WorldWideScience

Sample records for on-line sensor system

  1. On-line methanol sensor system development for recombinant ...

    African Journals Online (AJOL)

    On-line methanol sensor system development for recombinant human serum ... of the methanol sensor system was done in a medium environment with yeast cells ... induction at a low temperature and a pH where protease does not function.

  2. Flight route Designing and mission planning Of power line inspecting system Based On multi-sensor UAV

    International Nuclear Information System (INIS)

    Xiaowei, Xie; Zhengjun, Liu; Zhiquan, Zuo

    2014-01-01

    In order to obtain various information of power facilities such as spatial location, geometry, images data and video information in the infrared and ultraviolet band and so on, Unmanned Aerial Vehicle (UAV) power line inspecting system needs to integrate a variety of sensors for data collection. Low altitude and side-looking imaging are required for UAV flight to ensure sensors to acquire high-quality data and device security. In this paper, UAV power line inspecting system is deferent from existing ones that used in Surveying and Mapping. According to characteristics of UAV for example equipped multiple sensor, side-looking imaging, working at low altitude, complex terrain conditions and corridor type flight, this paper puts forward a UAV power line inspecting scheme which comprehensively considered of the UAV performance, sensor parameters and task requirements. The scheme is finally tested in a region of Guangdong province, and the preliminary results show that the scheme is feasible

  3. Research on Flow Field Perception Based on Artificial Lateral Line Sensor System

    Directory of Open Access Journals (Sweden)

    Guijie Liu

    2018-03-01

    Full Text Available In nature, the lateral line of fish is a peculiar and important organ for sensing the surrounding hydrodynamic environment, preying, escaping from predators and schooling. In this paper, by imitating the mechanism of fish lateral canal neuromasts, we developed an artificial lateral line system composed of micro-pressure sensors. Through hydrodynamic simulations, an optimized sensor structure was obtained and the pressure distribution models of the lateral surface were established in uniform flow and turbulent flow. Carrying out the corresponding underwater experiment, the validity of the numerical simulation method is verified by the comparison between the experimental data and the simulation results. In addition, a variety of effective research methods are proposed and validated for the flow velocity estimation and attitude perception in turbulent flow, respectively and the shape recognition of obstacles is realized by the neural network algorithm.

  4. Microfluidic electrochemical sensor for on-line monitoring of aerosol oxidative activity.

    Science.gov (United States)

    Sameenoi, Yupaporn; Koehler, Kirsten; Shapiro, Jeff; Boonsong, Kanokporn; Sun, Yele; Collett, Jeffrey; Volckens, John; Henry, Charles S

    2012-06-27

    Particulate matter (PM) air pollution has a significant impact on human morbidity and mortality; however, the mechanisms of PM-induced toxicity are poorly defined. A leading hypothesis states that airborne PM induces harm by generating reactive oxygen species in and around human tissues, leading to oxidative stress. We report here a system employing a microfluidic electrochemical sensor coupled directly to a particle-into-liquid sampler (PILS) system to measure aerosol oxidative activity in an on-line format. The oxidative activity measurement is based on the dithiothreitol (DTT) assay, where, after being oxidized by PM, the remaining reduced DTT is analyzed by the microfluidic sensor. The sensor consists of an array of working, reference, and auxiliary electrodes fabricated in a poly(dimethylsiloxane)-based microfluidic device. Cobalt(II) phthalocyanine-modified carbon paste was used as the working electrode material, allowing selective detection of reduced DTT. The electrochemical sensor was validated off-line against the traditional DTT assay using filter samples taken from urban environments and biomass burning events. After off-line characterization, the sensor was coupled to a PILS to enable on-line sampling/analysis of aerosol oxidative activity. Urban dust and industrial incinerator ash samples were aerosolized in an aerosol chamber and analyzed for their oxidative activity. The on-line sensor reported DTT consumption rates (oxidative activity) in good correlation with aerosol concentration (R(2) from 0.86 to 0.97) with a time resolution of approximately 3 min.

  5. On-line chemical sensors for applications in fast reactors

    International Nuclear Information System (INIS)

    Jayaraman, V.

    2015-01-01

    Hydrogen sensors are essential components of fast reactor sodium circuits. These sensors are needed in fast reactors for the immediate detection of any steam leak into sodium during reactor operation which can lead to failure of steam generator. Depending on the operating power of the reactor, sodium-water reaction results in either an increase in dissolved hydrogen level in sodium or an increase in hydrogen content of argon cover gas used above sodium coolant. Hence, on-line monitoring of hydrogen continuously in sodium and cover circuits helps in detection of any steam leak. In the event of accidental leak of high temperature sodium, it reacts with oxygen and moisture in air leading to sodium fires. These fires produce sodium aerosol containing oxides of sodium (Na 2 O and Na 2 O 2 ) and NaOH. For early detection of sodium fires, sensor systems based on sodium ionization detector, pH measurement and modulation of conductivity of graphite films are known in the literature. This presentation deals with the development of on-line sensors for these two applications. A diffusion based sensor using a thin walled nickel coil at 773 K and a sensitive thermal conductivity detector (TCD) has been developed for monitoring hydrogen levels in argon cover gas. This sensor has a lower detection limit of 30 ppm of hydrogen in argon. To extend the detection limit of the sensor, a surface conductivity based sensor has been developed which makes use of a thin film of semi-conducting tin oxide. Integration of this sensor with the TCD, can extend the lower detection limit to 2 ppm of hydrogen in cover gas. Electrochemical sensor based on sodium-beta-alumina has been designed, fabricated and its performance in laboratory and industrial environment was evaluated. This paper presents the logical development of these sensors highlighting their merits and limitations

  6. On-line structural damage localization and quantification using wireless sensors

    International Nuclear Information System (INIS)

    Hsu, Ting-Yu; Huang, Shieh-Kung; Lu, Kung-Chung; Loh, Chin-Hsiung; Wang, Yang; Lynch, Jerome Peter

    2011-01-01

    In this paper, a wireless sensing system is designed to realize on-line damage localization and quantification of a structure using a frequency response function change method (FRFCM). Data interrogation algorithms are embedded in the computational core of the wireless sensing units to extract the necessary structural features, i.e. the frequency spectrum segments around eigenfrequencies, automatically from measured structural response for the FRFCM. Instead of the raw time history of the structural response, the extracted compact structural features are transmitted to the host computer. As a result, with less data transmitted from the wireless sensors, the energy consumed by the wireless transmission is reduced. To validate the performance of the proposed wireless sensing system, a six-story steel building with replaceable bracings in each story is instrumented with the wireless sensors for on-line damage detection during shaking table tests. The accuracy of the damage detection results using the wireless sensing system is verified through comparison with the results calculated from data recorded of a traditional wired monitoring system. The results demonstrate that, by taking advantage of collocated computing resources in wireless sensors, the proposed wireless sensing system can locate and quantify damage with acceptable accuracy and moderate energy efficiency

  7. Comparison of an Inductance In-Line Oil Debris Sensor and Magnetic Plug Oil Debris Sensor

    Science.gov (United States)

    Dempsey, Paula J.; Tuck, Roger; Showalter, Stephen

    2012-01-01

    The objective of this research was to compare the performance of an inductance in-line oil debris sensor and magnetic plug oil debris sensor when detecting transmission component health in the same system under the same operating conditions. Both sensors were installed in series in the NASA Glenn Spiral Bevel Gear Fatigue Rig during tests performed on 5 gear sets (pinion/gear) when different levels of damage occurred on the gear teeth. Results of this analysis found both the inductance in-line oil debris sensor and magnetic plug oil debris sensor have benefits and limitations when detecting gearbox component damage.

  8. Imaging dipole flow sources using an artificial lateral-line system made of biomimetic hair flow sensors

    NARCIS (Netherlands)

    Dagamseh, A.M.K.; Wiegerink, Remco J.; Lammerink, Theodorus S.J.; Krijnen, Gijsbertus J.M.

    2013-01-01

    In Nature, fish have the ability to localize prey, school, navigate, etc., using the lateral-line organ. Artificial hair flow sensors arranged in a linear array shape (inspired by the lateral-line system (LSS) in fish) have been applied to measure airflow patterns at the sensor positions. Here, we

  9. Wireless overhead line temperature sensor based on RF cavity resonance

    International Nuclear Information System (INIS)

    Ghafourian, Maryam; Nezhad, Abolghasem Zeidaabadi; Bridges, Greg E; Thomson, Douglas J

    2013-01-01

    The importance of maximizing power transfer through overhead transmission lines necessitates the use of dynamic power control to keep transmission line temperatures within acceptable limits. Excessive conductor operating temperatures lead to an increased sag of the transmission line conductor and may reduce their expected life. In this paper, a passive wireless sensor based on a resonant radio frequency (RF) cavity is presented which can be used to measure overhead transmission line temperature. The temperature sensor does not require a power supply and can be easily clamped to the power line with an antenna attached. Changing temperature causes a change of cavity dimensions and a shift in resonant frequency. The resonant frequency of the cavity can be interrogated wirelessly. This temperature sensor has a resolution of 0.07 °C and can be interrogated from distances greater than 4.5 m. The sensor has a deviation from linearity of less than 2 °C. (paper)

  10. On-line testing of response time and calibration of temperature and pressure sensors in nuclear power plants

    International Nuclear Information System (INIS)

    Hashemian, H.M.

    1995-01-01

    Periodic calibrations and response time measurements are necessary for temperature and pressure sensors in the safety systems of nuclear power plants. Conventional measurement methods require the test to be performed at the sensor location or involve removing the sensor from the process and performing the tests in a laboratory or on the bench. The conventional methods are time consuming and have the potential of causing wear and tear on the equipment, can expose the test personnel to radiation and other harsh environments, and increase the length of the plant outage. Also, the conventional methods do not account for the installation effects which may have an influence on sensor performance. On-line testing methods alleviate these problems by providing remote sensor response time and calibration capabilities. For temperature sensors such as Resistance Temperature Detectors (RTDs) and thermocouples, an on-line test method called the Loop Current Step Response (LCSR) technique has been developed, and for pressure transmitters, an on-line method called noise analysis which was available for reactor diagnostics was validated for response time testing applications. Both the LCSR and noise analysis tests are performed periodically in U.S. nuclear power plants to meet the plant technical specification requirements for response time testing of safety-related sensors. Automated testing of the calibration of both temperature and pressure sensors can be accomplished through an on-line monitoring system installed in the plant. The system monitors the DC output of the sensors over the fuel cycle to determine if any calibration drift has occurred. Changes in calibration can be detected using signal averaging and intercomparison methods and analytical redundancy techniques. (author)

  11. On-line methanol sensor system development for recombinant ...

    African Journals Online (AJOL)

    PANCHIGA

    2016-10-19

    Oct 19, 2016 ... Calibration of the methanol sensor system was done in a medium environment with ... by taking protein induction at a low temperature and a pH where protease ... molecular weight of 66.5 kDa, HSA comprises about one-.

  12. Study and Experiment on Non-Contact Voltage Sensor Suitable for Three-Phase Transmission Line.

    Science.gov (United States)

    Zhou, Qiang; He, Wei; Xiao, Dongping; Li, Songnong; Zhou, Kongjun

    2015-12-30

    A voltage transformer, as voltage signal detection equipment, plays an important role in a power system. Presently, more and more electric power systems are adopting potential transformer and capacitance voltage transformers. Transformers are often large in volume and heavyweight, their insulation design is difficult, and an iron core or multi-grade capacitance voltage division structure is generally adopted. As a result, the detection accuracy of transformer is reduced, a huge phase difference exists between detection signal and voltage signal to be measured, and the detection signal cannot accurately and timely reflect the change of conductor voltage signal to be measured. By aiming at the current problems of electric transformation, based on electrostatic induction principle, this paper designed a non-contact voltage sensor and gained detection signal of the sensor through electrostatic coupling for the electric field generated by electric charges of the conductor to be measured. The insulation structure design of the sensor is simple and its volume is small; phase difference of sensor measurement is effectively reduced through optimization design of the electrode; and voltage division ratio and measurement accuracy are increased. The voltage sensor was tested on the experimental platform of simulating three-phase transmission line. According to the result, the designed non-contact voltage sensor can realize accurate and real-time measurement for the conductor voltage. It can be applied to online monitoring for the voltage of three-phase transmission line or three-phase distribution network line, which is in accordance with the development direction of the smart grid.

  13. Ground-based transmission line conductor motion sensor

    International Nuclear Information System (INIS)

    Jacobs, M.L.; Milano, U.

    1988-01-01

    A ground-based-conductor motion-sensing apparatus is provided for remotely sensing movement of electric-power transmission lines, particularly as would occur during the wind-induced condition known as galloping. The apparatus is comprised of a motion sensor and signal-generating means which are placed underneath a transmission line and will sense changes in the electric field around the line due to excessive line motion. The detector then signals a remote station when a conditioning of galloping is sensed. The apparatus of the present invention is advantageous over the line-mounted sensors of the prior art in that it is easier and less hazardous to install. The system can also be modified so that a signal will only be given when particular conditions, such as specific temperature range, large-amplitude line motion, or excessive duration of the line motion, are occurring

  14. Sensor Placement For Structural Monitoring of Transmission Line Towers

    Directory of Open Access Journals (Sweden)

    Benny eRaphael

    2015-11-01

    Full Text Available Transmission line towers are usually analyzed using linear elastic idealized truss models. Due to the assumptions used in the analysis, there are discrepancies between the actual results obtained from full scale prototype testing and the analytical results. Therefore, design engineers are interested in assessing the actual stress levels in transmission line towers. Since it is costly to place sensors on every member of a tower structure, the best locations for sensors need to be carefully selected. This study evaluates a methodology for sensor placement in transmission line towers. The objective is to find optimal locations for sensors such that the real behavior of the structure can be explained from measurements. The methodology is based on the concepts of entropy and model falsification. Sensor locations are selected based on maximum entropy such that there is maximum separation between model instances that represent different possible combinations of parameter values which have uncertainties. The performance of the proposed algorithm is compared to that of an intuitive method in which sensor locations are selected where the forces are maximum. A typical 220 kV transmission tower is taken as case study in this paper. It is shown that the intuitive method results in much higher number of non-separable models compared to the optimal sensor placement algorithm. Thus the intuitive method results in poor identification of the system.

  15. A framework for an on-line diagnostic expert system with intelligent sensor validation

    International Nuclear Information System (INIS)

    Kim, Young Jin

    1997-01-01

    This paper outlines a framework for performing two different but inter-related functions in diagnosis, i.e. sensor validation and reasoning under uncertainty. Sensor validation plays a vital role in the ability of the overall system to correctly determine the state of a plant monitored by imperfect sensors (Sopocy, 1990). Two subsystems, Algorithmic(ASV) and Heuristic(HSV) Sensor Validation, separate activities according to the degree of plant knowledge required and represent Sensor Validation Expert System when combined. Uncertain information in sensory values is represented through probability assignments on three discrete states, High, Normal, and Low, and additional sensor confidence measures in ASV. HSV exploits deeper knowledge about parameter interaction within the plant to cull sensor faults from the data stream. Finally the modified probability distributions and validated data are used as input to the reasoning scheme which is the run-time version of the influence diagram. The influence diagram represents the backbone of reasoning under uncertainty in Influence Diagram Knowledge Base. (author)

  16. Integrated cantilever-based flow sensors with tunable sensitivity for in-line monitoring of flow fluctuations in microfluidic systems

    DEFF Research Database (Denmark)

    Noeth, Nadine-Nicole; Keller, Stephan Sylvest; Boisen, Anja

    2014-01-01

    For devices such as bio-/chemical sensors in microfluidic systems, flow fluctuations result in noise in the sensor output. Here, we demonstrate in-line monitoring of flow fluctuations with a cantilever-like sensor integrated in a microfluidic channel. The cantilevers are fabricated in different...... is directly proportional to the flow rate fluctuations in the microfluidic channel. The SiN cantilevers show a detection limit below 1 nL/min and the thinnest SU-8 cantilevers a detection limit below 5 nL/min. Finally, the sensor is applied for in-line monitoring of flow fluctuations generated by external...

  17. The silicon tracking system of the CBM experiment at FAIR. Development of microstrip sensors and signal transmission lines for a low-mass, low-noise system

    International Nuclear Information System (INIS)

    Singla, Minni

    2014-01-01

    construction of the silicon microstrip sensors. For the evaluation of the performance of the silicon microstrip sensors in the harsh radiation environment during experimental operation, a radiation damage model has been included. It reproduces the behavior of the irradiated CBM prototype sensors. In addition to the static characteristics, the interstrip parameters relevant to understand strip isolation and cross-talk issues have been extracted. The transient simulations have been performed to estimate the charge collection performance of the irradiated sensors. The signal transmission in the readout cables has been evaluated with the finite element simulation tool RAPHAEL. Based on the performance of the front-end electronics used for early prototyping in the CBM experiment, capacitive and resistive noise contributions from the silicon microstrip sensors and multi-line readout cables have been extracted. To validate the aforementioned simulations, numerous tests have been performed both on the multi-line readout cables and silicon microstrip sensors. Characterizations of multi-line readout cables and silicon microstrip sensors in laboratory conditions have been found to agree reasonably well with the simulations. Considering the expected radiation environment the behavior of silicon microstrip sensors have been studied especially in terms of noise and charge collection efficiency. scan of the silicon microstrip sensors using 241 Am is presented. In order to test a first system of detector stations including the data acquisition system, slow control and online monitoring software and for track reconstruction, in-beam tests have been performed at the COSY synchrotron of the Research Center Juelich, Germany. Further, different design parameters have been suggested to improve the sensor and readout cable design on the basis of the simulations and the measurements. Many of these parameters have been implemented in the new prototypes under production. These new prototypes were

  18. Wireless Power Supply via Coupled Magnetic Resonance for on-line Monitoring Wireless Sensor of High-voltage Electrical Equipment

    DEFF Research Database (Denmark)

    Xingkui, Mao; Qisheng, Huang; Yudi, Xiao

    2016-01-01

    On-line monitoring of high-voltage electrical equipment (HV-EE) aiming to detect faults effectively has become crucial to avoid serious accidents. Moreover, highly reliable power supplies are the key component for the wireless sensors equipped in such on-line monitoring systems. Therefore......, in this paper, the wireless power supply via coupled magnetic resonance (MR-WPS) is proposed for powering the wireless sensor and the associated wireless sensor solution is also proposed. The key specifications of the MR-WPS working in switchgear cabinet with a harsh operation environment are analyzed...... power is able to be delivered to the wireless sensor through the designed MR-WPS, and therefore the theoretical analysis and design is verified....

  19. A High Performance Banknote Recognition System Based on a One-Dimensional Visible Light Line Sensor.

    Science.gov (United States)

    Park, Young Ho; Kwon, Seung Yong; Pham, Tuyen Danh; Park, Kang Ryoung; Jeong, Dae Sik; Yoon, Sungsoo

    2015-06-15

    An algorithm for recognizing banknotes is required in many fields, such as banknote-counting machines and automatic teller machines (ATM). Due to the size and cost limitations of banknote-counting machines and ATMs, the banknote image is usually captured by a one-dimensional (line) sensor instead of a conventional two-dimensional (area) sensor. Because the banknote image is captured by the line sensor while it is moved at fast speed through the rollers inside the banknote-counting machine or ATM, misalignment, geometric distortion, and non-uniform illumination of the captured images frequently occur, which degrades the banknote recognition accuracy. To overcome these problems, we propose a new method for recognizing banknotes. The experimental results using two-fold cross-validation for 61,240 United States dollar (USD) images show that the pre-classification error rate is 0%, and the average error rate for the final recognition of the USD banknotes is 0.114%.

  20. A High Performance Banknote Recognition System Based on a One-Dimensional Visible Light Line Sensor

    Directory of Open Access Journals (Sweden)

    Young Ho Park

    2015-06-01

    Full Text Available An algorithm for recognizing banknotes is required in many fields, such as banknote-counting machines and automatic teller machines (ATM. Due to the size and cost limitations of banknote-counting machines and ATMs, the banknote image is usually captured by a one-dimensional (line sensor instead of a conventional two-dimensional (area sensor. Because the banknote image is captured by the line sensor while it is moved at fast speed through the rollers inside the banknote-counting machine or ATM, misalignment, geometric distortion, and non-uniform illumination of the captured images frequently occur, which degrades the banknote recognition accuracy. To overcome these problems, we propose a new method for recognizing banknotes. The experimental results using two-fold cross-validation for 61,240 United States dollar (USD images show that the pre-classification error rate is 0%, and the average error rate for the final recognition of the USD banknotes is 0.114%.

  1. Aircraft engine sensor fault diagnostics using an on-line OBEM update method.

    Directory of Open Access Journals (Sweden)

    Xiaofeng Liu

    Full Text Available This paper proposed a method to update the on-line health reference baseline of the On-Board Engine Model (OBEM to maintain the effectiveness of an in-flight aircraft sensor Fault Detection and Isolation (FDI system, in which a Hybrid Kalman Filter (HKF was incorporated. Generated from a rapid in-flight engine degradation, a large health condition mismatch between the engine and the OBEM can corrupt the performance of the FDI. Therefore, it is necessary to update the OBEM online when a rapid degradation occurs, but the FDI system will lose estimation accuracy if the estimation and update are running simultaneously. To solve this problem, the health reference baseline for a nonlinear OBEM was updated using the proposed channel controller method. Simulations based on the turbojet engine Linear-Parameter Varying (LPV model demonstrated the effectiveness of the proposed FDI system in the presence of substantial degradation, and the channel controller can ensure that the update process finishes without interference from a single sensor fault.

  2. A Review of Artificial Lateral Line in Sensor Fabrication and Bionic Applications for Robot Fish.

    Science.gov (United States)

    Liu, Guijie; Wang, Anyi; Wang, Xinbao; Liu, Peng

    2016-01-01

    Lateral line is a system of sense organs that can aid fishes to maneuver in a dark environment. Artificial lateral line (ALL) imitates the structure of lateral line in fishes and provides invaluable means for underwater-sensing technology and robot fish control. This paper reviews ALL, including sensor fabrication and applications to robot fish. The biophysics of lateral line are first introduced to enhance the understanding of lateral line structure and function. The design and fabrication of an ALL sensor on the basis of various sensing principles are then presented. ALL systems are collections of sensors that include carrier and control circuit. Their structure and hydrodynamic detection are reviewed. Finally, further research trends and existing problems of ALL are discussed.

  3. A Review of Artificial Lateral Line in Sensor Fabrication and Bionic Applications for Robot Fish

    Directory of Open Access Journals (Sweden)

    Guijie Liu

    2016-01-01

    Full Text Available Lateral line is a system of sense organs that can aid fishes to maneuver in a dark environment. Artificial lateral line (ALL imitates the structure of lateral line in fishes and provides invaluable means for underwater-sensing technology and robot fish control. This paper reviews ALL, including sensor fabrication and applications to robot fish. The biophysics of lateral line are first introduced to enhance the understanding of lateral line structure and function. The design and fabrication of an ALL sensor on the basis of various sensing principles are then presented. ALL systems are collections of sensors that include carrier and control circuit. Their structure and hydrodynamic detection are reviewed. Finally, further research trends and existing problems of ALL are discussed.

  4. Integrated Cantilever-Based Flow Sensors with Tunable Sensitivity for In-Line Monitoring of Flow Fluctuations in Microfluidic Systems

    Directory of Open Access Journals (Sweden)

    Nadine Noeth

    2013-12-01

    Full Text Available For devices such as bio-/chemical sensors in microfluidic systems, flow fluctuations result in noise in the sensor output. Here, we demonstrate in-line monitoring of flow fluctuations with a cantilever-like sensor integrated in a microfluidic channel. The cantilevers are fabricated in different materials (SU-8 and SiN and with different thicknesses. The integration of arrays of holes with different hole size and number of holes allows the modification of device sensitivity, theoretical detection limit and measurement range. For an average flow in the microliter range, the cantilever deflection is directly proportional to the flow rate fluctuations in the microfluidic channel. The SiN cantilevers show a detection limit below 1 nL/min and the thinnest SU-8 cantilevers a detection limit below 5 nL/min. Finally, the sensor is applied for in-line monitoring of flow fluctuations generated by external pumps connected to the microfluidic system.

  5. Straight-Line: A nuclear material storage information management system

    International Nuclear Information System (INIS)

    Nilsen, C.; Mangan, D.

    1995-01-01

    Sandia National Laboratories is developing Straight-Line -- a pilot system to demonstrate comprehensive monitoring of nuclear material in storage. Straight-Line is an integrated system of sensors providing information that will enhance the safety, security, and international accountability of stored nuclear material. The goals of this effort are to: (1) Provide the right sensor information to the right user immediately. (2) Reduce the expenses, risks, and frequency of human inspection of the material. (3) Provide trustworthy data to international inspectors to minimize their need to make on site inspections. In pursuit of these goals, Straight-Line unites technology from Sandia's Authenticated Item Monitoring System (AIMS) and other programs to communicate the authenticated status of the monitored item back to central magazine receivers. Straight-Line, however, incorporates several important features not found in previous systems: (1) Information Security -- the ability to collect and safely disseminate both classified and unclassified sensor data to users on a need-to-know basis. (2) Integrate into a single system the monitoring needs of safety, security, and international accountability. (3) Incorporate the use of sensors providing analog or digital output. This paper will present the overall architecture and status of the Straight-Line project

  6. Straight-Line: A nuclear material storage information management system

    Energy Technology Data Exchange (ETDEWEB)

    Nilsen, C.; Mangan, D.

    1995-07-01

    Sandia National Laboratories is developing Straight-Line -- a pilot system to demonstrate comprehensive monitoring of nuclear material in storage. Straight-Line is an integrated system of sensors providing information that will enhance the safety, security, and international accountability of stored nuclear material. The goals of this effort are to: (1) Provide the right sensor information to the right user immediately. (2) Reduce the expenses, risks, and frequency of human inspection of the material. (3) Provide trustworthy data to international inspectors to minimize their need to make on site inspections. In pursuit of these goals, Straight-Line unites technology from Sandia`s Authenticated Item Monitoring System (AIMS) and other programs to communicate the authenticated status of the monitored item back to central magazine receivers. Straight-Line, however, incorporates several important features not found in previous systems: (1) Information Security -- the ability to collect and safely disseminate both classified and unclassified sensor data to users on a need-to-know basis. (2) Integrate into a single system the monitoring needs of safety, security, and international accountability. (3) Incorporate the use of sensors providing analog or digital output. This paper will present the overall architecture and status of the Straight-Line project.

  7. Integrated sensor array for on-line monitoring micro bioreactors

    NARCIS (Netherlands)

    Krommenhoek, E.E.

    2007-01-01

    The “Fed��?batch on a chip��?��?project, which was carried out in close cooperation with the Technical University of Delft, aims to miniaturize and parallelize micro bioreactors suitable for on-line screening of micro-organisms. This thesis describes an electrochemical sensor array which has been

  8. On-line sensor technology for food manufacturing industry. Shokuhin bun prime ya ni okeru on-line sensor gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Komiya, K. (Ajinomoto Co. Inc., Tokyo (Japan))

    1990-08-05

    This paper introduced the sensor technology for food manufacturing industry. If sugar concentration in main raw material is too high in the amino acid fermentation, control of the concentration is required because fungi growth is inhibited. A controlling method for sugar concentration was developed by using the correlation between consumption of NH {sub 3} for pH adjustment and sugar consumption in place of conventional analyzing method and was introduced in the gulutamic acid fermantation. BOD sensor was developed to enable the selective measurement of organic substances which can be processed by organisms, and measuring time was shortened from previous five days to 30 minutes. Since many organics absorb infrared ray, near infrared analysis is suitable for food analysis and on-line analysis has high possibility. When this method is applied to measure moisture in fishes and meats, continuous measurement can be made nondestructively and without contacting, and further the precision is {plus minus} 0.1%. Simultaneous multi-composition analyses are carried out by continuous spectrum and near infrared method using higher rate scanning. Sensor development for taste and smell has started. 10 refs., 4 figs., 4 refs.

  9. Development of chipless, wireless current sensor system based on giant magnetoimpedance magnetic sensor and surface acoustic wave transponder.

    Science.gov (United States)

    Kondalkar, Vijay V; Li, Xiang; Park, Ikmo; Yang, Sang Sik; Lee, Keekeun

    2018-02-05

    A chipless, wireless current sensor system was developed using a giant magnetoimpedance (GMI) magnetic sensor and one-port surface acoustic wave (SAW) reflective delay line for real-time power monitoring in a current-carrying conductor. The GMI sensor has a high-quality crystalline structure in each layer, which contributes to a high sensitivity and good linearity in a magnetic field of 3-16 Oe. A 400 MHz RF energy generated from the interdigital transducer (IDT)-type reflector on the one-port SAW delay line was used as an activation source for the GMI magnetic sensor. The one-port SAW delay line replaces the presently existing transceiver system, which is composed of thousands of transistors, thus enabling chipless and wireless operation. We confirmed a large variation in the amplitude of the SAW reflection peak with a change in the impedance of the GMI sensor caused by the current flow through the conductor. Good linearity and sensitivity of ~0.691 dB/A were observed for currents in the range 1-12 A. Coupling of Mode (COM) modeling and impedance matching analysis were also performed to predict the device performance in advance and these were compared with the experimental results.

  10. Measurement of response time and detection of degradation in pressure sensor/sensing-line systems

    International Nuclear Information System (INIS)

    Buchanan, M.E.; Miller, L.F.; Kerlin, T.W.; Ragan, G.; March-Leuba, J.; Thie, J.A.

    1985-01-01

    A team evaluated several methods for remote measurement of the response time and detection of degradation (blockage or air in lines) of pressure sensor/sensing line systems typical of nuclear power plants. A method was developed for obtaining the response time of force-balance pressure transmitters by briefly interrupting the power supply to the transmitter. The data thus generated are then analyzed in conjunction with a model to predict transmitter response to an actual pressure perturbation. The research team also evaluated a pressure perturbation method for determining the asymptotic delay time of a pressure-sensing line and found that this method yields accurate results for essentially unblocked sensing lines. However, these pressure perturbation tests are not recommended for use in nuclear power plants because they are difficult to implement on-line. A third method for remote measurement applied noise analysis method that yielded accurate estimates of asymptotic delay times for blockage or air in sensing lines. Even though noise analysis methods worked well in the laboratory, it is recommended that further evaluation be performed in operating nuclear plants. (orig.)

  11. Measurement of response time and detection of degradation in pressure sensor/sensing line systems

    International Nuclear Information System (INIS)

    Buchanan, M.E.; Miller, L.F.; Thie, J.A.; Kerlin, T.W.; Ragan, G.E.; March-Leuba, J.

    1985-09-01

    A team evaluated several methods for remote measurement of the response time and detection of degradation (blockage or air in lines) of pressure sensor/sensing line systems typical of nuclear power plants. A method was developed for obtaining the response time of force-balance pressure transmitters by briefly interrupting the power supply to the transmitter. The data thus generated are then analyzed in conjunction with a model to predict transmitter response to an actual pressure perturbation. The research team also evaluated a pressure perturbation method for determining the asymptotic delay time of a pressure-sensing line and found that this method yields accurate results for essentially unblocked sensing lines. However, these pressure perturbation tests are not recommended for use in nuclear power plants because they are difficult to implement on-line. A third method for remote measurement applied noise analysis methods that yielded accurate estimates of asymptotic delay times for blockage or air in sensing lines. Even though noise analysis methods worked well in the laboratory, it is recommended that further evaluation be performed in operating nuclear plants

  12. Water-Cut Sensor System

    KAUST Repository

    Karimi, Muhammad Akram

    2018-01-11

    Provided in some embodiments is a method of manufacturing a pipe conformable water-cut sensors system. Provided in some embodiments is method for manufacturing a water-cut sensor system that includes providing a helical T-resonator, a helical ground conductor, and a separator at an exterior of a cylindrical pipe. The helical T-resonator including a feed line, and a helical open shunt stub conductively coupled to the feed line. The helical ground conductor including a helical ground plane opposite the helical open shunt stub and a ground ring conductively coupled to the helical ground plane. The feed line overlapping at least a portion of the ground ring, and the separator disposed between the feed line and the portion of the ground ring overlapped by the feed line to electrically isolate the helical T-resonator from the helical ground conductor.

  13. Monitoring on-line system for the lactic fermentation measurement using the integration enzyme sensor; Shusekika koso sensa wo mochiita nyusan hakko keisokuyo onrain monitringu shisutemu

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Masayasu; Kumagaya, Tsuyoshi; Nakajima, Yoichi [Kyushu Institute of Technology, Fukuoka (Japan)

    1999-04-05

    The monitoring on-line system for the lactic fermentation measurement in which the simultaneous measurement of the substrate. Generation was possible was constructed without consuming the culture medium by using soliciting small enzyme sensor and flow injection analysis system integrate. There was the linearity that anyway was also range of concentration of 70mM or less and that it is good on the calibration curve of minute glucose, lactose, and lactic acid sensor. It became clear that it proved that all range of concentration of the substrate of these three which combining with the micro diary system, breaks in the lactic fermentation measurement with the necessity can be measured and not observe the interference by medium components, etc. either. Constructed monitoring on-line system is Lactobacillus delbrueckii and, it was applied to the lactic fermentation process of Lactobacillus lactis. Through the fermentation process for 24 hours, simultaneous measurement of glucose (or lactose) and lactic acid is possible. The measured value agreed well with the result of colorimetric method using the enzyme. (translated by NEDO)

  14. Straight-Line -- A nuclear material storage information management system

    International Nuclear Information System (INIS)

    Nilsen, C.; Mangan, D.

    1995-01-01

    Sandia National Laboratories is developing Straight-Line -- a pilot system to demonstrate comprehensive monitoring of nuclear material in storage. Straight-Line is an integrated system of sensors providing information that will enhance the safety, security, and international accountability of stored nuclear material. The goals of this effort are to (1) Provide the right sensor information to the right user in a timely manner. (2) Reduce the expenses, risks, and frequency of human inspection of the material. (3) Provide trustworthy data to international inspectors to minimize their need to make on site inspections. In pursuit of these goals, Straight-Line unites technology from Sandia's Authenticated Item Monitoring System (AIMS) and other programs to communicate the authenticated status of the monitored item back to central magazine receivers. Straight-Line, however, incorporates several important features not found in previous systems: (1) Information Security -- the ability to collect and safely disseminate both classified and unclassified sensor data to users on a need-to-know basis. (2) Integrate into a single system the monitoring needs of safety, security, and international accountability. (3) Incorporate the use of sensors providing analog or digital output. This paper will present the overall architecture and status of the Straight-Line project

  15. Straight-Line -- A nuclear material storage information management system

    Energy Technology Data Exchange (ETDEWEB)

    Nilsen, C. [Sandia National Labs., Livermore, CA (United States); Mangan, D. [Sandia National Labs., Albuquerque, NM (United States)

    1995-12-31

    Sandia National Laboratories is developing Straight-Line -- a pilot system to demonstrate comprehensive monitoring of nuclear material in storage. Straight-Line is an integrated system of sensors providing information that will enhance the safety, security, and international accountability of stored nuclear material. The goals of this effort are to (1) Provide the right sensor information to the right user in a timely manner. (2) Reduce the expenses, risks, and frequency of human inspection of the material. (3) Provide trustworthy data to international inspectors to minimize their need to make on site inspections. In pursuit of these goals, Straight-Line unites technology from Sandia`s Authenticated Item Monitoring System (AIMS) and other programs to communicate the authenticated status of the monitored item back to central magazine receivers. Straight-Line, however, incorporates several important features not found in previous systems: (1) Information Security -- the ability to collect and safely disseminate both classified and unclassified sensor data to users on a need-to-know basis. (2) Integrate into a single system the monitoring needs of safety, security, and international accountability. (3) Incorporate the use of sensors providing analog or digital output. This paper will present the overall architecture and status of the Straight-Line project.

  16. Metrological characterization methods for confocal chromatic line sensors and optical topography sensors

    Science.gov (United States)

    Seppä, Jeremias; Niemelä, Karri; Lassila, Antti

    2018-05-01

    The increasing use of chromatic confocal technology for, e.g. fast, in-line optical topography, and measuring thickness, roughness and profiles implies a need for the characterization of various aspects of the sensors. Single-point, line and matrix versions of chromatic confocal technology, encoding depth information into wavelength, have been developed. Of these, line sensors are particularly suitable for in-line process measurement. Metrological characterization and development of practical methods for calibration and checking is needed for new optical methods and devices. Compared to, e.g. tactile methods, optical topography measurement techniques have limitations related to light wavelength and coherence, optical properties of the sample including reflectivity, specularity, roughness and colour, and definition of optical versus mechanical surfaces. In this work, metrological characterization methods for optical line sensors were developed for scale magnification and linearity, sensitivity to sample properties, and dynamic characteristics. An accurate depth scale calibration method using a single prototype groove depth sample was developed for a line sensor and validated with laser-interferometric sample tracking, attaining (sub)micrometre level or better than 0.1% scale accuracy. Furthermore, the effect of different surfaces and materials on the measurement and depth scale was studied, in particular slope angle, specularity and colour. In addition, dynamic performance, noise, lateral scale and resolution were measured using the developed methods. In the case of the LCI1200 sensor used in this study, which has a 11.3 mm  ×  2.8 mm measurement range, the instrument depth scale was found to depend only minimally on sample colour, whereas measuring steeply sloped specular surfaces in the peripheral measurement area, in the worst case, caused a somewhat larger relative sample-dependent change (1%) in scale.

  17. A Universal Vacant Parking Slot Recognition System Using Sensors Mounted on Off-the-Shelf Vehicles

    Directory of Open Access Journals (Sweden)

    Jae Kyu Suhr

    2018-04-01

    Full Text Available An automatic parking system is an essential part of autonomous driving, and it starts by recognizing vacant parking spaces. This paper proposes a method that can recognize various types of parking slot markings in a variety of lighting conditions including daytime, nighttime, and underground. The proposed method can readily be commercialized since it uses only those sensors already mounted on off-the-shelf vehicles: an around-view monitor (AVM system, ultrasonic sensors, and in-vehicle motion sensors. This method first detects separating lines by extracting parallel line pairs from AVM images. Parking slot candidates are generated by pairing separating lines based on the geometric constraints of the parking slot. These candidates are confirmed by recognizing their entrance positions using line and corner features and classifying their occupancies using ultrasonic sensors. For more reliable recognition, this method uses the separating lines and parking slots not only found in the current image but also found in previous images by tracking their positions using the in-vehicle motion-sensor-based vehicle odometry. The proposed method was quantitatively evaluated using a dataset obtained during the day, night, and underground, and it outperformed previous methods by showing a 95.24% recall and a 97.64% precision.

  18. A novel, optical, on-line bacteria sensor for monitoring drinking water quality.

    Science.gov (United States)

    Højris, Bo; Christensen, Sarah Christine Boesgaard; Albrechtsen, Hans-Jørgen; Smith, Christian; Dahlqvist, Mathis

    2016-04-04

    Today, microbial drinking water quality is monitored through either time-consuming laboratory methods or indirect on-line measurements. Results are thus either delayed or insufficient to support proactive action. A novel, optical, on-line bacteria sensor with a 10-minute time resolution has been developed. The sensor is based on 3D image recognition, and the obtained pictures are analyzed with algorithms considering 59 quantified image parameters. The sensor counts individual suspended particles and classifies them as either bacteria or abiotic particles. The technology is capable of distinguishing and quantifying bacteria and particles in pure and mixed suspensions, and the quantification correlates with total bacterial counts. Several field applications have demonstrated that the technology can monitor changes in the concentration of bacteria, and is thus well suited for rapid detection of critical conditions such as pollution events in drinking water.

  19. Backside illuminated CMOS-TDI line scan sensor for space applications

    Science.gov (United States)

    Cohen, Omer; Ofer, Oren; Abramovich, Gil; Ben-Ari, Nimrod; Gershon, Gal; Brumer, Maya; Shay, Adi; Shamay, Yaron

    2018-05-01

    A multi-spectral backside illuminated Time Delayed Integration Radiation Hardened line scan sensor utilizing CMOS technology was designed for continuous scanning Low Earth Orbit small satellite applications. The sensor comprises a single silicon chip with 4 independent arrays of pixels where each array is arranged in 2600 columns with 64 TDI levels. A multispectral optical filter whose spectral responses per array are adjustable per system requirement is assembled at the package level. A custom 4T Pixel design provides the required readout speed, low-noise, very low dark current, and high conversion gains. A 2-phase internally controlled exposure mechanism improves the sensor's dynamic MTF. The sensor high level of integration includes on-chip 12 bit per pixel analog to digital converters, on-chip controller, and CMOS compatible voltage levels. Thus, the power consumption and the weight of the supporting electronics are reduced, and a simple electrical interface is provided. An adjustable gain provides a Full Well Capacity ranging from 150,000 electrons up to 500,000 electrons per column and an overall readout noise per column of less than 120 electrons. The imager supports line rates ranging from 50 to 10,000 lines/sec, with power consumption of less than 0.5W per array. Thus, the sensor is characterized by a high pixel rate, a high dynamic range and a very low power. To meet a Latch-up free requirement RadHard architecture and design rules were utilized. In this paper recent electrical and electro-optical measurements of the sensor's Flight Models will be presented for the first time.

  20. Inexpensive on-line alcohol sensor for fermentation monitoring and control

    Energy Technology Data Exchange (ETDEWEB)

    Birch, S W; Turner, A P.F.; Ashby, R E

    1987-01-01

    An inorganic electrochemical fuel cell sensor was interfaced to a microcomputer and used to measure on-line the alcohol concentration in the off-gas of a fermentor. A calibration curve was obtained for methanol (linear range 0-9 g/l) and ethanol (linear range 0-6 g/l) to relate the alcohol concentration in the fermentor liquid with that in the off-gas. The consumption of methanol in a batch fermentation of the methylotroph Ps.BB1 was monitored (sampling frequency of 5 minutes) and compared with samples taken for off-line analysis by GLC. On-line control of the methanol concentration in a fed-batch fermentation was achieved by proportional and integral control. 24 references.

  1. Feasibility analysis of marine ecological on-line integrated monitoring system

    Science.gov (United States)

    Chu, D. Z.; Cao, X.; Zhang, S. W.; Wu, N.; Ma, R.; Zhang, L.; Cao, L.

    2017-08-01

    The in-situ water quality sensors were susceptible to biological attachment. Moreover, sea water corrosion and wave impact damage, and many sensors scattered distribution would cause maintenance inconvenience. The paper proposed a highly integrated marine ecological on-line integrated monitoring system, which can be used inside monitoring station. All sensors were reasonably classified, the similar in series, the overall in parallel. The system composition and workflow were described. In addition, the paper proposed attention issues of the system design and corresponding solutions. Water quality multi-parameters and 5 nutrient salts as the verification index, in-situ and systematic data comparison experiment were carried out. The results showed that the data consistency of nutrient salt, PH and salinity was better. Temperature and dissolved oxygen data trend was consistent, but the data had deviation. Turbidity fluctuated greatly; the chlorophyll trend was similar with it. Aiming at the above phenomena, three points system optimization direction were proposed.

  2. A Tactile Sensor Network System Using a Multiple Sensor Platform with a Dedicated CMOS-LSI for Robot Applications.

    Science.gov (United States)

    Shao, Chenzhong; Tanaka, Shuji; Nakayama, Takahiro; Hata, Yoshiyuki; Bartley, Travis; Nonomura, Yutaka; Muroyama, Masanori

    2017-08-28

    Robot tactile sensation can enhance human-robot communication in terms of safety, reliability and accuracy. The final goal of our project is to widely cover a robot body with a large number of tactile sensors, which has significant advantages such as accurate object recognition, high sensitivity and high redundancy. In this study, we developed a multi-sensor system with dedicated Complementary Metal-Oxide-Semiconductor (CMOS) Large-Scale Integration (LSI) circuit chips (referred to as "sensor platform LSI") as a framework of a serial bus-based tactile sensor network system. The sensor platform LSI supports three types of sensors: an on-chip temperature sensor, off-chip capacitive and resistive tactile sensors, and communicates with a relay node via a bus line. The multi-sensor system was first constructed on a printed circuit board to evaluate basic functions of the sensor platform LSI, such as capacitance-to-digital and resistance-to-digital conversion. Then, two kinds of external sensors, nine sensors in total, were connected to two sensor platform LSIs, and temperature, capacitive and resistive sensing data were acquired simultaneously. Moreover, we fabricated flexible printed circuit cables to demonstrate the multi-sensor system with 15 sensor platform LSIs operating simultaneously, which showed a more realistic implementation in robots. In conclusion, the multi-sensor system with up to 15 sensor platform LSIs on a bus line supporting temperature, capacitive and resistive sensing was successfully demonstrated.

  3. Integrated electrochemical sensor array for on-line monitoring of yeast fermentations

    NARCIS (Netherlands)

    Krommenhoek, E.E.; Gardeniers, Johannes G.E.; Bomer, Johan G.; Li, X.; Ottens, M.; van Dedem, G.W.K.; van Leeuwen, M.; van Gulik, W.M.; van der Wielen, L.A.M.; Heijnen, J.J.; van den Berg, Albert

    2007-01-01

    This paper describes the design, modeling, and experimental characterization of an electrochemical sensor array for on-line monitoring of fermentor conditions in both miniaturized cell assays and in industrial scale fertnentations. The viable biomass concentration is determined from impedance

  4. Evaluation of software sensors for on-line estimation of culture conditions in an Escherichia coli cultivation expressing a recombinant protein.

    Science.gov (United States)

    Warth, Benedikt; Rajkai, György; Mandenius, Carl-Fredrik

    2010-05-03

    Software sensors for monitoring and on-line estimation of critical bioprocess variables have mainly been used with standard bioreactor sensors, such as electrodes and gas analyzers, where algorithms in the software model have generated the desired state variables. In this article we propose that other on-line instruments, such as NIR probes and on-line HPLC, should be used to make more reliable and flexible software sensors. Five software sensor architectures were compared and evaluated: (1) biomass concentration from an on-line NIR probe, (2) biomass concentration from titrant addition, (3) specific growth rate from titrant addition, (4) specific growth rate from the NIR probe, and (5) specific substrate uptake rate and by-product rate from on-line HPLC and NIR probe signals. The software sensors were demonstrated on an Escherichia coli cultivation expressing a recombinant protein, green fluorescent protein (GFP), but the results could be extrapolated to other production organisms and product proteins. We conclude that well-maintained on-line instrumentation (hardware sensors) can increase the potential of software sensors. This would also strongly support the intentions with process analytical technology and quality-by-design concepts. 2010 Elsevier B.V. All rights reserved.

  5. A Tactile Sensor Network System Using a Multiple Sensor Platform with a Dedicated CMOS-LSI for Robot Applications †

    Science.gov (United States)

    Shao, Chenzhong; Tanaka, Shuji; Nakayama, Takahiro; Hata, Yoshiyuki; Bartley, Travis; Muroyama, Masanori

    2017-01-01

    Robot tactile sensation can enhance human–robot communication in terms of safety, reliability and accuracy. The final goal of our project is to widely cover a robot body with a large number of tactile sensors, which has significant advantages such as accurate object recognition, high sensitivity and high redundancy. In this study, we developed a multi-sensor system with dedicated Complementary Metal-Oxide-Semiconductor (CMOS) Large-Scale Integration (LSI) circuit chips (referred to as “sensor platform LSI”) as a framework of a serial bus-based tactile sensor network system. The sensor platform LSI supports three types of sensors: an on-chip temperature sensor, off-chip capacitive and resistive tactile sensors, and communicates with a relay node via a bus line. The multi-sensor system was first constructed on a printed circuit board to evaluate basic functions of the sensor platform LSI, such as capacitance-to-digital and resistance-to-digital conversion. Then, two kinds of external sensors, nine sensors in total, were connected to two sensor platform LSIs, and temperature, capacitive and resistive sensing data were acquired simultaneously. Moreover, we fabricated flexible printed circuit cables to demonstrate the multi-sensor system with 15 sensor platform LSIs operating simultaneously, which showed a more realistic implementation in robots. In conclusion, the multi-sensor system with up to 15 sensor platform LSIs on a bus line supporting temperature, capacitive and resistive sensing was successfully demonstrated. PMID:29061954

  6. On-line monitoring system of lactic acid fermentation by using integrated enzyme sons ors; Shusekika koso sensa wo mochiita nyusan hakko keisokuyo onrain monitaringu shisutemu

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Masayasu; Kumagi, Takeshi; Nakashima, Yuuichi [Kyushu University, Fukuoka (Japan). Dept. of Biochemical Engineering and Science

    1999-03-10

    An on-line monitoring system for lactic acid fermentation is developed by using integrated micro enzyme sensors, a flow injection analysis system, and a micro dialysis system. The calibration curves of micro glucose, lactose and lactate sensors show good linearity in the concentration range below 70 mM. By combination with the micro dialysis system, the enzyme sensors can measure the whole concentration range of lactic acid fermentation, and interference by the medium can not be observed. The on-line sensor system is then applied to lactic acid fermentation of Lactobacillus delbrueckii. The sensor system can monitor the glucose and lactate concentrations simultaneously during 24-h fermentation, and the measurements show good agreement with those of the conventional colorimetric method. The sensor system can also be applied to on-line monitoring of lactose and lactate during Lactobacillus lactis fermentation. (author)

  7. Wearable computing from modeling to implementation of wearable systems based on body sensor networks

    CERN Document Server

    Fortino, Giancarlo; Galzarano, Stefano

    2018-01-01

    This book provides the most up-to-date research and development on wearable computing, wireless body sensor networks, wearable systems integrated with mobile computing, wireless networking and cloud computing. This book has a specific focus on advanced methods for programming Body Sensor Networks (BSNs) based on the reference SPINE project. It features an on-line website (http://spine.deis.unical.it) to support readers in developing their own BSN application/systems and covers new emerging topics on BSNs such as collaborative BSNs, BSN design methods, autonomic BSNs, integration of BSNs and pervasive environments, and integration of BSNs with cloud computing. The book provides a description of real BSN prototypes with the possibility to see on-line demos and download the software to test them on specific sensor platforms and includes case studies for more practical applications. * Provides a future roadmap by learning advanced technology and open research issues * Gathers the background knowledge to tackl...

  8. Portable reconfigurable line sensor (PRLS) and technology transfer

    International Nuclear Information System (INIS)

    MacKenzie, D.P.; Buckle, T.H.; Blattman, D.A.

    1993-01-01

    The Portable Reconfigurable Line Sensor (PRLS) is a bistatic, pulsed-Doppler, microwave intrusion detection system developed at Sandia National Laboratories for the US Air Force. The PRLS is rapidly and easily deployed, and can detect intruders ranging from a slow creeping intruder to a high speed vehicle. The system has a sharply defined detection zone and will not falsely alarm on nearby traffic. Unlike most microwave sensors, the PRLS requires no alignment or calibration. Its portability, battery operation, ease of setup, and RF alarm reporting capability make it an excellent choice for perimeter, portal, and gap-filler applications in the important new field of rapidly-deployable sensor systems. In October 1992, the US Air Force and Racon, Inc., entered into a Cooperative Research and Development Agreement (CRADA) to commercialize the PRLS, jointly sharing government and industry resources. The Air Force brings the user's perspective and requirements to the cooperative effort. Sandia, serving as the technical arm of the Air Force, adds the actual PRLS technology to the joint effort, and provides security systems and radar development expertise. Racon puts the Air Force requirements and Sandia technology together into a commercial product, making the system meet important commercial manufacturing constraints. The result is a true ''win-win'' situation, with reduced government investment during the commercial development of the PRLS, and industry access to technology not otherwise available

  9. Distributed Fiber Optic Sensor for On-Line Monitoring of Coal Gasifier Refractory Health

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Anbo [Center for Photonics Technology, Blacksburgh, VA (United States); Yu, Zhihao [Center for Photonics Technology, Blacksburgh, VA (United States)

    2015-11-30

    This report summarizes technical progress on the program “Distributed Fiber Optic Sensor for On-Line Monitoring of Coal Gasifier Refractory Health,” funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The scope of work entails analyses of traveling grating generation technologies in an optical fiber, as well as the interrogation of the gratings to infer a distributed temperature along the fiber, for the purpose of developing a real-time refractory health condition monitoring technology for coal gasifiers. During the project period, which is from 2011-2015, three different sensing principles were studied, including four-wave mixing (FWM), coherent optical time-domain reflectometer (C-OTDR) and Brillouin optical time-domain analysis (BOTDA). By comparing the three methods, the BOTDA was selected for further development into a complete bench-top sensing system for the proposed high-temperature sensing application. Based on the input from Eastman Chemical, the industrial collaborator on this project, a cylindrical furnace was designed and constructed to simulate typical gasifier refractory temperature conditions in the laboratory, and verify the sensor’s capability to fully monitor refractory conditions on the back-side at temperatures up to 1000°C. In the later stages of the project, the sensing system was tested in the simulated environment for its sensing performance and high-temperature survivability. Through theoretical analyses and experimental research on the different factors affecting the sensor performance, a sensor field deployment strategy was proposed for possible future sensor field implementations.

  10. Implementation of an integrated on-line process surveillance and diagnostic system at the Halden reactor project: MOAS

    International Nuclear Information System (INIS)

    Kim, I.S.; Grini, R.-E.; Nilsen, S.

    2001-01-01

    MOAS is an integrated on-line process surveillance and diagnostic system that uses several different models for knowledge acquisition and diagnostic reasoning, such as goal-tree success-tree model, process monitor trees, and sensor failure diagnosis trees. Within these models, the knowledge of the process and its operation, including deep knowledge, like mass balance or controller algorithm, is incorporated. During an extensive review, made as part of the integrated diagnosis system project of the Halden reactor project, MOAS (Maryland Operator Advisory System) was identified as one of the most thorough systems developed thus far. MOAS encompasses diverse functional aspects that are required for an effective process disturbance management: (1) intelligent process monitoring and alarming, (2) on-line sensor data validation and sensor failure diagnosis, (3) on-line hardware (besides sensors) failure diagnosis, and (4) real-time corrective measure synthesis. The MOAS methodology was used for the NORS (Nokia Research Simulator) process at the Halden man-machine laboratory HAMMLAB of the OECD Halden reactor project. The performance tests of MOAS, implemented in G2 real-time expert system shell, show that MOAS successfully carries out its intended functions, i.e. quickly recognizing an occurring disturbance, correctly diagnosing its cause, and presenting advice on its control to the operator. The lessons learned and insights gained during the implementation and performance tests also are discussed

  11. Wireless Sensor Network for Electric Transmission Line Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Alphenaar, Bruce

    2009-06-30

    Generally, federal agencies tasked to oversee power grid reliability are dependent on data from grid infrastructure owners and operators in order to obtain a basic level of situational awareness. Since there are many owners and operators involved in the day-to-day functioning of the power grid, the task of accessing, aggregating and analyzing grid information from these sources is not a trivial one. Seemingly basic tasks such as synchronizing data timestamps between many different data providers and sources can be difficult as evidenced during the post-event analysis of the August 2003 blackout. In this project we investigate the efficacy and cost effectiveness of deploying a network of wireless power line monitoring devices as a method of independently monitoring key parts of the power grid as a complement to the data which is currently available to federal agencies from grid system operators. Such a network is modeled on proprietary power line monitoring technologies and networks invented, developed and deployed by Genscape, a Louisville, Kentucky based real-time energy information provider. Genscape measures transmission line power flow using measurements of electromagnetic fields under overhead high voltage transmission power lines in the United States and Europe. Opportunities for optimization of the commercial power line monitoring technology were investigated in this project to enable lower power consumption, lower cost and improvements to measurement methodologies. These optimizations were performed in order to better enable the use of wireless transmission line monitors in large network deployments (perhaps covering several thousand power lines) for federal situational awareness needs. Power consumption and cost reduction were addressed by developing a power line monitor using a low power, low cost wireless telemetry platform known as the ''Mote''. Motes were first developed as smart sensor nodes in wireless mesh networking applications

  12. Opto-electronic scanning of colour pictures with P/sup 2/CCC-all solid state line sensors

    Energy Technology Data Exchange (ETDEWEB)

    Damann, H; Rabe, G; Zinke, M; Herrmann, M; Imjela, R; Laasch, I; Mueller, J; Neumann, K; Tauchen, G; Woelber, J

    1982-04-01

    A new one-chip all solid state line sensor (P/sup 2/CCD-Tricoli) has been realized as a basis for the opto-electronic scanning of colour pictures. The three photosensitive lines for the colour components red, green and blue contain each 652 photo elements. They are arranged in parallel on one silicon crystal, with distances of some 100 ..mu..m. The line sensor is supplied with an extra designed driving circuitry and a signal processing. For colour splitting a colour separating digital phase grating has been developed which generates the three colour components in its three central diffraction orders. Using all the development components ('Tricoli'-line-sensor, electronic circuitry, colour separation grating) a model of a slide scanner has been built up, which succesfully demonstrates the feasibility of the proposed colour scanning system.

  13. Combination of a fast white-light interferometer with a phase shifting interferometric line sensor for form measurements of precision components

    Science.gov (United States)

    Laubach, Sören; Ehret, Gerd; Riebling, Jörg; Lehmann, Peter

    2017-06-01

    By means of an interferometric line sensor system, the form of a specimen can be measured by stitching several overlapping circular subapertures to form one 3D topography. This concept is very flexible and can be adapted to many different specimen geometries. The sensor is based on a Michelson interferometer configuration that consists of a rapidly oscillating reference mirror in combination with a high-speed line-scan camera. Due to the overlapping areas, movement errors of the scan axes can be corrected. In order to automatically adjust the line sensor in such a way that it is perpendicular to the measurement surface at a fixed working distance, a white-light interferometer was included in the line-based form-measuring system. By means of a fast white-light scan, the optimum angle of the sensor (with respect to the surface of the specimen) is determined in advance, before scanning the specimen using the line-based sinusoidal phase shifting interferometer. This produces accurate measurement results and makes it possible to also measure non-rotational specimens. In this paper, the setup of the line-based form-measuring system is introduced and the measurement strategy of the sensor adjustment using an additional white-light interferometer is presented. Furthermore, the traceability chain of the system and the main error influences are discussed. Examples of form measurement results are shown.

  14. Bedside arterial blood gas monitoring system using fluorescent optical sensors

    Science.gov (United States)

    Bartnik, Daniel J.; Rymut, Russell A.

    1995-05-01

    We describe a bedside arterial blood gas (ABG) monitoring system which uses fluorescent optical sensors in the measurement of blood pH, PCO2 and PO2. The Point-of-Care Arterial Blood Gas Monitoring System consists of the SensiCathTM optical sensor unit manufactured by Optical Sensors Incorporated and the TramTM Critical Care Monitoring System with ABG Module manufactured by Marquette Electronics Incorporated. Current blood gas measurement techniques require a blood sample to be removed from the patient and transported to an electrochemical analyzer for analysis. The ABG system does not require removal of blood from the patient or transport of the sample. The sensor is added to the patient's existing arterial line. ABG measurements are made by drawing a small blood sample from the arterial line in sufficient quantity to ensure an undiluted sample at the sensor. Measurements of pH, PCO2 and PO2 are made within 60 seconds. The blood is then returned to the patient, the line flushed and results appear on the bedside monitor. The ABG system offers several advantages over traditional electrochemical analyzers. Since the arterial line remains closed during the blood sampling procedure the patient's risk of infection is reduced and the caregiver's exposure to blood is eliminated. The single-use, disposable sensor can be measure 100 blood samples over 72 hours after a single two-point calibration. Quality Assurance checks are also available and provide the caregiver the ability to assess system performance even after the sensor is patient attached. The ABG module integrates with an existing bedside monitoring system. This allows ABG results to appear on the same display as ECG, respiration, blood pressure, cardiac output, SpO2, and other clinical information. The small module takes up little space in the crowded intensive care unit. Performance studies compare the ABG system with an electrochemical blood gas analyzer. Study results demonstrated accurate and precise blood

  15. 21 CFR 870.4410 - Cardiopulmonary bypass in-line blood gas sensor.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cardiopulmonary bypass in-line blood gas sensor... Cardiopulmonary bypass in-line blood gas sensor. (a) Identification. A cardiopulmonary bypass in-line blood gas sensor is a transducer that measures the level of gases in the blood. (b) Classification. Class II...

  16. A model-based approach to on-line process disturbance management

    International Nuclear Information System (INIS)

    Kim, I.S.

    1988-01-01

    The methodology developed can be applied to the design of a real-time expert system to aid control-room operators in coping with process abnormalities. The approach encompasses diverse functional aspects required for an effective on-line process disturbance management: (1) intelligent process monitoring and alarming, (2) on-line sensor data validation, (3) on-line sensor and hardware (except sensors) fault diagnosis, and (4) real-time corrective measure synthesis. Accomplishment of these functions is made possible through the application of various models, goal-tree success-tree, process monitor-tree, sensor failure diagnosis, and hardware failure diagnosis models. The models used in the methodology facilitate not only the knowledge-acquisition process - a bottleneck in the development of an expert system - but also the reasoning process of the knowledge-based system. These transparent models and model-based reasoning significantly enhance the maintainability of the real-time expert systems. The proposed approach was applied to the feedwater control system of a nuclear power plant, and implemented into a real-time expert system, MOAS II, using the expert system shell, PICON, on the LMI machine

  17. Applications of the energy differentiation type radiation line sensor to such as inspection for the plumbing corrosion

    International Nuclear Information System (INIS)

    Tomita, Yasuhiro; Shirayanagi, Yuji; Matsui, Shinjiro; Kamiya, Yosuke; Kobayashi, Akira

    2015-01-01

    The authors have engaged in development of the next-generation radiation detectors that can give information on energy such as X-rays and γ-rays, and commercialized an energy discrimination type radiation line sensor capable of discriminating the energy of photons using a CdTe radiation detector element. This paper introduces the structure and principles of this energy discrimination type radiation line sensor. As the basic application, it also introduces the material identification, energy discrimination type X-ray CT imaging, and the quantitative determination of iron plate thickness using X-ray. In addition, it introduces the radiation line sensor we have developed for inspecting the reduced amount of wall thickness of piping with insulation materials. This radiation line sensor for pipe thinning inspection combined with radiation sources (X-rays, γ-rays) and a transport system is capable of accurately and efficiently inspecting reduced wall thickness, while moving the censor on the covered pipe with heat insulating materials through remote control, without removing piping insulation materials and without stopping the use of piping. (A.O.)

  18. On detection and automatic tracking of butt weld line in thin wall pipe welding by a mobile robot with visual sensor

    International Nuclear Information System (INIS)

    Suga, Yasuo; Ishii, Hideaki; Muto, Akifumi

    1992-01-01

    An automatic pipe welding mobile robot system with visual sensor was constructed. The robot can move along a pipe, and detect the weld line to be welded by visual sensor. Moreover, in order to make an automatic welding, the welding torch can track the butt weld line of the pipes at a constant speed by rotating the robot head. Main results obtained are summarized as follows: 1) Using a proper lighting fixed in front of the CCD camera, the butt weld line of thin wall pipes can be recongnized stably. In this case, the root gap should be approximately 0.5 mm. 2) In order to detect the weld line stably during moving along the pipe, a brightness distribution measured by the CCD camera should be subjected to smoothing and differentiating and then the weld line is judged by the maximum and minimum values of the differentials. 3) By means of the basic robot system with a visual sensor controlled by a personal computer, the detection and in-process automatic tracking of a weld line are possible. The average tracking error was approximately 0.2 mm and maximum error 0.5 mm and the welding speed was held at a constant value with error of about 0.1 cm/min. (author)

  19. Coagulation sensors based on magnetostrictive delay lines for biomedical and chemical engineering applications

    International Nuclear Information System (INIS)

    Maliaritsi, E.; Zoumpoulakis, L.; Simitzis, J.; Vassiliou, P.; Hristoforou, E.

    2006-01-01

    Coagulation sensors based on the magnetostrictive delay line technique are presented in this paper. They are based on magnetostrictive ribbons and are used for measuring the coagulation, curing or solidification time of different liquids. Experimental results indicate that the presented sensing elements can determine the blood coagulation with remarkable repeatability, thus allowing their use as blood coagulation sensors. Additionally, results indicate that they can also measure curing time of resins, solidification of fluids and coagulation of chemical substances, therefore allowing their implementation in chemical engineering applications

  20. Short-Range Sensor for Underwater Robot Navigation using Line-lasers and Vision

    DEFF Research Database (Denmark)

    Hansen, Peter Nicholas; Nielsen, Mikkel Cornelius; Christensen, David Johan

    2015-01-01

    This paper investigates a minimalistic laser-based range sensor, used for underwater inspection by Autonomous Underwater Vehicles (AUV). This range detection system system comprise two lasers projecting vertical lines, parallel to a camera’s viewing axis, into the environment. Using both lasers...

  1. Virtual sensors for on-line wheel wear and part roughness measurement in the grinding process.

    Science.gov (United States)

    Arriandiaga, Ander; Portillo, Eva; Sánchez, Jose A; Cabanes, Itziar; Pombo, Iñigo

    2014-05-19

    Grinding is an advanced machining process for the manufacturing of valuable complex and accurate parts for high added value sectors such as aerospace, wind generation, etc. Due to the extremely severe conditions inside grinding machines, critical process variables such as part surface finish or grinding wheel wear cannot be easily and cheaply measured on-line. In this paper a virtual sensor for on-line monitoring of those variables is presented. The sensor is based on the modelling ability of Artificial Neural Networks (ANNs) for stochastic and non-linear processes such as grinding; the selected architecture is the Layer-Recurrent neural network. The sensor makes use of the relation between the variables to be measured and power consumption in the wheel spindle, which can be easily measured. A sensor calibration methodology is presented, and the levels of error that can be expected are discussed. Validation of the new sensor is carried out by comparing the sensor's results with actual measurements carried out in an industrial grinding machine. Results show excellent estimation performance for both wheel wear and surface roughness. In the case of wheel wear, the absolute error is within the range of microns (average value 32 μm). In the case of surface finish, the absolute error is well below Ra 1 μm (average value 0.32 μm). The present approach can be easily generalized to other grinding operations.

  2. Adaptive Sensing Based on Profiles for Sensor Systems

    Directory of Open Access Journals (Sweden)

    Yoshiteru Ishida

    2009-10-01

    Full Text Available This paper proposes a profile-based sensing framework for adaptive sensor systems based on models that relate possibly heterogeneous sensor data and profiles generated by the models to detect events. With these concepts, three phases for building the sensor systems are extracted from two examples: a combustion control sensor system for an automobile engine, and a sensor system for home security. The three phases are: modeling, profiling, and managing trade-offs. Designing and building a sensor system involves mapping the signals to a model to achieve a given mission.

  3. Dynamic Line Rating - Technologies and Challenges of PMU on Overhead Lines

    DEFF Research Database (Denmark)

    Alvarez, David; Rosero, Javier; Silva, Filipe Miguel Faria da

    2016-01-01

    for line rating computation and monitoring are identified, these are: sensors, communications, management information system and information analysis tools, which are part of integral dynamic line rating systems. Finally, the benefits and challenges of using phasor measurement units for real time capacity...

  4. A novel, optical, on-line bacteria sensor for monitoring drinking water quality

    DEFF Research Database (Denmark)

    Højris, Bo; Christensen, Sarah Christine Boesgaard; Albrechtsen, Hans-Jørgen

    2016-01-01

    Today, microbial drinking water quality is monitored through either time-consuming laboratory methods or indirect on-line measurements. Results are thus either delayed or insufficient to support proactive action. A novel, optical, on-line bacteria sensor with a 10-minute time resolution has been...... and quantifying bacteria and particles in pure and mixed suspensions, and the quantification correlates with total bacterial counts. Several field applications have demonstrated that the technology can monitor changes in the concentration of bacteria, and is thus well suited for rapid detection of critical...... conditions such as pollution events in drinking water....

  5. Vehicle Dynamic Prediction Systems with On-Line Identification of Vehicle Parameters and Road Conditions

    Science.gov (United States)

    Hsu, Ling-Yuan; Chen, Tsung-Lin

    2012-01-01

    This paper presents a vehicle dynamics prediction system, which consists of a sensor fusion system and a vehicle parameter identification system. This sensor fusion system can obtain the six degree-of-freedom vehicle dynamics and two road angles without using a vehicle model. The vehicle parameter identification system uses the vehicle dynamics from the sensor fusion system to identify ten vehicle parameters in real time, including vehicle mass, moment of inertial, and road friction coefficients. With above two systems, the future vehicle dynamics is predicted by using a vehicle dynamics model, obtained from the parameter identification system, to propagate with time the current vehicle state values, obtained from the sensor fusion system. Comparing with most existing literatures in this field, the proposed approach improves the prediction accuracy both by incorporating more vehicle dynamics to the prediction system and by on-line identification to minimize the vehicle modeling errors. Simulation results show that the proposed method successfully predicts the vehicle dynamics in a left-hand turn event and a rollover event. The prediction inaccuracy is 0.51% in a left-hand turn event and 27.3% in a rollover event. PMID:23202231

  6. On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2005-11-01

    This report summarizes technical progress April-September 2005 on the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Due to the difficulties described on the last report, field testing of the BPDI system has not continued to date. However, we have developed an alternative high temperature sensing solution, which is described in this report. The sensing system will be installed and tested at TECO's Polk Power Station. Following a site visit in June 2005, our efforts have been focused on preparing for that field test, including he design of the sensor mechanical packaging, sensor electronics, the data transfer module, and the necessary software codes to accommodate this application.. We are currently ready to start sensor fabrication.

  7. On Line Service Composition in the Integrated Clinical Environment for eHealth and Medical Systems.

    Science.gov (United States)

    García-Valls, Marisol; Touahria, Imad Eddine

    2017-06-08

    Medical and eHealth systems are progressively realized in the context of standardized architectures that support safety and ease the integration of the heterogeneous (and often proprietary) medical devices and sensors. The Integrated Clinical Environment (ICE) architecture appeared recently with the goal of becoming a common framework for defining the structure of the medical applications as concerns the safe integration of medical devices and sensors. ICE is simply a high level architecture that defines the functional blocks that should be part of a medical system to support interoperability. As a result, the underlying communication backbone is broadly undefined as concerns the enabling software technology (including the middleware) and associated algorithms that meet the ICE requirements of the flexible integration of medical devices and services. Supporting the on line composition of services in a medical system is also not part of ICE; however, supporting this behavior would enable flexible orchestration of functions (e.g., addition and/or removal of services and medical equipment) on the fly. iLandis one of the few software technologies that supports on line service composition and reconfiguration, ensuring time-bounded transitions across different service orchestrations; it supports the design, deployment and on line reconfiguration of applications, which this paper applies to service-based eHealth domains. This paper designs the integration between ICE architecture and iLand middleware to enhance the capabilities of ICE with on line service composition and the time-bounded reconfiguration of medical systems based on distributed services. A prototype implementation of a service-based eHealth system for the remote monitoring of patients is described; it validates the enhanced capacity of ICE to support dynamic reconfiguration of the application services. Results show that the temporal cost of the on line reconfiguration of the eHealth application is bounded

  8. Development of real-time on-line vibration testing system for seismic experiments

    International Nuclear Information System (INIS)

    Horiuchi, T.; Nakagawa, M.; Kametani, M.

    1993-01-01

    An on-line vibration testing method is being developed for seismic experiments. This method combines computer simulation and an actuator for vibration testing of structures. A real-time, on-line testing system was developed to improve the method. In the system, the timing of the vibration testing and the computer simulation are the same. This allows time-dependent reaction forces, such as damping force, to be immediately considered in the computer simulation. The real-time system has many requirements, such as complicated matrix calculations within a small time step, and communication with outer devices like sensors and actuators through A/D and D/A converters. These functions arc accomplished by using a newly-developed, real-time controller that employs a parallel processing technique. A small structural model is used to demonstrate the system. The reliability and applicability of the system for seismic experiments can be demonstrated by comparing the results of the system and a shaking table, which are in almost agreement. (author)

  9. Dual-reflector configuration in varied line-space grating displacement sensor

    International Nuclear Information System (INIS)

    Liu Zhengkun; Xu Xiangdong; Fu Shaojun; Zhou Qin; Liu Bin

    2008-01-01

    A method to improve the accuracy of the wavelength encoding varied line-space grating displacement sensor is presented. Based on the detailed analysis of the measured displacement errors from the single-mirror configuration sensor, a dual-reflector configuration is used to replace the previous configuration, and greatly decreases its errors. Experiments are conducted in order to make comparison of the two configurations. The results show that the measured displacement error of the sensor with dual-reflector configuration is lower than 0.03 mm in full scale (0 to 50 mm), only about 10% of the sensor with single-mirror configuration

  10. POSITIONING BASED ON INTEGRATION OF MUTI-SENSOR SYSTEMS USING KALMAN FILTER AND LEAST SQUARE ADJUSTMENT

    Directory of Open Access Journals (Sweden)

    M. Omidalizarandi

    2013-09-01

    Full Text Available Sensor fusion is to combine different sensor data from different sources in order to make a more accurate model. In this research, different sensors (Optical Speed Sensor, Bosch Sensor, Odometer, XSENS, Silicon and GPS receiver have been utilized to obtain different kinds of datasets to implement the multi-sensor system and comparing the accuracy of the each sensor with other sensors. The scope of this research is to estimate the current position and orientation of the Van. The Van's position can also be estimated by integrating its velocity and direction over time. To make these components work, it needs an interface that can bridge each other in a data acquisition module. The interface of this research has been developed based on using Labview software environment. Data have been transferred to PC via A/D convertor (LabJack and make a connection to PC. In order to synchronize all the sensors, calibration parameters of each sensor is determined in preparatory step. Each sensor delivers result in a sensor specific coordinate system that contains different location on the object, different definition of coordinate axes and different dimensions and units. Different test scenarios (Straight line approach and Circle approach with different algorithms (Kalman Filter, Least square Adjustment have been examined and the results of the different approaches are compared together.

  11. A nuclear on-line sensor for continuous control of vanadium content in oil pipelines

    International Nuclear Information System (INIS)

    Rizk, R.A.M.

    1989-01-01

    Trace amounts of vanadium in crude oil and in heavy distillate fuels are very harmful due to their corrosive action. Thus the necessity arises for continuous control of the vanadium content in oil pipelines. Moreover, the development of a nuclear on-line sensor that can continuously analyze the vanadium content in oil pipelines may lead to a better control of processing operations. In this paper a feasibility study for on-line analysis of vanadium in crude oil by means of neutron activation analysis is presented. (author)

  12. On Line Disaster Response Community: People as Sensors of High Magnitude Disasters Using Internet GIS

    Directory of Open Access Journals (Sweden)

    Kris Kodrich

    2008-05-01

    Full Text Available The Indian Ocean tsunami (2004 and Hurricane Katrina (2005 reveal the coming of age of the on-line disaster response community. Due to the integration of key geospatial technologies (remote sensing - RS, geographic information systems - GIS, global positioning systems – GPS and the Internet, on-line disaster response communities have grown. They include the traditional aspects of disaster preparedness, response, recovery, mitigation, and policy as facilitated by governmental agencies and relief response organizations. However, the contribution from the public via the Internet has changed significantly. The on-line disaster response community includes several key characteristics: the ability to donate money quickly and efficiently due to improved Internet security and reliable donation sites; a computer-savvy segment of the public that creates blogs, uploads pictures, and disseminates information – oftentimes faster than government agencies, and message boards to create interactive information exchange in seeking family members and identifying shelters. A critical and novel occurrence is the development of “people as sensors” - networks of government, NGOs, private companies, and the public - to build rapid response databases of the disaster area for various aspects of disaster relief and response using geospatial technologies. This paper examines these networks, their products, and their future potential.

  13. Wireless Integrated Microelectronic Vacuum Sensor System

    Science.gov (United States)

    Krug, Eric; Philpot, Brian; Trott, Aaron; Lawrence, Shaun

    2013-01-01

    NASA Stennis Space Center's (SSC's) large rocket engine test facility requires the use of liquid propellants, including the use of cryogenic fluids like liquid hydrogen as fuel, and liquid oxygen as an oxidizer (gases which have been liquefied at very low temperatures). These fluids require special handling, storage, and transfer technology. The biggest problem associated with transferring cryogenic liquids is product loss due to heat transfer. Vacuum jacketed piping is specifically designed to maintain high thermal efficiency so that cryogenic liquids can be transferred with minimal heat transfer. A vacuum jacketed pipe is essentially two pipes in one. There is an inner carrier pipe, in which the cryogenic liquid is actually transferred, and an outer jacket pipe that supports and seals the vacuum insulation, forming the "vacuum jacket." The integrity of the vacuum jacketed transmission lines that transfer the cryogenic fluid from delivery barges to the test stand must be maintained prior to and during engine testing. To monitor the vacuum in these vacuum jacketed transmission lines, vacuum gauge readings are used. At SSC, vacuum gauge measurements are done on a manual rotation basis with two technicians, each using a handheld instrument. Manual collection of vacuum data is labor intensive and uses valuable personnel time. Additionally, there are times when personnel cannot collect the data in a timely fashion (i.e., when a leak is detected, measurements must be taken more often). Additionally, distribution of this data to all interested parties can be cumbersome. To simplify the vacuum-gauge data collection process, automate the data collection, and decrease the labor costs associated with acquiring these measurements, an automated system that monitors the existing gauges was developed by Invocon, Inc. For this project, Invocon developed a Wireless Integrated Microelectronic Vacuum Sensor System (WIMVSS) that provides the ability to gather vacuum

  14. Design considerations for on-line vibration diagnostic systems

    International Nuclear Information System (INIS)

    Branagan, L.A.; Schjeibel, J.R.

    1989-01-01

    The decisions made in the design of a data system for on-line vibration diagnostic system in power plants define how well the system will meet its intended goals. Direct use of the data for performing troubleshooting or developing operating correlations requires an understanding of the subtle impact of the design decisions incorporated in the data system. A data system includes data acquisition, data storage, and data retrieval. Data acquisition includes the selection of sensors, of vibration measurement modes, and of the time stamping format, and the arrangement of data collection cycles. Data storage requires the evaluation of data compression options and of data segregation. Data retrieval design requires an understanding of the data storage and acquisition techniques. Each of these options and design decisions involves compromises, many of which are discussed in this paper. Actual and synthetic data are presented to illustrate these points. The authors' experience with multiple data collection cycles, with frequent monitoring, and with storage by exception suggests that these techniques can be developed into an effective diagnostic system

  15. Development of on-line monitoring system for flow accelerated corrosion

    International Nuclear Information System (INIS)

    Lee, N.Y.; Lee, S.G.; Hwang, I.S.; Kim, J.T.; Luk, V.K.

    2005-01-01

    Aged nuclear piping has been reported to undergo corrosion-induced accelerated failures, often without giving signatures to current inspection campaigns. Therefore, we need diverse sensors which can cover wide area in the on-line application. We suggested integrated approach to monitor the FAC-susceptible piping. Since FAC is a combined phenomenon, we need to monitor as many parameters as possible, and that cover wide area, since we don't know where the FAC occurs. For this purpose, we introduced wearing rate model, which concentrates on the electrochemical parameters. By the model, we can predict the wearing rate and then can compare the testing result. After we identified feasibility by analytical way, we developed electrochemical sensors for high temperature application, and introduced mechanical monitoring system, which is still under development. To support the validation of the monitored results, we adopted high temperature UT, which shows good resolution in the testing environment. By this way, all the monitored results can be compared in terms of thickness. Validation test shows the feasibility of sensors. To support direct thickness measurement for wide-area, Direct Current Potential Drop method will be researched to integrate to the developed framework. (authors)

  16. Development and Validation of an On-Line Water Toxicity Sensor with Immobilized Luminescent Bacteria for On-Line Surface Water Monitoring.

    Science.gov (United States)

    Woutersen, Marjolijn; van der Gaag, Bram; Abrafi Boakye, Afua; Mink, Jan; Marks, Robert S; Wagenvoort, Arco J; Ketelaars, Henk A M; Brouwer, Bram; Heringa, Minne B

    2017-11-22

    Surface water used for drinking water production is frequently monitored in The Netherlands using whole organism biomonitors, with for example Daphnia magna or Dreissena mussels, which respond to changes in the water quality. However, not all human-relevant toxic compounds can be detected by these biomonitors. Therefore, a new on-line biosensor has been developed, containing immobilized genetically modified bacteria, which respond to genotoxicity in the water by emitting luminescence. The performance of this sensor was tested under laboratory conditions, as well as under field conditions at a monitoring station along the river Meuse in The Netherlands. The sensor was robust and easy to clean, with inert materials, temperature control and nutrient feed for the reporter organisms. The bacteria were immobilized in sol-gel on either an optical fiber or a glass slide and then continuously exposed to water. Since the glass slide was more sensitive and robust, only this setup was used in the field. The sensor responded to spikes of genotoxic compounds in the water with a minimal detectable concentration of 0.01 mg/L mitomycin C in the laboratory and 0.1 mg/L mitomycin C in the field. With further optimization, which should include a reduction in daily maintenance, the sensor has the potential to become a useful addition to the currently available biomonitors.

  17. Development and Validation of an On-Line Water Toxicity Sensor with Immobilized Luminescent Bacteria for On-Line Surface Water Monitoring

    Directory of Open Access Journals (Sweden)

    Marjolijn Woutersen

    2017-11-01

    Full Text Available Surface water used for drinking water production is frequently monitored in The Netherlands using whole organism biomonitors, with for example Daphnia magna or Dreissena mussels, which respond to changes in the water quality. However, not all human-relevant toxic compounds can be detected by these biomonitors. Therefore, a new on-line biosensor has been developed, containing immobilized genetically modified bacteria, which respond to genotoxicity in the water by emitting luminescence. The performance of this sensor was tested under laboratory conditions, as well as under field conditions at a monitoring station along the river Meuse in The Netherlands. The sensor was robust and easy to clean, with inert materials, temperature control and nutrient feed for the reporter organisms. The bacteria were immobilized in sol-gel on either an optical fiber or a glass slide and then continuously exposed to water. Since the glass slide was more sensitive and robust, only this setup was used in the field. The sensor responded to spikes of genotoxic compounds in the water with a minimal detectable concentration of 0.01 mg/L mitomycin C in the laboratory and 0.1 mg/L mitomycin C in the field. With further optimization, which should include a reduction in daily maintenance, the sensor has the potential to become a useful addition to the currently available biomonitors.

  18. On-line component ratio measurement of oil/gas/water mixtures using an admittance sensor

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, J A

    1984-01-01

    The operator of a production platform is primarily interested in which types of fluids a well is producing and how quickly these different components are being produced. The component ratio and production rate of a well vary during the life of a field. To optimize production, measurement of each well's output is thus desirable. Current designs for subsea production systems lack means of continuously measuring three-component flows. A new method of component ratio measurement is described. The fraction of oil, gas and water flowing between two insulated electrode plates is determined by measuring both the electrical conductance and suseptance across the sensor. A preliminary evaluation of the new measurement system has been performed using a process oil/ water/air mixture. The method is not limited to small pipe diameters. The only possible limitation is that for low velocities in very large pipe diameters an in-line mixer may be required. Advantages of this new system are that real-time measurement of void fraction and water content is possible if a non-intrusive rugged sensor is used, and there are no range limitations, as each component may be measured for any given concentration. 4 references.

  19. Evaluation of different types of sensors and their positioning for on-line PD detection and localisation in distribution cables

    NARCIS (Netherlands)

    Wielen, van der P.C.J.M.; Veen, J.; Wouters, P.A.A.F.

    2003-01-01

    Different types of sensors can be used for on-line detection and localisation of PDs in medium voltage cables. These sensors can be placed on different locations in the substa-tions where the cable under test is terminated. Both aspects have a significant influence on the measured signals. In this

  20. On-line caloric value sensor and validation of dynamic models applied to municipal solid waste

    NARCIS (Netherlands)

    Kessel, van L.B.M.; Leskens, M.; Brem, G.

    2002-01-01

    This paper deals with two aspects concerning the optimization of municipal solid waste combustion (MSWC) processes. First of all, an on-line calorific value sensor is discussed by means of which the calorific value of the waste can be estimated from actual process data. Experimental results on a

  1. An automated system for monitoring bird collisions with power lines and tower guys

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, R.G. [Electric Power Research Inst., Palo Alto, CA (United States)

    2005-07-01

    An automated system for monitoring collisions between birds and power lines was presented. The bird strike indicator (BSI) was developed to gather bird collision information that is difficult to obtain through direct human observation as well as to aid in the calculation of inherent biases which must be considered when attempting to determine total mortality from data obtained in on-the-ground dead bird searches. The BSI can be placed directly on power lines, static wires, or tower guy cables with a standard hot stick power line clamp. The sensor consists of a state-of-the-art accelerometers, power supplies, signal processors, and data acquisition systems. The BSI also includes a communication system for transmitting data to a ground-based unit in which raw data can be stored. A complete BSI consists of 30 sensors with signal processing and data logging capabilities, and a base station. The sensors integrate several components, including wireless radio, data storage, and a microcontroller with an A/D converter. Full-scale field deployment has shown that the BSI is both robust and sensitive to vibrations in the guy wires, as the system has been tuned to eliminate vibrations induced by wind. 3 figs.

  2. On line system monitoring and analysis for efficient maintenance management [Paper No.: I-10

    International Nuclear Information System (INIS)

    Verma, R.M.P.

    1981-01-01

    Continuously operating chemical plants and nuclear reactors with huge investments cannot afford unscheduled shut down, costly down time, undesired exposure of people to radiation and high cost of inventory. To obtain cost effectiveness in terms of increased plant availability with increased quality, safety and reliability of plant operations a good maintenance system is required. A preventive maintenance programme, though successful to a greater extent, has got the limitations of being based upon elapsed time, subjective approach or statistical data. Hence, maintenance action is mistimed. Preventive maintenance can become very effective if rational and scientific data on equipment under working conditions are available. It can be achieved through on-line predictive instruments like sound level and vibration analyzers, probologs, corrosmeters, strain gages, thermographic infrared sensors, on-line ferrographs, chromatographs, acoustic emission, eddy current ultrasonic and wireless sensors etc. Instruments help maintenance engineer to diagnose, inspect, monitor, and help in forecasting failures and scheduling the frequencies optimally for overhauls, replacements, lubrication etc. They are also helpful in establishing work load, manpower, resource planning and inventory control. This paper discusses real time computer based system as well as conventional instruments and techniques. (author)

  3. New optical sensor systems for high-resolution satellite, airborne and terrestrial imaging systems

    Science.gov (United States)

    Eckardt, Andreas; Börner, Anko; Lehmann, Frank

    2007-10-01

    The department of Optical Information Systems (OS) at the Institute of Robotics and Mechatronics of the German Aerospace Center (DLR) has more than 25 years experience with high-resolution imaging technology. The technology changes in the development of detectors, as well as the significant change of the manufacturing accuracy in combination with the engineering research define the next generation of spaceborne sensor systems focusing on Earth observation and remote sensing. The combination of large TDI lines, intelligent synchronization control, fast-readable sensors and new focal-plane concepts open the door to new remote-sensing instruments. This class of instruments is feasible for high-resolution sensor systems regarding geometry and radiometry and their data products like 3D virtual reality. Systemic approaches are essential for such designs of complex sensor systems for dedicated tasks. The system theory of the instrument inside a simulated environment is the beginning of the optimization process for the optical, mechanical and electrical designs. Single modules and the entire system have to be calibrated and verified. Suitable procedures must be defined on component, module and system level for the assembly test and verification process. This kind of development strategy allows the hardware-in-the-loop design. The paper gives an overview about the current activities at DLR in the field of innovative sensor systems for photogrammetric and remote sensing purposes.

  4. On-line defect detection of aluminum coating using fiber optic sensor

    Science.gov (United States)

    Patil, Supriya S.; Shaligram, A. D.

    2015-03-01

    Aluminum metallization using the sprayed coating for exhaust mild steel (MS) pipes of tractors is a standard practice for avoiding rusting. Patches of thin metal coats are prone to rusting and are thus considered as defects in the surface coating. This paper reports a novel configuration of the fiber optic sensor for on-line checking the aluminum metallization uniformity and hence for defect detection. An optimally chosen high bright 440 nm BLUE LED (light-emitting diode) launches light into a transmitting fiber inclined at the angle of 60° to the surface under inspection placed adequately. The reflected light is transported by a receiving fiber to a blue enhanced photo detector. The metallization thickness on the coated surface results in visually observable variation in the gray shades. The coated pipe is spirally inspected by a combination of linear and rotary motions. The sensor output is the signal conditioned and monitored with RISHUBH DAS. Experimental results show the good repeatability in the defect detection and coating non-uniformity measurement.

  5. Vehicle Fault Diagnose Based on Smart Sensor

    Science.gov (United States)

    Zhining, Li; Peng, Wang; Jianmin, Mei; Jianwei, Li; Fei, Teng

    In the vehicle's traditional fault diagnose system, we usually use a computer system with a A/D card and with many sensors connected to it. The disadvantage of this system is that these sensor can hardly be shared with control system and other systems, there are too many connect lines and the electro magnetic compatibility(EMC) will be affected. In this paper, smart speed sensor, smart acoustic press sensor, smart oil press sensor, smart acceleration sensor and smart order tracking sensor were designed to solve this problem. With the CAN BUS these smart sensors, fault diagnose computer and other computer could be connected together to establish a network system which can monitor and control the vehicle's diesel and other system without any duplicate sensor. The hard and soft ware of the smart sensor system was introduced, the oil press, vibration and acoustic signal are resampled by constant angle increment to eliminate the influence of the rotate speed. After the resample, the signal in every working cycle could be averaged in angle domain and do other analysis like order spectrum.

  6. On-line fatigue monitoring system for reactor pressure vessel

    International Nuclear Information System (INIS)

    Tokunaga, K.; Sakai, A.; Aoki, T.; Ranganath, S.; Stevens, G.L.

    1994-01-01

    A workstation-based, on-line fatigue monitoring system for tracking fatigue usage applied to an operating boiling water reactor (BWR), Tsuruga Unit-1, is described. The system uses the influence function approach and determines component stresses using temperature, pressure, and flow rate data that are made available via signal taps from previously existing plant sensors. Using plant unique influence functions developed specifically for the feedwater nozzle location, the system calculates stresses as a function of time and computed fatigue usage. The analysis method used to compute fatigue usage complies with MITI Code Notification No.501. Fatigue usage results for an entire fuel cycle are presented and compared to assumed design basis events to confirm that actual plant thermal duty is significantly less severe than originally estimated in the design basis stress report. As a result, the system provides the technical basis to more accurately evaluate actual reactor conditions as well as the justification for plant life extension. (author)

  7. Development of a tilting system for electric multiple unit to speed up on conventional lines

    International Nuclear Information System (INIS)

    Seo, Sung Il; Kim, Nam Po; Lee, Soo Gil; Kim, Seok Won

    2008-01-01

    An advanced tilting system for KTT (Korean Tilting Train) was developed and a performance test of the system has been completed. KTT has been constructed to speed up and promise a significant enhancement in service quality on a conventional line. KTT is an electric multiple unit composed of 6 cars running at the design speed of 200 km/h. The tilting system is the core technology of KTT and combined with the conventional bogie system. It has a self-steering mechanism and a swing link. The self-steering mechanism of Z-bar type is free to rotate on the curve and stable to run on a straight line. The swing link mechanism of the bolster enables the carbody to tilt up to 8 .deg.. A tilting control system detects a curve with sensors and commands the electro-mechanical actuators to move the bolster through the computer network system. GPS collaborates with the tilting system to perceive the curve previously and enables gradual tilting so as not to violate passenger comfort. The performance of the tilting system has been verified by a trial test running of KTT on a commercial conventional line. The tilting system is ready for commercial use

  8. Patient Posture Monitoring System Based on Flexible Sensors

    Directory of Open Access Journals (Sweden)

    Youngsu Cha

    2017-03-01

    Full Text Available Monitoring patients using vision cameras can cause privacy intrusion problems. In this paper, we propose a patient position monitoring system based on a patient cloth with unobtrusive sensors. We use flexible sensors based on polyvinylidene fluoride, which is a flexible piezoelectric material. Theflexiblesensorsareinsertedintopartsclosetothekneeandhipoftheloosepatientcloth. We measure electrical signals from the sensors caused by the piezoelectric effect when the knee and hip in the cloth are bent. The measured sensor outputs are transferred to a computer via Bluetooth. We use a custom-made program to detect the position of the patient through a rule-based algorithm and the sensor outputs. The detectable postures are based on six human motions in and around a bed. The proposed system can detect the patient positions with a success rate over 88 percent for three patients.

  9. Progress of optical sensor system for health monitoring of bridges at Chongqing University

    Science.gov (United States)

    Chen, W.; Fu, Y.; Zhu, Y.; Huang, S.

    2005-02-01

    With decades of research experience on optical sensors, Optoelectronic Technology Lab of Chongqing University (OTLCU) has studied on a variety of sensors system designed for practical use in health monitoring. In OTLCU, embedded and surface mounted fiber Fabry-Perot strain sensor has been developed for monitoring the local strain of both concrete and steel truss bridge. Optoelectronic deflect meter, with a group of optical level sensor in a series connected pipe, was developed for deflection monitoring and line shape monitoring of the bridges. Laser deflect meter, with a laser pointer and a sensors array, has been also developed for a dynamic deflection monitoring of the bridges. To monitoring the 2-Dimentional displacement of the bridge, a self-calibrating imaging system was developed. All these sensor systems have been applied in different bridges successfully. This paper briefly describes principle of these optical sensing systems, and also gives some representative results of the system in practical application of bridges.

  10. Secure and Time-Aware Communication of Wireless Sensors Monitoring Overhead Transmission Lines.

    Science.gov (United States)

    Mazur, Katarzyna; Wydra, Michal; Ksiezopolski, Bogdan

    2017-07-11

    Existing transmission power grids suffer from high maintenance costs and scalability issues along with a lack of effective and secure system monitoring. To address these problems, we propose to use Wireless Sensor Networks (WSNs) as a technology to achieve energy efficient, reliable, and low-cost remote monitoring of transmission grids. With WSNs, smart grid enables both utilities and customers to monitor, predict and manage energy usage effectively and react to possible power grid disturbances in a timely manner. However, the increased application of WSNs also introduces new security challenges, especially related to privacy, connectivity, and security management, repeatedly causing unpredicted expenditures. Monitoring the status of the power system, a large amount of sensors generates massive amount of sensitive data. In order to build an effective Wireless Sensor Network (WSN) for a smart grid, we focus on designing a methodology of efficient and secure delivery of the data measured on transmission lines. We perform a set of simulations, in which we examine different routing algorithms, security mechanisms and WSN deployments in order to select the parameters that will not affect the delivery time but fulfill their role and ensure security at the same time. Furthermore, we analyze the optimal placement of direct wireless links, aiming at minimizing time delays, balancing network performance and decreasing deployment costs.

  11. Sensor Selection method for IoT systems – focusing on embedded system requirements

    Directory of Open Access Journals (Sweden)

    Hirayama Masayuki

    2016-01-01

    Full Text Available Recently, various types of sensors have been developed. Using these sensors, IoT systems have become hot topics in embedded system domain. However, sensor selections for embedded systems are not well discussed up to now. This paper focuses on embedded system’s features and architecture, and proposes a sensor selection method which is composed seven steps. In addition, we applied the proposed method to a simple example – a sensor selection for computer scored answer sheet reader unit. From this case study, an idea to use FTA in sensor selection is also discussed.

  12. Smart Optoelectronic Sensors and Intelligent Sensor Systems

    Directory of Open Access Journals (Sweden)

    Sergey Y. YURISH

    2012-03-01

    Full Text Available Light-to-frequency converters are widely used in various optoelectronic sensor systems. However, a further frequency-to-digital conversion is a bottleneck in such systems due to a broad frequency range of light-to-frequency converters’ outputs. This paper describes an effective OEM design approach, which can be used for smart and intelligent sensor systems design. The design is based on novel, multifunctional integrated circuit of Universal Sensors & Transducers Interface especially designed for such sensor applications. Experimental results have confirmed an efficiency of this approach and high metrological performances.

  13. Development of a magnetic resonance sensor for on-line monitoring of 99Tc and 23Na in tank waste cleanup processes: Final report and implementation plan

    International Nuclear Information System (INIS)

    Dieckman, S. L.; Jendrzejczyk, J. A.; Raptis, A. C.

    2000-01-01

    In response to US Department of Energy (DOE) requirements for advanced cross-cutting technologies, Argonne National Laboratory is developing an on-line sensor system for the real-time monitoring of 99 Tc and 23 Na in various locations throughout radioactive-waste processing facilities. Based on nuclear magnetic resonance spectroscopy, the highly automated sensor system can provide near-real-time response with minimal sampling. The technology, in the form of a flow-through nuclear-magnetic-resonance-based on-line process sensing and control system, can rapidly monitor 99 Tc speciation and concentration (from 0.1 molar to 10 micro molar) in the feedstocks and eluents of radioactive-waste treatment processes. The system is nonintrusive, capable of withstanding harsh plant environments, and reasonably immune to contaminants. Furthermore, the system is capable of operating over large variations in pH, conductivity, and salinity. This document describes design parameters, results from sensitivity studies, and initial results obtained from oxidation-reduction studies that were conducted on technetium standards and waste specimens obtained from DOE's Hanford site. A cursory investigation of the system's capabilities to monitor 23 Na at high concentrations are also reported, as are descriptions of site requirements, implementation recommendations, and testing techniques

  14. Neuromorphic vision sensors and preprocessors in system applications

    Science.gov (United States)

    Kramer, Joerg; Indiveri, Giacomo

    1998-09-01

    A partial review of neuromorphic vision sensors that are suitable for use in autonomous systems is presented. Interfaces are being developed to multiplex the high- dimensional output signals of arrays of such sensors and to communicate them in standard formats to off-chip devices for higher-level processing, actuation, storage and display. Alternatively, on-chip processing stages may be implemented to extract sparse image parameters, thereby obviating the need for multiplexing. Autonomous robots are used to test neuromorphic vision chips in real-world environments and to explore the possibilities of data fusion from different sensing modalities. Examples of autonomous mobile systems that use neuromorphic vision chips for line tracking and optical flow matching are described.

  15. Development of a hybrid earthquake early warning system based on single sensor technique

    International Nuclear Information System (INIS)

    Gravirov, V.V.; Kislov, K.V.

    2012-01-01

    There are two methods to earthquake early warning system: the method based on a network of seismic stations and the single-sensor method. Both have advantages and drawbacks. The current systems rely on high density seismic networks. Attempts at implementing techniques based on the single-station principle encounter difficulties in the identification of earthquake in noise. The noise may be very diverse, from stationary to impulsive. It seems a promising line of research to develop hybrid warning systems with single-sensors being incorporated in the overall early warning network. This will permit using all advantages and will help reduce the radius of the hazardous zone where no earthquake warning can be produced. The main problems are highlighted and the solutions of these are discussed. The system is implemented to include three detection processes in parallel. The first is based on the study of the co-occurrence matrix of the signal wavelet transform. The second consists in using the method of a change point in a random process and signal detection in a moving time window. The third uses artificial neural networks. Further, applying a decision rule out the final earthquake detection is carried out and estimate its reliability. (author)

  16. Technical comparison of the commercialized Racon model 21000 Portable, Reconfigurable Line Sensor (PRLS) and original Sandia/USAF prototype

    International Nuclear Information System (INIS)

    Blattman, D.A.

    1993-01-01

    The military has been moving from a global strategic response with fixed site asset protection to regional tactical response requirements. This change necessitates high security sensor systems that can be easily relocated and rapidly placed in operation by unskilled operators. The Portable, Reconfigurable Line Sensor (PRLS) was developed by Sandia National Laboratories with United States Air Force funding. Racon, Inc. is now commercializing the PRLS through a Cooperative Research and Development Agreement (CRDA) with the United States Air Force. The commercialized design of the new PRLS bi-static radar sensor benefits from the extensive field testing of the original Sandia/USAF-developed engineering prototype systems of the 1980s. Tests conducted in hot, cold, wind, rain, and snow conditions verified exceptional intruder detection capability, resistance to spoofing attempts, and insusceptibility to mutual interference and nuisance alarms caused by birds or small animals. The use of 1990's implementation technology combined with extensive testing information has resulted in significant product performance enhancements as well as cost savings. This paper compares technical features of the original Sandia/USAF prototypes with the new commercialized Racon model 21000 Portable, Reconfigurable Line Sensor. The PRLS advances the art of outdoor security to meet the Relocatable Sensor System (RSS) challenge of the 1990s

  17. Improved Line Tracking System for Autonomous Navigation of High-Speed Vehicle

    Directory of Open Access Journals (Sweden)

    Yahya Zare Khafri

    2012-07-01

    Full Text Available Line tracking navigation is one of the most widely techniques used in the robot navigation. In this paper, a customized line tracking system is proposed for autonomous navigation of high speed vehicles. In the presented system, auxiliary information -in addition to the road path- is added to the tracking lines such as locations of turn and intersections in the real roads. Moreover, the geometric position of line sensors is re-designed enables the high rate sensing with higher reliability. Finally, a light-weight navigation algorithm is proposed allow the high-speed movement using a reasonable processing power. This system is implemented on a MIPS-based embedded processor and experimental results with this embedded system show more than 98% accuracy at 200km/h with a 1GHz processor is viable.

  18. On-line monitoring system development for single-phase flow accelerated corrosion

    International Nuclear Information System (INIS)

    Lee, Na Young; Lee, Seung Gi; Ryu, Kyung Ha; Hwang, Il Soon

    2007-01-01

    Aged nuclear piping has been reported to undergo corrosion-induced accelerated failures, often without giving signatures to current inspection campaigns. Therefore, we need diverse sensors which can cover a wide area in an on-line application. We suggest an integrated approach to monitor the flow accelerated corrosion (FAC) susceptible piping. Since FAC is a combined phenomenon, we need to monitor as many parameters as possible and that cover wide area, since we do not know where the FAC occurs. For this purpose, we introduce the wearing rate model which focuses on the electrochemical parameters. Using this model, we can predict the wearing rate and then compare testing results. Through analysis we identified feasibility and then developed electrochemical sensors for high temperature application; we also introduced a mechanical monitoring system which is still under development. To support the validation of the monitored results, we adopted high temperature ultrasonic transducer (UT), which shows good resolution in the testing environment. As such, all the monitored results can be compared in terms of thickness. Our validation tests demonstrated the feasibility of sensors. To support direct thickness measurement for a wide-area, the direct current potential drop (DCPD) method will be researched to integrate into the developed framework

  19. Consistent Steering System using SCTP for Bluetooth Scatternet Sensor Network

    Science.gov (United States)

    Dhaya, R.; Sadasivam, V.; Kanthavel, R.

    2012-12-01

    Wireless communication is the best way to convey information from source to destination with flexibility and mobility and Bluetooth is the wireless technology suitable for short distance. On the other hand a wireless sensor network (WSN) consists of spatially distributed autonomous sensors to cooperatively monitor physical or environmental conditions, such as temperature, sound, vibration, pressure, motion or pollutants. Using Bluetooth piconet wireless technique in sensor nodes creates limitation in network depth and placement. The introduction of Scatternet solves the network restrictions with lack of reliability in data transmission. When the depth of the network increases, it results in more difficulties in routing. No authors so far focused on the reliability factors of Scatternet sensor network's routing. This paper illustrates the proposed system architecture and routing mechanism to increase the reliability. The another objective is to use reliable transport protocol that uses the multi-homing concept and supports multiple streams to prevent head-of-line blocking. The results show that the Scatternet sensor network has lower packet loss even in the congestive environment than the existing system suitable for all surveillance applications.

  20. On-line Monitoring and Calibration Techniques in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Hashemian, H.M.

    2011-01-01

    Years of research, testing and experience in the field of sensor diagnostics have yielded many technologies which offer financial as well as operational benefits to the nuclear industry. Among these technologies are On-Line Monitoring (OLM) and On-Line Calibration of critical process monitoring sensors such as resistance temperature detectors (RTD), thermocouples, and pressure transmitters to name a few. The remote access and verification of these sensors have been shown to limit the exposure of maintenance personnel to harsh environments while at the same time effectively and efficiently diagnosing the health and performance of these sensors. In addition to sensors, technologies exist in determining not only the health of instrumentation and control (I and C) cabling that carries the signals from these sensors, but also these same cable testing techniques can be used in the remote evaluation of many end devices used in safety related operations as well. Given these advances in sensor system monitoring techniques it would seem to follow that nuclear utilities from around the world would be applying these tried and true techniques to optimize up time and to provide additional confidence in the output of processing sensors. However, although several of the world's regulatory bodies have approved of the concept of these techniques, few utilities have undertaken to fully embrace on-line monitoring and on-line calibration of nuclear process sensors. In the United States efforts are now underway, with representatives of the U.S. nuclear industry and nuclear power plant vendors to obtain generic NRC licensing for the use of OLM in nuclear power plants. If approved, generic licensing will help pave the way toward greater implementation of OLM and its related calibration techniques. (author)

  1. Research on MEMS sensor in hydraulic system flow detection

    Science.gov (United States)

    Zhang, Hongpeng; Zhang, Yindong; Liu, Dong; Ji, Yulong; Jiang, Jihai; Sun, Yuqing

    2011-05-01

    With the development of mechatronics technology and fault diagnosis theory, people regard flow information much more than before. Cheap, fast and accurate flow sensors are urgently needed by hydraulic industry. So MEMS sensor, which is small, low cost, well performed and easy to integrate, will surely play an important role in this field. Based on the new method of flow measurement which was put forward by our research group, this paper completed the measurement of flow rate in hydraulic system by setting up the mathematical model, using numerical simulation method and doing physical experiment. Based on viscous fluid flow equations we deduced differential pressure-velocity model of this new sensor and did optimization on parameters. Then, we designed and manufactured the throttle and studied the velocity and pressure field inside the sensor by FLUENT. Also in simulation we get the differential pressure-velocity curve .The model machine was simulated too to direct experiment. In the static experiments we calibrated the MEMS sensing element and built some sample sensors. Then in a hydraulic testing system we compared the sensor signal with a turbine meter. It presented good linearity and could meet general hydraulic system use. Based on the CFD curves, we analyzed the error reasons and made some suggestion to improve. In the dynamic test, we confirmed this sensor can realize high frequency flow detection by a 7 piston-pump.

  2. Sensors for on-line monitoring of water chemistry parameters for NPP's

    International Nuclear Information System (INIS)

    Alltonen, P.; Maekelae, K.

    1997-01-01

    The on-line monitoring of the water chemistry parameters of aqueous solutions in nuclear power plants is considered essential to control corrosion phenomena. New sensors and electrodes that can be used under plant operating conditions are key components to the application of this technology. The research and development programs are running to develop practical instruments. The experimental capabilities available to research high temperature and pressure phenomena is growing rapidly. It is now possible to experimentally measure all information needed to make estimations and predictions concerning reactions taking place in the coolant of an operating reactor. However, further development of devices and practical experiences are needed to meet the requirement of power stations. (author). 8 refs, 8 figs

  3. Relative localization in wireless sensor networks for measurement of electric fields under HVDC transmission lines.

    Science.gov (United States)

    Cui, Yong; Wang, Qiusheng; Yuan, Haiwen; Song, Xiao; Hu, Xuemin; Zhao, Luxing

    2015-02-04

    In the wireless sensor networks (WSNs) for electric field measurement system under the High-Voltage Direct Current (HVDC) transmission lines, it is necessary to obtain the electric field distribution with multiple sensors. The location information of each sensor is essential to the correct analysis of measurement results. Compared with the existing approach which gathers the location information by manually labelling sensors during deployment, the automatic localization can reduce the workload and improve the measurement efficiency. A novel and practical range-free localization algorithm for the localization of one-dimensional linear topology wireless networks in the electric field measurement system is presented. The algorithm utilizes unknown nodes' neighbor lists based on the Received Signal Strength Indicator (RSSI) values to determine the relative locations of nodes. The algorithm is able to handle the exceptional situation of the output permutation which can effectively improve the accuracy of localization. The performance of this algorithm under real circumstances has been evaluated through several experiments with different numbers of nodes and different node deployments in the China State Grid HVDC test base. Results show that the proposed algorithm achieves an accuracy of over 96% under different conditions.

  4. Relative Localization in Wireless Sensor Networks for Measurement of Electric Fields under HVDC Transmission Lines

    Directory of Open Access Journals (Sweden)

    Yong Cui

    2015-02-01

    Full Text Available In the wireless sensor networks (WSNs for electric field measurement system under the High-Voltage Direct Current (HVDC transmission lines, it is necessary to obtain the electric field distribution with multiple sensors. The location information of each sensor is essential to the correct analysis of measurement results. Compared with the existing approach which gathers the location information by manually labelling sensors during deployment, the automatic localization can reduce the workload and improve the measurement efficiency. A novel and practical range-free localization algorithm for the localization of one-dimensional linear topology wireless networks in the electric field measurement system is presented. The algorithm utilizes unknown nodes’ neighbor lists based on the Received Signal Strength Indicator (RSSI values to determine the relative locations of nodes. The algorithm is able to handle the exceptional situation of the output permutation which can effectively improve the accuracy of localization. The performance of this algorithm under real circumstances has been evaluated through several experiments with different numbers of nodes and different node deployments in the China State Grid HVDC test base. Results show that the proposed algorithm achieves an accuracy of over 96% under different conditions.

  5. A METEOROLOGICAL RISK ASSESSMENT METHOD FOR POWER LINES BASED ON GIS AND MULTI-SENSOR INTEGRATION

    Directory of Open Access Journals (Sweden)

    Z. Lin

    2016-06-01

    Full Text Available Power lines, exposed in the natural environment, are vulnerable to various kinds of meteorological factors. Traditional research mainly deals with the influence of a single meteorological condition on the power line, which lacks of comprehensive effects evaluation and analysis of the multiple meteorological factors. In this paper, we use multiple meteorological monitoring data obtained by multi-sensors to implement the meteorological risk assessment and early warning of power lines. Firstly, we generate meteorological raster map from discrete meteorological monitoring data using spatial interpolation. Secondly, the expert scoring based analytic hierarchy process is used to compute the power line risk index of all kinds of meteorological conditions and establish the mathematical model of meteorological risk. By adopting this model in raster calculator of ArcGIS, we will have a raster map showing overall meteorological risks for power line. Finally, by overlaying the power line buffer layer to that raster map, we will get to know the exact risk index around a certain part of power line, which will provide significant guidance for power line risk management. In the experiment, based on five kinds of observation data gathered from meteorological stations in Guizhou Province of China, including wind, lightning, rain, ice, temperature, we carry on the meteorological risk analysis for the real power lines, and experimental results have proved the feasibility and validity of our proposed method.

  6. Improved Fuzzy Logic System to Evaluate Milk Electrical Conductivity Signals from On-Line Sensors to Monitor Dairy Goat Mastitis

    Directory of Open Access Journals (Sweden)

    Mauro Zaninelli

    2016-07-01

    Full Text Available The aim of this study was to develop and test a new fuzzy logic model for monitoring the udder health status (HS of goats. The model evaluated, as input variables, the milk electrical conductivity (EC signal, acquired on-line for each gland by a dedicated sensor, the bandwidth length and the frequency and amplitude of the first main peak of the Fourier frequency spectrum of the recorded milk EC signal. Two foremilk gland samples were collected from eight Saanen goats for six months at morning milking (lactation stages (LS: 0–60 Days In Milking (DIM; 61–120 DIM; 121–180 DIM, for a total of 5592 samples. Bacteriological analyses and somatic cell counts (SCC were used to define the HS of the glands. With negative bacteriological analyses and SCC < 1,000,000 cells/mL, glands were classified as healthy. When bacteriological analyses were positive or showed a SCC > 1,000,000 cells/mL, glands were classified as not healthy (NH. For each EC signal, an estimated EC value was calculated and a relative deviation was obtained. Furthermore, the Fourier frequency spectrum was evaluated and bandwidth length, frequency and amplitude of the first main peak were identified. Before using these indexes as input variables of the fuzzy logic model a linear mixed-effects model was developed to evaluate the acquired data considering the HS, LS and LS × HS as explanatory variables. Results showed that performance of a fuzzy logic model, in the monitoring of mammary gland HS, could be improved by the use of EC indexes derived from the Fourier frequency spectra of gland milk EC signals recorded by on-line EC sensors.

  7. Test on radiation-withstanding properties of sensors

    International Nuclear Information System (INIS)

    Yagi, Hideyuki; Kakuta, Tsunemi; Ara, Katsuyuki

    1986-01-01

    In order to use for the remote operation system or in-line measuring system in the facilities handling radioactive substances, the development of the sensors having strengthened radiation-withstanding performance has been advanced. As a part of it, efforts have been exerted to phenomenologically grasp the radiation effect on various sensors and their materials, and to acquire the basic data. Irradiation test was carried out on solid image pick-up elements, optical parts eddy current sensors, pressure sensitive rubber, photo-electric proximity sensors and others, and the knowledge on their deterioration was obtained. Besides, the sensors and video-cameras having improved radiation-withstanding performance were made for trial, and the performance was tested. The interim report on these test results is made. By a series of the irradiation tests reported here, the basic data required for giving the guideline to the development of radiation withstanding sensors were able to be obtained. But in the present irradiation test, the number of specimens was too small to assure the radiation withstanding performance. In order to improve further the radiation withstanding performance of these sensors, it is necessary to carry out the irradiation test on such elements as condensers, diodes and ICs to accumulate the basic data. (Kako, I.)

  8. Underwater tracking of a moving dipole source using an artificial lateral line: algorithm and experimental validation with ionic polymer–metal composite flow sensors

    International Nuclear Information System (INIS)

    Abdulsadda, Ahmad T; Tan, Xiaobo

    2013-01-01

    Motivated by the lateral line system of fish, arrays of flow sensors have been proposed as a new sensing modality for underwater robots. Existing studies on such artificial lateral lines (ALLs) have been mostly focused on the localization of a fixed underwater vibrating sphere (dipole source). In this paper we examine the problem of tracking a moving dipole source using an ALL system. Based on an analytical model for the moving dipole-generated flow field, we formulate a nonlinear estimation problem that aims to minimize the error between the measured and model-predicted magnitudes of flow velocities at the sensor sites, which is subsequently solved with the Gauss–Newton scheme. A sliding discrete Fourier transform (SDFT) algorithm is proposed to efficiently compute the evolving signal magnitudes based on the flow velocity measurements. Simulation indicates that it is adequate and more computationally efficient to use only the signal magnitudes corresponding to the dipole vibration frequency. Finally, experiments conducted with an artificial lateral line consisting of six ionic polymer–metal composite (IPMC) flow sensors demonstrate that the proposed scheme is able to simultaneously locate the moving dipole and estimate its vibration amplitude and traveling speed with small errors. (paper)

  9. Study on on-Line Measurement and Controlling System of the Foundation Trench-Leveling Machine

    International Nuclear Information System (INIS)

    Yi, J G; Jiang, H Y; Xing, Y Z; Chen, J; Liu, J T

    2006-01-01

    Research the system software and hardware composing, the control mode, the online measurement and control principle based on the laser receiver and the inclination sensor as the signal source. After the laser receiver accepts the laser signal, the laser signal is carried through the light filter treatment so as to reduce the sunlight interference, and then amplified and modulated, last transmitted to the control unit. The inclination sensor adapts XWQJ02-01S, measure the slope angle the x and y verticality direction. The error adjusting range is ±0.05 0 . The separate time treatment avoids simultaneously adjusting the laser and inclination signal to each other interfere. The on-line measurement and control system realizes the parts to work on the plane that parallels with the datum plane of the laser beam scan. The trench-leveling machine must retain ±0.05 0 with the datum plane. Adapting the least square method to fit the linear curve, the movement trend of the work parts on the work plane is judged through the slope number. The test result shows that thought the combination measurement and control of the laser and slope angle the leveling precision are ±5mm/100. Its can satisfy with the construction criterion request

  10. Multi-Sensor Distributive On-line Processing, Visualization, and Analysis Infrastructure for an Agricultural Information System at the NASA Goddard Earth Sciences DAAC

    Science.gov (United States)

    Teng, W.; Berrick, S.; Leptoukh, G.; Liu, Z.; Rui, H.; Pham, L.; Shen, S.; Zhu, T.

    2004-12-01

    The Goddard Space Flight Center Earth Sciences Data and Information Services Center (GES DISC) Distributed Active Archive Center (DAAC) is developing an Agricultural Information System (AIS), evolved from an existing TRMM Online Visualization and Analysis System (TOVAS), which will operationally provide precipitation and other satellite data products and services. AIS outputs will be integrated into existing operational decision support systems for global crop monitoring, such as that of the U.N. World Food Program. The ability to use the raw data stored in the GES DAAC archives is highly dependent on having a detailed understanding of the data's internal structure and physical implementation. To gain this understanding is a time-consuming process and not a productive investment of the user's time. This is an especially difficult challenge when users need to deal with multi-sensor data that usually are of different structures and resolutions. The AIS has taken a major step towards meeting this challenge by incorporating an underlying infrastructure, called the GES-DISC Interactive Online Visualization and Analysis Infrastructure or "Giovanni," that integrates various components to support web interfaces that allow users to perform interactive analysis on-line without downloading any data. Several instances of the Giovanni-based interface have been or are being created to serve users of TRMM precipitation, MODIS aerosol, and SeaWiFS ocean color data, as well as agricultural applications users. Giovanni-based interfaces are simple to use but powerful. The user selects geophysical parameters, area of interest, and time period; and the system generates an output on screen in a matter of seconds. The currently available output options are (1) area plot - averaged or accumulated over any available data period for any rectangular area; (2) time plot - time series averaged over any rectangular area; (3) Hovmoller plots - longitude-time and latitude-time plots; (4) ASCII

  11. Artificial lateral-line system for imaging dipole sources using Beamforming techniques

    NARCIS (Netherlands)

    Dagamseh, A.M.K.; Wiegerink, Remco J.; Lammerink, Theodorus S.J.; Krijnen, Gijsbertus J.M.

    In nature, fish have the ability to localize prey, school, navigate, etc. using the lateral-line organ [1]. Here we present the use of biomimetic artificial hair-based flow-sensors arranged as lateral-line system in combination with beamforming techniques for dipole source localization in air.

  12. AMA Conferences 2015. SENSOR 2015. 17th international conference on sensors and measurement technology. IRS2 2015. 14th international conference on infrared sensors and systems. Proceedings

    International Nuclear Information System (INIS)

    2015-01-01

    This meeting paper contains presentations of two conferences: SENSOR 2015 and IRS 2 (= International conference on InfraRed Sensors and systems). The first part of SENSOR 2015 contains the following chapters: (A) SENSOR PRINCIPLES: A.1: Mechanical sensors; A.2: Optical sensors; A.3: Ultrasonic sensors; A.4: Microacoustic sensors; A.5: Magnetic sensors; A.6: Impedance sensors; A.7: Gas sensors; A.8: Flow sensors; A.9: Dimensional measurement; A.10: Temperature and humidity sensors; A.11: Chemosensors; A.12: Biosensors; A.13: Embedded sensors; A.14: Sensor-actuator systems; (B) SENSOR TECHNOLOGY: B.1: Sensor design; B.2: Numerical simulation of sensors; B.3: Sensor materials; B.4: MEMS technology; B.5: Micro-Nano-Integration; B.6: Packaging; B.7: Materials; B.8: Thin films; B.9: Sensor production; B.10: Sensor reliability; B.11: Calibration and testing; B.12: Optical fibre sensors. (C) SENSOR ELECTRONICS AND COMMUNICATION: C.1: Sensor electronics; C.2: Sensor networks; C.3: Wireless sensors; C.4: Sensor communication; C.5: Energy harvesting; C.6: Measuring systems; C.7: Embedded systems; C.8: Self-monitoring and diagnosis; (D) APPLICATIONS: D.1: Medical measuring technology; D.2: Ambient assisted living; D.3: Process measuring technology; D.4: Automotive; D.5: Sensors in energy technology; D.6: Production technology; D.7: Security technology; D.8: Smart home; D.9: Household technology. The second part with the contributions of the IRS 2 2015 is structured as follows: (E) INFRARED SENSORS: E.1: Photon detectors; E.2: Thermal detectors; E.3: Cooled detectors; E.4: Uncooled detectors; E.5: Sensor modules; E.6: Sensor packaging. (G) INFRARED SYSTEMS AND APPLICATIONS: G.1: Thermal imaging; G.2: Pyrometry / contactless temperature measurement; G.3: Gas analysis; G.4: Spectroscopy; G.5: Motion control and presence detection; G.6: Security and safety monitoring; G.7: Non-destructive testing; F: INFRARED SYSTEM COMPONENTS: F.1: Infrared optics; F.2: Optical modulators; F.3

  13. System on chip thermal vacuum sensor based on standard CMOS process

    International Nuclear Information System (INIS)

    Li Jinfeng; Tang Zhenan; Wang Jiaqi

    2009-01-01

    An on-chip microelectromechanical system was fabricated in a 0.5 μm standard CMOS process for gas pressure detection. The sensor was based on a micro-hotplate (MHP) and had been integrated with a rail to rail operational amplifier and an 8-bit successive approximation register (SAR) A/D converter. A tungsten resistor was manufactured on the MHP as the sensing element, and the sacrificial layer of the sensor was made from polysilicon and etched by surface-micromachining technology. The operational amplifier was configured to make the sensor operate in constant current mode. A digital bit stream was provided as the system output. The measurement results demonstrate that the gas pressure sensitive range of the vacuum sensor extends from 1 to 10 5 Pa. In the gas pressure range from 1 to 100 Pa, the sensitivity of the sensor is 0.23 mV/ Pa, the linearity is 4.95%, and the hysteresis is 8.69%. The operational amplifier can drive 200 ω resistors distortionlessly, and the SAR A/D converter achieves a resolution of 7.4 bit with 100 kHz sample rate. The performance of the operational amplifier and the SAR A/D converter meets the requirements of the sensor system.

  14. Expert System Development on On-line Measurement of Sewage Treatment Based Process

    Directory of Open Access Journals (Sweden)

    Jianjun QIN

    2014-02-01

    Full Text Available This article puts forward a solution in which an instrument on-line automatic measurement and expert system process are optimized according to the complexity and great process dynamics of sewage treatment process. Firstly modeling has been set up with configuration sewage treatment process in which the process has been integrated into the computer software environment. Secondly certain number of water quality automatic monitoring instruments and sensor probes are set in the reaction tanks according to the needs of process changes and management. The data information acquired can be displayed and recorded at the real time. A human-machine integration expert system featuring computer automation management is developed for the base by one-off method thus to realize the intelligent and unmanned management. The advantages brought about from it can fill up the inexperience of the on-site management personnel and solve the contradiction between the water quality dynamics and difficulty in the process adjustment.

  15. Developing an EEG based On-line Closed-loop Lapse Detection and Mitigation System

    Directory of Open Access Journals (Sweden)

    Yu-Te eWang

    2014-10-01

    Full Text Available In America, sixty percent of adults reported that they have driven a motor vehicle while feeling drowsy, and at least 15-20% of fatal car accidents are fatigue-related. This study translates previous laboratory-oriented neurophysiological research to design, develop, and test an On-line Closed-loop Lapse Detection and Mitigation (OCLDM System featuring a mobile wireless dry-sensor EEG headgear and a cell-phone based real-time EEG processing platform. Eleven subjects participated in an event-related lane-keeping task, in which they were instructed to manipulate a randomly deviated, fixed-speed cruising car on a 4-lane highway. This was simulated in a 1st person view with an 8-screen and 8-projector immersive virtual-realty environment. When the subjects experienced lapses or failed to respond to events during the experiment, auditory feedback was delivered to rectify the performance decrements. However, the arousing auditory signals were not always effective. The EEG spectra exhibited statistically significant differences between effective and ineffective arousing signals, suggesting that EEG spectra could be used as a countermeasure of the efficacy of arousing signals. In this on-line pilot study, the proposed OCLDM System was able to continuously detect EEG signatures of fatigue, deliver arousing feedback to subjects suffering momentary cognitive lapses, and assess the efficacy of the feedback in near real-time to rectify cognitive lapses. The on-line testing results of the OCLDM System validated the efficacy of the arousing signals in improving subjects' response times to the subsequent lane-departure events. This study may lead to a practical on-line lapse detection and mitigation system in real-world environments.

  16. Developing an EEG-based on-line closed-loop lapse detection and mitigation system.

    Science.gov (United States)

    Wang, Yu-Te; Huang, Kuan-Chih; Wei, Chun-Shu; Huang, Teng-Yi; Ko, Li-Wei; Lin, Chin-Teng; Cheng, Chung-Kuan; Jung, Tzyy-Ping

    2014-01-01

    In America, 60% of adults reported that they have driven a motor vehicle while feeling drowsy, and at least 15-20% of fatal car accidents are fatigue-related. This study translates previous laboratory-oriented neurophysiological research to design, develop, and test an On-line Closed-loop Lapse Detection and Mitigation (OCLDM) System featuring a mobile wireless dry-sensor EEG headgear and a cell-phone based real-time EEG processing platform. Eleven subjects participated in an event-related lane-keeping task, in which they were instructed to manipulate a randomly deviated, fixed-speed cruising car on a 4-lane highway. This was simulated in a 1st person view with an 8-screen and 8-projector immersive virtual-reality environment. When the subjects experienced lapses or failed to respond to events during the experiment, auditory warning was delivered to rectify the performance decrements. However, the arousing auditory signals were not always effective. The EEG spectra exhibited statistically significant differences between effective and ineffective arousing signals, suggesting that EEG spectra could be used as a countermeasure of the efficacy of arousing signals. In this on-line pilot study, the proposed OCLDM System was able to continuously detect EEG signatures of fatigue, deliver arousing warning to subjects suffering momentary cognitive lapses, and assess the efficacy of the warning in near real-time to rectify cognitive lapses. The on-line testing results of the OCLDM System validated the efficacy of the arousing signals in improving subjects' response times to the subsequent lane-departure events. This study may lead to a practical on-line lapse detection and mitigation system in real-world environments.

  17. Touch at a distance sensing: lateral-line inspired MEMS flow sensors

    International Nuclear Information System (INIS)

    Prakash Kottapalli, Ajay Giri; Asadnia, Mohsen; Miao, Jianmin; Triantafyllou, Michael

    2014-01-01

    Evolution bestowed the blind cavefish with a resourcefully designed lateral-line of sensors that play an essential role in many important tasks including object detection and avoidance, energy-efficient maneuvering, rheotaxis etc. Biologists identified the two types of vital sensors on the fish bodies called the superficial neuromasts and the canal neuromasts that are responsible for flow sensing and pressure-gradient sensing, respectively. In this work, we present the design, fabrication and experimental characterization of biomimetic polymer artificial superficial neuromast micro-sensor arrays. These biomimetic micro-sensors demonstrated a high sensitivity of 0.9 mV/(m s −1 ) and 0.022 V/(m s −1 ) and threshold velocity detection limits of 0.1 m s −1 and 0.015 m s −1 in determining air and water flows respectively. Experimental results demonstrate that the biological canal inspired polymer encapsulation on the array of artificial superficial neuromast sensors is capable of filtering steady-state flows that could otherwise significantly mask the relevant oscillatory flow signals of high importance. (paper)

  18. Design of Mine Ventilators Monitoring System Based on Wireless Sensor Network

    International Nuclear Information System (INIS)

    Fu Sheng; Song Haiqiang

    2012-01-01

    A monitoring system for a mine ventilator is designed based on ZigBee wireless sensor network technology in the paper. The system consists of a sink node, sensor nodes, industrial personal computer and several sensors. Sensor nodes communicate with the sink node through the ZigBee wireless sensor network. The sink node connects with the configuration software on the pc via serial port. The system can collect or calculate vibration, temperature, negative pressure, air volume and other information of the mine ventilator. Meanwhile the system accurately monitors operating condition of the ventilator through these parameters. Especially it provides the most original information for potential faults of the ventilator. Therefore, there is no doubt that it improves the efficiency of fault diagnosis.

  19. Design of Mine Ventilators Monitoring System Based on Wireless Sensor Network

    Science.gov (United States)

    Fu, Sheng; Song, Haiqiang

    2012-05-01

    A monitoring system for a mine ventilator is designed based on ZigBee wireless sensor network technology in the paper. The system consists of a sink node, sensor nodes, industrial personal computer and several sensors. Sensor nodes communicate with the sink node through the ZigBee wireless sensor network. The sink node connects with the configuration software on the pc via serial port. The system can collect or calculate vibration, temperature, negative pressure, air volume and other information of the mine ventilator. Meanwhile the system accurately monitors operating condition of the ventilator through these parameters. Especially it provides the most original information for potential faults of the ventilator. Therefore, there is no doubt that it improves the efficiency of fault diagnosis.

  20. Smart sensors and systems

    CERN Document Server

    Kyung, Chong-Min; Yasuura, Hiroto; Liu, Yongpan

    2015-01-01

     This book describes for readers technology used for effective sensing of our physical world and intelligent processing techniques for sensed information, which are essential to the success of Internet of Things (IoTs).  The authors provide a multidisciplinary view of sensor technology from MEMS, biological, chemical, and electrical domains and showcase smart sensor systems in real applications including smart home, transportation, medical, environmental, agricultural, etc.  Unlike earlier books on sensors, this book will provide a “global” view on smart sensors covering abstraction levels from device, circuit, systems, and algorithms.  .

  1. Shawnee Mission's On-Line Cataloging System

    Directory of Open Access Journals (Sweden)

    Ellen Wasby Miller

    1971-03-01

    Full Text Available An on-line cataloging pilot project for two elementary schools is discussed. The system components are 2740 terminals, upper-lower-case input, IBM's FASTER generalized software package, and usual cards/labels output. Reasons for choosing FASTER, software and hardware features, operating procedures, system performance and costs are detailed. Future expansion to cataloging 100,000 annual K-12 acquisitions, on-line circulation, retrospective conversion, and union book catalogs is set forth.

  2. AMA Conferences 2015. SENSOR 2015. 17th international conference on sensors and measurement technology. IRS{sup 2} 2015. 14th international conference on infrared sensors and systems. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-07-01

    This meeting paper contains presentations of two conferences: SENSOR 2015 and IRS{sup 2} (= International conference on InfraRed Sensors and systems). The first part of SENSOR 2015 contains the following chapters: (A) SENSOR PRINCIPLES: A.1: Mechanical sensors; A.2: Optical sensors; A.3: Ultrasonic sensors; A.4: Microacoustic sensors; A.5: Magnetic sensors; A.6: Impedance sensors; A.7: Gas sensors; A.8: Flow sensors; A.9: Dimensional measurement; A.10: Temperature and humidity sensors; A.11: Chemosensors; A.12: Biosensors; A.13: Embedded sensors; A.14: Sensor-actuator systems; (B) SENSOR TECHNOLOGY: B.1: Sensor design; B.2: Numerical simulation of sensors; B.3: Sensor materials; B.4: MEMS technology; B.5: Micro-Nano-Integration; B.6: Packaging; B.7: Materials; B.8: Thin films; B.9: Sensor production; B.10: Sensor reliability; B.11: Calibration and testing; B.12: Optical fibre sensors. (C) SENSOR ELECTRONICS AND COMMUNICATION: C.1: Sensor electronics; C.2: Sensor networks; C.3: Wireless sensors; C.4: Sensor communication; C.5: Energy harvesting; C.6: Measuring systems; C.7: Embedded systems; C.8: Self-monitoring and diagnosis; (D) APPLICATIONS: D.1: Medical measuring technology; D.2: Ambient assisted living; D.3: Process measuring technology; D.4: Automotive; D.5: Sensors in energy technology; D.6: Production technology; D.7: Security technology; D.8: Smart home; D.9: Household technology. The second part with the contributions of the IRS{sup 2} 2015 is structured as follows: (E) INFRARED SENSORS: E.1: Photon detectors; E.2: Thermal detectors; E.3: Cooled detectors; E.4: Uncooled detectors; E.5: Sensor modules; E.6: Sensor packaging. (G) INFRARED SYSTEMS AND APPLICATIONS: G.1: Thermal imaging; G.2: Pyrometry / contactless temperature measurement; G.3: Gas analysis; G.4: Spectroscopy; G.5: Motion control and presence detection; G.6: Security and safety monitoring; G.7: Non-destructive testing; F: INFRARED SYSTEM COMPONENTS: F.1: Infrared optics; F.2: Optical

  3. Safety System for Controlling Fluid Flow into a Suction Line

    Science.gov (United States)

    England, John Dwight (Inventor); Kelley, Anthony R. (Inventor); Cronise, Raymond J. (Inventor)

    2018-01-01

    A safety system includes a sleeve fitted within a pool's suction line at its inlet. The sleeve terminates with a plate that resides within the suction line. The plate has holes formed therethrough. A housing defining distinct channels is fitted in the sleeve so that the distinct channels lie within the sleeve. Each of the distinct channels has a first opening on one end thereof and a second opening on another end thereof. The second openings reside in the sleeve. The first openings are in fluid communication with the water in the pool, and are distributed around a periphery of an area of the housing that prevents coverage of all the first openings when a human interacts therewith. A first sensor is coupled to the sleeve to sense pressure therein, and a second pressure sensor is coupled to the plate to sense pressure in one of the plates' holes.

  4. On-line monitoring of fermentation processes using multi-wavelength fluorescence

    DEFF Research Database (Denmark)

    Odman, Peter; Petersen, Nanna; Johansen, Claus Lindvald

    2007-01-01

    . The model system considered in this work is the antibiotic production by Streptomyces coelicolor, a filamentous bacterium. In addition to predicting concentrations of biomass in the fermentation broth, the data allowed detection of different physiological states, i.e. growth phase and phosphate limitation......Fermentation processes often suffer from a lack of real-time methods for on-line determination of variables like the concentrations of nutrients and products. This work aims at investigating the possibilities of implementing an on-line fermentation monitoring system based on multi......-wavelength fluorescence (MWF). This type of sensor has previously showed promising accuracy and selectivity for in situ monitoring of cell mass and certain metabolites in bioreactors (Lantz et al., 2006). The sensor generates multivariate data outputs, which necessitate chemometric modeling for signal interpretation...

  5. Accurate 3D Positioning for a Mobile Platform in Non-Line-of-Sight Scenarios Based on IMU/Magnetometer Sensor Fusion.

    Science.gov (United States)

    Hellmers, Hendrik; Kasmi, Zakaria; Norrdine, Abdelmoumen; Eichhorn, Andreas

    2018-01-04

    In recent years, a variety of real-time applications benefit from services provided by localization systems due to the advent of sensing and communication technologies. Since the Global Navigation Satellite System (GNSS) enables localization only outside buildings, applications for indoor positioning and navigation use alternative technologies. Ultra Wide Band Signals (UWB), Wireless Local Area Network (WLAN), ultrasonic or infrared are common examples. However, these technologies suffer from fading and multipath effects caused by objects and materials in the building. In contrast, magnetic fields are able to pass through obstacles without significant propagation errors, i.e. in Non-Line of Sight Scenarios (NLoS). The aim of this work is to propose a novel indoor positioning system based on artificially generated magnetic fields in combination with Inertial Measurement Units (IMUs). In order to reach a better coverage, multiple coils are used as reference points. A basic algorithm for three-dimensional applications is demonstrated as well as evaluated in this article. The established system is then realized by a sensor fusion principle as well as a kinematic motion model on the basis of a Kalman filter. Furthermore, a pressure sensor is used in combination with an adaptive filtering method to reliably estimate the platform's altitude.

  6. Economic consequences of investing in sensor systems on dairy farms

    NARCIS (Netherlands)

    Steeneveld, W.; Hogeveen, H.; Oude Lansink, A.G.J.M.

    2015-01-01

    The objective of this study was to investigate the impact of investment in sensor systems on productivity change, using farm accounting data. Farm accounting data for the years 2008–2013 was available for 217 Dutch dairy farms. In addition, information was available on the adoption of sensor systems

  7. Fiber Bragg Grating Sensor for Fault Detection in Radial and Network Transmission Lines

    Directory of Open Access Journals (Sweden)

    Mehdi Shadaram

    2010-10-01

    Full Text Available In this paper, a fiber optic based sensor capable of fault detection in both radial and network overhead transmission power line systems is investigated. Bragg wavelength shift is used to measure the fault current and detect fault in power systems. Magnetic fields generated by currents in the overhead transmission lines cause a strain in magnetostrictive material which is then detected by Fiber Bragg Grating (FBG. The Fiber Bragg interrogator senses the reflected FBG signals, and the Bragg wavelength shift is calculated and the signals are processed. A broadband light source in the control room scans the shift in the reflected signal. Any surge in the magnetic field relates to an increased fault current at a certain location. Also, fault location can be precisely defined with an artificial neural network (ANN algorithm. This algorithm can be easily coordinated with other protective devices. It is shown that the faults in the overhead transmission line cause a detectable wavelength shift on the reflected signal of FBG and can be used to detect and classify different kind of faults. The proposed method has been extensively tested by simulation and results confirm that the proposed scheme is able to detect different kinds of fault in both radial and network system.

  8. Therapeutic hypertension system based on a microbreathing pressure sensor system

    Directory of Open Access Journals (Sweden)

    Diao Z

    2011-05-01

    Full Text Available Ziji Diao1, Hongying Liu1, Lan Zhu1, Xiaoqiang Gao1, Suwen Zhao1, Xitian Pi1,2, Xiaolin Zheng1,21Key Laboratory of Biorheological Science and Technology, Chongqing University, Ministry of Education, Chongqing; 2Key Laboratories for National Defense Science and Technology of Innovative Micronano Devices and System Technology, Chongqing, People’s Republic of ChinaBackground and methods: A novel therapeutic system for the treatment of hypertension was developed on the basis of a slow-breath training mechanism, using a microbreathing pressure sensor device for the detection of human respiratory signals attached to the abdomen. The system utilizes a single-chip AT89C51 microcomputer as a core processor, programmed by Microsoft Visual C++6.0 to communicate with a PC via a full-speed PDIUSBD12 interface chip. The programming is based on a slow-breath guided algorithm in which the respiratory signal serves as a physiological feedback parameter. Inhalation and exhalation by the subject is guided by music signals.Results and conclusion: Our study indicates that this microbreathing sensor system may assist in slow-breath training and may help to decrease blood pressure.Keywords: hypertension, microbreathing sensor, single-chip microcomputer, slow-pace breathing

  9. A Wildlife Monitoring System Based on Wireless Image Sensor Networks

    Directory of Open Access Journals (Sweden)

    Junguo Zhang

    2014-10-01

    Full Text Available Survival and development of wildlife sustains the balance and stability of the entire ecosystem. Wildlife monitoring can provide lots of information such as wildlife species, quantity, habits, quality of life and habitat conditions, to help researchers grasp the status and dynamics of wildlife resources, and to provide basis for the effective protection, sustainable use, and scientific management of wildlife resources. Wildlife monitoring is the foundation of wildlife protection and management. Wireless Sensor Networks (WSN technology has become the most popular technology in the field of information. With advance of the CMOS image sensor technology, wireless sensor networks combined with image sensors, namely Wireless Image Sensor Networks (WISN technology, has emerged as an alternative in monitoring applications. Monitoring wildlife is one of its most promising applications. In this paper, system architecture of the wildlife monitoring system based on the wireless image sensor networks was presented to overcome the shortcomings of the traditional monitoring methods. Specifically, some key issues including design of wireless image sensor nodes and software process design have been studied and presented. A self-powered rotatable wireless infrared image sensor node based on ARM and an aggregation node designed for large amounts of data were developed. In addition, their corresponding software was designed. The proposed system is able to monitor wildlife accurately, automatically, and remotely in all-weather condition, which lays foundations for applications of wireless image sensor networks in wildlife monitoring.

  10. Sensors for on-line monitoring of water chemistry parameters for NPP`s

    Energy Technology Data Exchange (ETDEWEB)

    Alltonen, P; Maekelae, K [Technical Research Centre of Finland, Espoo (Finland)

    1997-02-01

    The on-line monitoring of the water chemistry parameters of aqueous solutions in nuclear power plants is considered essential to control corrosion phenomena. New sensors and electrodes that can be used under plant operating conditions are key components to the application of this technology. The research and development programs are running to develop practical instruments. The experimental capabilities available to research high temperature and pressure phenomena is growing rapidly. It is now possible to experimentally measure all information needed to make estimations and predictions concerning reactions taking place in the coolant of an operating reactor. However, further development of devices and practical experiences are needed to meet the requirement of power stations. (author). 8 refs, 8 figs.

  11. Analog Organic Electronics Building Blocks for Organic Smart Sensor Systems on Foil

    CERN Document Server

    Marien, Hagen; Heremans, Paul

    2013-01-01

     This book provides insight into organic electronics technology and in analog circuit techniques that can be used to increase the performance of both analog and digital organic circuits. It explores the domain of organic electronics technology for analog circuit applications, specifically smart sensor systems.  It focuses on all the building blocks in the data path of an organic sensor system between the sensor and the digital processing block. Sensors, amplifiers, analog-to-digital converters and DC-DC converters are discussed in detail. Coverage includes circuit techniques, circuit implementation, design decisions and measurement results of the building blocks described. Offers readers the first book to focus on analog organic circuit design; Discusses organic electronics technology for analog circuit applications in the context of smart sensor systems; Describes all building blocks necessary for an organic sensor system between the sensor and the digital processing block; Includes circuit techniques, cir...

  12. Effect of sensor systems for cow management on milk production, somatic cell count, and reproduction.

    Science.gov (United States)

    Steeneveld, W; Vernooij, J C M; Hogeveen, H

    2015-06-01

    To improve management on dairy herds, sensor systems have been developed that can measure physiological, behavioral, and production indicators on individual cows. It is not known whether using sensor systems also improves measures of health and production in dairy herds. The objective of this study was to investigate the effect of using sensor systems on measures of health and production in dairy herds. Data of 414 Dutch dairy farms with (n=152) and without (n=262) sensor systems were available. For these herds, information on milk production per cow, days to first service, first calving age, and somatic cell count (SCC) was provided for the years 2003 to 2013. Moreover, year of investment in sensor systems was available. For every farm year, we determined whether that year was before or after the year of investment in sensor systems on farms with an automatic milking system (AMS) or a conventional milking system (CMS), or whether it was a year on a farm that never invested in sensor systems. Separate statistical analyses were performed to determine the effect of sensor systems for mastitis detection (color, SCC, electrical conductivity, and lactate dehydrogenase sensors), estrus detection for dairy cows, estrus detection for young stock, and other sensor systems (weighing platform, rumination time sensor, fat and protein sensor, temperature sensor, milk temperature sensor, urea sensor, β-hydroxybutyrate sensor, and other sensor systems). The AMS farms had a higher average SCC (by 12,000 cells/mL) after sensor investment, and CMS farms with a mastitis detection system had a lower average SCC (by 10,000 cells/mL) in the years after sensor investment. Having sensor systems was associated with a higher average production per cow on AMS farms, and with a lower average production per cow on CMS farms in the years after investment. The most likely reason for this lower milk production after investment was that on 96% of CMS farms, the sensor system investment occurred

  13. On-line soft sensing in upstream bioprocessing.

    Science.gov (United States)

    Randek, Judit; Mandenius, Carl-Fredrik

    2018-02-01

    This review provides an overview and a critical discussion of novel possibilities of applying soft sensors for on-line monitoring and control of industrial bioprocesses. Focus is on bio-product formation in the upstream process but also the integration with other parts of the process is addressed. The term soft sensor is used for the combination of analytical hardware data (from sensors, analytical devices, instruments and actuators) with mathematical models that create new real-time information about the process. In particular, the review assesses these possibilities from an industrial perspective, including sensor performance, information value and production economy. The capabilities of existing analytical on-line techniques are scrutinized in view of their usefulness in soft sensor setups and in relation to typical needs in bioprocessing in general. The review concludes with specific recommendations for further development of soft sensors for the monitoring and control of upstream bioprocessing.

  14. Reports in the area sensor technology: Part 2: Dynamic deviations which may appear via the sensing lines in measurement of reactor pressure and level

    International Nuclear Information System (INIS)

    Bergdahl, Bengt-Goeran

    2002-12-01

    The sensors are part of the safety system in a nuclear power plant. They are the first link in a chain of components, which affect the safety system. It is therefore of great importance that the sensors fulfil tough requirements on reliability and response time. In practice, the dynamic qualities of the sensors in a BWR are seldom, or never, tested. The static qualities, on the other hand, are controlled every year when the transmitters are calibrated. This is done during the regular outage of the power plant. It is common that several sensors are connected to the same sensing line. This is true especially in old reactors, where only a few pressure taps are available in the reactor pressure vessel. This is a troublesome disadvantage in the design, since a failure in one sensing line will affect all components, which are connected to that sensing line ('Common Cause Failure'). This report focuses on deviations in the measurement system connected to the sensing lines. The deviations are illustrated by examples from Swedish and foreign BWRs. The sensing lines are mechanically passive components. They can reduce a system's response time even if there are now deviations in the static presentation. This report mentions cases in nuclear power plants, where the time constant of the sensing line has changed from 0.1 seconds, which is a normal response time, to 5 seconds. This has happened because of a gradual blockage of the sensing line. Today, signal analysis is the only way to examine the dynamic qualities of sensing lines. Filtrations can be unveiled by measuring and analysing the transmitter signal, regardless the location of the filtration: in the sensing line, in the transmitter or in other instrumentation components. A practical case is presented where pulsation dampers with so-called needles were used at Ringhals 1 in Sweden. Their influence on the response time for the measurement signal corresponds to a time constant = 0.55 s. By eliminating the needles the

  15. Landslide and Flood Warning System Prototypes based on Wireless Sensor Networks

    Science.gov (United States)

    Hloupis, George; Stavrakas, Ilias; Triantis, Dimos

    2010-05-01

    Wireless sensor networks (WSNs) are one of the emerging areas that received great attention during the last few years. This is mainly due to the fact that WSNs have provided scientists with the capability of developing real-time monitoring systems equipped with sensors based on Micro-Electro-Mechanical Systems (MEMS). WSNs have great potential for many applications in environmental monitoring since the sensor nodes that comprised from can host several MEMS sensors (such as temperature, humidity, inertial, pressure, strain-gauge) and transducers (such as position, velocity, acceleration, vibration). The resulting devices are small and inexpensive but with limited memory and computing resources. Each sensor node contains a sensing module which along with an RF transceiver. The communication is broadcast-based since the network topology can change rapidly due to node failures [1]. Sensor nodes can transmit their measurements to central servers through gateway nodes without any processing or they make preliminary calculations locally in order to produce results that will be sent to central servers [2]. Based on the above characteristics, two prototypes using WSNs are presented in this paper: A Landslide detection system and a Flood warning system. Both systems sent their data to central processing server where the core of processing routines exists. Transmission is made using Zigbee and IEEE 802.11b protocol but is capable to use VSAT communication also. Landslide detection system uses structured network topology. Each measuring node comprises of a columnar module that is half buried to the area under investigation. Each sensing module contains a geophone, an inclinometer and a set of strain gauges. Data transmitted to central processing server where possible landslide evolution is monitored. Flood detection system uses unstructured network topology since the failure rate of sensor nodes is expected higher. Each sensing module contains a custom water level sensor

  16. Structural health monitoring system of soccer arena based on optical sensors

    Science.gov (United States)

    Shishkin, Victor V.; Churin, Alexey E.; Kharenko, Denis S.; Zheleznova, Maria A.; Shelemba, Ivan S.

    2014-05-01

    A structural health monitoring system based on optical sensors has been developed and installed on the indoor soccer arena "Zarya" in Novosibirsk. The system integrates 119 fiber optic sensors: 85 strain, 32 temperature and 2 displacement sensors. In addition, total station is used for measuring displacement in 45 control points. All of the constituents of the supporting structure are subjects for monitoring: long-span frames with under floor ties, connections, purlins and foundation.

  17. Monitoring system of hydraulic lifting device based on the fiber optic sensors

    Science.gov (United States)

    Fajkus, Marcel; Nedoma, Jan; Novak, Martin; Martinek, Radek; Vanus, Jan; Mec, Pavel; Vasinek, Vladimir

    2017-10-01

    This article deals with the description of the monitoring system of hydraulic lifting device based on the fiber-optic sensors. For minimize the financial costs of the proposed monitoring system, the power evaluation of measured signal has been chosen. The solution is based on an evaluation of the signal obtained using the single point optic fiber sensors with overlapping reflective spectra. For encapsulation of the sensors was used polydimethylsiloxane (PDMS) polymer. To obtain a information of loading is uses the action of deformation of the lifting device on the pair single point optic fiber sensors mounted on the lifting device of the tested car. According to the proposed algorithm is determined information of pressure with an accuracy of +/- 5 %. Verification of the proposed system was realized on the various types of the tested car with different loading. The original contribution of the paper is to verify the new low-cost system for monitoring the hydraulic lifting device based on the fiber-optic sensors.

  18. On-line Monitoring System for Power Transformers

    Directory of Open Access Journals (Sweden)

    Alexandru HOTEA

    2016-12-01

    Full Text Available Power transformers are the most important and expensive equipment from the electricity transmission system, so it is very important to know the real state of health of such equipment in every moment. De-energizing the power transformer accidentally due to internal defects can generate high costs. Annual maintenance proved to be ineffective in many cases to determine the internal condition of the equipment degradation due to faults rapidly evolving. An On-line Monitoring System for Power Transformers help real-time condition assessment and to detect errors early enough to take action to eliminate or minimize them. After abnormality detected, it is still important to perform full diagnostic tests to determine the exact condition of the equipment. On-line monitoring systems can help increase the level of availability and reliability of power transformers and lower costs of accidental interruption. This paper presents cases studies on several power transformers equipped with on-line monitoring systems from Transelectrica substation.

  19. Recognition and automatic tracking of weld line in fringe welding by autonomous mobile robot with visual sensor

    International Nuclear Information System (INIS)

    Suga, Yasuo; Saito, Keishin; Ishii, Hideaki.

    1994-01-01

    An autonomous mobile robot with visual sensor and four driving axes for welding of pipe and fringe was constructed. The robot can move along a pipe, and detect the weld line to be welded by visual sensor. Moreover, in order to perform welding automatically, the tip of welding torch can track the weld line of the joint by rotating the robot head. In the case of welding of pipe and fringe, the robot can detect the contact angle between the two base metals to be welded, and the torch angle changes according to the contact angle. As the result of tracking test by the robot system, it was made clear that the recognition of geometry of the joint by the laser lighting method and automatic tracking of weld line were possible. The average tracking error was ±0.3 mm approximately and the torch angle could be always kept at the optimum angle. (author)

  20. The effects of pressure sensor acoustics on airdata derived from a High-angle-of-attack Flush Airdata Sensing (HI-FADS) system

    Science.gov (United States)

    Whitmore, Stephen A.; Moes, Timothy R.

    1991-01-01

    The accuracy of a nonintrusive high angle-of-attack flush airdata sensing (HI-FADS) system was verified for quasi-steady flight conditions up to 55 deg angle of attack during the F-18 High Alpha Research Vehicle (HARV) Program. The system is a matrix of nine pressure ports arranged in annular rings on the aircraft nose. The complete airdata set is estimated using nonlinear regression. Satisfactory frequency response was verified to the system Nyquist frequency (12.5 Hz). The effects of acoustical distortions within the individual pressure sensors of the nonintrusive pressure matrix on overall system performance are addressed. To quantify these effects, a frequency-response model describing the dynamics of acoustical distortion is developed and simple design criteria are derived. The model adjusts measured HI-FADS pressure data for the acoustical distortion and quantifies the effects of internal sensor geometries on system performance. Analysis results indicate that sensor frequency response characteristics very greatly with altitude, thus it is difficult to select satisfactory sensor geometry for all altitudes. The solution used presample filtering to eliminate resonance effects, and short pneumatic tubing sections to reduce lag effects. Without presample signal conditioning the system designer must use the pneumatic transmission line to attenuate the resonances and accept the resulting altitude variability.

  1. NSTX High Temperature Sensor Systems

    International Nuclear Information System (INIS)

    McCormack, B.; Kugel, H.W.; Goranson, P.; Kaita, R.

    1999-01-01

    The design of the more than 300 in-vessel sensor systems for the National Spherical Torus Experiment (NSTX) has encountered several challenging fusion reactor diagnostic issues involving high temperatures and space constraints. This has resulted in unique miniature, high temperature in-vessel sensor systems mounted in small spaces behind plasma facing armor tiles, and they are prototypical of possible high power reactor first-wall applications. In the Center Stack, Divertor, Passive Plate, and vessel wall regions, the small magnetic sensors, large magnetic sensors, flux loops, Rogowski Coils, thermocouples, and Langmuir Probes are qualified for 600 degrees C operation. This rating will accommodate both peak rear-face graphite tile temperatures during operations and the 350 degrees C bake-out conditions. Similar sensor systems including flux loops, on other vacuum vessel regions are qualified for 350 degrees C operation. Cabling from the sensors embedded in the graphite tiles follows narrow routes to exit the vessel. The detailed sensor design and installation methods of these diagnostic systems developed for high-powered ST operation are discussed

  2. Advances in Sensors-Centric Microprocessors and System-on-Chip

    Directory of Open Access Journals (Sweden)

    Juan A. Gómez-Pulido

    2012-04-01

    Full Text Available Sensors-based systems are nowadays an extended technology for many markets due to their great potential in the collection of data from the environment and the processing of such data for different purposes. A typical example is the wireless sensor devices, where the outer temperature, humidity, luminosity and many other parameters can be acquired, measured and processed in order to build useful and fascinating applications that contribute to human welfare. In this scenario, the processing architectures of the sensors-based systems play a very important role. The requirements that are necessary for many such applications (real-time processing, low-power consumption, reduced size, reliability, security and many others means that research on advanced architectures of Microprocessors and System-on-Chips (SoC is needed to design and implement a successful product. In this sense, there are many challenges and open questions in this area that need to be addressed. [...

  3. Estimating Angle of Arrival (AOA for Wideband Signal by Sensor Delay Line (SDL and Tapped Delay Line (TDL Processors

    Directory of Open Access Journals (Sweden)

    Bassim Sayed Mohammed

    2018-04-01

    Full Text Available Angle of arrival (AOA estimation for wideband signal becomes more necessary for modern communication systems like Global System for Mobile (GSM, satellite, military applications and spread spectrum (frequency hopping and direct sequence. Most of the researchers are focusing on how to cancel the effects of signal bandwidth on AOA estimation performance by using a transversal filter (tap delay line (TDL. Most of the researchers were using two elements array antenna to study these effects. In this research, a general case of proposed (M array elements is used. A transversal filter (TDL in phase adaptive array antenna system is used to calculate the optimum number of taps required to compensate these effect. The proposed system uses a phase adaptive array antenna in conjunction with LMS algorithm to work an angle of arrival (AOA estimator for wideband signals rather than interference canceller. An alternative solution to compensate for the effect of signal bandwidth is proposed by using sensor delay line (SDL instead of fixed delay unit since it has variable time sampling in the time domain and not fixed time delay, depending on the angle of arrival of received signals. The proposed system has the ability to estimate two parameters for received signals simultaneously (the output Signal to Noise Ratio (SNR and AOA, unlike others systems which estimate AOA only. The comparison of the simulation results with Multiple Signal Classification (MUSIC technique showed that the proposed system gives good results for estimating AOA and the output SNR for wideband signals. (SDL processor shows better performance result than (TDL processor. MUSIC technique with both (SDL and (TDL processors shows unacceptable results for estimating (AOA for the wideband signal.

  4. Structural health monitoring system for bridges based on skin-like sensor

    Science.gov (United States)

    Loupos, Konstantinos; Damigos, Yannis; Amditis, Angelos; Gerhard, Reimund; Rychkov, Dmitry; Wirges, Werner; Schulze, Manuel; Lenas, Sotiris-Angelos; Chatziandreoglou, Christos; Malliou, Christina M.; Tsaoussidis, Vassilis; Brady, Ken; Frankenstein, Bernd

    2017-09-01

    Structural health monitoring activities are of primal importance for managing transport infrastructure, however most SHM methodologies are based on point-based sensors that have limitations in terms of their spatial positioning requirements, cost of development and measurement range. This paper describes the progress on the SENSKIN EC project whose objective is to develop a dielectric-elastomer and micro-electronics-based sensor, formed from a large highly extensible capacitance sensing membrane supported by advanced microelectronic circuitry, for monitoring transport infrastructure bridges. Such a sensor could provide spatial measurements of strain in excess of 10%. The actual sensor along with the data acquisition module, the communication module and power electronics are all integrated into a compact unit, the SENSKIN device, which is energy-efficient, requires simple signal processing and it is easy to install over various surface types. In terms of communication, SENSKIN devices interact with each other to form the SENSKIN system; a fully distributed and autonomous wireless sensor network that is able to self-monitor. SENSKIN system utilizes Delay-/Disruption-Tolerant Networking technologies to ensure that the strain measurements will be received by the base station even under extreme conditions where normal communications are disrupted. This paper describes the architecture of the SENSKIN system and the development and testing of the first SENSKIN prototype sensor, the data acquisition system, and the communication system.

  5. In-line moisture monitoring in fluidized bed granulation using a novel multi-resonance microwave sensor.

    Science.gov (United States)

    Peters, Johanna; Bartscher, Kathrin; Döscher, Claas; Taute, Wolfgang; Höft, Michael; Knöchel, Reinhard; Breitkreutz, Jörg

    2017-08-01

    Microwave resonance technology (MRT) is known as a process analytical technology (PAT) tool for moisture measurements in fluid-bed granulation. It offers a great potential for wet granulation processes even where the suitability of near-infrared (NIR) spectroscopy is limited, e.g. colored granules, large variations in bulk density. However, previous sensor systems operating around a single resonance frequency showed limitations above approx. 7.5% granule moisture. This paper describes the application of a novel sensor working with four resonance frequencies. In-line data of all four resonance frequencies were collected and further processed. Based on calculation of density-independent microwave moisture values multiple linear regression (MLR) models using Karl-Fischer titration (KF) as well as loss on drying (LOD) as reference methods were build. Rapid, reliable in-process moisture control (RMSEP≤0.5%) even at higher moisture contents was achieved. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Sensor Fusion Based on an Integrated Neural Network and Probability Density Function (PDF) Dual Kalman Filter for On-Line Estimation of Vehicle Parameters and States.

    Science.gov (United States)

    Vargas-Melendez, Leandro; Boada, Beatriz L; Boada, Maria Jesus L; Gauchia, Antonio; Diaz, Vicente

    2017-04-29

    Vehicles with a high center of gravity (COG), such as light trucks and heavy vehicles, are prone to rollover. This kind of accident causes nearly 33 % of all deaths from passenger vehicle crashes. Nowadays, these vehicles are incorporating roll stability control (RSC) systems to improve their safety. Most of the RSC systems require the vehicle roll angle as a known input variable to predict the lateral load transfer. The vehicle roll angle can be directly measured by a dual antenna global positioning system (GPS), but it is expensive. For this reason, it is important to estimate the vehicle roll angle from sensors installed onboard in current vehicles. On the other hand, the knowledge of the vehicle's parameters values is essential to obtain an accurate vehicle response. Some of vehicle parameters cannot be easily obtained and they can vary over time. In this paper, an algorithm for the simultaneous on-line estimation of vehicle's roll angle and parameters is proposed. This algorithm uses a probability density function (PDF)-based truncation method in combination with a dual Kalman filter (DKF), to guarantee that both vehicle's states and parameters are within bounds that have a physical meaning, using the information obtained from sensors mounted on vehicles. Experimental results show the effectiveness of the proposed algorithm.

  7. AN INTEROPERABLE ARCHITECTURE FOR AIR POLLUTION EARLY WARNING SYSTEM BASED ON SENSOR WEB

    Directory of Open Access Journals (Sweden)

    F. Samadzadegan

    2013-09-01

    Full Text Available Environmental monitoring systems deal with time-sensitive issues which require quick responses in emergency situations. Handling the sensor observations in near real-time and obtaining valuable information is challenging issues in these systems from a technical and scientific point of view. The ever-increasing population growth in urban areas has caused certain problems in developing countries, which has direct or indirect impact on human life. One of applicable solution for controlling and managing air quality by considering real time and update air quality information gathered by spatially distributed sensors in mega cities, using sensor web technology for developing monitoring and early warning systems. Urban air quality monitoring systems using functionalities of geospatial information system as a platform for analysing, processing, and visualization of data in combination with Sensor Web for supporting decision support systems in disaster management and emergency situations. This system uses Sensor Web Enablement (SWE framework of the Open Geospatial Consortium (OGC, which offers a standard framework that allows the integration of sensors and sensor data into spatial data infrastructures. SWE framework introduces standards for services to access sensor data and discover events from sensor data streams as well as definition set of standards for the description of sensors and the encoding of measurements. The presented system provides capabilities to collect, transfer, share, process air quality sensor data and disseminate air quality status in real-time. It is possible to overcome interoperability challenges by using standard framework. In a routine scenario, air quality data measured by in-situ sensors are communicated to central station where data is analysed and processed. The extracted air quality status is processed for discovering emergency situations, and if necessary air quality reports are sent to the authorities. This research

  8. An Interoperable Architecture for Air Pollution Early Warning System Based on Sensor Web

    Science.gov (United States)

    Samadzadegan, F.; Zahmatkesh, H.; Saber, M.; Ghazi khanlou, H. J.

    2013-09-01

    Environmental monitoring systems deal with time-sensitive issues which require quick responses in emergency situations. Handling the sensor observations in near real-time and obtaining valuable information is challenging issues in these systems from a technical and scientific point of view. The ever-increasing population growth in urban areas has caused certain problems in developing countries, which has direct or indirect impact on human life. One of applicable solution for controlling and managing air quality by considering real time and update air quality information gathered by spatially distributed sensors in mega cities, using sensor web technology for developing monitoring and early warning systems. Urban air quality monitoring systems using functionalities of geospatial information system as a platform for analysing, processing, and visualization of data in combination with Sensor Web for supporting decision support systems in disaster management and emergency situations. This system uses Sensor Web Enablement (SWE) framework of the Open Geospatial Consortium (OGC), which offers a standard framework that allows the integration of sensors and sensor data into spatial data infrastructures. SWE framework introduces standards for services to access sensor data and discover events from sensor data streams as well as definition set of standards for the description of sensors and the encoding of measurements. The presented system provides capabilities to collect, transfer, share, process air quality sensor data and disseminate air quality status in real-time. It is possible to overcome interoperability challenges by using standard framework. In a routine scenario, air quality data measured by in-situ sensors are communicated to central station where data is analysed and processed. The extracted air quality status is processed for discovering emergency situations, and if necessary air quality reports are sent to the authorities. This research proposed an

  9. Wide Band Low Noise Love Wave Magnetic Field Sensor System.

    Science.gov (United States)

    Kittmann, Anne; Durdaut, Phillip; Zabel, Sebastian; Reermann, Jens; Schmalz, Julius; Spetzler, Benjamin; Meyners, Dirk; Sun, Nian X; McCord, Jeffrey; Gerken, Martina; Schmidt, Gerhard; Höft, Michael; Knöchel, Reinhard; Faupel, Franz; Quandt, Eckhard

    2018-01-10

    We present a comprehensive study of a magnetic sensor system that benefits from a new technique to substantially increase the magnetoelastic coupling of surface acoustic waves (SAW). The device uses shear horizontal acoustic surface waves that are guided by a fused silica layer with an amorphous magnetostrictive FeCoSiB thin film on top. The velocity of these so-called Love waves follows the magnetoelastically-induced changes of the shear modulus according to the magnetic field present. The SAW sensor is operated in a delay line configuration at approximately 150 MHz and translates the magnetic field to a time delay and a related phase shift. The fundamentals of this sensor concept are motivated by magnetic and mechanical simulations. They are experimentally verified using customized low-noise readout electronics. With an extremely low magnetic noise level of ≈100 pT/[Formula: see text], a bandwidth of 50 kHz and a dynamic range of 120 dB, this magnetic field sensor system shows outstanding characteristics. A range of additional measures to further increase the sensitivity are investigated with simulations.

  10. Polar On-Line Acquisition Relay and Transmission System (POLARATS)

    Energy Technology Data Exchange (ETDEWEB)

    Yuracko, K.

    2004-07-15

    POLARATS (Polar On-Line Acquisition Relay And Transmission System) is being developed by YAHSGS LLC (YAHSGS) and Oak Ridge National Laboratory (ORNL) to provide remote, unattended monitoring of environmental parameters under harsh environmental conditions. In particular, instrumental design and engineering is oriented towards protection of human health in the Arctic, and with the additional goal of advancing Arctic education and research. POLARATS will obtain and transmit environmental data from hardened monitoring devices deployed in locations important to understanding atmospheric and aquatic pollutant migration as it is biomagnified in Arctic food chains. An Internet- and personal computer (PC)-based educational module will provide real time sensor data, on-line educational content, and will be integrated with workbooks and textbooks for use in middle and high school science programs. The educational elements of POLARATS include an Internet-based educational module that will instruct students in the use of the data and how those data fit into changing Arctic environments and food chains. POLARATS will: (1) Enable students, members of the community, and scientific researchers to monitor local environmental conditions in real time over the Internet; and (2) Provide additional educational benefits through integration with middle- and high-school science curricula. Information will be relayed from POLARATS devices to classrooms and libraries along with custom-designed POLARATS teaching materials that will be integrated into existing curricula to enhance the educational benefits realized from the information obtained.

  11. Probabilistic Multi-Sensor Fusion Based Indoor Positioning System on a Mobile Device

    Directory of Open Access Journals (Sweden)

    Xiang He

    2015-12-01

    Full Text Available Nowadays, smart mobile devices include more and more sensors on board, such as motion sensors (accelerometer, gyroscope, magnetometer, wireless signal strength indicators (WiFi, Bluetooth, Zigbee, and visual sensors (LiDAR, camera. People have developed various indoor positioning techniques based on these sensors. In this paper, the probabilistic fusion of multiple sensors is investigated in a hidden Markov model (HMM framework for mobile-device user-positioning. We propose a graph structure to store the model constructed by multiple sensors during the offline training phase, and a multimodal particle filter to seamlessly fuse the information during the online tracking phase. Based on our algorithm, we develop an indoor positioning system on the iOS platform. The experiments carried out in a typical indoor environment have shown promising results for our proposed algorithm and system design.

  12. Towards Sensor Database Systems

    DEFF Research Database (Denmark)

    Bonnet, Philippe; Gehrke, Johannes; Seshadri, Praveen

    2001-01-01

    . These systems lack flexibility because data is extracted in a predefined way; also, they do not scale to a large number of devices because large volumes of raw data are transferred regardless of the queries that are submitted. In our new concept of sensor database system, queries dictate which data is extracted...... from the sensors. In this paper, we define the concept of sensor databases mixing stored data represented as relations and sensor data represented as time series. Each long-running query formulated over a sensor database defines a persistent view, which is maintained during a given time interval. We...... also describe the design and implementation of the COUGAR sensor database system....

  13. Atmospheric turbulence and sensor system effects on biometric algorithm performance

    Science.gov (United States)

    Espinola, Richard L.; Leonard, Kevin R.; Byrd, Kenneth A.; Potvin, Guy

    2015-05-01

    Biometric technologies composed of electro-optical/infrared (EO/IR) sensor systems and advanced matching algorithms are being used in various force protection/security and tactical surveillance applications. To date, most of these sensor systems have been widely used in controlled conditions with varying success (e.g., short range, uniform illumination, cooperative subjects). However the limiting conditions of such systems have yet to be fully studied for long range applications and degraded imaging environments. Biometric technologies used for long range applications will invariably suffer from the effects of atmospheric turbulence degradation. Atmospheric turbulence causes blur, distortion and intensity fluctuations that can severely degrade image quality of electro-optic and thermal imaging systems and, for the case of biometrics technology, translate to poor matching algorithm performance. In this paper, we evaluate the effects of atmospheric turbulence and sensor resolution on biometric matching algorithm performance. We use a subset of the Facial Recognition Technology (FERET) database and a commercial algorithm to analyze facial recognition performance on turbulence degraded facial images. The goal of this work is to understand the feasibility of long-range facial recognition in degraded imaging conditions, and the utility of camera parameter trade studies to enable the design of the next generation biometrics sensor systems.

  14. Design and implementation of smart sensor nodes for wireless disaster monitoring systems

    Science.gov (United States)

    Chen, Yih-Fan; Wu, Wen-Jong; Chen, Chun-Kuang; Wen, Chih-Min; Jin, Ming-Hui; Gau, Chung-Yun; Chang, Chih-Chie; Lee, Chih-Kung

    2004-07-01

    A newly developed smart sensor node that can monitor the safety of temporary structures such as scaffolds at construction sites is detailed in this paper. The design methodology and its trade-offs, as well as its influence on the optimization of sensor networks, is examined. The potential impact on civil engineering construction sites, environmental and natural disaster pre-warning issues, etc., all of which are foundations of smart sensor nodes and corresponding smart sensor networks, is also presented. To minimize the power requirements in order to achieve a true wireless system both in terms of signal and power, a sensor node was designed by adopting an 8051-based micro-controller, an ISM band RF transceiver, and an auto-balanced strain gage signal conditioner. With the built-in RF transceiver, all measurement data can be transmitted to a local control center for data integrity, security, central monitoring, and full-scale analysis. As a battery is the only well-established power source and there is a strong desire to eliminate the need to install bulky power lines, this system designed includes a battery-powered core with optimal power efficiency. To further extend the service life of the built-in power source, a power control algorithm has been embedded in the microcontroller of each sensor node. The entire system has been verified by experimental tests on full-scale scaffold monitoring. The results show that this system provides a practical method to monitor the structure safety in real time and possesses the potential of reducing maintenance costs significantly. The design of the sensor node, central control station, and the integration of several kinds of wireless communication protocol, all of which are successfully integrated to demonstrate the capabilities of this newly developed system, are detailed. Potential impact to the network topology is briefly examined as well.

  15. On line testing of shutdown system

    International Nuclear Information System (INIS)

    Ramnath, S.; Swaminathan, P.; Sreenivasan, P.

    1997-01-01

    For ensuring high reliability and availability, safety related Instrumentation channels are triplicated. Solid state electronics can fail in safe or unsafe mode. Hence, it is necessary to supervise the safety related Instrumentation channels from sensor to final shutdown system. Microprocessor/ Microcontroller/ ASIC based online supervision systems are detailed in this paper. (author)

  16. Adaptive Pulsed Laser Line Extraction for Terrain Reconstruction using a Dynamic Vision Sensor

    Directory of Open Access Journals (Sweden)

    Christian eBrandli

    2014-01-01

    Full Text Available Mobile robots need to know the terrain in which they are moving for path planning and obstacle avoidance. This paper proposes the combination of a bio-inspired, redundancy-suppressing dynamic vision sensor with a pulsed line laser to allow fast terrain reconstruction. A stable laser stripe extraction is achieved by exploiting the sensor’s ability to capture the temporal dynamics in a scene. An adaptive temporal filter for the sensor output allows a reliable reconstruction of 3D terrain surfaces. Laser stripe extractions up to pulsing frequencies of 500Hz were achieved using a line laser of 3mW at a distance of 45cm using an event-based algorithm that exploits the sparseness of the sensor output. As a proof of concept, unstructured rapid prototype terrain samples have been successfully reconstructed with an accuracy of 2mm.

  17. Design of a Wireless Sensor Module for Monitoring Conductor Galloping of Transmission Lines.

    Science.gov (United States)

    Huang, Xinbo; Zhao, Long; Chen, Guimin

    2016-10-09

    Conductor galloping may cause flashovers and even tower collapses. The available conductor galloping monitoring methods often employ acceleration sensors to measure the conductor translations without considering the conductor twist. In this paper, a new sensor for monitoring conductor galloping of transmission lines based on an inertial measurement unit and wireless communication is proposed. An inertial measurement unit is used for collecting the accelerations and angular rates of a conductor, which are further transformed into the corresponding geographic coordinate frame using a quaternion transformation to reconstruct the galloping of the conductor. Both the hardware design and the software design are described in details. The corresponding test platforms are established, and the experiments show the feasibility and accuracy of the proposed monitoring sensor. The field operation of the proposed sensor in a conductor spanning 734 m also shows its effectiveness.

  18. Road Lane Detection Robust to Shadows Based on a Fuzzy System Using a Visible Light Camera Sensor.

    Science.gov (United States)

    Hoang, Toan Minh; Baek, Na Rae; Cho, Se Woon; Kim, Ki Wan; Park, Kang Ryoung

    2017-10-28

    Recently, autonomous vehicles, particularly self-driving cars, have received significant attention owing to rapid advancements in sensor and computation technologies. In addition to traffic sign recognition, road lane detection is one of the most important factors used in lane departure warning systems and autonomous vehicles for maintaining the safety of semi-autonomous and fully autonomous systems. Unlike traffic signs, road lanes are easily damaged by both internal and external factors such as road quality, occlusion (traffic on the road), weather conditions, and illumination (shadows from objects such as cars, trees, and buildings). Obtaining clear road lane markings for recognition processing is a difficult challenge. Therefore, we propose a method to overcome various illumination problems, particularly severe shadows, by using fuzzy system and line segment detector algorithms to obtain better results for detecting road lanes by a visible light camera sensor. Experimental results from three open databases, Caltech dataset, Santiago Lanes dataset (SLD), and Road Marking dataset, showed that our method outperformed conventional lane detection methods.

  19. Analysis of transmission lines loaded with pairs of coupled resonant elements and application to sensors

    International Nuclear Information System (INIS)

    Naqui, J.; Su, L.; Mata, J.; Martín, F.

    2015-01-01

    This paper is focused on the analysis of transmission lines loaded with pairs of magnetically coupled resonators. We have considered two different structures: (i) a microstrip line loaded with pairs of stepped impedance resonators (SIRs), and (ii) a coplanar waveguide (CPW) transmission line loaded with pairs of split ring resonators (SRRs). In both cases, the line exhibits a single resonance frequency (transmission zero) if the resonators are identical (symmetric structure with regard to the line axis), and this resonance is different to the one of the line loaded with a single resonator due to inter-resonator coupling. If the structures are asymmetric, inter-resonator coupling enhances the distance between the two split resonance frequencies that arise. In spite that the considered lines and loading resonators are very different and are described by different lumped element equivalent circuit models, the phenomenology associated to the effects of coupling is exactly the same, and the resonance frequencies are given by identical expressions. The reported lumped element circuit models of both structures are validated by comparing the circuit simulations with extracted parameters with both electromagnetic simulations and experimental data. These structures can be useful for the implementation of microwave sensors based on symmetry properties. - Highlights: • Magnetic-coupling between resonant elements affects transmission properties. • Inter-resonant coupling enhances the distance of two resonant frequencies. • The structures are useful for sensors and comparators, etc

  20. Low-cost sensor system for non-invasive monitoring of cell growth in disposable bioreactors

    OpenAIRE

    Reinecke, Tobias; Biechele, Philipp; Schulte, V.; Scheper, Thomas; Zimmermann, Stefan

    2015-01-01

    To ensure productivity and product quality, the parameters of biotechnological processes need to be monitored. Along temperature or pH, one important parameter is the cell density in the culture medium. In this work, we present a low-cost sensor system for online cell growth monitoring in bioreactors via permittivity measurements based on coplanar transmission lines. To evaluate the sensor, E. coli cultivations are performed. We found a good correlation between optical density of the culture ...

  1. A Fully Integrated Humidity Sensor System-on-Chip Fabricated by Micro-Stamping Technology

    Science.gov (United States)

    Huang, Che-Wei; Huang, Yu-Jie; Lu, Shey-Shi; Lin, Chih-Ting

    2012-01-01

    A fully integrated humidity sensor chip was designed, implemented, and tested. Utilizing the micro-stamping technology, the pseudo-3D sensor system-on-chip (SSoC) architecture can be implemented by stacking sensing materials directly on the top of a CMOS-fabricated chip. The fabricated sensor system-on-chip (2.28 mm × 2.48 mm) integrated a humidity sensor, an interface circuit, a digital controller, and an On-Off Keying (OOK) wireless transceiver. With low power consumption, i.e., 750 μW without RF operation, the sensitivity of developed sensor chip was experimentally verified in the relative humidity (RH) range from 32% to 60%. The response time of the chip was also experimentally verified to be within 5 seconds from RH 36% to RH 64%. As a consequence, the implemented humidity SSoC paves the way toward the an ultra-small sensor system for various applications.

  2. A bio-inspired real-time capable artificial lateral line system for freestream flow measurements.

    Science.gov (United States)

    Abels, C; Qualtieri, A; De Vittorio, M; Megill, W M; Rizzi, F

    2016-06-03

    To enhance today's artificial flow sensing capabilities in aerial and underwater robotics, future robots could be equipped with a large number of miniaturized sensors distributed over the surface to provide high resolution measurement of the surrounding fluid flow. In this work we show a linear array of closely separated bio-inspired micro-electro-mechanical flow sensors whose sensing mechanism is based on a piezoresistive strain-gauge along a stress-driven cantilever beam, mimicking the biological superficial neuromasts found in the lateral line organ of fishes. Aiming to improve state-of-the-art flow sensing capability in autonomously flying and swimming robots, our artificial lateral line system was designed and developed to feature multi-parameter freestream flow measurements which provide information about (1) local flow velocities as measured by the signal amplitudes from the individual cantilevers as well as (2) propagation velocity, (3) linear forward/backward direction along the cantilever beam orientation and (4) periodicity of pulses or pulse trains determined by cross-correlating sensor signals. A real-time capable cross-correlation procedure was developed which makes it possible to extract freestream flow direction and velocity information from flow fluctuations. The computed flow velocities deviate from a commercial system by 0.09 m s(-1) at 0.5 m s(-1) and 0.15 m s(-1) at 1.0 m s(-1) flow velocity for a sampling rate of 240 Hz and a sensor distance of 38 mm. Although experiments were performed in air, the presented flow sensing system can be applied to underwater vehicles as well, once the sensors are embedded in a waterproof micro-electro-mechanical systems package.

  3. Deflection estimation of a wind turbine blade using FBG sensors embedded in the blade bonding line

    International Nuclear Information System (INIS)

    Kim, Sang-Woo; Kang, Woo-Ram; Jeong, Min-Soo; Lee, In; Kwon, Il-Bum

    2013-01-01

    Estimating the deflection of flexible composite wind turbine blades is very important to prevent the blades from hitting the tower. Several researchers have used fiber Bragg grating (FBG) sensors—a type of optical fiber sensor (OFS)—to monitor the structural behavior of the blades. They can be installed on the surface and/or embedded in the interior of composites. However, the typical installation positions of OFSs present several problems, including delamination of sensing probes and a higher risk of fiber breakage during installation. In this study, we proposed using the bonding line between the shear web and spar cap as a new installation position of embedded OFSs for estimating the deflection of the blades. Laboratory coupon tests were undertaken preliminarily to confirm the strain measuring capability of embedded FBG sensors in adhesive layers, and the obtained values were verified by comparison with results obtained by electrical strain gauges and finite element analysis. We performed static loading tests on a 100 kW composite wind turbine blade to evaluate its deflections using embedded FBG sensors positioned in the bonding line. The deflections were estimated by classical beam theory considering a rigid body rotation near the tip of the blade. The evaluated tip deflections closely matched those measured by a linear variable differential transformer. Therefore, we verified the capability of embedded FBG sensors for evaluating the deflections of wind turbine blades. In addition, we confirmed that the bonding line between the shear web and spar cap is a practical location to embed the FBG sensors. (paper)

  4. Pollution Monitoring System Using Gas Sensor based on Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    M. Udin Harun Al Rasyid

    2016-01-01

    Full Text Available Carbon monoxide (CO and carbon dioxide (CO2 gases are classified as colorless and odorless gas so we need special tools to monitor their concentration in the air. Concentration of air pollution of CO and CO2 that are high in the air will give serious effects for health status. CO is a poisonous gas that damages the circulation of oxygen in the blood when inhaled, while CO2 is one of the gases that causes global warming. In this paper, we developed an integrated pollution monitoring (IPOM system to monitor the concentration of air pollution. This research implemented three sensor nodes (end-device which each node contains CO and CO2 sensors on the gas sensors board to perform sensing from the environment. Furthermore, the data taken from the environment by the sensor will be sent to the meshlium gateway using IEEE 802.15.4 Zigbee communications and processed by the gateway in order to be sent to the computer server. The data is stored in meshlium gateway using MySQL database as a backup, and it will be synchronized to the MySQL database in the computer server. We provide services for public to access the information in database server through a desktop and website application.

  5. On-line monitoring system of PV array based on internet of things technology

    Science.gov (United States)

    Li, Y. F.; Lin, P. J.; Zhou, H. F.; Chen, Z. C.; Wu, L. J.; Cheng, S. Y.; Su, F. P.

    2017-11-01

    The Internet of Things (IoT) Technology is used to inspect photovoltaic (PV) array which can greatly improve the monitoring, performance and maintenance of the PV array. In order to efficiently realize the remote monitoring of PV operating environment, an on-line monitoring system of PV array based on IoT is designed in this paper. The system includes data acquisition, data gateway and PV monitoring centre (PVMC) website. Firstly, the DSP-TMS320F28335 is applied to collect indicators of PV array using sensors, then the data are transmitted to data gateway through ZigBee network. Secondly, the data gateway receives the data from data acquisition part, obtains geographic information via GPS module, and captures the scenes around PV array via USB camera, then uploads them to PVMC website. Finally, the PVMC website based on Laravel framework receives all data from data gateway and displays them with abundant charts. Moreover, a fault diagnosis approach for PV array based on Extreme Learning Machine (ELM) is applied in PVMC. Once fault occurs, a user alert can be sent via E-mail. The designed system enables users to browse the operating conditions of PV array on PVMC website, including electrical, environmental parameters and video. Experimental results show that the presented monitoring system can efficiently real-time monitor the PV array, and the fault diagnosis approach reaches a high accuracy of 97.5%.

  6. Tracking Objects with Networked Scattered Directional Sensors

    Science.gov (United States)

    Plarre, Kurt; Kumar, P. R.

    2007-12-01

    We study the problem of object tracking using highly directional sensors—sensors whose field of vision is a line or a line segment. A network of such sensors monitors a certain region of the plane. Sporadically, objects moving in straight lines and at a constant speed cross the region. A sensor detects an object when it crosses its line of sight, and records the time of the detection. No distance or angle measurements are available. The task of the sensors is to estimate the directions and speeds of the objects, and the sensor lines, which are unknown a priori. This estimation problem involves the minimization of a highly nonconvex cost function. To overcome this difficulty, we introduce an algorithm, which we call "adaptive basis algorithm." This algorithm is divided into three phases: in the first phase, the algorithm is initialized using data from six sensors and four objects; in the second phase, the estimates are updated as data from more sensors and objects are incorporated. The third phase is an optional coordinated transformation. The estimation is done in an "ad-hoc" coordinate system, which we call "adaptive coordinate system." When more information is available, for example, the location of six sensors, the estimates can be transformed to the "real-world" coordinate system. This constitutes the third phase.

  7. Sensor Selection and Data Validation for Reliable Integrated System Health Management

    Science.gov (United States)

    Garg, Sanjay; Melcher, Kevin J.

    2008-01-01

    -select iteration, and the final selection analysis. The knowledge base required for productive use of S4 consists of system design information and heritage experience together with a focus on components with health implications. The sensor suite down-selection is an iterative process for identifying a group of sensors that provide good fault detection and isolation for targeted fault scenarios. In the final selection analysis, a statistical evaluation algorithm provides the final robustness test for each down-selected sensor suite. NASA GRC has developed an approach to sensor data qualification that applies empirical relationships, threshold detection techniques, and Bayesian belief theory to a network of sensors related by physics (i.e., analytical redundancy) in order to identify the failure of a given sensor within the network. This data quality validation approach extends the state-of-the-art, from red-lines and reasonableness checks that flag a sensor after it fails, to include analytical redundancy-based methods that can identify a sensor in the process of failing. The focus of this effort is on understanding the proper application of analytical redundancy-based data qualification methods for onboard use in monitoring Upper Stage sensors.

  8. An Ambulatory System for Gait Monitoring Based on Wireless Sensorized Insoles

    Science.gov (United States)

    González, Iván; Fontecha, Jesús; Hervás, Ramón; Bravo, José

    2015-01-01

    A new gait phase detection system for continuous monitoring based on wireless sensorized insoles is presented. The system can be used in gait analysis mobile applications, and it is designed for real-time demarcation of gait phases. The system employs pressure sensors to assess the force exerted by each foot during walking. A fuzzy rule-based inference algorithm is implemented on a smartphone and used to detect each of the gait phases based on the sensor signals. Additionally, to provide a solution that is insensitive to perturbations caused by non-walking activities, a probabilistic classifier is employed to discriminate walking forward from other low-level activities, such as turning, walking backwards, lateral walking, etc. The combination of these two algorithms constitutes the first approach towards a continuous gait assessment system, by means of the avoidance of non-walking influences. PMID:26184199

  9. An Ambulatory System for Gait Monitoring Based on Wireless Sensorized Insoles

    Directory of Open Access Journals (Sweden)

    Iván González

    2015-07-01

    Full Text Available A new gait phase detection system for continuous monitoring based on wireless sensorized insoles is presented. The system can be used in gait analysis mobile applications, and it is designed for real-time demarcation of gait phases. The system employs pressure sensors to assess the force exerted by each foot during walking. A fuzzy rule-based inference algorithm is implemented on a smartphone and used to detect each of the gait phases based on the sensor signals. Additionally, to provide a solution that is insensitive to perturbations caused by non-walking activities, a probabilistic classifier is employed to discriminate walking forward from other low-level activities, such as turning, walking backwards, lateral walking, etc. The combination of these two algorithms constitutes the first approach towards a continuous gait assessment system, by means of the avoidance of non-walking influences.

  10. A Fully Integrated Humidity Sensor System-on-Chip Fabricated by Micro-Stamping Technology

    Directory of Open Access Journals (Sweden)

    Chih-Ting Lin

    2012-08-01

    Full Text Available A fully integrated humidity sensor chip was designed, implemented, and tested. Utilizing the micro-stamping technology, the pseudo-3D sensor system-on-chip (SSoC architecture can be implemented by stacking sensing materials directly on the top of a CMOS-fabricated chip. The fabricated sensor system-on-chip (2.28 mm × 2.48 mm integrated a humidity sensor, an interface circuit, a digital controller, and an On-Off Keying (OOK wireless transceiver. With low power consumption, i.e., 750 μW without RF operation, the sensitivity of developed sensor chip was experimentally verified in the relative humidity (RH range from 32% to 60%. The response time of the chip was also experimentally verified to be within 5 seconds from RH 36% to RH 64%. As a consequence, the implemented humidity SSoC paves the way toward the an ultra-small sensor system for various applications.

  11. Thermoelectric energy harvesting system for demonstrating autonomous operation of a wireless sensor node enabled by a multipurpose interface

    International Nuclear Information System (INIS)

    Leicht, Joachim; Heilmann, Peter; Maurath, Dominic; Moranz, Christian; Manoli, Yiannos; Hehn, Thorsten; Li, Xiaoming; Thewes, Marcell; Scholl, Gerd

    2013-01-01

    This paper demonstrates the autonomous operation of a wireless sensor node exclusively powered by thermoelectric energy harvesting. Active operation of a wireless sensor system is demonstrated successfully by means of an on-line programmable emulation kit that enables various thermoelectric energy harvesting scenarios. Moreover, this emulation kit accomplishes autonomous wireless sensor node operation by interfacing a small-scaled thermogenerator via a CMOS integrated autonomous multipurpose energy harvesting interface circuit performing maximum power point tracking

  12. OLDASS: On-line data acquisition system at SF cyclotron

    International Nuclear Information System (INIS)

    Omata, Kazuo; Yasue, Masaharu; Hamagaki, Hideki

    1982-01-01

    The on-line data acquisition system in the Institute for Nuclear Study, the University of Tokyo, is composed of 2 systems of Fujitsu mini-computer PFU-400 for data processing at the high energy synchrotron and one system of that computer for low energy cyclotron as terminals, the host computer being M 180 II AD of the same company. This system has been developed to have the features of being the on-line system capable of following the improvement of host computer performance, being capable of developing the on-line programmes of other experimenting groups in parallel with batch jobs or the operation of the on-line system, and capable of developing programmes using FORTRAN. The result of about 220 KB/s was obtained for the data transfer rate between the programmes of the host computer and terminals, and this fulfilled the aimed performance. The terminal system on the low energy side is provided with an ADC interface and a display interface specified particularly in addition to the miniature computer PFU400 and standard I/O devices of the manufacture. The accumulating type graphic display of the I/O devices can be switched to be connected to the host computer, and immediately displays the results transferred to the host computer and analyzed. Hard copy is also available. The above hardware and software are explained. The on-line system insures 80 K bytes of the total memory of 224 K bytes for data area. (Wakatsuki, Y.)

  13. On-line control systems in power plants

    International Nuclear Information System (INIS)

    Freymeyer, P.

    1981-01-01

    This report is a review of on-line control systems as a complex system connected with all problems like, development, planning, degree of automation, economics, service, quality and documentation. (orig.) [de

  14. Evaluation Of Spatial Filters For Background Suppression In Infrared Mosaic Sensor Systems

    Science.gov (United States)

    Bergen, T. L.; Mazaika, P. K.

    1982-12-01

    Spaceborne infrared mosaic sensors have been proposed for future surveillance systems. Because these systems will generate a large volume of data, background suppression will require algorithms which use innovative architectures and minimal storage. This paper analyzes the implementation and performance of candidate temporal and spatial filters. Spatial filters are attractive because they require far less memory, can effectively exploit a parallel, pipelined architecture, and are relatively insensitive to target speed. However, the performance of spatial filtering is substantially worse than that of temporal filtering when the sensor has good line-of-sight stability.

  15. Sensor system for web inspection

    Science.gov (United States)

    Sleefe, Gerard E.; Rudnick, Thomas J.; Novak, James L.

    2002-01-01

    A system for electrically measuring variations over a flexible web has a capacitive sensor including spaced electrically conductive, transmit and receive electrodes mounted on a flexible substrate. The sensor is held against a flexible web with sufficient force to deflect the path of the web, which moves relative to the sensor.

  16. LIGHT-WEIGHT SENSOR PACKAGE FOR PRECISION 3D MEASUREMENT WITH MICRO UAVS E.G. POWER-LINE MONITORING

    Directory of Open Access Journals (Sweden)

    K.-D. Kuhnert

    2013-08-01

    Full Text Available The paper describes a new sensor package for micro or mini UAVs and one application that has been successfully implemented with this sensor package. It is intended for 3D measurement of landscape or large outdoor structures for mapping or monitoring purposes. The package can be composed modularly into several configurations. It may contain a laser-scanner, camera, IMU, GPS and other sensors as required by the application. Also different products of the same sensor type have been integrated. Always it contains its own computing infrastructure and may be used for intelligent navigation, too. It can be operated in cooperation with different drones but also completely independent of the type of drone it is attached to. To show the usability of the system, an application in monitoring high-voltage power lines that has been successfully realised with the package is described in detail.

  17. A Closed-Form Error Model of Straight Lines for Improved Data Association and Sensor Fusing

    Directory of Open Access Journals (Sweden)

    Volker Sommer

    2018-04-01

    Full Text Available Linear regression is a basic tool in mobile robotics, since it enables accurate estimation of straight lines from range-bearing scans or in digital images, which is a prerequisite for reliable data association and sensor fusing in the context of feature-based SLAM. This paper discusses, extends and compares existing algorithms for line fitting applicable also in the case of strong covariances between the coordinates at each single data point, which must not be neglected if range-bearing sensors are used. Besides, in particular, the determination of the covariance matrix is considered, which is required for stochastic modeling. The main contribution is a new error model of straight lines in closed form for calculating quickly and reliably the covariance matrix dependent on just a few comprehensible and easily-obtainable parameters. The model can be applied widely in any case when a line is fitted from a number of distinct points also without a priori knowledge of the specific measurement noise. By means of extensive simulations, the performance and robustness of the new model in comparison to existing approaches is shown.

  18. Thermostatic system of sensor in NIR spectrometer based on PID control

    Science.gov (United States)

    Wang, Zhihong; Qiao, Liwei; Ji, Xufei

    2016-11-01

    Aiming at the shortcomings of the primary sensor thermostatic control system in the near infrared (NIR) spectrometer, a novel thermostatic control system based on proportional-integral-derivative (PID) control technology was developed to improve the detection precision of the NIR spectrometer. There were five parts including bridge amplifier circuit, analog-digital conversion (ADC) circuit, microcontroller, digital-analog conversion (DAC) circuit and drive circuit in the system. The five parts formed a closed-loop control system based on PID algorithm that was used to control the error between the temperature calculated by the sampling data of ADC and the designed temperature to ensure the stability of the spectrometer's sensor. The experimental results show that, when the operating temperature of sensor is -11°, compared with the original system, the temperature control precision of the new control system is improved from ±0.64° to ±0.04° and the spectrum signal to noise ratio (SNR) is improved from 4891 to 5967.

  19. An on-line adaptive core monitoring system

    International Nuclear Information System (INIS)

    Verspeek, J.A.; Bruggink, J.C.; Karuza, J.

    1997-01-01

    An on-line core monitoring system has been in operation for three years in the Dodewaard Nuclear Power Plant. The core monitor uses the on-line measured reactor data as an input for a power distribution calculation. The measurements are frequently performed. The system is used for monitoring as well as for predicting purposes. The limiting thermal hydraulic parameters are monitored as well as the pellet-clad interaction limits. The data are added to a history file used for cycle burn-up calculations and trending of parameters. The reactor states are presented through a convenient graphical user interface. (authors)

  20. Non-line-of-sight optical wireless sensor network operating in multiscattering channel

    Science.gov (United States)

    Kedar, Debbie; Arnon, Shlomi

    2006-11-01

    Networks of sensors are envisaged to be major participants in future data-gathering systems for civilian and military applications, including medical and environmental monitoring and surveillance, home security, agriculture, and industry. Typically, a very large number of miniature sensing and communicating nodes are distributed ad hoc at the location of interest, where they establish a network and wirelessly communicate sensed data either to one another or to a base station using various network topologies. The optical modality is a potential solution for the links, due to the small and lightweight hardware and low power consumption, as well as other special features. Notably, the backscattering of light by molecules and aerosols in the atmosphere can function as a vehicle of communication in a way similar to the deployment of numerous tiny reflecting mirrors. The scattering of light at solar-blind ultraviolet wavelengths is of particular interest since scattering by atmospheric particles is significant and ambient solar interference is minimal. In this paper we derive a mathematical model of a simple and low-cost non-line-of-sight (NLOS) optical wireless sensor network operating in the solar-blind ultraviolet spectral range. The viability and limitations of the internode link are evaluated and found to facilitate miniature operational sensor networks.

  1. Multi-National Banknote Classification Based on Visible-light Line Sensor and Convolutional Neural Network.

    Science.gov (United States)

    Pham, Tuyen Danh; Lee, Dong Eun; Park, Kang Ryoung

    2017-07-08

    Automatic recognition of banknotes is applied in payment facilities, such as automated teller machines (ATMs) and banknote counters. Besides the popular approaches that focus on studying the methods applied to various individual types of currencies, there have been studies conducted on simultaneous classification of banknotes from multiple countries. However, their methods were conducted with limited numbers of banknote images, national currencies, and denominations. To address this issue, we propose a multi-national banknote classification method based on visible-light banknote images captured by a one-dimensional line sensor and classified by a convolutional neural network (CNN) considering the size information of each denomination. Experiments conducted on the combined banknote image database of six countries with 62 denominations gave a classification accuracy of 100%, and results show that our proposed algorithm outperforms previous methods.

  2. On-line plant-wide monitoring using neural networks

    International Nuclear Information System (INIS)

    Turkcan, E.; Ciftcioglu, O.; Eryurek, E.; Upadhyaya, B.R.

    1992-06-01

    The on-line signal analysis system designed for a multi-level mode operation using neural networks is described. The system is capable of monitoring the plant states by tracking different number of signals up to 32 simultaneously. The data used for this study were acquired from the Borssele Nuclear Power Plant (PWR type), and using the on-line monitoring system. An on-line plant-wide monitoring study using a multilayer neural network model is discussed in this paper. The back-propagation neural network algorithm is used for training the network. The technique assumes that each physical state of the power plant can be represented by a unique pattern of instrument readings which can be related to the condition of the plant. When disturbance occurs, the sensor readings undergo a transient, and form a different set of patterns which represent the new operational status. Diagnosing these patterns can be helpful in identifying this new state of the power plant. To this end, plant-wide monitoring with neutral networks is one of the new techniques in real-time applications. (author). 9 refs.; 5 figs

  3. Data analysis of inertial sensor for train positioning detection system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Jin; Park, Sung Soo; Lee, Jae Ho; Kang, Dong Hoon [Korea Railroad Research Institute, Uiwang (Korea, Republic of)

    2015-02-15

    Train positioning detection information is fundamental for high-speed railroad inspection, making it possible to simultaneously determine the status and evaluate the integrity of railroad equipment. This paper presents the results of measurements and an analysis of an inertial measurement unit (IMU) used as a positioning detection sensors. Acceleration and angular rate measurements from the IMU were analyzed in the amplitude and frequency domains, with a discussion on vibration and train motions. Using these results and GPS information, the positioning detection of a Korean tilting train express was performed from Naju station to Illo station on the Honam-line. The results of a synchronized analysis of sensor measurements and train motion can help in the design of a train location detection system and improve the positioning detection performance.

  4. An on-line monitoring system for navigation equipment

    Science.gov (United States)

    Wang, Bo; Yang, Ping; Liu, Jing; Yang, Zhengbo; Liang, Fei

    2017-10-01

    Civil air navigation equipment is the most important infrastructure of Civil Aviation, which is closely related to flight safety. In addition to regular flight inspection, navigation equipment's patrol measuring, maintenance measuring, running measuring under special weather conditions are the important means of ensuring aviation flight safety. According to the safety maintenance requirements of Civil Aviation Air Traffic Control navigation equipment, this paper developed one on-line monitoring system with independent intellectual property rights for navigation equipment, the system breakthroughs the key technologies of measuring navigation equipment on-line including Instrument Landing System (ILS) and VHF Omni-directional Range (VOR), which also meets the requirements of navigation equipment ground measurement set by the ICAO DOC 8071, it provides technical means of the ground on-line measurement for navigation equipment, improves the safety of navigation equipment operation, and reduces the impact of measuring navigation equipment on airport operation.

  5. Augmented switching linear dynamical system model for gas concentration estimation with MOX sensors in an open sampling system.

    Science.gov (United States)

    Di Lello, Enrico; Trincavelli, Marco; Bruyninckx, Herman; De Laet, Tinne

    2014-07-11

    In this paper, we introduce a Bayesian time series model approach for gas concentration estimation using Metal Oxide (MOX) sensors in Open Sampling System (OSS). Our approach focuses on the compensation of the slow response of MOX sensors, while concurrently solving the problem of estimating the gas concentration in OSS. The proposed Augmented Switching Linear System model allows to include all the sources of uncertainty arising at each step of the problem in a single coherent probabilistic formulation. In particular, the problem of detecting on-line the current sensor dynamical regime and estimating the underlying gas concentration under environmental disturbances and noisy measurements is formulated and solved as a statistical inference problem. Our model improves, with respect to the state of the art, where system modeling approaches have been already introduced, but only provided an indirect relative measures proportional to the gas concentration and the problem of modeling uncertainty was ignored. Our approach is validated experimentally and the performances in terms of speed of and quality of the gas concentration estimation are compared with the ones obtained using a photo-ionization detector.

  6. A soft sensor for bioprocess control based on sequential filtering of metabolic heat signals.

    Science.gov (United States)

    Paulsson, Dan; Gustavsson, Robert; Mandenius, Carl-Fredrik

    2014-09-26

    Soft sensors are the combination of robust on-line sensor signals with mathematical models for deriving additional process information. Here, we apply this principle to a microbial recombinant protein production process in a bioreactor by exploiting bio-calorimetric methodology. Temperature sensor signals from the cooling system of the bioreactor were used for estimating the metabolic heat of the microbial culture and from that the specific growth rate and active biomass concentration were derived. By applying sequential digital signal filtering, the soft sensor was made more robust for industrial practice with cultures generating low metabolic heat in environments with high noise level. The estimated specific growth rate signal obtained from the three stage sequential filter allowed controlled feeding of substrate during the fed-batch phase of the production process. The biomass and growth rate estimates from the soft sensor were also compared with an alternative sensor probe and a capacitance on-line sensor, for the same variables. The comparison showed similar or better sensitivity and lower variability for the metabolic heat soft sensor suggesting that using permanent temperature sensors of a bioreactor is a realistic and inexpensive alternative for monitoring and control. However, both alternatives are easy to implement in a soft sensor, alone or in parallel.

  7. A Soft Sensor for Bioprocess Control Based on Sequential Filtering of Metabolic Heat Signals

    Directory of Open Access Journals (Sweden)

    Dan Paulsson

    2014-09-01

    Full Text Available Soft sensors are the combination of robust on-line sensor signals with mathematical models for deriving additional process information. Here, we apply this principle to a microbial recombinant protein production process in a bioreactor by exploiting bio-calorimetric methodology. Temperature sensor signals from the cooling system of the bioreactor were used for estimating the metabolic heat of the microbial culture and from that the specific growth rate and active biomass concentration were derived. By applying sequential digital signal filtering, the soft sensor was made more robust for industrial practice with cultures generating low metabolic heat in environments with high noise level. The estimated specific growth rate signal obtained from the three stage sequential filter allowed controlled feeding of substrate during the fed-batch phase of the production process. The biomass and growth rate estimates from the soft sensor were also compared with an alternative sensor probe and a capacitance on-line sensor, for the same variables. The comparison showed similar or better sensitivity and lower variability for the metabolic heat soft sensor suggesting that using permanent temperature sensors of a bioreactor is a realistic and inexpensive alternative for monitoring and control. However, both alternatives are easy to implement in a soft sensor, alone or in parallel.

  8. Millimeter-wave sensor based on a λ/2-line resonator for identification and dielectric characterization of non-ionic surfactants.

    Science.gov (United States)

    Rodilla, H; Kim, A A; Jeffries, G D M; Vukusic, J; Jesorka, A; Stake, J

    2016-01-20

    Studies of biological and artificial membrane systems, such as niosomes, currently rely on the use of fluorescent tags, which can influence the system under investigation. For this reason, the development of label-free, non-invasive detection techniques is of great interest. We demonstrate an open-volume label-free millimeter-wave sensing platform based on a coplanar waveguide, developed for identification and characterization of niosome constituents. A design based on a λ/2-line resonator was used and on-wafer measurements of transmission and reflection parameters were performed up to 110 GHz. Our sensor was able to clearly distinguish between common niosome constituents, non-ionic surfactants Tween 20 and Span 80, measuring a resonance shift of 3 GHz between them. The complex permittivities of the molecular compounds have been extracted. Our results indicate insignificant frequency dependence in the investigated frequency range (3 GHz - 110 GHz). Values of permittivity around 3.0 + 0.7i and 2.2 + 0.4i were obtained for Tween 20 and Span 80, respectively.

  9. An Adaptive Technique for a Redundant-Sensor Navigation System. Ph.D. Thesis

    Science.gov (United States)

    Chien, T. T.

    1972-01-01

    An on-line adaptive technique is developed to provide a self-contained redundant-sensor navigation system with a capability to utilize its full potentiality in reliability and performance. The gyro navigation system is modeled as a Gauss-Markov process, with degradation modes defined as changes in characteristics specified by parameters associated with the model. The adaptive system is formulated as a multistage stochastic process: (1) a detection system, (2) an identification system and (3) a compensation system. It is shown that the sufficient statistics for the partially observable process in the detection and identification system is the posterior measure of the state of degradation, conditioned on the measurement history.

  10. Design, development, and evaluation of an automatic guidance system for tractor tracking along the contour line on inclined surfaces

    Directory of Open Access Journals (Sweden)

    S Dehghani

    2016-04-01

    to the computer and received angular position in x and y coordinates. An assumed degree could be considered as basis degree and the measured frequency was adjustable. The tilt sensor located along the axial length of tractor and leads the angles which are created by longitudinal axle transverse axle of the tractor in related to horizontal level. It was used for contour lines detecting. The potentiometer located on the steering wheel of the tractor and pressure sensor which used with goniometer sensor used keeping uniformly of leveling points in tractor motion. The pressure sensor (SN-SCP1000- South Korea which is used in leveling system can detect the elevation changes. In this way, by defining a limitation of altitude for system, it would be able to stop steering turning motor which was coupled to tractor steering rod automatically. By resetting, the tractor could be able to live in a new level position. To avoid excessive left and right steering wheels deviation and interfering with other lines of travel, potentiometer was used. The deviation degree for steering rod from center to left or right was selected 120 degrees. Accordingly, the wheels would not be able to move more than 10 degrees to each direction. The Processing System: The electrical circuit graphically designed and simulated by software (Altium Designer, 2009 and installed on the tractor. The components of this circuit are as follows: Electrical board, two relays which control the electrical pathway in both directions, a battery with 12 volts of electric potential as electrical power supply, ATmeGA32 microcontroller which was made by Atmel company as main core for information processing, RS232 protocol was used for making correlation between serial port (COM and the microcontroller and two capacitors for reducing noises. The Actuator System: The output signals from the a processing system, were lead in the actuator system would order and indicative of left- turn or right- turn command, were introduced

  11. A Multilayer Perceptron-Based Impulsive Noise Detector with Application to Power-Line-Based Sensor Networks

    KAUST Repository

    Chien, Ying-Ren; Chen, Jie-Wei; Xu, Sendren Sheng-Dong

    2018-01-01

    For power-line-based sensor networks, impulsive noise (IN) will dramatically degrade the data transmission rate in the power line. In this paper, we present a multilayer perceptron (MLP)-based approach to detect IN in orthogonal frequency

  12. Distributed sensor coordination for advanced energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Tumer, Kagan [Oregon State Univ., Corvallis, OR (United States). School of Mechanical, Industrial and Manufacturing Engineering

    2015-03-12

    coordination, and sensor network control in advanced power systems. Each application has specific needs, but they all share the one crucial underlying problem: how to ensure that the interactions of a large number of heterogenous agents lead to coordinated system behavior. This proposal describes a new paradigm that addresses that very issue in a systematic way. Key Results and Findings: All milestones have been completed. Our results demonstrate that by properly shaping agent objective functions, we can develop large (up to 10,000 devices) heterogeneous sensor networks with key desirable properties. The first milestone shows that properly choosing agent-specific objective functions increases system performance by up to 99.9% compared to global evaluations. The second milestone shows evolutionary algorithms learn excellent sensor network coordination policies prior to network deployment, and these policies can be refined online once the network is deployed. The third milestone shows the resulting sensor networks networks are extremely robust to sensor noise, where networks with up to 25% sensor noise are capable of providing measurements with errors on the order of 10⁻³. The fourth milestone shows the resulting sensor networks are extremely robust to sensor failure, with 25% of the sensors in the system failing resulting in no significant performance losses after system reconfiguration.

  13. Intelligence Control System for Landfills Based on Wireless Sensor Network

    Science.gov (United States)

    Zhang, Qian; Huang, Chuan; Gong, Jian

    2018-06-01

    This paper put forward an intelligence system for controlling the landfill gas in landfills to make the landfill gas (LFG) exhaust controllably and actively. The system, which is assigned by the wireless sensor network, were developed and supervised by remote applications in workshop instead of manual work. An automatic valve control depending on the sensor units embedded is installed in tube, the air pressure and concentration of LFG are detected to decide the level of the valve switch. The paper also proposed a modified algorithm to solve transmission problem, so that the system can keep a high efficiency and long service life.

  14. Image acquisition system using on sensor compressed sampling technique

    Science.gov (United States)

    Gupta, Pravir Singh; Choi, Gwan Seong

    2018-01-01

    Advances in CMOS technology have made high-resolution image sensors possible. These image sensors pose significant challenges in terms of the amount of raw data generated, energy efficiency, and frame rate. This paper presents a design methodology for an imaging system and a simplified image sensor pixel design to be used in the system so that the compressed sensing (CS) technique can be implemented easily at the sensor level. This results in significant energy savings as it not only cuts the raw data rate but also reduces transistor count per pixel; decreases pixel size; increases fill factor; simplifies analog-to-digital converter, JPEG encoder, and JPEG decoder design; decreases wiring; and reduces the decoder size by half. Thus, CS has the potential to increase the resolution of image sensors for a given technology and die size while significantly decreasing the power consumption and design complexity. We show that it has potential to reduce power consumption by about 23% to 65%.

  15. On-Line Detection and Segmentation of Sports Motions Using a Wearable Sensor

    Directory of Open Access Journals (Sweden)

    Woosuk Kim

    2018-03-01

    Full Text Available In sports motion analysis, observation is a prerequisite for understanding the quality of motions. This paper introduces a novel approach to detect and segment sports motions using a wearable sensor for supporting systematic observation. The main goal is, for convenient analysis, to automatically provide motion data, which are temporally classified according to the phase definition. For explicit segmentation, a motion model is defined as a sequence of sub-motions with boundary states. A sequence classifier based on deep neural networks is designed to detect sports motions from continuous sensor inputs. The evaluation on two types of motions (soccer kicking and two-handed ball throwing verifies that the proposed method is successful for the accurate detection and segmentation of sports motions. By developing a sports motion analysis system using the motion model and the sequence classifier, we show that the proposed method is useful for observation of sports motions by automatically providing relevant motion data for analysis.

  16. On-Line Detection and Segmentation of Sports Motions Using a Wearable Sensor.

    Science.gov (United States)

    Kim, Woosuk; Kim, Myunggyu

    2018-03-19

    In sports motion analysis, observation is a prerequisite for understanding the quality of motions. This paper introduces a novel approach to detect and segment sports motions using a wearable sensor for supporting systematic observation. The main goal is, for convenient analysis, to automatically provide motion data, which are temporally classified according to the phase definition. For explicit segmentation, a motion model is defined as a sequence of sub-motions with boundary states. A sequence classifier based on deep neural networks is designed to detect sports motions from continuous sensor inputs. The evaluation on two types of motions (soccer kicking and two-handed ball throwing) verifies that the proposed method is successful for the accurate detection and segmentation of sports motions. By developing a sports motion analysis system using the motion model and the sequence classifier, we show that the proposed method is useful for observation of sports motions by automatically providing relevant motion data for analysis.

  17. Road Lane Detection Robust to Shadows Based on a Fuzzy System Using a Visible Light Camera Sensor

    Directory of Open Access Journals (Sweden)

    Toan Minh Hoang

    2017-10-01

    Full Text Available Recently, autonomous vehicles, particularly self-driving cars, have received significant attention owing to rapid advancements in sensor and computation technologies. In addition to traffic sign recognition, road lane detection is one of the most important factors used in lane departure warning systems and autonomous vehicles for maintaining the safety of semi-autonomous and fully autonomous systems. Unlike traffic signs, road lanes are easily damaged by both internal and external factors such as road quality, occlusion (traffic on the road, weather conditions, and illumination (shadows from objects such as cars, trees, and buildings. Obtaining clear road lane markings for recognition processing is a difficult challenge. Therefore, we propose a method to overcome various illumination problems, particularly severe shadows, by using fuzzy system and line segment detector algorithms to obtain better results for detecting road lanes by a visible light camera sensor. Experimental results from three open databases, Caltech dataset, Santiago Lanes dataset (SLD, and Road Marking dataset, showed that our method outperformed conventional lane detection methods.

  18. Resonance line shape, strain and electric potential distributions of composite magnetoelectric sensors

    Directory of Open Access Journals (Sweden)

    Martina Gerken

    2013-06-01

    Full Text Available Multiferroic composite magnetoelectric (ME sensors are based on the elastic coupling of a magnetostrictive phase and a piezoelectric phase. A deformation of the magnetostrictive phase causes strain in the piezoelectric phase and thus an induced voltage. Such sensors may be applied both for static as well as for dynamic magnetic field measurements. Particularly high sensitivities are achieved for operation at a mechanical resonance. Here, the resonance line shape of layered (2-2 composite cantilever ME sensors at the first bending-mode resonance is investigated theoretically. Finite element method (FEM simulations using a linear material model reveal an asymmetric resonance profile and a zero-response frequency for the ME coefficient. Frequency-dependent strain and electric potential distributions inside the magnetoelectric composite are studied for the case of a magnetostrictive-piezoelectric bilayer. It is demonstrated that a positive or a negative voltage may be induced across the piezoelectric layer depending on the position of the neutral plane. The frequency-dependent induced electric potential is investigated for structured cantilevers that exhibit magnetostriction only at specific positions. For static operation an induced voltage is obtained locally at positions with magnetostriction. In addition to this direct effect a resonance-assisted effect is observed for dynamic operation. Magnetostriction in a limited area of the cantilever causes a global vibration of the cantilever. Thus, deformation of the piezoelectric layer and an induced electric potential also occur in areas of the cantilever without magnetostriction. The direct and the resonance-assisted pathway may induce voltages of equal or of opposite sign. The net induced voltage results from the superposition of the two effects. As the resonance-assisted induced voltage changes sign upon passing the resonance frequency, while the direct component is constant, an asymmetric line

  19. Demonstration of an automated on-line surveillance system at a commercial nuclear power plant

    International Nuclear Information System (INIS)

    Smith, C.M.; Sweeney, F.J.

    1983-01-01

    As a first step in demonstrating the practicality of performing continuous on-line surveillance of the performance of nuclear steam supply systems using noise related techniques, Oak Ridge National Laboratory is operating a computerized noise signal data acquisition and processing system at the Sequoyah Unit 1 Nuclear Plant, an 1148 MWe four-loop Westinghouse pressurized water reactor (PWR) located near Chattanooga, Tennessee. The principal objective is to establish, with a degree of continuity and completeness not previously achieved, the long-term characteristics of signals from neutron detectors and process sensors in order to evaluate the feasibility of detecting and diagnosing anomalous reactor conditions by means of changes in these signals. The system is designed to automatically screen the gathered data, using a number of descriptors derived from the power spectra of the monitored signals, and thereby select for the noise analyst's perusal only those data which differ statistically from norms which the system has previously established

  20. Embedded sensor systems

    CERN Document Server

    Agrawal, Dharma Prakash

    2017-01-01

    This inspiring textbook provides an introduction to wireless technologies for sensors, explores potential use of sensors for numerous applications, and utilizes probability theory and mathematical methods as a means of embedding sensors in system design. It discusses the need for synchronization and underlying limitations, inter-relation between given coverage and connectivity to number of sensors needed, and the use of geometrical distance to determine location of the base station for data collection and explore use of anchor nodes for relative position determination of sensors. The book explores energy conservation, communication using TCP, the need for clustering and data aggregation, and residual energy determination and energy harvesting. It covers key topics of sensor communication like mobile base stations and relay nodes, delay-tolerant sensor networks, and remote sensing and possible applications. The book defines routing methods and do performance evaluation for random and regular sensor topology an...

  1. YF22 Model With On-Board On-Line Learning Microprocessors-Based Neural Algorithms for Autopilot and Fault-Tolerant Flight Control Systems

    National Research Council Canada - National Science Library

    Napolitano, Marcello

    2002-01-01

    This project focused on investigating the potential of on-line learning 'hardware-based' neural approximators and controllers to provide fault tolerance capabilities following sensor and actuator failures...

  2. Development of High Temperature Chemistry Measurement System for Establishment of On-Line Water Chemistry Surveillance Network in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Yeon, Jei Won; Kim, Won Ho; Song, Kyu Seok; Joo, Ki Soo; Choi, Ke Chon; Ha, Yeong Keong; Ahn, Hong Joo; Im, Hee Jung; Maeng, Wan Young

    2010-07-01

    An integrated high-temperature water chemistry sensor (pH, E redox ) was developed for the establishment of the on-line water chemistry surveillance system in nuclear power plants. The basic performance of the integrated sensor was confirmed in high-temperature (280 .deg. C, 150kg/m 2 ) lithium borate solutions by using the relationship between the concentration of lithium ion and pH-E redox values. Especially, the effects of various environmental factors such as temperature, pressure, and flow rate on YSZ-based pH electrode were evaluated for ensuring the accuracy of high-temperature pH measurement. And the relationships between each water chemistry factor (pH, redox potential, electrical conductivity) were induced for enhancing the credibility of water chemistry measurement. In addition, on the basis of the evaluation of a nuclear plant design company, we suggested potential installation positions of the measurement system in a nuclear power plant

  3. In-line digital holographic sensor for monitoring and characterizing marine particulates

    International Nuclear Information System (INIS)

    Owen, Robert B.; Zozulya, Alex A.

    2000-01-01

    We report an in-line digital holographic sensor (DHS) for monitoring and characterizing marine particulates. This system images individual particles over a deep depth of field (>25 cm) with a resolution of 5 μm. The DHS projects a collimated beam through the water column and onto a lensless CCD array. Some light is diffracted by particulates and forms an object beam; the undeflected remainder constitutes the reference beam. The two beams combine at the CCD array and create an in-line hologram, which is then numerically reconstructed. The DHS eliminates many problems traditionally associated with holography. The CCD recording material considerably lowers the exposure time and eliminates most vibration problems. The laser power needs are low; the DHS uses a small 10-mW diode laser. Rapid numerical reconstruction eliminates photographic processing and optical reconstruction. We successfully operated the DHS underwater on a remotely operated vehicle; our test results include tracing a single particle from one hologram to the next, thus deriving a velocity vector for marine mass transport. We outline our digital holographic reconstruction procedure, and present our graphical user interface and user software tools. The DHS is particularly useful for providing in situ ground-truth measurements for environmental remote sensing. (c) 2000 Society of Photo-Optical Instrumentation Engineers

  4. Remote Automatic Material On-Line Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Magnuson, Erik

    2005-12-20

    Low cost NMR sensor for measuring moisture content of forest products. The Department of Energy (DOE) Industries of the Future (IOF) program seeks development and implementation of technologies that make industry more efficient--in particular, more energy-efficient. Quantum Magnetics, Inc. (QM), a wholly-owned subsidiary of GE Security, received an award under the program to investigate roles for low-cost Nuclear Magnetic Resonance (NMR) technology in furtherance of these goals. Most NMR systems are designed for high-resolution spectroscopy applications. These systems use intense magnetic fields produced by superconducting magnets that drive price and operating cost to levels beyond industry tolerance. At low magnetic fields, achievable at low cost, one loses the ability to obtain spectroscopic information. However, measuring the time constants associated with the NMR signal, called NMR relaxometry, gives indications of chemical and physical states of interest to process control and optimization. It was the purpose of this effort to investigate the technical and economic feasibility of using such low-field, low-cost NMR to monitor parameters enabling greater process efficiencies. The primary target industry identified in the Cooperative Development Agreement was the wood industry, where the moisture content of wood is a key process parameter from the time the cut tree enters a mill until the time it is delivered as pieces of lumber. Extracting the moisture is energy consuming, and improvements in drying efficiency stand to reduce costs and emissions substantially. QM designed and developed a new, low-cost NMR instrument suitable for inspecting lumber up to 3 inches by 12 inches in cross section, and other materials of similar size. Low cost is achieved via an inexpensive, permanent magnet and low-cost NMR spectrometer electronics. Laboratory testing demonstrated that the NMR system is capable of accurate ({+-} 0.5%) measurements of the moisture content of wood for

  5. Optimal sensor configuration for complex systems

    DEFF Research Database (Denmark)

    Sadegh, Payman; Spall, J. C.

    1998-01-01

    configuration is based on maximizing the overall sensor response while minimizing the correlation among the sensor outputs. The procedure for sensor configuration is based on simultaneous perturbation stochastic approximation (SPSA). SPSA avoids the need for detailed modeling of the sensor response by simply......Considers the problem of sensor configuration for complex systems. Our approach involves definition of an appropriate optimality criterion or performance measure, and description of an efficient and practical algorithm for achieving the optimality objective. The criterion for optimal sensor...... relying on observed responses as obtained by limited experimentation with test sensor configurations. We illustrate the approach with the optimal placement of acoustic sensors for signal detection in structures. This includes both a computer simulation study for an aluminum plate, and real...

  6. Continuous pH monitoring in a perfused bioreactor system using an optical pH sensor

    Science.gov (United States)

    Jeevarajan, Antony S.; Vani, Sundeep; Taylor, Thomas D.; Anderson, Melody M.

    2002-01-01

    Monitoring and regulating the pH of the solution in a bioprocess is one of the key steps in the success of bioreactor operation. An in-line optical pH sensor, based on the optical absorption properties of phenol red present in the medium, was developed and tested in this work for use in NASA space bioreactors based on a rotating wall-perfused vessel system supporting a baby hamster kidney (BHK-21) cell culture. The sensor was tested over three 30-day and one 124-day cell runs. The pH sensor initially was calibrated and then used during the entire cell culture interval. The pH reported by the sensor was compared to that measured by a fiber optically coupled Shimadzu spectrophotometer and a blood gas analyzer. The maximum standard error of prediction for all the four cell runs for development pH sensor against BGA was +/-0.06 pH unit and for the fiber optically coupled Shimadzu spectrophotometer against the blood gas analyzer was +/-0.05 pH unit. The pH sensor system performed well without need of recalibration for 124 days. Copyright 2002 Wiley Periodicals, Inc.

  7. Sensor Webs as Virtual Data Systems for Earth Science

    Science.gov (United States)

    Moe, K. L.; Sherwood, R.

    2008-05-01

    The NASA Earth Science Technology Office established a 3-year Advanced Information Systems Technology (AIST) development program in late 2006 to explore the technical challenges associated with integrating sensors, sensor networks, data assimilation and modeling components into virtual data systems called "sensor webs". The AIST sensor web program was initiated in response to a renewed emphasis on the sensor web concepts. In 2004, NASA proposed an Earth science vision for a more robust Earth observing system, coupled with remote sensing data analysis tools and advances in Earth system models. The AIST program is conducting the research and developing components to explore the technology infrastructure that will enable the visionary goals. A working statement for a NASA Earth science sensor web vision is the following: On-demand sensing of a broad array of environmental and ecological phenomena across a wide range of spatial and temporal scales, from a heterogeneous suite of sensors both in-situ and in orbit. Sensor webs will be dynamically organized to collect data, extract information from it, accept input from other sensor / forecast / tasking systems, interact with the environment based on what they detect or are tasked to perform, and communicate observations and results in real time. The focus on sensor webs is to develop the technology and prototypes to demonstrate the evolving sensor web capabilities. There are 35 AIST projects ranging from 1 to 3 years in duration addressing various aspects of sensor webs involving space sensors such as Earth Observing-1, in situ sensor networks such as the southern California earthquake network, and various modeling and forecasting systems. Some of these projects build on proof-of-concept demonstrations of sensor web capabilities like the EO-1 rapid fire response initially implemented in 2003. Other projects simulate future sensor web configurations to evaluate the effectiveness of sensor-model interactions for producing

  8. On-line detection of Escherichia coli intrusion in a pilot-scale drinking water distribution system.

    Science.gov (United States)

    Ikonen, Jenni; Pitkänen, Tarja; Kosse, Pascal; Ciszek, Robert; Kolehmainen, Mikko; Miettinen, Ilkka T

    2017-08-01

    Improvements in microbial drinking water quality monitoring are needed for the better control of drinking water distribution systems and for public health protection. Conventional water quality monitoring programmes are not always able to detect a microbial contamination of drinking water. In the drinking water production chain, in addition to the vulnerability of source waters, the distribution networks are prone to contamination. In this study, a pilot-scale drinking-water distribution network with an on-line monitoring system was utilized for detecting bacterial intrusion. During the experimental Escherichia coli intrusions, the contaminant was measured by applying a set of on-line sensors for electric conductivity (EC), pH, temperature (T), turbidity, UV-absorbance at 254 nm (UVAS SC) and with a device for particle counting. Monitored parameters were compared with the measured E. coli counts using the integral calculations of the detected peaks. EC measurement gave the strongest signal compared with the measured baseline during the E. coli intrusion. Integral calculations showed that the peaks in the EC, pH, T, turbidity and UVAS SC data were detected corresponding to the time predicted. However, the pH and temperature peaks detected were barely above the measured baseline and could easily be mixed with the background noise. The results indicate that on-line monitoring can be utilized for the rapid detection of microbial contaminants in the drinking water distribution system although the peak interpretation has to be performed carefully to avoid being mixed up with normal variations in the measurement data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Wearable Sensor Systems for Infants

    Directory of Open Access Journals (Sweden)

    Zhihua Zhu

    2015-02-01

    Full Text Available Continuous health status monitoring of infants is achieved with the development and fusion of wearable sensing technologies, wireless communication techniques and a low energy-consumption microprocessor with high performance data processing algorithms. As a clinical tool applied in the constant monitoring of physiological parameters of infants, wearable sensor systems for infants are able to transmit the information obtained inside an infant’s body to clinicians or parents. Moreover, such systems with integrated sensors can perceive external threats such as falling or drowning and warn parents immediately. Firstly, the paper reviews some available wearable sensor systems for infants; secondly, we introduce the different modules of the framework in the sensor systems; lastly, the methods and techniques applied in the wearable sensor systems are summarized and discussed. The latest research and achievements have been highlighted in this paper and the meaningful applications in healthcare and behavior analysis are also presented. Moreover, we give a lucid perspective of the development of wearable sensor systems for infants in the future.

  10. On-line monitoring of methane in sewer air.

    Science.gov (United States)

    Liu, Yiwen; Sharma, Keshab R; Murthy, Sudhir; Johnson, Ian; Evans, Ted; Yuan, Zhiguo

    2014-10-16

    Methane is a highly potent greenhouse gas and contributes significantly to climate change. Recent studies have shown significant methane production in sewers. The studies conducted so far have relied on manual sampling followed by off-line laboratory-based chromatography analysis. These methods are labor-intensive when measuring methane emissions from a large number of sewers, and do not capture the dynamic variations in methane production. In this study, we investigated the suitability of infrared spectroscopy-based on-line methane sensors for measuring methane in humid and condensing sewer air. Two such sensors were comprehensively tested in the laboratory. Both sensors displayed high linearity (R(2) > 0.999), with a detection limit of 0.023% and 0.110% by volume, respectively. Both sensors were robust against ambient temperature variations in the range of 5 to 35°C. While one sensor was robust against humidity variations, the other was found to be significantly affected by humidity. However, the problem was solved by equipping the sensor with a heating unit to increase the sensor surface temperature to 35°C. Field studies at three sites confirmed the performance and accuracy of the sensors when applied to actual sewer conditions, and revealed substantial and highly dynamic methane concentrations in sewer air.

  11. Time response for sensor sensed to actuator response for mobile robotic system

    Science.gov (United States)

    Amir, N. S.; Shafie, A. A.

    2017-11-01

    Time and performance of a mobile robot are very important in completing the tasks given to achieve its ultimate goal. Tasks may need to be done within a time constraint to ensure smooth operation of a mobile robot and can result in better performance. The main purpose of this research was to improve the performance of a mobile robot so that it can complete the tasks given within time constraint. The problem that is needed to be solved is to minimize the time interval between sensor detection and actuator response. The research objective is to analyse the real time operating system performance of sensors and actuators on one microcontroller and on two microcontroller for a mobile robot. The task for a mobile robot for this research is line following with an obstacle avoidance. Three runs will be carried out for the task and the time between the sensors senses to the actuator responses were recorded. Overall, the results show that two microcontroller system have better response time compared to the one microcontroller system. For this research, the average difference of response time is very important to improve the internal performance between the occurrence of a task, sensors detection, decision making and actuator response of a mobile robot. This research helped to develop a mobile robot with a better performance and can complete task within the time constraint.

  12. Integrated active sensor system for real time vibration monitoring.

    Science.gov (United States)

    Liang, Qijie; Yan, Xiaoqin; Liao, Xinqin; Cao, Shiyao; Lu, Shengnan; Zheng, Xin; Zhang, Yue

    2015-11-05

    We report a self-powered, lightweight and cost-effective active sensor system for vibration monitoring with multiplexed operation based on contact electrification between sensor and detected objects. The as-fabricated sensor matrix is capable of monitoring and mapping the vibration state of large amounts of units. The monitoring contents include: on-off state, vibration frequency and vibration amplitude of each unit. The active sensor system delivers a detection range of 0-60 Hz, high accuracy (relative error below 0.42%), long-term stability (10000 cycles). On the time dimension, the sensor can provide the vibration process memory by recording the outputs of the sensor system in an extend period of time. Besides, the developed sensor system can realize detection under contact mode and non-contact mode. Its high performance is not sensitive to the shape or the conductivity of the detected object. With these features, the active sensor system has great potential in automatic control, remote operation, surveillance and security systems.

  13. Water-Cut Sensor System

    KAUST Repository

    Karimi, Muhammad Akram; Shamim, Atif; Arsalan, Muhammad

    2018-01-01

    Provided in some embodiments is a method of manufacturing a pipe conformable water-cut sensors system. Provided in some embodiments is method for manufacturing a water-cut sensor system that includes providing a helical T-resonator, a helical ground

  14. Optimal sensor configuration for complex systems

    DEFF Research Database (Denmark)

    Sadegh, Payman; Spall, J. C.

    1998-01-01

    . The procedure for sensor configuration is based on the simultaneous perturbation stochastic approximation (SPSA) algorithm. SPSA avoids the need for detailed modeling of the sensor response by simply relying on the observed responses obtained by limited experimentation with test sensor configurations. We......The paper considers the problem of sensor configuration for complex systems with the aim of maximizing the useful information about certain quantities of interest. Our approach involves: 1) definition of an appropriate optimality criterion or performance measure; and 2) description of an efficient...... and practical algorithm for achieving the optimality objective. The criterion for optimal sensor configuration is based on maximizing the overall sensor response while minimizing the correlation among the sensor outputs, so as to minimize the redundant information being provided by the multiple sensors...

  15. Intelligence Control System for Landfills Based on Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Zhang Qian

    2018-01-01

    Full Text Available This paper put forward an intelligence system for controlling the landfill gas in landfills to make the landfill gas (LFG exhaust controllably and actively. The system, which is assigned by the wireless sensor network, were developed and supervised by remote applications in workshop instead of manual work. An automatic valve control depending on the sensor units embedded is installed in tube, the air pressure and concentration of LFG are detected to decide the level of the valve switch. The paper also proposed a modified algorithm to solve transmission problem, so that the system can keep a high efficiency and long service life.

  16. Project development and commercialization of on-line analysis systems

    International Nuclear Information System (INIS)

    Watt, J.S.

    1997-01-01

    A project team first in the Australian Atomic Energy Commission (AAEC) and since 1982 in CSIRO has developed many on-line analysis systems for the mineral and energy industries. The development of these projects has followed a common pattern of laboratory R and D, field trials, commercialisation and technology transfer. This successful pattern is illustrated using examples of the development of systems for the on-line analysis of mineral slurries, for determination of the ash content of coal on conveyors, and for determination of the flow rates of oil, water and gas in pipelines. The first two systems are licensed to Australian companies, Amdel Ltd and Mineral Control Instrumentation Ltd. Both systems are used by industry worldwide, and are the market leaders for radioisotope gauges in their application field. The third system, the multiphase flow meter, was licensed in 1997 to Kvaerner FSSL Ltd of Aberdeen. This meter has even greater potential than the other two systems for economic benefit from its used and for numbers of installations. The on-line analysis systems have been developed to increase the productivity of the Australian mineral and energy industries, and to provide economic benefit to Australia. The economic benefit sought is predominantly improved process control based on use of the instrument, rather than from its sale. Sales of instruments are significant, however, with about A$80 million from the analysis systems and their derivatives since the 1970s. Some of the issues associated with the development of the on-line analysis system are outlined

  17. Projection systems with a cut-off line for automotive applications

    Science.gov (United States)

    Kloos, G.; Eichhorn, K.

    2005-08-01

    The lighting systems of a car provide a variety of challenges from the point of view of illumination science and technology. Engineering work in this field has to deal both with reflector and lens design as well as with opto-mechanical design and sensor technology. It has direct implications on traffic safety and the efficiency in which energy is used. Therefore, these systems are continuously improved and optimized. In this context, adaptive systems that we investigate for automotive applications gain increasing importance. The properties of the light distribution in the vicinity of the cut-off line are of key importance for the safe and efficient operation of automotive headlamps. An alternative approach is proposed to refine the description of these properties in an attempt to make it more quantitative. This description is intended to facilitate intercomparison between different systems and/or to study environmental influences on the cut-off line of a system under investigation. Designing projection systems it is necessary to take a delicate trade-off between efficiency, light-distribution characteristics, mechanical boundary conditions, and legal requirements into account. Considerations and results on optical properties of three-axial reflectors in dependence of layout parameters will be given. They can serve as a guideline for the optical workshop and for free-form optimization.

  18. An expert system for sensor data validation and malfunction detection

    International Nuclear Information System (INIS)

    Hashemi, S.; Hajek, B.K.; Miller, D.W.

    1987-01-01

    Nuclear power plant operation and monitoring in general is a complex task which requires a large number of sensors, alarms and displays. At any instant in time, the operator is required to make a judgment about the state of the plant and to react accordingly. During abnormal situations, operators are further burdened with time constraints. The possibility of an undetected faulty instrumentation line, adds to the complexity of operators' reasoning tasks. Recent work at The Ohio State University Laboratory of Artificial Intelligence Research (LAIR) and the nuclear engineering program has concentrated on the problem of diagnostic expert systems performance and their applicability to the nuclear power plant domain. The authors have also been concerned about the diagnostic expert systems performance when using potentially invalid sensor data. Because of this research, they have developed an expert system that can perform diagnostic problem solving despite the existence of some conflicting data in the domain. This work has resulted in enhancement of a programming tool, CSRL, that allows domain experts to create a diagnostic system that will be to some degree, tolerant of bad data while performing diagnosis. This expert system is described here

  19. SPHERE DAQ and off-line systems: implementation based on the qdpb system

    International Nuclear Information System (INIS)

    Isupov, A.Yu.

    2003-01-01

    Design of the on-line data acquisition (DAQ) system for the SPHERE setup (LHE, JINR) is described. SPHERE DAQ is based on the qdpb (Data Processing with Branchpoints) system and configurable experimental data and CAMAC hardware representations. Implementation of the DAQ and off-line program code, depending on the SPHERE setup's hardware layout and experimental data contents, is explained as well as software modules specific for such implementation

  20. Methods and Systems for Configuring Sensor Acquisition Based on Pressure Steps

    Science.gov (United States)

    DeDonato, Mathew (Inventor)

    2015-01-01

    Technologies are provided for underwater measurements. A system includes an underwater vessels including: a plurality of sensors disposed thereon for measuring underwater properties; and a programmable controller configured to selectively activate the plurality of sensors based at least in part on underwater pressure. A user may program at what pressure ranges certain sensors are activated to measure selected properties, and may also program the ascent/descent rate of the underwater vessel, which is correlated with the underwater pressure.

  1. On-Line Metrology with Conoscopic Holography: Beyond Triangulation

    Directory of Open Access Journals (Sweden)

    Ignacio Álvarez

    2009-09-01

    Full Text Available On-line non-contact surface inspection with high precision is still an open problem. Laser triangulation techniques are the most common solution for this kind of systems, but there exist fundamental limitations to their applicability when high precisions, long standoffs or large apertures are needed, and when there are difficult operating conditions. Other methods are, in general, not applicable in hostile environments or inadequate for on-line measurement. In this paper we review the latest research in Conoscopic Holography, an interferometric technique that has been applied successfully in this kind of applications, ranging from submicrometric roughness measurements, to long standoff sensors for surface defect detection in steel at high temperatures.

  2. Contribution to the study of an on line inspection system for pulsed Nd:YAG laser welding operations

    International Nuclear Information System (INIS)

    Charton, Stephane

    1999-01-01

    This thesis deals with the study of a on line inspection system for pulsed Nd 3+ :YAG laser welding operations. During a welding operation, laser-material interaction results in the emission of signals (optical, acoustical, electrical, thermal), characteristic of its behavior. On line inspection is based on the hypothesis that the signals evolutions, measured by sensors such as photodiodes, microphones.., may be correlated with the welding defects. Laser weld quality inspection can be done by the machine qualification (before and during welding), and by on line monitoring of the welding operation. The similarity of the signals produced by pulsed lasers (machine or interaction) has led us to develop a specific data acquisition and processing software. Signal processing tools utilization (Fourier and wavelets transforms) in conjunction with classification techniques (stress polytopes), introduces an innovating on line inspection approach. Discriminant parameters determination (signals/defect correlation) becomes thus automatic and non subjective. The developed prototype is not dedicated to the detection of a particular defect because the classification operator is a supervised one and needs a learning phase. lt has been validated on welding defects which are easy to deal with, and then applied to a precise production control at the Nuclear Fabrications and Technology Division of the Valduc Center of the French Atomic Energy Agency. (author) [fr

  3. A Multiple Sensor Machine Vision System Technology for the Hardwood

    Science.gov (United States)

    Richard W. Conners; D.Earl Kline; Philip A. Araman

    1995-01-01

    For the last few years the authors have been extolling the virtues of a multiple sensor approach to hardwood defect detection. Since 1989 the authors have actively been trying to develop such a system. This paper details some of the successes and failures that have been experienced to date. It also discusses what remains to be done and gives time lines for the...

  4. Robust Solar Position Sensor for Tracking Systems

    DEFF Research Database (Denmark)

    Ritchie, Ewen; Argeseanu, Alin; Leban, Krisztina Monika

    2009-01-01

    The paper proposes a new solar position sensor used in tracking system control. The main advantages of the new solution are the robustness and the economical aspect. Positioning accuracy of the tracking system that uses the new sensor is better than 1°. The new sensor uses the ancient principle...... of the solar clock. The sensitive elements are eight ordinary photo-resistors. It is important to note that all the sensors are not selected simultaneously. It is not necessary for sensor operating characteristics to be quasi-identical because the sensor principle is based on extreme operating duty measurement...... (bright or dark). In addition, the proposed solar sensor significantly simplifies the operation of the tracking control device....

  5. Bioinspired Sensor Systems

    Directory of Open Access Journals (Sweden)

    Manel del Valle

    2011-10-01

    Full Text Available This editorial summarizes and classifies the contributions presented by different authors to the special issue of the journal Sensors dedicated to Bioinspired Sensor Systems. From the coupling of sensor arrays or networks, plus computer processing abilities, new applications to mimic or to complement human senses are arising in the context of ambient intelligence. Principles used, and illustrative study cases have been presented permitting readers to grasp the current status of the field.

  6. Nonlinear estimation-based dipole source localization for artificial lateral line systems

    International Nuclear Information System (INIS)

    Abdulsadda, Ahmad T; Tan Xiaobo

    2013-01-01

    As a flow-sensing organ, the lateral line system plays an important role in various behaviors of fish. An engineering equivalent of a biological lateral line is of great interest to the navigation and control of underwater robots and vehicles. A vibrating sphere, also known as a dipole source, can emulate the rhythmic movement of fins and body appendages, and has been widely used as a stimulus in the study of biological lateral lines. Dipole source localization has also become a benchmark problem in the development of artificial lateral lines. In this paper we present two novel iterative schemes, referred to as Gauss–Newton (GN) and Newton–Raphson (NR) algorithms, for simultaneously localizing a dipole source and estimating its vibration amplitude and orientation, based on the analytical model for a dipole-generated flow field. The performance of the GN and NR methods is first confirmed with simulation results and the Cramer–Rao bound (CRB) analysis. Experiments are further conducted on an artificial lateral line prototype, consisting of six millimeter-scale ionic polymer–metal composite sensors with intra-sensor spacing optimized with CRB analysis. Consistent with simulation results, the experimental results show that both GN and NR schemes are able to simultaneously estimate the source location, vibration amplitude and orientation with comparable precision. Specifically, the maximum localization error is less than 5% of the body length (BL) when the source is within the distance of one BL. Experimental results have also shown that the proposed schemes are superior to the beamforming method, one of the most competitive approaches reported in literature, in terms of accuracy and computational efficiency. (paper)

  7. Chemical Sensor Systems and Associated Algorithms for Fire Detection: A Review

    Directory of Open Access Journals (Sweden)

    Jordi Fonollosa

    2018-02-01

    Full Text Available Indoor fire detection using gas chemical sensing has been a subject of investigation since the early nineties. This approach leverages the fact that, for certain types of fire, chemical volatiles appear before smoke particles do. Hence, systems based on chemical sensing can provide faster fire alarm responses than conventional smoke-based fire detectors. Moreover, since it is known that most casualties in fires are produced from toxic emissions rather than actual burns, gas-based fire detection could provide an additional level of safety to building occupants. In this line, since the 2000s, electrochemical cells for carbon monoxide sensing have been incorporated into fire detectors. Even systems relying exclusively on gas sensors have been explored as fire detectors. However, gas sensors respond to a large variety of volatiles beyond combustion products. As a result, chemical-based fire detectors require multivariate data processing techniques to ensure high sensitivity to fires and false alarm immunity. In this paper, we the survey toxic emissions produced in fires and defined standards for fire detection systems. We also review the state of the art of chemical sensor systems for fire detection and the associated signal and data processing algorithms. We also examine the experimental protocols used for the validation of the different approaches, as the complexity of the test measurements also impacts on reported sensitivity and specificity measures. All in all, further research and extensive test under different fire and nuisance scenarios are still required before gas-based fire detectors penetrate largely into the market. Nevertheless, the use of dynamic features and multivariate models that exploit sensor correlations seems imperative.

  8. Chemical Sensor Systems and Associated Algorithms for Fire Detection: A Review.

    Science.gov (United States)

    Fonollosa, Jordi; Solórzano, Ana; Marco, Santiago

    2018-02-11

    Indoor fire detection using gas chemical sensing has been a subject of investigation since the early nineties. This approach leverages the fact that, for certain types of fire, chemical volatiles appear before smoke particles do. Hence, systems based on chemical sensing can provide faster fire alarm responses than conventional smoke-based fire detectors. Moreover, since it is known that most casualties in fires are produced from toxic emissions rather than actual burns, gas-based fire detection could provide an additional level of safety to building occupants. In this line, since the 2000s, electrochemical cells for carbon monoxide sensing have been incorporated into fire detectors. Even systems relying exclusively on gas sensors have been explored as fire detectors. However, gas sensors respond to a large variety of volatiles beyond combustion products. As a result, chemical-based fire detectors require multivariate data processing techniques to ensure high sensitivity to fires and false alarm immunity. In this paper, we the survey toxic emissions produced in fires and defined standards for fire detection systems. We also review the state of the art of chemical sensor systems for fire detection and the associated signal and data processing algorithms. We also examine the experimental protocols used for the validation of the different approaches, as the complexity of the test measurements also impacts on reported sensitivity and specificity measures. All in all, further research and extensive test under different fire and nuisance scenarios are still required before gas-based fire detectors penetrate largely into the market. Nevertheless, the use of dynamic features and multivariate models that exploit sensor correlations seems imperative.

  9. Chemical Sensor Systems and Associated Algorithms for Fire Detection: A Review

    Science.gov (United States)

    Fonollosa, Jordi

    2018-01-01

    Indoor fire detection using gas chemical sensing has been a subject of investigation since the early nineties. This approach leverages the fact that, for certain types of fire, chemical volatiles appear before smoke particles do. Hence, systems based on chemical sensing can provide faster fire alarm responses than conventional smoke-based fire detectors. Moreover, since it is known that most casualties in fires are produced from toxic emissions rather than actual burns, gas-based fire detection could provide an additional level of safety to building occupants. In this line, since the 2000s, electrochemical cells for carbon monoxide sensing have been incorporated into fire detectors. Even systems relying exclusively on gas sensors have been explored as fire detectors. However, gas sensors respond to a large variety of volatiles beyond combustion products. As a result, chemical-based fire detectors require multivariate data processing techniques to ensure high sensitivity to fires and false alarm immunity. In this paper, we the survey toxic emissions produced in fires and defined standards for fire detection systems. We also review the state of the art of chemical sensor systems for fire detection and the associated signal and data processing algorithms. We also examine the experimental protocols used for the validation of the different approaches, as the complexity of the test measurements also impacts on reported sensitivity and specificity measures. All in all, further research and extensive test under different fire and nuisance scenarios are still required before gas-based fire detectors penetrate largely into the market. Nevertheless, the use of dynamic features and multivariate models that exploit sensor correlations seems imperative. PMID:29439490

  10. Robotic tool positioning process using a multi-line off-axis laser triangulation sensor

    Science.gov (United States)

    Pinto, T. C.; Matos, G.

    2018-03-01

    Proper positioning of a friction stir welding head for pin insertion, driven by a closed chain robot, is important to ensure quality repair of cracks. A multi-line off-axis laser triangulation sensor was designed to be integrated to the robot, allowing relative measurements of the surface to be repaired. This work describes the sensor characteristics, its evaluation and the measurement process for tool positioning to a surface point of interest. The developed process uses a point of interest image and a measured point cloud to define the translation and rotation for tool positioning. Sensor evaluation and tests are described. Keywords: laser triangulation, 3D measurement, tool positioning, robotics.

  11. Observability Analysis of a Matrix Kalman Filter-Based Navigation System Using Visual/Inertial/Magnetic Sensors

    Directory of Open Access Journals (Sweden)

    Guohu Feng

    2012-06-01

    Full Text Available A matrix Kalman filter (MKF has been implemented for an integrated navigation system using visual/inertial/magnetic sensors. The MKF rearranges the original nonlinear process model in a pseudo-linear process model. We employ the observability rank criterion based on Lie derivatives to verify the conditions under which the nonlinear system is observable. It has been proved that such observability conditions are: (a at least one degree of rotational freedom is excited, and (b at least two linearly independent horizontal lines and one vertical line are observed. Experimental results have validated the correctness of these observability conditions.

  12. Distributed Sensor Coordination for Advanced Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Tumer, Kagan [Oregon State Univ., Corvallis, OR (United States)

    2013-07-31

    The ability to collect key system level information is critical to the safe, efficient and reliable operation of advanced energy systems. With recent advances in sensor development, it is now possible to push some level of decision making directly to computationally sophisticated sensors, rather than wait for data to arrive to a massive centralized location before a decision is made. This type of approach relies on networked sensors (called “agents” from here on) to actively collect and process data, and provide key control decisions to significantly improve both the quality/relevance of the collected data and the associating decision making. The technological bottlenecks for such sensor networks stem from a lack of mathematics and algorithms to manage the systems, rather than difficulties associated with building and deploying them. Indeed, traditional sensor coordination strategies do not provide adequate solutions for this problem. Passive data collection methods (e.g., large sensor webs) can scale to large systems, but are generally not suited to highly dynamic environments, such as advanced energy systems, where crucial decisions may need to be reached quickly and locally. Approaches based on local decisions on the other hand cannot guarantee that each agent performing its task (maximize an agent objective) will lead to good network wide solution (maximize a network objective) without invoking cumbersome coordination routines. There is currently a lack of algorithms that will enable self-organization and blend the efficiency of local decision making with the system level guarantees of global decision making, particularly when the systems operate in dynamic and stochastic environments. In this work we addressed this critical gap and provided a comprehensive solution to the problem of sensor coordination to ensure the safe, reliable, and robust operation of advanced energy systems. The differentiating aspect of the proposed work is in shifting the focus

  13. Multi-Mode Operation for On-line Uninterruptible Power Supply System

    DEFF Research Database (Denmark)

    Lu, Jinghang; Savaghebi, Mehdi; Golestan, Saeed

    2018-01-01

    To enhance the robustness and disturbance rejection ability of an on-line uninterruptible power supply (UPS) system, an Internal Model Control (IMC)-based DC-link voltage regulation method is proposed in this paper. Furthermore, the multi-mode operations of the on-line UPS system are investigated...

  14. A comparative study of sensor fault diagnosis methods based on observer for ECAS system

    Science.gov (United States)

    Xu, Xing; Wang, Wei; Zou, Nannan; Chen, Long; Cui, Xiaoli

    2017-03-01

    The performance and practicality of electronically controlled air suspension (ECAS) system are highly dependent on the state information supplied by kinds of sensors, but faults of sensors occur frequently. Based on a non-linearized 3-DOF 1/4 vehicle model, different methods of fault detection and isolation (FDI) are used to diagnose the sensor faults for ECAS system. The considered approaches include an extended Kalman filter (EKF) with concise algorithm, a strong tracking filter (STF) with robust tracking ability, and the cubature Kalman filter (CKF) with numerical precision. We propose three filters of EKF, STF, and CKF to design a state observer of ECAS system under typical sensor faults and noise. Results show that three approaches can successfully detect and isolate faults respectively despite of the existence of environmental noise, FDI time delay and fault sensitivity of different algorithms are different, meanwhile, compared with EKF and STF, CKF method has best performing FDI of sensor faults for ECAS system.

  15. Development of a Density Sensor for In-Line Real-Time Process Control and Monitoring of Slurries during Radioactive Waste Retrieval and Transport Operations at DOE Sites

    International Nuclear Information System (INIS)

    Bamberger, Judith A.; Greenwood, Margaret S.

    2000-01-01

    A density sensor (densimeter) to monitor and control slurries in-line real-time during radioactive waste retrieval and transport and detect conditions leading to degraded transport and line plugging is described. Benefits over baseline grab samples and off line analysis include: early detection and prevention of pipeline plugging, real-time density through the transfer process, elimination of grab sampling and off-line analysis, and reduced worker radiation exposure. The sensor is small, robust and could be retrofitted into existing pump pit manifolds and transfer lines. The probe uses ultrasonic signal reflection at the fluid-pipe wall interface to quantify density and features include: a non-intrusive sensing surface located flush with the pipeline wall; performance that is not affected by entrained air or by electromagnetic noise from nearby pumps and other equipment and is compact. Components were tested for chemical and radiation resistance and the spool piece was pressure tested in accordance with ASME Process Piping Code B31.3 and approved by the Hanford Site Flammable Gas Equipment Advisory Board for installation. During pipeline tests, the sensor predicted density within+ 2% oriented in vertical and horizontal position. The densimeter is installed in the modified process manifold that is installed in the prefabricated pump pit at Hanford tank SY-101 site. In FY-2002 the density sensor performance will be evaluated during transfers of both water and waste through the pipeline. A separate project developed an ultrasonic sensor that: (1) can be attached permanently to a pipeline wall, possibly as a spool piece inserted into the line or (2) can clamp onto an existing pipeline wall and be movable to another location. This method is attractive for radioactive fluids transport applications because the sensors could be applied to existing equipment without the need to penetrate the pipe pressure boundary or to open the system to install new equipment

  16. On-line analyzers to distributed control system linking

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, S.F.; Buchanan, B.R.; Sanders, M.A.

    1990-01-01

    The Analytical Development Section (ADS) of the Savannah River Laboratory is developing on-line analyzers to monitor various site processes. Data from some of the on-line analyzers (OLA's) will be used for process control by distributed control systems (DCS's) such as the Fisher PRoVOX. A problem in the past has been an efficient and cost effective way to get analyzer data onto the DCS data highway. ADS is developing a system to accomplish the linking of OLA's to PRoVOX DCS's. The system will be described, and results of operation in a research and development environment given. Plans for the installation in the production environment will be discussed.

  17. Common bus multinode sensor system

    International Nuclear Information System (INIS)

    Kelly, T.F.; Naviasky, E.H.; Evans, W.P.; Jefferies, D.W.; Smith, J.R.

    1988-01-01

    This patent describes a nuclear power plant including a common bus multinode sensor system for sensors in the nuclear power plant, each sensor producing a sensor signal. The system consists of: a power supply providing power; a communication cable coupled to the power supply; plural remote sensor units coupled between the cable and one or more sensors, and comprising: a direct current power supply, connected to the cable and converting the power on the cable into direct current; an analog-to-digital converter connected to the direct current power supply; an oscillator reference; a filter; and an integrated circuit sensor interface connected to the direct current power supply, the analog-to-digital converter, the oscillator crystal and the filter, the interface comprising: a counter receiving a frequency designation word from external to the interface; a phase-frequency comparator connected to the counter; an oscillator connected to the oscillator reference; a timing counter connected to the oscillator, the phase/frequency comparator and the analog-to-digital converter; an analog multiplexer connectable to the sensors and the analog-to-digital converter, and connected to the timing counter; a shift register operatively connected to the timing counter and the analog-to-digital converter; an encoder connected to the shift register and connectable to the filter; and a voltage controlled oscillator connected to the filter and the cable

  18. Transmission Line Security Monitor: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    John Svoboda

    2011-04-01

    The Electric Power Transmission Line Security Monitor System Operational Test is a project funded by the Technical Support Working Group (TSWG). TSWG operates under the Combating Terrorism Technical Support Office that functions under the Department of Defense. The Transmission Line Security Monitor System is based on technology developed by Idaho National Laboratory. The technology provides a means for real-time monitoring of physical threats and/or damage to electrical transmission line towers and conductors as well as providing operational parameters to transmission line operators to optimize transmission line operation. The end use is for monitoring long stretches of transmission lines that deliver electrical power from remote generating stations to cities and industry. These transmission lines are generally located in remote transmission line corridors where security infrastructure may not exist. Security and operational sensors in the sensor platform on the conductors take power from the transmission line and relay security and operational information to operations personnel hundreds of miles away without relying on existing infrastructure. Initiated on May 25, 2007, this project resulted in pre-production units tested in realistic operational environments during 2010. A technology licensee, Lindsey Manufacturing of Azusa California, is assisting in design, testing, and ultimately production. The platform was originally designed for a security monitoring mission, but it has been enhanced to include important operational features desired by electrical utilities.

  19. Smart Sensor Network System For Environment Monitoring

    Directory of Open Access Journals (Sweden)

    Javed Ali Baloch

    2012-07-01

    Full Text Available SSN (Smart Sensor Network systems could be used to monitor buildings with modern infrastructure, plant sites with chemical pollution, horticulture, natural habitat, wastewater management and modern transport system. To sense attributes of phenomena and make decisions on the basis of the sensed value is the primary goal of such systems. In this paper a Smart Spatially aware sensor system is presented. A smart system, which could continuously monitor the network to observe the functionality and trigger, alerts to the base station if a change in the system occurs and provide feedback periodically, on demand or even continuously depending on the nature of the application. The results of the simulation trials presented in this paper exhibit the performance of a Smart Spatially Aware Sensor Networks.

  20. Proximity sensor system development. CRADA final report

    Energy Technology Data Exchange (ETDEWEB)

    Haley, D.C. [Oak Ridge National Lab., TN (United States); Pigoski, T.M. [Merrit Systems, Inc. (United States)

    1998-01-01

    Lockheed Martin Energy Research Corporation (LMERC) and Merritt Systems, Inc. (MSI) entered into a Cooperative Research and Development Agreement (CRADA) for the development and demonstration of a compact, modular proximity sensing system suitable for application to a wide class of manipulator systems operated in support of environmental restoration and waste management activities. In teleoperated modes, proximity sensing provides the manipulator operator continuous information regarding the proximity of the manipulator to objects in the workspace. In teleoperated and robotic modes, proximity sensing provides added safety through the implementation of active whole arm collision avoidance capabilities. Oak Ridge National Laboratory (ORNL), managed by LMERC for the United States Department of Energy (DOE), has developed an application specific integrated circuit (ASIC) design for the electronics required to support a modular whole arm proximity sensing system based on the use of capacitive sensors developed at Sandia National Laboratories. The use of ASIC technology greatly reduces the size of the electronics required to support the selected sensor types allowing deployment of many small sensor nodes over a large area of the manipulator surface to provide maximum sensor coverage. The ASIC design also provides a communication interface to support sensor commands from and sensor data transmission to a distributed processing system which allows modular implementation and operation of the sensor system. MSI is a commercial small business specializing in proximity sensing systems based upon infrared and acoustic sensors.

  1. Proximity sensor system development. CRADA final report

    International Nuclear Information System (INIS)

    Haley, D.C.; Pigoski, T.M.

    1998-01-01

    Lockheed Martin Energy Research Corporation (LMERC) and Merritt Systems, Inc. (MSI) entered into a Cooperative Research and Development Agreement (CRADA) for the development and demonstration of a compact, modular proximity sensing system suitable for application to a wide class of manipulator systems operated in support of environmental restoration and waste management activities. In teleoperated modes, proximity sensing provides the manipulator operator continuous information regarding the proximity of the manipulator to objects in the workspace. In teleoperated and robotic modes, proximity sensing provides added safety through the implementation of active whole arm collision avoidance capabilities. Oak Ridge National Laboratory (ORNL), managed by LMERC for the United States Department of Energy (DOE), has developed an application specific integrated circuit (ASIC) design for the electronics required to support a modular whole arm proximity sensing system based on the use of capacitive sensors developed at Sandia National Laboratories. The use of ASIC technology greatly reduces the size of the electronics required to support the selected sensor types allowing deployment of many small sensor nodes over a large area of the manipulator surface to provide maximum sensor coverage. The ASIC design also provides a communication interface to support sensor commands from and sensor data transmission to a distributed processing system which allows modular implementation and operation of the sensor system. MSI is a commercial small business specializing in proximity sensing systems based upon infrared and acoustic sensors

  2. Three-axis magnetic field induction sensor realized on buckled cantilever plate

    KAUST Repository

    Alfadhel, Ahmed

    2013-07-01

    This work presents the fabrication and characterization of a three-axis induction sensor consisting of one planar microcoil, fixed on the substrate, and two microcoils fabricated on Bbuckled cantilever plates (BCP) oriented perpendicularly to the substrate and each other. The BCP allows an out-of-plane translation while preserving a direct connection to the substrate, which aids the routing of electrical lines. The fabricated sensor is integrated on a single substrate, allowing interaction and integration with other systems. The devices are fabricated using a MEMS polymer fabrication process. Different microcoil configurations are realized with 17-30 turns, 5 μm track width, and 15-20 μm track pitch. The sensor showed up to 6.8 nT/√Hz resolution to magnetic fields within a frequency range of 40 Hz to 1 MHz. The BCP concept provides a strikingly simple method to fabricate a three-axis field sensor that can readily be integrated with electronic circuits, and the sensor\\'s performance can easily be adjusted within a wide range by changing the dimensions of the coils. © 2013 IEEE.

  3. Efficient Banknote Recognition Based on Selection of Discriminative Regions with One-Dimensional Visible-Light Line Sensor.

    Science.gov (United States)

    Pham, Tuyen Danh; Park, Young Ho; Kwon, Seung Yong; Park, Kang Ryoung; Jeong, Dae Sik; Yoon, Sungsoo

    2016-03-04

    Banknote papers are automatically recognized and classified in various machines, such as vending machines, automatic teller machines (ATM), and banknote-counting machines. Previous studies on automatic classification of banknotes have been based on the optical characteristics of banknote papers. On each banknote image, there are regions more distinguishable than others in terms of banknote types, sides, and directions. However, there has been little previous research on banknote recognition that has addressed the selection of distinguishable areas. To overcome this problem, we propose a method for recognizing banknotes by selecting more discriminative regions based on similarity mapping, using images captured by a one-dimensional visible light line sensor. Experimental results with various types of banknote databases show that our proposed method outperforms previous methods.

  4. Efficient Banknote Recognition Based on Selection of Discriminative Regions with One-Dimensional Visible-Light Line Sensor

    Directory of Open Access Journals (Sweden)

    Tuyen Danh Pham

    2016-03-01

    Full Text Available Banknote papers are automatically recognized and classified in various machines, such as vending machines, automatic teller machines (ATM, and banknote-counting machines. Previous studies on automatic classification of banknotes have been based on the optical characteristics of banknote papers. On each banknote image, there are regions more distinguishable than others in terms of banknote types, sides, and directions. However, there has been little previous research on banknote recognition that has addressed the selection of distinguishable areas. To overcome this problem, we propose a method for recognizing banknotes by selecting more discriminative regions based on similarity mapping, using images captured by a one-dimensional visible light line sensor. Experimental results with various types of banknote databases show that our proposed method outperforms previous methods.

  5. A Multilayer Perceptron-Based Impulsive Noise Detector with Application to Power-Line-Based Sensor Networks

    KAUST Repository

    Chien, Ying-Ren

    2018-04-10

    For power-line-based sensor networks, impulsive noise (IN) will dramatically degrade the data transmission rate in the power line. In this paper, we present a multilayer perceptron (MLP)-based approach to detect IN in orthogonal frequency-division multiplexing (OFDM)-based baseband power line communications (PLCs). Combining the MLP-based IN detection method with the outlier detection theory allows more accurate identification of the harmful residual IN. For OFDM-based PLC systems, the high peak-to-average power ratio (PAPR) of the received signal makes detection of harmful residual IN more challenging. The detection mechanism works in an iterative receiver that contains a pre-IN mitigation and a post-IN mitigation. The pre-IN mitigation is meant to null the stronger portion of IN, while the post-IN mitigation suppresses the residual portion of IN using an iterative process. Compared with previously reported IN detectors, the simulation results show that our MLP-based IN detector improves the resulting bit error rate (BER) performance.

  6. R and D study on on-line criticality surveillance system (V)

    International Nuclear Information System (INIS)

    Yamada, Sumasu

    2001-02-01

    In view of necessity and importance of criticality surveillance systems for ensuring the safety of nuclear fuel manufacturing and reprocessing plants, 5-year basic studies and 4 year R and D studies on an on-line criticality surveillance system were carried out since 1991. This report is a summary of these series of studies. Noticing that the signal from a neutron detector is random in principle, these series of studies aimed to accumulate knowledge for developing an inexpensive criticality surveillance system with quick response based on the Auto-Regressive Moving Average (ARMA) model identification algorithm. During five-year basic studies on criticality surveillance system since 1991, we obtained knowledge required for developing a criticality surveillance system based on the ARMA model identification algorithm through 1) studies on recursive ARMA model identification algorithms most appropriate for estimating subcriticality form time series data under a steady state condition, 2) studies on pre-processing of signal from neutron detectors, 3) developing a new recursive ARMA model identification algorithm with small time delay to estimate time-dependent subcriticality, 4) proposing a basic concept for the elements required for an on-line criticality surveillance system, and 5) numerical analysis of data from the DCA experiments. During next four-year R and D studies on a criticality surveillance system since 1996, we 1) proposed modules required for a no-line criticality surveillance system, 2) revealed effectiveness of a adaptive digital filter (ADF) algorithm, as an important redundancy to the recursive ARMA model identification algorithm to be used in the signal processing module through numerical analysis of real data, 3) proposed a module of the Feynman-α method over γ ray signal and a fast signal processing module for γ ray signal, 4) developed a line-noise removal filter(Notch filter) and revealed its effectiveness for the DCA data corrupted with power-line

  7. The Bochum on-line data acquisition system

    International Nuclear Information System (INIS)

    Paul, H.J.; Freiesleben, H.

    1986-01-01

    We describe an on-line data acquisition system based on a PDP 11 computer with CAMAC hardware. The software fully exploits the real-time features of the RSX-11M operating system. The basic characteristics of the program package, mainly written in FORTRAN 77, are: multitasking, shared common blocks, dynamical access to CAMAC hardware and data, and command orientated user interface. The system is particularly tailored for data acquisition in list mode of up to 64 parameters. (orig.)

  8. A positioning system with no line-of-sight restrictions for cluttered environments

    Science.gov (United States)

    Prigge, Eric A.

    Accurate sensing of vehicle location and attitude is a fundamental requirement in many mobile-robot applications, but is a very challenging problem in the cluttered and unstructured environment of the real world. Many existing indoor positioning systems are limited in workspace and robustness because they require clear lines of sight or do not provide absolute, drift-free measurements. Examples include overhead vision systems, where an unobstructed view must be maintained between robot and camera, and inertial systems, where the measurements drift over time. The research presented in this dissertation provides a new location- and attitude-sensing system designed specifically to meet the challenges of operation in a realistic, cluttered indoor environment, such as that of an office building or warehouse. The system is not limited by line-of-sight restrictions and produces drift-free measurements throughout a three-dimensional operating volume that can span a large building. Accuracy of several centimeters and a few degrees is delivered at 10 Hz, and any number of the small sensor units can be in operation, all providing estimates in a common reference frame. This positioning system is based on extremely-low-frequency magnetic fields, which have excellent characteristics for penetrating line-of-sight obstructions. Beacons located throughout the workspace create the low-level fields. A sensor unit on the mobile robot samples the local magnetic field and processes the measurements to determine its location and attitude. This research overcomes limitations in existing magnetic-based systems. The design of the signal structure, based on pseudorandom codes, enables the use of multiple, distributed L-beacons and greatly expands coverage volume. The development of real-time identification and correction methods mitigates the impact of distortions caused by materials in the environment. A novel solution algorithm combats both challenges, providing increased coverage volume

  9. Development of wireless sensor network for landslide monitoring system

    International Nuclear Information System (INIS)

    Suryadi; Puranto, Prabowo; Adinanta, Hendra; Tohari, Adrin; Priambodo, Purnomo S

    2017-01-01

    A wireless sensor network has been developed to monitor soil movement of some observed areas periodically. The system consists of four nodes and one gateway which installed on a scope area of 0.2 Km 2 . Each of nodehastwo types of sensor,an inclinometer and an extensometer. An inclinometer sensor is used to measure the tilt of a structure while anextensometer sensor is used to measure the displacement of soil movement. Each of nodeisalso supported by awireless communication device, a solar power supply unit, and a microcontroller unit called sensor module. In this system, there is also gateway module as a main communication system consistinga wireless communication device, power supply unit, and rain gauge to measure the rainfall intensity of the observed area. Each sensor of inclinometer and extensometer isconnected to the sensor module in wiring system but sensor module iscommunicating with gateway in a wireless system. Those four nodes are alsoconnectedeach other in a wireless system collecting the data from inclinometer and extensometer sensors. Module Gateway istransmitting the instruction code to each sensor module one by one and collecting the data from them. Gateway module is an important part to communicate with not only sensor modules but also to the server. This wireless system wasdesigned toreducethe electric consumption powered by 80 WP solar panel and 55Ah battery. This system has been implemented in Pangalengan, Bandung, which has high intensity of rainfall and it can be seen on the website. (paper)

  10. Continuous monitoring of bisulfide variation in microdialysis effluents by on-line droplet-based microfluidic fluorescent sensor.

    Science.gov (United States)

    Zhu, Xiaocui; Xu, Lei; Wu, Tongbo; Xu, Anqin; Zhao, Meiping; Liu, Shaorong

    2014-05-15

    We demonstrate a novel fluorescent sensor for real-time and continuous monitoring of the variation of bisulfide in microdialysis effluents by using a nanoparticle-glutathione-fluorescein isothiocyanate (AuNP-GSH-FITC) probe coupled with on-line droplet-based microfluidic chip. The AuNP-GSH-FITC fluorescent probe was firstly developed and used for bisulfide detection in bulk solution by quantitative real-time PCR, which achieved a linear working range from 0.1 μM to 5.0 μM and a limit of detection of ~50 nM. The response time was less than 2 min. With the aid of co-immobilized thiol-polyethylene glycol, the probe exhibited excellent stability and reproducibility in high salinity solutions, including artificial cerebrospinal fluids (aCSF). By adding 0.1% glyoxal to the probe solution, the assay allowed quantification of bisulfide in the presence of cysteine at the micro-molarity level. Using the AuNP-GSH-FITC probe, a droplet-based microfluidic fluorescent sensor was further constructed for online monitoring of bisulfide variation in the effluent of microdialysis. By using fluorescence microscope-charge-coupled device camera as the detector, the integrated microdialysis/microfluidic chip device achieved a detection limit of 2.0 μM and a linear response from 5.0 μM to 50 μM for bisulfide in the tested sample. The method was successfully applied for the on-line measurement of bisulfide variation in aCSF and serum samples. It will be a very useful tool for tracking the variation of bisulfide or hydrogen sulfide in extracellular fluids. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. A Sensitive Sensor Cell Line for the Detection of Oxidative Stress Responses in Cultured Human Keratinocytes

    Directory of Open Access Journals (Sweden)

    Ute Hofmann

    2014-06-01

    Full Text Available In the progress of allergic and irritant contact dermatitis, chemicals that cause the generation of reactive oxygen species trigger a heat shock response in keratinocytes. In this study, an optical sensor cell line based on cultured human keratinocytes (HaCaT cells expressing green fluorescent protein (GFP under the control of the stress-inducible HSP70B’ promoter were constructed. Exposure of HaCaT sensor cells to 25 µM cadmium, a model substance for oxidative stress induction, provoked a 1.7-fold increase in total glutathione and a ~300-fold induction of transcript level of the gene coding for heat shock protein HSP70B’. An extract of Arnica montana flowers resulted in a strong induction of the HSP70B’ gene and a pronounced decrease of total glutathione in keratinocytes. The HSP70B’ promoter-based sensor cells conveniently detected cadmium-induced stress using GFP fluorescence as read-out with a limit of detection of 6 µM cadmium. In addition the sensor cells responded to exposure of cells to A. montana extract with induction of GFP fluorescence. Thus, the HaCaT sensor cells provide a means for the automated detection of the compromised redox status of keratinocytes as an early indicator of the development of human skin disorders and could be applied for the prediction of skin irritation in more complex in vitro 3D human skin models and in the development of micro-total analysis systems (µTAS that may be utilized in dermatology, toxicology, pharmacology and drug screenings.

  12. A Magnetic Tracking System based on Highly Sensitive Integrated Hall Sensors

    Science.gov (United States)

    Schlageter, Vincent; Drljaca, Predrag; Popovic, Radivoje S.; KuČERA, Pavel

    A tracking system with five degrees of freedom based on a 2D-array of 16 Hall sensors and a permanent magnet is presented in this paper. The sensitivity of the Hall sensors is increased by integrated micro- and external macro-flux-concentrators. Detection distance larger than 20cm (during one hour without calibration) is achieved using a magnet of 0.2cm3. This corresponds to a resolution of the sensors of 0.05µTrms. The position and orientation of the marker is displayed in real time at least 20 times per second. The sensing system is small enough to be hand-held and can be used in a normal environment. This presented tracking system has been successfully applied to follow a small swallowed magnet through the entire human digestive tube. This approach is extremely promising as a new non-invasive diagnostic technique in gastro-enterology.

  13. A study on the computerization of secondary side on-line chemistry monitoring system of PWR

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Kyung Lin; Lee, Eun Heui [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-12-01

    A computer system for on-line chemistry monitoring system located in secondary side of PWR plant is under developing. Keithley 500 A mainframe and AMM1A and AIM3A modules are used for data acquisition and scientific and engineering software package of ASYST is used for developing software program. The contents are as follows: (1) Data acquisition and real-time display. The output signals of monitoring chemical sensors are stored in PC showing real-time data display as true values and graphics. (2) Data management and trending graphs. The data stored in PC are outcoming in various graphic mode for data management such as simple trending graphs screen display, time duration plot and histogram plot. (3) Daily basis data manual input. The chemical analysis data of grab sample are stored in PC by manual input for supplement data. (4) Tabular data report preparation. Summarized daily, weekly, monthly, quarterly and yearly reports are prepared with various mode of graphic display. 6 figs, 9 tabs, 8 refs. (Author).

  14. A study on the computerization of secondary side on-line chemistry monitoring system of PWR

    International Nuclear Information System (INIS)

    Yang, Kyung Lin; Lee, Eun Heui

    1994-12-01

    A computer system for on-line chemistry monitoring system located in secondary side of PWR plant is under developing. Keithley 500 A mainframe and AMM1A and AIM3A modules are used for data acquisition and scientific and engineering software package of ASYST is used for developing software program. The contents are as follows: 1) Data acquisition and real-time display. The output signals of monitoring chemical sensors are stored in PC showing real-time data display as true values and graphics. 2) Data management and trending graphs. The data stored in PC are outcoming in various graphic mode for data management such as simple trending graphs screen display, time duration plot and histogram plot. 3) Daily basis data manual input. The chemical analysis data of grab sample are stored in PC by manual input for supplement data. 4) Tabular data report preparation. Summarized daily, weekly, monthly, quarterly and yearly reports are prepared with various mode of graphic display. 6 figs, 9 tabs, 8 refs. (Author)

  15. Booth Library On-Line Circulation System (BLOC

    Directory of Open Access Journals (Sweden)

    Paladugu V. Rao

    1971-06-01

    Full Text Available An on-line circulation system developed at a relatively small university library demonstrates that academic libraries with limited funds can develop automated systems utilizing parent institution's computer facilities in a time-sharing mode. In operation since September 1968, using an IBM 360/50 computer and associated peripheral equipment, it provides control over all stack books.

  16. Visualization of heavy ion-induced charge production in a CMOS image sensor

    CERN Document Server

    Végh, J; Klamra, W; Molnár, J; Norlin, LO; Novák, D; Sánchez-Crespo, A; Van der Marel, J; Fenyvesi, A; Valastyan, I; Sipos, A

    2004-01-01

    A commercial CMOS image sensor was irradiated with heavy ion beams in the several MeV energy range. The image sensor is equipped with a standard video output. The data were collected on-line through frame grabbing and analysed off-line after digitisation. It was shown that the response of the image sensor to the heavy ion bombardment varied with the type and energy of the projectiles. The sensor will be used for the CMS Barrel Muon Alignment system.

  17. Report on the Audit of Unattended Ground Sensor Systems

    Science.gov (United States)

    1991-02-26

    This final report on the Audit of Unattended Ground Sensor Systems is for your information and use. Comments on the draft were considered in...preparing the final report and changes have been made where appropriate. We performed the audit from February through August 1990. The objective was to

  18. Optimization of wireless Bluetooth sensor systems.

    Science.gov (United States)

    Lonnblad, J; Castano, J; Ekstrom, M; Linden, M; Backlund, Y

    2004-01-01

    Within this study, three different Bluetooth sensor systems, replacing cables for transmission of biomedical sensor data, have been designed and evaluated. The three sensor architectures are built on 1-, 2- and 3-chip solutions and depending on the monitoring situation and signal character, different solutions are optimal. Essential parameters for all systems have been low physical weight and small size, resistance to interference and interoperability with other technologies as global- or local networks, PC's and mobile phones. Two different biomedical input signals, ECG and PPG (photoplethysmography), have been used to evaluate the three solutions. The study shows that it is possibly to continuously transmit an analogue signal. At low sampling rates and slowly varying parameters, as monitoring the heart rate with PPG, the 1-chip solution is the most suitable, offering low power consumption and thus a longer battery lifetime or a smaller battery, minimizing the weight of the sensor system. On the other hand, when a higher sampling rate is required, as an ECG, the 3-chip architecture, with a FPGA or micro-controller, offers the best solution and performance. Our conclusion is that Bluetooth might be useful in replacing cables of medical monitoring systems.

  19. Development of Smart Sensors System Based on Formal Concept Analysis and Ontology Model

    Directory of Open Access Journals (Sweden)

    Hongsheng Xu

    2013-06-01

    Full Text Available The smart sensor is the product of the combination of one or more sensitive components, precision analog circuits, digital circuits, microprocessor, communication interface, intelligent software systems and hardware integration in a packaging component. Formal concept analysis is from the given data to automatically extract the classification relationship between the entire hidden concept and concept, formation of concept model. Ontology is a set of relations between concepts of the specific domain and concept, and it can effectively express the general knowledge of specific field. The paper proposes development of smart sensors system based on formal concept analysis and ontology model. Smart sensor is a micro processor, sensor with information detection, information processing, information memory, logical thinking and judging function. The methods can improve the effect of the smart sensors.

  20. On-line monitoring system for I-131 manufacturing labs

    International Nuclear Information System (INIS)

    Osovizky, A.; Malamud, Y.; Paran, Y.; Tal, N.; Turgeman, S.; Weinstein, M.

    1997-01-01

    An on-line monitoring and safety system has been installed in a lab for manufacturing 1-131 capsules for nuclear medicine use. Production of up to 100mCi batches is performed in shielded glove boxes. The safety system is based on a unique, 'Medi SMARTS' system (Medical Survey Mapping Automatic Radiation Tracing System), that collects continuously the radiation measurements for processing, display, and storage for future retrieval. Radiation is measured by GM tubes, data is transferred to a data processing unit, and then via a RS-485 communication line to a computer. In addition to the operational advantages and radiation levels storage, the system is being evaluated for the purpose of identifying risky stages in the process. (authors)

  1. Sensor system for fuel transport vehicle

    Science.gov (United States)

    Earl, Dennis Duncan; McIntyre, Timothy J.; West, David L.

    2016-03-22

    An exemplary sensor system for a fuel transport vehicle can comprise a fuel marker sensor positioned between a fuel storage chamber of the vehicle and an access valve for the fuel storage chamber of the vehicle. The fuel marker sensor can be configured to measure one or more characteristics of one or more fuel markers present in the fuel adjacent the sensor, such as when the marked fuel is unloaded at a retail station. The one or more characteristics can comprise concentration and/or identity of the one or more fuel markers in the fuel. Based on the measured characteristics of the one or more fuel markers, the sensor system can identify the fuel and/or can determine whether the fuel has been adulterated after the marked fuel was last measured, such as when the marked fuel was loaded into the vehicle.

  2. An expert system for sensor data validation and malfunction detection

    International Nuclear Information System (INIS)

    Hashemi, S.; Hajek, B.K.; Miller, D.W.

    1987-01-01

    Nuclear power plant operation and monitoring in general is a complex task which requires a large number of sensors, alarms and displays. At any instant in time, the operator is required to make a judgment about the state of the plant and to react accordingly. During abnormal situations, operators are further burdened with time constraints. The possibility of an undetected faulty instrumentation line, adds to the complexity of operators' reasoning tasks. Failure of human operators to cope with the conceptual complexity of abnormal situations often leads to more serious malfunctions and further damages to plant (TMI-2 as an example). During these abnormalities, operators rely on the information provided by the plant sensors and associated alarms. Their usefulness however, is quickly diminished by their large number and the extremely difficult task of interpreting and comprehending the information provided by them. The need for an aid to assist the operator in interpreting the available data and diagnosis of problems is obvious. Recent work at the Ohio State University Laboratory of Artificial Intelligence Research (LAIR) and the nuclear engineering program has concentrated on the problem of diagnostic expert systems performance and their applicability to the nuclear power plant domain. There has also been concern about the diagnostic expert systems performance when using potentially invalid sensor data. Because of this research, an expert system has been developed that can perform diagnostic problem solving despite the existence of some conflicting data in the domain. This work has resulted in enhancement of a programming tool, that allows domain experts to create a diagnostic system that will be to some degree, tolerant of bad data while performing diagnosis. This expert system is described here

  3. Detection of sensor failures in nuclear plants using analytic redundancy

    International Nuclear Information System (INIS)

    Kitamura, M.

    1980-01-01

    A method for on-line, nonperturbative detection and identification of sensor failures in nuclear power plants was studied to determine its feasibility. This method is called analytic redundancy, or functional redundancy. Sensor failure has traditionally been detected by comparing multiple signals from redundant sensors, such as in two-out-of-three logic. In analytic redundancy, with the help of an assumed model of the physical system, the signals from a set of sensors are processed to reproduce the signals from all system sensors

  4. A fixed incore based system for an on line core margin monitoring

    International Nuclear Information System (INIS)

    Mourlevat, J. L.; Carrasco, M.

    2002-01-01

    FRAMATOME-ANP has developed a new core monitoring system which is based on measurements coming from fixed incore sensors and on a 3D power distribution on line reconstruction. After selecting the rhodium self powered neutron detectors as fixed incore sensors, a first step of this development consisted in testing this kind of sensors in the French Golfech Unit 2 reactor (4L, 1300 MWe). (Author)

  5. On-line acquisition of plant related and environmental parameters (plant monitoring) in gerbera: determining plant responses

    OpenAIRE

    Baas, R.; Slootweg, G.

    2004-01-01

    For on-line plant monitoring equipment to be functional in commercial glasshouse horticulture, relations between sensor readings and plant responses on both the short (days) and long term (weeks) are required. For this reason, systems were installed to monitor rockwool grown gerbera plants on a minute-to-minute basis from July 2002 until April 2003. Data collected included, amongst others, crop transpiration from lysimeter data (2 m2), canopy temperature using infrared sensors, rockwool water...

  6. Photonic sensor opportunities for distributed and wireless systems in security applications

    Science.gov (United States)

    Krohn, David

    2006-10-01

    There are broad ranges of homeland security sensing applications that can be facilitated by distributed fiber optic sensors and photonics integrated wireless systems. These applications include [1]: Pipeline, (Monitoring, Security); Smart structures (Bridges, Tunnels, Dams, Public spaces); Power lines (Monitoring, Security); Transportation security; Chemical/biological detection; Wide area surveillance - perimeter; and Port Security (Underwater surveillance, Cargo container). Many vital assets which cover wide areas, such as pipeline and borders, are under constant threat of being attacked or breached. There is a rapidly emerging need to be able to provide identification of intrusion threats to such vital assets. Similar problems exit for monitoring the basic infrastructure such as water supply, power utilities, communications systems as well as transportation. There is a need to develop a coordinated and integrated solution for the detection of threats. From a sensor standpoint, consideration must not be limited to detection, but how does detection lead to intervention and deterrence. Fiber optic sensor technology must be compatible with other surveillance technologies such as wireless mote technology to facilitate integration. In addition, the multi-functionality of fiber optic sensors must be expanded to include bio-chemical detection. There have been a number of barriers for the acceptance and broad use of smart fiber optic sensors. Compared to telecommunications, the volume is low. This fact coupled with proprietary and custom specifications has kept the price of fiber optic sensors high. There is a general lack of a manufacturing infrastructure and lack of standards for packaging and reliability. Also, there are several competing technologies; some photonic based and other approaches based on conventional non-photonic technologies.

  7. Research on Linear Wireless Sensor Networks Used for Online Monitoring of Rolling Bearing in Freight Train

    International Nuclear Information System (INIS)

    Wang Nan; Meng Qingfeng; Zheng Bin; Li Tong; Ma Qinghai

    2011-01-01

    This paper presents a Wireless Sensor Networks (WSNs) technique for the purpose of on-line monitoring of rolling bearing in freight train. A new technical scheme including the arrangements of sensors, the design of sensor nodes and base station, routing protocols, signal acquirement, processing and transmission is described, and an on-line monitoring system is established. Considering the approximately linear arrangements of cars and the running state of freight train, a linear topology structure of WSNs is adopted and five linear routing protocols are discussed in detail as to obtain the desired minimum energy consumption of WSNs. By analysing the simulation results, an optimal multi-hop routing protocol named sub-section routing protocol according to equal distance is adopted, in which all sensor nodes are divided into different groups according to the equal transmission distance, the optimal transmission distance and number of hops of routing protocol are also studied. We know that the communication consumes significant power in WSNs, so, in order to save the limit power supply of WSNs, the data compression and coding scheme based on lifting integer wavelet and embedded zerotree wavelet (EZW) algorithms is studied to reduce the amounts of data transmitted. The experimental results of rolling bearing have been given at last to verify the effectiveness of data compression algorithm. The on-line monitoring system of rolling bearing in freight train will be applied to actual application in the near future.

  8. Research on Linear Wireless Sensor Networks Used for Online Monitoring of Rolling Bearing in Freight Train

    Energy Technology Data Exchange (ETDEWEB)

    Wang Nan; Meng Qingfeng; Zheng Bin [Theory of Lubrication and Bearing Institute, Xi' an Jiaotong University Xi' an, 710049 (China); Li Tong; Ma Qinghai, E-mail: heroyoyu.2009@stu.xjtu.edu.cn [Xi' an Rail Bureau, Xi' an, 710054 (China)

    2011-07-19

    This paper presents a Wireless Sensor Networks (WSNs) technique for the purpose of on-line monitoring of rolling bearing in freight train. A new technical scheme including the arrangements of sensors, the design of sensor nodes and base station, routing protocols, signal acquirement, processing and transmission is described, and an on-line monitoring system is established. Considering the approximately linear arrangements of cars and the running state of freight train, a linear topology structure of WSNs is adopted and five linear routing protocols are discussed in detail as to obtain the desired minimum energy consumption of WSNs. By analysing the simulation results, an optimal multi-hop routing protocol named sub-section routing protocol according to equal distance is adopted, in which all sensor nodes are divided into different groups according to the equal transmission distance, the optimal transmission distance and number of hops of routing protocol are also studied. We know that the communication consumes significant power in WSNs, so, in order to save the limit power supply of WSNs, the data compression and coding scheme based on lifting integer wavelet and embedded zerotree wavelet (EZW) algorithms is studied to reduce the amounts of data transmitted. The experimental results of rolling bearing have been given at last to verify the effectiveness of data compression algorithm. The on-line monitoring system of rolling bearing in freight train will be applied to actual application in the near future.

  9. Characterizing chemical systems with on-line computers and graphics

    International Nuclear Information System (INIS)

    Frazer, J.W.; Rigdon, L.P.; Brand, H.R.; Pomernacki, C.L.

    1979-01-01

    Incorporating computers and graphics on-line to chemical experiments and processes opens up new opportunities for the study and control of complex systems. Systems having many variables can be characterized even when the variable interactions are nonlinear, and the system cannot a priori be represented by numerical methods and models. That is, large sets of accurate data can be rapidly acquired, then modeling and graphic techniques can be used to obtain partial interpretation plus design of further experimentation. The experimenter can thus comparatively quickly iterate between experimentation and modeling to obtain a final solution. We have designed and characterized a versatile computer-controlled apparatus for chemical research, which incorporates on-line instrumentation and graphics. It can be used to determine the mechanism of enzyme-induced reactions or to optimize analytical methods. The apparatus can also be operated as a pilot plant to design control strategies. On-line graphics were used to display conventional plots used by biochemists and three-dimensional response-surface plots

  10. On-line irradiation testing of a Giant Magneto-Resistive (GMR) sensor

    Energy Technology Data Exchange (ETDEWEB)

    Olfert, J.; Luloff, B.; MacDonald, D.; Lumsden, R., E-mail: jeff.olfert@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2016-06-15

    Magneto-resistive sensors are rapidly gaining favour for magnetic field sensing applications owing to their high sensitivity, small size, and low cost. Their metallic, nonsemiconductor construction makes them excellent candidates for use in the harsh environments present in nuclear and space applications. In this work, a commercially available magneto-resistive sensor was irradiated up to a total gamma dose of 2 MGy (200 Mrad), and online testing was performed to monitor the sensor throughout the irradiation to detect any degradation. No significant evidence of degradation of the sensor characteristics was observed. A very small (< 1%) change in the bridge balance of the sensor as a function of accumulated dose was detected. (author)

  11. Non-Contact Plant Growth Measurement Method and System Based on Ubiquitous Sensor Network Technologies

    Directory of Open Access Journals (Sweden)

    Intae Ryoo

    2011-04-01

    Full Text Available This paper proposes a non-contact plant growth measurement system using infrared sensors based on the ubiquitous sensor network (USN technology. The proposed system measures plant growth parameters such as the stem radius of plants using real-time non-contact methods, and generates diameter, cross-sectional area and thickening form of plant stems using this measured data. Non-contact sensors have been used not to cause any damage to plants during measurement of the growth parameters. Once the growth parameters are measured, they are transmitted to a remote server using the sensor network technology and analyzed in the application program server. The analyzed data are then provided for administrators and a group of interested users. The proposed plant growth measurement system has been designed and implemented using fixed-type and rotary-type infrared sensor based measurement methods and devices. Finally, the system performance is compared and verified with the measurement data that have been obtained by practical field experiments.

  12. A modular multi-microcomputer system for on-line vibration diagnostics

    International Nuclear Information System (INIS)

    Saedtler, E.

    1988-01-01

    A new modular multi-microprocessor system for on-line vibration monitoring and diagnostics of PWRs is described. The aim of the system is to make feasible an early detection of increasing failures in relevant regions of a reactor plant, to verify the mechanical integrity of the investigated components, and to improve therefore the operational safety of the plant. After a discussion of the implemented surveillance methods and algorithms, which are based on hierarchical structured identification (estimation) and statistical pattern recognition tools, the system architecture (software and hardware) is portrayed. The classification scheme itself works sequential so that samples (or features) can arrive on-line. This on-line classification is important in order to take necessary actions in time. Furthermore, the system has learning capabilities, which means it is adaptable to different, varying states and plant conditions. The main features of the system are presented and its contribution to an automation of complex surveillance and monitoring tasks is shown. (author)

  13. Active Sensor Configuration Validation for Refrigeration Systems

    DEFF Research Database (Denmark)

    Hovgaard, Tobias Gybel; Blanke, Mogens; Niemann, Hans Henrik

    2010-01-01

    -diagnosis methods falling short on this problem, this paper suggests an active diagnosis procedure to isolate sensor faults at the commissioning stage, before normal operation has started. Using statistical methods, residuals are evaluated versus multiple hypothesis models in a minimization process to uniquely......Major faults in the commissioning phase of refrigeration systems are caused by defects related to sensors. With a number of similar sensors available that do not differ by type but only by spatial location in the plant, interchange of sensors is a common defect. With sensors being used quite...... differently by the control system, fault-finding is difficult in practice and defects are regularly causing commissioning delays at considerable expense. Validation and handling of faults in the sensor configuration are therefore essential to cut costs during commissioning. With passive fault...

  14. Fault Detection And Diagnosis For Air Conditioners And Heat Pumps Based On Virtual Sensors

    OpenAIRE

    Kim, Woohyun

    2013-01-01

    The primary goal of this research is to develop and demonstrate an integrated, on-line performance monitoring and diagnostic system with low cost sensors for air conditioning and heat pump equipment. Automated fault detection and diagnostics (FDD) has the potential for improving energy efficiency along with reducing service costs and comfort complaints. To achieve this goal, virtual sensors with low cost measurements and simple models were developed to estimate quantities that would be expens...

  15. Research on continuous environmental radiation monitoring system for NPP based on wireless sensor network

    International Nuclear Information System (INIS)

    Fu Hailong; Jia Mingchun; Peng Guichu

    2010-01-01

    According to the characteristics of environmental gamma radiation monitoring and the requirement of nuclear power plant (NPP) developing, a new continuous environmental radiation monitoring system based on wireless sensor network (WSN) was presented. The basic concepts and application of WSN were introduced firstly. And then the characteristics of the new system were analyzed. At the same time the configuration of the WSN and the whole structure of the system were built. Finally, the crucial techniques used in system designing, such as the design of sensor node, the choice of communication mode and protocol, the time synchronization and space location, the security of the network and the faults tolerance were introduced. (authors)

  16. Airborne Sensor Thermal Management Solution

    Energy Technology Data Exchange (ETDEWEB)

    Ng, K. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-06-03

    The customer wants to outfit aircraft (de Havilland Twin Otter) with optical sensors. In previous product generations the sensor line-of-sight direction was fixed – the sensor’s direction relied on the orientation of the aircraft. The next generation sensor will be packaged in a rotatable turret so that the line-of-sight is reasonably independent of the aircraft’s orientation. This turret will be mounted on a boom protruding from the side of the aircraft. The customer wants to outfit aircraft (de Havilland Twin Otter) with optical sensors. In previous product generations the sensor line-of-sight direction was fixed – the sensor’s direction relied on the orientation of the aircraft. The next generation sensor will be packaged in a rotatable turret so that the line-of-sight is reasonably independent of the aircraft’s orientation. This turret will be mounted on a boom protruding from the side of the aircraft.

  17. Resistive pressure sensors integrated with a Coriolis mass flow sensor

    NARCIS (Netherlands)

    Alveringh, Dennis; Schut, Thomas; Wiegerink, Remco J.; Sparreboom, Wouter; Lötters, Joost Conrad

    2017-01-01

    We report on a novel resistive pressure sensor that is completely integrated with a Coriolis mass flow sensor on one chip, without the need for extra fabrication steps or different materials. Two pressure sensors are placed in-line with the Coriolis sensor without requiring any changes to the fluid

  18. On-site voltage measurement with capacitive sensors on high voltage systems

    NARCIS (Netherlands)

    Wu, L.; Wouters, P.A.A.F.; Heesch, van E.J.M.; Steennis, E.F.

    2011-01-01

    In Extra/High-Voltage (EHV/HV) power systems, over-voltages occur e.g. due to transients or resonances. At places where no conventional voltage measurement devices can be installed, on-site measurement of these occurrences requires preferably non intrusive sensors, which can be installed with little

  19. Vertebrate gravity sensors as dynamic systems

    Science.gov (United States)

    Ross, M. D.

    1985-01-01

    This paper considers verterbrate gravity receptors as dynamic sensors. That is, it is hypothesized that gravity is a constant force to which an acceleration-sensing system would readily adapt. Premises are considered in light of the presence of kinocilia on hair cells of vertebrate gravity sensors; differences in loading of the sensors among species; and of possible reduction in loading by inclusion of much organic material in otoconia. Moreover, organic-inorganic interfaces may confer a piezoelectric property upon otoconia, which increase the sensitivity of the sensory system to small accelerations. Comparisons with man-made accelerometers are briefly taken up.

  20. High pressure fiber optic sensor system

    Science.gov (United States)

    Guida, Renato; Xia, Hua; Lee, Boon K; Dekate, Sachin N

    2013-11-26

    The present application provides a fiber optic sensor system. The fiber optic sensor system may include a small diameter bellows, a large diameter bellows, and a fiber optic pressure sensor attached to the small diameter bellows. Contraction of the large diameter bellows under an applied pressure may cause the small diameter bellows to expand such that the fiber optic pressure sensor may measure the applied pressure.

  1. Monitoring the Como Railway Bridge based on dynamic FBG sensor system

    Science.gov (United States)

    Zhang, Jianzhong; Sun, Weimin; Peng, G. D.; Yuan, Libo

    2007-07-01

    A FBG-based dynamic strain sensor system, whose responding frequency and resolution can be high as 16Hz and ~1μɛ respectively, is described and the system is applied to monitor the dynamic strain of Como Railway Bridge in Australia. The results of one-month long measurement show that the system can figure out all dynamic strain caused by passed trains and also prove the stability of the sensor system.

  2. Next generation sensors and systems

    CERN Document Server

    2016-01-01

    Written by experts in their area of research, this book has outlined the current status of the fundamentals and analytical concepts, modelling and design issues, technical details and practical applications of different types of sensors and discussed about the trends of next generation of sensors and systems happening in the area of Sensing technology. This book will be useful as a reference book for engineers and scientist especially the post-graduate students find will this book as reference book for their research on wearable sensors, devices and technologies.  .

  3. Three-axis magnetic field induction sensor realized on buckled cantilever plate

    KAUST Repository

    Alfadhel, Ahmed; Carreno, Armando Arpys Arevalo; Foulds, Ian G.; Kosel, Jü rgen

    2013-01-01

    This work presents the fabrication and characterization of a three-axis induction sensor consisting of one planar microcoil, fixed on the substrate, and two microcoils fabricated on Bbuckled cantilever plates (BCP) oriented perpendicularly to the substrate and each other. The BCP allows an out-of-plane translation while preserving a direct connection to the substrate, which aids the routing of electrical lines. The fabricated sensor is integrated on a single substrate, allowing interaction and integration with other systems. The devices are fabricated using a MEMS polymer fabrication process. Different microcoil configurations are realized with 17-30 turns, 5 μm track width, and 15-20 μm track pitch. The sensor showed up to 6.8 nT/√Hz resolution to magnetic fields within a frequency range of 40 Hz to 1 MHz. The BCP concept provides a strikingly simple method to fabricate a three-axis field sensor that can readily be integrated with electronic circuits, and the sensor's performance can easily be adjusted within a wide range by changing the dimensions of the coils. © 2013 IEEE.

  4. Intelligent Wireless Sensor Networks for System Health Monitoring

    Science.gov (United States)

    Alena, Rick

    2011-01-01

    Wireless sensor networks (WSN) based on the IEEE 802.15.4 Personal Area Network (PAN) standard are finding increasing use in the home automation and emerging smart energy markets. The network and application layers, based on the ZigBee 2007 Standard, provide a convenient framework for component-based software that supports customer solutions from multiple vendors. WSNs provide the inherent fault tolerance required for aerospace applications. The Discovery and Systems Health Group at NASA Ames Research Center has been developing WSN technology for use aboard aircraft and spacecraft for System Health Monitoring of structures and life support systems using funding from the NASA Engineering and Safety Center and Exploration Technology Development and Demonstration Program. This technology provides key advantages for low-power, low-cost ancillary sensing systems particularly across pressure interfaces and in areas where it is difficult to run wires. Intelligence for sensor networks could be defined as the capability of forming dynamic sensor networks, allowing high-level application software to identify and address any sensor that joined the network without the use of any centralized database defining the sensors characteristics. The IEEE 1451 Standard defines methods for the management of intelligent sensor systems and the IEEE 1451.4 section defines Transducer Electronic Datasheets (TEDS), which contain key information regarding the sensor characteristics such as name, description, serial number, calibration information and user information such as location within a vehicle. By locating the TEDS information on the wireless sensor itself and enabling access to this information base from the application software, the application can identify the sensor unambiguously and interpret and present the sensor data stream without reference to any other information. The application software is able to read the status of each sensor module, responding in real-time to changes of

  5. Research on on-line monitoring technology for steel ball's forming process based on load signal analysis method

    Science.gov (United States)

    Li, Ying-jun; Ai, Chang-sheng; Men, Xiu-hua; Zhang, Cheng-liang; Zhang, Qi

    2013-04-01

    This paper presents a novel on-line monitoring technology to obtain forming quality in steel ball's forming process based on load signal analysis method, in order to reveal the bottom die's load characteristic in initial cold heading forging process of steel balls. A mechanical model of the cold header producing process is established and analyzed by using finite element method. The maximum cold heading force is calculated. The results prove that the monitoring on the cold heading process with upsetting force is reasonable and feasible. The forming defects are inflected on the three feature points of the bottom die signals, which are the initial point, infection point, and peak point. A novel PVDF piezoelectric force sensor which is simple on construction and convenient on installation is designed. The sensitivity of the PVDF force sensor is calculated. The characteristics of PVDF force sensor are analyzed by FEM. The PVDF piezoelectric force sensor is fabricated to acquire the actual load signals in the cold heading process, and calibrated by a special device. The measuring system of on-line monitoring is built. The characteristics of the actual signals recognized by learning and identification algorithm are in consistence with simulation results. Identification of actual signals shows that the timing difference values of all feature points for qualified products are not exceed ±6 ms, and amplitude difference values are less than ±3%. The calibration and application experiments show that PVDF force sensor has good static and dynamic performances, and is competent at dynamic measuring on upsetting force. It greatly improves automatic level and machining precision. Equipment capacity factor with damages identification method depends on grade of steel has been improved to 90%.

  6. Study on the Road Traffic Survey System Based on Micro-ferromagnetic Induction Coil Sensor

    Directory of Open Access Journals (Sweden)

    Liang Tong

    2014-05-01

    Full Text Available Road traffic information is the basis of road traffic management and control. Due to the special design of the sensor coil and ferromagnetic core, traffic survey system which uses micro ferromagnetic inductive coil vehicle detector, not only has the features of small size, simple installation and little road surface damage, but also has the advantages of output signal strength, simple signal processing circuit and obvious characteristics for output waveform corresponding vehicle feature. Based on the introduction of the sensor working principle, the construction of hardware and signal processing circuit for the traffic survey system is described in detail in the paper. Combined with the characteristics of the sensor output waveform, adaptive nearest neighbor clustering RBF neural network algorithm used to classify the vehicles is proposed and verified by experimental method. The result has a high vehicle classification rate and demonstrates the feasibility of the system.

  7. Muscular condition monitoring system using fiber bragg grating sensors

    International Nuclear Information System (INIS)

    Kim, Heon Young; Lee, Jin Hyuk; Kim, Dae Hyun

    2014-01-01

    Fiber optic sensors (FOS) have advantages such as electromagnetic interference (EMI) immunity, corrosion resistance and multiplexing capability. For these reasons, they are widely used in various condition monitoring systems (CMS). This study investigated a muscular condition monitoring system using fiber optic sensors (FOS). Generally, sensors for monitoring the condition of the human body are based on electro-magnetic devices. However, such an electrical system has several weaknesses, including the potential for electro-magnetic interference and distortion. Fiber Bragg grating (FBG) sensors overcome these weaknesses, along with simplifying the devices and increasing user convenience. To measure the level of muscle contraction and relaxation, which indicates the muscle condition, a belt-shaped FBG sensor module that makes it possible to monitor the movement of muscles in the radial and circumferential directions was fabricated in this study. In addition, a uniaxial tensile test was carried out in order to evaluate the applicability of this FBG sensor module. Based on the experimental results, a relationship was observed between the tensile stress and Bragg wavelength of the FBG sensors, which revealed the possibility of fabricating a muscular condition monitoring system based on FBG sensors.

  8. Muscular condition monitoring system using fiber bragg grating sensors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Heon Young; Lee, Jin Hyuk; Kim, Dae Hyun [Seoul National University of Technology, Seoul (Korea, Republic of)

    2014-10-15

    Fiber optic sensors (FOS) have advantages such as electromagnetic interference (EMI) immunity, corrosion resistance and multiplexing capability. For these reasons, they are widely used in various condition monitoring systems (CMS). This study investigated a muscular condition monitoring system using fiber optic sensors (FOS). Generally, sensors for monitoring the condition of the human body are based on electro-magnetic devices. However, such an electrical system has several weaknesses, including the potential for electro-magnetic interference and distortion. Fiber Bragg grating (FBG) sensors overcome these weaknesses, along with simplifying the devices and increasing user convenience. To measure the level of muscle contraction and relaxation, which indicates the muscle condition, a belt-shaped FBG sensor module that makes it possible to monitor the movement of muscles in the radial and circumferential directions was fabricated in this study. In addition, a uniaxial tensile test was carried out in order to evaluate the applicability of this FBG sensor module. Based on the experimental results, a relationship was observed between the tensile stress and Bragg wavelength of the FBG sensors, which revealed the possibility of fabricating a muscular condition monitoring system based on FBG sensors.

  9. Development of an on-line ultrasonic system to monitor flow-accelerated corrosion of piping in nuclear power plants

    International Nuclear Information System (INIS)

    Lee, N.Y.; Bahn, C.B.; Lee, S.G.; Kim, J.H.; Hwang, I.S.; Lee, J.H.; Kim, J.T.; Luk, V.

    2004-01-01

    Designs of contemporary nuclear power plants (NPPs) are concentrated on improving plant life as well as safety. As the nuclear industry prepares for continued operation beyond the design lifetime of existing NPP, aging management through advanced monitoring is called for. Therefore, we suggested two approaches to develop the on-line piping monitoring system. Piping located in some position is reported to go through flow accelerated corrosion (FAC). One is to monitor electrochemical parameters, ECP and pH, which can show occurrence of corrosion. The other is to monitor mechanical parameters, displacement and acceleration. These parameters are shown to change with thickness. Both measured parameters will be combined to quantify the amount of FAC of a target piping. In this paper, we report the progress of a multidisciplinary effort on monitoring of flow-induced vibration, which changes with reducing thickness. Vibration characteristics are measured using accelerometers, capacitive sensor and fiber optic sensors. To theoretically support the measurement, we analyzed the vibration mode change in a given thickness with the aid of finite element analysis assuming FAC phenomenon is represented only as thickness change. A high temperature flow loop has been developed to simulate the NPP secondary condition to show the applicability of new sensors. Ultrasonic transducer is introduced as validation purpose by directly measuring thickness. By this process, we identify performance and applicability of chosen sensors and also obtain base data for analyzing measured value in unknown conditions. (orig.)

  10. Effect of sensor systems for cow management on milk production, somatic cell count, and reproduction

    NARCIS (Netherlands)

    Steeneveld, W.; Vernooij, J.C.M.; Hogeveen, H.

    2015-01-01

    To improve management on dairy herds, sensor systems have been developed that can measure physiological, behavioral, and production indicators on individual cows. It is not known whether using sensor systems also improves measures of health and production in dairy herds. The objective of this study

  11. Effect of sensor systems for cow management on milk production, somatic cell count and reproduction

    NARCIS (Netherlands)

    Steeneveld, W.; Vernooij, J.C.M.; Hogeveen, H.

    2015-01-01

    To improve management on dairy herds, sensor systems have been developed that can measure physiological, behavioral, and production indicators on individual cows. It is not known whether using sensor systems also improves measures of health and production in dairy herds. The objective of this study

  12. MicroSensors Systems: detection of a dismounted threat

    Science.gov (United States)

    Davis, Bill; Berglund, Victor; Falkofske, Dwight; Krantz, Brian

    2005-05-01

    The Micro Sensor System (MSS) is a layered sensor network with the goal of detecting dismounted threats approaching high value assets. A low power unattended ground sensor network is dependant on a network protocol for efficiency in order to minimize data transmissions after network establishment. The reduction of network 'chattiness' is a primary driver for minimizing power consumption and is a factor in establishing a low probability of detection and interception. The MSS has developed a unique protocol to meet these challenges. Unattended ground sensor systems are most likely dependant on batteries for power which due to size determines the ability of the sensor to be concealed after placement. To minimize power requirements, overcome size limitations, and maintain a low system cost the MSS utilizes advanced manufacturing processes know as Fluidic Self-Assembly and Chip Scale Packaging. The type of sensing element and the ability to sense various phenomenologies (particularly magnetic) at ranges greater than a few meters limits the effectiveness of a system. The MicroSensor System will overcome these limitations by deploying large numbers of low cost sensors, which is made possible by the advanced manufacturing process used in production of the sensors. The MSS program will provide unprecedented levels of real-time battlefield information which greatly enhances combat situational awareness when integrated with the existing Command, Control, Communications, Computers, Intelligence, Surveillance and Reconnaissance (C4ISR) infrastructure. This system will provide an important boost to realizing the information dominant, network-centric objective of Joint Vision 2020.

  13. Image-based environmental monitoring sensor application using an embedded wireless sensor network.

    Science.gov (United States)

    Paek, Jeongyeup; Hicks, John; Coe, Sharon; Govindan, Ramesh

    2014-08-28

    This article discusses the experiences from the development and deployment of two image-based environmental monitoring sensor applications using an embedded wireless sensor network. Our system uses low-power image sensors and the Tenet general purpose sensing system for tiered embedded wireless sensor networks. It leverages Tenet's built-in support for reliable delivery of high rate sensing data, scalability and its flexible scripting language, which enables mote-side image compression and the ease of deployment. Our first deployment of a pitfall trap monitoring application at the James San Cannot Mountain Reserve provided us with insights and lessons learned into the deployment of and compression schemes for these embedded wireless imaging systems. Our three month-long deployment of a bird nest monitoring application resulted in over 100,000 images collected from a 19-camera node network deployed over an area of 0.05 square miles, despite highly variable environmental conditions. Our biologists found the on-line, near-real-time access to images to be useful for obtaining data on answering their biological questions.

  14. Image-Based Environmental Monitoring Sensor Application Using an Embedded Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Jeongyeup Paek

    2014-08-01

    Full Text Available This article discusses the experiences from the development and deployment of two image-based environmental monitoring sensor applications using an embedded wireless sensor network. Our system uses low-power image sensors and the Tenet general purpose sensing system for tiered embedded wireless sensor networks. It leverages Tenet’s built-in support for reliable delivery of high rate sensing data, scalability and its flexible scripting language, which enables mote-side image compression and the ease of deployment. Our first deployment of a pitfall trap monitoring application at the James San Jacinto Mountain Reserve provided us with insights and lessons learned into the deployment of and compression schemes for these embedded wireless imaging systems. Our three month-long deployment of a bird nest monitoring application resulted in over 100,000 images collected from a 19-camera node network deployed over an area of 0.05 square miles, despite highly variable environmental conditions. Our biologists found the on-line, near-real-time access to images to be useful for obtaining data on answering their biological questions.

  15. A smart sensor-based vision system: implementation and evaluation

    International Nuclear Information System (INIS)

    Elouardi, A; Bouaziz, S; Dupret, A; Lacassagne, L; Klein, J O; Reynaud, R

    2006-01-01

    One of the methods of solving the computational complexity of image-processing is to perform some low-level computations on the sensor focal plane. This paper presents a vision system based on a smart sensor. PARIS1 (Programmable Analog Retina-like Image Sensor1) is the first prototype used to evaluate the architecture of an on-chip vision system based on such a sensor coupled with a microcontroller. The smart sensor integrates a set of analog and digital computing units. This architecture paves the way for a more compact vision system and increases the performances reducing the data flow exchanges with a microprocessor in control. A system has been implemented as a proof-of-concept and has enabled us to evaluate the performance requirements for a possible integration of a microcontroller on the same chip. The used approach is compared with two architectures implementing CMOS active pixel sensors (APS) and interfaced to the same microcontroller. The comparison is related to image processing computation time, processing reliability, programmability, precision, bandwidth and subsequent stages of computations

  16. A smart sensor-based vision system: implementation and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Elouardi, A; Bouaziz, S; Dupret, A; Lacassagne, L; Klein, J O; Reynaud, R [Institute of Fundamental Electronics, Bat. 220, Paris XI University, 91405 Orsay (France)

    2006-04-21

    One of the methods of solving the computational complexity of image-processing is to perform some low-level computations on the sensor focal plane. This paper presents a vision system based on a smart sensor. PARIS1 (Programmable Analog Retina-like Image Sensor1) is the first prototype used to evaluate the architecture of an on-chip vision system based on such a sensor coupled with a microcontroller. The smart sensor integrates a set of analog and digital computing units. This architecture paves the way for a more compact vision system and increases the performances reducing the data flow exchanges with a microprocessor in control. A system has been implemented as a proof-of-concept and has enabled us to evaluate the performance requirements for a possible integration of a microcontroller on the same chip. The used approach is compared with two architectures implementing CMOS active pixel sensors (APS) and interfaced to the same microcontroller. The comparison is related to image processing computation time, processing reliability, programmability, precision, bandwidth and subsequent stages of computations.

  17. Third-generation imaging sensor system concepts

    Science.gov (United States)

    Reago, Donald A.; Horn, Stuart B.; Campbell, James, Jr.; Vollmerhausen, Richard H.

    1999-07-01

    Second generation forward looking infrared sensors, based on either parallel scanning, long wave (8 - 12 um) time delay and integration HgCdTe detectors or mid wave (3 - 5 um), medium format staring (640 X 480 pixels) InSb detectors, are being fielded. The science and technology community is now turning its attention toward the definition of a future third generation of FLIR sensors, based on emerging research and development efforts. Modeled third generation sensor performance demonstrates a significant improvement in performance over second generation, resulting in enhanced lethality and survivability on the future battlefield. In this paper we present the current thinking on what third generation sensors systems will be and the resulting requirements for third generation focal plane array detectors. Three classes of sensors have been identified. The high performance sensor will contain a megapixel or larger array with at least two colors. Higher operating temperatures will also be the goal here so that power and weight can be reduced. A high performance uncooled sensor is also envisioned that will perform somewhere between first and second generation cooled detectors, but at significantly lower cost, weight, and power. The final third generation sensor is a very low cost micro sensor. This sensor can open up a whole new IR market because of its small size, weight, and cost. Future unattended throwaway sensors, micro UAVs, and helmet mounted IR cameras will be the result of this new class.

  18. On-line acquisition of plant related and environmental parameters (plant monitoring) in gerbera: determining plant responses

    NARCIS (Netherlands)

    Baas, R.; Slootweg, G.

    2004-01-01

    For on-line plant monitoring equipment to be functional in commercial glasshouse horticulture, relations between sensor readings and plant responses on both the short (days) and long term (weeks) are required. For this reason, systems were installed to monitor rockwool grown gerbera plants on a

  19. On-line monitoring of main coolant pump seals

    International Nuclear Information System (INIS)

    Stevens, D.M.; Spencer, J.W.; Morris, D.J.; Glass, S.W.; Sommerfield, G.A.; Harrison, D.

    1984-06-01

    The Babcock and Wilcox Company has developed and implemented a Reactor Coolant Pump Monitoring and Diagnostic System (RCPM and DS). The system has been installed at Toledo Edison Company's Davis-Besse Nuclear Power Station Unit 1. The RCPM and PS continuously monitors a number of indicators of pump performance and notifies the plant operator of out-of-tolerance conditions or pump performance trending toward out-of-tolerance conditions. Pump seal parameters being monitored include pump internal pressures, temperatures, and flow rates. Rotordynamic performanvce and plant operating conditions are also measured with a variety of dynamic sensors. This paper describes the implementation of the system and the results of on-line monitoring of four RC pumps

  20. Photonic Low Cost Micro-Sensor for in-Line Wear Particle Detection in Flowing Lube Oils

    Directory of Open Access Journals (Sweden)

    Jon Mabe

    2017-03-01

    Full Text Available The presence of microscopic particles in suspension in industrial fluids is often an early warning of latent or imminent failures in the equipment or processes where they are being used. This manuscript describes work undertaken to integrate different photonic principles with a micro- mechanical fluidic structure and an embedded processor to develop a fully autonomous wear debris sensor for in-line monitoring of industrial fluids. Lens-less microscopy, stroboscopic illumination, a CMOS imager and embedded machine vision technologies have been merged to develop a sensor solution that is able to detect and quantify the number and size of micrometric particles suspended in a continuous flow of a fluid. A laboratory test-bench has been arranged for setting up the configuration of the optical components targeting a static oil sample and then a sensor prototype has been developed for migrating the measurement principles to real conditions in terms of operating pressure and flow rate of the oil. Imaging performance is quantified using micro calibrated samples, as well as by measuring real used lubricated oils. Sampling a large fluid volume with a decent 2D spatial resolution, this photonic micro sensor offers a powerful tool at very low cost and compacted size for in-line wear debris monitoring.

  1. Ultrasonic sensors in urban traffic driving-aid systems.

    Science.gov (United States)

    Alonso, Luciano; Milanés, Vicente; Torre-Ferrero, Carlos; Godoy, Jorge; Oria, Juan P; de Pedro, Teresa

    2011-01-01

    Currently, vehicles are often equipped with active safety systems to reduce the risk of accidents, most of which occur in urban environments. The most prominent include Antilock Braking Systems (ABS), Traction Control and Stability Control. All these systems use different kinds of sensors to constantly monitor the conditions of the vehicle, and act in an emergency. In this paper the use of ultrasonic sensors in active safety systems for urban traffic is proposed, and the advantages and disadvantages when compared to other sensors are discussed. Adaptive Cruise Control (ACC) for urban traffic based on ultrasounds is presented as an application example. The proposed system has been implemented in a fully-automated prototype vehicle and has been tested under real traffic conditions. The results confirm the good performance of ultrasonic sensors in these systems.

  2. Development of a piezoelectric energy harvesting system for implementing wireless sensors on the tires

    International Nuclear Information System (INIS)

    Lee, Jaeyun; Choi, Bumkyoo

    2014-01-01

    Highlights: • This study is focused on a stable energy source independent of vehicle speed. • It is ascertained that the use of a strain field is suitable for this purpose. • A piezo patch generates 380.2 μJ per revolution under 500 kgf load and 60 km/h. • A self-powered wireless sensor system is manufactured for application and tested during vehicle driving. • The system is applicable to intelligent tire sensor systems. - Abstract: The need for energy harvesting technology is steadily growing in the field of self-powered wireless sensor systems for intelligent tires. The purpose of this study is to mount an energy harvester inside the tire. In order to achieve this, we focus on a stable energy source almost independent of vehicle speed. It is ascertained that the use of a strain field is suitable for this purpose. In order to develop the energy harvester for the tire, modeling of tire behavior has been performed and verified through comparing with experimental results. From the results, a piezoelectric energy harvester generates 380.2 μJ per revolution under 500 kgf load and 60 km/h. A self-powered wireless sensor system is manufactured for application and tested during vehicle driving. The result of this study presents 1.37 μW/mm 3 of power generation from the performance of the energy harvester. This study concludes that the system is applicable to wireless tire sensor systems after making minor improvements

  3. A new electrostatic on-line collection-system

    International Nuclear Information System (INIS)

    Dufour, J.P.; Del Moral, R.; Fleury, A.

    1981-06-01

    The working conditions of a new on-line electrostatic collection system are presented. The main charactersitics are high efficiency (reaching 20%) and short delay time (down to the millisecond). The salient features of specific devices for measurements of absolute cross sections, recoil range distributions and angular distributions are given

  4. Sensor-guided threat countermeasure system

    Science.gov (United States)

    Stuart, Brent C.; Hackel, Lloyd A.; Hermann, Mark R.; Armstrong, James P.

    2012-12-25

    A countermeasure system for use by a target to protect against an incoming sensor-guided threat. The system includes a laser system for producing a broadband beam and means for directing the broadband beam from the target to the threat. The countermeasure system comprises the steps of producing a broadband beam and directing the broad band beam from the target to blind or confuse the incoming sensor-guided threat.

  5. Remote Power Systems for Sensors on the Northern Border

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Lin J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kandt, Alicen J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-06-08

    The National Renewable Energy Laboratory (NREL) is working with the Department of Homeland Security (DHS) [1] to field sensors that accurately track different types of transportation across the northern border of the U.S.. To do this, the sensors require remote power so that they can be placed in the most advantageous geographical locations, often where no grid power is available. This enables the sensors to detect and track aircraft/vehicles despite natural features (e.g., mountains, ridges, valleys, trees) that often prevent standard methods (e.g., monostatic radar or visual observers) from detecting them. Without grid power, portable power systems were used to provide between 80 and 300 W continuously, even in bitter cold and when buried under feet of snow/ice. NREL provides details about the design, installation, and lessons learned from long-term deployment of a second-generation of novel power systems that used adjustable-angle photovoltaics (PV), lithium ion batteries, and fuel cells that provide power to achieve 100% up-time.

  6. Virtual Sensor of Surface Electromyography in a New Extensive Fault-Tolerant Classification System.

    Science.gov (United States)

    de Moura, Karina de O A; Balbinot, Alexandre

    2018-05-01

    A few prosthetic control systems in the scientific literature obtain pattern recognition algorithms adapted to changes that occur in the myoelectric signal over time and, frequently, such systems are not natural and intuitive. These are some of the several challenges for myoelectric prostheses for everyday use. The concept of the virtual sensor, which has as its fundamental objective to estimate unavailable measures based on other available measures, is being used in other fields of research. The virtual sensor technique applied to surface electromyography can help to minimize these problems, typically related to the degradation of the myoelectric signal that usually leads to a decrease in the classification accuracy of the movements characterized by computational intelligent systems. This paper presents a virtual sensor in a new extensive fault-tolerant classification system to maintain the classification accuracy after the occurrence of the following contaminants: ECG interference, electrode displacement, movement artifacts, power line interference, and saturation. The Time-Varying Autoregressive Moving Average (TVARMA) and Time-Varying Kalman filter (TVK) models are compared to define the most robust model for the virtual sensor. Results of movement classification were presented comparing the usual classification techniques with the method of the degraded signal replacement and classifier retraining. The experimental results were evaluated for these five noise types in 16 surface electromyography (sEMG) channel degradation case studies. The proposed system without using classifier retraining techniques recovered of mean classification accuracy was of 4% to 38% for electrode displacement, movement artifacts, and saturation noise. The best mean classification considering all signal contaminants and channel combinations evaluated was the classification using the retraining method, replacing the degraded channel by the virtual sensor TVARMA model. This method

  7. Intelligent Luminance Control of Lighting Systems Based on Imaging Sensor Feedback

    Directory of Open Access Journals (Sweden)

    Haoting Liu

    2017-02-01

    Full Text Available An imaging sensor-based intelligent Light Emitting Diode (LED lighting system for desk use is proposed. In contrast to the traditional intelligent lighting system, such as the photosensitive resistance sensor-based or the infrared sensor-based system, the imaging sensor can realize a finer perception of the environmental light; thus it can guide a more precise lighting control. Before this system works, first lots of typical imaging lighting data of the desk application are accumulated. Second, a series of subjective and objective Lighting Effect Evaluation Metrics (LEEMs are defined and assessed for these datasets above. Then the cluster benchmarks of these objective LEEMs can be obtained. Third, both a single LEEM-based control and a multiple LEEMs-based control are developed to realize a kind of optimal luminance tuning. When this system works, first it captures the lighting image using a wearable camera. Then it computes the objective LEEMs of the captured image and compares them with the cluster benchmarks of the objective LEEMs. Finally, the single LEEM-based or the multiple LEEMs-based control can be implemented to get a kind of optimal lighting effect. Many experiment results have shown the proposed system can tune the LED lamp automatically according to environment luminance changes.

  8. Study of the Sensor for On-line Lubricating Oil Debris Monitoring

    Directory of Open Access Journals (Sweden)

    Huiqin Zhan

    2014-07-01

    Full Text Available Mechanical parts such as gears and bearings used in mechanical equipment have a finite lifetime because of corrosion and wear. If the parts are in abnormal operation and is not detected, it may cause catastrophic component failure during operation. One effective approach to detect signs of potential failure of the mechanical equipment is to examine the debris particles in its lubricating oil. This article presented an inductive debris sensor which is designed on the basis of the principle of inductance balance. The structure design and the principle of it are studied. The intensity distribution of its magnetic induction is simulated by the use of simulation software Ansoft Maxwell. The mathematical model when there is a debris particle passing through the sensor is analyzed and the characteristics of the sensor’s induction signal is gotten. Experiments have shown that debris particles can be detected by this sensor.

  9. Field experience with advanced methods of on-line monitoring of water chemistry and corrosion degradation in nuclear power stations

    International Nuclear Information System (INIS)

    Stellwag, B.; Aaltonen, P.; Hickling, J.

    1997-01-01

    Advanced methods for on-line, in-situ water chemistry and corrosion monitoring in nuclear power stations have been developed during the past decade. The terms ''on-line'' and ''in-situ'' characterize approaches involving continuous measurement of relevant parameters in high temperature water, preferably directly in the systems and components and not in removed samples at room temperature. This paper describes the field experience to-date with such methods in terms of three examples: (1) On-line chemistry monitoring of the primary coolant during shutdown of a Type WWER-440 PWR. (2) Redox and corrosion potential measurements in final feedwater preheaters and steam generators of two large KWU PWRs over several cycles of plant operation. (3) Real-time, in-situ corrosion surveillance inside the calundia vault of a CANDU reactor. The way in which water chemistry sensors and corrosion monitoring sensors complement each other is outlined: on-line, in-situ measurement of pH, conductivity and redox potential gives information about the possible corrosivity of the environment. Electrochemical noise techniques display signals of corrosion activity under the actual environmental conditions. A common experience gained from separate use of these different types of sensors has been that new and additional information about plants and their actual process conditions is obtained. Moreover, they reveal the intimate relationship between the operational situation and its consequences for the quality of the working fluid and the corrosion behaviour of the plant materials. On this basis, the efficiency of the existing chemistry sampling and control system can be checked and corrosion degradation can be minimized. Furthermore, activity buildup in the primary circuit can be studied. Further significant advantages can be expected from an integration of these various types of sensors into a common water chemistry and corrosion surveillance system. For confirmation, a complete set of sensors

  10. Field experience with advanced methods of on-line monitoring of water chemistry and corrosion degradation in nuclear power stations

    Energy Technology Data Exchange (ETDEWEB)

    Stellwag, B [Siemens AG Unternehmensbereich KWU, Erlangen (Germany); Aaltonen, P [Technical Research Centre of Finland, Espoo (Finland); Hickling, J [CML GmbH, Erlangen (Germany)

    1997-02-01

    Advanced methods for on-line, in-situ water chemistry and corrosion monitoring in nuclear power stations have been developed during the past decade. The terms ``on-line`` and ``in-situ`` characterize approaches involving continuous measurement of relevant parameters in high temperature water, preferably directly in the systems and components and not in removed samples at room temperature. This paper describes the field experience to-date with such methods in terms of three examples: (1) On-line chemistry monitoring of the primary coolant during shutdown of a Type WWER-440 PWR. (2) Redox and corrosion potential measurements in final feedwater preheaters and steam generators of two large KWU PWRs over several cycles of plant operation. (3) Real-time, in-situ corrosion surveillance inside the calundia vault of a CANDU reactor. The way in which water chemistry sensors and corrosion monitoring sensors complement each other is outlined: on-line, in-situ measurement of pH, conductivity and redox potential gives information about the possible corrosivity of the environment. Electrochemical noise techniques display signals of corrosion activity under the actual environmental conditions. A common experience gained from separate use of these different types of sensors has been that new and additional information about plants and their actual process conditions is obtained. Moreover, they reveal the intimate relationship between the operational situation and its consequences for the quality of the working fluid and the corrosion behaviour of the plant materials. On this basis, the efficiency of the existing chemistry sampling and control system can be checked and corrosion degradation can be minimized. Furthermore, activity buildup in the primary circuit can be studied. Further significant advantages can be expected from an integration of these various types of sensors into a common water chemistry and corrosion surveillance system. (Abstract Truncated)

  11. System-level Modeling of Wireless Integrated Sensor Networks

    DEFF Research Database (Denmark)

    Virk, Kashif M.; Hansen, Knud; Madsen, Jan

    2005-01-01

    Wireless integrated sensor networks have emerged as a promising infrastructure for a new generation of monitoring and tracking applications. In order to efficiently utilize the extremely limited resources of wireless sensor nodes, accurate modeling of the key aspects of wireless sensor networks...... is necessary so that system-level design decisions can be made about the hardware and the software (applications and real-time operating system) architecture of sensor nodes. In this paper, we present a SystemC-based abstract modeling framework that enables system-level modeling of sensor network behavior...... by modeling the applications, real-time operating system, sensors, processor, and radio transceiver at the sensor node level and environmental phenomena, including radio signal propagation, at the sensor network level. We demonstrate the potential of our modeling framework by simulating and analyzing a small...

  12. A new electrostatic on-line collection-system

    International Nuclear Information System (INIS)

    Dufour, J.P.; Del Moral, R.; Fleury, A.; Hubert, F.; Llabador, Y.; Mauhourat, M.B.; Bimbot, R.; Gardes, D.; Rivet, M.F.

    1981-01-01

    The working conditions of a new on-line electrostatic collection system are presented. The main characteristics are high efficiency (reaching 20%) and short delay time (down to the millisecond). The salient features of specific devices for measurements of absolute cross sections, recoil range distributions and angular distributions are given. (orig.)

  13. A Survey on FPGA-Based Sensor Systems: Towards Intelligent and Reconfigurable Low-Power Sensors for Computer Vision, Control and Signal Processing

    Directory of Open Access Journals (Sweden)

    Gabriel J. García

    2014-03-01

    Full Text Available The current trend in the evolution of sensor systems seeks ways to provide more accuracy and resolution, while at the same time decreasing the size and power consumption. The use of Field Programmable Gate Arrays (FPGAs provides specific reprogrammable hardware technology that can be properly exploited to obtain a reconfigurable sensor system. This adaptation capability enables the implementation of complex applications using the partial reconfigurability at a very low-power consumption. For highly demanding tasks FPGAs have been favored due to the high efficiency provided by their architectural flexibility (parallelism, on-chip memory, etc., reconfigurability and superb performance in the development of algorithms. FPGAs have improved the performance of sensor systems and have triggered a clear increase in their use in new fields of application. A new generation of smarter, reconfigurable and lower power consumption sensors is being developed in Spain based on FPGAs. In this paper, a review of these developments is presented, describing as well the FPGA technologies employed by the different research groups and providing an overview of future research within this field.

  14. A survey on FPGA-based sensor systems: towards intelligent and reconfigurable low-power sensors for computer vision, control and signal processing.

    Science.gov (United States)

    García, Gabriel J; Jara, Carlos A; Pomares, Jorge; Alabdo, Aiman; Poggi, Lucas M; Torres, Fernando

    2014-03-31

    The current trend in the evolution of sensor systems seeks ways to provide more accuracy and resolution, while at the same time decreasing the size and power consumption. The use of Field Programmable Gate Arrays (FPGAs) provides specific reprogrammable hardware technology that can be properly exploited to obtain a reconfigurable sensor system. This adaptation capability enables the implementation of complex applications using the partial reconfigurability at a very low-power consumption. For highly demanding tasks FPGAs have been favored due to the high efficiency provided by their architectural flexibility (parallelism, on-chip memory, etc.), reconfigurability and superb performance in the development of algorithms. FPGAs have improved the performance of sensor systems and have triggered a clear increase in their use in new fields of application. A new generation of smarter, reconfigurable and lower power consumption sensors is being developed in Spain based on FPGAs. In this paper, a review of these developments is presented, describing as well the FPGA technologies employed by the different research groups and providing an overview of future research within this field.

  15. Ultrasonic Sensors in Urban Traffic Driving-Aid Systems

    Directory of Open Access Journals (Sweden)

    Teresa de Pedro

    2011-01-01

    Full Text Available Currently, vehicles are often equipped with active safety systems to reduce the risk of accidents, most of which occur in urban environments. The most prominent include Antilock Braking Systems (ABS, Traction Control and Stability Control. All these systems use different kinds of sensors to constantly monitor the conditions of the vehicle, and act in an emergency. In this paper the use of ultrasonic sensors in active safety systems for urban traffic is proposed, and the advantages and disadvantages when compared to other sensors are discussed. Adaptive Cruise Control (ACC for urban traffic based on ultrasounds is presented as an application example. The proposed system has been implemented in a fully-automated prototype vehicle and has been tested under real traffic conditions. The results confirm the good performance of ultrasonic sensors in these systems.

  16. Closed-loop System Identification with New Sensors

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, K; Stoustrup, Jakob

    2008-01-01

    This paper deals with system identification of new system dynamics revealed by online introduction of new sensors in existing multi-variable linear control systems. The so-called "Hansen Scheme" utilises the dual Youla-Kucera parameterisation of all systems stabilised by a given linear controller...... to transform closed-loop system identification problems into open-loop-like problems. We show that this scheme can be formally extended to accomodate extra sensors in a nice way. The approach is illustrated on a simple simulation example....

  17. ORION - the OMEGA Remote Interactive On-line System

    CERN Document Server

    Russell, R D; Krieger, M

    1973-01-01

    ORION is a system which permits the manipulation of files, records and characters, remote job submittal and retrieval of output files including the direct loading of remote on-line computers. The system uses the computer hardware of the OMEGA project at CERN, and is designed to assist researchers in development and debugging of their programs.

  18. Micro elements for interrogating magnetoelastic sensors

    KAUST Repository

    Liang, Cai

    2011-11-01

    This paper reports a new approach for interrogating a magnetoelastic sensor\\'s resonant frequency. Previously, the frequency of a magnetoelastic sensor was measured by using a large-scale solenoid coil of at least some millimeters both in diameter and length. Planar structures of straight-line and rectangular spiral coil are designed, fabricated and tested to interrogate the resonant frequency of a magnetoelastic sensor. A sensor of 4 mm length is measured to have a resonant frequency of 551 kHz in air. The ability to interrogate a magnetoelastic sensor with such microscale elements is a step towards the miniaturization of a magnetoelastic sensor system and integration of such a system in a microfluidics device. © 2011 IEEE.

  19. Investigation on energy efficient sensor node placement in railway systems

    Directory of Open Access Journals (Sweden)

    Ayona Philipose

    2016-06-01

    Full Text Available Recently wireless sensor network (WSN has been widely used for monitoring railway tracks and rail tunnels. The key requirement in the design of such WSN is to minimize the energy consumption so as to maximize the network lifetime. This paper includes the performance of an improved medium access control (MAC protocol, namely, time adaptive-bit map assisted (TA-BMA protocol, for the purpose of communication between the sensors placed in a railway wagon. The train is considered to be moving at a constant speed, and the sensor nodes are stationary with respect to the motion of train. The effect of mobility on the proposed MAC protocol is determined using genetic algorithm (GA, and the observed increase in energy consumption on considering mobility is 18.51%. Performance analysis of the system model is carried out using QualNet (ver. 7.1, and the energy consumption in transmit mode, receive mode, percentage of time in sleep mode, end-to-end delay and throughput are investigated.

  20. On-Line Impact Load Identification

    Directory of Open Access Journals (Sweden)

    Krzysztof Sekuła

    2013-01-01

    Full Text Available The so-called Adaptive Impact Absorption (AIA is a research area of safety engineering devoted to problems of shock absorption in various unpredictable scenarios of collisions. It makes use of smart technologies (systems equipped with sensors, controllable dissipaters and specialised tools for signal processing. Examples of engineering applications for AIA systems are protective road barriers, automotive bumpers or adaptive landing gears. One of the most challenging problems for AIA systems is on-line identification of impact loads, which is crucial for introducing the optimum real-time strategy of adaptive impact absorption. This paper presents the concept of an impactometer and develops the methodology able to perform real-time impact load identification. Considered dynamic excitation is generated by a mass M1 impacting with initial velocity V0. An analytical formulation of the problem, supported with numerical simulations and experimental verifications is presented. Two identification algorithms based on measured response of the impacted structure are proposed and discussed. Finally, a concept of the AIA device utilizing the idea of impactometer is briefly presented.

  1. State of technology, system and solution supporting on-line maintenance - company's activities and products

    International Nuclear Information System (INIS)

    Nishitani, Junichi; Shimizu, Shunichi; Higasa, Hisakazu

    2010-01-01

    The new inspection system based on operator's maintenance and monitoring program of nuclear power plants was introduced in Japan more than one year ago and recommended on-line maintenance (maintenance during operation) will be carried out to increase capacity factor with safe and reliable operation of the plant. In this feature article, nine experts described the state of technology, system and solution supporting on-line maintenance - company's activities and products. These were titled as 'MHI's technology supporting on-line maintenance'. 'Technology supporting on-line maintenance - Toshiba's activities to upgrade monitoring and diagnostic service and maintenance management', 'AsahiKASEI's activities of on-line maintenance', 'Importance of information sharing of on-line maintenance and its ideal method-function of impact plan of IBM Maximo Asset Management for Nuclear', 'US's on-line maintenance and information systems', 'SmartProcedures realizing safe operation of nuclear power plant - proposal of computerized procedures', 'Ultrasonic leak detection system SDT170', 'Application of infrared thermography for equipment maintenance in nuclear power plant' and 'On-line condition monitoring system - condition eye'. (T. Tanaka)

  2. Real-time trace gas sensor using a multimode diode laser and multiple-line integrated cavity enhanced absorption spectroscopy.

    Science.gov (United States)

    Karpf, Andreas; Rao, Gottipaty N

    2015-07-01

    We describe and demonstrate a highly sensitive trace gas sensor based on a simplified design that is capable of measuring sub-ppb concentrations of NO2 in tens of milliseconds. The sensor makes use of a relatively inexpensive Fabry-Perot diode laser to conduct off-axis cavity enhanced spectroscopy. The broad frequency range of a multimode Fabry-Perot diode laser spans a large number of absorption lines, thereby removing the need for a single-frequency tunable laser source. The use of cavity enhanced absorption spectroscopy enhances the sensitivity of the sensor by providing a pathlength on the order of 1 km in a small volume. Off-axis alignment excites a large number of cavity modes simultaneously, thereby reducing the sensor's susceptibility to vibration. Multiple-line integrated absorption spectroscopy (where one integrates the absorption spectra over a large number of rovibronic transitions of the molecular species) further improves the sensitivity of detection. Relatively high laser power (∼400  mW) is used to compensate for the low coupling efficiency of a broad linewidth laser to the optical cavity. The approach was demonstrated using a 407 nm diode laser to detect trace quantities of NO2 in zero air. Sensitivities of 750 ppt, 110 ppt, and 65 ppt were achieved using integration times of 50 ms, 5 s, and 20 s respectively.

  3. Design and Implementation of e-Health System Based on Semantic Sensor Network Using IETF YANG

    Directory of Open Access Journals (Sweden)

    Wenquan Jin

    2018-02-01

    Full Text Available Recently, healthcare services can be delivered effectively to patients anytime and anywhere using e-Health systems. e-Health systems are developed through Information and Communication Technologies (ICT that involve sensors, mobiles, and web-based applications for the delivery of healthcare services and information. Remote healthcare is an important purpose of the e-Health system. Usually, the eHealth system includes heterogeneous sensors from diverse manufacturers producing data in different formats. Device interoperability and data normalization is a challenging task that needs research attention. Several solutions are proposed in the literature based on manual interpretation through explicit programming. However, programmatically implementing the interpretation of the data sender and data receiver in the e-Health system for the data transmission is counterproductive as modification will be required for each new device added into the system. In this paper, an e-Health system with the Semantic Sensor Network (SSN is proposed to address the device interoperability issue. In the proposed system, we have used IETF YANG for modeling the semantic e-Health data to represent the information of e-Health sensors. This modeling scheme helps in provisioning semantic interoperability between devices and expressing the sensing data in a user-friendly manner. For this purpose, we have developed an ontology for e-Health data that supports different styles of data formats. The ontology is defined in YANG for provisioning semantic interpretation of sensing data in the system by constructing meta-models of e-Health sensors. The proposed approach assists in the auto-configuration of eHealth sensors and querying the sensor network with semantic interoperability support for the e-Health system.

  4. On-line plutonium measurement by alpha counting using a silica glass sensor

    International Nuclear Information System (INIS)

    Edeline, J.C.; Furgolle, B.

    1980-01-01

    Some cerium activated high purity silica glasses are good sensors for ionising particles counting. These sensors may be used for measuring plutonium concentrations in corrosive solutions which are typical in reprocessing operations. The thickness of the sensor has been reduced to minimize beta sensitivity. The thin sensor is hold by molecular adhesion to a thick glass mount which is soldered to the stainless steel sample cell [fr

  5. SENSORS FAULT DIAGNOSIS ALGORITHM DESIGN OF A HYDRAULIC SYSTEM

    Directory of Open Access Journals (Sweden)

    Matej ORAVEC

    2017-06-01

    Full Text Available This article presents the sensors fault diagnosis system design for the hydraulic system, which is based on the group of the three fault estimation filters. These filters are used for estimation of the system states and sensors fault magnitude. Also, this article briefly stated the hydraulic system state control design with integrator, which is important assumption for the fault diagnosis system design. The sensors fault diagnosis system is implemented into the Matlab/Simulink environment and it is verified using the controlled hydraulic system simulation model. Verification of the designed fault diagnosis system is realized by series of experiments, which simulates sensors faults. The results of the experiments are briefly presented in the last part of this article.

  6. On-line corrosion monitoring in district heating systems

    DEFF Research Database (Denmark)

    Richter, Sonja; Thorarinsdottir, R.I.; Hilbert, Lisbeth Rischel

    2004-01-01

    ), Electrochemical Noise (EN) and Zero Resistance Ammetry (ZRA). Electrochemical Resistance (ER) has also been used to measure corrosion. The method traditionally only measures corrosion off-line but with newly developed high-sensitive ER technique developed by MetriCorr in Denmark, on-line monitoring is possible...... complicates the chemistry of the environment. Hydrogen sulphide is present in geothermal systems and can be formed as a by-product of sulphate-reducing-bacteria (SRB). The application of electrochemical methods makes on-line monitoring possible. These methods include: Linear Polarization Resistance (LPR....... In order to assess both general corrosion and localized corrosion, it is necessary to apply more than one monitoring technique simultaneously, ZRA or EN for measuring localized corrosion and LPR or ER for measuring general corrosion rate. The advantage of monitoring localized corrosion is indisputable...

  7. Applying neural networks as software sensors for enzyme engineering.

    Science.gov (United States)

    Linko, S; Zhu, Y H; Linko, P

    1999-04-01

    The on-line control of enzyme-production processes is difficult, owing to the uncertainties typical of biological systems and to the lack of suitable on-line sensors for key process variables. For example, intelligent methods to predict the end point of fermentation could be of great economic value. Computer-assisted control based on artificial-neural-network models offers a novel solution in such situations. Well-trained feedforward-backpropagation neural networks can be used as software sensors in enzyme-process control; their performance can be affected by a number of factors.

  8. ORION-the Omega Remote Interactive On-line System

    CERN Document Server

    Russell, R D; Levratt, B; Lipps, H; Sparrman, P

    1974-01-01

    ORION is a system which permits the manipulation of files, records and characters, remote job submittal and retrieval of output files including the direct loading of remote on-line computers. The system uses the computer hardware of the OMEGA project at CERN and is designed to assist researchers in development and debugging of their programs. (10 refs).

  9. Development of application technology of ultrasonic wave sensor; Choonpa sensor oyo gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Hosoya, H; Hikita, N; Sasaki, H; Kore, H [Mazda Motor Corp., Hiroshima (Japan)

    1997-10-01

    We have developed parking assist system, which informs a driver the closing point and distance to the objects such as other vehicle, wall and pole around the own vehicle at parking area and makes parking maneuverability easy. This system is based on the range detection technology using ultrasonic wave sensor. We have improved the detecting ability in short range of about 20cm by reducing the reverberation of transmitting wave signal and controlling sensitivities of signal intensity and threshold line. We will show mainly the improvement of short range detection of ultrasonic wave sensor, and briefly the performance of parking assist system. 1 ref., 14 figs., 1 tab.

  10. Software sensors based on the grey-box modelling approach

    DEFF Research Database (Denmark)

    Carstensen, J.; Harremoës, P.; Strube, Rune

    1996-01-01

    In recent years the grey-box modelling approach has been applied to wastewater transportation and treatment Grey-box models are characterized by the combination of deterministic and stochastic terms to form a model where all the parameters are statistically identifiable from the on......-box model for the specific dynamics is identified. Similarly, an on-line software sensor for detecting the occurrence of backwater phenomena can be developed by comparing the dynamics of a flow measurement with a nearby level measurement. For treatment plants it is found that grey-box models applied to on......-line measurements. With respect to the development of software sensors, the grey-box models possess two important features. Firstly, the on-line measurements can be filtered according to the grey-box model in order to remove noise deriving from the measuring equipment and controlling devices. Secondly, the grey...

  11. Sensor-based material tagging system

    International Nuclear Information System (INIS)

    Vercellotti, L.C.; Cox, R.W.; Ravas, R.J.; Schlotterer, J.C.

    1991-01-01

    Electronic identification tags are being developed for tracking material and personnel. In applying electronic identification tags to radioactive materials safeguards, it is important to measure attributes of the material to ensure that the tag remains with the material. The addition of a microcontroller with an on-board analog-to-digital converter to an electronic identification tag application-specific integrated-circuit has been demonstrated as means to provide the tag with sensor data. Each tag is assembled into a housing, which serves as a scale for measuring the weight of a paint-can-sized container and its contents. Temperature rise of the can above ambient is also measured, and a piezoelectric detector detects disturbances and immediately puts the tag into its alarm and beacon mode. Radiation measurement was also considered, but the background from nearby containers was found to be excessive. The sensor-based tagging system allows tracking of the material in cans as it is stored in vaults or is moved through the manufacturing process. The paper presents details of the sensor-based material tagging system and describes a demonstration system

  12. The Design of Wireless Sensor Network System Based on ZigBee Technology for Greenhouse

    International Nuclear Information System (INIS)

    Zhu, Y W; Zhong, X X; Shi, J F

    2006-01-01

    Wireless sensor network is a new research field. It can be used in some special situation for signal collection, processing and transmitting. Zigbee is a new Wireless sensor network technology characteristic of less distance and low speed. It is a new wireless network protocol stack of IEEE 802.15.4. Lately traditional system to collects parameters for Greenhouse is widely used in agriculture. The traditional system adopts wired way wiring, which makes the system complex and expensive. Generally modern Greenhouse has hundreds of square meters and they may plant variety of plants depending on different seasons. So we need to adjust the sensors which collect parameters for Greenhouse to a better place to work more efficient. Adopting wireless way wiring is convenient and economical. This paper developed a wireless sensor network system based on ZigBee technology for greenhouse. It offers flexibility and mobility to save cost and energy spent on wiring. The framework hardware and software structure, related programming are also discussed in this paper. Comparing the system which uses ZigBee technology with traditional wired network system for greenhouse, it has advantage of low cost..low power and wider coverage. Additionally it complies with IEEE802.15.4 protocol, which makes it convenient to communicate with other products that comply with the protocol too

  13. Design and Development of a Relative Humidity and Room Temperature Measurement System with On Line Data Logging Feature for Monitoring the Fermentation Room of Tea Factory

    Directory of Open Access Journals (Sweden)

    Utpal SARMA

    2011-12-01

    Full Text Available The design and development of a Relative Humidity (RH and Room Temperature (RT monitoring system with on line data logging feature for monitoring fermentation room of a tea factory is presented in this paper. A capacitive RH sensor with on chip signal conditioner is taken as RH sensor and a temperature to digital converter (TDC is used for ambient temperature monitoring. An 8051 core microcontroller is the heart of the whole system which reads the digital equivalent of RH data with the help of a 12-bit Analog to Digital (A/D converter and synchronize TDC to get the ambient temperature. The online data logging is achieved with the help of RS-232C communication. Field performance is also studied by installing it in the fermentation room of a tea factory.

  14. Bead Capture and Release on a Magnetic Sensor in a Microfluidic System

    DEFF Research Database (Denmark)

    Dalslet, Bjarke Thomas; Damsgaard, Christian Danvad; Freitas, S.C.

    Planar Hall effect magnetic sensors for detection of biological agents using surface treated magnetic beads are integrated with a fluid injection system. The response of the sensors is used to evaluate bead capture rates for different bead concentrations c and fluid flow rates Q, and to monitor...... subsequent removal of the beads. It is found that the capture rate scales directly with c and that it depends linearly on Q. At low Q the capture rate is only partially due to gravitational sedimentation of beads. At higher Q an additional term proportional to Q becomes important, which is attributed...... to capture of beads by the magnetic fields near the sensor. It is shown that beads can be washed off the sensor surface....

  15. Self-corrected sensors based on atomic absorption spectroscopy for atom flux measurements in molecular beam epitaxy

    International Nuclear Information System (INIS)

    Du, Y.; Liyu, A. V.; Droubay, T. C.; Chambers, S. A.; Li, G.

    2014-01-01

    A high sensitivity atom flux sensor based on atomic absorption spectroscopy has been designed and implemented to control electron beam evaporators and effusion cells in a molecular beam epitaxy system. Using a high-resolution spectrometer and a two-dimensional charge coupled device detector in a double-beam configuration, we employ either a non-resonant line or a resonant line with low cross section from the same hollow cathode lamp as the reference for nearly perfect background correction and baseline drift removal. This setup also significantly shortens the warm-up time needed compared to other sensor technologies and drastically reduces the noise coming from the surrounding environment. In addition, the high-resolution spectrometer allows the most sensitive resonant line to be isolated and used to provide excellent signal-to-noise ratio

  16. Study for reactive power on distribution system line B RSG-GAS

    International Nuclear Information System (INIS)

    Yan Bony Marsahala

    2010-01-01

    Study for reactive power on distribution system line B RSG-GA is already done. The study intended to evaluate how much inductive load need the reactive power (positive), how much power factor, and what will be done to increase the power factor. The reactive power is the losses power, can't be changed into energy, but it is need for transmission process and it is cause the energy losses. The loads on distribution system line B consist of induction motors which are used for primary cooling system and secondary cooling system, lift, blower on cooling tower, and air condition system. Due to the motors using, the power factor are falling down to low. By the calculation results give that the inductive loads on distribution line B are 850 KVA and these loads caused the low power factor 0.80. If we want to increase the power factor up to 0.95, it is need to install the reactive loads likes capacitor bank 250 KVAR. (author)

  17. Laser systems for on-line laser ion sources

    International Nuclear Information System (INIS)

    Geppert, Christopher

    2008-01-01

    Since its initiation in the middle of the 1980s, the resonant ionization laser ion source has been established as a reliable and efficient on-line ion source for radioactive ion beams. In comparison to other on-line ion sources it comprises the advantages of high versatility for the elements to be ionized and of high selectivity and purity for the ion beam generated by resonant laser radiation. Dye laser systems have been the predominant and pioneering working horses for laser ion source applications up to recently, but the development of all-solid-state titanium:sapphire laser systems has nowadays initiated a significant evolution within this field. In this paper an overview of the ongoing developments will be given, which have contributed to the establishment of a number of new laser ion source facilities worldwide during the last five years.

  18. A novel design of an automatic lighting control system for a wireless sensor network with increased sensor lifetime and reduced sensor numbers.

    Science.gov (United States)

    Mohamaddoust, Reza; Haghighat, Abolfazl Toroghi; Sharif, Mohamad Javad Motahari; Capanni, Niccolo

    2011-01-01

    Wireless sensor networks (WSN) are currently being applied to energy conservation applications such as light control. We propose a design for such a system called a lighting automatic control system (LACS). The LACS system contains a centralized or distributed architecture determined by application requirements and space usage. The system optimizes the calculations and communications for lighting intensity, incorporates user illumination requirements according to their activities and performs adjustments based on external lighting effects in external sensor and external sensor-less architectures. Methods are proposed for reducing the number of sensors required and increasing the lifetime of those used, for considerably reduced energy consumption. Additionally we suggest methods for improving uniformity of illuminance distribution on a workplane's surface, which improves user satisfaction. Finally simulation results are presented to verify the effectiveness of our design.

  19. Optical fiber sensors: Systems and applications. Volume 2

    Science.gov (United States)

    Culshaw, Brian; Dakin, John

    State-of-the-art fiber-optic (FO) sensors and their applications are described in chapters contributed by leading experts. Consideration is given to interferometers, FO gyros, intensity- and wavelength-based sensors and optical actuators, Si in FO sensors, point-sensor multiplexing principles, and distributed FO sensor systems. Also examined are chemical, biochemical, and medical sensors; physical and chemical sensors for process control; FO-sensor applications in the marine and aerospace industries; FO-sensor monitoring systems for security and safety, structural integrity, NDE, and the electric-power industry; and the market situation for FO-sensor technology. Diagrams, drawings, graphs, and photographs are provided.

  20. Ubiquitous Sensor Networks: Efisiensi Sistem Kontrol Cairan Infus Pasien Rawat Inap

    Directory of Open Access Journals (Sweden)

    BUDI RAHMADYA

    2018-02-01

    This research discusses about intravenous fluids Control System on Patients, utilizing sensor network technology and Arduino Uno microcontroller. We used  HC-SR04 Ultrasonic sensors to detect the review time intravenous fluids. The sensors data is readable by transmitted using wireless network/wireless from Transmitter (Tx in Patients Into Space Receiver (Rx at nurse room with using XBee wireless device S2. The efficiency of the control system were made, namely when the sensor detects the approaching limits of intravenous fluids discharged liquid that has been determined then the motor that was on the infus line will serve to close the infusion fluid flow in the line. In our simulations we found, the findings obtained Presentation intravenous fluids altitude error is 1.96% and presentations volume Liquid error is 2.16%. The performance of network devices XBee S2 have been tried, wireless data from the XBee end devices coordinator in this research. Keywords: Infusion, Sensor Networks, HC-SR04 Ultrasonic Sensor, XBee S2 And Microcontroller Arduino Uno.

  1. A Wireless Biomedical Signal Interface System-on-Chip for Body Sensor Networks.

    Science.gov (United States)

    Lei Wang; Guang-Zhong Yang; Jin Huang; Jinyong Zhang; Li Yu; Zedong Nie; Cumming, D R S

    2010-04-01

    Recent years have seen the rapid development of biosensor technology, system-on-chip design, wireless technology. and ubiquitous computing. When assembled into an autonomous body sensor network (BSN), the technologies become powerful tools in well-being monitoring, medical diagnostics, and personal connectivity. In this paper, we describe the first demonstration of a fully customized mixed-signal silicon chip that has most of the attributes required for use in a wearable or implantable BSN. Our intellectual-property blocks include low-power analog sensor interface for temperature and pH, a data multiplexing and conversion module, a digital platform based around an 8-b microcontroller, data encoding for spread-spectrum wireless transmission, and a RF section requiring very few off-chip components. The chip has been fully evaluated and tested by connection to external sensors, and it satisfied typical system requirements.

  2. Project development and commercialisation of on-line analysis systems

    International Nuclear Information System (INIS)

    Watt, J.S.

    2000-01-01

    A project team first in the Australian Atomic Energy Commission (AAEC) and since 1982 in CSIRO has developed many on-line analysis systems for the mineral and energy industries. The development of these projects, usually lasting 7-10 years, has followed a common pattern of laboratory R and D, field trials, commercialisation and technology transfer. This successful pattern is illustrated using examples of the development of systems for the on-line analysis of mineral slurries, for determination of the ash content of coal on conveyors, and for determination of the flow rates of oil, water and gas in pipelines. The first two systems, licensed to Australian companies, are used world-wide. They are now the market leaders for radioisotope gauges in their application field. The third, the multiphase flow meter, was licensed in 1997 to an international company. This meter has even greater potential than the other two systems for economic benefit from its use and for numbers of installations. (author)

  3. Capillarity-based preparation system for optical colorimetric sensor arrays.

    Science.gov (United States)

    Luo, Xiao-Gang; Yi, Xin; Bu, Xiang-Nan; Hou, Chang-Jun; Huo, Dan-Qun; Yang, Mei; Fa, Huan-Bao; Lei, Jin-Can

    2017-03-01

    In recent years, optical colorimetric sensor arrays have demonstrated beneficial features, including rapid response, high selectivity, and high specificity; as a result, it has been extensively applied in food inspection and chemical studies, among other fields. There are instruments in the current market available for the preparation of an optical colorimetric sensor array, but it lacks the corresponding research of the preparation mechanism. Therefore, in connection with the main features of this kind of sensor array such as consistency, based on the preparation method of contact spotting, combined with a capillary fluid model, Washburn equation, Laplace equation, etc., this paper develops a diffusion model of an optical colorimetric sensor array during its preparation and sets up an optical colorimetric sensor array preparation system based on this diffusion model. Finally, this paper compares and evaluates the sensor arrays prepared by the system and prepared manually in three aspects such as the quality of array point, response of array, and response result, and the results show that the performance index of the sensor array prepared by a system under this diffusion model is better than that of the sensor array of manual spotting, which meets the needs of the experiment.

  4. Embedded Sensor Systems for Health - A Step Towards Personalized Health.

    Science.gov (United States)

    Lindén, Maria; Björkman, Mats

    2018-01-01

    The demography is changing towards older people, and the challenge to provide an appropriate care is well known. Sensor systems, combined with IT solutions are recognized as one of the major tools to handle this situation. Embedded Sensor Systems for Health (ESS-H) is a research profile at Mälardalen University in Sweden, focusing on embedded sensor systems for health technology applications. The research addresses several important issues: to provide sensor systems for health monitoring at home, to provide sensor systems for health monitoring at work, to provide safe and secure infrastructure and software testing methods for physiological data management. The user perspective is important in order to solve real problems and to develop systems that are easy and intuitive to use. One of the overall aims is to enable health trend monitoring in home environments, thus being able to detect early deterioration of a patient. Sensor systems, signal processing algorithms, and decision support algorithms have been developed. Work on development of safe and secure infrastructure and software testing methods are important for an embedded sensor system aimed for health monitoring, both in home and in work applications. Patient data must be sent and received in a safe and secure manner, also fulfilling the integrity criteria.

  5. On line instrument systems for monitoring steam turbogenerators

    Science.gov (United States)

    Clapis, A.; Giorgetti, G.; Lapini, G. L.; Benanti, A.; Frigeri, C.; Gadda, E.; Mantino, E.

    A computerized real time data acquisition and data processing for the diagnosis of malfunctioning of steam turbogenerator systems is described. Pressure, vibration and temperature measurements are continuously collected from standard or special sensors including startup or stop events. The architecture of the monitoring system is detailed. Examples of the graphics output are presented. It is shown that such a system allows accurate diagnosis and the possibility of creating a data bank to describe the dynamic characteristics of the machine park.

  6. Active Sensing System with In Situ Adjustable Sensor Morphology

    Science.gov (United States)

    Nurzaman, Surya G.; Culha, Utku; Brodbeck, Luzius; Wang, Liyu; Iida, Fumiya

    2013-01-01

    Background Despite the widespread use of sensors in engineering systems like robots and automation systems, the common paradigm is to have fixed sensor morphology tailored to fulfill a specific application. On the other hand, robotic systems are expected to operate in ever more uncertain environments. In order to cope with the challenge, it is worthy of note that biological systems show the importance of suitable sensor morphology and active sensing capability to handle different kinds of sensing tasks with particular requirements. Methodology This paper presents a robotics active sensing system which is able to adjust its sensor morphology in situ in order to sense different physical quantities with desirable sensing characteristics. The approach taken is to use thermoplastic adhesive material, i.e. Hot Melt Adhesive (HMA). It will be shown that the thermoplastic and thermoadhesive nature of HMA enables the system to repeatedly fabricate, attach and detach mechanical structures with a variety of shape and size to the robot end effector for sensing purposes. Via active sensing capability, the robotic system utilizes the structure to physically probe an unknown target object with suitable motion and transduce the arising physical stimuli into information usable by a camera as its only built-in sensor. Conclusions/Significance The efficacy of the proposed system is verified based on two results. Firstly, it is confirmed that suitable sensor morphology and active sensing capability enables the system to sense different physical quantities, i.e. softness and temperature, with desirable sensing characteristics. Secondly, given tasks of discriminating two visually indistinguishable objects with respect to softness and temperature, it is confirmed that the proposed robotic system is able to autonomously accomplish them. The way the results motivate new research directions which focus on in situ adjustment of sensor morphology will also be discussed. PMID:24416094

  7. Active sensing system with in situ adjustable sensor morphology.

    Science.gov (United States)

    Nurzaman, Surya G; Culha, Utku; Brodbeck, Luzius; Wang, Liyu; Iida, Fumiya

    2013-01-01

    Despite the widespread use of sensors in engineering systems like robots and automation systems, the common paradigm is to have fixed sensor morphology tailored to fulfill a specific application. On the other hand, robotic systems are expected to operate in ever more uncertain environments. In order to cope with the challenge, it is worthy of note that biological systems show the importance of suitable sensor morphology and active sensing capability to handle different kinds of sensing tasks with particular requirements. This paper presents a robotics active sensing system which is able to adjust its sensor morphology in situ in order to sense different physical quantities with desirable sensing characteristics. The approach taken is to use thermoplastic adhesive material, i.e. Hot Melt Adhesive (HMA). It will be shown that the thermoplastic and thermoadhesive nature of HMA enables the system to repeatedly fabricate, attach and detach mechanical structures with a variety of shape and size to the robot end effector for sensing purposes. Via active sensing capability, the robotic system utilizes the structure to physically probe an unknown target object with suitable motion and transduce the arising physical stimuli into information usable by a camera as its only built-in sensor. The efficacy of the proposed system is verified based on two results. Firstly, it is confirmed that suitable sensor morphology and active sensing capability enables the system to sense different physical quantities, i.e. softness and temperature, with desirable sensing characteristics. Secondly, given tasks of discriminating two visually indistinguishable objects with respect to softness and temperature, it is confirmed that the proposed robotic system is able to autonomously accomplish them. The way the results motivate new research directions which focus on in situ adjustment of sensor morphology will also be discussed.

  8. Sense, decide, act, communicate (SDAC): next generation of smart sensor systems

    Science.gov (United States)

    Berry, Nina; Davis, Jesse; Ko, Teresa H.; Kyker, Ron; Pate, Ron; Stark, Doug; Stinnett, Regan; Baker, James; Cushner, Adam; Van Dyke, Colin; Kyckelhahn, Brian

    2004-09-01

    The recent war on terrorism and increased urban warfare has been a major catalysis for increased interest in the development of disposable unattended wireless ground sensors. While the application of these sensors to hostile domains has been generally governed by specific tasks, this research explores a unique paradigm capitalizing on the fundamental functionality related to sensor systems. This functionality includes a sensors ability to Sense - multi-modal sensing of environmental events, Decide - smart analysis of sensor data, Act - response to environmental events, and Communication - internal to system and external to humans (SDAC). The main concept behind SDAC sensor systems is to integrate the hardware, software, and networking to generate 'knowledge and not just data'. This research explores the usage of wireless SDAC units to collectively make up a sensor system capable of persistent, adaptive, and autonomous behavior. These systems are base on the evaluation of scenarios and existing systems covering various domains. This paper presents a promising view of sensor network characteristics, which will eventually yield smart (intelligent collectives) network arrays of SDAC sensing units generally applicable to multiple related domains. This paper will also discuss and evaluate the demonstration system developed to test the concepts related to SDAC systems.

  9. Circuit for Communication Over Power Lines

    Science.gov (United States)

    Krasowski, Michael J.; Prokop, Normal F.; Greer, Lawrence C., III; Nappier, Jennifer

    2011-01-01

    Many distributed systems share common sensors and instruments along with a common power line supplying current to the system. A communication technique and circuit has been developed that allows for the simple inclusion of an instrument, sensor, or actuator node within any system containing a common power bus. Wherever power is available, a node can be added, which can then draw power for itself, its associated sensors, and actuators from the power bus all while communicating with other nodes on the power bus. The technique modulates a DC power bus through capacitive coupling using on-off keying (OOK), and receives and demodulates the signal from the DC power bus through the same capacitive coupling. The circuit acts as serial modem for the physical power line communication. The circuit and technique can be made of commercially available components or included in an application specific integrated circuit (ASIC) design, which allows for the circuit to be included in current designs with additional circuitry or embedded into new designs. This device and technique moves computational, sensing, and actuation abilities closer to the source, and allows for the networking of multiple similar nodes to each other and to a central processor. This technique also allows for reconfigurable systems by adding or removing nodes at any time. It can do so using nothing more than the in situ power wiring of the system.

  10. Heimdall System for MSSS Sensor Tasking

    Science.gov (United States)

    Herz, A.; Jones, B.; Herz, E.; George, D.; Axelrad, P.; Gehly, S.

    coordinated sensor usage, and tasking schedules driven by catalog improvement goals (reduced overall covariance, etc.). The improved performance also enables more responsive sensor tasking to address external events, newly detected objects, newly detected object activity, and sensor anomalies. Instead of having to wait until the next day's scheduling phase, events can be addressed with new tasking schedules immediately (within seconds or minutes). Perhaps the most important benefit is improved SSA based on an overall improvement to the quality of the space catalog. By driving sensor tasking and scheduling based on predicted Information Gain and other relevant factors, better decisions are made in the application of available sensor resources, leading to an improved catalog and better information about the objects of most interest. The Heimdall software solution provides a configurable, automated system to improve sensor tasking efficiency and responsiveness for SSA applications. The FISST algorithms for Track Prioritization, SSA specific task and resource attributes, Scheduler algorithms, and configurable SSA-specific Figure-of-Merit together provide optimized and tunable scheduling for the Maui Space Surveillance Site and possibly other sites and organizations across the U.S. military and for allies around the world.

  11. On-line test of power distribution prediction system for boiling water reactors

    International Nuclear Information System (INIS)

    Nishizawa, Y.; Kiguchi, T.; Kobayashi, S.; Takumi, K.; Tanaka, H.; Tsutsumi, R.; Yokomi, M.

    1982-01-01

    A power distribution prediction system for boiling water reactors has been developed and its on-line performance test has proceeded at an operating commercial reactor. This system predicts the power distribution or thermal margin in advance of control rod operations and core flow rate change. This system consists of an on-line computer system, an operator's console with a color cathode-ray tube, and plant data input devices. The main functions of this system are present power distribution monitoring, power distribution prediction, and power-up trajectory prediction. The calculation method is based on a simplified nuclear thermal-hydraulic calculation, which is combined with a method of model identification to the actual reactor core state. It has been ascertained by the on-line test that the predicted power distribution (readings of traversing in-core probe) agrees with the measured data within 6% root-mean-square. The computing time required for one prediction calculation step is less than or equal to 1.5 min by an HIDIC-80 on-line computer

  12. Early Warning System of Flood Disaster Based on Ultrasonic Sensors and Wireless Technology

    Science.gov (United States)

    Indrasari, W.; Iswanto, B. H.; Andayani, M.

    2018-04-01

    A flood disaster provides considerable losses to the people who live around the river. To mitigate losses of material due to flood disaster required an early warning system of flood disaster. For that reason, it necessary to design a system that provide alert to the people prior the flood disaster. And this paper describes development of a device for early detection system of flood disasters. This device consists of two ultrasonic sensors as a water level detector, and a water flow sensor as a water flow velocity sensor. The wireless technology and GSM is used as an information medium. The system is designed based on water level conditions in the Katulampa Dam, Bogor. Characterization of water level detector showed that the device effectively works in a range of water level of 14-250 cm, with a maximum relative error of 4.3%. Meanwhile the wireless works properly as far as 75 m, and the SMS transmission time is 8.20 second.

  13. Comparing Building and Neighborhood-Scale Variability of CO₂ and O₃ to Inform Deployment Considerations for Low-Cost Sensor System Use.

    Science.gov (United States)

    Collier-Oxandale, Ashley; Coffey, Evan; Thorson, Jacob; Johnston, Jill; Hannigan, Michael

    2018-04-26

    The increased use of low-cost air quality sensor systems, particularly by communities, calls for the further development of best-practices to ensure these systems collect usable data. One area identified as requiring more attention is that of deployment logistics, that is, how to select deployment sites and how to strategically place sensors at these sites. Given that sensors are often placed at homes and businesses, ideal placement is not always possible. Considerations such as convenience, access, aesthetics, and safety are also important. To explore this issue, we placed multiple sensor systems at an existing field site allowing us to examine both neighborhood-level and building-level variability during a concurrent period for CO₂ (a primary pollutant) and O₃ (a secondary pollutant). In line with previous studies, we found that local and transported emissions as well as thermal differences in sensor systems drive variability, particularly for high-time resolution data. While this level of variability is unlikely to affect data on larger averaging scales, this variability could impact analysis if the user is interested in high-time resolution or examining local sources. However, with thoughtful placement and thorough documentation, high-time resolution data at the neighborhood level has the potential to provide us with entirely new information on local air quality trends and emissions.

  14. Smart sensors and systems innovations for medical, environmental, and IoT applications

    CERN Document Server

    Yasuura, Hiroto; Liu, Yongpan; Lin, Youn-Long

    2017-01-01

    This book describes the technology used for effective sensing of our physical world and intelligent processing techniques for sensed information, which are essential to the success of Internet of Things (IoT). The authors provide a multidisciplinary view of sensor technology from materials, process, circuits, and big data domains and showcase smart sensor systems in real applications including smart home, transportation, medical, environmental, agricultural, etc. Unlike earlier books on sensors, this book provides a “global” view on smart sensors covering abstraction levels from device, circuit, systems, and algorithms. Profiles active research on smart sensors based on CMOS microelectronics; Describes applications of sensors and sensor systems in cyber physical systems, the social information infrastructure in our modern world; Includes coverage of a variety of related information technologies supporting the application of sensors; Discusses the integration of computation, networking, actuation, database...

  15. Testing of a Wireless Sensor System for Instrumented Thermal Protection Systems

    Science.gov (United States)

    Kummer, Allen T.; Weir, Erik D.; Morris, Trey J.; Friedenberger, Corey W.; Singh, Aseem; Capuro, Robert M.; Bilen, Sven G.; Fu, Johnny; Swanson, Gregory T.; Hash, David B.

    2011-01-01

    Funded by NASA's Constellation Universities Institutes Project (CUIP), we have been developing and testing a system to wirelessly power and collect data from sensors on space platforms in general and, in particular, the harsh environment of spacecraft re-entry. The elimination of wires and associated failures such as chafing, sparking, ageing, and connector issues can increase reliability and design flexibility while reducing costs. These factors present an appealing case for the pursuit of wireless solutions for harsh environments, particularly for their use in space and on spacecraft. We have designed and built a prototype wireless sensor system. The system, with capabilities similar to that of a wired sensor system, was tested in NASA Ames Research Center s Aerodynamic Heating Facility and Interaction Heating Facility. This paper discusses the overall development effort, testing results, as well as future directions.

  16. Enhanced technologies for unattended ground sensor systems

    Science.gov (United States)

    Hartup, David C.

    2010-04-01

    Progress in several technical areas is being leveraged to advantage in Unattended Ground Sensor (UGS) systems. This paper discusses advanced technologies that are appropriate for use in UGS systems. While some technologies provide evolutionary improvements, other technologies result in revolutionary performance advancements for UGS systems. Some specific technologies discussed include wireless cameras and viewers, commercial PDA-based system programmers and monitors, new materials and techniques for packaging improvements, low power cueing sensor radios, advanced long-haul terrestrial and SATCOM radios, and networked communications. Other technologies covered include advanced target detection algorithms, high pixel count cameras for license plate and facial recognition, small cameras that provide large stand-off distances, video transmissions of target activity instead of still images, sensor fusion algorithms, and control center hardware. The impact of each technology on the overall UGS system architecture is discussed, along with the advantages provided to UGS system users. Areas of analysis include required camera parameters as a function of stand-off distance for license plate and facial recognition applications, power consumption for wireless cameras and viewers, sensor fusion communication requirements, and requirements to practically implement video transmission through UGS systems. Examples of devices that have already been fielded using technology from several of these areas are given.

  17. A Novel Design of an Automatic Lighting Control System for a Wireless Sensor Network with Increased Sensor Lifetime and Reduced Sensor Numbers

    Science.gov (United States)

    Mohamaddoust, Reza; Haghighat, Abolfazl Toroghi; Sharif, Mohamad Javad Motahari; Capanni, Niccolo

    2011-01-01

    Wireless sensor networks (WSN) are currently being applied to energy conservation applications such as light control. We propose a design for such a system called a Lighting Automatic Control System (LACS). The LACS system contains a centralized or distributed architecture determined by application requirements and space usage. The system optimizes the calculations and communications for lighting intensity, incorporates user illumination requirements according to their activities and performs adjustments based on external lighting effects in external sensor and external sensor-less architectures. Methods are proposed for reducing the number of sensors required and increasing the lifetime of those used, for considerably reduced energy consumption. Additionally we suggest methods for improving uniformity of illuminance distribution on a workplane’s surface, which improves user satisfaction. Finally simulation results are presented to verify the effectiveness of our design. PMID:22164114

  18. Transparent Fingerprint Sensor System for Large Flat Panel Display.

    Science.gov (United States)

    Seo, Wonkuk; Pi, Jae-Eun; Cho, Sung Haeung; Kang, Seung-Youl; Ahn, Seong-Deok; Hwang, Chi-Sun; Jeon, Ho-Sik; Kim, Jong-Uk; Lee, Myunghee

    2018-01-19

    In this paper, we introduce a transparent fingerprint sensing system using a thin film transistor (TFT) sensor panel, based on a self-capacitive sensing scheme. An armorphousindium gallium zinc oxide (a-IGZO) TFT sensor array and associated custom Read-Out IC (ROIC) are implemented for the system. The sensor panel has a 200 × 200 pixel array and each pixel size is as small as 50 μm × 50 μm. The ROIC uses only eight analog front-end (AFE) amplifier stages along with a successive approximation analog-to-digital converter (SAR ADC). To get the fingerprint image data from the sensor array, the ROIC senses a capacitance, which is formed by a cover glass material between a human finger and an electrode of each pixel of the sensor array. Three methods are reviewed for estimating the self-capacitance. The measurement result demonstrates that the transparent fingerprint sensor system has an ability to differentiate a human finger's ridges and valleys through the fingerprint sensor array.

  19. Noncontact on-machine measurement system based on capacitive displacement sensors for single-point diamond turning

    Science.gov (United States)

    Li, Xingchang; Zhang, Zhiyu; Hu, Haifei; Li, Yingjie; Xiong, Ling; Zhang, Xuejun; Yan, Jiwang

    2018-04-01

    On-machine measurements can improve the form accuracy of optical surfaces in single-point diamond turning applications; however, commercially available linear variable differential transformer sensors are inaccurate and can potentially scratch the surface. We present an on-machine measurement system based on capacitive displacement sensors for high-precision optical surfaces. In the proposed system, a position-trigger method of measurement was developed to ensure strict correspondence between the measurement points and the measurement data with no intervening time-delay. In addition, a double-sensor measurement was proposed to reduce the electric signal noise during spindle rotation. Using the proposed system, the repeatability of 80-nm peak-to-valley (PV) and 8-nm root-mean-square (RMS) was achieved through analyzing four successive measurement results. The accuracy of 109-nm PV and 14-nm RMS was obtained by comparing with the interferometer measurement result. An aluminum spherical mirror with a diameter of 300 mm was fabricated, and the resulting measured form error after one compensation cut was decreased to 254 nm in PV and 52 nm in RMS. These results confirm that the measurements of the surface form errors were successfully used to modify the cutting tool path during the compensation cut, thereby ensuring that the diamond turning process was more deterministic. In addition, the results show that the noise level was significantly reduced with the reference sensor even under a high rotational speed.

  20. Spectroscopic On-Line Monitoring of Cu/W Contacts Erosion in HVCBs Using Optical-Fibre Based Sensor and Chromatic Methodology.

    Science.gov (United States)

    Wang, Zhixiang; Jones, Gordon R; Spencer, Joseph W; Wang, Xiaohua; Rong, Mingzhe

    2017-03-06

    Contact erosion is one of the most crucial factors affecting the electrical service lifetime of high-voltage circuit breakers (HVCBs). On-line monitoring the contacts' erosion degree is increasingly in demand for the sake of condition based maintenance to guarantee the functional operation of HVCBs. A spectroscopic monitoring system has been designed based upon a commercial 245 kV/40 kA S F 6 live tank circuit breaker with copper-tungsten (28 wt % and 72 wt %) arcing contacts at atmospheric S F 6 pressure. Three optical-fibre based sensors are used to capture the time-resolved spectra of arcs. A novel approach using chromatic methods to process the time-resolved spectral signal has been proposed. The processed chromatic parameters have been interpreted to show that the time variation of spectral emission from the contact material and quenching gas are closely correlated to the mass loss and surface degradation of the plug arcing contact. The feasibility of applying this method to online monitoring of contact erosion is indicated.

  1. Spectroscopic On-Line Monitoring of Cu/W Contacts Erosion in HVCBs Using Optical-Fibre Based Sensor and Chromatic Methodology

    Directory of Open Access Journals (Sweden)

    Zhixiang Wang

    2017-03-01

    Full Text Available Contact erosion is one of the most crucial factors affecting the electrical service lifetime of high-voltage circuit breakers (HVCBs. On-line monitoring the contacts’ erosion degree is increasingly in demand for the sake of condition based maintenance to guarantee the functional operation of HVCBs. A spectroscopic monitoring system has been designed based upon a commercial 245 kV/40 kA S F 6 live tank circuit breaker with copper–tungsten (28 wt % and 72 wt % arcing contacts at atmospheric S F 6 pressure. Three optical-fibre based sensors are used to capture the time-resolved spectra of arcs. A novel approach using chromatic methods to process the time-resolved spectral signal has been proposed. The processed chromatic parameters have been interpreted to show that the time variation of spectral emission from the contact material and quenching gas are closely correlated to the mass loss and surface degradation of the plug arcing contact. The feasibility of applying this method to online monitoring of contact erosion is indicated.

  2. Multipoint dynamically reconfigure adaptive distributed fiber optic acoustic emission sensor (FAESense) system for condition based maintenance

    Science.gov (United States)

    Mendoza, Edgar; Prohaska, John; Kempen, Connie; Esterkin, Yan; Sun, Sunjian; Krishnaswamy, Sridhar

    2010-09-01

    This paper describes preliminary results obtained under a Navy SBIR contract by Redondo Optics Inc. (ROI), in collaboration with Northwestern University towards the development and demonstration of a next generation, stand-alone and fully integrated, dynamically reconfigurable, adaptive fiber optic acoustic emission sensor (FAESense™) system for the in-situ unattended detection and localization of shock events, impact damage, cracks, voids, and delaminations in new and aging critical infrastructures found in ships, submarines, aircraft, and in next generation weapon systems. ROI's FAESense™ system is based on the integration of proven state-of-the-art technologies: 1) distributed array of in-line fiber Bragg gratings (FBGs) sensors sensitive to strain, vibration, and acoustic emissions, 2) adaptive spectral demodulation of FBG sensor dynamic signals using two-wave mixing interferometry on photorefractive semiconductors, and 3) integration of all the sensor system passive and active optoelectronic components within a 0.5-cm x 1-cm photonic integrated circuit microchip. The adaptive TWM demodulation methodology allows the measurement of dynamic high frequnency acoustic emission events, while compensating for passive quasi-static strain and temperature drifts. It features a compact, low power, environmentally robust 1-inch x 1-inch x 4-inch small form factor (SFF) package with no moving parts. The FAESense™ interrogation system is microprocessor-controlled using high data rate signal processing electronics for the FBG sensors calibration, temperature compensation and the detection and analysis of acoustic emission signals. Its miniaturized package, low power operation, state-of-the-art data communications, and low cost makes it a very attractive solution for a large number of applications in naval and maritime industries, aerospace, civil structures, the oil and chemical industry, and for homeland security applications.

  3. LED-Based High-Voltage Lines Warning System

    Directory of Open Access Journals (Sweden)

    Eldar MUSA

    2013-04-01

    Full Text Available LED-based system, running with the current of high-voltage lines and converting the current flowing through the line into the light by using a toroid transformer, has been developed. The transformer’s primary winding is constituted by the high voltage power line. Toroidal core consists of two equal parts and the secondary windings are evenly placed on these two parts. The system is mounted on the high-voltage lines as a clamp. The secondary winding ends are connected in series by the connector on the clamp. LEDs are supplied by the voltage at the ends of secondary. Current flowing through highvoltage transmission lines is converted to voltage by the toroidal transformer and the light emitting LEDs are supplied with this voltage. The theory of the conversion of the current flowing through the line into the light is given. The system, running with the current of the line and converting the current into the light, has been developed. System has many application areas such as warning high voltage lines (warning winches to not hinder the high-voltage lines when working under the lines, warning planes to not touch the high-voltage lines, remote measurement of high-voltage line currents, and local illumination of the line area

  4. Integrated tunneling sensor for nanoelectromechanical systems

    DEFF Research Database (Denmark)

    Sadewasser, S.; Abadal, G.; Barniol, N.

    2006-01-01

    Transducers based on quantum mechanical tunneling provide an extremely sensitive sensor principle, especially for nanoelectromechanical systems. For proper operation a gap between the electrodes of below 1 nm is essential, requiring the use of structures with a mobile electrode. At such small...... distances, attractive van der Waals and capillary forces become sizable, possibly resulting in snap-in of the electrodes. The authors present a comprehensive analysis and evaluation of the interplay between the involved forces and identify requirements for the design of tunneling sensors. Based...... on this analysis, a tunneling sensor is fabricated by Si micromachining technology and its proper operation is demonstrated. (c) 2006 American Institute of Physics....

  5. Semiautonomous Avionics-and-Sensors System for a UAV

    Science.gov (United States)

    Shams, Qamar

    2006-01-01

    Unmanned Aerial Vehicles (UAVs) autonomous or remotely controlled pilotless aircraft have been recently thrust into the spotlight for military applications, for homeland security, and as test beds for research. In addition to these functions, there are many space applications in which lightweight, inexpensive, small UAVS can be used e.g., to determine the chemical composition and other qualities of the atmospheres of remote planets. Moreover, on Earth, such UAVs can be used to obtain information about weather in various regions; in particular, they can be used to analyze wide-band acoustic signals to aid in determining the complex dynamics of movement of hurricanes. The Advanced Sensors and Electronics group at Langley Research Center has developed an inexpensive, small, integrated avionics-and-sensors system to be installed in a UAV that serves two purposes. The first purpose is to provide flight data to an AI (Artificial Intelligence) controller as part of an autonomous flight-control system. The second purpose is to store data from a subsystem of distributed MEMS (microelectromechanical systems) sensors. Examples of these MEMS sensors include humidity, temperature, and acoustic sensors, plus chemical sensors for detecting various vapors and other gases in the environment. The critical sensors used for flight control are a differential- pressure sensor that is part of an apparatus for determining airspeed, an absolute-pressure sensor for determining altitude, three orthogonal accelerometers for determining tilt and acceleration, and three orthogonal angular-rate detectors (gyroscopes). By using these eight sensors, it is possible to determine the orientation, height, speed, and rates of roll, pitch, and yaw of the UAV. This avionics-and-sensors system is shown in the figure. During the last few years, there has been rapid growth and advancement in the technological disciplines of MEMS, of onboard artificial-intelligence systems, and of smaller, faster, and

  6. Design of a Child Localization System on RFID and Wireless Sensor Networks

    OpenAIRE

    Chen, Chao

    2010-01-01

    Radio Frequency Identification (RFID) and wireless sensor networks are wireless technologies that rapidly emerge and show great potential. Combining RFID and wireless sensor networks provides a cost-efficient way to expand the RFID system's range and to enable an RFID system in areas without a network infrastructure. These two technologies are employed to build a wireless localization system in a children's theme park. The main purpose of this child localization system is to track and locate ...

  7. Indoor air quality inspection and analysis system based on gas sensor array

    Science.gov (United States)

    Gao, Xiang; Wang, Mingjiang; Fan, Binwen

    2017-08-01

    A detection and analysis system capable of measuring the concentration of four major gases in indoor air is designed. It uses four gas sensors constitute a gas sensor array, to achieve four indoor gas concentration detection, while the detection of data for further processing to reduce the cross-sensitivity between the gas sensor to improve the accuracy of detection.

  8. Toward Sensor-Based Context Aware Systems

    Directory of Open Access Journals (Sweden)

    Kouhei Takada

    2012-01-01

    Full Text Available This paper proposes a methodology for sensor data interpretation that can combine sensor outputs with contexts represented as sets of annotated business rules. Sensor readings are interpreted to generate events labeled with the appropriate type and level of uncertainty. Then, the appropriate context is selected. Reconciliation of different uncertainty types is achieved by a simple technique that moves uncertainty from events to business rules by generating combs of standard Boolean predicates. Finally, context rules are evaluated together with the events to take a decision. The feasibility of our idea is demonstrated via a case study where a context-reasoning engine has been connected to simulated heartbeat sensors using prerecorded experimental data. We use sensor outputs to identify the proper context of operation of a system and trigger decision-making based on context information.

  9. Toward a multipoint optical fibre sensor system for use in process water systems based on artificial neural network pattern recognition

    International Nuclear Information System (INIS)

    King, D; Lyons, W B; Flanagan, C; Lewis, E

    2005-01-01

    An optical fibre sensor capable of detecting various concentrations of ethanol in water supplies is reported. The sensor is based on a U-bend sensor configuration and is incorporated into a 170-metre length of silica cladding silica core optical fibre. The sensor is interrogated using Optical Time Domain Reflectometry (OTDR) and it is proposed to apply artificial neural network (ANN) pattern recognition techniques to the resulting OTDR signals to accurately classify the sensor test conditions. It is also proposed that additional U-bend configuration sensors will be added to the fibre measurement length, in order to implement a multipoint optical fibre sensor system

  10. A portable readout system for silicon microstrip sensors

    International Nuclear Information System (INIS)

    Marco-Hernandez, Ricardo

    2010-01-01

    This system can measure the collected charge in one or two microstrip silicon sensors by reading out all the channels of the sensor(s), up to 256. The system is able to operate with different types (p- and n-type) and different sizes (up to 3 cm 2 ) of microstrip silicon sensors, both irradiated and non-irradiated. Heavily irradiated sensors will be used at the Super Large Hadron Collider, so this system can be used to research the performance of microstrip silicon sensors in conditions as similar as possible to the Super Large Hadron Collider operating conditions. The system has two main parts: a hardware part and a software part. The hardware part acquires the sensor signals either from external trigger inputs, in case of a radioactive source setup is used, or from a synchronised trigger output generated by the system, if a laser setup is used. The software controls the system and processes the data acquired from the sensors in order to store it in an adequate format. The main characteristics of the system are described. Results of measurements acquired with n- and p-type detectors using both the laser and the radioactive source setup are also presented and discussed.

  11. A multi-agent system architecture for sensor networks.

    Science.gov (United States)

    Fuentes-Fernández, Rubén; Guijarro, María; Pajares, Gonzalo

    2009-01-01

    The design of the control systems for sensor networks presents important challenges. Besides the traditional problems about how to process the sensor data to obtain the target information, engineers need to consider additional aspects such as the heterogeneity and high number of sensors, and the flexibility of these networks regarding topologies and the sensors in them. Although there are partial approaches for resolving these issues, their integration relies on ad hoc solutions requiring important development efforts. In order to provide an effective approach for this integration, this paper proposes an architecture based on the multi-agent system paradigm with a clear separation of concerns. The architecture considers sensors as devices used by an upper layer of manager agents. These agents are able to communicate and negotiate services to achieve the required functionality. Activities are organized according to roles related with the different aspects to integrate, mainly sensor management, data processing, communication and adaptation to changes in the available devices and their capabilities. This organization largely isolates and decouples the data management from the changing network, while encouraging reuse of solutions. The use of the architecture is facilitated by a specific modelling language developed through metamodelling. A case study concerning a generic distributed system for fire fighting illustrates the approach and the comparison with related work.

  12. An Environmental Monitoring System for Managing Spatiotemporal Sensor Data over Sensor Networks

    Directory of Open Access Journals (Sweden)

    Keun Ho Ryu

    2012-03-01

    Full Text Available In a wireless sensor network, sensors collect data about natural phenomena and transmit them to a server in real-time. Many studies have been conducted focusing on the processing of continuous queries in an approximate form. However, this approach is difficult to apply to environmental applications which require the correct data to be stored. In this paper, we propose a weather monitoring system for handling and storing the sensor data stream in real-time in order to support continuous spatial and/or temporal queries. In our system, we exploit two time-based insertion methods to store the sensor data stream and reduce the number of managed tuples, without losing any of the raw data which are useful for queries, by using the sensors’ temporal attributes. In addition, we offer a method for reducing the cost of the join operations used in processing spatiotemporal queries by filtering out a list of irrelevant sensors from query range before making a join operation. In the results of the performance evaluation, the number of tuples obtained from the data stream is reduced by about 30% in comparison to a naïve approach, thereby decreasing the query execution time.

  13. Irradiance sensors for solar systems

    Energy Technology Data Exchange (ETDEWEB)

    Storch, A.; Schindl, J. [Oesterreichisches Forschungs- und Pruefzentrum Arsenal GesmbH, Vienna (Austria). Business Unit Renewable Energy

    2004-07-01

    The presented project surveyed the quality of irradiance sensors used for applications in solar systems. By analysing an outdoor measurement, the accuracies of ten commercially available irradiance sensors were evaluated, comparing their results to those of a calibrated Kipp and Zonen pyranometer CM21. Furthermore, as a simple method for improving the quality of the results, for each sensor an irradiance-calibration was carried out and examined for its effectiveness. (orig.)

  14. A Method to Increase Drivers' Trust in Collision Warning Systems Based on Reliability Information of Sensor

    Science.gov (United States)

    Tsutsumi, Shigeyoshi; Wada, Takahiro; Akita, Tokihiko; Doi, Shun'ichi

    Driver's workload tends to be increased during driving under complicated traffic environments like a lane change. In such cases, rear collision warning is effective for reduction of cognitive workload. On the other hand, it is pointed out that false alarm or missing alarm caused by sensor errors leads to decrease of driver' s trust in the warning system and it can result in low efficiency of the system. Suppose that reliability information of the sensor is provided in real-time. In this paper, we propose a new warning method to increase driver' s trust in the system even with low sensor reliability utilizing the sensor reliability information. The effectiveness of the warning methods is shown by driving simulator experiments.

  15. Experimental study on distributed optical fiber-based approach monitoring saturation line in levee engineering

    Science.gov (United States)

    Su, Huaizhi; Li, Hao; Kang, Yeyuan; Wen, Zhiping

    2018-02-01

    Seepage is one of key factors which affect the levee engineering safety. The seepage danger without timely detection and rapid response may likely lead to severe accidents such as seepage failure, slope instability, and even levee break. More than 90 percent of levee break events are caused by the seepage. It is very important for seepage behavior identification to determine accurately saturation line in levee engineering. Furthermore, the location of saturation line has a major impact on slope stability in levee engineering. Considering the structure characteristics and service condition of levee engineering, the distributed optical fiber sensing technology is introduced to implement the real-time observation of saturation line in levee engineering. The distributed optical fiber temperature sensor system (DTS)-based monitoring principle of saturation line in levee engineering is investigated. An experimental platform, which consists of DTS, heating system, water-supply system, auxiliary analysis system and levee model, is designed and constructed. The monitoring experiment of saturation line in levee model is implemented on this platform. According to the experimental results, the numerical relationship between moisture content and thermal conductivity in porous medium is identified. A line heat source-based distributed optical fiber method obtaining the thermal conductivity in porous medium is developed. A DTS-based approach is proposed to monitor the saturation line in levee engineering. The embedment pattern of optical fiber for monitoring saturation line is presented.

  16. Tunable diode laser absorption spectroscopy-based tomography system for on-line monitoring of two-dimensional distributions of temperature and H2O mole fraction

    International Nuclear Information System (INIS)

    Xu, Lijun; Liu, Chang; Jing, Wenyang; Cao, Zhang; Xue, Xin; Lin, Yuzhen

    2016-01-01

    To monitor two-dimensional (2D) distributions of temperature and H 2 O mole fraction, an on-line tomography system based on tunable diode laser absorption spectroscopy (TDLAS) was developed. To the best of the authors’ knowledge, this is the first report on a multi-view TDLAS-based system for simultaneous tomographic visualization of temperature and H 2 O mole fraction in real time. The system consists of two distributed feedback (DFB) laser diodes, a tomographic sensor, electronic circuits, and a computer. The central frequencies of the two DFB laser diodes are at 7444.36 cm −1 (1343.3 nm) and 7185.6 cm −1 (1391.67 nm), respectively. The tomographic sensor is used to generate fan-beam illumination from five views and to produce 60 ray measurements. The electronic circuits not only provide stable temperature and precise current controlling signals for the laser diodes but also can accurately sample the transmitted laser intensities and extract integrated absorbances in real time. Finally, the integrated absorbances are transferred to the computer, in which the 2D distributions of temperature and H 2 O mole fraction are reconstructed by using a modified Landweber algorithm. In the experiments, the TDLAS-based tomography system was validated by using asymmetric premixed flames with fixed and time-varying equivalent ratios, respectively. The results demonstrate that the system is able to reconstruct the profiles of the 2D distributions of temperature and H 2 O mole fraction of the flame and effectively capture the dynamics of the combustion process, which exhibits good potential for flame monitoring and on-line combustion diagnosis

  17. Error propagation analysis for a sensor system

    International Nuclear Information System (INIS)

    Yeater, M.L.; Hockenbury, R.W.; Hawkins, J.; Wilkinson, J.

    1976-01-01

    As part of a program to develop reliability methods for operational use with reactor sensors and protective systems, error propagation analyses are being made for each model. An example is a sensor system computer simulation model, in which the sensor system signature is convoluted with a reactor signature to show the effect of each in revealing or obscuring information contained in the other. The error propagation analysis models the system and signature uncertainties and sensitivities, whereas the simulation models the signatures and by extensive repetitions reveals the effect of errors in various reactor input or sensor response data. In the approach for the example presented, the errors accumulated by the signature (set of ''noise'' frequencies) are successively calculated as it is propagated stepwise through a system comprised of sensor and signal processing components. Additional modeling steps include a Fourier transform calculation to produce the usual power spectral density representation of the product signature, and some form of pattern recognition algorithm

  18. The Radio Frequency Health Node Wireless Sensor System

    Science.gov (United States)

    Valencia, J. Emilio; Stanley, Priscilla C.; Mackey, Paul J.

    2009-01-01

    The Radio Frequency Health Node (RFHN) wireless sensor system differs from other wireless sensor systems in ways originally intended to enhance utility as an instrumentation system for a spacecraft. The RFHN can also be adapted to use in terrestrial applications in which there are requirements for operational flexibility and integrability into higher-level instrumentation and data acquisition systems. As shown in the figure, the heart of the system is the RFHN, which is a unit that passes commands and data between (1) one or more commercially available wireless sensor units (optionally, also including wired sensor units) and (2) command and data interfaces with a local control computer that may be part of the spacecraft or other engineering system in which the wireless sensor system is installed. In turn, the local control computer can be in radio or wire communication with a remote control computer that may be part of a higher-level system. The remote control computer, acting via the local control computer and the RFHN, cannot only monitor readout data from the sensor units but can also remotely configure (program or reprogram) the RFHN and the sensor units during operation. In a spacecraft application, the RFHN and the sensor units can also be configured more nearly directly, prior to launch, via a serial interface that includes an umbilical cable between the spacecraft and ground support equipment. In either case, the RFHN wireless sensor system has the flexibility to be configured, as required, with different numbers and types of sensors for different applications. The RFHN can be used to effect realtime transfer of data from, and commands to, the wireless sensor units. It can also store data for later retrieval by an external computer. The RFHN communicates with the wireless sensor units via a radio transceiver module. The modular design of the RFHN makes it possible to add radio transceiver modules as needed to accommodate additional sets of wireless sensor

  19. Development of an equipment diagnostic system that evaluates sensor drift

    International Nuclear Information System (INIS)

    Kanada, Masaki; Arita, Setsuo; Tada, Nobuo; Yokota, Katsuo

    2011-01-01

    The importance of condition monitoring technology for equipment has increased with the introduction of condition-based maintenance in nuclear power plants. We are developing a diagnostic system using process signals for plant equipment, such as pumps and motors. It is important to enable the diagnostic system to distinguish sensor drift and equipment failure. We have developed a sensor drift diagnostic method that combines some highly correlative sensor signals by using the MT (Mahalanobis-Taguchi) method. Furthermore, we have developed an equipment failure diagnostic method that measures the Mahalanobis distance from the normal state of equipment by the MT method. These methods can respectively detect sensor drift and equipment failure, but there are the following problems. In the sensor drift diagnosis, there is a possibility of misjudging the sensor drift when the equipment failure occurs and the process signal changes because the behavior of the process signal is the same as that of the sensor drift. Oppositely, in the equipment failure diagnosis, there is a possibility of misjudging the equipment failure when the sensor drift occurs because the sensor drift influences the change of process signal. To solve these problems, we propose a diagnostic method combining the sensor drift diagnosis and the equipment failure diagnosis by the MT method. Firstly, the sensor drift values are estimated by the sensor drift diagnosis, and the sensor drift is removed from the process signal. It is necessary to judge the validity of the estimated sensor drift values before removing the sensor drift from the process signal. We developed a method for judging the validity of the estimated sensor drift values by using the drift distribution based on the sensor calibration data. And then, the equipment failure is diagnosed by using the process signals after removal of the sensor drifts. To verify the developed diagnostic system, several sets of simulation data based on abnormal cases

  20. EDITORIAL: Nanotechnology impact on sensors Nanotechnology impact on sensors

    Science.gov (United States)

    Brugger, Jürgen

    2009-10-01

    A sensor is a device that responds to a stimulus by generating a functional output induced by a change in some intrinsic properties. We are surrounded by sensors and sensing networks that monitor a multitude of parameters in view of enhancing our safety and quality of life. Sensors assist us in health care and diagnostics, they monitor our environment, our aeroplanes and automobiles, our mobile phones, game consoles and watches, and last but not least, many of our human body functions. Modern sensing systems have greatly benefited in recent decades from advances in microelectronics and microengineering, mainly in view of making sensors smaller, cheaper, more sensitive, more selective, and with a better signal-to-noise ratio, following classical scaling rules. So how about nanotechnology-enabled sensing? Nanoscale features have a great impact on many (though not all) sensing systems, in particular where the surface-to-volume ratio plays a fundamental role, such as in certain chemical and gas sensors. The high surface-to-volume ratios of nanoporous and nanostructured materials have led to their implementation in sensing systems since sensing research first began to engage with the nanotechnology. The surface plasmon resonances of nanostructures have also enriched the scope for developing novel sensing devices. On the other hand, sensors where bulk properties dominate, such as inertial sensors, are less likely to benefit from extreme scaling. Advances in thin film techniques and chemical synthesis have allowed material properties to be tailored to sensing requirements for enhanced performance. These bottom-up fabrication techniques enable parallel fabrication of ordered nanostructures, often in domain-like areas with molecular precision. At the same time the progress in top-down methods such as scanning probe lithography, nanoimprint lithography, soft-lithography and stencil lithography have also facilitated research into sensing and actuating nanotechnology. Although

  1. A low cost mid-infrared sensor for on line contamination monitoring of lubricating oils in marine engines

    Science.gov (United States)

    Ben Mohammadi, L.; Kullmann, F.; Holzki, M.; Sigloch, S.; Klotzbuecher, T.; Spiesen, J.; Tommingas, T.; Weismann, P.; Kimber, G.

    2010-04-01

    The chemical and physical condition of oils in marine engines must be monitored to ensure optimum performance of the engine and to avoid damage by degraded oil not adequately lubricating the engine. Routine monitoring requires expensive laboratory testing and highly skilled analysts. This work describes the adaptation and implementation of a mid infrared (MIR) sensor module for continued oil condition monitoring in two-stroke and four-stroke diesel engines. The developed sensor module will help to reduce costs in oil analysis by eliminating the need to collect and send samples to a laboratory for analysis. The online MIR-Sensor module measures the contamination of oil with water, soot, as well as the degradation indicated by the TBN (Total Base Number) value. For the analysis of water, TBN, and soot in marine engine oils, four spectral regions of interest have been identified. The optical absorption in these bands correlating with the contaminations is measured simultaneously by using a four-field thermopile detector, combined with appropriate bandpass filters. Recording of the MIR-absorption was performed in a transmission mode using a flow-through cell with appropriate path length. Since in this case no spectrometer is required, the sensor including the light source, the flowthrough- cell, and the detector can be realised at low cost and in a very compact manner. The optical configuration of the sensor with minimal component number and signal intensity optimisation at the four-field detector was implemented by using non-sequential ray tracing simulation. The used calibration model was robust enough to predict accurately the value for soot, water, and TBN concentration for two-stroke and four-stroke engine oils. The sensor device is designed for direct installation on the host engine or machine and, therefore, becoming an integral part of the lubrication system. It can also be used as a portable stand-alone system for machine fluid analysis in the field.

  2. Sensor Failure Detection of FASSIP System using Principal Component Analysis

    Science.gov (United States)

    Sudarno; Juarsa, Mulya; Santosa, Kussigit; Deswandri; Sunaryo, Geni Rina

    2018-02-01

    In the nuclear reactor accident of Fukushima Daiichi in Japan, the damages of core and pressure vessel were caused by the failure of its active cooling system (diesel generator was inundated by tsunami). Thus researches on passive cooling system for Nuclear Power Plant are performed to improve the safety aspects of nuclear reactors. The FASSIP system (Passive System Simulation Facility) is an installation used to study the characteristics of passive cooling systems at nuclear power plants. The accuracy of sensor measurement of FASSIP system is essential, because as the basis for determining the characteristics of a passive cooling system. In this research, a sensor failure detection method for FASSIP system is developed, so the indication of sensor failures can be detected early. The method used is Principal Component Analysis (PCA) to reduce the dimension of the sensor, with the Squarred Prediction Error (SPE) and statistic Hotteling criteria for detecting sensor failure indication. The results shows that PCA method is capable to detect the occurrence of a failure at any sensor.

  3. An on-line diagnostic expert system

    International Nuclear Information System (INIS)

    Felkel, L.

    1987-01-01

    As experience with on-line information systems, experts systems and artificial intelligence tools grows, the authors retreat from the first euphoria that AI could help them solve the problem they were unable to solve with conventional programming. The major effort of the development time goes into building the knowledge-base. There is no such thing as a generic knowledge-base for nuclear power plants as there is, for example, for the diagnosis of a Boeing 747 aircraft. AI-methods, tools and hardware are still in a state which does not optimally lend itself to real-time application. The ability of developing prototype systems to investigate variants otherwise too costly to justify is one advantage that the authors gladly accept. Last, but no least the tools provide a flexible and adaptable user interface (desktop window systems) etc. The development of such tools in a project would be prohibitive and room for experimentation would be limited

  4. Game Design to Measure Reflexes and Attention Based on Biofeedback Multi-Sensor Interaction

    Directory of Open Access Journals (Sweden)

    Inigo de Loyola Ortiz-Vigon Uriarte

    2015-03-01

    Full Text Available This paper presents a multi-sensor system for implementing biofeedback as a human-computer interaction technique in a game involving driving cars in risky situations. The sensors used are: Eye Tracker, Kinect, pulsometer, respirometer, electromiography (EMG and galvanic skin resistance (GSR. An algorithm has been designed which gives rise to an interaction logic with the game according to the set of physiological constants obtained from the sensors. The results reflect a 72.333 response to the System Usability Scale (SUS, a significant difference of p = 0.026 in GSR values in terms of the difference between the start and end of the game, and an r = 0.659 and p = 0.008 correlation while playing with the Kinect between the breathing level and the energy and joy factor. All the sensors used had an impact on the end results, whereby none of them should be disregarded in future lines of research, even though it would be interesting to obtain separate breathing values from that of the cardio.

  5. Game Design to Measure Reflexes and Attention Based on Biofeedback Multi-Sensor Interaction

    Science.gov (United States)

    Ortiz-Vigon Uriarte, Inigo de Loyola; Garcia-Zapirain, Begonya; Garcia-Chimeno, Yolanda

    2015-01-01

    This paper presents a multi-sensor system for implementing biofeedback as a human-computer interaction technique in a game involving driving cars in risky situations. The sensors used are: Eye Tracker, Kinect, pulsometer, respirometer, electromiography (EMG) and galvanic skin resistance (GSR). An algorithm has been designed which gives rise to an interaction logic with the game according to the set of physiological constants obtained from the sensors. The results reflect a 72.333 response to the System Usability Scale (SUS), a significant difference of p = 0.026 in GSR values in terms of the difference between the start and end of the game, and an r = 0.659 and p = 0.008 correlation while playing with the Kinect between the breathing level and the energy and joy factor. All the sensors used had an impact on the end results, whereby none of them should be disregarded in future lines of research, even though it would be interesting to obtain separate breathing values from that of the cardio. PMID:25789493

  6. Adaptive LINE-P: An Adaptive Linear Energy Prediction Model for Wireless Sensor Network Nodes.

    Science.gov (United States)

    Ahmed, Faisal; Tamberg, Gert; Le Moullec, Yannick; Annus, Paul

    2018-04-05

    In the context of wireless sensor networks, energy prediction models are increasingly useful tools that can facilitate the power management of the wireless sensor network (WSN) nodes. However, most of the existing models suffer from the so-called fixed weighting parameter, which limits their applicability when it comes to, e.g., solar energy harvesters with varying characteristics. Thus, in this article we propose the Adaptive LINE-P (all cases) model that calculates adaptive weighting parameters based on the stored energy profiles. Furthermore, we also present a profile compression method to reduce the memory requirements. To determine the performance of our proposed model, we have used real data for the solar and wind energy profiles. The simulation results show that our model achieves 90-94% accuracy and that the compressed method reduces memory overheads by 50% as compared to state-of-the-art models.

  7. Integrating soft sensor systems using conductive thread

    Science.gov (United States)

    Teng, Lijun; Jeronimo, Karina; Wei, Tianqi; Nemitz, Markus P.; Lyu, Geng; Stokes, Adam A.

    2018-05-01

    We are part of a growing community of researchers who are developing a new class of soft machines. By using mechanically soft materials (MPa modulus) we can design systems which overcome the bulk-mechanical mismatches between soft biological systems and hard engineered components. To develop fully integrated soft machines—which include power, communications, and control sub-systems—the research community requires methods for interconnecting between soft and hard electronics. Sensors based upon eutectic gallium alloys in microfluidic channels can be used to measure normal and strain forces, but integrating these sensors into systems of heterogeneous Young’s modulus is difficult due the complexity of finding a material which is electrically conductive, mechanically flexible, and stable over prolonged periods of time. Many existing gallium-based liquid alloy sensors are not mechanically or electrically robust, and have poor stability over time. We present the design and fabrication of a high-resolution pressure-sensor soft system that can transduce normal force into a digital output. In this soft system, which is built on a monolithic silicone substrate, a galinstan-based microfluidic pressure sensor is integrated with a flexible printed circuit board. We used conductive thread as the interconnect and found that this method alleviates problems arising due to the mechanical mismatch between conventional metal wires and soft or liquid materials. Conductive thread is low-cost, it is readily wetted by the liquid metal, it produces little bending moment into the microfluidic channel, and it can be connected directly onto the copper bond-pads of the flexible printed circuit board. We built a bridge-system to provide stable readings from the galinstan pressure sensor. This system gives linear measurement results between 500-3500 Pa of applied pressure. We anticipate that integrated systems of this type will find utility in soft-robotic systems as used for wearable

  8. Sensor Technologies for Intelligent Transportation Systems.

    Science.gov (United States)

    Guerrero-Ibáñez, Juan; Zeadally, Sherali; Contreras-Castillo, Juan

    2018-04-16

    Modern society faces serious problems with transportation systems, including but not limited to traffic congestion, safety, and pollution. Information communication technologies have gained increasing attention and importance in modern transportation systems. Automotive manufacturers are developing in-vehicle sensors and their applications in different areas including safety, traffic management, and infotainment. Government institutions are implementing roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. By seamlessly integrating vehicles and sensing devices, their sensing and communication capabilities can be leveraged to achieve smart and intelligent transportation systems. We discuss how sensor technology can be integrated with the transportation infrastructure to achieve a sustainable Intelligent Transportation System (ITS) and how safety, traffic control and infotainment applications can benefit from multiple sensors deployed in different elements of an ITS. Finally, we discuss some of the challenges that need to be addressed to enable a fully operational and cooperative ITS environment.

  9. Sensor Technologies for Intelligent Transportation Systems

    Science.gov (United States)

    Guerrero-Ibáñez, Juan; Zeadally, Sherali

    2018-01-01

    Modern society faces serious problems with transportation systems, including but not limited to traffic congestion, safety, and pollution. Information communication technologies have gained increasing attention and importance in modern transportation systems. Automotive manufacturers are developing in-vehicle sensors and their applications in different areas including safety, traffic management, and infotainment. Government institutions are implementing roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. By seamlessly integrating vehicles and sensing devices, their sensing and communication capabilities can be leveraged to achieve smart and intelligent transportation systems. We discuss how sensor technology can be integrated with the transportation infrastructure to achieve a sustainable Intelligent Transportation System (ITS) and how safety, traffic control and infotainment applications can benefit from multiple sensors deployed in different elements of an ITS. Finally, we discuss some of the challenges that need to be addressed to enable a fully operational and cooperative ITS environment. PMID:29659524

  10. Sensor Technologies for Intelligent Transportation Systems

    Directory of Open Access Journals (Sweden)

    Juan Guerrero-Ibáñez

    2018-04-01

    Full Text Available Modern society faces serious problems with transportation systems, including but not limited to traffic congestion, safety, and pollution. Information communication technologies have gained increasing attention and importance in modern transportation systems. Automotive manufacturers are developing in-vehicle sensors and their applications in different areas including safety, traffic management, and infotainment. Government institutions are implementing roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. By seamlessly integrating vehicles and sensing devices, their sensing and communication capabilities can be leveraged to achieve smart and intelligent transportation systems. We discuss how sensor technology can be integrated with the transportation infrastructure to achieve a sustainable Intelligent Transportation System (ITS and how safety, traffic control and infotainment applications can benefit from multiple sensors deployed in different elements of an ITS. Finally, we discuss some of the challenges that need to be addressed to enable a fully operational and cooperative ITS environment.

  11. Impact of sensor detection limits on protecting water distribution systems from contamination events

    International Nuclear Information System (INIS)

    McKenna, Sean Andrew; Hart, David Blaine; Yarrington, Lane

    2006-01-01

    Real-time water quality sensors are becoming commonplace in water distribution systems. However, field deployable, contaminant-specific sensors are still in the development stage. As development proceeds, the necessary operating parameters of these sensors must be determined to protect consumers from accidental and malevolent contamination events. This objective can be quantified in several different ways including minimization of: the time necessary to detect a contamination event, the population exposed to contaminated water, the extent of the contamination within the network, and others. We examine the ability of a sensor set to meet these objectives as a function of both the detection limit of the sensors and the number of sensors in the network. A moderately sized distribution network is used as an example and different sized sets of randomly placed sensors are considered. For each combination of a certain number of sensors and a detection limit, the mean values of the different objectives across multiple random sensor placements are calculated. The tradeoff between the necessary detection limit in a sensor and the number of sensors is evaluated. Results show that for the example problem examined here, a sensor detection limit of 0.01 of the average source concentration is adequate for maximum protection. Detection of events is dependent on the detection limit of the sensors, but for those events that are detected, the values of the performance measures are not a function of the sensor detection limit. The results of replacing a single sensor in a network with a sensor having a much lower detection limit show that while this replacement can improve results, the majority of the additional events detected had performance measures of relatively low consequence.

  12. Development of sensor system for indoor location based service implementation

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Joo Heon; Lee, Kyung Ho [Kookmin Univ., Seoul (Korea, Republic of)

    2012-11-15

    This paper introduces a sensor system based on indoor locations in order to implement the Building Energy Management System. This system consists of a thermopile sensor and an ultrasonic sensor. The sensor module is rotated by 360 .deg. and yawed up and down by two electric motors. Therefore, it can simultaneously detect the number and location of the inhabitants in the room. It uses wireless technology to communicate with the building manager or the smart home server, and it can save electric energy by controlling the lighting system or heating/air conditioning equipment automatically. We also demonstrate the usefulness of the proposed system by applying it to a real environment.

  13. Development of sensor system for indoor location based service implementation

    International Nuclear Information System (INIS)

    Cha, Joo Heon; Lee, Kyung Ho

    2012-01-01

    This paper introduces a sensor system based on indoor locations in order to implement the Building Energy Management System. This system consists of a thermopile sensor and an ultrasonic sensor. The sensor module is rotated by 360 .deg. and yawed up and down by two electric motors. Therefore, it can simultaneously detect the number and location of the inhabitants in the room. It uses wireless technology to communicate with the building manager or the smart home server, and it can save electric energy by controlling the lighting system or heating/air conditioning equipment automatically. We also demonstrate the usefulness of the proposed system by applying it to a real environment

  14. On the Optimal Location of Sensors for Parametric Identification of Linear Structural Systems

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Brincker, Rune

    A survey of the field of optimal location of sensors for parametric identification of linear structural systems is presented. The survey shows that few papers are devoted to the case of optimal location sensors in which the measurements are modelled by a random field with non-trivial covariance...... function. Most often it is assumed that the results of the measurements are statistically independent variables. In an example the importance of considering the measurements as statistically dependent random variables is shown. The example is concerned with optimal location of sensors for parametric...... identification of modal parameters for a vibrating beam under random loading. The covariance of the modal parameters expected to be obtained is investigated to variations of number and location of sensors. Further, the influence of the noise on the optimal location of the sensors is investigated....

  15. Bio-integrated electronics and sensor systems

    Science.gov (United States)

    Yeo, Woon-Hong; Webb, R. Chad; Lee, Woosik; Jung, Sungyoung; Rogers, John A.

    2013-05-01

    Skin-mounted epidermal electronics, a strategy for bio-integrated electronics, provide an avenue to non-invasive monitoring of clinically relevant physiological signals for healthcare applications. Current conventional systems consist of single-point sensors fastened to the skin with adhesives, and sometimes with conducting gels, which limits their use outside of clinical settings due to loss of adhesion and irritation to the user. In order to facilitate extended use of skin-mounted healthcare sensors without disrupting everyday life, we envision electronic monitoring systems that integrate seamlessly with the skin below the notice of the user. This manuscript reviews recent significant results towards our goal of wearable electronic sensor systems for long-term monitoring of physiological signals. Ultra-thin epidermal electronic systems (EES) are demonstrated for extended use on the skin, in a conformal manner, including during everyday bathing and sleeping activities. We describe the assessment of clinically relevant physiological parameters, such as electrocardiograms (ECG), electromyograms (EMG), electroencephalograms (EEG), temperature, mechanical strain and thermal conductivity, using examples of multifunctional EES devices. Additionally, we demonstrate capability for real life application of EES by monitoring the system functionality, which has no discernible change, during cyclic fatigue testing.

  16. Miniaturized, low power FGMOSFET radiation sensor and wireless dosimeter system

    KAUST Repository

    Arsalan, Muhammad; Shamim, Atif; Tarr, Nicholas Garry; Roy, Langis

    2013-01-01

    A miniaturized floating gate (FG) MOSFET radiation sensor system is disclosed, The sensor preferably comprises a matched pair of sensor and reference FGMOSFETs wherein the sensor FGMOSFET has a larger area floating gate with an extension over a field oxide layer, for accumulation of charge and increased sensitivity. Elimination of a conventional control gate and injector gate reduces capacitance, and increases sensitivity, and allows for fabrication using standard low cost CMOS technology. A sensor system may be provided with integrated signal processing electronics, for monitoring a change in differential channel current I.sub.D, indicative of radiation dose, and an integrated negative bias generator for automatic pre-charging from a low voltage power source. Optionally, the system may be coupled to a wireless transmitter. A compact wireless sensor System on Package solution is presented, suitable for dosimetry for radiotherapy or other biomedical applications.

  17. Miniaturized, low power FGMOSFET radiation sensor and wireless dosimeter system

    KAUST Repository

    Arsalan, Muhammad

    2013-08-27

    A miniaturized floating gate (FG) MOSFET radiation sensor system is disclosed, The sensor preferably comprises a matched pair of sensor and reference FGMOSFETs wherein the sensor FGMOSFET has a larger area floating gate with an extension over a field oxide layer, for accumulation of charge and increased sensitivity. Elimination of a conventional control gate and injector gate reduces capacitance, and increases sensitivity, and allows for fabrication using standard low cost CMOS technology. A sensor system may be provided with integrated signal processing electronics, for monitoring a change in differential channel current I.sub.D, indicative of radiation dose, and an integrated negative bias generator for automatic pre-charging from a low voltage power source. Optionally, the system may be coupled to a wireless transmitter. A compact wireless sensor System on Package solution is presented, suitable for dosimetry for radiotherapy or other biomedical applications.

  18. Sensor network based vehicle classification and license plate identification system

    Energy Technology Data Exchange (ETDEWEB)

    Frigo, Janette Rose [Los Alamos National Laboratory; Brennan, Sean M [Los Alamos National Laboratory; Rosten, Edward J [Los Alamos National Laboratory; Raby, Eric Y [Los Alamos National Laboratory; Kulathumani, Vinod K [WEST VIRGINIA UNIV.

    2009-01-01

    Typically, for energy efficiency and scalability purposes, sensor networks have been used in the context of environmental and traffic monitoring applications in which operations at the sensor level are not computationally intensive. But increasingly, sensor network applications require data and compute intensive sensors such video cameras and microphones. In this paper, we describe the design and implementation of two such systems: a vehicle classifier based on acoustic signals and a license plate identification system using a camera. The systems are implemented in an energy-efficient manner to the extent possible using commercially available hardware, the Mica motes and the Stargate platform. Our experience in designing these systems leads us to consider an alternate more flexible, modular, low-power mote architecture that uses a combination of FPGAs, specialized embedded processing units and sensor data acquisition systems.

  19. The instantaneous linear motion information measurement method based on inertial sensors for ships

    Science.gov (United States)

    Yang, Xu; Huang, Jing; Gao, Chen; Quan, Wei; Li, Ming; Zhang, Yanshun

    2018-05-01

    Ship instantaneous line motion information is the important foundation for ship control, which needs to be measured accurately. For this purpose, an instantaneous line motion measurement method based on inertial sensors is put forward for ships. By introducing a half-fixed coordinate system to realize the separation between instantaneous line motion and ship master movement, the instantaneous line motion acceleration of ships can be obtained with higher accuracy. Then, the digital high-pass filter is applied to suppress the velocity error caused by the low frequency signal such as schuler period. Finally, the instantaneous linear motion displacement of ships can be measured accurately. Simulation experimental results show that the method is reliable and effective, and can realize the precise measurement of velocity and displacement of instantaneous line motion for ships.

  20. ENERGY EFFICIENT TRACKING SYSTEM USING WIRELESS SENSORS

    OpenAIRE

    Thankaselvi Kumaresan; Sheryl Mathias; Digja Khanvilkar; Prof. Smita Dange

    2014-01-01

    One of the most important applications of wireless sensor networks (WSNs) is surveillance system, which is used to track moving targets. WSN is composed of a large number of low cost sensors which operate on the power derived from batteries. Energy efficiency is an important issue in WSN, which determines the network lifetime. Due to the need for continuous monitoring with 100% efficiency, keeping all the sensor nodes active permanently leads to fast draining of batteries. Hen...

  1. Design of Early Warning System Based on Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Gan Bo

    2018-01-01

    Full Text Available In order to solve the shortcomings of the landslide monitoring technology method, a set of landslides monitoring and early warning system is designed. It can achieve real-time sensor data acquisition, remote transmission and query display. In addition, aiming at the harsh environment of landslide monitoring and the performance requirements of the monitoring system, an improved minimum hop routing protocol is proposed. It can reduce network energy consumption, enhance network robustness, and improve node layout and networking flexibility. In order to realize the remote transmission of data, GPRS wireless communication is used to transmit monitoring data. Combined with remote monitoring center, real-time data display, query, preservation and landslide warning and prediction are realized. The results show that the sensor data acquisition system is accurate, the system is stable, and the node network is flexible. Therefore, the monitoring system has a good use value.

  2. Solid-State Gas Sensors: Sensor System Challenges in the Civil Security Domain.

    Science.gov (United States)

    Müller, Gerhard; Hackner, Angelika; Beer, Sebastian; Göbel, Johann

    2016-01-20

    The detection of military high explosives and illicit drugs presents problems of paramount importance in the fields of counter terrorism and criminal investigation. Effectively dealing with such threats requires hand-portable, mobile and affordable instruments. The paper shows that solid-state gas sensors can contribute to the development of such instruments provided the sensors are incorporated into integrated sensor systems, which acquire the target substances in the form of particle residue from suspect objects and which process the collected residue through a sequence of particle sampling, solid-vapor conversion, vapor detection and signal treatment steps. Considering sensor systems with metal oxide gas sensors at the backend, it is demonstrated that significant gains in sensitivity, selectivity and speed of response can be attained when the threat substances are sampled in particle as opposed to vapor form.

  3. Real-time DNA Amplification and Detection System Based on a CMOS Image Sensor.

    Science.gov (United States)

    Wang, Tiantian; Devadhasan, Jasmine Pramila; Lee, Do Young; Kim, Sanghyo

    2016-01-01

    In the present study, we developed a polypropylene well-integrated complementary metal oxide semiconductor (CMOS) platform to perform the loop mediated isothermal amplification (LAMP) technique for real-time DNA amplification and detection simultaneously. An amplification-coupled detection system directly measures the photon number changes based on the generation of magnesium pyrophosphate and color changes. The photon number decreases during the amplification process. The CMOS image sensor observes the photons and converts into digital units with the aid of an analog-to-digital converter (ADC). In addition, UV-spectral studies, optical color intensity detection, pH analysis, and electrophoresis detection were carried out to prove the efficiency of the CMOS sensor based the LAMP system. Moreover, Clostridium perfringens was utilized as proof-of-concept detection for the new system. We anticipate that this CMOS image sensor-based LAMP method will enable the creation of cost-effective, label-free, optical, real-time and portable molecular diagnostic devices.

  4. Research of home energy management system based on technology of PLC and ZigBee

    Science.gov (United States)

    Wei, Qi; Shen, Jiaojiao

    2015-12-01

    In view of the problem of saving effectively energy and energy management in home, this paper designs a home energy intelligent control system based on power line carrier communication and wireless ZigBee sensor networks. The system is based on ARM controller, power line carrier communication and wireless ZigBee sensor network as the terminal communication mode, and realizes the centralized and intelligent control of home appliances. Through the combination of these two technologies, the advantages of the two technologies complement each other, and provide a feasible plan for the construction of energy-efficient, intelligent home energy management system.

  5. Transparent Fingerprint Sensor System for Large Flat Panel Display

    Directory of Open Access Journals (Sweden)

    Wonkuk Seo

    2018-01-01

    Full Text Available In this paper, we introduce a transparent fingerprint sensing system using a thin film transistor (TFT sensor panel, based on a self-capacitive sensing scheme. An armorphousindium gallium zinc oxide (a-IGZO TFT sensor array and associated custom Read-Out IC (ROIC are implemented for the system. The sensor panel has a 200 × 200 pixel array and each pixel size is as small as 50 μm × 50 μm. The ROIC uses only eight analog front-end (AFE amplifier stages along with a successive approximation analog-to-digital converter (SAR ADC. To get the fingerprint image data from the sensor array, the ROIC senses a capacitance, which is formed by a cover glass material between a human finger and an electrode of each pixel of the sensor array. Three methods are reviewed for estimating the self-capacitance. The measurement result demonstrates that the transparent fingerprint sensor system has an ability to differentiate a human finger’s ridges and valleys through the fingerprint sensor array.

  6. A field experiment on power line stabilization by SMES system

    International Nuclear Information System (INIS)

    Irie, F.; Takeo, M.; Sato, S.; Katahira, O.; Fukui, F.; Takamatsu, M.

    1992-01-01

    In this paper field experiments on stabilization of a hydro power plant by a SMES system are reported, where a generator having a rating of 60 kW at 3.3kV is connected to a 6.6kV power distribution line. The SMES system is composed of two 30kVA GTO convertors and a superconducting magnet system with an energy of 30kJ at 100A. Experiments of stabilization for the generator fluctuation caused by a sudden insertion of inductors in the line are successfully performed for some control modes. The value of the SMES system to compensate for a short period voltage dip is also confirmed

  7. Fusion of Images from Dissimilar Sensor Systems

    National Research Council Canada - National Science Library

    Chow, Khin

    2004-01-01

    Different sensors exploit different regions of the electromagnetic spectrum; therefore a multi-sensor image fusion system can take full advantage of the complementary capabilities of individual sensors in the suit...

  8. Intelligent Chemical Sensor Systems for In-space Safety Applications

    Science.gov (United States)

    Hunter, G. W.; Xu, J. C.; Neudeck, P. G.; Makel, D. B.; Ward, B.; Liu, C. C.

    2006-01-01

    Future in-space and lunar operations will require significantly improved monitoring and Integrated System Health Management (ISHM) throughout the mission. In particular, the monitoring of chemical species is an important component of an overall monitoring system for space vehicles and operations. For example, in leak monitoring of propulsion systems during launch, inspace, and on lunar surfaces, detection of low concentrations of hydrogen and other fuels is important to avoid explosive conditions that could harm personnel and damage the vehicle. Dependable vehicle operation also depends on the timely and accurate measurement of these leaks. Thus, the development of a sensor array to determine the concentration of fuels such as hydrogen, hydrocarbons, or hydrazine as well as oxygen is necessary. Work has been on-going to develop an integrated smart leak detection system based on miniaturized sensors to detect hydrogen, hydrocarbons, or hydrazine, and oxygen. The approach is to implement Microelectromechanical Systems (MEMS) based sensors incorporated with signal conditioning electronics, power, data storage, and telemetry enabling intelligent systems. The final sensor system will be self-contained with a surface area comparable to a postage stamp. This paper discusses the development of this "Lick and Stick" leak detection system and it s application to In-Space Transportation and other Exploration applications.

  9. DEVELOPMENT OF A PEDESTRIAN INDOOR NAVIGATION SYSTEM BASED ON MULTI-SENSOR FUSION AND FUZZY LOGIC ESTIMATION ALGORITHMS

    Directory of Open Access Journals (Sweden)

    Y. C. Lai

    2015-05-01

    Full Text Available This paper presents a pedestrian indoor navigation system based on the multi-sensor fusion and fuzzy logic estimation algorithms. The proposed navigation system is a self-contained dead reckoning navigation that means no other outside signal is demanded. In order to achieve the self-contained capability, a portable and wearable inertial measure unit (IMU has been developed. Its adopted sensors are the low-cost inertial sensors, accelerometer and gyroscope, based on the micro electro-mechanical system (MEMS. There are two types of the IMU modules, handheld and waist-mounted. The low-cost MEMS sensors suffer from various errors due to the results of manufacturing imperfections and other effects. Therefore, a sensor calibration procedure based on the scalar calibration and the least squares methods has been induced in this study to improve the accuracy of the inertial sensors. With the calibrated data acquired from the inertial sensors, the step length and strength of the pedestrian are estimated by multi-sensor fusion and fuzzy logic estimation algorithms. The developed multi-sensor fusion algorithm provides the amount of the walking steps and the strength of each steps in real-time. Consequently, the estimated walking amount and strength per step are taken into the proposed fuzzy logic estimation algorithm to estimates the step lengths of the user. Since the walking length and direction are both the required information of the dead reckoning navigation, the walking direction is calculated by integrating the angular rate acquired by the gyroscope of the developed IMU module. Both the walking length and direction are calculated on the IMU module and transmit to a smartphone with Bluetooth to perform the dead reckoning navigation which is run on a self-developed APP. Due to the error accumulating of dead reckoning navigation, a particle filter and a pre-loaded map of indoor environment have been applied to the APP of the proposed navigation system

  10. Development of a Pedestrian Indoor Navigation System Based on Multi-Sensor Fusion and Fuzzy Logic Estimation Algorithms

    Science.gov (United States)

    Lai, Y. C.; Chang, C. C.; Tsai, C. M.; Lin, S. Y.; Huang, S. C.

    2015-05-01

    This paper presents a pedestrian indoor navigation system based on the multi-sensor fusion and fuzzy logic estimation algorithms. The proposed navigation system is a self-contained dead reckoning navigation that means no other outside signal is demanded. In order to achieve the self-contained capability, a portable and wearable inertial measure unit (IMU) has been developed. Its adopted sensors are the low-cost inertial sensors, accelerometer and gyroscope, based on the micro electro-mechanical system (MEMS). There are two types of the IMU modules, handheld and waist-mounted. The low-cost MEMS sensors suffer from various errors due to the results of manufacturing imperfections and other effects. Therefore, a sensor calibration procedure based on the scalar calibration and the least squares methods has been induced in this study to improve the accuracy of the inertial sensors. With the calibrated data acquired from the inertial sensors, the step length and strength of the pedestrian are estimated by multi-sensor fusion and fuzzy logic estimation algorithms. The developed multi-sensor fusion algorithm provides the amount of the walking steps and the strength of each steps in real-time. Consequently, the estimated walking amount and strength per step are taken into the proposed fuzzy logic estimation algorithm to estimates the step lengths of the user. Since the walking length and direction are both the required information of the dead reckoning navigation, the walking direction is calculated by integrating the angular rate acquired by the gyroscope of the developed IMU module. Both the walking length and direction are calculated on the IMU module and transmit to a smartphone with Bluetooth to perform the dead reckoning navigation which is run on a self-developed APP. Due to the error accumulating of dead reckoning navigation, a particle filter and a pre-loaded map of indoor environment have been applied to the APP of the proposed navigation system to extend its

  11. Coupled wave sensor technology

    International Nuclear Information System (INIS)

    Maki, M.C.

    1988-01-01

    Buried line guided radar sensors have been used successfully for a number of years to provide perimeter security for high value resources. This paper introduces a new complementary sensor advancement at Computing Devices termed 'coupled wave device technology' (CWD). It provides many of the inherent advantages of leakey cable sensors, such as terrain-following and the ability to discriminate between humans and small animals. It also is able to provide a high or wide detection zone, and allows the sensor to be mounted aerially and adjacent to a wall or fence. Several alternative sensors have been developed which include a single-line sensor, a dual-line hybrid sensor that combines the elements of ported coax and CWD technology, and a rapid-deployment portable sensor for temporary or mobile applications. A description of the technology, the sensors, and their characteristics is provided

  12. On-Line Temperature Estimation for Noisy Thermal Sensors Using a Smoothing Filter-Based Kalman Predictor

    Directory of Open Access Journals (Sweden)

    Xin Li

    2018-02-01

    Full Text Available Dynamic thermal management (DTM mechanisms utilize embedded thermal sensors to collect fine-grained temperature information for monitoring the real-time thermal behavior of multi-core processors. However, embedded thermal sensors are very susceptible to a variety of sources of noise, including environmental uncertainty and process variation. This causes the discrepancies between actual temperatures and those observed by on-chip thermal sensors, which seriously affect the efficiency of DTM. In this paper, a smoothing filter-based Kalman prediction technique is proposed to accurately estimate the temperatures from noisy sensor readings. For the multi-sensor estimation scenario, the spatial correlations among different sensor locations are exploited. On this basis, a multi-sensor synergistic calibration algorithm (known as MSSCA is proposed to improve the simultaneous prediction accuracy of multiple sensors. Moreover, an infrared imaging-based temperature measurement technique is also proposed to capture the thermal traces of an advanced micro devices (AMD quad-core processor in real time. The acquired real temperature data are used to evaluate our prediction performance. Simulation shows that the proposed synergistic calibration scheme can reduce the root-mean-square error (RMSE by 1.2 ∘ C and increase the signal-to-noise ratio (SNR by 15.8 dB (with a very small average runtime overhead compared with assuming the thermal sensor readings to be ideal. Additionally, the average false alarm rate (FAR of the corrected sensor temperature readings can be reduced by 28.6%. These results clearly demonstrate that if our approach is used to perform temperature estimation, the response mechanisms of DTM can be triggered to adjust the voltages, frequencies, and cooling fan speeds at more appropriate times.

  13. On-Line Temperature Estimation for Noisy Thermal Sensors Using a Smoothing Filter-Based Kalman Predictor.

    Science.gov (United States)

    Li, Xin; Ou, Xingtao; Li, Zhi; Wei, Henglu; Zhou, Wei; Duan, Zhemin

    2018-02-02

    Dynamic thermal management (DTM) mechanisms utilize embedded thermal sensors to collect fine-grained temperature information for monitoring the real-time thermal behavior of multi-core processors. However, embedded thermal sensors are very susceptible to a variety of sources of noise, including environmental uncertainty and process variation. This causes the discrepancies between actual temperatures and those observed by on-chip thermal sensors, which seriously affect the efficiency of DTM. In this paper, a smoothing filter-based Kalman prediction technique is proposed to accurately estimate the temperatures from noisy sensor readings. For the multi-sensor estimation scenario, the spatial correlations among different sensor locations are exploited. On this basis, a multi-sensor synergistic calibration algorithm (known as MSSCA) is proposed to improve the simultaneous prediction accuracy of multiple sensors. Moreover, an infrared imaging-based temperature measurement technique is also proposed to capture the thermal traces of an advanced micro devices (AMD) quad-core processor in real time. The acquired real temperature data are used to evaluate our prediction performance. Simulation shows that the proposed synergistic calibration scheme can reduce the root-mean-square error (RMSE) by 1.2 ∘ C and increase the signal-to-noise ratio (SNR) by 15.8 dB (with a very small average runtime overhead) compared with assuming the thermal sensor readings to be ideal. Additionally, the average false alarm rate (FAR) of the corrected sensor temperature readings can be reduced by 28.6%. These results clearly demonstrate that if our approach is used to perform temperature estimation, the response mechanisms of DTM can be triggered to adjust the voltages, frequencies, and cooling fan speeds at more appropriate times.

  14. Automatic Water Sensor Window Opening System

    KAUST Repository

    Percher, Michael

    2013-01-01

    A system can automatically open at least one window of a vehicle when the vehicle is being submerged in water. The system can include a water collector and a water sensor, and when the water sensor detects water in the water collector, at least one window of the vehicle opens.

  15. Automatic Water Sensor Window Opening System

    KAUST Repository

    Percher, Michael

    2013-12-05

    A system can automatically open at least one window of a vehicle when the vehicle is being submerged in water. The system can include a water collector and a water sensor, and when the water sensor detects water in the water collector, at least one window of the vehicle opens.

  16. Trusted Operations on Sensor Data †

    Directory of Open Access Journals (Sweden)

    Hassaan Janjua

    2018-04-01

    Full Text Available The widespread use of mobile devices has allowed the development of participatory sensing systems that capture various types of data using the existing or external sensors attached to mobile devices. Gathering data from such anonymous sources requires a mechanism to establish the integrity of sensor readings. In many cases, sensor data need to be preprocessed on the device itself before being uploaded to the target server while ensuring the chain of trust from capture to the delivery of the data. This can be achieved by a framework that provides a means to implement arbitrary operations to be performed on trusted sensor data, while guaranteeing the security and integrity of the data. This paper presents the design and implementation of a framework that allows the capture of trusted sensor data from both external and internal sensors on a mobile phone along with the development of trusted operations on sensor data while providing a mechanism for performing predefined operations on the data such that the chain of trust is maintained. The evaluation shows that the proposed system ensures the security and integrity of sensor data with minimal performance overhead.

  17. Battery management system with distributed wireless sensors

    Science.gov (United States)

    Farmer, Joseph C.; Bandhauer, Todd M.

    2016-02-23

    A system for monitoring parameters of an energy storage system having a multiplicity of individual energy storage cells. A radio frequency identification and sensor unit is connected to each of the individual energy storage cells. The radio frequency identification and sensor unit operates to sense the parameter of each individual energy storage cell and provides radio frequency transmission of the parameters of each individual energy storage cell. A management system monitors the radio frequency transmissions from the radio frequency identification and sensor units for monitoring the parameters of the energy storage system.

  18. Evaluation of microwave cavity gas sensor for in-vessel monitoring of dry cask storage systems

    Science.gov (United States)

    Bakhtiari, S.; Gonnot, T.; Elmer, T.; Chien, H.-T.; Engel, D.; Koehl, E.; Heifetz, A.

    2018-04-01

    Results are reported of research activities conducted at Argonne to assess the viability of microwave resonant cavities for extended in-vessel monitoring of dry cask storage system (DCSS) environment. One of the gases of concern to long-term storage in canisters is water vapor, which appears due to evaporation of residual moisture from incompletely dried fuel assembly. Excess moisture could contribute to corrosion and deterioration of components inside the canister, which would in turn compromise maintenance and safe transportation of such systems. Selection of the sensor type in this work was based on a number of factors, including good sensitivity, fast response time, small form factor and ruggedness of the probing element. A critical design constraint was the capability to mount and operate the sensor using the existing canister penetrations-use of existing ports for thermocouple lances. Microwave resonant cavities operating at select resonant frequency matched to the rotational absorption line of the molecule of interest offer the possibility of highly sensitive detection. In this study, two prototype K-band microwave cylindrical cavities operating at TE01n resonant modes around the 22 GHz water absorption line were developed and tested. The sensors employ a single port for excitation and detection and a novel dual-loop inductive coupling for optimized excitation of the resonant modes. Measurement of the loaded and unloaded cavity quality factor was obtained from the S11 parameter. The acquisition and real-time analysis of data was implemented using software based tools developed for this purpose. The results indicate that the microwave humidity sensors developed in this work could be adapted to in-vessel monitoring applications that require few parts-per-million level of sensitivity. The microwave sensing method for detection of water vapor can potentially be extended to detection of radioactive fission gases leaking into the interior of the canister through

  19. Programmable System-on-Chip (PSoC) Embedded Readout Designs for Liquid Helium Level Sensors.

    Science.gov (United States)

    Parasakthi, C; Gireesan, K; Usha Rani, R; Sheela, O K; Janawadkar, M P

    2014-08-01

    This article reports the development of programmable system-on-chip (PSoC)-based embedded readout designs for liquid helium level sensors using resistive liquid vapor discriminators. The system has been built for the measurement of liquid helium level in a concave-bottomed, helmet-shaped, fiber-reinforced plastic cryostat for magnetoencephalography. This design incorporates three carbon resistors as cost-effective sensors, which are mounted at desired heights inside the cryostat and were used to infer the liquid helium level by measuring their temperature-dependent resistance. Localized electrical heating of the carbon resistors was used to discriminate whether the resistor is immersed in liquid helium or its vapor by exploiting the difference in the heat transfer rates in the two environments. This report describes a single PSoC chip for the design and development of a constant current source to drive the three carbon resistors, a multiplexer to route the sensor outputs to the analog-to-digital converter (ADC), a buffer to avoid loading of the sensors, an ADC for digitizing the data, and a display using liquid crystal display cum light-emitting diode modules. The level sensor readout designed with a single PSoC chip enables cost-effective and reliable measurement system design. © 2014 Society for Laboratory Automation and Screening.

  20. A Multi-Agent System Architecture for Sensor Networks

    Directory of Open Access Journals (Sweden)

    María Guijarro

    2009-12-01

    Full Text Available The design of the control systems for sensor networks presents important challenges. Besides the traditional problems about how to process the sensor data to obtain the target information, engineers need to consider additional aspects such as the heterogeneity and high number of sensors, and the flexibility of these networks regarding topologies and the sensors in them. Although there are partial approaches for resolving these issues, their integration relies on ad hoc solutions requiring important development efforts. In order to provide an effective approach for this integration, this paper proposes an architecture based on the multi-agent system paradigm with a clear separation of concerns. The architecture considers sensors as devices used by an upper layer of manager agents. These agents are able to communicate and negotiate services to achieve the required functionality. Activities are organized according to roles related with the different aspects to integrate, mainly sensor management, data processing, communication and adaptation to changes in the available devices and their capabilities. This organization largely isolates and decouples the data management from the changing network, while encouraging reuse of solutions. The use of the architecture is facilitated by a specific modelling language developed through metamodelling. A case study concerning a generic distributed system for fire fighting illustrates the approach and the comparison with related work.

  1. Bundle Block Adjustment of Airborne Three-Line Array Imagery Based on Rotation Angles

    Directory of Open Access Journals (Sweden)

    Yongjun Zhang

    2014-05-01

    Full Text Available In the midst of the rapid developments in electronic instruments and remote sensing technologies, airborne three-line array sensors and their applications are being widely promoted and plentiful research related to data processing and high precision geo-referencing technologies is under way. The exterior orientation parameters (EOPs, which are measured by the integrated positioning and orientation system (POS of airborne three-line sensors, however, have inevitable systematic errors, so the level of precision of direct geo-referencing is not sufficiently accurate for surveying and mapping applications. Consequently, a few ground control points are necessary to refine the exterior orientation parameters, and this paper will discuss bundle block adjustment models based on the systematic error compensation and the orientation image, considering the principle of an image sensor and the characteristics of the integrated POS. Unlike the models available in the literature, which mainly use a quaternion to represent the rotation matrix of exterior orientation, three rotation angles are directly used in order to effectively model and eliminate the systematic errors of the POS observations. Very good experimental results have been achieved with several real datasets that verify the correctness and effectiveness of the proposed adjustment models.

  2. Earthquake Early Warning Management based on Client-Server using Primary Wave data from Vibrating Sensor

    Science.gov (United States)

    Laumal, F. E.; Nope, K. B. N.; Peli, Y. S.

    2018-01-01

    Early warning is a warning mechanism before an actual incident occurs, can be implemented on natural events such as tsunamis or earthquakes. Earthquakes are classified in tectonic and volcanic types depend on the source and nature. The tremor in the form of energy propagates in all directions as Primary and Secondary waves. Primary wave as initial earthquake vibrations propagates longitudinally, while the secondary wave propagates like as a sinusoidal wave after Primary, destructive and as a real earthquake. To process the primary vibration data captured by the earthquake sensor, a network management required client computer to receives primary data from sensors, authenticate and forward to a server computer to set up an early warning system. With the water propagation concept, a method of early warning system has been determined in which some sensors are located on the same line, sending initial vibrations as primary data on the same scale and the server recommended to the alarm sound as an early warning.

  3. Development and application of bio-sensor. Production of ammonia sensor

    Energy Technology Data Exchange (ETDEWEB)

    Totsuka, Yoshiyuki; Matsumoto, Yutaka; Sakata, Tadashi; Nakatsugawa, Shuuji; Nishina, Tokuhiro; Shiozawa, Kanji [Shizuoka Prefectural Industrial Technology Center, Shizuoka, (Japan)

    1989-08-01

    The objectives of this study are to make a biosensor on a trial basis which can instantaneously measure the nitrogen in wastewater, and to develop a wastewater treatment system which is capable of on-line measurement and controlling. The system provides easier operational control relating to such a high efficient treatment as the removal of nitrogen content in wastewater, serving as a solution to the eutrophication problem. It can be applied also to the analysis of fertilizer components for agriculture. Ammonia oxidizing bacteria were immobilized with cellulose acetate film, which is mounted on a diaphragm type oxygen electrode to make a sensor, and its responsibility was studied. The gradient is slow in high concentration but sharp in low concentration, and it seems possible to use it for the measurement for less than 20 ppm nitrogen concentration. The dependence of the sensor including electrodes and activity of bacteria on temperature is large, and the measurement should be made at a constant temperature. The responsibility was best at the pH of 9. The sensor could be used repeatedly for about a month. 7 refs., 10 figs., 1 tab.

  4. A Survey of Wireless Sensor Network Based Air Pollution Monitoring Systems.

    Science.gov (United States)

    Yi, Wei Ying; Lo, Kin Ming; Mak, Terrence; Leung, Kwong Sak; Leung, Yee; Meng, Mei Ling

    2015-12-12

    The air quality in urban areas is a major concern in modern cities due to significant impacts of air pollution on public health, global environment, and worldwide economy. Recent studies reveal the importance of micro-level pollution information, including human personal exposure and acute exposure to air pollutants. A real-time system with high spatio-temporal resolution is essential because of the limited data availability and non-scalability of conventional air pollution monitoring systems. Currently, researchers focus on the concept of The Next Generation Air Pollution Monitoring System (TNGAPMS) and have achieved significant breakthroughs by utilizing the advance sensing technologies, MicroElectroMechanical Systems (MEMS) and Wireless Sensor Network (WSN). However, there exist potential problems of these newly proposed systems, namely the lack of 3D data acquisition ability and the flexibility of the sensor network. In this paper, we classify the existing works into three categories as Static Sensor Network (SSN), Community Sensor Network (CSN) and Vehicle Sensor Network (VSN) based on the carriers of the sensors. Comprehensive reviews and comparisons among these three types of sensor networks were also performed. Last but not least, we discuss the limitations of the existing works and conclude the objectives that we want to achieve in future systems.

  5. Dual cameras acquisition and display system of retina-like sensor camera and rectangular sensor camera

    Science.gov (United States)

    Cao, Nan; Cao, Fengmei; Lin, Yabin; Bai, Tingzhu; Song, Shengyu

    2015-04-01

    For a new kind of retina-like senor camera and a traditional rectangular sensor camera, dual cameras acquisition and display system need to be built. We introduce the principle and the development of retina-like senor. Image coordinates transformation and interpolation based on sub-pixel interpolation need to be realized for our retina-like sensor's special pixels distribution. The hardware platform is composed of retina-like senor camera, rectangular sensor camera, image grabber and PC. Combined the MIL and OpenCV library, the software program is composed in VC++ on VS 2010. Experience results show that the system can realizes two cameras' acquisition and display.

  6. CMOS-MEMS Chemiresistive and Chemicapacitive Chemical Sensor System

    Science.gov (United States)

    Lazarus, Nathan S.

    Integrating chemical sensors with testing electronics is a powerful technique with the potential to lower power and cost and allow for lower system limits of detection. This thesis explores the possibility of creating an integrated sensor system intended to be embedded within respirator cartridges to notify the user that hazardous chemicals will soon leak into the face mask. For a chemical sensor designer, this application is particularly challenging due to the need for a very sensitive and cheap sensor that will be exposed to widely varying environmental conditions during use. An octanethiol-coated gold nanoparticle chemiresistor to detect industrial solvents is developed, focusing on characterizing the environmental stability and limits of detection of the sensor. Since the chemiresistor was found to be highly sensitive to water vapor, a series of highly sensitive humidity sensor topologies were developed, with sensitivities several times previous integrated capacitive humidity sensors achieved. Circuit techniques were then explored to reduce the humidity sensor limits of detection, including the analysis of noise, charge injection, jitter and clock feedthrough in a charge-based capacitance measurement (CBCM) circuit and the design of a low noise Colpitts LC oscillator. The characterization of high resistance gold nanoclusters for capacitive chemical sensing was also performed. In the final section, a preconcentrator, a heater element intended to release a brief concentrated pulse of analate, was developed and tested for the purposes of lowering the system limit of detection.

  7. Experiment of Laser Pointing Stability on Different Surfaces to validate Micrometric Positioning Sensor

    CERN Document Server

    AUTHOR|(SzGeCERN)721924; Mainaud Durand, Helene; Piedigrossi, Didier; Sandomierski, Jacek; Sosin, Mateusz; Geiger, Alain; Guillaume, Sebastien

    2014-01-01

    CLIC requires 10 μm precision and accuracy over 200m for the pre-alignment of beam related components. A solution based on laser beam as straight line reference is being studied at CERN. It involves camera/shutter assemblies as micrometric positioning sensors. To validate the sensors, it is necessary to determine an appropriate material for the shutter in terms of laser pointing stability. Experiments are carried out with paper, metal and ceramic surfaces. This paper presents the standard deviations of the laser spot coordinates obtained on the different surfaces, as well as the measurement error. Our experiments validate the choice of paper and ceramic for the shutter of the micrometric positioning sensor. It also provides an estimate of the achievable precision and accuracy of the determination of the laser spot centre with respect to the shutter coordinate system defined by reference targets.

  8. Vibration welding system with thin film sensor

    Science.gov (United States)

    Cai, Wayne W; Abell, Jeffrey A; Li, Xiaochun; Choi, Hongseok; Zhao, Jingzhou

    2014-03-18

    A vibration welding system includes an anvil, a welding horn, a thin film sensor, and a process controller. The anvil and horn include working surfaces that contact a work piece during the welding process. The sensor measures a control value at the working surface. The measured control value is transmitted to the controller, which controls the system in part using the measured control value. The thin film sensor may include a plurality of thermopiles and thermocouples which collectively measure temperature and heat flux at the working surface. A method includes providing a welder device with a slot adjacent to a working surface of the welder device, inserting the thin film sensor into the slot, and using the sensor to measure a control value at the working surface. A process controller then controls the vibration welding system in part using the measured control value.

  9. Solid-State Gas Sensors: Sensor System Challenges in the Civil Security Domain

    Directory of Open Access Journals (Sweden)

    Gerhard Müller

    2016-01-01

    Full Text Available The detection of military high explosives and illicit drugs presents problems of paramount importance in the fields of counter terrorism and criminal investigation. Effectively dealing with such threats requires hand-portable, mobile and affordable instruments. The paper shows that solid-state gas sensors can contribute to the development of such instruments provided the sensors are incorporated into integrated sensor systems, which acquire the target substances in the form of particle residue from suspect objects and which process the collected residue through a sequence of particle sampling, solid-vapor conversion, vapor detection and signal treatment steps. Considering sensor systems with metal oxide gas sensors at the backend, it is demonstrated that significant gains in sensitivity, selectivity and speed of response can be attained when the threat substances are sampled in particle as opposed to vapor form.

  10. Advances in miniature spectrometer and sensor development

    Science.gov (United States)

    Malinen, Jouko; Rissanen, Anna; Saari, Heikki; Karioja, Pentti; Karppinen, Mikko; Aalto, Timo; Tukkiniemi, Kari

    2014-05-01

    Miniaturization and cost reduction of spectrometer and sensor technologies has great potential to open up new applications areas and business opportunities for analytical technology in hand held, mobile and on-line applications. Advances in microfabrication have resulted in high-performance MEMS and MOEMS devices for spectrometer applications. Many other enabling technologies are useful for miniature analytical solutions, such as silicon photonics, nanoimprint lithography (NIL), system-on-chip, system-on-package techniques for integration of electronics and photonics, 3D printing, powerful embedded computing platforms, networked solutions as well as advances in chemometrics modeling. This paper will summarize recent work on spectrometer and sensor miniaturization at VTT Technical Research Centre of Finland. Fabry-Perot interferometer (FPI) tunable filter technology has been developed in two technical versions: Piezoactuated FPIs have been applied in miniature hyperspectral imaging needs in light weight UAV and nanosatellite applications, chemical imaging as well as medical applications. Microfabricated MOEMS FPIs have been developed as cost-effective sensor platforms for visible, NIR and IR applications. Further examples of sensor miniaturization will be discussed, including system-on-package sensor head for mid-IR gas analyzer, roll-to-roll printed Surface Enhanced Raman Scattering (SERS) technology as well as UV imprinted waveguide sensor for formaldehyde detection.

  11. Core on-line monitoring and computerized procedures systems

    International Nuclear Information System (INIS)

    Gangloff, W.C.

    1986-01-01

    The availability of operating nuclear power plants has been affected significantly by the difficulty people have in coping with the complexity of the plants and the operating procedures. Two ways to use modern computer technology to ease the burden of coping are discussed in this paper, an on-line core monitoring system with predictive capability and a computerized procedures system using live plant data. These systems reduce human errors by presenting information rather than simply data, using the computer to manipulate the data, but leaving the decisions to the plant operator

  12. Tunable diode laser absorption spectroscopy-based tomography system for on-line monitoring of two-dimensional distributions of temperature and H{sub 2}O mole fraction

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Lijun, E-mail: lijunxu@buaa.edu.cn; Liu, Chang; Jing, Wenyang; Cao, Zhang [School of Instrument Science and Opto-Electronic Engineering, Beihang University, Beijing 100191 (China); Ministry of Education’s Key Laboratory of Precision Opto-Mechatronics Technology, Beijing 100191 (China); Xue, Xin; Lin, Yuzhen [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China)

    2016-01-15

    To monitor two-dimensional (2D) distributions of temperature and H{sub 2}O mole fraction, an on-line tomography system based on tunable diode laser absorption spectroscopy (TDLAS) was developed. To the best of the authors’ knowledge, this is the first report on a multi-view TDLAS-based system for simultaneous tomographic visualization of temperature and H{sub 2}O mole fraction in real time. The system consists of two distributed feedback (DFB) laser diodes, a tomographic sensor, electronic circuits, and a computer. The central frequencies of the two DFB laser diodes are at 7444.36 cm{sup −1} (1343.3 nm) and 7185.6 cm{sup −1} (1391.67 nm), respectively. The tomographic sensor is used to generate fan-beam illumination from five views and to produce 60 ray measurements. The electronic circuits not only provide stable temperature and precise current controlling signals for the laser diodes but also can accurately sample the transmitted laser intensities and extract integrated absorbances in real time. Finally, the integrated absorbances are transferred to the computer, in which the 2D distributions of temperature and H{sub 2}O mole fraction are reconstructed by using a modified Landweber algorithm. In the experiments, the TDLAS-based tomography system was validated by using asymmetric premixed flames with fixed and time-varying equivalent ratios, respectively. The results demonstrate that the system is able to reconstruct the profiles of the 2D distributions of temperature and H{sub 2}O mole fraction of the flame and effectively capture the dynamics of the combustion process, which exhibits good potential for flame monitoring and on-line combustion diagnosis.

  13. A Novel Hybrid Error Criterion-Based Active Control Method for on-Line Milling Vibration Suppression with Piezoelectric Actuators and Sensors

    Directory of Open Access Journals (Sweden)

    Xingwu Zhang

    2016-01-01

    Full Text Available Milling vibration is one of the most serious factors affecting machining quality and precision. In this paper a novel hybrid error criterion-based frequency-domain LMS active control method is constructed and used for vibration suppression of milling processes by piezoelectric actuators and sensors, in which only one Fast Fourier Transform (FFT is used and no Inverse Fast Fourier Transform (IFFT is involved. The correction formulas are derived by a steepest descent procedure and the control parameters are analyzed and optimized. Then, a novel hybrid error criterion is constructed to improve the adaptability, reliability and anti-interference ability of the constructed control algorithm. Finally, based on piezoelectric actuators and acceleration sensors, a simulation of a spindle and a milling process experiment are presented to verify the proposed method. Besides, a protection program is added in the control flow to enhance the reliability of the control method in applications. The simulation and experiment results indicate that the proposed method is an effective and reliable way for on-line vibration suppression, and the machining quality can be obviously improved.

  14. Measurement system for nitrous oxide based on amperometric gas sensor

    Science.gov (United States)

    Siswoyo, S.; Persaud, K. C.; Phillips, V. R.; Sneath, R.

    2017-03-01

    It has been well known that nitrous oxide is an important greenhouse gas, so monitoring and control of its concentration and emission is very important. In this work a nitrous oxide measurement system has been developed consisting of an amperometric sensor and an appropriate lab-made potentiostat that capable measuring picoampere current ranges. The sensor was constructed using a gold microelectrode as working electrode surrounded by a silver wire as quasi reference electrode, with tetraethyl ammonium perchlorate and dimethylsulphoxide as supporting electrolyte and solvent respectively. The lab-made potentiostat was built incorporating a transimpedance amplifier capable of picoampere measurements. This also incorporated a microcontroller based data acquisition system, controlled by a host personal computer using a dedicated computer program. The system was capable of detecting N2O concentrations down to 0.07 % v/v.

  15. An on-line data acquisition system based on Norsk-Data ND-560 computer

    International Nuclear Information System (INIS)

    Bandyopadhyay, A.; Roy, A.; Dey, S.K.; Bhattacharya, S.; Bhowmik, R.K.

    1987-01-01

    This paper describes a high-speed data acquisition system based on CAMAC for Norsk Data ND-560 computer operating in a multiuser environment. As opposed to the present trend, the system has been implemented with minimum hardware at CAMAC level taking advantage of the dual processors of ND-560. The package consists of several coordinated tasks running in the two CPUs which acquire data, record on tape, permit on-line analysis and display the data and perform related control operations. It has been used in several experiments at VECC and its performance in on-line experiments is reported. (orig.)

  16. Obstacle negotiation control for a mobile robot suspended on overhead ground wires by optoelectronic sensors

    Science.gov (United States)

    Zheng, Li; Yi, Ruan

    2009-11-01

    Power line inspection and maintenance already benefit from developments in mobile robotics. This paper presents mobile robots capable of crossing obstacles on overhead ground wires. A teleoperated robot realizes inspection and maintenance tasks on power transmission line equipment. The inspection robot is driven by 11 motor with two arms, two wheels and two claws. The inspection robot is designed to realize the function of observation, grasp, walk, rolling, turn, rise, and decline. This paper is oriented toward 100% reliable obstacle detection and identification, and sensor fusion to increase the autonomy level. An embedded computer based on PC/104 bus is chosen as the core of control system. Visible light camera and thermal infrared Camera are both installed in a programmable pan-and-tilt camera (PPTC) unit. High-quality visual feedback rapidly becomes crucial for human-in-the-loop control and effective teleoperation. The communication system between the robot and the ground station is based on Mesh wireless networks by 700 MHz bands. An expert system programmed with Visual C++ is developed to implement the automatic control. Optoelectronic laser sensors and laser range scanner were installed in robot for obstacle-navigation control to grasp the overhead ground wires. A novel prototype with careful considerations on mobility was designed to inspect the 500KV power transmission lines. Results of experiments demonstrate that the robot can be applied to execute the navigation and inspection tasks.

  17. Instrument calibration reduction through on-line monitoring in the USA. Annex IV

    International Nuclear Information System (INIS)

    Hashemian, H.M.

    2008-01-01

    Nuclear power plants are required to calibrate important instruments once every fuel cycle. This requirement dates back more than 30 years, when commercial nuclear power plants began to operate. Based on calibration data accumulated over this period, it has been determined that the calibration of some instruments, such as pressure transmitters, do not drift enough to warrant calibration as often as once every fuel cycle. This fact, combined with human resources limitations and reduced maintenance budgets, has provided the motivation for the nuclear industry to develop new technologies for identifying drifting instruments during plant operation. Implementing these technologies allows calibration efforts to be focused on the instruments that have drifted out of tolerance, as opposed to current practice, which calls for calibration verification of almost all instruments every fuel cycle. To date, an array of technologies, referred to collectively as 'on-line calibration monitoring', has been developed to meet this objective. These technologies are based on identifying outlier sensors using techniques that compare a particular sensor's output to a calculated estimate of the actual process the sensor is measuring. If on-line monitoring data are collected during plant startup and/or shutdown periods as well as normal operation, the on-line monitoring approach can help verify the calibration of instruments over their entire operating range. Although on-line calibration monitoring is applicable to most sensors and can cover an entire instrument channel, the main application of this approach in nuclear power plants is currently for pressure transmitters (including level and flow transmitters). (author)

  18. Experimental study on performance verification tests for coordinate measuring systems with optical distance sensors

    Science.gov (United States)

    Carmignato, Simone

    2009-01-01

    Optical sensors are increasingly used for dimensional and geometrical metrology. However, the lack of international standards for testing optical coordinate measuring systems is currently limiting the traceability of measurements and the easy comparison of different optical systems. This paper presents an experimental investigation on artefacts and procedures for testing coordinate measuring systems equipped with optical distance sensors. The work is aimed at contributing to the standardization of testing methods. The VDI/VDE 2617-6.2:2005 guideline, which is probably the most complete document available at the state of the art for testing systems with optical distance sensors, is examined with specific experiments. Results from the experiments are discussed, with particular reference to the tests used for determining the following characteristics: error of indication for size measurement, probing error and structural resolution. Particular attention is given to the use of artefacts alternative to gauge blocks for determining the error of indication for size measurement.

  19. On-line reputation systems : the effects of feedback comments and reactions on building and rebuilding trust in on-line auctions

    NARCIS (Netherlands)

    Utz, S.; Matzat, U.; Snijders, C.C.P.

    2009-01-01

    Previous research on reputation systems primarily focused on their trust-building function. The present research addresses their trust-rebuilding function-specifically, the role of the short text comments given in reaction to negative feedback. Rebuilding trust is often necessary because on-line

  20. The tsunami service bus, an integration platform for heterogeneous sensor systems

    Science.gov (United States)

    Haener, R.; Waechter, J.; Kriegel, U.; Fleischer, J.; Mueller, S.

    2009-04-01

    1. INTRODUCTION Early warning systems are long living and evolving: New sensor-systems and -types may be developed and deployed, sensors will be replaced or redeployed on other locations and the functionality of analyzing software will be improved. To ensure a continuous operability of those systems their architecture must be evolution-enabled. From a computer science point of view an evolution-enabled architecture must fulfill following criteria: • Encapsulation of and functionality on data in standardized services. Access to proprietary sensor data is only possible via these services. • Loose coupling of system constituents which easily can be achieved by implementing standardized interfaces. • Location transparency of services what means that services can be provided everywhere. • Separation of concerns that means breaking a system into distinct features which overlap in functionality as little as possible. A Service Oriented Architecture (SOA) as e. g. realized in the German Indonesian Tsunami Early Warning System (GITEWS) and the advantages of functional integration on the basis of services described below adopt these criteria best. 2. SENSOR INTEGRATION Integration of data from (distributed) data sources is just a standard task in computer science. From few well known solution patterns, taking into account performance and security requirements of early warning systems only functional integration should be considered. Precondition for this is that systems are realized compliant to SOA patterns. Functionality is realized in form of dedicated components communicating via a service infrastructure. These components provide their functionality in form of services via standardized and published interfaces which could be used to access data maintained in - and functionality provided by dedicated components. Functional integration replaces the tight coupling at data level by a dependency on loosely coupled services. If the interfaces of the service providing

  1. A Monitoring System for Vegetable Greenhouses based on a Wireless Sensor Network

    Science.gov (United States)

    Li, Xiu-hong; Cheng, Xiao; Yan, Ke; Gong, Peng

    2010-01-01

    A wireless sensor network-based automatic monitoring system is designed for monitoring the life conditions of greenhouse vegetatables. The complete system architecture includes a group of sensor nodes, a base station, and an internet data center. For the design of wireless sensor node, the JN5139 micro-processor is adopted as the core component and the Zigbee protocol is used for wireless communication between nodes. With an ARM7 microprocessor and embedded ZKOS operating system, a proprietary gateway node is developed to achieve data influx, screen display, system configuration and GPRS based remote data forwarding. Through a Client/Server mode the management software for remote data center achieves real-time data distribution and time-series analysis. Besides, a GSM-short-message-based interface is developed for sending real-time environmental measurements, and for alarming when a measurement is beyond some pre-defined threshold. The whole system has been tested for over one year and satisfactory results have been observed, which indicate that this system is very useful for greenhouse environment monitoring. PMID:22163391

  2. A neuro-fuzzy inference system for sensor monitoring

    International Nuclear Information System (INIS)

    Na, Man Gyun

    2001-01-01

    A neuro-fuzzy inference system combined with the wavelet denoising, PCA (principal component analysis) and SPRT (sequential probability ratio test) methods has been developed to monitor the relevant sensor using the information of other sensors. The paramters of the neuro-fuzzy inference system which estimates the relevant sensor signal are optimized by a genetic algorithm and a least-squares algorithm. The wavelet denoising technique was applied to remove noise components in input signals into the neuro-fuzzy system. By reducing the dimension of an input space into the neuro-fuzzy system without losing a significant amount of information, the PCA was used to reduce the time necessary to train the neuro-fuzzy system, simplify the structure of the neuro-fuzzy inference system and also, make easy the selection of the input signals into the neuro-fuzzy system. By using the residual signals between the estimated signals and the measured signals, the SPRT is applied to detect whether the sensors are degraded or not. The proposed sensor-monitoring algorithm was verified through applications to the pressurizer water level, the pressurizer pressure, and the hot-leg temperature sensors in pressurized water reactors

  3. Wearable PPG sensor based alertness scoring system.

    Science.gov (United States)

    Dey, Jishnu; Bhowmik, Tanmoy; Sahoo, Saswata; Tiwari, Vijay Narayan

    2017-07-01

    Quantifying mental alertness in today's world is important as it enables the person to adopt lifestyle changes for better work efficiency. Miniaturized sensors in wearable devices have facilitated detection/monitoring of mental alertness. Photoplethysmography (PPG) sensors through Heart Rate Variability (HRV) offer one such opportunity by providing information about one's daily alertness levels without requiring any manual interference from the user. In this paper, a smartwatch based alertness estimation system is proposed. Data collected from PPG sensor of smartwatch is processed and fed to machine learning based model to get a continuous alertness score. Utility functions are designed based on statistical analysis to give a quality score on different stages of alertness such as awake, long sleep and short duration power nap. An intelligent data collection approach is proposed in collaboration with the motion sensor in the smartwatch to reduce battery drainage. Overall, our proposed wearable based system provides a detailed analysis of alertness over a period in a systematic and optimized manner. We were able to achieve an accuracy of 80.1% for sleep/awake classification along with alertness score. This opens up the possibility for quantifying alertness levels using a single PPG sensor for better management of health related activities including sleep.

  4. Multi-Sensor Building Fire Alarm System with Information Fusion Technology Based on D-S Evidence Theory

    Directory of Open Access Journals (Sweden)

    Qian Ding

    2014-10-01

    Full Text Available Multi-sensor and information fusion technology based on Dempster-Shafer evidence theory is applied in the system of a building fire alarm to realize early detecting and alarming. By using a multi-sensor to monitor the parameters of the fire process, such as light, smoke, temperature, gas and moisture, the range of fire monitoring in space and time is expanded compared with a single-sensor system. Then, the D-S evidence theory is applied to fuse the information from the multi-sensor with the specific fire model, and the fire alarm is more accurate and timely. The proposed method can avoid the failure of the monitoring data effectively, deal with the conflicting evidence from the multi-sensor robustly and improve the reliability of fire warning significantly.

  5. Compact, self-contained enhanced-vision system (EVS) sensor simulator

    Science.gov (United States)

    Tiana, Carlo

    2007-04-01

    We describe the model SIM-100 PC-based simulator, for imaging sensors used, or planned for use, in Enhanced Vision System (EVS) applications. Typically housed in a small-form-factor PC, it can be easily integrated into existing out-the-window visual simulators for fixed-wing or rotorcraft, to add realistic sensor imagery to the simulator cockpit. Multiple bands of infrared (short-wave, midwave, extended-midwave and longwave) as well as active millimeter-wave RADAR systems can all be simulated in real time. Various aspects of physical and electronic image formation and processing in the sensor are accurately (and optionally) simulated, including sensor random and fixed pattern noise, dead pixels, blooming, B-C scope transformation (MMWR). The effects of various obscurants (fog, rain, etc.) on the sensor imagery are faithfully represented and can be selected by an operator remotely and in real-time. The images generated by the system are ideally suited for many applications, ranging from sensor development engineering tradeoffs (Field Of View, resolution, etc.), to pilot familiarization and operational training, and certification support. The realistic appearance of the simulated images goes well beyond that of currently deployed systems, and beyond that required by certification authorities; this level of realism will become necessary as operational experience with EVS systems grows.

  6. A sensor-less methanol concentration control system based on feedback from the stack temperature

    International Nuclear Information System (INIS)

    An, Myung-Gi; Mehmood, Asad; Ha, Heung Yong

    2014-01-01

    Highlights: • A new sensor-less methanol control algorithm based on feedback from the stack temperature is developed. • Feasibility of the algorithm is tested using a DMFC system with a recirculating fuel loop. • The algorithm precisely controls the methanol concentration without the use of methanol sensors. • The sensor-less controller shortens the time that the DMFC system requires to go from start-up to steady-state. • This controller is effective in handling unexpected changes in the methanol concentration and stack temperature. - Abstract: A sensor-less methanol concentration control system based on feedback from the stack temperature (SLCCF) has been developed. The SLCCF algorithm is embedded into an in-house LabVIEW program that has been developed to control the methanol concentration in the feed of direct methanol fuel cells (DMFCs). This control method utilizes the close correlation between the stack temperature and the methanol concentration in the feed. Basically, the amounts of methanol to be supplied to the re-circulating feed stream are determined by estimating the methanol consumption rates under given operating conditions, which are then adjusted by a proportional–integral controller and supplied into the feed stream to maintain the stack temperature at a set value. The algorithm is designed to control the methanol concentration and the stack temperature for both start-up and normal operation processes. Feasibility tests with a 200 W-class DMFC system under various operating conditions confirm that the algorithm successfully maintains the methanol concentration in the feed as well as the stack temperature at set values, and the start-up time required for the DMFC system to reach steady-state operating conditions is reduced significantly compared with conventional sensor-less methods

  7. From Off-line to On-line Handwriting Recognition

    NARCIS (Netherlands)

    Lallican, P.; Viard-Gaudin, C.; Knerr, S.

    2004-01-01

    On-line handwriting includes more information on time order of the writing signal and on the dynamics of the writing process than off-line handwriting. Therefore, on-line recognition systems achieve higher recognition rates. This can be concluded from results reported in the literature, and has been

  8. Optical Inspection In Hostile Industrial Environments: Single-Sensor VS. Imaging Methods

    Science.gov (United States)

    Cielo, P.; Dufour, M.; Sokalski, A.

    1988-11-01

    On-line and unsupervised industrial inspection for quality control and process monitoring is increasingly required in the modern automated factory. Optical techniques are particularly well suited to industrial inspection in hostile environments because of their noncontact nature, fast response time and imaging capabilities. Optical sensors can be used for remote inspection of high temperature products or otherwise inaccessible parts, provided they are in a line-of-sight relation with the sensor. Moreover, optical sensors are much easier to adapt to a variety of part shapes, position or orientation and conveyor speeds as compared to contact-based sensors. This is an important requirement in a flexible automation environment. A number of choices are possible in the design of optical inspection systems. General-purpose two-dimensional (2-D) or three-dimensional (3-D) imaging techniques have advanced very rapidly in the last years thanks to a substantial research effort as well as to the availability of increasingly powerful and affordable hardware and software. Imaging can be realized using 2-D arrays or simpler one-dimensional (1-D) line-array detectors. Alternatively, dedicated single-spot sensors require a smaller amount of data processing and often lead to robust sensors which are particularly appropriate to on-line operation in hostile industrial environments. Many specialists now feel that dedicated sensors or clusters of sensors are often more effective for specific industrial automation and control tasks, at least in the short run. This paper will discuss optomechanical and electro-optical choices with reference to the design of a number of on-line inspection sensors which have been recently developed at our institute. Case studies will include real-time surface roughness evaluation on polymer cables extruded at high speed, surface characterization of hot-rolled or galvanized-steel sheets, temperature evaluation and pinhole detection in aluminum foil, multi

  9. Optical seismic sensor systems and methods

    Science.gov (United States)

    Beal, A. Craig; Cummings, Malcolm E.; Zavriyev, Anton; Christensen, Caleb A.; Lee, Keun

    2015-12-08

    Disclosed is an optical seismic sensor system for measuring seismic events in a geological formation, including a surface unit for generating and processing an optical signal, and a sensor device optically connected to the surface unit for receiving the optical signal over an optical conduit. The sensor device includes at least one sensor head for sensing a seismic disturbance from at least one direction during a deployment of the sensor device within a borehole of the geological formation. The sensor head includes a frame and a reference mass attached to the frame via at least one flexure, such that movement of the reference mass relative to the frame is constrained to a single predetermined path.

  10. On Calibrating the Sensor Errors of a PDR-Based Indoor Localization System

    Directory of Open Access Journals (Sweden)

    Wen-Yuah Shih

    2013-04-01

    Full Text Available Many studies utilize the signal strength of short-range radio systems (such as WiFi, ultrasound and infrared to build a radio map for indoor localization, by deploying a large number of beacon nodes within a building. The drawback of such an infrastructure-based approach is that the deployment and calibration of the system are costly and labor-intensive. Some prior studies proposed the use of Pedestrian Dead Reckoning (PDR for indoor localization, which does not require the deployment of beacon nodes. In a PDR system, a small number of sensors are put on the pedestrian. These sensors (such as a G-sensor and gyroscope are used to estimate the distance and direction that a user travels. The effectiveness of a PDR system lies in its success in accurately estimating the user’s moving distance and direction. In this work, we propose a novel waist-mounted based PDR that can measure the user’s step lengths with a high accuracy. We utilize vertical acceleration of the body to calculate the user’s change in height during walking. Based on the Pythagorean Theorem, we can then estimate each step length using this data. Furthermore, we design a map matching algorithm to calibrate the direction errors from the gyro using building floor plans. The results of our experiment show that we can achieve about 98.26% accuracy in estimating the user’s walking distance, with an overall location error of about 0.48 m.

  11. Sensor Arrays and Electronic Tongue Systems

    Directory of Open Access Journals (Sweden)

    Manel del Valle

    2012-01-01

    Full Text Available This paper describes recent work performed with electronic tongue systems utilizing electrochemical sensors. The electronic tongues concept is a new trend in sensors that uses arrays of sensors together with chemometric tools to unravel the complex information generated. Initial contributions and also the most used variant employ conventional ion selective electrodes, in which it is named potentiometric electronic tongue. The second important variant is the one that employs voltammetry for its operation. As chemometric processing tool, the use of artificial neural networks as the preferred data processing variant will be described. The use of the sensor arrays inserted in flow injection or sequential injection systems will exemplify attempts made to automate the operation of electronic tongues. Significant use of biosensors, mainly enzyme-based, to form what is already named bioelectronic tongue will be also presented. Application examples will be illustrated with selected study cases from the Sensors and Biosensors Group at the Autonomous University of Barcelona.

  12. Flexible magnetoimpedance sensor

    KAUST Repository

    Li, Bodong; Kavaldzhiev, Mincho; Kosel, Jü rgen

    2015-01-01

    Flexible magnetoimpedance (MI) sensors fabricated using a NiFe/Cu/NiFe tri-layer on Kapton substrate have been studied. A customized flexible microstrip transmission line was employed to investigate the MI sensors's magnetic field and frequency

  13. Process Analytical Technology for High Shear Wet Granulation: Wet Mass Consistency Reported by In-Line Drag Flow Force Sensor Is Consistent With Powder Rheology Measured by At-Line FT4 Powder Rheometer.

    Science.gov (United States)

    Narang, Ajit S; Sheverev, Valery; Freeman, Tim; Both, Douglas; Stepaniuk, Vadim; Delancy, Michael; Millington-Smith, Doug; Macias, Kevin; Subramanian, Ganeshkumar

    2016-01-01

    Drag flow force (DFF) sensor that measures the force exerted by wet mass in a granulator on a thin cylindrical probe was shown as a promising process analytical technology for real-time in-line high-resolution monitoring of wet mass consistency during high shear wet granulation. Our previous studies indicated that this process analytical technology tool could be correlated to granulation end point established independently through drug product critical quality attributes. In this study, the measurements of flow force by a DFF sensor, taken during wet granulation of 3 placebo formulations with different binder content, are compared with concurrent at line FT4 Powder Rheometer characterization of wet granules collected at different time points of the processing. The wet mass consistency measured by the DFF sensor correlated well with the granulation's resistance to flow and interparticulate interactions as measured by FT4 Powder Rheometer. This indicated that the force pulse magnitude measured by the DFF sensor was indicative of fundamental material properties (e.g., shear viscosity and granule size/density), as they were changing during the granulation process. These studies indicate that DFF sensor can be a valuable tool for wet granulation formulation and process development and scale up, as well as for routine monitoring and control during manufacturing. Copyright © 2016. Published by Elsevier Inc.

  14. Systems and Sensors for Debris-flow Monitoring and Warning

    Directory of Open Access Journals (Sweden)

    Lorenzo Marchi

    2008-04-01

    Full Text Available Debris flows are a type of mass movement that occurs in mountain torrents. They consist of a high concentration of solid material in water that flows as a wave with a steep front. Debris flows can be considered a phenomenon intermediate between landslides and water floods. They are amongst the most hazardous natural processes in mountainous regions and may occur under different climatic conditions. Their destructiveness is due to different factors: their capability of transporting and depositing huge amounts of solid materials, which may also reach large sizes (boulders of several cubic meters are commonly transported by debris flows, their steep fronts, which may reach several meters of height and also their high velocities. The implementation of both structural and nonstructural control measures is often required when debris flows endanger routes, urban areas and other infrastructures. Sensor networks for debris-flow monitoring and warning play an important role amongst non-structural measures intended to reduce debris-flow risk. In particular, debris flow warning systems can be subdivided into two main classes: advance warning and event warning systems. These two classes employ different types of sensors. Advance warning systems are based on monitoring causative hydrometeorological processes (typically rainfall and aim to issue a warning before a possible debris flow is triggered. Event warning systems are based on detecting debris flows when these processes are in progress. They have a much smaller lead time than advance warning ones but are also less prone to false alarms. Advance warning for debris flows employs sensors and techniques typical of meteorology and hydrology, including measuring rainfall by means of rain gauges and weather radar and monitoring water discharge in headwater streams. Event warning systems use different types of sensors, encompassing ultrasonic or radar gauges, ground vibration sensors, videocameras, avalanche

  15. Smart sensor systems for human health breath monitoring applications.

    Science.gov (United States)

    Hunter, G W; Xu, J C; Biaggi-Labiosa, A M; Laskowski, D; Dutta, P K; Mondal, S P; Ward, B J; Makel, D B; Liu, C C; Chang, C W; Dweik, R A

    2011-09-01

    Breath analysis techniques offer a potential revolution in health care diagnostics, especially if these techniques can be brought into standard use in the clinic and at home. The advent of microsensors combined with smart sensor system technology enables a new generation of sensor systems with significantly enhanced capabilities and minimal size, weight and power consumption. This paper discusses the microsensor/smart sensor system approach and provides a summary of efforts to migrate this technology into human health breath monitoring applications. First, the basic capability of this approach to measure exhaled breath associated with exercise physiology is demonstrated. Building from this foundation, the development of a system for a portable asthma home health care system is described. A solid-state nitric oxide (NO) sensor for asthma monitoring has been identified, and efforts are underway to miniaturize this NO sensor technology and integrate it into a smart sensor system. It is concluded that base platform microsensor technology combined with smart sensor systems can address the needs of a range of breath monitoring applications and enable new capabilities for healthcare.

  16. Development of a fibre-optic sensor system for the continuous monitoring of a sanitary landfill for low-halogenated hydrocarbons, polycyclic aromatic hydrocarbons, and other pollutants

    International Nuclear Information System (INIS)

    Baumann, M.; Baumann, T.; Gahr, A.; Mueller-Ackermann, E.; Panne, U.; Niessner, R.

    1992-01-01

    The aim of the project is to develop a mobile fibre-optic sensor system for monitoring the ground water aquifer in the area of a landfill. Not only are the analytical methods to be developed further; but the system's performance in the field is to be tested as well. As a large part of knowledge on the long-time safety of mineral sealing systems of sanitary landfills derives from damage events, a measuring area was additionally established at the Augsburg-Nord landfill. This measuring area is to permit monitoring of the sealing also during operation and reclamation. Within the measuring area and in the environs of the landfill, both conventional sensors for temperature, conductibility, etc., and the specially developed fibre-optic sensors for on-line in-situ monitoring will be used. (orig.) [de

  17. Optimal Sensor Selection for Health Monitoring Systems

    Science.gov (United States)

    Santi, L. Michael; Sowers, T. Shane; Aguilar, Robert B.

    2005-01-01

    Sensor data are the basis for performance and health assessment of most complex systems. Careful selection and implementation of sensors is critical to enable high fidelity system health assessment. A model-based procedure that systematically selects an optimal sensor suite for overall health assessment of a designated host system is described. This procedure, termed the Systematic Sensor Selection Strategy (S4), was developed at NASA John H. Glenn Research Center in order to enhance design phase planning and preparations for in-space propulsion health management systems (HMS). Information and capabilities required to utilize the S4 approach in support of design phase development of robust health diagnostics are outlined. A merit metric that quantifies diagnostic performance and overall risk reduction potential of individual sensor suites is introduced. The conceptual foundation for this merit metric is presented and the algorithmic organization of the S4 optimization process is described. Representative results from S4 analyses of a boost stage rocket engine previously under development as part of NASA's Next Generation Launch Technology (NGLT) program are presented.

  18. Alcohol Control: Mobile Sensor System and Numerical Signal Analysis

    Directory of Open Access Journals (Sweden)

    Rolf SEIFERT

    2016-10-01

    Full Text Available An innovative mobile sensor system for alcohol control in the respiratory air is introduced. The gas sensor included in the sensor system is thermo-cyclically operated. Ethanol is the leading component in this context. However, other components occur in the breathing air which can influence the concentration determination of ethanol. Therefore, mono- ethanol samples and binary gas mixtures are measured by the sensor system and analyzed with a new calibration and evaluation procedure which is also incorporated in the system. The applications demonstrate a good substance identification capability of the sensor system and a very good concentration determination of the components.

  19. Assessment of wireless Sensor Networks for Digital Instrument and Control System at Nuclear Facilities

    International Nuclear Information System (INIS)

    Gomma, R.I.M.

    2015-01-01

    Instrumentation and Control (I and C) systems play a crucial role in the operation of Nuclear Power Plants (NPPs). The most important task of I and C systems is to ensure safety, availability, and performance of the plant. The advanced generation of NPP design is expected to have the higher degree of automation; consequently, it requires new solutions in both sensing technologies and digital control. In general, the world’s nuclear power fleet is relying on the progress of digital electronics and information technology, to create incentives for integrated replacement of traditional analog electronics with novel digital I and C systems that rely on wireless technology. Moreover, as the domain of Wireless Sensor Networks (WSN) increases its market share in many industrial, health, and critical applications, it has matured significantly. As a result, the barriers to the nuclear industry entry will surely continue to decrease further. Nowadays, several WSN deployments for on-line monitoring of the nuclear environment have been recently addressed by incremental and experimental networks. Furthermore, upon tightening new regulations, the demand for using smart wireless sensing for safety, and surveillance applications of nuclear installations are growing rapidly. The first part of this thesis describes the design of a practical small-scale WSN that allows smart real-time monitoring of radiation levels at nuclear facilities. A wireless system combined with a radiation sensor and associated peripherals been developed and implemented on ZigBee technology using the TI CC2530 chip. The radiation sensor uses a Geiger Muller Tube (GMT) as a reliable detector for the radioactive particulates in the gaseous effluent vented from nuclear facilities. The WSN allows the operators to record and control the radiation levels emitted into the environment, and it is supported by a warning system, for the early detection of radiation release. We evaluated the performance of the radiation

  20. Modular finger and hand motion capturing system based on inertial and magnetic sensors

    Directory of Open Access Journals (Sweden)

    Valtin Markus

    2017-03-01

    Full Text Available The assessment of hand posture and kinematics is increasingly important in various fields. This includes the rehabilitation of stroke survivors with restricted hand function. This paper presents a modular, ambulatory measurement system for the assement of the remaining hand function and for closed-loop controlled therapy. The device is based on inertial sensors and utilizes up to five interchangeable sensor strips to achieve modularity and to simplify the sensor attachment. We introduce the modular hardware design and describe algorithms used to calculate the joint angles. Measurements with two experimental setups demonstrate the feasibility and the potential of such a tracking device.

  1. Steam distribution and energy delivery optimization using wireless sensors

    Science.gov (United States)

    Olama, Mohammed M.; Allgood, Glenn O.; Kuruganti, Teja P.; Sukumar, Sreenivas R.; Djouadi, Seddik M.; Lake, Joe E.

    2011-05-01

    The Extreme Measurement Communications Center at Oak Ridge National Laboratory (ORNL) explores the deployment of a wireless sensor system with a real-time measurement-based energy efficiency optimization framework in the ORNL campus. With particular focus on the 12-mile long steam distribution network in our campus, we propose an integrated system-level approach to optimize the energy delivery within the steam distribution system. We address the goal of achieving significant energy-saving in steam lines by monitoring and acting on leaking steam valves/traps. Our approach leverages an integrated wireless sensor and real-time monitoring capabilities. We make assessments on the real-time status of the distribution system by mounting acoustic sensors on the steam pipes/traps/valves and observe the state measurements of these sensors. Our assessments are based on analysis of the wireless sensor measurements. We describe Fourier-spectrum based algorithms that interpret acoustic vibration sensor data to characterize flows and classify the steam system status. We are able to present the sensor readings, steam flow, steam trap status and the assessed alerts as an interactive overlay within a web-based Google Earth geographic platform that enables decision makers to take remedial action. We believe our demonstration serves as an instantiation of a platform that extends implementation to include newer modalities to manage water flow, sewage and energy consumption.

  2. Chemical Sensors Based on Cyclodextrin Derivatives.

    Science.gov (United States)

    Ogoshi, Tomoki; Harada, Akira

    2008-08-25

    This review focuses on chemical sensors based on cyclodextrin (CD) derivatives. This has been a field of classical interest, and is now of current interest for numerous scientists. First, typical chemical sensors using chromophore appended CDs are mentioned. Various "turn-off" and "turn-on" fluorescent chemical sensors, in which fluorescence intensity was decreased or increased by complexation with guest molecules, respectively, were synthesized. Dye modified CDs and photoactive metal ion-ligand complex appended CDs, metallocyclodextrins, were also applied for chemical sensors. Furthermore, recent novel approaches to chemical sensing systems using supramolecular structures such as CD dimers, trimers and cooperative binding systems of CDs with the other macrocycle [2]rotaxane and supramolecular polymers consisting of CD units are mentioned. New chemical sensors using hybrids of CDs with p-conjugated polymers, peptides, DNA, nanocarbons and nanoparticles are also described in this review.

  3. Determination of time constants of reactor pressure and temperature sensors: the dynamic data system method

    International Nuclear Information System (INIS)

    Wu, S.M.; Hsu, M.C.; Chow, M.C.

    1979-01-01

    A new modeling technique is introduced for on-line sensor time constant identification, both for the resistance temperature detector (RTD) and for the pressure sensor using power plant operational data. The sensor's time constant is estimated from a real characteristic root of the fitted autoregressive moving average model. The RTD's time constant values were identified to be 8.4 s, with a standard deviation of 1.2 s. The pressure sensor time constant was identified to be 28.6 ms, with a standard deviation of 3.5 ms

  4. Line outage contingency analysis including the system islanding scenario

    Energy Technology Data Exchange (ETDEWEB)

    Hazarika, D.; Bhuyan, S. [Assam Engineering College, Jalukbari, Guwahati 781013 (India); Chowdhury, S.P. [Jadavpur University, Jadavpur, Kolkata 700 032 (India)

    2006-05-15

    The paper describes an algorithm for determining the line outage contingency of a line taking into account of line over load effect in remaining lines and subsequent tripping of over loaded line(s) leading to possible system split or islanding of a power system. The optimally ordered sparse [B'], [B'] matrices for the integrated system are used for load flow analysis to determine modified values of voltage phase angles [{delta}] and bus voltages [V] to determine the over loading effect on the remaining lines due to outage of a selected line outage contingency. In case of over loading in remaining line(s), the over loaded lines are removed from the system and a topology processor is used to find the islands. A fast decoupled load flow (FDLF) analysis is carried out for finding out the system variables for the islanded (or single island) system by incorporating appropriate modification in the [B'] and [B'] matrices of the integrated system. Line outage indices based on line overload, loss of load, loss of generation and static voltage stability are computed to indicate severity of a line outage of a selected line. (author)

  5. In-line characterization and identification of micro-droplets on-chip

    Directory of Open Access Journals (Sweden)

    Weber Emanuel

    2014-01-01

    Full Text Available We present an integrated optofluidic sensor system for in-line characterization of micro-droplets. The device provides information about the droplet generation frequency, the droplet volume, and the content of the droplet. Due to its simplicity this principle can easily be implemented with other microfluidic components on one and the same device. The sensor is based on total internal reflection phenomena. Droplets are pushed through a microfluidic channel which is hit by slightly diverging monochromatic light. At the solid-liquid interface parts of the rays experience total internal reflection while another part is transmitted. The ratio of reflected to transmitted light depends on the refractive index of the solution. Both signals are recorded simultaneously and provide a very stable output signal for the droplet characterization. With the proposed system passing droplets were counted up to 320 droplets per second and droplets with different volumes could be discriminated. In a final experiment droplets with different amounts of dissolved CaCl2 were distinguished based on their reflected and transmitted light pattern. This principle can be applied for the detection of any molecules in microdroplets which significantly influence the refractive index of the buffer solution.

  6. On line test of trip channels and actuators in primary shutdown system for RAPP-3,4/KAIGA-1,2 reactors

    International Nuclear Information System (INIS)

    Pramanik, M.; Gupta, P.K.; Ravi Prakash

    1997-01-01

    Several types of system design and logic arrangements have been used for reactor shutdown systems to avoid the possibility that a single failure within the trip channels/shutdown system actuators can prevent a shutdown system actuation. The trip channels and the logic arrangements associated with the shutdown systems use redundancy to allow them to continue to operate successfully even after having a certain number of failures. A periodic test is thus needed to detect and repair/replace failed elements to prevent accumulation and eventual system failure. The test must be capable of detecting the first failure. The design initiates shutdown system actuation by deenergising the logic relays and turning off the power to the final electrical actuators. Thus, the systems are fail safe with respect to loss of electrical power to the instruments, logic channels and the actuators. Several system/logic arrangements are used to reduce the chances of spurious actuation caused by the loss of a single power supply and other single failures. In general, the systems use coincidence of instrument channel trips and have separate power supplies for the individual instrument channel and dual power supplies where a single final control element is used. These features also permit on line test of instrument channels and logic train. On line test detects component failures not found by other means. The test determines whether gross failure has occurred rather than perform a calibration. As far as practicable the whole channel from sensors to logic and final control element is to be tested. (author)

  7. Development of the advanced on-line BWR core monitoring system TiARA

    International Nuclear Information System (INIS)

    Kobayashi, Yoko; Yamazaki, Hiroshi

    1996-01-01

    Development of an integrated computer environment to support plant operators and station nuclear engineers is a recent activity. In achieving this goal, an advanced on-line boiling water reactor (BWR) core monitoring system: TiARA has been developed by Toden Software. An integrated design approach was performed through the introduction of recent computer technologies, a sophisticated human/machine interface (HMI) and an advanced nodal method. The first prototype of TiARA was ready in early 1996. This prototype is now undergoing a field test at Kashiwazaki-Kariwa unit 6. After successful completion of this test, the authors will have achieved the following goals: (1) consistency between on-line core monitoring system and off-line core management system; (2) an enhanced HMI and database; (3) user-friendly operability and maintainability; (4) system development from the utilities' standpoint to fully satisfy operator needs

  8. Novel Hall sensors developed for magnetic field imaging systems

    International Nuclear Information System (INIS)

    Cambel, Vladimir; Karapetrov, Goran; Novosad, Valentyn; Bartolome, Elena; Gregusova, Dagmar; Fedor, Jan; Kudela, Robert; Soltys, Jan

    2007-01-01

    We report here on the fabrication and application of novel planar Hall sensors based on shallow InGaP/AlGaAs/GaAs heterostructure with a two-dimensional electron gas (2DEG) as an active layer. The sensors are developed for two kinds of experiments. In the first one, magnetic samples are placed directly on the Hall sensor. Room temperature experiments of permalloy objects evaporated onto the sensor are presented. In the second experiment, the sensor scans close over a multigranular superconducting sample prepared on a YBCO thin film. Large-area and high-resolution scanning experiments were performed at 4.2 K with the Hall probe scanning system in a liquid helium flow cryostat

  9. Bayesian based design of real-time sensor systems for high-risk indoor contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Sreedharan, Priya [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    The sudden release of toxic contaminants that reach indoor spaces can be hazardousto building occupants. To respond effectively, the contaminant release must be quicklydetected and characterized to determine unobserved parameters, such as release locationand strength. Characterizing the release requires solving an inverse problem. Designinga robust real-time sensor system that solves the inverse problem is challenging becausethe fate and transport of contaminants is complex, sensor information is limited andimperfect, and real-time estimation is computationally constrained.This dissertation uses a system-level approach, based on a Bayes Monte Carloframework, to develop sensor-system design concepts and methods. I describe threeinvestigations that explore complex relationships among sensors, network architecture,interpretation algorithms, and system performance. The investigations use data obtainedfrom tracer gas experiments conducted in a real building. The influence of individual sensor characteristics on the sensor-system performance for binary-type contaminant sensors is analyzed. Performance tradeoffs among sensor accuracy, threshold level and response time are identified; these attributes could not be inferred without a system-level analysis. For example, more accurate but slower sensors are found to outperform less accurate but faster sensors. Secondly, I investigate how the sensor-system performance can be understood in terms of contaminant transport processes and the model representation that is used to solve the inverse problem. The determination of release location and mass are shown to be related to and constrained by transport and mixing time scales. These time scales explain performance differences among different sensor networks. For example, the effect of longer sensor response times is comparably less for releases with longer mixing time scales. The third investigation explores how information fusion from heterogeneous sensors may improve the sensor-system

  10. Integration of Fiber-Optic Sensor Arrays into a Multi-Modal Tactile Sensor Processing System for Robotic End-Effectors

    Directory of Open Access Journals (Sweden)

    Peter Kampmann

    2014-04-01

    Full Text Available With the increasing complexity of robotic missions and the development towards long-term autonomous systems, the need for multi-modal sensing of the environment increases. Until now, the use of tactile sensor systems has been mostly based on sensing one modality of forces in the robotic end-effector. The use of a multi-modal tactile sensory system is motivated, which combines static and dynamic force sensor arrays together with an absolute force measurement system. This publication is focused on the development of a compact sensor interface for a fiber-optic sensor array, as optic measurement principles tend to have a bulky interface. Mechanical, electrical and software approaches are combined to realize an integrated structure that provides decentralized data pre-processing of the tactile measurements. Local behaviors are implemented using this setup to show the effectiveness of this approach.

  11. In-Containment Signal Acquisition and Data Transmission via Power Lines within High Dose Areas of Nuclear Power Plants

    International Nuclear Information System (INIS)

    Mueller Steffen; Wibbing Sascha; Weigel Robert; Koelpin Alexander; Dennerlein, Juergen; Janke, Iryna; Weber, Johannes

    2015-01-01

    Signal acquisition and data transmission for innovative sensor systems and networks inside the containment of nuclear power plants (NPPs) is still a challenge with respect to safety, performance, reliability, availability, and costs. This especially applies to equipment upgrades for existing plants, special measurements, but also for new builds. This paper presents a novel method for efficient and cost-effective sensor signal acquisition and data transmission via power lines, in order to cope with the disadvantages of common system architectures that often suffer from poor signal integrity due to raw data transmissions via long cables, huge efforts and costs for installation, and low flexibility with respect to maintenance and upgrades. A transmitter-receiver architecture is proposed that allows multiplexing of multiple sensor inputs for unidirectional point-to-point transmission by superimposing information signals on existing AC or DC supply lines, but also on active and inactive sensor wires, or spare cables, using power line communication (PLC) technology. Based on commercial off-the-shelf (COTS) electronic parts, a radiation hard transmitter hardware is designed to operate in harsh environment within the containment during full plant operation. The system's modular approach allows application specific trade-offs between redundancy and throughput regarding data transmission, as well as various sensor input front-ends which are compatible with state of the art systems. PLC technology eliminates the need for costly installation of additional cables and wall penetrations, while providing a complementary and diverse communication technology for upgrades of existing systems. At the receiver side in low dose areas, signals are extracted from the power line, demodulated, and de-multiplexed, in order to regain the original sensor signal information and provide it either in analog or digital output format. Successful laboratory qualification tests, field trails

  12. In-Containment Signal Acquisition and Data Transmission via Power Lines within High Dose Areas of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Mueller Steffen; Wibbing Sascha; Weigel Robert; Koelpin Alexander [Institute for Electronics Engineering, University of Erlangen-Nuremberg (Germany); Dennerlein, Juergen; Janke, Iryna; Weber, Johannes [AREVA GmbH, Paul-Gossen-Str. 100, 91052 Erlangen (Germany)

    2015-07-01

    Signal acquisition and data transmission for innovative sensor systems and networks inside the containment of nuclear power plants (NPPs) is still a challenge with respect to safety, performance, reliability, availability, and costs. This especially applies to equipment upgrades for existing plants, special measurements, but also for new builds. This paper presents a novel method for efficient and cost-effective sensor signal acquisition and data transmission via power lines, in order to cope with the disadvantages of common system architectures that often suffer from poor signal integrity due to raw data transmissions via long cables, huge efforts and costs for installation, and low flexibility with respect to maintenance and upgrades. A transmitter-receiver architecture is proposed that allows multiplexing of multiple sensor inputs for unidirectional point-to-point transmission by superimposing information signals on existing AC or DC supply lines, but also on active and inactive sensor wires, or spare cables, using power line communication (PLC) technology. Based on commercial off-the-shelf (COTS) electronic parts, a radiation hard transmitter hardware is designed to operate in harsh environment within the containment during full plant operation. The system's modular approach allows application specific trade-offs between redundancy and throughput regarding data transmission, as well as various sensor input front-ends which are compatible with state of the art systems. PLC technology eliminates the need for costly installation of additional cables and wall penetrations, while providing a complementary and diverse communication technology for upgrades of existing systems. At the receiver side in low dose areas, signals are extracted from the power line, demodulated, and de-multiplexed, in order to regain the original sensor signal information and provide it either in analog or digital output format. Successful laboratory qualification tests, field trails

  13. Bioinspired optical sensors for unmanned aerial systems

    Science.gov (United States)

    Chahl, Javaan; Rosser, Kent; Mizutani, Akiko

    2011-04-01

    Insects are dependant on the spatial, spectral and temporal distributions of light in the environment for flight control and navigation. This paper reports on flight trials of implementations of insect inspired behaviors on unmanned aerial vehicles. Optical flow methods for maintaining a constant height above ground and a constant course have been demonstrated to provide navigation capabilities that are impossible using conventional avionics sensors. Precision control of height above ground and ground course were achieved over long distances. Other vision based techniques demonstrated include a biomimetic stabilization sensor that uses the ultraviolet and green bands of the spectrum, and a sky polarization compass. Both of these sensors were tested over long trajectories in different directions, in each case showing performance similar to low cost inertial heading and attitude systems. The behaviors demonstrate some of the core functionality found in the lower levels of the sensorimotor system of flying insects and shows promise for more integrated solutions in the future.

  14. A novel pH optical sensor using methyl orange based on triacetylcellulose membranes as support.

    Science.gov (United States)

    Hosseini, Mohammad; Heydari, Rouhollah; Alimoradi, Mohammad

    2014-07-15

    A novel pH optical sensor based on triacetylcellulose membrane as solid support was developed by using immobilization of methyl orange indicator. The prepared optical sensor was fixed into a flow cell for on-line pH monitoring. Variables affecting sensor performance, such as pH of dye bonding to triacetylcellulose membrane and dye concentration have been fully evaluated and optimized. The calibration curve showed good behavior and precision (RSDpH range of 4.0-12.0. No significant variation was observed on sensor response with increasing the ionic strength in the range of 0.0-0.5M of sodium chloride. Determination of pH by using the proposed optical sensor is on-line, quick, inexpensive, selective and sensitive in the pH range of 4.0-12.0. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Blind system identification of two-thermocouple sensor based on cross-relation method

    Science.gov (United States)

    Li, Yanfeng; Zhang, Zhijie; Hao, Xiaojian

    2018-03-01

    In dynamic temperature measurement, the dynamic characteristics of the sensor affect the accuracy of the measurement results. Thermocouples are widely used for temperature measurement in harsh conditions due to their low cost, robustness, and reliability, but because of the presence of the thermal inertia, there is a dynamic error in the dynamic temperature measurement. In order to eliminate the dynamic error, two-thermocouple sensor was used to measure dynamic gas temperature in constant velocity flow environments in this paper. Blind system identification of two-thermocouple sensor based on a cross-relation method was carried out. Particle swarm optimization algorithm was used to estimate time constants of two thermocouples and compared with the grid based search method. The method was validated on the experimental equipment built by using high temperature furnace, and the input dynamic temperature was reconstructed by using the output data of the thermocouple with small time constant.

  16. A Solar Position Sensor Based on Image Vision.

    Science.gov (United States)

    Ruelas, Adolfo; Velázquez, Nicolás; Villa-Angulo, Carlos; Acuña, Alexis; Rosales, Pedro; Suastegui, José

    2017-07-29

    Solar collector technologies operate with better performance when the Sun beam direction is normal to the capturing surface, and for that to happen despite the relative movement of the Sun, solar tracking systems are used, therefore, there are rules and standards that need minimum accuracy for these tracking systems to be used in solar collectors' evaluation. Obtaining accuracy is not an easy job, hence in this document the design, construction and characterization of a sensor based on a visual system that finds the relative azimuth error and height of the solar surface of interest, is presented. With these characteristics, the sensor can be used as a reference in control systems and their evaluation. The proposed sensor is based on a microcontroller with a real-time clock, inertial measurement sensors, geolocation and a vision sensor, that obtains the angle of incidence from the sunrays' direction as well as the tilt and sensor position. The sensor's characterization proved how a measurement of a focus error or a Sun position can be made, with an accuracy of 0.0426° and an uncertainty of 0.986%, which can be modified to reach an accuracy under 0.01°. The validation of this sensor was determined showing the focus error on one of the best commercial solar tracking systems, a Kipp & Zonen SOLYS 2. To conclude, the solar tracking sensor based on a vision system meets the Sun detection requirements and components that meet the accuracy conditions to be used in solar tracking systems and their evaluation or, as a tracking and orientation tool, on photovoltaic installations and solar collectors.

  17. Calibrating a novel multi-sensor physical activity measurement system

    International Nuclear Information System (INIS)

    John, D; Sasaki, J E; Howe, C A; Freedson, P S; Liu, S; Gao, R X; Staudenmayer, J

    2011-01-01

    Advancing the field of physical activity (PA) monitoring requires the development of innovative multi-sensor measurement systems that are feasible in the free-living environment. The use of novel analytical techniques to combine and process these multiple sensor signals is equally important. This paper describes a novel multi-sensor 'integrated PA measurement system' (IMS), the lab-based methodology used to calibrate the IMS, techniques used to predict multiple variables from the sensor signals, and proposes design changes to improve the feasibility of deploying the IMS in the free-living environment. The IMS consists of hip and wrist acceleration sensors, two piezoelectric respiration sensors on the torso, and an ultraviolet radiation sensor to obtain contextual information (indoors versus outdoors) of PA. During lab-based calibration of the IMS, data were collected on participants performing a PA routine consisting of seven different ambulatory and free-living activities while wearing a portable metabolic unit (criterion measure) and the IMS. Data analyses on the first 50 adult participants are presented. These analyses were used to determine if the IMS can be used to predict the variables of interest. Finally, physical modifications for the IMS that could enhance the feasibility of free-living use are proposed and refinement of the prediction techniques is discussed

  18. Semi-on-line analysis for fast and precise monitoring of bioreaction processes

    DEFF Research Database (Denmark)

    Christensen, L.H.; Marcher, J.; Schulze, Ulrik

    1996-01-01

    Monitoring of substrates and products during fermentation processes can be achieved either by on-line, in situ sensors or by semi-on-line analysis consisting of an automatic sampling step followed by an ex situ analysis of the retrieved sample. The potential risk of introducing time delays...

  19. A New Method of On-line Grid Impedance Estimation for PV Inverter

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Asiminoaei, Lucian; Blaabjerg, Frede

    2004-01-01

    for on-line measuring the grid impedance is presented. The presented method requires no extra hardware being accommodated by typical PV inverters, sensors and CPU, to provide a fast and low cost approach of on-line impedance measurement. By injecting a non-characteristic harmonic current and measuring...

  20. Flexible magnetoimpedance sensor

    International Nuclear Information System (INIS)

    Li, Bodong; Kavaldzhiev, Mincho N.; Kosel, Jürgen

    2015-01-01

    Flexible magnetoimpedance (MI) sensors fabricated using a NiFe/Cu/NiFe tri-layer on Kapton substrate have been studied. A customized flexible microstrip transmission line was employed to investigate the MI sensors's magnetic field and frequency responses and their dependence on the sensors's deflection. For the first time, the impedance characteristic is obtained through reflection coefficient analysis over a wide range of frequencies from 0.1 MHz to 3 GHz and for deflections ranging from zero curvature to a radius of 7.2 cm. The sensor element maintains a high MI ratio of up to 90% and magnetic sensitivity of up to 9.2%/Oe over different bending curvatures. The relationship between the curvature and material composition is discussed based on the magnetostriction effect and stress simulations. The sensor's large frequency range, simple fabrication process and high sensitivity provide a great potential for flexible electronics and wireless applications. - Highlights: • A flexible magnetoimpedance (MI) sensor is developed. • Studies are carried out using a flexible microstrip transmission line. • An MI ratio of up to 90% is obtained. • The effect of magnetostriction is studied

  1. Sensor response time monitoring using noise analysis

    International Nuclear Information System (INIS)

    Hashemian, H.M.; Thie, J.A.; Upadhyaya, B.R.; Holbert, K.E.

    1988-01-01

    Random noise techniques in nuclear power plants have been developed for system surveillance and for analysis of reactor core dynamics. The noise signals also contain information about sensor dynamics, and this can be extracted using frequency, amplitude and time domain analyses. Even though noise analysis has been used for sensor response time testing in some nuclear power plants, an adequate validation of this method has never been carried out. This paper presents the results of limited work recently performed to examine the validity of the noise analysis for sensor response time testing in nuclear power plants. The conclusion is that noise analysis has the potential for detecting gross changes in sensor response but it cannot be used for reliable measurement of response time until more laboratory and field experience is accumulated. The method is more advantageous for testing pressure sensors than it is for temperature sensors. This is because: 1) for temperature sensors, a method called Loop Current Step Response test is available which is quantitatively more exact than noise analysis, 2) no method currently exists for on-line testing of pressure transmitters other than the Power-Interrupt test which is applicable only to force balance pressure transmitters, and 3) pressure sensor response time is affected by sensing line degradation which is inherently taken into account by testing with noise analysis. (author)

  2. New instrument for on-line viscosity measurement of fermentation media.

    Science.gov (United States)

    Picque, D; Corrieu, G

    1988-01-01

    In an attempt to resolve the difficult problem of on-line determination of the viscosity of non-Newtonian fermentation media, the authors have used a vibrating rod sensor mounted on a bioreactor. The sensor signal decreases nonlinearly with increased apparent viscosity. Electronic filtering of the signal damps the interfering effect of aeration and mechanical agitation. Sensor drift is very low (0.03% of measured value per hour). On the rheological level the sensor is primarily an empirical tool that must be specifically calibrated for each fermentation process. Once this is accomplished, it becomes possible to establish linear or second-degree correlations between the electrical signal from the sensor and the essential parameters of the fermentation process in question (pH of a fermented milk during acidification, concentration of extra cellular polysaccharide). In addition, by applying the power law to describe the rheological behavior of fermentation media, we observe a second-order polynomial correlation between the sensor signal and the behavior index (n).

  3. A Smart Sensor Data Transmission Technique for Logistics and Intelligent Transportation Systems

    OpenAIRE

    Kyunghee Sun; Intae Ryoo

    2018-01-01

    When it comes to Internet of Things systems that include both a logistics system and an intelligent transportation system, a smart sensor is one of the key elements to collect useful information whenever and wherever necessary. This study proposes the Smart Sensor Node Group Management Medium Access Control Scheme designed to group smart sensor devices and collect data from them efficiently. The proposed scheme performs grouping of portable sensor devices connected to a system depending on th...

  4. Human comment dynamics in on-line social systems

    Science.gov (United States)

    Wu, Ye; Zhou, Changsong; Chen, Maoying; Xiao, Jinghua; Kurths, Jürgen

    2010-12-01

    Human comment is studied using data from ‘tianya’ which is one of the most popular on-line social systems in China. We found that the time interval between two consecutive comments on the same topic, called inter-event time, follows a power-law distribution. This result shows that there is no characteristic decay time on a topic. It allows for very long periods without comments that separate bursts of intensive comments. Furthermore, the frequency of a different ID commenting on a topic also follows a power-law distribution. It indicates that there are some “hubs” in the topic who lead the direction of the public opinion. Based on the personal comments habit, a model is introduced to explain these phenomena. The numerical simulations of the model fit well with the empirical results. Our findings are helpful for discovering regular patterns of human behavior in on-line society and the evolution of the public opinion on the virtual as well as real society.

  5. Validation of an Inertial Sensor System for Swing Analysis in Golf

    Directory of Open Access Journals (Sweden)

    Paul Lückemann

    2018-02-01

    Full Text Available Wearable inertial sensor systems are an upcoming tool for self-evaluation in sports, and can be used for swing analysis in golf. The aim of this work was to determine the validity and repeatability of an inertial sensor system attached to a player’s glove using a radar system as a reference. 20 subjects performed five full swings with each of three different clubs (wood, 7-iron, wedge. Clubhead speed was measured simultaneously by both sensor systems. Limits of Agreement were used to determine the accuracy and precision of the inertial sensor system. Results show that the inertial sensor system is quite accurate but with a lack of precision. Random error was quantified to approximately 17 km/h. The measurement error was dependent on the club type and was weakly negatively correlated to the magnitude of clubhead speed.

  6. Aerodigitalni senzori - LH Systems ADS 40 / Airborne digital sensors: LH Systems ADS 40

    Directory of Open Access Journals (Sweden)

    Marko Pejić

    2004-01-01

    Full Text Available U radu su prezentovane osnove prikupljanja prostornih podataka metodom daljinske detekcije i klasičnim fotogrametrijskim metodom. Ukazano je na kompromis između dva metoda koji nudi digitalna aerokamera. Kompanija LH Systems proizvela je digitalnu aerokameru ADS 40 koja nudi sasvim nov koncept prikupljanja prostornih podataka. Sistem kamere obezbeđuje panhromatske i trodimenzionalne informacije koristeći tri CCD linije i opciono još pet linija iz multispektralnog opsega. Kamera skenira teren sa prostornom rezolucijom od 25 cm, površine od 300 kvadratnih kilometara, uz vreme trajanja leta koje je nešto kraće od jednog sata. / This paper presents basics of collecting spatial data with remote sensing and the classical photogrammetric method. A compromise between two methods, offered by a digital aero camera, is also suggested. The LH Systems has produced a new camera concept called Airborne Digital Sensor (ADS 40 which uses a new way of collecting spatial data. The camera system provides panchromatic and stereo information using three CCD lines and up to five more lines for multispectral imagery. The performance of the camera allows a three dimensional and multispectral image with a ground sample distance of 25 cm for an area of 300 square miles within a flight time shorter than one hour.

  7. The on-line data acquisition system for the MHD facility of Frascati

    International Nuclear Information System (INIS)

    Di Bartolomeo, M.; Papalia, B.; Gay, P.; Panaccione, L.

    1975-01-01

    An on-line data acquisition system for the MHD facility of the Laboratorio Conversione Diretta at Frascati is described. After a brief description of the MHD facility and of the measurement requirements, the criteria a,d the configuration of the minicomputer-based data acquisition system chosen are presented. Then the general philosophy and the flow-charts of the software implemented are shown, with particular emphasis to the real-time requirements of the measurement system. At last it is illustrated an off-line program, running on a large computer, that elaborates the output data of the data acquisition system

  8. Research on a power management system for thermoelectric generators to drive wireless sensors on a spindle unit.

    Science.gov (United States)

    Li, Sheng; Yao, Xinhua; Fu, Jianzhong

    2014-07-16

    Thermoelectric energy harvesting is emerging as a promising alternative energy source to drive wireless sensors in mechanical systems. Typically, the waste heat from spindle units in machine tools creates potential for thermoelectric generation. However, the problem of low and fluctuant ambient temperature differences in spindle units limits the application of thermoelectric generation to drive a wireless sensor. This study is devoted to presenting a transformer-based power management system and its associated control strategy to make the wireless sensor work stably at different speeds of the spindle. The charging/discharging time of capacitors is optimized through this energy-harvesting strategy. A rotating spindle platform is set up to test the performance of the power management system at different speeds. The experimental results show that a longer sampling cycle time will increase the stability of the wireless sensor. The experiments also prove that utilizing the optimal time can make the power management system work more effectively compared with other systems using the same sample cycle.

  9. Selected examples of intelligent (micro) sensor systems: state-of-the-art and tendencies

    Science.gov (United States)

    Hauptmann, Peter R.

    2006-03-01

    The capability of intelligent sensors to have more intelligence built into them continues to drive their application in areas including automotive, aerospace and defense, industrial, intelligent house and wear, medical and homeland security. In principle it is difficult to overestimate the importance of intelligent (micro) sensors or sensor systems within advanced societies but one characteristic feature is the global market for sensors, which is now about 20 billion annually. Therefore sensors or sensor systems play a dominant role in many fields from the macro sensor in manufacturing industry down to the miniaturized sensor for medical applications. The diversity of sensors precludes a complete description of the state-of-the-art; selected examples will illustrate the current situation. MEMS (microelectromechanical systems) devices are of special interest in the context of micro sensor systems. In past the main requirements of a sensor were in terms of metrological performance. The electrical (or optical) signal produced by the sensor needed to match the measure relatively accurately. Such basic functionality is no longer sufficient. Data processing near the sensor, the extraction of more information than just the direct sensor information by signal analysis, system aspects and multi-sensor information are the new demands. A shifting can be observed away from aiming to design perfect single-function transducers and towards the utilization of system-based sensors as system components. In the ideal case such systems contain sensors, actuators and electronics. They can be realized in monolithic, hybrid or discrete form—which kind is used depends on the application. In this article the state-of-the-art of intelligent sensors or sensor systems is reviewed using selected examples. Future trends are deduced.

  10. Packaged Capacitive Pressure Sensor System for Aircraft Engine Health Monitoring

    Science.gov (United States)

    Scardelletti, Maximilian C.; Zorman, Christian A.

    2016-01-01

    This paper describes the development of a packaged silicon carbide (SiC) based MEMS pressure sensor system designed specifically for a conventional turbofan engine. The electronic circuit is based on a Clapp-type oscillator that incorporates a 6H-SiC MESFET, a SiCN MEMS capacitive pressure sensor, titanate MIM capacitors, wirewound inductors, and thick film resistors. The pressure sensor serves as the capacitor in the LC tank circuit, thereby linking pressure to the resonant frequency of the oscillator. The oscillator and DC bias circuitry were fabricated on an alumina substrate and secured inside a metal housing. The packaged sensing system reliably operates at 0 to 350 psi and 25 to 540C. The system has a pressure sensitivity of 6.8 x 10E-2 MHzpsi. The packaged system shows negligible difference in frequency response between 25 and 400C. The fully packaged sensor passed standard benchtop acceptance tests and was evaluated on a flight-worthy engine.

  11. PHENIX On-Line Distributed Computing System Architecture

    International Nuclear Information System (INIS)

    Desmond, Edmond; Haggerty, John; Kehayias, Hyon Joo; Purschke, Martin L.; Witzig, Chris; Kozlowski, Thomas

    1997-01-01

    PHENIX is one of the two large experiments at the Relativistic Heavy Ion Collider (RHIC) currently under construction at Brookhaven National Laboratory. The detector consists of 11 sub-detectors, that are further subdivided into 29 units (''granules'') that can be operated independently, which includes simultaneous data taking with independent data streams and independent triggers. The detector has 250,000 channels and is read out by front end modules, where the data is buffered in a pipeline while awaiting the level trigger decision. Zero suppression and calibration is done after the level accept in custom built data collection modules (DCMs) with DSPs before the data is sent to an event builder (design throughput of 2 Gb/sec) and higher level triggers. The On-line Computing Systems Group (ONCS) has two responsibilities. Firstly it is responsible for receiving the data from the event builder, routing it through a network of workstations to consumer processes and archiving it at a data rate of 20 MB/sec. Secondly it is also responsible for the overall configuration, control and operation of the detector and data acquisition chain, which comprises the software integration for several thousand custom built hardware modules. The software must furthermore support the independent operation of the above mentioned granules, which includes the coordination of processes that run in 60-100 VME processors and workstations. ONOS has adapted the Shlaer- Mellor Object Oriented Methodology for the design of the top layer software. CORBA is used as communication layer between the distributed objects, which are implemented as asynchronous finite state machines. We will give an overview of the PHENIX online system with the main focus on the system architecture, software components and integration tasks of the On-line Computing group ONCS and report on the status of the current prototypes

  12. Sensor fusion to enable next generation low cost Night Vision systems

    Science.gov (United States)

    Schweiger, R.; Franz, S.; Löhlein, O.; Ritter, W.; Källhammer, J.-E.; Franks, J.; Krekels, T.

    2010-04-01

    The next generation of automotive Night Vision Enhancement systems offers automatic pedestrian recognition with a performance beyond current Night Vision systems at a lower cost. This will allow high market penetration, covering the luxury as well as compact car segments. Improved performance can be achieved by fusing a Far Infrared (FIR) sensor with a Near Infrared (NIR) sensor. However, fusing with today's FIR systems will be too costly to get a high market penetration. The main cost drivers of the FIR system are its resolution and its sensitivity. Sensor cost is largely determined by sensor die size. Fewer and smaller pixels will reduce die size but also resolution and sensitivity. Sensitivity limits are mainly determined by inclement weather performance. Sensitivity requirements should be matched to the possibilities of low cost FIR optics, especially implications of molding of highly complex optical surfaces. As a FIR sensor specified for fusion can have lower resolution as well as lower sensitivity, fusing FIR and NIR can solve performance and cost problems. To allow compensation of FIR-sensor degradation on the pedestrian detection capabilities, a fusion approach called MultiSensorBoosting is presented that produces a classifier holding highly discriminative sub-pixel features from both sensors at once. The algorithm is applied on data with different resolution and on data obtained from cameras with varying optics to incorporate various sensor sensitivities. As it is not feasible to record representative data with all different sensor configurations, transformation routines on existing high resolution data recorded with high sensitivity cameras are investigated in order to determine the effects of lower resolution and lower sensitivity to the overall detection performance. This paper also gives an overview of the first results showing that a reduction of FIR sensor resolution can be compensated using fusion techniques and a reduction of sensitivity can be

  13. Surface-type humidity sensor based on cellulose-PEPC for telemetry systems

    International Nuclear Information System (INIS)

    Karimov, Kh. S.; Saleem, M.; Qasuria, T. A.; Farooq, M.

    2011-01-01

    Au/cellulose-PEPC/Au surface-type humidity sensors were fabricated by drop-casting cellulose and poly-N-epoxypropylcarbazole (PEPC) blend thin films. A blend of 2wt% of each cellulose and PEPC in benzol was used for the deposition of humidity sensing films. Blend films were deposited on glass substrates with preliminary deposited surface-type gold electrodes. Films of different thicknesses of cellulose and PEPC composite were deposited by drop-casting technique. A change in electrical resistance and capacitance of the fabricated devices was observed by increasing the relative humidity in the range of 0-95% RH. It was observed that the capacitances of the sensors increase, while their resistances decrease with increasing the relative humidity. The sensors were connected to op-amp square wave oscillators. It was observed that with increasing the relative humidity, the oscillator's frequencies were also increased in the range of 4.2-12.0 kHz for 65 μm thick film sample, 4.1-9.0 kHz for 88 μm thick film sample, and 4.2-9.0 kHz for 210 μm sample. Effects of film thickness on the oscillator's frequency with respect to humidity were also investigated. This polymer humidity sensor controlled oscillator can be used for short-range and long-range remote systems at environmental monitoring and assessment of the humidity level. (semiconductor integrated circuits)

  14. Robust on-line monitoring of biogas processes; Robusta maettekniker on-line foer optimerad biogasproduktion

    Energy Technology Data Exchange (ETDEWEB)

    Nordberg, Aake; Hansson, Mikael; Kanerot, Mija; Krozer, Anatol; Loefving, Bjoern; Sahlin, Eskil

    2010-03-15

    Although demand for biomethane in Sweden is higher than ever, many Swedish codigestion plants are presently operated below their designed capacity. Efforts must be taken to increase the loading rate and guarantee stable operation and high availability of the plants. There are currently no commercial systems for on-line monitoring, and due to the characteristics of the material, including corrosion and tearing, robust applications have to be developed. The objective of this project was to identify and study different monitoring technologies with potential for on-line monitoring of both substrate mixtures and anaerobic digester content. Based on the prerequisites and demands at Boraas Energi och Miljoe AB's (BEMAB, the municipal energy and waste utility in the city of Boraas, Sweden) biogas plant, the extent of the problems, measurement variables and possible ways of managing these issues have been identified and prioritized. The substrate mixtures in question have a high viscosity and are inhomogeneous with variation in composition, which calls for further homogenization, dilution and filtration to achieve high precision in the necessary analyses. Studies of using different mixers and mills showed that the particle size (800 mum) needed for on-line COD measurement could not be achieved. The problem of homogenization can be avoided if indirect measurement methods are used. Laboratory tests with NIR (near-infra red spectroscopy) showed that VS can be predicted (R2=0,78) in the interval of 2-9% VS. Furthermore, impedance can give a measurement of soluble components. However, impedance is not sensitive enough to give a good measurement of total TS. Microwave technology was installed at the production plant and showed a faster response to changes in TS than the existing TS-sensor. However, due to technical problems, the evaluation only could be done during a limited period of ten days. BEMAB will continue the measurements and evaluation of the instrument. The

  15. Expansion of Smartwatch Touch Interface from Touchscreen to Around Device Interface Using Infrared Line Image Sensors

    OpenAIRE

    Lim, Soo-Chul; Shin, Jungsoon; Kim, Seung-Chan; Park, Joonah

    2015-01-01

    Touchscreen interaction has become a fundamental means of controlling mobile phones and smartwatches. However, the small form factor of a smartwatch limits the available interactive surface area. To overcome this limitation, we propose the expansion of the touch region of the screen to the back of the user’s hand. We developed a touch module for sensing the touched finger position on the back of the hand using infrared (IR) line image sensors, based on the calibrated IR intensity and the maxi...

  16. Sensor selection of helicopter transmission systems based on physical model and sensitivity analysis

    Directory of Open Access Journals (Sweden)

    Lyu Kehong

    2014-06-01

    Full Text Available In the helicopter transmission systems, it is important to monitor and track the tooth damage evolution using lots of sensors and detection methods. This paper develops a novel approach for sensor selection based on physical model and sensitivity analysis. Firstly, a physical model of tooth damage and mesh stiffness is built. Secondly, some effective condition indicators (CIs are presented, and the optimal CIs set is selected by comparing their test statistics according to Mann–Kendall test. Afterwards, the selected CIs are used to generate a health indicator (HI through sen slop estimator. Then, the sensors are selected according to the monotonic relevance and sensitivity to the damage levels. Finally, the proposed method is verified by the simulation and experimental data. The results show that the approach can provide a guide for health monitoring of helicopter transmission systems, and it is effective to reduce the test cost and improve the system’s reliability.

  17. Smart container UWB sensor system for situational awareness of intrusion alarms

    Science.gov (United States)

    Romero, Carlos E.; Haugen, Peter C.; Zumstein, James M.; Leach, Jr., Richard R.; Vigars, Mark L.

    2013-06-11

    An in-container monitoring sensor system is based on an UWB radar intrusion detector positioned in a container and having a range gate set to the farthest wall of the container from the detector. Multipath reflections within the container make every point on or in the container appear to be at the range gate, allowing intrusion detection anywhere in the container. The system also includes other sensors to provide false alarm discrimination, and may include other sensors to monitor other parameters, e.g. radiation. The sensor system also includes a control subsystem for controlling system operation. Communications and information extraction capability may also be included. A method of detecting intrusion into a container uses UWB radar, and may also include false alarm discrimination. A secure container has an UWB based monitoring system

  18. Sensor Buoy System for Monitoring Renewable Marine Energy Resources.

    Science.gov (United States)

    García, Emilio; Quiles, Eduardo; Correcher, Antonio; Morant, Francisco

    2018-03-22

    In this paper we present a multi-sensor floating system designed to monitor marine energy parameters, in order to sample wind, wave, and marine current energy resources. For this purpose, a set of dedicated sensors to measure the height and period of the waves, wind, and marine current intensity and direction have been selected and installed in the system. The floating device incorporates wind and marine current turbines for renewable energy self-consumption and to carry out complementary studies on the stability of such a system. The feasibility, safety, sensor communications, and buoy stability of the floating device have been successfully checked in real operating conditions.

  19. Burr formation detector for fiber laser cutting based on a photodiode sensor system

    Science.gov (United States)

    Schleier, Max; Adelmann, Benedikt; Neumeier, Benedikt; Hellmann, Ralf

    2017-11-01

    We report a unique sensor system based on a InGaAs photodiode to detect the formation of burr during near infrared fiber laser cutting. The sensor approach encompasses the measurement of the thermal radiation form the process zone, optical filtering, digitalized sampling at 20 kHz, digital filtering using an elliptical band-pass filter 12th order and calculation of the standard deviation. We find a linear correlation between the deduced sensor signal and the generated burr height with this functionality being experimentally confirmed for laser cutting of mild and stainless steel of different thicknesses. The underlying mechanism of this transducer concept is attributed to the melt flow dynamics inside the cut kerf.

  20. Dynamic Reconfiguration of a RGBD Sensor Based on QoS and QoC Requirements in Distributed Systems.

    Science.gov (United States)

    Munera, Eduardo; Poza-Lujan, Jose-Luis; Posadas-Yagüe, Juan-Luis; Simó-Ten, José-Enrique; Noguera, Juan Fco Blanes

    2015-07-24

    The inclusion of embedded sensors into a networked system provides useful information for many applications. A Distributed Control System (DCS) is one of the clearest examples where processing and communications are constrained by the client's requirements and the capacity of the system. An embedded sensor with advanced processing and communications capabilities supplies high level information, abstracting from the data acquisition process and objects recognition mechanisms. The implementation of an embedded sensor/actuator as a Smart Resource permits clients to access sensor information through distributed network services. Smart resources can offer sensor services as well as computing, communications and peripheral access by implementing a self-aware based adaptation mechanism which adapts the execution profile to the context. On the other hand, information integrity must be ensured when computing processes are dynamically adapted. Therefore, the processing must be adapted to perform tasks in a certain lapse of time but always ensuring a minimum process quality. In the same way, communications must try to reduce the data traffic without excluding relevant information. The main objective of the paper is to present a dynamic configuration mechanism to adapt the sensor processing and communication to the client's requirements in the DCS. This paper describes an implementation of a smart resource based on a Red, Green, Blue, and Depth (RGBD) sensor in order to test the dynamic configuration mechanism presented.