damage variations. However, it was clarified that the application of the creep damage evaluation rule of ASME B and P.V. Code Case N-47 to the ''standard case'' which was predicted from the average creep property would predict the creep damage on the safe side. (orig./GL)

  4. Long-term creep rupture strength of weldment of Fe-Ni based alloy as candidate tube and pipe for advanced USC boilers

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Gang; Sato, Takashi [Babcok-Hitachi K.K., Hiroshima (Japan). Kure Research Laboratory; Marumoto, Yoshihide [Babcok-Hitachi K.K., Hiroshima (Japan). Kure Div.

    2010-07-01

    A lot of works have been going to develop 700C USC power plant in Europe and Japan. High strength Ni based alloys such as Alloy 617, Alloy 740 and Alloy 263 were the candidates for boiler tube and pipe in Europe, and Fe-Ni based alloy HR6W (45Ni-24Fe-23Cr-7W-Ti) is also a candidate for tube and pipe in Japan. One of the Key issues to achieve 700 C boilers is the welding process of these alloys. Authors investigated the weldability and the long-term creep rupture strength of HR6W tube. The weldments were investigated metallurgically to find proper welding procedure and creep rupture tests are ongoing exceed 38,000 hours. The long-term creep rupture strengths of the HST weld joints are similar to those of parent metals and integrity of the weldments was confirmed based on with other mechanical testing results. (orig.)

  5. Micromechanical studies of cyclic creep fracture under stress controlled loading

    DEFF Research Database (Denmark)

    van der Giessen, Erik; Tvergaard, Viggo

    1996-01-01

    is based on numerical unit cell analyses for a planar polycrystal model with the grains and grain boundaries modeled individually, in order to investigate the interactions between the mechanisms involved and to account for the build-up of residual stress fields during cycling. The behaviour of a limiting......This paper deals with a study of intergranular failure by creep cavitation under stress-controlled cyclic loading conditions. Loading is assumed to be slow enough that diffusion and creep mechanisms (including grain boundary sliding) dominate, leading to intergranular creep fracture. This study...

  6. Creep-rupture-test on the stainless steel X6crni1811 (Din 1.494.8) in the frame of the Extrapolation-Program. (Part III)

    International Nuclear Information System (INIS)

    Solano, R.; Schirra, M.; Rivas, M. de la; Barroso, S.; Seith, B.

    1982-01-01

    The austenitic stainless steel X6crni1811 (Din 1.4948) used as a structure material for the German Fast Breeder Reactor SNR 300 was creep tested in a temperature range of 550-650 degree centigree material condition as well as welded material condition. The main point of this program (Extrapolation-Program) lies in the knowledge of the creep-rupture-strength and creep-behaviour up to 3 x 10 4 hours higher temperatures in order to extrapolated up to ≥10 5 hours for operating temperatures. In order to study the stress dependency of the minimum creep rate additional tests were carried out of 550 degree centigree - 750 degree centigree. The present report describes the state in the running program with test-times of 23.000 hours and results from tests up to 55.000 hours belonging to other parallel programs are taken into account. Besides the creep-rupture behaviour it is also made a study of ductility between 550 and 750 degree centigree. Extensive metallographic examinations have been made to study the fracture behaviour and changes in structure. (Author)

  7. Creep crack growth by grain boundary cavitation under monotonic and cyclic loading

    Science.gov (United States)

    Wen, Jian-Feng; Srivastava, Ankit; Benzerga, Amine; Tu, Shan-Tung; Needleman, Alan

    2017-11-01

    Plane strain finite deformation finite element calculations of mode I crack growth under small scale creep conditions are carried out. Attention is confined to isothermal conditions and two time histories of the applied stress intensity factor: (i) a monononic increase to a plateau value subsequently held fixed; and (ii) a cyclic time variation. The crack growth calculations are based on a micromechanics constitutive relation that couples creep deformation and damage due to grain boundary cavitation. Grain boundary cavitation, with cavity growth due to both creep and diffusion, is taken as the sole failure mechanism contributing to crack growth. The influence on the crack growth rate of loading history parameters, such as the magnitude of the applied stress intensity factor, the ratio of the applied minimum to maximum stress intensity factors, the loading rate, the hold time and the cyclic loading frequency, are explored. The crack growth rate under cyclic loading conditions is found to be greater than under monotonic creep loading with the plateau applied stress intensity factor equal to its maximum value under cyclic loading conditions. Several features of the crack growth behavior observed in creep-fatigue tests naturally emerge, for example, a Paris law type relation is obtained for cyclic loading.

  8. A recent advance in the assessment of creep rupture data

    International Nuclear Information System (INIS)

    Holdsworth, S.R.

    1999-01-01

    A new procedure for the assessment of creep rupture data has been developed in the UK. The methodology features a state-of-the-art statistical treatment with independent checks on the physical realism, goodness of fit and extrapolation repeatability/stability of the model equation established to best characterise the behaviour of the material under investigation. Software provides semi-automation to allow full advantage to be taken of modern desk top computing power, but with ample provision for expert-user intervention. The paper reviews the background knowledge which underpins the new procedure and illustrates the method of implementation. (orig.)

  9. Study on creep-fatigue life improvement and life evaluation of 316FR stainless steels

    International Nuclear Information System (INIS)

    Kobayashi, Kazuo; Yamaguchi, Koji; Yamazaki, Masayoshi; Hongo, Hiromichi; Nakazawa, Takanori; Date, Shingo; Tendo, Masayuki

    2000-01-01

    Creep rupture and creep-fatigue interaction tests were conducted at 550deg C for modified 316FR austenitic stainless steels in order to improve the creep-fatigue lives. Reducing the carbon contents from 0.01% to 0.002 or 0.003% and finning the grain size were effective for increasing the creep-fatigue lives and the creep rupture ductilities. From these results, an estimation method of the creep-fatigue lives by using the creep rupture ductilities in the modified 316FR steels was proposed. (author)

  10. Characterization of load dependent creep behavior in medically relevant absorbable polymers.

    Science.gov (United States)

    Dreher, Maureen L; Nagaraja, Srinidhi; Bui, Hieu; Hong, Danny

    2014-01-01

    While synthetic absorbable polymers have a substantial history of use in medical devices, their use is expanding and becoming more prevalent for devices where long term loading and structural support is required. In addition, there is evidence that current absorbable medical devices may experience permanent deformations, warping (out of plane twisting), and geometric changes in vivo. For clinical indications with long term loading or structural support requirements, understanding the material's viscoelastic properties becomes increasingly important whereas these properties have not been used historically as preclinical indications of performance or design considerations. In this study we measured the static creep, creep recovery and cyclic creep responses of common medically relevant absorbable materials (i.e., poly(l-lactide, PLLA) and poly(l-co-glycolide, PLGA) over a range of physiologically relevant loading magnitudes. The results indicate that both PLLA and PLGA exhibit creep behavior and failure at loads significantly less than the yield or ultimate properties of the material and that significant material specific responses to loading exist. In addition, we identified a strong correlation between the extent of creep in the material and its crystallinity. Results of the study provide new information on the creep behavior of PLLA and PLGA and support the use of viscoelastic properties of absorbable polymers as part of the material selection process. © 2013 Published by Elsevier Ltd.

  11. Creep rupture of mild steel compact tension test pieces

    International Nuclear Information System (INIS)

    Priddle, E.K.

    1978-10-01

    Creep rupture lives have been determined for compact tension and unnotched tensile test pieces of mild steel at 450 0 C. Three sizes of compact tension specimens were used in which the ratios of reference stress to elastic stress intensity factor were 2.76, 4.78 and 6.6 (msup(-1/2)). The analysis of results in terms of either initial reference stress or stress intensity was unable to reduce the data to a single failure curve. An empirical correlation was found between rupture time and a reference stress/crack length combination where t = 2.46 x 10 20 sub(σref) sup(-8.96) asup(-1.56) (units hours, MPa and metres). This equation has no valid application to materials or specimens other than those from which it was derived. Reported data for 1/2Cr Mo V and 2 1/4Cr Mo steels at 565 0 C were also correlated by this approach. (author)

  12. Effects of repeated biaxial loads on the creep properties of cardinal ligaments.

    Science.gov (United States)

    Baah-Dwomoh, Adwoa; De Vita, Raffaella

    2017-10-01

    The cardinal ligament (CL) is one of the major pelvic ligaments providing structural support to the vagina/cervix/uterus complex. This ligament has been studied mainly with regards to its important function in the treatment of different diseases such as surgical repair for pelvic organ prolapse and radical hysterectomy for cervical cancer. However, the mechanical properties of the CL have not been fully determined, despite the important in vivo supportive role of this ligament within the pelvic floor. To advance our limited knowledge about the elastic and viscoelastic properties of the CL, we conducted three consecutive planar equi-biaxial tests on CL specimens isolated from swine. Specifically, the CL specimens were divided into three groups: specimens in group 1 (n = 7) were loaded equi-biaxially to 1 N, specimens in group 2 (n = 8) were loaded equi-biaxially to 2N, and specimens in group 3 (n = 7) were loaded equi-biaxially to 3N. In each group, the equi-biaxial loads of 1N, 2N, or 3N were applied and kept constant for 1200s three times. The two axial loading directions were selected to be the main in-vivo loading direction of the CL and the direction that is perpendicular to it. Using the digital image correlation (DIC) method, the in-plane Lagrangian strains in these two loading directions were measured throughout the tests. The results showed that CL was elastically anisotropic, as statistical differences were found between the mean strains along the two axial loading directions for specimens in group 1, 2, or 3 when the equi-biaxial load reached 1N, 2N, or 3N, respectively. For specimens in group 1 and 2, no statistical differences were detected in the mean normalized strains (or, equivalently, the increase in strain over time) between the two axial loading directions for each creep test. For specimens in group 3, some differences were noted but, by the end of the 3rd creep test, there were no statistical differences in the mean normalized strains between

  13. A comparative study of creep rupture behaviour of modified 316L(N) base metal and 316L(N)/16-8-2 weldment in air and liquid sodium environments

    International Nuclear Information System (INIS)

    Mishra, M.P.; Mathew, M.D.; Mannan, S.L.; Rodriguez, P.; Borgstedt, H.U.

    1997-01-01

    Creep rupture behaviour of modified type 316L(N) stainless steel base metal and weldments prepared with 16-8-2 filler wire has been investigated in air and flowing sodium environments at 823 K. No adverse environmental effects have been noticed due to sodium on the creep rupture behaviour of these weldments for tests up to 10 000 h. Rupture lives of the weldment were higher in the sodium environment than those in air. Rupture lives of the weldments were found to be lower than those of the base metal by a factor of two to five in both air and sodium environments. Minimum creep rates were essentially the same for the weldment as well as for the base metal in both the environments, whereas rupture strain was usually lower for the weldment than that of the base metal. The reduction in area of the weldment specimens increased with increase in stress. Failures in the specimens of weldments were in the weld metal region. Microstructural studies carried out on failed weldment specimens after the creep rupture tests revealed extensive cavitation in the weld metal region in air tested specimens predominantly at the austerite/δ-ferrite interphase. However, no cavitation was observed in specimens tested in sodium. (author)

  14. Sources of Variation in Creep Testing

    Science.gov (United States)

    Loewenthal, William S.; Ellis, David L.

    2011-01-01

    Creep rupture is an important material characteristic for the design of rocket engines. It was observed during the characterization of GRCop-84 that the complete data set had nearly 4 orders of magnitude of scatter. This scatter likely confounded attempts to determine how creep performance was influenced by manufacturing. It was unclear if this variation was from the testing, the material, or both. Sources of variation were examined by conducting tests on identically processed specimens at the same specified stresses and temperatures. Significant differences existed between the five constant-load creep frames. The specimen temperature was higher than the desired temperature by as much as 43 C. It was also observed that the temperature gradient was up to 44 C. Improved specimen temperature control minimized temperature variations. The data from additional tests demonstrated that the results from all five frames were comparable. The variation decreased to 1/2 order of magnitude from 2 orders of magnitude for the baseline data set. Independent determination of creep rates in a reference load frame closely matched the creep rates determined after the modifications. Testing in helium tended to decrease the sample temperature gradient, but helium was not a significant improvement over vacuum.

  15. Creep-rupture-test on the stainless steel X6CRNI1811 (DIN 1.4948) in the frame of the ''Extrapolation-Program''. (Part III)

    International Nuclear Information System (INIS)

    Solano, R.; Las Rivas, M. de; Barroso, S.

    1982-01-01

    The austenitic stainless steel X6CrNi1811 (DIN 1.4948) used as a structure material for the German Fast Breeder Reactor SNR 300 was creep tested in a temperature range of 550-650 deg under base material condition as well as welded material condition. The main point of this program (''Extrapolation-Program'') lies in the knowledge of the creep-rupture-strength and creepbehaviour up to 3 x 10 4 hours at higher temperatures in order to extrapolate up to >=10 5 hours for operating temperatures. In order to study the stress dependency of the minimum creep rate additional tests were carried out of 550 deg - 750 deg C. The present report describes the state in the running program with test-times of 23.000 hours and results from tests up to 55.000 hours belonging to other parallel programs are taken into account. Besides the creep-rupture behaviour it is also made a study of ductility between 550 and 750 deg C. Extensive metallographic examinations have been made to study the fracture behaviour and changes in structure. (author)

  16. Creep property testing of energy power plant component material

    International Nuclear Information System (INIS)

    Nitiswati, Sri; Histori; Triyadi, Ari; Haryanto, Mudi

    1999-01-01

    Creep testing of SA213 T12 boiler piping material from fossil plant, Suralaya has been done. The aim of the testing is to know the creep behaviour of SA213 T12 boiler piping material which has been used more than 10 yeas, what is the material still followed ideal creep curve (there are primary stage, secondary stage, and tertiary stage). This possibility could happened because the material which has been used more than 10 years usually will be through ageing process because corrosion. The testing was conducted in 520 0C, with variety load between 4% until 50% maximum allowable load based on strength of the material in 520 0C

  17. Creep properties of EB welded joint on Hastelloy X

    International Nuclear Information System (INIS)

    Arata, Yoshiaki; Susei, Shuzo; Shimizu, Shigeki; Satoh, Keisuke; Nagai, Hiroyoshi.

    1980-01-01

    In order to clarify the creep properties of EB welds on Hastelloy X which is one of the candidate alloys for components of VHTR, creep tests on EB weld metal and welded joint were carried out. The results were discussed in comparison with those of base metal and TIG welds. Further, EB welds were evaluated from the standpoint of high temperature structural design. The results obtained are summarized as follows. 1) Both creep rupture strengths of EB weld metal and EB welded joint are almost equal to that of base metal, but those of TIG welds are lower than base metal. As for the secondary creep rate, EB weld metal is higher and TIG weld metal is lower than base metal. As for the time to onset of tertiary creep, no remarkable difference among base metal, EB weld metal and TIG weld metal is observed. 2) In case of EB weld metal, although anisotropy is slightly observed, the ductility is same or more as compared with base metal. In case of TIG weld metal, on the contrary, anisotropy is not observed and the ductility is essentially low. 3) Such rupture morphology of EB weld metal as appears to have resulted from interconnection of voids which occurred at grain boundary is similar to base metal. In case of TIG weld metal, however, many cracks with sharp tips are observed at grain boundary, and the rupture appears to have occurred in brittle by propagation and connection of the cracks. 4) It can be said from the standpoint of high temperature structural design that EB welding is very suitable to welding for structure where creep effects are significant, because both of the creep ductility and the rupture strength are almost equal to those of base metal. (author)

  18. Rupture behaviour of nuclear fuel cladding during loss-of-coolant accident

    Energy Technology Data Exchange (ETDEWEB)

    Suman, Siddharth [Department of Mechanical Engineering, Indian Institute of Technology Patna, Patna 801 103 (India); Khan, Mohd Kaleem, E-mail: mkkhan@iitp.ac.in [Department of Mechanical Engineering, Indian Institute of Technology Patna, Patna 801 103 (India); Pathak, Manabendra [Department of Mechanical Engineering, Indian Institute of Technology Patna, Patna 801 103 (India); Singh, R.N.; Chakravartty, J.K. [Mechanical Metallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2016-10-15

    Highlights: • Modelling of nuclear fuel cladding during loss-of-coolant accident transient. • Phase transformation, corrosion, and creep combined to evaluate burst criterion. • Effect of oxygen concentration on burst stress and burst strain. • Effect of heating rate, internal pressure fluctuation, shear modulus incorporated. - Abstract: A burst criterion model accounting the simultaneous phenomena of corrosion, solute-strengthening effect of oxygen, oxygen concentration based non-isothermal phase transformation, and thermal creep has been developed to predict the rupture behaviour of zircaloy-4 nuclear fuel cladding during the loss-of-coolant accident transients. The present burst criterion model has been validated using experimental data obtained from single-rod transient burst tests performed in steam environment. The predictions are in good agreement with the experimental results. A detailed computational analysis has been performed to assess the role of different parameters in the rupture of zircaloy cladding during loss-of-coolant accidents. This model reveals that at low temperatures, lower heating rates produce higher burst strains as oxidation effect is nominal. For high temperatures, the lower heating rates produce less burst strains, whereas higher heating rates yield greater burst strains.

  19. Microstructure-based assessment of creep rupture strength in 9Cr steels

    International Nuclear Information System (INIS)

    Spigarelli, S.

    2013-01-01

    A microstructure-based model to assess the long-term creep strength in 9Cr steels is proposed. The model takes into account a number of different key issues, including the presence and evolution of the most important families of precipitates (M 23 C 6 , MX, Laves and Z phases), the subgrain recovery process, the different strengthening mechanisms (solid solution strengthening and particle strengthening), and is able to give realistic values of the long-term creep strength in P9, P91 and P911 steels. If properly tuned to describe the mid/long-term precipitation of the Z-phase, and the concurrent dissolution of MX precipitates, the model can also predict the sigmoidal behaviour which leads to the early rupture of single heats of P91 steel. Highlights: ► Creep response at 600 °C of 9% Cr steels. ► Important effect of the different families of precipitates. ► The effect is described by introducing the grain size term in a previously developed model. ► Degradation of particle strengthening effect is considered by calculating the coarsening of the particles.

  20. Creep damage evaluation of low alloy steel weld joint by small punch creep testing

    International Nuclear Information System (INIS)

    Nishioka, Tomoya; Sawaragi, Yoshiatsu; Uemura, Hiromi

    2013-01-01

    The effect of sampling location on SPC (Small Punch Creep) tests were investigated for weld joints to establish evaluation method of Type IV creep behavior. The SPC specimen shape was 10mm diameter and 0.5mm thick round disc prepared from weld joints of 2.25Cr-1Mo low alloy steel. It was found that the center of SPC specimen should be 2mm apart from the weld interface as the recommended sampling location. Creep damage was imposed for large weld joint specimens by axial creep loading at 620degC, 52MPa with the interrupted time fraction of 0.34, 0.45, 0.64 and 0.82.SPC samples were prepared from those damaged specimens following the recommended way described in this paper. Among the various SPC tests conducted, good relationships were found for the test condition of 625degC, 200N. Namely, good relationships were obtained both between minimum deflection rate and creep life fraction, and between rupture time and creep life fraction. Consequently, creep life assessment of Type IV fracture by SPC tests could be well conducted using the sampling location and the test condition recommended in this paper. (author)

  1. Creep Rupture Analysis and Life Estimation of 1.25Cr-0.5Mo, 2.25Cr-1Mo and Modified 9Cr-1Mo Steel: A Comparative Study

    Science.gov (United States)

    Roy, Prabir Kumar

    2018-04-01

    This paper highlights a comparative assessment of creep life of 1.25Cr-0.5Mo, 2.25Cr-1Mo and modified 9Cr-1Mo steels based on accelerated creep rupture tests. Creep rupture test data have been analysed and creep life of the above mentioned materials have been assessed using Larson Miller parameter at the stress levels of 60 and 42 MPa for different temperatures. Limiting steam temperatures for minimum design life of 105 h at 42 and 60 MPa for the above mentioned steels have also been calculated. Microstructural studies for the three above mentioned steels are also done.

  2. Creep fatigue assessment for EUROFER components

    Energy Technology Data Exchange (ETDEWEB)

    Özkan, Furkan, E-mail: oezkan.furkan@partner.kit.edu; Aktaa, Jarir

    2015-11-15

    Highlights: • Design rules for creep fatigue assessment are developed to EUROFER components. • Creep fatigue assessment tool is developed in FORTRAN code with coupling MAPDL. • Durability of the HCPB-TBM design is discussed under typical fusion reactor loads. - Abstract: Creep-fatigue of test blanket module (TBM) components built from EUROFER is evaluated based on the elastic analysis approach in ASME Boiler Pressure Vessel Code (BPVC). The required allowable number of cycles design fatigue curve and stress-to-rupture curve to estimate the creep-fatigue damage are used from the literature. Local stress, strain and temperature inputs for the analysis of creep-fatigue damage are delivered by the finite element code ANSYS utilizing the Mechanical ANSYS Parametric Design Language (MAPDL). A developed external FORTRAN code used as a post processor is coupled with MAPDL. Influences of different pulse durations (hold-times) and irradiation on creep-fatigue damage for the preliminary design of the Helium Cooled Pebble Bed Test Blanket Module (HCPB-TBM) are discussed for the First Wall component of the TBM box.

  3. The role of cobalt on the creep of Waspaloy

    Science.gov (United States)

    Jarrett, R. N.; Chin, L.; Tien, J. K.

    1984-01-01

    Cobalt was systematically replaced with nickel in Waspaloy (which normally contains 13% Co) to determine the effects of cobalt on the creep behavior of this alloy. Effects of cobalt were found to be minimal on tensile strengths and microstructure. The creep resistance and the stress rupture resistance determined in the range from 704 to 760 C (1300 to 1400 C) were found to decrease as cobalt was removed from the standard alloy at all stresses and temperatures. Roughly a ten-fold drop in rupture life and a corresponding increase in minimum creep rate were found under all test conditions. Both the apparent creep activation energy and the matrix contribution to creep resistance were found to increase with cobalt. These creep effects are attributed to cobalt lowering the stacking fault energy of the alloy matrix. The creep resistance loss due to the removal of cobalt is shown to be restored by slightly increasing the gamma' volume fraction. Results are compared to a previous study on Udimet 700, a higher strength, higher gamma' volume fraction alloy with similar phase chemistry, in which cobalt did not affect creep resistance. An explanation for this difference in behavior based on interparticle spacing and cross-slip is presented.

  4. Influence of Prior Fatigue Cycling on Creep Behavior of Reduced Activation Ferritic-Martensitic Steel

    Science.gov (United States)

    Sarkar, Aritra; Vijayanand, V. D.; Parameswaran, P.; Shankar, Vani; Sandhya, R.; Laha, K.; Mathew, M. D.; Jayakumar, T.; Rajendra Kumar, E.

    2014-06-01

    Creep tests were carried out at 823 K (550 °C) and 210 MPa on Reduced Activation Ferritic-Martensitic (RAFM) steel which was subjected to different extents of prior fatigue exposure at 823 K at a strain amplitude of ±0.6 pct to assess the effect of prior fatigue exposure on creep behavior. Extensive cyclic softening that characterized the fatigue damage was found to be immensely deleterious for creep strength of the tempered martensitic steel. Creep rupture life was reduced to 60 pct of that of the virgin steel when the steel was exposed to as low as 1 pct of fatigue life. However, creep life saturated after fatigue exposure of 40 pct. Increase in minimum creep rate and decrease in creep rupture ductility with a saturating trend were observed with prior fatigue exposures. To substantiate these findings, detailed transmission electron microscopy studies were carried out on the steel. With fatigue exposures, extensive recovery of martensitic-lath structure was distinctly observed which supported the cyclic softening behavior that was introduced due to prior fatigue. Consequently, prior fatigue exposures were considered responsible for decrease in creep ductility and associated reduction in the creep rupture strength.

  5. Creep crack growth in phosphorus alloyed oxygen free copper

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Rui; Seitisleam, Facredin (Swerea KIMAB (Sweden)); Sandstroem, Rolf; Jin, Lai-Zhe (Materials Science and Engineering, Royal Inst. of Technology (Sweden))

    2011-01-15

    Using standard compact tension (CT) specimens taken from a pierce and draw cylinder, creep crack growth (CCG) has been studied in phosphorus-alloyed oxygen-free copper (Cu-OFP) parent metal at 22, 75, 175, and 215 deg C. Pre- and post-test metallography are performed. At higher temperatures the rupture time of CCG is shorter by a factor up of 65 than that of uniaxial at same stress/reference stress. At 175 and 215 deg C, crack does grow by creep about 10 mm before final instantaneous failure. In contrast, there is hardly any visible crack growth at 22 and 75 deg C. The tests were interrupted after 5000 to 13000 hours. For ruptured tests at 175 and 215 deg C, strongly elongated and deformed grains are observed adjacent to crack. Extensive and intergranular creep cavities and microcracks are found several mm around crack. For interrupted tests at 22 and 75 deg C, strongly elongated and deformed grains, creep cavities, as well as microcracks are observed close to crack tip. Surface cracks from both sides have initiated and grown about 45 deg to the load direction towards inside. For the interrupted tests, hardness adjacent to crack tip has more than doubled because of work hardening, or heavy deformation. This is consistent with large crack tip opening. The true strain at the crack tip is estimated to 10 and 4 for the tests at 22 and 75 deg C, respectively. The stress state behind the crack tip has been modelled with FEM. Stress relaxation after loading has also been taken into account. A model for the creep damage based on the creep strain rate has been formulated that can describe the uniaxial creep rupture data without fitting parameters. Based on the formulation for the creep damage, a model for the crack propagation has been set up. When the creep damage has reached the value unity in front of the crack tip, the crack is assumed to propagate. Taking multiaxial effects into account the observed life times of the CT specimens can be well described. The multiaxial

  6. Creep crack growth in phosphorus alloyed oxygen free copper

    International Nuclear Information System (INIS)

    Wu, Rui; Seitisleam, Facredin; Sandstroem, Rolf; Jin, Lai-Zhe

    2011-01-01

    Using standard compact tension (CT) specimens taken from a pierce and draw cylinder, creep crack growth (CCG) has been studied in phosphorus-alloyed oxygen-free copper (Cu-OFP) parent metal at 22, 75, 175, and 215 deg C. Pre- and post-test metallography are performed. At higher temperatures the rupture time of CCG is shorter by a factor up of 65 than that of uniaxial at same stress/reference stress. At 175 and 215 deg C, crack does grow by creep about 10 mm before final instantaneous failure. In contrast, there is hardly any visible crack growth at 22 and 75 deg C. The tests were interrupted after 5000 to 13000 hours. For ruptured tests at 175 and 215 deg C, strongly elongated and deformed grains are observed adjacent to crack. Extensive and intergranular creep cavities and microcracks are found several mm around crack. For interrupted tests at 22 and 75 deg C, strongly elongated and deformed grains, creep cavities, as well as microcracks are observed close to crack tip. Surface cracks from both sides have initiated and grown about 45 deg to the load direction towards inside. For the interrupted tests, hardness adjacent to crack tip has more than doubled because of work hardening, or heavy deformation. This is consistent with large crack tip opening. The true strain at the crack tip is estimated to 10 and 4 for the tests at 22 and 75 deg C, respectively. The stress state behind the crack tip has been modelled with FEM. Stress relaxation after loading has also been taken into account. A model for the creep damage based on the creep strain rate has been formulated that can describe the uniaxial creep rupture data without fitting parameters. Based on the formulation for the creep damage, a model for the crack propagation has been set up. When the creep damage has reached the value unity in front of the crack tip, the crack is assumed to propagate. Taking multiaxial effects into account the observed life times of the CT specimens can be well described. The multiaxial

  7. Creep properties of 20% cold-worked Hastelloy XR

    International Nuclear Information System (INIS)

    Kurata, Y.

    1996-01-01

    The creep properties of Hastelloy XR, in solution-treated and in 20% cold-worked conditions, were studied at 800, 900 and 1000 C. At 800 C, the steady-state creep rate and rupture ductility decrease, while rupture life increases after cold work to 20%. Although the steady-state creep rate and ductility also decrease at 900 C, the beneficial effect on rupture life disappears. Cold work to 20% enhan ces creep resistance of this alloy at 800 and 900 C due to a high density of dislocations introduced by the cold work. Rupture life of the 20% cold-worked alloy becomes shorter and the steady-state creep rate larger at 1000 C during creep of the 20% cold-worked alloy. It is emphasized that these cold work effects should be taken into consideration in design and operation of high-temperature structural components of high-temperature gas-cooled reactors. (orig.)

  8. The effects of minor alloy modifications and heat treatment on the microstructure and creep rupture behavior of 2.25Cr-1Mo Steel

    International Nuclear Information System (INIS)

    Todd, J.A.; Chung, D.W.; Parker, E.R.

    1983-01-01

    The effects of alloy additions on the microstructure of simulated cooled and tempered 2.25Cr-1Mo steels have been studied using transmission electron microscopy. Carbide precipitation sequences have been identified in the modification 3Cr-1Mo-1Mn-1Ni and compared to those in 2.25Cr-1Mo steels modified with Mn and Ni and also with Ti, V and B. The influence of minor compositional changes on the creep rupture behavior of 2.25Cr-1Mo steel has been studied at 500 C, 560 C, and 600 C. The most significant effect of alloy modifications on creep properties resulted from additions of Mn and Cr. Preliminary studies show that 1% Mn and 0.5Mn + 1Ni + 0.75Cr additions significantly reduce creep strength at all three temperatures for tests up to 2000 hours duration. The 3Cr-1Mo-1Mn-1Ni steel showed improvements in rupture ductility at all temperatures when compared with the base 2.25Cr-1Mo steel and the manganese-nickel modifications. Plots of the Larson-Miller parameter for both these modifications lay within the scatter band for commercial 2.25Cr-1Mo steels

  9. Creep behaviour of modified 9Cr-1Mo ferritic steel

    International Nuclear Information System (INIS)

    Choudhary, B.K.; Isaac Samuel, E.

    2011-01-01

    Creep deformation and fracture behaviour of indigenously developed modified 9Cr-1Mo steel for steam generator (SG) tube application has been examined at 823, 848 and 873 K. Creep tests were performed on flat creep specimens machined from normalised and tempered SG tubes at stresses ranging from 125 to 275 MPa. The stress dependence of minimum creep rate obeyed Norton's power law. Similarly, the rupture life dependence on stress obeyed a power law. The fracture mode remained transgranular at all test conditions examined. The analysis of creep data indicated that the steel obey Monkman-Grant and modified Monkman-Grant relationships and display high creep damage tolerance factor. The tertiary creep was examined in terms of the variations of time to onset of tertiary creep with rupture life, and a recently proposed concept of time to reach Monkman-Grant ductility, and its relationship with rupture life that depends only on damage tolerance factor. SG tube steel exhibited creep-rupture strength comparable to those reported in literature and specified in the nuclear design code RCC-MR.

  10. The extrapolation of creep rupture data by PD6605 - An independent case study

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, J., E-mail: john.bolton@uwclub.net [65 Fisher Avenue, Rugby, Warks CV22 5HW (United Kingdom)

    2011-04-15

    The worked example presented in BSI document PD6605-1:1998, to illustrate the selection, validation and extrapolation of a creep rupture model using statistical analysis, was independently examined. Alternative rupture models were formulated and analysed by the same statistical methods, and were shown to represent the test data more accurately than the original model. Median rupture lives extrapolated from the original and alternative models were found to diverge widely under some conditions of practical interest. The tests prescribed in PD6605 and employed to validate the original model were applied to the better of the alternative models. But the tests were unable to discriminate between the two, demonstrating that these tests fail to ensure reliability in extrapolation. The difficulties of determining when a model is sufficiently reliable for use in extrapolation are discussed and some proposals are made.

  11. Viscoelastic characterization of carbon fiber-epoxy composites by creep and creep rupture tests; Caracterizacao viscoelastica por meio de ensaios de fluencia e ruptura por fluencia de compositos polimericos de matriz de matriz de resina epoxidica e fibra de carbono

    Energy Technology Data Exchange (ETDEWEB)

    Farina, Luis Claudio

    2009-07-01

    One of the main requirements for the use of fiber-reinforced polymer matrix composites in structural applications is the evaluation of their behavior during service life. The warranties of the integrity of these structural components demand a study of the time dependent behavior of these materials due to viscoelastic response of the polymeric matrix and of the countless possibilities of design configurations. In the present study, creep and creep rupture test in stress were performed in specimens of unidirectional carbon fiber-reinforced epoxy composites with fibers orientations of 60 degree and 90 degree, at temperatures of 25 and 70 degree C. The aim is the viscoelastic characterization of the material through the creep curves to some levels of constant tension during periods of 1000 h, the attainment of the creep rupture envelope by the creep rupture curves and the determination of the transition of the linear for non-linear behavior through isochronous curves. In addition, comparisons of creep compliance curves with a viscoelastic behavior prediction model based on Schapery equation were also performed. For the test, a modification was verified in the behavior of the material, regarding the resistance, stiffness and deformation, demonstrating that these properties were affected for the time and tension level, especially in work temperature above the ambient. The prediction model was capable to represent the creep behavior, however the determination of the equations terms should be considered, besides the variation of these with the applied tension and the elapsed time of test. (author)

  12. Laser interferometer system for the measurement of creep in pressurized tubes

    International Nuclear Information System (INIS)

    Kirchner, T.L.

    1976-07-01

    A laser interferometer measurement system was developed to measure the length, diameter, and radius of various pressurized tube specimens. The machine measures and records profilometric data of the pressurized tubes prior to insertion in the reactor and then again after a predetermined fluence has been reached to determine the amount of creep which has occurred. This data provides a statistical basis for the description of steady-state in-reactor creep and creep rupture behavior of the reference fuel cladding and structural materials for the Fast Flux Test Facility (FFTF) and the Clinch River Breeder Reactor (CRBR). In addition, this data will be used to determine the relative in-reactor creep and creep rupture behavior of candidate alloys for advanced cladding and structural materials. The laser interferometer system, referred to as the Biaxial Creep Measurement Machine (BCMM), was built to meet or exceed design criteria such as: automatic measurement of the five biaxial creep specimens varying in size; complete automation of the machine using a mini-computer; complete specimen loading, unloading, and data processing in less than five minutes; storage of data on magnetic cassette tapes; quick-look data readout and error checking during each run to determine proper machine operation; and remote operation in a radioactive environment

  13. Tensile and creep data on type 316 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V. K.; Booker, B. L.P.; Booker, M. K.; McEnerney, J. W.

    1980-01-01

    This report summarizes tensile and creep data on 13 heats of type 316 stainless steel. It includes ten different product forms (three plates, four pipes, and three bars) of the reference heat tested at ORNL. Tensile data are presented in tabular form and analyzed as a function of temperature by the heat centering method. This method yielded a measure of variations within a single heat as well as among different heats. The upper and lower scatter bands developed by this method were wider at the lower temperatures than at the high temperatures (for strength properties), a trend reflected by the experimental data. The creep data on both unaged and aged specimens are presented in tabular form along with creep curves for each test. The rupture time data are compared with the ASME Code Case minimum curve at each test temperature in the range from 538 to 704{sup 0}C. The experimental rupture time data are also compared with the values predicted by using the rupture model based on elevated-temperature ultimate tensile strength. A creep ductility trend curve was developed on the basis of the reference heat data and those published in the literature on nitrogen effects. To characterize the data fully, information was also supplied on vendor, product form, fabrication method, material condition (mill-annealed vs laboratory annealed and aged), grain size, and chemical composition for various heats. Test procedures used for tensile and creep results are also discussed.

  14. Creep behavior evaluation of welded joint

    International Nuclear Information System (INIS)

    Susei, Shuzo; Matsui, Shigetomo; Mori, Eisuke; Shimizu, Shigeki; Satoh, Keisuke.

    1980-01-01

    In the creep design of high temperature structural elements, it is necessary to grasp the creep performance of joints as a whole, paying attention to the essential lack of uniformity between the material qualities of parent metals and welds. In this study, the factors controlling the creep performance of butt welded joints were investigated theoretically, when they were subjected to lateral tension and longitudinal tension. It was clarified that the rupture time in the case of laterally pulled joints was determined by the ratio of the creep rupture times of weld metals and parent metals, and the rupture time in the case of longitudinally pulled joints was determined by the ratio of the creep rupture times and the ratio of the creep strain rates of weld metals and parent metals. Moreover, when the joints of the former ratio less than 1 and the latter ratio larger than 1 were investigated experimentally, the rupture time in the case of laterally pulled joints was affected by the relative thickness, and when the relative thickness was large, the theoretical and the experimental values coincided, but the relative thickness was small, the theoretical values gave the evaluation on safe side as compared with the experimental values due to the effect of restricting deformation. In the case of longitudinally pulled joints, the theoretical and the experimental values coincided relatively well. The diagram of classifying the creep performance of welded joints was proposed. (Kako, I.)

  15. Experimental study of a macrocrack propagation in a concrete specimen subjected to creep loading

    Science.gov (United States)

    Rossi, P.; Boulay, C.; Tailhan, J.-L.; Martin, E.

    2013-07-01

    Structures managers need a better prediction of the delayed failure of concrete structures, especially for very important structures like nuclear power plant encasement. Sustained loadings at high level (above 75% of loading capacity of the structure), can lead to structure failure after some time. In this study, a series of 4-point bending tests were performed in order to characterize the creep behaviour of pre-cracked beams under high load level. The specimens were made of normal strength concrete. A power law relationship is observed between the secondary deflection creep rate and the failure time. It is also shown that when crack propagation occurs during the creep loading, the creep deflection rate increases with the creep loading level and with the crack propagation rate.

  16. Large earthquakes and creeping faults

    Science.gov (United States)

    Harris, Ruth A.

    2017-01-01

    Faults are ubiquitous throughout the Earth's crust. The majority are silent for decades to centuries, until they suddenly rupture and produce earthquakes. With a focus on shallow continental active-tectonic regions, this paper reviews a subset of faults that have a different behavior. These unusual faults slowly creep for long periods of time and produce many small earthquakes. The presence of fault creep and the related microseismicity helps illuminate faults that might not otherwise be located in fine detail, but there is also the question of how creeping faults contribute to seismic hazard. It appears that well-recorded creeping fault earthquakes of up to magnitude 6.6 that have occurred in shallow continental regions produce similar fault-surface rupture areas and similar peak ground shaking as their locked fault counterparts of the same earthquake magnitude. The behavior of much larger earthquakes on shallow creeping continental faults is less well known, because there is a dearth of comprehensive observations. Computational simulations provide an opportunity to fill the gaps in our understanding, particularly of the dynamic processes that occur during large earthquake rupture and arrest.

  17. Study on tube rupture strength evaluation method for rapid overheating

    International Nuclear Information System (INIS)

    Komine, Ryuji; Wada, Yusaku

    1998-08-01

    A sodium-water reaction derived from the single tube break in steam generator might overheat neighbor tubes rapidly under internal pressure loadings. If the temperature of tube wall becomes too high, it has to be evaluated that the stress of tube does not exceed the material strength limit to prevent the propagation of tube rupture. In the present study this phenomenon was recognized as the fracture of cylindrical tube with the large deformation due to overheating, and the evaluation method was investigated based on both of experimental and analytical approaches. The results obtained are as follows. (1) As for the nominal stress estimation, it was clarified through the experimental data and the detailed FEM elasto-plastic large deformation analysis that the formula used in conventional designs can be applied. (2) Within the overheating temperature limits of tubes, the creep effect is dominant, even if the loading time is too short. So the strain rate on the basis of JIS elevated temperature tensile test method for steels and heat-resisting alloys is too late and almost of total strain is composed by creep one. As a result the time dependent effect cannot be evaluated under JIS strain rate condition. (3) Creep tests in shorter time condition than a few minutes and tensile tests in higher strain rate condition than 10%/min of JIS are carried out for 2 1/4Cr-1Mo(NT) steel, and the standard values for tube rupture strength evaluation are formulated. (4) The above evaluation method based on both of the stress estimation and the strength standard values application is justified by using the tube burst test data under internal pressure. (5) The strength standard values on Type 321 ss is formulated in accordance with the procedure applied for 2 1/4Cr-1Mo(NT) steel. (author)

  18. Creep lifetime assessements of ferritic pipeline welds

    International Nuclear Information System (INIS)

    Ainsworth, R.A.; Goodall, I.W.; Miller, D.A.

    1995-01-01

    The low alloy ferritic steam pipework in Advanced Gas Cooled reactor (AGR) power stations operates at temperatures in the creep range. An inspection strategy for continued operation of the pipework has been developed based on estimation of the creep rupture life of pipework weldments and fracture mechanics for demonstrating acceptance of defects. This strategy is described in outline. The estimation of creep rupture life is described in more detail. Validation for the approach is illustrated by comparison with pressure vessel tests and with metallographic examination of components removed from service. The fracture mechanics methods are also described. It is shown that the amount of creep crack growth is dependent on the life fraction at which the assessment is made; crack growth being rapid as the creep rupture life is approached. (author). 3 refs., 5 figs., 1 tab

  19. Comparison of creep rupture behavior of tungsten inert gas and electron beam welded grade 91 steel

    International Nuclear Information System (INIS)

    Dey, H.C.; Vanaja, J.; Laha, K.; Bhaduri, A.K.; Albert, S.K.; Roy, G.G.

    2016-01-01

    Creep rupture behavior of Grade 91 steel weld joints fabricated by multi-pass tungsten inert gas (TIG) and electron beam welding (EBW) processes has been studied and compared with base metal. Cross-weld creep specimens were fabricated from the X-ray radiography qualified and post weld heat treated (760°C/4 h) weld joints. Creep testing of weld joints and base metal was carried out at 650°C over a stress range of 40°120 MPa. Creep life of EBW joint is comparable to base metal; whereas multi-pass TIG joint have shown significant drop in creep life tested for the same stress level. Both types of weld joints show Type IV cracking for all the stress levels. The steady state creep rate of multi-pass TIG is found to be fifteen times than that of EBW joint for stress level of 80 MPa, which may be attributed to over tempering, more re-austenization, and fine grain structure of inter-critical and fine grain heat affected zone regions of the TIG joint. In contrast, single-pass and rapid weld thermal cycles associated with EBW process causes minimum phase transformation in the corresponding regions of heat affected zone. Microstructure studies on creep tested specimens shows creep cavities formed at the primary austenite grain boundaries nucleated on coarse carbide precipitates. The hardness measured across the weld on creep tested specimens shows significant drop in hardness in the inter-critical and fine grain heat affected zone regions of multi-pass TIG (176 VHN) in comparison to 192 VHN in the corresponding locations in EBW joint. (author)

  20. Assessment of long-term creep strength of grade 91 steel

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Kazuhiro; Sawada, Kota; Kushima, Hideaki [National Inst. for Materials Science, Tsukuba, Ibaraki (Japan)

    2010-07-01

    In 2004 and 2005 long-term creep rupture strength of ASME Grade 91 type steels of plate, pipe, forging and tube materials was evaluated in Japan by means of region splitting analysis method in consideration of 50% of 0.2% offset yield stress. According to the evaluated 100,000h creep rupture strength of 94MPa for plate, pipe and forging steels and 92MPa for tube steel at 600 C, allowable tensile stress of the steels regulated in the Interpretation for the Technical Standard for Thermal Power Plant was slightly reduced. New creep rupture data of the steels obtained in the long-term indicate further reduction of long-term creep rupture strength. Not only creep rupture strength, but also creep deformation property of the ASME Grade 91 steel was investigated and need of reevaluation of long-term creep strength of Grade 91 steel was indicated. A refinement of region splitting analysis method for creep rupture like prediction was discussed. (orig.)

  1. Creep deformations of shells of revolution under asymmetrical loading

    International Nuclear Information System (INIS)

    Takezono, S.

    1975-01-01

    The numerical analysis of creep deformations of shells of revolution under unsymmetrical loads is described with application to a cylindrical shell. The analytical formulation of the creep of axisymmetric undergoing unsymmetrical deformations is developed for two hardening laws: the time hardening law and the strain hardening law. The method is based on the creep power law, and on the assumption of plane stress condition and the Euler-Bernoulli hypothesis used in the ordinary thin shell theory. The basic differential equations derived for incremental values with respect to time are numerically solved by a finite difference method and the solutions at any time are obtained by integration of the incremental values. In conclusion the computer programs are developed which can be used to predict the creep deformations of arbitrary axisymmetrical shells. As a numerical example the creep deformation of cylindrical shell of importance in practical use is treated, and the variations of displacements and internal forces with the lapse of time are discussed

  2. Relaxation of Shot-Peened Residual Stresses Under Creep Loading (Preprint)

    National Research Council Canada - National Science Library

    Buchanan, Dennis J; John, Reji; Brockman, Robert A

    2008-01-01

    ... loading, near and above the monotonic yield strength of IN100. The model incorporates the dominant creep deformation mechanism, coupling between the creep and plasticity models, and effects of prior plastic strain...

  3. Effect of steam corrosion on HTGR core support post strength loss. Part II. Consequences of steam generator tube rupture event

    International Nuclear Information System (INIS)

    Wichner, R.P.

    1977-01-01

    To perform the assessment, a series of eight tube-rupture events of varying severity and probability were postulated. Case 1 pertains to the situation where the moisture detection, loop isolation, and dump procedures function as planned; the remaining seven cases suppose various defects in the moisture detection system, the core auxiliary coolant system, and the integrity of the prestressed concrete reactor vessel. Core post burnoffs beneath three typical fuel zones were estimated for each postulated event from the determined impurity compositions and core post temperature history. Two separate corrosion rate expressions were assumed, as deemed most appropriate of those published for the high-oxidant level typical in tube rupture events. It was found that the nominal core post beneath the highest power factor fuel zone would lose from 0.02 to 2.5 percent of their strength, depending on an assumed corrosion rate equation and the severity of the event. The effect of hot streaking during cooldown was determined by using preliminary estimates of its magnitude. It was found that localized strength loss beneath the highest power factor zone ranges from 0.23 to 12 percent, assuming reasonably probable hot-streaking circumstances. The combined worst case, hot streaking typical for a load-following transient and most severe accident sequence, yields an estimated strength loss of from 25 to 33 percent for localized regions beneath the highest power factor zones

  4. Coupling creep and damage in concrete under high sustained loading: Experimental investigation on bending beams and application of Acoustic Emission technique

    Directory of Open Access Journals (Sweden)

    Grondin F.

    2010-06-01

    Full Text Available Creep and damage in concrete govern the long-term deformability of concrete. Thus, it is important to understand the interaction between creep and damage in order to design reliable civil engineering structures subjected to high level loading during a long time. Many investigations have been performed on the influence of concrete mixture, the effect of the bond between the matrix and the aggregates, temperature, aging and the size effect on the cracking mechanism and fracture parameters of concrete. But there is a lack of results on the influence of the creep loading history. In the present paper, an experimental investigation on the fracture properties of concrete beams submitted to three point bending tests with high levels of sustained load that deals with creep is reported. The results aim first to investigate the ranges of variation of the time response due to creep damage coupled effects under constant load and secondly to evaluate the residual capacity after creep. For this purpose a series of tests were carried out on geometrically similar specimens of size 100x200x800mm with notch to depth ratio of 0.2 in all the test specimens. The exchange of moisture was prevented and beams were subjected to a constant load of 70% and 90% of the maximum capacity. Three point bending test were realized on specimen at the age of 28 days to determine the characteristics of concrete and the maximum load so we could load the specimens in creep. Threepoint bend creep tests were performed on frames placed in a climate controlled chamber [1]. Then after four months of loading, the beams subjected to creep were removed from the creep frames and then immediately subjected to three-point bending test loading up to failure with a constant loading rate as per RILEM-FMC 50 recommendations. The residual capacity on the notched beams and the evolution of the characteristics of concrete due to the basic creep was considered. The results show that sustained loading

  5. Coupling creep and damage in concrete under high sustained loading: Experimental investigation on bending beams and application of Acoustic Emission technique

    Science.gov (United States)

    Saliba, J.; Loukili, A.; Grondin, F.

    2010-06-01

    Creep and damage in concrete govern the long-term deformability of concrete. Thus, it is important to understand the interaction between creep and damage in order to design reliable civil engineering structures subjected to high level loading during a long time. Many investigations have been performed on the influence of concrete mixture, the effect of the bond between the matrix and the aggregates, temperature, aging and the size effect on the cracking mechanism and fracture parameters of concrete. But there is a lack of results on the influence of the creep loading history. In the present paper, an experimental investigation on the fracture properties of concrete beams submitted to three point bending tests with high levels of sustained load that deals with creep is reported. The results aim first to investigate the ranges of variation of the time response due to creep damage coupled effects under constant load and secondly to evaluate the residual capacity after creep. For this purpose a series of tests were carried out on geometrically similar specimens of size 100x200x800mm with notch to depth ratio of 0.2 in all the test specimens. The exchange of moisture was prevented and beams were subjected to a constant load of 70% and 90% of the maximum capacity. Three point bending test were realized on specimen at the age of 28 days to determine the characteristics of concrete and the maximum load so we could load the specimens in creep. Threepoint bend creep tests were performed on frames placed in a climate controlled chamber [1]. Then after four months of loading, the beams subjected to creep were removed from the creep frames and then immediately subjected to three-point bending test loading up to failure with a constant loading rate as per RILEM-FMC 50 recommendations. The residual capacity on the notched beams and the evolution of the characteristics of concrete due to the basic creep was considered. The results show that sustained loading had a strengthening

  6. Creep rupture properties of oxidised 20%Cr austenitic stainless steels

    International Nuclear Information System (INIS)

    Lobb, R.C.; Ecob, R.C.

    1989-02-01

    Sheet specimens of stabilised 20%Cr/25%Ni/Nb and nitrided 20%Cr/25%Ni/Ti stainless steels, both used as fuel cladding materials in CAGRs, have been oxidised in simulated reactor gas (Co 2 /1-2%CO) for up to l.9kh at 850 0 C, including intermediate thermal cycles to room temperature. The oxidised specimens have been creep tested subsequently at 750 0 C, under conditions of constant stress. The creep rupture properties are affected differently for the two materials. For 20%Cr/25%Ni/Nb stainless steel, there was no effect of oxidation on the intrinsic microstructure, when compared with thermally aged, non-oxidised material. Any differences in creep ductility were ascribed to geometric effects in specimens of this alloy. Lower ductilities were associated with an increased incidence of pitting attack (higher oxide spallation) and it was concluded that the extent of local, rather than general, loss of section controlled the ductility. For nitrided 20%Cr/25%Ni/Ti stainless steel, the intrinsic microstructure was affected by oxidation, such that increased grain boundary precipitation of M 23 C 6 occurred. The resultant effect was for a greater tendency for intergranular failure at lower ductility than for the thermally aged material. The magnitude of this reduction could not be quantified because the specimen geometry was also changed by oxidation. In this instance, the oxidation mode that produced the most severe loss of section was grain boundary, rather than pitting, attack. This mode of attack was not linked directly to oxide fracture/spallation, but to the period of oxidation. (author)

  7. Behaviour of Epoxy Silica Nanocomposites Under Static and Creep Loading

    Science.gov (United States)

    Constantinescu, Dan Mihai; Picu, Radu Catalin; Sandu, Marin; Apostol, Dragos Alexandru; Sandu, Adriana; Baciu, Florin

    2017-12-01

    Specific manufacturing technologies were applied for the fabrication of epoxy-based nanocomposites with silica nanoparticles. For dispersing the fillers in the epoxy resin special equipment such as a shear mixer and a high energy sonicator with temperature control were used. Both functionalized and unfunctionalized silica nanoparticles were added in three epoxy resins. The considered filling fraction was in most cases 0.1, 0.3 and 0.5 wt%.. The obtained nanocomposites were subjected to monotonic uniaxial and creep loading at room temperature. The static mechanical properties were not significantly improved regardless the filler percentage and type of epoxy resin. Under creep loading, by increasing the stress level, the nanocomposite with 0.1 wt% silica creeps less than all other materials. Also the creep rate is reduced by adding silica nanofillers.

  8. The creep-rupture behaviour of the martensitic steel X18CrMoVNb 121 (no.1.4914) in liquid Pb-17 Li at 550 and 6000C

    International Nuclear Information System (INIS)

    Grundmann, M.; Borgstedt, H.U.; Schirra, M.

    1988-01-01

    One of the candidate structural materials for the NET blanket is the martensitic steel X18 CrMoVNb 12 1 (no.1.4914). Its compatibility with the molten eutectic Pb-17Li, which might be used as liquid breeder and coolant in a self-cooled liquid metal blanket, should be satisfying even under superimposed mechanical stress. The mechanical high-temperature strength of the steel should not be significantly reduced by the interaction with the liquid metal which is in close contact with the surface of the components of such a blanket. The corrosion behaviour of this steel in flowing Pb-17Li eutectic is also studied, results will be presented at this conference. A certain influence of a liquid metal environment on the creep-rupture behaviour of steels was observed earlier in a study on the mechanical properties of austenitic stainless steel in liquid sodium. Therefore, a test programme was initiated to evaluate the effects of liquid Pb-17Li alloy on the creep strength of the steel no. 1.4914. Liquid lithium environment showed an influence on the fracture of this material in short time tests at moderate temperature

  9. Experimental creep behaviour determination of cladding tube materials under multi-axial loadings

    International Nuclear Information System (INIS)

    Grosjean, Catherine; Poquillon, Dominique; Salabura, Jean-Claude; Cloue, Jean-Marc

    2009-01-01

    Cladding tubes are structural parts of nuclear plants, submitted to complex thermomechanical loadings. Thus, it is necessary to know and predict their behaviour to preserve their integrity and to enhance their lifetime. Therefore, a new experimental device has been developed to control the load path under multi-axial load conditions. The apparatus is designed to determine the thermomechanical behaviour of zirconium alloys used for cladding tubes. First results are presented. Creep tests with different biaxial loadings were performed. Results are analysed in terms of thermal expansion and of creep strain. The anisotropy of the material is revealed and iso-creep strain curves are given.

  10. In-reactor creep of zirconium-2.5 wt% niobium at 570 K

    International Nuclear Information System (INIS)

    Coleman, C.E.; Causey, A.R.; Fidleris, V.

    1976-01-01

    The effect of fast neutron flux at 570 K on the creep rate of specimens of zirconium-2.5 wt% niobium alloy taken from tubes in various metallurgical conditions has been measured using both constant load tensile creep machines and bent-beam stress relaxation. Creep rates calculated from stress relaxation fit on the trend line for the constant load creep data. Between 114 MPa and 450 MPa the creep rate is proportional to neutron flux. The creep rate of specimens from the longitudinal direction is about twice that of specimens from the circumferential direction of a tube. This anisotropy in creep strength is attributed partly to crystallographic texture and partly to deformation substructure. Cold-work is detrimental to in-reactor creep strength; as-extruded material has higher creep strength. In cold-worked material at stresses below 100 MPa the stress exponent, n, is about 1; n gradually increases with stress being about 10 at 525 MPa and about 100 at 660 MPa. In laboratory tests, rupture ductility correlates inversely with n; the lower n the higher the ductility. In-reactor tests support this correlation thus pressure tubes in CANDU reactors, operating at 117 MPa where n approximately 1, should have good ductility. (Auth.)

  11. Relaxation of Shot-Peened Residual Stresses Under Creep Loading (Preprint)

    National Research Council Canada - National Science Library

    Buchanan, Dennis J; John, Reji; Brockman, Robert A

    2008-01-01

    .... Compressive residual stresses retard initiation and growth of fatigue cracks. During the component loading history, loading, or during elevated temperature static loading, such as thermal exposure and creep...

  12. Boron effects on creep rupture strength of W containing advanced ferritic creep resistant steels

    Energy Technology Data Exchange (ETDEWEB)

    Mito, N.; Hasegawa, Y. [Tohoku Univ., Sendai (Japan)

    2010-07-01

    The creep strength in ferritic creep resistant steels is increased by boron addition. However, the strengthening mechanisms have not yet been studied. This study clarifies the strengthening mechanism of 9% chromium steels with 10{proportional_to}100ppm boron and 0.5{proportional_to}2.0mass% tungsten in the laboratory. The strengthening effect of simultaneous addition of boron and tungsten was analyzed by hardenability, room-temperature strength and creep tests at 650 C. Changes in the microstructure as a result of the addition of boron and tungsten were also examined by optical microscope and transmission electron microscope (TEM). In addition, Alpha-ray Track Etching (ATE) method was used to detect the boron distribution and analyze the mechanisms change in the mechanical properties. Boron addition did not affect room-temperature strength, however, simultaneous addition of boron and tungsten increased room-temperature and high-temperature strength. According to ATE analysis, boron exists at the grain boundary. Therefore, synergistic effects of boron and tungsten on the creep strength suggest the tungsten precipitates stabilization by boron at the grain boundary. (orig.)

  13. Investigation on Long-term Creep Rupture Properties and Microstructure Stability of Fe-Ni based Alloy Ni-23Cr-7W at 700°C

    DEFF Research Database (Denmark)

    Tokairin, Tsuyoshi; Dahl, Kristian Vinter; Danielsen, Hilmar Kjartansson

    2013-01-01

    Long-term creep rupture properties and microstructural stability of Fe–Ni based alloy Ni–23Cr–7W (HR6W, ASME Code Case 2684) were experimentally investigated. Crept specimens at 700 °C for durations up to 37,667 h were chosen, the microstructure evolution during creep was characterized. Besides...... for the main strengthening precipitate, Laves phase. The alloy was proven to have good microstructural stability without observable coarsening of strengthening precipitates during long-term creep up to around 37,667 h. It was also verified that the growth kinetics of Laves phase can be well described...

  14. Creep properties of phosphorus alloyed oxygen free copper under multiaxial stress state

    International Nuclear Information System (INIS)

    Rui Wu; Sandstroem, Rolf; Seitisleam, Facredin

    2009-10-01

    Phosphorus alloyed oxygen free copper (Cu-OFP) canisters are planned to be used for spent nuclear fuel in Sweden. The copper canisters will be subjected to creep under multiaxial stress states in the repository. Creep tests have therefore been carried out at 75 deg C using double notch specimens with notch acuities of 0.5, 2, 5, and 18.8, respectively. The creep lifetime for notched specimens is considerably longer than that for the smooth one at a given net section stress, indicating that the investigated Cu-OFP is notch insensitive (notch strengthening). The notch strengthening factor in time is, for instance, greater than 70 at 180 MPa for the bluntest notch (notch acuity = 0.5). The creep lifetime is notch acuity dependent. The sharper the notch, the longer the creep lifetime is. The creep deformation is to a significant extent concentrated to the region around the notches. Different deformation on the two notches is observed. Both axial and radial strains on the failed notch are several times larger than those on the unbroken one. Linear relation between the axial and the radial strains on the notches is found. Transgranular failure is predominant, independent of stress, rupture time, and notch acuity. Adjacent to fracture, elongated grains along the stress direction, separate pores and cavities are often visible. On the unbroken notch, fewer separate cavities and cracks are only seen intergranularly for the sharper notches (notch acuity > 2). To interpret the tests for the notched creep specimens, finite element computations have been performed. A fundamental model for primary and secondary creep without fitting parameters has been used as constitutive equation. The FEM-modelling could represent the creep strain versus time curves for the notched specimens in a satisfactory way. In these curves the strain on loading is included. From the FEM-computations a stationary creep stress could be assessed, which is close to the reference stress. For a given

  15. Liquid salt environment stress-rupture testing

    Science.gov (United States)

    Ren, Weiju; Holcomb, David E.; Muralidharan, Govindarajan; Wilson, Dane F.

    2016-03-22

    Disclosed herein are systems, devices and methods for stress-rupture testing selected materials within a high-temperature liquid salt environment. Exemplary testing systems include a load train for holding a test specimen within a heated inert gas vessel. A thermal break included in the load train can thermally insulate a load cell positioned along the load train within the inert gas vessel. The test specimen can include a cylindrical gage portion having an internal void filled with a molten salt during stress-rupture testing. The gage portion can have an inner surface area to volume ratio of greater than 20 to maximize the corrosive effect of the molten salt on the specimen material during testing. Also disclosed are methods of making a salt ingot for placement within the test specimen.

  16. Creep-rupture-strength and creep-behaviour of stainless steel X6CrNi 1811(DIN 1.4948); Comportamiento a la fluencia lenta del acero X6CrNi 1811 (1.4948)

    Energy Technology Data Exchange (ETDEWEB)

    Solano, R R; Schirra, M; Rivas, M de la; Seith, B

    1977-07-01

    The steel X6CrNi 1811 (DIN 1.4948) that will be used as a structure material for the German Fast Breeder Reactor SNR 300 was creep-tested in a temperature range of 550-650 degree centigree under base material condition as well as welded material condition. Tests are foreseen up to 30.000 hours with a continuous measuring of the elongation. The present report describes the test results up to about 4-000 hours. Taking into account the results of other programs carried out with the same material between 550- and 600 degree centigree at similar rupture time, were defined the stresses for the long term tests. The main point of this program (Extrapolation Program) lies in the knowledge of the creep-rupture-strength and creep behaviour of the structure materials up to 3.10{sup 4}h at high temperature in order to extrapolate up to 10{sup 5} h. for reactor operating temperatures. (Author) 14 refs.

  17. Investigations on creep and creep fatigue crack behaviour for component assessment

    International Nuclear Information System (INIS)

    Gengenbach, T.; Klenk, A.; Maile, K.

    2004-01-01

    There are various methods to assess crack initiation and crack growth behaviour of components under creep and creep fatigue loading. The programme system HT-Riss has been developed to support calculations aimed to determine the behaviour of a crack under creep or creep-fatigue loading using methods based on stress-intensity factor K (e.g. the Two-Criteria-Diagram) or C*-Integral. This paper describes the steps which have to be performed to assess crack initiation and growth of a component using this programme system. First the size of the maximum initial defect in a specimen or in a component has to be estimated and the necessary fracture mechanics parameters have to be determined. Then the time for creep crack initiation and creep crack growth is calculated. Using these values a prediction of life time and necessary inspection intervals is possible. For exemplification the crack assessment of a component-like specimen and a component is shown. (orig.)

  18. Creep rupture properties of laves phase strengthened Fe--Ta--Cr--W and Fe--Ta--Cr--W--Mo alloys

    International Nuclear Information System (INIS)

    Singh, S.

    1975-12-01

    A small addition of tungsten (0.5 at. percent) was shown to have an effect similar to that of molybdenum on the phase transformation characteristics of alloy Ta7Cr (with a nominal composition of 1 at. percent Ta, 7 at. percent Cr, balance Fe). The existence of time-temperature dependent transformation behavior in alloy Ta7Cr0.5W was confirmed. The effect of spheroidization time and temperature on creep strength was determined. In addition, effect of mechanical processing prior to aging, on creep strength was also determined. It was also shown that by suitable modifications of composition, the grain boundary film can be broken during the aging treatment without the use of spheroidization treatment. Microhardness, tensile and creep properties have been determined. Optical metallography and scanning electron microscopy have been used to follow the microstructural changes and mode of fracture. The creep rupture strength of alloy Ta7CrW alloy was found to be superior to many of the best commercially available ferritic alloys at 1200 0 F. (21 fig., 8 tables)

  19. Pt-Rh alloys. Investigation of creep rate and rupture time at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Trumic, Biserka; Gomidzelovic, Lidija; Marjanovic, Sasa; Ivanovic, Aleksandra; Dimitrijevic, Silvana [Belgrade Univ., Bor (Serbia). Inst. of Mining and Metallurgy; Krstic, Vesna

    2013-02-01

    The results of experimental investigation of creep rate and rupture time of the alloys of Pt-Rh system are presented in this paper. Selected alloys with 7-40 wt.-% Rh content were examined using a universal device for tensile testing of materials at high temperatures, and monitoring structure changes of the samples by electron microscopy. Investigations were performed in the temperature range between 1200 C and 1700 C at a stress between 2 MPa and 15 MPa. (orig.)

  20. Recovery of creep properties of alloy 625 after long term service

    International Nuclear Information System (INIS)

    Mathew, M.D.; Bhanu Sankara Rao, K.; Mannan, S.L.; Paknikar, K.

    2000-01-01

    Creep rupture properties of alloy 625, that has been in service for 60000 h at 993 K, have been evaluated between 923 and 1173 K, after subjecting the service exposed material to resolution annealing treatment at 1433 K for one hour. The isostress and Larson-Miller parameter methods were employed to estimate the residual life of the service exposed material. Creep rupture strength and rupture ductility recovered substantially following re-solution annealing. The variations in rupture life and rupture ductility with creep test variables have been rationalised on the basis of the microstructural changes that occurred in the material. (orig.)

  1. Creep properties of heat-resistant superalloys for nuclear plants in helium

    International Nuclear Information System (INIS)

    Shimizu, Shigeki; Satoh, Keisuke; Matsuda, Shozo; Murase, Hirokazu; Fujioka, Junzo.

    1979-01-01

    In order to estimate the creep and rupture strengths of candidate alloys for the intermediate heat exchanger of VHTR, creep and stress rupture tests in impure helium were conducted on Hastelloy X, Inconel 617, Inconel 625, Incoloy 800 and Incoloy 807 at 900 0 C. The results were discussed in comparison with those in air and the alloys were examined from the point of view of the elevated temperature structural design. The main results obtained are summarized as follows: (1) No appreciable decrease in creep and rupture strengths in helium as compared with those in air is observed on Hastelloy X and Inconel 625. On the contrary, the creep and rupture strengths of Inconel 617 in helium decrease slightly as compared with those in air. In the case of Incoloy 807, the creep strength to cause 1 percent total strain and that to initiate secondary creep increase remarkably in helium as compared with those in air. However, the creep strength to cause initiation of tertiary creep and the rupture strength in helium remarkably decrease as compared with those in air. (2) The order of magnitude of the S 0 value for each material in helium is as follows; Hastelloy X > Inconel 617 > Incoloy 807 > Inconel 625 > Incoloy 800 Meanwhile, that of the S sub(t) value in helium is; Inconel 617 > Hastelloy X > Incoloy 807 > Inconel 625 > Incoloy 800. (author)

  2. Storage of spent fuels: implementation of a research program on the risk of waste container rupture due to stress corrosion induced by fission products

    International Nuclear Information System (INIS)

    Parise, M.; Walle, E.; Foct, J.

    2001-01-01

    The following topics were dealt with: research programm on stress corrosion of spent fuel casks materials due to fission products, such as iodine, chemical interactions with zirconium, chemical aspects of stress corrosion, rupture risk assessment

  3. Fatigue and creep to leak tests of proton exchange membranes using pressure-loaded blisters

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yongqiang; Dillard, David A.; Case, Scott W. [Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0219 (United States); Ellis, Michael W. [Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0238 (United States); Lai, Yeh-Hung; Gittleman, Craig S.; Miller, Daniel P. [Fuel Cell Research Lab, GM R and D, General Motors Corporation, 10 Carriage Street, Honeoye Falls, NY 14472-0603 (United States)

    2009-12-01

    In this study, three commercially available proton exchange membranes (PEMs) are biaxially tested using pressure-loaded blisters to characterize their resistance to gas leakage under either static (creep) or cyclic fatigue loading. The pressurizing medium, air, is directly used for leak detection. These tests are believed to be more relevant to fuel cell applications than quasi-static uniaxial tensile-to-rupture tests because of the use of biaxial cyclic and sustained loading and the use of gas leakage as the failure criterion. They also have advantages over relative humidity cycling test, in which a bare PEM or catalyst coated membrane is clamped with gas diffusion media and flow field plates and subjected to cyclic changes in relative humidity, because of the flexibility in allowing controlled mechanical loading and accelerated testing. Nafion {sup registered} NRE-211 membranes are tested at three different temperatures and the time-temperature superposition principle is used to construct stress-lifetime master curve. Tested at 90 C, 2%RH extruded Ion Power {sup registered} N111-IP membranes have a longer lifetime than Gore trademark -Select {sup registered} 57 and Nafion {sup registered} NRE-211 membranes. (author)

  4. A constitutive model for representing coupled creep, fracture, and healing in rock salt

    International Nuclear Information System (INIS)

    Chan, K.S.; Bodner, S.R.; Munson, D.E.; Fossum, A.F.

    1996-01-01

    The development of a constitutive model for representing inelastic flow due to coupled creep, damage, and healing in rock salt is present in this paper. This model, referred to as Multimechanism Deformation Coupled Fracture model, has been formulated by considering individual mechanisms that include dislocation creep, shear damage, tensile damage, and damage healing. Applications of the model to representing the inelastic flow and fracture behavior of WIPP salt subjected to creep, quasi-static loading, and damage healing conditions are illustrated with comparisons of model calculations against experimental creep curves, stress-strain curves, strain recovery curves, time-to-rupture data, and fracture mechanism maps

  5. Influence of microstructural parameters on the deformation and failure behaviour of the ODS alloy PM 2000 under creep and creep-fatigue loading

    International Nuclear Information System (INIS)

    Bothe, K.; Kussmaul, K.; Maile, K.

    1999-01-01

    The influence of grain size, manufacturing type and specimen direction (anisotropy) with respect to deformation and failure behaviour under creep, fatigue and creep-fatigue load was investigated. Thus, a basis for the correlation between microstructure and mechanical behaviour has been established. The specific damage and failure behaviour could be explained by means of the different microstructures observed. (orig.)

  6. The effect of alloying elements on the creep and impact properties of high Cr steels

    International Nuclear Information System (INIS)

    Kim, S. H.; Song, B. J.; Ryu, W. S.

    2000-01-01

    The effect of minor alloying elements on the creep and impact properties in high Cr steels has been studied. The addition of W and N in creased the creep rupture strength without the decrease of the impact toughness. During deformation, growth of lath width and agglomeration of precipitates and precipitation of Laves phase occurred. These microstructural changes made the steels soften. The degree of softening was delayed by the addition of W and N. In W added steel, the Laves phase had a important role in increasing the creep rupture strength. But the impact toughness was rapidly degraded by the addition of W after aging at 600 .deg. C for 5000 hours. So it needs to evaluate more accurately the effect of Laves phase on creep and impact properties. In N added steel, V(C,N) was precipitated in lath boundary and interior of lath. The size of the precipitates was 20-50nm. The increase of creep rupture strength in N added steel may be due to the precipitate of the V(C,N). So it needs more test to clarify the effect of N on the creep and impact properties

  7. Effect of sodium environment on the creep-rupture and low-cycle fatigue behavior of austenitic stainless steels

    International Nuclear Information System (INIS)

    Natesan, K.; Chopra, D.K.; Zeman, G.J.; Smith, D.L.; Kassner, T.F.

    1977-01-01

    Austenitic stainless steels used for in-core structural components, piping, valves, and the intermediate heat exchanger in Liquid-Metal Fast-Breeder Reactors (LMFBRs) are subjected to sodium at elevated temperatures and to complex stress conditions. As a result, the materials can undergo compositional and microstructural changes as well as mechanical deformation by creep and cyclic fatigue processes. In the present paper, information is presented on the creep-rupture and low-cycle fatigue behavior of Types 304 and 316 stainless steel in the solution-annealed condition and after long-term exposure to flowing sodium. The nonmetallic impurity-element concentrations in the sodium were controlled at levels similar to those in EBR-II primary sodium. Strain-time relationships developed from the experimental creep data were used to generate isochronous stress-creep strain curves as functions of sodium-exposure time and temperature. The low-cycle fatigue data were used to obtain relationships between plastic strain range and cycles-to-failure based on the Coffin-Manson formalism and a damage-rate approach developed at ANL. An analysis of the cyclic stress-strain behavior of the materials showed that the strain-hardening rates for the sodium-exposed steels were larger than those for the annealed material. However, the sodium-exposed specimens showed significant softening, as evidenced by the lower stress at half the fatigue life. Microstructural information obtained from the different specimens suggests that crack initiation is more difficult in the long-term sodium-exposed specimens when compared with the solution-annealed material. Based on the expected carbon concentrations in LMFBR primary system sodium, moderate carburization of the austenitic stainless steels will not degrade the mechanical properties to a significant extent, and therefore, will not limit the performance of out-of-core components. (author)

  8. The microstructure of Incoloy 800 H after long-time creep

    International Nuclear Information System (INIS)

    Sheng Zhongqi; Katerbau, K.

    1993-01-01

    The microstructural change of Incoloy 800 H after creep tests with low loads and long rupture time has been investigated. Cavities nucleate at one side of M 23 C 6 carbide particles on grain boundaries. Microcrack propagate by passing through a string of these cavities, M 23 C 6 carbide particles on grain boundaries have a coherent relationship with one of both neighbouring grains, so grain boundaries are strengthened, and the strengthening effect can be estimated for enhanced activation energy. G phase precipitation can be observed on grain boundaries, but no γ' phase particles can be found. Dislocation substructure is different from the typical recovery creep. Dislocation piles appear near M 23 C 6 carbide particles on grain boundaries. Subgrain structure poorly develop and network distribution of dislocation can remain after relative long creep

  9. Prediction of material creep behaviour for strain based life assessment applications

    Energy Technology Data Exchange (ETDEWEB)

    Rantala, J H; Hurst, R C [EC JRC IAM, Petten (Netherlands); Bregani, F [ENEL, Milan (Italy)

    1999-12-31

    In this work the idea of using constant load uniaxial creep test results instead of constant stress results for developing a CDM creep model for the P92 material is demonstrated. Due to limited availability of creep test results this work is based on incomplete test data and a general stress rupture line. In spite of these limitations a material creep model was developed for use in a FE analysis. Using P91 material as an example, a method is proposed to account for differences in strain evolution as a function of stress which normally manifests itself as lower strain values at low stresses in a normalised time-strain plot. This allows the CDM model to be used both in FE analysis and in strain-based life assessment engineering calculations. (orig.) 3 refs.

  10. Prediction of material creep behaviour for strain based life assessment applications

    Energy Technology Data Exchange (ETDEWEB)

    Rantala, J.H.; Hurst, R.C. [EC JRC IAM, Petten (Netherlands); Bregani, F. [ENEL, Milan (Italy)

    1998-12-31

    In this work the idea of using constant load uniaxial creep test results instead of constant stress results for developing a CDM creep model for the P92 material is demonstrated. Due to limited availability of creep test results this work is based on incomplete test data and a general stress rupture line. In spite of these limitations a material creep model was developed for use in a FE analysis. Using P91 material as an example, a method is proposed to account for differences in strain evolution as a function of stress which normally manifests itself as lower strain values at low stresses in a normalised time-strain plot. This allows the CDM model to be used both in FE analysis and in strain-based life assessment engineering calculations. (orig.) 3 refs.

  11. A Microstructural Study of Load Distribution in Cartilage: A Comparison of Stress Relaxation versus Creep Loading

    Directory of Open Access Journals (Sweden)

    Ashvin Thambyah

    2015-01-01

    Full Text Available The compressive response of articular cartilage has been extensively investigated and most studies have focussed largely on the directly loaded matrix. However, especially in relation to the tissue microstructure, less is known about load distribution mechanisms operating outside the directly loaded region. We have addressed this issue by using channel indentation and DIC microscopy techniques that provide visualisation of the matrix microstructural response across the regions of both direct and nondirect loading. We hypothesise that, by comparing the microstructural response following stress relaxation and creep compression, new insights can be revealed concerning the complex mechanisms of load bearing. Our results indicate that, with stress relaxation, the initial mode of stress decay appears to primarily involve relaxation of the surface layer. In the creep loading protocol, the main mode of stress release is a lateral distribution of load via the mid matrix. While these two modes of stress redistribution have a complex relationship with the zonally differentiated tissue microstructure and the depth of strain, four mechanostructural mechanisms are proposed to describe succinctly the load responses observed.

  12. Effect of Squareness of Initial γ' Precipitates on Creep-Rupture Life of a Ni-Base Single Crystal Superalloy at 760/982 °C

    Science.gov (United States)

    Shi, Zhenbin; Peng, Zhifang; Luo, Yushi; Xie, Hongji; Jin, Haipeng; Zhao, Yunsong; Mei, Qingsong

    2018-05-01

    An approach to determination of squareness of initial γ' precipitates (S 2D) is proposed to evaluate its effect on creep-rupture life (t r) of nickel-base single crystal (SC) superalloys. It is found that the 760/982 °C rupture life varied with the change in regional S 2D caused by redistribution of W when 1st-step aging temperature changed in full heat treatment on superalloy DD83 investigated. The longest creep-rupture life occurred at the highest value/the lowest difference in S 2D in the interdendritic regions/between the typical dendritic regions in DD83. It is also found that S 2D is a weighted function of the area fraction (F 2D), spacing (h), and size (d) of γ' precipitates and is closely related to t r in a series of SC superalloys. In addition, the variation of S 2D with F 2D (here, thermodynamic mole fraction is approximately expressed by F 2D) through lattice misfit (δ) in the SC superalloys with F 2D ranging from 60 to 75 pct is well correlated. Therefore, to reveal and to better understand these relationships and correlations may help to optimize the phase variables in order to achieve a long rupture life of SC superalloys. In addition, functions to reveal the interrelationships of F 2D, volume fraction (F 3D), S 2D, and cuboidness (S 3D) of initial γ' precipitates are derived considering their shape changes. All of these are hoped to be helpful in practical applications and in understanding the true meaning of the related variables.

  13. Damage development - effects of multiaxial loads on creep pore formation and fatigue damage in typical power plant steels. Final report

    International Nuclear Information System (INIS)

    Lenk, P.; Proft, D.; Kussmaul, A.; Fischer, R.

    2000-01-01

    The influence of multiaxial stress on creep pore formation in the steels 14MoV6-3 10CrMo9-10 and X10CrMoVNb9-1 was investigated on the basis of internal pressure experiments on smooth and notched hollow cylinders. In some cases, additional axial forces were applied in order to reproduce component-relevant multiaxial stresses. Local elongation during loading was investigated and analyzed using applied HT-DMS. When different strain levels had been reached, the samples were removed, analyzed, and characterized with regard to different damage parameters. It was found that no interdependence between the surface damage pattern and the deep damage pattern can be derived across the wall thickness if no information on the load state is available. Parallel to the experiments, inelastic FEA were carried out using the ABAQUS program system. The creep law of Graham and Walles was used for calculating flow and creep via a user-defined subroutine CREEP. The parameters of the creep law could be identified by adaptation to monoaxial creep tests [de

  14. Research on dynamic creep strain and settlement prediction under the subway vibration loading.

    Science.gov (United States)

    Luo, Junhui; Miao, Linchang

    2016-01-01

    This research aims to explore the dynamic characteristics and settlement prediction of soft soil. Accordingly, the dynamic shear modulus formula considering the vibration frequency was utilized and the dynamic triaxial test conducted to verify the validity of the formula. Subsequently, the formula was applied to the dynamic creep strain function, with the factors influencing the improved dynamic creep strain curve of soft soil being analyzed. Meanwhile, the variation law of dynamic stress with sampling depth was obtained through the finite element simulation of subway foundation. Furthermore, the improved dynamic creep strain curve of soil layer was determined based on the dynamic stress. Thereafter, it could to estimate the long-term settlement under subway vibration loading by norms. The results revealed that the dynamic shear modulus formula is straightforward and practical in terms of its application to the vibration frequency. The values predicted using the improved dynamic creep strain formula closed to the experimental values, whilst the estimating settlement closed to the measured values obtained in the field test.

  15. Comparative study on the high-temperature tensile and creep properties of Alloy 617 base and weld metals

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Hong, Sung Deok; Kim, Yong Wan; Kim, Seon Jin; Park, Jae Young; Ekaputra, I. M. W.

    2013-01-01

    This paper presents a comparative investigation on the high-temperature tensile and creep properties of Alloy 617 base metal (BM) and weld metal (WM) fabricated by a gas tungsten arc weld process. The WM had higher yield strength and lower ultimate tensile strength than the BM does; however, its elongation was significantly lower than that of the BM. The creep curve of the BM and WM was somewhat different from that of typical heat-resistance steel, and did not show a textbook creep. The WM exhibited a longer creep rupture life, lower creep rate, and lower rupture ductility than the BM. However, as the creep rupture time reached approximately 36,800 h, the creep life of the WM was expected to be almost similar to that of the BM; and after 36,800 h, its creep life was expected to be worse than the BM. Loner creep tests is needed to investigate the long-term creep life of the WM. The creep failure mode of the BM and WM was obviously an intergranular cracking of the cavity formation and growth mechanisms, although it was more evident in the WM. The BM had a more ductile fracture surface than the WM

  16. Proposition of Improved Methodology in Creep Life Extrapolation

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Park, Jae Young; Jang, Jin Sung

    2016-01-01

    To design SFRs for a 60-year operation, it is desirable to have the experimental creep-rupture data for Gr. 91 steel close to 20 y, or at least rupture lives significantly higher than 10"5 h. This requirement arises from the fact that, for the creep design, a factor of 3 times for extrapolation is considered to be appropriate. However, obtaining experimental data close to 20 y would be expensive and also take considerable time. Therefore, reliable creep life extrapolation techniques become necessary for a safe design life of 60 y. In addition, it is appropriate to obtain experimental longterm creep-rupture data in the range 10"5 ∼ 2x10"5 h to improve the reliability of extrapolation. In the present investigation, a new function of a hyperbolic sine ('sinh') form for a master curve in time-temperature parameter (TTP) methods, was proposed to accurately extrapolate the long-term creep rupture stress of Gr. 91 steel. Constant values used for each parametric equation were optimized on the basis of the creep rupture data. Average stress values predicted for up to 60 y were evaluated and compared with those of French Nuclear Design Code, RCC-MRx. The results showed that the master curve of the 'sinh' function was a wider acceptance with good flexibility in the low stress ranges beyond the experimental data. It was clarified clarified that the 'sinh' function was reasonable in creep life extrapolation compared with polynomial forms, which have been used conventionally until now.

  17. Proposition of Improved Methodology in Creep Life Extrapolation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woo Gon; Park, Jae Young; Jang, Jin Sung [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    To design SFRs for a 60-year operation, it is desirable to have the experimental creep-rupture data for Gr. 91 steel close to 20 y, or at least rupture lives significantly higher than 10{sup 5} h. This requirement arises from the fact that, for the creep design, a factor of 3 times for extrapolation is considered to be appropriate. However, obtaining experimental data close to 20 y would be expensive and also take considerable time. Therefore, reliable creep life extrapolation techniques become necessary for a safe design life of 60 y. In addition, it is appropriate to obtain experimental longterm creep-rupture data in the range 10{sup 5} ∼ 2x10{sup 5} h to improve the reliability of extrapolation. In the present investigation, a new function of a hyperbolic sine ('sinh') form for a master curve in time-temperature parameter (TTP) methods, was proposed to accurately extrapolate the long-term creep rupture stress of Gr. 91 steel. Constant values used for each parametric equation were optimized on the basis of the creep rupture data. Average stress values predicted for up to 60 y were evaluated and compared with those of French Nuclear Design Code, RCC-MRx. The results showed that the master curve of the 'sinh' function was a wider acceptance with good flexibility in the low stress ranges beyond the experimental data. It was clarified clarified that the 'sinh' function was reasonable in creep life extrapolation compared with polynomial forms, which have been used conventionally until now.

  18. The effect of tungsten on the tensile and creep rupture strength of 12 CrMoV steels

    International Nuclear Information System (INIS)

    Oakes, G.; Orr, J.

    1978-01-01

    A collaborative project involving the Brown-Firth Research Laboratories, the Sheffield Laboratories of the British Steel Corporation and Tube Investments Limited has been carried out to assess the effect of a controlled tungsten addition (0.5%) on the tensile and rupture properties of 12 CrMoV steel. The results obtained indicate that 0.5% tungsten increases the tensile properties at room temperature by approximately 3% but this diminishes with increasing test temperature. The creep rupture properties of the tungsten-bearing material showed a marked short time (500-1000 hours) strength advantage over the tungsten-free material at temperatures up to 650 0 C. At longer times and higher temperatures this stress advantage was reduced considerably so that at times in the region of 10,000 to 15,000 hours it was approximately 5%. In view of the limited data generated, it was found impossible to extrapolate with confidence to longer times but there was, however, no indication that a significant strength advantage is to be anticipated at 100,000 hours for the tungsten-bearing material. (author)

  19. Integrated Design Software Predicts the Creep Life of Monolithic Ceramic Components

    Science.gov (United States)

    1996-01-01

    Significant improvements in propulsion and power generation for the next century will require revolutionary advances in high-temperature materials and structural design. Advanced ceramics are candidate materials for these elevated-temperature applications. As design protocols emerge for these material systems, designers must be aware of several innate features, including the degrading ability of ceramics to carry sustained load. Usually, time-dependent failure in ceramics occurs because of two different, delayedfailure mechanisms: slow crack growth and creep rupture. Slow crack growth initiates at a preexisting flaw and continues until a critical crack length is reached, causing catastrophic failure. Creep rupture, on the other hand, occurs because of bulk damage in the material: void nucleation and coalescence that eventually leads to macrocracks which then propagate to failure. Successful application of advanced ceramics depends on proper characterization of material behavior and the use of an appropriate design methodology. The life of a ceramic component can be predicted with the NASA Lewis Research Center's Ceramics Analysis and Reliability Evaluation of Structures (CARES) integrated design programs. CARES/CREEP determines the expected life of a component under creep conditions, and CARES/LIFE predicts the component life due to fast fracture and subcritical crack growth. The previously developed CARES/LIFE program has been used in numerous industrial and Government applications.

  20. Experimental study on creep-fatigue interaction behavior of GH4133B superalloy

    International Nuclear Information System (INIS)

    Hu Dianyin; Wang Rongqiao

    2009-01-01

    The creep-fatigue tests have been conducted with nickel-based superalloy GH4133B at 600 deg. C in three cases of type loading to study the creep-fatigue behavior of the alloy and the loading history effect on the creep-fatigue damage. Since the conventional linear cumulative damage rule failed in evaluating the creep-fatigue life based on experimental data, a continuous non-linear model proposed by Mao et al. was employed to describe the creep-fatigue interaction. The creep-fatigue damage in the cases of continuous cyclic creep loading (CF) and prior fatigue followed by creep loading (F + C) was larger than unity and smaller than unity when the type loading was prior creep followed by fatigue loading (C + F). Scanning electron microscope (SEM) analyses of the fracture surface showed that the cracks initiated from the specimen surface and the fracture modes in different loading history were different. The crack mode at CF loading depended on the cyclic period. In the case of F + C loading, the primary fracture mode was transgranular, and in the condition where the type of waveform was C + F, the fracture mode was of mixed transgranular and intergranular type. In addition, the origin of the history effect on creep-fatigue interaction was explained by the SEM observations.

  1. Influence of stress on creep deformation properties of 9-12Cr ferritic creep resistant steels

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, K.; Sawada, K.; Kushima, H. [National Institute for Materials Science (Japan)

    2008-07-01

    Creep deformation property of 9-12Cr ferritic creep resistant steels was investigated. With decrease in stress, a magnitude of creep strain at the onset of accelerating creep stage decreased from about 2% in the short-term to less than 1% in the longterm. A time to 1% total strain was observed in the transient creep stage in the short term regime, however, it shifted to the accelerating creep stage in the long-term regime. Life fraction of the times to 1% creep strain and 1% total strain tended to increase with decrease in stress. Difference in stress dependence of the minimum creep rate was observed in the high- and low-stress regimes with a boundary condition of 50% of 0.2% offset yield stress. Stress dependence of the minimum creep rate in the high stress regime was equivalent to a strain rate dependence of the flow stress evaluated by tensile test, and a magnitude of stress exponent, n, in the high stress regime decreased with increase in temperature from 20 at 550 C to 10 at 700 C. On the other hand, n value in the low stress regime was about 5, and creep deformation in the low stress regime was considered to be controlled by dislocation climb. Creep rupture life was accurately predicted by a region splitting method by considering a change in stress dependence of creep deformation. (orig.)

  2. Field and experimental evidence for coseismic ruptures along shallow creeping faults in forearc sediments of the Crotone Basin, South Italy

    Science.gov (United States)

    Balsamo, Fabrizio; Aldega, Luca; De Paola, Nicola; Faoro, Igor; Storti, Fabrizio

    2014-05-01

    Large seismic slip occurring along shallow creeping faults in tectonically active areas represents an unsolved paradox, which is largely due to our poor understanding of the mechanics governing creeping faults, and to the lack of documented geological evidence showing how coseismic rupturing overprints creep in near-surface conditions. In this contribution we integrate field, petrophysical, mineralogical and friction data to characterize the signature of coseismic ruptures propagating along shallow creeping faults affecting unconsolidated forearc sediments of the seismically active Crotone Basin, in South Italy. Field observations of fault zones show widespread foliated cataclasites in fault cores, locally overprinted by sharp slip surfaces decorated by thin (0.5-1.5 cm) black gouge layers. Compared to foliated cataclasites, black gouges have much lower grain size, porosity and permeability, which may have facilitated slip weakening by thermal fluid pressurization. Moreover, black gouges are characterized by distinct mineralogical assemblages compatible with high temperatures (180-200°C) due to frictional heating during seismic slip. Foliated cataclasites and black gouges were also produced by laboratory friction experiments performed on host sediments at sub-seismic (≤ 0.1 m/s) and seismic (1 m/s) slip rates, respectively. Black gouges display low friction coefficients (0.3) and velocity-weakening behaviours, as opposed to high friction coefficients (0.65) and velocity-strengthening behaviours shown by the foliated cataclasites. Our results show that narrow black gouges developed within foliated cataclasites represent a potential diagnostic marker for episodic seismic activity in shallow creeping faults. These findings can help understanding the time-space partitioning between aseismic and seismic slip of faults at shallow crustal levels, impacting on seismic hazard evaluation of subduction zones and forearc regions affected by destructive earthquakes and

  3. Evaluation on materials performance of Hastelloy Alloy XR for HTTR uses-5 (Creep properties of base metal and weldment in air)

    International Nuclear Information System (INIS)

    Watanabe, Katsutoshi; Nakajima, Hajime; Koikegami, Hajime; Higuchi, Makoto; Nakanishi, Tsuneo; Saitoh, Teiichiro; Takatsu, Tamao.

    1994-01-01

    Creep properties of weldment made from Hastelloy Alloy XR base metals and filler metals for the High Temperature Engineering Test Reactor (HTTR) components were examined by means of creep and creep rupture tests at 900 and 950degC in air. The results obtained are as follows: creep rupture strength was nearly equal or higher than that of Hastelloy Alloy XR master curve and was much higher than design creep rupture strength [S R ]. Furthermore, creep rupture strength and ductility of the present filler metal was in the data band in comparison with those of the previous filler metals. It is concluded from these reasons that this filler metal has fully favorable properties for HTTR uses. (author)

  4. Tests on creep and influence of creep on strength of concrete under multiaxial stresses

    International Nuclear Information System (INIS)

    Lanig, N.; Stoeckl, S.; Kupfer, H.

    1988-12-01

    Long-time tests of three-axially loaded, sealed cylindrical specimens d = 15 cm, h = 40 cm, were carried out. The 20-cm-cube strength of the concrete was app. 45 N/mm 2 . The creep stresses were chosen in the following ranges: 0,3 ≤ σ c /β c ≤ 2,1; 0 ≤ σ r /σ l ≤ 1,0. The creep coefficients obtained were clearly depending on the multi-axial stress conditions. The creep coefficients for a t = 2 years loading were reaching app. 1 for σ l /β c = 0,3 and app. 3 for σ l /β c = 2,1, when the test evaluation was based on the initial deformations meausred after 1 minute. For σ l /β c = 2,1 the creep coefficients obtained were about 4 times as large, proceeding form calculated elastic deformations. Further evaluations concerned the Young's modulus E, Poisson's ratio μ, the bulk modulus K and the shear modulus G. The preceding permanent load leads to an increase in the Young's modulus of the concrete in longitudinal direction of the specimen up to about 4 times the value of not preloaded comparative specimens. (orig.) [de

  5. Sequential creep-fatigue interaction in austenitic stainless steel type 316L-SPH

    International Nuclear Information System (INIS)

    Tavassoli, A.A.; Mottot, M.; Petrequin, P.

    1986-01-01

    Influence of a prior creep or fatigue exposure on subsequent fatigue or creep properties of stainless steel type 316 L SPH has been investigated. The results obtained are used to verify the validity of time and cycle fraction rule and to obtain information on the effect of very long intermittent hold times on low cycle fatigue properties, as well as on transitory loads occurring during normal service of some structural components of LMFBR reactors. Creep and fatigue tests have been carried out at 600 0 C and under conditions yielding equal or different fatigue saturation and creep stresses. Prior creep damage levels introduced range from primary to tertiary creep, whilst those of fatigue span from 20 to 70 percent of fatigue life. In both creep-fatigue and fatigue-creep sequences in the absence of a permanent prior damage (cavitation or cracking) the subsequent resistance of 316 L-SPH to fatigue or creep is unchanged, if not improved. Thin foils prepared from the specimens confirmed these observations and showed that the dislocation substructure developed during the first mode of testing is quickly replaced by that of the second mode. Grain boundary cavitation does not occur in 316 L-SPH during creep exposures to well beyond the apparent end of secondary stage and as a result prior creep exposures up to approximately 80% of rupture life do not affect fatigue properties. Conversely, significant surface cracks were found in the prior fatigue tested specimens after above about 50% life. In the presence of such cracks the subsequent creep damage was localized at the tip of the main crack and the remaining creep life was found to be usually proportional to the effective specimen cross section. Creep and fatigue sequential damage are not necessarily additive and this type of loadings are in general less severe than the repeated creep-fatigue cycling. 17 refs.

  6. Concrete for PCRVs: strength of concrete under triaxial loading and creep at elevated temperatures

    International Nuclear Information System (INIS)

    Linse, D.; Aschl, H.; Stoeckl, S.

    1975-01-01

    To provide detailed information for the calculation of prestressed concrete reactor vessels, investigations of the behaviour of concrete under multiaxial loading and on creep at elevated temperatures were made at the Institut fuer Massivbau of the Technical University of Munich. The strength of concrete under triaxial compression is dependent on the stress ratio. The less the stresses differ from hydrostatic compression the more strength increases. Triaxial compression increases very much the deformability of concrete. Plastic deformations of +-10% and more (all stresses compression, but not equal, strains compression or tension) are possible without large cracks. The creep deformations are considerably dependent on the temperature. Creep at 80 0 C is about three to four times higher than at 20 0 C. The Poisson's ratio of creep at elevated temperature seems to be bigger than at normal temperatures at a rate of loading of 35% and 50% of the ultimate strength. (Auth.)

  7. Time-Dependent Behaviors of Granite: Loading-Rate Dependence, Creep, and Relaxation

    Science.gov (United States)

    Hashiba, K.; Fukui, K.

    2016-07-01

    To assess the long-term stability of underground structures, it is important to understand the time-dependent behaviors of rocks, such as their loading-rate dependence, creep, and relaxation. However, there have been fewer studies on crystalline rocks than on tuff, mudstone, and rock salt, because the high strength of crystalline rocks makes the detection of their time-dependent behaviors much more difficult. Moreover, studies on the relaxation, temporal change of stress and strain (TCSS) conditions, and relations between various time-dependent behaviors are scarce for not only granites, but also other rocks. In this study, previous reports on the time-dependent behaviors of granites were reviewed and various laboratory tests were conducted using Toki granite. These tests included an alternating-loading-rate test, creep test, relaxation test, and TCSS test. The results showed that the degree of time dependence of Toki granite is similar to other granites, and that the TCSS resembles the stress-relaxation curve and creep-strain curve. A viscoelastic constitutive model, proposed in a previous study, was modified to investigate the relations between the time-dependent behaviors in the pre- and post-peak regions. The modified model reproduced the stress-strain curve, creep, relaxation, and the results of the TCSS test. Based on a comparison of the results of the laboratory tests and numerical simulations, close relations between the time-dependent behaviors were revealed quantitatively.

  8. Study on the creep constitutive equation of Hastelloy X, (1)

    International Nuclear Information System (INIS)

    Suzuki, Kazuhiko; Mutoh, Yasushi

    1983-01-01

    In order to carry out the structural design of high temperature pipings, intermediate heat exchangers and isolating valves for a multipurpose high temperature gas-cooled reactor, in which coolant temperature reaches 1000 deg C, the creep characteristics of Hastelloy X used as the heat resistant material must be clarified. In addition to usual creep rupture life and the time to reach a specified creep strain, the dependence of creep strain curves on time, temperature and stress must be determined and expressed with equations. Therefore, using the creep data of Hastelloy X given in the literatures, the creep constitutive equation was made. Since the creep strain curves under the same test condition were different according to heats, the sensitivity analysis of the creep constitutive equation was performed. The form of the creep constitutive equation was determined to be Garofalo type. The result of the sensitivity analysis is reported. (Kako, I.)

  9. Numerical analysis of creep brittle rupture by the finite element method

    International Nuclear Information System (INIS)

    Goncalves, O.J.A.; Owen, D.R.J.

    1983-01-01

    In this work an implicit algorithm is proposed for the numerical analysis of creep brittle rupture problems by the finite element method. This kind of structural failure, typical in components operating at high temperatures for long periods of time, is modelled using either a three dimensional generalization of the Kachanov-Rabotnov equations due to Leckie and Hayhurst or the Monkman-Grant fracture criterion together with the Linear Life Fraction Rule. The finite element equations are derived by the displacement method and isoparametric elements are used for the spatial discretization. Geometric nonlinear effects (large displacements) are accounted for by an updated Lagrangian formulation. Attention is also focussed on the solution of the highly stiff differential equations that govern damage growth. Finally the numerical results of a three-dimensional analysis of a pressurized thin cylinder containing oxidised pits in its external wall are discussed. (orig.)

  10. Evaluation of creep-fatigue/ environment interaction in Ni-base wrought alloys for HTGR application

    International Nuclear Information System (INIS)

    Hattori, Hiroshi; Kitagawa, Masaki; Ohtomo, Akira

    1986-01-01

    High Temperature Gas-cooled Reactor (HTGR) systems should be designed based on the high temperature structural strength design procedures. On the development of design code, the determination of failure criteria under cyclic loading and severe environments is one of the most important items. By using the previous experimental data for Ni-base wrought alloys, Inconel 617 and Hastelloy XR, several evaluation methods for creep-fatigue interaction were examined for their capability to predict their cyclic loading behavior for HTGR application. At first, the strainrange partitioning method, the frequency modified damage function and the linear damage summation rule were discussed. However, these methods were not satisfactory with the above experimental results. Thus, in this paper, a new fracture criterion, which is a modification of the linear damage summation rule, is proposed based on the experimental data. In this criterion, fracture is considered to occur when the sum of the fatigue damage, which is the function of the applied cyclic strain magnitude, and the modified creep damage, which is the function of the applied cyclic stress magnitude (determined as time devided by cyclic creep rupture time reflecting difference of creep damages by tensile creep and compressive creep), reaches a constant value. This criterion was successfully applied to the life prediction of materials at HTGR temperatures. (author)

  11. Temperature dependence of creep properties of cold-worked Hastelloy XR

    International Nuclear Information System (INIS)

    Kurata, Yuji; Nakajima, Hajime

    1995-01-01

    The creep properties of Hastelloy XR, in a solution treated, 10% or 20% cold-worked condition, were investigated at temperatures from 800 to 1,000degC for the duration of creep tests up to about 2,500 ks. At 800 and 850degC, the steady-state creep rate and rupture ductility decreased and the rupture life increased after cold work of 10% or 20%. Although the rupture life of the 10% cold-worked alloy was longer at 900degC than that of the solution treated one, the rupture lives of the 10% cold-worked and solution treated alloys were almost equal at 950degC, which is the highest helium temperature in an intermediate heat exchanger of the High Temperature Engineering Test Reactor (HTTR). The beneficial effect of 10% cold work on the rupture life and the steady-state creep rate disappeared at 1,000degC. The beneficial effect of 20% cold work disappeared at 950degC because significant dynamic recrystallization occurred during creep. While rupture ductility of this alloy decreased after cold work of 10% or 20%, it recovered to a considerable extend at 1,000degC. It is emphasized that these cold work effects should be taken into consideration in design, operation and residual life estimation of high temperature components of the HTTR. (author)

  12. Effect of welding on creep damage evolution in P91B steel

    Energy Technology Data Exchange (ETDEWEB)

    Baral, J., E-mail: jayshree2k4@gmail.com [Metallurgical and Materials Engineering, Indian Institute of Kharagpur, WB 721302 (India); Swaminathan, J. [CSIR–National Metallurgical Laboratory, Jamshedpur 831007 (India); Chakrabarti, D.; Ghosh, R.N. [Metallurgical and Materials Engineering, Indian Institute of Kharagpur, WB 721302 (India)

    2017-07-15

    Study of creep behavior of base metal (without weld) and welded specimens of P91B steel over a range of temperatures (600–650 °C) and stresses (50–180 MPa) showed similar values of minimum creep-rates for both specimens at higher stress regime (>100 MPa) whilst, significantly higher creep rates in the case of welded specimens at lower stress regime. Considering that welded specimen is comprised of two distinct structural regimes, i.e. weld affected zone and base metal, a method has been proposed for estimating the material parameters describing creep behavior of those regimes. Stress–strain distribution across welded specimen predicted from finite element analysis based on material parameters revealed preferential accumulation of stress and creep strain at the interface between weld zone and base metal. This is in-line with the experimental finding that creep rupture preferentially occurs at inter-critical heat affected zone in welded specimens owing to ferrite-martensite structure with coarse Cr{sub 23}C{sub 6} particles. - Highlights: •Comparison of creep properties of welded and virgin specimens of P91B steel. •At lower stresses (<100 MPa) welded samples show higher minimum creep-rate. •Creep rupture at inter-critical heat affected zone (IC-HAZ) in welded specimens. •FEA showing accumulation of creep strain in weld/base metal interface. •Precipitate free soft ferrite matrix accumulates strain and weakens IC-HAZ.

  13. Status of design code work for metallic high temperature components

    International Nuclear Information System (INIS)

    Bieniussa, K.; Seehafer, H.J.; Over, H.H.; Hughes, P.

    1984-01-01

    The mechanical components of high temperature gas-cooled reactors, HTGR, are exposed to temperatures up to about 1000 deg. C and this in a more or less corrosive gas environment. Under these conditions metallic structural materials show a time-dependent structural behavior. Furthermore changes in the structure of the material and loss of material in the surface can result. The structural material of the components will be stressed originating from load-controlled quantities, for example pressure or dead weight, and/or deformation-controlled quantities, for example thermal expansion or temperature distribution, and thus it can suffer rowing permanent strains and deformations and an exhaustion of the material (damage) both followed by failure. To avoid a failure of the components the design requires the consideration of the following structural failure modes: ductile rupture due to short-term loadings; creep rupture due to long-term loadings; reep-fatigue failure due to cyclic loadings excessive strains due to incremental deformation or creep ratcheting; loss of function due to excessive deformations; loss of stability due to short-term loadings; loss of stability due to long-term loadings; environmentally caused material failure (excessive corrosion); fast fracture due to instable crack growth

  14. Creep properties of Hastelloy X in a carburizing helium environment

    International Nuclear Information System (INIS)

    Nakanishi, T.; Kawakami, H.

    1982-01-01

    In this work, we investigate the environmental effect on the creep behavior of Hastelloy X at 900 0 C in helium and air. Since helium coolant in HTGR is expected to be carburizing and very weakly oxidizing for most metals, testings were focused on the effect of carburizing and slight oxidation. Carburization decreases secondary creep strain rate and delays tertiary creep initiation. On the other hand, the crack growth rate on the specimen surface is enhanced due to very weak oxidation in helium, therefore the tertiary creep strain rate becomes larger than that in air. The rupture time of Hastelloy X was shorter in helium when compared with in air. Stress versus rupture time curves for both environments do not deviate with each other during up to 5000 hours test, and a ratio of rupture stress in helium to that in air was about 0.9

  15. Creep-fatigue interactions in an austenitic stainless steel

    International Nuclear Information System (INIS)

    Majumdar, S.; Maiya, P.S.

    1978-01-01

    A phenomenological model of the interaction between creep and fatigue in Type 304 stainless steel at elevated temperatures is presented. The model is based on a crack-growth equation and an equation governing cavity growth, expressed in terms of current plastic strain and plastic strain rate. Failure is assumed to occur when a proposed interaction equation is satisfied. Various parameters of the equations can be obtained by correlation with continuously cycling fatigue and monotonic creep-rupture test data, without the use of any hold-time fatigue tests. Effects of various wave shapes such as tensile, compressive, and symmetrical hold on the low-cycle fatigue life can be computed by integrating the damage-rate equations along the appropriate loading path. Microstructural evidence in support of the proposed model is also discussed

  16. Creep-fatigue rules in the RCC-MR code

    International Nuclear Information System (INIS)

    Drubay, B.

    1988-01-01

    In 1978, CEA, Electricite de France (EDF) and NOVATOME decided to draw up a complete set of design and construction rules for LMFBR components. This RCC-MR code issued in June 1985 and completed in November 1987 was chosen as a sound basis for the next European Fast Reactor (EFR). The purpose of this paper is to describe the present RCC-MR creep-fatigue design rules to be applied with elastic analysis including the modifications adopted in the first addenda. This method is based on a separate evaluation of a fatigue usage fraction V and creep rupture usage fraction W with the common linear summation rule. The fatigue usage fraction is obtained from continuous fatigue curves (without hold times) and from total strain ranges (elastic + plastic + creep). The creep rupture usage fraction W is obtained from stress to rupture curves and a stress σk evaluating the stress generated during the cycle. (author)

  17. Influence of loading path and precipitates on indentation creep behavior of wrought Mg–6 wt% Al–1 wt% Zn magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Nautiyal, Pranjal [Discipline of Mechanical Engineering, Indian Institute of Information Technology, Design & Manufacturing, Jabalpur, Madhya Pradesh 482005 (India); Department of Applied Mechanics, Indian Institute of Technology, Delhi 110016 (India); Jain, Jayant [Department of Applied Mechanics, Indian Institute of Technology, Delhi 110016 (India); Agarwal, Arvind, E-mail: agarwala@fiu.edu [Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174 (United States)

    2016-01-05

    This study reports the effect of loading path and precipitates on indentation induced creep behavior of AZ61 magnesium alloy. Indentation creep tests were performed on solution-treated and peak-aged extruded AZ61 magnesium alloy, and Atomic Force Microscopy (AFM) investigations were carried out to study deformation mechanisms. Twinning is the dominant creep mechanism for indentation along the extrusion direction (ED) in solution-treated alloy. A combination of slip and twinning appears to be the prominent mechanisms for indentation creep perpendicular to ED. Creep flow is arrested for indentation perpendicular to ED, due to slip–twin interactions. Influence of precipitates on creep deformation was also studied. Aged specimen exhibited higher creep resistance than solution-treated specimen. Unlike solution-treated specimens, twinning was not observed in aged alloy. Creep in aged specimen was attributed to slip.

  18. Effects of NaCl, pH, and Potential on the Static Creep Behavior of AA1100

    Science.gov (United States)

    Wan, Quanhe; Quesnel, David J.

    2013-03-01

    The creep rates of AA1100 are measured during exposure to a variety of aggressive environments. NaCl solutions of various concentrations have no influence on the steady-state creep behavior, producing creep rates comparable to those measured in lab air at room temperature. However, after an initial incubation period of steady strain rate, a dramatic increase of strain rate is observed on exposure to HCl solutions and NaOH solutions, as well as during cathodic polarization of specimens in NaCl solutions. Creep strain produces a continuous deformation and elongation of the sample surface that is comparable to slow strain rates at crack tips thought to control the kinetics of crack growth during stress corrosion cracking (SCC). In this experiment, we separate the strain and surface deformation from the complex geometry of the crack tip to better understand the processes at work. Based on this concept, two possible explanations for the environmental influences on creep strain rates are discussed relating to the anodic dissolution of the free surface and hydrogen influences on deformation mechanisms. Consistencies of pH dependence between corrosion creep and SCC at low pH prove a creep-involved SCC mechanism, while the discrepancies between corrosion creep behavior and previous SCC results at high pH indicate a rate-limit step change in the crack propagation of the SCC process.

  19. Design of creep machine and creep specimen chamber for carrying out creep tests in flowing liquid sodium

    Energy Technology Data Exchange (ETDEWEB)

    Ravi, S., E-mail: sravi@igcar.gov.in; Laha, K.; Sakthy, S.; Mathew, M.D.; Jayakumar, T.

    2014-02-15

    Highlights: • Design of a lever type creep machine for carrying out creep test in flowing sodium. • Leveling of lever during creep was achieved by automated movement of fulcrum. • Design of creep chamber for providing constant sodium flow rate across creep specimen. • Minimum use of bellow in chamber for sodium containment and mechanical isolation. • Mini-lever mechanism to counter balance load reduction on specimen due to bellow stiffness. - Abstract: A creep testing system has been designed, fabricated, installed and validated for carrying out creep tests in flowing liquid sodium. The testing system consists of two sections namely creep testing machine and an environmental chamber. The testing system has the ability of (i) applying tensile load to the test specimen through a lever, (ii) monitoring continuously the creep elongation and (iii) allowing sodium to flow around the creep specimen at constant velocity. The annular space between the creep specimen and the environmental chamber has been suitably designed to maintain constant sodium flow velocity. Primary and secondary bellows are employed in the environmental chamber to (i) mechanically isolate the creep specimen, (ii) prevent the flowing sodium in contact with air and (iii) maintain an argon gas cover to the leaking sodium if any from primary bellow, with a provision to an alarm get activated by a spark plug. The lever-horizontality during creep test has been maintained by automatically lifting up the fulcrum instead of lowering down the pull rod as conventionally used. A mini lever mechanism has been incorporated in the load train to counter balance the load reduction on specimen from the changing stiffness of the bellows. The validation of the testing system has been established by carrying out creep tests on 316L(N) stainless steel at 873 K over a wide stress range and comparing the results with those obtained in air by employing the developed and conventional creep testing machines.

  20. Creep rupture properties of solution annealed and cold worked type 316 stainless steel cladding tubes

    International Nuclear Information System (INIS)

    Mathew, M.D.; Latha, S.; Mannan, S.L.; Rodriguez, P.

    1990-01-01

    Austenitic stainless steels (mainly type 316 and its modifications) are used as fuel cladding materials in all current generation fast breeder reactors. For the Fast Breeder Test Reactor (FBTR) at Kalpakkam, modified type 316 stainless steel (SS) was chosen as the material for fuel cladding tubes. In order to evaluate the influence of cold work on the performance of the fuel element, the investigation was carried out on cladding tubes in three metallurgical conditions (solution annealed, ten percent cold worked and twenty percent cold worked). The results indicate that: (i) The creep strength of type 316 SS cladding tube increases with increasing cold work. (ii) The benificial effects of cold work are retained at almost all the test conditions investigated. (iii) The Larson Miller parameter analysis shows a two slope behaviour for 20PCW material suggesting that caution should be exercised in extrapolating the creep rupture life to stresses below 125 MPa. At very low stress levels, the LMP values fall below the values of the 10 PCW material. (author). 6 refs., 19 figs. , 10 tabs

  1. Study of precipitation phenomena during the creep of austenitic stainless steels

    International Nuclear Information System (INIS)

    Le May, I.; Bassett, B.J.; White, W.E.

    1975-01-01

    Creep-rupture data for two austenitic stainless steels, AISI Types 310 and 316, are presented, together with observations of precipitation taking place during creep. While the effects of creep deformation on precipitation in the Type 310 were negligible, ferrite precipitation was considerably greater in the Type 316 undergoing creep than in unstressed material. Ferrite precipitation appears to promote grain boundary cavitation and internal cracking, thus reducing creep resistance and a correlation has been noted between increased ferrite precipitation and apparent further weakening of the Type 316 over the temperature range 730 to 800 0 C approximately, as evidenced by breaks in the isostress lines on a plot of log (time to rupture) versus temperature

  2. The Inclusion of Arbitrary Load Histories in the Strength Decay Model for Stress Rupture

    Science.gov (United States)

    Reeder, James R.

    2014-01-01

    Stress rupture is a failure mechanism where failures can occur after a period of time, even though the material has seen no increase in load. Carbon/epoxy composite materials have demonstrated the stress rupture failure mechanism. In a previous work, a model was proposed for stress rupture of composite overwrap pressure vessels (COPVs) and similar composite structures based on strength degradation. However, the original model was limited to constant load periods (holds) at constant load. The model was expanded in this paper to address arbitrary loading histories and specifically the inclusions of ramp loadings up to holds and back down. The broadening of the model allows for failures on loading to be treated as any other failure that may occur during testing instead of having to be treated as a special case. The inclusion of ramps can also influence the length of the "safe period" following proof loading that was previously predicted by the model. No stress rupture failures are predicted in a safe period because time is required for strength to decay from above the proof level to the lower level of loading. Although the model can predict failures during the ramp periods, no closed-form solution for the failure times could be derived. Therefore, two suggested solution techniques were proposed. Finally, the model was used to design an experiment that could detect the difference between the strength decay model and a commonly used model for stress rupture. Although these types of models are necessary to help guide experiments for stress rupture, only experimental evidence will determine how well the model may predict actual material response. If the model can be shown to be accurate, current proof loading requirements may result in predicted safe periods as long as 10(13) years. COPVs design requirements for stress rupture may then be relaxed, allowing more efficient designs, while still maintaining an acceptable level of safety.

  3. Biaxial creep behavior of ribbed GCFR cladding at 6500C in nominally pure helium (99.99%)

    International Nuclear Information System (INIS)

    Yaggee, F.L.; Purohit, A.; Grajek, W.J.; Peoppel, R.B.

    1977-11-01

    Biaxial creep-rupture tests were conducted on 12 prototypic GCFR fuel-cladding specimens at 650 0 C and a nominal hoop stress of 241.3 MPa. All test specimens were fabricated from 20% cold-worked Type 316 stainless steel tubes that were ribbed on the outer surface by mechanical grinding or electro-chemical etching. Test variables included specimen length and the presence or absence of weld-reinforcing end collars. Test results have indicated that, compared with data on smooth specimens, ribbing has no detrimental effect on creep-rupture lifetime. Specimens fabricated from tubes ribbed by electrochemical etching exhibit a significantly shorter creep-rupture lifetime and a higher secondary (steady-state) creep rate than specimens fabricated from tubes ribbed by mechanical grinding. Specimen length does not strongly affect creep-rupture lifetime, but the presence of an end collar does exhibit a significant influence on both the axial strain profile and the ratio of maximum diametral strain at the failure site to average diametral strain away from the failure site. The ribs do not inhibit the propagation of fissure or rupture failures

  4. Modeling of creep-fatigue interaction of zirconium α under cyclic loading at 200 C

    International Nuclear Information System (INIS)

    Vogel, C.

    1996-04-01

    The present work deals with mechanical behaviour of zirconium alpha at 200 deg. C and crack initiation prediction methods, particularly when loading conditions lead to interaction of fatigue and creep phenomena. A classical approach used to study interaction between cyclic effects and constant loading effects does not give easy understanding of experimental results. Therefore, a new approach has been developed, which allow to determine a number of cycles for crack initiation for complex structures under large loading conditions. To study influence of fatigue and creep interaction on crack initiation, a model was chosen, using a scalar variable, giving representation of the material deterioration state. The model uses a non linear cumulating effect between the damage corresponding to cyclic loads and the damage correlated to time influence. The model belongs to uncoupled approaches between damage and behaviour, which is described here by a two inelastic deformations model. This mechanical behaviour model is chosen because it allows distinction between a plastic and a viscous part in inelastic flow. Cyclic damage is function of stress amplitude and mean stress. For the peculiar sensitivity of the material to creep, a special parameter bas been defined to be critical toward creep damage. It is the kinematic term associated to state variables describing this type of hardening in the viscous mechanism. (author)

  5. Initiation of Stress Corrosion Cracking of 26Cr-1Mo Ferritic Stainless Steels in Hot Chloride Solution

    International Nuclear Information System (INIS)

    Kwon, H. S.; Hehemann, R. F.

    1987-01-01

    Elongation measurements of 26Cr-1Mo ferritic stainless steels undergoing stress corrosion in boiling LiCl solution allow the induction period to be distinguished from the propagation period of cracks by the deviation of elongation from the logarithmic creep law. Localised corrosion cells are activated exclusively at slip steps by loading and developed into corrosion trenches. No cracks have developed from the corrosion trenches until the induction period is exceeded. The induction period is regarded as a time for localised corrosion cells to achieve a critical degree of occlusion for crack initiation. The repassivation rate of exposed metal by creep or emergence of slip steps decreases as the load increases and is very sensitive to the microstructural changes that affect slip tep height. The greater susceptibility to stress corrosion cracking of either prestrained or grain coarsened 26Cr-1Mo alloy compared with that of mill annealed material results from a significant reduction of repassivation rate associated with the increased slip step height. The angular titanium carbonitrides particles dispersed in Ti-stabilized 26Cr-1Mo alloy have a detrimental effect on the resistance to stress corrosion cracking

  6. Estimation of durability of GFRP laminates under stress-corrosive environments using acoustic emission; AE wo mochiita ouryoku fushoku kankyoka deno GFRP no taikyusei hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Yoshimichi. [Seikow Chemical Engineering and Machinery, Ltd., Hyogo (Japan). Laboratory of Composite Materials; Nishiyabu, Kazuaki. [Osaka Prefectural College of Tehcnology, Osaka (Japan)

    1999-05-15

    The objective of this investigation is to estimate the creep life of glass fiber reinforced plastic (GFRP) under stress-corrosive environments using acoustic emission(AE). The laminates were fabricated using combinations of vinylester resin (R806) and random fiber mat or woven cloth. The creep tests were conducted in 5% nitric acid (HNO{sub 3}) environment. The AE depends on the loading level and the environment condition. For the creep test, the woven cloth reinforced specimens gave higher number of AE counts than the random mat reinforced specimens. The creep life decreased with increasing creep stress, whereas the rate of AE counts increased with increasing creep stress. A linear relationship was found between the creep life and the AE count rate. Using the proposed equation, a prediction of the creep life of GFRP under corrosive environments would presumably be possible. (author)

  7. Creep-fatigue life property of FBR high-temperature structural materials under tension-torsion loading and life evaluation method

    International Nuclear Information System (INIS)

    Ogata, Takashi; Nitta, Akito

    1994-01-01

    Creep-fatigue damage in high temperature structural components in a FBR progress under multiaxial stress condition depending on their operating conditions and configuration. Therefore, multiaxial stress effects on creep-fatigue damage evolution must be clarified to make precise creep-fatigue damage evaluation of these components. In this study, creep-fatigue tests in FBR high temperature materials such as SUS304, 316FR stainless steels and a modified 9Cr steel were conducted under biaxial stress subjecting tension-compression and torsion loading, in order to examine biaxial stress effects on failure mechanism and life property, and to discuss creep-fatigue life evaluation methods under biaxial stress. Main results obtained in this study are summarized as follows: 1. The main cracks under cyclic torsion loading propagated by shear mode in three materials. But intergranular failure was occurred in SUS304 and 316FR, and transgranular failure was observed in Mod.9Cr steel. 2. Nonlinear damage accumulation model proposed based on uniaxial creep-fatigue test results was extended to apply for creep-fatigue damage evaluation under biaxial stress state by considering the biaxial stress effects on fatigue and creep damage evolution. 3. It was confirmed that creep-fatigue life under biaxial stress could be predicted by the extended evaluation method with higher accuracy than existing methods. (author)

  8. Irregularities in Early Seismic Rupture Propagation for Large Events in a Crustal Earthquake Model

    Science.gov (United States)

    Lapusta, N.; Rice, J. R.; Rice, J. R.

    2001-12-01

    We study early seismic propagation of model earthquakes in a 2-D model of a vertical strike-slip fault with depth-variable rate and state friction properties. Our model earthquakes are obtained in fully dynamic simulations of sequences of instabilities on a fault subjected to realistically slow tectonic loading (Lapusta et al., JGR, 2000). This work is motivated by results of Ellsworth and Beroza (Science, 1995), who observe that for many earthquakes, far-field velocity seismograms during initial stages of dynamic rupture propagation have irregular fluctuations which constitute a "seismic nucleation phase". In our simulations, we find that such irregularities in velocity seismograms can be caused by two factors: (1) rupture propagation over regions of stress concentrations and (2) partial arrest of rupture in neighboring creeping regions. As rupture approaches a region of stress concentration, it sees increasing background stress and its moment acceleration (to which velocity seismographs in the far field are proportional) increases. After the peak in stress concentration, the rupture sees decreasing background stress and moment acceleration decreases. Hence a fluctuation in moment acceleration is created. If rupture starts sufficiently far from a creeping region, then partial arrest of rupture in the creeping region causes a decrease in moment acceleration. As the other parts of rupture continue to develop, moment acceleration then starts to grow again, and a fluctuation again results. Other factors may cause the irregularities in moment acceleration, e.g., phenomena such as branching and/or intermittent rupture propagation (Poliakov et al., submitted to JGR, 2001) which we have not studied here. Regions of stress concentration are created in our model by arrest of previous smaller events as well as by interactions with creeping regions. One such region is deep in the fault zone, and is caused by the temperature-induced transition from seismogenic to creeping

  9. Creep behaviour of austenitic stainless steels, base and weld metals used in liquid metal fast breeder reactors, during temperature variations

    International Nuclear Information System (INIS)

    Felsen, M.F.

    1982-07-01

    Creep rupture and deformation during temperature variations have been studied for 316 austenitic steel, base and weld metals. Loaded specimens were heated to 900 0 C or 1000 0 C and maintained at this temperature for different durations. The heating rate to these temperatures was between 5 and 50 0 C h -1 , whilst the cooling rate was between 5 and 20 0 C h -1 . The above tests were coupled with short time creep and tensile tests (straining rate 10 -2 h -1 to 10 3 h -1 ) at constant temperature. These tests were used for predicting the creep behaviour of the materials under changing temperature condition. The predictions were in good agreement with the changing temperature and creep experimental results. In addition, a correlation between certains tensile properties, such as the rupture time as a function of stress was observed at high temperature

  10. Examination of observed and predicted measures of creep cavitation damage accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Brear, J M; Church, J M [ERA Technology Ltd., Leatherhead (United Kingdom); Eggeler, G [University of Bochum-Ruhr (Germany)

    1999-12-31

    Brittle intergranular cavitation represents a primary degradation mechanism for high temperature plant operating within the creep range. Fundamental to formulating estimates of remanent life, or consumed life fraction for such components are: the observation and quantification of the level of actual creep cavitation, typically using an A-parameter type approach, and the correlation of observed creep damage accumulation with some phenomenological model which characterizes the rate of damage evolution and, thereby, rupture lifetime. The work described here treats inhomogeneous damage accumulation - in otherwise uniform material and loading situations. Extensions to the A-parameter are considered as a practical measure of damage localization and an extension of the Kachanov-Rabotnov continuum damage mechanics model is proposed to allow theoretical treatment. (orig.) 4 refs.

  11. Examination of observed and predicted measures of creep cavitation damage accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Brear, J.M.; Church, J.M. [ERA Technology Ltd., Leatherhead (United Kingdom); Eggeler, G. [University of Bochum-Ruhr (Germany)

    1998-12-31

    Brittle intergranular cavitation represents a primary degradation mechanism for high temperature plant operating within the creep range. Fundamental to formulating estimates of remanent life, or consumed life fraction for such components are: the observation and quantification of the level of actual creep cavitation, typically using an A-parameter type approach, and the correlation of observed creep damage accumulation with some phenomenological model which characterizes the rate of damage evolution and, thereby, rupture lifetime. The work described here treats inhomogeneous damage accumulation - in otherwise uniform material and loading situations. Extensions to the A-parameter are considered as a practical measure of damage localization and an extension of the Kachanov-Rabotnov continuum damage mechanics model is proposed to allow theoretical treatment. (orig.) 4 refs.

  12. Multiaxial creep of tubes from Incoloy 800 H and Inconel 617 under static and cyclic loading conditions

    International Nuclear Information System (INIS)

    Penkalla, H.J.; Nickel, H.; Schubert, F.

    1989-01-01

    At temperatures above 800 0 C the material behaviour under mechanical load is determined by creep. The service of heat exchanging components leads to multiaxial loading conditions. For design and inelastic analysis of the component behaviour time dependent design values and suitable constitutive equations are necessary. The present report gives a survey of the approaches to describing creep under multiaxial loading. Norton's law and v. Mises' theory are applied. The load combinations of internal pressure, tensile and torsional stress are studied more closely, cyclic stress superposition in the tensile-pulsating range is discussed and cases of partial relaxation are examined. Experimental results are presented for the loading conditions discussed, and satisfactory agreement between theory and experiment has been found up to now for these results. Regarding lifetime determination under multiaxial creep load, a more precise analysis of creep damage is presented suggesting a suitable deviatoric stress for evaluation in the long-time range. (orig.)

  13. Creep properties of superalloys for the HTGR in impure helium environments

    International Nuclear Information System (INIS)

    Kawakami, H.; Nakanishi, T.

    1981-01-01

    This paper describes creep behaviors of two heat resistant alloys, Hastelloy X and Incoloy 800, in helium environments of the HTGR. In impure helium environments, these alloys are susceptible to carburization and oxidization. We have investigated these effects separately, and related them to the creep behaviors of the alloys. Experiments were carried out at 900 0 C both in helium and in air. Carburization results in decrease of secondary creep strain rate and delay of tertiary creep initiation. Oxidization caused decrease in tertiary creep strain rate of Hastelloy X, but did not that of Incoloy 800. Enhancement in tertiary creep strain rate of Hastelloy X in a very weakly oxidizing environment was confirmed in creep crack growth experiment using notched plate specimens. The rupture time of Hastelloy X in helium was short when compared with in air. Stress versus rupture time curves for both environments were parallel up to 5000 hours test, and a ratio of rupture stress in helium to that in air was about 0.9. In case of Incoloy 800, rupture time in helium was markedly prolonged as compared with that in air. (orig.)

  14. Principal modes of rupture encountered in expertise of advanced components

    International Nuclear Information System (INIS)

    Tavassoli, A.A.; Bougault, A.

    1986-10-01

    Failure of many metallic components investigated can be classified into two categories: intergranular or transgranular according to their principal mode of rupture. Intergranular ruptures are often provoked by segregation of impurities at the grain boundaries. Three examples are cited where this phenomenon occured, one of them is a steel (A 508 cl 3) used for PWR vessel. Intergranular failures are in general induced by fatigue in the advanced components operating under thermal or load transients. One example concerning a sodium mixer which was subjected to thermal loadings is presented. Examples of stress corrosion and intergranular sensitization failures are cited. These examples show the importance of fractography for the determination of rupture causes [fr

  15. Creep deformation behavior at long-term in P23/T23 steels

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, K.; Tabuchi, M.; Kimura, K. [National Institute for Materials Science (Japan)

    2008-07-01

    Creep behavior of ASME P23/T23 steels was investigated and analyzed, focusing on creep strength degradation at long-term. Creep rupture strength at 625 C and 650 C dropped at long-term in both P23 and T23 steels. The stress exponent of minimum creep rate at 625 C and 650 C was 7.8-13 for higher stresses and 3.9-5.3 for lower stresses in the P23/T23 steels. The change of stress exponent with stress levels was consistent with the drop in creep rupture strength at long-term. The Monkman-Grant rule was confirmed in the range examined in P23 steel, while the data points deviated from the rule at long-term in the case of T23 steel. The creep ductility of P23 steel was high over a wide stress and temperature range. On the other hand, in T23 steel, creep ductility at 625 C and 650 C decreased as time to rupture increased. The change in ductility may cause the deviation from the Monkman-Grant rule. Fracture mode changed from transgranular to intergranular fracture in the long-term at 625 C and 650 C. (orig.)

  16. Assessment of the residual time to rupture of fuel pins after reactor core disturbances using the Lebensanteil rule

    International Nuclear Information System (INIS)

    Schaefer, L.; Wassilew, C.

    1992-01-01

    An important aspect of disturbances in the reactor core is the way in which they affect the service life of fuel rod cladding tubes. This factor also determines whether and how long the reactor core can be continued in operation, i.e., matters of safety and economy are involved. Potential disturbances of the reactor core affect the fuel rod cladding tubes as increases in temperature and, sometimes, as mechanical stresess for limited periods of time. As thermomechanical stresses acting on a cladding tube also give rise to creep events which may limit the service life of fuel elements, it is important to know how much creep life or time to rupture is consumed in the course of a core disturbance, and what the residual life is. For this purpose, the times to rupture before and during the accident must be added up and the balance calculated. As a rule of computation, the Lebensanteil rule is used in its form expressing the time to rupture of creeping solids. The simulation of accidents with unirradiated cladding tubes revealed a drastic decrease of the residual time to rupture in those cases in which the cladding material had recrystallized. On the other hand, because of its structural stability, irradiated material turned out to be almost insensitive even under extremely severe accident conditions. The materials data so far available are sufficient for useful estimates. Presuming one of the damage accumulating processes of the creeping cladding material is predominant, there are no further validity limiting ranges concerning kind of accident, loading condition, cladding material and so on. (orig.)

  17. A study of precipitation phenomena during the creep of austenitic stainless steels

    International Nuclear Information System (INIS)

    Le May, I.; White, W.E.; Bassett, B.J.

    1975-01-01

    Creep-rupture data for two austenitic stainless steels, AISI Types 310 and 316, are presented, together with observations of precipitation taking place during creep. While the effects of creep deformation on precipitation in the Type 310 were negligible, ferrite precipitation was considerably greater in the Type 316 undergoing creep than in unstressed material. Ferrite precipitation appears to promote grain boundary cavitation and internal cracking, thus reducing creep resistance, and a correlation has been noted between increased ferrite precipitation and apparent further weakening of the Type 316 over the temperature range 730 0 C to 800 0 C approximately, as evidenced by breaks in the isostress lines on a plot of log (time to rupture) versus temperature. (author)

  18. Advances in the assessment of creep data

    Energy Technology Data Exchange (ETDEWEB)

    Holdsworth, S.R.

    2010-07-01

    Many of the classical models representing the creep and rupture behaviour of metals were developed prior to and during the 1950s and 1960s, and their subsequent exploitation, in particular for the assessment of large creep property datasets, was initially limited by the capability of the analytical tools available at the time. The formation of ECCC (the European Creep Collaborative Committee) in 1991, with a main objective of providing reliable peer reviewed long-time creep property values for European Design and Product Standards, led to the development of rigorous assessment procedures such as PD6605 and DESA incorporating post assessment tests to verify: physical realism, effectiveness of model-fit within the range of the source experimental data, and extrapolation credibility. The first ECCC assessment recommendations published in 1996 undoubtedly provided a catalyst for others to exploit the availability of low cost, powerful desktop computers to develop rigorous methodologies for the physically realistic analysis of uniaxial and multi-axial data for the reliable and accurate characterisation of creep strain, and rupture strength and ductility properties. More recent improvements in data assessment methodologies have been driven by the need to effectively model the creep deformation and rupture characteristics of the complex new generation alloys and fabrications being designed to cater for the continually evolving requirements of modern advanced power plant. These advances in the assessment of creep data are reviewed. (orig.)

  19. Critical review of creep FRAPCON-3 model under dry storage conditions

    Energy Technology Data Exchange (ETDEWEB)

    Feria, F.; Herranz, L.E. [Unit of Nuclear Safety Research, CIEMAT, Avda. Complutense 22, Madrid, Madrid 28040 (Spain)

    2009-06-15

    There is a general agreement that cladding creep rupture is the most likely and limiting failure mechanism of spent fuel in dry storage compared to other potential mechanisms, like stress corrosion cracking and/or delayed hydride cracking. Nevertheless, occurrence of creep rupture is very improbable since both decay heat and hoop stress tend to decrease throughout dry storage. In spite of this, the current trend to higher burn up levels needs further attention that ensures safe storage of spent fuel irradiated over 45 GWd/MTU. An extensive work has been carried out during the last four decades in the area of in-reactor creep modelling. Unfortunately, the in-reactor conditions are so different from those prevailing under dry storage, that all the experience gained cannot be extrapolated in a straightforward manner. On the other side, as creep tests simulating conditions throughout a 20-40 year dry storage are impractical, post-irradiation cladding creep behaviour has been modelled by means of time-temperature dependent laws developed on the basis of currently available zirconium alloys data. Additionally, some tests have been exploring the effect of irradiation, hydrogen distribution and material composition on the materials creep behaviour. Adaptation of fuel performance codes initially developed for normal and off-normal reactor operation is not an easy task either. Creep modelling is usually dependent of host codes because a good part of its validation and update has been carried out in an integral way, and as a consequence its independent performance assessment is not an easy task. This work examines the current capability of FRAPCON-3 to model creep behaviour under dry storage conditions. To do so, a review of its major fundamentals has been done and its range of applicability discussed. Once its main approximations and drawbacks have been identified, an attempt to overcome some of them has been intended by implementing an alternative expression for creep under

  20. Study on deformation behavior and life evaluation method for SUS304 notched plate under bending creep fatigue loading

    International Nuclear Information System (INIS)

    Fukuda, Yoshio; Satoh, Yoshimi; Nakamura, Kazuhiro; Takahashi, Yukio; Kuwabara, Kazuo.

    1990-01-01

    Creep-fatigue tests were carried out on notched plates under cyclic bending loads out of plane at 550degC, and the local strain at the notch-root and micro crack propagation behavior were measured. Then, inelastic analysis was performed for the experiment by using three kinds of constitutive models, such as kinematic hardening, ORNL and Ohno models. From the comparison of the experiment with the results of analysis, the following conclusions were obtained. (1) Creep strain caused at the notch-root during load holding was negligibly small compared with plastic strain, so that the neighborhood of the notch-root is subjected to constrained strain type damage. (2) The strain range at the notch-root can be calculated from the results of elastic-plastic analysis for monotonic loading independent of the constitutive models used, where the cyclic stress-strain relationship was used as the material monotonic deformation property. (3) The mean strain calculated was consistent with the experimental value in case of kinematic hardening or ORNL model, while not in case of Ohno model. (4) A method for predicting the crack initiation life of a notched plate has been proposed on the basis of micro-crack propagation behavior obtained by a fundamental creep-fatigue test. (author)

  1. Prediction of long-term creep curves

    International Nuclear Information System (INIS)

    Oikawa, Hiroshi; Maruyama, Kouichi

    1992-01-01

    This paper aims at discussing how to predict long-term irradiation enhanced creep properties from short-term tests. The predictive method based on the θ concept was examined by using creep data of ferritic steels. The method was successful in predicting creep curves including the tertiary creep stage as well as rupture lifetimes. Some material constants involved in the method are insensitive to the irradiation environment, and their values obtained in thermal creep are applicable to irradiation enhanced creep. The creep mechanisms of most engineering materials definitely change at the athermal yield stress in the non-creep regime. One should be aware that short-term tests must be carried out at stresses lower than the athermal yield stress in order to predict the creep behavior of structural components correctly. (orig.)

  2. Material science studies on the formation and growth of pores in the production and creep of single-crystal nickel-based superalloys; Werkstoffwissenschaftliche Untersuchungen zur Bildung und zum Wachstum von Poren bei der Herstellung und beim Kriechen einkristalliner Nickelbasis-Superlegierungen

    Energy Technology Data Exchange (ETDEWEB)

    Buck, Heinrich Joergen

    2015-02-20

    that the quantitative metallographic approach is able to qualitatively reproduce all important details of porosity evolution, which were identified by Link et al. using synchrotron radiation. Pores which the metallographic method detects directly after casting appear in a low density (17 pores/mm{sup 2}) and show very broad log-normal size distributions. Solidification pore sizes (in terms of pore areas on the metallographic cross section) can vary from 2 to 200 μm{sup 2}. During the multiple step homogenization heat treatment of ERBO/1, new pores form and the pore density increases to 34 pores/mm{sup 2}. Simultaneously, one can detect an increase in average pore sizes. The size distribution of pores shifts to higher values. During high temperature and low stress creep, new small pores form (pore density increases to values ranging from 139 pores/mm{sup 2} to 193 pores/mm{sup 2}) and the size distributions evolve from unimodal (as-cast and heat treated material state, prior to creep) to bimodal (early stages of creep). The present study furthermore represents the missing link between the synchrotron studies of Link et al., 2006 regarding the evolution of porosity and the metallographic investigations of Maelzer et al., 2007, who investigated the role of pores with respect to creep rupture. The advantage of the present study is that both, the investigation of porosity evolution and the investigation on the role of pores on creep rupture, were performed with one alloy at the same temperature/stress conditions. It has been shown, that the distribution of pores in the material and the alignment of pores relative to the loading direction are important. Maelzer et al. showed, that creep specimens with pores aligned parallel to the loading direction ([001] specimens) showed higher rupture strains compared to specimens, where pores were aligned perpendicular to the loading direction ([110] specimens). These findings have been confirmed by the present study. The metallographic

  3. Failure analysis on a ruptured petrochemical pipe

    Energy Technology Data Exchange (ETDEWEB)

    Harun, Mohd [Industrial Technology Division, Malaysian Nuclear Agency, Ministry of Science, Technology and Innovation Malaysia, Bangi, Kajang, Selangor (Malaysia); Shamsudin, Shaiful Rizam; Kamardin, A. [Univ. Malaysia Perlis, Jejawi, Arau (Malaysia). School of Materials Engineering

    2010-08-15

    The failure took place on a welded elbow pipe which exhibited a catastrophic transverse rupture. The failure was located on the welding HAZ region, parallel to the welding path. Branching cracks were detected at the edge of the rupture area. Deposits of corrosion products were also spotted. The optical microscope analysis showed the presence of transgranular failures which were related to the stress corrosion cracking (SCC) and were predominantly caused by the welding residual stress. The significant difference in hardness between the welded area and the pipe confirmed the findings. Moreover, the failure was also caused by the low Mo content in the stainless steel pipe which was detected by means of spark emission spectrometer. (orig.)

  4. Creep Behaviour of Modified Mar-247 Superalloy

    Directory of Open Access Journals (Sweden)

    Cieśla M.

    2016-06-01

    Full Text Available The paper presents the results of analysis of creep behaviour in short term creep tests of cast MAR-247 nickel-based superalloy samples made using various modification techniques and heat treatment. The accelerated creep tests were performed under temperature of 982 °C and the axial stresses of σ = 150 MPa (variant I and 200 MPa (variant II. The creep behaviour was analysed based on: creep durability (creep rupture life, steady-state creep rate and morphological parameters of macro- and microstructure. It was observed that the grain size determines the creep durability in case of test conditions used in variant I, durability of coarse-grained samples was significantly higher.

  5. Life prediction of simple structures subject to cyclic primary and secondary loading resulting in creep and platicity

    International Nuclear Information System (INIS)

    Otter, N.R.; Jones, R.T.

    1979-01-01

    High temperature reactors are subject to cyclic mechanical and thermal loadings resulting from start up and shut down operations. The design must therefore guard against structural failure resulting from excessive deformation and creep-fatigue damage. Before any simplified inelastic analysis techniques can be applied, their validity needs to be examined under situations representative of the reactor. For this to be carried out it is necessary to determine the behaviour of components, initially geometrically simple, subject to loadings, cyclic primary and secondary in nature, which result in creep and plasticity. Beam-like structures have been investigated on a finite element basis with the aim of determining how cyclic plasticity, creep enhancement and plastic ratchetting vary in relationship with modified shakedown criteria, magnitude of loading and hold time. (orig.)

  6. Creep strength of hastelloy X TIG-welded cylinder under internal pressure at elevated temperature

    International Nuclear Information System (INIS)

    Udoguchi, Teruyoshi; Indo, Hirosato; Isomura, Kazuyuki; Kobatake, Kiyokazu; Nakanishi, Tsuneo.

    1981-01-01

    Creep tests on circumferentially TIG-welded Hastelloy x cylinders were carried out under internal pressure for the investigation of structural behavior of welded components in high temperature environment. The creep rupture strength of TIG-welded cylinders was much lower than that of non-welded cylinders, while such reduction was not found in uniaxial creep tests on TIG-welded bars. It was deduced that the reduction was due to the low ductility (ranging from 1 to 5%) of the weld metal to which enhanced creep was induced by the adjacent base metal whose creep strain rate was much higher than that of the weld metal. Therefore, uniaxial creep tests on bar specimens is not sufficient for proper assessment of the creep rupture strength of welded components. Both creep strain rate and creep ductility should be concerned for the assessment. Creep tests by using components such as cylinder under internal pressure are recommendable for the confirmation of creep strength of welded structures and components. (author)

  7. The influence of loading on the corrosion of steel in cracked ordinary Portland cement and high performance concretes

    Science.gov (United States)

    Jaffer, Shahzma Jafferali

    Most studies that have examined chloride-induced corrosion of steel in concrete have focused on sound concrete. However, reinforced concrete is seldom uncracked and very few studies have investigated the influence of cracked concrete on rebar corrosion. Furthermore, the studies that have examined the relationship between cracks and corrosion have focused on unloaded or statically loaded cracks. However, in practice, reinforced concrete structures (e.g. bridges) are often dynamically loaded. Hence, the cracks in such structures open and close which could influence the corrosion of the reinforcing steel. Consequently, the objectives of this project were (i) to examine the effect of different types of loading on the corrosion of reinforcing steel, (ii) the influence of concrete mixture design on the corrosion behaviour and (iii) to provide data that can be used in service-life modelling of cracked reinforced concretes. In this project, cracked reinforced concrete beams made with ordinary Portland cement concrete (OPCC) and high performance concrete (HPC) were subjected to no load, static loading and dynamic loading. They were immersed in salt solution to just above the crack level at their mid-point for two weeks out of every four (wet cycle) and, for the remaining two weeks, were left in ambient laboratory conditions to dry (dry cycle). The wet cycle led to three conditions of exposure for each beam: (i) the non-submerged region, (ii) the sound, submerged region and (iii) the cracked mid-section, which was also immersed in the solution. Linear polarization resistance and galvanostatic pulse techniques were used to monitor the corrosion in the three regions. Potentiodynamic polarization, electrochemical current noise and concrete electrical resistance measurements were also performed. These measurements illustrated that (i) rebar corroded faster at cracks than in sound concrete, (ii) HPC was more protective towards the rebar than OPCC even at cracks and (iii) there

  8. Biaxial creep behavior of ribbed GCFR cladding at 650/sup 0/C in nominally pure helium (99. 99%)

    Energy Technology Data Exchange (ETDEWEB)

    Yaggee, F. L.; Purohit, A.; Grajek, W. J.; Peoppel, R. B.

    1977-11-01

    Biaxial creep-rupture tests were conducted on 12 prototypic GCFR fuel-cladding specimens at 650/sup 0/C and a nominal hoop stress of 241.3 MPa. All test specimens were fabricated from 20% cold-worked Type 316 stainless steel tubes that were ribbed on the outer surface by mechanical grinding or electro-chemical etching. Test variables included specimen length and the presence or absence of weld-reinforcing end collars. Test results have indicated that, compared with data on smooth specimens, ribbing has no detrimental effect on creep-rupture lifetime. Specimens fabricated from tubes ribbed by electrochemical etching exhibit a significantly shorter creep-rupture lifetime and a higher secondary (steady-state) creep rate than specimens fabricated from tubes ribbed by mechanical grinding. Specimen length does not strongly affect creep-rupture lifetime, but the presence of an end collar does exhibit a significant influence on both the axial strain profile and the ratio of maximum diametral strain at the failure site to average diametral strain away from the failure site. The ribs do not inhibit the propagation of fissure or rupture failures.

  9. The Greenville Fault: preliminary estimates of its long-term creep rate and seismic potential

    Science.gov (United States)

    Lienkaemper, James J.; Barry, Robert G.; Smith, Forrest E.; Mello, Joseph D.; McFarland, Forrest S.

    2013-01-01

    Once assumed locked, we show that the northern third of the Greenville fault (GF) creeps at 2 mm/yr, based on 47 yr of trilateration net data. This northern GF creep rate equals its 11-ka slip rate, suggesting a low strain accumulation rate. In 1980, the GF, easternmost strand of the San Andreas fault system east of San Francisco Bay, produced a Mw5.8 earthquake with a 6-km surface rupture and dextral slip growing to ≥2 cm on cracks over a few weeks. Trilateration shows a 10-cm post-1980 transient slip ending in 1984. Analysis of 2000-2012 crustal velocities on continuous global positioning system stations, allows creep rates of ~2 mm/yr on the northern GF, 0-1 mm/yr on the central GF, and ~0 mm/yr on its southern third. Modeled depth ranges of creep along the GF allow 5-25% aseismic release. Greater locking in the southern two thirds of the GF is consistent with paleoseismic evidence there for large late Holocene ruptures. Because the GF lacks large (>1 km) discontinuities likely to arrest higher (~1 m) slip ruptures, we expect full-length (54-km) ruptures to occur that include the northern creeping zone. We estimate sufficient strain accumulation on the entire GF to produce Mw6.9 earthquakes with a mean recurrence of ~575 yr. While the creeping 16-km northern part has the potential to produce a Mw6.2 event in 240 yr, it may rupture in both moderate (1980) and large events. These two-dimensional-model estimates of creep rate along the southern GF need verification with small aperture surveys.

  10. Creep damage of 12% CrMoV weldments

    International Nuclear Information System (INIS)

    Kussmaul, K.; Maile, K.; Theofel, H.

    1989-01-01

    Creep tests were performed to determine the creep behaviour of similar welded joints of 12% CrMoV-steels which had been made using various heat inputs. The specimens were taken transverse to the seam. The transition from the coarse-grained to the fine-grained area of the heat affected zone (HAZ) proved to be the location of failure after longer rupture times. All tested specimens lie in the +-20% scatterband of the material standard DIN 17175. Creep rupture was initiated by the nucleation and growth of cavities. The appearance of the damage zone near the fracture face depends on testing conditions and heat input. The nucleation of cavities can be detected at an early stage of lifetime

  11. The creep life of superheater and reheater tubes under varying pressure conditions in operational boilers

    International Nuclear Information System (INIS)

    Mizen, D.C.; Plastow, B.

    1975-01-01

    The first of each manufacturer's 500 MW boilers supplied to the CEGB (Central Electricity Generating Board) have been subjected to an extensive programme of tests for performance optimization and safe operation. Around 250 thermocouples on superheater and reheater tubes have in each case been monitored as part of the exercise. The readings are corrected and used to compute creep rupture damage based on internationally agreed stress rupture data and a simple cumulative damage concept. Comparison of the design creep rupture life and the cumulative life consumed has in several applications been invaluable in influencing operating procedures and arranging tube modifications or replacements, so that loss of generation by creep rupture failure is minimized. (author)

  12. Effect of mechanical pre-loadings on corrosion resistance of chromium-electroplated steel rods in marine environment

    Science.gov (United States)

    Shubina Helbert, Varvara; Dhondt, Matthieu; Homette, Remi; Arbab Chirani, Shabnam; Calloch, Sylvain

    2018-03-01

    Providing high hardness, low friction coefficient, as well as, relatively good corrosion resistance, chromium-plated coatings (∼20 μm) are widely used for steel cylinder rods in marine environment. However, the standardized corrosion test method (ISO 9227, NSS) used to evaluate efficiency of this type of coatings does not take into account in-service mechanical loadings on cylinder rods. Nevertheless, the uniform initial network of microcracks in chromium coating is changing under mechanical loadings. Propagation of these microcracks explains premature corrosion of the steel substrate. The aim of the study was to evaluate relationship between mechanical loadings, propagation of microcracks network and corrosion resistance of chromium coatings. After monotonic pre-loading tests, it was demonstrated by microscopic observations that the microcracks propagation started at stress levels higher than the substrate yield stress (520 MPa). The microcracks become effective, i.e. they have instantly undergone through the whole coating thickness to reach the steel substrate. The density of effective microcracks increases with the total macroscopic level, i.e. the intercrack distance goes from 60 ± 5 μm at 1% of total strain to approximately 27 ± 2 μm at 10%. Electrochemical measurements have shown that the higher the plastic strain level applied during mechanical loading, the more the corrosion potential of the sample decreased until reaching the steel substrate value of approximately ‑0.65 V/SCE after 2 h of immersion. The polarization curves have also highligthed an increase in the corrosion current density with the strain level. Therefore, electrochemical measurements could be used to realize quick and comprehensive assesment of the effect of monotonic pre-loadings on corrosion properties of the chromium coating.

  13. Admissible thermal loading in geological formations. Consequences on radioactive waste disposal methods

    International Nuclear Information System (INIS)

    1982-01-01

    The thermal loading in salt formation is studied for the disposal of high-level radioactive waste embedded in glass. Temperature effect on glass leaching, stability of gel layer on glass surface, quantity of leaching solution available in the borehole and corrosion resistance of materials used for containers are examined. The geological storage medium must satisfy particularly complex requirements: stratigraphy, brine migration, permeability, fissuring, mechanical strength, creep, thermal expansion, cavity structure ..

  14. Seismic Creep, USA Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seismic creep is the constant or periodic movement on a fault as contrasted with the sudden rupture associated with an earthquake. It is a usually slow deformation...

  15. Creep damage behaviour of modified 9Cr-1Mo steel weld joints

    International Nuclear Information System (INIS)

    Sakthivel, T.; Laha, K.; Vasudevan, M.; Panneer Selvi, S.

    2016-01-01

    Creep deformation and rupture behaviour of modified 9Cr-1Mo steel weld joints fabricated by single-pass activated TIG (A-TIG) and shielded metal arc welding (SMAW) processes have been investigated at 923 K over a stress range of 50 to 110 MPa after post weld heat treatment (PWHT). The weld joints exhibited significantly lower creep rupture lives than the base metal at lower applied stresses. Creep rupture location of the weld joints were found to occur in the ICHAZ. An extensive localized creep deformation, coarsening of M 23 C 6 precipitates in the ICHAZ with creep exposure led to the premature type IV failure of the joints. The coarsening of M 23 C 6 precipitates was extensive in the mid-section of the ICHAZ than the sub-surface of the joints, and was more predominant in the SMAW joint. While A-TIG weld joint exhibited reduced creep cavitation and coarsening of M 23 C 6 precipitates due to lower deformation constraints by adjacent regions in the ICHAZ. Hence, A-TIG weld joint exhibited higher creep rupture life than the SMAW joint. (author)

  16. Influence of phosphorous and sulphur as well as grain size on creep in pure copper

    International Nuclear Information System (INIS)

    Andersson, Henrik; Seitisleam, Facredin; Sandstroem, Rolf

    1999-12-01

    Uniaxial creep tests have been performed at 175 deg C for extruded oxygen-free copper. The effect of different contents of phosphorous and sulphur as well as different grain sizes have been studied. The copper with < 1 ppm phosphorous and with a 6 ppm sulphur content showed significantly lower creep life and ductility than batches with higher P content. An increase of the P content to 29 ppm increased the creep life and ductility, but a further increase did not affect the properties further. A similar drop in the creep properties was found in the material with a grain size of about 2000 μm. A reduction of the mean grain size to 800 μm had a beneficial effect on the creep ductility. A further reduction of the grain size did not give any further improvements. All tests except those with a phosphorous content of less than 1 ppm P and those with a mean grain size of about 2000 μm failed at an elongation greater than 20%, most of them at 30-40%. The variation in sulphur content from 6 to 12 ppm did not affect the creep properties. The main creep rupture mechanisms were found to be cavitation and microcracking at the grain boundaries. Master curves for extrapolation are provided for creep rupture as well as for 5% and 10% creep strain

  17. CREEP BEHAVIOR OF BORATE-TREATED STRANDBOARD: EFFECT OF ZINC BORATE RETENTION, WOOD SPECIES, AND LOAD LEVEL

    OpenAIRE

    Wu,Qinglin; Lee,Ong N; Cai,Zhiyong; Zhou,Dingguo

    2009-01-01

    Creep performance of zinc borate-treated strandboard from southern pine (Pinus taeda L.) and red oak (Quercus falcata) was investigated at 25(0)C temperature and 65% relative humidity. It was shown that the borate treatment had some significant effect on creep deflection of the test panels, and the effect varied with wood species. There was no significant effect of creep loading on residual bending properties of treated strandboard under the stress levels used. The four element spring-dashpot...

  18. Comparison of various 9-12%Cr steels under fatigue and creep-fatigue loadings at high temperature

    International Nuclear Information System (INIS)

    Fournier, B.; Dalle, F.; Sauzay, M.; Longour, J.; Salvi, M.; Caes, C.; Tournie, I.; Giroux, P.F.; Kim, S.H.

    2011-01-01

    The present article compares the cyclic behaviour of various 9-12%Cr steels, both commercial grades and optimized materials (in terms of creep strength). These materials were subjected to high temperature fatigue and creep-fatigue loadings. TEM examinations of the microstructure after cyclic loadings were also carried out. It appears that all the tempered ferritic-martensitic steels suffer from a cyclic softening effect linked to the coarsening of the sub-grains and laths and to the decrease of the dislocation density. These changes of the microstructure lead to a drastic loss in creep strength for all the materials under study. However, due to a better precipitation state, several materials optimized for their creep strength still present a good creep resistance after cyclic softening. These results are discussed and compared to the literature in terms of the physical mechanisms responsible for cyclic and creep deformation at the microstructural scale. (authors)

  19. Creep Rupture of the Simulated HAZ of T92 Steel Compared to that of a T91 Steel

    Directory of Open Access Journals (Sweden)

    Yu-Quan Peng

    2017-02-01

    Full Text Available The increased thermal efficiency of fossil power plants calls for the development of advanced creep-resistant alloy steels like T92. In this study, microstructures found in the heat-affected zone (HAZ of a T92 steel weld were simulated to evaluate their creep-rupture-life at elevated temperatures. An infrared heating system was used to heat the samples to 860 °C (around AC1, 900 °C (slightly below AC3, and 940 °C (moderately above AC3 for one minute, before cooling to room temperature. The simulated specimens were then subjected to a conventional post-weld heat treatment (PWHT at 750 °C for two hours, where both the 900 °C and 940 °C simulated specimens had fine grain sizes. In the as-treated condition, the 900 °C simulated specimen consisted of fine lath martensite, ferrite subgrains, and undissolved carbides, while residual carbides and fresh martensite were found in the 940 °C simulated specimen. The results of short-term creep tests indicated that the creep resistance of the 900 °C and 940 °C simulated specimens was poorer than that of the 860 °C simulated specimens and the base metal. Moreover, simulated T92 steel samples had higher creep strength than the T91 counterpart specimens.

  20. Creep Rupture of the Simulated HAZ of T92 Steel Compared to that of a T91 Steel.

    Science.gov (United States)

    Peng, Yu-Quan; Chen, Tai-Cheng; Chung, Tien-Jung; Jeng, Sheng-Long; Huang, Rong-Tan; Tsay, Leu-Wen

    2017-02-08

    The increased thermal efficiency of fossil power plants calls for the development of advanced creep-resistant alloy steels like T92. In this study, microstructures found in the heat-affected zone (HAZ) of a T92 steel weld were simulated to evaluate their creep-rupture-life at elevated temperatures. An infrared heating system was used to heat the samples to 860 °C (around A C1 ), 900 °C (slightly below A C3 ), and 940 °C (moderately above A C3 ) for one minute, before cooling to room temperature. The simulated specimens were then subjected to a conventional post-weld heat treatment (PWHT) at 750 °C for two hours, where both the 900 °C and 940 °C simulated specimens had fine grain sizes. In the as-treated condition, the 900 °C simulated specimen consisted of fine lath martensite, ferrite subgrains, and undissolved carbides, while residual carbides and fresh martensite were found in the 940 °C simulated specimen. The results of short-term creep tests indicated that the creep resistance of the 900 °C and 940 °C simulated specimens was poorer than that of the 860 °C simulated specimens and the base metal. Moreover, simulated T92 steel samples had higher creep strength than the T91 counterpart specimens.

  1. Flexural creep of coated SiC-fiber-reinforced glass-ceramic composites

    International Nuclear Information System (INIS)

    Sun, E.Y.

    1995-01-01

    This study reports the flexural creep behavior of a fiber-reinforced glass-ceramic and associated changes in microstructure. SiC fibers were coated with a dual layer of SiC/BN to provide a weak interface that was stable at high temperatures. Flexural creep, creep-rupture, and creep-strain recovery experiments were conducted on composite material and barium-magnesium aluminosilicate matrix from 1,000 to 1,200 C. Below 1,130 C, creep rates were extremely low (∼10 -9 s -1 ), preventing accurate measurement of the stress dependence. Above 1,130 C, creep rates were in the 10 -8 s -1 range. The creep-rupture strength of the composite at 1,100 C was about 75--80% of the fast fracture strength. Creep-strain recovery experiments showed recovery of up to 90% under prolonged unloading. Experimental creep results from the composite and the matrix were compared, and microstructural observations by TEM were employed to assess the effectiveness of the fiber coatings and to determine the mechanism(s) of creep deformation and damage

  2. Critique of the Ford-Andresen film rupture model for aqueous stress corrosion cracking

    International Nuclear Information System (INIS)

    Hall, M.M.

    2009-01-01

    The Ford-Andresen film rupture model for aqueous stress corrosion cracking has obtained a prominent position in the nuclear reactor industry. The model is said to have superior predictive capabilities because it is derived from a fundamental understanding of the film rupture-repassivation mechanism of crack advance. However, a critical review shows that there are conceptual and mathematical problems with the Ford-Andresen model development; there are inconsistencies among the stated and implied assumptions, the crack tip current density expression lacks the necessary dependence on crack tip strain rate and the fundamental proportionality that exists between crack tip strain rate and crack growth rate is overlooked and omitted from the model development. Consequently, the Ford-Andresen model must be considered neither phenomenologically nor fundamentally supported.

  3. The creep of multi-layered moderately thick shells of revolution under asymmetrical loading

    International Nuclear Information System (INIS)

    Takezono, S.; Migita, K.

    1987-01-01

    In the present paper the authors study the creep deformation of the multi-layered thick shells of revolution under asymmetrical loads. The equations of equilibrium and the strain-displacement relations are derived from the Reissner-Naghdi theory (1941, 1957) for elastic shells where a consideration on the effect of shear deformation is given. In the theory of creep it is assumed that in a given increment of time the total strain increments are composed of an elastic part and a part due to creep. The elastic strains are proportional to the stresses by Hooke's law. For the constitutive equations in the creep range, McVetty's equation modified by Arrhenius' equation for thermal effect is employed. The basic differential equations on the creep problems derived for the incremental values with respect to time are numerically solved by a finite difference method and the solutions at any time are obtained by summation of the incremental values. Resultant forces and resultant moments are given from numerical integration of the stresses by Simpson's 1/3 rules. (orig./GL)

  4. Creep fracture mechanics analysis for through-wall cracked pipes under widespread creep condition

    International Nuclear Information System (INIS)

    Huh, Nam Su; Kim, Yun Jae; Kim, Young Jin

    2003-01-01

    This paper compares engineering estimation schemes of C * and creep COD for circumferential and axial through-wall cracked pipes at elevated temperatures with detailed 3-D elastic-creep finite element results. Engineering estimation schemes included the GE/EPRI method, the reference stress method where reference stress is defined based on the plastic limit load and the enhanced reference stress method where the reference stress is defined based on the optimized reference load. Systematic investigations are made not only on the effect of creep-deformation behaviour on C * and creep COD, but also on effects of the crack location, the pipe geometry, the crack length and the loading mode. Comparison of the FE results with engineering estimations provides that for idealized power law creep, estimated C * and COD rate results from the GE/EPRI method agree best with FE results. For general creep-deformation laws where either primary or tertiary creep is important and thus the GE/EPRI method is hard to apply, on the other hand, the enhanced reference stress method provides more accurate and robust estimations for C * and COD rate than the reference stress method

  5. Creep and creep fatigue crack behavior of 1Cr- and 9Cr-steels

    International Nuclear Information System (INIS)

    Maile, K.; Klenk, A.; Schellenberg, G.; Granacher, J.; Tramer, M.

    2000-01-01

    A large database for creep crack initiation and propagation under constant load conditions is available on conventional power plant steels of types 1%Cr and 12%Cr. Modern plants are often used in the medium and peak load regime, thus the dominant loading situation in high temperature components is creep fatigue. For life assessment data about crack initiation and growth under creep fatigue loading are required. These characteristics can not be substituted by pure fatigue or creep crack data. Therefore, a comprehensive test programme was started to investigate the creep fatigue crack behaviour of a 1%CrMoNiV turbine rotor steel (30CrMoNiV 4 11) at 550 C and a new 9%CrMoVNb pipe steel (type P 9 1) at 600 C. DENT-specimen with 15 and 60 mm thickness as well as side grooved CT-specimen with 25 and 50 mm thickness have been tested to determine possible influences of geometry and thus to check the transferability of the data to components. The creep fatigue crack growth results of tests with dwell times between t H = 0,32h and 10 h lie in the scatterbands given by creep crack growth results. Nevertheless a higher crack growth rate under creep fatigue conditions can be stated. An increase in crack growth rate due to creep fatigue is clearly visible. Loading situations with frequencies higher than 1.10 -4 Hz should be not assessed with pure creep crack results or sufficient safety margins have to be applied. (orig.)

  6. Optimum tungsten content in high strength 9 to 12% chromium containing creep resistant steels

    International Nuclear Information System (INIS)

    Hasegawa, Y.; Muraki, T.; Mimura, H.

    2000-01-01

    Tungsten containing ferritic creep resistant steels are the candidate materials for ultra-super-critical fossil power plant because of their high creep rupture strength. But the strengthening mechanisms by tungsten addition have not yet been completely studied. In this report, creep rupture time and creep strain rate measurement decided the optimum tungsten content in 9 to 12% chromium ferritic steels. The precipitation behavior of Laves phase and the precise discussion of creep strain rate analyses explain the contribution of Laves phase at the lath boundary and the contribution of tungsten in solid solution. P92 contains the optimum amount of tungsten and chromium, 1.8 mass% and 9 mass% respectively judging from the creep rupture strength point of view. (orig.)

  7. Development of Probability Evaluation Methodology for High Pressure/Temperature Gas Induced RCS Boundary Failure and SG Creep Rupture

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Chul; Hong, Soon Joon; Lee, Jin Yong; Lee, Kyung Jin; Lee, Kuh Hyung [FNC Tech. Co., Seoul (Korea, Republic of)

    2008-04-15

    Existing MELCOR 1.8.5 model was improved in view of severe accident natural circulation and MELCOR 1.8.6 input model was developed and calculation sheets for detailed MELCOR 1.8.6 model were produced. Effects of natural circulation modeling were found by simulating SBO accident by comparing existing model with detailed model. Major phenomenon and system operations which affect on natural circulation by high temperature and high pressure gas were investigated and representative accident sequences for creep rupture model of RCS pipeline and SG tube were selected.

  8. Composite Overwrap Pressure Vessels: Mechanics and Stress Rupture Lifting Philosophy

    Science.gov (United States)

    Thesken, John C.; Murthy, Pappu L. N.; Phoenix, S. L.

    2009-01-01

    The NASA Engineering and Safety Center (NESC) has been conducting an independent technical assessment to address safety concerns related to the known stress rupture failure mode of filament wound pressure vessels in use on Shuttle and the International Space Station. The Shuttle s Kevlar-49 (DuPont) fiber overwrapped tanks are of particular concern due to their long usage and the poorly understood stress rupture process in Kevlar-49 filaments. Existing long term data show that the rupture process is a function of stress, temperature and time. However due to the presence of load sharing liners and the complex manufacturing procedures, the state of actual fiber stress in flight hardware and test articles is not clearly known. Indeed nonconservative life predictions have been made where stress rupture data and lifing procedures have ignored the contribution of the liner in favor of applied pressure as the controlling load parameter. With the aid of analytical and finite element results, this paper examines the fundamental mechanical response of composite overwrapped pressure vessels including the influence of elastic plastic liners and degraded/creeping overwrap properties. Graphical methods are presented describing the non-linear relationship of applied pressure to Kevlar-49 fiber stress/strain during manufacturing, operations and burst loadings. These are applied to experimental measurements made on a variety of vessel systems to demonstrate the correct calibration of fiber stress as a function of pressure. Applying this analysis to the actual qualification burst data for Shuttle flight hardware revealed that the nominal fiber stress at burst was in some cases 23 percent lower than what had previously been used to predict stress rupture life. These results motivate a detailed discussion of the appropriate stress rupture lifing philosophy for COPVs including the correct transference of stress rupture life data between dissimilar vessels and test articles.

  9. Composite Overwrap Pressure Vessels: Mechanics and Stress Rupture Lifing Philosophy

    Science.gov (United States)

    Thesken, John C.; Murthy, Pappu L. N.; Phoenix, Leigh

    2007-01-01

    The NASA Engineering and Safety Center (NESC) has been conducting an independent technical assessment to address safety concerns related to the known stress rupture failure mode of filament wound pressure vessels in use on Shuttle and the International Space Station. The Shuttle's Kevlar-49 fiber overwrapped tanks are of particular concern due to their long usage and the poorly understood stress rupture process in Kevlar-49 filaments. Existing long term data show that the rupture process is a function of stress, temperature and time. However due to the presence of load sharing liners and the complex manufacturing procedures, the state of actual fiber stress in flight hardware and test articles is not clearly known. Indeed non-conservative life predictions have been made where stress rupture data and lifing procedures have ignored the contribution of the liner in favor of applied pressure as the controlling load parameter. With the aid of analytical and finite element results, this paper examines the fundamental mechanical response of composite overwrapped pressure vessels including the influence of elastic-plastic liners and degraded/creeping overwrap properties. Graphical methods are presented describing the non-linear relationship of applied pressure to Kevlar-49 fiber stress/strain during manufacturing, operations and burst loadings. These are applied to experimental measurements made on a variety of vessel systems to demonstrate the correct calibration of fiber stress as a function of pressure. Applying this analysis to the actual qualification burst data for Shuttle flight hardware revealed that the nominal fiber stress at burst was in some cases 23% lower than what had previously been used to predict stress rupture life. These results motivate a detailed discussion of the appropriate stress rupture lifing philosophy for COPVs including the correct transference of stress rupture life data between dissimilar vessels and test articles.

  10. Creep of concrete under various temperature, moisture, and loading conditions

    International Nuclear Information System (INIS)

    McDonald, J.E.

    1976-01-01

    An investigation was conducted to obtain information on the time-dependent deformation behavior of concrete in the presence of temperature, moisture, and loading conditions similar to those encountered in a prestressed concrete reactor vessel (PCRV). Variables included concrete strength, aggregate types, curing history, temperature, and types of loading (uniaxial, hydrostatic, biaxial, and triaxial). There were 66 test conditions for creep tests and 12 test conditions for unloaded or control specimens. Experimental results are presented and discussed. Comparisons are made concerning the effect of the various test conditions on the behavior of concrete, and general conclusions are formulated

  11. Creep/Stress Rupture Behavior and Failure Mechanisms of Full CVI and Full PIP SiC/SiC Composites at Elevated Temperatures in Air

    Science.gov (United States)

    Bhatt, R. T.; Kiser, J. D.

    2017-01-01

    SiC/SiC composites fabricated by melt infiltration are being considered as potential candidate materials for next generation turbine components. However these materials are limited to 2400 F application because of the presence of residual silicon in the SiC matrix. Currently there is an increasing interest in developing and using silicon free SiC/SiC composites for structural aerospace applications above 2400 F. Full PIP or full CVI or CVI + PIP hybrid SiC/SiC composites can be fabricated without excess silicon, but the upper temperature stress capabilities of these materials are not fully known. In this study, the on-axis creep and rupture properties of the state-of-the-art full CVI and full PIP SiC/SiC composites with Sylramic-iBN fibers were measured at temperatures to 2700 F in air and their failure modes examined. In this presentation creep rupture properties, failure mechanisms and upper temperature capabilities of these two systems will be discussed and compared with the literature data.

  12. Development of evaluation technique of high temperature creep characteristics by small punch-creep test method (I)

    International Nuclear Information System (INIS)

    Baek, Seung Se; Na, Sung Hun; Yu, Hyo Sun; Na, Eui Gyun

    2001-01-01

    In this study, a Small Punch Creep(SP-Creep) test using miniaturized specimen(10 x 10 x 0.5mm) is described to develop the new creep test method for high temperature structural materials. The SP-Creep test is applied to 2.25Cr-1Mo(STBA24) steel which is widely used as boiler tube material. The test temperatures applied for the creep deformation of miniaturized specimens are between 550∼600 .deg. C. The SP-Creep curves depend definitely on applied load and creep temperature, and show the three stages of creep behavior like in conventional uniaxial tensile creep curves. The load exponent of miniaturized specimen decrease with increasing test temperature, and its behavior is similar to stress exponent behavior of uniaxial creep test. The creep activation energy obtained from the relationship between SP-Creep rate and test temperature decreases as the applied load increases. A predicting equation of SP-Creep rate for 2.25Cr-1Mo steel is suggested, and a good agreement between experimental and calculated data has been found

  13. Achievments of corrosion science and corrosion protection technology

    International Nuclear Information System (INIS)

    Fontana, M.; Stehjl, R.

    1985-01-01

    Problems of corrosion-mechanical strength of metals, effect of corrosive media on creep characteristics are presented. New concepts of the mechanism of corrosion cracking and its relation to hydrogen embrittlement are described. Kinetics and mechanism of hydrogen embrittlement effect on the process of corrosion cracking of different steels and alloys are considered. The dependence of such types of failure on various structural factors is shown. Data on corrosion cracking of high-strength aluminium and titanium alloys, mechanism of the processes and protective methods are given

  14. Creep Tests and Modeling Based on Continuum Damage Mechanics for T91 and T92 Steels

    Science.gov (United States)

    Pan, J. P.; Tu, S. H.; Zhu, X. W.; Tan, L. J.; Hu, B.; Wang, Q.

    2017-12-01

    9-11%Cr ferritic steels play an important role in high-temperature and high-pressure boilers of advanced power plants. In this paper, a continuum damage mechanics (CDM)-based creep model was proposed to study the creep behavior of T91 and T92 steels at high temperatures. Long-time creep tests were performed for both steels under different conditions. The creep rupture data and creep curves obtained from creep tests were captured well by theoretical calculation based on the CDM model over a long creep time. It is shown that the developed model is able to predict creep data for the two ferritic steels accurately up to tens of thousands of hours.

  15. Creep and Environmental Durability of EBC/CMCs Under Imposed Thermal Gradient Conditions

    Science.gov (United States)

    Appleby, Matthew; Morscher, Gregory N.; Zhu, Dongming

    2013-01-01

    Interest in SiC fiber-reinforced SiC ceramic matrix composite (CMC) environmental barrier coating (EBC) systems for use in high temperature structural applications has prompted the need for characterization of material strength and creep performance under complex aerospace turbine engine environments. Stress-rupture tests have been performed on SiC/SiC composites systems, with varying fiber types and coating schemes to demonstrate material behavior under isothermal conditions. Further testing was conducted under exposure to thermal stress gradients to determine the effect on creep resistance and material durability. In order to understand the associated damage mechanisms, emphasis is placed on experimental techniques as well as implementation of non-destructive evaluation; including electrical resistivity monitoring. The influence of environmental and loading conditions on life-limiting material properties is shown.

  16. Nanoindentation creep versus bulk compressive creep of dental resin-composites.

    Science.gov (United States)

    El-Safty, S; Silikas, N; Akhtar, R; Watts, D C

    2012-11-01

    To evaluate nanoindentation as an experimental tool for characterizing the viscoelastic time-dependent creep of resin-composites and to compare the resulting parameters with those obtained by bulk compressive creep. Ten dental resin-composites: five conventional, three bulk-fill and two flowable were investigated using both nanoindentation creep and bulk compressive creep methods. For nano creep, disc specimens (15mm×2mm) were prepared from each material by first injecting the resin-composite paste into metallic molds. Specimens were irradiated from top and bottom surfaces in multiple overlapping points to ensure optimal polymerization using a visible light curing unit with output irradiance of 650mW/cm(2). Specimens then were mounted in 3cm diameter phenolic ring forms and embedded in a self-curing polystyrene resin. Following grinding and polishing, specimens were stored in distilled water at 37°C for 24h. Using an Agilent Technologies XP nanoindenter equipped with a Berkovich diamond tip (100nm radius), the nano creep was measured at a maximum load of 10mN and the creep recovery was determined when each specimen was unloaded to 1mN. For bulk compressive creep, stainless steel split molds (4mm×6mm) were used to prepare cylindrical specimens which were thoroughly irradiated at 650mW/cm(2) from multiple directions and stored in distilled water at 37°C for 24h. Specimens were loaded (20MPa) for 2h and unloaded for 2h. One-way ANOVA, Levene's test for homogeneity of variance and the Bonferroni post hoc test (all at p≤0.05), plus regression plots, were used for statistical analysis. Dependent on the type of resin-composite material and the loading/unloading parameters, nanoindentation creep ranged from 29.58nm to 90.99nm and permanent set ranged from 8.96nm to 30.65nm. Bulk compressive creep ranged from 0.47% to 1.24% and permanent set ranged from 0.09% to 0.38%. There was a significant (p=0.001) strong positive non-linear correlation (r(2)=0.97) between bulk

  17. Model-based Approach for Long-term Creep Curves of Alloy 617 for a High Temperature Gas-cooled Reactor

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Yin, Song Nan; Kim, Yong Wan

    2008-01-01

    Alloy 617 is a principal candidate alloy for the high temperature gas-cooled reactor (HTGR) components, because of its high creep rupture strength coupled with its good corrosion behavior in simulated HTGR-helium and its sufficient workability. To describe a creep strain-time curve well, various constitutive equations have been proposed by Kachanov-Rabotnov, Andrade, Garofalo, Evans and Maruyama, et al.. Among them, the K-R model has been used frequently, because a secondary creep resulting from a balance between a softening and a hardening of materials and a tertiary creep resulting from an appearance and acceleration of the internal or external damage processes are adequately considered. In the case of nickel-base alloys, it has been reported that a tertiary creep at a low strain range may be generated, and this tertiary stage may govern the total creep deformation. Therefore, a creep curve for nickel-based Alloy 617 will be predicted appropriately by using the K-R model that can reflect a tertiary creep. In this paper, the long-term creep curves for Alloy 617 were predicted by using the nonlinear least square fitting (NLSF) method in the K-R model. The modified K-R model was introduced to fit the full creep curves well. The values for the λ and K parameters in the modified K-R model were obtained with stresses

  18. Creep and low cycles fatigue behaviour of inconel 617 and alloy 800H in the temperature range 1073-1223

    International Nuclear Information System (INIS)

    Yun, H.M.

    1984-01-01

    The creep rupture properties of high temperature alloys are being determined as part of the materials programme for the development of the high temperature, gas-cooled reactor (HTGR) as a source of nuclear process heat, especially for the gasification of lignite and coal. INCOLOY 800H AND INCONEL 617 have been tested in the temperature range from 1073 K to 1223 K in air as well as in helium with HTGR specific impurities. The static and dynamic creep behaviour of INCONEL 617 have been determined in constant load creep tests, relaxation tests and stress reduction tests. The results have been interpreted using the internal stress on the applied stress and test temperature was determined. In a few experiments the influence of cold deformation prior to the creep test on the magnitude of the internal stress was also investigated. (Author)

  19. Acceleration of Fe2W precipitation and its effect on creep deformation behavior of 8.5Cr-2W-VNb steels with Si

    International Nuclear Information System (INIS)

    Fujitsuna, N.; Igarashi, M.; Abe, F.

    2000-01-01

    The effect of Si on the precipitation behavior of M 23 C 6 and Fe 2 W Laves phase during creep and on the creep deformation behavior was studied on 8.5Cr-2W-VNb steels at 650 C for up to 10000 h. During creep and aging, Fe 2 W Laves phase precipitated and then the amount and the mean particle size of Fe 2 W precipitates became larger with increasing Si concentration, while the amount and the mean size of M 23 C 6 was scarcely changed by the addition of Si. It was cleared that Si-addition influence more strongly on the precipitation of Fe 2 W than M 23 C 6 . The creep rupture strength of the steels increased with increasing Si concentration at high stresses and short rupture times less than 2000 h, while it had a maximum at 0.3% Si and then decreased with increasing Si concentration at low stresses and long rupture times longer than 2000 h. The decrease of creep rate in the acceleration creep region was more significant by Si-addition, and the minimum creep rate was decreased by Si-addition at all stress conditions. The change in creep deformation behavior by Si-addition resulted mainly from the change in precipitation behavior of Fe 2 W, such that the decrease of creep rate in transient creep region is more significant by acceleration of Fe 2 W precipitating on the lath boundary to suppress the recovery of the lath structure and that the extreme increase of creep rate after reaching a minimum creep rate and the decrease of duration of acceleration creep region occurred with coarsening of Fe 2 W. (orig.)

  20. influence of relative humidity on tensile and compressive creep

    African Journals Online (AJOL)

    HOD

    creep specimens were cured in a fog room at 99% RH and 20 oC until the beginning of the tests in the controlled environment creep rooms. To eliminate the influence of stress level and age of loading, a uniform stress of 12.26MPa was used for the three compressive creep tests and the specimens were all loaded at the.

  1. Low Temperature Creep of Hot-Extruded Near-Stoichiometric NiTi Shape Memory Alloy. Part I; Isothermal Creep

    Science.gov (United States)

    Raj, S. V.; Noebe, R. D.

    2013-01-01

    This two-part paper is the first published report on the long term, low temperature creep of hot-extruded near-stoichiometric NiTi. Constant load tensile creep tests were conducted on hot-extruded near-stoichiometric NiTi at 300, 373 and 473 K under initial applied stresses varying between 200 and 350 MPa as long as 15 months. These temperatures corresponded to the martensitic, two-phase and austenitic phase regions, respectively. Normal primary creep lasting several months was observed under all conditions indicating dislocation activity. Although steady-state creep was not observed under these conditions, the estimated creep rates varied between 10(exp -10) and 10(exp -9)/s. The creep behavior of the two phases showed significant differences. The martensitic phase exhibited a large strain on loading followed by a primary creep region accumulating a small amount of strain over a period of several months. The loading strain was attributed to the detwinning of the martensitic phase whereas the subsequent strain accumulation was attributed to dislocation glide-controlled creep. An "incubation period" was observed before the occurrence of detwinning. In contrast, the austenitic phase exhibited a relatively smaller loading strain followed by a primary creep region, where the creep strain continued to increase over several months. It is concluded that the creep of the austenitic phase occurs by a dislocation glide-controlled creep mechanism as well as by the nucleation and growth of deformation twins.

  2. Transformation-Induced Creep and Creep Recovery of Shape Memory Alloy.

    Science.gov (United States)

    Takeda, Kohei; Tobushi, Hisaaki; Pieczyska, Elzbieta A

    2012-05-22

    If the shape memory alloy is subjected to the subloop loading under the stress-controlled condition, creep and creep recovery can appear based on the martensitic transformation. In the design of shape memory alloy elements, these deformation properties are important since the deflection of shape memory alloy elements can change under constant stress. The conditions for the progress of the martensitic transformation are discussed based on the kinetics of the martensitic transformation for the shape memory alloy. During loading under constant stress rate, temperature increases due to the stress-induced martensitic transformation. If stress is held constant during the martensitic transformation stage in the loading process, temperature decreases and the condition for the progress of the martensitic transformation is satisfied, resulting in the transformation-induced creep deformation. If stress is held constant during the reverse transformation stage in the unloading process, creep recovery appears due to the reverse transformation. The details for these thermomechanical properties are investigated experimentally for TiNi shape memory alloy, which is most widely used in practical applications. The volume fraction of the martensitic phase increases in proportion to an increase in creep strain.

  3. A study on creep properties of laminated rubber bearings. Pt. 1. Creep properties and numerical simulations of thick rubber bearings

    International Nuclear Information System (INIS)

    Matsuda, Akihiro; Yabana, Shuichi

    2000-01-01

    In this report, to evaluate creep properties and effects of creep deformation on mechanical properties of thick rubber bearings for three-dimensional isolation system, we show results of compression creep test for rubber bearings of various rubber materials and shapes and development of numerical simulation method. Creep properties of thick rubber bearings were obtained from compression creep tests. The creep strain shows steady creep that have logarithmic relationships between strain and time and accelerated creep that have linear relationships. We make numerical model of a rubber material with nonlinear viscoelastic constitutional equations. Mechanical properties after creep loading test are simulated with enough accuracy. (author)

  4. The prediction of creep damage in Type 347 weld metal: part II creep fatigue tests

    International Nuclear Information System (INIS)

    Spindler, M.W.

    2005-01-01

    Calculations of creep damage under conditions of strain control are often carried out using either a time fraction approach or a ductility exhaustion approach. In part I of this paper the rupture strength and creep ductility data for a Type 347 weld metal were fitted to provide the material properties that are used to calculate creep damage. Part II of this paper examines whether the time fraction approach or the ductility exhaustion approach gives the better predictions of creep damage in creep-fatigue tests on the same Type 347 weld metal. In addition, a new creep damage model, which was developed by removing some of the simplifying assumptions that are made in the ductility exhaustion approach, was used. This new creep damage model is a function of the strain rate, stress and temperature and was derived from creep and constant strain rate test data using a reverse modelling technique (see part I of this paper). It is shown that the new creep damage model gives better predictions of creep damage in the creep-fatigue tests than the time fraction and the ductility exhaustion approaches

  5. Creep properties of Hastelloy X and their application to structural design

    International Nuclear Information System (INIS)

    Kiyoshige, Masanori; Murase, Koichi; Fujioka, Junzo; Shimizu, Shigeki; Satoh, Keisuke

    1977-01-01

    Creep and stress rupture tests on three heats of Hastelloy X differing in the manufacturing process were carried out at 800 0 C, 900 0 C and 1000 0 C. Interpretation of the observed creep properties was made, and a method for predicting necessary design data from the experimentally obtained results was discussed. The results are as follows. (1) It was difficult to separate the primary, secondary and tertiary creep stages in the creep curve of Hastelloy X of the present tests. However, those were made distinguishable by plotting the results in a double-logarithmic coordinates. From these creep rate curves, the primary and secondary creep rates and the times to the initiation of secondary and tertiary creeps were derived. (2) It is considered that the same stress and temperature dependences between the primary and secondary creep rates exist in the creep behaviour of Hastelloy X of the present tests. (3) All the creep data, except the isochronous stress-strain curve, required for the design such as stress vs. rupture time, stress vs. secondary creep rate and stress vs. time to initiation of tertiary creep could be arranged through the Larson-Miller parameter. On the other hand, the isochronous stress-strain curve was figured out by estimating creep curves. The constitutive equations of creep for a heat of Hastelloy X proposed in this paper and the isochronous stress-strain curves derived from these constitutive equations were consistent with the experimental data obtained for the corresponding material. (auth.)

  6. Influence of multi-step heat treatments in creep age forming of 7075 aluminum alloy: Optimization for springback, strength and exfoliation corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Arabi Jeshvaghani, R.; Zohdi, H. [Department of Materials Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Shahverdi, H.R., E-mail: shahverdi@modares.ac.ir [Department of Materials Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Bozorg, M. [Department of Materials Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Hadavi, S.M.M. [School of Materials Science and Engineering, MA University of Technology, P.O. Box 16765-3197, Tehran (Iran, Islamic Republic of)

    2012-11-15

    Multi-step heat treatments comprise of high temperature forming (150 Degree-Sign C/24 h plus 190 Degree-Sign C for several minutes) and subsequent low temperature forming (120 Degree-Sign C for 24 h) is developed in creep age forming of 7075 aluminum alloy to decrease springback and exfoliation corrosion susceptibility without reduction in tensile properties. The results show that the multi-step heat treatment gives the low springback and the best combination of exfoliation corrosion resistance and tensile strength. The lower springback is attributed to the dislocation recovery and more stress relaxation at higher temperature. Transmission electron microscopy observations show that corrosion resistance is improved due to the enlargement in the size and the inter-particle distance of the grain boundaries precipitates. Furthermore, the achievement of the high strength is related to the uniform distribution of ultrafine {eta} Prime precipitates within grains. - Highlights: Black-Right-Pointing-Pointer Creep age forming developed for manufacturing of aircraft wing panels by aluminum alloy. Black-Right-Pointing-Pointer A good combination of properties with minimal springback is required in this component. Black-Right-Pointing-Pointer This requirement can be improved through the appropriate heat treatments. Black-Right-Pointing-Pointer Multi-step cycles developed in creep age forming of AA7075 for improving of springback and properties. Black-Right-Pointing-Pointer Results indicate simultaneous enhancing the properties and shape accuracy (lower springback).

  7. Thermal creep properties of alloy D9 stainless steel and 316 stainless steel fuel clad tubes

    International Nuclear Information System (INIS)

    Latha, S.; Mathew, M.D.; Parameswaran, P.; Bhanu Sankara Rao, K.; Mannan, S.L.

    2008-01-01

    Uniaxial thermal creep rupture properties of 20% cold worked alloy D9 stainless steel (alloy D9 SS) fuel clad tubes for fast breeder reactors have been evaluated at 973 K in the stress range 125-250 MPa. The rupture lives were in the range 90-8100 h. The results are compared with the properties of 20% cold worked type 316 stainless steel (316 SS) clad tubes. Alloy D9 SS were found to have higher creep rupture strengths, lower creep rates and lower rupture ductility than 316 SS. The deformation and damage processes were related through Monkman Grant relationship and modified Monkman Grant relationship. The creep damage tolerance parameter indicates that creep fracture takes place by intergranular cavitation. Precipitation of titanium carbides in the matrix and chromium carbides on the grain boundaries, dislocation substructure and twins were observed in transmission electron microscopic investigations of alloy D9 SS. The improvement in strength is attributed to the precipitation of fine titanium carbides in the matrix which prevents the recovery and recrystallisation of the cold worked microstructure

  8. Creep of Posidonia Shale at Elevated Pressure and Temperature

    Science.gov (United States)

    Rybacki, E.; Herrmann, J.; Wirth, R.; Dresen, G.

    2017-12-01

    The economic production of gas and oil from shales requires repeated hydraulic fracturing operations to stimulate these tight reservoir rocks. Besides simple depletion, the often observed decay of production rate with time may arise from creep-induced fracture closure. We examined experimentally the creep behavior of an immature carbonate-rich Posidonia shale, subjected to constant stress conditions at temperatures between 50 and 200 °C and confining pressures of 50-200 MPa, simulating elevated in situ depth conditions. Samples showed transient creep in the semibrittle regime with high deformation rates at high differential stress, high temperature and low confinement. Strain was mainly accommodated by deformation of the weak organic matter and phyllosilicates and by pore space reduction. The primary decelerating creep phase observed at relatively low stress can be described by an empirical power law relation between strain and time, where the fitted parameters vary with temperature, pressure and stress. Our results suggest that healing of hydraulic fractures at low stresses by creep-induced proppant embedment is unlikely within a creep period of several years. At higher differential stress, as may be expected in situ at contact areas due to stress concentrations, the shale showed secondary creep, followed by tertiary creep until failure. In this regime, microcrack propagation and coalescence may be assisted by stress corrosion. Secondary creep rates were also described by a power law, predicting faster fracture closure rates than for primary creep, likely contributing to production rate decline. Comparison of our data with published primary creep data on other shales suggests that the long-term creep behavior of shales can be correlated with their brittleness estimated from composition. Low creep strain is supported by a high fraction of strong minerals that can build up a load-bearing framework.

  9. Applicability of the θ projection method to creep curves of Ni-22Cr-18Fe-9Mo alloy

    International Nuclear Information System (INIS)

    Kurata, Yuji; Utsumi, Hirokazu

    1998-01-01

    Applicability of the θ projection method has been examined for constant-load creep test results at 800 and 1000degC on Ni-22Cr-18Fe-9Mo alloy in the solution-treated and aged conditions. The results obtained are as follows: (1) Normal type creep curves obtained at 1000degC for aged Ni-22Cr-18Fe-9Mo alloy are fitted using the θ projection method with four θ parameters. Stress dependence of θ parameters can be expressed in terms of simple equations. (2) The θ projection method with four θ parameters cannot be applied to the remaining creep curves where most of the life is occupied by a tertiary creep stage. Therefore, the θ projection method consisting of only the tertiary creep component with two θ parameters was applied. The creep curves can be fitted using this method. (3) If the θ projection method with four θ or two θ parameters is applied to creep curves in accordance with creep curve shapes, creep rupture time can be predicted in terms of formulation of stress and/or temperature dependence of θ parameters. (author)

  10. Estimations of creep behavior and failure life for a circumferentially notched specimen

    International Nuclear Information System (INIS)

    Kobayashi, Ken-ichi; Yokobori, Toshimitsu; Kikuchi, Kenji.

    1997-01-01

    No method with which to characterize and/or illustrate total creep behavior for specimens with notches, holes or cracks has been proposed. In this paper it is proposed that most creep curves can be drawn with a master curve for each creep test whenever test conditions and failure modes are similar to each other, and the lifetime ratio normalized by the rupture time is introduced. Using smooth and circumferentially notched specimens of 2.25 Cr-1 Mo steel, creep tests were performed at 600degC for examination of this concept. Furthermore, a θ projection method was used to describe creep curves for notched specimens and to extrapolate longer creep lives. Then, the whole creep curve shape for notched specimens could be easily drawn, except for that in the vicinity of the rupture point. However, longer creep lives of notched specimens were underestimated in comparison with a simple extrapolation of the experimental data. This resulted from the negative dependence of the parameter of θ 3 on the applied stress. (author)

  11. Spherical Indentation Techniques for Creep Property Evaluation Considering Transient Creep

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Dongkyu; Kim, Minsoo; Lee, Hyungyil [Sogang Univ., Seoul, (Korea, Republic of); Lee, Jin Haeng [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-11-15

    Creep through nanoindentations has attracted increasing research attention in recent years. Many studies related to indentation creep tests, however, have simply focused on the characteristics of steady-state creep, and there exist wide discrepancies between the uniaxial test and the indentation test. In this study, we performed a computational simulation of spherical indentations, and we proposed a method for evaluating the creep properties onsidering transient creep. We investigated the material behavior with variation of creep properties and expressed it using regression equations for normalized variables. We finally developed a program to evaluate the creep properties considering transient creep. By using the proposed method, we successfully obtained creep exponents with an average error less than 1.1 and creep coefficients with an average error less than 2.3 from the load-depth curve.

  12. Spherical Indentation Techniques for Creep Property Evaluation Considering Transient Creep

    International Nuclear Information System (INIS)

    Lim, Dongkyu; Kim, Minsoo; Lee, Hyungyil; Lee, Jin Haeng

    2013-01-01

    Creep through nanoindentations has attracted increasing research attention in recent years. Many studies related to indentation creep tests, however, have simply focused on the characteristics of steady-state creep, and there exist wide discrepancies between the uniaxial test and the indentation test. In this study, we performed a computational simulation of spherical indentations, and we proposed a method for evaluating the creep properties onsidering transient creep. We investigated the material behavior with variation of creep properties and expressed it using regression equations for normalized variables. We finally developed a program to evaluate the creep properties considering transient creep. By using the proposed method, we successfully obtained creep exponents with an average error less than 1.1 and creep coefficients with an average error less than 2.3 from the load-depth curve

  13. Creep cavity and carbide studies during creep of a 12%CrMoV-steel

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Henrik; Storesund, J.; Seitisleam, F.

    1997-03-01

    Uniaxial creep tests of a X20CrMoV 12 1 steel has been carried out. The work was performed as a follow-up on earlier investigations on a similar steel with lower creep ductility. A comparison with this previous work is included. Both interrupted and rupture tests were performed and studies were made of cavity formation processes and carbide transformations. The creep curves could be reproduced using an analytical model. No secondary creep was observed. Cavities were found to form already at a strain of 1%. The cavity density, mean diameter and cavitated area fraction were found to have a linear relationship with the strain for strains up to about 10%. The mean carbide diameter was observed to be a function of time at temperature. A small decrease in carbide density with strain was detected 12 refs, 28 figs, 6 tabs

  14. Recent Methodologies for Creep Deformation Analysis and Its Life Prediction

    International Nuclear Information System (INIS)

    Kim, Woo-Gon; Park, Jae-Young; Iung

    2016-01-01

    To design the high-temperature creeping materials, various creep data are needed for codification, as follows: i) stress vs. creep rupture time for base metals and weldments (average and minimum), ii) stress vs. time to 1% total strain (average), iii) stress vs. time to onset of tertiary creep (minimum), and iv) constitutive eqns. for conducting time- and temperature- dependent stress-strain (average), and v) isochronous stress-strain curves (average). Also, elevated temperature components such as those used in modern power generation plant are designed using allowable stress under creep conditions. The allowable stress is usually estimated on the basis of up to 10"5 h creep rupture strength at the operating temperature. The master curve of the “sinh” function was found to have a wider acceptance with good flexibility in the low stress ranges beyond the experimental data. The proposed multi-C method in the LM parameter revealed better life prediction than a single-C method. These improved methodologies can be utilized to accurately predict the long-term creep life or strength of Gen-IV nuclear materials which are designed for life span of 60 years

  15. Creep and time to rupture of a 16/16 Cr Ni Steel; Comportamiento a la fluencia lenta de la aleacion X 8 Cr Ni Mo Nb 1616 con distintos tratamientos termicos

    Energy Technology Data Exchange (ETDEWEB)

    Solano, R; Garcia, R; Bohm, H; Schirra, M

    1972-07-01

    The influence of different thermal-mechanical treatments on the creep and time to rupture of a 16/16 Cr.Ni steel is studied. The solution treated material after annealing at 700-800 degree centigree did not affect time to rupture. At the contrary a 12% cold-working and annealing at 800 degree centigree improve the time to rupture. This treatment is preserved up to 700 degree centigree 10{sup 4} hours. The ductility is not strongly affected. A metallographic study of the fracture was carried out. (Author) 23 refs.

  16. Skinfold creep under load of caliper. Linear visco- and poroelastic model simulations.

    Science.gov (United States)

    Nowak, Joanna; Nowak, Bartosz; Kaczmarek, Mariusz

    2015-01-01

    This paper addresses the diagnostic idea proposed in [11] to measure the parameter called rate of creep of axillary fold of tissue using modified Harpenden skinfold caliper in order to distinguish normal and edematous tissue. Our simulations are intended to help understanding the creep phenomenon and creep rate parameter as a sensitive indicator of edema existence. The parametric analysis shows the tissue behavior under the external load as well as its sensitivity to changes of crucial hydro-mechanical tissue parameters, e.g., permeability or stiffness. The linear viscoelastic and poroelastic models of normal (single phase) and oedematous tissue (twophase: swelled tissue with excess of interstitial fluid) implemented in COMSOL Multiphysics environment are used. Simulations are performed within the range of small strains for a simplified fold geometry, material characterization and boundary conditions. The predicted creep is the result of viscosity (viscoelastic model) or pore fluid displacement (poroelastic model) in tissue. The tissue deformations, interstitial fluid pressure as well as interstitial fluid velocity are discussed in parametric analysis with respect to elasticity modulus, relaxation time or permeability of tissue. The creep rate determined within the models of tissue is compared and referred to the diagnostic idea in [11]. The results obtained from the two linear models of subcutaneous tissue indicate that the form of creep curve and the creep rate are sensitive to material parameters which characterize the tissue. However, the adopted modelling assumptions point to a limited applicability of the creep rate as the discriminant of oedema.

  17. Study on Corrosion-induced Crack Initiation and Propagation of Sustaining Loaded RCbeams

    Science.gov (United States)

    Zhong, X. P.; Li, Y.; Yuan, C. B.; Yang, Z.; Chen, Y.

    2018-05-01

    For 13 pieces of reinforced concrete beams with HRB500 steel bars under long-term sustained loads, at time of corrosion-induced initial crack of concrete, and corrosion-induced crack widths of 0.3mm and 1mm, corrosion of steel bars and time-varying behavior of corrosion-induced crack width were studied by the ECWD (Electro-osmosis - constant Current – Wet and Dry cycles) accelerated corrosion method. The results show that when cover thickness was between 30 and 50mm,corrosion rates of steel bars were between 0.8% and 1.7% at time of corrosion-induced crack, and decreased with increasing concrete cover thickness; when corrosion-induced crack width was 0.3mm, the corrosion rate decreased with increasing steel bar diameter, and increased with increasing cover thickness; its corrosion rate varied between 0.98% and 4.54%; when corrosion-induced crack width reached 1mm, corrosion rate of steel bars was between 4% and 4.5%; when corrosion rate of steel bars was within 5%, the maximum and average corrosion-induced crack and corrosion rate of steel bars had a good linear relationship. The calculation model predicting the maximum and average width of corrosion-induced crack is given in this paper.

  18. Effect of prior cold work on creep properties of a titanium modified austenitic stainless steel

    International Nuclear Information System (INIS)

    Vijayanand, V.D.; Parameswaran, P.; Nandagopal, M.; Panneer Selvi, S.; Laha, K.; Mathew, M.D.

    2013-01-01

    Prior cold worked (PCW) titanium-modified 14Cr–15Ni austenitic stainless steel (SS) is used as a core-structural material in fast breeder reactor because of its superior creep strength and resistance to void swelling. In this study, the influence of PCW in the range of 16–24% on creep properties of IFAC-1 SS, a titanium modified 14Cr–15Ni austenitic SS, at 923 K and 973 K has been investigated. It was found that PCW has no appreciable effect on the creep deformation rate of the steel at both the test temperatures; creep rupture life increased with PCW at 923 K and remained rather unaffected at 973 K. The dislocation structure along with precipitation in the PCW steel was found to change appreciably depending on creep testing conditions. A well-defined dislocation substructure was observed on creep testing at 923 K; a well-annealed microstructure with evidences of recrystallization was observed on creep testing at 973 K

  19. Tensile creep of beta phase zircaloy-2

    International Nuclear Information System (INIS)

    Burton, B.; Reynolds, G.L.; Barnes, J.P.

    1977-08-01

    The tensile creep and creep rupture properties of beta-phase zircaloy-2 are studied under vacuum in the temperature and stress range 1300-1550 K and 0.5-2 MN/m 2 . The new results are compared with previously reported uniaxial and biaxial data. A small but systematic difference is noted between the uniaxial and biaxial creep data and reasons for this discrepancy are discussed. (author)

  20. Creep properties of welded joints in OFHC copper for nuclear waste containment

    International Nuclear Information System (INIS)

    Ivarsson, B.; Oesterberg, J.O.

    1988-08-01

    In Sweden it has been suggested that copper canisters are used for containment of spent nuclear fuel. These canisters will be subjected to temperatures up to 100 degrees C and external pressures up to 15 MPa. Since the material is pure (OFHC) copper, creep properties must be considered when the canisters are dimensioned. The canisters are sealed by electron beam welding which will affect the creep properties. Literature data for copper - especially welded joints - at the temperatures of interest is very scare. Therefore uniaxial creep tests of parent metal, weld metal, and simulated HAZ structures have been performed at 110 degrees C. These tests revealed considerable differences in creep deformation and rupture strength. The weld metal showed creep rates and rupture times ten times higher and ten times shorter, respectively, than those of the parent metal. The simulated HAZ was equally strongen than the parent metal. These differences were to some extent verified by results from creep tests of cross-welded specimens which, however, showed even shorter rupture times. Constitutive equations were derived from the uniaxial test results. To check the applicability of these equations to multiaxial conditions, a few internal pressure creep tests of butt-welded tubes were performed. Attemps were made to simulate their creep behaviour by constitutive equations were used. These calculations failed due to too great differences in creep deformation behaviour across the welded joint. (authors)

  1. Stress Corrosion Cracking of Basalt/Epoxy Composites under Bending Loading

    Science.gov (United States)

    Shokrieh, Mahmood M.; Memar, Mahdi

    2010-04-01

    The purpose of this research is to study the stress corrosion behavior of basalt/epoxy composites under bending loading and submerged in 5% sulfuric acid corrosive medium. There are limited numbers of research in durability of fiber reinforced polymer composites. Moreover, studies on basalt fibers and its composites are very limited. In this research, mechanical property degradation of basalt/epoxy composites under bending loading and submerged in acidic corrosive medium is investigated. Three states of stress, equal to 30%, 50% and 70% of the ultimate strength of composites, are applied on samples. High stress states are applied to the samples to accelerate the testing procedure. Mechanical properties degradation consists of bending strength, bending modulus of elasticity and fracture energy of samples are examined. Also, a normalized strength degradation model for stress corrosion condition is presented. Finally, microscopic images of broken cross sections of samples are examined.

  2. FY17 Status Report on the Micromechanical Finite Element Modeling of Creep Fracture of Grade 91 Steel

    Energy Technology Data Exchange (ETDEWEB)

    Messner, M. C. [Argonne National Lab. (ANL), Argonne, IL (United States); Truster, T. J. [Univ. of Tennessee, Knoxville, TN (United States); Cochran, K. B. [DR& C Inc.; Parks, D. M. [DR& C Inc.; Sham, T. -L. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-09-01

    Advanced reactors designed to operate at higher temperatures than current light water reactors require structural materials with high creep strength and creep-fatigue resistance to achieve long design lives. Grade 91 is a ferritic/martensitic steel designed for long creep life at elevated temperatures. It has been selected as a candidate material for sodium fast reactor intermediate heat exchangers and other advanced reactor structural components. This report focuses on the creep deformation and rupture life of Grade 91 steel. The time required to complete an experiment limits the availability of long-life creep data for Grade 91 and other structural materials. Design methods often extrapolate the available shorter-term experimental data to longer design lives. However, extrapolation methods tacitly assume the underlying material mechanisms causing creep for long-life/low-stress conditions are the same as the mechanisms controlling creep in the short-life/high-stress experiments. A change in mechanism for long-term creep could cause design methods based on extrapolation to be non-conservative. The goal for physically-based microstructural models is to accurately predict material response in experimentally-inaccessible regions of design space. An accurate physically-based model for creep represents all the material mechanisms that contribute to creep deformation and damage and predicts the relative influence of each mechanism, which changes with loading conditions. Ideally, the individual mechanism models adhere to the material physics and not an empirical calibration to experimental data and so the model remains predictive for a wider range of loading conditions. This report describes such a physically-based microstructural model for Grade 91 at 600° C. The model explicitly represents competing dislocation and diffusional mechanisms in both the grain bulk and grain boundaries. The model accurately recovers the available experimental creep curves at higher stresses

  3. Axial Creep Loading and Unloaded Recovery of the Human Intervertebral Disc and the Effect of Degeneration

    Science.gov (United States)

    O'Connell, Grace D.; Jacobs, Nathan T.; Sen, Sounok; Vresilovic, Edward J.; Elliott, Dawn M.

    2011-01-01

    The intervertebral disc maintains a balance between externally applied loads and internal osmotic pressure. Fluid flow plays a key role in this process, causing fluctuations in disc hydration and height. The objectives of this study were to quantify and model the axial creep and recovery responses of nondegenerate and degenerate human lumbar discs. Two experiments were performed. First, a slow compressive ramp was applied to 2000 N, unloaded to allow recovery for up to 24 hours, and re-applied. The linear-region stiffness and disc height were within 5% of the initial condition for recovery times greater than 8 hours. In the second experiment, a 1000 N creep load was applied for four hours, unloaded recovery monitored for 24 hours, and the creep load repeated. A viscoelastic model comprised of a “fast” and “slow” exponential response was used to describe the creep and recovery, where the fast response is associated with flow in the nucleus pulposus (NP) and endplate, while the slow response is associated with the annulus fibrosus (AF). The study demonstrated that recovery is 3-4X slower than loading. The fast response was correlated with degeneration, suggesting larger changes in the NP with degeneration compared to the AF. However, the fast response comprised only 10-15% of the total equilibrium displacement, with the AF-dominated slow response comprising 40-70%. Finally, the physiological loads and deformations and their associated long equilibrium times confirm that diurnal loading does not represent “equilibrium” in the disc, but that over time the disc is in steady-state. PMID:21783103

  4. timber joists subjected to creep-rupture

    African Journals Online (AJOL)

    user

    Developed non-linear regression models for prediction of safety ... In (3), A, B, C and D are model parameters. ... material parameters. q is given as a function of creep exponent ... Table 1: Stochastic models of the basic design variables. S/No.

  5. Shear strength of the ASDEX upgrade TF coil insulation: Rupture, fatigue and creep behaviour

    International Nuclear Information System (INIS)

    Streibl, B.; Maier, E.A.; Perchermeier, J.; Cimbrico, P.L.; Varni, G.; Pisani, D.; Deska, R.; Endreat, J.

    1987-03-01

    This report is concerned with the interlaminar shear strength of the insulation system for the 16 toroidal field (TF) coils of ASDEX upgrade. The interlaminar shear properties of the glass-epoxy insulation are primarily determined by the resin system (ARALDIT-F, HT 907, DZ 40) and its curing procedure. The pure resin was therefore tested first in tension. The results were taken into account for setting up the method of curing the TF coils. Shear tests of the complete glass-epopxy system were then conducted with tubular torque specimens providing a nearly homogeneous stress distribution. In particular, the influence of the amount of flexibilizer (5, 10, 15 parts of resin weight = PoW) on the rupture and fatigue strengths was assessed at a temperature T=60 C, as also was the temperature dependence of the creep rate (40 C, 60 C, 80 C). The results obtained are not based on safe statistics. Nevertheless, they show clear trends. (orig.)

  6. Nonlinear response of vessel walls due to short-time thermomechanical loading

    International Nuclear Information System (INIS)

    Pfeiffer, P.A.; Kulak, R.F.

    1994-01-01

    Maintaining structural integrity of the reactor pressure vessel (RPV) during a postulated core melt accident is an important safety consideration in the design of the vessel. This study addresses the failure predictions of the vessel due to thermal and pressure loadings fro the molten core debris depositing on the lower head of the vessel. Different loading combinations were considered based on the dead load, yield stress assumptions, material response and internal pressurization. The analyses considered only short term failure (quasi static) modes, long term failure modes were not considered. Short term failure modes include plastic instabilities of the structure and failure due to exceeding the failure strain. Long term failure odes would be caused by creep rupture that leads to plastic instability of the structure. Due to the sort time durations analyzed, creep was not considered in the analyses presented

  7. A Model for Creep and Creep Damage in the γ-Titanium Aluminide Ti-45Al-2Mn-2Nb.

    Science.gov (United States)

    Harrison, William; Abdallah, Zakaria; Whittaker, Mark

    2014-03-14

    Gamma titanium aluminides (γ-TiAl) display significantly improved high temperature mechanical properties over conventional titanium alloys. Due to their low densities, these alloys are increasingly becoming strong candidates to replace nickel-base superalloys in future gas turbine aeroengine components. To determine the safe operating life of such components, a good understanding of their creep properties is essential. Of particular importance to gas turbine component design is the ability to accurately predict the rate of accumulation of creep strain to ensure that excessive deformation does not occur during the component's service life and to quantify the effects of creep on fatigue life. The theta (θ) projection technique is an illustrative example of a creep curve method which has, in this paper, been utilised to accurately represent the creep behaviour of the γ-TiAl alloy Ti -45Al-2Mn-2Nb. Furthermore, a continuum damage approach based on the θ-projection method has also been used to represent tertiary creep damage and accurately predict creep rupture.

  8. Evaluation of the onset of tertiary creep for types 304 and 316 stainless steels

    International Nuclear Information System (INIS)

    Staerk, E.; Picker, C.; Felsen, M.F.

    1989-01-01

    Austenitic stainless steels Types 304 and 316 are used for LMFBR components. Although at high temperature many codes base the allowable stress on the stress rupture strength, some recent codes eg ASME Code Case N47 and RCC-MR also take account of the onset of tertiary creep. In order to examine this latter aspect creep deformation data on Type 304 and Type 316 steel have been collected and analysed. The ratio time to onset of tertiary creep against the time to rupture has been analysed as a function of temperature. At temperatures below 750 0 C the ratio is found to decrease slightly with increasing temperature. Monkman Grant and Lambda relationships have also been investigated. In relation to the ASME S t allowable stress criteria it is shown that below 600 0 C the allowable stress is likely to be governed by the stress rupture strength rather than the onset of tertiary creep criterion. Recommendations are given concerning the determination of the onset of tertiary creep, the fitting of the Leyda/Rowe relationship and a method to compute the maximum allowable stress S t from equation describing the time-temperature dependency of the three constituents of S t

  9. Study on Flexural Creep Parameters of Overlayed Particleboard by Natural and Melaminated Veneers

    Directory of Open Access Journals (Sweden)

    Abdollah Najafi

    2012-06-01

    Full Text Available In this study, effects of natural and artificial veneer on flexural creep behavior of particleboard was investigated. Particleboard panels were prepared from Pars Neopan industries with 660 kg/m3 density and then overlaid by natural and melamine veneers. Their creep behavior was compared to control particleboard. For evaluating maximum bending load in static flexural test, specimens were cut from panels according to ASTM D 1037 with dimensions of 370×50×16 mm. Then, The flexural creep tests at 20% and 40% of failure bending load was applied to test specimens. Results of flexural tests indicated that the MOR and MOE values of veneered particleboard were highest. Results of creep showed that levels of stresses are effective on all creep parameters, but showed less effect on relative creep. Also, creep parameters less effective on specimens overlaid by natural veneer.

  10. Effects of bone damage on creep behaviours of human vertebral trabeculae.

    Science.gov (United States)

    O'Callaghan, Paul; Szarko, Matthew; Wang, Yue; Luo, Jin

    2018-01-01

    A subgroup of patients suffering with vertebral fractures can develop progressive spinal deformities over time. The mechanism underlying such clinical observation, however, remains unknown. Previous studies suggested that creep deformation of the vertebral trabeculae may play a role. Using the acoustic emission (AE) technique, this study investigated effects of bone damage (modulus reduction) on creep behaviours of vertebral trabecular bone. Thirty-seven human vertebral trabeculae samples were randomly assigned into five groups (A to E). Bones underwent mechanical tests using similar experimental protocols but varied degree of bone damage was induced. Samples first underwent creep test (static compressive stress of 0.4MPa) for 30min, and then were loaded in compression to a specified strain level (0.4%, 1.0%, 1.5%, 2.5%, and 4% for group A to E, respectively) to induce different degrees of bone damage (0.4%, no damage control; 1.0%, yield strain; 1.5%, beyond yield strain, 2.5% and 4%, post-ultimate strains). Samples were creep loaded (0.4MPa) again for 30min. AE techniques were used to monitor bone damage. Bone damage increased significantly from group A to E (P30% of modulus reduction in group D and E. Before compressive loading, creep deformation was not different among the five groups and AE hits in creep test were rare. After compressive loading, creep deformation was significantly greater in group D and E than those in other groups (Pcreep test were significantly greater in group D and E than in group A, B, and C (Pcreep deformation may occur even when the vertebra was under physiological loads. The boosted creep deformation observed may be attributed to newly created trabecular microfractures. Findings provide a possible explanation as to why some vertebral fracture patients develop progressive spinal deformity over time. Copyright © 2017. Published by Elsevier Inc.

  11. Dynamics of the rupture precursors for heterogeneous materials: application to vitreous polymers foams

    International Nuclear Information System (INIS)

    Deschanel, St.

    2005-12-01

    New physical approaches concerning the damage mechanisms consist to consider the rupture phenomenon as the critical point of a phase transition. Rupture can then result for some materials by a percolation of microcracks. This multi-crack implies the choice of heterogeneous materials. Mechanical tests on solid polymer foams have been carried out until rupture and have been coupled to the follow-up of the acoustic activity. The energies distributions reveal power laws independently of the material density, of the load mode or of the behaviour laws. On the other hand, the agreement with a power law of time periods seems to require a quasi constant stress on the most part of the test. The trend of the cumulated energy in the case of creep experiments seems to present a power law on a narrow period of time. On the other hand, for tensile tests, no power law has been observed. (O.M.)

  12. Creep-fatigue evaluation method for type 304 and 316FR SS

    International Nuclear Information System (INIS)

    Wada, Y.; Aoto, K.; Ueno, F.

    1997-01-01

    For long-term creep-fatigue of Type 304SS, intergranular failure is dominant in the case of significant life reduction. It is considered that this phenomenon has its origin in the grain boundary sliding as observed in cavity-type creep-rupture. Accordingly a simplified procedure to estimate intergranular damages caused by the grain boundary sliding is presented in connection with the secondary creep. In the conventional ductility exhaustion method, failure ductility includes plastic strain, and damage estimation is based on the primary creep strain, which is recoverable during strain cycling. Therefore the accumulated creep strain becomes a very large value, and quite different from grain boundary sliding strain. As a new concept on ductility exhaustion, the product of secondary creep rate and time to rupture (Monkman-Grant product) is applied to fracture ductility, and grain boundary sliding strain is approximately estimated using the accumulated secondary creep strain. From the new concept it was shown that the time fraction rule and the conventional ductility exhaustion method can be derived analytically. Furthermore an advanced method on cyclic stress relaxation was examined. If cyclic plastic strain hardening is softened thermally during strain hold, cyclic creep strain behaviour is also softened. An unrecoverable accumulated primary creep strain causes hardening of the primary creep, and the reduction of deformation resistance to the secondary creep caused by thermal softening accelerates grain boundary sliding rate. As the results creep damages depend not on applied stress but on effective stress. The new concept ductility exhaustion method based on the above consideration leads up to simplified time fraction estimation method only by continuous cycling fatigue and monotonic creep which was already developed in PNC for Monju design guide. This method gave good life prediction for the intergranular failure mode and is convenient for design use on the elastic

  13. Effect of HTGR helium on fatigue and creep properties of 2 1/4Cr-1Mo steel

    International Nuclear Information System (INIS)

    Kurumaji, T.; Yamazaki, H.; Kudo, A.

    1982-01-01

    Low cycle fatigue and creep tests have been carried out on 2 1/4Cr-1Mo steel (candidate steel for VHTR reactor pressure vessel) in helium environment containing 200 approx. 300 μatm of H 2 , 100 approx. 150 μatm CO, 7 approx. 10 μatm CH 4 , 7 approx. 10 μatm CO 2 and 1 μatm H 2 O (JAERI B Helium). Fatigue life in helium environment was longer than that in air at 450 0 C. This results can be explained by supposing that oxidation at the crack tip causes the wedge effect to promote crack propagation in air. On the otherhand, creep rupture strength showed no significant difference in both helium and air. Equivalent creep rupture strength in both helium and air may be due to the fact that detrimental internal oxidation and carburization or decarburization hardly occur at 400 approx. 450 0 C

  14. Evaluation of long-term creep behaviour on K-cladding tubes

    International Nuclear Information System (INIS)

    Bang, J. G.; Jeong, Y. H.; Jeong, Y. H.

    2003-01-01

    KAERI has developed new zirconium alloys for high burnup fuel cladding. To evaluate the performance of these alloys, various out-pile tests are conducting. At high burnup, the creep resistance as well as corrosion resistance is one of the major factors determining nuclear fuel performance. Long-term creep test was performed at 350 .deg. C and 400 .deg. C and 100, 120, 135, and 150 MPa of applied hoop stress to evaluate the creep properties. The creep resistance was strongly affected by the final heat treatment conditions, while there was no effect of intermediate heat treatment. The creep strain of the recrystallized alloys is higher than that of the stress-relieved alloys by a factor of 3. The alloying elements also influenced the creep behaviour. Increase of Sn content enhanced the creep resistance, while Nb decreased the creep resistance. As a result of texture analysis, basal pole was directed to normal direction, while prism pole was to rolling direction. The development of the deformation texture and the ammealing texture showed almost similar process to Zircaloy cladding

  15. The initial stage of pitting corrosion on coated steels investigated by photon rupture in chloride containing solutions

    International Nuclear Information System (INIS)

    Sakairi, M.; Uchida, Y.; Itabashi, K.; Takahashi, H.

    2005-01-01

    A photon rupture method, film removal by a focused pulse of pulsed Nd-YAG laser beam irradiation, has been developed to enable oxide film stripping at extremely high rates without contamination from the film removal tools. In the present study, Zn-55mass%Al alloy and Al-9mass%Si alloy-coated steel specimens covered with protective nitrocellulose film were irradiated with a focused pulse of a pulsed Nd-YAG laser beam at a constant potential in 0.5 kmol m -3 H 3 BO 3 -0.05 kmol m -3 Na 2 B 4 O 7 (pH = 7.4) with 0.01 kmol m -3 of chloride ions to investigate the initial stage of localized corrosion. At low potentials, oxide films on both coated alloys were reformed after the nitrocellulose films were removed by this method. The oxide film formation kinetics follows an inverse logarithmic law, in agreement with Cabrera-Mott theory. However, at high potentials, localized corrosion producing corrosion products occurs at the area where nitrocellulose film was removed. Nevertheless, when the applied potential is less noble, the dissolution current of the Zn-55mass%Al-coated steel samples is higher than that of Al-9mass%Si-coated samples

  16. The initial stage of pitting corrosion on coated steels investigated by photon rupture in chloride containing solutions

    Energy Technology Data Exchange (ETDEWEB)

    Sakairi, M. [Research Group of Interface Control Engineering Molecular Chemistry, Graduate School of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo 060-8628 (Japan)]. E-mail: msakairi@elechem1-mc.eng.hokudai.ac.jp; Uchida, Y. [Research Group of Interface Control Engineering Molecular Chemistry, Graduate School of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo 060-8628 (Japan); Itabashi, K. [NTT DoCoMo Hokkaido Inc., Kita 1, Nishi 14, Chuou-ku, Sapporo 060-0001 (Japan); Takahashi, H. [Research Group of Interface Control Engineering Molecular Chemistry, Graduate School of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo 060-8628 (Japan)

    2005-10-01

    A photon rupture method, film removal by a focused pulse of pulsed Nd-YAG laser beam irradiation, has been developed to enable oxide film stripping at extremely high rates without contamination from the film removal tools. In the present study, Zn-55mass%Al alloy and Al-9mass%Si alloy-coated steel specimens covered with protective nitrocellulose film were irradiated with a focused pulse of a pulsed Nd-YAG laser beam at a constant potential in 0.5 kmol m{sup -3} H{sub 3}BO{sub 3}-0.05 kmol m{sup -3} Na{sub 2}B{sub 4}O{sub 7} (pH = 7.4) with 0.01 kmol m{sup -3} of chloride ions to investigate the initial stage of localized corrosion. At low potentials, oxide films on both coated alloys were reformed after the nitrocellulose films were removed by this method. The oxide film formation kinetics follows an inverse logarithmic law, in agreement with Cabrera-Mott theory. However, at high potentials, localized corrosion producing corrosion products occurs at the area where nitrocellulose film was removed. Nevertheless, when the applied potential is less noble, the dissolution current of the Zn-55mass%Al-coated steel samples is higher than that of Al-9mass%Si-coated samples.

  17. Fatigue and creep cracking of nickel alloys for 700 C steam turbines

    International Nuclear Information System (INIS)

    Berger, C.; Granacher, J.; Thoma, A.; Roesler, J.; Del Genovese, D.

    2001-01-01

    Four materials of the types Inconel 706 (two heat treatment states), Inconel 617, and Waspaloy were tested as shaft materials for 700 to 720 C steam turbines. At an extrapolation time ratio of 10, Waspaloy was expected to have the highest creep strength (about 270 MPa at 700 C), with values of about 140 MPa at 700 C for Inconel 617. A preliminary evaluation of the 700 C creep rupture tests showed the highest creep rupture resistance for Inconel 617, followed by Waspaloy and Inconel 706 [de

  18. Influence of sequential room-temperature compressive creep on flow stress of TA2

    Science.gov (United States)

    Mengyuan, Zhang; Boqin, Gu; Jiahui, Tao

    2018-03-01

    This paper studied the sequential room temperature compressive creep and its effects on compressive properties of TA2 with stress-control loading pattern by using cylindrical compressive test specimen. The significant time-dependent deformation under constant load was observed in the TA2 at room temperature, and the deformation was dependent on the loading process under the same loading stress rate. It was also found that the occurrence of room temperature compressive creep obviously enhanced the subsequent yielding strength and flow stress of TA2 due to the increase of network dislocation density. And the effects of room temperature creep on the strain rate-stress behavior could be explained by the local mobile dislocation density model.

  19. Creep-fatigue of High Temperature Materials for VHTR: Effect of Cyclic Loading and Environment

    Energy Technology Data Exchange (ETDEWEB)

    Celine Cabet; L. Carroll; R. Wright; R. Madland

    2011-05-01

    Alloy 617 is the one of the leading candidate materials for Intermediate Heat eXchangers (IHX) of a Very High Temperature Reactor (VHTR). System start-ups and shut-downs as well as power transients will produce low cycle fatigue (LCF) loadings of components. Furthermore, the anticipated IHX operating temperature, up to 950°C, is in the range of creep so that creep-fatigue interaction, which can significantly increase the fatigue crack growth, may be one of the primary IHX damage modes. To address the needs for Alloy 617 codification and licensing, a significant creep-fatigue testing program is underway at Idaho National Laboratory. Strain controlled LCF tests including hold times up to 1800s at maximum tensile strain were conducted at total strain range of 0.3% and 0.6% in air at 950°C. Creep-fatigue testing was also performed in a simulated VHTR impure helium coolant for selected experimental conditions. The creep-fatigue tests resulted in failure times up to 1000 hrs. Fatigue resistance was significantly decreased when a hold time was added at peak stress and when the total strain was increased. The fracture mode also changed from transgranular to intergranular with introduction of a tensile hold. Changes in the microstructure were methodically characterized. A combined effect of temperature, cyclic and static loading and environment was evidenced in the targeted operating conditions of the IHX. This paper This paper reviews the data previously published by Carroll and co-workers in references 10 and 11 focusing on the role of inelastic strain accumulation and of oxidation in the initiation and propagation of surface fatigue cracks.

  20. Review on stress corrosion and corrosion fatigue failure of centrifugal compressor impeller

    Science.gov (United States)

    Sun, Jiao; Chen, Songying; Qu, Yanpeng; Li, Jianfeng

    2015-03-01

    Corrosion failure, especially stress corrosion cracking and corrosion fatigue, is the main cause of centrifugal compressor impeller failure. And it is concealed and destructive. This paper summarizes the main theories of stress corrosion cracking and corrosion fatigue and its latest developments, and it also points out that existing stress corrosion cracking theories can be reduced to the anodic dissolution (AD), the hydrogen-induced cracking (HIC), and the combined AD and HIC mechanisms. The corrosion behavior and the mechanism of corrosion fatigue in the crack propagation stage are similar to stress corrosion cracking. The effects of stress ratio, loading frequency, and corrosive medium on the corrosion fatigue crack propagation rate are analyzed and summarized. The corrosion behavior and the mechanism of stress corrosion cracking and corrosion fatigue in corrosive environments, which contain sulfide, chlorides, and carbonate, are analyzed. The working environments of the centrifugal compressor impeller show the behavior and the mechanism of stress corrosion cracking and corrosion fatigue in different corrosive environments. The current research methods for centrifugal compressor impeller corrosion failure are analyzed. Physical analysis, numerical simulation, and the fluid-structure interaction method play an increasingly important role in the research on impeller deformation and stress distribution caused by the joint action of aerodynamic load and centrifugal load.

  1. Low-temperature creep of austenitic stainless steels

    Science.gov (United States)

    Reed, R. P.; Walsh, R. P.

    2017-09-01

    Plastic deformation under constant load (creep) in austenitic stainless steels has been measured at temperatures ranging from 4 K to room temperature. Low-temperature creep data taken from past and unreported austenitic stainless steel studies are analyzed and reviewed. Creep at cryogenic temperatures of common austenitic steels, such as AISI 304, 310 316, and nitrogen-strengthened steels, such as 304HN and 3116LN, are included. Analyses suggests that logarithmic creep (creep strain dependent on the log of test time) best describe austenitic stainless steel behavior in the secondary creep stage and that the slope of creep strain versus log time is dependent on the applied stress/yield strength ratio. The role of cold work, strain-induced martensitic transformations, and stacking fault energy on low-temperature creep behavior is discussed. The engineering significance of creep on cryogenic structures is discussed in terms of the total creep strain under constant load over their operational lifetime at allowable stress levels.

  2. Degradation of normal portland and slag cement concrete under load, due to reinforcement corrosion

    International Nuclear Information System (INIS)

    Philipose, K.E.; Beaudoin, J.J.; Feldman, R.F.

    1992-08-01

    The corrosion of reinforcement is one of the major degradation mechanisms of reinforced concrete elements. The majority of studies published on concrete-steel corrosion have been conducted on unstressed specimens. Structural concrete, however, is subjected to substantial strain near the steel reinforcing bars that resist tensile loads, which results in a system of microcracks. This report presents the initial results of an investigation to determine the effect of applied load and microcracking on the rate of ingress of chloride ion and corrosion of steel in concrete. Simply-supported concrete beam specimens were loaded to give a maximum strain of about 600 με on the tension face. Chloride ion ingress on cores taken from loaded specimens was monitored using energy-dispersive X-ray analysis techniques. Corrosion current and rate measurements using linear polarization electrochemical techniques were also obtained on the same loaded specimens. Variables investigated included two concrete types, two steel cover-depths, three applied load levels, bonded and unbonded rebars and the exposure of tension and compression beam faces to chloride solution. One concrete mixture was made with type 10 Portland cement, the other with 75% blast furnace slag, 22% type 50 cement and 3% silica fume. The rate of chloride ion ingress into reinforced concrete, and hence the time for chloride ion to reach the reinforcing steel, is shown to be dependent on applied load and the concrete quality. The dependence of corrosion process descriptors - passive layer formation, initiation period and propagation period - on the level of applied load is discussed. (Author) (6 refs., 3 tabs., 10 figs.)

  3. Creep-rupture-test on the stainless steel X6crni1811 (Din 1.494.8) in the frame of the Extrapolation-Program. (Part III); Ensayos de fluencia lenta en el acero inoxidable X6 Cr Ni 1811 (1.4948) en el marco del Programa Extrapolacion

    Energy Technology Data Exchange (ETDEWEB)

    Solano, R; Schirra, M; Rivas, M de la; Barroso, S; Seith, B

    1982-07-01

    The austenitic stainless steel X6crni1811 (Din 1.4948) used as a structure material for the German Fast Breeder Reactor SNR 300 was creep tested in a temperature range of 550-650 degree centigree material condition as well as welded material condition. The main point of this program (Extrapolation-Program) lies in the knowledge of the creep-rupture-strength and creep-behaviour up to 3 x 10{sup 4} hours higher temperatures in order to extrapolated up to {>=}10{sup 5} hours for operating temperatures. In order to study the stress dependency of the minimum creep rate additional tests were carried out of 550 degree centigree - 750 degree centigree. The present report describes the state in the running program with test-times of 23.000 hours and results from tests up to 55.000 hours belonging to other parallel programs are taken into account. Besides the creep-rupture behaviour it is also made a study of ductility between 550 and 750 degree centigree. Extensive metallographic examinations have been made to study the fracture behaviour and changes in structure. (Author)

  4. TEM microstructural analysis of creep deformed CM186LC single crystal Ni-base superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Dubiel, B.; Czyrska-Filemonowicz, A. [AGH Univ. of Science and Technology, Krakow (Poland); Blackler, M. [Howmet Ltd., Exeter (United Kingdom); Barnard, P.M. [ALSTOM Power Turbo-Systems Technology Centre, Rugby (United Kingdom)

    2006-07-01

    The nickel based single crystal superalloy CM186LC was extensively investigated as a potential low cost material for industrial gas turbine vanes within the COST522 programme. The alloy exhibits inhomogeneous structure consisting of dendritic regions and eutectic colonies. In the present work attention is focused on microstructural changes observed in single crystal CM186LC following creep deformation at 750 C. Creep tests were conducted at 750 C with an applied stress of 560 or 675 MPa for up to 11440 hours. The microstructure o ruptured and terminated specimens was investigated by scanning (SEM) and transmission (TEM) electron microscopy. TEM analysis revealed the microstructural changes in the CM186LC at primary and secondary creep as well as after creep rupture. (orig.)

  5. Evaluation of the creep cavitation behavior in Grade 91 steels

    International Nuclear Information System (INIS)

    Siefert, J.A.; Parker, J.D.

    2016-01-01

    Even in properly processed Grade 91 steel, the long term performance and creep rupture strength of base metal is below that predicted from a simple extrapolation of short term data. One of the mechanisms responsible for this reduction in strength is the development of creep voids. Importantly, nucleation, growth and inter linkage of voids under long term creep conditions also results in a significant loss of creep ductility. Thus, elongations to rupture of around 5% in 100,000 h are now considered normal for creep tests on many tempered martensitic steels. Similarly, creep damage development in the heat affected zones of welds results in low ductility cracking at times below the minimum expected life of base metal. In all cases, the relatively brittle behavior is directly a consequence of creep void development. Indeed, the results of component root cause analysis have shown that crack development in Grade 91 steel in-service components is also a result of the formation of creep voids. The present paper examines background on the nucleation and development of creep voids in 9%Cr type martensitic steels, presents information regarding methods which allow proper characterization of the creep voids and discusses factors affecting creep fracture behavior in tempered martensitic steels. It is apparent that the maximum zone of cavitation observed in Grade 91 steel welds occurred in a region in the heat affected zone which is ∼750 μm in width. This region corresponds to the band where the peak temperature during welding is in the range of ∼1150–920 °C.The cavity density in this band was over about 700 voids/mm"2 at an estimated creep life fraction of ∼99%. - Highlights: • The present paper examines background on the nucleation and development of creep voids in 9%Cr type martensitic steels. • Information regarding methods which allow proper characterization of the creep voids is also presented. • Factors affecting creep fracture behavior in tempered

  6. Creep avalanches on San Andreas Fault and their underlying mechanism from 19 years of InSAR and seismicity

    Science.gov (United States)

    Khoshmanesh, M.; Shirzaei, M.

    2017-12-01

    Recent seismic and geodetic observations indicate that interseismic creep rate varies in both time and space. The spatial extent of creep determines the earthquake potential, while its temporal evolution, known as slow slip events (SSE), may trigger earthquakes. Although the conditions promoting fault creep are well-established, the mechanism for initiating self-sustaining and sometimes cyclic creep events is enigmatic. Here we investigate a time series of 19 years of surface deformation measured by radar interferometry between 1992 and 2011 along the Central San Andreas Fault (CSAF) to constrain the temporal evolution of creep. We show that the creep rate along the CSAF has a sporadic behavior, quantified with a Gumbel-like probability distribution characterized by longer tail toward the extreme positive rates, which is signature of burst-like creep dynamics. Defining creep avalanches as clusters of isolated creep with rates exceeding the shearing rate of tectonic plates, we investigate the statistical properties of their size and length. We show that, similar to the frequency-magnitude distribution of seismic events, the distribution of potency estimated for creep avalanches along the CSAF follows a power law, dictated by the distribution of their along-strike lengths. We further show that an ensemble of concurrent creep avalanches which aseismically rupture isolated fault compartments form the semi-periodic SSEs observed along the CSAF. Using a rate and state friction model, we show that normal stress is temporally variable on the fault, and support this using seismic observations. We propose that, through a self-sustaining fault-valve behavior, compaction induced elevation of pore pressure within hydraulically isolated fault compartments, and subsequent frictional dilation is the cause for the observed episodic SSEs. We further suggest that the 2004 Parkfield Mw6 earthquake may have been triggered by the SSE on adjacent creeping segment, which increased Coulomb

  7. Elastic-plastic-creep response of structures under composite time history of loadings

    International Nuclear Information System (INIS)

    Zudans, Z.

    1975-01-01

    The purpose of this work is to derive the theory, to develop efficient numerical techniques accounting for plasticity, creep and overall equilibrium, to describe the overall structure of the resulting computer program, and to demonstrate the capability of this analysis on a real structure. Classical plasticity theory is used to develop a novel method based on the concept of 'plastic stress' for consideration of inelastic behavior. It is shown that materials stres-strain curves can be followed to any desired degree of accuracy both for isotropic and kinematic hardening. It is further shown that for kinematic hardening it is necessary to base the incremental change on the state corresponding to the mean of the initial and the final states in order to satisfy the yield condition at the final state. The equation of state and strain hardening is used to describe the creep behavior. A novel numerical technique to describe a complex load history is developed by using time as a parameter, history breakpoint determination by scanning of various load vectors and by linear interpolation between any two breakpoints in the load history. The 'plastic stress' load vector concept is utilized with iteration and extrapolation to converge to the equilibrium states with simultaneous satisfaction of the stress-strain relations for each of the iterated states. The essential features of the computer program DYPLAS-FSH, based on the theory and techniques described above, and a postprocessor program POR-FSH, based on RDT F9-5T for ratcheting and fatigue evaluation, are identified and discussed. These computer programs are used to analyse the ellipsoidal pressure vessel head of the intermediate heat exchanger of EBR-II, penetrated by two closely spaced non-radial nozzles, subjected to four consecutive composite cycles of complex mechanical and thermal loads

  8. Description of Concrete Creep under Time-Varying Stress Using Parallel Creep Curve

    OpenAIRE

    Park, Yeong-Seong; Lee, Yong-Hak; Lee, Youngwhan

    2016-01-01

    An incremental format of creep model was presented to take account of the development of concrete creep due to loading at different ages. The formulation was attained by introducing a horizontal parallel assumption of creep curves and combining it with the vertical parallel creep curve of the rate of creep method to remedy the disadvantage of the rate of creep method that significantly underestimates the amount of creep strain, regardless of its simple format. Two creep curves were combined b...

  9. Irradiation-induced creep in graphite: a review

    International Nuclear Information System (INIS)

    Price, R.J.

    1981-08-01

    Data on irradiation-induced creep in graphite published since 1972 are reviewed. Sources include restrained shrinkage tests conducted at Petten, the Netherlands, tensile creep experiments with continuous strain registration at Petten and Grenoble, France, and controlled load tests with out-of-reactor strain measurement performed at Oak Ridge National Laboratory, Petten, and in the United Kingdom. The data provide reasonable confirmation of the linear viscoelastic creep model with a recoverable transient strain component followed by a steady-state strain component, except that the steady-state creep coefficient must be treated as a function of neutron fluence and is higher for tensile loading than for compressive loading. The total transient creep strain is approximately equal to the preceding elastic strain. No temperature dependence of the transient creep parameters has been demonstrated. The initial steady-state creep coefficient is inversely proportional to the unirradiated Young modulus

  10. Estimation of creep life of thick welded joints using a simple model. Creep characteristics in thick welded joint and their improvements. 2

    International Nuclear Information System (INIS)

    Nakacho, Keiji; Yamazaki, Masayoshi

    2001-01-01

    The information of the creep behavior of the thick welded joint is very important to secure the safety of the elevated temperature vessels like the nuclear reactors. The creep behavior of the thick welded point is very complex, thence it is difficult to practice the experiment or the theoretical analysis. A simple accurate model for theoretical analysis was developed in the first study. The simple model is constructed of several one-dimensional finite elements which can analyze three-dimensional creep behavior under a assumption. The model is easy to treat, and needs only a little labor and computation time to simulate the creep curve and local strain of the thick welded joint. In this second study, the capability of the model is expanded to estimate the creep life of the thick welded joint. New model can easily estimate the time of the rupture of the thick welded joint. It is verified comparing the result with the experimental one that the model can accurately predict the creep life. The histories of the local strains to the rupture time may be observed in the simulation by using the model. The information will be useful to improve the creep characteristics of the joints. (author)

  11. Long-term Creep Life Prediction for Type 316LN Stainless Steel

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Ryu, Woo Seog; Kim, Sung Ho; Lee, Chan Bok

    2007-01-01

    Since Sodium Fast Cooled Reactor (SFR) components are designed to be use for more than 30 years at a high temperature of 550 .deg. C, one of the most important properties of these components is the long term creep behavior. To accurately predict the long-term creep life of the components, it is essential to achieve reliable long-term test data beyond their design life. But, it is difficult to actually obtain long duration data because it is time-consuming work. So far, a variety of time-temperature parameters (TTPs) have been developed to predict a long-term creep life from shorter-time tests at higher temperatures. Among them, the Larson-Miller, the Orr-Sherby-Dorn, the Manson-Harferd and the Manson-Succop parameters have been typically used. None of these parameters has an overwhelming preference, and they have certain inherent restrictions imposed on their data in the application of the TTPs parameters. Meanwhile, it has been reported that the Minimum Commitment Method (MCM) proposed by Manson and Ensign has a greater flexibility for a creep rupture analysis. Thus, the MCM will be useful as another approach. Until now, the applicability of the MCM has not been investigated for type 316LN SS because of insufficient creep data. In this paper, the MCM was applied to predict a long-term creep life of type 316LN stainless steel (SS). Lots of creep rupture data was collected through literature surveys and the experimental data of KAERI. Using the short-term experimental data for under 2,000 hours, a longer-time rupture above 105 hours was predicted by the MCM at temperatures from 550 .deg. C to 800 .deg. C

  12. Simulations of tremor-related creep reveal a weak crustal root of the San Andreas Fault

    Science.gov (United States)

    Shelly, David R.; Bradley, Andrew M.; Johnson, Kaj M.

    2013-01-01

    Deep aseismic roots of faults play a critical role in transferring tectonic loads to shallower, brittle crustal faults that rupture in large earthquakes. Yet, until the recent discovery of deep tremor and creep, direct inference of the physical properties of lower-crustal fault roots has remained elusive. Observations of tremor near Parkfield, CA provide the first evidence for present-day localized slip on the deep extension of the San Andreas Fault and triggered transient creep events. We develop numerical simulations of fault slip to show that the spatiotemporal evolution of triggered tremor near Parkfield is consistent with triggered fault creep governed by laboratory-derived friction laws between depths of 20–35 km on the fault. Simulated creep and observed tremor northwest of Parkfield nearly ceased for 20–30 days in response to small coseismic stress changes of order 104 Pa from the 2003 M6.5 San Simeon Earthquake. Simulated afterslip and observed tremor following the 2004 M6.0 Parkfield earthquake show a coseismically induced pulse of rapid creep and tremor lasting for 1 day followed by a longer 30 day period of sustained accelerated rates due to propagation of shallow afterslip into the lower crust. These creep responses require very low effective normal stress of ~1 MPa on the deep San Andreas Fault and near-neutral-stability frictional properties expected for gabbroic lower-crustal rock.

  13. Creep-fatigue life prediction method using Diercks equation for Cr-Mo steel

    International Nuclear Information System (INIS)

    Sonoya, Keiji; Nonaka, Isamu; Kitagawa, Masaki

    1990-01-01

    For dealing with the situation that creep-fatigue life properties of materials do not exist, a development of the simple method to predict creep-fatigue life properties is necessary. A method to predict the creep-fatigue life properties of Cr-Mo steels is proposed on the basis of D. Diercks equation which correlates the creep-fatigue lifes of SUS 304 steels under various temperatures, strain ranges, strain rates and hold times. The accuracy of the proposed method was compared with that of the existing methods. The following results were obtained. (1) Fatigue strength and creep rupture strength of Cr-Mo steel are different from those of SUS 304 steel. Therefore in order to apply Diercks equation to creep-fatigue prediction for Cr-Mo steel, the difference of fatigue strength was found to be corrected by fatigue life ratio of both steels and the difference of creep rupture strength was found to be corrected by the equivalent temperature corresponding to equal strength of both steels. (2) Creep-fatigue life can be predicted by the modified Diercks equation within a factor of 2 which is nearly as precise as the accuracy of strain range partitioning method. Required test and analysis procedure of this method are not so complicated as strain range partitioning method. (author)

  14. Evaluation of tube rupture simulation test (TRUST-1) for FBR steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Hayashida, Yoshihiko; Hamada, Hirotsugu [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1996-06-01

    The intermediate water leak in an FBR Steam Generator (SG) causes a high temperature and corrosive sodium-water reaction jet. In such cases, it is necessary to evaluate the wastage and overheating rupture behavior of heat transfer tubes. Especially, in the large SG that aims at high temperature of sodium and high temperature/pressure of water, the establishment of the rational evaluation method is important. In this paper, as a basic experiment to make clear the phenomenon of overheating rupture, tests and analysis of Tube Rupture Simulation Test-1 (TRUST-1) were conducted. TRUST-1 simulates the overheating rupture of the tube made of Mod.9Cr-1Mo steel by nitrogen gas pressurization and quick induction heating. The result of TRUST-1 are as follows: (1) The breaking strength predicted by the internal pressure is larger than the tensile strength of the tube material. (2) The margin of the breaking strength from the tensile strength of the tube material has a tendency of decreasing with the heating rate, especially in the lower temperature region. (3) Using an theoretical formula that is deduced from the steady creep model and appropriate experimental coefficients that are determined by the test data, the breaking strength can be reasonably evaluated. (author)

  15. Analysis of Simple Creep Stress Calculation Methods for Creep Life Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jun Min; Lee, Han Sang; Kim, Yun Jae [Korea Univ., Daejeon (Korea, Republic of)

    2017-08-15

    Creep analysis takes much more time than elastic or elastic-plastic analysis. In this study, we conducted elastic and elastic-plastic analysis and compared the results with creep analysis results. In the elastic analysis, we used primary stress, which can be classified by the Mα-tangent method and stress intensities recommended in the ASME code. In the elastic-plastic analysis, we calculated the parameters recommended in the R5 code. For the FE models, a bending load, uniaxial load, and biaxial load were applied to the cross shaped welded plate, and a bending load and internal pressure were applied to the elbow pipe. To investigate the element size sensitivity, we conducted FE analysis for various element sizes for the cases where bending load was applied to the cross shaped welded plate. There was no significant difference between the creep.

  16. Use of generalized regression models for the analysis of stress-rupture data

    International Nuclear Information System (INIS)

    Booker, M.K.

    1978-01-01

    The design of components for operation in an elevated-temperature environment often requires a detailed consideration of the creep and creep-rupture properties of the construction materials involved. Techniques for the analysis and extrapolation of creep data have been widely discussed. The paper presents a generalized regression approach to the analysis of such data. This approach has been applied to multiple heat data sets for types 304 and 316 austenitic stainless steel, ferritic 2 1 / 4 Cr-1 Mo steel, and the high-nickel austenitic alloy 800H. Analyses of data for single heats of several materials are also presented. All results appear good. The techniques presented represent a simple yet flexible and powerful means for the analysis and extrapolation of creep and creep-rupture data

  17. Investigation of Macroscopic Brittle Creep Failure Caused by Microcrack Growth Under Step Loading and Unloading in Rocks

    Science.gov (United States)

    Li, Xiaozhao; Shao, Zhushan

    2016-07-01

    The growth of subcritical cracks plays an important role in the creep of brittle rock. The stress path has a great influence on creep properties. A micromechanics-based model is presented to study the effect of the stress path on creep properties. The microcrack model of Ashby and Sammis, Charles' Law, and a new micro-macro relation are employed in our model. This new micro-macro relation is proposed by using the correlation between the micromechanical and macroscopic definition of damage. A stress path function is also introduced by the relationship between stress and time. Theoretical expressions of the stress-strain relationship and creep behavior are derived. The effects of confining pressure on the stress-strain relationship are studied. Crack initiation stress and peak stress are achieved under different confining pressures. The applied constant stress that could cause creep behavior is predicted. Creep properties are studied under the step loading of axial stress or the unloading of confining pressure. Rationality of the micromechanics-based model is verified by the experimental results of Jinping marble. Furthermore, the effects of model parameters and the unloading rate of confining pressure on creep behavior are analyzed. The coupling effect of step axial stress and confining pressure on creep failure is also discussed. The results provide implications on the deformation behavior and time-delayed rockburst mechanism caused by microcrack growth on surrounding rocks during deep underground excavations.

  18. Improved methods for prediction of creep-fatigue in next generation conventional and nuclear plant

    International Nuclear Information System (INIS)

    Payten, Warwick

    2012-01-01

    Materials technology poses a major challenge in the design and construction of next generation super critical/ultra super critical power plant (SC/USC) and Generation IV (GenIV) nuclear plant. New plant is expected to have in the order of a 60 year life-time, imposing complex design difficulties in areas of creep rupture and creep fatigue damage. For SC/USC plant, the main goal is the enhancement of performance by raising the steam pressure and temperatures. In order to achieve these goals materials with acceptable creep rupture strength at design temperatures and pressures must be used. In GenIV designs, the issue is more complex, with both low and high tempera-ture designs. A key requirement in the majority of the designs, however, will be acceptable resistance to creep rupture, fatigue cracking, creep fatigue interactions, with the additional effects of void swelling and irradiation creep. The accumulation of creep fatigue damage over time in both SC/USC and GenIV plant will be one of the principal damage mechanisms. This will eventually lead to crack initiation in critical high temperature equipment. Hence, improved knowledge of creep and fatigue interactions is a necessary development as components in power-generating plants move to operate at high temperature under cyclic conditions. The key to safe, reliable operation of these high-energy plants will depend on understanding the factors that affect damage initiation and propagation, as well as developing and validating technologies to predict the accumulation of damage in systems and components.

  19. Elastic-plastic-creep response of structures under composite time history of loadings

    International Nuclear Information System (INIS)

    Zudans, Z.

    1975-01-01

    High temperature nuclear reactor components are subject to a complex history of thermal and mechanical loading cycles. To evaluate the adequacy of such components, detailed information on the accumulated inelastic strains and strain cycling is required. This work derives the theory, develops efficient numerical techniques accounting for plasticity, creep and overall equilibrium, describes the overall structure of the resulting computer program, and demonstrates the capability of this analysis on a real structure. (Auth.)

  20. Irradiation creep in zirconium single crystals

    International Nuclear Information System (INIS)

    MacEwen, S.R.; Fidleris, V.

    1976-07-01

    Two identical single crystals of crystal bar zirconium have been creep tested in reactor. Both specimens were preirradiated at low stress to a dose of about 4 x 10 23 n/m 2 (E > 1 MeV), and were then loaded to 25 MPa. The first specimen was loaded with reactor at full power, the second during a shutdown. The loading strain for both crystals was more than an order of magnitude smaller than that observed when an identical unirradiated crystal was loaded to the same stress. Both crystals exhibited periods of primary creep, after which their creep rates reached nearly constant values when the reactor was at power. During shutdowns the creep rates decreased rapidly with time. Electron microscopy revealed that the irradiation damage consisted of prismatic dislocation loops, approximately 13.5 nm in diameter. Cleared channels, identified as lying on (1010) planes, were also observed. The results are discussed in terms of the current theories for flux enhanced creep in the light of the microstructures observed. (author)

  1. Pipe rupture and steam/water hammer design loads for dynamic analysis of piping systems

    International Nuclear Information System (INIS)

    Strong, B.R. Jr.; Baschiere, R.J.

    1978-01-01

    The design of restraints and protection devices for nuclear Class I and Class II piping systems must consider severe pipe rupture and steam/water hammer loadings. Limited stress margins require that an accurate prediction of these loads be obtained with a minimum of conservatism in the loads. Methods are available currently for such fluid transient load development, but each method is severely restricted as to the complexity and/or the range of fluid state excursions which can be simulated. This paper presents a general technique for generation of pipe rupture and steam/water hammer design loads for dynamic analysis of nuclear piping systems which does not have the limitations of existing methods. Blowdown thrust loadings and unbalanced piping acceleration loads for restraint design of all nuclear piping systems may be found using this method. The technique allows the effects of two-phase distributed friction, liquid flashing and condensation, and the surrounding thermal and mechanical equipment to be modeled. A new form of the fluid momentum equation is presented which incorporates computer generated fluid acceleration histories by inclusion of a geometry integral termed the 'force equivalent area' (FEA). The FEA values permit the coupling of versatile thermal-hydraulic programs to piping dynamics programs. Typical applications of the method to pipe rupture problems are presented and the resultant load histories compared with existing techniques. (Auth.)

  2. The prediction of creep damage in type 347 weld metal. Part I: the determination of material properties from creep and tensile tests

    International Nuclear Information System (INIS)

    Spindler, M.W.

    2005-01-01

    Calculations of creep damage under conditions of strain control are often carried out using either a time fraction approach or a ductility exhaustion approach. In the case of the time fraction approach the rupture strength is used to calculate creep damage, whereas creep ductility is used in the ductility exhaustion approach. In part I of this paper the methods that are used to determine these material properties are applied to some creep and constant strain rate tests on a Type 347 weld metal. In addition, new developments to the ductility exhaustion approach are described which give improved predictions of creep damage at failure in these tests. These developments use reverse modelling to determine the most appropriate creep damage model as a function of strain rate, stress and temperature. Hence, the new approach is no longer a ductility exhaustion approach but is a true creep damage model

  3. Modelling of degradation processes in creep resistant steels through accelerated creep tests after long-term isothermal ageing

    Energy Technology Data Exchange (ETDEWEB)

    Sklenicka, V.; Kucharova, K.; Svoboda, M.; Kroupa, A.; Kloc, L. [Academy of Sciences of the Czech Republic, Brno (Czech Republic). Inst. of Physics of Materials; Cmakal, J. [UJP PRAHA a.s., Praha-Zbraslav (Czech Republic)

    2010-07-01

    Creep behaviour and degradation of creep properties of creep resistant materials are phenomena of major practical relevance, often limiting the lives of components and structures designed to operate for long periods under stress at elevated and/or high temperatures. Since life expectancy is, in reality, based on the ability of the material to retain its high-temperature creep strength for the projected designed life, methods of creep properties assessment based on microstructural evolution in the material during creep rather than simple parametric extrapolation of short-term creep tests are necessary. In this paper we will try to further clarify the creep-strength degradation of selected advanced creep resistant steels. In order to accelerate some microstructural changes and thus to simulate degradation processes in long-term service, isothermal ageing at 650 C for 10 000 h was applied to P91 and P23 steels in their as-received states. The accelerated tensile creep tests were performed at temperature 600 C in argon atmosphere on all steels both in the as-received state and after long-term isothermal ageing, in an effort to obtain a more complete description of the role of microstructural stability in high temperature creep of these steels. Creep tests were followed by microstructural investigations by means of both transmission and scanning electron microscopy and by the thermodynamic calculations. The applicability of the accelerated creep tests was verified by the theoretical modelling of the phase equilibria at different temperatures. It is suggested that under restructed oxidation due to argon atmosphere microstructural instability is the main detrimental process in the long-term degradation of the creep rupture strength of these steels. (orig.)

  4. Effect of carburizing helium environment on creep behavior of Ni-base heat-resistant alloys for high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Kurata, Yuji; Ogawa, Yutaka; Nakajima, Hajime

    1988-01-01

    Creep tests were conducted on Ni-base heat-resistant alloys Hastelloy XR and XR-II, i.e. versions of Hastelloy X modified for nuclear applications, at 950degC using four types of helium environment with different impurity compositions, and mainly the effect of carburization was examined. For all the materials tested, the values of creep rupture time obtained under the carburizing conditions were similar to or longer than those in the commonly used, standard test environment (JAERI Type B helium). The difference among the results was interpreted by the counterbalancing effects of the strengthening due to carburization and possible weakening caused under very low oxidizing potential. In the corrosion monitoring specimens pronounced carbon pick-up was observed in the environment with high carbon activity and very low oxidizing potential. Based on the results obtained in the present and the previous works, it is suggested that a moderate control of the impurity chemistry is important rather than simple purification of the coolant in protecting the material from the environment-enhanced degradation. Either condition with high or low extremes in the oxidizing and carburizing potentials may cause enhanced degradation and thus are desirable to be avoided at the elevated temperatures. (author)

  5. SUMMARY OF CHARACTERISATION DATA ON CLADDING MATERIALS USED IN THE CORROSION TEST IFA-638 AND IN THE CREEP TEST IFA-617

    International Nuclear Information System (INIS)

    Nakata, M.; Hauso, E.

    1998-10-01

    Modern PWR cladding materials are being tested in two joint programme tests; the cladding corrosion test IFA-638 and in the creep test IFA-617. The materials for the two tests, have been provided by four organisations: ABB-Atom, ENUSA, Framatome and Mitsubishi Heavy Industries. This report gives an overview of the different materials being tested as fuelled test rods and unfuelled cladding coupons in IFA-638. For IFA-638, cladding has been used for fabrication of both fresh and pre-irradiated test rods. The coupon materials, all in the unirradiated condition, comprise a range of alloys of different chemical composition, heat treatment, pre-filming and /or pre-hydriding treatment. Four pre-irradiated cladding materials of the same type of those used in IFA-638, have also been used to prepare the four fuelled subsegments that are being studied in the creep rig IFA-617. All currently available information related to the IFA-638 and IFA-617 material characterisation and properties are summarised in this report. (author)

  6. Microstructure characterization in domestically-made TP310HNbN austenitic stainless steel after creep test

    Science.gov (United States)

    Guo, Yan; Lin, Lin; Hou, Shufang; Wang, Bohan

    Microstructure characterization of domestically-made TP310HNbN austenitic stainless steel after creep test was investigated by means of transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The results revealed that M23C6 carbides precipitated both inside grains and at the grain boundaries and NbCrN particles were located inside grains for creep-rupture samples. It was clear that sigma phase and NbC particles precipitated inside grains for the creep-rupture sample at 670 C. M23C6 carbides with lattice parameter of three times of the austenite matrix grow in a cube to cube orientation relationship with the matrix. The amount of M23C6 carbide particles obviously increased with the testing time prolonged. Deformation hardening induced an enhanced hardness nearby rupture surface for the creep-rupture samples with a short testing time. For the domestically-made TP310HNbN steel, great attention should be paid to the distribution, size and amount of sigma phase and M23C6 during service.

  7. Tensile cracks in creeping solids

    International Nuclear Information System (INIS)

    Riedel, H.; Rice, J.R.

    1979-02-01

    The loading parameter determining the stress and strain fields near a crack tip, and thereby the growth of the crack, under creep conditions is discussed. Relevant loading parameters considered are the stress intensity factor K/sub I/, the path-independent integral C*, and the net section stress sigma/sub net/. The material behavior is modelled as elastic-nonlinear viscous where the nonlinear term describes power law creep. At the time t = 0 load is applied to the cracked specimen, and in the first instant the stress distribution is elastic. Subsequently, creep deformation relaxes the initial stress concentration at the crack tip, and creep strains develop rapidly near the crack tip. These processes may be analytically described by self-similar solutions for short times t. Small scale yielding may be defined. In creep problems, this means that elastic strains dominate almost everywhere except in a small creep zone which grows around the crack tip. If crack growth ensues while the creep zone is still small compared with the crack length and the specimen size, the stress intensity factor governs crack growth behavior. If the calculated creep zone becomes larger than the specimen size, the stresses become finally time-independent and the elastic strain rates can be neglected. In this case, the stress field is the same as in the fully-plastic limit of power law hardening plasticity. The loading parameter which determines the near tip fields uniquely is then the path-independent integral C*.K/sub I/ and C* characterize opposite limiting cases. The case applied in a given situation is decided by comparing the creep zone size with the specimen size and the crack length. Besides several methods of estimating the creep zone size, a convenient expression for a characteristic time is derived, which characterizes the transition from small scale yielding to extensive creep of the whole specimen

  8. Evaluation of creep damage due to stress relaxation in SA533 grade B class 1 and SA508 class 3 pressure vessel steels

    International Nuclear Information System (INIS)

    Hoffmann, C.L.; Urko, W.

    1993-01-01

    Creep damage can result from stress relaxation of residual stresses in components when exposed to high temperature thermal cycles. Pressure vessels, such as the reactor vessel of the modular high-temperature gas reactor (MHTGR), which normally operate at temperatures well below the creep range can develop relatively high residual stresses in high stress locations. During short term excursions to elevated-temperatures, creep damage can be produced by the loadings on the vessel. In addition, residual stresses will relax out, causing greater creep damage in the pressure vessel material than might otherwise be calculated. The evaluation described in this paper assesses the magnitude of the creep damage due to relaxation of residual stresses resulting from short term exposure of the pressure vessel material to temperatures in the creep range. Creep relaxation curves were generated for SA533 Grade B, Class 1 and SA508 Class 3 pressure vessel steels using finite element analysis of a simple uniaxial truss loaded under constant strain conditions to produce an initial axial stress equal to 1.25 times the material yield strength at temperature. The strain is held constant for 1000 hours at prescribed temperatures from 700 F to 1000 F. The material creep law is used to calculate the relaxed stress for each time increment. The calculated stress relaxation versus time curves are compared with stress relaxation test data. Creep damage fractions are calculated by integrating the stress relaxation versus time curves and performing a linear creep damage summation using the minimum stress to rupture curves at the respective relaxation temperatures. Cumulative creep damage due to stress relaxation as a function of time and temperature is derived from the linear damage summation

  9. Experimental studies on the deformation and rupture of thin metal plates subject to underwater shock wave loading

    Directory of Open Access Journals (Sweden)

    Chen Pengwan

    2015-01-01

    Full Text Available In this paper, the dynamic deformation and rupture of thin metal plates subject to underwater shock wave loading are studied by using high-speed 3D digital image correlation (3D-DIC. An equivalent device consist of a gas gun and a water anvil tube was used to supplying an exponentially decaying pressure in lieu of explosive detonation which acted on the panel specimen. The thin metal plate is clamped on the end of the shock tube by a flange. The deformation and rupture process of the metal plates subject to underwater shock waves are recorded by two high-speed cameras. The shape, displacement fields and strain fields of the metal plates under dynamic loading are obtained by using VIC-3D digital image correlation software. The strain gauges also were used to monitor the structural response on the selected position for comparison. The DIC data and the strain gauges results show a high level of correlation, and 3D-DIC is proven to be an effective method to measure 3D full-field dynamic response of structures under underwater impact loading. The effects of pre-notches on the failure modes of thin circular plate were also discussed.

  10. Creep fracture and creep-fatigue fracture in ceramics and ceramic composites

    International Nuclear Information System (INIS)

    Suresh, S.

    1993-01-01

    This paper summarizes recent advances in the areas of subcritical crack growth in ceramics subjected to static and cyclic loads at elevated temperatures. Attention is devoted to the specific role of pre-existing and in-situ-formed glass films in influencing creep fracture and creep-fatigue fracture. Experimental results on the effects of cyclic frequency and load ratio, along with detailed transmission electron microscopy of crack-tip and crack-wake damage are highlighted. Some general conclusions are drawn about the dependence of high-temperature damage tolerance on interfacial glass films and about the susceptibility of ceramic materials to cyclic fatigue fracture

  11. Effect of carbon content on the microstructure and creep properties of a 3rd generation single crystal nickel-base superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.W.; Liu, T. [Superalloys Division, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Wang, L., E-mail: wangli@imr.ac.cn [Superalloys Division, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Liu, X.G.; Lou, L.H. [Superalloys Division, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Zhang, J. [Superalloys Division, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2015-07-15

    Effect of carbon content on the microstructure and creep properties of a 3rd generation single crystal nickel-base superalloy has been investigated by the scanning electron microscope, X-ray computed tomography and electron probe microanalyzer. With the increase of the carbon content, MC carbides evolve from octahedral to well-developed dendrite, which promotes the formation of microporosity. Moreover, the volume fraction of porosity increases in the experimental alloys after solution heat treatment. As a result, the increase in the size of MC carbides and the porosity has a detrimental effect on the low temperature and high stress creep behavior of the alloys. The specimen crept at 850 °C and 586 MPa with the carbon content of 430 ppm shows the shortest rupture life due to the largest primary creep strain. However, the creep behavior of the alloy at 1120 °C and 140 MPa gets better as the carbon content increases from 88 to 430 ppm. TCP phase is observed near the fracture surfaces of the alloys, which explores as a potential cause for the creep rupture. However, the formation of TCP phase is effectively suppressed for decreasing segregation of the alloying elements, which results in the improvement of the creep life in the alloy with 430 ppm carbon at 1120 °C and 140 MPa.

  12. Corrosion fatigue studies on a bulk glassy Zr-based alloy under three-point bending

    Science.gov (United States)

    Grell, Daniel; Wilkin, Yannic; Gostin, Petre F.; Gebert, Annett; Kerscher, Eberhard

    2016-12-01

    Corrosion fatigue (CF) tests were carried out on bulk glassy Zr52.5Cu17.9Al10Ni14.6Ti5 (Vitreloy 105) samples under load-controlled three-point bending conditions with a load ratio of R = 0.1 in 0.01 M Na2SO4 + 0.01 M NaCl electrolyte. During cyclic testing, the bar-shaped specimens were polarized in situ at constant potentials and the current was monitored. Three different anodic potentials within the interval between the pitting potential EP and the repassivation potential ER, and three different load amplitudes were applied. In some cases, in situ microscopic observations revealed the formation of black corrosion products in the vicinity of the crack tip during anodic polarization. Fractographic analysis revealed a clear distinction between two modes of crack growth characterized by smooth dissolution induced regions on the one hand and slim fast fracture areas on the other hand. Both alternating features contributed to a broad striated corrosion fatigue fracture surface. Moreover, further fatigue tests were carried out under free corrosion conditions yielding additional information on crack initiation and crack propagation period by means of the open circuit potential (OCP) changes. Thereby, a slight increase in OCP was detected after rupture of the passive layer due to bare metal exposed to the electrolyte. The electrochemical response increased continuously according to stable crack propagation until fracture occurred. Finally, the fracture surfaces of the corrosion fatigue samples were investigated by energy dispersive X-ray with the objective of analyzing the elemental distribution after anodic dissolution. Interestingly, anodic polarization at a near repassivation potential of -50 mV vs. SCE (Saturated Calomel Electrode, E = 0.241 V vs. SHE, Standard Hydrogen Electrode) led to favorable effects on the fatigue lifetime. In conclusion, all results are conflated to a corrosion fatigue model for bulk glassy Vitreloy 105 under anodic polarization in chloride

  13. In-reactor creep rupture behavior of the D9 alloys

    International Nuclear Information System (INIS)

    Puigh, R.J.; Hamilton, M.L.

    1986-06-01

    The uncertainties in the in-reactor stress rupture data have been significantly reduced with the acquisition of the Materials Open Test Assembly (MOTA) for testing of materials in the Fast Flux Test Facility (FFTF). The temperature uncertainty associated with irradiation in this vehicle is +- 5 0 C. Moreover, through the use of tag gases and an on-line cover gas monitoring system, on-line detection of specimen ruptures is possible during irradiation, thereby significantly reducing the uncertainty associated with the rupture times. Titanium additions, increases in nickel content and decreases in chromium content, which were made to improve the swelling response of 316 SS, resulted in an alloy class referred to as ''D9''. In-reactor stress rupture data from the MOTA experiment have been reported on two conditions of the D9-type alloys for exposure times corresponding to 2,400 hours at irradiation temperatures of 575, 605, 670, and 750 0 C. For these conditions the in-reactor rupture times were similar to those observed in thermal control tests. This report will describe both the in-reactor stress rupture behavior and the thermal control data for 20% cold work (CW) 316 SS and for 10 and 20% CW D9-type alloy over a similar temperature range for in-reactor exposure times corresponding to 13170 hr. and peak fast fluences corresponding to 17 x 10 22 n/cm 2 (E > 0.1 MeV)

  14. Detection of creep damage in a nickel base superalloy using NDE techniques

    International Nuclear Information System (INIS)

    Carreon, H.; Mora, B.; Barrera, G.

    2009-10-01

    Due to elevated temperatures, excessive stresses and severed corrosion conditions, turbine engine components are subject to creep processes that limit the components life such as a turbine bucket. The failure mechanism of a turbine bucket is related primarily to creep and corrosion and secondarily to thermal fatigue. As a result, it is desirable to assess the current conditions of such turbine component. This study uses the eddy current nondestructive evaluation technique in an effort to monitor the creep damage in a nickel base super-alloy, turbine bucket after service. The experimental results show an important electrical conductivity variation in eddy current images on the creep damage zone of nickel base super-alloy samples cut from a turbine bucket. Thermoelectric power measurements were also conducted in order to obtain a direct correlation between the presence of material changes due to creep damage and the electrical conductivity measurements. This research work shows an alternative non-destructive method in order to detect creep damage in a nickel base super-alloy turbine bucket. (Author)

  15. Creep buckling of shells

    International Nuclear Information System (INIS)

    Stone, C.M.; Nickell, R.E.

    1977-01-01

    Because of the characteristics of LMFBR primary piping components (thin-walled, low pressure, high temperature), the designer must guard against creep buckling as a potential failure mode for certain critical regions, such as elbows, where structural flexibility and inelastic response may combine to concentrate deformation and cause instability. The ASME Boiler and Pressure Vessel Code, through its elevated temperature Code Case 1592 (Section III, Division 1) provides design rules for Class 1 components aimed at preventing creep buckling during the design life. A similar set of rules is being developed for Class 2 and 3 components at this time. One of the original concepts behind the creep buckling rules was that the variability in creep properties (especially due to the effects of prior heat treatment), the uncertainty about initial imperfections, and the lack of confirmed accuracy of design analysis meant that conservatism would be difficult to assure. As a result, a factor of ten on service life was required (i.e. analysis must show that, under service conditions that extrapolate the life of the component by ten times, creep buckling does not occur). Two obvious problems with this approach are that: first, the creep behavior must also be extrapolated (since most creep experiments are terminated at a small fraction of the design life, extrapolation of creep data is already an issue, irrespective of the creep buckling question); second the nonlinear creep analysis, which is very nearly prohibitively expensive for design life histograms, becomes even more costly. Analytical results for an aluminum cylindrical shell subjected to axial loads at elevated temperatures are used to examine the supposed equivalence of two types of time-dependent buckling safety factors - a factor of ten on service life and a factor of 1.5 on loading

  16. Uniaxial and Multiaxial Creep Testing of Copper

    International Nuclear Information System (INIS)

    Auerkari, Pertti; Holmstroem, Stefan; Veivo, Juha; Salonen, Jorma; Nenonen, Pertti; Laukkanen, Anssi

    2003-12-01

    Multiaxial (compact tension, CT) creep testing has been performed for copper with 79 ppm phosphorus and 60 ppm oxygen. The test load levels were selected according to results from preceding uniaxial creep testing and FE analysis of the CT specimens. Interrupted testing was used for metallographic inspection of the specimens for creep damage. After 7,900 h and 10,300 h of testing at 150 deg C and 46 MPa (reference stress), inspected CT specimens showed cavity indications with a low maximum density ( 2 ) and a typical maximum dimension of less than about 1 μm near the notch tip. From previous experience on creep cavitation damage, the expected minimum life to crack initiation at the notch tip would be at least 40,000 hours, but could be considerably longer because the cavity indications are suspected to originate at least partly from precipitates in specimen preparation. The interrupted testing of CT specimens also showed a 'segregation zone' along some grain boundaries, mainly near the notch tip. This zone appears to contain more P and O than the surrounding matrix, but less than the narrow grain boundary films that are already present in the as-new material. The zone is readily etched and shows a relatively sharp edge towards the matrix without an obvious phase boundary. Using converted multiaxial (CT) testing results, the predicted isothermal uniaxial creep life at 150 deg C/46 MPa is about 1,900 years. The corresponding creep life directly predicted from uniaxial data is 3,100 years, when estimated from a parametric best fit expression according to PD6605. Although the two results are satisfactorily within a factor of two in time, the uncertainties in the extended extrapolations remain large. Further testing is recommended, with at least two creep enhancing factors present. Such testing could include notched creep testing at 120-180 deg C in a corrosive environment, and notched model vessel creep testing at elevated pressure. It is also recommended that longer

  17. Comparison study of inelastic analyses for high temperature structure subjected to cyclic creep loading

    International Nuclear Information System (INIS)

    Kim, J. B.; Lee, H. Y.; Lee, J. H.

    2002-01-01

    It is necessary to develop a reliable numerical analysis method to simulate the plasticity and creep behavior of LMR high temperature structures. Since general purpose finite element analysis codes such as ABAQUS and ANSYS provide various models for plastic hardening and creep equation of Norton's power law, it is possible to perform the separate iscoplasticity analysis. In this study, the high temperature structural analysis program(NONSTA-VP) implementing Chaboche's unified visco plasticity equation into ABAQUS has been developed and the viscoplastic response of the 316 SS plate having a circular hole subjected to a cyclic creep loading has been analyzed. The results among the separate visco plasticity analyses and the unified visco plasticity analysis using NONSTA-VP have been compared and the results from NONSTA-VP shows remarkable responses of stress relaxation and creep behavior during hold time compared to those from separate visco plasticity analyses. Also, it is anticipated to reduce the conservatism arising from using elastic approach for creep-fatigue damage analysis since the stress range and the strain range from the unified visco plasticity analysis has been greatly reduced compared to those from separate visco plasticity analyses and elastic analysis

  18. Creep behaviour and creep mechanisms of normal and healing ligaments

    Science.gov (United States)

    Thornton, Gail Marilyn

    Patients with knee ligament injuries often undergo ligament reconstructions to restore joint stability and, potentially, abate osteoarthritis. Careful literature review suggests that in 10% to 40% of these patients the graft tissue "stretches out". Some graft elongation is likely due to creep (increased elongation of tissue under repeated or sustained load). Quantifying creep behaviour and identifying creep mechanisms in both normal and healing ligaments is important for finding clinically relevant means to prevent creep. Ligament creep was accurately predicted using a novel yet simple structural model that incorporated both collagen fibre recruitment and fibre creep. Using the inverse stress relaxation function to model fibre creep in conjunction with fibre recruitment produced a superior prediction of ligament creep than that obtained from the inverse stress relaxation function alone. This implied mechanistic role of fibre recruitment during creep was supported using a new approach to quantify crimp patterns at stresses in the toe region (increasing stiffness) and linear region (constant stiffness) of the stress-strain curve. Ligament creep was relatively insensitive to increases in stress in the toe region; however, creep strain increased significantly when tested at the linear region stress. Concomitantly, fibre recruitment was evident at the toe region stresses; however, recruitment was limited at the linear region stress. Elevating the water content of normal ligament using phosphate buffered saline increased the creep response. Therefore, both water content and fibre recruitment are important mechanistic factors involved in creep of normal ligaments. Ligament scars had inferior creep behaviour compared to normal ligaments even after 14 weeks. In addition to inferior collagen properties affecting fibre recruitment and increased water content, increased glycosaminoglycan content and flaws in scar tissue were implicated as potential mechanisms of scar creep

  19. Effect of Friction Coefficient on the Small Punch Creep Behavior of AISI 316L Stainless Steel

    International Nuclear Information System (INIS)

    Kim, Bum-Joon; Cho, Nam-Hyuck; Kim, Moon-K; Lim, Byeong-Soo

    2011-01-01

    Small punch creep testing has received attention due to the convenience of using smaller specimens than those of conventional uniaxial creep tests, which enables creep testing on developing or currently operational components. However, precedent studies have shown that it is necessary to consider friction between the punch and specimen when computing uniaxial equivalent stress from a finite element model. In this study, small punch creep behaviors of AISI 316L stainless steel, which is widely used in high temperature-high pressure machineries, have been compared for the two different ceramic balls such as Si 3 N 4 and Al 2 O 3 . The optimal range of the friction coefficient is 0.4⁓0.5 at 650°C for the best fit between experimental and simulation data of AISI 316 L stainless steel. The higher the friction coefficient, the longer the creep rupture time is. Therefore, the type of ceramic ball used must be specified for standardization of small punch creep testing.

  20. A methodology to analyze the creep behaviour of nuclear fuel waste containers

    Energy Technology Data Exchange (ETDEWEB)

    Dutton, R [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs.

    1995-12-01

    The concept for the disposal of used-fuel waste from CANDU reeactors operating in Canada comprises a system of natural and engineered barriers surrounding the waste in a mined vault situated at a depth of 500 - 1000 m in plutonic rock of the Canadian Shield. The fuel would be packaged in a highly durable metal container, within a matrix of compacted particulate. The design of the container takes into account that it would be subjected to an external hydrostatic pressure. Consideration of the rate of radioactive decay of the radionuclides contained in the fuel, suggests that the lifetime of the container should be at least 500 years. Consequently, the role of creep deformation, and the possibility of creep rupture of the container shell, must be included in the assessment of time-dependent mechanical integrity. This report describes an analytical approach that can be used to quantify the long-term creep properties of the container material and facilitate the engineering design. The overall objective is to formulate a constitutive creep equation that provides the required input for a finite element computer model being developed to analyze the elastic-plastic behaviour of the container. Alternative forms of such equations are reviewed. It is shown that the capability of many of these equations to extrapolate over long time scales is limited by their empirical nature. Thus, the recommended equation is based on current mechanistic understanding of creep deformation and creep rupture. A criterion for determining the onset of material failure by creep rupture, that could be used in the design of containers with extended structural integrity, is proposed. Interpretation and extrapolation will be supported by the complementary Deformation and Fracture Mechanism Maps. (author) 103 refs., 2 tabs., 54 figs.

  1. A methodology to analyze the creep behaviour of nuclear fuel waste containers

    International Nuclear Information System (INIS)

    Dutton, R.

    1995-12-01

    The concept for the disposal of used-fuel waste from CANDU reeactors operating in Canada comprises a system of natural and engineered barriers surrounding the waste in a mined vault situated at a depth of 500 - 1000 m in plutonic rock of the Canadian Shield. The fuel would be packaged in a highly durable metal container, within a matrix of compacted particulate. The design of the container takes into account that it would be subjected to an external hydrostatic pressure. Consideration of the rate of radioactive decay of the radionuclides contained in the fuel, suggests that the lifetime of the container should be at least 500 years. Consequently, the role of creep deformation, and the possibility of creep rupture of the container shell, must be included in the assessment of time-dependent mechanical integrity. This report describes an analytical approach that can be used to quantify the long-term creep properties of the container material and facilitate the engineering design. The overall objective is to formulate a constitutive creep equation that provides the required input for a finite element computer model being developed to analyze the elastic-plastic behaviour of the container. Alternative forms of such equations are reviewed. It is shown that the capability of many of these equations to extrapolate over long time scales is limited by their empirical nature. Thus, the recommended equation is based on current mechanistic understanding of creep deformation and creep rupture. A criterion for determining the onset of material failure by creep rupture, that could be used in the design of containers with extended structural integrity, is proposed. Interpretation and extrapolation will be supported by the complementary Deformation and Fracture Mechanism Maps. (author) 103 refs., 2 tabs., 54 figs

  2. Comparison among creep rupture strength extrapolation methods with application to data for AISI 316 SS from Italy, France, U.K. and F.R.G

    International Nuclear Information System (INIS)

    Brunori, G.; Cappellato, S.; Vacchiano, S.; Guglielmi, F.

    1982-01-01

    Inside Activity 3 ''Materials'' of WGCS, the member states UK and FRG have developed a work regarding extrapolation methods for creep data. This work has been done by comparising extrapolation methods in use in their countries by applying them to creep rupture strength data on AISI 316 SS obtained in UK and FRG. This work has been issued on April 1978 and the Community has dealed it to all Activity 3 Members. Italy, in the figure of NIRA S.p.A., has received, from the European Community a contract to extend the work to Italian and French data, using extrapolation methods currently in use in Italy. The work should deal with the following points: - Collect of Italian experimental data; - Chemical analysis on Italian Specimen; - Comparison among Italian experimental data with French, FRG and UK data; - Description of extrapolation methods in use in Italy; - Application of these extrapolation methods to Italian, French, British and Germany data; - Extensions of a Final Report

  3. ANALYSIS OF PITTING CORROSION ON AN INCONEL 718 ALLOY SUBMITTED TO AGING HEAT TREATMENT

    Directory of Open Access Journals (Sweden)

    Felipe Rocha Caliari

    2014-10-01

    Full Text Available Inconel 718 is one of the most important superalloys, and it is mainly used in the aerospace field on account of its high mechanical strength, good resistance to fatigue and creep, good corrosion resistance and ability to operate continuously at elevated temperatures. In this work the resistance to pitting corrosion of a superalloy, Inconel 718, is analyzed before and after double aging heat treatment. The used heat treatment increases the creep resistance of the alloy, which usually is used up to 0.6 Tm. Samples were subjected to pitting corrosion tests in chloride-containing aqueous solution, according to ASTM-F746-04 and the procedure described by Yashiro et al. The results of these trials show that after heat treatment the superalloy presents higher corrosion resistance, i.e., the pitting corrosion currents of the as received surfaces are about 6 (six times bigger (~0.15 mA than those of double aged surfaces (~0.025 mA.

  4. Creep properties of base metal and welded joint of Hastelloy XR produced for High-Temperature Engineering Test Reactor in simulated primary coolant helium

    International Nuclear Information System (INIS)

    Kurata, Yuji; Tsuji, Hirokazu; Shindo, Masami; Suzuki, Tomio; Tanabe, Tatsuhiko; Mutoh, Isao; Hiraga, Kenjiro

    1999-01-01

    Creep tests of base metal, weld metal and welded joint of Hastelloy XR, which had the same chemical composition as Hastelloy XR produced for an intermediate heat exchanger of the High-Temperature Engineering Test Reactor, were conducted in simulated primary coolant helium. The weld metal and welded joint showed almost equal to or longer rupture time than the base metal of Hastelloy XR at 850 and 900degC, although they gave shorter rupture time at 950degC under low stress and at 1,000degC. The welded joint of Hastelloy XR ruptured at the base metal region at 850 and 900degC. On the other hand, it ruptured at the weld metal region at 950 and 1,000degC. The steady-state creep rate of weld metal of Hastelloy XR was lower than that of base metal at 850, 900 and 950degC. The creep rupture strengths of base metal, weld metal and welded joint of Hastelloy XR obtained in this study were confirmed to be much higher than the design allowable creep-rupture stress (S R ) of the Design Allowable Limits below 950degC. (author)

  5. Tensile and Creep Testing of Sanicro 25 Using Miniature Specimens

    Science.gov (United States)

    Dymáček, Petr; Jarý, Milan; Dobeš, Ferdinand; Kloc, Luboš

    2018-01-01

    Tensile and creep properties of new austenitic steel Sanicro 25 at room temperature and operating temperature 700 °C were investigated by testing on miniature specimens. The results were correlated with testing on conventional specimens. Very good agreement of results was obtained, namely in yield and ultimate strength, as well as short-term creep properties. Although the creep rupture time was found to be systematically shorter and creep ductility lower in the miniature test, the minimum creep rates were comparable. The analysis of the fracture surfaces revealed similar ductile fracture morphology for both specimen geometries. One exception was found in a small area near the miniature specimen edge that was cut by electro discharge machining, where an influence of the steel fracture behavior at elevated temperature was identified. PMID:29337867

  6. Tensile and Creep Testing of Sanicro 25 Using Miniature Specimens.

    Science.gov (United States)

    Dymáček, Petr; Jarý, Milan; Dobeš, Ferdinand; Kloc, Luboš

    2018-01-16

    Tensile and creep properties of new austenitic steel Sanicro 25 at room temperature and operating temperature 700 °C were investigated by testing on miniature specimens. The results were correlated with testing on conventional specimens. Very good agreement of results was obtained, namely in yield and ultimate strength, as well as short-term creep properties. Although the creep rupture time was found to be systematically shorter and creep ductility lower in the miniature test, the minimum creep rates were comparable. The analysis of the fracture surfaces revealed similar ductile fracture morphology for both specimen geometries. One exception was found in a small area near the miniature specimen edge that was cut by electro discharge machining, where an influence of the steel fracture behavior at elevated temperature was identified.

  7. Study of tertiary creep instability in several elevated-temperature structural materials

    International Nuclear Information System (INIS)

    Booker, M.K.; Sikka, V.K.

    1978-01-01

    Data for a number of common elevated temperature structural materials have been analyzed to yield mathematical predictions for the time and strain to tertiary creep at various rupture lives and temperatures. Materials examined include types 304 and 316 stainless steel, 2 1/4 Cr-1 Mo steel, alloy 800H, alloy 718, Hastelloy alloy X, and ERNiCr--3 weld metal. Data were typically examined over a range of creep temperatures for rupture lives ranging from less than 100 to greater than 10,000 hours. Within a given material, trends in these quantities can be consistently described, but it is difficult to directly relate the onset of tertiary creep to failure-inducing instabilities. A series of discontinued tests for alloy 718 at 649 and 620 0 C showed that the material fails by intergranular cracking but that no significant intergranular cracking occurs until well after the onset of tertiary creep

  8. A numerical approach to predict the long-term creep behaviour and precipitate back-stress evolution of 9-12% chromium steels

    Energy Technology Data Exchange (ETDEWEB)

    Holzer, I.; Cerjak, H. [Graz Univ. of Technology (Austria). Inst. for Materials Science and Welding; Kozeschnik, E. [Vienna Univ. of Technology (Austria). Inst. of Materials Science and Technology; Vienna Univ. of Technology (Austria). Christian Doppler Lab. ' Early Stages of Precipitation'

    2010-07-01

    The mechanical properties of modern 9-12% Cr steels are significantly influenced by the presence and stability of different precipitate populations. These secondary phases grow, coarsen and, sometimes, dissolve again during heat treatment and service, which leads to a remarkable change in the obstacle effect of these precipitates on dislocation movement. In the present work, the experimentally observed creep rupture strength of a modified 9-12% Cr steel developed in the European COST Group is compared to the calculated maximum obstacle effect (Orowan threshold stress) caused by the precipitates present in the investigated alloy for different heat treatment conditions. It is shown that the differences in creep rupture strength caused by different heat treatments disappear after long time service. This observation is discussed on the basis of the calculated evolution of the precipitate microstructure. The concept of boosting long-term creep rupture strength by maximizing the initial creep strength with optimum quality heat treatment parameters for precipitation strengthening is critically assessed. (orig.)

  9. High temperature creep strength of Advanced Radiation Resistant Oxide Dispersion Strengthened Steels

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sanghoon; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Austenitic stainless steel may be one of the candidates because of good strength and corrosion resistance at the high temperatures, however irradiation swelling well occurred to 120dpa at high temperatures and this leads the decrease of the mechanical properties and dimensional stability. Compared to this, ferritic/martensitic steel is a good solution because of excellent thermal conductivity and good swelling resistance. Unfortunately, the available temperature range of ferritic/martensitic steel is limited up to 650 .deg. C. ODS steel is the most promising structural material because of excellent creep and irradiation resistance by uniformly distributed nano-oxide particles with a high density which is extremely stable at the high temperature in ferritic/martensitic matrix. In this study, high temperature strength of advanced radiation resistance ODS steel was investigated for the core structural material of next generation nuclear systems. ODS martensitic steel was designed to have high homogeneity, productivity and reproducibility. Mechanical alloying, hot isostactic pressing and hot rolling processes were employed to fabricate the ODS steels, and creep rupture test as well as tensile test were examined to investigate the behavior at high temperatures. ODS steels were fabricated by a mechanical alloying and hot consolidation processes. Mechanical properties at high temperatures were investigated. The creep resistance of advanced radiation resistant ODS steels was more superior than those of ferritic/ martensitic steel, austenitic stainless steel and even a conventional ODS steel.

  10. Life prediction methodology for thermal-mechanical fatigue and elevated temperature creep design

    Science.gov (United States)

    Annigeri, Ravindra

    Nickel-based superalloys are used for hot section components of gas turbine engines. Life prediction techniques are necessary to assess service damage in superalloy components resulting from thermal-mechanical fatigue (TMF) and elevated temperature creep. A new TMF life model based on continuum damage mechanics has been developed and applied to IN 738 LC substrate material with and without coating. The model also characterizes TMF failure in bulk NiCoCrAlY overlay and NiAl aluminide coatings. The inputs to the TMF life model are mechanical strain range, hold time, peak cycle temperatures and maximum stress measured from the stabilized or mid-life hysteresis loops. A viscoplastic model is used to predict the stress-strain hysteresis loops. A flow rule used in the viscoplastic model characterizes the inelastic strain rate as a function of the applied stress and a set of three internal stress variables known as back stress, drag stress and limit stress. Test results show that the viscoplastic model can reasonably predict time-dependent stress-strain response of the coated material and stress relaxation during hold times. In addition to the TMF life prediction methodology, a model has been developed to characterize the uniaxial and multiaxial creep behavior. An effective stress defined as the applied stress minus the back stress is used to characterize the creep recovery and primary creep behavior. The back stress has terms representing strain hardening, dynamic recovery and thermal recovery. Whenever the back stress is greater than the applied stress, the model predicts a negative creep rate observed during multiple stress and multiple temperature cyclic tests. The model also predicted the rupture time and the remaining life that are important for life assessment. The model has been applied to IN 738 LC, Mar-M247, bulk NiCoCrAlY overlay coating and 316 austenitic stainless steel. The proposed model predicts creep response with a reasonable accuracy for wide range of

  11. Creep of MDF panels under constant load and cyclic environmental conditions. Influence of surface coating

    OpenAIRE

    Fernández-Golfín Seco, J. I.; Díez Barra, M. Rafael

    1997-01-01

    Four different strategies of surface coating (based on 80 g m2 melamin impregnated papers) were used on 19 mm thick commercial MDF panels to assess its reological behaviour under cyclic humidity conditions (20ºC 30 % rh-20ºC 90 % rh). Three different levels of stress (20 %, 30 % and 40 %), based on the ultimate load in bending, were used. Tests were conducted by means of the three points load system. For the same stress level, the relative creep of MDF panels was higher than that in par...

  12. Influence of delta ferrite on mechanical and creep properties of steel P92

    Energy Technology Data Exchange (ETDEWEB)

    Mohyla, Petr [VSB - Technical Univ. of Ostrava (Czech Republic). Faculty of Mechanical Engineering; Kubon, Zdenek [Material and Metallurgical Research Ltd., Ostrava (Czech Republic)

    2010-07-01

    This article presents some new results obtained during research of chromium modified steel P92. This steel is considered the best modified 9-12% Cr steel for the construction of modern power plants with ultra-super-critical steam parameters. High creep rupture strength of steel P92 is characterized by its chemical composition and by microstructure as well. Optimal microstructure of steel P92 is ideally composed of homogeneous martensite and fine dispersion of secondary particles. During the research program one P92 heat with an occurrence of about 20% delta ferrite was produced. The article describes the microstructure of the heat in various modes of heat treatment, as well as the results of mechanical properties tests at room temperature and also creep test results. The results are confronted with properties of other heats that have no delta ferrite. The relevance is on the significant difference while comparing of creep test results. The comparison of results brings conclusions, defining influence of delta ferrite on mechanical and creep properties of P92 steel. (orig.)

  13. Some questions regarding the interaction of creep and fatigue

    International Nuclear Information System (INIS)

    James, L.A.

    1975-04-01

    Data are presented from fatigue-crack growth tests conducted on Type 304 S.S. in inert environments at elevated temperatures which show that the thermal-activation noted in similar tests run in air environments is not present in the inert environment. Similar observations from the literature are reviewed, including the observation that the time-dependency noted in tests conducted in elevated temperature air environments is also greatly suppressed in inert environments. These findings suggest that an interaction between the fatigue process and the corrosive air environments is responsible for the thermally activated time-dependent behavior often attributed to creep-fatigue interaction. Data are also presented which show that the fatigue-crack growth behavior of Type 304 S.S. subjected to significant creep damage prior to fatigue testing does not differ appreciably from the behavior of material not subjected to prior creep damage, again indicating minimal interaction between creep and fatigue. It is suggested that in the temperature range where pressure vessels and piping are generally designed to operate (i.e. below about one-half the absolute melting temperature of the alloy), the interaction between creep and fatigue is far less significant than once supposed, and that the major parameter interacting with the fatigue process is that of high-temperature corrosion. (39 references, 12 fig) (auth)

  14. High-Temperature Creep Behaviour and Positive Effect on Straightening Deformation of Q345c Continuous Casting Slab

    Science.gov (United States)

    Guo, Long; Zhang, Xingzhong

    2018-03-01

    Mechanical and creep properties of Q345c continuous casting slab subjected to uniaxial tensile tests at high temperature were considered in this paper. The minimum creep strain rate and creep rupture life equations whose parameters are calculated by inverse-estimation using the regression analysis were derived based on experimental data. The minimum creep strain rate under constant stress increases with the increase of the temperature from 1000 °C to 1200 °C. A new casting machine curve with the aim of fully using high-temperature creep behaviour is proposed in this paper. The basic arc segment is cancelled in the new curve so that length of the straightening area can be extended and time of creep behaviour can be increased significantly. For the new casting machine curve, the maximum straightening strain rate at the slab surface is less than the minimum creep strain rate. So slab straightening deformation based on the steel creep behaviour at high temperature can be carried out in the process of Q345c steel continuous casting. The effect of creep property at high temperature on slab straightening deformation is positive. It is helpful for the design of new casting machine and improvement of old casting machine.

  15. Mechanisms of unsteady shallow creep on major crustal faults

    Science.gov (United States)

    Jiang, J.; Fialko, Y. A.

    2017-12-01

    A number of active crustal faults are associated with geodetically detectable shallow creep, while other faults appear to be locked all the way to the surface over the interseismic period. Faults that exhibit shallow creep also often host episodic accelerated creep events. Examples include the Ismetpasa segment of the North Anatolian Fault (NAF) in Turkey and the Southern San Andreas and Superstition Hills (SHF) faults in Southern California. Recent geodetic observations indicate that shallow creep events can involve large fault sections (tens of km long) and persist throughout different stages of a seismic cycle. A traditional interpretation of shallow creep in terms of a velocity-strengthening (VS) layer atop the seismogenic velocity-weakening (VW) zone fails to explain episodic creep events. Wei et al. (2013) proposed that such events can be due to a thin VW layer within the VS shallow crust, implying rather special structural and lithologic conditions. We explore the rheologic controls on aseismic episodic slip and its implications for seismic faulting in the framework of laboratory rate-and-state friction. Observations of co-, post- and inter-seismic slip from the NAF and SHF are used to infer depth-dependent frictional properties in a 2D fault model. In particular, creep events with displacements on the order of millimeters and periods of months are reproduced in a model having monotonic depth variations in rate-and-state parameters. Such a model includes a velocity-neutral (VN) layer sandwiched between the surface layer with VS frictional properties, constrained by observed postseismic afterslip, and a deeper VW layer that largely controls the recurrence of major earthquakes. With the presence of the VN layer, the amount of surface-breaching coseismic slip critically depends on how dynamic weakening varies with depth in the seismogenic layer. Observations of limited surface slip during prior events on the NAF and SHF suggest that coseismic fault weakening is

  16. Effect of simulated sampling disturbance on creep behaviour of rock salt

    Science.gov (United States)

    Guessous, Z.; Gill, D. E.; Ladanyi, B.

    1987-10-01

    This article presents the results of an experimental study of creep behaviour of a rock salt under uniaxial compression as a function of prestrain, simulating sampling disturbance. The prestrain was produced by radial compressive loading of the specimens prior to creep testing. The tests were conducted on an artifical salt to avoid excessive scattering of the results. The results obtained from several series of single-stage creep tests show that, at short-term, the creep response of salt is strongly affected by the preloading history of samples. The nature of this effect depends upon the intensity of radial compressive preloading, and its magnitude is a function of the creep stress level. The effect, however, decreases with increasing plastic deformation, indicating that large creep strains may eventually lead to a complete loss of preloading memory.

  17. Effects of creep and oxidation on reduced modulus in high-temperature nanoindentation

    International Nuclear Information System (INIS)

    Li, Yan; Fang, Xufei; Lu, Siyuan; Yu, Qingmin; Hou, Guohui; Feng, Xue

    2016-01-01

    Nanoindentation tests were performed on single crystal Ni-based superalloy at temperatures ranging from 20 °C to 800 °C in inert environment. Load-displacement curves at temperatures higher than 500 °C exhibit obvious creep inferred by increasing displacements at load-holding segments. Load-displacement curves obtained at 800 °C also display negative unloading stiffness. Examination of the microstructure beneath the indented area using Transmission Electron Microscope (TEM) reveals abundant dislocation piling up as well as oxide formation on the substrate. A method considering the creep effect is proposed to calculate the reduced modulus. In addition, a dimensionless ratio relating indentation depth and oxide film thickness is introduced to explain the oxidation effect on the mechanical properties derived from the load-displacement curves.

  18. Creep-rupture, steam oxidation and recovery behaviours upon dynamic transients up to 1300 C of cold-worked 304 stainless steel tubes dedicated to nuclear core fuel cladding

    International Nuclear Information System (INIS)

    Portier, L.; Brachet, J.C.; Vandenberghe, V.; Guilbert, T.; Lezaud-Chaillioux, V.; Bernard, C.; Rabeau, V.

    2011-01-01

    An ambitious mechanical tests program was conducted on the fuel rod cladding of the CABRI facility between 2004 and 2009 to re-evaluate the cladding tubes materials behaviour. As an offspring of this major scientific investment several conclusions of interest could be drawn on the 304 stainless steel material. In particular, the specific behaviour of the materials during hypothetical and extreme 'dry-out' conditions was investigated. In such a scenario, the cladding tube materials should experience a very brief incursion at high temperatures, in a steam environment, up to 1300 C, before cladding rewetting. Some of the measurements performed in the range of interest for the safety case were on purpose developed beyond the conservatively safe domain. Some of the results obtained for these non-conventional heating rates, pressures and temperature ranges will be presented. First in order to assess the high temperature creep-rupture material behaviour under internal pressure upon dynamic transient conditions, tests have been performed on cold-worked 304 stainless cladding tubes in a steam environment, for heating rates up to 100 C*s -1 and pressure ramp rates up to 10 bar*s -1 thanks to the use of the EDGAR facility. Other tests performed at a given pressure allowed us to check the steady-state secondary creep rate of the materials in the 1100-1200 C temperature range. It was also possible to determine the rupture strength value and the failure mode as a function of the thermal and pressure loading history applied. It is worth noticing that, for very specific conditions, a surprising pure intergranular brittle failure mode of the clad has been observed. Secondly, in order to check the materials oxidation resistance of the materials, two-side steam oxidation tests have been performed at 1300 C, using the DEZIROX facility. It was shown that, thanks to the use of Ring Compression tests, the 304 cladding tube keeps significant ductility for oxidation times up to at least

  19. Aluminide protective coatings on high–temperature creep resistant cast steel

    OpenAIRE

    J. Kubicki; A. Kochmańska

    2009-01-01

    This paper presents the results of research on aluminide protective coatings manufactured on high–temperature creep resistant cast steel. The main purpose of these coatings is protection against the high temperature corrosion, especially at high carburizing potential atmosphere. Coatings were obtained on cast steel type G–XNiCrSi36–18 with the following methods: pack cementation, paste method, cast method and slurry cementation. The phase composition, thickness and morphology of coatings were...

  20. Creep behavior of sweetgum OSB: effect of load level and relative humidity

    Science.gov (United States)

    J.H. Pu; R.C. Tang; Chung-Yun Hse

    1994-01-01

    Flexural creep behavior of laboratory-fabricated sweetgum oriented strandboard (OSB). under constnat (65% and 95%) and cyclic (65% 95% at a 96-hr. frequency) relative humidity (RH) conditions at 75 F (23.9 C) is presented. Two levels (4.5% and 6.5%) of resin content (RC) of phenol-formaldehyde were used in fabricating the test panels. Two load levels (20% and...

  1. An analysis of the creep/fatigue behaviour of type 316 weld metal

    International Nuclear Information System (INIS)

    Wood, D.S.; Wynn, J.

    The document presents creep/fatigue results obtained at UKAEA Risley Nuclear Labs. on type 316 weld metal and the associated stress rupture data and analyses them in the same way as that currently favoured for wrought material. The continuous cycling fatigue results are shown; the lower temperature is seen to give a higher endurance. The creep/fatigue results indicate that lower endurances are obtained at 625 deg. C and that with increasing hold time there is a tendency for the endurance to be lowered. The weld metal creep/fatigue endurances are compared with published UK data on wrought material for strain ranges of up to 3%. Under the conditions examined, it can be seen that the weld metal endurance is towards the top of the scatter band, the results at 550 deg. C forming the upper bound. The stress rupture data note that the ductility is reasonable at short times but fall to relatively low values at long times (10,000h)

  2. Accelerated Stress-Corrosion Testing

    Science.gov (United States)

    1986-01-01

    Test procedures for accelerated stress-corrosion testing of high-strength aluminum alloys faster and provide more quantitative information than traditional pass/fail tests. Method uses data from tests on specimen sets exposed to corrosive environment at several levels of applied static tensile stress for selected exposure times then subsequently tensile tested to failure. Method potentially applicable to other degrading phenomena (such as fatigue, corrosion fatigue, fretting, wear, and creep) that promote development and growth of cracklike flaws within material.

  3. Small punch creep test in a 316 austenitic stainless steel

    Directory of Open Access Journals (Sweden)

    Saucedo-Muñoz, Maribel L.

    2015-03-01

    Full Text Available The small punch creep test was applied to evaluate the creep behavior of a 316 type austenitic stainless steel at temperatures of 650, 675 and 700 °C. The small punch test was carried out using a creep tester with a specimen size of 10×10×0.3 mm at 650, 675 and 700 °C using loads from 199 to 512 N. The small punch creep curves show the three stages found in the creep curves of the conventional uniaxial test. The conventional creep relationships which involve parameters such as creep rate, stress, time to rupture and temperature were followed with the corresponding parameters of small punch creep test and they permitted to explain the creep behavior in this steel. The mechanism and activation energy of the deformation process were the grain boundary sliding and diffusion, respectively, during creep which caused the intergranular fracture in the tested specimens.El ensayo de termofluencia por indentación se utilizó para evaluar el comportamiento a la termofluencia en un acero inoxidable austenítico 316. Este ensayo se realizó en una máquina de indentación con muestras de 10×10×0,3 mm a temperaturas de 650, 675 y 700 °C con cargas de 199 a 512 N. Las curvas de termofluencia del ensayo mostraron las tres etapas características observadas en el ensayo convencional de tensión. Asimismo, las principales relaciones de termofluencia entre parámetros como velocidad de termofluencia, esfuerzo, tiempo de ruptura y temperatura se observaron en los parámetros correspondientes al ensayo de indentación, lo que permitió caracterizar el comportamiento de termofluencia en este acero. El mecanismo y la energía de activación del proceso de deformación en la termofluencia corresponden al deslizamiento de los límites de grano y la difusión a través de los mismos, respectivamente, lo cual causó la fractura intergranular en las muestras ensayadas.

  4. Structural Response to Blast Loading: The Effects of Corrosion on Reinforced Concrete Structures

    Directory of Open Access Journals (Sweden)

    Hakan Yalciner

    2014-01-01

    Full Text Available Structural blast design has become a necessary part of the design with increasing terrorist attacks. Terrorist attacks are not the one to make the structures important against blast loading where other explosions such as high gas explosions also take an important place in structural safety. The main objective of this study was to verify the structural performance levels under the impact of different blast loading scenarios. The blast loads were represented by using triangular pulse for single degree of freedom system. The effect of blast load on both corroded and uncorroded reinforced concrete buildings was examined for different explosion distances. Modified plastic hinge properties were used to ensure the effects of corrosion. The results indicated that explosion distance and concrete strength were key parameters to define the performance of the structures against blast loading.

  5. Cumulative fatigue and creep-fatigue damage at 3500C on recrystallized zircaloy 4

    International Nuclear Information System (INIS)

    Brun, G.; Pelchat, J.; Floze, J.C.; Galimberti, M.

    1985-06-01

    An experimental programme undertaken by C.E.A., E.D.F. and FRAGEMA with the aim of characterizing the fatigue and creep fatigue behaviour of zircaloy-4 following annealing treatments (recrystallized, stress-delived) is in progress. The results given below concern only recrystallized material. Cyclic properties, low-cycle fatigue curves and creep behaviour laws under stresses have been established. Sequential tests of pure fatigue and creep-fatigue were performed. The cumulative life fractions at fracture depend on the sequence of leading, stress history and number of cycles of prestressing. The MINER's rule appears to be conservative with regard to a low-high loading sequence whereas it is not for the reverse high-low loading sequences. Fatigue and creep damage are not interchangeable. Pre-creep improves the fatigue resistance. Pre-fatigue improves the creep strength as long as the beneficial effect of cyclic hardening overcomes the damaging effect of surface cracking. The introduction of a tension hold time into the fatigue cycle slightly increases cyclic hardening and reduces the number of cycles to failure. For hold times of less than one hour, the sum of fatigue and creep life fractions is closed to one

  6. Mechanical and microstructural behavior of oxide dispersion strengthened 8Cr-2W and 8Cr-1W steels during creep deformation

    Energy Technology Data Exchange (ETDEWEB)

    Shinozuka, K.; Tamura, M.; Esaka, H. [National Defense Academy, Dept. MS and E, Kanagawa (Japan); Shiba, K.; Nakamura, K. [Japan Atomic Energy Agency, Tokai-mura, Naga-gun, Ibaraki-ken (Japan)

    2007-07-01

    Full text of publication follows: Oxide dispersion strengthened (ODS) steel is a promising candidate for fusion reactor material because of excellent mechanical properties. However, the ODS steel exhibits some defects, such as mechanical anisotropy and little elongation . To reveal details of these defects, we investigated correlations between mechanical and microstructural behavior of ODS ferritic steels during creep deformation at high temperature. The materials used in this study are two kinds of hot rolled ODS steels: Fe-8Cr-2W-0.2V-0.1Ta-0.2Ti-0.4Y{sub 2}O{sub 3} (J1) and Fe-8Cr-1W-0.2Ti-0.4Y{sub 2}O{sub 3} (J2). Creep tests was carried out on specimens sampling along both the rolling direction and the cross direction at 670, 700 and 730 deg. C. Microstructural analyses were made on the normalized and tempered condition by using OM, SEM, TEM and XRD. Creep ruptured and interrupted specimens were also investigated. Both J1 and J2 existed two phases, namely martensite and {delta}-ferrite which was elongated in the rolling direction. Y-Ti complex oxide particles were finely dispersed in martensite and {delta}- ferrite phases. Results of creep tests indicated that the time-to-rupture of specimens of J1 were much longer than J2, and the time-to-rupture of specimens sampling along the rolling direction were longer than cross direction. Accordingly, J1 sampling along hot rolling direction was the strongest, for instance, the time-to-rupture was 11400 h at 700 deg. C and 162 MPa. All specimens indicated that elongation was less than 1.3 % and the rupture occurred at steady state creep region from creep curves. Internal cracks were propagated in martensite phase along elongated {delta}-ferrite phase in the direction of hot rolling. On the other hand, {delta}-ferrite phases seemed to prevent combining cracks. These results suggest that elongated {delta}-ferrite and internal clacks in martensite strongly affect on the anisotropy and little elongation of creep. (authors)

  7. Nanoindentation creep behavior of human enamel.

    Science.gov (United States)

    He, Li-Hong; Swain, Michael V

    2009-11-01

    In this study, the indentation creep behavior of human enamel was investigated with a nanoindentation system and a Berkovich indenter at a force of 250 mN with one-step loading and unloading method. A constant hold period of 900 s was incorporated into each test at the maximum load as well at 5 mN minimum load during unloading. The indentation creep at the maximum load and creep recovery at the minimum load was described with a double exponential function and compared with other classic viscoelastic models (Debye/Maxwell and Kohlrausch-Williams-Watts). Indentation creep rate sensitivity, m, of human enamel was measured for the first time with a value of approximately 0.012. Enamel displayed both viscoelastic and viscoplastic behavior similar to that of bone. These results indicate that, associated with entrapment of particulates between teeth under functional loading and sliding wear conditions, the enamel may inelastically deform but recover upon its release. This behavior may be important in explaining the excellent wear resistance, antifatigue, and crack resistant abilities of natural tooth structure. (c) 2008 Wiley Periodicals, Inc.

  8. Creep in sodium

    International Nuclear Information System (INIS)

    Charnock, W.; Cordwell, J.E.

    1978-03-01

    Available information on the creep of austenitic, ferritic and Alloy-800 type steels in liquid sodium is critically reviewed. Creep properties of stainless steels can be affected by element transfer and corrosion. At reactor structural component temperatures environmental effects are likely to be less important than changes due to thermal ageing. At high clad temperatures (700 0 C) decarburisation may cause the loss of strength and ductility in unstabilised steels while cavity formation may cause embrittlement in stabilised steels. The properties of Alloy 800 are, in some experiments, found to deteriorate while in others they are enhanced. This may be a consequence of the metallurgical complexity of the material or arise from the nature of the various techniques employed. Low alloy ferritic steels tend to decarburise in sodium at temperatures greater than 500 0 C and this leads to loss of strength and an increase in ductility. High alloy ferritics are immune to this effect and appear to be able to tolerate a degree of carburisation. Although intergranular cracking may be enhanced in liquid sodium the mechanical consequences are not significant and evidence for the existence of an embrittlement effect not associated with element transfer or corrosion is weak. Stress and strain may enhance element transfer at crack tips. However in real cracks the gettering or supply action of the crack faces conditions the chemistry of the cracks in sodium and protects the crack tip from element transfer. Thus creep crack extension rates should be independent of changes in bulk coolant chemistry. (author)

  9. Active corrosion protection performance of an epoxy coating applied on the mild steel modified with an eco-friendly sol-gel film impregnated with green corrosion inhibitor loaded nanocontainers

    Science.gov (United States)

    Izadi, M.; Shahrabi, T.; Ramezanzadeh, B.

    2018-05-01

    In this study the corrosion resistance, active protection, and cathodic disbonding performance of an epoxy coating were improved through surface modification of steel by a hybrid sol-gel system filled with green corrosion inhibitors loaded nanocontainer as intermediate layer on mild steel substrate. The green inhibitor loaded nanocontainers (GIN) were used to induce active inhibition performance in the protective coating system. The corrosion protection performance of the coated panels was investigated by electrochemical impedance spectroscopy (EIS), salt spray, and cathodic disbonding tests. It was observed that the corrosion inhibition performance of the coated mild steel panels was significantly improved by utilization of active multilayer coating system. The inhibitor release from nanocontainers at the epoxy-silane film/steel interface resulted in the anodic and cathodic reactions restriction, leading to the lower coating delamination from the substrate and corrosion products progress. Also, the active inhibition performance of the coating system was approved by electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), and energy dispersive X-ray (EDS) analysis on the panels with artificial defects. The inhibitive agents were released to the scratch region and blocked the active sites on the metal surface.

  10. Causes of pipe ruptures in distribution lines. Evaluation of long-term observations in a metropolitan pipe network

    Energy Technology Data Exchange (ETDEWEB)

    Kottmann, A

    1978-01-01

    Pipe ruptures and their causes are examined from the viewpoints of pipe material, corrosion, traffic, internal pressure, air temperature, ground temperature, ground frost, gas or water temperature, and ground moisture level. The examination relies on 17 years of statistics (1958-74) from (1) Technische Werke der Stadt Stuttgart AG on 11,986 pipe ruptures and (2) German weather-service data on ground-moisture readings at depths down to 80 in. in the Stuttgart area. Faced with replacing up to 280 miles (450 km) of cast-iron gas-distribution lines that seemed extraordinarily prone to rupture (company records showed at least 20 breaks/month) after the conversion to natural gas, TWS authorized this study to determine the boundary conditions that make cast-iron pipe susceptible to fracture, thus minimizing the extent of the replacement program. The investigation showed that corrosion had only a slight effect upon cracking. No significant effect was found for any of the following: temperature-caused changes in material properties, internal pressure or pressure changes, fluctuations in gas temperature, changes in air temperature, and summertime changes in ground temperature. Stress loading by heavy traffic, however, doubled the fracture incidence.

  11. Creep of trabecular bone from the human proximal tibia.

    Science.gov (United States)

    Novitskaya, Ekaterina; Zin, Carolyn; Chang, Neil; Cory, Esther; Chen, Peter; D'Lima, Darryl; Sah, Robert L; McKittrick, Joanna

    2014-07-01

    Creep is the deformation that occurs under a prolonged, sustained load and can lead to permanent damage in bone. Creep in bone is a complex phenomenon and varies with type of loading and local mechanical properties. Human trabecular bone samples from proximal tibia were harvested from a 71-year old female cadaver with osteoporosis. The samples were initially subjected to one cycle load up to 1% strain to determine the creep load. Samples were then loaded in compression under a constant stress for 2h and immediately unloaded. All tests were conducted with the specimens soaked in phosphate buffered saline with proteinase inhibitors at 37 °C. Steady state creep rate and final creep strain were estimated from mechanical testing and compared with published data. The steady state creep rate correlated well with values obtained from bovine tibial and human vertebral trabecular bone, and was higher for lower density samples. Tissue architecture was analyzed by micro-computed tomography (μCT) both before and after creep testing to assess creep deformation and damage accumulated. Quantitative morphometric analysis indicated that creep induced changes in trabecular separation and the structural model index. A main mode of deformation was bending of trabeculae. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Tensile and Creep Behavior of Extruded AA6063/SiCp Al MMCs

    International Nuclear Information System (INIS)

    Khalifa, Tarek A.; Mahmoud, Tamer S.

    2010-01-01

    Composites of AA6063 Al alloy reinforced with SiC particles (SiC p ) were prepared by the vortex method. Hot extrusion was carried out for the as cast composites with a reduction in area of 25%. Tensile and creep behavior of as-cast and extruded composites were studied at elevated temperatures. Tensile tests carried out at room temperature showed that for the as-cast composites, the addition of SiC p up to 10% by weight improves the strength but reduces ductility. Further addition of SiC p reduces the strength and ductility of the composites. At 150 and 300 deg. C the matrix alloy exhibits higher strength than the composites. Extrusion generally raised the strength of the composites at both room and elevated temperatures. Time rupture creep tests carried out at 300 deg. C showed that the composites exhibit higher creep resistance as compared to the matrix alloy except at relatively low stresses where the matrix has a better creep resistance. Extrusion improved the resistance of composites to creep rupture.

  13. Creep-rupture properties of type 304 austenitic stainless steel at elevated temperatures

    International Nuclear Information System (INIS)

    Zulkifli Ahyak; Esah Hamzah; Abdul Aziz Mohamad.

    1987-08-01

    The creep behaviour of a type 304 stainless steel has been examined at temperatures of 450 to 750 0 C under uniaxial initial stress of 200 Mpa. It was found that carbide precipitation within grain boundary, recrystallization and grain growth occured during creep at above 550 0 C. It is apparent that the creep-resistant of the steel is influenced by grain boundaries. (author)

  14. Strain rate effects in stress corrosion cracking

    Energy Technology Data Exchange (ETDEWEB)

    Parkins, R.N. (Newcastle upon Tyne Univ. (UK). Dept. of Metallurgy and Engineering Materials)

    1990-03-01

    Slow strain rate testing (SSRT) was initially developed as a rapid, ad hoc laboratory method for assessing the propensity for metals an environments to promote stress corrosion cracking. It is now clear, however, that there are good theoretical reasons why strain rate, as opposed to stress per se, will often be the controlling parameter in determining whether or not cracks are nucleated and, if so, are propagated. The synergistic effects of the time dependence of corrosion-related reactions and microplastic strain provide the basis for mechanistic understanding of stress corrosion cracking in high-pressure pipelines and other structures. However, while this may be readily comprehended in the context of laboratory slow strain tests, its extension to service situations may be less apparent. Laboratory work involving realistic stressing conditions, including low-frequency cyclic loading, shows that strain or creep rates give good correlation with thresholds for cracking and with crack growth kinetics.

  15. An analysis of static loading results on slotted ring samples to allow for further investigation of stress corrosion cracking

    Energy Technology Data Exchange (ETDEWEB)

    Metzler, J.; Ferrier, G.A.; Farahani, M.; Chan, P.K.; Corcoran, E.C., E-mail: Joseph.Metzler@rmc.ca [Royal Military College of Canada, Kingston, ON (Canada)

    2014-07-01

    Stress corrosion cracking can cause failures of CANDU Zircaloy-4 fuel sheathing. A series of static loading tests were performed on slotted ring samples in support of ongoing efforts to analyze the effects of iodine concentration, temperature, and stress levels on the corrosion of Zircaloy-4. The corrosive degradation of Zircaloy-4 was evaluated using deflection measurements. A regression analysis determined that iodine concentration and temperature have had a linear effect on deflection results thus far, while the stress level has not. (author)

  16. Microstructural evaluation of the lacquered layer quality after corrosion load

    Directory of Open Access Journals (Sweden)

    Jaroslava Svobodova

    2015-03-01

    Full Text Available Surface pre-treatment is one of the most important steps before applying the final surface treatment. These pre-treatments, like phosphating, alkaline degreasing, pickling in acids, is used to remove impurities from the surface of the base material and to create appropri-ate conditions for adhesion of the final coating (metal coatings, organic coatings. Currently are on the rise surface treatments technologies, which are based on nanotechnology. It's a new generation of chemical products for the chemical surface preparation. This paper deals with the evaluation of microstructure of painted sheet metal after corrosion load with salt spray in the corrosion chamber. Metal sheets used for the experiment have been produced from low-carbon non alloy steel. For pre-treatment of the sheet metal was used alkaline degreasing (CC, iron phosphating (Feph and nanotechnology based product Alfipas (Zr in combinations: group A - CC + Zr, group B - Feph + Zr and group C - CC + Feph + Zr. The aim of this paper is to analyze the behavior of painted sheet metal after corrosion load and evaluate the effect of pretreatment to resistance of painted surface layer.

  17. Deformation mechanisms in cyclic creep and fatigue

    International Nuclear Information System (INIS)

    Laird, C.

    1979-01-01

    Service conditions in which static and cyclic loading occur in conjunction are numerous. It is argued that an understanding of cyclic creep and cyclic deformation are necessary both for design and for understanding creep-fatigue fracture. Accordingly a brief, and selective, review of cyclic creep and cyclic deformation at both low and high strain amplitudes is provided. Cyclic loading in conjunction with static loading can lead to creep retardation if cyclic hardening occurs, or creep acceleration if softening occurs. Low strain amplitude cyclic deformation is understood in terms of dislocation loop patch and persistent slip band behavior, high strain deformation in terms of dislocation cell-shuttling models. While interesting advances in these fields have been made in the last few years, the deformation mechanisms are generally poorly understood

  18. Unexpected damage and/or failures caused by creep below the limit temperature for creep design; Ovaentade krypskador och/eller haverier orsakade av krypmekanismer under graenstemperaturen

    Energy Technology Data Exchange (ETDEWEB)

    Storesund, Jan; Eklund, Anders; Taflin, Anders; Thunvik, Thomas

    2006-07-15

    Recently, several cases of cracking caused by creep have occurred in components operating at temperatures below the specified limit temperature for creep. Components operating below this limit temperature have not been designed with due regard to creep cracking and have accordingly not been subjected to inspection for creep damage. This work has surveyed the extent of these cases of creep damage by reviewing earlier failures and performed metallographic studies of damaged components and made parametric calculations of creep crack growth below the limit temperature. The following critical parameters have been determined for power plants: Creep damage below the transition temperature does not usually occur until operating times above 200.000 hours. Time to rupture differs from ordinary creep crack growth because these cracks have substantially longer incubation time of 20-30 years, with relative low creep deformation, and after that a rapid creep crack growth with only some few years to the creep rupture. Operation at 470-480 deg C, i.e. up to some 10 deg C below the transition temperature for a material like EN 13CrMo4-5, can be expected to result in severe creep damages comparable with ordinary creep failures at stressed locations. Operation at a temperature of 450-460 deg C can give rise to creep damage, however, this damage shows a more sparse occurrence. Creep damaged welds occurring below the limit temperature show cracks at the melting junction of the weld bead in opposite to ordinary creep damages. System stresses can also cause a more rapid crack growth. An international survey also shows that the variation of creep strength values between individual steel batches are just as wide as for ordinary creep. Based on this work, the following complementary recommendations can be issued: Elastic stress analysis (based on expansion calculations) can also be recommended for the identification of areas with intensified stresses. One should also perform a complete

  19. A generic validation methodology and its application to a set of multi-axial creep damage constitutive equations

    International Nuclear Information System (INIS)

    Xu Qiang

    2005-01-01

    A generic validation methodology for a set of multi-axial creep damage constitutive equations is proposed and its use is illustrated with 0.5Cr0.5Mo0.25V ferritic steel which is featured as brittle or intergranular rupture. The objective of this research is to develop a methodology to guide systematically assess the quality of a set of multi-axial creep damage constitutive equations in order to ensure its general applicability. This work adopted a total quality assurance approach and expanded as a Four Stages procedure (Theories and Fundamentals, Parameter Identification, Proportional Load, and Non-proportional load). Its use is illustrated with 0.5Cr0.5Mo0.25V ferritic steel and this material is chosen due to its industry importance, the popular use of KRH type of constitutive equations, and the available qualitative experimental data including damage distribution from notched bar test. The validation exercise clearly revealed the deficiencies existed in the KRH formulation (in terms of mathematics and physics of damage mechanics) and its incapability to predict creep deformation accurately. Consequently, its use should be warned, which is particularly important due to its wide use as indicated in literature. This work contributes to understand the rational for formulation and the quality assurance of a set of constitutive equations in creep damage mechanics as well as in general damage mechanics. (authors)

  20. Weldability and weld performance of a special grade Hastelloy-X modified for high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Shimizu, S.; Mutoh, Y.

    1984-01-01

    The characteristics of weld defects in the electron beam (EB) welding and the tungsten inert gas (TIG) arc welding for Hastelloy-XR, a modified version of Hastelloy-X, are clarified through the bead-on-plate test and the Trans-Varestraint test. Based on the results, weldabilities on EB and TIG weldings for Hastelloy-XR are discussed and found to be almost the same as Hastelloy-X. The creep rupture behaviors of the welded joints are evaluated by employing data on creep properties of the base and the weld metals. According to the evaluation, the creep rupture strength of the EB-welded joint may be superior to that of the TIG-welded joint. The corrosion test in helium containing certain impurities is conducted for the weld metals. There is no significant difference of such corrosion characteristics as weight gain, internal oxidation, depleted zone, and so on between the base and the weld metals. Those are superior to Hastelloy-X

  1. Cleavage and creep fracture of rock salt

    International Nuclear Information System (INIS)

    Chan, K.S.; Munson, D.E.; Bodner, S.R.

    1996-01-01

    The dominant failure mechanism in rock salt at ambient temperature is either cleavage or creep fracture. Since the transition of creep fracture to cleavage in a compressive stress field is not well understood, failure of rock salt by cleavage and creep fracture is analyzed in this paper to elucidate the effect of stress state on the competition between these two fracture mechanisms. For cleavage fracture, a shear crack is assumed to cause the formation and growth of a symmetric pair of wing cracks in a predominantly compressive stress field. The conditions for wing-crack instability are derived and presented as the cleavage fracture boundary in the fracture mechanism map. Using an existing creep fracture model, stress conditions for the onset of creep fracture and isochronous failure curves of specified times-to-rupture are calculated and incorporated into the fracture mechanism map. The regimes of dominance by cleavage and creep fracture are established and compared with experimental data. The result indicates that unstable propagation of cleavage cracks occurs only in the presence of tensile stress. The onset of creep fracture is promoted by a tensile stress, but can be totally suppressed by a high confining pressure. Transition of creep fracture to cleavage occurs when critical conditions of stress difference and tensile stress for crack instability are exceeded

  2. Cyclic Creep Behavior of Modified 9Cr-1Mo Steel at 600 .deg. C

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Kim, Dae Whan; Jang, Jin Sung; Park, Jae Young

    2012-01-01

    Cyclic deformation behavior is important in practice because high-temperature structural components are exposed under the cyclic conditions of repeated loading. In static creep (SC), the response of the material is simple as a static state of monotonic loading. However, in cyclic creep (CC), it is complex as dynamic loading. Cyclic creep data have been rarely reported until now. In particular, it is not understood well whether cyclic creep will accelerate or retard the creep rate compared with static creep, because it is not only the plastic deformation under cyclic loading is drastically different from monotonic loading, but also the cyclic response is dependent on the cycling frequency, stress range, stress ratio, and hold periods of cycling. Therefore, it is necessary to clarify the cyclic creep behavior influencing the creep deformation and fracture process. In this study, a series of cyclic creep tests was carried out using magnitudes of stress range of constant stress ratio (R=0.1) under continuous tension-tension loading cycles at a hold time of 10 minutes. Cyclic curves were monitored and obtained with time variations, and the properties of the cyclic creep tests were compared with those of static creep tests. The fracture microstructures were observed and analyzed

  3. Onset of aseismic creep on major strike-slip faults

    KAUST Repository

    Çakir, Ziyadin

    2012-10-02

    Time series analysis of spaceborne synthetic aperture radar (SAR) data, GPS measurements, and fi eld observations reveal that the central section of the Izmit (Turkey) fault that slipped with a supershear rupture velocity in the A.D. 1999, Mw7.4, Izmit earthquake began creeping aseismically following the earthquake. Rapid initial postseismic afterslip decayed logarithmically with time and appears to have reached a steady rate comparable to the preearthquake full fault-crossing rate, suggesting that it may continue for decades and possibly until late in the earthquake cycle. If confi rmed by future monitoring, these observations identify postseismic afterslip as a mechanism for initiating creep behavior along strike-slip faults. Long-term afterslip and/or creep has signifi cant implications for earthquake cycle models, recurrence intervals of large earthquakes, and accordingly, seismic hazard estimation along mature strike-slip faults, in particular for Istanbul which is believed to lie adjacent to a seismic gap along the North Anatolian fault in the Sea of Marmara. © 2012 Geological Society of America.

  4. Onset of aseismic creep on major strike-slip faults

    KAUST Repository

    Ç akir, Ziyadin; Ergintav, Semih; Ö zener, Haluk; Doǧan, Uǧur; Akoglu, Ahmet; Meghraoui, Mustapha; Reilinger, Robert E.

    2012-01-01

    Time series analysis of spaceborne synthetic aperture radar (SAR) data, GPS measurements, and fi eld observations reveal that the central section of the Izmit (Turkey) fault that slipped with a supershear rupture velocity in the A.D. 1999, Mw7.4, Izmit earthquake began creeping aseismically following the earthquake. Rapid initial postseismic afterslip decayed logarithmically with time and appears to have reached a steady rate comparable to the preearthquake full fault-crossing rate, suggesting that it may continue for decades and possibly until late in the earthquake cycle. If confi rmed by future monitoring, these observations identify postseismic afterslip as a mechanism for initiating creep behavior along strike-slip faults. Long-term afterslip and/or creep has signifi cant implications for earthquake cycle models, recurrence intervals of large earthquakes, and accordingly, seismic hazard estimation along mature strike-slip faults, in particular for Istanbul which is believed to lie adjacent to a seismic gap along the North Anatolian fault in the Sea of Marmara. © 2012 Geological Society of America.

  5. Creep testing of nodular iron at ambient and elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Martinsson, Aasa; Andersson-Oestling, Henrik C.M.; Seitisleam, Facredin; Wu, Rui; Sandstroem, Rolf (Swerea KIMAB AB, Stockholm (Sweden))

    2010-12-15

    The creep strain at room temperature, 100 and 125 deg C has been investigated for the ferritic nodular cast iron insert intended for use as the load-bearing part of canisters for long term disposal of spent nuclear fuel. The microstructure consisted of ferrite, graphite nodules of different sizes, compacted graphite and pearlite. Creep tests have been performed for up to 41,000 h. The specimens were cut out from material taken from two genuine inserts, I30 and I55. After creep testing, the specimens from the 100 deg C tests were hardness tested and a metallographic examination was performed. Creep strains at all temperatures appear to be logarithmic, and accumulation of creep strain diminishes with time. The time dependence of the creep strain is consistent to the W-model for primary creep. During the loading plastic strains up to 1% appeared. The maximum recorded creep strain after the loading phase was 0.025%. This makes the creep strains technically insignificant. Acoustic emission recordings during the loading of the room temperature tests showed no sounds or other evidence of microcracking during the loading phase. There is no evidence that the hardness or the graphite microstructure changed during the creep tests

  6. Experimental Investigation into Corrosion Effect on Mechanical Properties of High Strength Steel Bars under Dynamic Loadings

    Directory of Open Access Journals (Sweden)

    Hui Chen

    2018-01-01

    Full Text Available The tensile behaviors of corroded steel bars are important in the capacity evaluation of corroded reinforced concrete structures. The present paper studies the mechanical behavior of the corroded high strength reinforcing steel bars under static and dynamic loading. High strength reinforcing steel bars were corroded by using accelerated corrosion methods and the tensile tests were carried out under different strain rates. The results showed that the mechanical properties of corroded high strength steel bars were strain rate dependent, and the strain rate effect decreased with the increase of corrosion degree. The decreased nominal yield and ultimate strengths were mainly caused by the reduction of cross-sectional areas, and the decreased ultimate deformation and the shortened yield plateau resulted from the intensified stress concentration at the nonuniform reduction. Based on the test results, reduction factors were proposed to relate the tensile behaviors with the corrosion degree and strain rate for corroded bars. A modified Johnson-Cook strength model of corroded high strength steel bars under dynamic loading was proposed by taking into account the influence of corrosion degree. Comparison between the model and test results showed that proposed model properly describes the dynamic response of the corroded high strength rebars.

  7. Residual stresses and stress corrosion effects in cast steel nuclear waste overpacks

    International Nuclear Information System (INIS)

    Attinger, R.O.; Mercier, O.; Knecht, B.; Rosselet, A.; Simpson, J.P.

    1991-01-01

    In the concepts for final disposal of high-level radioactive waste in Switzerland, one engineered barrier consists of an overpack made out of cast steel GS-40. Whenever tensile stresses are expected in the overpack, the issue of stress corrosion cracking must be expected. A low-strength steel was chosen to minimize potential problems associated with stress corrosion cracking. A series of measurements on stress corrosion cracking under the conditions as expected in the repository confirmed that the corrosion allowance of 50 mm used for the design of the reference overpack is sufficient over the 1000 years design lifetime. Tensile stresses are introduced by the welding process when the overpack is closed. For a multipass welding, the evolution of deformations, strains and stresses were determined in a finite-element calculation. Assuming an elastic-plastic material behavior without creep, the residual stresses are high; considering creep would reduce them. A series of creep tests revealed that the initial creep rate is important for cast steel already at 400deg C. (orig.)

  8. Creep buckling analysis of shells

    International Nuclear Information System (INIS)

    Stone, C.M.; Nickell, R.E.

    1977-01-01

    The current study was conducted in an effort to determine the degree of conservatism or lack of conservatism in current ASME design rules concerning time-dependent (creep) buckling. In the course of this investigation, certain observations were made concerning the numerical solution of creep buckling problems. It was demonstrated that a nonlinear finite element code could be used to solve the time-dependent buckling problem. A direct method of solution was presented which proved to be computationally efficient and provided answers which agreed very well with available analytical solutions. It was observed that the calculated buckling times could vary widely for small errors in computed displacements. The presence of high creep strain rates contributed to the prediction of early buckling times when calculated during the primary creep stage. The predicted time estimates were found to increase with time until the secondary stage was reached and the estimates approached the critical times predicted without primary creep. It can be concluded, therefore, that for most nuclear piping components, whose primary creep stage is small compared to the secondary stage, the effect of primary creep is negligible and can be omitted from the calculations. In an evaluation of the past and current ASME design rules for time-dependent, load controlled buckling, it was concluded that current use of design load safety factors is not equivalent to a safety factor of ten on service life for low creep exponents

  9. Creep resistance in a new alloy based on Fe3Al

    International Nuclear Information System (INIS)

    Morris, D.G.

    1994-01-01

    Iron aluminide alloys based on the composition Fe 3 Al are receiving considerable attention as structural materials for applications at high temperatures in view of their excellent resistance to oxidation and corrosion as well as reasonable mechanical properties. Recently, problems associated with poor ductility at room temperature have been alleviated by small additions of Cr and by microstructure control, as well by as the realization that the low ductility is, in part, extrinsic behavior due to environmental attack. These materials suffer also from a loss of their good strength at temperatures above about 600 C, and recent attention has led also to the development of creep resistant alloys. The present report considers a new alloy developed for improved creep resistance which shows also good oxidation and erosion resistance. Effort has been devoted to an examination of the dislocation structures that characterize deformation, both cold and hot, during fast tensile straining as well as during creep testing

  10. Microstructural changes due to laser peening in modified 9Cr-1Mo steel subjected to creep damage at 823K and 923K in air

    International Nuclear Information System (INIS)

    Nakasone, Yuji; Kizuki, Yuta; Suzuki, Hayao; Minowa, Takuya

    2013-01-01

    The present study has investigated microstructural changes due to laser peening in modified 9Cr-1Mo steel subjected to creep. The EBSD or Electron Backscatter Diffraction studies have been made on round-bar type specimens creeping at applied stresses of 230 and 240 MPa at 823 K and 105 MPa at 923K in air. Prior to the creep tests, laser peening was applied to specimens at laser power of 8.4-22GW/cm 2 per pulse in water. Microstructural change in each specimen after its creep test was investigated by EBSD/SEM. The EBSD/SEM analyses revealed that the laser peening treatment makes creep rupture time longer and it reveals local misorientation value for rupture. (author)

  11. Creep of trabecular bone from the human proximal tibia

    Energy Technology Data Exchange (ETDEWEB)

    Novitskaya, Ekaterina, E-mail: eevdokim@ucsd.edu [Mechanical and Aerospace Engineering, UC, San Diego, La Jolla, CA 92093 (United States); Materials Science and Engineering Program, UC, San Diego, La Jolla, CA 92093 (United States); Zin, Carolyn [Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218 (United States); Chang, Neil; Cory, Esther; Chen, Peter [Departments of Bioengineering and Orthopaedic Surgery, UC, San Diego, La Jolla, CA 92093 (United States); D’Lima, Darryl [Shiley Center for Orthopaedic Research and Education, Scripps Health, La Jolla, CA 92037 (United States); Sah, Robert L. [Materials Science and Engineering Program, UC, San Diego, La Jolla, CA 92093 (United States); Departments of Bioengineering and Orthopaedic Surgery, UC, San Diego, La Jolla, CA 92093 (United States); McKittrick, Joanna [Mechanical and Aerospace Engineering, UC, San Diego, La Jolla, CA 92093 (United States); Materials Science and Engineering Program, UC, San Diego, La Jolla, CA 92093 (United States)

    2014-07-01

    Creep is the deformation that occurs under a prolonged, sustained load and can lead to permanent damage in bone. Creep in bone is a complex phenomenon and varies with type of loading and local mechanical properties. Human trabecular bone samples from proximal tibia were harvested from a 71-year old female cadaver with osteoporosis. The samples were initially subjected to one cycle load up to 1% strain to determine the creep load. Samples were then loaded in compression under a constant stress for 2 h and immediately unloaded. All tests were conducted with the specimens soaked in phosphate buffered saline with proteinase inhibitors at 37 °C. Steady state creep rate and final creep strain were estimated from mechanical testing and compared with published data. The steady state creep rate correlated well with values obtained from bovine tibial and human vertebral trabecular bone, and was higher for lower density samples. Tissue architecture was analyzed by micro-computed tomography (μCT) both before and after creep testing to assess creep deformation and damage accumulated. Quantitative morphometric analysis indicated that creep induced changes in trabecular separation and the structural model index. A main mode of deformation was bending of trabeculae. - Highlights: • Compressive creep tests of human trabecular bone across the tibia were performed. • The creep rate was found to be inversely proportional to the density of the samples. • μ-computed tomography before and after testing identified regions of deformation. • Bending of the trabeculae was found to be the main deformation mode.

  12. Loading of the San Andreas fault by flood-induced rupture of faults beneath the Salton Sea

    Science.gov (United States)

    Brothers, Daniel; Kilb, Debi; Luttrell, Karen; Driscoll, Neal W.; Kent, Graham

    2011-01-01

    The southern San Andreas fault has not experienced a large earthquake for approximately 300 years, yet the previous five earthquakes occurred at ~180-year intervals. Large strike-slip faults are often segmented by lateral stepover zones. Movement on smaller faults within a stepover zone could perturb the main fault segments and potentially trigger a large earthquake. The southern San Andreas fault terminates in an extensional stepover zone beneath the Salton Sea—a lake that has experienced periodic flooding and desiccation since the late Holocene. Here we reconstruct the magnitude and timing of fault activity beneath the Salton Sea over several earthquake cycles. We observe coincident timing between flooding events, stepover fault displacement and ruptures on the San Andreas fault. Using Coulomb stress models, we show that the combined effect of lake loading, stepover fault movement and increased pore pressure could increase stress on the southern San Andreas fault to levels sufficient to induce failure. We conclude that rupture of the stepover faults, caused by periodic flooding of the palaeo-Salton Sea and by tectonic forcing, had the potential to trigger earthquake rupture on the southern San Andreas fault. Extensional stepover zones are highly susceptible to rapid stress loading and thus the Salton Sea may be a nucleation point for large ruptures on the southern San Andreas fault.

  13. Influence of reference stress formulae on creep and creep-fatigue crack initiation and growth prediction in plate components

    International Nuclear Information System (INIS)

    Wasmer, K.; Nikbin, K.M.; Webster, G.A.

    2010-01-01

    Creep and creep-fatigue crack growth in pre-cracked plates of 316L(N) austenitic stainless steel, containing a semi-elliptical surface defect and tested at 650 o C under combined axial and bending loading, are investigated. The results have been interpreted in terms of the creep fracture mechanics parameter C* and compared with data obtained on standard compact tension (CT) specimens of the same material and batch. In making the assessments, the reference stress method has been used to determine C*. Several formulae exist for calculating the reference stress depending on whether it is based on a 'global' or a 'local' collapse mechanism and the assessment procedure adopted. When using this approach, it has been found that the most satisfactory comparison of crack growth rates with standard CT specimen data is obtained when the 'global' reference stress solution is used in conjunction with mean uniaxial creep properties. It has been found that the main effect of changing the fatigue cycle range from 0.1 to -1.0 is to cause an acceleration in the early stage of cracking.

  14. Creep and creep recovery of concrete subjected to triaxial compressive stresses at elevated temperature

    International Nuclear Information System (INIS)

    Ohnuma, Hiroshi; Abe, Hirotoshi

    1979-01-01

    In order to design rationally the vessels made of prestressed concrete for nuclear power stations and to improve the accuracy of high temperature creep analysis, the Central Research Institute of Electric Power Industry had carried out the proving experiments with scale models. In order to improve the accuracy of analysis, it is important to grasp the creep behavior of the concrete subjected to triaxial compressive stresses at high temperature as the basic property of concrete, because actual prestressed concrete vessels are in such conditions. In this paper, the triaxial compression creep test at 60 deg. C using the concrete specimens with same mixing ratio as the scale models is reported. The compressive strength of the concrete at the age of 28 days was 406 kg/cm 2 , and the age of the concrete at the time of loading was 63 days. Creep and creep recovery were measured for 5 months and 2 months, respectively. The creep of concrete due to uniaxial compression increased with temperature rise, and the creep strain at 60 deg. C was 2.54 times as much as that at 20 deg. C. The effective Poisson's ratio in triaxial compression creep was 0.15 on the average, based on the creep strain due to uniaxial compression at 60 deg. C. The creep recovery rate in high temperature, triaxial compression creep was 33% on the average. (Kako, I.)

  15. Creep behavior of Ti3Al-Nb intermetallic alloys

    International Nuclear Information System (INIS)

    Yu, T.H.; Yue, W.J.; Koo, C.H.

    1997-01-01

    It is well known that Ti 3 Al-Nb alloys are potential materials for aerospace applications. The creep property is an important consideration when materials are used at high temperature. In this article, the effect of microstructure of Ti-25Al-10Nb alloy on the creep property was investigated, and the creep property of Ti-25Al-10Nb alloy modified by small addition of silicon 0.2 at.% or carbon 0.1 at.% was observed. The alloy with the addition of molybdenum to replace part of niobium 2 at.% was also studied. The experimental results show that the furnace-cooled Ti-25Al-10Nb alloy has superior creep resistance to the air-cooled Ti-25Al-10Nb alloy at 200 MPa, but exhibits poor creep resistance at 250 MPa or above. Small addition of silicon to the Ti-25Al-10Nb alloy may increase creep resistance. Small addition of carbon to the Ti-25Al-10Nb alloy may reduce creep resistance but raise rupture strain. Molybdenum is the most effective alloying element to increase creep resistance for the Ti-25Al-10Nb alloy. The creep mechanism of Ti-25Al-10Nb alloy is governed by dislocation climb. (orig.)

  16. Microstructure and thermomechanical pretreatment effects on creep behaviour of helium-implanted DIN 1.4970 austenitic stainless steel

    International Nuclear Information System (INIS)

    Matta, M.K.; Kesternich, W.

    1990-01-01

    Microstructure investigations were carried out on unimplanted and 150 at ppm helium implanted foil specimens of DIN 1.4970 austenitic stainless steel after various thermomechanical pretreatments. Creep test were also carried out for both helium-implanted and unimplanted specimens at 700degC and 800degC. The strength, ductility and rupture time are correalted with the dislocation and precipitate distributions. Helium embrittlement can be reduced in these experiments when dispersive TiC precipitate distributions are produced by proper pretreatments or allowed to form during creep test. (author). 14 refs., 11 figs

  17. Temperature-dependence of creep behaviour of dental resin-composites.

    Science.gov (United States)

    El-Safty, S; Silikas, N; Watts, D C

    2013-04-01

    To determine the effect of temperature, over a clinically relevant range, on the creep behaviour of a set of conventional and flowable resin-composites including two subgroups having the same resin matrix and varied filler loading. Eight dental resin-composites: four flowable and four conventional were investigated. Stainless steel split moulds (4 mm × 6 mm) were used to prepare cylindrical specimens for creep examination. Specimens were irradiated in the moulds in layers of 2mm thickness (40s each), as well as from the radial direction after removal from the moulds, using a light-curing unit with irradiance of 650 mW/cm(2). A total of 15 specimens from each material were prepared and divided into three groups (n=5) according to the temperature; Group I: (23°C), Group II: (37°C) and Group III: (45°C). Each specimen was loaded (20 MPa) for 2h and unloaded for 2h. Creep was measured continuously over the loading and unloading periods. At higher temperatures greater creep and permanent set were recorded. The lowest mean creep occurred with GS and GH resin-composites. Percentage of creep recovery decreased at higher temperatures. At 23°C, the materials exhibited comparable creep. At 37°C and 45°C, however, there was a greater variation between materials. For all resin-composites, there was a strong linear correlation with temperature for both creep and permanent set. Creep parameters of resin-composites are sensitive to temperature increase from 23 to 45°C, as can occur intra-orally. For a given resin matrix, creep decreased with higher filler loading. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Microstructural changes during creep and life assessment of Mod.9Cr-1Mo steel

    International Nuclear Information System (INIS)

    Sawada, Kota; Maruyama, Kouichi; Komine, Ryuji; Nagae, Yuji.

    1997-01-01

    Several microstructural changes take place in a material during the course of creep. These changes can be a measure of creep life. In this paper, microstructural changes in Mod.9Cr-1Mo steel were studied and it was examined which is a good measure of creep life. Microscopic structural changes, such as void growth, lath structure uniformly oriented to the tensile axis and elongation of grains, are evident only in the necked portion of ruptured specimens. These macroscopic structural changes are not useful for creep life assessment. Lath width increases and dislocation density within lath decreases with increasing creep duration. These changes in dislocation substructure start in the early stage of creep life, and cause the increase of strain rate in the tertiary creep stage. The lath width and the dislocation density reach a saturated value before rupture. The saturated values are independent of temperature, and uniquely related to creep stress normalized by shear modulus. The extent of these microstructural changes are greater at lower stresses under which the material is practically used. These facts suggest that the lath width and the dislocation density within lath can be a useful measure of creep life. Hardness of crept specimens is closely related to the lath width and the dislocation density within lath. The changes of these microstructural features can be evaluated by the measurement of hardness. (author)

  19. The microstructure and creep behavior of cold rolled udimet 188 sheet.

    Science.gov (United States)

    Boehlert, C J; Longanbach, S C

    2011-06-01

    Udimet 188 was subjected to thermomechanical processing (TMP) in an attempt to understand the effects of cold-rolling deformation on the microstructure and tensile-creep behavior. Commercially available sheet was cold rolled to varying amounts of deformation (between 5-35% reduction in sheet thickness) followed by a solution treatment at 1,464 K (1,191 °C) for 1 h and subsequent air cooling. This sequence was repeated four times to induce a high-volume fraction of low-energy grain boundaries. The resultant microstructure was characterized using electron backscattered diffraction. The effect of the TMP treatment on the high-temperature [1,033-1,088 K (760-815 °C)] creep behavior was evaluated. The measured creep stress exponents (6.0-6.8) suggested that dislocation creep was dominant at 1,033 K (760 °C) for stresses ranging between 100-220 MPa. For stresses ranging between 25-100 MPa at 1,033 K (760 °C), the stress exponents (2.3-2.8) suggested grain boundary sliding was dominant. A significant amount of grain boundary cracking was observed both on the surface and subsurface of deformed samples. To assess the mechanisms of crack nucleation, in situ scanning electron microscopy was performed during the elevated-temperature tensile-creep deformation. Cracking occurred preferentially along general high-angle grain boundaries (GHAB) and less than 25% of the cracks were found on low-angle grain boundaries (LAB) and coincident site lattice boundaries (CSLB). Creep rupture experiments were performed at T = 1,088 K (815 °C) and σ = 165 MPa and the greatest average time-to-rupture was exhibited by the TMP sheet with the greatest fraction of LAB+CSLB. However, a clear correlation was not exhibited between the grain boundary character distribution and the minimum creep rates. The findings of this work suggest that although grain boundary engineering may be possible for this alloy, simply relating the fraction of grain boundary types to the creep resistance is not

  20. Effect of transient liquid phase (TLP) bonding on the ductility of a Ni-base single crystal superalloy in a stress rupture test

    International Nuclear Information System (INIS)

    Liu, J.D.; Jin, T.; Zhao, N.R.; Wang, Z.H.; Sun, X.F.; Guan, H.R.; Hu, Z.Q.

    2008-01-01

    A Ni-base single crystal superalloy was transient liquid phase (TLP) bonded using a Ni-Cr-B amorphous foil at 1230 deg. C for 8 h. Stress rupture tests of the TLP joint and a matrix sample were carried out at 982 deg. C/248 MPa and 1010 deg. C/248 MPa. The microstructures and fracture surfaces were studied using scanning electron microscopy (SEM). Transmission electron microscopy (TEM) investigations were performed after creep rupture testing to examine the deformation substructures. The results show that the stress rupture ductility of TLP joints is significantly decreased compared to the matrix sample. This reduction of the ductility of TLP joints can be attributed to solid solution strengthening by boron atoms, subgrain boundaries formed in the bonding zone and the concentration of creep cavities formed during the last stage of the stress rupture test

  1. Long term creep behavior of concrete

    International Nuclear Information System (INIS)

    Kennedy, T.W.

    1975-01-01

    This report presents the findings of an experimental investigation to evaluate the long term creep behavior of concrete subjected to sustained uniaxial loads for an extended period of time at 75 0 F. The factors investigated were (1) curing time (90, 183, and 365 days); (2) curing history (as-cast and air-dried); and (3) uniaxial stress (600 and 2400 psi). The experimental investigation applied uniaxial compressive loads to cylindrical concrete specimens and measured strains with vibrating wire strain gages that were cast in the concrete specimen along the axial and radial axes. Specimens cured for 90 days prior to loading were subjected to a sustained load for a period of one year, at which time the loads were removed; the specimens which were cured for 183 or 365 days, however, were not unloaded and have been under load for 5 and 4.5 years, respectively. The effect of each of the above factors on the instantaneous and creep behavior is discussed and the long term creep behavior of the specimens cured for 183 or 365 days is evaluated. The findings of these evaluations are summarized. (17 figures, 10 tables) (U.S.)

  2. In-reactor creep rupture of 20% cold-worked AISI 316 stainless steel

    International Nuclear Information System (INIS)

    Lovell, A.J.; Chin, B.A.; Gilbert, E.R.

    1981-01-01

    Results of an experiment designed to measure in-reactor stress-to-rupture properties of 20% cold-worked AISI 316 stainless steel are reported. The in-reactor rupture data are compared with postirradiation and unirradiated test results. In-reactor rupture lives were found to exceed rupture predictions of postirradiation tests. This longer in-reactor rupture life is attributed to dynamic point defect generation which is absent during postirradiation testing. The in-reactor stress-to-rupture properties are shown to be equal to or greater than the unirradiated material stress-to-rupture properties for times up to 7000 h. (author)

  3. Tensile, creep and relaxation characteristics of zircaloy cladding at 3850C

    International Nuclear Information System (INIS)

    Murty, K.L.; McDonald, S.G.

    1981-01-01

    Axial creep tests were carried out at stresses ranging form 30 ksi to 50 ksi. Steady-state creep rates were evaluated from stress change tests to minimize the number of samples. The secondary creep rate was related to the applied stress through a Sinh function. The functional dependence of the strain rate on the stress was also evaluated from load relaxation tests. It is demonstrated that the strain rates derived from load relaxation tests are identical to the creep data when the relaxation testing was carried out at the point of maximum load in a tensile test. In addition, the creep and relaxation results are identical to the true ultimate tensile stress versus applied strain-rate data derived from tensile tests. (orig./HP)

  4. Creep-Fatigue Failure Diagnosis

    Science.gov (United States)

    Holdsworth, Stuart

    2015-01-01

    Failure diagnosis invariably involves consideration of both associated material condition and the results of a mechanical analysis of prior operating history. This Review focuses on these aspects with particular reference to creep-fatigue failure diagnosis. Creep-fatigue cracking can be due to a spectrum of loading conditions ranging from pure cyclic to mainly steady loading with infrequent off-load transients. These require a range of mechanical analysis approaches, a number of which are reviewed. The microstructural information revealing material condition can vary with alloy class. In practice, the detail of the consequent cracking mechanism(s) can be camouflaged by oxidation at high temperatures, although the presence of oxide on fracture surfaces can be used to date events leading to failure. Routine laboratory specimen post-test examination is strongly recommended to characterise the detail of deformation and damage accumulation under known and well-controlled loading conditions to improve the effectiveness and efficiency of failure diagnosis. PMID:28793676

  5. Design of heat treatments for 9-12%Cr steels to optimise creep resistance for power plant applications

    Energy Technology Data Exchange (ETDEWEB)

    Morris, P.F.; Sachadel, U.A.; Clarke, P.D. [Tata Steel Europe, Rotherham (United Kingdom). Swinden Technology Centre; CRD and T, IJmuiden (Netherlands)

    2010-07-01

    Optimisation of the creep rupture properties of Steel 92 (9%Cr, 0.5%Mo, 2%W) by modification of heat treatment and C:N ratio has been studied. It was shown that a higher austenization temperature and double tempering at lower temperature can significantly extend creep life of the standard composition. The increase in austenization temperature from 1060 C and double tempering at 660 C/3h instead of single tempering at 780 C/2h resulted in the increase of stress rupture life from 1,734 to 6,179h at 650 C/110MPa. Even greater improvement in creep life was achieved by the combination of the modified heat treatment and decreased C:N ratio. In this case the creep life was extended to 10,255 h at 650 C/110MPa. A further increase in austenitization temperature to 1200 C for the decreased C:N ratio variant extended the rupture life to 17,118h. Initial results indicate that this modified heat treatment schedule does not result in notch brittle behaviour and most of the improvement in creep strength remains after a simulated post weld heat treatment at 740 C. The stress rupture programme is continuing and at 600 C test durations are approaching 60,000h. To explain the effect on rupture life thermodynamic calculations, microscopic investigations and a literature study were performed. Electron metallography investigations revealed that the lower tempering temperature resulted in a finer distribution of nano-size particles. Calculations show that increasing the austenitization temperature gave more dissolved B, N, C, Nb and V. The lower C:N ratio resulted in a higher atomic fraction of N in nano-size particles on subsequent tempering. Dissolved B should stabilize M{sub 23}M{sub 6} and dissolved N, C, Nv, and V should allow precipitation of a higher volume fraction of nano-size carbo-nitrides during tempering. Literature data suggest that lower tempering temperatures could also change their type from MX to M{sub 2}X. (orig.)

  6. Microstructural characterisation and constitutive behaviour of alloy RR1000 under fatigue and creep-fatigue loading conditions

    International Nuclear Information System (INIS)

    Stoecker, C.; Zimmermann, M.; Christ, H.-J.; Zhan, Z.-L.; Cornet, C.; Zhao, L.G.; Hardy, M.C.; Tong, J.

    2009-01-01

    Mechanical behaviour of a nickel-based superalloy, RR1000, has been investigated at 650 deg. C under cyclic and dwell loading conditions. The microstructural characteristics of the alloy have been studied using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and the distribution patterns of the dislocations and slip planes have been compared between samples tested under fatigue and creep-fatigue loading conditions. Constitutive behaviour of the alloy was described by a unified constitutive model, where both cyclic plastic and viscoplastic strains were represented by one inelastic strain. The results show that the precipitation state is very stable at 650 deg. C and only minor differences exist in the dislocation arrangements formed under pure fatigue and combined creep and fatigue conditions. Hence, a unified constitutive model seems to be justified in describing and predicting the constitutive behaviour in both cases.

  7. On cyclic yield strength in definition of limits for characterisation of fatigue and creep behaviour

    Science.gov (United States)

    Gorash, Yevgen; MacKenzie, Donald

    2017-06-01

    This study proposes cyclic yield strength as a potential characteristic of safe design for structures operating under fatigue and creep conditions. Cyclic yield strength is defined on a cyclic stress-strain curve, while monotonic yield strength is defined on a monotonic curve. Both values of strengths are identified using a two-step procedure of the experimental stress-strain curves fitting with application of Ramberg-Osgood and Chaboche material models. A typical S-N curve in stress-life approach for fatigue analysis has a distinctive minimum stress lower bound, the fatigue endurance limit. Comparison of cyclic strength and fatigue limit reveals that they are approximately equal. Thus, safe fatigue design is guaranteed in the purely elastic domain defined by the cyclic yielding. A typical long-term strength curve in time-to-failure approach for creep analysis has two inflections corresponding to the cyclic and monotonic strengths. These inflections separate three domains on the long-term strength curve, which are characterised by different creep fracture modes and creep deformation mechanisms. Therefore, safe creep design is guaranteed in the linear creep domain with brittle failure mode defined by the cyclic yielding. These assumptions are confirmed using three structural steels for normal and high-temperature applications. The advantage of using cyclic yield strength for characterisation of fatigue and creep strength is a relatively quick experimental identification. The total duration of cyclic tests for a cyclic stress-strain curve identification is much less than the typical durations of fatigue and creep rupture tests at the stress levels around the cyclic yield strength.

  8. Principal physical mechanisms of material creep resistance and rupture at elevated temperatures

    International Nuclear Information System (INIS)

    Krishtal, M.A.

    1977-01-01

    Mechanisms of creep and long-term failure of refractory materials at different temperatures and stress levels are considered. At high temperatures and low stresses the diffusion (vacancial) mechanism is observed. Temperatures being low and stresses sufficiently high, dislocation mechanism involving avalanche dislocation break-off is manifested. Intermediate conditions provide other mechanisms, i.e. dislocation glide, dislocation climbing, grain-boundary and sub-grain-boundary mechanisms. Quantitative relationships between creep rate and some structural and kinetic parameters are discussed. Account of the creep mechanism is necessary when selecting methods for strengthening of alloys

  9. Effect of titanium on the creep deformation behaviour of 14Cr-15Ni-Ti stainless steel

    Science.gov (United States)

    Latha, S.; Mathew, M. D.; Parameswaran, P.; Nandagopal, M.; Mannan, S. L.

    2011-02-01

    14Cr-15Ni-Ti modified stainless steel alloyed with additions of phosphorus and silicon is a potential candidate material for the future cores of Prototype Fast Breeder Reactor. In order to optimise the titanium content in this steel, creep tests have been conducted on the heats with different titanium contents of 0.18, 0.23, 0.25 and 0.36 wt.% at 973 K at various stress levels. The stress exponents indicated that the rate controlling deformation mechanism was dislocation creep. A peak in the variation of rupture life with titanium content was observed around 0.23 wt.% titanium and the peak was more pronounced at lower stresses. The variation in creep strength with titanium content was correlated with transmission electron microscopic investigations. The peak in creep strength exhibited by the material with 0.23 wt.% titanium is attributed to the higher volume fraction of fine secondary titanium carbide (TiC) precipitates.

  10. Effect of titanium on the creep deformation behaviour of 14Cr-15Ni-Ti stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Latha, S. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603 102 (India); Mathew, M.D., E-mail: mathew@igcar.gov.in [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603 102 (India); Parameswaran, P.; Nandagopal, M. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603 102 (India); Mannan, S.L. [National Engineering College, Kovilpatti, Tamil Nadu 628 503 (India)

    2011-02-28

    14Cr-15Ni-Ti modified stainless steel alloyed with additions of phosphorus and silicon is a potential candidate material for the future cores of Prototype Fast Breeder Reactor. In order to optimise the titanium content in this steel, creep tests have been conducted on the heats with different titanium contents of 0.18, 0.23, 0.25 and 0.36 wt.% at 973 K at various stress levels. The stress exponents indicated that the rate controlling deformation mechanism was dislocation creep. A peak in the variation of rupture life with titanium content was observed around 0.23 wt.% titanium and the peak was more pronounced at lower stresses. The variation in creep strength with titanium content was correlated with transmission electron microscopic investigations. The peak in creep strength exhibited by the material with 0.23 wt.% titanium is attributed to the higher volume fraction of fine secondary titanium carbide (TiC) precipitates.

  11. Effect of titanium on the creep deformation behaviour of 14Cr-15Ni-Ti stainless steel

    International Nuclear Information System (INIS)

    Latha, S.; Mathew, M.D.; Parameswaran, P.; Nandagopal, M.; Mannan, S.L.

    2011-01-01

    14Cr-15Ni-Ti modified stainless steel alloyed with additions of phosphorus and silicon is a potential candidate material for the future cores of Prototype Fast Breeder Reactor. In order to optimise the titanium content in this steel, creep tests have been conducted on the heats with different titanium contents of 0.18, 0.23, 0.25 and 0.36 wt.% at 973 K at various stress levels. The stress exponents indicated that the rate controlling deformation mechanism was dislocation creep. A peak in the variation of rupture life with titanium content was observed around 0.23 wt.% titanium and the peak was more pronounced at lower stresses. The variation in creep strength with titanium content was correlated with transmission electron microscopic investigations. The peak in creep strength exhibited by the material with 0.23 wt.% titanium is attributed to the higher volume fraction of fine secondary titanium carbide (TiC) precipitates.

  12. Size Effect Studies of the Creep Behaviour of 20MnMoNi55 at Temperatures from 700 oC to 900 oC

    International Nuclear Information System (INIS)

    Krompholz, K.; Groth, E.; Kalkhof, D.

    2000-11-01

    One of the objectives of the REVISA project (REactor Vessel Integrity in Severe Accidents) is to assess size and scale effects in plastic flow and failure. This includes an experimental programme devoted to characterising the influence of specimen size, strain rate, and strain gradients at various temperatures. One of the materials selected was the forged reactor pressure vessel material 20 MnMoNi 55, material number 1.6310 (heat number 69906). Among others, a size effect study of the creep response of this material was performed, using geometrically similar smooth specimens with 5 mm and 20 mm diameter. The tests were done under constant load in an inert atmosphere at 700 o C, 800 o C, and 900 o C, close to and within the phase transformation regime. The mechanical stresses varied from 10 MPa to 30 MPa, depending on temperature. Prior to creep testing the temperature and time dependence of scale oxidation as well as the temperature regime of the phase transformation was determined. The creep tests were supplemented by metallographical investigations.The test results are presented in form of creep curves strain versus time from which characteristic creep data were determined as a function of the stress level at given temperatures. The characteristic data are the times to 5% and 15% strain and to rupture, the secondary (minimum) creep rate, the elongation at fracture within the gauge length, the type of fracture and the area reduction after fracture. From metallographical investigations the austenitic phase contents at different temperatures could be estimated. From these data also the parameters of the regression calculation (e.g. Norton's creep law) were obtained. The evaluation revealed that the creep curves and characteristic data are size dependent of varying degree, depending on the stress and temperature level, but the size influence cannot be related to corrosion or orientation effects or to macroscopic heterogeneity (position effect) of the original

  13. Interaction between corrosion crack width and steel loss in RC beams corroded under load

    International Nuclear Information System (INIS)

    Malumbela, Goitseone; Alexander, Mark; Moyo, Pilate

    2010-01-01

    This paper presents results and discussions on an experimental study conducted to relate the rate of widening of corrosion cracks with the pattern of corrosion cracks as well as the level of steel corrosion for RC beams (153 x 254 x 3000 mm) that were corroded whilst subjected to varying levels of sustained loads. Steel corrosion was limited to the tensile reinforcement and to a length of 700 mm at the centre of the beams. The rate of widening of corrosion cracks as well as strains on uncracked faces of RC beams was constantly monitored during the corrosion process, along the corrosion region and along other potential cracking faces of beams using a demec gauge. The distribution of the gravimetric mass loss of steel along the corrosion region was measured at the end of the corrosion process. The results obtained showed that: the rate of widening of each corrosion crack is dependent on the overall pattern of the cracks whilst the rate of corrosion is independent of the pattern of corrosion cracks. A mass loss of steel of 1% was found to induce a corrosion crack width of about 0.04 mm.

  14. Depassivation and repassivation of austenitic stainless steels. Consequences on stress corrosion cracking

    International Nuclear Information System (INIS)

    Helie, M.; Desjardins, D.; Puiggali, M.; Petit, M.C.

    1983-06-01

    The influence of strain rate and solution temperature on depassivation and repassivation processes, and the consequences on stress corrosion cracking phenomenon are presented. The tests are performed in concentrated magnesium chloride solutions at various boiling temperatures (160 0 C, 153 0 C, 140 0 C, 130 0 C, 125 0 C, 110 0 C, 102 0 C) to which potassium dichromate is added in some cases. The depassivation and repassivation of the tested wires are analysed in term of current-time curves at fixed potential. The wire is placed into a ''corrosion cell'' with the boiling chloride solution on a tensile testing machine. Tests at 153 0 C on 304L and 309L stainless steels show that competition between passivation and depassivation depends on applied strain rate: at low strain rates rupture is mainly due to mechanical stress, at high strain rates the wire shows track of corrosion and the rupture is ductile. Between the two, stress corrosion cracking presents a maximum and in this case the rupture is mainly brittle. Influence of temperature shows the existence of a transitional temperature 130 0 C for a 304L. The cracking velocity is 100 times higher above 130 0 C than below and the cracking mode is transgranular and mainly intergranular below 130 0 C. Addition of potassium dichromate modifies both electrochemical and mechanical properties; it is more difficult to obtain a frank depassivation and the repassivation rate is higher

  15. Grain boundary precipitation strengthening mechanism in W containing advanced creep resistant ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, T.; Hasegawa, Y. [Tohoku Univ., Sendai (Japan)

    2010-07-01

    Grain boundary precipitation strengthening is expected to be a decisive factor in developing ferritic creep resistant steels. This study examined the grain boundary precipitation strengthening mechanism extracting the effect of the tempered martensitic microstructure and precipitates on the high angle grain boundary in M{sub 23}C4{sub 6} type carbide and the Fe{sub 2}W type Laves phase effect of the creep deformation fixing the grain boundary according to transmission electron microscope (TEM) observation. A creep test was carried out at high temperature in order to evaluate the high angle boundary strengthening effect simulating the long-term creep deformation microstructure by the lath structure disappearance. The correlation of the creep rupture time and the grain boundary shielding ratio were found to be independent of precipitate type. The creep deformation model represents block boundary shielding by precipitates as the decisive factor for W containing ferritic creep resistant steels. (orig.)

  16. Limit analysis via creep

    International Nuclear Information System (INIS)

    Taroco, E.; Feijoo, R.A.

    1981-07-01

    In this paper it is presented a variational method for the limit analysis of an ideal plastic solid. This method has been denominated as Modified Secundary Creep and enables to find the collapse loads through a minimization of a functional and a limit process. Given an ideal plastic material it is shown how to determinate the associated secundary creep constitutive equation. Finally, as an application, it is found the limit load in an pressurized von Mises rigid plastic sphere. (Author) [pt

  17. Creep strength and microstructure in 23Cr-45Ni-7W Alloy (HR6W) and Ni-base superalloys for advanced USC boilers

    Energy Technology Data Exchange (ETDEWEB)

    Semba, Hiroyuki; Okada, Hirokazu; Yonemura, Mitsuharu; Igarashi, Masaaki [Sumitomo metal Industries, Ltd., Hyogo (Japan). Corporate Research and Development Labs.

    2008-07-01

    Establishment of materials technologies on piping and tubing for advanced ultra super critical (A-USC) plants operated at steam temperatures above 700 C is a critical issue to achieve its hard target. 23Cr-45Ni-7W alloy (HR6W) has been developed in Japan, originally as a high strength tubing material for 650 C USC boilers. In order to clarify the capability of HR6W as a material applied to A-USC plants, creep strength and microstructure of HR6W were investigated in comparison with {gamma}'-strengthened Alloy 617 and other Ni-base superalloys, such as Alloy 263. It has been revealed that the amount of added W is intimately correlated with precipitation amount of Laves phase and thus it is a crucial factor controlling creep strength. Stability of long term creep strength and superior creep rupture ductility have been proved by creep rupture tests at 650-800 C up to 60000h. The 10{sup 5}h extrapolated creep rupture strengths are estimated to be 88MPa at 700 C and 64MPa at 750 C. Microstructural stability closely related with long term creep strength and toughness has also been confirmed by microstructural observations after creep tests and aging. Creep rupture strength of Alloy 617 has been found to be much higher than that of HR6W at 700 and 750 C, while comparable at 800 C. A thermodynamic calculation along with microstructural observation indicates that the amount of Laves phase in HR6W gradually decreases with increasing temperature, while that of {gamma}' in Alloy 617 rapidly decreases with increasing temperature and {gamma}' almost dissolves at 800 C. This may lead to an abrupt drop in creep strength of Alloy 617 above 750 C. Alloy 263, in which more {gamma}' precipitates than Alloy 617, shows much higher creep strength. However, it is suggested that inhomogeneous creep deformation is enhanced compared with HR6W and Alloy 617. Capability of HR6W as a material for A-USC plants was discussed in terms of creep properties, microstructural stability and other

  18. Creep-fatique interactions in 316 stainless steel under torsional loading

    International Nuclear Information System (INIS)

    Wei, K.; Dyson, B.F.

    1982-01-01

    Some fatigue, fatigue with creep dwells and creep tests have been performed in torsion using 316 stainless steel at 600 0 C. As expected from push-pull testing, the introduction of a creep dwell reduced fatigue endurances and changed the fracture from classical transgranular to intergranular. Optical microscopical examination revealed a large number of intergranular cracks concentrated along shear planes, but quantitative assessment identified the importance of creep tensile stresses in crack development. In contrast, little intergranular damage was found after torsion creep, which is consistent with its exhibited buckling mode of failure. It is concluded that reverse plastic strain is the cause of intergranular crack formation in the material and is therefore the primary mechanism of creep-fatigue interaction. (author)

  19. Improved methods of creep-fatigue life assessment of components

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, Alfred; Berger, Christina [Inst. fuer Werkstoffkunde (IfW), Technische Univ. Darmstadt (Germany)

    2009-07-01

    The improvement of life assessment methods contributes to a reduction of efforts at design and an effective long term operation of high temperature components, reduces technical risk and increases high economical advantages. Creep-fatigue at multi-stage loading, covering cold start, warm start and hot start cycles in typical loading sequences e.g. for medium loaded power plants, was investigated here. At hold times creep and stress relaxation, respectively, lead to an acceleration of crack initiation. Creep fatigue life time can be calculated by a modified damage accumulation rule, which considers the fatigue fraction rule for fatigue damage and the life fraction rule for creep damage. Mean stress effects, internal stress and interaction effects of creep and fatigue are considered. Along with the generation of advanced creep data, fatigue data and creep fatigue data as well scatter band analyses are necessary in order to generate design curves and lower bound properties inclusive. Besides, in order to improve lifing methods the enhancement of modelling activities for deformation and life time are important. For verification purposes, complex experiments at variable creep conditions as well as at creep fatigue interaction under multi-stage loading are of interest. Generally, the development of methods to transfer uniaxial material properties to multiaxial loading situations is a current challenge. For specific design purposes, a constitutive material model is introduced which is implemented as an user subroutine for Finite Element applications due to start-up and shut-down phases of components. Identification of material parameters have been performed by Neural Networks. (orig.)

  20. An assessment of creep strength reduction factors for 316L(N) SS welds

    International Nuclear Information System (INIS)

    Mathew, M.D.; Latha, S.; Rao, K. Bhanu Sankara

    2007-01-01

    Nitrogen-alloyed type 316L stainless steel is the major structural material for the high temperature structural components of prototype fast breeder reactor. For the welding electrode, carbon in the normal range of 0.045-0.055 wt% and nitrogen in the range of 0.06-0.1 wt% are used to provide weld joints with adequate long term creep strength. Characterization of the creep properties of the base metal, weld metal and weld joint has been carried out at 873 and 923 K at stress levels of 100-325 MPa with rupture lives in the range of 100-33,000 h. Weld strength reduction factors (WSRFs) based on the weld metal, and weld joint have been evaluated, and compared with the codes. WSRFs for the weld joint were higher than the RCC-MR values. Base metal showed the highest rupture life at all the test conditions whereas the weld metal generally showed the lowest rupture life. All the weld joint specimens failed in the weld metal

  1. Synergy of corrosion activity and defects in weld bonds

    Directory of Open Access Journals (Sweden)

    Michal Černý

    2004-01-01

    Full Text Available Presented work evaluates synergism of atmosphere corrosive action and material defects. These defects appear not only during particular technological process of connecting of structural material but also during cooling and up to hundreds hours afterwards. The multiplication of degradation impact of defects in joint welds and heat-affected zone caused by activity of atmosphere acidic medium is simulated in condensation chambers. The verification is realized by use of mechanical uniaxial tension loading and following fractographic and metalgraphic analysis.The metal plasticity is sufficient factor to eliminate thermal stress in tough metal (11 373. This is reflected in more homogenous weld root area (with no cracks. The corrosion influence of environment is in case of such specimens limited to very slight decrease of weld maximum load. The ultimate strength value decreases approximately for 20MPa only in contrast to dramatic strength decrease in case of 11 503 material. Before metalographic examination was observed surprisingly great value of load capacity of spot welds. These welds were not ruptured nor in a single case even during maximum length of corrosion exploitation. The consequent material analysis discovered high qualitative material and strength properties of this kind of joint.

  2. Research on high-temperature compression and creep behavior of porous Cu–Ni–Cr alloy for molten carbonate fuel cell anodes

    Directory of Open Access Journals (Sweden)

    Li W.

    2015-06-01

    Full Text Available The effect of porosity on high temperature compression and creep behavior of porous Cu alloy for the new molten carbonate fuel cell anodes was examined. Optical microscopy and scanning electron microscopy were used to investigate and analyze the details of the microstructure and surface deformation. Compression creep tests were utilized to evaluate the mechanical properties of the alloy at 650 °C. The compression strength, elastic modulus, and yield stress all increased with the decrease in porosity. Under the same creep stress, the materials with higher porosity exhibited inferior creep resistance and higher steadystate creep rate. The creep behavior has been classified in terms of two stages. The first stage relates to grain rearrangement which results from the destruction of large pores by the applied load. In the second stage, small pores are collapsed by a subsequent sintering process under the load. The main deformation mechanism consists in that several deformation bands generate sequentially under the perpendicular loading, and in these deformation bands the pores are deformed by flattering and collapsing sequentially. On the other hand, the shape of a pore has a severe influence on the creep resistance of the material, i.e. every increase of pore size corresponds to a decrease in creep resistance.

  3. Influence of reference stress formulae on creep and creep-fatigue crack initiation and growth prediction in plate components

    Energy Technology Data Exchange (ETDEWEB)

    Wasmer, K., E-mail: kilian.wasmer@empa.c [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Advanced Materials Processing, Feuerwerkerstrasse 39, 3602 Thun (Switzerland); Nikbin, K.M.; Webster, G.A. [Department of Mechanical Engineering, Imperial College London, London SW7 2BX (United Kingdom)

    2010-08-15

    Creep and creep-fatigue crack growth in pre-cracked plates of 316L(N) austenitic stainless steel, containing a semi-elliptical surface defect and tested at 650 {sup o}C under combined axial and bending loading, are investigated. The results have been interpreted in terms of the creep fracture mechanics parameter C* and compared with data obtained on standard compact tension (CT) specimens of the same material and batch. In making the assessments, the reference stress method has been used to determine C*. Several formulae exist for calculating the reference stress depending on whether it is based on a 'global' or a 'local' collapse mechanism and the assessment procedure adopted. When using this approach, it has been found that the most satisfactory comparison of crack growth rates with standard CT specimen data is obtained when the 'global' reference stress solution is used in conjunction with mean uniaxial creep properties. It has been found that the main effect of changing the fatigue cycle range from 0.1 to -1.0 is to cause an acceleration in the early stage of cracking.

  4. Long-term creep of Hanford concrete at 2500F and 3500F. Final report

    International Nuclear Information System (INIS)

    Gillen, M.

    1980-10-01

    Test results described in this report cover approximately 21 months of testing in a program to examine the creep behavior of Hanford concretes at elevated temperatures. Two each of 6 x 12-in. concrete cylinders were subjected to static compressive loads of 500 psi at 350F and 1500 psi at 250F and 350F. Test cylinders were cast at Construction Technology Laboratories with materials and mix designs similar to those used in Hanford concrete structures. Effects of load and temperature on deformation of Hanford concrete were: (a) Increased static load reduced the amount of thermal strain when cylinders were heated above ambient. Free thermal expansion of Hanford cylinders heated to 350F was calculated to be about 850 millionths. However, strain of cylinders under 500 psi static load on heating averaged only 740 millionths. Expansion strain of specimens loaded to 1500 psi averaged only 530 millionths when heated to 350F. (b) At 350F, the magnitude of creep strain of cylinders increased with increased static load. Over equal test periods, creep strain of specimens loaded to 1500 psi was approximately twice as large as that of cylinders loaded to only 500 psi. (c) At a test load of 1500 psi, magnitude of creep strain increased with increased temperature. Specimens heated to 350F had creep strains about twice as large as those for specimens heated over comparable test intervals to only 250F. (d) Creep data were satisfactorily modelled with an expression of the form creep strain = A log 10 (t) + B, where creep strain is in millionths, and t is time at test temperature, in days. Values for the coefficient, A, varied from 255.6 to 286.9. Magnitude of the constant B, ranged from 182.1 to 718.6. These trends are in general agreement with concrete creep behavior described in the literature

  5. Experimental Creep Life Assessment for the Advanced Stirling Convertor Heater Head

    Science.gov (United States)

    Krause, David L.; Kalluri, Sreeramesh; Shah, Ashwin R.; Korovaichuk, Igor

    2010-01-01

    The United States Department of Energy is planning to develop the Advanced Stirling Radioisotope Generator (ASRG) for the National Aeronautics and Space Administration (NASA) for potential use on future space missions. The ASRG provides substantial efficiency and specific power improvements over radioisotope power systems of heritage designs. The ASRG would use General Purpose Heat Source modules as energy sources and the free-piston Advanced Stirling Convertor (ASC) to convert heat into electrical energy. Lockheed Martin Corporation of Valley Forge, Pennsylvania, is integrating the ASRG systems, and Sunpower, Inc., of Athens, Ohio, is designing and building the ASC. NASA Glenn Research Center of Cleveland, Ohio, manages the Sunpower contract and provides technology development in several areas for the ASC. One area is reliability assessment for the ASC heater head, a critical pressure vessel within which heat is converted into mechanical oscillation of a displacer piston. For high system efficiency, the ASC heater head operates at very high temperature (850 C) and therefore is fabricated from an advanced heat-resistant nickel-based superalloy Microcast MarM-247. Since use of MarM-247 in a thin-walled pressure vessel is atypical, much effort is required to assure that the system will operate reliably for its design life of 17 years. One life-limiting structural response for this application is creep; creep deformation is the accumulation of time-dependent inelastic strain under sustained loading over time. If allowed to progress, the deformation eventually results in creep rupture. Since creep material properties are not available in the open literature, a detailed creep life assessment of the ASC heater head effort is underway. This paper presents an overview of that creep life assessment approach, including the reliability-based creep criteria developed from coupon testing, and the associated heater head deterministic and probabilistic analyses. The approach also

  6. Numerical Simulation of Interactions between Corrosion Pits on Stainless Steel under Loading Conditions

    International Nuclear Information System (INIS)

    Wang, Haitao; Han, En-Hou

    2017-01-01

    The interactions between corrosion pits on stainless steel under loading conditions are studied by using a cellular automata model coupled with finite element method at a mesoscopic scale. The cellular automata model focuses on a metal/film/electrolyte system, including anodic dissolution, passivation, diffusion of hydrogen ions and salt film hydrolysis. The Chopard block algorithm is used to improve the diffusion simulation efficiency. The finite element method is used to calculate the stress concentration on the pit surface during pit growth, and the effect of local stress and strain on anodic current is obtained by using the Gutman model, which is used as the boundary conditions of the cellular automata model. The transient current characteristics of the interactions between corrosion pits under different simulation factors including the breakdown of the passive film at the pit mouth and the diffusion of hydrogen ions are analyzed. The analysis of the pit stability product shows that the simulation results are close to the experimental conclusions.

  7. Numerical Simulation of Interactions between Corrosion Pits on Stainless Steel under Loading Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haitao; Han, En-Hou [Chinese Academy of Sciences, Shenyang (China)

    2017-04-15

    The interactions between corrosion pits on stainless steel under loading conditions are studied by using a cellular automata model coupled with finite element method at a mesoscopic scale. The cellular automata model focuses on a metal/film/electrolyte system, including anodic dissolution, passivation, diffusion of hydrogen ions and salt film hydrolysis. The Chopard block algorithm is used to improve the diffusion simulation efficiency. The finite element method is used to calculate the stress concentration on the pit surface during pit growth, and the effect of local stress and strain on anodic current is obtained by using the Gutman model, which is used as the boundary conditions of the cellular automata model. The transient current characteristics of the interactions between corrosion pits under different simulation factors including the breakdown of the passive film at the pit mouth and the diffusion of hydrogen ions are analyzed. The analysis of the pit stability product shows that the simulation results are close to the experimental conclusions.

  8. Uniaxial creep behavior of V-4Cr-4Ti alloy

    International Nuclear Information System (INIS)

    Natesan, K.; Soppet, W.K.; Purohit, A.

    2002-01-01

    We are undertaking a systematic study at Argonne National Laboratory to evaluate the uniaxial creep behavior of V-Cr-Ti alloys in a vacuum environment as a function of temperature in the range of 650-800 deg. C and at applied stress levels of 75-380 MPa. Creep strain in the specimens is measured by a linear-variable-differential transducer, which is attached between the fixed and movable pull rods of the creep assembly. Strain is measured at sufficiently frequent intervals during testing to define the creep strain/time curve. A linear least-squares analysis function is used to ensure consistent extraction of minimum creep rate, onset of tertiary creep and creep strain at the onset of tertiary creep. Creep test data, obtained at 650, 700, 725 and 800 deg. C, showed power-law creep behavior. Extensive analysis of the tested specimens is conducted to establish hardness profiles, oxygen content and microstructural characteristics. The data are also quantified by the Larson-Miller approach, and correlations are developed to relate time to rupture, onset of tertiary creep, times for 1% and 2% strain, exposure temperature and applied stress

  9. Novel experiments to characterise creep-fatigue degradation in VHTR alloys

    International Nuclear Information System (INIS)

    Simpson, J.A.; Wright, J.K.; Wright, R.N.

    2015-01-01

    It is well known in energy systems that the creep lifetime of high temperature alloys is significantly degraded when a cyclic load is superimposed on components operating in the creep regime. A test method has been developed in an attempt to characterise creep-fatigue behaviour of alloys at high temperature. The test imposes a hold time during the tensile phase of a fully reversed strain-controlled low cycle fatigue test. Stress relaxation occurs during the strain-controlled hold period. This type of fatigue stress relaxation test tends to emphasise the fatigue portion of the total damage and does not necessarily represent the behaviour of a component in-service well. Several different approaches to laboratory testing of creep-fatigue at 950 deg. C have been investigated for Alloy 617, the primary candidate for application in VHTR heat exchangers. The potential for mode switching in a cyclic test from strain control to load control, to allow specimen extension by creep, has been investigated to further emphasise the creep damage. In addition, tests with a lower strain rate during loading have been conducted to examine the influence of creep damage occurring during loading. Very short constant strain hold time tests have also been conducted to examine the influence of the rapid stress relaxation that occurs at the beginning of strain holds. (authors)

  10. Effect of normalization heat treatment on creep and tensile properties of modified 9Cr-1Mo steel

    International Nuclear Information System (INIS)

    Panneer Selvi, S.; Sakthivel, T.; Parameswaran, P.; Laha, K.

    2016-01-01

    Creep and tensile properties have been investigated on modified 9Cr-1Mo steel subjected to single and double normalization heat treatments. Optical, scanning and transmission electron microscopic investigation revealed the presence of refined prior austenite grain size and fine M 23 C 6 precipitates in the double normalized steel compared to the steel subjected to single normalization heat treatment. Increased creep strain and significant reduction in creep rupture life were observed with the double normalized steel in comparison with single normalized steel. Increased tensile ductility coupled with marginal decrease in tensile strength at higher test temperature was observed with double normalized steel compared to single normalized steel. It has been attributed to the presence of refined prior austenite grain size and coarsening of Nb rich MX precipitates in double normalized steel. (author)

  11. Creep and relaxation behavior of Inconel-617

    International Nuclear Information System (INIS)

    Osthoff, W.; Ennis, P.J.; Nickel, H.; Schuster, H.

    1984-01-01

    The static and dynamic creep behavior of Inconel alloy 617 has been determined in constant load creep tests, relaxation tests, and stress reduction tests in the temperature range 1023 to 1273 K. The results have been interpreted using the internal stress concept: The dependence of the internal stress on the applied stress and test temperature was determined. In a few experiments, the influence of cold deformation prior to the creep test on the magnitude of the internal stress was also investigated. It was found that the experimentally observed relaxation behavior could be more satisfactorily described using the Norton creep equation modified by incorporation of the internal stress than by the conventional Norton creep equation

  12. Size Effect Studies of the Creep Behaviour of 20MnMoNi55 at Temperatures from 700 {sup o}C to 900 {sup o}C

    Energy Technology Data Exchange (ETDEWEB)

    Krompholz, K.; Groth, E.; Kalkhof, D

    2000-11-01

    One of the objectives of the REVISA project (REactor Vessel Integrity in Severe Accidents) is to assess size and scale effects in plastic flow and failure. This includes an experimental programme devoted to characterising the influence of specimen size, strain rate, and strain gradients at various temperatures. One of the materials selected was the forged reactor pressure vessel material 20 MnMoNi 55, material number 1.6310 (heat number 69906). Among others, a size effect study of the creep response of this material was performed, using geometrically similar smooth specimens with 5 mm and 20 mm diameter. The tests were done under constant load in an inert atmosphere at 700 {sup o}C, 800 {sup o}C, and 900 {sup o}C, close to and within the phase transformation regime. The mechanical stresses varied from 10 MPa to 30 MPa, depending on temperature. Prior to creep testing the temperature and time dependence of scale oxidation as well as the temperature regime of the phase transformation was determined. The creep tests were supplemented by metallographical investigations.The test results are presented in form of creep curves strain versus time from which characteristic creep data were determined as a function of the stress level at given temperatures. The characteristic data are the times to 5% and 15% strain and to rupture, the secondary (minimum) creep rate, the elongation at fracture within the gauge length, the type of fracture and the area reduction after fracture. From metallographical investigations the austenitic phase contents at different temperatures could be estimated. From these data also the parameters of the regression calculation (e.g. Norton's creep law) were obtained. The evaluation revealed that the creep curves and characteristic data are size dependent of varying degree, depending on the stress and temperature level, but the size influence cannot be related to corrosion or orientation effects or to macroscopic heterogeneity (position effect) of

  13. A study of intergranular cavity growth controlled by the coupling of diffusion and power law creep

    International Nuclear Information System (INIS)

    Wang, J.S.; Martinez, L.; Nix, W.D.

    1983-01-01

    A technique based on pre-creeping and sintering is used to create large, widely spaced cavities at grain boundaries in copper. The size and spacing of the cavities is such that cavity growth is expected to be controlled by the coupling of diffusion and power law creep. The rupture properties of these pre-cavitated samples are studied over a range of stresses and temperatures and the results are compared with the predictions of various theoretical treatments of cavity growth. The stress and temperature dependence of rupture can be described using an analysis of the type suggested by Chen and Argon, provided that the diffusional length is based on the ligament stress rather than the applied stress

  14. Creep deformation, creep damage accumulation and residual life prediction for three low alloyed CrMo-steels

    International Nuclear Information System (INIS)

    Kondyr, A.; Sandstroem, R.; Samuelsson, A.

    1979-02-01

    A detailed analysis of creep strain results for three low alloyed steels of type 0.5 Mo, 1 Cr-0.5 Mo and 2.25 Cr-1 Mo has been undertaken. The results show that, excluding the primary stage, the true strain rate can be described by a simple analytical expression dE/dt = Aexp(B.E) where A and B are constants at constant stress and temperature. A is approximately equal to the minimum strain rate and B inversly proportional to the fracture strain. Furthermore, 1/AB equals the time t sub(r) to rupture. The residual life fraction in creep can be expressed as exp(-B.E) = 1-t/t sub(r) and a creep damage function μ is introduced as μ = 1-ABt. The expressions for strain rate and damage are shown to be a special case of the Rabotnov-Kachanov equations. The analysis has been generalized to account for multiaxial stress states, and as an example creep in a tube with internal pressure is considered. (author)

  15. Creep deformation in near-γ TiAl. Part 1: The influence of microstructure on creep deformation in Ti-49Al-1V

    International Nuclear Information System (INIS)

    Worth, B.D.; Jones, J.W.; Allison, J.E.

    1995-01-01

    The influence of microstructure on creep deformation was examine in the e near-γ TiAl alloy Ti-49Al-1V. Specifically, microstructures with varying volume fractions of lamellar constituent were produced through thermomechanical processing. Creep studies were conducted on these various microstructures under constant load in air at temperatures between 760 C and 870 C and at stresses ranging from 50 to 200 MPa. Microstructure significantly influences the creep behavior of this alloy, with a fully lamellar microstructure yielding the highest creep resistance of the microstructures examined. Creep resistance is dependent on the volume fraction of lamellar constituent, with the lowest creep resistance observed at intermediate lamellar volume fractions. Examination of the creep deformation structure revealed planar slip of dislocations in the equiaxed γ microstructure, while sub-boundary formation was observed in the duplex microstructure. The decrease in creep resistance of the duplex microstructure, compared with the equiaxed γ microstructure, is attributed to an increase in dislocation mobility within the equiaxed γ constituent, that results from partitioning of oxygen from the γ phase to the α 2 phase. Dislocation motion in the fully lamellar microstructure was confined to the individual lamellae, with no evidence of shearing of γ/γ or γ/α 2 interfaces. This suggests that the high creep resistance of the fully lamellar microstructure is a result of the fine spacing of the lamellar structure, which results in a decreased effective slip length for dislocation motion over that found in duplex and equiaxed γ microstructures

  16. Evaluation of creep and relaxation data for hastelloy alloy x sheet

    International Nuclear Information System (INIS)

    Booker, M.K.

    1979-02-01

    Hastelloy alloy X has been a successful high-temperature structural material for more than two decades. Recently, Hastelloy alloy X sheet has been selected as a prime structural material for the proposed Brayton Isotope Power System (BIPS). The material also sees extensive application in the High-Temperature Gas-Cooled Reactor (HTGR). Design of these systems requires a detailed consideration of the high-temperature creep properties of this material. Therefore, available creep, creep-rupture, and relaxation data for Hastelloy alloy X were collected and analyzed to yield mathematical representations of the behavior for design use

  17. In-situ Creep Testing Capability Development for Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    B. G. Kim; J. L. Rempe; D. L. Knudson; K. G. Condie; B. H. Sencer

    2010-08-01

    Creep is the slow, time-dependent strain that occurs in a material under a constant strees (or load) at high temperature. High temperature is a relative term, dependent on the materials being evaluated. A typical creep curve is shown in Figure 1-1. In a creep test, a constant load is applied to a tensile specimen maintained at a constant temperature. Strain is then measured over a period of time. The slope of the curve, identified in the figure below, is the strain rate of the test during Stage II or the creep rate of the material. Primary creep, Stage I, is a period of decreasing creep rate due to work hardening of the material. Primary creep is a period of primarily transient creep. During this period, deformation takes place and the resistance to creep increases until Stage II, Secondary creep. Stage II creep is a period with a roughly constant creep rate. Stage II is referred to as steady-state creep because a balance is achieved between the work hardening and annealing (thermal softening) processes. Tertiary creep, Stage III, occurs when there is a reduction in cross sectional area due to necking or effective reduction in area due to internal void formation; that is, the creep rate increases due to necking of the specimen and the associated increase in local stress.

  18. Creep behavior of double tempered 8% Cr-2% WVTa martensitic steel

    International Nuclear Information System (INIS)

    Tamura, Manabu; Shinozuka, Kei; Esaka, Hisao; Nowell, Matthew M.

    2006-01-01

    Creep testing was carried out at around 650degC for a martensitic 8Cr-2WVTa steel (F82H), which is a candidate alloy for the first wall of the fusion reactors of the Tokamak type. Rupture strength of the double tempered steel (F82HD) is lightly higher than that of simple tempered steel (F82HS). On the other hand, creep rate of F82HD is obviously smaller than that of F82HS in acceleration creep, though creep strain of F82HD in transition creep, where creep rate decreases with increasing strain, is larger than that of F82HS. Hardness of the crept H82HD decreases with increasing creep strain, which corresponded with the transmission electron microscopy (TEM) observation. On the contrary, X-ray diffraction and electron back-scattered diffraction pattern measurements show that fine sub-grains are created during transition creep. The creep curves were analyzed using an exponential type creep equation and the apparent activation energy, the activation volume and the pre-exponential factor were calculated as a function of creep strain. Then, these parameters were converted into two parameters, i.e. equivalent obstacle spacing (EOS) and mobile dislocation density parameter (MDDP). While EOS decreases with increasing creep strain, MDDP increases with increasing strain during transition creep. The decrease in EOS and the increase in either EOS or MDDP are rate-controlling factors in transition and acceleration creep, respectively. On the other hand, in case of F82HS, EOS increases and MDDP decreases during transition creep. In this case, the decrease in MDDP controls the creep rate during transition creep of F82HS. It is concluded that both EOS and MDDP are representative parameters of the change in substructure during creep. (author)

  19. Multi Resolution In-Situ Testing and Multiscale Simulation for Creep Fatigue Damage Analysis of Alloy 617

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yongming [Arizona State Univ., Tempe, AZ (United States). School for Engineering of Matter, Transport and Energy; Oskay, Caglar [Vanderbilt Univ., Nashville, TN (United States). Dept. of Civil and Environmental Engineering

    2017-04-30

    This report outlines the research activities that were carried out for the integrated experimental and simulation investigation of creep-fatigue damage mechanism and life prediction of Nickel-based alloy, Inconel 617 at high temperatures (950° and 850°). First, a novel experimental design using a hybrid control technique is proposed. The newly developed experimental technique can generate different combinations of creep and fatigue damage by changing the experimental design parameters. Next, detailed imaging analysis and statistical data analysis are performed to quantify the failure mechanisms of the creep fatigue of alloy 617 at high temperatures. It is observed that the creep damage is directly associated with the internal voids at the grain boundaries and the fatigue damage is directly related to the surface cracking. It is also observed that the classical time fraction approach does not has a good correlation with the experimental observed damage features. An effective time fraction parameter is seen to have an excellent correlation with the material microstructural damage. Thus, a new empirical damage interaction diagram is proposed based on the experimental observations. Following this, a macro level viscoplastic model coupled with damage is developed to simulate the stress/strain response under creep fatigue loadings. A damage rate function based on the hysteresis energy and creep energy is proposed to capture the softening behavior of the material and a good correlation with life prediction and material hysteresis behavior is observed. The simulation work is extended to include the microstructural heterogeneity. A crystal plasticity finite element model considering isothermal and large deformation conditions at the microstructural scale has been developed for fatigue, creep-fatigue as well as creep deformation and rupture at high temperature. The model considers collective dislocation glide and climb of the grains and progressive damage accumulation of

  20. Nanogranular origin of concrete creep.

    Science.gov (United States)

    Vandamme, Matthieu; Ulm, Franz-Josef

    2009-06-30

    Concrete, the solid that forms at room temperature from mixing Portland cement with water, sand, and aggregates, suffers from time-dependent deformation under load. This creep occurs at a rate that deteriorates the durability and truncates the lifespan of concrete structures. However, despite decades of research, the origin of concrete creep remains unknown. Here, we measure the in situ creep behavior of calcium-silicate-hydrates (C-S-H), the nano-meter sized particles that form the fundamental building block of Portland cement concrete. We show that C-S-H exhibits a logarithmic creep that depends only on the packing of 3 structurally distinct but compositionally similar C-S-H forms: low density, high density, ultra-high density. We demonstrate that the creep rate ( approximately 1/t) is likely due to the rearrangement of nanoscale particles around limit packing densities following the free-volume dynamics theory of granular physics. These findings could lead to a new basis for nanoengineering concrete materials and structures with minimal creep rates monitored by packing density distributions of nanoscale particles, and predicted by nanoscale creep measurements in some minute time, which are as exact as macroscopic creep tests carried out over years.

  1. Creep-Rupture Properties and Corrosion Behaviour of 21/4 Cr-1 Mo Steel and Hastelloy X-Alloys in Simulated HTGR Environment

    DEFF Research Database (Denmark)

    Lystrup, Aage; Rittenhouse, P. L.; DiStefano, J. R.

    Hastelloy X and 2/sup 1///sub 4/ Cr-1 Mo steel are being considered as structural alloys for components of a High-Temperature Gas-Cooled Reactor (HTGR) system. Among other mechanical properties, the creep behavior of these materials in HTGR primary coolant helium must be established to form part...

  2. Creep-resistant, cobalt-free alloys for high temperature, liquid-salt heat exchanger systems

    Science.gov (United States)

    Holcomb, David E; Muralidharan, Govindarajan; Wilson, Dane F.

    2016-09-06

    An essentially Fe- and Co-free alloy is composed essentially of, in terms of weight percent: 6.0 to 7.5 Cr, 0 to 0.15 Al, 0.5 to 0.85 Mn, 11 to 19.5 Mo, 0.03 to 4.5 Ta, 0.01 to 9 W, 0.03 to 0.08 C, 0 to 1 Re, 0 to 1 Ru, 0 to 0.001 B, 0.0005 to 0.005 N, balance Ni, the alloy being characterized by, at 850.degree. C., a yield strength of at least 25 Ksi, a tensile strength of at least 38 Ksi, a creep rupture life at 12 Ksi of at least 25 hours, and a corrosion rate, expressed in weight loss [g/(cm.sup.2 sec)]10.sup.-11 during a 1000 hour immersion in liquid FLiNaK at 850.degree. C., in the range of 3 to 10.

  3. Cerium-loaded algae exoskeletons for active corrosion protection of coated AA2024-T3

    International Nuclear Information System (INIS)

    Denissen, Paul J.; Garcia, Santiago J.

    2017-01-01

    Highlights: •Nanoporous diatom algae exoskeletons allow for local inhibitor loading. •Cerium loaded exoskeletons show diffusion controlled release from coatings. •In-situ opto-electrochemical analysis allows for accurate corrosion evaluation. •Raman spectroscopy allows for precise identification of Ce at IMs in a scribe. •High levels of protection were obtained with the Ce-diatom coatings. -- Abstract: The use of micron sized nanoporous diatom algae exoskeletons for inhibitor storage and sustained corrosion protection of coated aluminium structures upon damage is presented. In this concept the algae exoskeleton allows local inhibitor loading, limits the interaction between the cerium and the epoxy/amine coating and allows for diffusion-controlled release of the inhibitor when needed. The inhibitor release and corrosion protection by loaded exoskeletons was evaluated by UV/Vis spectrometry, a home-built optical-electrochemical setup, and Raman spectroscopy. Although this concept has been proven for a cerium-epoxy-aluminium alloy system the main underlying principle can be extrapolated to other inhibitor-coating-metal systems.

  4. Study on creep-fatigue evaluation of chrome-molybdenum steel

    International Nuclear Information System (INIS)

    Aoto, Kazumi; Wada, Yusaku

    1993-01-01

    Though chrome-molybdenum steel has quite different basic material properties from austenitic stainless steel, the life fraction rule based on an advanced ductility exhaustion theory proposed for SUS304 is able to give proper prediction for creep-fatigue life of chrome-molybdenum steel. The applicability of the present evaluation method to chrome-molybdenum steel is validated by both mechanical study and micro-structural observation. The mechanism of creep-fatigue failure of Mod.9Cr-1Mo(NT) is one of the most controversial subjects among researchers. However, it is clarified in this report that creep-fatigue damage of this material under actual loading conditions is dominated by creep-cavitation of grain boundaries as same way as that of austenitic stainless steel. Furthermore, for the life reduction of low cycle fatigue of chrome-molybdenum steel with compression-side strain hold, both effects of mean stress and oxide-wedge are denied and it is insisted that the acceleration of fatigue-crack propagation is occurred by oxide-progress location and its thickness. (author)

  5. Using UAVSAR to Estimate Creep Along the Superstition Hills Fault, Southern California

    Science.gov (United States)

    Donnellan, A.; Parker, J. W.; Pierce, M.; Wang, J.

    2012-12-01

    UAVSAR data were first acquired over the Salton Trough region, just north of the Mexican border in October 2009. Second passes of data were acquired on 12 and 13 April 2010, about one week following the 5 April 2010 M 7.2 El Mayor - Cucapah earthquake. The earthquake resulted in creep on several faults north of the main rupture, including the Yuha, Imperial, and Superstition Hills faults. The UAVSAR platform acquires data about every six meters in swaths about 15 km wide. Tropospheric effects and residual aircraft motion contribute to error in the estimation of surface deformation in the Repeat Pass Interferometry products. The Superstition Hills fault shows clearly in the associated radar interferogram; however, error in the data product makes it difficult to infer deformation from long profiles that cross the fault. Using the QuakeSim InSAR Profile tool we extracted line of site profiles on either side of the fault delineated in the interferogram. We were able to remove much of the correlated error by differencing profiles 250 m on either side of the fault. The result shows right-lateral creep of 1.5±.4 mm along the northern 7 km of the fault in the interferogram. The amount of creep abruptly changes to 8.4±.4 mm of right lateral creep along at least 9 km of the fault covered in the image to the south. The transition occurs within less than 100 m along the fault. We also extracted 2 km long line of site profiles perpendicular to this section of the fault. Averaging these profiles shows a step across the fault of 14.9±.3 mm with greater creep on the order of 20 mm on the northern two profiles and lower creep of about 10 mm on the southern two profiles. Nearby GPS stations P503 and P493 are consistent with this result. They also confirm that the creep event occurred at the time of the El Mayor - Cucapah earthquake. By removing regional deformation resulting from the main rupture we were able to invert for the depth of creep from the surface. Results indicate

  6. Effect of HIP Combined with RHT Process on Creep Damage of DZ125 Superalloy

    Directory of Open Access Journals (Sweden)

    WANG Tian-you

    2017-02-01

    Full Text Available Four different processes of hot isostatic pressing (HIP combined with rejuvenation heat treatments (RHT were adopted to reveal the microstructural evolution of creep damaged DZ125 specimens, finally the mechanical properties were evaluated.The results show that both γ' precipitate degeneration and creep cavities for the creep damaged DZ125 superalloy are found after the pre-endurance damage test.However, the carbided compositions from MC type to M23C6 type or M6C type has not been observed for DZ125.In addition, it is found that the HIP temperature play a dominant role in the cavity healing process for the damaged specimens. The concentrically oriented γ' rafting structure and the incipient melting are observed at 1200℃ and 1250℃ respectively.Meanwhile, it is found that the appropriate HIP schedule adopted can effectively avoid the internal recrystallization for the directionally solidified nickel-based superalloy DZ125. The appropriate HIP schedule combined with RHT process can successfully restore the microstructure induced by creep damage and recover the degraded micro-hardness to the original one, in addition improve the creep rupture life.

  7. Effect of room temperature prestrain on creep life of austenitic 25Cr-20Ni stainless steels

    International Nuclear Information System (INIS)

    Park, In Duck; Ahn, Seok Hwan; Nam, Ki Woo

    2004-01-01

    25Cr-20Ni series strainless steels have an excellent high temperature strength, high oxidation and high corrosion resistance. However, further improvement can be expected of creep strength by work hardening prior creep. In the present study, the effect of prestraining at room temperature on the creep behavior of a Class M(STS310S) and a Class A(STS310J1TB) alloy containing precipitates have been examined. Prestraining was carried out at room temperature and range of prestrain was 0.5∼2.5 % at STS310J1TB and 2.0∼7.0 % at STS310S. Creep behavior and creep rate of pre-strained specimens were compared with that of virgin specimens. Room temperature prestraining produced the creep life that is longer than that of a virgin specimen both for STS310J1TB and STS310S when creep test was carried out at the temperature lower than recrystallization temperature. The reason for this improvement of creep life was ascribable to the interaction between dislocations and precipitates in addition to the dislocation-dislocation interaction in STS310J1TB and the dislocation-dislocation interaction in STS310S. The beneficial effect of prestraining in STS310J1TB was larger than that of STS310S

  8. Fractional order creep model for dam concrete considering degree of hydration

    Science.gov (United States)

    Huang, Yaoying; Xiao, Lei; Bao, Tengfei; Liu, Yu

    2018-05-01

    Concrete is a material that is an intermediate between an ideal solid and an ideal fluid. The creep of concrete is related not only to the loading age and duration, but also to its temperature and temperature history. Fractional order calculus is a powerful tool for solving physical mechanics modeling problems. Using a software element based on the generalized Kelvin model, a fractional order creep model of concrete considering the loading age and duration is established. Then, the hydration rate of cement is considered in terms of the degree of hydration, and the fractional order creep model of concrete considering the degree of hydration is established. Moreover, uniaxial tensile creep tests of dam concrete under different curing temperatures were conducted, and the results were combined with the creep test data and complex optimization method to optimize the parameters of a new creep model. The results show that the fractional tensile creep model based on hydration degree can better describe the tensile creep properties of concrete, and this model involves fewer parameters than the 8-parameter model.

  9. Creep strength and microstructural evolution of 9-12% Cr heat resistant steels during creep exposure at 600 C and 650 C

    Energy Technology Data Exchange (ETDEWEB)

    Mendez Martin, Francisca [Graz Univ. of Technology (Austria). Inst. for Materials Science and Welding; Panait, Clara Gabriela [MINES ParisTech, UMR CNRS, Evry (France). Centre des Materiaux; V et M France CEV, Aulnoye-Aymeries (France); Bendick, Walter [Salzgitter Mannesmann Forschung GmbH (SZMF), Duisburg (DE)] (and others)

    2010-07-01

    9-12% Cr heat resistant steels are used for applications at high temperatures and pressures in steam power plants. 12% Cr steels show higher creep strength and higher corrosion resistance compared to 9% Cr steels for short term creep exposure. However, the higher creep strength of 12 %Cr steels drops increasingly after 10,000-20,000 h of creep. This is probably due to a microstructural instability such as the precipitation of new phases (e.g. Laves phases and Z-phases), the growth of the precipitates and the recovery of the matrix. 9% Cr and 12% Cr tempered martensitic steels that have been creep tested for times up to 50,000 h at 600 C and 650 C were investigated using Transmission Electron Microscopy (TEM) on extractive replicas and thin foils together with Backscatter Scanning Electron Microscopy (BSE-SEM) to better understand the different creep behaviour of the two different steels. A significant precipitation of Laves phase and low amounts of Z-phase was observed in the 9% Cr steels after long-term creep exposure. The size distribution of Laves phases was measured by image analysis of SEM-BSE images. In the 12% Cr steel two new phases were identified, Laves phase and Z-phase after almost 30,000 h of creep test. The quantification of the different precipitated phases was studied. (orig.)

  10. Characterization of a 14Cr ODS steel by means of small punch and uniaxial testing with regard to creep and fatigue at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Bruchhausen, M., E-mail: matthias.bruchhausen@ec.europa.eu [European Commission, Joint Research Centre, Institute for Energy and Transport, P.O. Box 2, 1755 ZG Petten (Netherlands); Turba, K. [European Commission, Joint Research Centre, Institute for Energy and Transport, P.O. Box 2, 1755 ZG Petten (Netherlands); Lund University, Division of Materials Engineering, P.O. Box 118, SE-221 00 Lund (Sweden); Haan, F. de; Hähner, P.; Austin, T. [European Commission, Joint Research Centre, Institute for Energy and Transport, P.O. Box 2, 1755 ZG Petten (Netherlands); Carlan, Y. de [CEA, DEN, Service de Recherches Métallurgiques Appliquées, 91191 Gif-sur-Yvette (France)

    2014-01-15

    A 14Cr ODS steel was characterized at elevated temperatures with regard to its behavior in small punch and uniaxial creep tests and in low cycle fatigue tests. A comparison of small punch and uniaxial creep tests at 650 °C revealed a strong anisotropy of the material when strained parallel and perpendicular to the extrusion direction with rupture times being several orders of magnitude lower for the perpendicular direction. The stress-rupture and Larson–Miller plots show a very large scatter of the creep data. This scatter is strongly reduced when rupture time is plotted against minimum deflection rate or minimum creep rate (Monkman–Grant plot). Fatigue tests have been carried out at 650 °C and 750 °C. The alloy is cyclically very stable with practically no hardening/softening. Results from the tests at both temperatures can be described by a common power law. An increase in the test temperature has little influence on the fatigue ductility exponent. For a given total strain level, the fatigue life of the alloy is reduced with increasing temperature.

  11. Creep behavior of 8Cr2WVTa martensitic steel designed for fusion DEMO reactor. An assessment on helium embrittlement resistance

    International Nuclear Information System (INIS)

    Yamamoto, Norikazu; Murase, Yoshiharu; Nagakawa, Johsei; Shiba, Kiyoyuki

    2001-01-01

    Mechanical response against transmutational helium production, alternatively susceptibility to helium embrittlement, in a nuclear fusion reactor was examined on 8Cr2WVTa martensitic steel, a prominent structural candidate for advanced fusion systems. In order to simulate DEMO (demonstrative) reactor environments, helium was implanted into the material at 823 K with concentrations up to 1000 appmHe utilizing an α-beam from a cyclotron. Creep rupture properties were subsequently determined at the same temperature and were compared with those of the material without helium. It has been proved that helium caused no meaningful deterioration in terms of both the creep lifetime and rupture elongation. Furthermore, failure occurred completely in a transgranular and ductile manner even after high concentration helium introduction and there was no symptom of grain boundary decohesion which very often arises in helium bearing materials. These facts would mirror preferable resistance of this steel toward helium embrittlement. (author)

  12. Effect of the hydro-thermal load history on the high-temperature creep of HTR-concrete

    International Nuclear Information System (INIS)

    Diederichs, U.; Rostasy, F.S.; Becker, G.

    1991-01-01

    In the research and development works for the prestressed concrete vessel for the HTR-500 high temperature reactor, the comprehensive tests concerning mix design, manufacture as well as mechanical and thermal behavior of the concrete have been carried out. The concrete was put to the numerous tests for determining the strength and the creep behavior at elevated temperature. In the real PCRV, the concrete is heated at different heating rate depending on the location of a certain volume element of the concrete in the structure. Furthermore, the heat transport simultaneously causes the moisture transport. For this reason, the test has been planned to investigate the transient creep at various heating rates and in different states of moisture during heating to the accident temperature up to 300 deg C. The cylindrical specimens were used for the high temperature creep test. The test procedure and the test results are reported. It was shown that the thermal history (heating rate, duration of holding at a certain temperature and so on) determines the transient creep deformation to a great extent. (K.I.)

  13. Creep analysis of orthotropic shells

    International Nuclear Information System (INIS)

    Mehra, V.K.; Ghosh, A.

    1975-01-01

    A method of creep analysis of orthotropic cylindrical shells subjected to axisymmetric loads has been developed. A general study of creep behaviour of cylindrical shells subjected to a uniform internal pressure has been conducted for a wide range of values of anisotropy coefficients and creep law exponent. Analysis includes determination of stress re-distribution, strain rates, stationary state stresses. Application of reference stress technique has been extended to analysis of shells. (author)

  14. Creep of sandwich beams with metallic foam cores

    International Nuclear Information System (INIS)

    Kesler, O.; Crews, L.K.; Gibson, L.J.

    2003-01-01

    The steady state creep deflection rates of sandwich beams with metallic foam cores were measured and compared with analytical and numerical predictions of the creep behavior. The deflection rate depends on the geometry of the sandwich beam, the creep behavior of the foam core and the loading conditions (stress state, temperature). Although there was a considerable scatter in the creep data (both of the foams and of the sandwich beams made using them), the data for the sandwich beams were fairly well described by the analysis

  15. Creep of sandwich beams with metallic foam cores

    Energy Technology Data Exchange (ETDEWEB)

    Kesler, O.; Crews, L.K.; Gibson, L.J

    2003-01-20

    The steady state creep deflection rates of sandwich beams with metallic foam cores were measured and compared with analytical and numerical predictions of the creep behavior. The deflection rate depends on the geometry of the sandwich beam, the creep behavior of the foam core and the loading conditions (stress state, temperature). Although there was a considerable scatter in the creep data (both of the foams and of the sandwich beams made using them), the data for the sandwich beams were fairly well described by the analysis.

  16. Off-fault seismicity suggests creep below 10 km on the northern San Jacinto Fault

    Science.gov (United States)

    Cooke, M. L.; Beyer, J. L.

    2017-12-01

    Within the San Bernardino basin, CA, south of the juncture of the San Jacinto (SJF) and San Andreas faults (SAF), focal mechanisms show normal slip events that are inconsistent with the interseismic strike-slip loading of the region. High-quality (nodal plane uncertainty faults [Anderson et al., 2004]. However, the loading of these normal slip events remains enigmatic because the region is expected to have dextral loading between large earthquake events. These enigmatic normal slip events may be loaded by deep (> 10 km depth) spatially creep along the northern SJF. Steady state models show that over many earthquake cycles, the dextral slip rate on the northern SJF increases southward, placing the San Bernardino basin in extension. In the absence of recent large seismic events that could produce off-fault normal focal mechanisms in the San Bernardino basin, non-uniform deep aseismic slip on the SJF could account for this seismicity. We develop interseismic models that incorporate spatially non-uniform creep below 10 km on the SJF based on steady-state slip distribution. These model results match the pattern of deep normal slip events within the San Bernardino basin. Such deep creep on the SJF may not be detectable from the geodetic signal due to the close proximity of the SAF, whose lack of seismicity suggests that it is locked to 20 km. Interseismic models with 15 km locking depth on both faults are indistinguishable from models with 10 km locking depth on the SJF and 20 km locking depth on the SAF. This analysis suggests that the microseismicity in our multi-decadal catalog may record both the interseismic dextral loading of the region as well as off-fault deformation associated with deep aseismic creep on the northern SJF. If the enigmatic normal slip events of the San Bernardino basin are included in stress inversions from the seismic catalog used to assess seismic hazard, the results may provide inaccurate information about fault loading in this region.

  17. Aspects of high temperature corrosion of boiler tubes

    Energy Technology Data Exchange (ETDEWEB)

    Spiegel, M.; Bendick, W. [Salzgitter-Mannesmann-Forschung GmbH, Duisburg (Germany)

    2008-07-01

    The development of new boiler steels for power generation has to consider significant creep strength as well as oxidation and corrosion resistance. High temperature corrosion of boiler materials concerns steam oxidation as well as fireside corrosion of parts, in contact with the flue gas. It will be shown that depending on the quality of the fuel, especially chlorine and sulphur are responsible for most of the fireside corrosion problems. Corrosion mechanisms will be presented for flue gas induced corrosion (HCl) and deposit induced corrosion (chlorides and sulfates). Especially for the 700 C technology, deposit induced corrosion issues have to be considered and the mechanisms of corrosion by molten sulfates 'Hot Corrosion' will be explained. Finally, an overview will be given on the selection of suitable materials in order to minimise corrosion relates failures. (orig.)

  18. Analysis of structures based on a characteristic-strain model of creep

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, J. [Alstom Power, Newbold Road, Rugby CV21 2NH (United Kingdom)], E-mail: janjohn.bolton@virgin.net

    2008-01-15

    A companion paper [Bolton J. In: A characteristic-strain model for creep, ECCC/I.Mech.E. conference on creep and fracture in high-temperature components, London, September 2005] describes a creep model based on a constant 'characteristic strain' at any temperature. The present paper discusses the application of such a model, first to simple structures and then to engineering components of general form under steady loading. A basis is proposed for identifying the stress within a structure, or within the critical part of a structure, which can be considered to govern both its overall and local deformations. The concept is similar to skeletal-point stress but is more readily applied to components of any shape. The implementation of the concept of 'structural stress' is discussed in the context of finite-element creep calculations. Consideration is given to the analysis of cracked structures, where very high strains at the crack tip must be accommodated.

  19. Analysis of structures based on a characteristic-strain model of creep

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, J. [Alstom Power, Newbold Road, Rugby CV21 2NH (United Kingdom)], E-mail: janjohn.bolton@virgin.net

    2008-01-15

    A companion paper [Bolton J. In: A characteristic-strain model for creep, ECCC/I.Mech.E. conference on creep and fracture in high-temperature components, London, September 2005] describes a creep model based on a constant 'characteristic strain' at any temperature. The present paper discusses the application of such a model, first to simple structures and then to engineering components of general form under steady loading. A basis is proposed for identifying the stress within a structure, or within the critical part of a structure, which can be considered to govern both its overall and local deformations. The concept is similar to skeletal-point stress but is more readily applied to components of any shape. The implementation of the concept of 'structural stress' is discussed in the context of finite-element creep calculations. Consideration is given to the analysis of cracked structures, where very high strains at the crack tip must be accommodated.

  20. Analysis of structures based on a characteristic-strain model of creep

    International Nuclear Information System (INIS)

    Bolton, J.

    2008-01-01

    A companion paper [Bolton J. In: A characteristic-strain model for creep, ECCC/I.Mech.E. conference on creep and fracture in high-temperature components, London, September 2005] describes a creep model based on a constant 'characteristic strain' at any temperature. The present paper discusses the application of such a model, first to simple structures and then to engineering components of general form under steady loading. A basis is proposed for identifying the stress within a structure, or within the critical part of a structure, which can be considered to govern both its overall and local deformations. The concept is similar to skeletal-point stress but is more readily applied to components of any shape. The implementation of the concept of 'structural stress' is discussed in the context of finite-element creep calculations. Consideration is given to the analysis of cracked structures, where very high strains at the crack tip must be accommodated