WorldWideScience

Sample records for ompb promoter regulated

  1. Rickettsial ompB promoter regulated expression of GFPuv in transformed Rickettsia montanensis.

    Directory of Open Access Journals (Sweden)

    Gerald D Baldridge

    Full Text Available Rickettsia spp. (Rickettsiales: Rickettsiaceae are Gram-negative, obligate intracellular, alpha-proteobacteria that have historically been associated with blood-feeding arthropods. Certain species cause typhus and spotted fevers in humans, but others are of uncertain pathogenicity or may be strict arthropod endosymbionts. Genetic manipulation of rickettsiae should facilitate a better understanding of their interactions with hosts.We transformed a species never associated with human disease, Rickettsia montanensis, by electroporation with a TN5 transposon (pMOD700 containing green fluorescent protein (GFPuv and chloramphenicol acetyltransferase (CAT genes under regulation of promoters cloned from the Rickettsia rickettsii ompB gene, and isolated a Chloramphenicol-resistant GFP-fluorescent rickettsiae population (Rmontanensis700. The Rmontanensis700 rickettsiae contained a single transposon integrated near an acetyl-CoA acetyltransferase gene in the rickettsial chromosome. Northern blots showed that GFPuv and CAT mRNAs were both expressed as two transcripts of larger and smaller than predicted length. Western immunoblots showed that Rmontanensis700 and E. coli transformed with a plasmid containing the pMOD700 transposon both expressed GFPuv proteins of the predicted molecular weight.Long-standing barriers to transformation of rickettsiae have been overcome by development of transposon-based rickettsial transformation vectors. The ompB promoter may be the most problematic of the four promoters so far employed in those vectors.

  2. Regulation of Rad51 promoter

    Science.gov (United States)

    Hine, Christopher M; Li, Hongjie; Xie, Li; Mao, Zhiyong; Seluanov, Andrei; Gorbunova, Vera

    2014-01-01

    The DNA double-strand break repair and homologous recombination protein Rad51 is overexpressed in the majority of human cancers. This correlates with therapy resistance and decreased patient survival. We previously showed that constructs containing Rad51 promoter fused to a reporter gene are, on average, 850-fold more active in cancer cells than in normal cells. It is not well understood what factors and sequences regulate the Rad51 promoter and cause its high activity in cancerous cells. Here we characterized regulatory regions and examined genetic requirements for oncogenic stimulation of the Rad51 promoter. We identified specific regions responsible for up- and downregulation of the Rad51 promoter in cancerous cells. Furthermore, we show that Rad51 expression is positively regulated by EGR1 transcription factor. We then modeled the malignant transformation process by expressing a set of oncoproteins in normal human fibroblasts. Expression of different combinations of SV40 large T antigen, oncogenic Ras and SV40 small T antigen resulted in step-wise increase in Rad51 promoter activity, with all the 3 oncoproteins together leading to a 47-fold increase in expression. Cumulatively, these results suggest that Rad51 promoter is regulated by multiple factors, and that its expression is gradually activated as cells progress toward malignancy. PMID:24781030

  3. Reflexive regulation of CSR to promote sustainablility

    DEFF Research Database (Denmark)

    Buhmann, Karin

    climate change and environmental sustainability, and social, economic and other human rights lend human rights as part of CSR a potential for meeting some environmental and climate concerns and handling adverse side-effects. The article analyses two EU initiatives: The EU Multi-Stakeholder (MSF) on CSR...... in promoting companies’ responsibility with regard to aspects of sustainable development, such as climate impact. Keywords: Sustainable development, sustainable companies, reflexive regulation, climate change, CSR, EU law, public-private regulation, companies' self-regulation......This article discusses Corporate Social Responsibility (CSR) from the perspective of governmental regulation as a measure to promote public policy interests through public-private regulation intended to influence firms’ self-regulation. Presenting a ‘government case’ for CSR, the connection between...

  4. Genes for the Major Structural Components of Thermotogales Species' Togas Revealed by Proteomic and Evolutionary Analyses of OmpA and OmpB Homologs

    Energy Technology Data Exchange (ETDEWEB)

    Petrus, Amanda K. [Univ. of Connecticut, Storrs, CT (United States); Swithers, Kristen S. [Univ. of Connecticut, Storrs, CT (United States); Ranjit, Chaman R. [Univ. of Connecticut, Storrs, CT (United States); Wu, Si [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Brewer, Heather M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gogarten, J. Peter [Univ. of Connecticut, Storrs, CT (United States); Pasa-Tolic, Ljiljana [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Noll, Kenneth M. [Univ. of Connecticut, Storrs, CT (United States)

    2012-06-29

    The unifying structural characteristic of members of the bacterial order Thermotogales is an unusual cell envelope that includes a loose-fitting sheath around each cell, often called a toga. Only two toga-associated structural proteins have been identified in Thermotoga maritima: the anchor protein OmpA1 (previously termed Ompα) and the porin OmpB (previously termed Ompβ). The gene encoding OmpA (ompA1) was assigned in the genome sequence to TM0477, but because no peptide sequence was available for OmpB, its gene (ompB) was not annotated. Here we identify the ompB gene as TM0476, determined by LC/MS/MS analysis of the native OmpB protein purified from T. maritima cells. The purified OmpB had β-sheet secondary structure as determined by circular dichroism. Analysis of the sequence of ompB product shows it has porin characteristics including a carboxy terminus anchoring motif and a porin-specific amino acid composition. Orthologs of ompB were found in the genomes of some, but not all, Thermotogales. Those without orthologs have putative analogs. Phylogenetic analyses of OmpA1 revealed that each species of the Thermotogales has one to three OmpA homologs. T. maritima has two OmpA homologs, encoded by ompA1(TM0477) and ompA2 (TM1729), both of which were found in the toga protein-enriched cell extracts. These annotations of the genes encoding toga structural proteins will guide future examinations of the structure and function of this unusual lineage-defining cell sheath.

  5. Genes for the Major Structural Components of Thermotogales Species’ Togas Revealed by Proteomic and Evolutionary Analyses of OmpA and OmpB Homologs

    Energy Technology Data Exchange (ETDEWEB)

    Petrus, Amanda K.; Swithers, Kristen S.; Ranjit, Chaman R.; Wu, Si; Brewer, Heather M.; Gogarten, J Peter; Pasa-Tolic, Ljiljana; Noll, Kenneth M.

    2012-06-29

    The unifying structural characteristic of members of the bacterial order Thermotogales is their toga, an unusual cell envelope that includes a loose-fitting sheath around each cell. Only two toga-associated structural proteins have been purified and characterized in Thermotoga maritima: the anchor protein OmpA1 (or Ompa) and the porin OmpB (or Ompb). The gene encoding OmpA1 (ompA1) was cloned and sequenced and later assigned to TM0477 in the genome sequence, but because no peptide sequence was available for OmpB, its gene (ompB) was not annotated. We identified six porin candidates in the genome sequence of T. maritima. Of these candidates, only one, encoded by TM0476, has all the characteristics reported for OmpB and characteristics expected of a porin including predominant b-sheet structure, a carboxy terminus porin anchoring motif, and a porin-specific amino acid composition. We highly enriched a toga fraction of cells for OmpB by sucrose gradient centrifugation and hydroxyapatite chromatography and analyzed it by LC/MS/MS. We found that the only porin candidate that it contained was the TM0476 product. This cell fraction also had b-sheet character as determined by circular dichroism, consistent with its enrichment for OmpB. We conclude that TM0476 encodes OmpB. A phylogenetic analysis of OmpB found orthologs encoded in syntenic locations in the genomes of all but two Thermotogales species. Those without orthologs have putative isofunctional genes in their place. Phylogenetic analyses of OmpA1 revealed that each species of the Thermotogales has one or two OmpA homologs. T. maritima has two OmpA homologs, encoded by ompA1 (TM0477) and ompA2 (TM1729), both of which were found in the toga protein-enriched cell extracts. These annotations of the genes encoding toga structural proteins will guide future examinations of the structure and function of this unusual lineage-defining cell sheath.

  6. Reflexive regulation of CSR to promote sustainablility

    DEFF Research Database (Denmark)

    Buhmann, Karin

    climate change and environmental sustainability, and social, economic and other human rights lend human rights as part of CSR a potential for meeting some environmental and climate concerns and handling adverse side-effects. The article analyses two EU initiatives: The EU Multi-Stakeholder (MSF) on CSR...... in promoting companies’ responsibility with regard to aspects of sustainable development, such as climate impact. Keywords: Sustainable development, sustainable companies, reflexive regulation, climate change, CSR, EU law, public-private regulation, companies' self-regulation...... and the EU CSR Alliance. Focusing on human rights based in international law, it analyses the patterns of negotiation in the MSF and the background for the launch of the CSR Alliance. It shows that analysing public-private regulation of CSR from the perspective of reflexive law theory assists us...

  7. Reflexive regulation of CSR to promote sustainability

    DEFF Research Database (Denmark)

    Buhmann, Karin

    2011-01-01

    climate change and environmental sustainability, and social, economic and other human rights lend human rights as part of CSR a potential for meeting some environmental and climate concerns and handling adverse side-effects. The article analyses two EU initiatives: The EU Multi-Stakeholder (MSF) on CSR......This article discusses Corporate Social Responsibility (CSR) from the perspective of governmental regulation as a measure to promote public policy interests through public-private regulation intended to influence firms’ self-regulation. Presenting a ‘government case’ for CSR, the connection between...... and the EU CSR Alliance. Focusing on human rights based in international law, it analyses the patterns of negotiation in the MSF and the background for the launch of the CSR Alliance. It shows that analysing public-private regulation of CSR from the perspective of reflexive law theory assists us...

  8. Genes for the major structural components of Thermotogales species' togas revealed by proteomic and evolutionary analyses of OmpA and OmpB homologs.

    Directory of Open Access Journals (Sweden)

    Amanda K Petrus

    Full Text Available The unifying structural characteristic of members of the bacterial order Thermotogales is their toga, an unusual cell envelope that includes a loose-fitting sheath around each cell. Only two toga-associated structural proteins have been purified and characterized in Thermotoga maritima: the anchor protein OmpA1 (or Ompα and the porin OmpB (or Ompβ. The gene encoding OmpA1 (ompA1 was cloned and sequenced and later assigned to TM0477 in the genome sequence, but because no peptide sequence was available for OmpB, its gene (ompB was not annotated. We identified six porin candidates in the genome sequence of T. maritima. Of these candidates, only one, encoded by TM0476, has all the characteristics reported for OmpB and characteristics expected of a porin including predominant β-sheet structure, a carboxy terminus porin anchoring motif, and a porin-specific amino acid composition. We highly enriched a toga fraction of cells for OmpB by sucrose gradient centrifugation and hydroxyapatite chromatography and analyzed it by LC/MS/MS. We found that the only porin candidate that it contained was the TM0476 product. This cell fraction also had β-sheet character as determined by circular dichroism, consistent with its enrichment for OmpB. We conclude that TM0476 encodes OmpB. A phylogenetic analysis of OmpB found orthologs encoded in syntenic locations in the genomes of all but two Thermotogales species. Those without orthologs have putative isofunctional genes in their place. Phylogenetic analyses of OmpA1 revealed that each species of the Thermotogales has one or two OmpA homologs. T. maritima has two OmpA homologs, encoded by ompA1 (TM0477 and ompA2 (TM1729, both of which were found in the toga protein-enriched cell extracts. These annotations of the genes encoding toga structural proteins will guide future examinations of the structure and function of this unusual lineage-defining cell sheath.

  9. Genes for the Major Structural Components of Thermotogales Species’ Togas Revealed by Proteomic and Evolutionary Analyses of OmpA and OmpB Homologs

    Science.gov (United States)

    Petrus, Amanda K.; Swithers, Kristen S.; Ranjit, Chaman; Wu, Si; Brewer, Heather M.; Gogarten, J. Peter; Pasa-Tolic, Ljiljana; Noll, Kenneth M.

    2012-01-01

    The unifying structural characteristic of members of the bacterial order Thermotogales is their toga, an unusual cell envelope that includes a loose-fitting sheath around each cell. Only two toga-associated structural proteins have been purified and characterized in Thermotoga maritima: the anchor protein OmpA1 (or Ompα) and the porin OmpB (or Ompβ). The gene encoding OmpA1 (ompA1) was cloned and sequenced and later assigned to TM0477 in the genome sequence, but because no peptide sequence was available for OmpB, its gene (ompB) was not annotated. We identified six porin candidates in the genome sequence of T. maritima. Of these candidates, only one, encoded by TM0476, has all the characteristics reported for OmpB and characteristics expected of a porin including predominant β-sheet structure, a carboxy terminus porin anchoring motif, and a porin-specific amino acid composition. We highly enriched a toga fraction of cells for OmpB by sucrose gradient centrifugation and hydroxyapatite chromatography and analyzed it by LC/MS/MS. We found that the only porin candidate that it contained was the TM0476 product. This cell fraction also had β-sheet character as determined by circular dichroism, consistent with its enrichment for OmpB. We conclude that TM0476 encodes OmpB. A phylogenetic analysis of OmpB found orthologs encoded in syntenic locations in the genomes of all but two Thermotogales species. Those without orthologs have putative isofunctional genes in their place. Phylogenetic analyses of OmpA1 revealed that each species of the Thermotogales has one or two OmpA homologs. T. maritima has two OmpA homologs, encoded by ompA1 (TM0477) and ompA2 (TM1729), both of which were found in the toga protein-enriched cell extracts. These annotations of the genes encoding toga structural proteins will guide future examinations of the structure and function of this unusual lineage-defining cell sheath. PMID:22768259

  10. Structural Insights into Substrate Recognition and Catalysis in Outer Membrane Protein B (OmpB) by Protein-lysine Methyltransferases from Rickettsia.

    Science.gov (United States)

    Abeykoon, Amila H; Noinaj, Nicholas; Choi, Bok-Eum; Wise, Lindsay; He, Yi; Chao, Chien-Chung; Wang, Guanghui; Gucek, Marjan; Ching, Wei-Mei; Chock, P Boon; Buchanan, Susan K; Yang, David C H

    2016-09-16

    Rickettsia belong to a family of Gram-negative obligate intracellular infectious bacteria that are the causative agents of typhus and spotted fever. Outer membrane protein B (OmpB) occurs in all rickettsial species, serves as a protective envelope, mediates host cell adhesion and invasion, and is a major immunodominant antigen. OmpBs from virulent strains contain multiple trimethylated lysine residues, whereas the avirulent strain contains mainly monomethyllysine. Two protein-lysine methyltransferases (PKMTs) that catalyze methylation of recombinant OmpB at multiple sites with varying sequences have been identified and overexpressed. PKMT1 catalyzes predominantly monomethylation, whereas PKMT2 catalyzes mainly trimethylation. Rickettsial PKMT1 and PKMT2 are unusual in that their primary substrate appears to be limited to OmpB, and both are capable of methylating multiple lysyl residues with broad sequence specificity. Here we report the crystal structures of PKMT1 from Rickettsia prowazekii and PKMT2 from Rickettsia typhi, both the apo form and in complex with its cofactor S-adenosylmethionine or S-adenosylhomocysteine. The structure of PKMT1 in complex with S-adenosylhomocysteine is solved to a resolution of 1.9 Å. Both enzymes are dimeric with each monomer containing an S-adenosylmethionine binding domain with a core Rossmann fold, a dimerization domain, a middle domain, a C-terminal domain, and a centrally located open cavity. Based on the crystal structures, residues involved in catalysis, cofactor binding, and substrate interactions were examined using site-directed mutagenesis followed by steady state kinetic analysis to ascertain their catalytic functions in solution. Together, our data reveal new structural and mechanistic insights into how rickettsial methyltransferases catalyze OmpB methylation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Assessing Preschool Teachers' Practices to Promote Self-Regulated Learning

    Science.gov (United States)

    Adagideli, Fahretdin Hasan; Saraç, Seda; Ader, Engin

    2015-01-01

    Recent research reveals that in preschool years, through pedagogical interventions, preschool teachers can and should promote self-regulated learning. The main aim of this study is to develop a self-report instrument to assess preschool teachers' practices to promote self-regulated learning. A pool of 50 items was recruited through literature…

  12. Methylation of an intragenic alternative promoter regulates transcription of GARP.

    Science.gov (United States)

    Haupt, Sonja; Söntgerath, Viktoria Sophie Apollonia; Leipe, Jan; Schulze-Koops, Hendrik; Skapenko, Alla

    2016-02-01

    Alternative promoter usage has been proposed as a mechanism regulating transcriptional and translational diversity in highly elaborated systems like the immune system in humans. Here, we report that transcription of human glycoprotein A repetitions predominant (GARP) in regulatory CD4 T cells (Tregs) is tightly regulated by two alternative promoters. An intragenic promoter contains several CpGs and acts as a weak promoter that is demethylated and initiates transcription Treg-specifically. The strong up-stream promoter containing a CpG-island is, in contrast, fully demethylated throughout tissues. Transcriptional activity of the strong promoter was surprisingly down-regulated upon demethylation of the weak promoter. This demethylation-induced transcriptional attenuation regulated the magnitude of GARP expression and correlated with disease activity in rheumatoid arthritis. Treg-specific GARP transcription was initiated by synergistic interaction of forkhead box protein 3 (Foxp3) with nuclear factor of activated T cells (NFAT) and was underpinned by permissive chromatin remodeling caused by release of the H3K4 demethylase, PLU-1. Our findings describe a novel function of alternative promoters in regulating the extent of transcription. Moreover, since GARP functions as a transporter of transforming growth factor β (TGFβ), a cytokine with broad pleiotropic traits, GARP transcriptional attenuation by alternative promoters might provide a mechanism regulating peripheral TGFβ to avoid unwanted harmful effects.

  13. Seminar for Master's Thesis Projects: Promoting Students' Self-Regulation

    Science.gov (United States)

    Miedijensky, Shirley; Lichtinger, Einat

    2016-01-01

    This study presents a thesis seminar model aimed at promoting students' self-regulation. Students' perceptions regarding the contribution of the seminar to their learning process were characterized and the seminar's effect upon their self-regulation expressions was examined. Data was collected using questionnaires and analyzed thematically. The…

  14. Models for financing the regulation of pharmaceutical promotion.

    Science.gov (United States)

    Lexchin, Joel

    2012-07-11

    Pharmaceutical companies spend huge sums promoting their products whereas regulation of promotional activities is typically underfinanced. Any option for financing the monitoring and regulation of promotion should adhere to three basic principles: stability, predictability and lack of (perverse) ties between the level of financing and performance. This paper explores the strengths and weaknesses of six different models. All these six models considered here have positive and negative features and none may necessarily be ideal in any particular country. Different countries may choose to utilize a combination of two or more of these models in order to raise sufficient revenue. Financing of regulation of drug promotion should more than pay for itself through the prevention of unnecessary drug costs and the avoidance of adverse health effects due to inappropriate prescribing. However, it involves an initial outlay of money that is currently not being spent and many national governments, in both rich and poor countries, are unwilling to incur extra costs.

  15. Models for financing the regulation of pharmaceutical promotion

    Directory of Open Access Journals (Sweden)

    Lexchin Joel

    2012-07-01

    Full Text Available Abstract Pharmaceutical companies spend huge sums promoting their products whereas regulation of promotional activities is typically underfinanced. Any option for financing the monitoring and regulation of promotion should adhere to three basic principles: stability, predictability and lack of (perverse ties between the level of financing and performance. This paper explores the strengths and weaknesses of six different models. All these six models considered here have positive and negative features and none may necessarily be ideal in any particular country. Different countries may choose to utilize a combination of two or more of these models in order to raise sufficient revenue. Financing of regulation of drug promotion should more than pay for itself through the prevention of unnecessary drug costs and the avoidance of adverse health effects due to inappropriate prescribing. However, it involves an initial outlay of money that is currently not being spent and many national governments, in both rich and poor countries, are unwilling to incur extra costs.

  16. Direct and indirect effects in the regulation of overlapping promoters

    DEFF Research Database (Denmark)

    Bendtsen, Kristian Moss; Erdossy, Janos; Csiszovski, Zsolt

    2011-01-01

    Optimal response to environmental stimuli often requires activation of certain genes and repression of others. Dual function regulatory proteins play a key role in the differential regulation of gene expression. While repression can be achieved by any DNA binding protein through steric occlusion...... of RNA polymerase in the promoter region, activation often requires a surface on the regulatory protein to contact RNAP and thus facilitate transcription initiation. RNAP itself is also a DNA binding protein, therefore it can function as a transcriptional repressor. Searching the Escherichia coli...... that promoter interference depends on the characteristics of overlapping promoters. The model predicts that promoter strength and interference can be regulated separately, which provides unique opportunities for regulation. Our experimental data suggest that in principle any DNA binding protein can be used...

  17. Epigenetic regulation of transposable element derived human gene promoters.

    Science.gov (United States)

    Huda, Ahsan; Bowen, Nathan J; Conley, Andrew B; Jordan, I King

    2011-04-01

    It was previously thought that epigenetic histone modifications of mammalian transposable elements (TEs) serve primarily to defend the genome against deleterious effects associated with their activity. However, we recently showed that, genome-wide, human TEs can also be epigenetically modified in a manner consistent with their ability to regulate host genes. Here, we explore the ability of TE sequences to epigenetically regulate individual human genes by focusing on the histone modifications of promoter sequences derived from TEs. We found 1520 human genes that initiate transcription from within TE-derived promoter sequences. We evaluated the distributions of eight histone modifications across these TE-promoters, within and between the GM12878 and K562 cell lines, and related their modification status with the cell-type specific expression patterns of the genes that they regulate. TE-derived promoters are significantly enriched for active histone modifications, and depleted for repressive modifications, relative to the genomic background. Active histone modifications of TE-promoters peak at transcription start sites and are positively correlated with increasing expression within cell lines. Furthermore, differential modification of TE-derived promoters between cell lines is significantly correlated with differential gene expression. LTR-retrotransposon derived promoters in particular play a prominent role in mediating cell-type specific gene regulation, and a number of these LTR-promoter genes are implicated in lineage-specific cellular functions. The regulation of human genes mediated by histone modifications targeted to TE-derived promoters is consistent with the ability of TEs to contribute to the epigenomic landscape in a way that provides functional utility to the host genome.

  18. Precise regulation of gene expression dynamics favors complex promoter architectures.

    Directory of Open Access Journals (Sweden)

    Dirk Müller

    2009-01-01

    Full Text Available Promoters process signals through recruitment of transcription factors and RNA polymerase, and dynamic changes in promoter activity constitute a major noise source in gene expression. However, it is barely understood how complex promoter architectures determine key features of promoter dynamics. Here, we employ prototypical promoters of yeast ribosomal protein genes as well as simplified versions thereof to analyze the relations among promoter design, complexity, and function. These promoters combine the action of a general regulatory factor with that of specific transcription factors, a common motif of many eukaryotic promoters. By comprehensively analyzing stationary and dynamic promoter properties, this model-based approach enables us to pinpoint the structural characteristics underlying the observed behavior. Functional tradeoffs impose constraints on the promoter architecture of ribosomal protein genes. We find that a stable scaffold in the natural design results in low transcriptional noise and strong co-regulation of target genes in the presence of gene silencing. This configuration also exhibits superior shut-off properties, and it can serve as a tunable switch in living cells. Model validation with independent experimental data suggests that the models are sufficiently realistic. When combined, our results offer a mechanistic explanation for why specific factors are associated with low protein noise in vivo. Many of these findings hold for a broad range of model parameters and likely apply to other eukaryotic promoters of similar structure.

  19. Controlling promoter strength and regulation in Saccharomyces cerevisiae using synthetic hybrid promoters.

    Science.gov (United States)

    Blazeck, John; Garg, Rishi; Reed, Ben; Alper, Hal S

    2012-11-01

    A dynamic range of well-controlled constitutive and tunable promoters are essential for metabolic engineering and synthetic biology applications in all host organisms. Here, we apply a synthetic hybrid promoter approach for the creation of strong promoter libraries in the model yeast, Saccharomyces cerevisiae. Synthetic hybrid promoters are composed of two modular components-the enhancer element, consisting of tandem repeats or combinations of upstream activation sequences (UAS), and the core promoter element. We demonstrate the utility of this approach with three main case studies. First, we establish a dynamic range of constitutive promoters and in doing so expand transcriptional capacity of the strongest constitutive yeast promoter, P(GPD) , by 2.5-fold in terms of mRNA levels. Second, we demonstrate the capacity to impart synthetic regulation through a hybrid promoter approach by adding galactose activation and removing glucose repression. Third, we establish a collection of galactose-inducible hybrid promoters that span a nearly 50-fold dynamic range of galactose-induced expression levels and increase the transcriptional capacity of the Gal1 promoter by 15%. These results demonstrate that promoters in S. cerevisiae, and potentially all yeast, are enhancer limited and a synthetic hybrid promoter approach can expand, enhance, and control promoter activity.

  20. Rapid, simple, and sensitive detection of the ompB gene of spotted fever group rickettsiae by loop-mediated isothermal amplification

    Directory of Open Access Journals (Sweden)

    Pan Lei

    2012-10-01

    Full Text Available Abstract Background Spotted fever caused spotted fever group rickettsiae (SFGR is prevalent throughout China. In this study, we describe a rapid, simple, and sensitive loop-mediated isothermal amplification (LAMP assay targeting the ompB gene of spotted fever group rickettsiae ideal for application in China. The LAMP assay has the potential to detect spotted fever group rickettsiae early in infection and could therefore serve as an alternative to existing methods. Methods A set of universal primers which are specific 7 common species of spotted fever group rickettsiae in China were designed using PrimerExplorer V4 software based on conserved sequences of ompB gene. The sensitivity, specificity and reproducibility of the LAMP were evaluated. The LAMP assay for detecting SFGR was compared with conventional PCR assays for sensitivity and specificity in early phase blood samples obtained from 11 infected human subjects. Results The sensitivity of the LAMP assay was five copies per reaction (25 μL total volume, and the assay did not detect false-positive amplification across 42 strains of 27 members of the order Rickettsiales and 17 common clinical pathogens. The LAMP assay was negative to typhus group rickettsiae including R. prowazekii and R. typhi for no available conserved sequences of ompB was obtained for designing primers. To evaluate the clinical applicability of the LAMP assay, a total of 11 clinical samples, 10 samples confirmed serologically (3 cases, ecologically (1 case, by real-time polymerase chain reaction (PCR; 2 cases, ecologically and by real-time PCR (1 case, and serologically and by real-time PCR (3 cases were analyzed by the ompB LAMP assay. Data were validated using a previously established nested PCR protocol and real-time PCR. A positive LAMP result was obtained for 8 of the 10 confirmed cases (sensitivity, 73%; specificity, 100%, while none of these samples were positive by nested PCR (sensitivity, 0%; specificity, 100

  1. Transcriptional Auto-Regulation of RUNX1 P1 Promoter.

    Directory of Open Access Journals (Sweden)

    Milka Martinez

    Full Text Available RUNX1 a member of the family of runt related transcription factors (RUNX, is essential for hematopoiesis. The expression of RUNX1 gene is controlled by two promoters; the distal P1 promoter and the proximal P2 promoter. Several isoforms of RUNX1 mRNA are generated through the use of both promoters and alternative splicing. These isoforms not only differs in their temporal expression pattern but also exhibit differences in tissue specificity. The RUNX1 isoforms derived from P2 are expressed in a variety of tissues, but expression of P1-derived isoform is restricted to cells of hematopoietic lineage. However, the control of hematopoietic-cell specific expression is poorly understood. Here we report regulation of P1-derived RUNX1 mRNA by RUNX1 protein. In silico analysis of P1 promoter revealed presence of two evolutionary conserved RUNX motifs, 0.6kb upstream of the transcription start site, and three RUNX motifs within 170bp of the 5'UTR. Transcriptional contribution of these RUNX motifs was studied in myeloid and T-cells. RUNX1 genomic fragment containing all sites show very low basal activity in both cell types. Mutation or deletion of RUNX motifs in the UTR enhances basal activity of the RUNX1 promoter. Chromatin immunoprecipitation revealed that RUNX1 protein is recruited to these sites. Overexpression of RUNX1 in non-hematopoietic cells results in a dose dependent activation of the RUNX1 P1 promoter. We also demonstrate that RUNX1 protein regulates transcription of endogenous RUNX1 mRNA in T-cell. Finally we show that SCL transcription factor is recruited to regions containing RUNX motifs in the promoter and the UTR and regulates activity of the RUNX1 P1 promoter in vitro. Thus, multiple lines of evidence show that RUNX1 protein regulates its own gene transcription.

  2. Transcriptional Auto-Regulation of RUNX1 P1 Promoter.

    Science.gov (United States)

    Martinez, Milka; Hinojosa, Marcela; Trombly, Daniel; Morin, Violeta; Stein, Janet; Stein, Gary; Javed, Amjad; Gutierrez, Soraya E

    2016-01-01

    RUNX1 a member of the family of runt related transcription factors (RUNX), is essential for hematopoiesis. The expression of RUNX1 gene is controlled by two promoters; the distal P1 promoter and the proximal P2 promoter. Several isoforms of RUNX1 mRNA are generated through the use of both promoters and alternative splicing. These isoforms not only differs in their temporal expression pattern but also exhibit differences in tissue specificity. The RUNX1 isoforms derived from P2 are expressed in a variety of tissues, but expression of P1-derived isoform is restricted to cells of hematopoietic lineage. However, the control of hematopoietic-cell specific expression is poorly understood. Here we report regulation of P1-derived RUNX1 mRNA by RUNX1 protein. In silico analysis of P1 promoter revealed presence of two evolutionary conserved RUNX motifs, 0.6kb upstream of the transcription start site, and three RUNX motifs within 170bp of the 5'UTR. Transcriptional contribution of these RUNX motifs was studied in myeloid and T-cells. RUNX1 genomic fragment containing all sites show very low basal activity in both cell types. Mutation or deletion of RUNX motifs in the UTR enhances basal activity of the RUNX1 promoter. Chromatin immunoprecipitation revealed that RUNX1 protein is recruited to these sites. Overexpression of RUNX1 in non-hematopoietic cells results in a dose dependent activation of the RUNX1 P1 promoter. We also demonstrate that RUNX1 protein regulates transcription of endogenous RUNX1 mRNA in T-cell. Finally we show that SCL transcription factor is recruited to regions containing RUNX motifs in the promoter and the UTR and regulates activity of the RUNX1 P1 promoter in vitro. Thus, multiple lines of evidence show that RUNX1 protein regulates its own gene transcription.

  3. Characterisation of the Mucor circinelloides regulated promoter gpd1P

    DEFF Research Database (Denmark)

    Larsen, G.G.; Appel, K.F.; Wolff, A.M.;

    2004-01-01

    The promoter of the Mucor circinelloides gpd1 gene encoding glyceraldehyde-3-phosphate dehydrogenase (gpd1P) was recently cloned and used for the production of recombinant proteins, such as the Aspergillus niger glucose oxidase 1 (GOX). This represents the first example of the application...... of a strong and regulated promoter from this fungus for recombinant protein production. The original 741-bp gpd1P promoter fragment conferred hexose-dependent expression of GOX in M. circinelloides. To understand the regulatory mechanisms involved in gpd1P-driven expression and to develop improved promoter...... or a 361-bp derivative. Expression levels for the 361-bp derivative were high and comparable, regardless of the carbon source used. This promoter represents a useful derivative for constitutive heterologous gene expression in M. circinelloides....

  4. The Promotion of Self-Regulation through Parenting Interventions

    Science.gov (United States)

    Sanders, Matthew R.; Mazzucchelli, Trevor G.

    2013-01-01

    The capacity for a parent to self-regulate their own performance is argued to be a fundamental process underpinning the maintenance of positive, nurturing, non-abusive parenting practices that promote good developmental and health outcomes in children. Deficits in self-regulatory capacity, which have their origins in early childhood, are common in…

  5. Regulation of ALF promoter activity in Xenopus oocytes.

    Directory of Open Access Journals (Sweden)

    Dan Li

    Full Text Available BACKGROUND: In this report we evaluate the use of Xenopus laevis oocytes as a matched germ cell system for characterizing the organization and transcriptional activity of a germ cell-specific X. laevis promoter. PRINCIPAL FINDINGS: The promoter from the ALF transcription factor gene was cloned from X. laevis genomic DNA using a PCR-based genomic walking approach. The endogenous ALF gene was characterized by RACE and RT-PCR for transcription start site usage, and by sodium bisulfite sequencing to determine its methylation status in somatic and oocyte tissues. Homology between the X. laevis ALF promoter sequence and those from human, chimpanzee, macaque, mouse, rat, cow, pig, horse, dog, chicken and X. tropicalis was relatively low, making it difficult to use such comparisons to identify putative regulatory elements. However, microinjected promoter constructs were very active in oocytes and the minimal promoter could be narrowed by PCR-mediated deletion to a region as short as 63 base pairs. Additional experiments using a series of site-specific promoter mutants identified two cis-elements within the 63 base pair minimal promoter that were critical for activity. Both elements (A and B were specifically recognized by proteins present in crude oocyte extracts based on oligonucleotide competition assays. The activity of promoter constructs in oocytes and in transfected somatic Xenopus XLK-WG kidney epithelial cells was quite different, indicating that the two cell types are not functionally equivalent and are not interchangeable as assay systems. CONCLUSIONS: Overall the results provide the first detailed characterization of the organization of a germ cell-specific Xenopus promoter and demonstrate the feasibility of using immature frog oocytes as an assay system for dissecting the biochemistry of germ cell gene regulation.

  6. Cross-regulation of the Nanog and Cdx2 promoters

    Institute of Scientific and Technical Information of China (English)

    Lingyi Chen; Akiko Yabuuchi; Sarah Eminli; Ayumu Takeuchi; Chi-Wei Lu; Konrad Hochedlinger; George Q Daley

    2009-01-01

    The first cell fate choice in the mammalian embryo, the segregation of the inner cell mass (ICM) and trophecto-derm (TE), is regulated by the mutually antagonistic effects of the transcription factors, Oct4 and Cdx2, while the pluripotency factor, Nanog, is essential to specify the epiblast. We have analyzed the promoters of Nanog and Cdx2, and have found that these two transcription factors are likewise regulated reciprocally. Using an embryonic stem cell line with conditional TE differentiation, we show that Nanog overexpression suppresses the upregulation of TE markers, while Nanog knockdown upregulates the expression of TE markers. We further show that Nanog and Cdx2 bind to and repress each other's promoters. However, whereas Nanog knockout results in detectable Cdx2 expression in the ICM, we observe no overt disruption of blastocyst development, indicating that Nanog plays a subservient role to Oct4 in segregation of the ICM and TE.

  7. RORC1 Regulates Tumor-Promoting "Emergency" Granulo-Monocytopoiesis.

    Science.gov (United States)

    Strauss, Laura; Sangaletti, Sabina; Consonni, Francesca Maria; Szebeni, Gabor; Morlacchi, Sara; Totaro, Maria Grazia; Porta, Chiara; Anselmo, Achille; Tartari, Silvia; Doni, Andrea; Zitelli, Francesco; Tripodo, Claudio; Colombo, Mario P; Sica, Antonio

    2015-08-10

    Cancer-driven granulo-monocytopoiesis stimulates expansion of tumor promoting myeloid populations, mostly myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs). We identified subsets of MDSCs and TAMs based on the expression of retinoic-acid-related orphan receptor (RORC1/RORγ) in human and mouse tumor bearers. RORC1 orchestrates myelopoiesis by suppressing negative (Socs3 and Bcl3) and promoting positive (C/EBPβ) regulators of granulopoiesis, as well as the key transcriptional mediators of myeloid progenitor commitment and differentiation to the monocytic/macrophage lineage (IRF8 and PU.1). RORC1 supported tumor-promoting innate immunity by protecting MDSCs from apoptosis, mediating TAM differentiation and M2 polarization, and limiting tumor infiltration by mature neutrophils. Accordingly, ablation of RORC1 in the hematopoietic compartment prevented cancer-driven myelopoiesis, resulting in inhibition of tumor growth and metastasis. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Differential regulation of genes by retrotransposons in rice promoters.

    Science.gov (United States)

    Dhadi, Surendar Reddy; Xu, Zijun; Shaik, Rafi; Driscoll, Kyle; Ramakrishna, Wusirika

    2015-04-01

    Rice genome harbors genes and promoters with retrotransposon insertions. There is very little information about their function. The effect of retrotransposon insertions in four rice promoter regions on gene regulation, was investigated using promoter-reporter gene constructs with and without retrotransposons. Differences in expression levels of gus and egfp reporter genes in forward orientation and rfp in reverse orientation were evaluated in rice plants with transient expression employing quantitative RT-PCR analysis, histochemical GUS staining, and eGFP and RFP fluorescent microscopy. The presence of SINE in the promoter 1 (P1) resulted in higher expression levels of the reporter genes, whereas the presence of LINE in P2 or gypsy LTR retrotransposon in P3 reduced expression of the reporter genes. Furthermore, the SINE in P1 acts as an enhancer in contrast with the LINE in P2 and the gypsy LTR retrotransposon in P3 which act as silencers. CTAA and CGG motifs in these retrotransposons are the likely candidates for the downregulation compared to TCTT motif (SINE) which is a candidate for the upregulation of gene expression. The effect of retrotransposons on gene regulation correlated with the earlier investigation of conservation patterns of these four retrotransposon insertions in several rice accessions implying their evolutionary significance.

  9. Ozone promotes regeneration by regulating the inflammatory response in zebrafish.

    Science.gov (United States)

    Hao, Kenan; Li, Yanhao; Feng, Jianyu; Zhang, Wenqing; Zhang, Yiyue; Ma, Ning; Zeng, Qingle; Pang, Huajin; Wang, Chunyan; Xiao, Lijun; He, Xiaofeng

    2015-09-01

    Ozone is thought to advance wound healing by inhibiting inflammation, but the mechanism of this phenomenon has not been determined. Although the zebrafish is often used in regeneration experiments, there has been no report of zebrafish treated with ozonated water. We successfully established a zebrafish model of ozonated water treatment and demonstrate that ozonated water stimulates the regeneration of the zebrafish caudal fin, its mechanism, and time dependence. The growth rate of the caudal fin and the number of neutrophils migrating to the caudal fin wound after resection were higher in the experimental (ozonated) group than in the control group, preliminarily confirming that ozone-promoted regeneration is related to the stimulation of an early inflammatory response by ozone. Ozone modulated the expression of tumor necrosis factor-α (TNF-α) in two ways by regulating interleukin 10 (IL-10) expression. Therefore, ozone promotes tissue regeneration by regulating the inflammatory pathways. This effect of ozone in an experimental zebrafish model is demonstrated for the first time, confirming its promotion of wound healing and the mechanism of its effect in tissue regeneration. These results will open up new directions for ozone and regeneration research.

  10. Catecholamines promote Actinobacillus pleuropneumoniae growth by regulating iron metabolism.

    Directory of Open Access Journals (Sweden)

    Lu Li

    Full Text Available Catecholamines are host stress hormones that can induce the growth of many bacteria by facilitating iron utilization and/or regulate the expression of virulence genes through specific hormone receptors. Whether these two responsive pathways are interconnected is unknown. In our previous study, it was found that catecholamines can regulate the expression of a great number of genes of Actinobacillus pleuropneumoniae, an important swine respiratory pathogen. However, bacterial growth was not affected by catecholamines in rich medium. In this study, it was discovered that catecholamines affected A. pleuropneumoniae growth in chemically defined medium (CDM. We found that serum inhibited A. pleuropneumoniae growth in CDM, while epinephrine, norepinephrine and dopamine promoted A. pleuropneumoniae growth in the CDM containing serum. The known bacterial hormone receptor QseC didn't play roles in this process. Ion-supplementation and transcriptome analysis indicated that serum addition resulted in iron-restricted conditions which were alleviated by the addition of catecholamines. Transferrin, one of the components in serum, inhibited the growth of A. pleuropneumoniae in CDM, an effect reversed by addition of catecholamines in a TonB2-dependent manner. Our data demonstrate that catecholamines promote A. pleuropneumoniae growth by regulating iron-acquisition and metabolism, which is independent of the adrenergic receptor QseC.

  11. Catecholamines promote Actinobacillus pleuropneumoniae growth by regulating iron metabolism.

    Science.gov (United States)

    Li, Lu; Chen, Zhaohui; Bei, Weicheng; Su, Zhipeng; Huang, Qi; Zhang, Liang; Chen, Huanchun; Zhou, Rui

    2015-01-01

    Catecholamines are host stress hormones that can induce the growth of many bacteria by facilitating iron utilization and/or regulate the expression of virulence genes through specific hormone receptors. Whether these two responsive pathways are interconnected is unknown. In our previous study, it was found that catecholamines can regulate the expression of a great number of genes of Actinobacillus pleuropneumoniae, an important swine respiratory pathogen. However, bacterial growth was not affected by catecholamines in rich medium. In this study, it was discovered that catecholamines affected A. pleuropneumoniae growth in chemically defined medium (CDM). We found that serum inhibited A. pleuropneumoniae growth in CDM, while epinephrine, norepinephrine and dopamine promoted A. pleuropneumoniae growth in the CDM containing serum. The known bacterial hormone receptor QseC didn't play roles in this process. Ion-supplementation and transcriptome analysis indicated that serum addition resulted in iron-restricted conditions which were alleviated by the addition of catecholamines. Transferrin, one of the components in serum, inhibited the growth of A. pleuropneumoniae in CDM, an effect reversed by addition of catecholamines in a TonB2-dependent manner. Our data demonstrate that catecholamines promote A. pleuropneumoniae growth by regulating iron-acquisition and metabolism, which is independent of the adrenergic receptor QseC.

  12. Enhancer Sharing Promotes Neighborhoods of Transcriptional Regulation Across Eukaryotes

    Science.gov (United States)

    Quintero-Cadena, Porfirio; Sternberg, Paul W.

    2016-01-01

    Enhancers physically interact with transcriptional promoters, looping over distances that can span multiple regulatory elements. Given that enhancer–promoter (EP) interactions generally occur via common protein complexes, it is unclear whether EP pairing is predominantly deterministic or proximity guided. Here, we present cross-organismic evidence suggesting that most EP pairs are compatible, largely determined by physical proximity rather than specific interactions. By reanalyzing transcriptome datasets, we find that the transcription of gene neighbors is correlated over distances that scale with genome size. We experimentally show that nonspecific EP interactions can explain such correlation, and that EP distance acts as a scaling factor for the transcriptional influence of an enhancer. We propose that enhancer sharing is commonplace among eukaryotes, and that EP distance is an important layer of information in gene regulation. PMID:27799341

  13. The rcsA Promoter of Pantoea stewartii subsp. stewartii Features a Low-Level Constitutive Promoter and an EsaR Quorum-Sensing-Regulated Promoter

    OpenAIRE

    Carlier, Aurelien L.; von Bodman, S B

    2006-01-01

    The upstream region of the Pantoea stewartii rcsA gene features two promoters, one for constitutive basal-level expression and a second autoregulated promoter for induced expression. The EsaR quorum-sensing repressor binds to a site centered between the two promoters, blocking transcription elongation from the regulated promoter under noninducing conditions.

  14. Promoter-Based Integration in Plant Defense Regulation

    DEFF Research Database (Denmark)

    Li, Baohua; Gaudinier, Allison; Tang, Michelle

    2014-01-01

    A key unanswered question in plant biology is how a plant regulates metabolism to maximize performance across an array of biotic and abiotic environmental stresses. In this study, we addressed the potential breadth of transcriptional regulation that can alter accumulation of the defensive...... validation, we showed that >75% of tested transcription factor (TF) mutants significantly altered the accumulation of the defensive glucosinolates. These glucosinolate phenotypes were conditional upon the environment and tissue type, suggesting that these TFs may allow the plant to tune its defenses...... to the local environment. Furthermore, the pattern of TF/promoter interactions could partially explain mutant phenotypes. This work shows that defense chemistry within Arabidopsis has a highly intricate transcriptional regulatory system that may allow for the optimization of defense metabolite accumulation...

  15. Mitotic regulation of the anaphase-promoting complex.

    Science.gov (United States)

    Baker, D J; Dawlaty, M M; Galardy, P; van Deursen, J M

    2007-03-01

    Orderly progression through mitosis is regulated by the anaphase-promoting complex/cyclosome (APC/C), a large multiprotein E3 ubiquitin ligase that targets key mitotic regulators for destruction by the proteasome. APC/C has two activating subunits, Cdc20 and Cdh1. The well-established view is that Cdc20 activates APC/C from the onset of mitosis through the metaphase-anaphase transition, and that Cdh1 does so from anaphase through G1. Recent work, however, indicates that Cdh1 also activates APC/C in early mitosis and that this APC/C pool targets the anaphase inhibitor securin. To prevent premature degradation of securin, the nuclear transport factors Nup98 and Rae1 associate with APC/C(Cdh1)-securin complexes. In late metaphase, when all kinetochores are attached to spindle microtubules and the spindle assembly checkpoint is satisfied, Nup98 and Rae1 are released from these complexes, thereby allowing for prompt ubiquitination of securin by APC/C(Cdh1). This, and other mechanisms by which the catalytic activity of APC/C is tightly regulated to ensure proper timing of degradation of each of its mitotic substrates, are highlighted.

  16. Promotion of self-regulated learning in classrooms : investigating frequency, quality, and consequences for student performance

    NARCIS (Netherlands)

    Kistner, Saskia; Rakoczy, Katrin; Otto, Barbara; Dignath -van Ewijk, Charlotte; Buettner, Gerhard; Klieme, Eckhard

    2010-01-01

    An implication of the current research on self-regulation is to implement the promotion of self-regulated learning in schools. Teachers can promote self-regulated learning either directly by teaching learning strategies or indirectly by arranging a learning environment that enables students to pract

  17. Promotion of self-regulated learning in classrooms : investigating frequency, quality, and consequences for student performance

    NARCIS (Netherlands)

    Kistner, Saskia; Rakoczy, Katrin; Otto, Barbara; Dignath -van Ewijk, Charlotte; Buettner, Gerhard; Klieme, Eckhard

    2010-01-01

    An implication of the current research on self-regulation is to implement the promotion of self-regulated learning in schools. Teachers can promote self-regulated learning either directly by teaching learning strategies or indirectly by arranging a learning environment that enables students to pract

  18. Promotion of self-regulated learning in classrooms : investigating frequency, quality, and consequences for student performance

    NARCIS (Netherlands)

    Kistner, Saskia; Rakoczy, Katrin; Otto, Barbara; Dignath -van Ewijk, Charlotte; Buettner, Gerhard; Klieme, Eckhard

    An implication of the current research on self-regulation is to implement the promotion of self-regulated learning in schools. Teachers can promote self-regulated learning either directly by teaching learning strategies or indirectly by arranging a learning environment that enables students to

  19. Direct and indirect effects in the regulation of overlapping promoters

    DEFF Research Database (Denmark)

    Bendtsen, Kristian Moss; Erdossy, Janos; Csiszovski, Zsolt;

    2011-01-01

    promoter database we found that ~14% of the identified 'forward' promoters overlap with a promoter oriented in the opposite direction. In this article we combine a mathematical model with experimental analysis of synthetic regulatory regions to investigate interference of overlapping promoters. We find...

  20. Promoter hypomethylation regulates CD133 expression in human gliomas

    Institute of Scientific and Technical Information of China (English)

    Kouichi Tabu; Ken Sasai; Taichi Kimura; Lei Wang; Eiko Aoyanagi; Shinji Kohsaka; Mishie Tanino; Hiroshi Nishihara; Shinya Tanaka

    2008-01-01

    Brain tumor-initiating cells (BTICs) have been enriched using antibodies against the cell surface protein CD133;however,the biological relevance and the regulatory mechanism of CD133 expression in human gliomas are not yet understood.In this study,we initially demonstrated that CD133 was overexpressed in high-grade human glioblastomas where CD133-positive cells were focally observed as a micro-cluster.In addition,CD133 transcripts with exon 1A,1B,or 1C were predominantly expressed in glioblastomas.To elucidate the mechanism regulating this aberrant expression of CD133,three proximal promoters (P1,P2,and P3) containing a CpG island were isolated.In U251MG and T98Gglioblastoma cells,the P1 region flanking exon 1A exhibited the highest activity among the three promoters,and this activity was significantly inactivated by in vitro methylation.After treatment with the demethylating agent 5-azacytidine and/or the histone deacetylase inhibitor valproic acid,the expression level of CD133 mRNA was significantly restored in glioma cells.Importantly,hypomethylation of CpG sites within the P1,P2,and P3 regions was observed by bisulfite sequencing in human glioblastoma tissues with abundant CD133 mRNA.Taken together,our results indicate that DNA hypomethylation is an important determinant of CD133 expression in glioblastomas,and this epigenetic event may be associated with the development of BTICs expressing CD133.

  1. An Age-Related Mechanism of Emotion Regulation: Regulating Sadness Promotes Children's Learning by Broadening Information Processing

    Science.gov (United States)

    Davis, Elizabeth L.

    2016-01-01

    Emotion regulation predicts positive academic outcomes like learning, but little is known about "why". Effective emotion regulation likely promotes learning by broadening the scope of what may be attended to after an emotional event. One hundred twenty-six 6- to 13-year-olds' (54% boys) regulation of sadness was examined for changes in…

  2. An Evaluation of the Self-Regulation of Promotional Competitions in South Africa

    OpenAIRE

    Daniel Strachan

    2016-01-01

    Promotional competitions are competitions in which prizes are awarded by lot or chance in order to promote goods or services. In order to protect participants and consumers against abuse, these competitions are usually regulated by gambling or consumer protection legislation. However, the relevant legislation is often complemented by self-regulation, which is the focus of this contribution. Self-regulation entails the regulation or governing of an industry by the role players in that indu...

  3. Insulin promotes cell migration by regulating PSA-NCAM.

    Science.gov (United States)

    Monzo, Hector J; Coppieters, Natacha; Park, Thomas I H; Dieriks, Birger V; Faull, Richard L M; Dragunow, Mike; Curtis, Maurice A

    2017-06-01

    Cellular interactions with the extracellular environment are modulated by cell surface polysialic acid (PSA) carried by the neural cell adhesion molecule (NCAM). PSA-NCAM is involved in cellular processes such as differentiation, plasticity, and migration, and is elevated in Alzheimer's disease as well as in metastatic tumour cells. Our previous work demonstrated that insulin enhances the abundance of cell surface PSA by inhibiting PSA-NCAM endocytosis. In the present study we have identified a mechanism for insulin-dependent inhibition of PSA-NCAM turnover affecting cell migration. Insulin enhanced the phosphorylation of the focal adhesion kinase leading to dissociation of αv-integrin/PSA-NCAM clusters, and promoted cell migration. Our results show that αv-integrin plays a key role in the PSA-NCAM turnover process. αv-integrin knockdown stopped PSA-NCAM from being endocytosed, and αv-integrin/PSA-NCAM clusters co-labelled intracellularly with Rab5, altogether indicating a role for αv-integrin as a carrier for PSA-NCAM during internalisation. Furthermore, inhibition of p-FAK caused dissociation of αv-integrin/PSA-NCAM clusters and counteracted the insulin-induced accumulation of PSA at the cell surface and cell migration was impaired. Our data reveal a functional association between the insulin/p-FAK-dependent regulation of PSA-NCAM turnover and cell migration through the extracellular matrix. Most importantly, they identify a novel mechanism for insulin-stimulated cell migration. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. The PARP promoter of Trypanosoma brucei is developmentally regulated in a chromosomal context

    DEFF Research Database (Denmark)

    Biebinger, S; Rettenmaier, S; Flaspohler, J;

    1996-01-01

    RNA is abundant in procyclic forms and almost undetectable in blood-stream forms. Post-transcriptional mechanisms are mainly responsible for PARP mRNA regulation but results of nuclear run-on experiments suggested that transcription might also be regulated. We measured the activity of genomically-integrated PARP...... not developmentally regulated, but integration at the PARP locus reduced rRNA promoter activity in bloodstream forms. PARP promoter activity was 5-fold down-regulated in bloodstream forms when integrated at either site. Regulation was probably at the level of transcriptional initiation, but elongation through plasmid...

  5. Effective self-regulation change techniques to promote mental wellbeing among adolescents: a meta-analysis

    NARCIS (Netherlands)

    Genugten, L. van; Dusseldorp, E.; Massey, E.K.; Empelen, P. van

    2017-01-01

    Mental wellbeing is influenced by self-regulation processes. However, little is known on the efficacy of change techniques based on self-regulation to promote mental wellbeing. The aim of this meta-analysis is to identify effective self-regulation techniques (SRTs) in primary and secondary

  6. Does Play Promote Self-Regulation in Children?

    Science.gov (United States)

    Savina, Elena

    2014-01-01

    This theoretical paper discusses the role of pretend play and games with rules in fostering children's self-regulation. It proposes several pathways through which play facilitates self-regulation processes. First, in play, children learn to inhibit their impulsive behaviour and follow rules which transform their behaviour from impulsive and…

  7. Emotion regulation promotes persistence in a residential substance abuse treatment.

    Science.gov (United States)

    Hopwood, Christopher J; Schade, Nick; Matusiewicz, Alexis; Daughters, Stacey B; Lejuez, Carl W

    2015-01-01

    Emotion regulation at treatment entry was evaluated among 115 patients in an inner-city substance use residential facility who either persisted (N = 94) or discontinued treatment (N = 21). Emotion regulation capacity including emotional clarity and the ability to engage in goal-directed behavior despite emotional distress, as well as lower scores on a measure of trait-negative emotionality, were associated with treatment persistence, whereas motivational variables were not. Findings indicate the importance of regulating negative emotions for treatment engagement among substance abusers.

  8. Industry Self-Regulation as a Means to Promote Nonproliferation

    Energy Technology Data Exchange (ETDEWEB)

    Hund, Gretchen; Elkhamri, Oksana O.

    2005-10-01

    Companies within numerous industries that have been “early adopters” of self-regulation concept, considering the environment and society alongside business issues, have realized several benefits and some competitive advantage while substantially improving their environmental performance. Given that proliferation prevention is also a public good, our premise is that the experience gained and lessons learned from the self-regulation initiative in other industries and more broadly in the arena of sustainable development provide a basis for examining the feasibility of developing self-regulation mechanisms applicable to industries involved with sensitive technologies (nuclear, radiological source, and other dual-use industries)

  9. Establishment of a cell-based assay to screen regulators for Klotho gene promoter

    Institute of Scientific and Technical Information of China (English)

    Zhi-liang XU; Hong GAO; Ke-qing OU-YANG; Shao-xi CAI; Ying-he HU

    2004-01-01

    AIM: To discover compounds which can regulate Klotho promoter activity. Klotho is an aging suppressor gene. A defect in Klotho gene expression in the mouse results in the phenotype similar to human aging. Recombinant Klotho protein improves age-associated diseases in animal models. It has been proposed that up-regulation of Klotho gene expression may have anti-aging effects. METHODS: Klotho promoter was cloned into a vector containing luciferase gene, and the reporter gene vector was transfected into HEK293 cells to make a stable cell line (HEK293/KL). A model for cellular aging was established by treating HEK293/KL cells with H2O2. These cells were treated with extracts from Traditional Chinese Medicines (TCMs). The luciferase activity was detected to identify compounds that can regulate Klotho promoter. RESULTS:The expression of luciferase in these cells was under control of Klotho promoter and down-regulated after H2O2 treatment The down-regulation of luciferase expression was H2O2 concentration-dependent with an IC50 at approximately 0.006 %. This result demonstrated that the Klotho gene promoter was regulated by oxidative stress. Using the cell-based reporter gene assay, we screened natural product extracts for regulation of Klotho gene promoter. Several extracts were identified that could rescue the H2O2effects and up-regulated Klotho promoter activity. CONCLUSION: A cell -based assay for high-throughput drug screening was established to identify compounds that regulate Klotho promoter activity, and several hits were discovered from natural products. Further characterization of these active extracts could help to investigate Klotho function and aging mechanisms.

  10. 76 FR 71241 - Christmas Tree Promotion, Research, and Information Order; Stay of Regulations

    Science.gov (United States)

    2011-11-17

    ... Federal Regulations is sold by the Superintendent of Documents. #0;Prices of new books are listed in the... Marketing Service 7 CFR Part 1214 RIN 0581-AD00 Christmas Tree Promotion, Research, and Information Order...) establishing an industry-funded promotion, research, and information program for fresh cut Christmas...

  11. An Evaluation of the Self-Regulation of Promotional Competitions in South Africa

    Directory of Open Access Journals (Sweden)

    Daniel Strachan

    2016-06-01

    Full Text Available Promotional competitions are competitions in which prizes are awarded by lot or chance in order to promote goods or services. In order to protect participants and consumers against abuse, these competitions are usually regulated by gambling or consumer protection legislation. However, the relevant legislation is often complemented by self-regulation, which is the focus of this contribution. Self-regulation entails the regulation or governing of an industry by the role players in that industry. This article commences by explaining the relevant terminology and exploring self-regulation in general, including the various forms of self-regulation and the binding force thereof. The nature of self-regulation is discussed together with the advantages and challenges associated with this form of regulation. This is followed by some examples of self-regulation on a global level in order to provide a comparative perspective on the topic. The provisions of the International Chamber of Commerce's Consolidated Code of Advertising and Marketing Communications Practice are summarised and the European Advertising Standards Alliance's role in self-regulation is considered. Attention is also given to the relevant industry codes in the United Kingdom in view of the comprehensive way in which promotional competitions are covered by self-regulation in that country. The main part of the article centres on the self-regulatory position in South Africa. A brief overview of the role and function of the Advertising Standards Authority of South Africa (ASASA is provided. The provisions of the ASASA's Code of Advertising Practice are then examined and some ASASA rulings are discussed in order to illustrate the relevant principles. Thereafter, the focus shifts to the Code of Conduct of the Wireless Application Service Providers' Association, which contains detailed provisions relating to promotional competitions. Some relevant rulings are also considered. In conclusion

  12. Comprehensive annotation of bidirectional promoters identifies co-regulation among breast and ovarian cancer genes.

    Directory of Open Access Journals (Sweden)

    Mary Q Yang

    2007-04-01

    Full Text Available A "bidirectional gene pair" comprises two adjacent genes whose transcription start sites are neighboring and directed away from each other. The intervening regulatory region is called a "bidirectional promoter." These promoters are often associated with genes that function in DNA repair, with the potential to participate in the development of cancer. No connection between these gene pairs and cancer has been previously investigated. Using the database of spliced-expressed sequence tags (ESTs, we identified the most complete collection of human transcripts under the control of bidirectional promoters. A rigorous screen of the spliced EST data identified new bidirectional promoters, many of which functioned as alternative promoters or regulated novel transcripts. Additionally, we show a highly significant enrichment of bidirectional promoters in genes implicated in somatic cancer, including a substantial number of genes implicated in breast and ovarian cancers. The repeated use of this promoter structure in the human genome suggests it could regulate co-expression patterns among groups of genes. Using microarray expression data from 79 human tissues, we verify regulatory networks among genes controlled by bidirectional promoters. Subsets of these promoters contain similar combinations of transcription factor binding sites, including evolutionarily conserved ETS factor binding sites in ERBB2, FANCD2, and BRCA2. Interpreting the regulation of genes involved in co-expression networks, especially those involved in cancer, will be an important step toward defining molecular events that may contribute to disease.

  13. Rational Diversification of a Promoter Providing Fine-Tuned Expression and Orthogonal Regulation for Synthetic Biology

    Science.gov (United States)

    Blount, Benjamin A.; Weenink, Tim; Vasylechko, Serge; Ellis, Tom

    2012-01-01

    Yeast is an ideal organism for the development and application of synthetic biology, yet there remain relatively few well-characterised biological parts suitable for precise engineering of this chassis. In order to address this current need, we present here a strategy that takes a single biological part, a promoter, and re-engineers it to produce a fine-graded output range promoter library and new regulated promoters desirable for orthogonal synthetic biology applications. A highly constitutive Saccharomyces cerevisiae promoter, PFY1p, was identified by bioinformatic approaches, characterised in vivo and diversified at its core sequence to create a 36-member promoter library. TetR regulation was introduced into PFY1p to create a synthetic inducible promoter (iPFY1p) that functions in an inverter device. Orthogonal and scalable regulation of synthetic promoters was then demonstrated for the first time using customisable Transcription Activator-Like Effectors (TALEs) modified and designed to act as orthogonal repressors for specific PFY1-based promoters. The ability to diversify a promoter at its core sequences and then independently target Transcription Activator-Like Orthogonal Repressors (TALORs) to virtually any of these sequences shows great promise toward the design and construction of future synthetic gene networks that encode complex “multi-wire” logic functions. PMID:22442681

  14. Rational diversification of a promoter providing fine-tuned expression and orthogonal regulation for synthetic biology.

    Science.gov (United States)

    Blount, Benjamin A; Weenink, Tim; Vasylechko, Serge; Ellis, Tom

    2012-01-01

    Yeast is an ideal organism for the development and application of synthetic biology, yet there remain relatively few well-characterised biological parts suitable for precise engineering of this chassis. In order to address this current need, we present here a strategy that takes a single biological part, a promoter, and re-engineers it to produce a fine-graded output range promoter library and new regulated promoters desirable for orthogonal synthetic biology applications. A highly constitutive Saccharomyces cerevisiae promoter, PFY1p, was identified by bioinformatic approaches, characterised in vivo and diversified at its core sequence to create a 36-member promoter library. TetR regulation was introduced into PFY1p to create a synthetic inducible promoter (iPFY1p) that functions in an inverter device. Orthogonal and scalable regulation of synthetic promoters was then demonstrated for the first time using customisable Transcription Activator-Like Effectors (TALEs) modified and designed to act as orthogonal repressors for specific PFY1-based promoters. The ability to diversify a promoter at its core sequences and then independently target Transcription Activator-Like Orthogonal Repressors (TALORs) to virtually any of these sequences shows great promise toward the design and construction of future synthetic gene networks that encode complex "multi-wire" logic functions.

  15. Nuclear factor Y regulates ancient budgerigar hepadnavirus core promoter activity.

    Science.gov (United States)

    Shen, Zhongliang; Liu, Yanfeng; Luo, Mengjun; Wang, Wei; Liu, Jing; Liu, Wei; Pan, Shaokun; Xie, Youhua

    2016-09-16

    Endogenous viral elements (EVE) in animal genomes are the fossil records of ancient viruses and provide invaluable information on the origin and evolution of extant viruses. Extant hepadnaviruses include avihepadnaviruses of birds and orthohepadnaviruses of mammals. The core promoter (Cp) of hepadnaviruses is vital for viral gene expression and replication. We previously identified in the budgerigar genome two EVEs that contain the full-length genome of an ancient budgerigar hepadnavirus (eBHBV1 and eBHBV2). Here, we found eBHBV1 Cp and eBHBV2 Cp were active in several human and chicken cell lines. A region from nt -85 to -11 in eBHBV1 Cp was critical for the promoter activity. Bioinformatic analysis revealed a putative binding site of nuclear factor Y (NF-Y), a ubiquitous transcription factor, at nt -64 to -50 in eBHBV1 Cp. The NF-Y core binding site (ATTGG, nt -58 to -54) was essential for eBHBV1 Cp activity. The same results were obtained with eBHBV2 Cp and duck hepatitis B virus Cp. The subunit A of NF-Y (NF-YA) was recruited via the NF-Y core binding site to eBHBV1 Cp and upregulated the promoter activity. Finally, the NF-Y core binding site is conserved in the Cps of all the extant avihepadnaviruses but not of orthohepadnaviruses. Interestingly, a putative and functionally important NF-Y core binding site is located at nt -21 to -17 in the Cp of human hepatitis B virus. In conclusion, our findings have pinpointed an evolutionary conserved and functionally critical NF-Y binding element in the Cps of avihepadnaviruses.

  16. Regulation of Drosophila Adh promoter switching by an initiator-targeted repression mechanism.

    Science.gov (United States)

    Ren, B; Maniatis, T

    1998-01-01

    The stage-specific expression of the Drosophila alcohol dehydrogenase (Adh) gene is achieved through the alternate activation of two tandem promoters. The proximal promoter is active primarily during late embryonic development and early larval stages, while the distal promoter is active in late third instar larvae and adults. Here, we provide evidence that this Adh promoter switch is regulated by a zinc finger repressor protein (AEF-1) that is expressed predominantly in adult flies and targets the initiator region of the proximal promoter. We propose that AEF-1 plays a critical role in Adh promoter switching by blocking interactions between a component of the general transcription machinery and the initiator region of the proximal promoter. PMID:9463385

  17. Functional analysis of a Lemna gibba rbcS promoter regulated by abscisic acid and sugar

    Indian Academy of Sciences (India)

    Youru Wang

    2013-04-01

    Photosynthesis-associated nuclear genes (PhANGs) are able to respond to multiple environmental and developmental signals, including light, sugar and abscisic acid (ABA). PhANGs have been extensively studied at the level of transcriptional regulation, and several cis-acting elements important for light responsiveness have been identified in their promoter sequences. However, the regulatory elements involved in sugar and ABA regulation of PhANGs have not been completely characterized. A ribulose-1,5-bisphosphate carboxylase small subunit gene (rbcS) promoter (SSU5C promoter) was isolated from duckweed (Lemna gibba). A series of SSU5C promoter 5′ deletion fragments were fused to an intron–gus gene, and transgenic tobacco suspension cell lines were generated. Assay of tobacco suspension cell line harbouring the complete promoter in the fusion construct indicated that SSU5C promoter was negatively regulated by sugar and ABA under the condition of regular photoperiod. 5′ deletion analysis of SSU5C promoter in transgenic tobacco suspension cell lines confirmed that a region between positions $-310$ and $-152$ included the ABA-response region, and that sugar-response cis-acting elements might be located in the region between $-152$ and $-117$. Taken together, our results confirmed that the cis-regulatory region responsible for repression by ABA and sugar in the SSU5C promoter was located between $-310$ and $-117$.

  18. Glucocorticoid regulation of transcription at an amplified, episomal promoter

    Energy Technology Data Exchange (ETDEWEB)

    Ostrowski, M.C.; Richard-Foy, H.; Wolford, R.G.; Berard, D.S.; Hager, G.L.

    1983-11-01

    The mouse mammary tumor virus long terminal repeat (MMTV LTR) has been introduced into cultured murine cells, using the 69% transforming fragment of bovine papiloma virus type 1 (BVP). Transformed cells contain up to 200 copies of the chimeric molecules per diploid genome. The restriction endonuclease map of the acquired recombinants, as well as the physical structure of the DNA, indicates that the LTR-BVP molecules present in these cells occur exclusively as unintegrated, extrachromosomal episome. When a 72-base pair direct repeat ''enhancer'' element (derived from the Harvey sarcoma retrovirus) was included in the MMTV LTR-BPV chimeric plasmids, DNA acquired through transfection, with a single exception, was integrated or rearranged or both. Two approaches showed that the MMTV LTR present in the episomal state was capable of supporting glucocorticoid hormone-regulated transcription. The authors have therefore demonstrated the hormone response for the first time in a totally defined primary sequence environment. Significant differences both in the basal level of MMTV-initiated transcription and in the extend of glucocorticoid induction were observed in individual cell lines with similar episomal copy numbers. These phenotypic variations suggest that epigenetic structure is an important component of the mechanism of regulation.

  19. Delta DNMT3B variants regulate DNA methylation in a promoter-specific manner.

    Science.gov (United States)

    Wang, Jie; Bhutani, Manisha; Pathak, Ashutosh K; Lang, Wenhua; Ren, Hening; Jelinek, Jaroslav; He, Rong; Shen, Lanlan; Issa, Jean-Pierre; Mao, Li

    2007-11-15

    DNA methyltransferase 3B (DNMT3B) is critical in de novo DNA methylation during development and tumorigenesis. We recently reported the identification of a DNMT3B subfamily, DeltaDNMT3B, which contains at least seven variants, resulting from alternative pre-mRNA splicing. DeltaDNMT3Bs are the predominant expression forms of DNMT3B in human lung cancer. A strong correlation was observed between the promoter methylation of RASSF1A gene but not p16 gene (both frequently inactivated by promoter methylation in lung cancer) and expression of DeltaDNMT3B4 in primary lung cancer, suggesting a role of DeltaDNMT3B in regulating promoter-specific methylation of common tumor suppressor genes in tumorigenesis. In this report, we provide first experimental evidence showing a direct involvement of DeltaDNMT3B4 in regulating RASSF1A promoter methylation in human lung cancer cells. Knockdown of DeltaDNMT3B4 expression by small interfering RNA resulted in a rapid demethylation of RASSF1A promoter and reexpression of RASSF1A mRNA but had no effect on p16 promoter in the lung cancer cells. Conversely, normal bronchial epithelial cells with stably transfected DeltaDNMT3B4 gained an increased DNA methylation in RASSF1A promoter but not p16 promoter. We conclude that promoter DNA methylation can be differentially regulated and DeltaDNMT3Bs are involved in regulation of such promoter-specific de novo DNA methylation.

  20. [Drug advertising and promotion: regulations and extent of compliance in five Latin American countries].

    Science.gov (United States)

    Vacca, Claudia; Vargas, Claudia; Cañás, Martín; Reveiz, Ludovic

    2011-02-01

    To analyze differing regulations regarding drug promotion, and the extent of compliance as seen in samples of advertising directed to the public in Argentina, Colombia, Ecuador, Nicaragua, and Peru. A total of 683 pieces of promotional material on display in health facilities, pharmacies, and on the street were collected, 132 of which were randomly selected for analysis. The regulations governing pharmaceutical advertising, taken from official websites and interviews with regulatory officials and Ministry of Health staff in the five countries covered, were reviewed, along with their adherence to the ethical criteria of the World Health Organization (WHO). The contents of the materials in the sample were evaluated to determine their degree of compliance with national regulations and WHO recommendations on drug promotion. The countries have regulations incorporating WHO ethical criteria. Over 80% of the material analyzed included the indications for the drug, while over 70% omitted information on adverse effects. Fifty percent of the advertisements for over-the-counter (OTC) drugs on display in pharmacies listed indications not approved by the relevant health authority. In advertising in pharmacies, the risks from inadequate information were not found to differ significantly for OTC or prescription medications. Compared with materials provided in health facilities, the relative risk of the absence of information on dosage in the material distributed in pharmacies was 2.08 (confidence interval 95% 1.32-3.39). Although regulations on drug promotion and advertising in the five countries studied generally incorporate the WHO recommendations, promotional materials often fail to reflect the fact.

  1. nifH Promoter Activity Is Regulated by DNA Supercoiling in Sinorhizobium meliloti

    Institute of Scientific and Technical Information of China (English)

    Yan-Jie LIU; Biao HU; Jia-Bi ZHU; Shan-Jiong SHEN; Guan-Qiao YU

    2005-01-01

    In prokaryotes, DNA supercoiling regulates the expression of many genes; for example, the expression of Klebsiella pneumoniae nifLA operon depends on DNA negative supercoiling in anaerobically grown cells, which indicates that DNA supercoiling might play a role in gene regulation of the anaerobic response. Since the expression of the nifH promoter in Sinorhizobium meliloti is not repressed by oxygen, it is proposed that the status of DNA supercoiling may not affect the expression of the nifH promoter. We tested this hypothesis by analyzing nifH promoter activity in wild-type and gyr- Escherichia coli in the presence and absence of DNA gyrase inhibitors. Our results show that gene expression driven by the S.meliloti nifH promoter requires the presence of active DNA gyrase. Because DNA gyrase increases the number of negative superhelical turns in DNA in the presence of ATP, our data indicate that negative supercoiling is also important for nifH promoter activity. Our study also shows that the DNA supercoilingdependent S. meliloti nifH promoter activity is related to the trans-acting factors NtrC and NifA that activate it. DNA supercoiling appeared to have a stronger effect on NtrC-activated nifH promoter activity than on NifA-activated promoter activity. Collectively, these results from the S. meliloti nifH promoter model system seem to indicate that, in addition to regulating gene expression during anaerobic signaling, DNA supercoiling may also provide a favorable topology for trans-acting factor binding and promoter activation regardless of oxygen status.

  2. Identification and characterization of the minimal androgen-regulated kidney-specific kidney androgen-regulated protein gene promoter

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The kidney androgen-regulated protein (Kap) gene is tissue specific and regulated by androgen in mouse kidney proximal tubule cells (PTCs). In the present study, we aimed to identify the minimal PTC-specific androgen-regulated Kap promoter and analyze its androgen response elements (AREs).Adeletion series of the Kap1542 promoter/luciferase constructs were assayed in opossum kidney (OK) PTCs in the presence or absence of 15 nM dihydrotestosterone (DHT). Kap 1542 and Kap637 had low activity and no androgen induction; Kap224 had a basal activity that was 4- to 5-fold higher than that of Kap 1542, but was only sfightly induced by DHT. Kap 147 had a basal activity that was 2- to 3-fold higher than that of Kap 1542 and was induced by DHT 4- to 6-fold. Kap77 abol-ished basal promoter activity but was still induced by DHT. Results showed that, in vitro, Kap147 was a minimal androgen-regulated promoter. Transient transfection in different cells demonstrated that Kap147 specifically initi-ated reporter gene expression in PTCs. Sequence analysis revealed two potential AREs located at positions -124 and -39 of Kap147. Mutational assays showed that only the ARE at -124 was involved in androgen response in OK cells. Electrophoretic mobility shift assay also verified -124 ARE bound specifically to androgen receptor. In conclusion, we defined the minimal Kap 147 promoter that may be a good model for the study of kidney PTC-specific expression and molecular mechanisms that lead to an androgen-specific responsiveness in vivo.

  3. Metabolic Impacts of Using Nitrogen and Copper-Regulated Promoters to Regulate Gene Expression in Neurospora crassa.

    Science.gov (United States)

    Ouyang, Shouqiang; Beecher, Consuelo N; Wang, Kang; Larive, Cynthia K; Borkovich, Katherine A

    2015-07-20

    The filamentous fungus Neurospora crassa is a long-studied eukaryotic microbial system amenable to heterologous expression of native and foreign proteins. However, relatively few highly tunable promoters have been developed for this species. In this study, we compare the tcu-1 and nit-6 promoters for controlled expression of a GFP reporter gene in N. crassa. Although the copper-regulated tcu-1 has been previously characterized, this is the first investigation exploring nitrogen-controlled nit-6 for expression of heterologous genes in N. crassa. We determined that fragments corresponding to 1.5-kb fragments upstream of the tcu-1 and nit-6 open reading frames are needed for optimal repression and expression of GFP mRNA and protein. nit-6 was repressed using concentrations of glutamine from 2 to 20 mM and induced in medium containing 0.5-20 mM nitrate as the nitrogen source. Highest levels of expression were achieved within 3 hr of induction for each promoter and GFP mRNA could not be detected within 1 hr after transfer to repressing conditions using the nit-6 promoter. We also performed metabolic profiling experiments using proton NMR to identify changes in metabolite levels under inducing and repressing conditions for each promoter. The results demonstrate that conditions used to regulate tcu-1 do not significantly change the primary metabolome and that the differences between inducing and repressing conditions for nit-6 can be accounted for by growth under nitrate or glutamine as a nitrogen source. Our findings demonstrate that nit-6 is a tunable promoter that joins tcu-1 as a choice for regulation of gene expression in N. crassa.

  4. A multi-scale model of hepcidin promoter regulation reveals factors controlling systemic iron homeostasis.

    Directory of Open Access Journals (Sweden)

    Guillem Casanovas

    2014-01-01

    Full Text Available Systemic iron homeostasis involves a negative feedback circuit in which the expression level of the peptide hormone hepcidin depends on and controls the iron blood levels. Hepcidin expression is regulated by the BMP6/SMAD and IL6/STAT signaling cascades. Deregulation of either pathway causes iron-related diseases such as hemochromatosis or anemia of inflammation. We quantitatively analyzed how BMP6 and IL6 control hepcidin expression. Transcription factor (TF phosphorylation and reporter gene expression were measured under co-stimulation conditions, and the promoter was perturbed by mutagenesis. Using mathematical modeling, we systematically analyzed potential mechanisms of cooperative and competitive promoter regulation by the transcription factors, and experimentally validated the model predictions. Our results reveal that hepcidin cross-regulation primarily occurs by combinatorial transcription factor binding to the promoter, whereas signaling crosstalk is insignificant. We find that the presence of two BMP-responsive elements enhances the steepness of the promoter response towards the iron-sensing BMP signaling axis, which promotes iron homeostasis in vivo. IL6 co-stimulation reduces the promoter sensitivity towards the BMP signal, because the SMAD and STAT transcription factors compete for recruiting RNA polymerase to the transcription start site. This may explain why inflammatory signals disturb iron homeostasis in anemia of inflammation. Taken together, our results reveal why the iron homeostasis circuit is sensitive to perturbations implicated in disease.

  5. Regulation of Human Cytomegalovirus Transcription in Latency: Beyond the Major Immediate-Early Promoter

    Directory of Open Access Journals (Sweden)

    John Sinclair

    2013-06-01

    Full Text Available Lytic infection of differentiated cell types with human cytomegalovirus (HCMV results in the temporal expression of between 170–200 open reading frames (ORFs. A number of studies have demonstrated the temporal regulation of these ORFs and that this is orchestrated by both viral and cellular mechanisms associated with the co-ordinated recruitment of transcription complexes and, more recently, higher order chromatin structure. Importantly, HCMV, like all herpes viruses, establishes a lifelong latent infection of the host—one major site of latency being the undifferentiated haematopoietic progenitor cells resident in the bone marrow. Crucially, the establishment of latency is concomitant with the recruitment of cellular enzymes that promote extensive methylation of histones bound to the major immediate early promoter. As such, the repressive chromatin structure formed at the major immediate early promoter (MIEP elicits inhibition of IE gene expression and is a major factor involved in maintenance of HCMV latency. However, it is becoming increasingly clear that a distinct subset of viral genes is also expressed during latency. In this review, we will discuss the mechanisms that control the expression of these latency-associated transcripts and illustrate that regulation of these latency-associated promoters is also subject to chromatin mediated regulation and that the instructive observations previously reported regarding the negative regulation of the MIEP during latency are paralleled in the regulation of latent gene expression.

  6. Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation.

    Science.gov (United States)

    Li, Guoliang; Ruan, Xiaoan; Auerbach, Raymond K; Sandhu, Kuljeet Singh; Zheng, Meizhen; Wang, Ping; Poh, Huay Mei; Goh, Yufen; Lim, Joanne; Zhang, Jingyao; Sim, Hui Shan; Peh, Su Qin; Mulawadi, Fabianus Hendriyan; Ong, Chin Thing; Orlov, Yuriy L; Hong, Shuzhen; Zhang, Zhizhuo; Landt, Steve; Raha, Debasish; Euskirchen, Ghia; Wei, Chia-Lin; Ge, Weihong; Wang, Huaien; Davis, Carrie; Fisher-Aylor, Katherine I; Mortazavi, Ali; Gerstein, Mark; Gingeras, Thomas; Wold, Barbara; Sun, Yi; Fullwood, Melissa J; Cheung, Edwin; Liu, Edison; Sung, Wing-Kin; Snyder, Michael; Ruan, Yijun

    2012-01-20

    Higher-order chromosomal organization for transcription regulation is poorly understood in eukaryotes. Using genome-wide Chromatin Interaction Analysis with Paired-End-Tag sequencing (ChIA-PET), we mapped long-range chromatin interactions associated with RNA polymerase II in human cells and uncovered widespread promoter-centered intragenic, extragenic, and intergenic interactions. These interactions further aggregated into higher-order clusters, wherein proximal and distal genes were engaged through promoter-promoter interactions. Most genes with promoter-promoter interactions were active and transcribed cooperatively, and some interacting promoters could influence each other implying combinatorial complexity of transcriptional controls. Comparative analyses of different cell lines showed that cell-specific chromatin interactions could provide structural frameworks for cell-specific transcription, and suggested significant enrichment of enhancer-promoter interactions for cell-specific functions. Furthermore, genetically-identified disease-associated noncoding elements were found to be spatially engaged with corresponding genes through long-range interactions. Overall, our study provides insights into transcription regulation by three-dimensional chromatin interactions for both housekeeping and cell-specific genes in human cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Developmental and cytokine-mediated regulation of MHC class II gene promoter occupancy in vivo.

    Science.gov (United States)

    Kara, C J; Glimcher, L H

    1993-06-01

    The class II genes of the major histocompatibility complex are a family of genes whose expression is regulated developmentally in cells of the B lineage and by IFN-gamma in many other cell types. Using the approach of in vivo footprinting, which allows for the examination of protein-promoter interactions within intact cells, we demonstrated a transition from unoccupied to occupied to once again unoccupied class II promoters in cell lines representing the developmental pathway of B cells. IFN-gamma treatment of HeLa cells led to increased promoter occupancy of the DR alpha and DR beta promoters at the same sites that are constitutively bound in mature B cells. No IFN-gamma-specific binding site was induced. Additionally, an octamer element in the DR alpha gene displayed preferential binding in B cells. These results demonstrate that changes in the transcription of the class II genes are associated with changes in factor binding at the promoter in vivo. Moreover, given the ubiquity of class II promoter binding proteins, these results suggest that throughout B cell development and upon IFN-gamma stimulation, the accessibility of class II promoter DNA is subject to regulation.

  8. Metal-responsive promoter DNA compaction by the ferric uptake regulator

    OpenAIRE

    Roncarati, Davide; Pelliciari, Simone; Doniselli, Nicola; Maggi, Stefano; Vannini, Andrea; Valzania, Luca; Mazzei, Luca; Zambelli, Barbara; Rivetti, Claudio; Danielli, Alberto

    2016-01-01

    Short-range DNA looping has been proposed to affect promoter activity in many bacterial species and operator configurations, but only few examples have been experimentally investigated in molecular detail. Here we present evidence for a metal-responsive DNA condensation mechanism controlled by the Helicobacter pylori ferric uptake regulator (Fur), an orthologue of the widespread Fur family of prokaryotic metal-dependent regulators. H. pylori Fur represses the transcription of the essential ar...

  9. SMARCAL1 Negatively Regulates C-Myc Transcription By Altering The Conformation Of The Promoter Region.

    Science.gov (United States)

    Sharma, Tapan; Bansal, Ritu; Haokip, Dominic Thangminlen; Goel, Isha; Muthuswami, Rohini

    2015-12-09

    SMARCAL1, a member of the SWI2/SNF2 protein family, stabilizes replication forks during DNA damage. In this manuscript, we provide the first evidence that SMARCAL1 is also a transcriptional co-regulator modulating the expression of c-Myc, a transcription factor that regulates 10-15% genes in the human genome. BRG1, SMARCAL1 and RNAPII were found localized onto the c-myc promoter. When HeLa cells were serum starved, the occupancy of SMARCAL1 on the c-myc promoter increased while that of BRG1 and RNAPII decreased correlating with repression of c-myc transcription. Using Active DNA-dependent ATPase A Domain (ADAAD), the bovine homolog of SMARCAL1, we show that the protein can hydrolyze ATP using a specific region upstream of the CT element of the c-myc promoter as a DNA effector. The energy, thereby, released is harnessed to alter the conformation of the promoter DNA. We propose that SMARCAL1 negatively regulates c-myc transcription by altering the conformation of its promoter region during differentiation.

  10. JUNB PROMOTER REGULATION - RAS MEDIATED TRANSACTIVATION BY C-ETS-1 AND C-ETS-2

    NARCIS (Netherlands)

    COFFER, P; DEJONGE, M; METTOUCHI, A; BINETRUY, B; GHYSDAEL, J; KRUIJER, W

    1994-01-01

    The Jun gene family encode components of the AP-1 transcription factor complex that regulate a variety of TRE-containing target promoters. Expression of family members is induced by a wide variety of extracellular stimuli and thought to be important in mediating cellular proliferation and differenti

  11. Promoting Individual and Group Regulated Learning in Collaborative Settings: An Experience in Higher Education

    Science.gov (United States)

    Onrubia, Javier; Rochera, Maria José; Engel, Anna

    2015-01-01

    We present a teaching innovation intervention aimed at promoting individual and group learning regulation in undergraduate students working in a computer supported collaborative learning environment. Participants were 127 students and three teachers of a compulsory course on Educational Psychology at the University of Barcelona (Spain). As a…

  12. Regulation of the bovine SCD5 promoter by EGR2 and SREBP1.

    Science.gov (United States)

    Lengi, Andrea J; Corl, Benjamin A

    2012-05-04

    In rodents, the transcription factors early growth response 2 (EGR2) and sterol regulatory element binding protein 1a (SREBP1a) regulate transcription of the stearoyl-CoA desaturase 2 (SCD2) gene during peripheral nerve myelination, which may be important for synthesis of the lipid component of myelin. Most non-rodent genomes do not contain the SCD2 gene, but rather express SCD5 in brain and nervous tissues. In this paper, we asked whether bovine SCD5 is regulated in a similar manner to rodent SCD2. Expression of EGR2 did not result in an increase in endogenous SCD5 mRNA expression in JEG3 cells, but did result in activation of truncated bovine SCD5 promoter luciferase reporter constructs. Similar results were obtained with expression of the active form of SREBP1a; however, unlike rodent SCD2, there was no synergistic activation of the bovine SCD5 promoter reporters when EGR2 and SREBP1a were co-expressed. Mutation of the putative EGR2 binding site in the SCD5 promoter abolished activation by SREBP1a, suggesting that EGR2 and SREBP1a bind to the same site in the SCD5 promoter. Finally, we have identified a region of the bovine SCD5 promoter between 505 and 305 base pairs upstream of the transcriptional start site that appears to be important for maintaining basal levels of transcription of this gene. While it appears that there are some differences between the regulation of rodent SCD2 and bovine SCD5, the promoters of both genes can be activated by EGR2 and SREBP1a. This is the first report of potential regulators of SCD5 transcription.

  13. Promoter competition assay for analyzing gene regulation in joint tissue engineering.

    Science.gov (United States)

    Sun, Hui Bin; Malacinski, George M; Yokota, Hiroki

    2002-08-01

    We describe a new biochemical technique, "promoter competition assay," for examining the role of cis-acting DNA elements in tissue cultures. Recent advances in tissue engineering permit the culture of a variety of cells. Many tissues are engineered, however, without an appropriate understanding of molecular machinery that regulates gene expression and cellular growth. For elucidating the role of cis-acting regulatory elements in cellular differentiation and growth, we developed the promoter competition assay. This assay uses a transient transfer into cells of double-stranded DNA fragments consisting of cis-acting regulatory elements. The transferred DNA fragments act as a competitor and titrate the function of their genomic counterparts. Using synovial cells derived from a rheumatoid arthritis patient, we examined a role of NF-kappa B binding sites in the regulation of the expression of matrix metalloproteinase (MMP) genes. The results support a stimulatory role of NF-kappa B in transcriptional regulation of MMP-1 and MMP-13.

  14. Transcriptional repressor HipB regulates the multiple promoters in Escherichia coli.

    Science.gov (United States)

    Lin, Chun-Yi; Awano, Naoki; Masuda, Hisako; Park, Jung-Ho; Inouye, Masayori

    2013-01-01

    HipB is a DNA-binding protein in Escherichia coli and negatively regulates its own promoter by binding to the palindromic sequences [TATCCN8GGATA (N represents any nucleotides)] on the hipBA promoter. For such sequences, bioinformatic analysis revealed that there are a total of 39 palindromic sequences (TATCCN(x)GGATA: N is any nucleotides and x is the number of nucleotides from 1 to 30) in the promoter regions of 33 genes on the E. coli genome. Notably, eutH and fadH have two and three TATCCN(x)GGATA palindromic sequences located in their promoters, respectively. Another significant finding was that a palindromic sequence was also identified in the promoter region of hipAB locus, known to be involved in the RelA-dependent persister cell formation in bacteria. Here, we demonstrated that HipB binds to the palindromic structures in the eutH, fadH, as well as the relA promoter regions and represses their expressions. We further demonstrated that HipA enhances the repression of the relA promoter activity by HipB. This effect was not observed with D291A HipA mutant which was previously shown to lack an ability to interact with HipB, indicating that HipA enhances the HipB's repressor activity through direct interaction with HipB.

  15. Src promotes cutaneous wound healing by regulating MMP-2 through the ERK pathway.

    Science.gov (United States)

    Wu, Xue; Yang, Longlong; Zheng, Zhao; Li, Zhenzhen; Shi, Jihong; Li, Yan; Han, Shichao; Gao, Jianxin; Tang, Chaowu; Su, Linlin; Hu, Dahai

    2016-03-01

    Wound healing is a highly orchestrated, multistep process, and delayed wound healing is a significant symptomatic clinical problem. Keratinocyte migration and re-epithelialization play the most important roles in wound healing, as they determine the rate of wound healing. In our previous study, we found that Src, one of the oldest proto‑oncogenes encoding a membrane-associated, non-receptor protein tyrosine kinase, promotes keratinocyte migration. We therefore hypothesized that Src promotes wound healing through enhanced keratinocyte migration. In order to test this hypothesis, vectors for overexpressing Src and small interfering RNAs (siRNAs) for silencing of Src were used in the present study. We found that the overexpression of Src accelerated keratinocyte migration in vitro and promoted wound healing in vivo without exerting a marked effect on cell proliferation. The extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) signaling pathways play important roles in Src-accelerated keratinocyte migration. Further experiments demonstrated that Src induced the protein expression of matrix metalloproteinase-2 (MMP-2) and decreased the protein expression of E-cadherin. We suggest that ERK signaling is involved in the Src-mediated regulation of MMP-2 expression. The present study provided evidence that Src promotes keratinocyte migration and cutaneous wound healing, in which the regulation of MMP-2 through the ERK pathway plays an important role, and thus we also demonstrated a potential therapeutic role for Src in cutaneous wound healing.

  16. Substrate phosphorylation and feedback regulation in JFK-promoted p53 destabilization.

    Science.gov (United States)

    Sun, Luyang; Shi, Lei; Wang, Feng; Huangyang, Peiwei; Si, Wenzhe; Yang, Jie; Yao, Zhi; Shang, Yongfeng

    2011-02-11

    The p53 tumor suppressor plays a central role in integrating cellular responses to various stresses. Tight regulation of p53 is thus essential for the maintenance of genome integrity and normal cell proliferation. Previously, we reported that JFK, the only Kelch domain-containing F-box protein in human, promotes ubiquitination and degradation of p53 and that unlike the other E3 ligases for p53, all of which possess an intrinsic ubiquitin ligase activity, JFK destabilizes p53 through the assembly of a Skp1-Cul1-F-box complex. Here, we report that the substrate recognition by JFK requires phosphorylation of p53 in its central core region by CSN (COP9 signalosome)-associated kinase. Significantly, inhibition of CSN-associated kinase activity or knockdown of CSN5 impairs JFK-promoted p53 degradation, enhances p53-dependent transcription, and promotes cell growth suppression, G(1) arrest, and apoptosis. Moreover, we showed that JFK is transcriptionally regulated by p53 and forms an auto-regulatory negative feedback loop with p53. These data may shed new light on the functional connection between CSN, Skp1-Cul1-F-box ubiquitin ligase, and p53 and provide a molecular mechanism for the regulation of JFK-promoted p53 degradation.

  17. Promotion by the British pharmaceutical industry, 1983-8: a critical analysis of self regulation.

    Science.gov (United States)

    Herxheimer, A; Collier, J

    1990-02-03

    Since 1958 the Association of the British Pharmaceutical Industry (ABPI) has attempted to regulate the promotion of prescription medicines through its code of practice. This regulation is described and analysed for the six years 1983-8 using the reports on 302 complaints considered by its code of practice committee and annual reports. The complaints came mainly from doctors (143, 48%) and competing companies (103, 33%). The committee found a total of 379 breaches of the code in 192 (63%) of the complaints. Additional breaches were detected by informational scrutiny of advertisements by the ABPI secretariat. Analysis showed that 270 (71%) of these breaches involved possible breaches of the Medicines Act. The rules that forbid misleading or unsubstantiated information and misleading claims or comparisons were broken most often. The committee found the most frequent offenders to be Organon (32 breaches), Smith Kline and French (23), Glaxo (21), A H Robins (18), Bayer (17), Merck Sharp and Dohme (17), and Lederle (16). Often the promotion of one product led to several breaches. The promotional wars over histamine H2 receptor antagonists accounted for 33 breaches. It is estimated that in 1983-8 about 100 breaches of the code were detected a year. In the 18 years 1972-88 the Medicines Act was breached probably over 1200 times. Health ministers, by not enforcing the regulations controlling promotion, have abrogated their responsibility to the ABPI, but the evidence suggests that the code has failed to deter promotional excesses. The ABPI's wish to secure compliance with the code seems weaker than its wish to pre-empt outside criticism and action: its self regulation seems to be a service to itself rather than to the public. It is suggested that the code of practice committee should become publicly accountable, that the majority of its members should represent the health professions and the public, and that effective sanctions are needed.

  18. Sprouty2 down-regulation promotes axon growth by adult sensory neurons.

    Science.gov (United States)

    Hausott, Barbara; Vallant, Natalie; Auer, Maria; Yang, Lin; Dai, Fangping; Brand-Saberi, Beate; Klimaschewski, Lars

    2009-12-01

    Fibroblast growth factors (FGFs) play a prominent role in axonal growth during development and repair. Treatment with FGF-2 or overexpression of FGF receptors promotes peripheral axon regeneration mainly by activation of extracellular signal-regulated kinase (ERK). The Ras/Raf/ERK pathway is under the control of Sprouty proteins acting as negative feedback inhibitors. We investigated the expression of Sprouty isoforms in adult sensory neurons of dorsal root ganglia (DRG) as well as the effects of Sprouty inhibition on axon growth by small interfering RNAs (siRNAs). Sprouty2 revealed the highest expression level in DRG neurons. Down-regulation of Sprouty2 promoted elongative axon growth by adult sensory neurons accompanied by enhanced FGF-2-induced activation of ERK and Ras, whereas Sprouty2 overexpression inhibited axon growth. Sprouty2 was not regulated in vivo in response to a sciatic nerve lesion. Together, our results imply that Sprouty2 is highly expressed in adult peripheral neurons and its down-regulation strongly promotes elongative axon growth by activation of the Ras/Raf/ERK pathway.

  19. FoxO regulates microtubule dynamics and polarity to promote dendrite branching in Drosophila sensory neurons.

    Science.gov (United States)

    Sears, James C; Broihier, Heather T

    2016-10-01

    The size and shape of dendrite arbors are defining features of neurons and critical determinants of neuronal function. The molecular mechanisms establishing arborization patterns during development are not well understood, though properly regulated microtubule (MT) dynamics and polarity are essential. We previously found that FoxO regulates axonal MTs, raising the question of whether it also regulates dendritic MTs and morphology. Here we demonstrate that FoxO promotes dendrite branching in all classes of Drosophila dendritic arborization (da) neurons. FoxO is required both for initiating growth of new branches and for maintaining existing branches. To elucidate FoxO function, we characterized MT organization in both foxO null and overexpressing neurons. We find that FoxO directs MT organization and dynamics in dendrites. Moreover, it is both necessary and sufficient for anterograde MT polymerization, which is known to promote dendrite branching. Lastly, FoxO promotes proper larval nociception, indicating a functional consequence of impaired da neuron morphology in foxO mutants. Together, our results indicate that FoxO regulates dendrite structure and function and suggest that FoxO-mediated pathways control MT dynamics and polarity.

  20. Regulation of Budding Yeast CENP-A levels Prevents Misincorporation at Promoter Nucleosomes and Transcriptional Defects.

    Directory of Open Access Journals (Sweden)

    Erica M Hildebrand

    2016-03-01

    Full Text Available The exclusive localization of the histone H3 variant CENP-A to centromeres is essential for accurate chromosome segregation. Ubiquitin-mediated proteolysis helps to ensure that CENP-A does not mislocalize to euchromatin, which can lead to genomic instability. Consistent with this, overexpression of the budding yeast CENP-A(Cse4 is lethal in cells lacking Psh1, the E3 ubiquitin ligase that targets CENP-A(Cse4 for degradation. To identify additional mechanisms that prevent CENP-A(Cse4 misincorporation and lethality, we analyzed the genome-wide mislocalization pattern of overexpressed CENP-A(Cse4 in the presence and absence of Psh1 by chromatin immunoprecipitation followed by high throughput sequencing. We found that ectopic CENP-A(Cse4 is enriched at promoters that contain histone H2A.Z(Htz1 nucleosomes, but that H2A.Z(Htz1 is not required for CENP-A(Cse4 mislocalization. Instead, the INO80 complex, which removes H2A.Z(Htz1 from nucleosomes, promotes the ectopic deposition of CENP-A(Cse4. Transcriptional profiling revealed gene expression changes in the psh1Δ cells overexpressing CENP-A(Cse4. The down-regulated genes are enriched for CENP-A(Cse4 mislocalization to promoters, while the up-regulated genes correlate with those that are also transcriptionally up-regulated in an htz1Δ strain. Together, these data show that regulating centromeric nucleosome localization is not only critical for maintaining centromere function, but also for ensuring accurate promoter function and transcriptional regulation.

  1. Regulation of Budding Yeast CENP-A levels Prevents Misincorporation at Promoter Nucleosomes and Transcriptional Defects.

    Science.gov (United States)

    Hildebrand, Erica M; Biggins, Sue

    2016-03-01

    The exclusive localization of the histone H3 variant CENP-A to centromeres is essential for accurate chromosome segregation. Ubiquitin-mediated proteolysis helps to ensure that CENP-A does not mislocalize to euchromatin, which can lead to genomic instability. Consistent with this, overexpression of the budding yeast CENP-A(Cse4) is lethal in cells lacking Psh1, the E3 ubiquitin ligase that targets CENP-A(Cse4) for degradation. To identify additional mechanisms that prevent CENP-A(Cse4) misincorporation and lethality, we analyzed the genome-wide mislocalization pattern of overexpressed CENP-A(Cse4) in the presence and absence of Psh1 by chromatin immunoprecipitation followed by high throughput sequencing. We found that ectopic CENP-A(Cse4) is enriched at promoters that contain histone H2A.Z(Htz1) nucleosomes, but that H2A.Z(Htz1) is not required for CENP-A(Cse4) mislocalization. Instead, the INO80 complex, which removes H2A.Z(Htz1) from nucleosomes, promotes the ectopic deposition of CENP-A(Cse4). Transcriptional profiling revealed gene expression changes in the psh1Δ cells overexpressing CENP-A(Cse4). The down-regulated genes are enriched for CENP-A(Cse4) mislocalization to promoters, while the up-regulated genes correlate with those that are also transcriptionally up-regulated in an htz1Δ strain. Together, these data show that regulating centromeric nucleosome localization is not only critical for maintaining centromere function, but also for ensuring accurate promoter function and transcriptional regulation.

  2. Transcriptional regulation: effects of promoter proximal pausing on speed, synchrony and reliability.

    Directory of Open Access Journals (Sweden)

    Alistair N Boettiger

    2011-05-01

    Full Text Available Recent whole genome polymerase binding assays in the Drosophila embryo have shown that a substantial proportion of uninduced genes have pre-assembled RNA polymerase-II transcription initiation complex (PIC bound to their promoters. These constitute a subset of promoter proximally paused genes for which mRNA elongation instead of promoter access is regulated. This difference can be described as a rearrangement of the regulatory topology to control the downstream transcriptional process of elongation rather than the upstream transcriptional initiation event. It has been shown experimentally that genes with the former mode of regulation tend to induce faster and more synchronously, and that promoter-proximal pausing is observed mainly in metazoans, in accord with a posited impact on synchrony. However, it has not been shown whether or not it is the change in the regulated step per se that is causal. We investigate this question by proposing and analyzing a continuous-time Markov chain model of PIC assembly regulated at one of two steps: initial polymerase association with DNA, or release from a paused, transcribing state. Our analysis demonstrates that, over a wide range of physical parameters, increased speed and synchrony are functional consequences of elongation control. Further, we make new predictions about the effect of elongation regulation on the consistent control of total transcript number between cells. We also identify which elements in the transcription induction pathway are most sensitive to molecular noise and thus possibly the most evolutionarily constrained. Our methods produce symbolic expressions for quantities of interest with reasonable computational effort and they can be used to explore the interplay between interaction topology and molecular noise in a broader class of biochemical networks. We provide general-purpose code implementing these methods.

  3. Strength and Regulation of Seven rRNA Promoters in Escherichia coli.

    Science.gov (United States)

    Maeda, Michihisa; Shimada, Tomohiro; Ishihama, Akira

    2015-01-01

    The model prokaryote Escherichia coli contains seven copies of the rRNA operon in the genome. The presence of multiple rRNA operons is an advantage for increasing the level of ribosome, the key apparatus of translation, in response to environmental conditions. The complete sequence of E. coli genome, however, indicated the micro heterogeneity between seven rRNA operons, raising the possibility in functional heterogeneity and/or differential mode of expression. The aim of this research is to determine the strength and regulation of the promoter of each rRNA operon in E. coli. For this purpose, we used the double-fluorescent protein reporter pBRP system that was developed for accurate and precise determination of the promoter strength of protein-coding genes. For application of this promoter assay vector for measurement of the rRNA operon promoters devoid of the signal for translation, a synthetic SD sequence was added at the initiation codon of the reporter GFP gene, and then approximately 500 bp-sequence upstream each 16S rRNA was inserted in front of this SD sequence. Using this modified pGRS system, the promoter activity of each rrn operon was determined by measuring the rrn promoter-directed GFP and the reference promoter-directed RFP fluorescence, both encoded by a single and the same vector. Results indicated that: the promoter activity was the highest for the rrnE promoter under all growth conditions analyzed, including different growth phases of wild-type E. coli grown in various media; but the promoter strength of other six rrn promoters was various depending on the culture conditions. These findings altogether indicate that seven rRNA operons are different with respect to the regulation mode of expression, conferring an advantage to E. coli through a more fine-tuned control of ribosome formation in a wide range of environmental situations. Possible difference in the functional role of each rRNA operon is also discussed.

  4. DNA supercoiling and aerobic regulation of transcription from the Klebsiella pneumoniae nifLA promoter.

    Science.gov (United States)

    Dixon, R A; Henderson, N C; Austin, S

    1988-11-11

    Expression from the K. pneumoniae nifLA promoter is oxygen sensitive and is also inhibited by the DNA gyrase inhibitor coumermycin A1 under anaerobic growth conditions. The activity of this promoter was found to be highly sensitive to changes in DNA topology in vitro. Transcription was completely dependent on negative supercoiling at physiological salt concentrations although transcription from linear or fully relaxed closed circular templates was detectable at KCl concentrations lower than 50 mM. These observations suggest that aerobic regulation of nif transcription may be mediated through the level of DNA supercoiling.

  5. Quantitative Analyses of Core Promoters Enable Precise Engineering of Regulated Gene Expression in Mammalian Cells.

    Science.gov (United States)

    Ede, Christopher; Chen, Ximin; Lin, Meng-Yin; Chen, Yvonne Y

    2016-05-20

    Inducible transcription systems play a crucial role in a wide array of synthetic biology circuits. However, the majority of inducible promoters are constructed from a limited set of tried-and-true promoter parts, which are susceptible to common shortcomings such as high basal expression levels (i.e., leakiness). To expand the toolbox for regulated mammalian gene expression and facilitate the construction of mammalian genetic circuits with precise functionality, we quantitatively characterized a panel of eight core promoters, including sequences with mammalian, viral, and synthetic origins. We demonstrate that this selection of core promoters can provide a wide range of basal gene expression levels and achieve a gradient of fold-inductions spanning 2 orders of magnitude. Furthermore, commonly used parts such as minimal CMV and minimal SV40 promoters were shown to achieve robust gene expression upon induction, but also suffer from high levels of leakiness. In contrast, a synthetic promoter, YB_TATA, was shown to combine low basal expression with high transcription rate in the induced state to achieve significantly higher fold-induction ratios compared to all other promoters tested. These behaviors remain consistent when the promoters are coupled to different genetic outputs and different response elements, as well as across different host-cell types and DNA copy numbers. We apply this quantitative understanding of core promoter properties to the successful engineering of human T cells that respond to antigen stimulation via chimeric antigen receptor signaling specifically under hypoxic environments. Results presented in this study can facilitate the design and calibration of future mammalian synthetic biology systems capable of precisely programmed functionality.

  6. Three promoters regulate the transcriptional activity of the human holocarboxylase synthetase gene.

    Science.gov (United States)

    Xia, Mengna; Malkaram, Sridhar A; Zempleni, Janos

    2013-11-01

    Holocarboxylase synthetase (HLCS) is the only protein biotin ligase in the human proteome. HLCS-dependent biotinylation of carboxylases plays crucial roles in macronutrient metabolism. HLCS appears to be an essential part of multiprotein complexes in the chromatin that cause gene repression and contribute toward genome stability. Consistent with these essential functions, HLCS knockdown causes strong phenotypes including shortened life span and low stress resistance in Drosophila melanogaster, and de-repression of long-terminal repeats in humans, other mammalian cell lines and Drosophila. Despite previous observations that the expression of HLCS depends on biotin status in rats and in human cell lines, little is known about the regulation of HLCS expression. The goal of this study was to identify promoters that regulate the expression of the human HLCS gene. Initially, the human HLCS locus was interrogated in silico using predictors of promoters including sequences of HLCS mRNA and expressed sequence tags, CpG islands, histone marks denoting transcriptionally poised chromatin, transcription factor binding sites and DNaseI hypersensitive regions. Our predictions revealed three putative HLCS promoters, denoted P1, P2 and P3. Promoters lacked a TATA box, which is typical for housekeeping genes. When the three promoters were cloned into a luciferase reporter plasmid, reporter gene activity was at least three times background noise in human breast, colon and kidney cell lines; activities consistently followed the pattern P1>P3>P2. Promoter activity depended on the concentration of biotin in culture media, but the effect was moderate. We conclude that we have identified promoters in the human HLCS gene.

  7. Emotion regulation strategies that promote learning: reappraisal enhances children's memory for educational information.

    Science.gov (United States)

    Davis, Elizabeth L; Levine, Linda J

    2013-01-01

    The link between emotion regulation and academic achievement is well documented. Less is known about specific emotion regulation strategies that promote learning. Six- to 13-year-olds (N = 126) viewed a sad film and were instructed to reappraise the importance, reappraise the outcome, or ruminate about the sad events; another group received no regulation instructions. Children viewed an educational film, and memory for this was later assessed. As predicted, reappraisal strategies more effectively attenuated children's self-reported emotional processing. Reappraisal enhanced memory for educational details relative to no instructions. Rumination did not lead to differences in memory from the other instructions. Memory benefits of effective instructions were pronounced for children with poorer emotion regulation skill, suggesting the utility of reappraisal in learning contexts.

  8. Keratinocyte-derived laminin-332 protein promotes melanin synthesis via regulation of tyrosine uptake.

    Science.gov (United States)

    Chung, Heesung; Jung, Hyejung; Lee, Jung-Hyun; Oh, Hye Yun; Kim, Ok Bin; Han, Inn-Oc; Oh, Eok-Soo

    2014-08-01

    Melanocytes, which produce the pigment melanin, are known to be closely regulated by neighboring keratinocytes. However, how keratinocytes regulate melanin production is unclear. Here we report that melanin production in melanoma cells (B16F10 and MNT-1) was increased markedly on a keratinocyte-derived extracellular matrix compared with a melanoma cell-derived extracellular matrix. siRNA-mediated reduction of keratinocyte-derived laminin-332 expression decreased melanin synthesis in melanoma cells, and laminin-332, but not fibronectin, enhanced melanin content and α-melanocyte-stimulating hormone-regulated melanin production in melanoma cells. Similar effects were observed in human melanocytes. Interestingly, however, laminin-332 did not affect the expression or activity of tyrosinase. Instead, laminin-332 promoted the uptake of extracellular tyrosine and, subsequently, increased intracellular levels of tyrosine in both melanocytes and melanoma cells. Taken together, these data strongly suggest that keratinocyte-derived laminin-332 contributes to melanin production by regulating tyrosine uptake.

  9. Use of the Lactococcal nisA Promoter To Regulate Gene Expression in Gram-Positive Bacteria : Comparison of Induction Level and Promoter Strength

    NARCIS (Netherlands)

    Eichenbaum, Zehava; Federle, Michael J.; Marra, Diana; Vos, Willem M. de; Kuipers, Oscar P.; Kleerebezem, Michiel; Scott, June R.

    1998-01-01

    We characterized the regulated activity of the lactococcal nisA promoter in strains of the gram-positive species Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus pneumoniae, Enterococcus faecalis, and Bacillus subtilis. nisA promoter activity was dependent on the proteins NisR and Nis

  10. Arabidopsis thaliana peroxidases involved in lignin biosynthesis: in silico promoter analysis and hormonal regulation.

    Science.gov (United States)

    Herrero, Joaquín; Esteban Carrasco, Alberto; Zapata, José Miguel

    2014-07-01

    Phytohormones such as auxins, cytokinins, and brassinosteroids, act by means of a signaling cascade of transcription factors of the families NAC, MYB, AP2 (APETALA2), MADS and class III HD (homeodomain) Zip, regulating secondary growth. When the hormonal regulation of Zinnia elegans peroxidase (ZePrx), an enzyme involved in lignin biosynthesis, was studied, it was found that this peroxidase is sensitive to a plethora of hormones which control xylem lignification. In a previous study we sought Arabidopsis thaliana homologues to ZePrx. Peroxidases 4, 52, 49 and 72 are the four peroxidases that fulfill the restrictive conditions that a peroxidase involved in lignification must have. In the present study, we focus our attention on hormonal regulation in order to establish the minimal structural and regulatory elements contained in the promoter region which an AtPrx involved in lignification must have. The results indicate that of the four peroxidases selected in our previous study, the one most likely to be homologous to ZePrx is AtPrx52. The results suggest that hormones such as auxins, cytokinins and BRs directly regulate AtPrx52, and that the AtPrx52 promoter may be the target of the set of transcription factors (NAC, MYB, AP2 and class I and III HD Zip) which are up-regulated by these hormones during secondary growth. In addition, the AtPrx52 promoter contains multiple copies of all the putative cis-elements (the ACGT box, the OCS box, the OPAQ box, the L1BX, the MYCL box and the W box) known to confer regulation by NO and H2O2.

  11. Introduction of team self-regulation for teamwork promotion. A case study in energy engineering topics

    OpenAIRE

    María Jesús González-Fernández; María Consuelo Sáiz-Manzanares; Alaoui, Fatima E. M; Fernando Aguilar; Jesús Meneses; Eduardo Montero

    2013-01-01

    The learning and development of teamwork skill is only possible if its achievement is a self-building process of the student. In turn,the teachers must become guides in the process of a learning which is not limited only to the topic of their own course, but which must be imbedded with a good dose of this skill. Promotion of teamwork is not spontaneous but very often requires the use of self-regulation within teams. The aim of the paper is to elucidate if positive or negative self-regulation ...

  12. ParaHox genes in pancreatic cell cultures: effects on the insulin promoter regulation

    Directory of Open Access Journals (Sweden)

    Anna Rosanas-Urgell, Jordi Garcia-Fernàndez, Gemma Marfany

    2008-01-01

    Full Text Available The gene encoding PDX1 (pancreatic duodenum homeobox 1, the main transcription factor regulating the glucose-dependent transactivation of the insulin promoter in pancreatic β-cells, clusters with two closely related homeobox genes (Gsh1 and Cdx2/3, all of them belonging to the ParaHox gene family. The ParaHox gene evolutionary history in the vertebrate lineage involved duplications of the cluster and subsequent loss of some members, so that eventually, the human and murine genomes contain only 6 ParaHox genes. The crucial role of PDX1 in pancreas development, beta-cell formation and insulin transcription regulation has long been established. There is some data on CDX2/3 function in α-cells, but remarkably, nothing is known on the role of the other ParaHox genes, which are also expressed in the endocrine pancreas. Homeobox transcription factors that belong to the same family show high conservation of the homeodomain and share similar target sites and oligomeric partners, and thus may act redundantly, synergistically or antagonistically on the same promoters. Therefore, we explored the effects of the Parahox proteins (GSH1, GSH2, CDX1, CDX2/3 and CDX4 on the regulation of the insulin promoter in transfected α- and β- cultured cell lines at different glucose concentrations and compared them to those of PDX1. Noticeably, several ParaHox transcription factors are able to transactivate or inhibit the insulin promoter, depending on the cell type and glucose concentration, thus suggesting their possible participation in the regulation of similar target genes, such as insulin, either by silencing or activating them, in the absence of PDX1.

  13. Regulation of Cyst Wall Protein Promoters by Myb2 in Giardia lamblia*

    OpenAIRE

    2008-01-01

    Myb family transcription factors are important in regulating cell proliferation, differentiation, and cell cycle progression. Giardia lamblia differentiates into infectious cysts to survive outside of the host. During encystation, genes encoding cyst wall proteins (CWPs) are coordinately induced. We have identified an encystation-induced Myb2 protein, which binds to the promoter regions of the cwp genes and myb2 itself in vitro. To elucidate the role of Myb2 in G. ...

  14. Regulation of a Mammalian Gene Bearing a CpG Island Promoter and a Distal Enhancer

    Directory of Open Access Journals (Sweden)

    Georgina Berrozpe

    2013-08-01

    Full Text Available A quantitative nucleosome occupancy assay revealed rules for nucleosome disposition in yeast and showed how disposition affects regulation of the GAL genes. Here, we show how those findings apply to the control of Kit, a mammalian gene. The Kit promoter lies in a CpG island, and its enhancer (active in mast cells lies some 150 kb upstream. Nucleosomes form with especially high avidities at the Kit promoter, a reaction that, we surmise, ensures extremely low basal expression. In mast cells, transcriptional activators displace nucleosomes that are less tightly formed at the Kit enhancer. In turn, the active enhancer replaces a single Kit promoter nucleosome with the transcriptional machinery, thereby inducing transcription over 1,000-fold. As at the yeast GAL genes, the inhibitory effects of nucleosomes facilitate high factors of induction by mammalian activators working in the absence of specific repressors.

  15. Resistin does not down-regulate the transcription of insulin receptor promoter

    Institute of Scientific and Technical Information of China (English)

    Xiao-zhi QIAO; Xian-feng WANG; Zhe-rong XU; Yun-mei YANG

    2008-01-01

    Objective: To detect the effect of resistin on the transcription of insulin receptor promoter. Methods: Luciferase reporter gene was fused downstream of human insulin receptor promoter and the enzymatic activity of luciferase was determined in the presence or absence of resistin. The resistin expressed with plasmid was stained with antibody against Myc tag which was in frame fused with resistin coding sequence, and then imaged with confocal microscopy. Results: The treatment of pIRP-LUC transfected cells with recombinant resistin did not result in significant difference in the enzymatic activity of luciferase compared to the untreated cells. Cell staining showed that green fluorescence could be observed in the cytoplasm, but not in the nucleus. Conclusion: The results suggest that the endogenous resistin may functionally locate in the cytoplasm, but does not enter the nucleus and not down-regulate the transcription of insulin receptor promoter.

  16. Reversible Regulation of Promoter and Enhancer Histone Landscape by DNA Methylation in Mouse Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Andrew D. King

    2016-09-01

    Full Text Available DNA methylation is one of a number of modes of epigenetic gene regulation. Here, we profile the DNA methylome, transcriptome, and global occupancy of histone modifications (H3K4me1, H3K4me3, H3K27me3, and H3K27ac in a series of mouse embryonic stem cells (mESCs with varying DNA methylation levels to study the effects of DNA methylation on deposition of histone modifications. We find that genome-wide DNA demethylation alters occupancy of histone modifications at both promoters and enhancers. This is reversed upon remethylation by Dnmt expression. DNA methylation promotes H3K27me3 deposition at bivalent promoters, while opposing H3K27me3 at silent promoters. DNA methylation also reversibly regulates H3K27ac and H3K27me3 at previously identified tissue-specific enhancers. These effects require DNMT catalytic activity. Collectively, our data show that DNA methylation is essential and instructive for deposition of specific histone modifications across regulatory regions, which together influences gene expression patterns in mESCs.

  17. Usp16 regulates kinetochore localization of Plk1 to promote proper chromosome alignment in mitosis.

    Science.gov (United States)

    Zhuo, Xiaolong; Guo, Xiao; Zhang, Xiaoyan; Jing, Guihua; Wang, Yao; Chen, Qiang; Jiang, Qing; Liu, Junjun; Zhang, Chuanmao

    2015-08-31

    During the G2 to M phase transition, a portion of mitotic regulator Plk1 localizes to the kinetochores and regulates the initiation of kinetochore-microtubule attachments for proper chromosome alignment. Once kinetochore-microtubule attachment is achieved, this portion of Plk1 is removed from the kinetochores as a result of ubiquitination. However, the crucial molecular mechanism that promotes the localization and the maintenance of Plk1 on the kinetochores until metaphase is still unclear. We report that ubiquitin-specific peptidase 16 (Usp16) plays a key role during this process. Usp16 deubiquitinates Plk1, resulting in an enhanced interaction with kinetochore-localized proteins such as BubR1, and thereby retains Plk1 on the kinetochores to promote proper chromosome alignment in early mitosis. Down-regulation of Usp16 causes increased ubiquitination and decreased kinetochore localization of Plk1. Thus, our data unveil a unique mechanism by which Usp16 promotes the localization and maintenance of Plk1 on the kinetochores for proper chromosome alignment. © 2015 Zhuo et al.

  18. GADD45a promoter regulation by a functional genetic variant associated with acute lung injury.

    Directory of Open Access Journals (Sweden)

    Sumegha Mitra

    Full Text Available RATIONALE: Growth arrest DNA damage inducible alpha (GADD45a is a stress-induced gene we have shown to participate in the pathophysiology of ventilator-induced lung injury (VILI via regulation of mechanical stress-induced Akt ubiquitination and phosphorylation. The regulation of GADD45a expression by mechanical stress and its relationship with acute lung injury (ALI susceptibility and severity, however, remains unknown. OBJECTIVES: We examined mechanical stress-dependent regulatory elements (MSRE in the GADD45a promoter and the contribution of promoter polymorphisms in GADD45a expression and ALI susceptibility. METHODS AND RESULTS: Initial studies in GADD45a knockout and heterozygous mice confirmed the relationship of GADD45a gene dose to VILI severity. Human lung endothelial cells (EC transfected with a luciferase vector containing the full length GADD45a promoter sequence (-771 to +223 demonstrated a >4 fold increase in GADD45a expression in response to 18% cyclic stretch (CS, 4 h compared to static controls while specific promoter regions harboring CS-dependent MSRE were identified using vectors containing serial deletion constructs of the GADD45a promoter. In silico analyses of GADD45a promoter region (-371 to -133 revealed a potential binding site for specificity protein 1 (SP1, a finding supported by confirmed SP1 binding with the GADD45a promoter and by the significant attenuation of CS-dependent GADD45a promoter activity in response to SP1 silencing. Separately, case-control association studies revealed a significant association of a GADD45a promoter SNP at -589 (rs581000, G>C with reduced ALI susceptibility. Subsequently, we found allelic variation of this SNP is associated with both differential GADD45a expression in mechanically stressed EC (18% CS, 4 h and differential binding site of interferon regulatory factor 7 (IRF7 at this site. CONCLUSION: These results strongly support a functional role for GADD45a in ALI/VILI and identify a

  19. Down-Regulation of miR-3928 Promoted Osteosarcoma Growth

    Directory of Open Access Journals (Sweden)

    Haidong Xu

    2014-05-01

    Full Text Available Background: Osteosarcoma is the most common primary bone malignancy in children and young adults. Most failures of osteosarcoma treatment were due to resistance to chemotherapy. Development of new therapy required elucidation underlying molecular mechanism. Many miRNAs have been proved to be involved in the pathogenesis of osteosarcoma. Methods: MiR-3928 expression level was assayed by qRT-PCR. MiRNA mimics or ASO were transfected for up-regulation or down-regulation of miR-3928 expression. Cell proliferation was assayed by formazan test. Apoptosis and cell cycle were assayed by FACS. MiR-3928 targeted genes were predicated by bioinformatics algorithm (TargetScanHuman. The correlation between targeted gene and miR-3928 was analyzed by Pearson's correlation coefficient analysis. Results: MiR-3928 was down-regulated in osteosarcoma tissues. Over-expression of miR-3928 inhibited tumor growth, induced cell apoptosis, increased the percent of cells in G1 phrase and decreased the percent of cells in S phrase. Down-regulation of miR-3928 promoted cell proliferation. ERBB3, IL-6R and CDK6 may be the targeted genes of miR-3928. Conclusions: Down-expression of miR-3928 in osteosarcoma promoted tumor growth by targeting ERBB3, IL-6R and CDK6. MiR-3928 may be a potential therapy target worth further investigation.

  20. The superintegron integrase and the cassette promoters are co-regulated in Vibrio cholerae.

    Directory of Open Access Journals (Sweden)

    Evelyne Krin

    Full Text Available Chromosome 2 of Vibrio cholerae carries a chromosomal superintegron, composed of an integrase, a cassette integration site (attI and an array of mostly promoterless gene cassettes. We determined the precise location of the promoter, Pc, which drives the transcription of the first cassettes of the V. cholerae superintegron. We found that cassette mRNA starts 65 bp upstream of the attI site, so that the inversely oriented promoters Pc and Pint (integrase promoter partly overlap, allowing for their potential co-regulation. Pint was previously shown to be induced during the SOS response and is further controlled by the catabolite repression cAMP-CRP complex. We found that cassette expression from Pc was also controlled by the cAMP-CRP complex, but is not part of the SOS regulon. Pint and Pc promoters were both found to be induced in rich medium, at high temperature, high salinity and at the end of exponential growth phase, although at very different levels and independently of sigma factor RpoS. All these results show that expression from the integrase and cassette promoters can take place at the same time, thus leading to coordinated excisions and integrations within the superintegron and potentially coupling cassette shuffling to immediate selective advantage.

  1. Computational Approaches to Understand Transcriptional Regulation and Alternative Promoter Usage in Mammals

    DEFF Research Database (Denmark)

    Jørgensen, Mette

    erent aspects of transcriptional regulation. In the rst study we develop a machine learning framework to predict mRNA production, stalling and elongation of RNA polymerase II using publicly available histone modi cation data. The study reveals new pieces of information about the histone code. Besides...... study of the impact of multiwalled carbon nanotubes to mice lungs. Besides gaining new insight into the e ects of nanotubes the data is also used to explore the role of alternative promoter usage and enhancers in response to external stimuli....... understand and cure diseases. The focus of this thesis is transcriptional regulation. The main aim was to gain new insight into transcriptional regulation but a secondary goal was to develop new bioinformatic methods to facilitate future research. Three di erent studies are presented each focusing on di...

  2. NEK2 Promotes Aerobic Glycolysis in Multiple Myeloma Through Regulating Splicing of Pyruvate Kinase

    Directory of Open Access Journals (Sweden)

    Zhimin Gu

    2017-01-01

    Full Text Available Abstract Background Aerobic glycolysis, a hallmark of cancer, is characterized by increased metabolism of glucose and production of lactate in normaxia. Recently, pyruvate kinase M2 (PKM2 has been identified as a key player for regulating aerobic glycolysis and promoting tumor cell proliferation and survival. Methods Tandem affinity purification followed up by mass spectrometry (TAP-MS and co-immunoprecipitation (Co-IP were used to study the interaction between NIMA (never in mitosis gene A-related kinase 2 (NEK2 and heterogeneous nuclear ribonucleoproteins (hnRNP A1/2. RNA immunoprecipitation (RIP was performed to identify NEK2 binding to PKM pre-mRNA sequence. Chromatin-immunoprecipitation (ChIP-PCR was performed to analyze a transcriptional regulation of NEK2 by c-Myc. Western blot and real-time PCR were executed to analyze the regulation of PKM2 by NEK2. Results NEK2 regulates the alternative splicing of PKM immature RNA in multiple myeloma cells by interacting with hnRNPA1/2. RIP shows that NEK2 binds to the intronic sequence flanking exon 9 of PKM pre-mRNA. Knockdown of NEK2 decreases the ratio of PKM2/PKM1 and also other aerobic glycolysis genes including GLUT4, HK2, ENO1, LDHA, and MCT4. Myeloma patients with high expression of NEK2 and PKM2 have lower event-free survival and overall survival. Our data indicate that NEK2 is transcriptionally regulated by c-Myc in myeloma cells. Ectopic expression of NEK2 partially rescues growth inhibition and cell death induced by silenced c-Myc. Conclusions Our studies demonstrate that NEK2 promotes aerobic glycolysis through regulating splicing of PKM and increasing the PKM2/PKM1 ratio in myeloma cells which contributes to its oncogenic activity.

  3. Evidence of endogenous mu opioid receptor regulation by epigenetic control of the promoters.

    Science.gov (United States)

    Hwang, Cheol Kyu; Song, Kyu Young; Kim, Chun Sung; Choi, Hack Sun; Guo, Xiao-Hong; Law, Ping-Yee; Wei, Li-Na; Loh, Horace H

    2007-07-01

    The pharmacological effect of morphine as a painkiller is mediated mainly via the mu opioid receptor (MOR) and is dependent on the number of MORs in the cell surface membrane. While several studies have reported that the MOR gene is regulated by various cis- and trans-acting factors, many questions remain unanswered regarding in vivo regulation. The present study shows that epigenetic silencing and activation of the MOR gene are achieved through coordinated regulation at both the histone and DNA levels. In P19 mouse embryonal carcinoma cells, expression of the MOR was greatly increased after neuronal differentiation. MOR expression could also be induced by a demethylating agent (5'-aza-2'-deoxycytidine) or histone deacetylase inhibitors in the P19 cells, suggesting involvement of DNA methylation and histone deacetylation for MOR gene silencing. Analysis of CpG DNA methylation revealed that the proximal promoter region was unmethylated in differentiated cells compared to its hypermethylation in undifferentiated cells. In contrast, the methylation of other regions was not changed in either cell type. Similar methylation patterns were observed in the mouse brain. In vitro methylation of the MOR promoters suppressed promoter activity in the reporter assay. Upon differentiation, the in vivo interaction of MeCP2 was reduced in the MOR promoter region, coincident with histone modifications that are relevant to active transcription. When MeCP2 was disrupted using MeCP2 small interfering RNA, the endogenous MOR gene was increased. These data suggest that DNA methylation is closely linked to the MeCP2-mediated chromatin structure of the MOR gene. Here, we propose that an epigenetic mechanism consisting of DNA methylation and chromatin modification underlies the cell stage-specific mechanism of MOR gene expression.

  4. ABSCISIC ACID-INSENSITIVE 4 negatively regulates flowering through directly promoting Arabidopsis FLOWERING LOCUS C transcription

    Science.gov (United States)

    Shu, Kai; Chen, Qian; Wu, Yaorong; Liu, Ruijun; Zhang, Huawei; Wang, Shengfu; Tang, Sanyuan; Yang, Wenyu; Xie, Qi

    2016-01-01

    During the life cycle of a plant, one of the major biological processes is the transition from the vegetative to the reproductive stage. In Arabidopsis, flowering time is precisely controlled by extensive environmental and internal cues. Gibberellins (GAs) promote flowering, while abscisic acid (ABA) is considered as a flowering suppressor. However, the detailed mechanism through which ABA inhibits the floral transition is poorly understood. Here, we report that ABSCISIC ACID-INSENSITIVE 4 (ABI4), a key component in the ABA signalling pathway, negatively regulates floral transition by directly promoting FLOWERING LOCUS C (FLC) transcription. The abi4 mutant showed the early flowering phenotype whereas ABI4-overexpressing (OE-ABI4) plants had delayed floral transition. Consistently, quantitative reverse transcription–PCR (qRT–PCR) assay revealed that the FLC transcription level was down-regulated in abi4, but up-regulated in OE-ABI4. The change in FT level was consistent with the pattern of FLC expression. Chromatin immunoprecipitation-qPCR (ChIP-qPCR), electrophoretic mobility shift assay (EMSA), and tobacco transient expression analysis showed that ABI4 promotes FLC expression by directly binding to its promoter. Genetic analysis demonstrated that OE-ABI4::flc-3 could not alter the flc-3 phenotype. OE-FLC::abi4 showed a markedly delayed flowering phenotype, which mimicked OE-FLC::WT, and suggested that ABI4 acts upstream of FLC in the same genetic pathway. Taken together, these findings suggest that ABA inhibits the floral transition by activating FLC transcription through ABI4. PMID:26507894

  5. Expression regulation of zebrafish interferon regulatory factor 9 by promoter analysis.

    Science.gov (United States)

    Shi, Jun; Zhang, Yi-Bing; Zhang, Jian-She; Gui, Jian-Fang

    2013-12-01

    We previously showed that a fish interferon (IFN) regulatory factor 9 (IRF9) homologue, crucian carp Carassius auratus IRF9, displays constitutively nuclear localization and involvement in fish IFN-dependent JAK-STAT signaling; however, little is known about the expression regulation of fish IRF9. Here, we characterized the expression of zebrafish IRF9 by promoter analysis. Zebrafish IRF9 gene promoter contained several putative transcription factor binding sites, including one ISRE (IFN-stimulated response element), one GAS (IFN gamma activation sequence) and three GATEs (IFNγ activated transcriptional element, GATE1/2/3). Further sequence analyses revealed that GAS and GATE motifs existed in all promoters of IRF9 from mammals and fishes. Luciferase assays confirmed that zebrafish IRF9 promoter could be activated by zebrafish IFNφs and zebrafish IFNγ2, as well as transcription factors IRF3, IRF7, and combination of IRF9 and STAT2. Treatment of recombinant crucian carp IFN protein or overexpression of zebrafish IFNγ2 both led to significant increase in crucian carp IRF9 mRNA and protein in cultured fish cells. Comparison of IFN-stimulated promoter activity revealed much more significant induction of zebrafish IRF9 by zebrafish IFNγ2 than by zebrafish IFNφs. Mutation analyses showed that the putative GAS and GATE3 contributed to zebrafish IFNγ2-triggered IRF9 expression, whereas the putative ISRE and the other two GATEs were not functional for induction of zebrafish IRF9. These results together indicated that the expression property of IRF9 might be conserved from fish to mammals and that some not yet identified mechanisms could exist in IRF9 gene transcription regulation in response to IFNs.

  6. Effective self-regulation change techniques to promote mental wellbeing among adolescents: a meta-analysis.

    Science.gov (United States)

    van Genugten, Lenneke; Dusseldorp, Elise; Massey, Emma K; van Empelen, Pepijn

    2017-03-01

    Mental wellbeing is influenced by self-regulation processes. However, little is known on the efficacy of change techniques based on self-regulation to promote mental wellbeing. The aim of this meta-analysis is to identify effective self-regulation techniques (SRTs) in primary and secondary prevention interventions on mental wellbeing in adolescents. Forty interventions were included in the analyses. Techniques were coded into nine categories of SRTs. Meta-analyses were conducted to identify the effectiveness of SRTs, examining three different outcomes: internalising behaviour, externalising behaviour, and self-esteem. Primary interventions had a small-to-medium ([Formula: see text] = 0.16-0.29) on self-esteem and internalising behaviour. Secondary interventions had a medium-to-large short-term effect (average [Formula: see text] = 0.56) on internalising behaviour and self-esteem. In secondary interventions, interventions including asking for social support [Formula: see text] 95% confidence interval, CI = 1.11-1.98) had a great effect on internalising behaviour. Interventions including monitoring and evaluation had a greater effect on self-esteem [Formula: see text] 95% CI = 0.21-0.57). For primary interventions, there was not a single SRT that was associated with a greater intervention effect on internalising behaviour or self-esteem. No effects were found for externalising behaviours. Self-regulation interventions are moderately effective at improving mental wellbeing among adolescents. Secondary interventions promoting 'asking for social support' and promoting 'monitoring and evaluation' were associated with improved outcomes. More research is needed to identify other SRTs or combinations of SRTs that could improve understanding or optimise mental wellbeing interventions.

  7. Detailed analysis of Helicobacter pylori Fur-regulated promoters reveals a Fur box core sequence and novel Fur-regulated genes.

    Science.gov (United States)

    Pich, Oscar Q; Carpenter, Beth M; Gilbreath, Jeremy J; Merrell, D Scott

    2012-06-01

    In Helicobacter pylori, iron balance is controlled by the Ferric uptake regulator (Fur), an iron-sensing repressor protein that typically regulates expression of genes implicated in iron transport and storage. Herein, we carried out extensive analysis of Fur-regulated promoters and identified a 7-1-7 motif with dyad symmetry (5'-TAATAATnATTATTA-3'), which functions as the Fur box core sequence of H. pylori. Addition of this sequence to the promoter region of a typically non-Fur regulated gene was sufficient to impose Fur-dependent regulation in vivo. Moreover, mutation of this sequence within Fur-controlled promoters negated regulation. Analysis of the H. pylori chromosome for the occurrence of the Fur box established the existence of well-conserved Fur boxes in the promoters of numerous known Fur-regulated genes, and revealed novel putative Fur targets. Transcriptional analysis of the new candidate genes demonstrated Fur-dependent repression of HPG27_51, HPG27_52, HPG27_199, HPG27_445, HPG27_825 and HPG27_1063, as well as Fur-mediated activation of the cytotoxin associated gene A, cagA (HPG27_507). Furthermore, electrophoretic mobility shift assays confirmed specific binding of Fur to the promoters of each of these genes. Future experiments will determine whether loss of Fur regulation of any of these particular genes contributes to the defects in colonization exhibited by the H. pylori fur mutant.

  8. Developmentally regulated promoter-switch transcriptionally controls Runx1 function during embryonic hematopoiesis

    Science.gov (United States)

    Pozner, Amir; Lotem, Joseph; Xiao, Cuiying; Goldenberg, Dalia; Brenner, Ori; Negreanu, Varda; Levanon, Ditsa; Groner, Yoram

    2007-01-01

    Background Alternative promoters usage is an important paradigm in transcriptional control of mammalian gene expression. However, despite the growing interest in alternative promoters and their role in genome diversification, very little is known about how and on what occasions those promoters are differentially regulated. Runx1 transcription factor is a key regulator of early hematopoiesis and a frequent target of chromosomal translocations in acute leukemias. Mice deficient in Runx1 lack definitive hematopoiesis and die in mid-gestation. Expression of Runx1 is regulated by two functionally distinct promoters designated P1 and P2. Differential usage of these two promoters creates diversity in distribution and protein-coding potential of the mRNA transcripts. While the alternative usage of P1 and P2 likely plays an important role in Runx1 biology, very little is known about the function of the P1/P2 switch in mediating tissue and stage specific expression of Runx1 during development. Results We employed mice bearing a hypomorphic Runx1 allele, with a largely diminished P2 activity, to investigate the biological role of alternative P1/P2 usage. Mice homozygous for the hypomorphic allele developed to term, but died within a few days after birth. During embryogenesis the P1/P2 activity is spatially and temporally modulated. P2 activity is required in early hematopoiesis and when attenuated, development of liver hematopoietic progenitor cells (HPC) was impaired. Early thymus development and thymopoiesis were also abrogated as reflected by thymic hypocellularity and loss of corticomedullary demarcation. Differentiation of CD4/CD8 thymocytes was impaired and their apoptosis was enhanced due to altered expression of T-cell receptors. Conclusion The data delineate the activity of P1 and P2 in embryogenesis and describe previously unknown functions of Runx1. The findings show unequivocally that the role of P1/P2 during development is non redundant and underscore the

  9. Developmentally regulated promoter-switch transcriptionally controls Runx1 function during embryonic hematopoiesis

    Directory of Open Access Journals (Sweden)

    Goldenberg Dalia

    2007-07-01

    Full Text Available Abstract Background Alternative promoters usage is an important paradigm in transcriptional control of mammalian gene expression. However, despite the growing interest in alternative promoters and their role in genome diversification, very little is known about how and on what occasions those promoters are differentially regulated. Runx1 transcription factor is a key regulator of early hematopoiesis and a frequent target of chromosomal translocations in acute leukemias. Mice deficient in Runx1 lack definitive hematopoiesis and die in mid-gestation. Expression of Runx1 is regulated by two functionally distinct promoters designated P1 and P2. Differential usage of these two promoters creates diversity in distribution and protein-coding potential of the mRNA transcripts. While the alternative usage of P1 and P2 likely plays an important role in Runx1 biology, very little is known about the function of the P1/P2 switch in mediating tissue and stage specific expression of Runx1 during development. Results We employed mice bearing a hypomorphic Runx1 allele, with a largely diminished P2 activity, to investigate the biological role of alternative P1/P2 usage. Mice homozygous for the hypomorphic allele developed to term, but died within a few days after birth. During embryogenesis the P1/P2 activity is spatially and temporally modulated. P2 activity is required in early hematopoiesis and when attenuated, development of liver hematopoietic progenitor cells (HPC was impaired. Early thymus development and thymopoiesis were also abrogated as reflected by thymic hypocellularity and loss of corticomedullary demarcation. Differentiation of CD4/CD8 thymocytes was impaired and their apoptosis was enhanced due to altered expression of T-cell receptors. Conclusion The data delineate the activity of P1 and P2 in embryogenesis and describe previously unknown functions of Runx1. The findings show unequivocally that the role of P1/P2 during development is non

  10. Atorvastatin treatment modulates p16 promoter methylation to regulate p16 expression.

    Science.gov (United States)

    Zhu, Boqian; Gong, Yaoyao; Yan, Gaoliang; Wang, Dong; Wang, Qingjie; Qiao, Yong; Hou, Jiantong; Liu, Bo; Tang, Chengchun

    2017-06-01

    Intimal hyperplasia, the key event of arterial restenosis, is a result of cell proliferation and cell migration. Atorvastatin exerts an inhibitory effect on cell proliferation and migration, but the mechanism remains largely unknown. p16, as a well-known tumor suppressor, was also reported to suppress cell growth and migration, but with an unclear mechanism. In this study, we demonstrated that atorvastatin represses cell proliferation and migration in vascular smooth muscle cells (VSMCs) and that this process is mediated by p16. Furthermore, we found that DNA methylation in the p16 promoter was reduced and p16 expression was restored in VSMCs treated with 5-aza-2'-deoxycytidine or atorvastatin. However, the effect was absent when DNA methyltransferase 1 (DNMT1) was knocked down with RNA interference. These observations demonstrated that atorvastatin regulates p16 expression via DNMT1-induced DNA methylation in the p16 promoter. In addition, we found that the mitogen-activated protein kinase (MAPK) pathway was involved in the regulation of p16 by DNMT1, and MAPK inhibitors partially released the effects of atorvastatin on p16 and DNMT1. Finally, we illustrated that atorvastatin inhibits neointima formation and modulates p16 expression in balloon catheter-injured rat carotid artery. Taken together, we demonstrated that atorvastatin inhibits neointima formation through inducing p16 expression by affecting DNA methylation in the p16 promoter region. © 2017 Federation of European Biochemical Societies.

  11. Transcription factor ICBP90 regulates the MIF promoter and immune susceptibility locus.

    Science.gov (United States)

    Yao, Jie; Leng, Lin; Sauler, Maor; Fu, Weiling; Zheng, Junsong; Zhang, Yi; Du, Xin; Yu, Xiaoqing; Lee, Patty; Bucala, Richard

    2016-02-01

    The immunoregulatory cytokine macrophage migration inhibitory factor (MIF) is encoded in a functionally polymorphic locus that is linked to the susceptibility of autoimmune and infectious diseases. The MIF promoter contains a 4-nucleotide microsatellite polymorphism (-794 CATT) that repeats 5 to 8 times in the locus, with greater numbers of repeats associated with higher mRNA levels. Because there is no information about the transcriptional regulation of these common alleles, we used oligonucleotide affinity chromatography and liquid chromatography-mass spectrometry to identify nuclear proteins that interact with the -794 CATT5-8 site. An analysis of monocyte nuclear lysates revealed that the transcription factor ICBP90 (also known as UHRF1) is the major protein interacting with the MIF microsatellite. We found that ICBP90 is essential for MIF transcription from monocytes/macrophages, B and T lymphocytes, and synovial fibroblasts, and TLR-induced MIF transcription is regulated in an ICBP90- and -794 CATT5-8 length-dependent manner. Whole-genome transcription analysis of ICBP90 shRNA-treated rheumatoid synoviocytes uncovered a subset of proinflammatory and immune response genes that overlapped with those regulated by MIF shRNA. In addition, the expression levels of ICBP90 and MIF were correlated in joint synovia from patients with rheumatoid arthritis. These findings identify ICBP90 as a key regulator of MIF transcription and provide functional insight into the regulation of the polymorphic MIF locus.

  12. GPS2/KDM4A Pioneering Activity Regulates Promoter-Specific Recruitment of PPARγ

    Directory of Open Access Journals (Sweden)

    M. Dafne Cardamone

    2014-07-01

    Full Text Available Timely and selective recruitment of transcription factors to their appropriate DNA-binding sites represents a critical step in regulating gene activation; however, the regulatory strategies underlying each factor’s effective recruitment to specific promoter and/or enhancer regions are not fully understood. Here, we identify an unexpected regulatory mechanism by which promoter-specific binding, and therefore function, of peroxisome proliferator-activator receptor γ (PPARγ in adipocytes requires G protein suppressor 2 (GPS2 to prime the local chromatin environment via inhibition of the ubiquitin ligase RNF8 and stabilization of the H3K9 histone demethylase KDM4A/JMJD2. Integration of genome-wide profiling data indicates that the pioneering activity of GPS2/KDM4A is required for PPARγ-mediated regulation of a specific transcriptional program, including the lipolytic enzymes adipose triglyceride lipase (ATGL and hormone-sensitive lipase (HSL. Hence, our findings reveal that GPS2 exerts a biologically important function in adipose tissue lipid mobilization by directly regulating ubiquitin signaling and indirectly modulating chromatin remodeling to prime selected genes for activation.

  13. High-throughput mapping of the promoters of the mouse olfactory receptor genes reveals a new type of mammalian promoter and provides insight into olfactory receptor gene regulation.

    Science.gov (United States)

    Clowney, E Josephine; Magklara, Angeliki; Colquitt, Bradley M; Pathak, Nidhi; Lane, Robert P; Lomvardas, Stavros

    2011-08-01

    The olfactory receptor (OR) genes are the largest mammalian gene family and are expressed in a monogenic and monoallelic fashion in olfactory neurons. Using a high-throughput approach, we mapped the transcription start sites of 1085 of the 1400 murine OR genes and performed computational analysis that revealed potential transcription factor binding sites shared by the majority of these promoters. Our analysis produced a hierarchical model for OR promoter recognition in which unusually high AT content, a unique epigenetic signature, and a stereotypically positioned O/E site distinguish OR promoters from the rest of the murine promoters. Our computations revealed an intriguing correlation between promoter AT content and evolutionary plasticity, as the most AT-rich promoters regulate rapidly evolving gene families. Within the AT-rich promoter category the position of the TATA-box does not correlate with the transcription start site. Instead, a spike in GC composition might define the exact location of the TSS, introducing the concept of "genomic contrast" in transcriptional regulation. Finally, our experiments show that genomic neighborhood rather than promoter sequence correlates with the probability of different OR genes to be expressed in the same olfactory cell.

  14. Jawbone microenvironment promotes periodontium regeneration by regulating the function of periodontal ligament stem cells

    Science.gov (United States)

    Zhu, Bin; Liu, Wenjia; Liu, Yihan; Zhao, Xicong; Zhang, Hao; Luo, Zhuojing; Jin, Yan

    2017-01-01

    During tooth development, the jawbone interacts with dental germ and provides the development microenvironment. Jawbone-derived mesenchymal stem cells (JBMSCs) maintain this microenvironment for root and periodontium development. However, the effect of the jawbone microenvironment on periodontium tissue regeneration is largely elusive. Our previous study showed that cell aggregates (CAs) of bone marrow mesenchymal stem cells promoted periodontium regeneration on the treated dentin scaffold. Here, we found that JBMSCs enhanced not only the osteogenic differentiation of periodontal ligament stem cells (PDLSCs) but also their adhesion to titanium (Ti) material surface. Importantly, the compound CAs of PDLSCs and JBMSCs regenerated periodontal ligament-like fibers and mineralized matrix on the Ti scaffold surface, both in nude mice ectopic and minipig orthotopic transplantations. Our data revealed that an effective regenerative microenvironment, reconstructed by JBMSCs, promoted periodontium regeneration by regulating PDLSCs function on the Ti material. PMID:28053317

  15. Classroom Activities to Engage Students and Promote Critical Thinking about Genetic Regulation of Bacterial Quorum Sensing

    Directory of Open Access Journals (Sweden)

    Kimberly Aebli

    2016-05-01

    Full Text Available We developed an interactive activity to mimic bacterial quorum sensing, and a classroom worksheet to promote critical thinking about genetic regulation of the lux operon. The interactive quorum sensing activity engages students and provides a direct visualization of how population density functions to influence light production in bacteria. The worksheet activity consists of practice problems that require students to apply basic knowledge of the lux operon in order to make predictions about genetic complementation experiments, and students must evaluate how genetic mutations in the lux operon affect gene expression and overall phenotype. The worksheet promotes critical thinking and problem solving skills, and emphasizes the roles of diffusible signaling molecules, regulatory proteins, and structural proteins in quorum sensing.

  16. MetR and CRP bind to the Vibrio harveyi lux promoters and regulate luminescence.

    Science.gov (United States)

    Chatterjee, Jaidip; Miyamoto, Carol M; Zouzoulas, Athina; Lang, B Franz; Skouris, Nicolas; Meighen, Edward A

    2002-10-01

    The induction of luminescence in Vibrio harveyi at the later stages of growth is controlled by a quorum-sensing mechanism in addition to nutritional signals. However, the mechanism of transmission of these signals directly to the lux promoters is unknown and only one regulatory protein, LuxR, has been shown to bind directly to lux promoter DNA. In this report, we have cloned and sequenced two genes, crp and metR, coding for the nutritional regulators, CRP (cAMP receptor protein) and MetR (a LysR homologue), involved in catabolite repression and methionine biosynthesis respectively. The metR gene was cloned based on a general strategy to detect lux DNA-binding proteins expressed from a genomic library, whereas the crp gene was cloned based on its complementation of an Escherichia coli crp mutant. Both CRP and MetR were shown to bind to lux promoter DNA, with CRP being dependent on the presence of cAMP. Expression studies indicated that the two regulators had opposite effects on luminescence: CRP was an activator and MetR a repressor. Disruption of crp decreased luminescence by about 1,000-fold showing that CRP is a major activator of luminescence the same as LuxR, whereas disruption of MetR resulted in activation of luminescence over 10-fold, confirming its function as a repressor. Comparison of the levels of the autoinducers involved in quorum sensing excreted by V. harveyi, and the crp and metR mutants, showed that autoinducer production was not significantly different, thus indicating that the nutritional signals do not affect luminescence by changing the levels of the signals required for quorum sensing. Indeed, the large effects of these nutritional sensors show that luminescence is controlled by multiple signals related to the environment and the cell density which must be integrated at the molecular level to control expression at the lux promoters.

  17. Substrate Phosphorylation and Feedback Regulation in JFK-promoted p53 Destabilization*

    OpenAIRE

    Sun, Luyang; SHI, LEI; Wang, Feng; Huangyang, Peiwei; Si, Wenzhe; Yang, Jie; Yao, Zhi; Shang, Yongfeng

    2010-01-01

    The p53 tumor suppressor plays a central role in integrating cellular responses to various stresses. Tight regulation of p53 is thus essential for the maintenance of genome integrity and normal cell proliferation. Previously, we reported that JFK, the only Kelch domain-containing F-box protein in human, promotes ubiquitination and degradation of p53 and that unlike the other E3 ligases for p53, all of which possess an intrinsic ubiquitin ligase activity, JFK destabilizes p53 through the assem...

  18. RBP-J-Regulated miR-182 Promotes TNF-α-Induced Osteoclastogenesis.

    Science.gov (United States)

    Miller, Christine H; Smith, Sinead M; Elguindy, Mahmoud; Zhang, Tuo; Xiang, Jenny Z; Hu, Xiaoyu; Ivashkiv, Lionel B; Zhao, Baohong

    2016-06-15

    Increased osteoclastogenesis is responsible for osteolysis, which is a severe consequence of inflammatory diseases associated with bone destruction, such as rheumatoid arthritis and periodontitis. The mechanisms that limit osteoclastogenesis under inflammatory conditions are largely unknown. We previously identified transcription factor RBP-J as a key negative regulator that restrains TNF-α-induced osteoclastogenesis and inflammatory bone resorption. In this study, we tested whether RBP-J suppresses inflammatory osteoclastogenesis by regulating the expression of microRNAs (miRNAs) important for this process. Using high-throughput sequencing of miRNAs, we obtained the first, to our knowledge, genome-wide profile of miRNA expression induced by TNF-α in mouse bone marrow-derived macrophages/osteoclast precursors during inflammatory osteoclastogenesis. Furthermore, we identified miR-182 as a novel miRNA that promotes inflammatory osteoclastogenesis driven by TNF-α and whose expression is suppressed by RBP-J. Downregulation of miR-182 dramatically suppressed the enhanced osteoclastogenesis program induced by TNF-α in RBP-J-deficient cells. Complementary loss- and gain-of-function approaches showed that miR-182 is a positive regulator of osteoclastogenic transcription factors NFATc1 and B lymphocyte-induced maturation protein-1. Moreover, we identified that direct miR-182 targets, Foxo3 and Maml1, play important inhibitory roles in TNF-α-mediated osteoclastogenesis. Thus, RBP-J-regulated miR-182 promotes TNF-α-induced osteoclastogenesis via inhibition of Foxo3 and Maml1. Suppression of miR-182 by RBP-J serves as an important mechanism that restrains TNF-α-induced osteoclastogenesis. Our results provide a novel miRNA-mediated mechanism by which RBP-J inhibits osteoclastogenesis and suggest that targeting of the newly described RBP-J-miR-182-Foxo3/Maml1 axis may represent an effective therapeutic approach to suppress inflammatory osteoclastogenesis and bone

  19. The virulence regulator Sae of Staphylococcus aureus: promoter activities and response to phagocytosis-related signals.

    Science.gov (United States)

    Geiger, Tobias; Goerke, Christiane; Mainiero, Markus; Kraus, Dirk; Wolz, Christiane

    2008-05-01

    The two-component system SaeRS of Staphylococcus aureus is closely involved in the regulation of major virulence factors. However, little is known about the signals leading to saeRS activation. A total of four overlapping transcripts (T1 to T4) from three different transcription starting points are expressed in the sae operon. We used a beta-galactosidase reporter assay to characterize the putative promoter regions within the saeRS upstream region. The main transcript T2 is probably generated by endoribonucleolytic processing of the T1 transcript. Only two distinct promoter elements (P1 and P3) could be detected within the saeRS upstream region. The P3 promoter, upstream of saeRS, generates the T3 transcript, includes a cis-acting enhancer element and is repressed by saeRS. The most distal P1 promoter is strongly autoregulated, activated by agr, and repressed by sigma factor B. In strain Newman a mutation within the histidine kinase SaeS leads to a constitutively activated sae system. Evaluation of different external signals revealed that the P1 promoter in strain ISP479R and strain UAMS-1 is inhibited by low pH and high NaCl concentrations but activated by hydrogen peroxide. The most prominent induction of P1 was observed at subinhibitory concentrations of alpha-defensins in various S. aureus strains, with the exception of strain ISP479R and strain COL. P1 was not activated by the antimicrobial peptides LL37 and daptomycin. In summary, the results indicate that the sensor molecule SaeS is activated by alteration within the membrane allowing the pathogen to react to phagocytosis related effector molecules.

  20. Tissue-specific regulation of the mouse Pkhd1 (ARPKD) gene promoter

    Science.gov (United States)

    Williams, Scott S.; Cobo-Stark, Patricia; Hajarnis, Sachin; Aboudehen, Karam; Shao, Xinli; Richardson, James A.; Patel, Vishal

    2014-01-01

    Autosomal recessive polycystic kidney disease, an inherited disorder characterized by the formation of cysts in renal collecting ducts and biliary dysgenesis, is caused by mutations of the polycystic kidney and hepatic disease 1 (PKHD1) gene. Expression of PKHD1 is tissue specific and developmentally regulated. Here, we show that a 2.0-kb genomic fragment containing the proximal promoter of mouse Pkhd1 directs tissue-specific expression of a lacZ reporter gene in transgenic mice. LacZ is expressed in renal collecting ducts beginning during embryonic development but is not expressed in extrarenal tissues. The Pkhd1 promoter contains a binding site for the transcription factor hepatocyte nuclear factor (HNF)-1β, which is required for activity in transfected cells. Mutation of the HNF-1β-binding site abolishes the expression of the lacZ reporter gene in renal collecting ducts. Transgenes containing the 2.0-kb promoter and 2.7 kb of additional genomic sequence extending downstream to the second exon are expressed in the kidney, intrahepatic bile ducts, and male reproductive tract. This pattern overlaps with the endogenous expression of Pkhd1 and coincides with sites of expression of HNF-1β. We conclude that the proximal 2.0-kb promoter is sufficient for tissue-specific expression of Pkhd1 in renal collecting ducts in vivo and that HNF-1β is required for Pkhd1 promoter activity in collecting ducts. Additional genomic sequences located from exons 1-2 or elsewhere in the gene locus are required for expression in extrarenal tissues. PMID:24899057

  1. Biological processes in prevention and intervention: the promotion of self-regulation as a means of preventing school failure.

    Science.gov (United States)

    Blair, Clancy; Diamond, Adele

    2008-01-01

    This paper examines interrelations between biological and social influences on the development of self-regulation in young children and considers implications of these interrelations for the promotion of self-regulation and positive adaptation to school. Emotional development and processes of emotion regulation are seen as influencing and being influenced by the development of executive cognitive functions, including working memory, inhibitory control, and mental flexibility important for the effortful regulation of attention and behavior. Developing self-regulation is further understood to reflect an emerging balance between processes of emotional arousal and cognitive regulation. Early childhood educational programs that effectively link emotional and motivational arousal with activities designed to exercise and promote executive functions can be effective in enhancing self-regulation, school readiness, and school success.

  2. Lin28 regulates HER2 and promotes malignancy through multiple mechanisms.

    Science.gov (United States)

    Feng, Chen; Neumeister, Veronique; Ma, Wei; Xu, Jie; Lu, Lingeng; Bordeaux, Jennifer; Maihle, Nita J; Rimm, David L; Huang, Yingqun

    2012-07-01

    The RNA binding protein Lin28 and its paralog Lin28B are associated with advanced human malignancies. Blocking the biogenesis of let-7 miRNA, a tumor suppressor, by Lin28/Lin28B has been thought to underlie their roles in cancer. Here we report that the mRNA for the human epidermal growth factor receptor 2 (HER2), a HER-family receptor tyrosine kinase known to play a critical role in cell proliferation and survival and also a major therapeutic target in breast cancer, is among several targets of Lin28 regulation. We show that Lin28 stimulates HER2 expression at the posttranscriptional level, and that enforced Lin28 expression promotes cancer cell growth via multiple mechanisms. Consistent with its pleiotropic role in regulating gene expression, Lin28 overexpression in primary breast tumors is a powerful predictor of poor prognosis, representing the first report on the impact of Lin28 expression on clinical outcome in human cancer. While revealing another layer of regulation of HER2 expression in addition to gene amplification, our studies also suggest novel mechanistic insights linking Lin28 expression to disease outcome and imply that targeting multiple pathways is a common mechanistic theme of Lin28-mediated regulation in cancer.

  3. Thyroid hormone and vitamin D regulate VGF expression and promoter activity

    Science.gov (United States)

    Lewis, Jo E; Brameld, John M; Hill, Phil; Wilson, Dana; Barrett, Perry; Ebling, Francis J P; Jethwa, Preeti H

    2016-01-01

    The Siberian hamster (Phodopus sungorus) survives winter by decreasing food intake and catabolizing abdominal fat reserves, resulting in a sustained, profound loss of body weight. Hypothalamic tanycytes are pivotal for this process. In these cells, short-winter photoperiods upregulate deiodinase 3, an enzyme that regulates thyroid hormone availability, and downregulate genes encoding components of retinoic acid (RA) uptake and signaling. The aim of the current studies was to identify mechanisms by which seasonal changes in thyroid hormone and RA signaling from tanycytes might ultimately regulate appetite and energy expenditure. proVGF is one of the most abundant peptides in the mammalian brain, and studies have suggested a role for VGF-derived peptides in the photoperiodic regulation of body weight in the Siberian hamster. In silico studies identified possible thyroid and vitamin D response elements in the VGF promoter. Using the human neuroblastoma SH-SY5Y cell line, we demonstrate that RA increases endogenous VGF expression (PSiberian hamsters. Thus, we conclude that VGF expression is a likely target of photoperiod-induced changes in tanycyte-derived signals and is potentially a regulator of seasonal changes in appetite and energy expenditure. PMID:26643910

  4. Promoting the self-regulation of clinical reasoning skills in nursing students.

    Science.gov (United States)

    Kuiper, R; Pesut, D; Kautz, D

    2009-10-02

    The purpose of this paper is to describe the research surrounding the theories and models the authors united to describe the essential components of clinical reasoning in nursing practice education. The research was conducted with nursing students in health care settings through the application of teaching and learning strategies with the Self-Regulated Learning Model (SRL) and the Outcome-Present-State-Test (OPT) Model of Reflective Clinical Reasoning. Standardized nursing languages provided the content and clinical vocabulary for the clinical reasoning task. This descriptive study described the application of the OPT model of clinical reasoning, use of nursing language content, and reflective journals based on the SRL model with 66 undergraduate nursing students over an 8 month period of time. The study tested the idea that self-regulation of clinical reasoning skills can be developed using self-regulation theory and the OPT model. This research supports a framework for effective teaching and learning methods to promote and document learner progress in mastering clinical reasoning skills. Self-regulated Learning strategies coupled with the OPT model suggest benefits of self-observation and self-monitoring during clinical reasoning activities, and pinpoints where guidance is needed for the development of cognitive and metacognitive awareness. Thinking and reasoning about the complexities of patient care needs requires attention to the content, processes and outcomes that make a nursing care difference. These principles and concepts are valuable to clinical decision making for nurses globally as they deal with local, regional, national and international health care issues.

  5. POTATO GRANULE-BOUND STARCH SYNTHASE PROMOTER-CONTROLLED GUS EXPRESSION - REGULATION OF EXPRESSION AFTER TRANSIENT AND STABLE TRANSFORMATION

    NARCIS (Netherlands)

    VANDERSTEEGE, G; NIEBOER, M; SWAVING, J; TEMPELAAR, MJ

    1992-01-01

    Chimaeric genes of promoter sequences from the potato gene encoding granule-bound starch synthase (GBSS) and the beta-glucuronidase (GUS) reporter gene were used to study GBSS expression and regulation. Analysis of stable transformants revealed that a GBSS promoter sequence of 0.4 kb was sufficient

  6. JMJD6 promotes colon carcinogenesis through negative regulation of p53 by hydroxylation.

    Directory of Open Access Journals (Sweden)

    Feng Wang

    2014-03-01

    Full Text Available Jumonji domain-containing 6 (JMJD6 is a member of the Jumonji C domain-containing family of proteins. Compared to other members of the family, the cellular activity of JMJD6 is still not clearly defined and its biological function is still largely unexplored. Here we report that JMJD6 is physically associated with the tumor suppressor p53. We demonstrated that JMJD6 acts as an α-ketoglutarate- and Fe(II-dependent lysyl hydroxylase to catalyze p53 hydroxylation. We found that p53 indeed exists as a hydroxylated protein in vivo and that the hydroxylation occurs mainly on lysine 382 of p53. We showed that JMJD6 antagonizes p53 acetylation, promotes the association of p53 with its negative regulator MDMX, and represses transcriptional activity of p53. Depletion of JMJD6 enhances p53 transcriptional activity, arrests cells in the G1 phase, promotes cell apoptosis, and sensitizes cells to DNA damaging agent-induced cell death. Importantly, knockdown of JMJD6 represses p53-dependent colon cell proliferation and tumorigenesis in vivo, and significantly, the expression of JMJD6 is markedly up-regulated in various types of human cancer especially in colon cancer, and high nuclear JMJD6 protein is strongly correlated with aggressive clinical behaviors of colon adenocarcinomas. Our results reveal a novel posttranslational modification for p53 and support the pursuit of JMJD6 as a potential biomarker for colon cancer aggressiveness and a potential target for colon cancer intervention.

  7. GATA4 regulates Fgf16 to promote heart repair after injury.

    Science.gov (United States)

    Yu, Wei; Huang, Xiuzhen; Tian, Xueying; Zhang, Hui; He, Lingjuan; Wang, Yue; Nie, Yu; Hu, Shengshou; Lin, Zhiqiang; Zhou, Bin; Pu, William; Lui, Kathy O; Zhou, Bin

    2016-03-15

    Although the mammalian heart can regenerate during the neonatal stage, this endogenous regenerative capacity is lost with age. Importantly, replication of cardiomyocytes has been found to be the key mechanism responsible for neonatal cardiac regeneration. Unraveling the transcriptional regulatory network for inducing cardiomyocyte replication will, therefore, be crucial for the development of novel therapies to drive cardiac repair after injury. Here, we investigated whether the key cardiac transcription factor GATA4 is required for neonatal mouse heart regeneration. Using the neonatal mouse heart cryoinjury and apical resection models with an inducible loss of GATA4 specifically in cardiomyocytes, we found severely depressed ventricular function in the Gata4-ablated mice (mutant) after injury. This was accompanied by reduced cardiomyocyte replication. In addition, the mutant hearts displayed impaired coronary angiogenesis and increased hypertrophy and fibrosis after injury. Mechanistically, we found that the paracrine factor FGF16 was significantly reduced in the mutant hearts after injury compared with littermate controls and was directly regulated by GATA4. Cardiac-specific overexpression of FGF16 via adeno-associated virus subtype 9 (AAV9) in the mutant hearts partially rescued the cryoinjury-induced cardiac hypertrophy, promoted cardiomyocyte replication and improved heart function after injury. Altogether, our data demonstrate that GATA4 is required for neonatal heart regeneration through regulation of Fgf16, suggesting that paracrine factors could be of potential use in promoting myocardial repair.

  8. The stress-regulated transcription factor CHOP promotes hepatic inflammatory gene expression, fibrosis, and oncogenesis.

    Directory of Open Access Journals (Sweden)

    Diane DeZwaan-McCabe

    Full Text Available Viral hepatitis, obesity, and alcoholism all represent major risk factors for hepatocellular carcinoma (HCC. Although these conditions also lead to integrated stress response (ISR or unfolded protein response (UPR activation, the extent to which these stress pathways influence the pathogenesis of HCC has not been tested. Here we provide multiple lines of evidence demonstrating that the ISR-regulated transcription factor CHOP promotes liver cancer. We show that CHOP expression is up-regulated in liver tumors in human HCC and two mouse models thereof. Chop-null mice are resistant to chemical hepatocarcinogenesis, and these mice exhibit attenuation of both apoptosis and cellular proliferation. Chop-null mice are also resistant to fibrosis, which is a key risk factor for HCC. Global gene expression profiling suggests that deletion of CHOP reduces the levels of basal inflammatory signaling in the liver. Our results are consistent with a model whereby CHOP contributes to hepatic carcinogenesis by promoting inflammation, fibrosis, cell death, and compensatory proliferation. They implicate CHOP as a common contributing factor in the development of HCC in a variety of chronic liver diseases.

  9. PCAF-primed EZH2 acetylation regulates its stability and promotes lung adenocarcinoma progression

    Institute of Scientific and Technical Information of China (English)

    Wan Junhu; Chin Y Eugene; Zhang Hongquan; Zhan Jun; Li Shuai; Ma Ji; Xu Weizhi; Liu Chang; Xue Xiaowei; Xie Yuping; Fang Weigang

    2015-01-01

    Enhancer of zeste homolog 2 ( EZH2 ) is a key epigenetic regulator that catalyzes the trimethyla-tion of H3K27 and is modulated by post-translational modifications (PTMs). However, the precise regulation of EZH2 PTMs remains elusive. We, herein, report that EZH2 is acetylated by acetyltransferase P300/CBP-associat-ed factor (PCAF) and is deacetylated by deacetylase SIRT1. We identified that PCAF interacts with and acetylates EZH2 mainly at lysine 348 (K348). Mechanistically, K348 acetylation decreases EZH2 phosphorylation at T345 and T487 and increases EZH2 stability without disrupting the formation of polycomb repressive complex 2 ( PRC2 ) . Functionally, EZH2 K348 acetylation enhances its capacity in suppression of the target genes and promotes lung cancer cell migration and invasion. Further, elevated EZH2 K348 acetylation in lung adenocarcinoma patients pre-dicts a poor prognosis. Our findings define a new mechanism underlying EZH2 modulation by linking EZH2 acety-lation to its phosphorylation that stabilizes EZH2 and promotes lung adenocarcinoma progression.

  10. Oxidative stress-mediated down-regulation of bcl-2 promoter in hippocampal neurons.

    Science.gov (United States)

    Pugazhenthi, Subbiah; Nesterova, Albina; Jambal, Purevsuren; Audesirk, Gerald; Kern, Marcey; Cabell, Leigh; Eves, Eva; Rosner, Marsha R; Boxer, Linda M; Reusch, Jane E-B

    2003-03-01

    Generation of oxidative stress/reactive oxygen species (ROS) is one of the causes of neuronal apoptosis. We have examined the effects of ROS at the transcriptional level in an immortalized hippocampal neuronal cell line (H19-7) and in rat primary hippocampal neurons. Treatment of H19-7 cells with hydrogen peroxide (150 micro m) resulted in a 40% decrease in Bcl-2 protein and a parallel decrease in bcl-2 mRNA levels. H19-7 cells overexpressing bcl-2 were found to be resistant to ROS-induced apoptosis. We had previously shown that bcl-2 promoter activity is positively regulated by the transcription factor cyclic AMP response element binding protein (CREB) in neurons. In the present study, we demonstrate that ROS decreases the activity of luciferase reporter gene driven by a cyclic AMP response element site containing bcl-2 promoter. Exposure of neurons to ROS for 6 h resulted in basal and fibroblast growth factor-2-stimulated phosphorylation/activation of CREB. Chronic 24 h treatment with ROS led to a significant (p < 0.01) decrease in CREB protein and CREB mRNA levels. Adenoviral overexpression of wild type CREB in H19-7 cells resulted in significant (p < 0.01) protection against ROS-induced apoptosis through up-regulation of Bcl-2 expression whereas dominant negative CREB exaggerated the injury. These findings demonstrate that loss of CREB function contributes to oxidative stress-induced neuronal dysfunction.

  11. Involvement of promoter methylation in the regulation of Pregnane X receptor in colon cancer cells

    Directory of Open Access Journals (Sweden)

    Otsuka Koki

    2011-02-01

    Full Text Available Abstract Background Pregnane X receptor (PXR is a key transcription factor that regulates drug metabolizing enzymes such as cytochrome P450 (CYP 3A4, and plays important roles in intestinal first-pass metabolism. Although there is a large inter-individual heterogeneity with intestinal CYP3A4 expression and activity, the mechanism driving these differences is not sufficiently explained by genetic variability of PXR or CYP3A4. We examined whether epigenetic mechanisms are involved in the regulation of PXR/CYP3A4 pathways in colon cancer cells. Methods mRNA levels of PXR, CYP3A4 and vitamin D receptor (VDR were evaluated by quantitative real-time PCR on 6 colon cancer cell lines (Caco-2, HT29, HCT116, SW48, LS180, and LoVo. DNA methylation status was also examined by bisulfite sequencing of the 6 cell lines and 18 colorectal cancer tissue samples. DNA methylation was reversed by the treatment of these cell lines with 5-aza-2'-deoxycytidine (5-aza-dC. Results The 6 colon cancer cell lines were classified into two groups (high or low expression cells based on the basal level of PXR/CYP3A4 mRNA. DNA methylation of the CpG-rich sequence of the PXR promoter was more densely detected in the low expression cells (Caco-2, HT29, HCT116, and SW48 than in the high expression cells (LS180 and LoVo. This methylation was reversed by treatment with 5-aza-dC, in association with re-expression of PXR and CYP3A4 mRNA, but not VDR mRNA. Therefore, PXR transcription was silenced by promoter methylation in the low expression cells, which most likely led to downregulation of CYP3A4 transactivation. Moreover, a lower level of PXR promoter methylation was observed in colorectal cancer tissues compared with adjacent normal mucosa, suggesting upregulation of the PXR/CYP3A4 mRNAs during carcinogenesis. Conclusions PXR promoter methylation is involved in the regulation of intestinal PXR and CYP3A4 mRNA expression and might be associated with the inter-individual variability

  12. STMN1 Promotes Progesterone Production Via StAR Up-regulation in Mouse Granulosa Cells

    Science.gov (United States)

    Dou, Yun-De; Zhao, Han; Huang, Tao; Zhao, Shi-Gang; Liu, Xiao-Man; Yu, Xiao-Chen; Ma, Zeng-Xiang; Zhang, Yu-Chao; Liu, Tao; Gao, Xuan; Li, Lei; Lu, Gang; Chan, Wai-Yee; Gao, Fei; Liu, Hong-Bin; Chen, Zi-Jiang

    2016-01-01

    Stathmin 1 (STMN1) is a biomarker in several types of neoplasms. It plays an important role in cell cycle progression, mitosis, signal transduction and cell migration. In ovaries, STMN1 is predominantly expressed in granulosa cells (GCs). However, little is known about the role of STMN1 in ovary. In this study, we demonstrated that STMN1 is overexpressed in GCs in patients with polycystic ovary syndrome (PCOS). In mouse primary GCs, the overexpression of STMN1 stimulated progesterone production, whereas knockdown of STMN1 decreased progesterone production. We also found that STMN1 positively regulates the expression of Star (steroidogenic acute regulatory protein) and Cyp11a1 (cytochrome P450 family 11 subfamily A member 1). Promoter and ChIP assays indicated that STMN1 increased the transcriptional activity of Star and Cyp11a1 by binding to their promoter regions. The data suggest that STMN1 mediates the progesterone production by modulating the promoter activity of Star and Cyp11a1. Together, our findings provide novel insights into the molecular mechanisms of STMN1 in ovary GC steroidogenesis. A better understanding of this potential interaction between STMN1 and Star in progesterone biosynthesis in GCs will facilitate the discovery of new therapeutic targets in PCOS. PMID:27270953

  13. Acupuncture promotes angiogenesis after myocardial ischemia through H3K9 acetylation regulation at VEGF gene.

    Directory of Open Access Journals (Sweden)

    Shu-Ping Fu

    Full Text Available BACKGROUND: Acupuncture exerts cardioprotective effects on several types of cardiac injuries, especially myocardial ischemia (MI, but the mechanisms have not yet been well elucidated. Angiogenesis mediated by VEGF gene expression and its modification through histone acetylation has been considered a target in treating myocardial ischemia. This study aims to exam whether modulation of angiogenesis through H3K9 acetylation regulation at VEGF gene is one possible cardioprotective mechanism of acupuncture. RESULTS: We generated rat MI models by ligating the left anterior descending coronary artery and applied electroacupuncture (EA treatment at the Neiguan (PC6 acupoint. Our results showed that acupuncture reversed the S-T segment change, reduced Q-wave area, decreased CK, CK-MB, LDH levels, mitigated myocardial remodeling, and promoted microvessel formation in the MI heart. RNA-seq analysis showed that VEGF-induced angiogenesis signaling was involved in the modulation of EA. Western blot results verified that the protein expressions of VEGF, Ras, phospho-p44/42 MAPK, phospho-p38 MAPK, phospho-SAPK/JNK and Akt, were all elevated significantly by EA treatment in the MI heart. Furthermore, increased H3K9 acetylation was also observed according with the VEGF. ChIP assay confirmed that EA treatment could notably stimulate the recruitment of H3K9ace at the VEGF promoter. CONCLUSIONS: Our study demonstrates for the first time that acupuncture can effectively up-regulate VEGF expression through H3K9 acetylation modification directly at the VEGF promoter and hence activate VEGF-induced angiogenesis in rat MI models. We employed high throughput sequencing in this study and, for the first time, generated genome-wide gene expression profiles both in the rat MI model and in acupuncture treatment.

  14. Acupuncture promotes angiogenesis after myocardial ischemia through H3K9 acetylation regulation at VEGF gene.

    Science.gov (United States)

    Fu, Shu-Ping; He, Su-Yun; Xu, Bin; Hu, Chen-Jun; Lu, Sheng-Feng; Shen, Wei-Xing; Huang, Yan; Hong, Hao; Li, Qian; Wang, Ning; Liu, Xuan-Liang; Liang, Fanrong; Zhu, Bing-Mei

    2014-01-01

    Acupuncture exerts cardioprotective effects on several types of cardiac injuries, especially myocardial ischemia (MI), but the mechanisms have not yet been well elucidated. Angiogenesis mediated by VEGF gene expression and its modification through histone acetylation has been considered a target in treating myocardial ischemia. This study aims to exam whether modulation of angiogenesis through H3K9 acetylation regulation at VEGF gene is one possible cardioprotective mechanism of acupuncture. We generated rat MI models by ligating the left anterior descending coronary artery and applied electroacupuncture (EA) treatment at the Neiguan (PC6) acupoint. Our results showed that acupuncture reversed the S-T segment change, reduced Q-wave area, decreased CK, CK-MB, LDH levels, mitigated myocardial remodeling, and promoted microvessel formation in the MI heart. RNA-seq analysis showed that VEGF-induced angiogenesis signaling was involved in the modulation of EA. Western blot results verified that the protein expressions of VEGF, Ras, phospho-p44/42 MAPK, phospho-p38 MAPK, phospho-SAPK/JNK and Akt, were all elevated significantly by EA treatment in the MI heart. Furthermore, increased H3K9 acetylation was also observed according with the VEGF. ChIP assay confirmed that EA treatment could notably stimulate the recruitment of H3K9ace at the VEGF promoter. Our study demonstrates for the first time that acupuncture can effectively up-regulate VEGF expression through H3K9 acetylation modification directly at the VEGF promoter and hence activate VEGF-induced angiogenesis in rat MI models. We employed high throughput sequencing in this study and, for the first time, generated genome-wide gene expression profiles both in the rat MI model and in acupuncture treatment.

  15. PUF-8 negatively regulates RAS/MAPK signalling to promote differentiation of C. elegans germ cells.

    Science.gov (United States)

    Vaid, Samir; Ariz, Mohd; Chaturbedi, Amaresh; Kumar, Ganga Anil; Subramaniam, Kuppuswamy

    2013-04-01

    Signals that promote germ cell self-renewal by preventing premature meiotic entry are well understood. However, signals that control mitotic proliferation to promote meiotic differentiation have not been well characterized. In Caenorhabditis elegans, GLP-1 Notch signalling promotes the proliferative fate by preventing premature meiotic entry. The germline niche cell, which is the source of the ligand for GLP-1, spatially restricts GLP-1 signalling and thus enables the germ cells that have moved away from the niche to enter meiosis. Here, we show that the suppression of RAS/MAP kinase signalling in the mitotic and meiotic-entry regions is essential for the regulation of the mitosis-meiosis switch by niche signalling. We provide evidence that the conserved PUF family RNA-binding protein PUF-8 and the RAS GAP protein GAP-3 function redundantly to suppress the LET-60 RAS in the mitotic and meiotic entry regions. Germ cells missing both PUF-8 and GAP-3 proliferate in an uncontrolled fashion and fail to undergo meiotic development. MPK-1, the MAP kinase downstream of the LET-60 RAS, is prematurely activated in these cells; downregulation of MPK-1 activation eliminates tumours and restores differentiation. Our results further reveal that PUF-8 negatively regulates LET-60 expression at a post-transcriptional step. LET-60 is misexpressed in the puf-8(-) mutant germlines and PUF-8 physically interacts with the let-60 3' UTR. Furthermore, PUF-8 suppresses let-60 3' UTR-mediated expression in the germ cells that are transitioning from the mitotic to meiotic fate. These results reveal that PUF-8-mediated inhibition of the RAS/MAPK pathway is essential for mitotic-to-meiotic fate transition.

  16. Stat3 promotes invasion of esophageal squamous cell carcinoma through up-regulation of MMP2.

    Science.gov (United States)

    Xuan, Xaioyan; Li, Shanshan; Lou, Xi; Zheng, Xianzhao; Li, Yunyun; Wang, Feng; Gao, Yuan; Zhang, Hongyan; He, Hongliu; Zeng, Qingru

    2015-05-01

    Stat3 alters the expression of its downstream genes and is associated with tumor invasion and metastasis in several human cancers. Its role in esophageal squamous cell carcinoma (ESCC) has not been well characterized. We examined the tumor sections of 100 cases of ESCC by immunohistochemistry and observed significant overexpression of Stat3 in the cytoplasm of 89% of ESCC cells and of phosphorylated Stat3 (p-Stat3) in the nuclei of 71% of ESCC when compare with normal esophageal mucosa (72%, p = 0.02; and 31%, p = 0.001). Overexpression of Stat3 and p-Stat3 positively correlated with that of matrix metalloproteinase-2 (MMP2), a known regulator for cell migration, in 65% of ESCC while only 26% shown in benign esophageal mucosa. To further investigate the association of Stat3 with tumor metastasis in vitro, invasion of EC-1 cells (a human ESCC cell line) were investigated with Boyden chambers. The results showed that transfection of Stat3 not only promoted invasion of EC-1 cells but also significantly induced MMP2 expression in a dose-dependent manner. In contrast, suppressing expression of endogenous Stat3 mRNA and protein by Stat3 siRNA significantly reduced EC-1 cell invasion and MMP2 expression. A high-affinity Stat3-binding element was localized to the positions of 648-641 bp (TTCTCGAA) in the MMP2 promoter with electrophoretic mobility shift assay. Our results suggest that Stat3, p-Stat3, and MMP2 were overexpressed in ESCC and associated with invasion of ESCC; and Stat3 up-regulated expression of MMP2 in ESCC through directly binding to the MMP2 promoter.

  17. TdaA Regulates Tropodithietic Acid Synthesis by Binding to the tdaC Promoter Region ▿ †

    OpenAIRE

    Geng, Haifeng; Belas, Robert

    2011-01-01

    Silicibacter sp. TM1040, a member of the marine Roseobacter clade, produces the antibiotic and quorum signaling molecule tropodithietic acid (TDA), encoded by tdaABCDEF. Here, we showed that an LysR-type transcriptional regulator, TdaA, is a positive regulator of tdaCDE gene expression and binds to the tdaC promoter region.

  18. Analysis of the leakage of gene repression by an artificial TetR-regulated promoter in cyanobacteria.

    Science.gov (United States)

    Huang, Hsin-Ho; Seeger, Christian; Danielson, U Helena; Lindblad, Peter

    2015-09-19

    There is a need for strong and tightly regulated promoters to construct more reliable and predictable genetic modules for synthetic biology and metabolic engineering. For this reason we have previously constructed a TetR regulated L promoter library for the cyanobacterium Synechocystis PCC 6803. In addition to the L03 promoter showing wide dynamic range of transcriptional regulation, we observed the L09 promoter as unique in high leaky gene expression under repressed conditions. In the present study, we attempted to identify the cause of L09 promoter leakage. TetR binding to the promoter was studied by theoretical simulations of DNA breathing dynamics and by surface plasmon resonance (SPR) biosensor technology to analyze the kinetics of the DNA-protein interactions. DNA breathing dynamics of a promoter was computed with the extended nonlinear Peyrard-Bishop-Dauxois mesoscopic model to yield a DNA opening probability profile at a single nucleotide resolution. The L09 promoter was compared to the L10, L11, and L12 promoters that were point-mutated and different in repressed promoter strength. The difference between DNA opening probability profiles is trivial on the TetR binding site. Furthermore, the kinetic rate constants of TetR binding, as measured by SPR biosensor technology, to the respective promoters are practically identical. This suggests that a trivial difference in probability as low as 1 × 10(-4) cannot lead to detectable variations in the DNA-protein interactions. Higher probability at the downstream region of transcription start site of the L09 promoter compared to the L10, L11, and L12 promoters was observed. Having practically the same kinetics of binding to TetR, the leakage problem of the L09 promoter might be due to enhanced RNA Polymerase (RNAP)-promoter interactions in the downstream region. Both theoretical and experimental analyses of the L09 promoter's leakage problem exclude a mechanism of reduced TetR binding but instead suggest enhanced

  19. COX-2 gene expression in colon cancer tissue related to regulating factors and promoter methylation status

    Directory of Open Access Journals (Sweden)

    Lagerstedt Kristina

    2011-06-01

    Full Text Available Abstract Background Increased cyclooxygenase activity promotes progression of colorectal cancer, but the mechanisms behind COX-2 induction remain elusive. This study was therefore aimed to define external cell signaling and transcription factors relating to high COX-2 expression in colon cancer tissue. Method Tumor and normal colon tissue were collected at primary curative operation in 48 unselected patients. COX-2 expression in tumor and normal colon tissue was quantified including microarray analyses on tumor mRNA accounting for high and low tumor COX-2 expression. Cross hybridization was performed between tumor and normal colon tissue. Methylation status of up-stream COX-2 promoter region was evaluated. Results Tumors with high COX-2 expression displayed large differences in gene expression compared to normal colon. Numerous genes with altered expression appeared in tumors of high COX-2 expression compared to tumors of low COX-2. COX-2 expression in normal colon was increased in patients with tumors of high COX-2 compared to normal colon from patients with tumors of low COX-2. IL1β, IL6 and iNOS transcripts were up-regulated among external cell signaling factors; nine transcription factors (ATF3, C/EBP, c-Fos, Fos-B, JDP2, JunB, c-Maf, NF-κB, TCF4 showed increased expression and 5 (AP-2, CBP, Elk-1, p53, PEA3 were decreased in tumors with high COX-2. The promoter region of COX-2 gene did not show consistent methylation in tumor or normal colon tissue. Conclusions Transcription and external cell signaling factors are altered as covariates to COX-2 expression in colon cancer tissue, but DNA methylation of the COX-2 promoter region was not a significant factor behind COX-2 expression in tumor and normal colon tissue.

  20. Lysophosphatidic Acid Up-Regulates Hexokinase II and Glycolysis to Promote Proliferation of Ovarian Cancer Cells

    Directory of Open Access Journals (Sweden)

    Abir Mukherjee

    2015-09-01

    Full Text Available Lysophosphatidic acid (LPA, a blood-borne lipid mediator, is present in elevated concentrations in ascites of ovarian cancer patients and other malignant effusions. LPA is a potent mitogen in cancer cells. The mechanism linking LPA signal to cancer cell proliferation is not well understood. Little is known about whether LPA affects glucose metabolism to accommodate rapid proliferation of cancer cells. Here we describe that in ovarian cancer cells, LPA enhances glycolytic rate and lactate efflux. A real time PCR-based miniarray showed that hexokinase II (HK2 was the most dramatically induced glycolytic gene to promote glycolysis in LPA-treated cells. Analysis of the human HK2 gene promoter identified the sterol regulatory element-binding protein as the primary mediator of LPA-induced HK2 transcription. The effects of LPA on HK2 and glycolysis rely on LPA2, an LPA receptor subtype overexpressed in ovarian cancer and many other malignancies. We further examined the general role of growth factor-induced glycolysis in cell proliferation. Like LPA, epidermal growth factor (EGF elicited robust glycolytic and proliferative responses in ovarian cancer cells. Insulin-like growth factor 1 (IGF-1 and insulin, however, potently stimulated cell proliferation but only modestly induced glycolysis. Consistent with their differential effects on glycolysis, LPA and EGF-dependent cell proliferation was highly sensitive to glycolytic inhibition while the growth-promoting effect of IGF-1 or insulin was more resistant. These results indicate that LPA- and EGF-induced cell proliferation selectively involves up-regulation of HK2 and glycolytic metabolism. The work is the first to implicate LPA signaling in promotion of glucose metabolism in cancer cells.

  1. Regulation of IL-8 promoter activity by verrucarin A in human monocytic THP-1 cells.

    Science.gov (United States)

    Liu, Jun; Simmons, Steve O; Pei, Ruoting

    2014-01-01

    Macrocyclic trichothecenes have been frequently detected in fungi in water-damaged buildings and exhibited higher toxicity than the well-studied trichothecenes; however, the mechanism underlying their toxicity has been poorly understood. In this study, transcriptional regulation of the cytokine interleukin (IL)-8 by a macrocyclic trichothecene, verrucarin A (VA), in human monocytic THP-1 cells is reported. Consistent with previous findings, VA was 100-fold more cytotoxic than deoxynivalenol (DON), while ochratoxin A (OA) was not cytotoxic. In cells transduced with the wild-type IL-8 promoter luciferase construct, VA induced a biphasic dose response composed of an upregulation of luciferase expression at low concentrations of 0.01-1 ng/ml and a downregulation at high levels of 10 ng/ml and higher. In contrast, DON induced a sigmoid-shaped dose response with the EC50 of 11.6 ng/ml, while OA did not markedly affect the IL-8 expression. When cells were transduced with IL-8 promoter with a mutation of transcription factor nuclear factor-κB (NF-κB)-binding site, VA (1 ng/ml), DON (1000 ng/ml), and tumor necrosis factor (TNF) α (20 ng/ml)-induced luciferase expression were impaired. In addition, the NF-κB inhibitor caffeic acid phenethyl ester inhibited VA-, DON-, and TNFα-induced luciferase expression. Mutation of the CCAAT/enhancer-binding protein (CEBP) β binding site of the IL-8 promoter affected only DON-, but not VA- and TNFα-induced luciferase expression. Taken together, these results suggested that VA activated IL-8 promoter via an NF-κB-dependent, but not CEBPβ-dependent, pathway in human monocytes.

  2. Chicken ovalbumin upstream promoter transcription factor II regulates renin gene expression.

    Science.gov (United States)

    Mayer, Sandra; Roeser, Marc; Lachmann, Peter; Ishii, Sumiyashi; Suh, Jae Mi; Harlander, Sabine; Desch, Michael; Brunssen, Coy; Morawietz, Henning; Tsai, Sophia Y; Tsai, Ming-Jer; Hohenstein, Bernd; Hugo, Christian; Todorov, Vladimir T

    2012-07-13

    This study aimed to investigate the possible involvement of the orphan nuclear receptor chicken ovalbumin upstream promoter transcription factor II (COUP-TFII) in the regulation of renin gene expression. COUP-TFII colocalized with renin in the juxtaglomerular cells of the kidney, which are the main source of renin in vivo. Protein-DNA binding studies demonstrated that COUP-TFII binds to an imperfect direct repeat COUP-TFII recognition sequence (termed hereafter proxDR) in the proximal renin promoter. Because cAMP signaling plays a central role in the control of the renin gene expression, we suggested that COUP-TFII may modulate this cAMP effect. Accordingly, knockdown of COUP-TFII in the clonal renin-producing cell lines As4.1 and Calu-6 diminished the stimulation of the renin mRNA expression by cAMP agonists. In addition, the mutation of the proxDR element in renin promoter reporter gene constructs abrogated the inducibility by cAMP. The proxDR sequence was found to be necessary for the function of a proximal renin promoter cAMP-response element (CRE). Knockdown of COUP-TFII or cAMP-binding protein (CREB), which is the archetypal transcription factor binding to CRE, decreased the basal renin gene expression. However, the deficiency of COUP-TFII did not further diminish the renin expression when CREB was knocked down. In agreement with the cell culture studies, mutant mice deficient in COUP-TFII have lower renin expression than their control strain. Altogether our data show that COUP-TFII is involved in the control of renin gene expression.

  3. Network of mutually repressive metastasis regulators can promote cell heterogeneity and metastatic transitions

    Science.gov (United States)

    Balazsi, Gabor; Kim, Eun-Jin; Rosner, Marsha

    2014-03-01

    The sources and consequences of nongenetic variability in metastatic progression are largely unknown. To address these questions, we characterize the transcriptional regulatory network around the metastasis suppressor Raf Kinase Inhibitory Protein (RKIP). It was previously shown that RKIP negatively regulates the transcription factor BACH1, which promotes breast cancer metastasis. Here we demonstrate that BACH1 acts in a double negative (overall positive) feedback loop to inhibit RKIP transcription in breast cancer cells. BACH1 also negatively regulates its own transcription. Analysis of the RKIP-BACH1 network reveals the existence of an inverse relationship between BACH1 and RKIP involving both monostable and bistable transitions between ``low BACH1, high RKIP'' and ``high BACH1, low RKIP'' cellular states that can potentially give rise to nongenetic variability. Single cell analysis confirmed the antagonistic relationship between RKIP and BACH1, and showed cell line-dependent signatures consistent with bistable behavior. Together, our results suggest that the mutually repressive relationship between metastatic regulators such as RKIP and BACH1 can play a key role in determining metastatic progression in cancer. This work was supported by NIH/NIGMS grant R01GM106027.

  4. Distinguishing the Transcription Regulation Patterns in Promoters of Human Genes with Different Function or Evolutionary Age

    KAUST Repository

    Alam, Tanvir

    2012-07-01

    Distinguishing transcription regulatory patterns of different gene groups is a common problem in various bioinformatics studies. In this work we developed a methodology to deal with such a problem based on machine learning techniques. We applied our method to two biologically important problems related to detecting a difference in transcription regulation of: a/ protein-coding and long non-coding RNAs (lncRNAs) in human, as well as b/ a difference between primate-specific and non-primate-specific long non-coding RNAs. Our method is capable to classify RNAs using various regulatory features of genes that transcribe into these RNAs, such as nucleotide frequencies, transcription factor binding sites, de novo sequence motifs, CpG islands, repetitive elements, histone modification marks, and others. Ten-fold cross-validation tests suggest that our model can distinguish protein-coding and non-coding RNAs with accuracy above 80%. Twenty-fold cross-validation tests suggest that our model can distinguish primate-specific from non-primate-specific promoters of lncRNAs with accuracy above 80%. Consequently, we can hypothesize that transcription of the groups of genes mentioned above are regulated by different mechanisms. Feature selection techniques allowed us to reduce the number of features significantly while keeping the accuracy around 80%. Consequently, we can conclude that selected features play significant role in transcription regulation of coding and non-coding genes, as well as primate-specific and non-primate-specific lncRNA genes.

  5. E2 regulates epigenetic signature on Neuroglobin enhancer-promoter in neuronal cells

    Directory of Open Access Journals (Sweden)

    Michela eGuglielmotto

    2016-06-01

    Full Text Available Estrogens are neuroprotective factors in several neurological diseases. Neuroglobin (NGB is one of the estrogen target gene involved in neuroprotection, but little is known about its transcriptional regulation. Estrogen genomic pathway in gene expression regulation is mediated by estrogen receptors (ERα and ERβ that bind to specific regulatory genomic regions. We focused our attention on E2-induced NGB expression in human differentiated neuronal cell lines (SK-N-BE and NT-2. Previously, using bioinformatics analysis we identified a putative enhancer in the first intron of NGB locus. Therefore, we observed that E2 increased the enrichment of the H3K4me3 epigenetic marks at the promoter and of the H3K4me1 and H3K27Ac at the intron enhancer. In these NGB regulatory regions, we found estrogen receptor alpha (ER binding suggesting that ER may mediate chromatin remodeling to induce NGB expression upon E2 treatment. Altogether our data show that NGB expression is regulated by ERa binding on genomic regulatory regions supporting hormone therapy applications for the neuroprotection against neurodegenerative disease.

  6. ManA is regulated by RssAB signaling and promotes motility in Serratia marcescens.

    Science.gov (United States)

    Soo, Po-Chi; Horng, Yu-Tze; Chang, Yung-Lin; Tsai, Wei-Wen; Jeng, Wen-Yih; Lu, Chia-Chen; Lai, Hsin-Chih

    2014-01-01

    Serratia marcescens swarms on 0.8% LB agar at 30 °C but not at 37 °C. To understand the molecular mechanism regulating Serratia swarming, transposon mutagenesis was performed to screen for mutants that swarmed at 37 °C. In one mutant, S. marcescens WW100, the transposon was inserted in the upstream region of manA, which encodes mannose-6-phosphate isomerase, a type I phosphomannose isomerase. The transcriptional and translational levels of manA were higher in S. marcescens WW100 than in the wild-type strain. S. marcescens WW100 produced more serrawettin W1 (biosurfactant) than the wild-type, as detected by thin-layer chromatography, to promote surface motility by reducing surface tension. Serratia swarming was previously shown to be negatively regulated by the RssA-RssB two-component system. An electrophoretic mobility shift assay (EMSA) indicated that phosphorylated RssB (the response regulator) binds upstream of the transposon insertion site and manA in S. marcescens WW100. Analysis by real-time RT-PCR (qRT-PCR) revealed that, compared to the wild-type level, manA mRNA was increased in the rssA deletion mutant. The results indicated that RssA-RssB signaling directly represses the expression of manA and that overexpression of manA increases the production of serrawettin for Serratia swarming at 37 °C.

  7. CTGF promotes osteosarcoma angiogenesis by regulating miR-543/angiopoietin 2 signaling.

    Science.gov (United States)

    Wang, Li-Hong; Tsai, Hsiao-Chi; Cheng, Yu-Che; Lin, Chih-Yang; Huang, Yuan-Li; Tsai, Chun-Hao; Xu, Guo-Hong; Wang, Shih-Wei; Fong, Yi-Chin; Tang, Chih-Hsin

    2017-04-10

    Osteosarcoma is the most common primary solid tumor of bone. It has a high metastatic potential and occurs predominantly in adolescents and young adults. Angiopoietin 2 (Angpt2) is a key regulator in tumor angiogenesis, facilitating tumor growth and metastasis. Connective tissue growth factor (CTGF, also known as CCN2), is a cysteine-rich protein that has been reported to promote metastasis of osteosarcoma. However, the effect of CTGF on Angpt2 regulation and angiogenesis in human osteosarcoma remains largely unknown. We found that overexpression of CTGF in osteosarcoma cells increased Angpt2 production and induced angiogenesis, in vitro and in vivo. Our findings demonstrate that CTGF-enhanced Angpt2 expression and angiogenesis is mediated by the phospholipase C (PLC)/protein kinase C (PKCδ) signaling pathway. Moreover, endogenous microRNA-543 (miR-543) expression was negatively regulated by CTGF via the PLC/PKCδ pathway. We also provide evidence showing clinical significance between CTGF, Angpt2, and miR-543 as well as tumor staging in human osteosarcoma tissue. CTGF may serve as a therapeutic target in the process of osteosarcoma metastasis and angiogenesis.

  8. The Arabidopsis MIEL1 E3 ligase negatively regulates ABA signalling by promoting protein turnover of MYB96

    OpenAIRE

    Lee, Hong Gil; Seo, Pil Joon

    2016-01-01

    The phytohormone abscisic acid (ABA) regulates plant responses to various environmental challenges. Controlled protein turnover is an important component of ABA signalling. Here we show that the RING-type E3 ligase MYB30-INTERACTING E3 LIGASE 1 (MIEL1) regulates ABA sensitivity by promoting MYB96 turnover in Arabidopsis. Germination of MIEL1-deficient mutant seeds is hypersensitive to ABA, whereas MIEL1-overexpressing transgenic seeds are less sensitive. MIEL1 can interact with MYB96, a regul...

  9. Zebrafish Noxa promotes mitosis in early embryonic development and regulates apoptosis in subsequent embryogenesis.

    Science.gov (United States)

    Zhong, J-X; Zhou, L; Li, Z; Wang, Y; Gui, J-F

    2014-06-01

    Noxa functions in apoptosis and immune system of vertebrates, but its activities in embryo development remain unclear. In this study, we have studied the role of zebrafish Noxa (zNoxa) by using zNoxa-specifc morpholino knockdown and overexpression approaches in developing zebrafish embryos. Expression pattern analysis indicates that zNoxa transcript is of maternal origin, which displays a uniform distribution in early embryonic development until shield stage, and the zygote zNoxa transcription is initiated from this stage and mainly localized in YSL of the embryos. The zNoxa expression alterations result in strong embryonic development defects, demonstrating that zNoxa regulates apoptosis from 75% epiboly stage of development onward, in which zNoxa firstly induces the expression of zBik, and then cooperates with zBik to regulate apoptosis. Moreover, zNoxa knockdown also causes a reduction in number of mitotic cells before 8 h.p.f., suggesting that zNoxa also promotes mitosis before 75% epiboly stage. The effect of zNoxa on mitosis is mediated by zWnt4b in early embryos, whereas zMcl1a and zMcl1b suppress the ability of zNoxa to regulate mitosis and apoptosis at different developmental stages. In addition, mammalian mouse Noxa (mNoxa) mRNA was demonstrated to rescue the arrest of mitosis when zNoxa was knocked down, suggesting that mouse and zebrafish Noxa might have similar dual functions. Therefore, the current findings indicate that Noxa is a novel regulator of early mitosis before 75% epiboly stage when it translates into a key mediator of apoptosis in subsequent embryogenesis.

  10. HLA-DRB1 may be antagonistically regulated by the coordinately evolved promoter and 3'-UTR under stabilizing selection.

    Directory of Open Access Journals (Sweden)

    Benrong Liu

    Full Text Available HLA-DRB1 is the most polymorphic MHC (major histocompatibility complex class II gene in human, and plays a crucial role in the development and function of the immune system. Extensive polymorphisms exist in the promoter and 3'-UTR of HLA-DRB1, especially a LTR (Long terminal repeat element in the promoter, which may be involved in the expression regulation. However, it remains unknown how the polymorphisms in the whole promoter region and 3'-UTR to regulate the gene expression. In this study, we investigated the extensive polymorphisms in the HLA-DRB1 promoter and 3'-UTR, and how these polymorphisms affect the gene expression in both independent and jointly manners. It was observed that most of the haplotypes in the DRB1 promoter and 3'-UTR were clustered into 4 conserved lineages (H1, H2, H3 and H4, and showed high linkage disequilibrium. Compared with H1 and H2 lineage, a LTR element in the promoter of H3 and H4 lineage significantly suppressed the promoter activity, whereas the activity of the linked 3'-UTR increased, leading to no apparent difference in the final expression product between H1/H2 and H3/H4 lineage. Nevertheless, compared with the plasmid with a promoter and 3'-UTR from the same lineage, the recombinant plasmid with a promoter from H2 and a 3'-UTR from H3 showed about double fold increased luciferase activity, Conversely, the recombinant plasmid with a promoter from H3 and a 3'-UTR from H2 resulted in about 2-fold decreased luciferase activity. These results indicate that the promoter and 3'-UTR of HLA-DRB1 may antagonistically regulate the gene expression, which may be subjected to stabilizing selection. These findings may provide a novel insight into the mechanisms of the diseases associated with HLA-DRB1 genes.

  11. Isolation and characterization of "GmScream" promoters that regulate highly expressing soybean (Glycine max Merr.) genes.

    Science.gov (United States)

    Zhang, Ning; McHale, Leah K; Finer, John J

    2015-12-01

    To increase our understanding of the regulatory components that control gene expression, it is important to identify, isolate and characterize new promoters. In this study, a group of highly expressed soybean (Glycine max Merr.) genes, which we have named "GmScream", were first identified from RNA-Seq data. The promoter regions were then identified, cloned and fused with the coding region of the green fluorescent protein (gfp) gene, for introduction and analysis in different tissues using 3 tools for validation. Approximately half of the GmScream promoters identified showed levels of GFP expression comparable to or higher than the Cauliflower Mosaic Virus 35S (35S) promoter. Using transient expression in lima bean cotyledonary tissues, the strongest GmScream promoters gave over 6-fold higher expression than the 35S promoter while several other GmScream promoters showed 2- to 3-fold higher expression. The two highest expressing promoters, GmScreamM4 and GmScreamM8, regulated two different elongation factor 1A genes in soybean. In stably transformed soybean tissues, GFP driven by the GmScreamM4 or GmScreamM8 promoter exhibited constitutive high expression in most tissues with preferentially higher expression in proliferative embryogenic tissues, procambium, vascular tissues, root tips and young embryos. Using deletion analysis of the promoter, two proximal regions of the GmScreamM8 promoter were identified as contributing significantly to high levels of gene expression.

  12. The Canonical Wnt Pathway Regulates the Metastasis-Promoting Mucin MUC4 in Pancreatic Ductal Adenocarcinoma

    Science.gov (United States)

    Pai, Priya; Rachagani, Satyanarayana; Lakshmanan, Imayavaramban; Macha, Muzafar A; Sheinin, Yuri; Smith, Lynette M.; Ponnusamy, Moorthy P.; Batra, Surinder K.

    2015-01-01

    Aberrant Wnt signaling frequently occurs in pancreatic cancer (PC) and contributes to disease progression/metastases. Likewise, the transmembrane-mucin MUC4 is expressed de novo in early pancreatic intraepithelial neoplasia (PanINs) and incrementally increases with PC progression, contributing to metastasis. To determine the mechanism of MUC4 upregulation in PC, we examined factors deregulated in early PC progression, such as Wnt/β-catenin signaling. MUC4 promoter analysis revealed the presence of three putative TCF/LEF-binding sites, leading us to hypothesize that MUC4 can be regulated by β-catenin. Immunohistochemical (IHC) analysis of rapid autopsy PC tissues showed a correlation between MUC4 and cytosolic/nuclear β-catenin expression. Knock down (KD) of β-catenin in CD18/HPAF and T3M4 cell lines resulted in decreased MUC4 transcript and protein. Three MUC4 promoter luciferase constructs, p3778, p3000, and p2700, were generated. The construct p3778, encompassing the entire MUC4 promoter, elicited increased luciferase activity in the presence of stabilized β-catenin. Mutation of the TCF/LEF site closest to the transcription start site (i.e., −2629/−2612) and furthest from the start site (i.e., −3425/−3408) reduced MUC4 promoter luciferase activity. Transfection with dominant negative TCF4 decreased MUC4 transcript and protein levels. Chromatin immunoprecipitation confirmed enrichment of β-catenin on −2629/−2612 and −3425/−3408 of the MUC4 promoter in CD18/HPAF. Functionally, CD18/HPAF and T3M4 β-catenin KD cells showed decreased migration and decreased Vimentin, N-cadherin, and pERK1/2 expression. Tumorigenicity studies in athymic nude mice showed CD18/HPAF β-catenin KD cells significantly reduced primary tumor sizes and metastases compared to scrambled control cells. We show for the first time that β-catenin directly governs MUC4 in PC. PMID:26526617

  13. The HMGB1/RAGE inflammatory pathway promotes pancreatic tumor growth by regulating mitochondrial bioenergetics

    Science.gov (United States)

    Kang, R; Tang, D; Schapiro, NE; Loux, T; Livesey, KM; Billiar, TR; Wang, H; Van Houten, B; Lotze, MT; Zeh, HJ

    2013-01-01

    Tumor cells require increased adenosine triphosphate (ATP) to support anabolism and proliferation. The precise mechanisms regulating this process in tumor cells are unknown. Here, we show that the receptor for advanced glycation endproducts (RAGE) and one of its primary ligands, high-mobility group box 1 (HMGB1), are required for optimal mitochondrial function within tumors. We found that RAGE is present in the mitochondria of cultured tumor cells as well as primary tumors. RAGE and HMGB1 coordinately enhanced tumor cell mitochondrial complex I activity, ATP production, tumor cell proliferation and migration. Lack of RAGE or inhibition of HMGB1 release diminished ATP production and slowed tumor growth in vitro and in vivo. These findings link, for the first time, the HMGB1–RAGE pathway with changes in bioenergetics. Moreover, our observations provide a novel mechanism within the tumor microenvironment by which necrosis and inflammation promote tumor progression. PMID:23318458

  14. Maggot debridement therapy promotes diabetic foot wound healing by up-regulating endothelial cell activity.

    Science.gov (United States)

    Sun, Xinjuan; Chen, Jin'an; Zhang, Jie; Wang, Wei; Sun, Jinshan; Wang, Aiping

    2016-03-01

    To determine the role of maggot debridement therapy (MDT) on diabetic foot wound healing, we compared growth related factors in wounds before and after treatment. Furthermore, we utilized human umbilical vein endothelial cells (HUVECs) to explore responses to maggot excretions/secretions on markers of angiogenesis and proliferation. The results showed that there was neo-granulation and angiogenesis in diabetic foot wounds after MDT. Moreover, significant elevation in CD34 and CD68 levels was also observed in treated wounds. In vitro, ES increased HUVEC proliferation, improved tube formation, and increased expression of vascular endothelial growth factor receptor 2 in a dose dependent manner. These results demonstrate that MDT and maggot ES can promote diabetic foot wound healing by up-regulating endothelial cell activity.

  15. Developmentally regulated promoters from Dictyostelium discoideum as molecular markers for testing potential teratogens.

    Science.gov (United States)

    Tillner, J; Winckler, T; Dingermann, T

    1996-11-01

    Already very early in the course of the development of new pharmaceutically relevant drugs toxicological tests are most important. In addition to acute and chronic toxicity the estimation of the teratogenic potential is rather crucial. We have recently shown that the eukaryotic microorganism Dictyostellium discoideum is a useful organism to test the cytotoxicity of chemical compounds. Since D. discoideum is competent of undergoing both vegetative growth and development, further investigations were aimed to establish a D. discoideum-based test system which could predict possible interference of drugs with developmental programs. We developed a method which allows to detect and to quantify effects of possible teratogens on D. discoideum development. This method is based on different transgenic D. discoideum strains, each carrying a bacterial lacZ gene under the control of a distinct developmentally regulated D. discoideum promoter. Here we describe the effects of the known teratogenic compound valproic acid (VPA) on this system.

  16. The ChrA response regulator in Corynebacterium diphtheriae controls hemin-regulated gene expression through binding to the hmuO and hrtAB promoter regions.

    Science.gov (United States)

    Burgos, Jonathan M; Schmitt, Michael P

    2012-04-01

    Corynebacterium diphtheriae, the etiologic agent of diphtheria, utilizes heme and hemoglobin (Hb) as iron sources for growth. Heme-iron utilization involves HmuO, a heme oxygenase that degrades cytosolic heme, resulting in the release of heme-associated iron. Expression of the hmuO promoter is under dual regulation, in which transcription is repressed by DtxR and iron and activated by a heme source, such as hemin or Hb. Hemin-dependent activation is mediated primarily by the ChrAS two-component system, in which ChrS is a putative heme-responsive sensor kinase while ChrA is proposed to serve as a response regulator that activates transcription. It was recently shown that the ChrAS system similarly regulates the hrtAB genes, which encode an ABC transporter involved in the protection of C. diphtheriae from hemin toxicity. In this study, we characterized the phosphorelay mechanism in the ChrAS system and provide evidence for the direct regulation of the hmuO and hrtAB promoters by ChrA. A fluorescence staining method was used to show that ChrS undergoes autophosphorylation and that the phosphate moiety is subsequently transferred to ChrA. Promoter fusion studies identified regions upstream of the hmuO and hrtAB promoters that are critical for the heme-dependent regulation by ChrA. Electrophoretic mobility shift assays revealed that ChrA specifically binds at the hmuO and hrtAB promoter regions and that binding is phosphorylation dependent. A phosphorylation-defective mutant of ChrA [ChrA(D50A)] exhibited significantly diminished binding to the hmuO promoter region relative to that of wild-type ChrA. DNase I footprint analysis further defined the sequences in the hmuO and hrtAB promoters that are involved in ChrA binding, and this analysis revealed that the DtxR binding site at the hmuO promoter partially overlaps the binding site for ChrA. DNase I protection studies as well as promoter fusion analysis suggest that ChrA and DtxR compete for binding at the hmuO promoter

  17. Pdx-1 regulation of the INGAP promoter involves sequestration of NeuroD into a non-DNA-binding complex.

    Science.gov (United States)

    Taylor-Fishwick, David A; Shi, Wenjing; Hughes, Laura; Vinik, Aaron

    2010-01-01

    Islet neogenesis-associated protein (INGAP) can enhance beta-cell mass to offset progression of diabetes. Identifying how transcription factors regulate INGAP gene expression could reveal key checkpoints governing islet neogenesis. Protein complex interactions at the INGAP promoter were detected using a beta-galactosidase reporter, these protein-DNA complexes being validated in competitive electrophoresis mobility shift assays. The relevance of the revealed promoter interactions was confirmed in small interfering RNA (siRNA) gene knockdown studies. Pdx-1 negatively regulates stimulation of the INGAP promoter by Pan-1/NeuroD. Independently, Pdx-1, Pan-1, and NeuroD bind to the INGAP promoter as revealed by electrophoresis mobility shift assay studies. In combination, Pdx-1 selectively displaces NeuroD from a DNA-binding complex with Pan-1 to form a non-DNA-binding unit. The importance of this interaction is shown in HIT cells that have a forced reduction of Pdx-1 expression. In siRNA/Pdx-1-depleted HIT cells, the interaction of Pan-1/NeuroD with the INGAP promoter is increased 6-fold. Furthermore, endogenous INGAP expression is detected in Pdx-1-depleted cells. These data reveal a dynamic interaction between Pdx-1, NeuroD, and Pan-1 for the regulation of INGAP promoter activity. Modulating molecular regulators of DNA expression may be a consideration in diabetic therapies that translate exogenous stimuli into new endogenous beta-cell mass.

  18. Abscisic Acid, High-Light, and Oxidative Stress Down-Regulate a Photosynthetic Gene via a Promoter Motif Not Involved in Phytochrome-Mediated Transcriptional Regulation

    Institute of Scientific and Technical Information of China (English)

    Roberto J. Staneloni; María José Rodriguez-Batiller; Jorge J. Casal

    2008-01-01

    In etiolated seedlings, light perceived by phytochrome promotes the expression of light-harvesting chlorophyll a/b protein of photosystem Ⅱ (Lhcb) genes. However, excess of photosynthetically active radiation can reduce Lhcb expression. Here, we investigate the convergence and divergence of phytochrome, high-light stress and abscisic acid (ABA)signaling, which could connect these processes. Etiolated Arabidopsis thaliana seedlings bearing an Lhcb promoter fused to a reporter were exposed to continuous far-red light to activate phytochrome and not photosynthesis, and treated with ABA. We identified a cis-acting region of the promoter required for down-regulation by ABA. This region contains a CCAC sequence recently found to be necessary for ABI4-binding to an Lhcb promoter. However, we did not find a G-box-binding core motif often associated with the ABI4-binding site in genes promoted by light and repressed by ABI4. Mutations involving this motif also impaired the responses to reduced water potential, the response to high photosynthetic light and the response to methyl viologen but not the response to low temperature or to Norflurazon. We propose a model based on current and previous findings, in which hydrogen peroxide produced in the chloroplasts under high light conditions interacts with the ABA signaling network to regulate Lhcb expression. Since the mutation that affects high-light and methyl viologen responses does not affect phytochrome-mediated responses, the regulation by retrograde and phytochrome signaling can finally be separated at the target promoter level.

  19. The regulation of the SARK promoter activity by hormones and environmental signals.

    Science.gov (United States)

    Delatorre, Carla A; Cohen, Yuval; Liu, Li; Peleg, Zvi; Blumwald, Eduardo

    2012-09-01

    The Senescence Associated Receptor Protein Kinase (P(SARK)) promoter, fused to isopentenyltransferase (IPT) gene has been shown to promote drought tolerance in crops. We dissected P(SARK) in order to understand the various elements associated with its activation and suppression. The activity of P(SARK) was higher in mature and early senescing leaves, and abiotic stress induced its activity in mature leaves. Bioinformatics analysis suggests the interactions of multiple cis-acting elements in the control of P(SARK) activity. In vitro gel shift assays and yeast one hybrid system revealed interactions of P(SARK) with transcription factors related to abscisic acid and cytokinin response. Deletion analysis of P(SARK), fused to GUS-reporter gene was used to identify specific regions regulating transcription under senescence or during drought stress. Effects of exogenous hormonal treatments were characterized in entire plants and in leaf disk assays, and regions responsive to various hormones were defined. Our results indicate a complex interaction of plant hormones and additional factors modulating P(SARK) activity under stress resulting in a transient induction of expression.

  20. Characterization of chicken riboflavin carrier protein gene structure and promoter regulation by estrogen

    Indian Academy of Sciences (India)

    Nandini Vasudevan; Urvashi Bahadur; Paturu Kondaiah

    2001-03-01

    The chicken riboflavin carrier protein (RCP) is an estrogen induced egg yolk and white protein. Eggs from hens which have a splice mutation in RCP gene fail to hatch, indicating an absolute requirement of RCP for the transport of riboflavin to the oocyte. In order to understand the mechanism of regulation of this gene by estrogen, the chicken RCP gene including 1 kb of the 5′ flanking region has been isolated. Characterization of the gene structure shows that it contains six exons and five introns, including an intron in the 5′ untranslated region. Sequence analysis of the 5′ flanking region does not show the presence of any classical, palindromic estrogen response element (ERE). However, there are six half site ERE consensus elements. Four deletion constructs of the 5′ flanking region with varying number of ERE half sites were made in pGL3 basic vector upstream of the luciferase-coding region. Transient transfection of these RCP promoter deletion constructs into a chicken hepatoma cell line (LMH2A) showed 6-12-fold transcriptional induction by a stable estrogen analogue, moxesterol. This suggests that the RCP gene is induced by estrogen even in the absence of a classical ERE and the half sites of ERE in this promoter may be important for estrogen induction.

  1. Nolz1 promotes striatal neurogenesis through the regulation of retinoic acid signaling

    Directory of Open Access Journals (Sweden)

    Urbán Noelia

    2010-08-01

    Full Text Available Abstract Background Nolz1 is a zinc finger transcription factor whose expression is enriched in the lateral ganglionic eminence (LGE, although its function is still unknown. Results Here we analyze the role of Nolz1 during LGE development. We show that Nolz1 expression is high in proliferating neural progenitor cells (NPCs of the LGE subventricular zone. In addition, low levels of Nolz1 are detected in the mantle zone, as well as in the adult striatum. Similarly, Nolz1 is highly expressed in proliferating LGE-derived NPC cultures, but its levels rapidly decrease upon cell differentiation, pointing to a role of Nolz1 in the control of NPC proliferation and/or differentiation. In agreement with this hypothesis, we find that Nolz1 over-expression promotes cell cycle exit of NPCs in neurosphere cultures and negatively regulates proliferation in telencephalic organotypic cultures. Within LGE primary cultures, Nolz1 over-expression promotes the acquisition of a neuronal phenotype, since it increases the number of β-III tubulin (Tuj1- and microtubule-associated protein (MAP2-positive neurons, and inhibits astrocyte generation and/or differentiation. Retinoic acid (RA is one of the most important morphogens involved in striatal neurogenesis, and regulates Nolz1 expression in different systems. Here we show that Nolz1 also responds to this morphogen in E12.5 LGE-derived cell cultures. However, Nolz1 expression is not regulated by RA in E14.5 LGE-derived cell cultures, nor is it affected during LGE development in mouse models that present decreased RA levels. Interestingly, we find that Gsx2, which is necessary for normal RA signaling during LGE development, is also required for Nolz1 expression, which is lost in Gsx2 knockout mice. These findings suggest that Nolz1 might act downstream of Gsx2 to regulate RA-induced neurogenesis. Keeping with this hypothesis, we show that Nolz1 induces the selective expression of the RA receptor (RARβ without altering

  2. Arabidopsis SWI/SNF chromatin remodeling complex binds both promoters and terminators to regulate gene expression.

    Science.gov (United States)

    Archacki, Rafal; Yatusevich, Ruslan; Buszewicz, Daniel; Krzyczmonik, Katarzyna; Patryn, Jacek; Iwanicka-Nowicka, Roksana; Biecek, Przemyslaw; Wilczynski, Bartek; Koblowska, Marta; Jerzmanowski, Andrzej; Swiezewski, Szymon

    2017-04-07

    ATP-dependent chromatin remodeling complexes are important regulators of gene expression in Eukaryotes. In plants, SWI/SNF-type complexes have been shown critical for transcriptional control of key developmental processes, growth and stress responses. To gain insight into mechanisms underlying these roles, we performed whole genome mapping of the SWI/SNF catalytic subunit BRM in Arabidopsis thaliana, combined with transcript profiling experiments. Our data show that BRM occupies thousands of sites in Arabidopsis genome, most of which located within or close to genes. Among identified direct BRM transcriptional targets almost equal numbers were up- and downregulated upon BRM depletion, suggesting that BRM can act as both activator and repressor of gene expression. Interestingly, in addition to genes showing canonical pattern of BRM enrichment near transcription start site, many other genes showed a transcription termination site-centred BRM occupancy profile. We found that BRM-bound 3΄ gene regions have promoter-like features, including presence of TATA boxes and high H3K4me3 levels, and possess high antisense transcriptional activity which is subjected to both activation and repression by SWI/SNF complex. Our data suggest that binding to gene terminators and controlling transcription of non-coding RNAs is another way through which SWI/SNF complex regulates expression of its targets. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. PFTK1 Promotes Gastric Cancer Progression by Regulating Proliferation, Migration and Invasion.

    Science.gov (United States)

    Yang, Lei; Zhu, Jia; Huang, Hua; Yang, Qichang; Cai, Jing; Wang, Qiuhong; Zhu, Junya; Shao, Mengting; Xiao, Jinzhang; Cao, Jie; Gu, Xiaodan; Zhang, Shusen; Wang, Yingying

    2015-01-01

    PFTK1, also known as PFTAIRE1, CDK14, is a novel member of Cdc2-related serine/threonine protein kinases. Recent studies show that PFTK1 is highly expressed in several malignant tumors such as hepatocellular carcinoma, esophageal cancer, breast cancer, and involved in regulation of cell cycle, tumors proliferation, migration, and invasion that further influence the prognosis of tumors. However, the expression and physiological significance of PFTK1 in gastric cancer remain unclear. In this study, we analyzed the expression and clinical significance of PFTK1 by Western blot in 8 paired fresh gastric cancer tissues, nontumorous gastric mucosal tissues and immunohistochemistry on 161 paraffinembedded slices. High PFTK1 expression was correlated with the tumor grade, lymph node invasion as well as Ki-67. Through Cell Counting Kit (CCK)-8 assay, flow cytometry, colony formation, wound healing and transwell assays, the vitro studies demonstrated that PFTK1 overexpression promoted proliferation, migration and invasion of gastric cancer cells, while PFTK1 knockdown led to the opposite results. Our findings for the first time supported that PFTK1 might play an important role in the regulation of gastric cancer proliferation, migration and would provide a novel promising therapeutic strategy against human gastric cancer.

  4. RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Houcai; Yu, Jing; Zhang, Lixia; Xiong, Yuanyuan; Chen, Shuying; Xing, Haiyan; Tian, Zheng; Tang, Kejing; Wei, Hui; Rao, Qing; Wang, Min; Wang, Jianxiang, E-mail: wangjx@ihcams.ac.cn

    2014-04-18

    Highlights: • RPS27a expression was up-regulated in advanced-phase CML and AL patients. • RPS27a knockdown changed biological property of K562 and K562/G01 cells. • RPS27a knockdown affected Raf/MEK/ERK, P21 and BCL-2 signaling pathways. • RPS27a knockdown may be applicable for new combination therapy in CML patients. - Abstract: Ribosomal protein S27a (RPS27a) could perform extra-ribosomal functions besides imparting a role in ribosome biogenesis and post-translational modifications of proteins. The high expression level of RPS27a was reported in solid tumors, and we found that the expression level of RPS27a was up-regulated in advanced-phase chronic myeloid leukemia (CML) and acute leukemia (AL) patients. In this study, we explored the function of RPS27a in leukemia cells by using CML cell line K562 cells and its imatinib resistant cell line K562/G01 cells. It was observed that the expression level of RPS27a was high in K562 cells and even higher in K562/G01 cells. Further analysis revealed that RPS27a knockdown by shRNA in both K562 and K562G01 cells inhibited the cell viability, induced cell cycle arrest at S and G2/M phases and increased cell apoptosis induced by imatinib. Combination of shRNA with imatinib treatment could lead to more cleaved PARP and cleaved caspase-3 expression in RPS27a knockdown cells. Further, it was found that phospho-ERK(p-ERK) and BCL-2 were down-regulated and P21 up-regulated in RPS27a knockdown cells. In conclusion, RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells. It appears that drugs targeting RPS27a combining with tyrosine kinase inhibitor (TKI) might represent a novel therapy strategy in TKI resistant CML patients.

  5. Mutations in BALB mitochondrial DNA induce CCL20 up-regulation promoting tumorigenic phenotypes

    Energy Technology Data Exchange (ETDEWEB)

    Sligh, James [Department of Medicine—Dermatology Division, University of Arizona, Tucson, AZ 857 24 (United States); University of Arizona Cancer Center, Tucson, AZ 85724 (United States); Janda, Jaroslav [University of Arizona Cancer Center, Tucson, AZ 85724 (United States); Jandova, Jana, E-mail: jjandova@email.arizona.edu [Department of Medicine—Dermatology Division, University of Arizona, Tucson, AZ 857 24 (United States); University of Arizona Cancer Center, Tucson, AZ 85724 (United States)

    2014-11-15

    -κB activation inhibited CCL20 expression in mtBALB cybrids and decreased their migratory capabilities. Thus, acquired mtDNA mutations may promote tumorigenic phenotypes through up-regulation of chemokine CCL20.

  6. CHIP promotes human telomerase reverse transcriptase degradation and negatively regulates telomerase activity.

    Science.gov (United States)

    Lee, Ji Hoon; Khadka, Prabhat; Baek, Seung Han; Chung, In Kwon

    2010-12-31

    The maintenance of eukaryotic telomeres requires telomerase, which is minimally composed of a telomerase reverse transcriptase (TERT) and an associated RNA component. Telomerase activity is tightly regulated by expression of human (h) TERT at both the transcriptional and post-translational levels. The Hsp90 and p23 molecular chaperones have been shown to associate with hTERT for the assembly of active telomerase. Here, we show that CHIP (C terminus of Hsc70-interacting protein) physically associates with hTERT in the cytoplasm and regulates the cellular abundance of hTERT through a ubiquitin-mediated degradation. Overexpression of CHIP prevents nuclear translocation of hTERT and promotes hTERT degradation in the cytoplasm, thereby inhibiting telomerase activity. In contrast, knockdown of endogenous CHIP results in the stabilization of cytoplasmic hTERT. However, it does not affect the level of nuclear hTERT and has no effect on telomerase activity and telomere length. We further show that the binding of CHIP and Hsp70 to hTERT inhibits nuclear translocation of hTERT by dissociating p23. However, Hsp90 binding to hTERT was not affected by CHIP overexpression. These results suggest that CHIP can remodel the hTERT-chaperone complexes. Finally, the amount of hTERT associated with CHIP peaks in G(2)/M phases but decreases during S phase, suggesting a cell cycle-dependent regulation of hTERT. Our data suggest that CHIP represents a new pathway for modulating telomerase activity in cancer.

  7. Differential regulation of growth-promoting signalling pathways by E-cadherin.

    Directory of Open Access Journals (Sweden)

    Nikolaos T Georgopoulos

    Full Text Available BACKGROUND: Despite the well-documented association between loss of E-cadherin and carcinogenesis, as well as the link between restoration of its expression and suppression of proliferation in carcinoma cells, the ability of E-cadherin to modulate growth-promoting cell signalling in normal epithelial cells is less well understood and frequently contradictory. The potential for E-cadherin to co-ordinate different proliferation-associated signalling pathways has yet to be fully explored. METHODOLOGY/PRINCIPAL FINDINGS: Using a normal human urothelial (NHU cell culture system and following a calcium-switch approach, we demonstrate that the stability of NHU cell-cell contacts differentially regulates the Epidermal Growth Factor Receptor (EGFR/Extracellular Signal-Regulated Kinase (ERK and Phosphatidylinositol 3-Kinase (PI3-K/AKT pathways. We show that stable cell contacts down-modulate the EGFR/ERK pathway, whilst inducing PI3-K/AKT activity, which transiently enhances cell growth at low density. Functional inactivation of E-cadherin interferes with the capacity of NHU cells to form stable calcium-mediated contacts, attenuates E-cadherin-mediated PI3-K/AKT induction and enhances NHU cell proliferation by allowing de-repression of the EGFR/ERK pathway and constitutive activation of β-catenin-TCF signalling. CONCLUSIONS/SIGNIFICANCE: Our findings provide evidence that E-cadherin can differentially and concurrently regulate specific growth-related signalling pathways in a context-specific fashion, with direct, functional consequences for cell proliferation and population growth. Our observations not only reveal a novel, complex role for E-cadherin in normal epithelial cell homeostasis and tissue regeneration, but also provide the basis for a more complete understanding of the consequences of E-cadherin loss on malignant transformation.

  8. Mapping of INS promoter interactions reveals its role in long-range regulation of SYT8 transcription.

    Science.gov (United States)

    Xu, Zhixiong; Wei, Gang; Chepelev, Iouri; Zhao, Keji; Felsenfeld, Gary

    2011-03-01

    Insulin (INS) synthesis and secretion from pancreatic β-cells are tightly regulated; their deregulation causes diabetes. Here we map INS-associated loci in human pancreatic islets by 4C and 3C techniques and show that the INS gene physically interacts with the SYT8 gene, located over 300 kb away. This interaction is elevated by glucose and accompanied by increases in SYT8 expression. Inactivation of the INS promoter by promoter-targeting siRNA reduces SYT8 gene expression. SYT8-INS interaction and SYT8 transcription are attenuated by CTCF depletion. Furthermore, SYT8 knockdown decreases insulin secretion in islets. These results reveal a nonredundant role for SYT8 in insulin secretion and indicate that the INS promoter acts from a distance to stimulate SYT8 transcription. This suggests a function for the INS promoter in coordinating insulin transcription and secretion through long-range regulation of SYT8 expression in human islets.

  9. A Leader Intron of a Soybean Elongation Factor 1A (eEF1A) Gene Interacts with Proximal Promoter Elements to Regulate Gene Expression in Synthetic Promoters.

    Science.gov (United States)

    Zhang, Ning; McHale, Leah K; Finer, John J

    2016-01-01

    Introns, especially the first intron in the 5' untranslated region (5'UTR), can significantly impact gene expression via intron-mediated enhancement (IME). In this study, we demonstrate the leader intron of a soybean elongation factor 1A (eEF1A) gene (GmScreamM8) was essential for the high activity of the native promoter. Furthermore, the interaction of the GmScreamM8 leader intron with regulatory element sequences from several soybean eEF1A promoters was studied using synthetic promoters, which consisted of element tetramers upstream of a core promoter used to regulate a green fluorescent protein (gfp) reporter gene. Element tetramers, placed upstream of a GmScreamM8 core promoter, showed very high activity using both transient expression in lima bean cotyledons and stable expression in soybean hairy roots, only if the native leader intron was included, suggesting an interaction between intronic sequences and promoter elements. Partial deletions of the leader intron showed that a 222 bp intronic sequence significantly contributed to very high levels of GFP expression. Generation of synthetic intron variants with a monomeric or trimeric repeat of the 222 bp intronic sequence, yielded almost two-fold higher expression compared to the original intron, while partial deletion of the 222 bp intronic repeated sequence significantly decreased gene expression, indicating that this intronic sequence was essential for the intron-element interaction enhancement.

  10. Activation of stress-activated MAP protein kinases up-regulates expression of transgenes driven by the cytomegalovirus immediate/early promoter.

    OpenAIRE

    Bruening, W; Giasson, B; Mushynski, W; Durham, H D

    1998-01-01

    The immediate/early promoter/enhancer of cytomegalovirus (CMV promoter) is one of the most commonly used promoters for expression of transgenes in eukaryotic cells. In practice, the CMV promoter is often thought of as a constitutively active unregulated promoter. However, we have observed that transcription from the CMV promoter can be up-regulated by a variety of environmental stresses. Many forms of cellular stress stimulate MAP kinase signalling pathways, resulting in activation of stress-...

  11. AMP-activated protein kinase-regulated activation of the PGC-1alpha promoter in skeletal muscle cells.

    Directory of Open Access Journals (Sweden)

    Isabella Irrcher

    Full Text Available The mechanisms by which PGC-1alpha gene expression is controlled in skeletal muscle remains largely undefined. Thus, we sought to investigate the transcriptional regulation of PGC-1alpha using AICAR, an activator of AMPK, that is known to increase PGC-1alpha expression. A 2.2 kb fragment of the human PGC-1alpha promoter was cloned and sequence analysis revealed that this TATA-less sequence houses putative consensus sites including a GC-box, a CRE, several IRSs, a SRE, binding sites for GATA, MEF2, p 53, NF-kappaB, and EBox binding proteins. AMPK activation for 24 hours increased PGC-1alpha promoter activity with concomitant increases in mRNA expression. The effect of AICAR on transcriptional activation was mediated by an overlapping GATA/EBox binding site at -495 within the PGC-1alpha promoter based on gel shift analyses that revealed increases in GATA/EBox DNA binding. Mutation of the EBox within the GATA/EBox binding site in the promoter reduced basal promoter activity and completely abolished the AICAR effect. Supershift analyses identified USF-1 as a DNA binding transcription factor potentially involved in regulating PGC-1alpha promoter activity, which was confirmed in vivo by ChIP. Overexpression of either GATA-4 or USF-1 alone increased the p851 PGC-1alpha promoter activity by 1.7- and 2.0-fold respectively, while co-expression of GATA-4 and USF-1 led to an additive increase in PGC-1alpha promoter activity. The USF-1-mediated increase in PGC-1alpha promoter activation led to similar increases at the mRNA level. Our data identify a novel AMPK-mediated regulatory pathway that regulates PGC-1alpha gene expression. This could represent a potential therapeutic target to control PGC-1alpha expression in skeletal muscle.

  12. Epigenetic regulation of CpG promoter methylation in invasive prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Farrar William L

    2010-10-01

    Full Text Available Abstract Background Recently, much attention has been focused on gaining a better understanding of the different populations of cells within a tumor and their contribution to cancer progression. One of the most commonly used methods to isolate a more aggressive sub-population of cells utilizes cell sorting based on expression of certain cell adhesion molecules. A recently established method we developed is to isolate these more aggressive cells based on their properties of increased invasive ability. These more invasive cells have been previously characterized as tumor initiating cells (TICs that have a stem-like genomic signature and express a number of stem cell genes including Oct3/4 and Nanog and are more tumorigenic compared to their 'non-invasive' counterpart. They also have a profile reminiscent of cells undergoing a classic pattern of epithelial to mesenchymal transition or EMT. Using this model of invasion, we sought to investigate which genes are under epigenetic control in this rare population of cells. Epigenetic modifications, specifically DNA methylation, are key events regulating the process of normal human development. To determine the specific methylation pattern in these invasive prostate cells, and if any developmental genes were being differentially regulated, we analyzed differences in global CpG promoter methylation. Results Differentially methylated genes were determined and select genes were chosen for additional analyses. The non-receptor tyrosine kinase BMX and transcription factor SOX1 were found to play a significant role in invasion. Ingenuity pathway analysis revealed the methylated gene list frequently displayed genes from the IL-6/STAT3 pathway. Cells which have decreased levels of the targets BMX and SOX1 also display loss of STAT3 activity. Finally, using Oncomine, it was determined that more aggressive metastatic prostate cancers in humans also have higher levels of both Stat3 and Sox1. Conclusions Using this

  13. Gonadotropin regulation of the rat proopiomelanocortin promoter: characterization by transfection of primary ovarian granulosa cells.

    Science.gov (United States)

    Young, S L; Nielsen, C P; Lundblad, J R; Roberts, J L; Melner, M H

    1989-01-01

    To characterize the transcriptional effects of human (h)FSH and hCG on the POMC gene, primary rat granulosa cells were transiently transfected with a chloramphenicol acetyltransferase (CAT) reporter plasmid under the control of the POMC promoter and 5' region. POMC-CAT contains a fragment of the rat POMC gene, extending from nucleotide -704 to nucleotide +63, fused to the CAT gene. Treatment of POMC-CAT-transfected cells with either hFSH (20 ng/ml) or hCG (10 ng/ml) significantly increased CAT enzyme activity; however, neither hCG nor hFSH increased CAT enzyme activity in cells transfected with pSV2-CAT, a reporter plasmid under the control of the SV40 virus promoter and 5' region. The phosphodiesterase inhibitor isobutylmethylxanthine or the nonhydrolyzable cAMP analog cAMP-chlorothiophenyl significantly increased CAT activity in POMC-CAT-transfected granulosa cells. Human FSH stimulated transcription 10, 20, and 40 h after treatment, but FSH stimulation at the two earlier time points was 2.5- to 5.5-fold greater than that at 40 h. Gonadotropin-stimulated steroidogenesis was equivalent in POMC-CAT-transfected granulosa cells, untransfected, and mock-transfected cells. This indicates that transfection left the physiological hormone response intact. These data demonstrate the following. 1) 767 basepairs of the rat POMC gene are enough to confer gonadotropin stimulation on the CAT marker gene in granulosa cells. 2) Although the POMC promotor lacks a well conserved cAMP response element, either of two different pharmacological manipulations of granulosa cells that raise intracellular cAMP can also stimulate POMC-driven CAT expression. 3) Transfected primary cultures of granulosa cells provide a nontransformed, physiologically relevant model with which to study hormone-regulated gene expression.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. MiR-181b promotes chemoresistance in breast cancer by regulating Bim expression.

    Science.gov (United States)

    Zheng, Yabing; Lv, Xiaoai; Wang, Xiaojia; Wang, Bei; Shao, Xiying; Huang, Yuan; Shi, Lei; Chen, Zhanhong; Huang, Jian; Huang, Ping

    2016-02-01

    MicroRNAs are emerging as critical regulators of the initiation and progression of multiple types of human cancers, including breast cancer. In the present study, the expression of miR-181b in breast cancer patient serum and breast cancer cell lines was evaluated. It was demonstrated that the miR-181b level was significantly upregulated in patient serum and breast cancer cell lines compared with that in normal controls. The results of in vitro 3H thymidine incorporation and Transwell migration assay indicated that miR-181b overexpression markedly promoted the proliferation and metastasis of breast cancer cells. These data suggest that miR-181b is a tumor promoter in breast cancer. Furthermore, miR-181b expression was found to be upregulated in doxorubicin (DOX)-resistant T-47D cells (T-47D-R) compared with that in the parental T-47D cells, and upregulation of miR-181b expression decreased the anticancer effect of DOX in the T-47D cells. Mechanistic studies demonstrated that the Bim gene, an essential initiator of apoptosis, was inhibited by miR-181b overexpression. We observed that knockdown of miR-181b by its specific inhibitors significantly re-sensitized the T-47D-R cells to the cytotoxicity of DOX. Importantly, we demonstrated that miR-181b inhibitors increased the level of Bim in the T-47D-R cells, resulting in the loss of mitochondrial membrane potential (MMP) and the activation of caspases caused by DOX. In summary, the results of the present study suggest that miR-181b functions as an oncogene during breast cancer development, and the miR-181b/Bim pathway may be a novel target used to overcome the chemoresistance in breast cancer.

  15. Physical and functional interactions between USF and Sp1 proteins regulate human deoxycytidine kinase promoter activity.

    Science.gov (United States)

    Ge, Yubin; Jensen, Tanya L; Matherly, Larry H; Taub, Jeffrey W

    2003-12-12

    Deoxycytidine kinase (EC 2.7.1.74, dCK) is central to drug activity of anticancer and antiviral agents such as cytosine arabinoside (araC) and gemcitabine. HepG2 hepatocellular carcinoma cells were used to study the transcriptional regulation of dCK. 5'-Deletion and site-directed mutagenesis of the dCK upstream region (positions -464 to -27) confirmed the importance of two GC-boxes (positions -317 to -309 and -213 to -206) and two E-boxes (positions -302 to -297 and -278 to -273). In vitro electromobility shift assays with HepG2 nuclear extracts and in vivo chromatin immunoprecipitation assays with HepG2 chromatin extracts confirmed the presence of bound Sp1/Sp3 and USF1/2. Co-transfections in HepG2 cells showed that USF1 and USF2a stimulated and Sp1 repressed promoter activity from a dCK-luciferase reporter gene construct. In Sp- and USF-null Drosophila Mel-2 cells, both Sp1 and USF1 stimulated dCK promoter activity in a dose-dependent manner, however, both Sp3 and USF2a were effectively inert. Combined Sp1 and USF1 showed additive transactivation at lower concentrations of Sp1. Sp1 was inhibitory at higher levels. Stimulation by combined USF1/USF2a with Sp1 was similar to that for USF1 alone with Sp1, whereas transactivation by Sp1 and USF2a without USF1 was synergistic. Physical interactions between USF and Sp proteins were confirmed by immunoprecipitations with Sp- and USF-specific antibodies. Domain mapping of USF1 and USF2a localized the functional interactions between USF and Sp proteins to the DNA binding domain of USF. Identifying the physical and functional interactions between Sp and USF proteins may lead to a better understanding of the basis for differential expression of the dCK gene in tumor cells and may foster strategies for up-regulating dCK gene expression and improving chemotherapy with araC and gemcitabine.

  16. Genome-wide methylation and expression profiling identifies promoter characteristics affecting demethylation-induced gene up-regulation in melanoma

    Directory of Open Access Journals (Sweden)

    Halaban Ruth

    2010-02-01

    Full Text Available Abstract Background Abberant DNA methylation at CpG dinucleotides represents a common mechanism of transcriptional silencing in cancer. Since CpG methylation is a reversible event, tumor supressor genes that have undergone silencing through this mechanism represent promising targets for epigenetically active anti-cancer therapy. The cytosine analog 5-aza-2'-deoxycytidine (decitabine induces genomic hypomethylation by inhibiting DNA methyltransferase, and is an example of an epigenetic agent that is thought to act by up-regulating silenced genes. Methods It is unclear why decitabine causes some silenced loci to re-express, while others remain inactive. By applying data-mining techniques to large-scale datasets, we attempted to elucidate the qualities of promoter regions that define susceptibility to the drug's action. Our experimental data, derived from melanoma cell strains, consist of genome-wide gene expression data before and after treatment with decitabine, as well as genome-wide data on un-treated promoter methylation status, and validation of specific genes by bisulfite sequencing. Results We show that the combination of promoter CpG content and methylation level informs the ability of decitabine treatment to up-regulate gene expression. Promoters with high methylation levels and intermediate CpG content appear most susceptible to up-regulation by decitabine, whereas few of those highly methylated promoters with high CpG content are up-regulated. For promoters with low methylation levels, those with high CpG content are more likely to be up-regulated, whereas those with low CpG content are underrepresented among up-regulated genes. Conclusions Clinically, elucidating the patterns of action of decitabine could aid in predicting the likelihood of up-regulating epigenetically silenced tumor suppressor genes and others from pathways involved with tumor biology. As a first step toward an eventual translational application, we build a classifier

  17. Nickel and low CO2-controlled motility in Chlamydomonas through complementation of a paralyzed flagella mutant with chemically regulated promoters

    Directory of Open Access Journals (Sweden)

    Rosenbaum Joel L

    2011-01-01

    Full Text Available Abstract Background Chlamydomonas reinhardtii is a model system for the biology of unicellular green algae. Chemically regulated promoters, such as the nickel-inducible CYC6 or the low CO2-inducible CAH1 promoter, may prove useful for expressing, at precise times during its cell cycle, proteins with relevant biological functions, or complementing mutants in genes encoding such proteins. To this date, this has not been reported for the above promoters. Results We fused the CYC6 and CAH1 promoters to an HA-tagged RSP3 gene, encoding a protein of the flagellar radial spoke complex. The constructs were used for chemically regulated complementation of the pf14 mutant, carrying an ochre mutation in the RSP3 gene. 7 to 8% of the transformants showed cells with restored motility after induction with nickel or transfer to low CO2 conditions, but not in non-inducing conditions. Maximum complementation (5% motile cells was reached with very different kinetics (5-6 hours for CAH1, 48 hours for CYC6. The two inducible promoters drive much lower levels of RSP3 protein expression than the constitutive PSAD promoter, which shows almost complete rescue of motility. Conclusions To our knowledge, this is the first example of the use of the CYC6 or CAH1 promoters to perform a chemically regulated complementation of a Chlamydomonas mutant. Based on our data, the CYC6 and CAH1 promoters should be capable of fully complementing mutants in genes whose products exert their biological activity at low concentrations.

  18. Regulation of the cd38 promoter in human airway smooth muscle cells by TNF-α and dexamethasone

    Directory of Open Access Journals (Sweden)

    Walseth Timothy F

    2008-03-01

    Full Text Available Abstract Background CD38 is expressed in human airway smooth muscle (HASM cells, regulates intracellular calcium, and its expression is augmented by tumor necrosis factor alpha (TNF-α. CD38 has a role in airway hyperresponsiveness, a hallmark of asthma, since deficient mice develop attenuated airway hyperresponsiveness compared to wild-type mice following intranasal challenges with cytokines such as IL-13 and TNF-α. Regulation of CD38 expression in HASM cells involves the transcription factor NF-κB, and glucocorticoids inhibit this expression through NF-κB-dependent and -independent mechanisms. In this study, we determined whether the transcriptional regulation of CD38 expression in HASM cells involves response elements within the promoter region of this gene. Methods We cloned a putative 3 kb promoter fragment of the human cd38 gene into pGL3 basic vector in front of a luciferase reporter gene. Sequence analysis of the putative cd38 promoter region revealed one NF-κB and several AP-1 and glucocorticoid response element (GRE motifs. HASM cells were transfected with the 3 kb promoter, a 1.8 kb truncated promoter that lacks the NF-κB and some of the AP-1 sites, or the promoter with mutations of the NF-κB and/or AP-1 sites. Using the electrophoretic mobility shift assays, we determined the binding of nuclear proteins to oligonucleotides encoding the putative cd38 NF-κB, AP-1, and GRE sites, and the specificity of this binding was confirmed by gel supershift analysis with appropriate antibodies. Results TNF-α induced a two-fold activation of the 3 kb promoter following its transfection into HASM cells. In cells transfected with the 1.8 kb promoter or promoter constructs lacking NF-κB and/or AP-1 sites or in the presence of dexamethasone, there was no induction in the presence of TNF-α. The binding of nuclear proteins to oligonucleotides encoding the putative cd38 NF-κB site and some of the six AP-1 sites was increased by TNF-α, and to

  19. N-docosahexaenoylethanolamine regulates Hedgehog signaling and promotes growth of cortical axons

    Directory of Open Access Journals (Sweden)

    Giorgi Kharebava

    2015-12-01

    Full Text Available Axonogenesis, a process for the establishment of neuron connectivity, is central to brain function. The role of metabolites derived from docosahexaenoic acid (DHA, 22:6n-3 that is specifically enriched in the brain, has not been addressed in axon development. In this study, we tested if synaptamide (N-docosahexaenoylethanolamine, an endogenous metabolite of DHA, affects axon growth in cultured cortical neurons. We found that synaptamide increased the average axon length, inhibited GLI family zinc finger 1 (GLI1 transcription and sonic hedgehog (Shh target gene expression while inducing cAMP elevation. Similar effects were produced by cyclopamine, a regulator of the Shh pathway. Conversely, Shh antagonized elevation of cAMP and blocked synaptamide-mediated increase in axon length. Activation of Shh pathway by a smoothened (SMO agonist (SAG or overexpression of SMO did not inhibit axon growth mediated by synaptamide or cyclopamine. Instead, adenylate cyclase inhibitor SQ22536 abolished synaptamide-mediated axon growth indicating requirement of cAMP elevation for this process. Our findings establish that synaptamide promotes axon growth while Shh antagonizes synaptamide-mediated cAMP elevation and axon growth by a SMO-independent, non-canonical pathway.

  20. Mechanisms underlying the tissue-specific and regulated activity of the Gnrhr promoter in mammals.

    Directory of Open Access Journals (Sweden)

    Anne-Laure eSchang

    2012-12-01

    Full Text Available The GnRH receptor (GnRHR plays a central role in the development and maintenance of reproductive function in mammals. Following stimulation by GnRH originating from the hypothalamus, GnRHR triggers multiple signalling events that ultimately stimulate the synthesis and the periodic release of the gonadotropins, luteinizing-stimulating hormone (LH and follicle-stimulating hormones (FSH which, in turn, regulate gonadal functions, including steroidogenesis and gametogenesis. The concentration of GnRHR at the cell surface is essential for the amplitude and the specificity of gonadotrope responsiveness. The number of GnRHR is submitted to strong regulatory control during pituitary development, estrous cycle, pregnancy, lactation, or after gonadectomy. These modulations take place, at least in part, at the transcriptional level. To analyse this facet of the reproductive function, the 5' regulatory sequences of the gene encoding the GnRHR have been isolated and characterized through in vitro and in vivo approaches. This review summarizes results obtained with the mouse, rat, human and ovine promoters either by transient transfection assays or by means of transgenic mice.

  1. Clk1 deficiency promotes neuroinflammation and subsequent dopaminergic cell death through regulation of microglial metabolic reprogramming.

    Science.gov (United States)

    Gu, Ruinan; Zhang, Fali; Chen, Gang; Han, Chaojun; Liu, Jay; Ren, Zhaoxiang; Zhu, Yi; Waddington, John L; Zheng, Long Tai; Zhen, Xuechu

    2017-02-01

    Clock (Clk)1/COQ7 is a mitochondrial hydroxylase that is necessary for the biosynthesis of ubiquinone (coenzyme Q or UQ). Here, we investigate the role of Clk1 in neuroinflammation and consequentially dopaminergic (DA) neuron survival. Reduced expression of Clk1 in microglia enhanced the LPS-induced proinflammatory response and promoted aerobic glycolysis. Inhibition of glycolysis abolished Clk1 deficiency-induced hypersensitivity to the inflammatory stimulation. Mechanistic studies demonstrated that mTOR/HIF-1α and ROS/HIF-1α signaling pathways were involved in Clk1 deficiency-induced aerobic glycolysis. The increase in neuronal cell death was observed following treatment with conditioned media from Clk1 deficient microglia. Increased DA neuron loss and microgliosis were observed in Clk1(+/-) mice after treatment with MPTP, a rodent model of Parkinson's disease (PD). This increase in DA neuron loss was due to an exacerbated microglial inflammatory response, rather than direct susceptibility of Clk1(+/-) DA cells to MPP(+), the active species of MPTP. Exaggerated expressions of proinflammatory genes and loss of DA neurons were also observed in Clk1(+/-) mice after stereotaxic injection of LPS. Our results suggest that Clk1 regulates microglial metabolic reprogramming that is, in turn, involved in the neuroinflammatory processes and PD.

  2. Histamine-HisCl1 receptor axis regulates wake-promoting signals in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Yangkyun Oh

    Full Text Available Histamine and its two receptors, histamine-gated chloride channel subunit 1 (HisCl1 and ora transientless (Ort, are known to control photoreception and temperature sensing in Drosophila. However, histamine signaling in the context of neural circuitry for sleep-wake behaviors has not yet been examined in detail. Here, we obtained mutant flies with compromised or enhanced histamine signaling and tested their baseline sleep. Hypomorphic mutations in histidine decarboxylase (HDC, an enzyme catalyzing the conversion from histidine to histamine, caused an increase in sleep duration. Interestingly, hisCl1 mutants but not ort mutants showed long-sleep phenotypes similar to those in hdc mutants. Increased sleep duration in hisCl1 mutants was rescued by overexpressing hisCl1 in circadian pacemaker neurons expressing a neuropeptide pigment dispersing factor (PDF. Consistently, RNA interference (RNAi-mediated depletion of hisCl1 in PDF neurons was sufficient to mimic hisCl1 mutant phenotypes, suggesting that PDF neurons are crucial for sleep regulation by the histamine-HisCl1 signaling. Finally, either hisCl1 mutation or genetic ablation of PDF neurons dampened wake-promoting effects of elevated histamine signaling via direct histamine administration. Taken together, these data clearly demonstrate that the histamine-HisCl1 receptor axis can activate and maintain the wake state in Drosophila and that wake-activating signals may travel via the PDF neurons.

  3. Down-Regulation of NDUFB9 Promotes Breast Cancer Cell Proliferation, Metastasis by Mediating Mitochondrial Metabolism.

    Directory of Open Access Journals (Sweden)

    Liang-Dong Li

    Full Text Available Despite advances in basic and clinical research, metastasis remains the leading cause of death in breast cancer patients. Genetic abnormalities in mitochondria, including mutations affecting complex I and oxidative phosphorylation, are found in breast cancers and might facilitate metastasis. Genes encoding complex I components have significant breast cancer prognostic value. In this study, we used quantitative proteomic analyses to compare a highly metastatic cancer cell line and a parental breast cancer cell line; and observed that NDUFB9, an accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (complex I, was down-regulated in highly metastatic breast cancer cells. Furthermore, we demonstrated that loss of NDUFB9 promotes MDA-MB-231 cells proliferation, migration, and invasion because of elevated levels of mtROS, disturbance of the NAD+/NADH balance, and depletion of mtDNA. We also showed that, the Akt/mTOR/p70S6K signaling pathway and EMT might be involved in this mechanism. Thus, our findings contribute novel data to support the hypothesis that misregulation of mitochondrial complex I NADH dehydrogenase activity can profoundly enhance the aggressiveness of human breast cancer cells, suggesting that complex I deficiency is a potential and important biomarker for further basic research or clinical application.

  4. Inhibition of Nischarin Expression Promotes Neurite Outgrowth through Regulation of PAK Activity.

    Directory of Open Access Journals (Sweden)

    Yuemin Ding

    Full Text Available Nischarin is a cytoplasmic protein expressed in various organs that plays an inhibitory role in cell migration and invasion and the carcinogenesis of breast cancer cells. We previously reported that Nischarin is highly expressed in neuronal cell lines and is differentially expressed in the brain tissue of adult rats. However, the physiological function of Nischarin in neural cells remains unknown. Here, we show that Nischarin is expressed in rat primary cortical neurons but not in astrocytes. Nischarin is localized around the nucleus and dendrites. Using shRNA to knockdown the expression of endogenous Nischarin significantly increases the percentage of neurite-bearing cells, remarkably increases neurite length, and accelerates neurite extension in neuronal cells. Silencing Nischarin expression also promotes dendrite elongation in rat cortical neurons where Nischarin interacts with p21-activated kinase 1/2 (PAK1/2 and negatively regulates phosphorylation of both PAK1 and PAK2. The stimulation of neurite growth observed in cells with decreased levels of Nischarin is partially abolished by IPA3-mediated inhibition of PAK1 activity. Our findings indicate that endogenous Nischarin inhibits neurite outgrowth by blocking PAK1 activation in neurons.

  5. VPS35 regulates developing mouse hippocampal neuronal morphogenesis by promoting retrograde trafficking of BACE1

    Directory of Open Access Journals (Sweden)

    Chun-Lei Wang

    2012-10-01

    VPS35, a major component of the retromer, plays an important role in the selective endosome-to-Golgi retrieval of membrane proteins. Dysfunction of retromer is a risk factor for neurodegenerative disorders, but its function in developing mouse brain remains poorly understood. Here we provide evidence for VPS35 promoting dendritic growth and maturation, and axonal protein transport in developing mouse hippocampal neurons. Embryonic hippocampal CA1 neurons suppressing Vps35 expression by in utero electroporation of its micro RNAs displayed shortened apical dendrites, reduced dendritic spines, and swollen commissural axons in the neonatal stage, those deficits reflecting a defective protein transport/trafficking in developing mouse neurons. Further mechanistic studies showed that Vps35 depletion in neurons resulted in an impaired retrograde trafficking of BACE1 (β1-secretase and altered BACE1 distribution. Suppression of BACE1 expression in CA1 neurons partially rescued both dendritic and axonal deficits induced by Vps35-deficiency. These results thus demonstrate that BACE1 acts as a critical cargo of retromer in vitro and in vivo, and suggest that VPS35 plays an essential role in regulating apical dendritic maturation and in preventing axonal spheroid formation in developing hippocampal neurons.

  6. Survivin promotes the invasion of human colon carcinoma cells by regulating the expression of MMP‑7.

    Science.gov (United States)

    Gao, Fei; Zhang, Yuqin; Yang, Feng; Wang, Peng; Wang, Wenjun; Su, Yan; Luo, Weiren

    2014-03-01

    Increased expression levels of survivin are crucial for invasion activity in several types of human cancer, including colon carcinoma. However, the molecular mechanisms whereby survivin regulates cancer invasion have not been completely elucidated. To the best of our knowledge, this study is the first to investigate the role of matrix metalloprotease‑7 (MMP‑7) in cell invasion that is induced by survivin by using in vitro assays, including western blot, immunofluorescence and qPCR analyses. The results demonstrated that the ectopic expression of survivin significantly promoted the invasive activity of colon carcinoma cells (SW620 and HCT‑116) and resulted in increased levels of MMP‑7 activation. By contrast, the small interfering RNA (siRNA)‑based knockdown of survivin markedly reduced cell migration and led to a dose‑dependent decrease in MMP‑7 expression levels. Compared with the controls, knockdown of MMP‑7 by siRNA in colon carcinoma cells led to reduced invasion ability, whereas no obvious changes were observed when MMP‑7 expression was silenced in survivin‑overexpressing colon carcinoma cells. These findings demonstrate that MMP‑7 is crucial for survivin‑mediated invasiveness, suggesting that the survivin‑mediated MMP‑7 signaling pathway is a potential therapeutic target for the treatment of colon carcinoma.

  7. Structure and regulation of an archaebacterial promoter: An in vivo study. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, C.J.

    1993-12-31

    In the initial grant period the authors have devised an in vivo assay system for the analysis of gene expression in the halophilic archaea. This system has been used to analyzed the H. volcanii tRNALys promoter where it was found that the a 40 bp fragment carrying BoxA and BoxB sequences in sufficient for in vivo expression. Detailed analysis of the BoxA element indicates that the BoxA TA sequence is essential for efficient expression. Support for the hypothesis that all archaea share common transcriptional signals was obtained when a methanogen tRNAGln gene, with its associated BoxA sequence, was found to direct its own transcription in H. volcanii. In related experiments a eukaryotic RNA polymerase 3 terminator was found to act as a strong termination signal in H. volcanii. Sequence comparisons between this element and mapped RNA 3{prime} ends indicates that T-rich sequences may be important role in directing termination in vivo. Finally, in an attempt to establish a model system to study regulated gene expression, the authors have isolated a DNA fragment that encodes a heat shock inaudible transcript. This gene will not serve as a model for detailed studies of the mechanisms of gene expression in the archaea.

  8. MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators.

    Science.gov (United States)

    Gabriely, Galina; Wurdinger, Thomas; Kesari, Santosh; Esau, Christine C; Burchard, Julja; Linsley, Peter S; Krichevsky, Anna M

    2008-09-01

    Substantial data indicate that microRNA 21 (miR-21) is significantly elevated in glioblastoma (GBM) and in many other tumors of various origins. This microRNA has been implicated in various aspects of carcinogenesis, including cellular proliferation, apoptosis, and migration. We demonstrate that miR-21 regulates multiple genes associated with glioma cell apoptosis, migration, and invasiveness, including the RECK and TIMP3 genes, which are suppressors of malignancy and inhibitors of matrix metalloproteinases (MMPs). Specific inhibition of miR-21 with antisense oligonucleotides leads to elevated levels of RECK and TIMP3 and therefore reduces MMP activities in vitro and in a human model of gliomas in nude mice. Moreover, downregulation of miR-21 in glioma cells leads to decreases of their migratory and invasion abilities. Our data suggest that miR-21 contributes to glioma malignancy by downregulation of MMP inhibitors, which leads to activation of MMPs, thus promoting invasiveness of cancer cells. Our results also indicate that inhibition of a single oncomir, like miR-21, with specific antisense molecules can provide a novel therapeutic approach for "physiological" modulation of multiple proteins whose expression is deregulated in cancer.

  9. Inflammatory peroxidases promote breast cancer progression in mice via regulation of the tumour microenvironment.

    Science.gov (United States)

    Panagopoulos, Vasilios; Leach, Damien A; Zinonos, Irene; Ponomarev, Vladimir; Licari, Giovanni; Liapis, Vasilios; Ingman, Wendy V; Anderson, Peter; DeNichilo, Mark O; Evdokiou, Andreas

    2017-04-01

    Myeloperoxidase (MPO) and eosinophil peroxidase (EPO) are heme-containing enzymes, well known for their antimicrobial activity, are released in high quantities by infiltrating immune cells in breast cancer. However, the functional importance of their presence within the tumour microenvironment is unclear. We have recently described a new role for peroxidases as key regulators of fibroblast and endothelial cell functionality. In the present study, we investigate for the first time, the ability of peroxidases to promote breast cancer development and progression. Using the 4T1 syngeneic murine orthotopic breast cancer model, we examined whether increased levels of peroxidases in developing mammary tumours influences primary tumour growth and metastasis. We showed that MPO and EPO stimulation increased mammary tumour growth and enhanced lung metastases, effects that were associated with reduced tumour necrosis, increased collagen deposition and neo-vascularisation within the primary tumour. In vitro, peroxidase treatment, robustly stimulated human mammary fibroblast migration and collagen type I and type VI secretion. Mechanistically, peroxidases induced the transcription of pro-tumorigenic and metastatic MMP1, MMP3 and COX-2 genes. Taken together, these findings identify peroxidases as key contributors to cancer progression by augmenting pro-tumorigenic collagen production and angiogenesis. Importantly, this identifies inflammatory peroxidases as therapeutic targets in breast cancer therapy.

  10. Lamellipodin promotes invasive 3D cancer cell migration via regulated interactions with Ena/VASP and SCAR/WAVE

    Science.gov (United States)

    Carmona, Guillaume; Perera, Upamali; Gillett, Cheryl; Naba, Alexandra; Law, Ah-Lai; Sharma, Ved P.; Wang, Jian; Wyckoff, Jeffrey; Balsamo, Michele; Mosis, Fuad; De Piano, Mario; Monypenny, James; Woodman, Natalie; McConnell, Russell E.; Mouneimne, Ghassan; Van Hemelrijck, Mieke; Cao, Yihai; Condeelis, John; Hynes, Richard O.; Gertler, Frank B.; Krause, Matthias

    2016-01-01

    Cancer invasion is a hallmark of metastasis. The mesenchymal mode of cancer cell invasion is mediated by elongated membrane protrusions driven by the assembly of branched F-actin networks. How deregulation of actin regulators promotes cancer cell invasion is still enigmatic. We report that increased expression and membrane localization of the actin regulator Lamellipodin correlates with reduced metastasis-free survival and poor prognosis in breast cancer patients. In agreement we find that Lamellipodin depletion reduced lung metastasis in an orthotopic mouse breast cancer model. Invasive 3D cancer cell migration as well as invadopodia formation, and matrix degradation were impaired upon Lamellipodin depletion. Mechanistically, we show that Lamellipodin promotes invasive 3D cancer cell migration via both actin-elongating Ena/VASP proteins and the Scar/WAVE complex, which stimulates actin branching. In contrast, Lamellipodin interaction with Scar/WAVE but not Ena/VASP is required for random 2D cell migration. We identify a phosphorylation-dependent mechanism that regulates selective recruitment of these effectors to Lamellipodin: Abl-mediated Lamellipodin phosphorylation promotes its association with both Scar/WAVE and Ena/VASP, while Src-dependent phosphorylation enhances binding to Scar/WAVE but not Ena/VASP. Through these selective, regulated interactions Lamellipodin mediates directional sensing of EGF gradients and invasive 3D migration of breast cancer cells. Our findings imply that increased Lamellipodin levels enhance Ena/VASP and Scar/WAVE activities at the plasma membrane to promote 3D invasion and metastasis. PMID:26996666

  11. Iron-regulated metabolites of plant growth-promoting Pseudomonas fluorescens WCS374 : Their role in induced systemic resistance

    NARCIS (Netherlands)

    Djavaheri, M.

    2007-01-01

    The plant growth-promoting rhizobacterium Pseudomonas fluorescens WCS374r effectively suppresses fusarium wilt in radish by induced systemic resistance (ISR). In radish, WCS374r-mediated ISR depends partly on iron-regulated metabolites. Under iron-limiting conditions, P. fluorescens WCS374r produces

  12. Cell cycle regulation of the cyclin A gene promoter is mediated by a variant E2F site

    DEFF Research Database (Denmark)

    Schulze, A; Zerfass, K; Spitkovsky, D

    1995-01-01

    Cyclin A is involved in the control of S phase and mitosis in mammalian cells. Expression of the cyclin A gene in nontransformed cells is characterized by repression of its promoter during the G1 phase of the cell cycle and its induction at S-phase entry. We show that this mode of regulation...

  13. The Bacillus subtilis transition state regulator AbrB binds to the-35 promoter region of comK

    NARCIS (Netherlands)

    Hamoen, LW; Kausche, D; Marahiel, MA; van Sinderen, D; Venema, G; Serror, P

    2003-01-01

    Genetic competence is a differentiation process initiated by Bacillus subtilis as a result of nutritional deprivation, and is controlled by a complex signal transduction cascade. The promoter of comK, encoding the competence transcription factor, is regulated by at least four different transcription

  14. Regulation of U6 Promoter Activity by Transcriptional Interference in Viral Vector-Based RNAi

    Institute of Scientific and Technical Information of China (English)

    Linghu Nie; Meghna Das Thakur; Yumei Wang; Qin Su; Yongliang Zhao; Yunfeng Feng

    2010-01-01

    The direct negative impact of the transcriptional activity of one component on the second one in c/s is referred to as transcriptional interference (TI).U6 is a type Ⅲ RNA polymerase Ⅲ promoter commonly used for driving small hairpin RNA (shRNA) expression in vector-based RNAi.In the design and construction of viral vectors,multiple transcription units may be arranged in close proximity in a space-limited vector.Determining if U6 promoter activity can be affected by TI is critical for the expression of target shRNA in gene therapy or loss-of-function studies.In this research,we designed and implemented a modified retroviral system where shRNA and exogenous gene expressions were driven by two independent transcriptional units.We arranged U6 promoter driving.shRNA expression and UbiC promoter in two promoter arrangements.In primary macrophages,we found U6 promoter activity was inhibited by UbiC promoter when in the divergent arrangement but not in tandem.In contrast,PKG promoter had no such negative impact.Instead of enhancing U6 promoter activity,CMV enhancer had significant negative impact on U6 promoter activity in the presence of UbiC promoter.Our results indicate that U6 promoter activity can be affected by TI in a proximal promoter-specific and arrangement-dependent manner.

  15. Control of intestinal promoter activity of the cellular migratory regulator gene ELMO3 by CDX2 and SP1

    DEFF Research Database (Denmark)

    Coskun, Mehmet; Boyd, Mette; Olsen, Jørgen;

    2010-01-01

    An important aspect of the cellular differentiation in the intestine is the migration of epithelial cells from the crypt to the villus tip. As homeodomaine transcription factor CDX2 has been suggested to influence cell migration, we performed a genome-wide promoter analysis for CDX2 binding...... migration. However, no information is available about the transcriptional regulation of the ELMO3 gene. The aim of this study was to investigate the potential role of CDX2 in the regulation of the ELMO3 promoter activity. Electrophoretic mobility shift assays showed that CDX2 bound to conserved CDX2...... sequences and mutations of the CDX2-binding sites, significantly reduced the promoter activity. Reporter gene assays demonstrated that the region mediating ELMO3 basal transcriptional activity to be located between -270 and -31 bp. Sequence analysis revealed no typical TATA-box, but four GC-rich sequences...

  16. Regulation and autoregulation of the promoter for the latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus.

    Science.gov (United States)

    Jeong, Joseph H; Orvis, Joshua; Kim, Jong Wook; McMurtrey, Curtis P; Renne, Rolf; Dittmer, Dirk P

    2004-04-16

    Kaposi's sarcoma-associated herpesvirus (KSHV) or human herpesvirus 8 has been established as the etiological agent of Kaposi's sarcoma and certain AIDS-associated lymphomas. KSHV establishes latent infection in these tumors, invariably expressing high levels of the viral latency-associated nuclear antigen (LANA) protein. LANA is necessary and sufficient to maintain the KSHV episome. It also modulates viral and cellular transcription and has been implicated directly in oncogenesis because of its ability to bind to the p53 and pRb tumor suppressor proteins. Previously, we identified the LANA promoter (LANAp) and showed that it was positively regulated by LANA itself. Here, we present a detailed mutational analysis and define cis-acting elements and trans-acting factors for the core LANAp. We found that a downstream promoter element, TATA box, and GC box/Sp1 site at -29 are all individually required for activity. This architecture places LANAp into the small and unusual group of eukaryotic promoters that contain both the downstream promoter element and TATA element but lack a defined initiation site. Furthermore, we demonstrate that LANA regulates its own promoter via its C-terminal domain and does bind to a defined site within the core promoter.

  17. MiR-217 is down-regulated in psoriasis and promotes keratinocyte differentiation via targeting GRHL2

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Haigang; Hou, Liyue; Liu, Jingjing; Li, Zhiming, E-mail: lizm_1001@sina.com

    2016-02-26

    MiR-217 is a well-known tumor suppressor, and its down-regulation has been shown in a wide range of solid and leukaemic cancers. However, the biological role of miR-217 in psoriasis pathogenesis, especially in keratinocyte hyperproliferation and differentiation, is not clearly understood. In this study, we found the expression of miR-217 was markedly down-regulated in psoriasis keratinocytes of psoriatic patients. In addition, overexpression of miR-217 inhibited the proliferation and promoted the differentiation of primary human keratinocytes. On the contrary, inhibition of endogenous miR-217 increased cell proliferation and delayed differentiation. Furthermore, Grainyhead-like 2 (GRHL2) was identified as a direct target of miR-217 by luciferase reporter assay. The expression of miR-217 and GRHL2 was inversely correlated in both transfected keratinocytes and in psoriasis lesional skin. Moreover, knocking down GRHL2 expression by siRNA enhanced keratinocyte differentiation. Taken together, our results demonstrate a role for miR-217 in the regulation of keratinocyte differentiation, partially through the regulation of GRHL2. - Highlights: • miR-217 is down-regulated in psoriasis skin lesions. • miR-217 inhibits the proliferation and promotes differentiation of keratinocytes. • GRHL2 is a novel target of miR-217 in keratinocytes. • GRHL2 is up-regulated and inversely correlated with miR-217 in psoriasis skin lesions.

  18. Tumor microenvironment tenascin-C promotes glioblastoma invasion and negatively regulates tumor proliferation.

    Science.gov (United States)

    Xia, Shuli; Lal, Bachchu; Tung, Brian; Wang, Shervin; Goodwin, C Rory; Laterra, John

    2016-04-01

    Glioblastoma (GBM) is the most frequent and aggressive primary brain tumor in adults. Recent research on cancer stroma indicates that the brain microenvironment plays a substantial role in tumor malignancy and treatment responses to current antitumor therapy. In this work, we have investigated the effect of alterations in brain tumor extracellular matrix tenascin-C (TNC) on brain tumor growth patterns including proliferation and invasion. Since intracranial xenografts from patient-derived GBM neurospheres form highly invasive tumors that recapitulate the invasive features demonstrated in human patients diagnosed with GBM, we studied TNC gain-of-function and loss-of function in these GBM neurospheres in vitro and in vivo. TNC loss-of-function promoted GBM neurosphere cell adhesion and actin cytoskeleton organization. Yet, TNC loss-of-function or exogenous TNC had no effect on GBM neurosphere cell growth in vitro. In animal models, decreased TNC in the tumor microenvironment was accompanied by decreased tumor invasion and increased tumor proliferation, suggesting that TNC regulates the "go-or-grow" phenotypic switch of glioma in vivo. We demonstrated that decreased TNC in the tumor microenvironment modulated behaviors of stromal cells including endothelial cells and microglia, resulting in enlarged tumor blood vessels and activated microglia in tumors. We further demonstrated that tumor cells with decreased TNC expression are sensitive to anti-proliferative treatment in vitro. Our findings suggest that detailed understanding of how TNC in the tumor microenvironment influences tumor behavior and the interactions between tumor cells and surrounding nontumor cells will benefit novel combinatory antitumor strategies to treat malignant brain tumors. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. PARM-1 promotes cardiomyogenic differentiation through regulating the BMP/Smad signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Naohiko [Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566 (Japan); Takahashi, Tomosaburo, E-mail: ttaka@koto.kpu-m.ac.jp [Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566 (Japan); Ogata, Takehiro; Adachi, Atsuo; Imoto-Tsubakimoto, Hiroko [Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566 (Japan); Ueyama, Tomomi, E-mail: toueyama-circ@umin.ac.jp [Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566 (Japan); Matsubara, Hiroaki [Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566 (Japan)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer PARM-1 expression is induced during cardiomyogenesis. Black-Right-Pointing-Pointer PARM-1 expression precedes Nkx2.5 and Tbx5 during cardiomyogenesis. Black-Right-Pointing-Pointer PARM-1 activates BMP/Smad signaling. Black-Right-Pointing-Pointer PARM-1 enhances cardiac specification, resulting in promoted cardiomyogenesis. -- Abstract: PARM-1, prostatic androgen repressed message-1, is an endoplasmic reticulum (ER) molecule that is involved in ER stress-induced apoptosis in cardiomyocytes. In this study, we assessed whether PARM-1 plays a role in the differentiation of stem cells into cardiomyocytes. While PARM-1 was not expressed in undifferentiated P19CL6 embryonic carcinoma cells, PARM-1 expression was induced during cardiomyogenic differentiation. This expression followed expression of mesodermal markers, and preceded expression of cardiac transcription factors. PARM-1 overexpression did not alter the expression of undifferentiated markers and the proliferative property in undifferentiated P19CL6 cells. Expression of cardiac transcription factors during cardiomyogenesis was markedly enhanced by overexpression of PARM-1, while expression of mesodermal markers was not altered, suggesting that PARM-1 is involved in the differentiation from the mesodermal lineage to cardiomyocytes. Furthermore, overexpression of PARM-1 induced BMP2 mRNA expression in undifferentiated P19CL6 cells and enhanced both BMP2 and BMP4 mRNA expression in the early phase of cardiomyogenesis. PARM-1 overexpression also enhanced phosphorylation of Smads1/5/8. Thus, PARM-1 plays an important role in the cardiomyogenic differentiation of P19CL6 cells through regulating BMP/Smad signaling pathways, demonstrating a novel role of PARM-1 in the cardiomyogenic differentiation of stem cells.

  20. Ena/VASP proteins regulate activated T-cell trafficking by promoting diapedesis during transendothelial migration.

    Science.gov (United States)

    Estin, Miriam L; Thompson, Scott B; Traxinger, Brianna; Fisher, Marlie H; Friedman, Rachel S; Jacobelli, Jordan

    2017-04-04

    Vasodilator-stimulated phosphoprotein (VASP) and Ena-VASP-like (EVL) are cytoskeletal effector proteins implicated in regulating cell morphology, adhesion, and migration in various cell types. However, the role of these proteins in T-cell motility, adhesion, and in vivo trafficking remains poorly understood. This study identifies a specific role for EVL and VASP in T-cell diapedesis and trafficking. We demonstrate that EVL and VASP are selectively required for activated T-cell trafficking but are not required for normal T-cell development or for naïve T-cell trafficking to lymph nodes and spleen. Using a model of multiple sclerosis, we show an impairment in trafficking of EVL/VASP-deficient activated T cells to the inflamed central nervous system of mice with experimental autoimmune encephalomyelitis. Additionally, we found a defect in trafficking of EVL/VASP double-knockout (dKO) T cells to the inflamed skin and secondary lymphoid organs. Deletion of EVL and VASP resulted in the impairment in α4 integrin (CD49d) expression and function. Unexpectedly, EVL/VASP dKO T cells did not exhibit alterations in shear-resistant adhesion to, or in crawling on, primary endothelial cells under physiologic shear forces. Instead, deletion of EVL and VASP impaired T-cell diapedesis. Furthermore, T-cell diapedesis became equivalent between control and EVL/VASP dKO T cells upon α4 integrin blockade. Overall, EVL and VASP selectively mediate activated T-cell trafficking by promoting the diapedesis step of transendothelial migration in a α4 integrin-dependent manner.

  1. Twist1 directly regulates genes that promote cell proliferation and migration in developing heart valves.

    Directory of Open Access Journals (Sweden)

    Mary P Lee

    Full Text Available Twist1, a basic helix-loop-helix transcription factor, is expressed in mesenchymal precursor populations during embryogenesis and in metastatic cancer cells. In the developing heart, Twist1 is highly expressed in endocardial cushion (ECC valve mesenchymal cells and is down regulated during valve differentiation and remodeling. Previous studies demonstrated that Twist1 promotes cell proliferation, migration, and expression of primitive extracellular matrix (ECM molecules in ECC mesenchymal cells. Furthermore, Twist1 expression is induced in human pediatric and adult diseased heart valves. However, the Twist1 downstream target genes that mediate increased cell proliferation and migration during early heart valve development remain largely unknown. Candidate gene and global gene profiling approaches were used to identify transcriptional targets of Twist1 during heart valve development. Candidate target genes were analyzed for evolutionarily conserved regions (ECRs containing E-box consensus sequences that are potential Twist1 binding sites. ECRs containing conserved E-box sequences were identified for Twist1 responsive genes Tbx20, Cdh11, Sema3C, Rab39b, and Gadd45a. Twist1 binding to these sequences in vivo was determined by chromatin immunoprecipitation (ChIP assays, and binding was detected in ECCs but not late stage remodeling valves. In addition identified Twist1 target genes are highly expressed in ECCs and have reduced expression during heart valve remodeling in vivo, which is consistent with the expression pattern of Twist1. Together these analyses identify multiple new genes involved in cell proliferation and migration that are differentially expressed in the developing heart valves, are responsive to Twist1 transcriptional function, and contain Twist1-responsive regulatory sequences.

  2. Agro-food industry growth and obesity in China: what role for regulating food advertising and promotion and nutrition labelling?

    Science.gov (United States)

    Hawkes, C

    2008-03-01

    Taking a food supply chain approach, this paper examines the regulation of food marketing and nutrition labelling as strategies to help combat obesity in China in an era of rapid agro-food industry growth. China is the largest food producer and consumer in the world. Since the early 1980s, the agro-food industry has undergone phenomenal expansion throughout the food supply chain, from agricultural production to trade, agro-food processing to food retailing, and from food service to advertising and promotion. This industry growth, alongside related socioeconomic changes and government policies, has encouraged a 'nutrition transition'. China's population, especially in urban areas, is now consuming significantly more energy from dietary fat, which is leading to higher rates of obesity. Regulation of food advertising and promotion and nutrition labelling has the potential to help prevent the further growth of obesity in China and encourage the agro-food industry to supplier healthier foods. Government legislation and guidance, as well as self-regulation and voluntary initiatives, are needed to reduce children's exposure to food advertising and promotion, and increase the effectiveness of nutrition labelling. Policies on food marketing and nutrition labelling should be adapted to the China context, and accompanied by further action throughout the food supply chain. Given China's unique characteristics and position in the world today, there is an opportunity for the government and the agro-food industry to lead the world by creating a balanced, health promoting model of complementary legislation and industry action.

  3. Transcriptional regulation of the differentiation-linked human K4 promoter is dependent upon esophageal-specific nuclear factors.

    Science.gov (United States)

    Opitz, O G; Jenkins, T D; Rustgi, A K

    1998-09-11

    The stratified squamous epithelium comprises actively proliferating basal cells that undergo a program of differentiation accompanied by morphological, biochemical, and genetic changes. The transcriptional regulatory signals and the genes that orchestrate this switch from proliferation to differentiation can be studied through the keratin gene family. Given the localization of keratin 4 (K4) to the early differentiated suprabasal compartment and having previously demonstrated that targeted disruption of this gene in murine embryonic stem cells results in impairment of the normal differentiation program in esophageal and corneal epithelial cells, we studied the transcriptional regulation of the human K4 promoter. A panel of K4 promoter deletions were found in transient transfection assays to be predominantly active in esophageal and corneal cell lines. A critical cis-regulatory element resides between -163 and -140 bp and contains an inverted CACACCT motif. A site-directed mutated version of this motif within the K4 promoter renders it inactive, whereas the wild-type version is active in a heterologous promoter system. It specifically binds esophageal-specific zinc-dependent transcriptional factors. Our studies demonstrate that regulation of the human K4 promoter is in part mediated through tissue-specific transcriptional factors.

  4. DNA methylation of specific CpG sites in the promoter region regulates the transcription of the mouse oxytocin receptor.

    Directory of Open Access Journals (Sweden)

    Shimrat Mamrut

    Full Text Available Oxytocin is a peptide hormone, well known for its role in labor and suckling, and most recently for its involvement in mammalian social behavior. All central and peripheral actions of oxytocin are mediated through the oxytocin receptor, which is the product of a single gene. Transcription of the oxytocin receptor is subject to regulation by gonadal steroid hormones, and is profoundly elevated in the uterus and mammary glands during parturition. DNA methylation is a major epigenetic mechanism that regulates gene transcription, and has been linked to reduced expression of the oxytocin receptor in individuals with autism. Here, we hypothesized that transcription of the mouse oxytocin receptor is regulated by DNA methylation of specific sites in its promoter, in a tissue-specific manner. Hypothalamus-derived GT1-7, and mammary-derived 4T1 murine cell lines displayed negative correlations between oxytocin receptor transcription and methylation of the gene promoter, and demethylation caused a significant enhancement of oxytocin receptor transcription in 4T1 cells. Using a reporter gene assay, we showed that methylation of specific sites in the gene promoter, including an estrogen response element, significantly inhibits transcription. Furthermore, methylation of the oxytocin receptor promoter was found to be differentially correlated with oxytocin receptor expression in mammary glands and the uterus of virgin and post-partum mice, suggesting that it plays a distinct role in oxytocin receptor transcription among tissues and under different physiological conditions. Together, these results support the hypothesis that the expression of the mouse oxytocin receptor gene is epigenetically regulated by DNA methylation of its promoter.

  5. Promoter Analysis Reveals Globally Differential Regulation of Human Long Non-Coding RNA and Protein-Coding Genes

    KAUST Repository

    Alam, Tanvir

    2014-10-02

    Transcriptional regulation of protein-coding genes is increasingly well-understood on a global scale, yet no comparable information exists for long non-coding RNA (lncRNA) genes, which were recently recognized to be as numerous as protein-coding genes in mammalian genomes. We performed a genome-wide comparative analysis of the promoters of human lncRNA and protein-coding genes, finding global differences in specific genetic and epigenetic features relevant to transcriptional regulation. These two groups of genes are hence subject to separate transcriptional regulatory programs, including distinct transcription factor (TF) proteins that significantly favor lncRNA, rather than coding-gene, promoters. We report a specific signature of promoter-proximal transcriptional regulation of lncRNA genes, including several distinct transcription factor binding sites (TFBS). Experimental DNase I hypersensitive site profiles are consistent with active configurations of these lncRNA TFBS sets in diverse human cell types. TFBS ChIP-seq datasets confirm the binding events that we predicted using computational approaches for a subset of factors. For several TFs known to be directly regulated by lncRNAs, we find that their putative TFBSs are enriched at lncRNA promoters, suggesting that the TFs and the lncRNAs may participate in a bidirectional feedback loop regulatory network. Accordingly, cells may be able to modulate lncRNA expression levels independently of mRNA levels via distinct regulatory pathways. Our results also raise the possibility that, given the historical reliance on protein-coding gene catalogs to define the chromatin states of active promoters, a revision of these chromatin signature profiles to incorporate expressed lncRNA genes is warranted in the future.

  6. Cytokine Stimulation Promotes Glucose Uptake via Phosphatidylinositol-3 Kinase/Akt Regulation of Glut1 Activity and Trafficking

    Science.gov (United States)

    Wieman, Heather L.; Wofford, Jessica A.

    2007-01-01

    Cells require growth factors to support glucose metabolism for survival and growth. It is unclear, however, how noninsulin growth factors may regulate glucose uptake and glucose transporters. We show that the hematopoietic growth factor interleukin (IL)3, maintained the glucose transporter Glut1 on the cell surface and promoted Rab11a-dependent recycling of intracellular Glut1. IL3 required phosphatidylinositol-3 kinase activity to regulate Glut1 trafficking, and activated Akt was sufficient to maintain glucose uptake and surface Glut1 in the absence of IL3. To determine how Akt may regulate Glut1, we analyzed the role of Akt activation of mammalian target of rapamycin (mTOR)/regulatory associated protein of mTOR (RAPTOR) and inhibition of glycogen synthase kinase (GSK)3. Although Akt did not require mTOR/RAPTOR to maintain surface Glut1 levels, inhibition of mTOR/RAPTOR by rapamycin greatly diminished glucose uptake, suggesting Akt-stimulated mTOR/RAPTOR may promote Glut1 transporter activity. In contrast, inhibition of GSK3 did not affect Glut1 internalization but nevertheless maintained surface Glut1 levels in IL3-deprived cells, possibly via enhanced recycling of internalized Glut1. In addition, Akt attenuated Glut1 internalization through a GSK3-independent mechanism. These data demonstrate that intracellular trafficking of Glut1 is a regulated component of growth factor-stimulated glucose uptake and that Akt can promote Glut1 activity and recycling as well as prevent Glut1 internalization. PMID:17301289

  7. Regulation of mRNA Levels by Decay-Promoting Introns that Recruit the Exosome Specificity Factor Mmi1

    Directory of Open Access Journals (Sweden)

    Cornelia Kilchert

    2015-12-01

    Full Text Available In eukaryotic cells, inefficient splicing is surprisingly common and leads to the degradation of transcripts with retained introns. How pre-mRNAs are committed to nuclear decay is unknown. Here, we uncover a mechanism by which specific intron-containing transcripts are targeted for nuclear degradation in fission yeast. Sequence elements within these “decay-promoting” introns co-transcriptionally recruit the exosome specificity factor Mmi1, which induces degradation of the unspliced precursor and leads to a reduction in the levels of the spliced mRNA. This mechanism negatively regulates levels of the RNA helicase DDX5/Dbp2 to promote cell survival in response to stress. In contrast, fast removal of decay-promoting introns by co-transcriptional splicing precludes Mmi1 recruitment and relieves negative expression regulation. We propose that decay-promoting introns facilitate the regulation of gene expression. Based on the identification of multiple additional Mmi1 targets, including mRNAs, long non-coding RNAs, and sn/snoRNAs, we suggest a general role in RNA regulation for Mmi1 through transcript degradation.

  8. Mit1 Transcription Factor Mediates Methanol Signaling and Regulates the Alcohol Oxidase 1 (AOX1) Promoter in Pichia pastoris.

    Science.gov (United States)

    Wang, Xiaolong; Wang, Qi; Wang, Jinjia; Bai, Peng; Shi, Lei; Shen, Wei; Zhou, Mian; Zhou, Xiangshan; Zhang, Yuanxing; Cai, Menghao

    2016-03-18

    The alcohol oxidase 1 (AOX1) promoter (P AOX1) of Pichia pastoris is the most powerful and commonly used promoter for driving protein expression. However, mechanisms regulating its transcriptional activity are unclear. Here, we identified a Zn(II)2Cys6-type methanol-induced transcription factor 1 (Mit1) and elucidated its roles in regulating PAOX1 activity in response to glycerol and methanol. Mit1 regulated the expression of many genes involved in methanol utilization pathway, including AOX1, but did not participate in peroxisome proliferation and transportation of peroxisomal proteins during methanol metabolism. Structural analysis of Mit1 by performing domain deletions confirmed its specific and critical role in the strict repression of P AOX1 in glycerol medium. Importantly, Mit1, Mxr1, and Prm1, which positively regulated P AOX1 in response to methanol, were bound to P AOX1 at different sites and did not interact with each other. However, these factors cooperatively activated P AOX1 through a cascade. Mxr1 mainly functioned during carbon derepression, whereas Mit1 and Prm1 functioned during methanol induction, with Prm1 transmitting methanol signal to Mit1 by binding to the MIT1 promoter (P MIT1), thus increasingly expressing Mit1 and subsequently activating P AOX1.

  9. MicroRNA-210 is involved in the regulation of postmenopausal osteoporosis through promotion of VEGF expression and osteoblast differentiation.

    Science.gov (United States)

    Liu, Xiao-Dong; Cai, Feng; Liu, Liang; Zhang, Yan; Yang, An-Li

    2015-04-01

    MicroRNAs (miRNAs) are small non-protein-codingRNAs that function as negative gene expression regulators. miRNA-210 (miR-210) has recently been recognized in the pathogenesis of osteonecrosis associated with angiogenesis. Herein we aimed to explore the clinical significance of miR-210 treatment for postmenopausal osteoporosis. The expression of miR-210 was detected in bone marrow mesenchymal stem cells (BMSCs) in vitro and miR-210 significantly promoted the expression of vascular edothelial growth factor (VEGF) in BMSCs in a time-dependent manner (posteoporosis through promotion the VEGF expression and osteoblast differentiation.

  10. Naringin promotes fracture healing through stimulation of angiogenesis by regulating the VEGF/VEGFR-2 signaling pathway in osteoporotic rats.

    Science.gov (United States)

    Song, Nan; Zhao, Zhihu; Ma, Xinlong; Sun, Xiaolei; Ma, Jianxiong; Li, Fengbo; Sun, Lei; Lv, Jianwei

    2017-01-05

    Postmenopausal osteoporosis is characterized by a reduction in the number of sinusoidal and arterial capillaries in the bone marrow and reduced bone perfusion. Thus, osteogenesis and angiogenesis are coupled in the process of osteoporosis formation and fracture healing. Naringin is the main ingredient of the root Rhizoma Drynariae, a traditional Chinese medicine, and it has potential effects on promoting fracture healing. However, whether naringin stimulates angiogenesis in the process of bone healing is unclear. Here, we show that naringin promotes fracture healing through stimulating angiogenesis by regulating the VEGF/VEGFR-2 signaling pathway in osteoporotic rats.

  11. Regulation of gene expression in the protozoan parasite Entamoeba invadens: identification of core promoter elements and promoters with stage-specific expression patterns.

    Science.gov (United States)

    Manna, Dipak; Ehrenkaufer, Gretchen M; Singh, Upinder

    2014-10-01

    Developmental switching between life-cycle stages is a common feature among many pathogenic organisms. Entamoeba histolytica is an important human pathogen and is a leading parasitic cause of death globally. During its life cycle, Entamoeba converts between cysts (essential for disease transmission) and trophozoites (responsible for tissue invasion). Despite being central to its biology, the triggers that are involved in the developmental pathways of this parasite are not well understood. In order to define the transcriptional network associated with stage conversion we used Entamoeba invadens which serves as a model system for Entamoeba developmental biology, and performed RNA sequencing at different developmental time points. In this study RNA-Seq data was utilised to define basal transcriptional control elements as well as to identify promoters which regulate stage-specific gene expression patterns. We discovered that the 5' and 3' untranslated regions of E. invadens genes are short, a median of 20 nucleotides (nt) and 26 nt respectively. Bioinformatics analysis of DNA sequences proximate to the start and stop codons identified two conserved motifs: (i) E. invadens Core Promoter Motif - GAAC-Like (EiCPM-GL) (GAACTACAAA), and (ii) E. invadens 3'-U-Rich Motif (Ei3'-URM) (TTTGTT) in the 5' and 3' flanking regions, respectively. Electrophoretic mobility shift assays demonstrated that both motifs specifically bind nuclear protein(s) from E. invadens trophozoites. Additionally, we identified select genes with stage-specific expression patterns and analysed the ability of each gene promoter to drive a luciferase reporter gene during the developmental cycle. This approach confirmed three trophozoite-specific, four encystation-specific and two excystation-specific promoters. This work lays the framework for use of stage-specific promoters to express proteins of interest in a particular life-cycle stage, adding to the molecular toolbox for genetic manipulation of E

  12. Gene expression regulation in the plant growth promoting Bacillus atrophaeus UCMB-5137 stimulated by maize root exudates.

    Science.gov (United States)

    Mwita, Liberata; Chan, Wai Yin; Pretorius, Theresa; Lyantagaye, Sylvester L; Lapa, Svitlana V; Avdeeva, Lilia V; Reva, Oleg N

    2016-09-15

    Despite successful use of Plant Growth Promoting Rhizobacteria (PGPR) in agriculture, little is known about specific mechanisms of gene regulation facilitating the effective communication between bacteria and plants during plant colonization. Active PGPR strain Bacillus atrophaeus UCMB-5137 was studied in this research. RNA sequencing profiles were generated in experiments where root exudate stimulations were used to mimic interactions between bacteria and plants. It was found that the gene regulation in B. atrophaeus UCMB-5137 in response to the root exudate stimuli differed from the reported gene regulation at similar conditions in B. amyloliquefaciens FZB42, which was considered as a paradigm PGPR. This difference was explained by hypersensitivity of UCMB-5137 to the root exudate stimuli impelling it to a sessile root colonization behavior through the CcpA-CodY-AbrB regulation. It was found that the transcriptional factor DegU also could play an important role in gene regulations during plant colonization. A significant stress caused by the root exudates on in vitro cultivated B. atrophaeus UCMB-5137 was noticed and discussed. Multiple cases of conflicted gene regulations showed scantiness of our knowledge on the regulatory network in Bacillus. Some of these conflicted regulations could be explained by interference of non-coding RNA (ncRNA). Search through differential expressed intergenic regions revealed 49 putative loci of ncRNA regulated by the root exudate stimuli. Possible target mRNA were predicted and a general regulatory network of B. atrophaeus UCMB-5137 genome was designed.

  13. Differential regulation of the overlapping Kaposi's sarcoma-associated herpesvirus vGCR (orf74) and LANA (orf73) promoters.

    Science.gov (United States)

    Jeong, J; Papin, J; Dittmer, D

    2001-02-01

    Similar to that of other herpesviruses, Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8) lytic replication destroys the host cell, while the virus can persist in a latent state in synchrony with the host. During latency only a few genes are transcribed, and the question becomes one of what determines latent versus lytic gene expression. Here we undertake a detailed analysis of the latency-associated nuclear antigen (LANA [orf73]) promoter (LANAp). We characterized a minimal region that is necessary and sufficient to maintain high-level transcription in all tissues tested, including primary endothelial cells and B cells, which are the suspected natural host for KSHV. We show that in transient-transfection assays LANAp mimics the expression pattern observed for the authentic promoter in the context of the KSHV episome. Unlike other KSHV promoters tested thus far, LANAp is not affected by tetradecanoyl phorbol acetate or viral lytic cycle functions. It is, however, subject to control by LANA itself and cellular regulatory factors, such as p53. This is in contrast to the K14/vGCR (orf74) promoter, which overlaps LANAp and directs transcription on the opposite strand. We isolated a minimal cis-regulatory region sufficient for K14/vGCR promoter activity and show that it, too, mimics the regulation observed for the authentic viral promoter. In particular, we demonstrate that its activity is absolutely dependent on the immediate-early transactivator orf50, the KSHV homolog of the Epstein-Barr virus Rta transactivator.

  14. Regulation of expression from the glnA promoter of Escherichia coli in the absence of glutamine synthetase.

    OpenAIRE

    Rothstein, D M; Pahel, G; Tyler, B.; Magasanik, B

    1980-01-01

    One of the suspected regulators of glutamine synthetase [L-glutamate:ammonia ligase (ADP-forming), EC 6.3.1.2] in enteric bacteria is glutamine synthetase itself. We isolated Escherichia coli strains carrying fusions of the beta-galactosidase structural gene to the promoter of the glutamine synthetase gene, with the aid of the Casadaban Mud1 (ApR, lac, cts62) phage. Some aspects of regulation were retained in haploid fusion strains despite the absence of glutamine synthetase, whereas other as...

  15. Drosophila gypsy insulator and yellow enhancers regulate activity of yellow promoter through the same regulatory element.

    Science.gov (United States)

    Melnikova, Larisa; Kostuchenko, Margarita; Silicheva, Margarita; Georgiev, Pavel

    2008-04-01

    There is ample evidence that the enhancers of a promoterless yellow locus in one homologous chromosome can activate the yellow promoter in the other chromosome where the enhancers are inactive or deleted, which is indicative of a high specificity of the enhancer-promoter interaction in yellow. In this paper, we have found that the yellow sequence from -100 to -69 is essential for stimulation of the heterologous eve (TATA-containing) and white (TATA-less) promoters by the yellow enhancers from a distance. However, the presence of this sequence is not required when the yellow enhancers are directly fused to the heterologous promoters or are activated by the yeast GAL4 activator. Unexpectedly, the same promoter proximal region defines previously described promoter-specific, long-distance repression of the yellow promoter by the gypsy insulator on the mod(mdg4) ( u1 ) background. These finding suggest that proteins bound to the -100 to -69 sequence are essential for communication between the yellow promoter and upstream regulatory elements.

  16. FoxM1 Promotes Stemness and Radio-Resistance of Glioblastoma by Regulating the Master Stem Cell Regulator Sox2.

    Science.gov (United States)

    Lee, Yeri; Kim, Kang Ho; Kim, Dong Geon; Cho, Hee Jin; Kim, Yeonghwan; Rheey, Jinguen; Shin, Kayoung; Seo, Yun Jee; Choi, Yeon-Sook; Lee, Jung-Il; Lee, Jeongwu; Joo, Kyeung Min; Nam, Do-Hyun

    2015-01-01

    Glioblastoma (GBM) is the most aggressive and most lethal brain tumor. As current standard therapy consisting of surgery and chemo-irradiation provides limited benefit for GBM patients, novel therapeutic options are urgently required. Forkhead box M1 (FoxM1) transcription factor is an oncogenic regulator that promotes the proliferation, survival, and treatment resistance of various human cancers. The roles of FoxM1 in GBM remain incompletely understood, due in part to pleotropic nature of the FoxM1 pathway. Here, we show the roles of FoxM1 in GBM stem cell maintenance and radioresistance. ShRNA-mediated FoxM1 inhibition significantly impeded clonogenic growth and survival of patient-derived primary GBM cells with marked downregulation of Sox2, a master regulator of stem cell phenotype. Ectopic expression of Sox2 partially rescued FoxM1 inhibition-mediated effects. Conversely, FoxM1 overexpression upregulated Sox2 expression and promoted clonogenic growth of GBM cells. These data, with a direct binding of FoxM1 in the Sox2 promoter region in GBM cells, suggest that FoxM1 regulates stemness of primary GBM cells via Sox2. We also found significant increases in FoxM1 and Sox2 expression in GBM cells after irradiation both in vitro and in vivo orthotopic tumor models. Notably, genetic or a small-molecule FoxM1 inhibitor-mediated FoxM1 targeting significantly sensitized GBM cells to irradiation, accompanying with Sox2 downregulation. Finally, FoxM1 inhibition combined with irradiation in a patient GBM-derived orthotopic model significantly impeded tumor growth and prolonged the survival of tumor bearing mice. Taken together, these results indicate that the FoxM1-Sox2 signaling axis promotes clonogenic growth and radiation resistance of GBM, and suggest that FoxM1 targeting combined with irradiation is a potentially effective therapeutic approach for GBM.

  17. Hypomethylation of proximal CpG motif of interleukin-10 promoter regulates its expression in human rheumatoid arthritis

    Institute of Scientific and Technical Information of China (English)

    Li-hong FU; Chun-ling MA; Bin CONG; Shu-jin LI; Hai-ying CHEN; Jing-ge ZHANG

    2011-01-01

    Aim:The promoter of human interleukin-10 (IL10),a cytokine crucial for suppressing inflammation and regulating immune responses,contains an interspecies-conserved sequence with CpG motifs.The aim of this study was to investigate whether methylation of CpG motifs could regulate the expression of IL10 in rheumatoid arthritis (RA).Methods:Bioinformatic analysis was conducted to identify the interspecies-conserved sequence in human,macaque and mouse IL10 genes.Peripheral blood mononuclear cells (PBMCs) from 20 RA patients and 20 health controls were collected.The PBMCs from 6 patients were cultured in the presence or absence of 5-azacytidine (5 μmol/L).The mRNA and protein levels of IL10 were examined using RT-PCR and ELISA,respectively.The methylation of CpGs in the IL10 promoter was determined by pyrosequencing.Chromatin immunoprecipitation (CHIP) assays were performed to detect the cyclic AMP response element-binding protein (CREB)-DNA interactions.Results:One interspecies-conserved sequence was found within the IL10 promoter.The upstream CpGs at -408,-387,-385,and -355 bp were hypermethylated in PBMCs from both the RA patients and healthy controls.In contrast,the proximal CpG at -145 was hypomethylated to much more extent in the RA patients than in the healthy controls (P=0.016),which was correlated with higher IL10 mRNA and serum levels.In the 5-azacytidine-treated PBMCs,the CpG motifs were demethylated,and the expression levels of IL10 mRNA and protein was significantly increased.CHIP assays revealed increased phospho-CREB binding to the IL10 promoter.Conclusion:The methylation of the proximal CpGs in the IL10 promoter may regulate gene transcription in RA.

  18. Lsamp is implicated in the regulation of emotional and social behavior by use of alternative promoters in the brain.

    Science.gov (United States)

    Philips, Mari-Anne; Lilleväli, Kersti; Heinla, Indrek; Luuk, Hendrik; Hundahl, Christian Ansgar; Kongi, Karina; Vanaveski, Taavi; Tekko, Triin; Innos, Jürgen; Vasar, Eero

    2015-01-01

    Limbic system-associated membrane protein (LSAMP) is a neural cell adhesion molecule involved in neurite formation and outgrowth. The purpose of the present study was to characterize the distribution of alternatively transcribed Lsamp isoforms in the mouse brain and its implications on the regulation of behavior. Limbic system-associated membrane protein 1b transcript was visualized by using a mouse strain expressing beta-galactosidase under the control of Lsamp 1b promoter. The distribution of Lsamp 1a transcript and summarized expression of the Lsamp transcripts was investigated by non-radioactive in situ RNA hybridization analysis. Cross-validation was performed by using radioactive in situ hybridization with oligonucleotide probes. Quantitative RT-PCR was used to study correlations between the expression of Lsamp isoforms and behavioral parameters. The expression pattern of two promoters differs remarkably from the developmental initiation at embryonic day 12.5. Limbic system-associated membrane protein 1a promoter is active in "classic" limbic structures where the hippocampus and amygdaloid area display the highest expression. Promoter 1b is mostly active in the thalamic sensory nuclei and cortical sensory areas, but also in areas that regulate stress and arousal. Higher levels of Lsamp 1a transcript had significant correlations with all of the measures indicating higher trait anxiety in the elevated plus-maze test. Limbic system-associated membrane protein transcript levels in the hippocampus and ventral striatum correlated with behavioral parameters in the social interaction test. The data are in line with decreased anxiety and alterations in social behavior in Lsamp-deficient mice. We propose that Lsamp is involved in emotional and social operating systems by complex regulation of two alternative promoters.

  19. Survivin promoter-regulated oncolytic adenovirus with Hsp70 gene exerts effective antitumor efficacy in gastric cancer immunotherapy

    OpenAIRE

    Wang, Weiguo; Ji, Weidan; Hu, Huanzhang; Ma, Juming; Li, Xiaoya; Mei, Weiqun; Xu, Yang; Hu, Huizhen; Yan, Yan; Song, Qizhe; Li, Zhigang; Su, Changqing

    2013-01-01

    Gene therapy is a promising adjuvant therapeutic strategy for cancer treatment. To overcome the limitations of current gene therapy, such as poor transfection efficiency of vectors, low levels of transgene expression and lack of tumor targeting, the Survivin promoter was used to regulate the selective replication of oncolytic adenovirus in tumor cells, and the heat shock protein 70 (Hsp70) gene was loaded as the anticancer transgene to generate an AdSurp-Hsp70 viral therapy system. The effica...

  20. Lamellipodin promotes invasive 3D cancer cell migration via regulated interactions with Ena/VASP and SCAR/WAVE.

    Science.gov (United States)

    Carmona, G; Perera, U; Gillett, C; Naba, A; Law, A-L; Sharma, V P; Wang, J; Wyckoff, J; Balsamo, M; Mosis, F; De Piano, M; Monypenny, J; Woodman, N; McConnell, R E; Mouneimne, G; Van Hemelrijck, M; Cao, Y; Condeelis, J; Hynes, R O; Gertler, F B; Krause, M

    2016-09-29

    Cancer invasion is a hallmark of metastasis. The mesenchymal mode of cancer cell invasion is mediated by elongated membrane protrusions driven by the assembly of branched F-actin networks. How deregulation of actin regulators promotes cancer cell invasion is still enigmatic. We report that increased expression and membrane localization of the actin regulator Lamellipodin correlate with reduced metastasis-free survival and poor prognosis in breast cancer patients. In agreement, we find that Lamellipodin depletion reduced lung metastasis in an orthotopic mouse breast cancer model. Invasive 3D cancer cell migration as well as invadopodia formation and matrix degradation was impaired upon Lamellipodin depletion. Mechanistically, we show that Lamellipodin promotes invasive 3D cancer cell migration via both actin-elongating Ena/VASP proteins and the Scar/WAVE complex, which stimulates actin branching. In contrast, Lamellipodin interaction with Scar/WAVE but not with Ena/VASP is required for random 2D cell migration. We identified a phosphorylation-dependent mechanism that regulates selective recruitment of these effectors to Lamellipodin: Abl-mediated Lamellipodin phosphorylation promotes its association with both Scar/WAVE and Ena/VASP, whereas Src-dependent phosphorylation enhances binding to Scar/WAVE but not to Ena/VASP. Through these selective, regulated interactions Lamellipodin mediates directional sensing of epidermal growth factor (EGF) gradients and invasive 3D migration of breast cancer cells. Our findings imply that increased Lamellipodin levels enhance Ena/VASP and Scar/WAVE activities at the plasma membrane to promote 3D invasion and metastasis.

  1. CUDC-907 Promotes Bone Marrow Adipocytic Differentiation Through Inhibition of Histone Deacetylase and Regulation of Cell Cycle

    DEFF Research Database (Denmark)

    Ali, Dalia; Alshammari, Hassan; Vishnubalaji, Radhakrishnan

    2017-01-01

    with quantitative polymerase chain reaction showed significant increase in H3K9ac epigenetic marker in the promoter regions of AdipoQ, FABP4, PPARγ, KLF15, and CEBPA in CUDC-907-treated hBMSCs. Follow-up experiments corroborated that the inhibition of histone deacetylase (HDAC) activity enhanced adipocytic...... that adipocyte differentiation of hBMSCs is associated with complex changes in a number of epigenetic and genetic pathways, which can be targeted to regulate BMA formation....

  2. Theodore E. Woodward Award: lactase persistence SNPs in African populations regulate promoter activity in intestinal cell culture.

    Science.gov (United States)

    Sibley, Eric; Ahn, Jong Kun

    2011-01-01

    Lactase-phlorizin hydrolase, lactase, is the intestinal enzyme responsible for the digestion of the milk sugar lactose. The majority of the world's human population experiences a decline in expression of the lactase gene by late childhood (lactase non-persistence). Individuals with lactase persistence, however, continue to express high levels of the lactase gene throughout adulthood. Lactase persistence is a heritable autosomal dominant condition and has been strongly correlated with several single nucleotide polymorphisms (SNPs) located ∼14 kb upstream of the lactase gene in different ethnic populations: -13910*T in Europeans and -13907*G, -13915*G, and -14010*C in several African populations. The coincidence of the four SNPs clustering within 100 bp strongly suggests that this region mediates the lactase non-persistence/persistence phenotype. Having previously characterized the European SNP, we aimed to determine whether the African SNPs similarly mediate a functional role in regulating the lactase promoter. Human intestinal Caco-2 cells were transfected with lactase SNP/promoter-reporter constructs and assayed for promoter activity. The -13907*G and -13915*G SNPs result in a significant enhancement of lactase promoter activity relative to the ancestral lactase non-persistence genotype. Such differential regulation by the SNPs is consistent with a causative role in the mechanism specifying the lactase persistence phenotype.

  3. Rev-erb beta regulates the Srebp-1c promoter and mRNA expression in skeletal muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, Sathiya N.; Lau, Patrick; Crowther, Lisa M. [The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Qld 4072 (Australia); Cleasby, Mark E. [Diabetes and Obesity Research Program, Garvan Institute of Medical Research, St. Vincent' s Hospital, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010 (Australia); Millard, Susan; Leong, Gary M. [The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Qld 4072 (Australia); Cooney, Gregory J. [Diabetes and Obesity Research Program, Garvan Institute of Medical Research, St. Vincent' s Hospital, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010 (Australia); Muscat, George E.O., E-mail: g.muscat@imb.uq.edu.au [The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Qld 4072 (Australia)

    2009-10-30

    The nuclear hormone receptor, Rev-erb beta operates as a transcriptional silencer. We previously demonstrated that exogenous expression of Rev-erb{beta}{Delta}E in skeletal muscle cells increased Srebp-1c mRNA expression. We validated these in vitro observations by injection of an expression vector driving Rev-erb{beta}{Delta}E expression into mouse tibialis muscle that resulted in increased Srebp-1c mRNA expression. Paradoxically, Rev-erb{beta} siRNA expression in skeletal muscle cells repressed Srebp-1c expression, and indicated that Rev-erb{beta} expression was necessary for Srebp-1c expression. ChIP analysis demonstrated that Rev-erb{beta} was recruited to the Srebp-1c promoter. Moreover, Rev-erb{beta} trans-activated the Srebp-1c promoter, in contrast, Rev-erb{beta} efficiently repressed the Rev-erb{alpha} promoter, a previously characterized target gene. Finally, treatment with the Rev-erb agonist (hemin) (i) increased the trans-activation of the Srebp-1c promoter by Rev-erb{beta}; and (ii) increased Rev-erb{beta} and Srebp-1c mRNA expression. These data suggest that Rev-erb{beta} has the potential to activate gene expression, and is a positive regulator of Srebp-1c, a regulator of lipogenesis.

  4. Cell recognition molecule L1 promotes embryonic stem cell differentiation through the regulation of cell surface glycosylation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Department of Clinical Laboratory, Second Affiliated Hospital of Dalian Medical University, Dalian 116023 (China); Huang, Xiaohua [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Department of Clinical Biochemistry, College of Laboratory Medicine, Dalian Medical University, Dalian 116044 (China); An, Yue [Department of Clinical Laboratory, Second Affiliated Hospital of Dalian Medical University, Dalian 116023 (China); Ren, Feng [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Yang, Zara Zhuyun; Zhu, Hongmei; Zhou, Lei [The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650228 (China); Department of Anatomy and Developmental Biology, Monash University, Clayton 3800 (Australia); He, Xiaowen; Schachner, Melitta [Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ (United States); Xiao, Zhicheng, E-mail: zhicheng.xiao@monash.edu [The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650228 (China); Department of Anatomy and Developmental Biology, Monash University, Clayton 3800 (Australia); Ma, Keli, E-mail: makeli666@aliyun.com [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Li, Yali, E-mail: yalilipaper@gmail.com [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Department of Anatomy, National University of Singapore, Singapore 119078 (Singapore)

    2013-10-25

    Highlights: •Down-regulating FUT9 and ST3Gal4 expression blocks L1-induced neuronal differentiation of ESCs. •Up-regulating FUT9 and ST3Gal4 expression in L1-ESCs depends on the activation of PLCγ. •L1 promotes ESCs to differentiate into neuron through regulating cell surface glycosylation. -- Abstract: Cell recognition molecule L1 (CD171) plays an important role in neuronal survival, migration, differentiation, neurite outgrowth, myelination, synaptic plasticity and regeneration after injury. Our previous study has demonstrated that overexpressing L1 enhances cell survival and proliferation of mouse embryonic stem cells (ESCs) through promoting the expression of FUT9 and ST3Gal4, which upregulates cell surface sialylation and fucosylation. In the present study, we examined whether sialylation and fucosylation are involved in ESC differentiation through L1 signaling. RNA interference analysis showed that L1 enhanced differentiation of ESCs into neurons through the upregulation of FUT9 and ST3Gal4. Furthermore, blocking the phospholipase Cγ (PLCγ) signaling pathway with either a specific PLCγ inhibitor or knockdown PLCγ reduced the expression levels of both FUT9 and ST3Gal4 mRNAs and inhibited L1-mediated neuronal differentiation. These results demonstrate that L1 promotes neuronal differentiation from ESCs through the L1-mediated enhancement of FUT9 and ST3Gal4 expression.

  5. HCV core protein-induced down-regulation of microRNA-152 promoted aberrant proliferation by regulating Wnt1 in HepG2 cells.

    Directory of Open Access Journals (Sweden)

    Shifeng Huang

    Full Text Available BACKGROUND: Hepatitis C virus (HCV has been reported to regulate cellular microRNAs (miRNAs. The HCV core protein is considered to be a potential oncoprotein in HCV-related hepatocellular carcinoma (HCV-HCC, but HCV core-regulated miRNAs are largely unknown. Our preliminary experiments revealed significant down-regulation of microRNA-152 (miR-152 by HCV core protein in HepG2 cells. Through target gene prediction softwares, Wnt1 was predicted to be a potential target of miR-152. The present study was initiated to investigate whether miR-152 is aberrantly regulated by the HCV core protein, and involved in the regulation of the aberrant proliferation of HCV-HCC cells. METHODS: MiR-152 levels were examined by stem-loop real-time RT-PCR (SLqRT-PCR. Cell proliferation was analyzed by MTT and colony formation assay. Cell cycle analysis was performed by flow cytometry. Luciferase reporter assay was conducted to confirm miRNA-target association. Wnt1 expression was determined by real-time qPCR and Western blotting. RESULTS: HCV core protein significantly suppressed miR-152 expression, and led to significant Wnt1 up-regulation with a concomitant aberrantly promoted proliferation. Moreover, we validated that miR-152 inhibition promoted, while miR-152 mimics inhibited cell proliferation. Using, qRT-PCR and western blot, Wnt1 was demonstrated to be regulated by miR-152. Luciferase activity assay showed that while miR-152 mimics significantly reduced the luciferase activity by 83.76% (P<0.0001, miR-152 inhibitor showed no effect on luciferase reporter. Most notably, salvage expression of miR-152 after Ad-HCV core infection for 24 h almost totally reversed the proliferation-promoting effect of the HCV core protein, and meanwhile, reduced the expression of both Wnt1 mRNA and protein to basal levels. CONCLUSION: These findings provide important evidence that the reduced miR-152 expression by HCV core protein can indirectly lose an inhibitory effect on Wnt1

  6. Computational Approaches to Understand Transcriptional Regulation and Alternative Promoter Usage in Mammals

    DEFF Research Database (Denmark)

    Jørgensen, Mette

    understand and cure diseases. The focus of this thesis is transcriptional regulation. The main aim was to gain new insight into transcriptional regulation but a secondary goal was to develop new bioinformatic methods to facilitate future research. Three di erent studies are presented each focusing on di...... into proteins. All cells need di erent proteins in di erent amounts to function properly. The transcription and translation are therefore highly regulated and the regulation is not fully understood. It is important to learn as much as possible about both transcriptional and translational regulation to better...... erent aspects of transcriptional regulation. In the rst study we develop a machine learning framework to predict mRNA production, stalling and elongation of RNA polymerase II using publicly available histone modi cation data. The study reveals new pieces of information about the histone code. Besides...

  7. Construction of Smac gene-containing and human prostate specific antigen promoter-regulated vector and its expression

    Institute of Scientific and Technical Information of China (English)

    Yu Wu; Fuqing Zeng; Liang Wang; Yanbo Wang; Guiyi Liao

    2007-01-01

    Objective: To construct an eukaryotic expression vector containing Smac gene and study the expression efficiency and specificity of prostate specific antigen(PSA) enhancer/promoter in a possible targeted gene therapy scheme for prostate cancer. Methods: PSA enhancer (PSAE) and promoter (PSAP) sequences were amplified using PCR method. CMV and T7 promoters were deleted from pcDNA3.1-Smac and replaced by the two specific fragments to generate pPSAE-PSAP-Smac. After transfection into different cell lines, the status of cells was observed. And then, we determined the relative concentration of Smac mRNA in RT-PCR. Results: The recombinant plasmid of pPSAE-PSAP-Smac was successfully constructed. And only the prostate cancer cell line PC-3 was suppressed after transfection with pPSAE-PSAP-Smac. However, other nonprostate lines were not. Moreover,the concentration of Smac mRNA regulated by PSA promoter and enhancer was higher in comparison to the CMV promoter-driven control vectors. Conclusion: An expression vector containing the Smac gene (based on elements of the PSA gene regulatory sequences) has been developed and shown to function in prostate cancer cell lines which provides a solid platform for launching clinical studies.

  8. Unusual 5'-regulatory structure and regulation of the murine Mlc1 gene: Lack of promoter-specific functional elements

    Directory of Open Access Journals (Sweden)

    Darja Henseler

    2011-10-01

    Full Text Available Normal 0 21 false false false MicrosoftInternetExplorer4 The MLC1 gene is involved in an autosomal recessive neurological disorder, megalencephalic leucoencephalopathy with subcortical cysts (MLC, which is characterized by macrocephaly during the first year of life and swollen white matter (leucoencephaly. Variants of MLC1 have also been associated with psychiatric disorders such as schizophrenia, major depression and bipolar disorder. Currently, little is known about the encoded protein (MLC1. Judging from its similarity to other known proteins, it may serve as a trans-membrane transporter. However, the function of the encoded protein and its gene regulation has not been investigated successfully so far. We investigated the 5’ region of the murine Mlc1 with respect to regulatory elements for gene expression. A promoter search and an in silico analysis were conducted. Luciferase reporter gene constructs with potential promoter regions were created to study promoter activity in vitro. We found two alternative first exons for the murine Mlc1 but were not able to detect any promoter activity for the investigated reporter gene constructs in different cell lines, thus pointing to the presence of essential cis-acting elements far outside of the region. In silico analysis indicated an uncommon promoter structure for Mlc1, with CCAAT-boxes representing the only noticeable elements.

  9. Regulation of glnB gene promoter expression in Azospirillum brasilense by the NtrC protein.

    Science.gov (United States)

    Huergo, Luciano F; Souza, Emanuel M; Steffens, M Berenice R; Yates, M Geoffrey; Pedrosa, Fabio O; Chubatsu, Leda S

    2003-06-01

    In Azospirillum brasilense the glnB and glnA genes are clustered in an operon regulated by three different promoters: two located upstream of glnB (glnBp1-sigma(70), and glnBp2-sigma(N)) and one as yet unidentified promoter, in the glnBA intergenic region. We have investigated the expression of the glnB gene promoter using glnB-lacZ gene fusions, mutation analysis, heterologous expression and DNA band-shift assays. Deletion of the glnB promoter region showed that NtrC-binding sequences were essential for glnB expression under nitrogen limitation. The A. brasilense NtrC protein activated transcription of glnB-lacZ fusions in the heterologous genetic background of Escherichia coli. Expression of glnB-lacZ fusions in two A. brasilense ntrC mutants differed from that in the wild-type strain. In vitro studies also indicated that the purified NtrC protein from E. coli was able to bind to the glnB promoter region of A. brasilense. Our results show that the NtrC protein activates glnBglnA expression under nitrogen limitation in A. brasilense.

  10. Formin-like2 regulates Rho/ROCK pathway to promote actin assembly and cell invasion of colorectal cancer.

    Science.gov (United States)

    Zeng, Yuanfeng; Xie, Huijun; Qiao, Yudan; Wang, Jianmei; Zhu, Xiling; He, Guoyang; Li, Yuling; Ren, Xiaoli; Wang, Feifei; Liang, Li; Ding, Yanqing

    2015-10-01

    Formin-like2 (FMNL2) is a member of the diaphanous-related formins family, which act as effectors and upstream modulators of Rho GTPases signaling and control the actin-dependent processes, such as cell motility or invasion. FMNL2 has been identified as promoting the motility and metastasis in colorectal carcinoma (CRC). However, whether FMNL2 regulates Rho signaling to promote cancer cell invasion remains unclear. In this study, we demonstrated an essential role for FMNL2 in the activations of Rho/ROCK pathway, SRF transcription or actin assembly, and subsequent CRC cell invasion. FMNL2 could activate Rho/ROCK pathway, and required ROCK to promote CRC cell invasion. Moreover, FMNL2 promoted the formation of filopodia and stress fiber, and activated the SRF transcription in a Rho-dependent manner. We also demonstrated that FMNL2 was necessary for LPA-induced invasion, RhoA/ROCK activation, actin assembly and SRF activation. FMNL2 was an essential component of LPA signal transduction toward RhoA by directly interacting with LARG. LARG silence inhibited RhoA/ROCK pathway and CRC cell invasion. Collectively, these data indicate that FMNL2, acting as upstream of RhoA by interacting with LARG, can promote actin assembly and CRC cell invasion through a Rho/ROCK-dependent mechanism.

  11. Systematically reviewing the potential of concept mapping technologies to promote self-regulated learning in primary and secondary science education

    DEFF Research Database (Denmark)

    Stevenson, Matthew Peter; Hartmeyer, Rikke; Bentsen, Peter

    2017-01-01

    analysis assessing how each technology affects self-regulated learning through cognitive, metacognitive, and motivation strategies, according to Schraw et al. (2006)'s model. We suggest concept mapping technologies may affect self-regulated learning through enhancing these strategies to varying degrees....... Computer software was particularly useful for developing cognitive strategies through ease of use. Teaching agents were particularly useful for developing metacognitive strategies by coupling visualisation of knowledge patterns with performance monitoring, aided by a teaching metaphor. Finally, mobile......We systematically searched five databases to assess the potential of concept mapping-based technologies to promote self-regulated learning in science education. Our search uncovered 17 relevant studies that investigated seven different types of learning technologies. We performed a narrative...

  12. Promoting creativity in the electric utility industry under a regulated and/or de-regulated environment

    Energy Technology Data Exchange (ETDEWEB)

    Riley, H.W. Jr.

    1996-12-31

    Over the years, utilities have been going through cost cutting measures and efficiency improvements in an effort to be more competitive or stay competitive within their market territory. The next logical step for a utility to take is to promote Creativity. With a creative environment in place, utilities can keep pace with the changes in the industry and maintain or attain their competitive advantage. The goal of the creative electric utility work-force is to keep up with changes in the industry and become more competitive as the market becomes more competitive. Utilities can change the way they do business by utilizing an effectively trained and skilled work-force on the subject of creative thinking. Creativity within a work-force depends on the employees desire to understand difficult aspects of his or her life. This paper will provide the foundation for linking Creativity and the electric utility industry.

  13. MiR-138 indirectly regulates the MDR1 promoter by NF-κB/p65 silencing.

    Science.gov (United States)

    Requenez-Contreras, J L; López-Castillejos, E S; Hernández-Flores, R; Moreno-Eutimio, M A; Granados-Riveron, J T; Martinez-Ruiz, G U; Aquino-Jarquin, G

    2017-03-11

    MicroRNAs (miRNAs) are known to mediate post-transcriptional gene silencing in the cytoplasm and recent evidence indicates that may also possess nuclear roles in regulating gene expression. A previous study showed that miR-138 is involved in the multidrug resistance of leukemia cells through down-regulation of the drug efflux pump P-glycoprotein (P-gp), the protein encoded by the human multidrug-resistant ABCB1/MDR1 gene. However, the transcriptional regulatory mechanisms responsible remain to be elucidated. To deepen the description of the mechanism of transcriptional gene silencing on the MDR1 promoter, we initially performed a bioinformatics search for potential miR-138 binding sites in the MDR1 gene promoter sequence. Interestingly, we did not find miR-138 binding sites in this region, suggesting an indirect regulation. From six representative transcriptional factors involved in MDR1 gene regulation, an in silico analysis revealed that NF-κB/p65 has a specific binding site for miR-138. The results of luciferase reporter assay, western blot and flow cytometry shown here suggest that miR-138 might modulate the human MDR1 expression by inhibiting NF-κB/p65 as an indirect mechanism of MDR1 regulation. Furthermore, employing the human macrophage-like cell line U937 we observed comparable results with NF-κB/p65 down-regulation and we also observed a significant reduction in the IL-6 and TNF-α mRNA, as well as in their secreted pro-inflammatory cytokines following miR-138 expression, suggesting that canonical NF-κB target genes might also be potential targets for miR-138 in leukemia cells.

  14. BRAF activated non-coding RNA (BANCR) promoting gastric cancer cells proliferation via regulation of NF-κB1

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhi-Xin; Liu, Zhi-Qiang; Jiang, Biao; Lu, Xin-Yang; Ning, Xiao-Fei [Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University, Jining 272029 (China); Yuan, Chuan-Tao [Department of Pathology, Affiliated Hospital of Jining Medical University, Jining 272029 (China); Wang, Ai-Liang, E-mail: wang_ailiang@126.com [Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University, Jining 272029 (China)

    2015-09-18

    Background and objective: Long non-coding RNA, BANCR, has been demonstrated to contribute to the proliferation and migration of tumors. However, its molecular mechanism underlying gastric cancer is still unknown. In present study, we investigated whether BANCR was involved in the development of gastric cancer cells via regulation of NF-κB1. Methods: Human gastric cancer tissues were isolated as well as human gastric cell lines MGC803 and BGC823 were cultured to investigate the role of BANCR in gastric cancer. Results: BANCR expression was significantly up-regulated in gastric tumor tissues and gastric cell lines. Down-regulation of BANCR inhibited gastric cancer cell growth and promoted cell apoptosis, and it also contributed to a significant decrease of NF-κB1 (P50/105) expression and 3′UTR of NF-κB1 activity. Overexpression of NF-κB1 reversed the effect of BANCR on cancer cell growth and apoptosis. MiroRNA-9 (miR-9) targeted NF-κB1, and miR-9 inhibitor also reversed the effects of BANCR on gastric cancer cell growth and apoptosis. Conclusion: BANCR was highly expressed both in gastric tumor tissues and in cancer cells. NF-κB1 and miR-9 were involved in the role of BANCR in gastric cancer cell growth and apoptosis. - Highlights: • BANCR up-regulated in gastric cancer (GC) tissues and cell lines MGC803 and BGC823. • Down-regulation of BANCR inhibited GC cell growth and promoted cell apoptosis. • Down-regulation of BANCR contributed to decreased 3′UTR of NF-κB1 and its expression. • Overexpressed NF-κB1 reversed the effect of BANCR on GC cell growth. • miR-9 inhibitor reversed the effect of BANCR on cancer GC cell growth.

  15. Targeting Vulnerabilities to Risky Behavior: An Intervention for Promoting Adaptive Emotion Regulation in Adolescents

    Science.gov (United States)

    Claro, Anthony; Boulanger, Marie-Michelle; Shaw, Steven R.

    2015-01-01

    The paper examined the effectiveness of an in-school intervention for adolescents designed to target emotional regulation skills related to risky behaviors. The Cognitive Emotion Regulation Intended for Youth (CERTIFY) program was delivered to at-risk adolescents in Montreal, Canada. Participants were drawn from an alternative high school and a…

  16. A synthetic hybrid promoter for xylose-regulated control of gene expression in Saccharomyces yeasts

    Science.gov (United States)

    Metabolism of non-glucose carbon sources is often highly regulated at the transcriptional and post-translational levels. This level of regulation is lacking in Saccharomyces cerevisiae strains engineered to metabolize xylose. To better control transcription in S. cerevisiae, the xylose-dependent, DN...

  17. Potential utility of natural products as regulators of breast cancer-associated aromatase promoters

    Directory of Open Access Journals (Sweden)

    Walker Larry A

    2011-06-01

    Full Text Available Abstract Aromatase, the key enzyme in estrogen biosynthesis, converts androstenedione to estrone and testosterone to estradiol. The enzyme is expressed in various tissues such as ovary, placenta, bone, brain, skin, and adipose tissue. Aromatase enzyme is encoded by a single gene CYP 19A1 and its expression is controlled by tissue-specific promoters. Aromatase mRNA is primarily transcribed from promoter I.4 in normal breast tissue and physiological levels of aromatase are found in breast adipose stromal fibroblasts. Under the conditions of breast cancer, as a result of the activation of a distinct set of aromatase promoters (I.3, II, and I.7 aromatase expression is enhanced leading to local overproduction of estrogen that promotes breast cancer. Aromatase is considered as a potential target for endocrine treatment of breast cancer but due to nonspecific reduction of aromatase activity in other tissues, aromatase inhibitors (AIs are associated with undesirable side effects such as bone loss, and abnormal lipid metabolism. Inhibition of aromatase expression by inactivating breast tumor-specific aromatase promoters can selectively block estrogen production at the tumor site. Although several synthetic chemical compounds and nuclear receptor ligands are known to inhibit the activity of the tumor-specific aromatase promoters, further development of more specific and efficacious drugs without adverse effects is still warranted. Plants are rich in chemopreventive agents that have a great potential to be used in chemotherapy for hormone dependent breast cancer which could serve as a source for natural AIs. In this brief review, we summarize the studies on phytochemicals such as biochanin A, genistein, quercetin, isoliquiritigenin, resveratrol, and grape seed extracts related to their effect on the activation of breast cancer-associated aromatase promoters and discuss their aromatase inhibitory potential to be used as safer chemotherapeutic agents for

  18. Genistein affects HER2 protein concentration, activation, and promoter regulation in BT-474 human breast cancer cells.

    Science.gov (United States)

    Sakla, Mary S; Shenouda, Nader S; Ansell, Pete J; Macdonald, Ruth S; Lubahn, Dennis B

    2007-08-01

    The HER2 proto-oncogene, a member of the epidermal growth factor receptor family, is overexpressed in 20-30% of breast cancers. Genistein, the main soy isoflavone, interacts with estrogen receptors (ER) and it is also a potent tyrosine kinase inhibitor. Previously, our laboratory found that genistein delayed mammary tumor onset in transgenic mice that overexpress HER2 gene. Our goal was to define the mechanism through which genistein affects mammary tumorigenesis in HER2 overexpressing mice. We hypothesized that genistein inhibits HER2 activation and expression through ER-dependent and ER-independent mechanisms. Genistein inhibited total HER2 protein expression and tyrosine phosphorylation in BT-474, an ERalpha (-) and ERbeta (+) human breast cancer cell line, however, E2 had no effect. Taken together, these data suggest that genistein has an ER-independent inhibitory effect, presumably, through tyrosine kinase inhibition activity. Genistein at 1.0 microM mimicked E2 and down-regulated HER2 protein phosphorylation when BT-474 was co-transfected with ERalpha, but not ERbeta. Although E2 and overexpression of HER2 can promote mammary tumorigenesis, an inverse relationship between ER expression and HER2 overexpression has been found in human breast cancer. We cloned a 500-bp promoter region upstream of the HER2 transcription initiation site. Co-transfection with ERalpha, but not with ERbeta, down-regulated HER2 promoter reporter in BT-474. At concentrations > or =1 microM, genistein inhibited HER2 promoter reporter in the absence of ERalpha. In conclusion, genistein at > or =1 microM inhibited HER2 protein expression, phosphorylation, and promoter activity through an ER-independent mechanism. In the presence of ERalpha, genistein mimicked E2 and inhibited HER2 protein phosphorylation. These data support genistein's chemo-prevention and potential chemo-therapeutic roles in breast cancer.

  19. Expression of factor H binding protein of meningococcus responds to oxygen limitation through a dedicated FNR-regulated promoter.

    Science.gov (United States)

    Oriente, Francesca; Scarlato, Vincenzo; Delany, Isabel

    2010-02-01

    Factor H binding protein (fHBP) is a surface-exposed lipoprotein in Neisseria meningitidis, which is a component of several investigational vaccines against serogroup B meningococcus (MenB) currently in development. fHBP enables the bacterium to evade complement-mediated killing by binding factor H, a key downregulator of the complement alternative pathway, and, in addition, fHBP is important for meningococcal survival in the presence of the antimicrobial peptide LL-37. In this study, we investigate the molecular mechanisms involved in transcription and regulation of the fHBP-encoding gene, fhbp. We show that the fHBP protein is expressed from two independent transcripts: one bicistronic transcript that includes the upstream gene and a second shorter monocistronic transcript from its own dedicated promoter, P(fhbp). Transcription from the promoter P(fhbp) responds to oxygen limitation in an FNR-dependent manner, and, accordingly, the FNR protein binds to a P(fhbp) probe in vitro. Furthermore, expression in meningococci of a constitutively active FNR mutant results in the overexpression of the fHBP protein. Finally, the analysis of fHBP regulation was extended to a panel of strains expressing different fHBP allelic variants at different levels, and we demonstrate that FNR is involved in the regulation of this antigen in all but one of the strains tested. Our data suggest that oxygen limitation may play an important role in inducing the expression of fHBP from a dedicated FNR-regulated promoter. This implies a role for this protein in microenvironments lacking oxygen, for instance in the submucosa or intracellularly, in addition to its demonstrated role in serum resistance in the blood.

  20. Use of in vivo-regulated promoters to deliver antigens from attenuated Salmonella enterica var. Typhimurium.

    Science.gov (United States)

    Dunstan, S J; Simmons, C P; Strugnell, R A

    1999-10-01

    This study describes the construction and analysis of three in vivo-inducible promoter expression plasmids, containing pnirB, ppagC, and pkatG, for the delivery of foreign antigens in the DeltaaroAD mutant of Salmonella enterica var. Typhimurium (hereafter referred to as S. typhimurium). The reporter genes encoding beta-galactosidase and firefly luciferase were used to assess the comparative levels of promoter activity in S. typhimurium in vitro in response to different induction stimuli and in vivo in immunized mice. It was determined that the ppagC construct directed the expression of more beta-galactosidase and luciferase in S. typhimurium than the pnirB and pkatG constructs, both in vitro and in vivo. The gene encoding the C fragment of tetanus toxin was expressed in the aroAD mutant of S. typhimurium (BRD509) under the control of the three promoters. Mice orally immunized with attenuated S. typhimurium expressing C fragment under control of the pagC promoter [BRD509(pKK/ppagC/C frag)] mounted the highest tetanus toxoid-specific serum antibody response. Levels of luciferase expression in vivo and C-fragment expression in vitro from the pagC promoter appeared to be equivalent to if not lower than the levels of expression detected with the constitutive trc promoter. However, mice immunized with BRD509(pKK/ppagC/C frag) induced significantly higher levels of tetanus toxoid-specific antibody than BRD509(pKK/C frag)-immunized mice, suggesting that the specific location of foreign antigen expression may be important for immunogenicity. Mutagenesis of the ribosome binding sites (RBS) in the three promoter/C fragment expression plasmids was also performed. Despite optimization of the RBS in the three different promoter elements, the expression levels in vivo and overall immunogenicity of C fragment when delivered to mice by attenuated S. typhimurium were not affected. These studies suggest that in vivo-inducible promoters may give rise to enhanced immunogenicity and

  1. Up-Regulated FASN Expression Promotes Transcoelomic Metastasis of Ovarian Cancer Cell through Epithelial-Mesenchymal Transition

    Directory of Open Access Journals (Sweden)

    Li Jiang

    2014-06-01

    Full Text Available Fatty acid synthase (FASN, responsible for the de novo synthesis of fatty acids, has been shown to act as an oncogene in various human cancers. However, the mechanisms by which FASN favors the progression of ovarian carcinoma remain unknown. In this study, we evaluated FASN expression in ovarian cancer and investigated how FASN regulates the aggressiveness of ovarian cancer cells. Our results show that increased FASN is associated with the peritoneal metastasis of ovarian cancers. Over-expression of FASN results in a significant increase of tumor burden in peritoneal dissemination, accompanied by augment in cellular colony formation and metastatic ability. Correspondingly, FASN knockdown using RNA interference in ovarian cancer cells inhibits the migration in vitro and experimental peritoneal dissemination in vivo. Mechanistic studies reveal that FASN promotes Epithelial-mesenchymal Transition (EMT via a transcriptional regulation of E-cadherin and N-cadherin, which is also confirmed by luciferase promoter activity analysis. Taken together, our work demonstrates that FASN promotes the peritoneal dissemination of ovarian cancer cells, at least in part through the induction of EMT. These findings suggest that FASN plays a critical role in the peritoneal metastasis of ovarian cancer. Targeting de novo lipogenesis may have a therapeutic potential for advanced ovarian cancer.

  2. mRNA Noise Reveals that Activators Induce a Biphasic Response in the Promoter Kinetics of Highly Regulated Genes

    Science.gov (United States)

    Quinn, Katie; To, Tsz-Leung; Maheshri, Narendra

    2012-02-01

    A dominant source of fluctuations in gene expression is thought to be the process of transcription. The statistics of these fluctuations arise from the kinetics of transcription. Multiple studies suggest the bulk of fluctuations can be understood by a simple process where genes are inactive for exponentially distributed times punctuated by geometric bursts of mRNA. Yet it's largely unknown how cis and trans factors affect the two lumped kinetic parameters, burst size and burst frequency, that describe this process. Importantly, how these parameters are regulated in a single gene can qualitatively affect the dynamical behavior of the network it is embedded within. Here, we ask whether transcriptional activators increase gene expression by increasing the burst size or burst frequency. We do so by deducing these parameters from steady-state mRNA distributions measured in individual yeast cells using single molecule mRNA FISH. We find that for both a synthetic and natural promoter, activators appear to first increase burst size, then burst frequency. We suggest this biphasic response may be common to all highly regulated genes and was previously unappreciated because of measurement techniques. Furthermore, its origins appear to relate to cis events at the promoter, and may arise from combinations of basal and activator-dependent bursts. Our measurements shed new light on transcriptional mechanisms and should assist in building synthetic promoters with tunable statistics.

  3. Transcriptional regulation of the bovine leukemia virus promoter by the cyclic AMP-response element modulator tau isoform.

    Science.gov (United States)

    Nguyên, Thi Lien-Anh; de Walque, Stéphane; Veithen, Emmanuelle; Dekoninck, Ann; Martinelli, Valérie; de Launoit, Yvan; Burny, Arsène; Harrod, Robert; Van Lint, Carine

    2007-07-20

    Bovine leukemia virus (BLV) expression is controlled at the transcriptional level through three Tax(BLV)-responsive elements (TxREs) responsive to the viral transactivator Tax(BLV). The cAMP-responsive element (CRE)-binding protein (CREB) has been shown to interact with CRE-like sequences present in the middle of each of these TxREs and to play critical transcriptional roles in both basal and Tax(BLV)-transactivated BLV promoter activity. In this study, we have investigated the potential involvement of the cAMP-response element modulator (CREM) in BLV transcriptional regulation, and we have demonstrated that CREM proteins were expressed in BLV-infected cells and bound to the three BLV TxREs in vitro. Chromatin immunoprecipitation assays using BLV-infected cell lines demonstrated in the context of chromatin that CREM proteins were recruited to the BLV promoter TxRE region in vivo. Functional studies, in the absence of Tax(BLV), indicated that ectopic CREMtau protein had a CRE-dependent stimulatory effect on BLV promoter transcriptional activity. Cross-link of the B-cell receptor potentiated CREMtau transactivation of the viral promoter. Further experiments supported the notion that this potentiation involved CREMtau Ser-117 phosphorylation and recruitment of CBP/p300 to the BLV promoter. Although CREB and Tax(BLV) synergistically transactivated the BLV promoter, CREMtau repressed this Tax(BLV)/CREB synergism, suggesting that a modulation of the level of Tax(BLV) transactivation through opposite actions of CREB and CREMtau could facilitate immune escape and allow tumor development.

  4. Low Expression of miR-448 Induces EMT and Promotes Invasion by Regulating ROCK2 in Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Huaqiang Zhu

    2015-05-01

    Full Text Available Background/Aims: miR-448 has been reported to exhibit abnormal expression in hepatocellular carcinoma (HCC, however, the essential role of miR-448 in HCC progression is still unclear. Methods: real-time PCR was used to detect the expression of miRNAs and candidate genes in HCC samples (n=117. miR-448 mimics and inhibitor were tansfected in human HCC cells. The transwell assay was used to examine the cell invasive ability. The regulation mechanism was confirmed by luciferase reporter assay. The markers of EMT were detected by using Western blot. Results: miR-448 was decreased in HCC samples and associated with HCC development. Inhibition of miR-448 significantly promoted cell invasion, while the effect of miR-448 up-regulation was reverse. miR-448 could regulate ROCK2 in hepatocellular carcinoma. Knockdown of ROCK2 expression partially reversed the effect of miR-448 inhibitor. Abnormal expression of miR-448 could regulate the markers of epithelial-mesenchymal transition (EMT. Conclusions: miR-448 may contribute to the progression of HCC via regulating ROCK2 expression.

  5. FOXO1 promotes wound healing through the up-regulation of TGF-β1 and prevention of oxidative stress.

    Science.gov (United States)

    Ponugoti, Bhaskar; Xu, Fanxing; Zhang, Chenying; Tian, Chen; Pacios, Sandra; Graves, Dana T

    2013-10-28

    Keratinocyte mobilization is a critical aspect of wound re-epithelialization, but the mechanisms that control its precise regulation remain poorly understood. We set out to test the hypothesis that forkhead box O1 (FOXO1) has a negative effect on healing because of its capacity to inhibit proliferation and promote apoptosis. Contrary to expectations, FOXO1 is required for keratinocyte transition to a wound-healing phenotype that involves increased migration and up-regulation of transforming growth factor β1 (TGF-β1) and its downstream targets, integrin-α3 and -β6 and MMP-3 and -9. Furthermore, we show that FOXO1 functions in keratinocytes to reduce oxidative stress, which is necessary to maintain cell migration and prevent cell death in a TGF-β1-independent manner. Thus, our studies identify a novel function for FOXO1 in coordinating the response of keratinocytes to wounding through up-regulation of TGF-β1 and other factors needed for keratinocyte migration and protection against oxidative stress, which together promote migration and decrease apoptosis.

  6. The early gene product EUO is a transcriptional repressor that selectively regulates promoters of Chlamydia late genes.

    Science.gov (United States)

    Rosario, Christopher J; Tan, Ming

    2012-06-01

    The obligate intracellular bacterium Chlamydia has an unusual developmental cycle in which there is conversion between two forms that are specialized for either intracellular replication or propagation of the infection to a new host cell. Expression of late chlamydial genes is upregulated during conversion from the replicating to the infectious form, but the mechanism for this temporal regulation is unknown. We found that EUO, which is expressed from an early gene, binds to two sites upstream of the late operon omcAB, but only the downstream site was necessary for transcriptional repression. Using gel shift and in vitro transcription assays we showed that EUO specifically bound and repressed promoters of Chlamydia trachomatis late genes, but not early or mid genes. These findings support a role for EUO as a temporal repressor that negatively regulates late chlamydial genes and prevents their premature expression. The basis of this specificity is the ability of EUO to selectively bind promoter regions of late genes, which would prevent their transcription by RNA polymerase. Thus, we propose that EUO is a master regulator that prevents the terminal differentiation of the replicating form of chlamydiae into the infectious form until sufficient rounds of replication have occurred.

  7. MiR-378 Promotes the Migration of Liver Cancer Cells by Down-Regulating Fus Expression

    Directory of Open Access Journals (Sweden)

    Jichun Ma

    2014-12-01

    Full Text Available Background: miR-378 regulates osteoblast differentiation and participates in tumor cell self-renewal and chemo-resistance. However, the function of miR-378 in liver cancer cell migration has not been reported to date. Methods: miR-378 expression was examined using real-time quantitative PCR. HepG2 cell migration and liver cell invasion were examined using wound-healing and cell invasion assays. Additionally, HepG2 cell metastasis was analyzed in nude mice. Results: miR-378 over-expression enhances HepG2 cell proliferation, migration and liver cell invasion. Typical metastatic lesions were found in the livers of mice injected with miR-378-transfected cells, and high levels of the CMV promoter were detected in the nodules, indicating that miR-378 promoted the metastasis of the tumor cells to the liver. We also demonstrated that miR-378 down-regulated Fus expression. Conclusions: Our results suggested that miR-378 enhanced cell migration and metastasis by down-regulating Fus expression.

  8. Atherosclerosis-prone hemodynamics differentially regulates endothelial and smooth muscle cell phenotypes and promotes pro-inflammatory priming.

    Science.gov (United States)

    Hastings, Nicole E; Simmers, Michael B; McDonald, Oliver G; Wamhoff, Brian R; Blackman, Brett R

    2007-12-01

    Atherosclerosis is an inflammatory disease that preferentially forms at hemodynamically compromised regions of altered shear stress patterns. Endothelial cells (EC) and smooth muscle cells (SMC) undergo phenotypic modulation during atherosclerosis. An in vitro coculture model was developed to determine the role of hemodynamic regulation of EC and SMC phenotypes in coculture. Human ECs and SMCs were plated on a synthetic elastic lamina and human-derived atheroprone, and atheroprotective shear stresses were imposed on ECs. Atheroprone flow decreased genes associated with differentiated ECs (endothelial nitric oxide synthase, Tie2, and Kruppel-like factor 2) and SMCs (smooth muscle alpha-actin and myocardin) and induced a proinflammatory phenotype in ECs and SMCs (VCAM-1, IL-8, and monocyte chemoattractant protein-1). Atheroprone flow-induced changes in SMC differentiation markers were regulated at the chromatin level, as indicated by decreased serum response factor (SRF) binding to the smooth muscle alpha-actin-CC(a/T)(6)GG (CArG) promoter region and decreased histone H(4) acetylation. Conversely, SRF and histone H(4) acetylation were enriched at the c-fos promoter in SMCs. In the presence of atheroprotective shear stresses, ECs aligned with the direction of flow and SMCs aligned more perpendicular to flow, similar to in vivo vessel organization. These results provide a novel mechanism whereby modulation of the EC phenotype by hemodynamic shear stresses, atheroprone or atheroprotective, play a critical role in mechanical-transcriptional coupling and regulation of the SMC phenotype.

  9. Oxygen tension and nutrient starvation are major signals that regulate agfD promoter activity and expression of the multicellular morphotype in Salmonella typhimurium.

    Science.gov (United States)

    Gerstel, U; Römling, U

    2001-10-01

    Expression of multicellular behaviour (rdar morphotype) is a characteristic of wild-type Salmonella typhimurium strains. The key target for the regulation of rdar morphotype expression is the agfD promoter. The regulation of two rdar morphotypes, regulated and semi-constitutive (the latter differs from the former by the insertion of A after position -17), by various environmental conditions was studied using transcriptional fusions to the regulated and semi-constitutive agfD promoters by Western blot analysis and phenotypic analysis of the rdar morphotype. AgfD promoter activities were strongly dependent on oxygen tension. Expression maxima were observed in rich medium under microaerophilic conditions and in minimal medium under aerobic conditions. The regulated rdar morphotype was only expressed under conditions of maximal promoter activity. Glucose did not influence rdar morphotype expression, and the two promoters showed no consistent response to pH. In the stationary phase of growth, nitrogen and phosphate depletion were found to be signals that switch on the agfD promoters. In the logarithmic phase of growth, ethanol was the stress signal that enhanced rdar morphotype expression. The results indicate that, although the regulated and semi-constitutive agfD promoters are key factors in the grade of expression of the multicellular behaviour, common signals such as oxygen tension, depletion of nutrients and ethanol vary their levels of expression significantly.

  10. BRCA1-regulated RRM2 expression protects glioblastoma cells from endogenous replication stress and promotes tumorigenicity

    DEFF Research Database (Denmark)

    Rasmussen, Rikke D.; Gajjar, Madhavsai K.; Tuckova, Lucie;

    2016-01-01

    Oncogene-evoked replication stress (RS) fuels genomic instability in diverse cancer types. Here we report that BRCA1, traditionally regarded a tumour suppressor, plays an unexpected tumour-promoting role in glioblastoma (GBM), safeguarding a protective response to supraphysiological RS levels. Hi...

  11. Introduction of Team Self-Regulation for Teamwork Promotion. A Case Study in Energy Engineering Topics

    Science.gov (United States)

    González-Fernández, María Jesús; Sáiz-Manzanares, María Consuelo; Alaoui, Fatima E. M.; Aguilar, Fernando; Meneses, Jesús; Montero, Eduardo

    2013-01-01

    The learning and development of teamwork skill is only possible if its achievement is a self-building process of the student. In turn, the teachers must become guides in the process of a learning which is not limited only to the topic of their own course, but which must be imbedded with a good dose of this skill. Promotion of teamwork is not…

  12. BRCA1-regulated RRM2 expression protects glioblastoma cells from endogenous replication stress and promotes tumorigenicity

    DEFF Research Database (Denmark)

    Rasmussen, Rikke D.; Gajjar, Madhavsai K.; Tuckova, Lucie

    2016-01-01

    Oncogene-evoked replication stress (RS) fuels genomic instability in diverse cancer types. Here we report that BRCA1, traditionally regarded a tumour suppressor, plays an unexpected tumour-promoting role in glioblastoma (GBM), safeguarding a protective response to supraphysiological RS levels...

  13. Genistein: a novel anthocyanin synthesis promoter that directly regulates biosynthetic genes in red cabbage in a light-dependent way

    Directory of Open Access Journals (Sweden)

    Na Zhang

    2016-12-01

    Full Text Available Genistein (GNT, an isoflavone, is used in the clinical treatment of various health disorders. GNT is found in primary food source plants and some medical plants. However, studies on the functions of GNT in plants are rarely reported. In this study, we demonstrated that GNT plays an important role in promoting anthocyanin accumulation in red cabbage. GNT solutions (10, 20, 30, 40, and 50 mg/L as foliar fertilizers were applied to red cabbage. Consequently, anthocyanin accumulation in red cabbage increased in a light-dependent manner. GNT solution at 30 mg/L exhibited the optimal effect on anthocyanin accumulation, which was twice that of the control. Quantitative real-time PCR analysis indicated that GNT application upregulated the expression of all structural genes, contributing to anthocyanin biosynthesis under light conditions. Under dark conditions, GNT exerted no significant promotive effect on anthocyanin accumulation; only early biosynthetic genes of anthocyanin biosynthesis responded to GNT. The promotive effect of GNT on anthocyanin biosynthesis is directly attributable to the regulation of structural gene expression. Transcription factors exhibited no response to GNT. The levels of anthocyanin in red cabbage positively correlated with the enzyme activities of antioxidant systems. This finding correlation suggested that the promotive effect of GNT on anthocyanin levels was correlated with improved antioxidant activity in the red cabbage.

  14. Binding of the Lactococcal Drug Dependent Transcriptional Regulator LmrR to Its Ligands and Responsive Promoter Regions.

    Directory of Open Access Journals (Sweden)

    Jan Pieter van der Berg

    Full Text Available The heterodimeric ABC transporter LmrCD from Lactococcus lactis is able to extrude several different toxic compounds from the cell, fulfilling a role in the intrinsic and induced drug resistance. The expression of the lmrCD genes is regulated by the multi-drug binding repressor LmrR, which also binds to its own promoter to autoregulate its own expression. Previously, we reported the crystal structure of LmrR in the presence and absence of the drugs Hoechst 33342 and daunomycin. Analysis of the mechanism how drugs control the repressor activity of LmrR is impeded by the fact that these drugs also bind to DNA. Here we identified, using X-ray crystallography and fluorescence, that riboflavin binds into the drug binding cavity of LmrR, adopting a similar binding mode as Hoechst 33342 and daunomycin. Microscale thermophoresis was employed to quantify the binding affinity of LmrR to its responsive promoter regions and to evaluate the cognate site of LmrR in the lmrCD promoter region. Riboflavin reduces the binding affinity of LmrR for the promoter regions. Our results support a model wherein drug binding to LmrR relieves the LmrR dependent repression of the lmrCD genes.

  15. Genistein: A Novel Anthocyanin Synthesis Promoter that Directly Regulates Biosynthetic Genes in Red Cabbage in a Light-Dependent Way

    Science.gov (United States)

    Zhang, Na; Qi, Yan; Zhang, Hai-Jun; Wang, Xiaoyun; Li, Hongfei; Shi, Yantong; Guo, Yang-Dong

    2016-01-01

    Genistein (GNT), an isoflavone, is used in the clinical treatment of various health disorders. GNT is found in primary food source plants and some medical plants. However, studies on the functions of GNT in plants are rarely reported. In this study, we demonstrated that GNT plays an important role in promoting anthocyanin accumulation in red cabbage. GNT solutions (10, 20, 30, 40, and 50 mg/L) as foliar fertilizers were applied to red cabbage. Consequently, anthocyanin accumulation in red cabbage increased in a light-dependent manner. GNT solution at 30 mg/L exhibited the optimal effect on anthocyanin accumulation, which was twice that of the control. Quantitative real-time PCR analysis indicated that GNT application upregulated the expression of all structural genes, contributing to anthocyanin biosynthesis under light conditions. Under dark conditions, GNT exerted no significant promotive effect on anthocyanin accumulation; only early biosynthetic genes of anthocyanin biosynthesis responded to GNT. The promotive effect of GNT on anthocyanin biosynthesis is directly attributable to the regulation of structural gene expression. Transcription factors exhibited no response to GNT. The levels of anthocyanin in red cabbage positively correlated with the enzyme activities of antioxidant systems. This finding correlation suggested that the promotive effect of GNT on anthocyanin levels was correlated with improved antioxidant activity in the red cabbage. PMID:27990149

  16. PAI-1 expression and its regulation by promoter 4G/5G polymorphism in clear cell renal cell carcinoma.

    Science.gov (United States)

    Choi, Jung-Woo; Lee, Ju-Han; Park, Hong Seok; Kim, Young-Sik

    2011-10-01

    To characterise patients with high plasminogen activator inhibitor-1 (PAI-1) expression as oral PAI-1 antagonists are currently in preclinical trials, and to determine whether the PAI-1 promoter 4G/5G polymorphism regulates PAI-1 expression in clear cell renal cell carcinoma (CCRCC). PAI-1 expression was examined by immunohistochemistry in 69 CCRCC specimens. In addition, the promoter 4G/5G polymorphism was investigated by both allele-specific PCR and direct DNA sequencing. PAI-1 was overexpressed in 25/69 (36.2%) patients with CCRCC. PAI-1 staining was intense in tumour cells with a high Fuhrman nuclear grade and in spindle-shaped tumour cells. PAI-1 expression was significantly associated with older age at diagnosis (p=0.027), high nuclear grade (p4G/4G, 43.5% (30/69) 4G/5G and 31.9% (22/69) 5G/5G. The homozygous 4G/4G or 5G/5G group showed a tendency for a high nuclear grade (p=0.05) but the 4G/5G polymorphism was not related to other prognostic parameters. PAI-1 expression was poorly correlated with its promoter 4G/5G polymorphism (Spearman ρ=0.088). CCRCC with high PAI-1 expression is characterised by older age, high nuclear grade, advanced stage, distant metastasis and/or shortened disease-free survival. PAI-1 expression is not affected by the promoter 4G/5G polymorphism.

  17. NEDD9 is a positive regulator of epithelial-mesenchymal transition and promotes invasion in aggressive breast cancer.

    Directory of Open Access Journals (Sweden)

    Chenfei Kong

    Full Text Available Epithelial to mesenchymal transition (EMT plays an important role in many biological processes. The latest studies revealed that aggressive breast cancer, especially the triple-negative breast cancer (TNBC subtype was frequently associated with apparent EMT, but the mechanisms are still unclear. NEDD9/HEF1/Cas-L is a member of the Cas protein family and was identified as a metastasis marker in multiple cancer types. In this study, we wished to discern the role of NEDD9 in breast cancer progression and to investigate the molecular mechanism by which NEDD9 regulates EMT and promotes invasion in triple-negative breast cancer. We showed that expression of NEDD9 was frequently upregulated in TNBC cell lines, and in aggressive breast tumors, especially in TNBC subtype. Knockdown of endogenous NEDD9 reduced the migration, invasion and proliferation of TNBC cells. Moreover, ectopic overexpression of NEDD9 in mammary epithelial cells led to a string of events including the trigger of EMT, activation of ERK signaling, increase of several EMT-inducing transcription factors and promotion of their interactions with the E-cadherin promoter. Data presented in this report contribute to the understanding of the mechanisms by which NEDD9 promotes EMT, and provide useful clues to the evaluation of the potential of NEDD9 as a responsive molecular target for TNBC chemotherapy.

  18. A novel mouse c-fos intronic promoter that responds to CREB and AP-1 is developmentally regulated in vivo.

    Directory of Open Access Journals (Sweden)

    Vincent Coulon

    Full Text Available BACKGROUND: The c-fos proto-oncogene is an archetype for rapid and integrative transcriptional activation. Innumerable studies have focused on the canonical promoter, located upstream from the transcriptional start site. However, several regulatory sequences have been found in the first intron. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe an extremely conserved region in c-fos first intron that contains a putative TATA box, and functional TRE and CRE sites. This fragment drives reporter gene activation in fibroblasts, which is enhanced by increasing intracellular calcium and cAMP and by cotransfection of CREB or c-Fos/c-Jun expression vectors. We produced transgenic mice expressing a lacZ reporter controlled by the intronic promoter. Lac Z expression of this promoter is restricted to the developing central nervous system (CNS and the mesenchyme of developing mammary buds in embryos 12.5 days post-conception, and to brain tissue in adults. RT-QPCR analysis of tissue mRNA, including the anlage of the mammary gland and the CNS, confirms the existence of a novel, nested mRNA initiated in the first intron. CONCLUSIONS/SIGNIFICANCE: Our results provide evidence for a novel, developmentally regulated promoter in the first intron of the c-fos gene.

  19. An alternative retinoic acid-responsive Stra6 promoter regulated in response to retinol deficiency.

    Science.gov (United States)

    Laursen, Kristian B; Kashyap, Vasundhra; Scandura, Joseph; Gudas, Lorraine J

    2015-02-13

    Cellular uptake of vitamin A (retinol) is essential for many biological functions. The Stra6 protein binds the serum retinol-binding protein, RBP4, and acts in conjunction with the enzyme lecithin:retinol acyltransferase to facilitate retinol uptake in some cell types. We show that in embryonic stem (ES) cells and in some tissues, the Stra6 gene encodes two distinct mRNAs transcribed from two different promoters. Whereas both are all-trans-retinoic acid (RA)-responsive in ES cells, the downstream promoter contains a half-site RA response element (RARE) and drives an ∼ 13-fold, RA-associated increase in luciferase reporter activity. We employed CRISPR-Cas9 genome editing to show that the endogenous RARE is required for RA-induced transcription of both Stra6 isoforms. We further demonstrate that in ES cells, 1) both RARγ and RXRα are present at the Stra6 RARE; 2) RA increases co-activator p300 (KAT3B) binding and histone H3 Lys-27 acetylation at both promoters; 3) RA decreases Suz12 levels and histone H3 Lys-27 trimethylation epigenetic marks at both promoters; and 4) these epigenetic changes are diminished in the absence of RARγ. In the brains of WT mice, both the longer and the shorter Stra6 transcript (Stra6L and Stra6S, respectively) are highly expressed, whereas these transcripts are found only at low levels in RARγ(-/-) mice. In the brains of vitamin A-deficient mice, both Stra6L and Stra6S levels are decreased. In contrast, in the vitamin A-deficient kidneys, the Stra6L levels are greatly increased, whereas Stra6S levels are decreased. Our data show that kidneys respond to retinol deficiency by differential Stra6 promoter usage, which may play a role in the retention of retinol when vitamin A is low.

  20. Downregulated ECRG4 is associated with poor prognosis in renal cell cancer and is regulated by promoter DNA methylation.

    Science.gov (United States)

    Luo, Liya; Wu, Jianting; Xie, Jun; Xia, Lingling; Qian, Xuemin; Cai, Zhiming; Li, Zesong

    2016-01-01

    Esophageal cancer-related gene 4 (ECRG4) has been proposed as a putative tumor suppressor gene in several tumors. However, the role and regulation of ECRG4 in the pathogenesis of human renal cancer remain largely unknown. Our current study revealed that expression of ECRG4 is downregulated in renal cell lines and renal cancer tissues. ECRG4 expression was significantly associated with histological grade of tumors (p renal cancer patients. Silencing of ECRG4 expression in renal cell lines was associated with its promoter methylation. Moreover, ectopic expression of ECRG4 markedly inhibited cell proliferation and invasion in renal cancer cell lines. These results indicated that ECRG4 is frequently silenced by the methylation of promoter in renal cell cancers. ECRG4 may be a tumor suppressor in renal cancer and serve as a prognostic marker.

  1. Mutual regulation between Satb2 and Fezf2 promotes subcerebral projection neuron identity in the developing cerebral cortex.

    Science.gov (United States)

    McKenna, William L; Ortiz-Londono, Christian F; Mathew, Thomas K; Hoang, Kendy; Katzman, Sol; Chen, Bin

    2015-09-15

    Generation of distinct cortical projection neuron subtypes during development relies in part on repression of alternative neuron identities. It was reported that the special AT-rich sequence-binding protein 2 (Satb2) is required for proper development of callosal neuron identity and represses expression of genes that are essential for subcerebral axon development. Surprisingly, Satb2 has recently been shown to be necessary for subcerebral axon development. Here, we unravel a previously unidentified mechanism underlying this paradox. We show that SATB2 directly activates transcription of forebrain embryonic zinc finger 2 (Fezf2) and SRY-box 5 (Sox5), genes essential for subcerebral neuron development. We find that the mutual regulation between Satb2 and Fezf2 enables Satb2 to promote subcerebral neuron identity in layer 5 neurons, and to repress subcerebral characters in callosal neurons. Thus, Satb2 promotes the development of callosal and subcerebral neurons in a cell context-dependent manner.

  2. Regulation of the CD56 promoter and its association with proliferation, anti-apoptosis and clinical factors in multiple myeloma

    DEFF Research Database (Denmark)

    Damgaard, Tina; Knudsen, Lene M; Dahl, Inger Marie S

    2009-01-01

    the regulation of the CD56 promoter in relation to typical clinical factors. We used qPCR and FACS to measure the expression levels of CD56, and potential regulatory factors in patients with MM and related these with MM progression/prognosis. The transcription factors BTBD3, Pax5, RUNX1 and MMSET were positively...... associated with CD56 expression, as was CYCLIN D1, which is involved in disease progression, anti-apoptosis and proliferation. RUNX1 was negatively associated with the survival of stem-cell transplanted patients. Our findings propose four potential activators of the CD56 promoter and for CD56 to be involved...... in proliferation and anti-apoptosis, leading to disease progression in MM....

  3. Proliferating Cell Nuclear Antigen (PCNA) Regulates Primordial Follicle Assembly by Promoting Apoptosis of Oocytes in Fetal and Neonatal Mouse Ovaries

    Science.gov (United States)

    Zhang, Yuanwei; Jiang, Xiaohua; Zhang, Huan; Ma, Tieliang; Zheng, Wei; Sun, Rui; Shen, Wei; Sha, Jiahao; Cooke, Howard J.; Shi, Qinghua

    2011-01-01

    Primordial follicles, providing all the oocytes available to a female throughout her reproductive life, assemble in perinatal ovaries with individual oocytes surrounded by granulosa cells. In mammals including the mouse, most oocytes die by apoptosis during primordial follicle assembly, but factors that regulate oocyte death remain largely unknown. Proliferating cell nuclear antigen (PCNA), a key regulator in many essential cellular processes, was shown to be differentially expressed during these processes in mouse ovaries using 2D-PAGE and MALDI-TOF/TOF methodology. A V-shaped expression pattern of PCNA in both oocytes and somatic cells was observed during the development of fetal and neonatal mouse ovaries, decreasing from 13.5 to 18.5 dpc and increasing from 18.5 dpc to 5 dpp. This was closely correlated with the meiotic prophase I progression from pre-leptotene to pachytene and from pachytene to diplotene when primordial follicles started to assemble. Inhibition of the increase of PCNA expression by RNA interference in cultured 18.5 dpc mouse ovaries strikingly reduced the apoptosis of oocytes, accompanied by down-regulation of known pro-apoptotic genes, e.g. Bax, caspase-3, and TNFα and TNFR2, and up-regulation of Bcl-2, a known anti-apoptotic gene. Moreover, reduced expression of PCNA was observed to significantly increase primordial follicle assembly, but these primordial follicles contained fewer guanulosa cells. Similar results were obtained after down-regulation by RNA interference of Ing1b, a PCNA-binding protein in the UV-induced apoptosis regulation. Thus, our results demonstrate that PCNA regulates primordial follicle assembly by promoting apoptosis of oocytes in fetal and neonatal mouse ovaries. PMID:21253613

  4. Co-regulated expression of HAND2 and DEIN by a bidirectional promoter with asymmetrical activity in neuroblastoma

    Directory of Open Access Journals (Sweden)

    Berthold Frank

    2009-04-01

    Full Text Available Abstract Background HAND2, a key regulator for the development of the sympathetic nervous system, is located on chromosome 4q33 in a head-to-head orientation with DEIN, a recently identified novel gene with stage specific expression in primary neuroblastoma (NB. Both genes are expressed in primary NB as well as most NB cell lines and are separated by a genomic sequence of 228 bp. The similar expression profile of both genes suggests a common transcriptional regulation mediated by a bidirectional promoter. Results Northern Blot analysis of DEIN and HAND2 in 20 primary NBs indicated concurrent expression levels of the two genes, which was confirmed by microarray analysis of 236 primary NBs (Pearson's correlation coefficient r = 0.65. While DEIN expression in the latter cohort was associated with stage 4S (p = 0.02, HAND2 expression was not associated with tumor stage. In contrast, both HAND2 and DEIN transcript levels were highly associated with age at diagnosis DEIN orientation, an average 3.4 fold increase in activity was observed as compared to the promoterless vector, whereas an average 15.4 fold activation was detected in HAND2 orientation. The presence of two highly conserved putative regulatory elements, one of which was shown to enhance HAND2 expression in branchial arches previously, displayed weak repressor activity for both genes. Conclusion HAND2 and DEIN represent a gene pair that is tightly linked by a bidirectional promoter in an evolutionary highly conserved manner. Expression of both genes in NB is co-regulated by asymmetrical activity of this promoter and modulated by the activity of two cis-regulatory elements acting as weak repressors. The concurrent quantitative and tissue specific expression of HAND2 and DEIN suggests a functional link between both genes.

  5. Arm-in-Arm Response Regulator Dimers Promote Intermolecular Signal Transduction

    Science.gov (United States)

    Baker, Anna W.; Satyshur, Kenneth A.; Moreno Morales, Neydis

    2016-01-01

    ABSTRACT Bacteriophytochrome photoreceptors (BphPs) and their cognate response regulators make up two-component signal transduction systems which direct bacteria to mount phenotypic responses to changes in environmental light quality. Most of these systems utilize single-domain response regulators to transduce signals through unknown pathways and mechanisms. Here we describe the photocycle and autophosphorylation kinetics of RtBphP1, a red light-regulated histidine kinase from the desert bacterium Ramlibacter tataouinensis. RtBphP1 undergoes red to far-red photoconversion with rapid thermal reversion to the dark state. RtBphP1 is autophosphorylated in the dark; this activity is inhibited under red light. The RtBphP1 cognate response regulator, the R. tataouinensis bacteriophytochrome response regulator (RtBRR), and a homolog, AtBRR from Agrobacterium tumefaciens, crystallize unexpectedly as arm-in-arm dimers, reliant on a conserved hydrophobic motif, hFWAhL (where h is a hydrophobic M, V, L, or I residue). RtBRR and AtBRR dimerize distinctly from four structurally characterized phytochrome response regulators found in photosynthetic organisms and from all other receiver domain homodimers in the Protein Data Bank. A unique cacodylate-zinc-histidine tag metal organic framework yielded single-wavelength anomalous diffraction phases and may be of general interest. Examination of the effect of the BRR stoichiometry on signal transduction showed that phosphorylated RtBRR is accumulated more efficiently than the engineered monomeric RtBRR (RtBRRmon) in phosphotransfer reactions. Thus, we conclude that arm-in-arm dimers are a relevant signaling intermediate in this class of two-component regulatory systems. IMPORTANCE BphP histidine kinases and their cognate response regulators comprise widespread red light-sensing two-component systems. Much work on BphPs has focused on structural understanding of light sensing and on enhancing the natural infrared fluorescence of these

  6. Arm-in-Arm Response Regulator Dimers Promote Intermolecular Signal Transduction.

    Science.gov (United States)

    Baker, Anna W; Satyshur, Kenneth A; Moreno Morales, Neydis; Forest, Katrina T

    2016-04-01

    Bacteriophytochrome photoreceptors (BphPs) and their cognate response regulators make up two-component signal transduction systems which direct bacteria to mount phenotypic responses to changes in environmental light quality. Most of these systems utilize single-domain response regulators to transduce signals through unknown pathways and mechanisms. Here we describe the photocycle and autophosphorylation kinetics of RtBphP1, a red light-regulated histidine kinase from the desert bacterium Ramlibacter tataouinensis RtBphP1 undergoes red to far-red photoconversion with rapid thermal reversion to the dark state. RtBphP1 is autophosphorylated in the dark; this activity is inhibited under red light. The RtBphP1 cognate response regulator, the R. tataouinensis bacteriophytochrome response regulator (RtBRR), and a homolog, AtBRR from Agrobacterium tumefaciens, crystallize unexpectedly as arm-in-arm dimers, reliant on a conserved hydrophobic motif, hFWAhL (where h is a hydrophobic M, V, L, or I residue). RtBRR and AtBRR dimerize distinctly from four structurally characterized phytochrome response regulators found in photosynthetic organisms and from all other receiver domain homodimers in the Protein Data Bank. A unique cacodylate-zinc-histidine tag metal organic framework yielded single-wavelength anomalous diffraction phases and may be of general interest. Examination of the effect of the BRR stoichiometry on signal transduction showed that phosphorylated RtBRR is accumulated more efficiently than the engineered monomeric RtBRR (RtBRRmon) in phosphotransfer reactions. Thus, we conclude that arm-in-arm dimers are a relevant signaling intermediate in this class of two-component regulatory systems. BphP histidine kinases and their cognate response regulators comprise widespread red light-sensing two-component systems. Much work on BphPs has focused on structural understanding of light sensing and on enhancing the natural infrared fluorescence of these proteins, rather than

  7. Hepatitis B X-interacting protein promotes cisplatin resistance and regulates CD147 via Sp1 in ovarian cancer.

    Science.gov (United States)

    Zou, Wei; Ma, Xiangdong; Yang, Hong; Hua, Wei; Chen, Biliang; Cai, Guoqing

    2017-03-01

    Ovarian cancer is the highest mortality rate of all female reproductive malignancies. Drug resistance is a major cause of treatment failure in malignant tumors. Hepatitis B X-interacting protein acts as an oncoprotein, regulates cell proliferation, and migration in breast cancer. We aimed to investigate the effects and mechanisms of hepatitis B X-interacting protein on resistance to cisplatin in human ovarian cancer cell lines. The mRNA and protein levels of hepatitis B X-interacting protein were detected using RT-PCR and Western blotting in cisplatin-resistant and cisplatin-sensitive tissues, cisplatin-resistant cell lines A2780/CP and SKOV3/CP, and cisplatin-sensitive cell lines A2780 and SKOV3. Cell viability and apoptosis were measured to evaluate cellular sensitivity to cisplatin in A2780/CP cells. Luciferase reporter gene assay was used to determine the relationship between hepatitis B X-interacting protein and CD147. The in vivo function of hepatitis B X-interacting protein on tumor burden was assessed in cisplatin-resistant xenograft models. The results showed that hepatitis B X-interacting protein was highly expressed in ovarian cancer of cisplatin-resistant tissues and cells. Notably, knockdown of hepatitis B X-interacting protein significantly reduced cell viability in A2780/CP compared with cisplatin treatment alone. Hepatitis B X-interacting protein and cisplatin cooperated to induce apoptosis and increase the expression of c-caspase 3 as well as the Bax/Bcl-2 ratio. We confirmed that hepatitis B X-interacting protein up-regulated CD147 at the protein expression and transcriptional levels. Moreover, we found that hepatitis B X-interacting protein was able to activate the CD147 promoter through Sp1. In vivo, depletion of hepatitis B X-interacting protein decreased the tumor volume and weight induced by cisplatin. Taken together, these results indicate that hepatitis B X-interacting protein promotes cisplatin resistance and regulated CD147 via Sp1 in

  8. Secretory antibodies in breast milk promote long-term intestinal homeostasis by regulating the gut microbiota and host gene expression

    OpenAIRE

    Rogier, Eric W.; Frantz, Aubrey L.; Bruno, Maria E. C.; Wedlund, Leia; Cohen, Donald A.; Stromberg, Arnold J; Kaetzel, Charlotte S.

    2014-01-01

    An experimental system was developed in mice to study the long-term benefits of early exposure to secretory antibodies of the IgA class (SIgA) in breast milk. We found that breast milk-derived SIgA promoted intestinal epithelial barrier function in suckling neonates, preventing systemic infection by potential pathogens. Long-term benefits of early exposure to SIgA included maintenance of a healthy gut microbiota and regulation of gene expression in intestinal epithelial cells. These findings ...

  9. Ibandronate promotes osteogenic differentiation of periodontal ligament stem cells by regulating the expression of microRNAs

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Qiang [Department of General Dentistry and Emergency, College of Stomatology, Fourth Military Medical University, Xi' an, Shaanxi 710032 (China); Zhao, Zhi-Ning [Clinical Laboratory, 451 Hospital of Chinese PLA, Xi' an 710054 (China); Cheng, Jing-Tao [Department of Special Dentistry, College of Stomatology, Fourth Military Medical University, Xi' an, Shaanxi 710032 (China); Zhang, Bin [Department of Orthodontics, College of Stomatology, Fourth Military Medical University, Xi' an, Shaanxi 710032 (China); Xu, Jie [Department of Periodontology, College of Stomatology, Fourth Military Medical University, Xi' an, Shaanxi 710032 (China); Huang, Fei; Zhao, Rui-Ni [Department of General Dentistry and Emergency, College of Stomatology, Fourth Military Medical University, Xi' an, Shaanxi 710032 (China); Chen, Yong-Jin, E-mail: cyj1229@fmmu.edu.cn [Department of General Dentistry and Emergency, College of Stomatology, Fourth Military Medical University, Xi' an, Shaanxi 710032 (China)

    2011-01-07

    Research highlights: {yields} Ibandronate significantly promote the proliferation of PDLSC cells. {yields} Ibandronate enhanced the expression of ALP, COL-1, OPG, OCN, Runx2. {yields} The expression of a class of miRNAs, e.g., miR-18a, miR-133a, miR-141 and miR-19a, was significantly modified in PDLSC cells cultured with ibandronate. {yields} Ibandronate regulates the expression of diverse bone formation-related genes via miRNAs in PDLSCs. {yields} Ibandronate can suppress the activity of osteoclast while promoting the proliferation of osteoblast by regulating the expression of microRNAs. -- Abstract: Bisphosphonates (BPs) have a profound effect on bone resorption and are widely used to treat osteoclast-mediated bone diseases. They suppress bone resorption by inhibiting the activity of mature osteoclasts and/or the formation of new osteoclasts. Osteoblasts may be an alternative target for BPs. Periodontal ligament stem cells (PDLSCs) exhibit osteoblast-like features and are capable of differentiating into osteoblasts or cementoblasts. This study aimed to determine the effects of ibandronate, a nitrogen-containing BP, on the proliferation and the differentiation of PDLSCs and to identify the microRNAs (miRNAs) that mediate these effects. The PDLSCs were treated with ibandronate, and cell proliferation was measured using the MTT (3-dimethylthiazol-2,5-diphenyltetrazolium bromide) assay. The expression of genes and miRNAs involved in osteoblastic differentiation was assayed using quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR). Ibandronate promoted the proliferation of PDLSCs and enhanced the expression of alkaline phosphatase (ALP), type I collagen (COL-1), osteoprotegerin (OPG), osteocalcin (OCN), and Runx2. The expression of miRNAs, including miR-18a, miR-133a, miR-141 and miR-19a, was significantly altered in the PDLSCs cultured with ibandronate. In PDLSCs, ibandronate regulates the expression of diverse bone formation

  10. The Use of Interactive Environments to Promote Self-Regulation in Online Learning: A Literature Review

    Directory of Open Access Journals (Sweden)

    Erhan Delen

    2016-03-01

    Full Text Available Distance education in the 21st century often relies on educational technology as the primary delivery of teaching to learners. In distance education, the source of the information and the learner do not share the same physical setting; therefore, the information is delivered by a variety of methods. The new emerging tools that are used in online learning have changed the view of pedagogical perspective in distance education. Although online learning shares some elements with traditional classroom environments, the shared elements often take very different forms, and each type of learning environment has distinct limitations and affordances. Because current practices often compare or assess the effectiveness of online learning by comparing it with traditional instruction methods, educators and researchers often find it important to consider the methods and strategies that are used in classroom settings when designing online learning environments. Online environments should provide opportunities for students to master necessary tasks by using appropriate strategies, such as self-regulation. Self-regulation is one of the predictors of student performance in both traditional and modern learning environments. In an online platform, when students use strategies that are related to self-regulation, they can regulate their personal functioning and benefit from the online learning environment by changing their behaviors accordingly. Thus, it is important to explore and embed new interactive functions to the online learning environments and lead learners to use self-regulatory behaviors in those learning environments. This article discusses the importance of self-regulation in online environments, and provides recommendations for best practices in the design and implementation of interactive online learning environments with the self-regulated learning approach.

  11. Development of functionalized nanodiamond fluorescence detection platform: Analysis the specific promoter regulated by p53

    Science.gov (United States)

    Wu, Diansyue; Chu, Hsueh-Liang; Chuang, Hung; Lu, Yu-Ning; Ho, Li-Ping; Li, Hsing-Yuan; Hsu, Ming-Hua; Chang, Chia-Ching

    2014-03-01

    Nanodiamond (ND) is one of the biocompatible nanomaterials with large tunable surface for chemical modification. It possesses unique mechanical, spectroscopy, and thermal properties. It is an excellent molecular vehicle to deliver specific molecules in biological system. The green fluorescent protein (GFP) is a protein that emits strong green fluorescence when it is excited by ultra-violet to blue light. It makes GFP a good indicator. By combining ND-GFP, a visible biocompatible delivery system will be developed. p53 is a tumor suppressor protein encoded by the TP53 gene. P53 plays an important role in apoptosis, genomic stability, and inhibition of angiogenesis by interacting with specific DNA sequence of promoter of related genes. In this study, a p53 functionalized ND-GFP will be developed. This complex can recognize the specific DNA sequence of promoter and the intermolecular interactions can be monitored directly by fluorescence and Raman spectroscopy both in vivo and in vitro.

  12. NUDT2 Disruption Elevates Diadenosine Tetraphosphate (Ap4A and Down-Regulates Immune Response and Cancer Promotion Genes.

    Directory of Open Access Journals (Sweden)

    Andrew S Marriott

    Full Text Available Regulation of gene expression is one of several roles proposed for the stress-induced nucleotide diadenosine tetraphosphate (Ap4A. We have examined this directly by a comparative RNA-Seq analysis of KBM-7 chronic myelogenous leukemia cells and KBM-7 cells in which the NUDT2 Ap4A hydrolase gene had been disrupted (NuKO cells, causing a 175-fold increase in intracellular Ap4A. 6,288 differentially expressed genes were identified with P < 0.05. Of these, 980 were up-regulated and 705 down-regulated in NuKO cells with a fold-change ≥ 2. Ingenuity® Pathway Analysis (IPA® was used to assign these genes to known canonical pathways and functional networks. Pathways associated with interferon responses, pattern recognition receptors and inflammation scored highly in the down-regulated set of genes while functions associated with MHC class II antigens were prominent among the up-regulated genes, which otherwise showed little organization into major functional gene sets. Tryptophan catabolism was also strongly down-regulated as were numerous genes known to be involved in tumor promotion in other systems, with roles in the epithelial-mesenchymal transition, proliferation, invasion and metastasis. Conversely, some pro-apoptotic genes were up-regulated. Major upstream factors predicted by IPA® for gene down-regulation included NFκB, STAT1/2, IRF3/4 and SP1 but no major factors controlling gene up-regulation were identified. Potential mechanisms for gene regulation mediated by Ap4A and/or NUDT2 disruption include binding of Ap4A to the HINT1 co-repressor, autocrine activation of purinoceptors by Ap4A, chromatin remodeling, effects of NUDT2 loss on transcript stability, and inhibition of ATP-dependent regulatory factors such as protein kinases by Ap4A. Existing evidence favors the last of these as the most probable mechanism. Regardless, our results suggest that the NUDT2 protein could be a novel cancer chemotherapeutic target, with its inhibition

  13. Specific expression of bioluminescence reporter gene in cardiomyocyte regulated by tissue specific promoter

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Vu Hong; Tae, Seong Ho; Le, Nguyen Uyen Chi; Min, Jung Joon [Chonnam National University Medical School, Gwangju (Korea, Republic of)

    2007-07-01

    As the human heart is not capable of regenerating the great numbers of cardiac cells that are lost after myocardial infarction, impaired cardiac function is the inevitable result of ischemic disease. Recently, human embryonic stem cells (hESCs) have gained popularity as a potentially ideal cell candidate for tissue regeneration. In particular, hESCs are capable of cardiac lineage-specific differentiation and confer improvement of cardiac function following transplantation into animal models. Although such data are encouraging, the specific strategy for in vivo and non-invasive detection of differentiated cardiac lineage is still limited. Therefore, in the present study, we established the gene construction in which the optical reporter gene Firefly luciferase was controlled by Myosin Heavy Chain promoter for specific expressing in heart cells. The vector consisting of - MHC promoter and a firefly luciferase coding sequence flanked by full-length bovine growth hormone (BGH) 3'-polyadenylation sequence based on pcDNA3.1- vector backbone. To test the specific transcription of this promoter in g of MHC-Fluc or CMV-Flue (for control) plasmid DNA in myocardial tissue, 20 phosphate-buffered saline was directly injected into mouse myocardium through a midline sternotomy and liver. After 1 week of injection, MHC-Fluc expression was detected from heart region which was observed under cooled CCD camera of in vivo imaging system but not from liver. In control group injected with CMV-Flue, the bioluminescence was detected from all these organs. The expression of Flue under control of Myosin Heavy Chain promoter may become a suitable optical reporter gene for stem cell-derived cardiac lineage differentiation study.

  14. ATPase activity tightly regulates RecA nucleofilaments to promote homologous recombination

    Science.gov (United States)

    Zhao, Bailin; Zhang, Dapeng; Li, Chengmin; Yuan, Zheng; Yu, Fangzhi; Zhong, Shangwei; Jiang, Guibin; Yang, Yun-Gui; Le, X Chris; Weinfeld, Michael; Zhu, Ping; Wang, Hailin

    2017-01-01

    Homologous recombination (HR), catalyzed in an evolutionarily conserved manner by active RecA/Rad51 nucleofilaments, maintains genomic integrity and promotes biological evolution and diversity. The structures of RecA/Rad51 nucleofilaments provide information critical for the entire HR process. By exploiting a unique capillary electrophoresis-laser-induced fluorescence polarization assay, we have discovered an active form of RecA nucleofilament, stimulated by ATP hydrolysis, that contains mainly unbound nucleotide sites. This finding was confirmed by a nuclease protection assay and electron microscopy (EM) imaging. We further found that these RecA-unsaturated filaments promote strand exchange in vitro and HR in vivo. RecA mutants (P67D and P67E), which only form RecA-unsaturated nucleofilaments, were able to mediate HR in vitro and in vivo, but mutants favoring the formation of the saturated nucleofilaments failed to support HR. We thus present a new model for RecA-mediated HR in which RecA utilizes its intrinsic DNA binding-dependent ATPase activity to remodel the nucleofilaments to a less saturated form and thereby promote HR. PMID:28101376

  15. The EGF Receptor Promotes the Malignant Potential of Glioma by Regulating Amino Acid Transport System xc(-).

    Science.gov (United States)

    Tsuchihashi, Kenji; Okazaki, Shogo; Ohmura, Mitsuyo; Ishikawa, Miyuki; Sampetrean, Oltea; Onishi, Nobuyuki; Wakimoto, Hiroaki; Yoshikawa, Momoko; Seishima, Ryo; Iwasaki, Yoshimi; Morikawa, Takayuki; Abe, Shinya; Takao, Ayumi; Shimizu, Misato; Masuko, Takashi; Nagane, Motoo; Furnari, Frank B; Akiyama, Tetsu; Suematsu, Makoto; Baba, Eishi; Akashi, Koichi; Saya, Hideyuki; Nagano, Osamu

    2016-05-15

    Extracellular free amino acids contribute to the interaction between a tumor and its microenvironment through effects on cellular metabolism and malignant behavior. System xc(-) is composed of xCT and CD98hc subunits and functions as a plasma membrane antiporter for the uptake of extracellular cystine in exchange for intracellular glutamate. Here, we show that the EGFR interacts with xCT and thereby promotes its cell surface expression and function in human glioma cells. EGFR-expressing glioma cells manifested both enhanced antioxidant capacity as a result of increased cystine uptake, as well as increased glutamate, which promotes matrix invasion. Imaging mass spectrometry also revealed that brain tumors formed in mice by human glioma cells stably overexpressing EGFR contained higher levels of reduced glutathione compared with those formed by parental cells. Targeted inhibition of xCT suppressed the EGFR-dependent enhancement of antioxidant capacity in glioma cells, as well as tumor growth and invasiveness. Our findings establish a new functional role for EGFR in promoting the malignant potential of glioma cells through interaction with xCT at the cell surface. Cancer Res; 76(10); 2954-63. ©2016 AACR.

  16. Regulation of deoxycytidine kinase expression and sensitivity to gemcitabine by micro-RNA 330 and promoter methylation in cancer cells.

    Science.gov (United States)

    Hodzic, Jasmina; Giovannetti, Elisa; Diosdado, Begoňa; Calvo, Begona Diosdado; Adema, A D; Peters, G J

    2011-12-01

    Deoxycytidine kinase (dCK) is essential for phosphorylation of natural deoxynucleosides and analogs, such as gemcitabine and cytarabine, two widely used anticancer compounds. Regulation of dCK is complex, including Ser-74 phosphorylation. We hypothesized that dCK could be regulated by two additional mechanisms: micro-RNA (miRNA) and promoter methylation. Methylation-specific PCR (MSP) revealed methylation of the 3' GC box in three out of six cancer cell lines. The 3' GC box is located at the dCK promoter region. The methylation status was related to dCK mRNA expression. TargetScan and miRanda prediction algorithms revealed several possible miRNAs targeting dCK and identified miR-330 (micro-RNA 330) as the one conserved between the human, the chimpanzee, and the rhesus monkey genomes. Expression of miR-330 in various colon and lung cancer cell lines, as measured by QRT-PCR, varied five-fold between samples and correlated with in-vitro gemcitabine resistance (R = 0.82, p = 0.04). Exposure to gemcitabine also appeared to influence miR-330 levels in these cell lines. Furthermore, in our cell line panel, miR-330 expression negatively correlated with dCK mRNA expression (R = 0.74), suggesting a role of miR-330 in post-transcriptional regulation of dCK. In conclusion, the 3' GC box and miR-330 may regulate dCK expression in cancer cells.

  17. Systems-level regulation of microRNA networks by miR-130/301 promotes pulmonary hypertension

    Science.gov (United States)

    Bertero, Thomas; Lu, Yu; Annis, Sofia; Hale, Andrew; Bhat, Balkrishen; Saggar, Rajan; Saggar, Rajeev; Wallace, W. Dean; Ross, David J.; Vargas, Sara O.; Graham, Brian B.; Kumar, Rahul; Black, Stephen M.; Fratz, Sohrab; Fineman, Jeffrey R.; West, James D.; Haley, Kathleen J.; Waxman, Aaron B.; Chau, B. Nelson; Cottrill, Katherine A.; Chan, Stephen Y.

    2014-01-01

    Development of the vascular disease pulmonary hypertension (PH) involves disparate molecular pathways that span multiple cell types. MicroRNAs (miRNAs) may coordinately regulate PH progression, but the integrative functions of miRNAs in this process have been challenging to define with conventional approaches. Here, analysis of the molecular network architecture specific to PH predicted that the miR-130/301 family is a master regulator of cellular proliferation in PH via regulation of subordinate miRNA pathways with unexpected connections to one another. In validation of this model, diseased pulmonary vessels and plasma from mammalian models and human PH subjects exhibited upregulation of miR-130/301 expression. Evaluation of pulmonary arterial endothelial cells and smooth muscle cells revealed that miR-130/301 targeted PPARγ with distinct consequences. In endothelial cells, miR-130/301 modulated apelin-miR-424/503-FGF2 signaling, while in smooth muscle cells, miR-130/301 modulated STAT3-miR-204 signaling to promote PH-associated phenotypes. In murine models, induction of miR-130/301 promoted pathogenic PH-associated effects, while miR-130/301 inhibition prevented PH pathogenesis. Together, these results provide insight into the systems-level regulation of miRNA-disease gene networks in PH with broad implications for miRNA-based therapeutics in this disease. Furthermore, these findings provide critical validation for the evolving application of network theory to the discovery of the miRNA-based origins of PH and other diseases. PMID:24960162

  18. H3 lysine 4 is acetylated at active gene promoters and is regulated by H3 lysine 4 methylation.

    Directory of Open Access Journals (Sweden)

    Benoit Guillemette

    2011-03-01

    Full Text Available Methylation of histone H3 lysine 4 (H3K4me is an evolutionarily conserved modification whose role in the regulation of gene expression has been extensively studied. In contrast, the function of H3K4 acetylation (H3K4ac has received little attention because of a lack of tools to separate its function from that of H3K4me. Here we show that, in addition to being methylated, H3K4 is also acetylated in budding yeast. Genetic studies reveal that the histone acetyltransferases (HATs Gcn5 and Rtt109 contribute to H3K4 acetylation in vivo. Whilst removal of H3K4ac from euchromatin mainly requires the histone deacetylase (HDAC Hst1, Sir2 is needed for H3K4 deacetylation in heterochomatin. Using genome-wide chromatin immunoprecipitation (ChIP, we show that H3K4ac is enriched at promoters of actively transcribed genes and located just upstream of H3K4 tri-methylation (H3K4me3, a pattern that has been conserved in human cells. We find that the Set1-containing complex (COMPASS, which promotes H3K4me2 and -me3, also serves to limit the abundance of H3K4ac at gene promoters. In addition, we identify a group of genes that have high levels of H3K4ac in their promoters and are inadequately expressed in H3-K4R, but not in set1Δ mutant strains, suggesting that H3K4ac plays a positive role in transcription. Our results reveal a novel regulatory feature of promoter-proximal chromatin, involving mutually exclusive histone modifications of the same histone residue (H3K4ac and H3K4me.

  19. Metazoan promoters

    DEFF Research Database (Denmark)

    Lenhard, Boris; Sandelin, Albin Gustav; Carninci, Piero

    2012-01-01

    Promoters are crucial for gene regulation. They vary greatly in terms of associated regulatory elements, sequence motifs, the choice of transcription start sites and other features. Several technologies that harness next-generation sequencing have enabled recent advances in identifying promoters...... and their features, helping researchers who are investigating functional categories of promoters and their modes of regulation. Additional features of promoters that are being characterized include types of histone modifications, nucleosome positioning, RNA polymerase pausing and novel small RNAs. In this Review, we...... discuss recent findings relating to metazoan promoters and how these findings are leading to a revised picture of what a gene promoter is and how it works....

  20. PHLDA1 Promotes Lung Contusion by Regulating the Toll-Like Receptor 2 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Shaohua Wang

    2016-12-01

    Full Text Available Background/Aims: Lung contusion is a potentially lethal injury. Pleckstrin homology-like domain family A, member-1 (PHLDA1 is known to play crucial roles in cell proliferation and apoptosis. In this study, we investigated the biological role of PHLDA1 in lung contusion. Methods: The expression levels of PHLDA1 and TLR2 were detected by real time PCR and western. The cytokines were determined by ELISA. The inflammatory factors were detected by flow cytometry. The lung injury was determined by HE staining. Results: PHLDA1 gene and protein expression levels were up-regulated in a mouse lung-contusion model, together with increased neutrophil and macrophage contents. Down-regulation of PHLDA1 by interfering RNA (siPHLDA1 mice decreased lung injury and neutrophil infiltration. Inflammatory factors, including interleukin (IL-1β, IL-6, mouse homolog of human growth-regulated oncogene-α (KC, tumor necrosis factor-α, CC chemokine ligand (CCL 2, and CCL12 were also decreased in siPHLDA1 mice. Expression levels of Toll-like receptor 2 (TLR2 were increased in the lung-contusion mouse model, but were decreased when PHLDA1 was down-regulated. Conclusion: These results demonstrate that PHLDA1 plays a critical role in the development of progressive lung contusion and subsequent inflammation. This information furthers our understanding of the pathogenesis of lung contusion, and suggests that PHLDA1 blockade may represent a potential therapeutic strategy for the treatment of this injury.

  1. Regulating Tobacco Product Advertising and Promotions in the Retail Environment: A Roadmap for States and Localities.

    Science.gov (United States)

    Lange, Tamara; Hoefges, Michael; Ribisl, Kurt M

    2015-01-01

    Recent amendments to federal law and a burgeoning body of research have intensified public health officials' interest in reducing youth initiation of tobacco use, including by regulating the time, place, or manner of tobacco product advertising at the point of sale. This article analyzes legal obstacles to various strategies for reducing youth initiation.

  2. Promoting Self-Regulation through School-Based Martial Arts Training

    Science.gov (United States)

    Lakes, Kimberley D.; Hoyt, William T.

    2004-01-01

    The impact of school-based Tae Kwon Do training on self-regulatory abilities was examined. A self-regulation framework including three domains (cognitive, affective, and physical) was presented. Children (N = 207) from kindergarten through Grade 5 were randomly assigned by homeroom class to either the intervention (martial arts) group or a…

  3. Cycling for Students with ASD: Self-Regulation Promotes Sustained Physical Activity

    Science.gov (United States)

    Todd, Teri; Reid, Greg; Butler-Kisber, Lynn

    2010-01-01

    Individuals with autism often lack motivation to engage in sustained physical activity. Three adolescents with severe autism participated in a 16-week program and each regularly completed 30 min of cycling at the end of program. This study investigated the effect of a self-regulation instructional strategy on sustained cycling, which included…

  4. Promoting Self-Regulation through School-Based Martial Arts Training

    Science.gov (United States)

    Lakes, Kimberley D.; Hoyt, William T.

    2004-01-01

    The impact of school-based Tae Kwon Do training on self-regulatory abilities was examined. A self-regulation framework including three domains (cognitive, affective, and physical) was presented. Children (N = 207) from kindergarten through Grade 5 were randomly assigned by homeroom class to either the intervention (martial arts) group or a…

  5. The Strategy Project: Promoting Self-Regulated Learning through an Authentic Assignment

    Science.gov (United States)

    Steiner, Hillary H.

    2016-01-01

    Success in college requires the development of self-regulated learning strategies that move beyond high school skills. First-year students of all ability levels benefit when given instruction in how to use these strategies in an authentic context. This paper presents an instructional method that requires deliberate practice of self-regulated…

  6. MMSET is dynamically regulated during cell-cycle progression and promotes normal DNA replication.

    Science.gov (United States)

    Evans, Debra L; Zhang, Haoxing; Ham, Hyoungjun; Pei, Huadong; Lee, SeungBaek; Kim, JungJin; Billadeau, Daniel D; Lou, Zhenkun

    2016-01-01

    The timely and precise duplication of cellular DNA is essential for maintaining genome integrity and is thus tightly-regulated. During mitosis and G1, the Origin Recognition Complex (ORC) binds to future replication origins, coordinating with multiple factors to load the minichromosome maintenance (MCM) complex onto future replication origins as part of the pre-replication complex (pre-RC). The pre-RC machinery, in turn, remains inactive until the subsequent S phase when it is required for replication fork formation, thereby initiating DNA replication. Multiple myeloma SET domain-containing protein (MMSET, a.k.a. WHSC1, NSD2) is a histone methyltransferase that is frequently overexpressed in aggressive cancers and is essential for normal human development. Several studies have suggested a role for MMSET in cell-cycle regulation; however, whether MMSET is itself regulated during cell-cycle progression has not been examined. In this study, we report that MMSET is degraded during S phase in a cullin-ring ligase 4-Cdt2 (CRL4(Cdt2)) and proteasome-dependent manner. Notably, we also report defects in DNA replication and a decreased association of pre-RC factors with chromatin in MMSET-depleted cells. Taken together, our results suggest a dynamic regulation of MMSET levels throughout the cell cycle, and further characterize the role of MMSET in DNA replication and cell-cycle progression.

  7. Laminin regulates postnatal oligodendrocyte production by promoting oligodendrocyte progenitor survival in the subventricular zone.

    Science.gov (United States)

    Relucio, Jenne; Menezes, Michael J; Miyagoe-Suzuki, Yuko; Takeda, Shin'ichi; Colognato, Holly

    2012-10-01

    The laminin family of extracellular matrix proteins are expressed broadly during embryonic brain development, but are enriched at ventricular and pial surfaces where laminins mediate radial glial attachment during corticogenesis. In the adult brain, however, laminin distribution is restricted, yet is found within the vascular basal lamina and associated fractones of the ventricular zone (VZ)-subventricular zone (SVZ) stem cell niche, where laminins regulate adult neural progenitor cell proliferation. It remains unknown, however, if laminins regulate the wave of oligodendrogenesis that occurs in the neonatal/early postnatal VZ-SVZ. Here we report that Lama2, the gene that encodes the laminin α2-subunit, regulates postnatal oligodendrogenesis. At birth, Lama2-/- mice had significantly higher levels of dying oligodendrocyte progenitor cells (OPCs) in the OPC germinal zone of the dorsal SVZ. This translated into fewer OPCs, both in the dorsal SVZ well as in an adjacent developing white matter tract, the corpus callosum. In addition, intermediate progenitor cells that give rise to OPCs in the Lama2-/- VZ-SVZ were mislocalized and proliferated nearer to the ventricle surface. Later, delays in oligodendrocyte maturation (with accompanying OPC accumulation), were observed in the Lama2-/- corpus callosum, leading to dysmyelination by postnatal day 21. Together these data suggest that prosurvival laminin interactions in the developing postnatal VZ-SVZ germinal zone regulate the ability, or timing, of oligodendrocyte production to occur appropriately.

  8. [Regulation of publicity for children's food as a strategy for promotion of health].

    Science.gov (United States)

    Henriques, Patrícia; Sally, Enilce Oliveira; Burlandy, Luciene; Beiler, Renata Mondino

    2012-02-01

    The eating habits of the Brazilian population have been changing in recent decades and publicity is one of the factors contributing to this situation. The objective of this study was to evaluate the content of food publicity broadcast on television and addressed to children, from the standpoint of regulation. The publicity broadcast on the two major television stations during the school holidays was recorded on VHS tapes. Content analysis techniques were used and eight categories of analysis were defined based on the theoretical benchmark of the eating habits and their determining factors. The proposal for a Technical Regulation of Anvisa was used to conduct this analysis. 1018 advertisements were recorded, of which 132 (12.9%) that advertised foods targeted at children were selected, but only 12 different products were identified. According to the proposed regulation, all the material analyzed violated no less than three articles, among which the 4th, Sections III and VIb stand out. The pressing need for government regulation of the content of food advertisements for children, the consumption of which can be harmful to health, is clearly apparent because of its influence on the decision to purchase, both by the children themselves, and their parents.

  9. Introduction of team self-regulation for teamwork promotion. A case study in energy engineering topics

    Directory of Open Access Journals (Sweden)

    María Jesús González-Fernández

    2013-12-01

    Full Text Available The learning and development of teamwork skill is onlypossible if its achievement is a self-building process of the student. In turn,the teachers must become guides in the process of a learning which is notlimited only to the topic of their own course, but which must be imbedded witha good dose of this skill. Promotionof teamwork is not spontaneous but very often requires the use ofself-regulation within teams. The aim of the paper is to elucidateif positive or negative self-regulation of teams are useful to promoteteamwork. The paper presents some experiences onthe use of self-regulation of teams within ofactive teaching strategies that involve teamwork as a criticalskill in engineering education. The paper presents first the fundamentals ofthe learning strategy adopted, intended to develop teamwork abilities in thestudents. It then describes the context and challenges faced up in the casestudies, as well as the essentials of the learning activities proposed.Finally, the paper discusses the student’s achievement and perception. Althoughsome influence of unbalanced teams there exists, it can be stated that positiveself-regulation of teams is more easily accepted by teams than the negative ones,because of the influence on interpersonal relationships amongst students. Thetopics involved in this experience are energy related topics such as electricalinstallations, heat transfer, engineering thermodynamics or theory of circuits.

  10. CHIP/Stub1 regulates the Warburg effect by promoting degradation of PKM2 in ovarian carcinoma.

    Science.gov (United States)

    Shang, Y; He, J; Wang, Y; Feng, Q; Zhang, Y; Guo, J; Li, J; Li, S; Wang, Y; Yan, G; Ren, F; Shi, Y; Xu, J; Zeps, N; Zhai, Y; He, D; Chang, Z

    2017-07-20

    Tumor cells preferentially adopt aerobic glycolysis for their energy supply, a phenomenon known as the Warburg effect. It remains a matter of debate as to how the Warburg effect is regulated during tumor progression. Here, we show that CHIP (carboxyl terminus of Hsc70-interacting protein), a U-box E3 ligase, suppresses tumor progression in ovarian carcinomas by inhibiting aerobic glycolysis. While CHIP is downregulated in ovarian carcinoma, induced expression of CHIP results in significant inhibition of the tumor growth examined by in vitro and in vivo experiments. Reciprocally, depletion of CHIP leads to promotion of tumor growth. By a SiLAD proteomics analysis, we identified pyruvate kinase isoenzyme M2 (PKM2), a critical regulator of glycolysis in tumors, as a target that CHIP mediated for degradation. Accordingly, we show that CHIP regulates PKM2 protein stability and thereafter the energy metabolic processes. Depletion or knockout of CHIP increased the glycolytic products in both tumor and mouse embryonic fibroblast cells. Simultaneously, we observed that CHIP expression inversely correlated with PKM2 levels in human ovarian carcinomas. This study reveals a mechanism that the Warburg effect is regulated by CHIP through its function as an E3 ligase, which mediates the degradation of PKM2 during tumor progression. Our findings shed new light into understanding of ovarian carcinomas and may provide a new therapeutic strategy for ovarian cancer.

  11. Histone deacetylase inhibitor valproic acid (VPA) promotes the epithelial mesenchymal transition of colorectal cancer cells via up regulation of Snail.

    Science.gov (United States)

    Feng, Jutao; Cen, Junhua; Li, Jun; Zhao, Rujin; Zhu, Canhua; Wang, Zongxin; Xie, Jiafen; Tang, Wei

    2015-01-01

    Histone deacetylase inhibitors (HDACIs) have been shown to have antiproliferative activity through cell-cycle arrest, differentiation, and apoptosis in colorectal cancer (CRC) cells. Our present study revealed that one HDAC inhibitor, valproic acid (VPA), can obviously promote in vitro motility of HCT-116 and SW480 cells. VPA treatment significantly down regulates the expression of epithelial markers E-Cadherin (E-Cad) and Zona occludin-1(ZO-1) while up regulates the mesenchymal markers Vimentin (Vim) and N-cadherin (N-Cad), suggesting that VPA can trigger the epithelial-mesenchymal transition (EMT) of CRC cells. VPA treatment significantly increases the expression and nuclear localization of Snail, the key transcription factors of EMT. Snail knockdown by siRNAs obviously reverses VPA induced EMT of HCT-116 and SW480 cells. Further, VPA can decrease the ubiquitination, increase the acetylation, and then elevate the stabilization of Snail. VPA also increases the phosphorylation of Akt/GSK-3β. The inhibitor of PI3K/Akt, LY2994002, significantly attenuates VPA induced phosphorylation of Akt and GSK-3β and up regulation of Snail and Vim. Collectively, our data reveal that VPA can trigger the EMT of CRC cells via up regulation of Snail through AKT/GSK-3β signals and post-transcriptional modification. It suggests that more attention should be paid when VPA used as a new anticancer drug for CRC patients.

  12. Two tobacco AP1-like gene promoters with highly specific, tightly regulated and uniquely expressed activity during floral transition, initiation and development

    Science.gov (United States)

    Biotech engineering of agronomic traits requires an array of highly specific and tightly regulated promoters in flower or other tissues. In this study, we isolated and characterized two tobacco AP1-like promoters (termed NtAP1La and NtAP1Lb1) in transgenic plants using GUS reporter and tissue-speci...

  13. Stress-induced nuclear RNA degradation pathways regulate yeast bromodomain factor 2 to promote cell survival.

    Directory of Open Access Journals (Sweden)

    Kevin Roy

    2014-09-01

    Full Text Available Bromodomain proteins are key regulators of gene expression. How the levels of these factors are regulated in specific environmental conditions is unknown. Previous work has established that expression of yeast Bromodomain factor 2 (BDF2 is limited by spliceosome-mediated decay (SMD. Here we show that BDF2 is subject to an additional layer of post-transcriptional control through RNase III-mediated decay (RMD. We found that the yeast RNase III Rnt1p cleaves a stem-loop structure within the BDF2 mRNA to down-regulate its expression. However, these two nuclear RNA degradation pathways play distinct roles in the regulation of BDF2 expression, as we show that the RMD and SMD pathways of the BDF2 mRNA are differentially activated or repressed in specific environmental conditions. RMD is hyper-activated by salt stress and repressed by hydroxyurea-induced DNA damage while SMD is inactivated by salt stress and predominates during DNA damage. Mutations of cis-acting signals that control SMD and RMD rescue numerous growth defects of cells lacking Bdf1p, and show that SMD plays an important role in the DNA damage response. These results demonstrate that specific environmental conditions modulate nuclear RNA degradation pathways to control BDF2 expression and Bdf2p-mediated gene regulation. Moreover, these results show that precise dosage of Bromodomain factors is essential for cell survival in specific environmental conditions, emphasizing their importance for controlling chromatin structure and gene expression in response to environmental stress.

  14. Down-regulation of microRNA-26a promotes mouse hepatocyte proliferation during liver regeneration.

    Directory of Open Access Journals (Sweden)

    Jian Zhou

    Full Text Available BACKGROUND: Inadequate liver regeneration (LR is still an unsolved problem in major liver resection and small-for-size syndrome post-living donor liver transplantation. A number of microRNAs have been shown to play important roles in cell proliferation. Herein, we investigated the role of miR-26a as a pivotal regulator of hepatocyte proliferation in LR. METHODOLOGY/PRINCIPAL FINDINGS: Adult male C57BL/6J mice, undergoing 70% partial hepatectomy (PH, were treated with Ad5-anti-miR-26a-LUC or Ad5-miR-26a-LUC or Ad5-LUC vector via portal vein. The animals were subjected to in vivo bioluminescence imaging. Serum and liver samples were collected to test liver function, calculate liver-to-body weight ratio (LBWR, document hepatocyte proliferation (Ki-67 staining, and investigate potential targeted gene expression of miR-26a by quantitative real-time PCR and Western blot. The miR-26a level declined during LR after 70% PH. Down-regulation of miR-26a by anti-miR-26a expression led to enhanced proliferation of hepatocytes, and both LBWR and hepatocyte proliferation (Ki-67(+ cells % showed an increased tendency, while liver damage, indicated by aspartate aminotransferase (AST, alanine aminotransferase (ALT and total bilirubin (T-Bil, was reduced. Furthermore, CCND2 and CCNE2, as possible targeted genes of miR-26a, were up-regulated. In addition, miR-26a over-expression showed converse results. CONCLUSIONS/SIGNIFICANCE: MiR-26a plays crucial role in regulating the proliferative phase of LR, probably by repressing expressions of cell cycle proteins CCND2 and CCNE2. The current study reveals a novel miRNA-mediated regulation pattern during the proliferative phase of LR.

  15. Corporate coalitions and policy making in the European Union: how and why British American Tobacco promoted "Better Regulation".

    Science.gov (United States)

    Smith, Katherine Elizabeth; Fooks, Gary; Gilmore, Anna B; Collin, Jeff; Weishaar, Heide

    2015-04-01

    Over the past fifteen years, an interconnected set of regulatory reforms, known as Better Regulation, has been adopted across Europe, marking a significant shift in the way that European Union policies are developed. There has been little exploration of the origins of these reforms, which include mandatory ex ante impact assessment. Drawing on documentary and interview data, this article discusses how and why large corporations, notably British American Tobacco (BAT), worked to influence and promote these reforms. Our analysis highlights (1) how policy entrepreneurs with sufficient resources (such as large corporations) can shape the membership and direction of advocacy coalitions; (2) the extent to which "think tanks" may be prepared to lobby on behalf of commercial clients; and (3) why regulated industries (including tobacco) may favor the use of "evidence tools," such as impact assessments, in policy making. We argue that a key aspect of BAT's ability to shape regulatory reform involved the deliberate construction of a vaguely defined idea that could be strategically adapted to appeal to diverse constituencies. We discuss the theoretical implications of this finding for the Advocacy Coalition Framework, as well as the practical implications of the findings for efforts to promote transparency and public health in the European Union.

  16. Survivin promoter-regulated oncolytic adenovirus with Hsp70 gene exerts effective antitumor efficacy in gastric cancer immunotherapy.

    Science.gov (United States)

    Wang, Weiguo; Ji, Weidan; Hu, Huanzhang; Ma, Juming; Li, Xiaoya; Mei, Weiqun; Xu, Yang; Hu, Huizhen; Yan, Yan; Song, Qizhe; Li, Zhigang; Su, Changqing

    2014-01-15

    Gene therapy is a promising adjuvant therapeutic strategy for cancer treatment. To overcome the limitations of current gene therapy, such as poor transfection efficiency of vectors, low levels of transgene expression and lack of tumor targeting, the Survivin promoter was used to regulate the selective replication of oncolytic adenovirus in tumor cells, and the heat shock protein 70 (Hsp70) gene was loaded as the anticancer transgene to generate an AdSurp-Hsp70 viral therapy system. The efficacy of this targeted immunotherapy was examined in gastric cancer. The experiments showed that the oncolytic adenovirus can selectively replicate in and lyse the Survivin-positive gastric cancer cells, without significant toxicity to normal cells. AdSurp-Hsp70 reduced viability of cancer cells and inhibited tumor growth of gastric cancer xenografts in immuno-deficient and immuno-reconstruction mouse models. AdSurp-Hsp70 produced dual antitumor effects due to viral replication and high Hsp70 expression. This therapeutic system used the Survivin promoter-regulated oncolytic adenovirus vector to mediate targeted expression of the Hsp70 gene and ensure safety and efficacy for subsequent gene therapy programs against a variety of cancers.

  17. Chelerythrine down regulates expression of VEGFA, BCL2 and KRAS by arresting G-Quadruplex structures at their promoter regions

    Science.gov (United States)

    Jana, Jagannath; Mondal, Soma; Bhattacharjee, Payel; Sengupta, Pallabi; Roychowdhury, Tanaya; Saha, Pranay; Kundu, Pallob; Chatterjee, Subhrangsu

    2017-01-01

    A putative anticancer plant alkaloid, Chelerythrine binds to G-quadruplexes at promoters of VEGFA, BCL2 and KRAS genes and down regulates their expression. The association of Chelerythrine to G-quadruplex at the promoters of these oncogenes were monitored using UV absorption spectroscopy, fluorescence anisotropy, circular dichroism spectroscopy, CD melting, isothermal titration calorimetry, molecular dynamics simulation and quantitative RT-PCR technique. The pronounced hypochromism accompanied by red shifts in UV absorption spectroscopy in conjunction with ethidium bromide displacement assay indicates end stacking mode of interaction of Chelerythrine with the corresponding G-quadruplex structures. An increase in fluorescence anisotropy and CD melting temperature of Chelerythrine-quadruplex complex revealed the formation of stable Chelerythrine-quadruplex complex. Isothermal titration calorimetry data confirmed that Chelerythrine-quadruplex complex formation is thermodynamically favourable. Results of quantative RT-PCR experiment in combination with luciferase assay showed that Chelerythrine treatment to MCF7 breast cancer cells effectively down regulated transcript level of all three genes, suggesting that Chelerythrine efficiently binds to in cellulo quadruplex motifs. MD simulation provides the molecular picture showing interaction between Chelerythrine and G-quadruplex. Binding of Chelerythrine with BCL2, VEGFA and KRAS genes involved in evasion, angiogenesis and self sufficiency of cancer cells provides a new insight for the development of future therapeutics against cancer.

  18. Arsenic trioxide promotes senescence and regulates the balance of adipogenic and osteogenic differentiation in human mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Huanchen Cheng; Lin Qiu; Hao Zhang; Mei Cheng; Wei Li; Xuefei Zhao; Keyu Liu; Lei Lei; Jun Ma

    2011-01-01

    Arsenic trioxide (ATO) as an anti-tumor drug could induce differentiation and apoptosis in tumor cells.Mesenchymal stem cells (MSCs) play important roles in the hematogenesis of bone marrow. Many reports have shown that the disorder of MSC adipogenic and osteogenic differentiation occurs in some diseases. However,reports about the effects of ATO on MSCs are limited. In this study, we found that 1μM ATO promoted MSC senescence mainly through p21, although it had no effect on apoptosis at this dose. Furthermore, ATO promoted adipogenic differentiation, but inhibited osteogenic differentiation in MSCs. Our study also showed that CCAAT/enhancer-binding protein alpha C/EBPα and peroxisome proliferator-activated receptor gamma PPARγ might be involved in the regulation of adipogenic and osteogenic differentiation induced by ATO. Our results indicated that ATO may exert an anti-tumor effect by influencing bone marrow micro-environment. Moreover, it may regulate the adipogenic and osteogenic differentiation of MSCs.

  19. Regulation of tissue-specific expression of alternative peripheral myelin protein-22 (PMP22) gene transcripts by two promoters

    Energy Technology Data Exchange (ETDEWEB)

    Patel, P.I.; Schoener-Scott, R.; Lupski, J.R. [Baylor College of Medicine, Houston, TX (United States)] [and others

    1994-09-01

    Mutations affecting the peripheral myelin protein-22 (PMP22) gene have been shown to be associated with inherited peripheral neuropathies. We have cloned and characterized the human PMP22 gene which spans approximately 40 kilobases and contains four coding exons. Towards developing gene therapy regimens for the associated peripheral neuropathies, we have initiated detailed analysis of the 5{prime} flanking region of the PMP22 gene and identified two alternatively transcribed, but untranslated exons. Mapping of separate PMP22 mRNA transcription initiation sites to each of these exons indicates that PMP22 expression is regulated by two alternatively used promoters. Both putative promoter sequences demonstrated the ability to drive expression of reporter genes in transfection experiments. Furthermore, the structure of the 5{prime} portion of the PMP22 gene appears to be identical in rat and human, supporting the biological significance of the observed arrangement of regulatory regions. The relative expression of the alternative PMP22 transcripts is tissue-specific and high levels of the exon 1A-containing transcript are tightly coupled to myelin formation. In contrast, exon 1B-containing transcripts are predominant in non-neural tissues and in growth-arrested primary fibroblasts. The observed regulation of the PMP22 by a complex molecular mechanism is consistent with the proposed dual role of PMP22 in neural and non-neural tissue.

  20. Insulin regulates Rab3-Noc2 complex dissociation to promote GLUT4 translocation in rat adipocytes.

    Science.gov (United States)

    Koumanov, Francoise; Pereira, Vinit J; Richardson, Judith D; Sargent, Samantha L; Fazakerley, Daniel J; Holman, Geoffrey D

    2015-08-01

    The glucose transporter GLUT4 is present mainly in insulin-responsive tissues of fat, heart and skeletal muscle and is translocated from intracellular membrane compartments to the plasma membrane (PM) upon insulin stimulation. The transit of GLUT4 to the PM is known to be dependent on a series of Rab proteins. However, the extent to which the activity of these Rabs is regulated by the action of insulin action is still unknown. We sought to identify insulin-activated Rab proteins and Rab effectors that facilitate GLUT4 translocation. We developed a new photoaffinity reagent (Bio-ATB-GTP) that allows GTP-binding proteomes to be explored. Using this approach we screened for insulin-responsive GTP loading of Rabs in primary rat adipocytes. We identified Rab3B as a new candidate insulin-stimulated G-protein in adipocytes. Using constitutively active and dominant negative mutants and Rab3 knockdown we provide evidence that Rab3 isoforms are key regulators of GLUT4 translocation in adipocytes. Insulin-stimulated Rab3 GTP binding is associated with disruption of the interaction between Rab3 and its negative effector Noc2. Disruption of the Rab3-Noc2 complex leads to displacement of Noc2 from the PM. This relieves the inhibitory effect of Noc2, facilitating GLUT4 translocation. The discovery of the involvement of Rab3 and Noc2 in an insulin-regulated step in GLUT4 translocation suggests that the control of this translocation process is unexpectedly similar to regulated secretion and particularly pancreatic insulin-vesicle release.

  1. The demands of lactation promote differential regulation of lipid stores in fasting elephant seals

    OpenAIRE

    Fowler, Melinda A.; Debier, Cathy; Cory D Champagne; Daniel E Crocker; Costa, Daniel P.

    2016-01-01

    Fasting animals must ration stored reserves appropriately for metabolic demands. Animals that experience fasting concomitant with other metabolically demanding activities are presented with conflicting demands of energy conservation and expenditure. Our objective was to understand how fasting northern elephant seals regulate the mobilization of lipid reserves and subsequently milk lipid content during lactation. We sampled 36 females early and 39 at the end of lactation. To determine the sepa...

  2. Miss, I got mad today! : the anger diary, a tool to promote emotion regulation

    OpenAIRE

    Roberta Renati; Valeria Cavioni; Maria Assunta Zanetti

    2011-01-01

    Effective management of emotions has strong implications in the development of adaptive behaviours during childhood and adolescence. The purpose of this study was to examine the use of a new method of emotion regulation named the 'aRRabbiadiaro' (Anger Diary), with primary school children. The participants included 119 children attending 7 classes from three primary schools located in middle-class urban communities in the province of Pavia, Italy. In the first phase, the participants were ask...

  3. Generation and evaluation of an IPTG-regulated version of Vav-gene promoter for mouse transgenesis.

    Directory of Open Access Journals (Sweden)

    Francesca Grespi

    Full Text Available Different bacteria-derived systems for regulatable gene expression have been developed for the use in mammalian cells and some were also successfully adopted for in vivo use in vertebrate model organisms. However, certain limitations apply to most of these systems, including leakiness of transgene expression, inefficient transgene silencing or activation, as well as limited tissue accessibility of transgene-inducers or their unfavourable pharmacokinetics. In this study, we evaluated the suitability of the lac-operon/lac-repressor (lacO/lacI system for the regulation of the well-established Vav-gene promoter that allows inducible transgene expression in different haematopoietic lineages in mice. Using the fluorescence marker protein Venus as a reporter, we observed that the lacO/lacI system could be amended to modulate transgene-expression in haematopoietic cells. However, reporter expression was not uniform and the lacO elements introduced into the Vav-gene promoter only conferred limited repression and reversion of lacI-mediated gene silencing after administration of IPTG. Although further optimization of the system is required, the lacO-modified version of the Vav-gene promoter may be adopted as a tool where low basal gene-expression and limited transient induction of protein expression are desired, e.g. for the activation of oncogenes or transgenes that act in a dominant-negative manner.

  4. In vivo transcription of two promoters, PTH4 and PTH270 involved in regulation of Streptomyces differentiation

    Institute of Scientific and Technical Information of China (English)

    谭华荣; 田宇清; 杨海花; 吴畏; 董可宁; Keith F.Chater

    1997-01-01

    The promoters, PTH4 and P-TH270 involved in the regulation of Streptomyces coelicolor differentiation were subcloned into Streptomyces promoter, i.e. probe plasmid pIJ4083, and the recombinant plasmids, pIJ4470 and pIJ4471, were constructed. Two promoters could drive the expression of reporter gene encoding catechol dioxygenase when pIJ4470 and pIJ4471 were introduced into some white mutants (C85, C70, C71, C17 and C119). The total RNA was isolated from these strains containing recombinant plasmid. Probes were prepared by labelling 5 -ends of PTH4 AND PTH270 DNA fragments using radioisotope. DNA - RNA hybridization was carried out with the probes and RNAs isolated from different strains. The S1 mapping result showed that all RNAs from strains of C85/pIJ4470, C85/4471, C70/pIJ4470, C70/pIJ4471 and C17/pIJ4470 as well as C17/pIJ4471 gave rise to strong positive hy-bridization signal, whereas RNAs from C71/pIJ4470 and C71/pIJ4471 did not give any positive signal. RNAs from C119/pIJ4470 and C119/pIJ4471 gav

  5. An Arabidopsis SUMO E3 Ligase, SIZ1, Negatively Regulates Photomorphogenesis by Promoting COP1 Activity

    KAUST Repository

    Lin, Xiao-Li

    2016-04-29

    COP1 (CONSTITUTIVE PHOTOMORPHOGENIC 1), a ubiquitin E3 ligase, is a central negative regulator of photomorphogenesis. However, how COP1 activity is regulated by post-translational modifications remains largely unknown. Here we show that SUMO (small ubiquitin-like modifier) modification enhances COP1 activity. Loss-of-function siz1 mutant seedlings exhibit a weak constitutive photomorphogenic phenotype. SIZ1 physically interacts with COP1 and mediates the sumoylation of COP1. A K193R substitution in COP1 blocks its SUMO modification and reduces COP1 activity in vitro and in planta. Consistently, COP1 activity is reduced in siz1 and the level of HY5, a COP1 target protein, is increased in siz1. Sumoylated COP1 may exhibits higher transubiquitination activity than does non-sumoylated COP1, but SIZ1-mediated SUMO modification does not affect COP1 dimerization, COP1-HY5 interaction, and nuclear accumulation of COP1. Interestingly, prolonged light exposure reduces the sumoylation level of COP1, and COP1 mediates the ubiquitination and degradation of SIZ1. These regulatory mechanisms may maintain the homeostasis of COP1 activity, ensuing proper photomorphogenic development in changing light environment. Our genetic and biochemical studies identify a function for SIZ1 in photomorphogenesis and reveal a novel SUMO-regulated ubiquitin ligase, COP1, in plants.

  6. Criminalizing knowledge: the perverse implications of the intended use regulations of off-label promotion prosecutions.

    Science.gov (United States)

    Gentry, Gregory

    2009-01-01

    Your company has spent months designing a compliance program and training your sales representatives. They know never to mention the off-label uses of your product. If they are asked about the off-label uses by the physician they are detailing, they know to forward those inquiries to the scientific liaisons at headquarters. But, could your company still be in legal jeopardy simply because it knows that the product is being used for an off-label purpose? This article attempts to track the Food and Drug Administration's (FDA's) shifting interpretation of its "intended use" regulations, from focusing entirely on the statements of the manufacturers to focusing on the knowledge of the industry, indeed, of the consumers of products, in determining the true intended use of a product. It will look at several recent attempts by FDA to use that new interpretation of the regulations to expand its power: to regulate tobacco and to require pediatric indications for any new drug. Finally, it will look at several recent examples of how this new interpretation has manifested in actions by FDA and the Department of Justice (DOJ).

  7. Mfge8 regulates enterocyte lipid storage by promoting enterocyte triglyceride hydrolase activity

    Science.gov (United States)

    Khalifeh-Soltani, Amin; Gupta, Deepti; Ha, Arnold; Iqbal, Jahangir; Hussain, Mahmood; Podolsky, Michael J.

    2016-01-01

    The small intestine has an underappreciated role as a lipid storage organ. Under conditions of high dietary fat intake, enterocytes can minimize the extent of postprandial lipemia by storing newly absorbed dietary fat in cytoplasmic lipid droplets. Lipid droplets can be subsequently mobilized for the production of chylomicrons. The mechanisms that regulate this process are poorly understood. We report here that the milk protein Mfge8 regulates hydrolysis of cytoplasmic lipid droplets in enterocytes after interacting with the αvβ3 and αvβ5 integrins. Mice deficient in Mfge8 or the αvβ3 and αvβ5 integrins accumulate excess cytoplasmic lipid droplets after a fat challenge. Mechanistically, interruption of the Mfge8-integrin axis leads to impaired enterocyte intracellular triglyceride hydrolase activity in vitro and in vivo. Furthermore, Mfge8 increases triglyceride hydrolase activity through a PI3 kinase/mTORC2–dependent signaling pathway. These data identify a key role for Mfge8 and the αvβ3 and αvβ5 integrins in regulating enterocyte lipid processing. PMID:27812539

  8. Disruption of histone modification and CARM1 recruitment by arsenic represses transcription at glucocorticoid receptor-regulated promoters.

    Directory of Open Access Journals (Sweden)

    Fiona D Barr

    Full Text Available Chronic exposure to inorganic arsenic (iAs found in the environment is one of the most significant and widespread environmental health risks in the U.S. and throughout the world. It is associated with a broad range of health effects from cancer to diabetes as well as reproductive and developmental anomalies. This diversity of diseases can also result from disruption of metabolic and other cellular processes regulated by steroid hormone receptors via aberrant transcriptional regulation. Significantly, exposure to iAs inhibits steroid hormone-mediated gene activation. iAs exposure is associated with disease, but is also used therapeutically to treat specific cancers complicating an understanding of iAs action. Transcriptional activation by steroid hormone receptors is accompanied by changes in histone and non-histone protein post-translational modification (PTM that result from the enzymatic activity of coactivator and corepressor proteins such as GRIP1 and CARM1. This study addresses how iAs represses steroid receptor-regulated gene transcription. PTMs on histones H3 and H4 at the glucocorticoid receptor (GR-activated mouse mammary tumor virus (MMTV promoter were identified by chromatin immunoprecipitation analysis following exposure to steroid hormone+/-iAs. Histone H3K18 and H3R17 amino acid residues had significantly different patterns of PTMs after treatment with iAs. Promoter interaction of the coactivator CARM1 was disrupted, but the interaction of GRIP1, a p160 coactivator through which CARM1 interacts with a promoter, was intact. Over-expression of CARM1 was able to fully restore and GRIP1 partially restored iAs-repressed transcription indicating that these coactivators are functionally associated with iAs-mediated transcriptional repression. Both are essential for robust transcription at steroid hormone regulated genes and both are associated with disease when inappropriately expressed. We postulate that iAs effects on CARM1 and GRIP1

  9. Identification of the core promoter of STK11 gene and its transcriptional regulation by p53

    Institute of Scientific and Technical Information of China (English)

    Maojin Yao; Chenjie Li; Yi Chu; Fei Wang; Xiaoliu Shi; Yongjun Wang; Hongwei Shen; Wenfeng Ning; Jianguang Tang; Xiangping Wang; Jie Li; Shiquang Zhou; Xin Yi

    2008-01-01

    Peutz-Jeghers syndrome (PJS) is an autosomal dominant disease characterized by mucocutaneous pigmentation and hamartomatous polyps. Most cases of PJS involve the inactivation of germline mutations in the serine/threonine kinase gene STK11 which is also known as LKB1. The function of STK11 was previously linked to the tumor suppressor p53 and was shown to activate the p53 target p21/ WAF1. Recently, STK11 was reported to be interacting with p53 physically in the nucleus and it can directly or indirectly phosphorylate p53. Here we characterized the 5'-flanking region of human STK11 gene and identified a 161-bp fragment with promoter activity. Sequence analysis, mutagenesis and gel shift studies revealed a binding site of Spl and p53, which affects the promoter activity. Mutation analyses showed that this fragment was required for p53-mediated transcriptional activation. This transcriptional activation was further confirmed by real-time quantitative RT-PCR and Western blot analysis. Transient transfection of p53 expression plasmid into fetal liver cell lines increased STK11 mRNA and protein levels. In conclusion, our results reveal a new role for p53 in elevating STK11 gene expression via a positive feedback pattern.

  10. B cells promote tumor progression via STAT3 regulated-angiogenesis.

    Directory of Open Access Journals (Sweden)

    Chunmei Yang

    Full Text Available The role of B cells in cancer and the underlying mechanisms remain to be further explored. Here, we show that tumor-associated B cells with activated STAT3 contribute to tumor development by promoting tumor angiogenesis. B cells with or without Stat3 have opposite effects on tumor growth and tumor angiogenesis in both B16 melanoma and Lewis Lung Cancer mouse models. Ex vivo angiogenesis assays show that B cell-mediated tumor angiogenesis is mainly dependent on the induction of pro-angiogenic gene expression, which requires Stat3 signaling in B cells. Furthermore, B cells with activated STAT3 are mainly found in or near tumor vasculature and correlate significantly with overall STAT3 activity in human tumors. Moreover, the density of B cells in human tumor tissues correlates significantly with expression levels of several STAT3-downstream pro-angiogenic genes, as well as the degree of tumor angiogenesis. Together, these findings define a novel role of B cells in promoting tumor progression through angiogenesis and identify STAT3 in B cells as potential therapeutic target for anti-angiogenesis therapy.

  11. Sgo1 regulates both condensin and Ipl1/Aurora B to promote chromosome biorientation.

    Directory of Open Access Journals (Sweden)

    Karolina Peplowska

    2014-06-01

    Full Text Available Correct chromosome segregation is essential in order to prevent aneuploidy. To segregate sister chromatids equally to daughter cells, the sisters must attach to microtubules emanating from opposite spindle poles. This so-called biorientation manifests itself by increased tension and conformational changes across kinetochores and pericentric chromatin. Tensionless attachments are dissolved by the activity of the conserved mitotic kinase Aurora B/Ipl1, thereby promoting the formation of correctly attached chromosomes. Recruitment of the conserved centromeric protein shugoshin is essential for biorientation, but its exact role has been enigmatic. Here, we identify a novel function of shugoshin (Sgo1 in budding yeast that together with the protein phosphatase PP2A-Rts1 ensures localization of condensin to the centromeric chromatin in yeast Saccharomyces cerevisiae. Failure to recruit condensin results in an abnormal conformation of the pericentric region and impairs the correction of tensionless chromosome attachments. Moreover, we found that shugoshin is required for maintaining Aurora B/Ipl1 localization on kinetochores during metaphase. Thus, shugoshin has a dual function in promoting biorientation in budding yeast: first, by its ability to facilitate condensin recruitment it modulates the conformation of the pericentric chromatin. Second, shugoshin contributes to the maintenance of Aurora B/Ipl1 at the kinetochore during gradual establishment of bipolarity in budding yeast mitosis. Our findings identify shugoshin as a versatile molecular adaptor that governs chromosome biorientation.

  12. Developmental regulation and complex organization of the promoter of the non-coding hsr gene of Drosophila melanogaster

    Indian Academy of Sciences (India)

    S C Lakhotia; T K Rajendra; K V Prasanth

    2001-03-01

    The nucleus-limited large non-coding hsrω-n RNA product of the 93D or the hsrω gene of Drosophila melanogaster binds to a variety of RNA-binding proteins involved in nuclear RNA processing. We examined the developmental and heat shock induced expression of this gene by in situ hybridization of nonradioactively labelled riboprobe to cellular transcripts in intact embryos, larval and adult somatic tissues of wild type and an enhancer-trap line carrying the hsrω05241 allele due to insertion of a P-LacZ-rosy+ transposon at — 130 bp position of the hsrω promoter. We also examined LacZ expression in the enhancer-trap line and in two transgenic lines carrying different lengths of the hsrω promoter upstream of the LacZ reporter. The hsrω gene is expressed widely at all developmental stages; in later embryonic stages, its expression in the developing central nervous system was prominent. In spite of insertion of a big transposon in the promoter, expression of the hsrω05241 allele in the enhancer-trap line, as revealed by in situ hybridization to hsrω transcripts in cells, was similar to that of the wild type allele in all the embryonic, larval and adult somatic tissues examined. Expression of the LacZ gene in this enhancer-trap line was similar to that of the hsrω RNA in all diploid cell types in embryos and larvae but in the polytene cells, the LacZ gene did not express at all, neither during normal development nor after heat shock. Comparison of the expression patterns of hsrω gene and those of the LacZ reporter gene under its various promoter regions in the enhancer-trap and transgenic lines revealed a complex pattern of regulation, which seems to be essential for its dynamically varying expression in diverse cell types.

  13. Sterol regulation of human fatty acid synthase promoter I requires nuclear factor-Y- and Sp-1-binding sites.

    Science.gov (United States)

    Xiong, S; Chirala, S S; Wakil, S J

    2000-04-11

    To understand cholesterol-mediated regulation of human fatty acid synthase promoter I, we tested various 5'-deletion constructs of promoter I-luciferase reporter gene constructs in HepG2 cells. The reporter gene constructs that contained only the Sp-1-binding site (nucleotides -82 to -74) and the two tandem sterol regulatory elements (SREs; nucleotides -63 to -46) did not respond to cholesterol. Only the reporter gene constructs containing a nuclear factor-Y (NF-Y) sequence, the CCAAT sequence (nucleotides -90 to -86), an Sp-1 sequence, and the two tandem SREs responded to cholesterol. The NF-Y-binding site, therefore, is essential for cholesterol response. Mutating the SREs or the NF-Y site and inserting 4 bp between the Sp-1- and NF-Y-binding sites both resulted in a minimal cholesterol response of the reporter genes. Electrophoretic mobility-shift assays using anti-SRE-binding protein (SREBP) and anti-NF-Ya antibodies confirmed that these SREs and the NF-Y site bind the respective factors. We also identified a second Sp-1 site located between nucleotides -40 and -30 that can substitute for the mutated Sp-1 site located between nucleotides -82 and -74. The reporter gene expression of the wild-type promoter and the Sp-1 site (nucleotides -82 to -74) mutant promoter was similar when SREBP1a [the N-terminal domain of SREBP (amino acids 1-520)] was constitutively overexpressed, suggesting that Sp-1 recruits SREBP to the SREs. Under the same conditions, an NF-Y site mutation resulted in significant loss of reporter gene expression, suggesting that NF-Y is required to activate the cholesterol response.

  14. Down-regulation of NDRG1 promotes migration of cancer cells during reoxygenation.

    Directory of Open Access Journals (Sweden)

    Liang-Chuan Lai

    Full Text Available One characteristic of tumor microenvironment is oxygen fluctuation, which results from hyper-proliferation and abnormal metabolism of tumor cells as well as disorganized neo-vasculature. Reoxygenation of tumors can induce oxidative stress, which leads to DNA damage and genomic instability. Although the cellular responses to hypoxia are well known, little is known about the dynamic response upon reoxygenation. In order to investigate the transcriptional responses of tumor adaptation to reoxygenation, breast cancer MCF-7 cells were cultured under 0.5% oxygen for 24 h followed by 24 h of reoxygenation in normoxia. Cells were harvested at 0, 1, 4, 8, 12, and 24 h during reoxygenation. The transcriptional profile of MCF-7 cells upon reoxygenation was examined using Illumina Human-6 v3 BeadChips. We identified 127 differentially expressed genes, of which 53.1% were up-regulated and 46.9% were down-regulated upon reoxygenation. Pathway analysis revealed that the HIF-1-alpha transcription factor network and validated targets of C-MYC transcriptional activation were significantly enriched in these differentially expressed genes. Among these genes, a subset of interest genes was further validated by quantitative reverse-transcription PCR. In particular, human N-MYC down-regulated gene 1 (NDRG1 was highly suppressed upon reoxygenation. NDRG1 is associated with a variety of stress and cell growth-regulatory conditions. To determine whether NDRG1 plays a role in reoxygenation, NDRG1 protein was overexpressed in MCF-7 cells. Upon reoxygenation, overexpression of NDRG1 significantly inhibited cell migration. Our results revealed the dynamic nature of gene expression in MCF-7 cells upon reoxygenation and demonstrated that NDRG1 is involved in tumor adaptation to reoxygenation.

  15. BLT2 up-regulates interleukin-8 production and promotes the invasiveness of breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Hyunju Kim

    Full Text Available BACKGROUND: The elevated production of interleukin (IL-8 is critically associated with invasiveness and metastatic potential in breast cancer cells. However, the intracellular signaling pathway responsible for up-regulation of IL-8 production in breast cancer cells has remained unclear. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we report that the expression of BLT2 is markedly up-regulated in the highly aggressive human breast cancer cell lines MDA-MB-231 and MDA-MB-435 compared with MCF-10A immortalized human mammary epithelial cells, as determined by RT-PCR, real-time PCR and FACS analysis. Blockade of BLT2 with BLT2 siRNA knockdown or BLT2 inhibitor treatment downregulated IL-8 production and thereby diminished the invasiveness of aggressive breast cancer cells, analyzed by Matrigel invasion chamber assays. We further characterized the downstream signaling mechanism by which BLT2 stimulates IL-8 production and identified critical mediatory roles for the generation of reactive oxygen species (ROS and the consequent activation of the transcription factor NF-κB. Moreover, blockade of BLT2 suppressed the formation of metastatic lung nodules by MDA-MB-231 cells in both experimental and orthotopic metastasis models. CONCLUSIONS/SIGNIFICANCE: Taken together, our study demonstrates that a BLT2-ROS-NF-κB pathway up-regulates IL-8 production in MDA-MB-231 and MDA-MB-435 cells, thereby contributing to the invasiveness of these aggressive breast cancer cells. Our findings provide insight into the molecular mechanism of invasiveness in breast cancer.

  16. Sonic Hedgehog Promotes Neurite Outgrowth of Primary Cortical Neurons Through Up-Regulating BDNF Expression.

    Science.gov (United States)

    He, Weiliang; Cui, Lili; Zhang, Cong; Zhang, Xiangjian; He, Junna; Xie, Yanzhao

    2016-04-01

    Sonic hedgehog (Shh), a secreted glycoprotein factor, can activate the Shh pathway, which has been implicated in neuronal polarization involving neurite outgrowth. However, little evidence is available about the effect of Shh on neurite outgrowth in primary cortical neurons and its potential mechanism. Here, we revealed that Shh increased neurite outgrowth in primary cortical neurons, while the Shh pathway inhibitor (cyclopamine, CPM) partially suppressed Shh-induced neurite outgrowth. Similar results were found for the expressions of Shh and Patched genes in Shh-induced primary cortical neurons. Moreover, Shh increased the levels of brain-derived neurotrophic factor (BDNF) not only in lysates and in culture medium but also in the longest neurites of primary cortical neurons, which was partially blocked by CPM. In addition, blocking of BDNF action suppressed Shh-mediated neurite elongation in primary cortical neurons. In conclusion, these findings suggest that Shh promotes neurite outgrowth in primary cortical neurons at least partially through modulating BDNF expression.

  17. PDGFRβ signalling regulates local inflammation and synergizes with hypercholesterolaemia to promote atherosclerosis.

    Science.gov (United States)

    He, Chaoyong; Medley, Shayna C; Hu, Taishan; Hinsdale, Myron E; Lupu, Florea; Virmani, Renu; Olson, Lorin E

    2015-07-17

    Platelet-derived growth factor (PDGF) is a mitogen and chemoattractant for vascular smooth muscle cells (VSMCs). However, the direct effects of PDGF receptor β (PDGFRβ) activation on VSMCs have not been studied in the context of atherosclerosis. Here we present a new mouse model of atherosclerosis with an activating mutation in PDGFRβ. Increased PDGFRβ signalling induces chemokine secretion and leads to leukocyte accumulation in the adventitia and media of the aorta. Furthermore, PDGFRβ(D849V) amplifies and accelerates atherosclerosis in hypercholesterolemic ApoE(-/-) or Ldlr(-/-) mice. Intriguingly, increased PDGFRβ signalling promotes advanced plaque formation at novel sites in the thoracic aorta and coronary arteries. However, deletion of the PDGFRβ-activated transcription factor STAT1 in VSMCs alleviates inflammation of the arterial wall and reduces plaque burden. These results demonstrate that PDGFRβ pathway activation has a profound effect on vascular disease and support the conclusion that inflammation in the outer arterial layers is a driving process for atherosclerosis.

  18. SOX10 regulates an alternative promoter at the Charcot-Marie-Tooth disease locus MTMR2.

    Science.gov (United States)

    Fogarty, Elizabeth A; Brewer, Megan H; Rodriguez-Molina, Jose F; Law, William D; Ma, Ki H; Steinberg, Noah M; Svaren, John; Antonellis, Anthony

    2016-09-15

    Schwann cells are the myelinating glia of the peripheral nervous system and dysfunction of these cells causes motor and sensory peripheral neuropathy. The transcription factor SOX10 is critical for Schwann cell development and maintenance, and many SOX10 target genes encode proteins required for Schwann cell function. Loss-of-function mutations in the gene encoding myotubularin-related protein 2 (MTMR2) cause Charcot-Marie-Tooth disease type 4B1 (CMT4B1), a severe demyelinating peripheral neuropathy characterized by myelin outfoldings along peripheral nerves. Previous reports indicate that MTMR2 is ubiquitously expressed making it unclear how loss of this gene causes a Schwann cell-specific phenotype. To address this, we performed computational and functional analyses at MTMR2 to identify transcriptional regulatory elements important for Schwann cell expression. Through these efforts, we identified an alternative, SOX10-responsive promoter at MTMR2 that displays strong regulatory activity in immortalized rat Schwann (S16) cells. This promoter directs transcription of a previously unidentified MTMR2 transcript that is enriched in mouse Schwann cells compared to immortalized mouse motor neurons (MN-1), and is predicted to encode an N-terminally truncated protein isoform. The expression of the endogenous transcript is induced in a heterologous cell line by ectopically expressing SOX10, and is nearly ablated in Schwann cells by impairing SOX10 function. Intriguingly, overexpressing the two MTMR2 protein isoforms in HeLa cells revealed that both localize to nuclear puncta and the shorter isoform displays higher nuclear localization compared to the longer isoform. Combined, our data warrant further investigation of the truncated MTMR2 protein isoform in Schwann cells and in CMT4B1 pathogenesis. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. St. John's Wort protein, p27SJ, regulates the MCP-1 promoter.

    Science.gov (United States)

    Mukerjee, Ruma; Deshmane, Satish L; Darbinian, Nune; Czernik, Marta; Khalili, Kamel; Amini, Shohreh; Sawaya, Bassel E

    2008-09-01

    St. John's Wort is commonly known for its antiviral, antidepressant, and cytotoxic properties, but traditionally St. John's Wort has also been used to treat inflammation. In this study, we sought to characterize the mechanisms used by St. John's Wort to treat inflammation by examining the effect of the recently isolated protein from St. John's Wort, p27SJ on the expression of MCP-1. By employing an adenovirus expression vector, we demonstrate that a low concentration of p27SJ upregulates the MCP-1 promoter through the transcription factor C/EBPbeta. In addition, we found that C/EBPbeta-homologous protein (CHOP) or siRNA-C/EBPbeta significantly reduced the ability of p27SJ to activate MCP-1 gene expression. Results from protein-protein interaction studies illustrate the existence of a physical interaction between p27SJ and C/EBPbeta in microglial cells. The use of chromatin immunoprecipitation assay (ChIP) led to the identification of a new cis-element that is responsive to C/EBPbeta within the MCP-1 promoter. Association of C/EBPbeta with MCP-1 DNA was not affected by the presence of p27SJ. The biological activity of MCP-1 produced by cultures of adenovirus-p27SJ transduced cells was increased relative to controls as measured by the transmigration of human Jurkat cells. Thus, we conclude that at high concentration, p27SJ is a potential agent that may be developed as a modulator of MCP-1 leading to the inhibition of the cytokine-mediated inflammatory responses.

  20. Up-Regulation of RFC3 Promotes Triple Negative Breast Cancer Metastasis and is Associated With Poor Prognosis Via EMT

    Directory of Open Access Journals (Sweden)

    Zhen-Yu He

    2017-02-01

    Full Text Available Triple-negative breast cancer (TNBC was regarded as the most aggressive and mortal subtype of breast cancer (BC since the molecular subtype system has been established. Abundant studies have revealed that epithelial-mesenchymal transition (EMT played a pivotal role during breast cancer metastasis and progression, especially in TNBC. Herein, we showed that inhibition the expression of replication factor C subunit 3 (RFC3 significantly attenuated TNBC metastasis and progression, which was associated with EMT signal pathway. In TNBC cells, knockdown of RFC3 can down-regulate mesenchymal markers and up-regulate epithelial markers, significantly attenuated cell proliferation, migration and invasion. Additionally, silencing RFC3 expression can decrease nude mice tumor volume, weight and relieve lung metastasis in vivo. Furthermore, we also demonstrated that overexpression of RFC3 in TNBC showed increased metastasis, progression and poor prognosis. We confirmed all of these results by immunohistochemistry analysis in 127 human TNBC tissues and found that RFC3 expression was significantly associated with poor prognosis in TNBC. Taken all these findings into consideration, we can conclude that up-regulation of RFC3 promotes TNBC progression through EMT signal pathway. Therefore, RFC3 could be an independent prognostic factor and therapeutic target for TNBC.

  1. Pleiotrophin promotes microglia proliferation and secretion of neurotrophic factors by activating extracellular signal-regulated kinase 1/2 pathway.

    Science.gov (United States)

    Miao, Jiayin; Ding, Minghui; Zhang, Aiwu; Xiao, Zijian; Qi, Weiwei; Luo, Ning; Di, Wei; Tao, Yuqian; Fang, Yannan

    2012-12-01

    Pleiotrophin (PTN) is an effective neuroprotective factor and its expression is strikingly increased in microglia after ischemia/reperfusion injury. However, whether PTN could provide neurotrophic support to neurons by regulating microglia function is not clear. In this study, we demonstrated that the expression of PTN was induced in microglia after oxygen-glucose deprivation/reperfusion. PTN promoted the proliferation of microglia by enhancing the G1 to S phase transition. PTN also stimulated the secretion of brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF) and nerve growth factor (NGF) in microglia, but did not upregulate the expression of proinflammatory factors such as TNF-α, IL-1β and iNOS. Mechanistically, we found that PTN increased the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 in microglia in both concentration-dependent and time-dependent manners. In addition, ERK1/2 inhibitor U0126 abolished the proliferation and G1 to S phase transition of microglia stimulated by PTN, and inhibited the production of BDNF, CNTF and NGF induced by PTN. In conclusion, our results demonstrated that PTN-ERK1/2 pathway plays important role in regulating microglia growth and secretion of neurotrophic factors. These findings provide new insight into the neuroprotective role of PTN and suggest that PTN is a new target for therapeutic intervention of stroke.

  2. [Relationship between regulation effect of salvia miltiorrhiza on AQP2 in kidney and promoting blood circulation and diuresis].

    Science.gov (United States)

    Dong, Xiao-Jing; Guo, Liang-Feng; Yao, Rui; Xue, Song-Yan; Li, Feng

    2014-08-01

    Partial nature of "promoting blood circulation and dieresis" of Salvia Miltiorrhizain was initially demonstrated by investigating the regulation effect of AQP2 expression in kidney of trauma blood stasis model rats with the Salvia Miltiorrhizain so as to provide guidance for its clinical deployment of administration. Random allocation was taken to averagely divide 30 SD rats into two groups: 10 rats in normal group and 20 rats in blood stasis syndrome group. Trauma blood stasis rat model was established by quantitatively beating. Then the rat model group was divided into model group and salvia group. After 7 days of treatment, the rat kidney AQP2 expression was detected, the content of urine AQP2 was compared and the damaged local muscle and kidney pathological changes were observed by immunohistochemical method and western blot method. Compared with that of the normal group, rats in model group had inflammatory cells infiltration, blood stasis and edema of the injured local muscles and up-regulated AQP2 expression, decreasing urinary output, and kidney tissues blood stasis and edema (P diuresis" as the mechanism for the regulation effect of the salvia on AQP2 expression.

  3. Makorin ortholog LEP-2 regulates LIN-28 stability to promote the juvenile-to-adult transition in Caenorhabditis elegans.

    Science.gov (United States)

    Herrera, R Antonio; Kiontke, Karin; Fitch, David H A

    2016-03-01

    The heterochronic genes lin-28, let-7 and lin-41 regulate fundamental developmental transitions in animals, such as stemness versus differentiation and juvenile versus adult states. We identify a new heterochronic gene, lep-2, in Caenorhabditis elegans. Mutations in lep-2 cause a delay in the juvenile-to-adult transition, with adult males retaining pointed, juvenile tail tips, and displaying defective sexual behaviors. In both sexes, lep-2 mutants fail to cease molting or produce an adult cuticle. We find that LEP-2 post-translationally regulates LIN-28 by promoting LIN-28 protein degradation. lep-2 encodes the sole C. elegans ortholog of the Makorin (Mkrn) family of proteins. Like lin-28 and other heterochronic pathway members, vertebrate Mkrns are involved in developmental switches, including the timing of pubertal onset in humans. Based on shared roles, conservation and the interaction between lep-2 and lin-28 shown here, we propose that Mkrns, together with other heterochronic genes, constitute an evolutionarily ancient conserved module regulating switches in development.

  4. Lin28A Binds Active Promoters and Recruits Tet1 to Regulate Gene Expression.

    Science.gov (United States)

    Zeng, Yaxue; Yao, Bing; Shin, Jaehoon; Lin, Li; Kim, Namshik; Song, Qifeng; Liu, Shuang; Su, Yijing; Guo, Junjie U; Huang, Luoxiu; Wan, Jun; Wu, Hao; Qian, Jiang; Cheng, Xiaodong; Zhu, Heng; Ming, Guo-li; Jin, Peng; Song, Hongjun

    2016-01-07

    Lin28, a well-known RNA-binding protein, regulates diverse cellular properties. All physiological functions of Lin28A characterized so far have been attributed to its repression of let-7 miRNA biogenesis or modulation of mRNA translational efficiency. Here we show that Lin28A directly binds to a consensus DNA sequence in vitro and in mouse embryonic stem cells in vivo. ChIP-seq and RNA-seq reveal enrichment of Lin28A binding around transcription start sites and a positive correlation between its genomic occupancy and expression of many associated genes. Mechanistically, Lin28A recruits 5-methylcytosine-dioxygenase Tet1 to genomic binding sites to orchestrate 5-methylcytosine and 5-hydroxymethylcytosine dynamics. Either Lin28A or Tet1 knockdown leads to dysregulated DNA methylation and expression of common target genes. These results reveal a surprising role for Lin28A in transcriptional regulation via epigenetic DNA modifications and have implications for understanding mechanisms underlying versatile functions of Lin28A in mammalian systems. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. The hippo pathway promotes Notch signaling in regulation of cell differentiation, proliferation, and oocyte polarity.

    Directory of Open Access Journals (Sweden)

    Jianzhong Yu

    Full Text Available Specification of the anterior-posterior axis in Drosophila oocytes requires proper communication between the germ-line cells and the somatically derived follicular epithelial cells. Multiple signaling pathways, including Notch, contribute to oocyte polarity formation by controlling the temporal and spatial pattern of follicle cell differentiation and proliferation. Here we show that the newly identified Hippo tumor-suppressor pathway plays a crucial role in the posterior follicle cells in the regulation of oocyte polarity. Disruption of the Hippo pathway, including major components Hippo, Salvador, and Warts, results in aberrant follicle-cell differentiation and proliferation and dramatic disruption of the oocyte anterior-posterior axis. These phenotypes are related to defective Notch signaling in follicle cells, because misexpression of a constitutively active form of Notch alleviates the oocyte polarity defects. We also find that follicle cells defective in Hippo signaling accumulate the Notch receptor and display defects in endocytosis markers. Our findings suggest that the interaction between Hippo and classic developmental pathways such as Notch is critical to spatial and temporal regulation of differentiation and proliferation and is essential for development of the body axes in Drosophila.

  6. Cdon promotes neural crest migration by regulating N-cadherin localization.

    Science.gov (United States)

    Powell, Davalyn R; Williams, Jason S; Hernandez-Lagunas, Laura; Salcedo, Ernesto; O'Brien, Jenean H; Artinger, Kristin Bruk

    2015-11-15

    Neural crest cells (NCCs) are essential embryonic progenitor cells that are unique to vertebrates and form a remarkably complex and coordinated system of highly motile cells. Migration of NCCs occurs along specific pathways within the embryo in response to both environmental cues and cell-cell interactions within the neural crest population. Here, we demonstrate a novel role for the putative Sonic hedgehog (Shh) receptor and cell adhesion regulator, cdon, in zebrafish neural crest migration. cdon is expressed in developing premigratory NCCs but is downregulated once the cells become migratory. Knockdown of cdon results in aberrant migration of trunk NCCs: crestin positive cells can emigrate out of the neural tube but stall shortly after the initiation of migration. Live cell imaging analysis demonstrates reduced directedness of migration, increased velocity and mispositioned cell protrusions. In addition, transplantation analysis suggests that cdon is required cell-autonomously for directed NCC migration in the trunk. Interestingly, N-cadherin is mislocalized following cdon knockdown suggesting that the role of cdon in NCCs is to regulate N-cadherin localization. Our results reveal a novel role for cdon in zebrafish neural crest migration, and suggest a mechanism by which Cdon is required to localize N-cadherin to the cell membrane in migratory NCCs for directed migration.

  7. Alternatives to restrictive feeding practices to promote self-regulation in childhood: a developmental perspective.

    Science.gov (United States)

    Rollins, B Y; Savage, J S; Fisher, J O; Birch, L L

    2016-10-01

    Intake of energy-dense snack foods is high among US children. Although the use of restrictive feeding practices has been shown to be counterproductive, there is very limited evidence for effective alternatives to restriction that help children moderate their intake of these foods and that facilitate the development of self-regulation in childhood. The developmental literature on parenting and child outcomes may provide insights into alternatives to restrictive feeding practices. This review paper uses a model of parental control from the child development and parenting literatures to (i) operationally define restrictive feeding practices; (ii) summarize current evidence for antecedents and effects of parental restriction use on children's eating behaviours and weight status, and (iii) highlight alternative feeding practices that may facilitate the development of children's self-regulation and moderate children's intake of palatable snack foods. We also discuss recent empirical evidence highlighting the role of child temperament and food motivation related behaviours as factors that prompt parents to use restrictive feeding practices and, yet, may increase children's dysregulated intake of forbidden foods. © 2015 World Obesity.

  8. Mitochondrial translocation of EGFR regulates mitochondria dynamics and promotes metastasis in NSCLC.

    Science.gov (United States)

    Che, Ting-Fang; Lin, Ching-Wen; Wu, Yi-Ying; Chen, Yu-Ju; Han, Chia-Li; Chang, Yih-leong; Wu, Chen-Tu; Hsiao, Tzu-Hung; Hong, Tse-Ming; Yang, Pan-Chyr

    2015-11-10

    Dysfunction of the mitochondria is well-known for being associated with cancer progression. In the present study, we analyzed the mitochondria proteomics of lung cancer cell lines with different invasion abilities and found that EGFR is highly expressed in the mitochondria of highly invasive non-small-cell lung cancer (NSCLC) cells. EGF induces the mitochondrial translocation of EGFR; further, it leads to mitochondrial fission and redistribution in the lamellipodia, upregulates cellular ATP production, and enhances motility in vitro and in vivo. Moreover, EGFR can regulate mitochondrial dynamics by interacting with Mfn1 and disturbing Mfn1 polymerization. Overexpression of Mfn1 reverses the phenotypes resulting from EGFR mitochondrial translocation. We show that the mitochondrial EGFR expressions are higher in paired samples of the metastatic lymph node as compared with primary lung tumor and are inversely correlated with the overall survival in NSCLC patients. Therefore, our results demonstrate that besides the canonical role of EGFR as a receptor tyrosine, the mitochondrial translocation of EGFR may enhance cancer invasion and metastasis through regulating mitochondria dynamics.

  9. Pairwise comparisons of ten porcine tissues identify differential transcriptional regulation at the gene, isoform, promoter and transcription start site level

    Energy Technology Data Exchange (ETDEWEB)

    Farajzadeh, Leila; Hornshøj, Henrik; Momeni, Jamal; Thomsen, Bo; Larsen, Knud; Hedegaard, Jakob; Bendixen, Christian; Madsen, Lone Bruhn, E-mail: LoneB.Madsen@agrsci.dk

    2013-08-23

    Highlights: •Transcriptome sequencing yielded 223 mill porcine RNA-seq reads, and 59,000 transcribed locations. •Establishment of unique transcription profiles for ten porcine tissues including four brain tissues. •Comparison of transcription profiles at gene, isoform, promoter and transcription start site level. •Highlights a high level of regulation of neuro-related genes at both gene, isoform, and TSS level. •Our results emphasize the pig as a valuable animal model with respect to human biological issues. -- Abstract: The transcriptome is the absolute set of transcripts in a tissue or cell at the time of sampling. In this study RNA-Seq is employed to enable the differential analysis of the transcriptome profile for ten porcine tissues in order to evaluate differences between the tissues at the gene and isoform expression level, together with an analysis of variation in transcription start sites, promoter usage, and splicing. Totally, 223 million RNA fragments were sequenced leading to the identification of 59,930 transcribed gene locations and 290,936 transcript variants using Cufflinks with similarity to approximately 13,899 annotated human genes. Pairwise analysis of tissues for differential expression at the gene level showed that the smallest differences were between tissues originating from the porcine brain. Interestingly, the relative level of differential expression at the isoform level did generally not vary between tissue contrasts. Furthermore, analysis of differential promoter usage between tissues, revealed a proportionally higher variation between cerebellum (CBE) versus frontal cortex and cerebellum versus hypothalamus (HYP) than in the remaining comparisons. In addition, the comparison of differential transcription start sites showed that the number of these sites is generally increased in comparisons including hypothalamus in contrast to other pairwise assessments. A comprehensive analysis of one of the tissue contrasts, i

  10. TCR affinity promotes CD8+ T cell expansion by regulating survival.

    Science.gov (United States)

    Hommel, Mirja; Hodgkin, Philip D

    2007-08-15

    Ligation with high affinity ligands are known to induce T lymphocytes to become fully activated effector cells while ligation with low affinity ligands (or partial agonists) may result in a delayed or incomplete response. We have examined the quantitative features of CD8(+) T cell proliferation induced by peptides of different TCR affinities at a range of concentrations in the mouse OT-I model. Both the frequency of cells responding and the average time taken for cells to reach their first division are affected by peptide concentration and affinity. Consecutive division times, however, remained largely unaffected by these variables. Importantly, we identified affinity to be the sole regulator of cell death in subsequent division. These results suggest a mechanism whereby TCR affinity detection can modulate the subsequent rate of T cell growth and ensure the dominance of higher affinity clones over time.

  11. Vegfc Regulates Bipotential Precursor Division and Prox1 Expression to Promote Lymphatic Identity in Zebrafish

    Directory of Open Access Journals (Sweden)

    Katarzyna Koltowska

    2015-12-01

    Full Text Available Lymphatic vessels arise chiefly from preexisting embryonic veins. Genetic regulators of lymphatic fate are known, but how dynamic cellular changes contribute during the acquisition of lymphatic identity is not understood. We report the visualization of zebrafish lymphatic precursor cell dynamics during fate restriction. In the cardinal vein, cellular commitment is linked with the division of bipotential Prox1-positive precursor cells, which occurs immediately prior to sprouting angiogenesis. Following precursor division, identities are established asymmetrically in daughter cells; one daughter cell becomes lymphatic and progressively upregulates Prox1, and the other downregulates Prox1 and remains in the vein. Vegfc drives cell division and Prox1 expression in lymphatic daughter cells, coupling signaling dynamics with daughter cell fate restriction and precursor division.

  12. The acetyllysine reader BRD3R promotes human nuclear reprogramming and regulates mitosis.

    Science.gov (United States)

    Shao, Zhicheng; Zhang, Ruowen; Khodadadi-Jamayran, Alireza; Chen, Bo; Crowley, Michael R; Festok, Muhamad A; Crossman, David K; Townes, Tim M; Hu, Kejin

    2016-01-01

    It is well known that both recipient cells and donor nuclei demonstrate a mitotic advantage as observed in the traditional reprogramming with somatic cell nuclear transfer (SCNT). However, it is not known whether a specific mitotic factor plays a critical role in reprogramming. Here we identify an isoform of human bromodomain-containing 3 (BRD3), BRD3R (BRD3 with Reprogramming activity), as a reprogramming factor. BRD3R positively regulates mitosis during reprogramming, upregulates a large set of mitotic genes at early stages of reprogramming, and associates with mitotic chromatin. Interestingly, a set of the mitotic genes upregulated by BRD3R constitutes a pluripotent molecular signature. The two BRD3 isoforms display differential binding to acetylated histones. Our results suggest a molecular interpretation for the mitotic advantage in reprogramming and show that mitosis may be a driving force of reprogramming.

  13. FBXO3 Protein Promotes Ubiquitylation and Transcriptional Activity of AIRE (Autoimmune Regulator)*

    Science.gov (United States)

    Shao, Wei; Zumer, Kristina; Fujinaga, Koh; Peterlin, B. Matija

    2016-01-01

    The autoimmune regulator (AIRE) is a transcription factor which is expressed in medullary thymic epithelial cells. It directs the expression of otherwise tissue-specific antigens, which leads to the elimination of autoreactive T cells during development. AIRE is modified post-translationally by phosphorylation and ubiquitylation. In this report we connected these modifications. AIRE, which is phosphorylated on two specific residues near its N terminus, then binds to the F-box protein 3 (FBXO3) E3 ubiquitin ligase. In turn, this SCFFBXO3 (SKP1-CUL1-F box) complex ubiquitylates AIRE, increases its binding to the positive transcription elongation factor b (P-TEFb), and potentiates its transcriptional activity. Because P-TEFb is required for the transition from initiation to elongation of transcription, this interaction ensures proper expression of AIRE-responsive tissue-specific antigens in the thymus. PMID:27365398

  14. FBXO3 Protein Promotes Ubiquitylation and Transcriptional Activity of AIRE (Autoimmune Regulator).

    Science.gov (United States)

    Shao, Wei; Zumer, Kristina; Fujinaga, Koh; Peterlin, B Matija

    2016-08-19

    The autoimmune regulator (AIRE) is a transcription factor which is expressed in medullary thymic epithelial cells. It directs the expression of otherwise tissue-specific antigens, which leads to the elimination of autoreactive T cells during development. AIRE is modified post-translationally by phosphorylation and ubiquitylation. In this report we connected these modifications. AIRE, which is phosphorylated on two specific residues near its N terminus, then binds to the F-box protein 3 (FBXO3) E3 ubiquitin ligase. In turn, this SCF(FBXO3) (SKP1-CUL1-F box) complex ubiquitylates AIRE, increases its binding to the positive transcription elongation factor b (P-TEFb), and potentiates its transcriptional activity. Because P-TEFb is required for the transition from initiation to elongation of transcription, this interaction ensures proper expression of AIRE-responsive tissue-specific antigens in the thymus. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. New media for the promotion of self-regulated learning in higher education.

    Science.gov (United States)

    Cerezo, Rebeca; Núñez, José Carlos; Rosário, Pedro; Valle, Antonio; Rodríguez, Susana; Bernardo, Ana Belén

    2010-05-01

    In this article, some of most relevant programs of self-regulation of academic learning in the sphere of higher education were reviewed. Although there are quite a few of them, we reviewed only the interventions whose contents had been implemented in e-learning modalities or had been supported by the new information and communication technologies. For this task, we arranged the programs along a continuum that ranged from those that deal with the development of self-regulatory competences by indirect training of such competences to the programs whose impact on such competences is much more direct. Lastly, we provide information about a program that our research team is developing and implementing as a pilot study, and whose preliminary results seem highly satisfactory.

  16. Protein Sialylation Regulates a Gene Expression Signature that Promotes Breast Cancer Cell Pathogenicity.

    Science.gov (United States)

    Kohnz, Rebecca A; Roberts, Lindsay S; DeTomaso, David; Bideyan, Lara; Yan, Peter; Bandyopadhyay, Sourav; Goga, Andrei; Yosef, Nir; Nomura, Daniel K

    2016-08-19

    Many mechanisms have been proposed for how heightened aerobic glycolytic metabolism fuels cancer pathogenicity, but there are still many unexplored pathways. Here, we have performed metabolomic profiling to map glucose incorporation into metabolic pathways upon transformation of mammary epithelial cells by 11 commonly mutated human oncogenes. We show that transformation of mammary epithelial cells by oncogenic stimuli commonly shunts glucose-derived carbons into synthesis of sialic acid, a hexosamine pathway metabolite that is converted to CMP-sialic acid by cytidine monophosphate N-acetylneuraminic acid synthase (CMAS) as a precursor to glycoprotein and glycolipid sialylation. We show that CMAS knockdown leads to elevations in intracellular sialic acid levels, a depletion of cellular sialylation, and alterations in the expression of many cancer-relevant genes to impair breast cancer pathogenicity. Our study reveals the heretofore unrecognized role of sialic acid metabolism and protein sialylation in regulating the expression of genes that maintain breast cancer pathogenicity.

  17. Autophagy Regulates the Post-Translational Cleavage of BCL-2 and Promotes Neuronal Survival

    Directory of Open Access Journals (Sweden)

    Laura Lossi

    2010-01-01

    Full Text Available B-cell lymphoma 2 protein (BCL-2 is one of the more widely investigated anti-apoptotic protein in mammals, and its levels are critical for protecting from programmed cell death. We report here that the cellular content of BCL-2 is regulated at post-translational level along the autophagy/lysosome pathways in organotypic cultures of post-natal mouse cerebellar cortex. Specifically this mechanism appears to be effective in the cerebellar granule cells (CGCs that are known to undergo massive programmed cell death (apoptosis during post-natal maturation. By the use of specific agonists/antagonist of calcium channels at the endoplasmic reticulum it was possible to understand the pivotal role of calcium release from intracellular stores in CGC neuroprotection. The more general significance of these findings is supported by a very recent study Niemann-Pick transgenic mice.

  18. Vegfc Regulates Bipotential Precursor Division and Prox1 Expression to Promote Lymphatic Identity in Zebrafish

    DEFF Research Database (Denmark)

    Koltowska, Katarzyna; Lagendijk, Anne Karine; Pichol-Thievend, Cathy;

    2015-01-01

    during fate restriction. In the cardinal vein, cellular commitment is linked with the division of bipotential Prox1-positive precursor cells, which occurs immediately prior to sprouting angiogenesis. Following precursor division, identities are established asymmetrically in daughter cells; one daughter...... cell becomes lymphatic and progressively upregulates Prox1, and the other downregulates Prox1 and remains in the vein. Vegfc drives cell division and Prox1 expression in lymphatic daughter cells, coupling signaling dynamics with daughter cell fate restriction and precursor division.......Lymphatic vessels arise chiefly from preexisting embryonic veins. Genetic regulators of lymphatic fate are known, but how dynamic cellular changes contribute during the acquisition of lymphatic identity is not understood. We report the visualization of zebrafish lymphatic precursor cell dynamics...

  19. Lower Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Promotes the Proliferation and Migration of Endometrial Carcinoma

    Science.gov (United States)

    Xia, Xian; Wang, Jie; Liu, Yuan; Yue, Ming

    2017-01-01

    Background The incidence and death rates of endometrial cancer are alarmingly increasing. The diagnosis and treatment of endometrial cancer is crucial to decreasing mortality. Cystic fibrosis transmembrane conductance regulator (CFTR) belongs to the adenosine triphosphate (ATP)-binding cassette transporter family and plays an essential role in anion regulation and tissue homeostasis of various epithelia. This study explored the expression of CFTR in endometrial carcinoma and the role of CFTR in proliferation and migration of endometrial carcinoma cells. Material/Methods Immunohistochemistry and real-time (RT)-PCR were used to test the expression of CFTR in normal endometrium and endometrial carcinoma. CFTR inhibitor was used to restrain the expression of CFTR on the endometrial carcinoma, the effects on the proliferation and migration of endometrial carcinoma cells were also studied. RT-PCR was performed to test the expression of mir-125b after restraining CFTR. Proliferation and migration capability of endometrial carcinoma cells were detected after transfection of endometrial carcinoma cells with mir-125b mimic. Results Compared with cells from normal endometrium, the expression of CFTR was significantly upregulated in endometrial carcinoma cells. After adding CFTR(inh)172, the capability for proliferation and transfer of endometrial carcinoma cells was strengthened, the expression of mir-125b was reduced, and after transfection with mir-125b mimics entering the endometrial carcinoma cells, the ability of the proliferation and transfer of endometrial carcinoma cells was also reduced. Conclusions The high expression of CFTR in the endometrial carcinoma cells played a pivotal role in restraining the proliferation and transfer of endometrial carcinoma cells. PMID:28225751

  20. SS-A/Ro52 promotes apoptosis by regulating Bcl-2 production

    Energy Technology Data Exchange (ETDEWEB)

    Jauharoh, Siti Nur Aisyah [Department of Clinical Pathology and Immunology, Kobe University Graduate School of Medicine, Hyogo 650-0017 (Japan); Faculty of Medicine and Health Science, Syarif Hidayatullah State Islamic University, Jakarta 15412 (Indonesia); Saegusa, Jun; Sugimoto, Takeshi [Department of Clinical Pathology and Immunology, Kobe University Graduate School of Medicine, Hyogo 650-0017 (Japan); Ardianto, Bambang [Department of Clinical Pathology and Immunology, Kobe University Graduate School of Medicine, Hyogo 650-0017 (Japan); Department of Child Health, Faculty of Medicine, Gadjah Mada University, Yogyakarta 55282 (Indonesia); Kasagi, Shimpei; Sugiyama, Daisuke; Kurimoto, Chiyo [Department of Clinical Pathology and Immunology, Kobe University Graduate School of Medicine, Hyogo 650-0017 (Japan); Tokuno, Osamu; Nakamachi, Yuji [Department of Laboratory Medicine, Kobe University Hospital, Hyogo 650-0017 (Japan); Kumagai, Shunichi [Department of Clinical Pathology and Immunology, Kobe University Graduate School of Medicine, Hyogo 650-0017 (Japan); Kawano, Seiji, E-mail: sjkawano@med.kobe-u.ac.jp [Department of Clinical Pathology and Immunology, Kobe University Graduate School of Medicine, Hyogo 650-0017 (Japan); Department of Laboratory Medicine, Kobe University Hospital, Hyogo 650-0017 (Japan)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Ro52{sup low} HeLa cells are resistant to apoptosis upon various stimulations. Black-Right-Pointing-Pointer Ro52 is upregulated by IFN-{alpha}, etoposide, or IFN-{gamma} and anti-Fas Ab. Black-Right-Pointing-Pointer Ro52-mediated apoptosis is independent of p53. Black-Right-Pointing-Pointer Ro52 selectively regulates Bcl-2 expression. -- Abstract: SS-A/Ro52 (Ro52), an autoantigen in systemic autoimmune diseases such as systemic lupus erythematosus and Sjoegren's syndrome, has E3 ligase activity to ubiquitinate proteins that protect against viral infection. To investigate Ro52's role during stress, we transiently knocked it down in HeLa cells by siRo52 transfection. We found that Ro52{sup low} HeLa cells were significantly more resistant to apoptosis than wild-type HeLa cells when stimulated by H{sub 2}O{sub 2}- or diamide-induced oxidative stress, IFN-{alpha}, IFN-{gamma} and anti-Fas antibody, etoposide, or {gamma}-irradiation. Furthermore, Ro52-mediated apoptosis was not influenced by p53 protein level in HeLa cells. Depleting Ro52 in HeLa cells caused Bcl-2, but not other Bcl-2 family molecules, to be upregulated. Taken together, our data showed that Ro52 is a universal proapoptotic molecule, and that its proapoptotic effect does not depend on p53, but is exerted through negative regulation of the anti-apoptotic protein Bcl-2. These findings shed light on a new physiological role for Ro52 that is important to intracellular immunity.

  1. Lower Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Promotes the Proliferation and Migration of Endometrial Carcinoma.

    Science.gov (United States)

    Xia, Xian; Wang, Jie; Liu, Yuan; Yue, Ming

    2017-02-22

    BACKGROUND The incidence and death rates of endometrial cancer are alarmingly increasing. The diagnosis and treatment of endometrial cancer is crucial to decreasing mortality. Cystic fibrosis transmembrane conductance regulator (CFTR) belongs to the adenosine triphosphate (ATP)-binding cassette transporter family and plays an essential role in anion regulation and tissue homeostasis of various epithelia. This study explored the expression of CFTR in endometrial carcinoma and the role of CFTR in proliferation and migration of endometrial carcinoma cells. MATERIAL AND METHODS Immunohistochemistry and real-time (RT)-PCR were used to test the expression of CFTR in normal endometrium and endometrial carcinoma. CFTR inhibitor was used to restrain the expression of CFTR on the endometrial carcinoma, the effects on the proliferation and migration of endometrial carcinoma cells were also studied. RT-PCR was performed to test the expression of mir-125b after restraining CFTR. Proliferation and migration capability of endometrial carcinoma cells were detected after transfection of endometrial carcinoma cells with mir-125b mimic. RESULTS Compared with cells from normal endometrium, the expression of CFTR was significantly upregulated in endometrial carcinoma cells. After adding CFTR(inh)172, the capability for proliferation and transfer of endometrial carcinoma cells was strengthened, the expression of mir-125b was reduced, and after transfection with mir-125b mimics entering the endometrial carcinoma cells, the ability of the proliferation and transfer of endometrial carcinoma cells was also reduced. CONCLUSIONS The high expression of CFTR in the endometrial carcinoma cells played a pivotal role in restraining the proliferation and transfer of endometrial carcinoma cells.

  2. STAG2 promotes error correction in mitosis by regulating kinetochore-microtubule attachments.

    Science.gov (United States)

    Kleyman, Marianna; Kabeche, Lilian; Compton, Duane A

    2014-10-01

    Mutations in the STAG2 gene are present in ∼20% of tumors from different tissues of origin. STAG2 encodes a subunit of the cohesin complex, and tumors with loss-of-function mutations are usually aneuploid and display elevated frequencies of lagging chromosomes during anaphase. Lagging chromosomes are a hallmark of chromosomal instability (CIN) arising from persistent errors in kinetochore-microtubule (kMT) attachment. To determine whether the loss of STAG2 increases the rate of formation of kMT attachment errors or decreases the rate of their correction, we examined mitosis in STAG2-deficient cells. STAG2 depletion does not impair bipolar spindle formation or delay mitotic progression. Instead, loss of STAG2 permits excessive centromere stretch along with hyperstabilization of kMT attachments. STAG2-deficient cells display mislocalization of Bub1 kinase, Bub3 and the chromosome passenger complex. Importantly, strategically destabilizing kMT attachments in tumor cells harboring STAG2 mutations by overexpression of the microtubule-destabilizing enzymes MCAK (also known as KIF2C) and Kif2B decreased the rate of lagging chromosomes and reduced the rate of chromosome missegregation. These data demonstrate that STAG2 promotes the correction of kMT attachment errors to ensure faithful chromosome segregation during mitosis.

  3. Apoptosis-linked gene 2 promotes breast cancer growth and metastasis by regulating the cytoskeleton.

    Science.gov (United States)

    Qin, Juan; Li, Dengwen; Zhou, Yunqiang; Xie, Songbo; Du, Xin; Hao, Ziwei; Liu, Ruming; Liu, Xinqi; Liu, Min; Zhou, Jun

    2017-01-10

    Breast cancer is the most prevalent cancer in women. Although it begins as local disease, breast cancer frequently metastasizes to the lymph nodes and distant organs. Therefore, novel therapeutic targets are needed for the management of this disease. Apoptosis-linked gene 2 (ALG-2) is a calcium-binding protein crucial for diverse physiological processes and has recently been implicated in cancer development. However, it remains unclear whether this protein is involved in the pathogenesis of breast cancer. Here, we demonstrate that the expression of ALG-2 is significantly upregulated in breast cancer tissues and is correlated with clinicopathological characteristics indicative of tumor malignancy. Our data further show that ALG-2 stimulates breast cancer growth and metastasis in mice. ALG-2 also promotes breast cancer cell proliferation, survival, and motility in vitro. Mechanistic data reveal that ALG-2 disrupts the localization of centrosome proteins, resulting in spindle multipolarity and chromosome missegregation. In addition, ALG-2 drives the polarization and migration of breast cancer cells by facilitating the rearrangement of microtubules and microfilaments. These findings reveal a critical role for ALG-2 in the pathogenesis of breast cancer and have important implications for its diagnosis and therapy.

  4. p53 regulates cell cycle and microRNAs to promote differentiation of human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Abhinav K Jain

    Full Text Available Multiple studies show that tumor suppressor p53 is a barrier to dedifferentiation; whether this is strictly due to repression of proliferation remains a subject of debate. Here, we show that p53 plays an active role in promoting differentiation of human embryonic stem cells (hESCs and opposing self-renewal by regulation of specific target genes and microRNAs. In contrast to mouse embryonic stem cells, p53 in hESCs is maintained at low levels in the nucleus, albeit in a deacetylated, inactive state. In response to retinoic acid, CBP/p300 acetylates p53 at lysine 373, which leads to dissociation from E3-ubiquitin ligases HDM2 and TRIM24. Stabilized p53 binds CDKN1A to establish a G(1 phase of cell cycle without activation of cell death pathways. In parallel, p53 activates expression of miR-34a and miR-145, which in turn repress stem cell factors OCT4, KLF4, LIN28A, and SOX2 and prevent backsliding to pluripotency. Induction of p53 levels is a key step: RNA-interference-mediated knockdown of p53 delays differentiation, whereas depletion of negative regulators of p53 or ectopic expression of p53 yields spontaneous differentiation of hESCs, independently of retinoic acid. Ectopic expression of p53R175H, a mutated form of p53 that does not bind DNA or regulate transcription, failed to induce differentiation. These studies underscore the importance of a p53-regulated network in determining the human stem cell state.

  5. Quercetin regulates hepatic cholesterol metabolism by promoting cholesterol-to-bile acid conversion and cholesterol efflux in rats.

    Science.gov (United States)

    Zhang, Min; Xie, Zongkai; Gao, Weina; Pu, Lingling; Wei, Jingyu; Guo, Changjiang

    2016-03-01

    Quercetin, a common member of the flavonoid family, is widely present in plant kingdom. Despite that quercetin is implicated in regulating cholesterol metabolism, the molecular mechanism is poorly understood. We hypothesized that quercetin regulates cholesterol homeostasis through regulating the key enzymes involved in hepatic cholesterol metabolism. To test this hypothesis, we compared the profile of key enzymes and transcription factors involved in the hepatic cholesterol metabolism in rats with or without quercetin supplementation. Twenty male Wistar rats were randomly divided into control and quercetin-supplemented groups. Serum total cholesterol, triglyceride, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and total bile acids in feces and bile were measured. Hepatic enzymatic activities were determined by activity assay kit and high-performance liquid chromatography-based analyses. The messenger RNA (mRNA) and protein expressions were determined by reverse transcriptase polymerase chain reaction and Western blot analyses, respectively. The results showed that the activity of hepatic cholesterol 7α-hydroxylase, a critical enzyme in the conversion of cholesterol to bile acids, was significantly elevated by quercetin. The expression of cholesterol 7α-hydroxylase, as well as liver X receptor α, an important transcription factor, was also increased at both mRNA and protein levels by quercetin. However, quercetin exposure had no impact on the activity of hepatic HMG-CoA reductase, a rate-limiting enzyme in the biosynthesis of cholesterol. We also found that quercetin treatment significantly increased ATP binding cassette transporter G1 mRNA and protein expression in the liver, suggesting that quercetin may increase hepatic cholesterol efflux. Collectively, the results presented here indicate that quercetin regulates hepatic cholesterol metabolism mainly through the pathways that promote cholesterol-to-bile acid conversion and

  6. Down regulation of miR-203 in radiation-induced thymic lymphoma promoted cells proliferation and inhibited apoptosis%Down regulation of miR-203in radiation-induced thymic lymphoma promoted cells proliferation and inhibited apoptosis

    Institute of Scientific and Technical Information of China (English)

    Zhang Chaoxiong; Zhang Mingjian; Gao Fu; Zhou Chuanfeng; Zhang Pei; Cai Jianming; Liu Cong

    2015-01-01

    Objective To investigate the role of miR-203 in radiation-induced thymic lymphoma (RITL).Methods A 60Co irradiator was used for total-body irradiation.MicroRNAs(miRNAs) level was assayed by qRT-PCR.Cell proliferation was assayed by MTT assay.Cell apoptosis was examined by fluorescence activated cell sorter (FACS).Dual luciferase reporter assay system was used to detect the 3'UTR reporter.Results MiR-203 was down-regulated in RITL tissues.Overexpression of miR-203 strongly inhibited the proliferation of both NIH3T3 cells and EL4 cells and vice versa.MiR-203 inhibited cells proliferation and induced apoptosis via TANK-binding kinase (TBK1),SLUG (SNAI2) and Cyclin D1 (CCND1).Conclusions Radiation down-regulated the level of miR-203 in thymic,which promoted radiation-induced thymic lymphoma by targeting TBK1,SNAI2 and CCND1.

  7. State - Level Regulation's Effectiveness in Addressing Global Climate Change and Promoting Solar Energy Deployment

    Science.gov (United States)

    Peterman, Carla Joy

    Paper 1, Local Solutions to Global Problems: Climate Change Policies and Regulatory Jurisdiction, considers the efficacy of various types of environmental regulations when they are applied locally to pollutants whose damages extend beyond the jurisdiction of the local regulators. Local regulations of a global pollutant may be ineffective if producers and consumers can avoid them by transacting outside the reach of the local regulator. In many cases, this may involve the physical relocation of the economic activity, a problem often referred to as "leakage." This paper highlights another way in which local policies can be circumvented: through the shuffling of who buys from whom. The paper maintains that the problems of reshuffling are exacerbated when the options for compliance with the regulations are more flexible. Numerical analyses is presented demonstrating that several proposed policies to limit greenhouse gas emissions from the California electricity sector may have very little effect on carbon emissions if they are applied only within that state. Paper 1 concludes that although local subsidies for energy efficiency, renewable electricity, and transportation biofuels constitute attempts to pick technology winners, they may be the only mechanisms that local jurisdictions, acting alone, have at their disposal to address climate change. Paper 2, Pass-Through of Solar PV Incentives to Consumers: The Early Years of California's Solar PV Incentives, examines the pass through of incentives to California solar PV system owners. The full post-subsidy price consumers pay for solar power is a key metric of the success of solar PV incentive programs and of overall PV market performance. This study examines the early years of California's most recent wave of distributed solar PV incentives (2000-2008) to determine the pass-through of incentives. Examination of this period is both intellectually and pragmatically important due to the high level of incentives provided and

  8. Interferon-α regulates glutaminase 1 promoter through STAT1 phosphorylation: relevance to HIV-1 associated neurocognitive disorders.

    Directory of Open Access Journals (Sweden)

    Lixia Zhao

    Full Text Available HIV-1 associated neurocognitive disorders (HAND develop during progressive HIV-1 infection and affect up to 50% of infected individuals. Activated microglia and macrophages are critical cell populations that are involved in the pathogenesis of HAND, which is specifically related to the production and release of various soluble neurotoxic factors including glutamate. In the central nervous system (CNS, glutamate is typically derived from glutamine by mitochondrial enzyme glutaminase. Our previous study has shown that glutaminase is upregulated in HIV-1 infected monocyte-derived-macrophages (MDM and microglia. However, how HIV-1 leads to glutaminase upregulation, or how glutaminase expression is regulated in general, remains unclear. In this study, using a dual-luciferase reporter assay system, we demonstrated that interferon (IFN α specifically activated the glutaminase 1 (GLS1 promoter. Furthermore, IFN-α treatment increased signal transducer and activator of transcription 1 (STAT1 phosphorylation and glutaminase mRNA and protein levels. IFN-α stimulation of GLS1 promoter activity correlated to STAT1 phosphorylation and was reduced by fludarabine, a chemical that inhibits STAT1 phosphorylation. Interestingly, STAT1 was found to directly bind to the GLS1 promoter in MDM, an effect that was dependent on STAT1 phosphorylation and significantly enhanced by IFN-α treatment. More importantly, HIV-1 infection increased STAT1 phosphorylation and STAT1 binding to the GLS1 promoter, which was associated with increased glutamate levels. The clinical relevance of these findings was further corroborated with investigation of post-mortem brain tissues. The glutaminase C (GAC, one isoform of GLS1 mRNA levels in HIV associated-dementia (HAD individuals correlate with STAT1 (p<0.01, IFN-α (p<0.05 and IFN-β (p<0.01. Together, these data indicate that both HIV-1 infection and IFN-α treatment increase glutaminase expression through STAT1 phosphorylation and

  9. Isoreserpine promotes {beta}-catenin degradation via Siah-1 up-regulation in HCT116 colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Gwak, Jungsug; Song, Taeyun [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of); Song, Jie-Young; Yun, Yeon-Sook [Laboratory of Radiation Cancer Science, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Choi, Il-Whan [Department of Microbiology, Center for Viral Disease Research, Inje University College of Medicine, Busan 614-735 (Korea, Republic of); Jeong, Yongsu [Department of Genetic Engineering, and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701 (Korea, Republic of); Shin, Jae-Gook [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of); Department of Clinical Pharmacology, Inje University Busan Paik Hospital, Busan 614-735 (Korea, Republic of); Oh, Sangtaek, E-mail: ohsa@inje.ac.kr [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of)

    2009-09-25

    Aberrant accumulation of intracellular {beta}-catenin in intestinal epithelial cells is a frequent early event during the development of colon cancer. To identify small molecules that decrease the level of intracellular {beta}-catenin, we performed cell-based chemical screening using genetically engineered HEK293 reporter cells to detect compounds that inhibit TOPFlash reporter activity, which was stimulated by Wnt3a-conditioned medium. We found that isoreserpine promoted the degradation of intracellular {beta}-catenin by up-regulation of Siah-1 in HEK293 and HCT116 colon cancer cells. Moreover, isoreserpine repressed the expression of {beta}-catenin/T-cell factor (TCF)-dependent genes, such as cyclin D1 and c-myc, resulting in the suppression of HCT116 cell proliferation. Our findings suggest that isoreserpine can potentially be used as a chemotherapeutic agent against colon cancer.

  10. The Drosophila Myc gene, diminutive, is a positive regulator of the Sex-lethal establishment promoter, Sxl-Pe

    Science.gov (United States)

    Kappes, Gretchen; Deshpande, Girish; Mulvey, Brett B.; Horabin, Jamila I.; Schedl, Paul

    2011-01-01

    The binary switch gene Sex-lethal (Sxl) controls sexual identity in Drosophila. When activated, Sxl imposes female identity, whereas male identity ensues by default when the gene is off. The decision to activate Sxl is controlled by an X chromosome counting system that regulates the Sxl establishment promoter, Sxl-Pe. The counting system depends upon the twofold difference in the gene dose of a series of X-linked transcription factors or numerators. Because of this difference in dose, early female embryos express twice the amount of these transcription factors, and the cumulative action of these transcription factors turns on Sxl-Pe. Here we show that the Drosophila Myc gene diminutive is an X-linked numerator. PMID:21220321

  11. Interleukin-8 promotes canine hemangiosarcoma growth by regulating the tumor microenvironment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong-Hyuk, E-mail: jhkim@umn.edu [Department of Veterinary Clinical Science, College of Veterinary Medicine, University of Minnesota, St. Paul, MN (United States); Masonic Cancer Center, University of Minnesota, Minneapolis, MN (United States); Frantz, Aric M.; Anderson, Katie L.; Graef, Ashley J.; Scott, Milcah C. [Department of Veterinary Clinical Science, College of Veterinary Medicine, University of Minnesota, St. Paul, MN (United States); Robinson, Sally [Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN (United States); Sharkey, Leslie C. [Department of Veterinary Clinical Science, College of Veterinary Medicine, University of Minnesota, St. Paul, MN (United States); Masonic Cancer Center, University of Minnesota, Minneapolis, MN (United States); O' Brien, Timothy D. [Department of Veterinary Clinical Science, College of Veterinary Medicine, University of Minnesota, St. Paul, MN (United States); Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN (United States); Dickerson, Erin B. [Department of Veterinary Clinical Science, College of Veterinary Medicine, University of Minnesota, St. Paul, MN (United States); Masonic Cancer Center, University of Minnesota, Minneapolis, MN (United States); Modiano, Jaime F., E-mail: modiano@umn.edu [Department of Veterinary Clinical Science, College of Veterinary Medicine, University of Minnesota, St. Paul, MN (United States); Masonic Cancer Center, University of Minnesota, Minneapolis, MN (United States)

    2014-04-15

    Interleukin-8 (IL-8) gene expression is highly up-regulated in canine hemangiosarcoma (HSA); however, its role in the pathogenesis of this disease is unknown. We investigated the expression of IL-8 in canine HSA tissues and cell lines, as well and the effects of IL-8 on canine HSA in vitro, and in vivo using a mouse xenograft model for the latter. Constitutive expression of IL-8 mRNA, IL-8 protein, and IL-8 receptor were variable among different tumor samples and cell lines, but they showed stable steady states in each cell line. Upon the addition of IL-8, HSA cells showed transient intracellular calcium fluxes, suggesting that their IL-8 receptors are functional and that IL-8 binding activates relevant signaling pathways. Yet, neither addition of exogenous IL-8 nor blockade of endogenous IL-8 by neutralizing anti-IL-8 antibody (α-IL-8 Ab) affected HSA cell proliferation or survival in vitro. To assess potential effects of IL-8 in other tumor constituents, we stratified HSA cell lines and whole tumor samples into “IL-8 high” and “IL-8 low” groups. Genome-wide gene expression profiling showed that samples in the “IL-8 high” tumor group were enriched for genes associated with a “reactive microenvironment,” including activation of coagulation, inflammation, and fibrosis networks. Based on these findings, we hypothesized that the effects of IL-8 on these tumors were mostly indirect, regulating interactions with the microenvironment. This hypothesis was supported by in vivo xenograft experiments where survival and engraftment of tumor cells was inhibited by administration of neutralizing α-IL-8 Ab. Together, our results suggest that IL-8 contributes to establishing a permissive microenvironment during the early stages of tumorigenesis in HSA. - Highlights: • IL-8 is expressed in canine hemangiosarcoma tumor samples and cell lines. • IL-8 transduces a relevant biological signal in canine hemangiosarcoma cells. • IL-8 gene signature is associated

  12. Incorporation of pentraxin 3 into hyaluronan matrices is tightly regulated and promotes matrix cross-linking.

    Science.gov (United States)

    Baranova, Natalia S; Inforzato, Antonio; Briggs, David C; Tilakaratna, Viranga; Enghild, Jan J; Thakar, Dhruv; Milner, Caroline M; Day, Anthony J; Richter, Ralf P

    2014-10-31

    Mammalian oocytes are surrounded by a highly hydrated hyaluronan (HA)-rich extracellular matrix with embedded cumulus cells, forming the cumulus cell·oocyte complex (COC) matrix. The correct assembly, stability, and mechanical properties of this matrix, which are crucial for successful ovulation, transport of the COC to the oviduct, and its fertilization, depend on the interaction between HA and specific HA-organizing proteins. Although the proteins inter-α-inhibitor (IαI), pentraxin 3 (PTX3), and TNF-stimulated gene-6 (TSG-6) have been identified as being critical for COC matrix formation, its supramolecular organization and the molecular mechanism of COC matrix stabilization remain unknown. Here we used films of end-grafted HA as a model system to investigate the molecular interactions involved in the formation and stabilization of HA matrices containing TSG-6, IαI, and PTX3. We found that PTX3 binds neither to HA alone nor to HA films containing TSG-6. This long pentraxin also failed to bind to products of the interaction between IαI, TSG-6, and HA, among which are the covalent heavy chain (HC)·HA and HC·TSG-6 complexes, despite the fact that both IαI and TSG-6 are ligands of PTX3. Interestingly, prior encounter with IαI was required for effective incorporation of PTX3 into TSG-6-loaded HA films. Moreover, we demonstrated that this ternary protein mixture made of IαI, PTX3, and TSG-6 is sufficient to promote formation of a stable (i.e. cross-linked) yet highly hydrated HA matrix. We propose that this mechanism is essential for correct assembly of the COC matrix and may also have general implications in other inflammatory processes that are associated with HA cross-linking. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Intracellular Theileria annulata promote invasive cell motility through kinase regulation of the host actin cytoskeleton.

    Directory of Open Access Journals (Sweden)

    Min Ma

    2014-03-01

    Full Text Available The intracellular, protozoan Theileria species parasites are the only eukaryotes known to transform another eukaryotic cell. One consequence of this parasite-dependent transformation is the acquisition of motile and invasive properties of parasitized cells in vitro and their metastatic dissemination in the animal, which causes East Coast Fever (T. parva or Tropical Theileriosis (T. annulata. These motile and invasive properties of infected host cells are enabled by parasite-dependent, poorly understood F-actin dynamics that control host cell membrane protrusions. Herein, we dissected functional and structural alterations that cause acquired motility and invasiveness of T. annulata-infected cells, to understand the molecular basis driving cell dissemination in Tropical Theileriosis. We found that chronic induction of TNFα by the parasite contributes to motility and invasiveness of parasitized host cells. We show that TNFα does so by specifically targeting expression and function of the host proto-oncogenic ser/thr kinase MAP4K4. Blocking either TNFα secretion or MAP4K4 expression dampens the formation of polar, F-actin-rich invasion structures and impairs cell motility in 3D. We identified the F-actin binding ERM family proteins as MAP4K4 downstream effectors in this process because TNFα-induced ERM activation and cell invasiveness are sensitive to MAP4K4 depletion. MAP4K4 expression in infected cells is induced by TNFα-JNK signalling and maintained by the inhibition of translational repression, whereby both effects are parasite dependent. Thus, parasite-induced TNFα promotes invasive motility of infected cells through the activation of MAP4K4, an evolutionary conserved kinase that controls cytoskeleton dynamics and cell motility. Hence, MAP4K4 couples inflammatory signaling to morphodynamic processes and cell motility, a process exploited by the intracellular Theileria parasite to increase its host cell's dissemination capabilities.

  14. ARAP2 promotes GLUT1-mediated basal glucose uptake through regulation of sphingolipid metabolism.

    Science.gov (United States)

    Chaudhari, Aditi; Håversen, Liliana; Mobini, Reza; Andersson, Linda; Ståhlman, Marcus; Lu, Emma; Rutberg, Mikael; Fogelstrand, Per; Ekroos, Kim; Mardinoglu, Adil; Levin, Malin; Perkins, Rosie; Borén, Jan

    2016-11-01

    Lipid droplet formation, which is driven by triglyceride synthesis, requires several droplet-associated proteins. We identified ARAP2 (an ADP-ribosylation factor 6 GTPase-activating protein) in the lipid droplet proteome of NIH-3T3 cells and showed that knockdown of ARAP2 resulted in decreased lipid droplet formation and triglyceride synthesis. We also showed that ARAP2 knockdown did not affect fatty acid uptake but reduced basal glucose uptake, total levels of the glucose transporter GLUT1, and GLUT1 levels in the plasma membrane and the lipid micro-domain fraction (a specialized plasma membrane domain enriched in sphingolipids). Microarray analysis showed that ARAP2 knockdown altered expression of genes involved in sphingolipid metabolism. Because sphingolipids are known to play a key role in cell signaling, we performed lipidomics to further investigate the relationship between ARAP2 and sphingolipids and potentially identify a link with glucose uptake. We found that ARAP2 knockdown increased glucosylceramide and lactosylceramide levels without affecting ceramide levels, and thus speculated that the rate-limiting enzyme in glycosphingolipid synthesis, namely glucosylceramide synthase (GCS), could be modified by ARAP2. In agreement with our hypothesis, we showed that the activity of GCS was increased by ARAP2 knockdown and reduced by ARAP2 overexpression. Furthermore, pharmacological inhibition of GCS resulted in increases in basal glucose uptake, total GLUT1 levels, triglyceride biosynthesis from glucose, and lipid droplet formation, indicating that the effects of GCS inhibition are the opposite to those resulting from ARAP2 knockdown. Taken together, our data suggest that ARAP2 promotes lipid droplet formation by modifying sphingolipid metabolism through GCS. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. The role of nutrients in regulation and promotion of harmful algal blooms in upwelling systems

    Science.gov (United States)

    Kudela, R. M.; Seeyave, S.; Cochlan, W. P.

    2010-04-01

    The Core Research Project on HABs in upwelling systems, as a component project of the international scientific programme on the Global Ecology and Oceanography of Harmful Algal Blooms (GEOHAB), promotes a comparative approach within and across systems to understand and predict the ecology, frequency and occurrence of HABs in eastern boundary current upwelling systems. Unlike other systems, upwelling circulation tends to override nutrient limitation caused by stratification, but is less affected by anthropogenic impacts due to the magnitude of the upwelling nutrient signal. At the same time, upwelling systems are unique in that they undergo seasonal succession as well as short-term spatial and temporal oscillations driven by the time-scale of upwelling wind events. An understanding of nutrient dynamics in upwelling systems is thus critical to any attempt to understand or predict HAB events in these environments. We review the state of knowledge regarding nutrient ecophysiology of a subset of HAB organisms identified in upwelling systems. The upwelling HABs exhibit a number of adaptations previously identified in HAB organisms, such as mixotrophy, osmotrophy and vertical migration. We suggest that, unlike most other HABs, these organisms do not necessarily follow a low nutrient-affinity strategy, and do not fit well with classic allometric scaling relationships. Despite these anomalies, progress has been made in predicting HAB events in upwelling systems, by linking HAB events to the unique environmental conditions associated with these systems. We conclude that this subset of HAB organisms is still poorly described in terms of nutrient ecophysiology, and will benefit from a comparative approach across systems, particularly because the subset of upwelling HABs does not necessarily fit the generic patterns identified for HABs generally.

  16. Salvianolic acid B regulates gene expression and promotes cell viability in chondrocytes.

    Science.gov (United States)

    Yang, Xiaohong; Liu, Shaojie; Li, Siming; Wang, Pengzhen; Zhu, Weicong; Liang, Peihong; Tan, Jianrong; Cui, Shuliang

    2017-02-28

    Articular chondrocytes reside in lacunae distributed in cartilage responsible for the remodelling of the tissue with limited ability of damage repairing. The in vitro expanded chondrocytes enhanced by factors/agents to obtain large numbers of cells with strengthened phenotype are essential for successful repair of cartilage lesions by clinical cell implantation therapies. Because the salvianolic acid B (Sal B), a major hydrophilic therapeutic agent isolated from Salvia miltiorrhiza, has been widely used to treat diseases and able to stimulate activity of cells, this study examines the effects of Sal B on passaged chondrocytes. Chondrocytes were treated with various concentrations of Sal B in monolayer culture, their morphological properties and changes, and mitochondrial membrane potential were analysed using microscopic analyses, including cellular biochemical staining and confocal laser scanning microscopy. The proteins were quantified by BCA and Western blotting, and the transcription of genes was detected by qRT-PCR. The passaged chondrocytes treated with Sal B showed strengthened cellular synthesis and stabilized mitochondrial membrane potential with upregulated expression of the marker genes for chondrocyte phenotype, Col2-α1, Acan and Sox9, the key Wnt signalling molecule β-catenin and paracrine cytokine Cytl-1. The treatments using CYTL-1 protein significantly increased expression of Col2-α1 and Acan with no effect on Sox9, indicating the paracrine cytokine acts on chondrocytes independent of SOX9. Sal B has ultimately promoted cell growth and enhanced chondrocyte phenotype. The chondrocytes treated with pharmaceutical agent and cytokine in the formulated medium for generating large number of differentiated chondrocytes would facilitate the cell-based therapies for cartilage repair.

  17. Genetic and cytological evidence that heterocyst patterning is regulated by inhibitor gradients that promote activator decay.

    Science.gov (United States)

    Risser, Douglas D; Callahan, Sean M

    2009-11-24

    The formation of a pattern of differentiated cells from a group of seemingly equivalent, undifferentiated cells is a central paradigm of developmental biology. Several species of filamentous cyanobacteria differentiate nitrogen-fixing heterocysts at regular intervals along unbranched filaments to form a periodic pattern of two distinct cell types. This patterning has been used to exemplify application of the activator-inhibitor model to periodic patterns in biology. The activator-inhibitor model proposes that activators and inhibitors of differentiation diffuse from source cells to form concentration gradients that in turn mediate patterning, but direct visualization of concentration gradients of activators and inhibitors has been difficult. Here we show that the periodic pattern of heterocysts produced by cyanobacteria relies on two inhibitors of heterocyst differentiation, PatS and HetN, in a manner consistent with the predictions of the activator-inhibitor model. Concentration gradients of the activator, HetR, were observed adjacent to heterocysts, the natural source of PatS and HetN, as well as adjacent to vegetative cells that were manipulated to overexpress a gene encoding either of the inhibitors. Gradients of HetR relied on posttranslational decay of HetR. Deletion of both patS and hetN genes prevented the formation of gradients of HetR, and a derivative of the inhibitors was shown to promote decay of HetR in a concentration-dependent manner. Our results provide strong support for application of the activator-inhibitor model to heterocyst patterning and, more generally, the formation of periodic patterns in biological systems.

  18. Epigenetic Modification of the Epstein-Barr Virus BZLF1 Promoter Regulates Viral Reactivation from Latency

    Directory of Open Access Journals (Sweden)

    Takayuki eMurata

    2013-04-01

    Full Text Available The Epstein-Barr virus (EBV is an oncogenic human gamma-herpesvirus that predominantly establishes latent infection in B lymphocytes. Viral genomes exist as extrachromosomal episomes with a nucleosomal structure. Maintenance of virus latency or execution of reactivation is controlled by the expression of BZLF1, a viral immediate-early gene product, tightly controlled at the transcriptional level. In this article, we review how BZLF1 transcription is controlled, in other words how virus reactivation is regulated, especially in terms of epigenetics. We recently found that histone H3 lysine 27 trimethylation (H3K27me3 and H4K20me3 markers are crucial for suppression of BZLF1 in latent Raji cells. In addition, H3K9me2/3, HP1 and H2A ubiquitination are associated with latency, whereas positive markers, such as higher histone acetylation and H3K4me3, are concomitant with reactivation. Since lytic replication eventually causes cell cycle arrest and cell death, development of oncolytic therapy for EBV-positive cancers is conceivable using epigenetic disruptors. In addition, we note the difficulties in analyzing roles of epigenetics in EBV, including issues like cell type dependence and virus copy numbers.

  19. The Promotion of Erythropoiesis via the Regulation of Reactive Oxygen Species by Lactic Acid.

    Science.gov (United States)

    Luo, Shun-Tao; Zhang, Dong-Mei; Qin, Qing; Lu, Lian; Luo, Min; Guo, Fu-Chun; Shi, Hua-Shan; Jiang, Li; Shao, Bin; Li, Meng; Yang, Han-Shuo; Wei, Yu-Quan

    2017-02-06

    The simultaneous increases in blood lactic acid and erythrocytes after intense exercise could suggest a link between lactate and the erythropoiesis. However, the effects of lactic acid on erythropoiesis remain to be elucidated. Here, we utilized a mouse model to determine the role of lactic acid in this process in parallel with studies using leukaemic K562 cells. Treatment of K562 cells in vitro with lactic acid increased the mRNA and protein expression of haemoglobin genes and the frequency of GPA(+) cells. Also, increases in haematocrit and CD71(-)/Ter119(+) erythroid cells were observed in lactic acid-treated mice, which showed a physiological increase in blood lactate. Mouse bone marrow CD34(+)/CD117(-) cells showed an increase in erythroid burst-forming units after stimulation with lactic acid in vitro. Furthermore, lactic acid increased the intracellular reactive oxygen species (ROS) content in bone marrow and in K562 cells. Erythroid differentiation induced in Haematopoietic Stem Cells (HSCs) and K562 cells by lactic acid was abolished by reducing ROS levels with SOD or 2-mercaptoethanol, which suggests that ROS is a critical regulator of this process. These findings provide a better understanding of the role of lactic acid in cellular metabolism and physiological functions.

  20. Efficacy of an Emotion Self-regulation Program for Promoting Development in Preschool Children.

    Science.gov (United States)

    Bradley, Raymond Trevor; Galvin, Patrick; Atkinson, Mike; Tomasino, Dana

    2012-03-01

    This work reports the results of an evaluation study to assess the efficacy of the Early HeartSmarts (EHS) program in schools of the Salt Lake City, Utah, School District. The EHS program is designed to guide teachers with methods that support young children (3-6 y old) in learning emotion self-regulation and key age-appropriate socioemotional competencies with the goal of facilitating their emotional, social, and cognitive development. The study was conducted over one school year using a quasiexperimental longitudinal field research design with 3 measurement points (baseline, preintervention, and postintervention) using The Creative Curriculum Assessment (TCCA), a teacher-scored, 50-item instrument measuring students growth in 4 areas of development: social/emotional, physical, cognitive, and language development. Children in 19 preschool classrooms in the Salt Lake City School District were divided into intervention and control group samples (n = 66 and n = 309, respectively; mean age = 3.6 y). The intervention classes were specifically selected to target children of lower socioeconomic and ethnic minority backgrounds. Overall, there is compelling evidence of the efficacy of the EHS program in increasing total psychosocial development and each of the 4 development areas measured by the TCCA: the results of a series of analyses of covariance found a strong, consistent pattern of large, significant differences on the development measures favoring preschool children who received the EHS program over those in the control group.

  1. Functional interaction of CP2 with GATA-1 in the regulation of erythroid promoters.

    Science.gov (United States)

    Bosè, Francesca; Fugazza, Cristina; Casalgrandi, Maura; Capelli, Alessia; Cunningham, John M; Zhao, Quan; Jane, Stephen M; Ottolenghi, Sergio; Ronchi, Antonella

    2006-05-01

    We observed that binding sites for the ubiquitously expressed transcription factor CP2 were present in regulatory regions of multiple erythroid genes. In these regions, the CP2 binding site was adjacent to a site for the erythroid factor GATA-1. Using three such regulatory regions (from genes encoding the transcription factors GATA-1, EKLF, and p45 NF-E2), we demonstrated the functional importance of the adjacent CP2/GATA-1 sites. In particular, CP2 binds to the GATA-1 HS2 enhancer, generating a ternary complex with GATA-1 and DNA. Mutations in the CP2 consensus greatly impaired HS2 activity in transient transfection assays with K562 cells. Similar results were obtained by transfection of EKLF and p45 NF-E2 mutant constructs. Chromatin immunoprecipitation with K562 cells showed that CP2 binds in vivo to all three regulatory elements and that both GATA-1 and CP2 were present on the same GATA-1 and EKLF regulatory elements. Adjacent CP2/GATA-1 sites may represent a novel module for erythroid expression of a number of genes. Additionally, coimmunoprecipitation and glutathione S-transferase pull-down experiments demonstrated a physical interaction between GATA-1 and CP2. This may contribute to the functional cooperation between these factors and provide an explanation for the important role of ubiquitous CP2 in the regulation of erythroid genes.

  2. Dysregulation of microRNA-219 promotes neurodegeneration through post-transcriptional regulation of tau

    Science.gov (United States)

    Santa-Maria, Ismael; Alaniz, Maria E.; Renwick, Neil; Cela, Carolina; Fulga, Tudor A.; Van Vactor, David; Tuschl, Thomas; Clark, Lorraine N.; Shelanski, Michael L.; McCabe, Brian D.; Crary, John F.

    2015-01-01

    Tau is a highly abundant and multifunctional brain protein that accumulates in neurofibrillary tangles (NFTs), most commonly in Alzheimer’s disease (AD) and primary age-related tauopathy. Recently, microRNAs (miRNAs) have been linked to neurodegeneration; however, it is not clear whether miRNA dysregulation contributes to tau neurotoxicity. Here, we determined that the highly conserved brain miRNA miR-219 is downregulated in brain tissue taken at autopsy from patients with AD and from those with severe primary age-related tauopathy. In a Drosophila model that produces human tau, reduction of miR-219 exacerbated tau toxicity, while overexpression of miR-219 partially abrogated toxic effects. Moreover, we observed a bidirectional modulation of tau levels in the Drosophila model that was dependent on miR-219 expression or neutralization, demonstrating that miR-219 regulates tau in vivo. In mammalian cellular models, we found that miR-219 binds directly to the 3′-UTR of the tau mRNA and represses tau synthesis at the post-transcriptional level. Together, our data indicate that silencing of tau by miR-219 is an ancient regulatory mechanism that may become perturbed during neurofibrillary degeneration and suggest that this regulatory pathway may be useful for developing therapeutics for tauopathies. PMID:25574843

  3. Adipose Natural Killer Cells Regulate Adipose Tissue Macrophages to Promote Insulin Resistance in Obesity.

    Science.gov (United States)

    Lee, Byung-Cheol; Kim, Myung-Sunny; Pae, Munkyong; Yamamoto, Yasuhiko; Eberlé, Delphine; Shimada, Takeshi; Kamei, Nozomu; Park, Hee-Sook; Sasorith, Souphatta; Woo, Ju Rang; You, Jia; Mosher, William; Brady, Hugh J M; Shoelson, Steven E; Lee, Jongsoon

    2016-04-12

    Obesity-induced inflammation mediated by immune cells in adipose tissue appears to participate in the pathogenesis of insulin resistance. We show that natural killer (NK) cells in adipose tissue play an important role. High-fat diet (HFD) increases NK cell numbers and the production of proinflammatory cytokines, notably TNFα, in epididymal, but not subcutaneous, fat depots. When NK cells were depleted either with neutralizing antibodies or genetic ablation in E4bp4(+/-) mice, obesity-induced insulin resistance improved in parallel with decreases in both adipose tissue macrophage (ATM) numbers, and ATM and adipose tissue inflammation. Conversely, expansion of NK cells following IL-15 administration or reconstitution of NK cells into E4bp4(-/-) mice increased both ATM numbers and adipose tissue inflammation and exacerbated HFD-induced insulin resistance. These results indicate that adipose NK cells control ATMs as an upstream regulator potentially by producing proinflammatory mediators, including TNFα, and thereby contribute to the development of obesity-induced insulin resistance.

  4. N-WASP promotes invasion and migration of cervical cancer cells through regulating p38 MAPKs signaling pathway.

    Science.gov (United States)

    Hou, Jinxuan; Yang, Hui; Huang, Xin; Leng, Xiaohua; Zhou, Fuxiang; Xie, Conghua; Zhou, Yunfeng; Xu, Yu

    2017-01-01

    Neural Wiskott-Aldrich syndrome protein (N-WASP) is an important member of the WASP family involved in the actin cytoskeleton reorganization. Recent evidence suggests that N-WASP may play important roles in tumor progression and metastasis. However, the contribution of N-WASP to cervical cancer is still unknown. The present study focused on elucidating the role of N-WASP in the malignant behavior of cervical cancer cells. We found that N-WASP overexpressed in cervical cancer tissues compared with paired paracancerous tissues and normal tissues, and similar results were observed in several cervical cancer cell lines. Furthermore, we demonstrated that overexpression of N-WASP facilitated migration and invasion of cervical cancer cells, while downregulation of N-WASP resulted in decreased cell migration and invasion. In addition, the data showed that N-WASP might promote invasion and migration of cervical cancer cells via regulating the activity of p38 MAPKs pathway. Altogether, the study suggested that N-WASP might serve as an oncogene in cervical cancer, and provided novel insights into the mechanism that how N-WASP promoted invasion and migration of cervical cancer cells.

  5. Nutrient-induced FNIP degradation by SCFβ-TRCP regulates FLCN complex localization and promotes renal cancer progression.

    Science.gov (United States)

    Nagashima, Katsuyuki; Fukushima, Hidefumi; Shimizu, Kouhei; Yamada, Aya; Hidaka, Masumi; Hasumi, Hisashi; Ikebe, Tetsuro; Fukumoto, Satoshi; Okabe, Koji; Inuzuka, Hiroyuki

    2017-02-07

    Folliculin-interacting protein 1 and 2 (FNIP1 and FNIP2) play critical roles in preventing renal malignancy through their association with the tumor suppressor FLCN. Mutations in FLCN are associated with Birt-Hogg-Dubé (BHD) syndrome, a rare disorder with increased risk of renal cancer. Recent studies indicated that FNIP1/FNIP2 double knockout mice display enlarged polycystic kidneys and renal carcinoma, which phenocopies FLCN knockout mice, suggesting that these two proteins function together to suppress renal cancer. However, the molecular mechanism functionally linking FNIP1/FNIP2 and FLCN remains largely elusive. Here, we demonstrated that FNIP2 protein is unstable and subjected to proteasome-dependent degradation via β-TRCP and Casein Kinase 1 (CK1)-directed ubiquitination in a nutrition-dependent manner. Degradation of FNIP2 leads to lysosomal dissociation of FLCN and subsequent lysosomal association of mTOR, which in turn promotes the proliferation of renal cancer cells. These results indicate that SCFβ-TRCP negatively regulates the FLCN complex by promoting FNIP degradation and provide molecular insight into the pathogenesis of BHD-associated renal cancer.

  6. NFAT5 promotes proliferation and migration of lung adenocarcinoma cells in part through regulating AQP5 expression

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Kai, E-mail: gk161@163.com [Department of Respiration, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China); Department of Respiration, 161th Hospital, PLA, Wuhan 430015 (China); Jin, Faguang, E-mail: jinfag@fmmu.edu.cn [Department of Respiration, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China)

    2015-09-25

    The osmoregulated transcription factor nuclear factor of activated T-cells 5(NFAT5), has been found to play important roles in the development of many kinds of human cancers, including breast cancer, colon carcinoma, renal cell carcinoma and melanoma. The aim of the present study was to determine whether NFAT5 is involved in the proliferation and migration of lung adenocarcinoma cells. We found that NFAT5 was upregulated in lung adenocarcinoma cells and knockdown of NFAT5 decreased proliferation and migration of the cells, accompanied by a significant reduction in the expression of AQP5. AQP5 was upregulated in lung adenocarcinoma cells and knockdown of AQP5 also inhibited proliferation and migration of the cells as knockdown of NFAT5 did. Moreover, overexpression of NFAT5 promoted proliferation and migration of lung adenocarcinoma cells, accompanied by a significant increase in the expression of AQP5. These results indicate that NFAT5 plays important roles in proliferation and migration of human lung adenocarcinoma cells through regulating AQP5 expression, providing a new therapeutic option for lung adenocarcinoma therapy. - Highlights: • NFAT5 expression is higher in lung adenocarcinoma cells compared with normal cells. • NFAT5 knockdown decreases proliferation and migration of lung adenocarcinoma cells. • Knockdown of NFAT5 reduces AQP5 expression in human lung adenocarcinoma cells. • Overexpression of NFAT5 promotes proliferation and migration of lung adenocarcinoma cells. • Overexpression of NFAT5 increases AQP5 expression in human lung adenocarcinoma cells.

  7. Phosphorylation-triggered CUEDC2 degradation promotes UV-induced G1 arrest through APC/C(Cdh1) regulation.

    Science.gov (United States)

    Zhang, Wei-Na; Zhou, Jie; Zhou, Tao; Li, Ai-Ling; Wang, Na; Xu, Jin-Jing; Chang, Yan; Man, Jiang-Hong; Pan, Xin; Li, Tao; Li, Wei-Hua; Mu, Rui; Liang, Bing; Chen, Liang; Jin, Bao-Feng; Xia, Qing; Gong, Wei-Li; Zhang, Xue-Min; Wang, Li; Li, Hui-Yan

    2013-07-02

    DNA damage triggers cell cycle arrest to provide a time window for DNA repair. Failure of arrest could lead to genomic instability and tumorigenesis. DNA damage-induced G1 arrest is generally achieved by the accumulation of Cyclin-dependent kinase inhibitor 1 (p21). However, p21 is degraded and does not play a role in UV-induced G1 arrest. The mechanism of UV-induced G1 arrest thus remains elusive. Here, we have identified a critical role for CUE domain-containing protein 2 (CUEDC2) in this process. CUEDC2 binds to and inhibits anaphase-promoting complex/cyclosome-Cdh1 (APC/C(Cdh1)), a critical ubiquitin ligase in G1 phase, thereby stabilizing Cyclin A and promoting G1-S transition. In response to UV irradiation, CUEDC2 undergoes ERK1/2-dependent phosphorylation and ubiquitin-dependent degradation, leading to APC/C(Cdh1)-mediated Cyclin A destruction, Cyclin-dependent kinase 2 inactivation, and G1 arrest. A nonphosphorylatable CUEDC2 mutant is resistant to UV-induced degradation. Expression of this stable mutant effectively overrides UV-induced G1-S block. These results establish CUEDC2 as an APC/C(Cdh1) inhibitor and indicate that regulated CUEDC2 degradation is critical for UV-induced G1 arrest.

  8. Antitumor activity of an hTERT promoter-regulated tumor-selective oncolytic adenovirus in human hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Chang-Qing Su; Xing-Hua Wang; Jie Chen; Yong-Jing Liu; Wei-Guo Wang; Lin-Fang Li; Meng-Chao Wu; Qi-Jun Qian

    2006-01-01

    AIM: To construct a tumor-selective replicationcompetent adenovirus (RCAd), SG300, using a modified promoter of human telomerase reverse transcriptase(hTERT).METHODS: The antitumor efficacy of SG300 in epatocellular carcinoma was assessed in vitro and in vivo. In vitro cell viability by MTT assay was used to assess the tumor-selective oncolysis and safety features of SG300, andin vivo antitumor activity of SG300 was assessed in established hepatocellular carcinoma models in nude mice.RESULTS: SG300 could lyse hepatocellular carcinoma cells at a low multiplicity of infection (MOI), but could not affect growth of normal cells even at a high MOI.Both in Hep3B and SMMC-7721 xenograft models of hepatocellular carcinoma, SG300 had an obvious antitumor effect, resulting in a decrease in tumor volume. Its selective oncolysis to tumor cells and safety to normal cells was also superior to that of ONYX-015.Pathological examination of tumor specimens showed that SG300 replicated selectively in cancer cells and resulted in apoptosis and necrosis of cancer cells.CONCLUSION: hTERT promoter-regulated replicative adenovirus SG300 has a better cancer-selective replication-competent ability, and can specifically kill a wide range of cancer cells with positive telomerase activity, and thus has better potential for targeting therapy of hepatocellular carcinoma.

  9. β3GnT8 Promotes Gastric Cancer Invasion by Regulating the Glycosylation of CD147

    Science.gov (United States)

    Shen, Li; Dong, Xiaoxia; Yu, Meiyun; Luo, Zhiguo; Wu, Shiliang

    2017-01-01

    β1, 3-N-acetylglucosminyltransferase 8(β3GnT8) synthesizes a unique cabohydrate structure known as polylactosamine, and plays a vital role in progression of various human cancer types. However, its involvement in gastric cancer remains unclear. In this study, we analyzed the expression and clinical significance of β3GnT8 by Western blot in 6 paired fresh gastric cancer tissues, noncancerous tissues and immunohistochemistry on 110 paraffin-embedded slices. β3GnT8 was found to be over-expressed in gastric cancer tissues, which correlated with lymph node metastasis and TNM stage. Forced the expression of β3GnT8 promoted migration and invasion of gastric cancer cells, whereas β3GnT8 knockdown led to the opposite results. Further studies showed that the regulated β3GnT8 could convert the heterogeneous N-glycosylated forms of CD147 and change the polylactosamine structures carried on CD147. In addition, our data suggested the annexin A2 (ANXA2) to be an essential interaction partner of β3GnT8 during the process of CD147 glycosylation. Collectively, these results provide a novel molecular mechanism for β3GnT8 in promotion of gastric cancer invasion and metastasis. Targeting β3GnT8 could serve as a new strategy for future gastric cancer therapy.

  10. Overexpressed ubiquitin ligase Cullin7 in breast cancer promotes cell proliferation and invasion via down-regulating p53

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hongsheng [Department of Histology and Embryology, Guangdong Medical College, Dongguan 523808, Guangdong (China); Wu, Fenping [The 7th People’s Hospital of Chengdu, Chengdu 610041, Sichuan (China); Wang, Yan [The Second School of Clinical Medicine, Guangdong Medical College, Dongguan 523808, Guangdong (China); Yan, Chong [School of Pharmacy, Guangdong Medical College, Dongguan 523808, Guangdong (China); Su, Wenmei, E-mail: wenmeisutg@126.com [Oncology of Affiliated Hospital Guangdong Medical College, Zhanjiang 524000, Guangdong (China)

    2014-08-08

    Highlights: • Cullin7 is overexpressed in human breast cancer samples. • Cullin7 stimulated proliferation and invasion of breast cancer cells. • Inhibition of p53 contributes to Cullin7-induced proliferation and invasion. - Abstract: Ubiquitin ligase Cullin7 has been identified as an oncogene in some malignant diseases such as choriocarcinoma and neuroblastoma. However, the role of Cullin7 in breast cancer carcinogenesis remains unclear. In this study, we compared Cullin7 protein levels in breast cancer tissues with normal breast tissues and identified significantly higher expression of Cullin7 protein in breast cancer specimens. By overexpressing Cullin7 in breast cancer cells HCC1937, we found that Cullin7 could promote cell growth and invasion in vitro. In contrast, the cell growth and invasion was inhibited by silencing Cullin7 in breast cancer cell BT474. Moreover, we demonstrated that Cullin7 promoted breast cancer cell proliferation and invasion via down-regulating p53 expression. Thus, our study provided evidence that Cullin7 functions as a novel oncogene in breast cancer and may be a potential therapeutic target for breast cancer management.

  11. Long non-coding RNA MALAT1 promotes gastric cancer tumorigenicity and metastasis by regulating vasculogenic mimicry and angiogenesis.

    Science.gov (United States)

    Li, Yue; Wu, Zhenzhen; Yuan, Jia; Sun, Li; Lin, Li; Huang, Na; Bin, Jianping; Liao, Yulin; Liao, Wangjun

    2017-06-01

    MALAT1 is an oncogenic long non-coding RNA that has been found to promote the proliferation of many malignant cell types and non-malignant human umbilical vein endothelial cells (HUVECs). However, the functions of MALAT1 in vasculogenic mimicry (VM) and angiogenesis and the potential mechanisms responsible have not yet been investigated in any malignancy. Here, in situ hybridization and CD31/periodic acid-Schiff double staining of 150 gastric cancer (GC) clinical specimens revealed that MALAT1 expression was tightly associated with densities of VM and endothelial vessels. MALAT1 knockdown markedly reduced GC cell migration, invasion, tumorigenicity, metastasis, and VM, while restricting HUVEC angiogenesis and increasing vascular permeability. Moreover, MALAT1 was found to regulate expression of VE-cadherin, β-catenin, MMPs 2 and 9, MT1-MMP, p-ERK, p-FAK, and p-paxillin, which have been established as classical markers of VM and angiogenesis and components of associated signaling pathways. Consistent with this, the p-ERK inhibitors U0126 and PD98059 both effectively blocked GC cell VM. In conclusion, MALAT1 can promote tumorigenicity and metastasis in GC by facilitating VM and angiogenesis via the VE-cadherin/β-catenin complex and ERK/MMP and FAK/paxillin signaling pathways.

  12. Analysis of the VMD2 promoter and implication of E-box binding factors in its regulation.

    Science.gov (United States)

    Esumi, Noriko; Oshima, Yuji; Li, Yuanyuan; Campochiaro, Peter A; Zack, Donald J

    2004-04-30

    The retinal pigment epithelium (RPE) is crucial for the normal development and function of retinal photo-receptors, and mutations in several genes that are preferentially expressed in the RPE have been shown to cause retinal degeneration. We analyzed the 5'-up-stream region of human VMD2, a gene that is preferentially expressed in the RPE and, when mutated, causes Best macular dystrophy. Transgenic mouse studies with VMD2 promoter/lacZ constructs demonstrated that a-253 to +38 bp fragment is sufficient to direct RPE-specific expression in the eye. Transient transfection assays using the D407 human RPE cell line with VMD2 promoter/luciferase reporter constructs identified two positive regulatory regions, -585 to -541 bp for high level expression and -56 to -42 bp for low level expression. Mutation of a canonical E-box located in the -56 to -42 bp region greatly diminished luciferase expression in D407 cells and abolished the bands shifted with bovine RPE nuclear extract in electrophoretic mobility shift assays. Independently a candidate approach was used to select microphthalmia-associated transcription factor (MITF) for testing because it is expressed in the RPE and associated with RPE abnormalities when mutated. MITF-M significantly increased luciferase expression in D407 cells in an E-box-dependent manner. These studies define the VMD2 promoter region sufficient to drive RPE-specific expression in the eye, identify positive regulatory regions in vitro, and suggest that MITF as well as other E-box binding factors may act as positive regulators of VMD2 expression.

  13. A simple repeat polymorphism in the MITF-M promoter is a key regulator of white spotting in dogs.

    Directory of Open Access Journals (Sweden)

    Izabella Baranowska Körberg

    Full Text Available The white spotting locus (S in dogs is colocalized with the MITF (microphtalmia-associated transcription factor gene. The phenotypic effects of the four S alleles range from solid colour (S to extreme white spotting (s(w. We have investigated four candidate mutations associated with the s(w allele, a SINE insertion, a SNP at a conserved site and a simple repeat polymorphism all associated with the MITF-M promoter as well as a 12 base pair deletion in exon 1B. The variants associated with white spotting at all four loci were also found among wolves and we conclude that none of these could be a sole causal mutation, at least not for extreme white spotting. We propose that the three canine white spotting alleles are not caused by three independent mutations but represent haplotype effects due to different combinations of causal polymorphisms. The simple repeat polymorphism showed extensive diversity both in dogs and wolves, and allele-sharing was common between wolves and white spotted dogs but was non-existent between solid and spotted dogs as well as between wolves and solid dogs. This finding was unexpected as Solid is assumed to be the wild-type allele. The data indicate that the simple repeat polymorphism has been a target for selection during dog domestication and breed formation. We also evaluated the significance of the three MITF-M associated polymorphisms with a Luciferase assay, and found conclusive evidence that the simple repeat polymorphism affects promoter activity. Three alleles associated with white spotting gave consistently lower promoter activity compared with the allele associated with solid colour. We propose that the simple repeat polymorphism affects cooperativity between transcription factors binding on either flanking sides of the repeat. Thus, both genetic and functional evidence show that the simple repeat polymorphism is a key regulator of white spotting in dogs.

  14. Foxn1 Transcription Factor Regulates Wound Healing of Skin through Promoting Epithelial-Mesenchymal Transition.

    Directory of Open Access Journals (Sweden)

    Barbara Gawronska-Kozak

    Full Text Available Transcription factors are key molecules that finely tune gene expression in response to injury. We focused on the role of a transcription factor, Foxn1, whose expression is limited to the skin and thymus epithelium. Our previous studies showed that Foxn1 inactivity in nude mice creates a pro-regenerative environment during skin wound healing. To explore the mechanistic role of Foxn1 in the skin wound healing process, we analyzed post-injured skin tissues from Foxn1::Egfp transgenic and C57BL/6 mice with Western Blotting, qRT-PCR, immunofluorescence and flow cytometric assays. Foxn1 expression in non-injured skin localized to the epidermis and hair follicles. Post-injured skin tissues showed an intense Foxn1-eGFP signal at the wound margin and in leading epithelial tongue, where it co-localized with keratin 16, a marker of activated keratinocytes. This data support the concept that suprabasal keratinocytes, expressing Foxn1, are key cells in the process of re-epithelialization. The occurrence of an epithelial-mesenchymal transition (EMT was confirmed by high levels of Snail1 and Mmp-9 expression as well as through co-localization of vimentin/E-cadherin-positive cells in dermis tissue at four days post-wounding. Involvement of Foxn1 in the EMT process was verified by co-localization of Foxn1-eGFP cells with Snail1 in histological sections. Flow cytometric analysis showed the increase of double positive E-cadherin/N-cadherin cells within Foxn1-eGFP population of post-wounded skin cells isolates, which corroborated histological and gene expression analyses. Together, our findings indicate that Foxn1 acts as regulator of the skin wound healing process through engagement in re-epithelization and possible involvement in scar formation due to Foxn1 activity during the EMT process.

  15. Cbln family proteins promote synapse formation by regulating distinct neurexin signaling pathways in various brain regions.

    Science.gov (United States)

    Matsuda, Keiko; Yuzaki, Michisuke

    2011-04-01

    Cbln1 (a.k.a. precerebellin) is a unique bidirectional synaptic organizer that plays an essential role in the formation and maintenance of excitatory synapses between granule cells and Purkinje cells in the mouse cerebellum. Cbln1 secreted from cerebellar granule cells directly induces presynaptic differentiation and indirectly serves as a postsynaptic organizer by binding to its receptor, the δ2 glutamate receptor. However, it remains unclear how Cbln1 binds to the presynaptic sites and interacts with other synaptic organizers. Furthermore, although Cbln1 and its family members Cbln2 and Cbln4 are expressed in brain regions other than the cerebellum, it is unknown whether they regulate synapse formation in these brain regions. In this study, we showed that Cbln1 and Cbln2, but not Cbln4, specifically bound to its presynaptic receptor -α and β isoforms of neurexin carrying the splice site 4 insert [NRXs(S4+)] - and induced synaptogenesis in cerebellar, hippocampal and cortical neurons in vitro. Cbln1 competed with synaptogenesis mediated by neuroligin 1, which lacks the splice sites A and B, but not leucine-rich repeat transmembrane protein 2, possibly by sharing the presynaptic receptor NRXs(S4+). However, unlike neurexins/neuroligins or neurexins/leucine-rich repeat transmembrane proteins, the interaction between NRX1β(S4+) and Cbln1 was insensitive to extracellular Ca(2+) concentrations. These findings revealed the unique and general roles of Cbln family proteins in mediating the formation and maintenance of synapses not only in the cerebellum but also in various other brain regions.

  16. Sox2 Promotes Malignancy in Glioblastoma by Regulating Plasticity and Astrocytic Differentiation12

    Science.gov (United States)

    Berezovsky, Artem D.; Poisson, Laila M.; Cherba, David; Webb, Craig P.; Transou, Andrea D.; Lemke, Nancy W.; Hong, Xin; Hasselbach, Laura A.; Irtenkauf, Susan M.; Mikkelsen, Tom; deCarvalho, Ana C.

    2014-01-01

    The high-mobility group–box transcription factor sex-determining region Y–box 2 (Sox2) is essential for the maintenance of stem cells from early development to adult tissues. Sox2 can reprogram differentiated cells into pluripotent cells in concert with other factors and is overexpressed in various cancers. In glioblastoma (GBM), Sox2 is a marker of cancer stemlike cells (CSCs) in neurosphere cultures and is associated with the proneural molecular subtype. Here, we report that Sox2 expression pattern in GBM tumors and patient-derived mouse xenografts is not restricted to a small percentage of cells and is coexpressed with various lineage markers, suggesting that its expression extends beyond CSCs to encompass more differentiated neoplastic cells across molecular subtypes. Employing a CSC derived from a patient with GBM and isogenic differentiated cell model, we show that Sox2 knockdown in the differentiated state abolished dedifferentiation and acquisition of CSC phenotype. Furthermore, Sox2 deficiency specifically impaired the astrocytic component of a biphasic gliosarcoma xenograft model while allowing the formation of tumors with sarcomatous phenotype. The expression of genes associated with stem cells and malignancy were commonly downregulated in both CSCs and serum-differentiated cells on Sox2 knockdown. Genes previously shown to be associated with pluripontency and CSCs were only affected in the CSC state, whereas embryonic stem cell self-renewal genes and cytokine signaling were downregulated, and the Wnt pathway activated in differentiated Sox2-deficient cells. Our results indicate that Sox2 regulates the expression of key genes and pathways involved in GBM malignancy, in both cancer stemlike and differentiated cells, and maintains plasticity for bidirectional conversion between the two states, with significant clinical implications. PMID:24726753

  17. Sox2 Promotes Malignancy in Glioblastoma by Regulating Plasticity and Astrocytic Differentiation

    Directory of Open Access Journals (Sweden)

    Artem D. Berezovsky

    2014-03-01

    Full Text Available The high-mobility group–box transcription factor sex-determining region Y–box 2 (Sox2 is essential for the maintenance of stem cells from early development to adult tissues. Sox2 can reprogram differentiated cells into pluripotent cells in concert with other factors and is overexpressed in various cancers. In glioblastoma (GBM, Sox2 is a marker of cancer stemlike cells (CSCs in neurosphere cultures and is associated with the proneural molecular subtype. Here, we report that Sox2 expression pattern in GBM tumors and patient-derived mouse xenografts is not restricted to a small percentage of cells and is coexpressed with various lineage markers, suggesting that its expression extends beyond CSCs to encompass more differentiated neoplastic cells across molecular subtypes. Employing a CSC derived from a patient with GBM and isogenic differentiated cell model, we show that Sox2 knockdown in the differentiated state abolished dedifferentiation and acquisition of CSC phenotype. Furthermore, Sox2 deficiency specifically impaired the astrocytic component of a biphasic gliosarcoma xenograft model while allowing the formation of tumors with sarcomatous phenotype. The expression of genes associated with stem cells and malignancy were commonly downregulated in both CSCs and serum-differentiated cells on Sox2 knockdown. Genes previously shown to be associated with pluripontency and CSCs were only affected in the CSC state, whereas embryonic stem cell self-renewal genes and cytokine signaling were downregulated, and the Wnt pathway activated in differentiated Sox2-deficient cells. Our results indicate that Sox2 regulates the expression of key genes and pathways involved in GBM malignancy, in both cancer stemlike and differentiated cells, and maintains plasticity for bidirectional conversion between the two states, with significant clinical implications.

  18. Sox2 promotes malignancy in glioblastoma by regulating plasticity and astrocytic differentiation.

    Science.gov (United States)

    Berezovsky, Artem D; Poisson, Laila M; Cherba, David; Webb, Craig P; Transou, Andrea D; Lemke, Nancy W; Hong, Xin; Hasselbach, Laura A; Irtenkauf, Susan M; Mikkelsen, Tom; deCarvalho, Ana C

    2014-03-01

    The high-mobility group-box transcription factor sex-determining region Y-box 2 (Sox2) is essential for the maintenance of stem cells from early development to adult tissues. Sox2 can reprogram differentiated cells into pluripotent cells in concert with other factors and is overexpressed in various cancers. In glioblastoma (GBM), Sox2 is a marker of cancer stemlike cells (CSCs) in neurosphere cultures and is associated with the proneural molecular subtype. Here, we report that Sox2 expression pattern in GBM tumors and patient-derived mouse xenografts is not restricted to a small percentage of cells and is coexpressed with various lineage markers, suggesting that its expression extends beyond CSCs to encompass more differentiated neoplastic cells across molecular subtypes. Employing a CSC derived from a patient with GBM and isogenic differentiated cell model, we show that Sox2 knockdown in the differentiated state abolished dedifferentiation and acquisition of CSC phenotype. Furthermore, Sox2 deficiency specifically impaired the astrocytic component of a biphasic gliosarcoma xenograft model while allowing the formation of tumors with sarcomatous phenotype. The expression of genes associated with stem cells and malignancy were commonly downregulated in both CSCs and serum-differentiated cells on Sox2 knockdown. Genes previously shown to be associated with pluripontency and CSCs were only affected in the CSC state, whereas embryonic stem cell self-renewal genes and cytokine signaling were downregulated, and the Wnt pathway activated in differentiated Sox2-deficient cells. Our results indicate that Sox2 regulates the expression of key genes and pathways involved in GBM malignancy, in both cancer stemlike and differentiated cells, and maintains plasticity for bidirectional conversion between the two states, with significant clinical implications. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Downregulation of microRNA-145 promotes epithelial-mesenchymal transition via regulating Snail in osteosarcoma.

    Science.gov (United States)

    Zhang, Z; Zhang, M; Chen, Qinghan; Zhang, Q

    2017-02-01

    Metastasis is the principal cause of cancer death and occurs through multiple, complex processes. Epithelial to mesenchymal transition (EMT) is an important process during embryonic development and has also been hypothesized to exhibit a significant role in cancer cell invasion and metastasis. MicroRNAs (miRNAs) are a class of widespread noncoding RNAs. In recent years, many studies have shown that miRNAs could influence the signaling pathways and downstream events that define EMT on a molecular level. However, the exact role and mechanisms of miR-145 in EMT of osteosarcoma (OS) was unknown. In the present study, miR-145 was downregulated in OS tissues and cell lines and it was shown that miR-145 expression was closely correlated with advanced tumor progression in patients of OS. In addition, miR-145 upregulation by miR-145 agomir significantly inhibited MG63 cells invasion and migration ability. MiR-145 was reported to be able to inhibit EMT in cancers. Following the examination of changes in cell epithelial and mesenchymal markers, it was found that upregulation of miR-145 strongly reversed EMT in MG63 cells. Meanwhile, the expression of Snail, a strong E-cadherin transcription repressor was also attenuated by miR-145 agomir. Furthermore, the decreased EMT and invasion and metastasis caused by miR-145 agomir could be restored by Snail siRNA. In conclusion, the results demonstrated that miR-145 could mediate EMT by targeting Snail and miR-145 might be a novel EMT regulating transcription factor that involved in the progression of OS. The specific drugs targeting miR-145-mediated EMT process might be new promising cancer therapies.

  20. C/EBPβ Promotes Immunity to Oral Candidiasis through Regulation of β-Defensins.

    Science.gov (United States)

    Simpson-Abelson, Michelle R; Childs, Erin E; Ferreira, M Carolina; Bishu, Shrinivas; Conti, Heather R; Gaffen, Sarah L

    2015-01-01

    Humans or mice subjected to immunosuppression, such as corticosteroids or anti-cytokine biologic therapies, are susceptible to mucosal infections by the commensal fungus Candida albicans. Recently it has become evident that the Th17/IL-17 axis is essential for immunity to candidiasis, but the downstream events that control immunity to this fungus are poorly understood. The CCAAT/Enhancer Binding Protein-β (C/EBPβ) transcription factor is important for signaling by multiple inflammatory stimuli, including IL-17. C/EBPβ is regulated in a variety of ways by IL-17, and controls several downstream IL-17 target genes. However, the role of C/EBPβ in vivo is poorly understood, in part because C/EBPβ-deficient mice are challenging to breed and work with. In this study, we sought to understand the role of C/EBPβ in the context of an IL-17-dependent immune response, using C. albicans infection as a model system. Confirming prior findings, we found that C/EBPβ is required for immunity to systemic candidiasis. In contrast, C/EBPβ(-/-) mice were resistant to oropharyngeal candidiasis (OPC), in a manner indistinguishable from immunocompetent WT mice. However, C/EBPβ(-/-) mice experienced more severe OPC than WT mice in the context of cortisone-induced immunosuppression. Expression of the antimicrobial peptide β-defensin (BD)-3 correlated strongly with susceptibility in C/EBPβ(-/-) mice, but no other IL-17-dependent genes were associated with susceptibility. Therefore, C/EBPβ contributes to immunity to mucosal candidiasis during cortisone immunosuppression in a manner linked to β-defensin 3 expression, but is apparently dispensable for the IL-17-dependent response.

  1. Long noncoding RNA CCAT2 promotes breast tumor growth by regulating the Wnt signaling pathway

    Directory of Open Access Journals (Sweden)

    Cai Y

    2015-09-01

    Full Text Available Yi Cai,1,* Jing He,2,* Dong Zhang11Department of Geriatric Oncology, 2Department of Geriatric Integrated Surgery, The General Hospital of Chinese People’s Liberation Army, Beijing City, People’s Republic of China*These authors contributed equally to this workAbstract: In addition to protein-coding genes, the human genome makes a large amount of noncoding RNAs, including microRNAs and long noncoding RNAs (lncRNAs. Emerging evidence indicates that lncRNAs could have a critical role in the regulation of cellular processes such as cell growth and apoptosis as well as cancer progression and metastasis. The lncRNA CCAT2 is dysregulated in several cancers such as colon cancer, non-small cell lung cancer, esophageal squamous cell carcinoma, gastric cancer, and breast cancer; however, the contributions of CCAT2 to breast cancer remain largely unknown. In the current paper, we first confirmed the high expression level of CCAT2 in breast cancer tissues and breast cancer cell lines by reverse transcription quantitative polymerase chain reaction (RT-qPCR assay, and we further analyzed the relationship between CCAT2 expression and clinical prognostic factors. Also, the biological function of CCAT2 was explored and the results showed silencing of CCAT2 could suppress cell growth in vitro and tumor formation in vivo. Finally, our results revealed that the abnormal expression of CCAT2 could influence the Wnt signaling pathway. In conclusion, lncRNA CCAT2 might be considered as a novel molecule involved in breast cancer development, which provides a potential therapeutic target for breast cancer.Keywords: long noncoding RNAs, CCAT2, breast cancer, Wnt signaling pathway

  2. Serum inducible kinase is a positive regulator of cortical dendrite development and is required for BDNF-promoted dendritic arborization

    Institute of Scientific and Technical Information of China (English)

    Shun-Ling Guo; Guo-He Tan; Shuai Li; Xue-Wen Cheng; Ya Zhou; Yun-Fang Jia; Hui Xiong; Jiong Tao; Zhi-Qi Xiong

    2012-01-01

    Serum inducible kinase (SNK),also known as (p)olo-(l)ike (k)inase 2 (PLK2),is a known regulator of mitosis,synaptogenesis and synaptic homeostasis.However,its role in early cortical development is unknown.Herein,we show that snk is expressed in the cortical plate from embryonic day 14,but not in the ventricular/subventricular zones (VZ/SVZ),and SNK protein localizes to the soma and dendrites of cultured immature cortical neurons.Loss of SNK impaired dendritic but not axonal arborization in a dose-dependent manner and overexpression had opposite effects,both in vitro and in vivo.Overexpression of SNK also caused abnormal branching of the leading process of migrating cortical neurons in electroporated cortices.The kinase activity was necessary for these effects.Extracellular signalregulated kinase (ERK) pathway activity downstream of brain-derived neurotrophic factor (BDNF) stimulation led to increases in SNK protein expression via transcriptional regulation,and this upregulation was necessary for the growth-promoting effect of BDNF on dendritic arborization.Taken together,our results indicate that SNK is essential for dendrite morphogenesis in cortical neurons.

  3. The RNA-binding protein Spo5 promotes meiosis II by regulating cyclin Cdc13 in fission yeast.

    Science.gov (United States)

    Arata, Mayumi; Sato, Masamitsu; Yamashita, Akira; Yamamoto, Masayuki

    2014-03-01

    Meiosis comprises two consecutive nuclear divisions, meiosis I and II. Despite this unique progression through the cell cycle, little is known about the mechanisms controlling the sequential divisions. In this study, we carried out a genetic screen to identify factors that regulate the initiation of meiosis II in the fission yeast Schizosaccharomyces pombe. We identified mutants deficient in meiosis II progression and repeatedly isolated mutants defective in spo5, which encodes an RNA-binding protein. Using fluorescence microscopy to visualize YFP-tagged protein, we found that spo5 mutant cells precociously lost Cdc13, the major B-type cyclin in fission yeast, before meiosis II. Importantly, the defect in meiosis II was rescued by increasing CDK activity. In wild-type cells, cdc13 transcripts increased during meiosis II, but this increase in cdc13 expression was weaker in spo5 mutants. Thus, Spo5 is a novel regulator of meiosis II that controls the level of cdc13 expression and promotes de novo synthesis of Cdc13. We previously reported that inhibition of Cdc13 degradation is necessary to initiate meiosis II; together with the previous information, the current findings indicate that the dual control of Cdc13 by de novo synthesis and suppression of proteolysis ensures the progression of meiosis II. © 2014 The Authors Genes to Cells © 2014 by the Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  4. Nucleation promoting factors regulate the expression and localization of Arp2/3 complex during meiosis of mouse oocytes.

    Directory of Open Access Journals (Sweden)

    Jun Liu

    Full Text Available The actin nucleation factor Arp2/3 complex is a main regulator of actin assembly and is involved in multiple processes like cell migration and adhesion, endocytosis, and the establishment of cell polarity in mitosis. Our previous work showed that the Arp2/3 complex was involved in the actin-mediated mammalian oocyte asymmetric division. However, the regulatory mechanisms and signaling pathway of Arp2/3 complex in meiosis is still unclear. In the present work, we identified that the nucleation promoting factors (NPFs JMY and WAVE2 were necessary for the expression and localization of Arp2/3 complex in mouse oocytes. RNAi of both caused the degradation of actin cap intensity, indicating the roles of NPFs in the formation of actin cap. Moreover, JMY and WAVE2 RNAi decreased the expression of ARP2, a key component of Arp2/3 complex. However, knock down of Arp2/3 complex by Arpc2 and Arpc3 siRNA microinjection did not affect the expression and localization of JMY and WAVE2. Our results indicate that the NPFs, JMY and WAVE2, are upstream regulators of Arp2/3 complex in mammalian oocyte asymmetric division.

  5. MiR-21 promoted proliferation and migration in hepatocellular carcinoma through negative regulation of Navigator-3

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhipeng, E-mail: dr_zpwang@163.com [The Digestive and Vascural Surgery Center, the First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, Xinjiang Uygur Autonomous Region (China); Yang, Huan [The Department of Liver and Biliary Pancreatic Surgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi 830000, Xinjiang Uygur Autonomous Region (China); Ren, Lei [The Department of General Surgery, Branching Hospital of the First People' s Hospital of Urumqi, 830000, Xinjiang Uygur Autonomous Region (China)

    2015-09-04

    MicroRNA-21 (miR-21) has been well-established and found to be over-expressed in various human cancers and has been associated with hepatocellular carcinoma (HCC) progression. However, the underlying mechanism of miR-21 involvement in the development and progression of HCC remains to be understood. In the present study, we firstly identified that the Navigator-3 (NAV-3) gene as a novel direct target of miR-21. Knock-down of NAV-3 using shRNA can rescue the effects of anti-miR-21 inhibitor in HCC cell lines, whereas re-expression of miR-21 using transfection with miR-21 mimics phenocopied the NAV-3 knock-down model. Additionally, miR-21 levels inversely correlated with NAV-3 both in HCC cells and tissues. Knock-down of NAV-3 promoted both the proliferation and migration in HCC cells. Together, our findings suggest an important role for miR-21 in the progression of HCC, which negatively regulated Navigator-3 in the migration of HCC. - Highlights: • Navigator-3 (NAV-3) suppresses proliferation, migration and tumorigenesis of HCC cells. • NAV-3 was a novel target of miR-21. • MiR-21 negatively regulates NAV-3 in HCC.

  6. A secondary structural transition in the C-helix promotes gating of cyclic nucleotide-regulated ion channels.

    Science.gov (United States)

    Puljung, Michael C; Zagotta, William N

    2013-05-03

    Cyclic nucleotide-regulated ion channels bind second messengers like cAMP to a C-terminal domain, consisting of a β-roll, followed by two α-helices (B- and C-helices). We monitored the cAMP-dependent changes in the structure of the C-helix of a C-terminal fragment of HCN2 channels using transition metal ion FRET between fluorophores on the C-helix and metal ions bound between histidine pairs on the same helix. cAMP induced a change in the dimensions of the C-helix and an increase in the metal binding affinity of the histidine pair. cAMP also caused an increase in the distance between a fluorophore on the C-helix and metal ions bound to the B-helix. Stabilizing the C-helix of intact CNGA1 channels by metal binding to a pair of histidines promoted channel opening. These data suggest that ordering of the C-helix is part of the gating conformational change in cyclic nucleotide-regulated channels.

  7. MicroRNA-8 promotes robust motor axon targeting by coordinate regulation of cell adhesion molecules during synapse development.

    Science.gov (United States)

    Lu, Cecilia S; Zhai, Bo; Mauss, Alex; Landgraf, Matthias; Gygi, Stephen; Van Vactor, David

    2014-09-26

    Neuronal connectivity and specificity rely upon precise coordinated deployment of multiple cell-surface and secreted molecules. MicroRNAs have tremendous potential for shaping neural circuitry by fine-tuning the spatio-temporal expression of key synaptic effector molecules. The highly conserved microRNA miR-8 is required during late stages of neuromuscular synapse development in Drosophila. However, its role in initial synapse formation was previously unknown. Detailed analysis of synaptogenesis in this system now reveals that miR-8 is required at the earliest stages of muscle target contact by RP3 motor axons. We find that the localization of multiple synaptic cell adhesion molecules (CAMs) is dependent on the expression of miR-8, suggesting that miR-8 regulates the initial assembly of synaptic sites. Using stable isotope labelling in vivo and comparative mass spectrometry, we find that miR-8 is required for normal expression of multiple proteins, including the CAMs Fasciclin III (FasIII) and Neuroglian (Nrg). Genetic analysis suggests that Nrg and FasIII collaborate downstream of miR-8 to promote accurate target recognition. Unlike the function of miR-8 at mature larval neuromuscular junctions, at the embryonic stage we find that miR-8 controls key effectors on both sides of the synapse. MiR-8 controls multiple stages of synapse formation through the coordinate regulation of both pre- and postsynaptic cell adhesion proteins.

  8. Rapid generation of CRISPR/dCas9-regulated, orthogonally repressible hybrid T7-lac promoters for modular, tuneable control of metabolic pathway fluxes in Escherichia coli.

    Science.gov (United States)

    Cress, Brady F; Jones, J Andrew; Kim, Daniel C; Leitz, Quentin D; Englaender, Jacob A; Collins, Shannon M; Linhardt, Robert J; Koffas, Mattheos A G

    2016-05-19

    Robust gene circuit construction requires use of promoters exhibiting low crosstalk. Orthogonal promoters have been engineered utilizing an assortment of natural and synthetic transcription factors, but design of large orthogonal promoter-repressor sets is complicated, labor-intensive, and often results in unanticipated crosstalk. The specificity and ease of targeting the RNA-guided DNA-binding protein dCas9 to any 20 bp user-defined DNA sequence makes it a promising candidate for orthogonal promoter regulation. Here, we rapidly construct orthogonal variants of the classic T7-lac promoter using site-directed mutagenesis, generating a panel of inducible hybrid promoters regulated by both LacI and dCas9. Remarkably, orthogonality is mediated by only two to three nucleotide mismatches in a narrow window of the RNA:DNA hybrid, neighboring the protospacer adjacent motif. We demonstrate that, contrary to many reports, one PAM-proximal mismatch is insufficient to abolish dCas9-mediated repression, and we show for the first time that mismatch tolerance is a function of target copy number. Finally, these promoters were incorporated into the branched violacein biosynthetic pathway as dCas9-dependent switches capable of throttling and selectively redirecting carbon flux in Escherichia coli We anticipate this strategy is relevant for any promoter and will be adopted for many applications at the interface of synthetic biology and metabolic engineering.

  9. Four promoters subject to regulation by ExoR and PhoB direct transcription of the Sinorhizobium melilotiexoYFQ operon involved in the biosynthesis of succinoglycan.

    Science.gov (United States)

    Quester, Ingmar; Becker, Anke

    2004-01-01

    Succinoglycan (EPS I), the main acidic exopolysaccharide of Sinorhizobium meliloti, is required for the initiation and elongation of infection threads during nodulation of the host plant alfalfa. The gene products of the exoYFQ operon are involved in the first step of succinoglycan biosynthesis as well as in the polymerisation of subunits to the high-molecular-mass form of this exopolysaccharide. One promoter region that directs transcription of exoX and two promoter regions that drive transcription of exoY were mapped in the exoX-exoY intergenic region. The distal exoY promoter region containing three putative -10 promoter elements was active under standard growth conditions and was subject to ExoR-dependent regulation. Although this promoter region was stimulated in a phoB mutant, no PHO box-like sequences were found, suggesting an indirect regulatory effect of PhoB. The proximal promoter contains a PHO box-like sequence in the putative -35 region and was affected by low and high phosphate concentrations dependent on PhoB. In the case of deleted upstream regions, this promoter was also controlled by ExoR. An additional promoter displaying activity in exoR, mucR and phoB mutants under standard conditions was identified upstream of exoF. The putative -35 promoter element of this promoter is covered by a second PHO box-like sequence.

  10. Upregulated TLR3 Promotes Neuropathic Pain by Regulating Autophagy in Rat With L5 Spinal Nerve Ligation Model.

    Science.gov (United States)

    Chen, Weijia; Lu, Zhijun

    2016-12-21

    Microglia, rapidly activated following peripheral nerve injury (PNI), accumulate within the spinal cord and adopt inflammation that contributes to development and maintenance of neuropathic pain. Microglia express functional Toll-like receptors (TLRs), which play pivotal roles in regulating inflammatory processes. However, little is known about the role of TLR3 in regulating neuropathic pain after PNI. Here TLR3 expression and autophagy activation was assayed in dorsal root ganglions and in microglia following PNI by using realtime PCR, western blot and immunohistochemistry. The role of TLR3/autophagy signaling in regulating tactile allodynia was evaluated by assaying paw mechanical withdrawal threshold and cold allodynia after intrathecal administration of Poly (I:C) and 3-methyladenine (3-MA). We found that L5 spinal nerve ligation (SNL) induces the expression of TLR3 in dorsal root ganglions and in primary rat microglia at the mRNA and protein level. Meanwhile, L5 SNL results in an increased activation of autophagy, which contributes to microglial activation and subsequent inflammatory response. Intrathecal administration of Poly (I:C), a TLR3 agonist, significantly increases the activation of microglial autophagy, whereas TLR3 knockdown markedly inhibits L5 SNL-induced microglial autophagy. Poly (I:C) treatment promotes the expression of proinflammatory mediators, whereas 3-MA (a specific inhibitor of autophagy) suppresses Poly (I:C)-induced secretion of proinflammatory cytokines. Autophagy inhibition further inhibits TLR3-mediated mechanical and cold hypersensitivity following SNL. These results suggest that inhibition of TLR3/autophagy signaling contributes to alleviate neurophathic pain triggered by SNL.

  11. PIAS1 is a GATA4 SUMO ligase that regulates GATA4-dependent intestinal promoters independent of SUMO ligase activity and GATA4 sumoylation.

    Directory of Open Access Journals (Sweden)

    Narasimhaswamy S Belaguli

    Full Text Available GATA4 confers cell type-specific gene expression on genes expressed in cardiovascular, gastro-intestinal, endocrine and neuronal tissues by interacting with various ubiquitous and cell-type-restricted transcriptional regulators. By using yeast two-hybrid screening approach, we have identified PIAS1 as an intestine-expressed GATA4 interacting protein. The physical interaction between GATA4 and PIAS1 was confirmed in mammalian cells by coimmunoprecipitation and two-hybrid analysis. The interacting domains were mapped to the second zinc finger and the adjacent C-terminal basic region of GATA4 and the RING finger and the adjoining C-terminal 60 amino acids of PIAS1. PIAS1 and GATA4 synergistically activated IFABP and SI promoters but not LPH promoters suggesting that PIAS1 differentially activates GATA4 targeted promoters. In primary murine enterocytes PIAS1 was recruited to the GATA4-regulated IFABP promoter. PIAS1 promoted SUMO-1 modification of GATA4 on lysine 366. However, sumoylation was not required for the nuclear localization and stability of GATA4. Further, neither GATA4 sumoylation nor the SUMO ligase activity of PIAS1 was required for coactivation of IFABP promoter by GATA4 and PIAS1. Together, our results demonstrate that PIAS1 is a SUMO ligase for GATA4 that differentially regulates GATA4 transcriptional activity independent of SUMO ligase activity and GATA4 sumoylation.

  12. Reversible histone acetylation/deacetylation modification by p300 and HDAC3 is involved in the regulation of IL-18 promoter activity

    Institute of Scientific and Technical Information of China (English)

    SUN Haijing; LU Jun; XU Xin; WEI Liang; HUANG Baiqu

    2004-01-01

    Interleukin-18 (IL-18) is a pleiotropic cytokine involved in the development of T helper type 1 (Thl) cells, and it plays important roles in regulation of both the innate and acquired immune responses. The aim of this study was to elucidate whether the reversible histone acetylation/ deacetylation modification participates in the regulation of IL-18 transcription expression. The transcription coactivator p300 containing the histone acetyltransferase (HAT) activity, and the histone deacetylase 3 (HDAC3) were used in this study to analyze the effect of this modification in the regulation of mouse IL-18 gene. The results demonstrate that transfection of p300-expression plasmid promotes the endogenous IL-18 mRNA synthesis in J774 cells, and stimulates the activation of IL-18 promoter. It has been found that this stimulating effect of p300 was reversed by HDAC3, indicating the involvement of the reversible histone acetylation/deacetylation modification in IL-18 regulation. Furthermore, the data show that the HAT activity of p300 was essential to its function in activating IL-18 promoter. In addition, p300 was shown to be able to work synergistically with the transcription factor c-Fos on activation of IL-18 promoter and this effect could also be impaired by HDAC3. Results presented in this paper indicate that the reversible histone acetylation/deacetylation modification plays an important role in the transcriptional regulation of IL-18.

  13. Differential recruitment of coregulators to the RORA promoter adds another layer of complexity to gene (dys) regulation by sex hormones in autism.

    Science.gov (United States)

    Sarachana, Tewarit; Hu, Valerie W

    2013-10-11

    Our independent cohort studies have consistently shown the reduction of the nuclear receptor RORA (retinoic acid-related orphan receptor-alpha) in lymphoblasts as well as in brain tissues from individuals with autism spectrum disorder (ASD). Moreover, we have found that RORA regulates the gene for aromatase, which converts androgen to estrogen, and that male and female hormones regulate RORA in opposite directions, with androgen suppressing RORA, suggesting that the sexually dimorphic regulation of RORA may contribute to the male bias in ASD. However, the molecular mechanisms through which androgen and estrogen differentially regulate RORA are still unknown. Here we use functional knockdown of hormone receptors and coregulators with small interfering RNA (siRNA) to investigate their involvement in sex hormone regulation of RORA in human neuronal cells. Luciferase assays using a vector containing various RORA promoter constructs were first performed to identify the promoter regions required for inverse regulation of RORA by male and female hormones. Sequential chromatin immunoprecipitation methods followed by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) analyses of RORA expression in hormone-treated SH-SY5Y cells were then utilized to identify coregulators that associate with hormone receptors on the RORA promoter. siRNA-mediated knockdown of interacting coregulators was performed followed by qRT-PCR analyses to confirm the functional requirement of each coregulator in hormone-regulated RORA expression. Our studies demonstrate the direct involvement of androgen receptor (AR) and estrogen receptor (ER) in the regulation of RORA by male and female hormones, respectively, and that the promoter region between -10055 bp and -2344 bp from the transcription start site of RORA is required for the inverse hormonal regulation. We further show that AR interacts with SUMO1, a reported suppressor of AR transcriptional activity, whereas ERα interacts

  14. Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA₄ interaction in cucumber (Cucumis sativus L.).

    Science.gov (United States)

    Zhang, Hai-Jun; Zhang, Na; Yang, Rong-Chao; Wang, Li; Sun, Qian-Qian; Li, Dian-Bo; Cao, Yun-Yun; Weeda, Sarah; Zhao, Bing; Ren, Shuxin; Guo, Yang-Dong

    2014-10-01

    Although previous studies have found that melatonin can promote seed germination, the mechanisms involved in perceiving and signaling melatonin remain poorly understood. In this study, it was found that melatonin was synthesized during cucumber seed germination with a peak in melatonin levels occurring 14 hr into germination. This is indicative of a correlation between melatonin synthesis and seed germination. Meanwhile, seeds pretreated with exogenous melatonin (1 μM) showed enhanced germination rates under 150 mM NaCl stress compared to water-pretreated seeds under salinity stress. There are two apparent mechanisms by which melatonin alleviated salinity-induced inhibition of seed germination. Exogenous melatonin decreased oxidative damage induced by NaCl stress by enhancing gene expression of antioxidants. Under NaCl stress, compared to untreated control, the activities of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) were significantly increased by approximately 1.3-5.0-fold, with a concomitant 1.4-2.0-fold increase of CsCu-ZnSOD, CsFe-ZnSOD, CsCAT, and CsPOD in melatonin-pretreated seeds. Melatonin also alleviated salinity stress by affecting abscisic acid (ABA) and gibberellin acid (GA) biosynthesis and catabolism during seed germination. Compared to NaCl treatment, melatonin significantly up-regulated ABA catabolism genes (e.g., CsCYP707A1 and CsCYP707A2, 3.5 and 105-fold higher than NaCl treatment at 16 hr, respectively) and down-regulated ABA biosynthesis genes (e.g., CsNECD2, 0.29-fold of CK2 at 16 hr), resulting in a rapid decrease of ABA content during the early stage of germination. At the same time, melatonin positively up-regulated GA biosynthesis genes (e.g., GA20ox and GA3ox, 2.3 and 3.9-fold higher than NaCl treatment at 0 and 12 hr, respectively), contributing to a significant increase of GA (especially GA4) content. In this study, we provide new evidence suggesting that melatonin alleviates the

  15. PPARdelta promotes wound healing by up-regulating TGF-beta1-dependent or -independent expression of extracellular matrix proteins.

    Science.gov (United States)

    Ham, Sun Ah; Kim, Hyo Jung; Kim, Hyun Joon; Kang, Eun Sil; Eun, So Young; Kim, Gil Hyeong; Park, Myung Hyun; Woo, Im Sun; Kim, Hye Jung; Chang, Ki Churl; Lee, Jae Heun; Seo, Han Geuk

    2010-06-01

    Although the peroxisome proliferator-activated receptor (PPAR) delta has been implicated in the wound healing process, its exact role and mechanism of action have not been fully elucidated. Our previous findings showed that PPARdelta induces the expression of the transforming growth factor (TGF)-beta1, which has been implicated in the deposit of extracellular matrix proteins. Here, we demonstrate that administration of GW501516, a specific PPARdelta ligand, significantly promoted wound closure in the experimental mouse and had a profound effect on the expression of collagen types I and III, alpha-smooth muscle actin, pSmad3 and TGF-beta1, which play a pivotal role in wound healing processes. Activation of PPARdelta increased migration of human epidermal keratinocytes and dermal fibroblasts in in vitro scrape-wounding assays. Addition of a specific ALK5 receptor inhibitor SB431542 significantly suppressed GW501516-induced migration of human keratinocytes and fibroblasts. In these cells, activated PPARdelta also induced the expression of collagen types I and III and fibronectin in a TGF-beta1-dependent or -independent manner. The effect of PPARdelta on the expression of type III collagen was dually regulated by the direct binding of PPARdelta and Smad3 to a direct repeat-1 site and a Smad-binding element, respectively, of the type III gene promoter. Taken together, these results demonstrated that PPARdelta plays an important role in skin wound healing in vivo and that it functions by accelerating extracellular matrix-mediated cellular interactions in a process mediated by the TGF-beta1/Smad3 signaling-dependent or - independent pathway.

  16. Down-regulation of miR-181b promotes apoptosis by targeting CYLD in thyroid papillary cancer.

    Science.gov (United States)

    Li, Dengfeng; Jian, Wei; Wei, Chuankui; Song, Hongming; Gu, Yifan; Luo, Yi; Fang, Lin

    2014-01-01

    MicroRNAs (miRNAs) are a small class of non-coding RNAs that are widely deregulated in various cancers. They act as either oncogenes or tumor suppressor genes in human cancer. The purpose of this study was to examine the potential role of miR-181b in human thyroid papillary cancer. The expression levels of different miRNAs were measured by micro array analysis in 10 thyroid papillary cancer specimens and adjacent normal thyroid cancer tissues. MTT assays, colony formation assays, apoptosis assays were used to explore the potential function of miR-181b inhibitor in TPC1 human thyroid papillary cancer cells. Luciferase reporter assays were performed to validate the regulation of a putative target of miR-181b, in corroboration with qPCR and western blot assays. We found that the expression of miR-181b was higher in thyroid papillary cancer specimens compared with adjacent normal tissues (P miR-181b inhibited cellular growth and promoted cellular apoptosis. Luciferase assays indicated that miR-181b can bind with its putative target site in the 3'-untranslated region (3'-UTR) of CYLD, suggesting that CYLD is a direct target of miR-181b. Western blot analysis indicated that downregulation of miR-181b results in the upregulation of CYLD at protein levels. Taken together, downregulation of miR-181b expression causes cellular growth inhibition, promoting cellular apoptosis by targeting CYLD. These findings suggest that downregulation of the expression of miR-181b may be a therapeutic target for the treatment of human thyroid papillary cancer.

  17. PKCtheta and HIV-1 transcriptional regulator Tat co-exist at the LTR promoter in CD4+ T cells

    Directory of Open Access Journals (Sweden)

    Maria Rosa eLopez-Huertas

    2016-02-01

    Full Text Available PKCtheta is essential for the activation of CD4+ T cells. Upon TCR/CD28 stimulation, PKCtheta is phosphorylated and migrates to the immunological synapse, inducing the activation of cellular transcription factors such as NF-kB and kinases as ERK that are critical for HIV-1 replication. We previously demonstrated that PKCtheta is also necessary for HIV-1 replication but the precise mechanism is unknown. Efficient HIV-1 transcription and elongation is absolutely dependent on the synergy between NF-kB and the viral regulator Tat. Tat exerts its function by binding a RNA stem-loop structure proximal to the viral mRNA cap site termed TAR. Besides, due to its effect on cellular metabolic pathways, Tat causes profound changes in infected CD4+ T cells such as the activation of NF-kB and ERK. We hypothesized that the aberrant up-regulation of Tat-mediated activation of NF-kB and ERK occurred through PKCtheta signaling. In fact, Jurkat TetOff cells with stable and doxycycline-repressible expression of Tat (Jurkat-Tat expressed high levels of mRNA for PKCtheta. In these cells, PKCtheta located at the plasma membrane was phosphorylated at T538 residue in undivided cells, in the absence of stimulation. Treatment with doxycycline inhibited PKCtheta phosphorylation in Jurkat-Tat, suggesting that Tat expression was directly related to the activation of PKCtheta. Both NF-kB and Ras/Raf/MEK/ERK signaling pathway were significantly activated in Jurkat-Tat cells, and this correlated with high transactivation of HIV-1 LTR promoter. RNA interference for PKCtheta inhibited NF-kB and ERK activity, as well as LTR-mediated transactivation even in the presence of Tat. In addition to Tat-mediated activation of PKCtheta in the cytosol, we demonstrated by sequential ChIP that Tat and PKCtheta coexisted in the same complex bound at the HIV-1 LTR promoter, specifically at the region containing TAR loop. In conclusion, PKCtheta-Tat interaction seemed to be essential for HIV-1

  18. Sox9 regulates self-renewal and tumorigenicity by promoting symmetrical cell division of cancer stem cells in hepatocellular carcinoma.

    Science.gov (United States)

    Liu, Chungang; Liu, Limei; Chen, Xuejiao; Cheng, Jiamin; Zhang, Heng; Shen, Junjie; Shan, Juanjuan; Xu, Yanmin; Yang, Zhi; Lai, Maode; Qian, Cheng

    2016-07-01

    Hepatocellular carcinoma (HCC) is a highly aggressive liver tumor containing cancer stem cells (CSCs) that participate in tumor propagation, resistance to conventional therapy, and promotion of tumor recurrence, causing poor patient outcomes. The protein SRY (sex determining region Y)-box 9 (Sox9) is a transcription factor expressed in some solid tumors, including HCC. However, the molecular mechanisms underlying Sox9 function in liver CSCs remain unclear. Here, we show that Sox9 is highly expressed in liver CSCs and that high levels of Sox9 predict a decreased probability of survival in HCC patients. We demonstrate that Sox9 is required for maintaining proliferation, self-renewal, and tumorigenicity in liver CSCs. Overexpression of exogenous Sox9 in liver non-CSCs restored self-renewal capacity. Additionally, a reduction in the asymmetrical cell division of spheroid-cultured liver CSCs was observed when compared with differentiated cancer cells or liver CSCs with inhibited Notch signaling. Furthermore, we demonstrate that Sox9 is responsible for the asymmetrical-to-symmetrical cell division switch in liver CSCs. Sox9 also negatively regulates Numb expression, contributing to a feedback circuit that maintains Notch activity and directs symmetrical cell division. Clinical analyses revealed that the Sox9(High) Numb(Low) profile is associated with poor prognosis in human HCC patients. We demonstrate that Sox9 plays a critical role in self-renewal and tumor propagation of liver CSCs and identify the molecular mechanisms regulated by Sox9 that link tumor initiation and cell division. (Hepatology 2016;64:117-129). © 2016 by the American Association for the Study of Liver Diseases.

  19. Regulation of Matrix Metalloproteinase-2 Activity by COX-2-PGE2-pAKT Axis Promotes Angiogenesis in Endometriosis

    Science.gov (United States)

    Ray, Amlan K.; DasMahapatra, Pramathes; Swarnakar, Snehasikta

    2016-01-01

    Endometriosis is characterized by the ectopic development of the endometrium which relies on angiogenesis. Although studies have identified the involvement of different matrix metalloproteinases (MMPs) in endometriosis, no study has yet investigated the role of MMP-2 in endometriosis-associated angiogenesis. The present study aims to understand the regulation of MMP-2 activity in endothelial cells and on angiogenesis during progression of ovarian endometriosis. Histological and biochemical data showed increased expressions of vascular endothelial growth factor (VEGF), VEGF receptor-2, cycloxygenase (COX)-2, von Willebrand factor along with angiogenesis during endometriosis progression. Women with endometriosis showed decreased MMP-2 activity in eutopic endometrium as compared to women without endometriosis. However, ectopic ovarian endometrioma showed significantly elevated MMP-2 activity with disease severity. In addition, increased MT1MMP and decreased tissue inhibitors of metalloproteinases (TIMP)-2 expressions were found in the late stages of endometriosis indicating more MMP-2 activation with disease progression. In vitro study using human endothelial cells showed that prostaglandin E2 (PGE2) significantly increased MMP-2 activity as well as tube formation. Inhibition of COX-2 and/or phosphorylated AKT suppressed MMP-2 activity and endothelial tube formation suggesting involvement of PGE2 in regulation of MMP-2 activity during angiogenesis. Moreover, specific inhibition of MMP-2 by chemical inhibitor significantly reduced cellular migration, invasion and tube formation. In ovo assay showed decreased angiogenic branching upon MMP-2 inhibition. Furthermore, a significant reduction of lesion numbers was observed upon inhibition of MMP-2 and COX-2 in mouse model of endometriosis. In conclusion, our study establishes the involvement of MMP-2 activity via COX-2-PGE2-pAKT axis in promoting angiogenesis during endometriosis progression. PMID:27695098

  20. HRS1 acts as a negative regulator of abscisic acid signaling to promote timely germination of Arabidopsis seeds.

    Science.gov (United States)

    Wu, Chongming; Feng, Juanjuan; Wang, Ran; Liu, Hong; Yang, Huixia; Rodriguez, Pedro L; Qin, Huanju; Liu, Xin; Wang, Daowen

    2012-01-01

    In this work, we conducted functional analysis of Arabidopsis HRS1 gene in order to provide new insights into the mechanisms governing seed germination. Compared with wild type (WT) control, HRS1 knockout mutant (hrs1-1) exhibited significant germination delays on either normal medium or those supplemented with abscisic acid (ABA) or sodium chloride (NaCl), with the magnitude of the delay being substantially larger on the latter media. The hypersensitivity of hrs1-1 germination to ABA and NaCl required ABI3, ABI4 and ABI5, and was aggravated in the double mutant hrs1-1abi1-2 and triple mutant hrs1-1hab1-1abi1-2, indicating that HRS1 acts as a negative regulator of ABA signaling during seed germination. Consistent with this notion, HRS1 expression was found in the embryo axis, and was regulated both temporally and spatially, during seed germination. Further analysis showed that the delay of hrs1-1 germination under normal conditions was associated with reduction in the elongation of the cells located in the lower hypocotyl (LH) and transition zone (TZ) of embryo axis. Interestingly, the germination rate of hrs1-1 was more severely reduced by the inhibitor of cell elongation, and more significantly decreased by the suppressors of plasmalemma H(+)-ATPase activity, than that of WT control. The plasmalemma H(+)-ATPase activity in the germinating seeds of hrs1-1 was substantially lower than that exhibited by WT control, and fusicoccin, an activator of this pump, corrected the transient germination delay of hrs1-1. Together, our data suggest that HRS1 may be needed for suppressing ABA signaling in germinating embryo axis, which promotes the timely germination of Arabidopsis seeds probably by facilitating the proper function of plasmalemma H(+)-ATPase and the efficient elongation of LH and TZ cells.

  1. Up-regulation of glycolysis promotes the stemness and EMT phenotypes in gemcitabine-resistant pancreatic cancer cells.

    Science.gov (United States)

    Zhao, Hengqiang; Duan, Qingke; Zhang, Zhengle; Li, Hehe; Wu, Heshui; Shen, Qiang; Wang, Chunyou; Yin, Tao

    2017-09-01

    Cancer stem cells (CSCs) and epithelial-mesenchymal transition (EMT)-type cells are considered as underlying causes of chemoresistance, tumour recurrence and metastasis in pancreatic cancer. We aimed to describe the mechanisms - particularly glycolysis - involved in the regulation of the CSC and EMT phenotypes. We used a gemcitabine-resistant (GR) Patu8988 cell line, which exhibited clear CSC and EMT phenotypes and showed reliance on glycolysis. Inhibition of glycolysis using 2-deoxy-D-glucose (2-DG) significantly enhanced the cytotoxicity of gemcitabine and inhibited the CSC and EMT phenotypes in GR cells both in vitro and in vivo. Intriguingly, the use of the reactive oxygen species (ROS) scavenger N-acetylcysteine (NAC) restored the CSC and EMT phenotypes. H2 O2 produced changes similar to those of 2-DG, indicating that ROS were involved in the acquired cancer stemness and EMT phenotypes of GR cells. Moreover, doublecortin-like kinase 1 (DCLK1), a pancreatic CSC marker, was highly expressed and regulated the stemness and EMT phenotypes in GR cell. Both 2-DG and H2 O2 treatment suppressed DCLK1 expression, which was also rescued by NAC. Together, these findings revealed that glycolysis promotes the expression of DCLK1 and maintains the CSC and EMT phenotypes via maintenance of low ROS levels in chemoresistant GR cells. The glycolysis-ROS-DCLK1 pathway may be potential targets for reversing the malignant behaviour of pancreatic cancer. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  2. Characterization of the Rat GAL2R Promoter: Positive Role of ETS-1 in Regulation of the Rat GAL2R Gene in PC12 Cells.

    Science.gov (United States)

    Yang, Yutao; Liu, Li; Luo, Hanjiang; Li, Yueting; Li, Hui; Xu, Zhi-Qing David

    2017-08-01

    Galanin receptor 2 (GAL2R) is a G protein-coupled receptor for the neuropeptide galanin that regulates many important physiological functions and pathological processes. To investigate the molecular mechanism governing GAL2R gene transcription, the rat GAL2R promoter was isolated and analyzed. We found that the region from -320 to -300 of the GAL2R promoter contains two putative ETS-1 elements and plays an important role in regulating GAL2R promoter activity. We also showed that transcription factor ETS-1 bound to this region in vitro and in vivo. Overexpression of ETS-1 significantly increased GAL2R promoter activity and transcription of the GAL2R gene, whereas knockdown of ETS-1 produced the opposite effects. In addition, we showed that ETS-1 recruited co-activator p300 to the GAL2R promoter. These data indicate a role for ETS-1 in the control of the GAL2R gene expression and provide a basis for understanding the transcriptional regulation of the GAL2R gene.

  3. Interleukin-6 enhances cancer stemness and promotes metastasis of hepatocellular carcinoma via up-regulating osteopontin expression

    Science.gov (United States)

    Wang, Chao-Qun; Sun, Hao-Ting; Gao, Xiao-Mei; Ren, Ning; Sheng, Yuan-Yuan; Wang, Zheng; Zheng, Yan; Wei, Jin-Wang; Zhang, Kai-Li; Yu, Xin-Xin; Zhu, Yin; Luo, Qin; Yang, Lu-Yu; Dong, Qiong-Zhu; Qin, Lun-Xiu

    2016-01-01

    Interleukin-6 (IL-6), one of the most important inflammatory cytokines, plays a pivotal role in metastasis and stemness of solid tumors. However, the underlying mechanisms of IL-6 in HCC metastasis remain unclear. In the present study, we demonstrated that stemness and metastatic potential of HCC cells were significantly enhanced after IL-6 stimulation. IL-6 could induce expression of osteopontin (OPN), along with other stemness-related genes, including HIF1α, BMI1, and HEY1. Block of OPN induction could significantly abrogate the effect of IL-6 on stemness and metastasis of HCC cells. Furthermore, IL-6 level was positively correlated with OPN in HCC. Patients with high plasma IL-6 or OPN level had poorer prognosis. In multivariate analysis, IL-6 and OPN were demonstrated to be independent prognostic indicators for HCC patients, and their combination had a better prognostic performance than IL-6 or OPN alone. Collectively, our findings indicate that IL-6 could enhance stemness and promote metastasis of HCC via up-regulating OPN expression, which can be a potential therapeutic target for combating HCC metastasis, and the combination of IL-6 and OPN serves as a promising prognostic predictor for HCC.

  4. CXCL8 promotes the invasion of human osteosarcoma cells by regulation of PI3K/Akt signaling pathway.

    Science.gov (United States)

    Jiang, Hai; Wang, Xiaowei; Miao, Wusheng; Wang, Bing; Qiu, Yusheng

    2017-09-01

    Chemokine cysteine-X-cysteine motif ligand 8 (CXCL8) is up-regulated in many malignancies, indicating that CXCL8 takes part in tumor progression. However, the expression and function of CXCL8 in osteosarcoma remained not fully elucidated. In this study, expressions of 12 cytokines and chemokines were measured in the serum from 12 of normal controls (NCs) and 25 of osteosarcoma patients. The human osteosarcoma cell line MG-63 was stimulated by recombinant CXCL8 to further analyze invasion, proliferation, apoptosis, cell cycles, cytokine secretions, and signaling pathways. We found that serum concentrations of CXCL8 and vascular endothelial growth factor were elevated in osteosarcoma patients in comparison with those in NCs. CXCL8 stimulation led to enhancement of invasion and suppression of late stage apoptosis in MG-63 cells. Moreover, secretions of MMPs by MG-63 cells were also increased upon stimulation. However, early stage apoptosis, proliferation, and cell cycles were not affected by CXCL8 treatment. Furthermore, CXCL8 stimulation induced elevations of phosphorylated PI3K and Akt, but not PKC or FAK. In conclusion, our findings suggested that CXCL8 enhanced the invasion and suppressed late stage apoptosis of osteosarcoma cells probably via influencing PI3K/Akt signaling pathway and elevating the expression of MMPs. CXCL8 may promote disease progression of osteosarcoma as a protumorigenic molecule, and may be served as a new therapeutic target for osteosarcoma. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  5. Cell type-restricted activity of hnRNPM promotes breast cancer metastasis via regulating alternative splicing.

    Science.gov (United States)

    Xu, Yilin; Gao, Xin D; Lee, Jae-Hyung; Huang, Huilin; Tan, Haiyan; Ahn, Jaegyoon; Reinke, Lauren M; Peter, Marcus E; Feng, Yue; Gius, David; Siziopikou, Kalliopi P; Peng, Junmin; Xiao, Xinshu; Cheng, Chonghui

    2014-06-01

    Tumor metastasis remains the major cause of cancer-related death, but its molecular basis is still not well understood. Here we uncovered a splicing-mediated pathway that is essential for breast cancer metastasis. We show that the RNA-binding protein heterogeneous nuclear ribonucleoprotein M (hnRNPM) promotes breast cancer metastasis by activating the switch of alternative splicing that occurs during epithelial-mesenchymal transition (EMT). Genome-wide deep sequencing analysis suggests that hnRNPM potentiates TGFβ signaling and identifies CD44 as a key downstream target of hnRNPM. hnRNPM ablation prevents TGFβ-induced EMT and inhibits breast cancer metastasis in mice, whereas enforced expression of the specific CD44 standard (CD44s) splice isoform overrides the loss of hnRNPM and permits EMT and metastasis. Mechanistically, we demonstrate that the ubiquitously expressed hnRNPM acts in a mesenchymal-specific manner to precisely control CD44 splice isoform switching during EMT. This restricted cell-type activity of hnRNPM is achieved by competition with ESRP1, an epithelial splicing regulator that binds to the same cis-regulatory RNA elements as hnRNPM and is repressed during EMT. Importantly, hnRNPM is associated with aggressive breast cancer and correlates with increased CD44s in patient specimens. These findings demonstrate a novel molecular mechanism through which tumor metastasis is endowed by the hnRNPM-mediated splicing program.

  6. Up-regulation of eEF1A2 promotes proliferation and inhibits apoptosis in prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yue [Department of Pathology, The First Affiliated Hospital, Zhejiang University Medical College, Hangzhou (China); Du, Chengli [Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou (China); Wang, Bo; Zhang, Yanling; Liu, Xiaoyan [Department of Pathology, The First Affiliated Hospital, Zhejiang University Medical College, Hangzhou (China); Ren, Guoping, E-mail: renguoping12345@163.com [Department of Pathology, The First Affiliated Hospital, Zhejiang University Medical College, Hangzhou (China)

    2014-07-18

    Highlights: • The expression of eEF1A2 is up-regulated in prostate cancer tissues. • Suppression of eEF1A2 inhibits the proliferation and promotes apoptosis. • Inhibition of eEF1A2 enhances the expression of apoptotic relevant proteins. • The expressions of eEF1A2 and cleavage-caspase3 are inversely correlated. - Abstract: Background: eEF1A2 is a protein translation factor involved in protein synthesis, which possesses important function roles in cancer development. This study aims at investigating the expression pattern of eEF1A2 in prostate cancer and its potential role in prostate cancer development. Methods: We examined the expression level of eEF1A2 in 30 pairs of prostate cancer tissues by using RT-PCR and immunohistochemical staining (IHC). Then we applied siRNA specifically targeting eEF1A2 to down-regulate its expression in DU-145 and PC-3 cells. Flow cytometer was used to explore apoptosis and Western-blot was used to detect the pathway proteins of apoptosis. Results: Our results showed that the expression level of eEF1A2 in prostate cancer tissues was significantly higher compared to their corresponding normal tissues. Reduction of eEF1A2 expression in DU-145 and PC-3 cells led to a dramatic inhibition of proliferation accompanied with enhanced apoptosis rate. Western blot revealed that apoptosis pathway proteins (caspase3, BAD, BAX, PUMA) were significantly up-regulated after suppression of eEF1A2. More importantly, the levels of eEF1A2 and caspase3 were inversely correlated in prostate cancer tissues. Conclusion: Our data suggests that eEF1A2 plays an important role in prostate cancer development, especially in inhibiting apoptosis. So eEF1A2 might serve as a potential therapeutic target in prostate cancer.

  7. Roles of PucR, G1nR, and TnrA in regulating expression of the Bacillus subtilis ure p3 promoter

    DEFF Research Database (Denmark)

    Brandenburg, J.L.; Wray, L.V.; Beier, Lars

    2002-01-01

    consensus GlnR/TnrA binding sites located in the ure P3 promoter region were shown to be required for negative regulation by GlnR. Mutational analysis indicates that a cooperative interaction occurs between GlnR dimers bound at these two sites. B. subtilis is the first example where urease expression...

  8. Core promoter-specific gene regulation: TATA box selectivity and Initiator-dependent bi-directionality of serum response factor-activated transcription.

    Science.gov (United States)

    Xu, Muyu; Gonzalez-Hurtado, Elsie; Martinez, Ernest

    2016-04-01

    Gene-specific activation by enhancers involves their communication with the basal RNA polymerase II transcription machinery at the core promoter. Core promoters are diverse and may contain a variety of sequence elements such as the TATA box, the Initiator (INR), and the downstream promoter element (DPE) recognized, respectively, by the TATA-binding protein (TBP) and TBP-associated factors of the TFIID complex. Core promoter elements contribute to the gene selectivity of enhancers, and INR/DPE-specific enhancers and activators have been identified. Here, we identify a TATA box-selective activating sequence upstream of the human β-actin (ACTB) gene that mediates serum response factor (SRF)-induced transcription from TATA-dependent but not INR-dependent promoters and requires the TATA-binding/bending activity of TBP, which is otherwise dispensable for transcription from a TATA-less promoter. The SRF-dependent ACTB sequence is stereospecific on TATA promoters but activates in an orientation-independent manner a composite TATA/INR-containing promoter. More generally, we show that SRF-regulated genes of the actin/cytoskeleton/contractile family tend to have a TATA box. These results suggest distinct TATA-dependent and INR-dependent mechanisms of TFIID-mediated transcription in mammalian cells that are compatible with only certain stereospecific combinations of activators, and that a TBP-TATA binding mechanism is important for SRF activation of the actin/cytoskeleton-related gene family.

  9. Regulation of Expression of the adhE Gene, Encoding Ethanol Oxidoreductase in Escherichia coli: Transcription from a Downstream Promoter and Regulation by Fnr and RpoS

    Science.gov (United States)

    Membrillo-Hernández, Jorge; Lin, E. C. C.

    1999-01-01

    The adhE gene of Escherichia coli, located at min 27 on the chromosome, encodes the bifunctional NAD-linked oxidoreductase responsible for the conversion of acetyl-coenzyme A to ethanol during fermentative growth. The expression of adhE is dependent on both transcriptional and posttranscriptional controls and is about 10-fold higher during anaerobic than during aerobic growth. Two putative transcriptional start sites have been reported: one at position −292 and the other at −188 from the translational start codon ATG. In this study we show, by using several different transcriptional and translational fusions to the lacZ gene, that both putative transcriptional start sites can be functional and each site can be redox regulated. Although both start sites are NarL repressible in the presence of nitrate, Fnr activates only the −188 start site and Fis is required for the transcription of only the −292 start site. In addition, it was discovered that RpoS activates adhE transcription at both start sites. Under all experimental conditions tested, however, only the upstream start site is active. Available evidence indicates that under those conditions, the upstream promoter region acts as a silencer of the downstream transcriptional start site. Translation of the mRNA starting at −292, but not the one starting at −188, requires RNase III. The results support the previously postulated ribosomal binding site (RBS) occlusion model, according to which RNase III cleavage is required to release the RBS from a stem-loop structure in the long transcript. PMID:10601216

  10. miR-130b targets NKD2 and regulates the Wnt signaling to promote proliferation and inhibit apoptosis in osteosarcoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhi [Department of Human Anatomy and Histoembryology, College of Basic Medical Sciences, Jilin University (China); Li, Youjun, E-mail: liyoujunn@126.com [Department of Human Anatomy and Histoembryology, College of Basic Medical Sciences, Jilin University (China); Wang, Nan; Yang, Lifeng; Zhao, Wei; Zeng, Xiandong [Central Hospital Affiliated to Shenyang Medical College (China)

    2016-03-18

    miR-130b was significantly up-regulated in osteosarcoma (OS) cells. Naked cuticle homolog 2 (NKD2) inhibited tumor growth and metastasis in OS by suppressing Wnt signaling. We used three miRNA target analysis tools to identify potential targets of miR-130b, and found that NKD2 is a potential target of miR-130b. Based on these findings, we hypothesize that miR-130b might target NKD2 and regulate the Wnt signaling to promote OS growth. We detected the expression of miR-130b and NKD2 mRNA and protein by quantitative Real-Time PCR (qRT-PCR) and western blot assays, respectively, and found up-regulation of miR-130b and down-regulation of NKD2 mRNA and protein exist in OS cell lines. MTT and flow cytometry assays showed that miR-130b inhibitors inhibit proliferation and promote apoptosis in OS cells. Furthermore, we showed that NKD2 is a direct target of miR-130b, and miR-130b regulated proliferation and apoptosis of OS cells by targeting NKD2. We further investigated whether miR-130b and NKD2 regulate OS cell proliferation and apoptosis by inhibiting Wnt signaling, and the results confirmed our speculation that miR-130b targets NKD2 and regulates the Wnt signaling to promote proliferation and inhibit apoptosis of OS cells. These findings will offer new clues for OS development and progression, and novel potential therapeutic targets for OS. - Highlights: • miR-130b is up-regulated and NKD2 is down-regulated in osteosarcoma cell lines. • Down-regulation of miR-130b inhibits proliferation of osteosarcoma cells. • Down-regulation of miR-130b promotes apoptosis of osteosarcoma cells. • miR-130b directly targets NKD2. • NKD2 regulates OS cell proliferation and apoptosis by inhibiting the Wnt signaling.

  11. Transcription factor AP1 binds the functional region of the promoter and regulates gene expression of human PPARdelta in LoVo cell.

    Science.gov (United States)

    Jiang, Xiaogang; Yang, Xudong; Han, Yan; Lu, Shemin

    2013-12-01

    Peroxisome proliferator-activated receptor δ gene (PPARδ) is correlated with carcinogenesis of colorectal cancer, but the regulation of its gene transcription remains unclear. We herein report that AP1 binds the promoter and regulates PPARδ gene expression. With a luciferase reporter system, we identified a functional promoter region of 30 bp of PPARδ gene by deletion and electrophoretic mobility shift assays (EMSA). Using site-directed mutagenesis and decoy analyses, we demonstrated that AP1 bound the functional transcriptional factor binding site in a region extending from -176 to -73 of the PPARδ promoter, which was confirmed using EMSA and supershift assays. Consequently, inhibition of the AP1 binding site led to decreased PPARδ mRNA. Our study demonstrated that AP1 is the transcriptional factor that contributes to PPARδ expression in LoVo cells.

  12. An unusual promoter controls cell-cycle regulation and dependence on DNA replication of the Caulobacter fliLM early flagellar operon.

    Science.gov (United States)

    Stephens, C M; Shapiro, L

    1993-09-01

    Transcription of flagellar genes in Caulobacter crecentus is programmed to occur during the predivisional stage of the cell cycle. The mechanism of activation of Class II flagellar genes, the highest identified genes in the Caulobacter flagellar hierarchy, is unknown. As a step toward understanding this process, we have defined cis-acting sequences necessary for expression of a Class II flagellar operon, fliLM. Deletion analysis indicated that a 55 bp DNA fragment was sufficient for normal, temporally regulated promoter activity. Transcription from this promoter-containing fragment was severely reduced when chromosomal DNA replication was inhibited. Extensive mutational analysis of the promoter region from -42 to -5 identified functionally important nucleotides at -36 and -35, between -29 and -22, and at -12, which correlates well with sequences conserved between fliLM and the analogous regions of two other Class II flagellar operons. The promoter sequence does not resemble that recognized by any known bacterial sigma factor. Models for regulation of Caulobacter early flagellar promoters are discussed in which RNA polymerase containing a novel sigma subunit interacts with an activation factor bound to the central region of the promoter.

  13. Photosynthetic Genes and Genes Associated with the C4 Trait in Maize Are Characterized by a Unique Class of Highly Regulated Histone Acetylation Peaks on Upstream Promoters.

    Science.gov (United States)

    Perduns, Renke; Horst-Niessen, Ina; Peterhansel, Christoph

    2015-08-01

    Histone modifications contribute to gene regulation in eukaryotes. We analyzed genome-wide histone H3 Lysine (Lys) 4 trimethylation and histone H3 Lys 9 acetylation (two modifications typically associated with active genes) in meristematic cells at the base and expanded cells in the blade of the maize (Zea mays) leaf. These data were compared with transcript levels of associated genes. For individual genes, regulations (fold changes) of histone modifications and transcript levels were much better correlated than absolute intensities. When focusing on regulated histone modification sites, we identified highly regulated secondary H3 Lys 9 acetylation peaks on upstream promoters (regulated secondary upstream peaks [R-SUPs]) on 10% of all genes. R-SUPs were more often found on genes that were up-regulated toward the blade than on down-regulated genes and specifically, photosynthetic genes. Among those genes, we identified six genes encoding enzymes of the C4 cycle and a significant enrichment of genes associated with the C4 trait derived from transcriptomic studies. On the DNA level, R-SUPs are frequently associated with ethylene-responsive elements. Based on these data, we suggest coevolution of epigenetic promoter elements during the establishment of C4 photosynthesis.

  14. Inactivation of promoter 1B of APC causes partial gene silencing: evidence for a significant role of the promoter in regulation and causative of familial adenomatous polyposis

    DEFF Research Database (Denmark)

    Rohlin, A; Engwall, Y; Fritzell, K

    2011-01-01

    of this promoter in the largest family (Family 1) of the Swedish Polyposis Registry. The mutation leads to an imbalance in allele-specific expression of APC, and transcription from promoter 1B was highly impaired in both normal colorectal mucosa and blood from mutation carriers. To establish the significance...... in a panel of 20 various normal tissues examined. In FAP-related tumors, the APC germline mutation is proposed to dictate the second hit. Mutations leaving two or three out of seven 20-amino-acid repeats in the central domain of APC intact seem to be required for tumorigenesis. We examined adenomas from...

  15. Down-regulation of neogenin accelerated glioma progression through promoter Methylation and its overexpression in SHG-44 Induced Apoptosis.

    Directory of Open Access Journals (Sweden)

    Xinmin Wu

    Full Text Available BACKGROUND: Dependence receptors have been proved to act as tumor suppressors in tumorigenesis. Neogenin, a DCC homologue, well known for its fundamental role in axon guidance and cellular differentiation, is also a dependence receptor functioning to control apoptosis. However, loss of neogenin has been reported in several kinds of cancers, but its role in glioma remains to be further investigated. METHODOLOGY/PRINCIPAL FINDINGS: Western blot analysis showed that neogenin level was lower in glioma tissues than in their matching surrounding non-neoplastic tissues (n = 13, p<0.01. By immunohistochemical analysis of 69 primary and 16 paired initial and recurrent glioma sections, we found that the loss of neogenin did not only correlate negatively with glioma malignancy (n = 69, p<0.01, but also glioma recurrence (n = 16, p<0.05. Kaplan-Meier plot and Cox proportional hazards modelling showed that over-expressive neogenin could prolong the tumor latency (n = 69, p<0.001, 1187.6 ± 162.6 days versus 687.4 ± 254.2 days and restrain high-grade glioma development (n = 69, p<0.01, HR: 0.264, 95% CI: 0.102 to 0.687. By Methylation specific polymerase chain reaction (MSP, we reported that neogenin promoter was methylated in 31.0% (9/29 gliomas, but absent in 3 kinds of glioma cell lines. Interestingly, the prevalence of methylation in high-grade gliomas was higher than low-grade gliomas and non-neoplastic brain tissues (n = 33, p<0.05 and overall methylation rate increased as glioma malignancy advanced. Furthermore, when cells were over-expressed by neogenin, the apoptotic rate in SHG-44 was increased to 39.7% compared with 8.1% in the blank control (p<0.01 and 9.3% in the negative control (p<0.01. CONCLUSIONS/SIGNIFICANCE: These observations recapitulated the proposed role of neogenin as a tumor suppressor in gliomas and we suggest its down-regulation owing to promoter methylation is a selective advantage for glioma genesis, progression and recurrence

  16. Disease-Regulated Gene Therapy with Anti-Inflammatory Interleukin-10 Under the Control of the CXCL10 Promoter for the Treatment of Rheumatoid Arthritis.

    Science.gov (United States)

    Broeren, Mathijs G A; de Vries, Marieke; Bennink, Miranda B; Arntz, Onno J; Blom, Arjen B; Koenders, Marije I; van Lent, Peter L E M; van der Kraan, Peter M; van den Berg, Wim B; van de Loo, Fons A J

    2016-03-01

    Disease-inducible promoters for the treatment of rheumatoid arthritis (RA) have the potential to provide regulated expression of therapeutic proteins in arthritic joints. In this study, we set out to identify promoters of human genes that are upregulated during RA and are suitable to drive the expression of relevant amounts of anti-inflammatory interleukin (IL)-10. Microarray analysis of RA synovial biopsies compared with healthy controls yielded a list of 22 genes upregulated during RA. Of these genes, CXCL10 showed the highest induction in lipopolysaccharide-stimulated synovial cells. The CXCL10 promoter was obtained from human cDNA and cloned into a lentiviral vector carrying firefly luciferase to determine the promoter inducibility in primary synovial cells and in THP-1 cells. The promoter activation was strongest 8-12 hr after stimulation with the proinflammatory cytokine tumor necrosis factor (TNF)-α and was reinducible after 96 hr. In addition, the CXCL10 promoter showed a significant response to RA patient serum, compared with sera from healthy individuals. The luciferase gene was replaced with IL-10 to determine the therapeutic properties of the CXCL10p-IL10 lentiviral vector. Primary synovial cells transduced with CXCL10p-IL10 showed a great increase in IL-10 production after stimulation, which reduced the release of proinflammatory cytokines TNF-α and IL-1β. We conclude that the selected proximal promoter of the CXCL10 gene responds to inflammatory mediators present in the serum of patients with RA and that transduction with the lentiviral CXCL10p-IL10 vector reduces inflammatory cytokine production by primary synovial cells from patients with RA. CXCL10 promoter-regulated IL-10 overexpression can thus provide disease-inducible local gene therapy suitable for RA.

  17. Differential control of Bradyrhizobium japonicum iron stimulon genes through variable affinity of the iron response regulator (Irr) for target gene promoters and selective loss of activator function.

    Science.gov (United States)

    Jaggavarapu, Siddharth; O'Brian, Mark R

    2014-05-01

    Bradyrhizobium japonicum Irr is a conditionally stable transcriptional activator and repressor that accumulates in cells under iron-limited, manganese-replete conditions, but degrades in a haem-dependent manner under high iron conditions, manganese limitation or upon exposure to H2 O2 . Here, we identified Irr-regulated genes that were relatively unresponsive to factors that promote Irr degradation. The promoters of those genes bound Irr with at least 200-fold greater affinity than promoters of the responsive genes, resulting in maintenance of promoter occupancy over a wide cellular Irr concentration range. For Irr-repressible genes, promoter occupancy correlated with transcriptional repression, resulting in differential levels of expression based on Irr affinity for target promoters. However, inactivation of positively controlled genes required neither promoter vacancy nor loss of DNA-binding activity by Irr. Thus, activation and repression functions of Irr may be uncoupled from each other under certain conditions. Abrogation of Irr activation function was haem-dependent, thus haem has two functionally separable roles in modulating Irr activity. The findings imply a greater complexity of control by Irr than can be achieved by conditional stability alone. We suggest that these regulatory mechanisms accommodate the differing needs for Irr regulon genes in response to the prevailing metabolic state of the cell.

  18. Structural analysis of the essential resuscitation promoting factor YeaZ suggests a mechanism of nucleotide regulation through dimer reorganization.

    Directory of Open Access Journals (Sweden)

    Inci Aydin

    Full Text Available BACKGROUND: The yeaZ gene product forms part of the conserved network YjeE/YeaZ/YgjD essential for the survival of many gram-negative eubacteria. Among other as yet unidentified roles, YeaZ functions as a resuscitation promoting factor required for survival and resuscitation of cells in a viable but non-culturable (VBNC state. METHODOLOGY/PRINCIPAL FINDINGS: In order to investigate in detail the structure/function relationship of this family of proteins we have performed X-ray crystallographic studies of Vibrio parahaemolyticus YeaZ. The YeaZ structure showed that it has a classic actin-like nucleotide-binding fold. Comparisons of this crystal structure to that of available homologues from E. coli, T. maritima and S. typhimurium revealed two distinctly different modes of dimer formation. In one form, prevalent in the absence of nucleotide, the putative nucleotide-binding site is incomplete, lacking a binding pocket for a nucleotide base. In the second form, residues from the second subunit complete the nucleotide-binding site. This suggests that the two dimer architectures observed in the crystal structures correspond to a free and a nucleotide-bound form of YeaZ. A multiple sequence alignment of YeaZ proteins from different bacteria allowed us to identify a large conserved hydrophobic patch on the protein surface that becomes exposed upon nucleotide-driven dimer re-arrangement. We hypothesize that the transition between two dimer architectures represents the transition between the 'on' and 'off' states of YeaZ. The effect of this transition is to alternately expose and bury a docking site for the partner protein YgjD. CONCLUSIONS/SIGNIFICANCE: This paper provides the first structural insight into the putative mechanism of nucleotide regulation of YeaZ through dimer reorganization. Our analysis suggests that nucleotide binding to YeaZ may act as a regulator or switch that changes YeaZ shape, allowing it to switch partners between YjeE and YgjD.

  19. Vascular mineralocorticoid receptor regulates microRNA-155 to promote vasoconstriction and rising blood pressure with aging

    Science.gov (United States)

    DuPont, Jennifer J.; McCurley, Amy; Davel, Ana P.; McCarthy, Joseph; Bender, Shawn B.; Hong, Kwangseok; Yang, Yan; Yoo, Jeung-Ki; Aronovitz, Mark; Baur, Wendy E.; Christou, Demetra D.; Hill, Michael A.; Jaffe, Iris Z.

    2016-01-01

    Hypertension is nearly universal yet poorly controlled in the elderly despite proven benefits of intensive treatment. Mice lacking mineralocorticoid receptors in smooth muscle cells (SMC-MR-KO) are protected from rising blood pressure (BP) with aging, despite normal renal function. Vasoconstriction is attenuated in aged SMC-MR-KO mice, thus they were used to explore vascular mechanisms that may contribute to hypertension with aging. MicroRNA (miR) profiling identified miR-155 as the most down-regulated miR with vascular aging in MR-intact but not SMC-MR-KO mice. The aging-associated decrease in miR-155 in mesenteric resistance vessels was associated with increased mRNA abundance of MR and of predicted miR-155 targets Cav1.2 (L-type calcium channel (LTCC) subunit) and angiotensin type-1 receptor (AgtR1). SMC-MR-KO mice lacked these aging-associated vascular gene expression changes. In HEK293 cells, MR repressed miR-155 promoter activity. In cultured SMCs, miR-155 decreased Cav1.2 and AgtR1 mRNA. Compared to MR-intact littermates, aged SMC-MR-KO mice had decreased systolic BP, myogenic tone, SMC LTCC current, mesenteric vessel calcium influx, LTCC-induced vasoconstriction and angiotensin II-induced vasoconstriction and oxidative stress. Restoration of miR-155 specifically in SMCs of aged MR-intact mice decreased Cav1.2 and AgtR1 mRNA and attenuated LTCC-mediated and angiotensin II-induced vasoconstriction and oxidative stress. Finally, in a trial of MR blockade in elderly humans, changes in serum miR-155 predicted the BP treatment response. Thus, SMC-MR regulation of miR-155, Cav1.2 and AgtR1 impacts vasoconstriction with aging. This novel mechanism identifies potential new treatment strategies and biomarkers to improve and individualize antihypertensive therapy in the elderly. PMID:27683672

  20. A new target for an old regulator: H-NS represses transcription of bolA morphogene by direct binding to both promoters.

    Science.gov (United States)

    Moreira, Ricardo N; Dressaire, Clémentine; Domingues, Susana; Arraiano, Cecília M

    2011-07-22

    The Escherichia coli bolA morphogene is very important in adaptation to stationary phase and stress response mechanisms. Genes of this family are widespread in gram negative bacteria and in eukaryotes. The expression of this gene is tightly regulated at transcriptional and post-transcriptional levels and its overexpression is known to induce round cellular morphology. The results presented in this report demonstrate that the H-NS protein, a pleiotropic regulator of gene expression, is a new transcriptional modulator of the bolA gene. In this work we show that and in vivo the levels of bolA are down-regulated by H-NS and in vitro this global regulator interacts directly with the bolA promoter region. Moreover, DNaseI foot-printing experiments mapped the interaction regions of H-NS and bolA and revealed that this global regulator binds not only one but both bolA promoters. We provide a new insight into the bolA regulation network demonstrating that H-NS represses the transcription of this important gene. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Translational and posttranslational regulation of XIAP by eIF2α and ATF4 promotes ER stress-induced cell death during the unfolded protein response.

    Science.gov (United States)

    Hiramatsu, Nobuhiko; Messah, Carissa; Han, Jaeseok; LaVail, Matthew M; Kaufman, Randal J; Lin, Jonathan H

    2014-05-01

    Endoplasmic reticulum (ER) protein misfolding activates the unfolded protein response (UPR) to help cells cope with ER stress. If ER homeostasis is not restored, UPR promotes cell death. The mechanisms of UPR-mediated cell death are poorly understood. The PKR-like endoplasmic reticulum kinase (PERK) arm of the UPR is implicated in ER stress-induced cell death, in part through up-regulation of proapoptotic CCAAT/enhancer binding protein homologous protein (CHOP). Chop((-)/(-)) cells are partially resistant to ER stress-induced cell death, and CHOP overexpression alone does not induce cell death. These findings suggest that additional mechanisms regulate cell death downstream of PERK. Here we find dramatic suppression of antiapoptosis XIAP proteins in response to chronic ER stress. We find that PERK down-regulates XIAP synthesis through eIF2α and promotes XIAP degradation through ATF4. Of interest, PERK's down-regulation of XIAP occurs independently of CHOP activity. Loss of XIAP leads to increased cell death, whereas XIAP overexpression significantly enhances resistance to ER stress-induced cell death, even in the absence of CHOP. Our findings define a novel signaling circuit between PERK and XIAP that operates in parallel with PERK to CHOP induction to influence cell survival during ER stress. We propose a "two-hit" model of ER stress-induced cell death involving concomitant CHOP up-regulation and XIAP down-regulation both induced by PERK.

  2. CREB-regulated transcription co-activator family stimulates promoter II-driven aromatase expression in preadipocytes.

    Science.gov (United States)

    Samarajeewa, Nirukshi U; Docanto, Maria M; Simpson, Evan R; Brown, Kristy A

    2013-08-01

    The dramatically increased prevalence of breast cancer after menopause is of great concern and is correlated with elevated local levels of estrogens. This is mainly due to an increase in aromatase expression driven by its proximal promoter II (PII). We have previously demonstrated that the CREB co-activator CRTC2 binds directly to PII and stimulates its activity via mechanisms involving LKB1-AMPK in response to prostaglandin E(2) (PGE(2)). There are three members of the CRTC family (CRTC1-3) and this study aimed to characterize the role of other CRTCs in the activation of aromatase PII. The expression and subcellular localization of CRTCs were examined in preadipocytes using qPCR and immunofluorescence. Under basal conditions, CRTC1 expression was the lowest, whereas CRTC3 transcripts were present at higher levels. Basally, CRTC2 and CRTC3 were mainly cytoplasmic and PGE(2) caused their nuclear translocation. Reporter assays and chromatin immunoprecipitation (ChIP) were performed to assess the effect of CRTCs on PII activity and binding. Basal PII activity was significantly increased with all CRTCs. Forskolin (FSK)/phorbol 12-myristate 13-acetate (PMA), to mimic PGE(2), resulted in a further significant increase in PII activity with all CRTCs, with CRTC2 and CRTC3 having greater effects. This was consistent with ChIP data showing an increased binding of CRTCs to PII with FSK/PMA. Moreover, gene silencing of CRTC2 and CRTC3 significantly reduced the FSK/PMA-mediated stimulation of aromatase activity. Interestingly, CRTCs acted cooperatively with CREB1 to increase PII activity, and both CREs were found to be essential for the maximal induction of PII activity by CRTCs. Phosphorylation of CRTC2 at its AMPK target site, Ser 171, dictated its subcellular localization, and the activation of aromatase PII in preadipocytes. In conclusion, this study demonstrates that aromatase regulation in primary human breast preadipocytes involves more than one CRTC.

  3. Lipopolysaccharide Promotes Choroidal Neovascularization by Up-Regulation of CXCR4 and CXCR7 Expression in Choroid Endothelial Cell.

    Directory of Open Access Journals (Sweden)

    Yi-fan Feng

    Full Text Available Stromal cell-derived factor-1 (SDF-1 has been confirmed to participate in the formation of choroidal neovascularization (CNV via its two receptors: CXC chemokine receptors 4 (CXCR4 and CXCR7. Previous studies have indicated that the activation of Toll-like receptors (TLRs by lipopolysaccharide (LPS might elevate CXCR4 and/or CXCR7 expression in tumor cells, enhancing the response to SDF-1 to promote invasion and cell dissemination. However, the impact of LPS on the CXCR4 and CXCR7 expression in endothelial cells and subsequent pathological angiogenesis formation remains to be elucidated. The present study shows that LPS enhanced the CXCR4 and CXCR7 expression via activation of the TLR4 pathway in choroid-retinal endothelial (RF/6A cells. In addition, the transcriptional regulation of CXCR4 and CXCR7 by LPS was found to be mediated by phosphorylation of the extracellular signal-related kinase (ERK 1/2 and activation of nuclear factor kappa B (NF-κB signaling pathways, which were blocked by ERK- or NF-κB-specific inhibitors. Furthermore, the increased CXCR4 and CXCR7 expression resulted in increased SDF-1-induced RF/6A cells proliferation, migration and tube formation. In vivo, LPS-treated rat had significantly higher mRNA levels of CXCR4 and CXCR7 expression and lager laser-induced CNV area than vehicle-treated rat. SDF-1 blockade with a neutralizing antibody attenuated the progression of CNV in LPS-treated rat after a single intravitreal injection. Altogether, these results demonstrated that LPS might influence CNV formation by enhancing CXCR7 and CXCR7 expression in endothelial cells, possibly providing a new perspective for the treatment of CNV-associated diseases.

  4. L-selectin Promotes the Maturation of Dendritic Cells via Up-regulation the Expression of TLR4 in vitro.

    Science.gov (United States)

    Ye, Zhishuai; Liu, Jia; Zheng, Jie; Zhang, Jianing; Huang, Rongchong

    2017-08-01

    The relationship between dendritic cells (DCs) and L-selectin in the progress of atherosclerosis is unclear. Here, we used L-selectin co-cultured with DCs to investigate the effect of L-selectin on the maturation of DCs in vitro Monocytes derived DCs were isolated and cultured from human peripheral blood. After being stimulated with L-selectin and/or its antagonist for 24-48 hours, the feather of cells was observed by the electron microscope. The expression of mature antigens CD1a, CD80, CD83, and CD86 were investigated by flow cytometric analysis (FACS). RT-PCR and FACS were used to detect the mRNA and protein expression of Toll-like receptor 4(TLR-4). We found that only the cells of giving L-selectin have the mature special feature for irregular shapes. DCs which were stimulated by L-selectin have a larger number of expressing CD1a, CD80, CD83, and CD86 compared with non-stimulated and cultured with L-selectin antagonist. The transcript levels of TLR4 were significantly higher after L-selectin and lipopolysaccharide (LPS) stimulated. And the antagonist of L-selectin can deeply decrease the expression of CD1a, CD80, CD83, and CD86 on DCs appeared to coincide with the level of TLR4 transcription. The results demonstrate L-selectin can promote the maturation of DCs via up-regulation the expression of TLR4. © 2017 by the Association of Clinical Scientists, Inc.

  5. Increased Expression of SETD7 Promotes Cell Proliferation by Regulating Cell Cycle and Indicates Poor Prognosis in Hepatocellular Carcinoma.

    Directory of Open Access Journals (Sweden)

    Yuanyuan Chen

    Full Text Available To investigate the role of SET domain containing 7 (SETD7 in hepatocellular carcinoma (HCC and determine whether SETD7 can be used as a predictor of overall survival in HCC patients.mRNAs and proteins of SETD7 and related genes in HCC tumor samples and paired adjacent non-tumorous liver tissues (ANLTs (n = 20 or culture cells were determined by quantitative real-time PCR and Western blot. Cell proliferation and apoptosis with SETD7 knockdown SMMC-7721 cells or SETD7 overexpressed HepG2 cells were analyzed by CCK8 assay or flow cytometry. Gene expression alterations in SETD7 knockdown of SMMC-7721 cells were determined by digital gene expression (DGE profiling. Defined data on patients (n = 225 with HCC were retrieved for the further study. Tissue microarrays (TMAs were performed using paraffin tissues with tumor and ANLTs. SETD7 and related proteins were determined by TMAs immunohistochemistry. Statistical analyses were conducted to associate SETD7 expression with tumor features and patient outcomes, as well as related proteins expression.SETD7 expression was significantly higher in HCC tumor tissues than in ANLTs. SETD7 overexpression in vitro can promote HepG2 cell proliferation, whereas SETD7 knockdown can inhibit SMMC-7721 cell proliferation by regulating the cell cycle. SETD7 expression was significantly correlated with five genes expression. Increased SETD7 is associated with metastasis, recurrence, large tumor size, and poor tumor differentiation, and indicates poor prognosis in HCC patients.SETD7 plays a critical role in HCC, and its immunohistochemistry signature provides potential clinical significance for personalized prediction of HCC prognosis.

  6. JNK phosphorylation promotes degeneration of cervical endplate chondrocytes through down-regulation of the expression of ANK in humans

    Institute of Scientific and Technical Information of China (English)

    XU Hong-guang; SONG Jun-xing; CHENG Jia-feng; ZHANG Ping-Zhi; WANG Hong; LIU Ping; L(U) Kun

    2013-01-01

    Background C-Jun N-terminal kinase (JNK) signaling pathway and ankylosis gene (ANK) play a critical role in endplate chondrocytes degeneration.The purpose of this study was to investigate whether the expression levels of ANK was associated with the activation of JNK.Methods Cartilage endplates of 49 patients were divided into the control group (n=19) and the experimental group (n=30).The patients in the control group were graded 0 and those in the experimental group were graded Ⅰ-Ⅲ according to Miller's classification.Endplate chondrocytes were isolated by enzyme digestion and cultured in vitro.The inverted phase contrast microscope,teluidine blue staining,HE staining,real time RT-PCR,and MTT were used to observe morphological appearances,biological characteristics,and growth curve of endplate chondrocytes from the cartilage endplate of the two groups.Real time RT-PCR and Western blotting were used to analyze the mRNA and protein expression levels of associated factors in the degeneration process in the cultured endplate chondrocytes with or without subjected SP600125.Results The expression levels of type Ⅱ collagen,aggrecan,and ANK in endplate chondrocytes of experimental group were lower than that of control group and phosphorylation level of JNK in the experimental group which was higher than that in the control group.Application of JNK phosphorylation inhibitor to degeneration chondrocytes resulted in a marked decrease in the phosphorylation level of JNK and a significant increase in the expression levels of type Ⅱ collagen,aggrecan,and ANK.Conclusion The degeneration of the human cervical endplate chondrocytes might be promoted by JNK phosphorylation by down-regulating the expression of ANK

  7. Genetic variants of methyl metabolizing enzymes and epigenetic regulators: associations with promoter CpG island hypermethylation in colorectal cancer.

    Science.gov (United States)

    de Vogel, Stefan; Wouters, Kim A D; Gottschalk, Ralph W H; van Schooten, Frederik J; de Goeij, Anton F P M; de Bruïne, Adriaan P; Goldbohm, Royle A; van den Brandt, Piet A; Weijenberg, Matty P; van Engeland, Manon

    2009-11-01

    Aberrant DNA methylation affects carcinogenesis of colorectal cancer. Folate metabolizing enzymes may influence the bioavailability of methyl groups, whereas DNA and histone methyltransferases are involved in epigenetic regulation of gene expression. We studied associations of genetic variants of folate metabolizing enzymes (MTHFR, MTR, and MTRR), DNA methyltransferase DNMT3b, and histone methyltransferases (EHMT1, EHMT2, and PRDM2), with colorectal cancers, with or without the CpG island methylator phenotype (CIMP), MLH1 hypermethylation, or microsatellite instability. Incidence rate ratios were calculated in case-cohort analyses, with common homozygotes as reference, among 659 cases and 1,736 subcohort members of the Netherlands Cohort Study on diet and cancer (n = 120,852). Men with the MTHFR 677TT genotype were at decreased colorectal cancer risk (incidence rate ratio, 0.49; P = 0.01), but the T allele was associated with increased risk in women (incidence rate ratio, 1.39; P = 0.02). The MTR 2756GG genotype was associated with increased colorectal cancer risk (incidence rate ratio, 1.58; P = 0.04), and inverse associations were observed among women carrying DNMT3b C-->T (rs406193; incidence rate ratio, 0.72; P = 0.04) or EHMT2 G-->A (rs535586; incidence rate ratio, 0.76; P = 0.05) polymorphisms. Although significantly correlated (P DNMT3b, and EHMT2 polymorphisms are associated with colorectal cancer, and rare variants of MTR and MTRR may reduce promoter hypermethylation. The incomplete overlap between CIMP, MLH1 hypermethylation, and microsatellite instability indicates that these related "methylation phenotypes" may not be similar and should be investigated separately.

  8. The bacterial cell cycle regulator GcrA is a σ70 cofactor that drives gene expression from a subset of methylated promoters.

    Science.gov (United States)

    Haakonsen, Diane L; Yuan, Andy H; Laub, Michael T

    2015-11-01

    Cell cycle progression in most organisms requires tightly regulated programs of gene expression. The transcription factors involved typically stimulate gene expression by binding specific DNA sequences in promoters and recruiting RNA polymerase. Here, we found that the essential cell cycle regulator GcrA in Caulobacter crescentus activates the transcription of target genes in a fundamentally different manner. GcrA forms a stable complex with RNA polymerase and localizes to almost all active σ(70)-dependent promoters in vivo but activates transcription primarily at promoters harboring certain DNA methylation sites. Whereas most transcription factors that contact σ(70) interact with domain 4, GcrA interfaces with domain 2, the region that binds the -10 element during strand separation. Using kinetic analyses and a reconstituted in vitro transcription assay, we demonstrated that GcrA can stabilize RNA polymerase binding and directly stimulate open complex formation to activate transcription. Guided by these studies, we identified a regulon of ∼ 200 genes, providing new insight into the essential functions of GcrA. Collectively, our work reveals a new mechanism for transcriptional regulation, and we discuss the potential benefits of activating transcription by promoting RNA polymerase isomerization rather than recruitment exclusively.

  9. Down-regulation of Transducin-Like Enhancer of Split protein 4 in hepatocellular carcinoma promotes cell proliferation and epithelial-Mesenchymal-Transition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiao-cai; Xiao, Cui-cui; Li, Hua [Department of Hepatic Surgery, 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou (China); Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou (China); Tai, Yan; Zhang, Qi [Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou (China); Yang, Yang, E-mail: yysysu2@163.com [Department of Hepatic Surgery, 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou (China)

    2016-08-19

    Background: Transducin-Like Enhancer of Split protein 4 (TLE4) has been reported to be involved in some subsets of acute myeloid leukemia and colorectal cancer. In the present study, we aimed to explore the role of TLE4 in tumorigenesis and cancer progression in hepatocellular carcinoma (HCC). Methods: The expression pattern of TLE4 in HCC was determined by Western-blot and qRT-PCR, gain-of-function and loss-of-function was used to explore the biological role of TLE4 in HCC cells. A xenograft model was established to confirm its effects on proliferation. Results: The protein expression levels of TLE4 were significantly down-regulated in HCC tissues compared to matched adjacent normal liver tissues. In vitro, down-regulation of TLE4 in Huh7 or SMMC-7721 promoted cell proliferation and ectopical expression of TLE4 in Hep3B or Bel-7404 suppressed cell proliferation. In addition, the cell colony formation ability was enhanced after down-regulation of TLE4 expression in Huh-7 but suppressed after over-expression in Hep3B. Furthermore, down-regulation of TLE4 increased the cell invasion ability, as well as increased the expression level of Vimentin and decreased that of E-cadherin, indicating a phenotype of epithelial-mesenchymal transition (EMT) in HCC cells. On the contrary, ectopical expression of TLE4 in HCC cells decreased the cell invasion ability and inhibited EMT. In vivo, compared to control group, xenograft tumor volumes were significantly decreased in TLE4 overexpression group. Conclusions: These results demonstrated that TLE4 might play important regulatory roles in cellular proliferation and EMT process in HCC. - Highlights: • TLE4 is significantly down-regulated in HCC samples. • Down regulated of TLE4 in HCC cells promotes cell proliferation. • Down regulated of TLE4 in HCC cells promotes epithelial-to-mesenchymal transition.

  10. Androgen receptor regulated microRNA miR-182-5p promotes prostate cancer progression by targeting the ARRDC3/ITGB4 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jingjing [Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433 (China); Xu, Chen [Research Center of Developmental Biology, Second Military Medical University, 800th Xiangyin Road, Shanghai, 200433 (China); Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003 (China); Fang, Ziyu; Li, Yaoming [Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433 (China); Liu, Houqi; Wang, Yue [Research Center of Developmental Biology, Second Military Medical University, 800th Xiangyin Road, Shanghai, 200433 (China); Translational Medicine Center, Second Military Medical University, 800th Xiangyin Road, Shanghai, 200433 (China); Xu, Chuanliang [Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433 (China); Sun, Yinghao, E-mail: sunyh@medmail.com.cn [Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433 (China)

    2016-05-20

    Abstracts: MicroRNAs (miRNAs) are important endogenous gene regulators that play key roles in prostate cancer development and metastasis. However, specific miRNA expression patterns in prostate cancer tissues from Chinese patients remain largely unknown. In this study, we compared miRNA expression patterns in 65 pairs of prostate cancer and para-cancer tissues by RNA sequencing and found that miR-182-5p was the most up-regulated miRNA in prostate cancer tissues. The result was validated using realtime PCR in 18 pairs of prostate cancer and para-cancer tissues. In in vitro analysis, it was confirmed that miR-182-5p promotes prostate cancer cell proliferation, invasion and migration and inhibit apoptosis. In addition, the androgen receptor directly regulated the transcription of miR-182-5p, which could target to the 3′UTR of ARRDC3 mRNA and affect the expression of ARRDC3 and its downstream gene ITGB4. For the in vivo experiment, miR-182-5p overexpression also promoted the growth and progression of prostate cancer tumors. In this regard, we suggest that miR-182-5p may be a key androgen receptor-regulated factor that contributes to the development and metastasis of Chinese prostate cancers and may be a potential target for the early diagnosis and therapeutic studies of prostate cancer. -- Highlights: •miR-182-5p is the mostly up-regulated miRNA in Chinese prostate cancer. •miR-182-5p is regulated by androgen receptor. •miR-182-5p promotes prostate cancer progression. •miR-182-5p regulates ARRDC3/ITGB4 pathway.

  11. p27Kip1 and p21Cip1 collaborate in the regulation of transcription by recruiting cyclin-Cdk complexes on the promoters of target genes.

    Science.gov (United States)

    Orlando, Serena; Gallastegui, Edurne; Besson, Arnaud; Abril, Gabriel; Aligué, Rosa; Pujol, Maria Jesus; Bachs, Oriol

    2015-08-18

    Transcriptional repressor complexes containing p130 and E2F4 regulate the expression of genes involved in DNA replication. During the G1 phase of the cell cycle, sequential phosphorylation of p130 by cyclin-dependent kinases (Cdks) disrupts these complexes allowing gene expression. The Cdk inhibitor and tumor suppressor p27(Kip1) associates with p130 and E2F4 by its carboxyl domain on the promoters of target genes but its role in the regulation of transcription remains unclear. We report here that p27(Kip1) recruits cyclin D2/D3-Cdk4 complexes on the promoters by its amino terminal domain in early and mid G1. In cells lacking p27(Kip1), cyclin D2/D3-Cdk4 did not associate to the promoters and phosphorylation of p130 and transcription of target genes was increased. In late G1, these complexes were substituted by p21(Cip1)-cyclin D1-Cdk2. In p21(Cip1) null cells cyclin D1-Cdk2 were not found on the promoters and transcription was elevated. In p21/p27 double null cells transcription was higher than in control cells and single knock out cells. Thus, our results clarify the role of p27(Kip1) and p21(Cip1) in transcriptional regulation of genes repressed by p130/E2F4 complexes in which p27(Kip1) and p21(Cip1) play a sequential role by recruiting and regulating the activity of specific cyclin-Cdk complexes on the promoters.

  12. The Effectiveness of Tobacco Marketing Regulations on Reducing Smokers’ Exposure to Advertising and Promotion: Findings from the International Tobacco Control (ITC Four Country Survey

    Directory of Open Access Journals (Sweden)

    K. Michael Cummings

    2011-01-01

    Full Text Available Exposure to tobacco product marketing promotes the initiation, continuation, and reuptake of cigarette smoking and as a result the World Health Organization Framework Convention on Tobacco Control (WHO FCTC has called upon member Parties to enact comprehensive bans on tobacco advertising and promotion. This study examines the immediate and long term effectiveness of advertising restrictions enacted in different countries on exposure to different forms of product marketing, and examines differences in exposure across different socioeconomic status (SES groups. Nationally representative data from the United Kingdom, Canada, Australia, and the United States, collected from adult smokers between 2002 and 2008 using the International Tobacco Control Four Country Survey (ITC-4, were used in this study (N = 21,615. In light of the specific marketing regulation changes that occurred during the course of this study period, changes in awareness of tobacco marketing via various channels were assessed for each country, and for different SES groups within countries. Tobacco marketing regulations, once implemented, were associated with significant reductions in smokers’ reported awareness of pro-smoking cues, and the observed reductions were greatest immediately following the enactment of regulations. Changes in reported awareness were generally the same across different SES groups, although some exceptions were noted. While tobacco marketing regulations have been effective in reducing exposure to certain types of product marketing there still remain gaps, especially with regard to in-store marketing and price promotions.

  13. The effectiveness of tobacco marketing regulations on reducing smokers' exposure to advertising and promotion: findings from the International Tobacco Control (ITC) Four Country Survey.

    Science.gov (United States)

    Kasza, Karin A; Hyland, Andrew J; Brown, Abraham; Siahpush, Mohammad; Yong, Hua-Hie; McNeill, Ann D; Li, Lin; Cummings, K Michael

    2011-02-01

    Exposure to tobacco product marketing promotes the initiation, continuation, and reuptake of cigarette smoking and as a result the World Health Organization Framework Convention on Tobacco Control (WHO FCTC) has called upon member Parties to enact comprehensive bans on tobacco advertising and promotion. This study examines the immediate and long term effectiveness of advertising restrictions enacted in different countries on exposure to different forms of product marketing, and examines differences in exposure across different socioeconomic status (SES) groups. Nationally representative data from the United Kingdom, Canada, Australia, and the United States, collected from adult smokers between 2002 and 2008 using the International Tobacco Control Four Country Survey (ITC-4), were used in this study (N = 21,615). In light of the specific marketing regulation changes that occurred during the course of this study period, changes in awareness of tobacco marketing via various channels were assessed for each country, and for different SES groups within countries. Tobacco marketing regulations, once implemented, were associated with significant reductions in smokers' reported awareness of pro-smoking cues, and the observed reductions were greatest immediately following the enactment of regulations. Changes in reported awareness were generally the same across different SES groups, although some exceptions were noted. While tobacco marketing regulations have been effective in reducing exposure to certain types of product marketing there still remain gaps, especially with regard to in-store marketing and price promotions.

  14. Binding of a 100-kDa ubiquitous factor to the human prolactin promoter is required for its basal and hormone-regulated activity.

    Science.gov (United States)

    Peers, B; Nalda, A M; Monget, P; Voz, M L; Belayew, A; Martial, J A

    1992-11-15

    cAMP strongly stimulates the activity of the human prolactin (hPRL) promoter. We have previously shown that two types of cis-element are required for this cAMP regulation; binding sites for the pituitary-specific factor Pit-1, and the sequence spanning nucleotides -115 to -85 (named sequence A). Sequence A contains the TGACG motif found in the consensus sequence of the cAMP-responsive element (CRE). In this study, we show that a mutation in the TGACG motif of sequence A strongly reduces not only the cAMP regulation but also the Ca2+ regulation and basal activity of the hPRL promoter. Furthermore, gel-shift assays indicate that the mutation prevents binding of a ubiquitous factor which is not the CRE-binding protein. Southwestern experiments suggest that this ubiquitous factor's molecular mass is approximately 100 kDa. We conclude that binding of a 100-kDa ubiquitous factor to sequence A is required for full basal and hormonal regulation of hPRL-promoter activity.

  15. THE REGULATIONS RELATING TO FOODSTUFFS FOR INFANTS AND YOUNG CHILDREN (R 991: A FORMULA FOR THE PROMOTION OF BREASTFEEDING OR CENSORSHIP OF COMMERCIAL SPEECH?

    Directory of Open Access Journals (Sweden)

    Lize Mills

    2014-04-01

    Full Text Available The regulation of commercial speech in the interests of public health is an issue which recently has become the topic of numerous debates. Two examples of such governmental regulation are the subjects of discussion in this article, namely the prohibition on the advertising and promotion of tobacco products, as well as the proposed prohibition on the advertising and promotion of infant formulae and other foods and products marketed as being suitable for infants or young children. The article seek to evaluate the recently proposed regulations published in terms of the Foodstuffs, Cosmetics and Disinfectants Act in the light of the reasoning by the Supreme Court of Appeal in the British American Tobacco South Africa (Pty Limited v Minister of Health 463/2011 [2012] ZASCA 107 (20 June 2012 decision, and in particular in terms of the section 36 test of reasonableness and proportionality found in the Constitution of the Republic of South Africa, 1996. It argues that, although the South African Department of Health must be applauded for its attempt at improving public health in the country, some of the provisions of the proposed regulations are not constitutionally sound. It will be contended that, despite the fact that the promotion of breastfeeding is a laudable goal, the introduction only of measures which restrict the right to advertise these types of products will not necessarily achieve this objective.

  16. MicroRNA393 is involved in nitrogen-promoted rice tillering through regulation of auxin signal transduction in axillary buds

    Science.gov (United States)

    Li, Xiang; Xia, Kuaifei; Liang, Zhen; Chen, Kunling; Gao, Caixia; Zhang, Mingyong

    2016-08-01

    Rice tillering has an important influence on grain yield, and is promoted by nitrogen (N) fertilizer. Several genes controlling rice tillering, which are regulated by poor N supply, have been identified. However, the molecular mechanism associated with the regulation of tillering based on N supply is poorly understood. Here, we report that rice microRNA393 (OsmiR393) is involved in N-mediated tillering by decreasing auxin signal sensitivity in axillary buds. Expression analysis showed that N fertilizer causes up-regulation of OsmiR393, but down-regulation of two target genes (OsAFB2 and OsTB1). In situ expression analysis showed that OsmiR393 is highly expressed in the lateral axillary meristem. OsmiR393 overexpression mimicked N-mediated tillering in wild type Zhonghua 11 (ZH11). Mutation of OsMIR393 in ZH11 repressed N-promoted tillering, which simulated the effects of limited N, and this could not be restored by supplying N fertilizer. Western blot analysis showed that OsIAA6 was accumulated in both OsmiR393-overexpressing lines and N-treated wild type rice, but was reduced in the OsMIR393 mutant. Therefore, we deduced that N-induced OsmiR393 accumulation reduces the expression of OsTIR1 and OsAFB2, which alleviates sensitivity to auxin in the axillary buds and stabilizes OsIAA6, thereby promoting rice tillering.

  17. Isolation and functional characterization of cold-regulated promoters, by digitally identifying peach fruit cold-induced genes from a large EST dataset

    Directory of Open Access Journals (Sweden)

    Santiago Margarita

    2009-09-01

    Full Text Available Abstract Background Cold acclimation is the process by which plants adapt to the low, non freezing temperatures that naturally occur during late autumn or early winter. This process enables the plants to resist the freezing temperatures of winter. Temperatures similar to those associated with cold acclimation are also used by the fruit industry to delay fruit ripening in peaches. However, peaches that are subjected to long periods of cold storage may develop chilling injury symptoms (woolliness and internal breakdown. In order to better understand the relationship between cold acclimation and chilling injury in peaches, we isolated and functionally characterized cold-regulated promoters from cold-inducible genes identified by digitally analyzing a large EST dataset. Results Digital expression analyses of EST datasets, revealed 164 cold-induced peach genes, several of which show similarities to genes associated with cold acclimation and cold stress responses. The promoters of three of these cold-inducible genes (Ppbec1, Ppxero2 and Pptha1 were fused to the GUS reporter gene and characterized for cold-inducibility using both transient transformation assays in peach fruits (in fruta and stable transformation in Arabidopsis thaliana. These assays demonstrate that the promoter Pptha1 is not cold-inducible, whereas the Ppbec1 and Ppxero2 promoter constructs are cold-inducible. Conclusion This work demonstrates that during cold storage, peach fruits differentially express genes that are associated with cold acclimation. Functional characterization of these promoters in transient transformation assays in fruta as well as stable transformation in Arabidopsis, demonstrate that the isolated Ppbec1 and Ppxero2 promoters are cold-inducible promoters, whereas the isolated Pptha1 promoter is not cold-inducible. Additionally, the cold-inducible activity of the Ppbec1 and Ppxero2 promoters suggest that there is a conserved heterologous cold-inducible regulation

  18. Comparative analysis of the ATRX promoter and 5' regulatory region reveals conserved regulatory elements which are linked to roles in neurodevelopment, alpha-globin regulation and testicular function

    Directory of Open Access Journals (Sweden)

    Argentaro Anthony

    2011-06-01

    Full Text Available Abstract Background ATRX is a tightly-regulated multifunctional protein with crucial roles in mammalian development. Mutations in the ATRX gene cause ATR-X syndrome, an X-linked recessive developmental disorder resulting in severe mental retardation and mild alpha-thalassemia with facial, skeletal and genital abnormalities. Although ubiquitously expressed the clinical features of the syndrome indicate that ATRX is not likely to be a global regulator of gene expression but involved in regulating specific target genes. The regulation of ATRX expression is not well understood and this is reflected by the current lack of identified upstream regulators. The availability of genomic data from a range of species and the very highly conserved 5' regulatory regions of the ATRX gene has allowed us to investigate putative transcription factor binding sites (TFBSs in evolutionarily conserved regions of the mammalian ATRX promoter. Results We identified 12 highly conserved TFBSs of key gene regulators involved in biologically relevant processes such as neural and testis development and alpha-globin regulation. Conclusions Our results reveal potentially important regulatory elements in the ATRX gene which may lead to the identification of upstream regulators of ATRX and aid in the understanding of the molecular mechanisms that underlie ATR-X syndrome.

  19. Characterization of the iron-regulated desA promoter of Streptomyces pilosus as a system for controlled gene expression in actinomycetes

    Directory of Open Access Journals (Sweden)

    Martín Juan F

    2003-05-01

    Full Text Available Abstract Background The bioavailability of iron is quite low since it is usually present as insoluble complexes. To solve the bioavailability problem microorganisms have developed highly efficient iron-scavenging systems based on the synthesis of siderophores that have high iron affinity. The systems of iron assimilation in microorganisms are strictly regulated to control the intracellular iron levels since at high concentrations iron is toxic for cells. Streptomyces pilosus synthesizes the siderofore desferrioxamine B. The first step in desferrioxamine biosynthesis is decarboxylation of L-lysine to form cadaverine, a desferrioxamine B precursor. This reaction is catalyzed by the lysine decarboxylase, an enzyme encoded by the desA gene that is repressed by iron. Results The binding of the DmdR (acronym for divalent metal dependent repressor to the desA promoter in presence of Fe2+ or other divalent ions has been characterized. A 51 bp DNA fragment of the desA promoter containing the 9 bp inverted repeat was sufficient for binding of the DmdR repressor, as observed by the electrophoretic mobility shift assay. The desA mobility shift was prevented by neutralizing DmdR with anti-DmdR antibodies or by chelating the divalent metal in the binding reaction with 2,2'-dipyridyl. Binding to the desA promoter was observed with purified DmdR repressors of Streptomyces coelicolor or Rhodococcus fascians suggesting that there is a common mechanism of iron-regulation in actinomycetes. The complete desA promoter region was coupled using transcriptional fusions to the amy reporter gene (encoding α-amylase in low copy or multicopy Streptomyces vectors. The iron-regulated desA promoter was induced by addition of the iron chelating agent 2,2'-dipyridyl resulting in a strong expression of the reporter gene. Conclusions The iron-regulated desA promoter can be used for inducible expression of genes in Streptomyces species, as shown by de-repression of the promoter

  20. Important roles of multiple Sp1 binding sites and epigenetic modifications in the regulation of the methionine sulfoxide reductase B1 (MsrB1 promoter

    Directory of Open Access Journals (Sweden)

    Favaloro Bartolo

    2007-05-01

    Full Text Available Abstract Background Methionine sulfoxide reductases (Msrs are enzymes that catalyze the reduction of oxidized methionine residues. Most organisms that were genetically modified to lack the MsrA gene have shown shortening of their life span. Methionine sulfoxide reductases B (MsrB proteins codified by three separate genes, named MsrB1, MsrB2, and MsrB3, are included in the Msrs system. To date, the mechanisms responsible for the transcriptional regulation of MsrB genes have not been reported. The aim of this study was to investigate the regulation of MsrB1 selenoprotein levels through transcriptional regulation of the MsrB1 gene in MDA-MB231 and MCF-7 breast carcinoma cell lines. Results A MsrB1 gene promoter is located 169 base pairs upstream from the transcription start site. It contains three Sp1 binding sites which are sufficient for maximal promoter activity in transient transfection experiments. High levels of MsrB1 transcript, protein and promoter activity were detected in low metastatic MCF7 human breast cancer cells. On the contrary, very low levels of both MsrB1 transcript and promoter activity were detected in the highly metastatic counterpart MDA-MB231 cells. A pivotal role for Sp1 in the constitutive expression of the MsrB1 gene was demonstrated through transient expression of mutant MsrB1 promoter-reporter gene constructs and chromatin immunoprecipitation experiments. Since Sp1 is ubiquitously expressed, these sites, while necessary, are not sufficient to explain the patterns of gene expression of MsrB1 in various human breast cancer cells. MDA-MB231 cells can be induced to express MsrB1 by treatment with 5-Aza-2'-deoxycytidine, a demethylating agent. Therefore, the MsrB1 promoter is controlled by epigenetic modifications. Conclusion The results of this study provide the first insights into the transcriptional regulation of the human MsrB1 gene, including the discovery that the Sp1 transcription factor may play a central role in its

  1. ATP promotes cell survival via regulation of cytosolic [Ca2+] and Bcl-2/Bax ratio in lung cancer cells.

    Science.gov (United States)

    Song, Shanshan; Jacobson, Krista N; McDermott, Kimberly M; Reddy, Sekhar P; Cress, Anne E; Tang, Haiyang; Dudek, Steven M; Black, Stephen M; Garcia, Joe G N; Makino, Ayako; Yuan, Jason X-J

    2016-01-15

    Adenosine triphosphate (ATP) is a ubiquitous extracellular messenger elevated in the tumor microenvironment. ATP regulates cell functions by acting on purinergic receptors (P2X and P2Y) and activating a series of intracellular signaling pathways. We examined ATP-induced Ca(2+) signaling and its effects on antiapoptotic (Bcl-2) and proapoptotic (Bax) proteins in normal human airway epithelial cells and lung cancer cells. Lung cancer cells exhibited two phases (transient and plateau phases) of increase in cytosolic [Ca(2+)] ([Ca(2+)]cyt) caused by ATP, while only the transient phase was observed in normal cells. Removal of extracellular Ca(2+) eliminated the plateau phase increase of [Ca(2+)]cyt in lung cancer cells, indicating that the plateau phase of [Ca(2+)]cyt increase is due to Ca(2+) influx. The distribution of P2X (P2X1-7) and P2Y (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11) receptors was different between lung cancer cells and normal cells. Proapoptotic P2X7 was nearly undetectable in lung cancer cells, which may explain why lung cancer cells showed decreased cytotoxicity when treated with high concentration of ATP. The Bcl-2/Bax ratio was increased in lung cancer cells following treatment with ATP; however, the antiapoptotic protein Bcl-2 demonstrated more sensitivity to ATP than proapoptotic protein Bax. Decreasing extracellular Ca(2+) or chelating intracellular Ca(2+) with BAPTA-AM significantly inhibited ATP-induced increase in Bcl-2/Bax ratio, indicating that a rise in [Ca(2+)]cyt through Ca(2+) influx is the critical mediator for ATP-mediated increase in Bcl-2/Bax ratio. Therefore, despite high ATP levels in the tumor microenvironment, which would induce cell apoptosis in normal cells, the decreased P2X7 and elevated Bcl-2/Bax ratio in lung cancer cells may enable tumor cells to survive. Increasing the Bcl-2/Bax ratio by exposure to high extracellular ATP may, therefore, be an important selective pressure promoting transformation and cancer progression. Copyright

  2. Ciliary dyslexia candidate genes DYX1C1 and DCDC2 are regulated by Regulatory Factor X (RFX) transcription factors through X-box promoter motifs

    Science.gov (United States)

    Tammimies, Kristiina; Bieder, Andrea; Lauter, Gilbert; Sugiaman-Trapman, Debora; Torchet, Rachel; Hokkanen, Marie-Estelle; Burghoorn, Jan; Castrén, Eero; Kere, Juha; Tapia-Páez, Isabel; Swoboda, Peter

    2016-01-01

    DYX1C1, DCDC2, and KIAA0319 are three of the most replicated dyslexia candidate genes (DCGs). Recently, these DCGs were implicated in functions at the cilium. Here, we investigate the regulation of these DCGs by Regulatory Factor X transcription factors (RFX TFs), a gene family known for transcriptionally regulating ciliary genes. We identify conserved X-box motifs in the promoter regions of DYX1C1, DCDC2, and KIAA0319 and demonstrate their functionality, as well as the ability to recruit RFX TFs using reporter gene and electrophoretic mobility shift assays. Furthermore, we uncover a complex regulation pattern between RFX1, RFX2, and RFX3 and their significant effect on modifying the endogenous expression of DYX1C1 and DCDC2 in a human retinal pigmented epithelial cell line immortalized with hTERT (hTERT-RPE1). In addition, induction of ciliogenesis increases the expression of RFX TFs and DCGs. At the protein level, we show that endogenous DYX1C1 localizes to the base of the cilium, whereas DCDC2 localizes along the entire axoneme of the cilium, thereby validating earlier localization studies using overexpression models. Our results corroborate the emerging role of DCGs in ciliary function and characterize functional noncoding elements, X-box promoter motifs, in DCG promoter regions, which thus can be targeted for mutation screening in dyslexia and ciliopathies associated with these genes.—Tammimies, K., Bieder, A., Lauter, G., Sugiaman-Trapman, D., Torchet, R., Hokkanen, M.-E., Burghoorn, J., Castrén, E., Kere, J., Tapia-Páez, I., Swoboda, P. Ciliary dyslexia candidate genes DYX1C1 and DCDC2 are regulated by Regulatory Factor (RF) X transcription factors through X-box promoter motifs. PMID:27451412

  3. Ciliary dyslexia candidate genes DYX1C1 and DCDC2 are regulated by Regulatory Factor X (RFX) transcription factors through X-box promoter motifs.

    Science.gov (United States)

    Tammimies, Kristiina; Bieder, Andrea; Lauter, Gilbert; Sugiaman-Trapman, Debora; Torchet, Rachel; Hokkanen, Marie-Estelle; Burghoorn, Jan; Castrén, Eero; Kere, Juha; Tapia-Páez, Isabel; Swoboda, Peter

    2016-10-01

    DYX1C1, DCDC2, and KIAA0319 are three of the most replicated dyslexia candidate genes (DCGs). Recently, these DCGs were implicated in functions at the cilium. Here, we investigate the regulation of these DCGs by Regulatory Factor X transcription factors (RFX TFs), a gene family known for transcriptionally regulating ciliary genes. We identify conserved X-box motifs in the promoter regions of DYX1C1, DCDC2, and KIAA0319 and demonstrate their functionality, as well as the ability to recruit RFX TFs using reporter gene and electrophoretic mobility shift assays. Furthermore, we uncover a complex regulation pattern between RFX1, RFX2, and RFX3 and their significant effect on modifying the endogenous expression of DYX1C1 and DCDC2 in a human retinal pigmented epithelial cell line immortalized with hTERT (hTERT-RPE1). In addition, induction of ciliogenesis increases the expression of RFX TFs and DCGs. At the protein level, we show that endogenous DYX1C1 localizes to the base of the cilium, whereas DCDC2 localizes along the entire axoneme of the cilium, thereby validating earlier localization studies using overexpression models. Our results corroborate the emerging role of DCGs in ciliary function and characterize functional noncoding elements, X-box promoter motifs, in DCG promoter regions, which thus can be targeted for mutation screening in dyslexia and ciliopathies associated with these genes.-Tammimies, K., Bieder, A., Lauter, G., Sugiaman-Trapman, D., Torchet, R., Hokkanen, M.-E., Burghoorn, J., Castrén, E., Kere, J., Tapia-Páez, I., Swoboda, P. Ciliary dyslexia candidate genes DYX1C1 and DCDC2 are regulated by Regulatory Factor (RF) X transcription factors through X-box promoter motifs.

  4. Two tobacco AP1-like gene promoters drive highly specific, tightly regulated and unique expression patterns during floral transition, initiation and development.

    Science.gov (United States)

    Zhang, Jinjin; Yan, Guohua; Wen, Zhifeng; An, Young-Qiang; Singer, Stacy D; Liu, Zongrang

    2014-02-01

    The genetic engineering of agronomic traits requires an array of highly specific and tightly regulated promoters that drive expression in floral tissues. In this study, we isolated and characterized two tobacco APETALA1-like (AP1-like) promoters (termed NtAP1La and NtAP1Lb1) in transgenic plants using the GUS reporter system, along with tissue-specific ablation analyses. Our results demonstrated that the two promoters are active in floral inflorescences but not in vegetative apical meristems or other vegetative tissues, as reflected by strong GUS staining and DT-A-mediated ablation of apical shoot tips during reproductive but not vegetative growth. We also showed that the NtAP1Lb1 promoter was more active than NtAP1La in inflorescences, as the former yielded higher frequencies and greater phenotypic evidence of tissue ablation compared to the latter. We further revealed that both promoters were uniformly expressed in the meristems of stage 1 and 2 floral buds, but were differentially expressed in floral organs later during development. While NtAP1La was found to be active in stage 4-5 carpels, later becoming confined to ovary tissue from stage 9 onwards, NtAP1Lb1 activity was apparent in all floral organs from stages 3 to 7, becoming completely absent in all floral organs from stage 11 onward. Therefore, it seems that the two tobacco promoters have acquired similar but distinct inflorescence-, floral meristem- and floral organ-specific and development-dependent regulatory features without any leaky activity in vegetative tissues. These features are novel and have rarely been observed in other flower-specific promoters characterized to date. The potential application of these promoters for engineering sterility, increasing biomass production and modifying flower architecture, as well as their putative use in flower-specific transgene excision, will be discussed.

  5. Up-regulation of miR-26a promotes neurite outgrowth and ameliorates apoptosis by inhibiting PTEN in bupivacaine injured mouse dorsal root ganglia.

    Science.gov (United States)

    Cui, Changlei; Xu, Gong; Qiu, Jinpeng; Fan, Xiushuang

    2015-08-01

    Local anesthetic of bupivacaine may inhibit neurite outgrowth and induce apoptosis in mouse dorsal root ganglia (DRG) neurons. In this work, we intended to investigate the functional role of microRNA 26a (miR-26a) in regulating bupivacaine-induced nerve injury in DRG neurons. DRG neurons were extracted from C57BL/6 mice and cultured in vitro. Bupivacaine was applied in vitro and it induced apoptosis, inhibited neurite growth, and significantly down-regulated miR-26a gene in DRG neurons. MiR-26a mimic was then used to up-regulate miR-26a expression in DRG neurons. We found that miR-26a up-regulation promoted neurite outgrowth and reduced apoptosis in bupivacaine-injured DRG neurons. Luciferase assay and Western blot confirmed that Phosphatase and tensin homolog (PTEN) was down-stream target of miR-26a in DRG neurons. Ectopic PTEN up-regulation was then able to reverse the protective effect of miR-26a overexpression on bupivacaine-induced nerve injury in DRG neurons. Overall, this work demonstrated that miR-26a had a functional role in regulating bupivacaine-induced nerve injury in DRG neurons. Up-regulating miR-26a to suppress PTEN signaling pathway may be an effective method to protect local anesthetic-induced nerve injury in spinal cord.

  6. Platelet rich plasma promotes skeletal muscle cell migration in association with up-regulation of FAK, paxillin, and F-Actin formation.

    Science.gov (United States)

    Tsai, Wen-Chung; Yu, Tung-Yang; Lin, Li-Ping; Lin, Mioa-Sui; Tsai, Ting-Ta; Pang, Jong-Hwei S

    2017-02-24

    Platelet rich plasma (PRP) contains various cytokines and growth factors which may be beneficial to the healing process of injured muscle. The aim of this study was to investigate the effect and molecular mechanism of PRP on migration of skeletal muscle cells. Skeletal muscle cells intrinsic to Sprague-Dawley rats were treated with PRP. The cell migration was evaluated by transwell filter migration assay and electric cell-substrate impedance sensing. The spreading of cells was evaluated microscopically. The formation of filamentous actin (F-actin) cytoskeleton was assessed by immunofluore