WorldWideScience

Sample records for omega-6 fatty acids

  1. Omega-6 Fatty Acids

    Science.gov (United States)

    Omega-6 fatty acids are types of fats. Some types are found in vegetable oils, including corn, evening primrose seed, safflower, and soybean oils. Other types of omega-6 fatty acids are found in black currant ...

  2. The omega-6/omega-3 fatty acid ratio: health implications

    OpenAIRE

    Simopoulos Artemis P.

    2010-01-01

    Today, Western diets are characterized by a higher omega-6 and a lower omega-3 fatty acid intake, whereas during the Paleolithic period when human’s genetic profile was established, there was a balance between omega-6 and omega-3 fatty acids. Their balance is an important determinant for brain development and in decreasing the risk for coronary heart disease (CHD), hypertension, cancer, diabetes, arthritis, and other autoimmune and possibly neurodegenerative diseases. Both omega-6 and omega-3...

  3. The omega-6/omega-3 fatty acid ratio: health implications

    Directory of Open Access Journals (Sweden)

    Simopoulos Artemis P.

    2010-09-01

    Full Text Available Today, Western diets are characterized by a higher omega-6 and a lower omega-3 fatty acid intake, whereas during the Paleolithic period when human’s genetic profile was established, there was a balance between omega-6 and omega-3 fatty acids. Their balance is an important determinant for brain development and in decreasing the risk for coronary heart disease (CHD, hypertension, cancer, diabetes, arthritis, and other autoimmune and possibly neurodegenerative diseases. Both omega-6 and omega-3 fatty acids influence gene expression. Because of single nucleotide polymorphisms (SNPs in their metabolic pathways, blood levels of omega-6 and omega-3 fatty acids are determined by both endogenous metabolism and dietary intake making the need of balanced dietary intake essential for health and disease prevention. Whether an omega-6/omega-3 ratio of 3:1 to 4:1 could prevent the pathogenesis of many diseases induced by today’s Western diets (AFSSA, 2010, a target of 1:1 to 2:1 appears to be consistent with studies on evolutionary aspects of diet, neurodevelopment, and genetics. A target of omega-6/omega-3 fatty acid ratio of 1:1 to 2:1 appears to be consistent with studies on evolutionary aspects of diet, neurodevelopment and genetics. A balanced ratio of omega-6/omega-3 fatty acids is important for health and in the prevention of CHD and possibly other chronic diseases.

  4. Health Implications of High Dietary Omega-6 Polyunsaturated Fatty Acids

    OpenAIRE

    Patterson, E.; Wall, R.; Fitzgerald, G. F.; R. P. Ross; Stanton, C.

    2012-01-01

    Omega-6 (n-6) polyunsaturated fatty acids (PUFA) (e.g., arachidonic acid (AA)) and omega-3 (n-3) PUFA (e.g., eicosapentaenoic acid (EPA)) are precursors to potent lipid mediator signalling molecules, termed “eicosanoids,” which have important roles in the regulation of inflammation. In general, eicosanoids derived from n-6 PUFA are proinflammatory while eicosanoids derived from n-3 PUFA are anti-inflammatory. Dietary changes over the past few decades in the intake of n-6 and n-3 PUFA show str...

  5. Using Caenorhabditis elegans to Uncover Conserved Functions of Omega-3 and Omega-6 Fatty Acids

    OpenAIRE

    Watts, Jennifer L.

    2016-01-01

    The nematode Caenorhabditis elegans is a powerful model organism to study functions of polyunsaturated fatty acids. The ability to alter fatty acid composition with genetic manipulation and dietary supplementation permits the dissection of the roles of omega-3 and omega-6 fatty acids in many biological process including reproduction, aging and neurobiology. Studies in C. elegans to date have mostly identified overlapping functions of 20-carbon omega-6 and omega-3 fatty acids in reproduction a...

  6. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity.

    Science.gov (United States)

    Simopoulos, Artemis P

    2016-03-02

    In the past three decades, total fat and saturated fat intake as a percentage of total calories has continuously decreased in Western diets, while the intake of omega-6 fatty acid increased and the omega-3 fatty acid decreased, resulting in a large increase in the omega-6/omega-3 ratio from 1:1 during evolution to 20:1 today or even higher. This change in the composition of fatty acids parallels a significant increase in the prevalence of overweight and obesity. Experimental studies have suggested that omega-6 and omega-3 fatty acids elicit divergent effects on body fat gain through mechanisms of adipogenesis, browning of adipose tissue, lipid homeostasis, brain-gut-adipose tissue axis, and most importantly systemic inflammation. Prospective studies clearly show an increase in the risk of obesity as the level of omega-6 fatty acids and the omega-6/omega-3 ratio increase in red blood cell (RBC) membrane phospholipids, whereas high omega-3 RBC membrane phospholipids decrease the risk of obesity. Recent studies in humans show that in addition to absolute amounts of omega-6 and omega-3 fatty acid intake, the omega-6/omega-3 ratio plays an important role in increasing the development of obesity via both AA eicosanoid metabolites and hyperactivity of the cannabinoid system, which can be reversed with increased intake of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). A balanced omega-6/omega-3 ratio is important for health and in the prevention and management of obesity.

  7. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity

    Directory of Open Access Journals (Sweden)

    Artemis P. Simopoulos

    2016-03-01

    Full Text Available In the past three decades, total fat and saturated fat intake as a percentage of total calories has continuously decreased in Western diets, while the intake of omega-6 fatty acid increased and the omega-3 fatty acid decreased, resulting in a large increase in the omega-6/omega-3 ratio from 1:1 during evolution to 20:1 today or even higher. This change in the composition of fatty acids parallels a significant increase in the prevalence of overweight and obesity. Experimental studies have suggested that omega-6 and omega-3 fatty acids elicit divergent effects on body fat gain through mechanisms of adipogenesis, browning of adipose tissue, lipid homeostasis, brain-gut-adipose tissue axis, and most importantly systemic inflammation. Prospective studies clearly show an increase in the risk of obesity as the level of omega-6 fatty acids and the omega-6/omega-3 ratio increase in red blood cell (RBC membrane phospholipids, whereas high omega-3 RBC membrane phospholipids decrease the risk of obesity. Recent studies in humans show that in addition to absolute amounts of omega-6 and omega-3 fatty acid intake, the omega-6/omega-3 ratio plays an important role in increasing the development of obesity via both AA eicosanoid metabolites and hyperactivity of the cannabinoid system, which can be reversed with increased intake of eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA. A balanced omega-6/omega-3 ratio is important for health and in the prevention and management of obesity.

  8. Using Caenorhabditis elegans to Uncover Conserved Functions of Omega-3 and Omega-6 Fatty Acids.

    Science.gov (United States)

    Watts, Jennifer L

    2016-02-02

    The nematode Caenorhabditis elegans is a powerful model organism to study functions of polyunsaturated fatty acids. The ability to alter fatty acid composition with genetic manipulation and dietary supplementation permits the dissection of the roles of omega-3 and omega-6 fatty acids in many biological process including reproduction, aging and neurobiology. Studies in C. elegans to date have mostly identified overlapping functions of 20-carbon omega-6 and omega-3 fatty acids in reproduction and in neurons, however, specific roles for either omega-3 or omega-6 fatty acids are beginning to emerge. Recent findings with importance to human health include the identification of a conserved Cox-independent prostaglandin synthesis pathway, critical functions for cytochrome P450 derivatives of polyunsaturated fatty acids, the requirements for omega-6 and omega-3 fatty acids in sensory neurons, and the importance of fatty acid desaturation for long lifespan. Furthermore, the ability of C. elegans to interconvert omega-6 to omega-3 fatty acids using the FAT-1 omega-3 desaturase has been exploited in mammalian studies and biotechnology approaches to generate mammals capable of exogenous generation of omega-3 fatty acids.

  9. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity

    OpenAIRE

    Artemis P. Simopoulos

    2016-01-01

    In the past three decades, total fat and saturated fat intake as a percentage of total calories has continuously decreased in Western diets, while the intake of omega-6 fatty acid increased and the omega-3 fatty acid decreased, resulting in a large increase in the omega-6/omega-3 ratio from 1:1 during evolution to 20:1 today or even higher. This change in the composition of fatty acids parallels a significant increase in the prevalence of overweight and obesity. Experimental studies have sugg...

  10. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity

    OpenAIRE

    Simopoulos, Artemis P.

    2016-01-01

    In the past three decades, total fat and saturated fat intake as a percentage of total calories has continuously decreased in Western diets, while the intake of omega-6 fatty acid increased and the omega-3 fatty acid decreased, resulting in a large increase in the omega-6/omega-3 ratio from 1:1 during evolution to 20:1 today or even higher. This change in the composition of fatty acids parallels a significant increase in the prevalence of overweight and obesity. Experimental studies have sugg...

  11. Balancing omega-6 and omega-3 fatty acids in ready-to-use therapeutic foods (RUTF)

    DEFF Research Database (Denmark)

    Brenna, J Thomas; Akomo, Peter; Bahwere, Paluku;

    2015-01-01

    Ready-to-use therapeutic foods (RUTFs) are a key component of a life-saving treatment for young children who present with uncomplicated severe acute malnutrition in resource limited settings. Increasing recognition of the role of balanced dietary omega-6 and omega-3 polyunsaturated fatty acids (P...

  12. Omega-6 and omega-3 fatty acids predict accelerated decline of peripheral nerve function in older persons

    OpenAIRE

    Lauretani, F.; BANDINELLI, S.; Benedetta, B.; Cherubini, A; Iorio, A. D.; Blè, A.; Giacomini, V.; Corsi, A.M.; Guralnik, J.M.; Ferrucci, L.

    2007-01-01

    Pre-clinical studies suggest that both omega-6 and omega-3 fatty acids have beneficial effects on peripheral nerve function. Rats feed a diet rich in polyunsaturated fatty acids (PUFAs) showed modification of phospholipid fatty acid composition in nerve membranes and improvement of sciatic nerve conduction velocity (NCV). We tested the hypothesis that baseline plasma omega-6 and omega-3 fatty acids levels predict accelerated decline of peripheral nerve function. Changes between baseline and t...

  13. Balancing omega-6 and omega-3 fatty acids in ready-to-use therapeutic foods (RUTF)

    DEFF Research Database (Denmark)

    Brenna, J Thomas; Akomo, Peter; Bahwere, Paluku

    2015-01-01

    Ready-to-use therapeutic foods (RUTFs) are a key component of a life-saving treatment for young children who present with uncomplicated severe acute malnutrition in resource limited settings. Increasing recognition of the role of balanced dietary omega-6 and omega-3 polyunsaturated fatty acids...... with altered PUFA content and looked at the effects on circulating omega-3 docosahexaenoic acid (DHA) status as a measure of overall omega-3 status. Supplemental oral administration of omega-3 DHA or reduction of RUTF omega-6 linoleic acid using high oleic peanuts improved DHA status, whereas increasing omega......-3 alpha-linolenic acid in RUTF did not. The results of these two small studies are consistent with well-established effects in animal studies and highlight the need for basic and operational research to improve fat composition in support of omega-3-specific development in young children as RUTF use...

  14. [Antioxidant activity of vegetable oils with various omega-6/omega-3 fatty acids ratio].

    Science.gov (United States)

    Guseva, D A; Prozorovskaia, N N; Shironin, A V; Sanzhakov, M A; Evteeva, N M; Rusina, I F; Kasaikina, O T

    2010-01-01

    Antioxidant activity and the oxidative stability were investigated in flax, sesame, silybum oils and oils with different omega-6/omega-3 fatty acid ratio. The content of antioxidants (AO) in crude oils and their reactivity towards peroxyl radicals were studied using kinetic method for addition of oil in a model reaction of cumol oxidation. There were correlations between PUFA/omega-9 and thermal stability (50 degrees C); between gamma-tocopherol content and resistantance to oxidative changes after storage at (10 +/- 2) degrees C for 6 months.

  15. Arachidonic acid, an omega-6 fatty acid, induces cytoplasmic phospholipase A2 in prostate carcinoma cells.

    Science.gov (United States)

    Hughes-Fulford, Millie; Tjandrawinata, Raymond R; Li, Chai-Fei; Sayyah, Sina

    2005-09-01

    For the past 60 years, dietary intake of essential fatty acids has increased. Moreover, the omega-6 fatty acids have recently been found to play an important role in regulation of gene expression. Proliferation of human prostate cells was significantly increased 48 h after arachidonic acid (AA) addition. We have analyzed initial uptake using nile red fluorescence and we found that the albumin conjugated AA is endocytosed into the cells followed by the induction of RNA within minutes, protein and PGE2 synthesis within hours. Here we describe that AA induces expression of cytosolic phospholipase A2 (cPLA2) in a dose-dependent manner and that this upregulation is dependent upon downstream synthesis of PGE2. The upregulation of cox-2 and cPLA2 was inhibited by flurbiprofen, a cyclooxygenase (COX) inhibitor, making this a second feed-forward enzyme in the eicosanoid pathway. Cox-2 specific inhibitors are known to inhibit colon and prostate cancer growth in humans; however, recent findings show that some of these have cardiovascular complications. Since cPLA2 is upstream in the eicosanoid pathway, it may be a good alternative for a pharmaceutical target for the treatment of cancer.

  16. A host-microbiome interaction mediates the opposing effects of omega-6 and omega-3 fatty acids on metabolic endotoxemia.

    Science.gov (United States)

    Kaliannan, Kanakaraju; Wang, Bin; Li, Xiang-Yong; Kim, Kui-Jin; Kang, Jing X

    2015-06-11

    Metabolic endotoxemia, commonly derived from gut dysbiosis, is a primary cause of chronic low grade inflammation that underlies many chronic diseases. Here we show that mice fed a diet high in omega-6 fatty acids exhibit higher levels of metabolic endotoxemia and systemic low-grade inflammation, while transgenic conversion of tissue omega-6 to omega-3 fatty acids dramatically reduces endotoxemic and inflammatory status. These opposing effects of tissue omega-6 and omega-3 fatty acids can be eliminated by antibiotic treatment and animal co-housing, suggesting the involvement of the gut microbiota. Analysis of gut microbiota and fecal transfer revealed that elevated tissue omega-3 fatty acids enhance intestinal production and secretion of intestinal alkaline phosphatase (IAP), which induces changes in the gut bacteria composition resulting in decreased lipopolysaccharide production and gut permeability, and ultimately, reduced metabolic endotoxemia and inflammation. Our findings uncover an interaction between host tissue fatty acid composition and gut microbiota as a novel mechanism for the anti-inflammatory effect of omega-3 fatty acids. Given the excess of omega-6 and deficiency of omega-3 in the modern Western diet, the differential effects of tissue omega-6 and omega-3 fatty acids on gut microbiota and metabolic endotoxemia provide insight into the etiology and management of today's health epidemics.

  17. Effect of a diet enriched with omega-6 and omega-3 fatty acids on the pig liver transcriptome.

    Science.gov (United States)

    Szostak, Agnieszka; Ogłuszka, Magdalena; Te Pas, Marinus F W; Poławska, Ewa; Urbański, Paweł; Juszczuk-Kubiak, Edyta; Blicharski, Tadeusz; Pareek, Chandra Shekhar; Dunkelberger, Jenelle R; Horbańczuk, Jarosław O; Pierzchała, Mariusz

    2016-01-01

    The optimal ratio of omega-6 to omega-3 polyunsaturated fatty acids (PUFAs) is important for keeping the homeostasis of biological processes and metabolism, yet the underlying biological mechanism is poorly understood. The objective of this study was to identify changes in the pig liver transcriptome induced by a diet enriched with omega-6 and omega-3 fatty acids and to characterize the biological mechanisms related to PUFA metabolism. Polish Landrace pigs (n = 12) were fed diet enriched with linoleic acid (LA, omega-6) and α-linolenic acid (ALA, omega-3) or standard diet as a control. The fatty acid profiling was assayed in order to verify how feeding influenced the fatty acid content in the liver, and subsequently next-generation sequencing (NGS) was used to identify differentially expressed genes (DEG) between transcriptomes between dietary groups. The biological mechanisms and pathway interaction networks were identified using DAVID and Cytoscape tools. Fatty acid profile analysis indicated a higher contribution of PUFAs in the liver for LA- and ALA-enriched diet group, particularly for the omega-3 fatty acid family, but not omega-6. Next-generation sequencing identified 3565 DEG, 1484 of which were induced and 2081 were suppressed by PUFA supplementation. A low ratio of omega-6/omega-3 fatty acids resulted in the modulation of fatty acid metabolism pathways and over-representation of genes involved in energy metabolism, signal transduction, and immune response pathways. In conclusion, a diet enriched with omega-6 and omega-3 fatty acids altered the transcriptomic profile of the pig liver and would influence animal health status.

  18. New insights into the health effects of dietary saturated and omega-6 and omega-3 polyunsaturated fatty acids.

    Science.gov (United States)

    de Lorgeril, Michel; Salen, Patricia

    2012-05-21

    Cardiovascular diseases and cancers are leading causes of morbidity and mortality. Reducing dietary saturated fat and replacing it with polyunsaturated fat is still the main dietary strategy to prevent cardiovascular diseases, although major flaws have been reported in the analyses supporting this approach. Recent studies introducing the concept of myocardial preconditioning have opened new avenues to understand the complex interplay between the various lipids and the risk of cardiovascular diseases. The optimal dietary fat profile includes a low intake of both saturated and omega-6 fatty acids and a moderate intake of omega-3 fatty acids. This profile is quite similar to the Mediterranean diet. On the other hand, recent studies have found a positive association between omega-6 and breast cancer risk. In contrast, omega-3 fatty acids do have anticancer properties. It has been shown that certain (Mediterranean) polyphenols significantly increase the endogenous synthesis of omega-3 whereas high intake of omega-6 decreases it. Finally, epidemiological studies suggest that a high omega-3 to omega-6 ratio may be the optimal strategy to decrease breast cancer risk. Thus, the present high intake of omega-6 in many countries is definitely not the optimal strategy to prevent cardiovascular disease and cancers. A moderate intake of plant and marine omega-3 in the context of the traditional Mediterranean diet (low in saturated and omega-6 fatty acids but high in plant monounsaturated fat) appears to be the best approach to reduce the risk of both cardiovascular diseases and cancers, in particular breast cancer.

  19. New insights into the health effects of dietary saturated and omega-6 and omega-3 polyunsaturated fatty acids

    Directory of Open Access Journals (Sweden)

    de Lorgeril Michel

    2012-05-01

    Full Text Available Abstract Cardiovascular diseases and cancers are leading causes of morbidity and mortality. Reducing dietary saturated fat and replacing it with polyunsaturated fat is still the main dietary strategy to prevent cardiovascular diseases, although major flaws have been reported in the analyses supporting this approach. Recent studies introducing the concept of myocardial preconditioning have opened new avenues to understand the complex interplay between the various lipids and the risk of cardiovascular diseases. The optimal dietary fat profile includes a low intake of both saturated and omega-6 fatty acids and a moderate intake of omega-3 fatty acids. This profile is quite similar to the Mediterranean diet. On the other hand, recent studies have found a positive association between omega-6 and breast cancer risk. In contrast, omega-3 fatty acids do have anticancer properties. It has been shown that certain (Mediterranean polyphenols significantly increase the endogenous synthesis of omega-3 whereas high intake of omega-6 decreases it. Finally, epidemiological studies suggest that a high omega-3 to omega-6 ratio may be the optimal strategy to decrease breast cancer risk. Thus, the present high intake of omega-6 in many countries is definitely not the optimal strategy to prevent cardiovascular disease and cancers. A moderate intake of plant and marine omega-3 in the context of the traditional Mediterranean diet (low in saturated and omega-6 fatty acids but high in plant monounsaturated fat appears to be the best approach to reduce the risk of both cardiovascular diseases and cancers, in particular breast cancer.

  20. Developmentally dependent and different roles of fatty acids OMEGA-6 and OMEGA-3

    DEFF Research Database (Denmark)

    Mourek, J; Mourek, J

    2011-01-01

    The developmentally-dependent differences in the biological significances and effects of PUFA-OMEGA-6 (namely of arachidonic acid) and PUFA-OMEGA-3 (namely of docosahexaenoic acid) are discussed. The clinical results as well as developmental experiences are indicating a hypothesis of the evolution...

  1. Effect of a diet enriched with omega-6 and omega-3 fatty acids on the pig liver transcriptome

    NARCIS (Netherlands)

    Szostak, Agnieszka; Ogłuszka, Magdalena; Pas, Te Marinus F.W.; Poławska, Ewa; Urbański, Paweł; Juszczuk Kubiak, Edyta; Blicharski, Tadeusz; Pareek, Chandra Shekhar; Dunkelberger, Jenelle R.; Horbańczuk, Jarosław O.; Pierzchała, Mariusz

    2016-01-01

    The optimal ratio of omega-6 to omega-3 polyunsaturated fatty acids (PUFAs) is important for keeping the homeostasis of biological processes and metabolism, yet the underlying biological mechanism is poorly understood. The objective of this study was to identify changes in the pig liver transcriptom

  2. Changes in plasma and erythrocyte omega-6 and omega-3 fatty acids in response to intravenous supply of omega-3 fatty acids in patients with hepatic colorectal metastases

    OpenAIRE

    Al-Taan, Omer; Stephenson, James A.; Spencer, Laura; Pollard, Cristina; West, Annette L; Philip C. Calder; Metcalfe, Matthew; Dennison, Ashley R.

    2013-01-01

    Background Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are functionally the most important omega-3 polyunsaturated fatty acids (PUFAs). Oral supply of these fatty acids increases their levels in plasma and cell membranes, often at the expense of the omega-6 PUFAs arachidonic acid (ARA) and linoleic acid. This results in an altered pattern of lipid mediator production to one which is less pro-inflammatory. We investigated whether short term intravenous supply of omega-3 PUFAs co...

  3. Assessment of essential fatty acid and omega 3-fatty acid status by measurement of erythrocyte 20 : 3 omega 9 (Mead acid), 22 : 5 omega 6/20 : 4 omega 6 and 22 : 5 omega 6/22 : 6 omega 3

    NARCIS (Netherlands)

    Smit, EN; Martini, IA; Woltil, HA; Boersma, ER; Muskiet, FAJ

    2002-01-01

    Background. Early suspicion of essential fatty acid deficiency (EFAD) or omega3-deficiency may rather focus on polyunsaturated fatty acid (PUFA) or long-chain PUFA (LCP) analyses than clinical symptoms. We determined cut-off values for biochemical EFAD, omega3-and omega3/22:6omega3 [docosahexaenoic

  4. Assessment of essential fatty acid and omega 3-fatty acid status by measurement of erythrocyte 20 : 3 omega 9 (Mead acid), 22 : 5 omega 6/20 : 4 omega 6 and 22 : 5 omega 6/22 : 6 omega 3

    NARCIS (Netherlands)

    Smit, EN; Martini, IA; Woltil, HA; Boersma, ER; Muskiet, FAJ

    2002-01-01

    Background. Early suspicion of essential fatty acid deficiency (EFAD) or omega3-deficiency may rather focus on polyunsaturated fatty acid (PUFA) or long-chain PUFA (LCP) analyses than clinical symptoms. We determined cut-off values for biochemical EFAD, omega3-and omega3/22:6omega3 [docosahexaenoic

  5. Omega-3 and Omega-6 Fatty Acids Act as Inhibitors of the Matrix Metalloproteinase-2 and Matrix Metalloproteinase-9 Activity.

    Science.gov (United States)

    Nicolai, Eleonora; Sinibaldi, Federica; Sannino, Gianpaolo; Laganà, Giuseppina; Basoli, Francesco; Licoccia, Silvia; Cozza, Paola; Santucci, Roberto; Piro, Maria Cristina

    2017-08-01

    Polyunsaturated fatty acids have been reported to play a protective role in a wide range of diseases characterized by an increased metalloproteinases (MMPs) activity. The recent finding that omega-3 and omega-6 fatty acids exert an anti-inflammatory effect in periodontal diseases has stimulated the present study, designed to determine whether such properties derive from a direct inhibitory action of these compounds on the activity of MMPs. To this issue, we investigated the effect exerted by omega-3 and omega-6 fatty acids on the activity of MMP-2 and MMP-9, two enzymes that actively participate to the destruction of the organic matrix of dentin following demineralization operated by bacteria acids. Data obtained (both in vitro and on ex-vivo teeth) reveal that omega-3 and omega-6 fatty acids inhibit the proteolytic activity of MMP-2 and MMP-9, two enzymes present in dentin. This observation is of interest since it assigns to these compounds a key role as MMPs inhibitors, and stimulates further study to better define their therapeutic potentialities in carious decay.

  6. [The essential fatty acids omega-6 and omega-3: from their discovery to their use in therapy].

    Science.gov (United States)

    Caramia, G

    2008-04-01

    In 1929 Burr and Burr discovered the essential fatty acids omega-6 and omega-3. Since then, researchers have shown a growing interest in unsaturated essential fatty acids as they form the framework for the organism's cell membranes, particularly the neurones in the brain, are involved in the energy-transformation process, regulate the information flows between cells. Polyunsaturated fatty acids are also precursors of ''hormonal'' molecules, often with opposing effects, prostaglandins, prostacyclins, thromboxanes, leukotrienes, lipossines, resolvines, protectines that regulate immunity, platelet aggregation, inflammation, etc. They showed that raised levels of polyunsaturated fatty acids omega-3 in tissue correlate with a reduced incidence of degenerative cardiovascular disease, some mental illnesses such as depression, and neuro-degenerative diseases such as Alzheimer's. The balance between omega-3 and omega-6 acids allows the cell membranes to develop with exactly the right flexibility and fluidity, to carry messages between neurones, that is a determining factor in physical and mental well-being and has a profound influence on all the body's inflammatory responses. The results of a number of scientific studies suggest that omega-3 acids contribute to measuring and restricting inflammatory symptoms, whereas omega-6 acids (and saturated fats) give free range to inflammatory responses and amplify allergic reactions. Today in the Western countries, the ratio of omega-3 acids to omega-6 in the diet is weighted 1:10 in favour of omega-6 to up to 1:25 in some areas, while for proper functioning a 4:1 ratio of omega-6 acids to omega-3 acids is generally considered the optimum. In addition, the type of diet followed in the Western countries is very rich in saturated fats like butter and animal fats, but because of an excessive supply of these less noble fats, the cell membranes lose flexibility and this can affect the way they work. An appropriate supplement can be an

  7. Anti-inflammatory Effects of Omega 3 and Omega 6 Polyunsaturated Fatty Acids in Cardiovascular Disease and Metabolic Syndrome.

    Science.gov (United States)

    Tortosa-Caparrós, Esther; Navas-Carrillo, Diana; Marín, Francisco; Orenes-Piñero, Esteban

    2016-01-08

    A lipid excess produces a systemic inflammation process due to tumor necrosis factor-α, interleukin-6 and C-reactive protein synthesis. Simultaneously, this fat excess promotes the appearance of insulin resistance. All this contributes to the development of atherosclerosis and increases the risk of cardiovascular diseases. On the other hand, polyunsaturated fatty acids (PUFAs), especially eicosapentaenoic acid and docosahexaenoic acid (omega 3), and arachidonic acid (omega 6) have shown anti-inflammatory properties. Lately, an inverse relationship between omega-3 fatty acids, inflammation, obesity and cardiovascular diseases has been demonstrated. To check fatty acids effect, the levels of some inflammation biomarkers have been analyzed. Leptin, adiponectin and resistin represent a group of hormones associated with the development of cardiovascular diseases, obesity, type 2 diabetes mellitus and insulin resistance and are modified in obese-overweight people comparing to normal weight people. Omega-3 PUFAs have been shown to decrease the production of inflammatory mediators, having a positive effect in obesity and diabetes mellitus type-2. Moreover, they significantly decrease the appearance of cardiovascular disease risk factors. Regarding omega-6 PUFA, there is controversy whether their effects are pro- or anti-inflammatory. The aim of this manuscript is to provide a comprehensive overview about the role of omega-3 and omega-6 PUFAs in cardiovascular diseases and metabolic syndrome.

  8. Enzymatic modification by point mutation and functional analysis of an omega-6 fatty acid desaturase from Arctic Chlamydomonas sp.

    Science.gov (United States)

    Jung, Woongsic; Kim, Eun Jae; Han, Se Jong; Kang, Sung-Ho; Choi, Han-Gu; Kim, Sanghee

    2017-02-07

    Arctic Chlamydomonas sp. is a dominant microalgal strain in cold or frozen freshwater in the Arctic region. The full-length open reading frame of the omega-6 fatty acid desaturase gene (AChFAD6) was obtained from the transcriptomic database of Arctic Chlamydomonas sp. from the KOPRI culture collection of polar micro-organisms. Amino acid sequence analysis indicated the presence of three conserved histidine-rich segments as unique characteristics of omega-6 fatty acid desaturases, and three transmembrane regions transported to plastidic membranes by chloroplast transit peptides in the N-terminal region. The AChFAD6 desaturase activity was examined by expressing wild-type and V254A mutant (Mut-AChFAD6) heterologous recombinant proteins. Quantitative gas chromatography indicated that the concentration of linoleic acids in AChFAD6-transformed cells increased more than 3-fold [6.73 ± 0.13 mg g(-1) dry cell weight (DCW)] compared with cells transformed with vector alone. In contrast, transformation with Mut-AChFAD6 increased the concentration of oleic acid to 9.23 ± 0.18 mg g(-1) DCW, indicating a change in enzymatic activity to mimic that of stearoyl-CoA desaturase. These results demonstrate that AChFAD6 of Arctic Chlamydomonas sp. increases membrane fluidity by enhancing denaturation of C18 fatty acids and facilitates production of large quantities of linoleic fatty acids in prokaryotic expression systems.

  9. Cardiac mortality is associated with low levels of omega-3 and omega-6 fatty acids in the heart of cadavers with a history of coronary heart disease.

    Science.gov (United States)

    Chattipakorn, Nipon; Settakorn, Jongkolnee; Petsophonsakul, Petnoi; Suwannahoi, Padiphat; Mahakranukrauh, Pasuk; Srichairatanakool, Somdet; Chattipakorn, Siriporn C

    2009-10-01

    The benefits of omega-3 (ie, eicosapentaenoic acid and docosahexaenoic acid [DHA]) and omega-6 (ie, linoleic acid and arachidonic acid [AA]) fatty acids on reducing cardiac mortality are still debated. In this study, we tested the hypothesis that high levels of omega-3 and omega-6 fatty acids in heart tissues are associated with low cardiac mortality in Thai cadavers. One hundred fresh cadavers were examined in this study. The cause of death, history of coronary heart disease (CHD), and fish consumption habits were obtained from death certificates, cadaver medical record profiles, and a questionnaire to a person who lived with the subject before death. In each cadaver, biopsies of cardiac tissues were taken from the interventricular septum for measurement of fatty acid. Of the 100 cadavers (average age, 69 +/- 13 years), 60 were men. The frequency of fish consumption was directly associated with omega-3 and omega-6 fatty acids in heart tissues (P fatty acids. However, in cadavers with a history of CHD, high levels of omega-3 and omega-6, particularly DHA and AA, were associated with low cardiac mortality (P fatty acids in heart tissues. Although omega-3 and omega-6 fatty acids are not associated with cardiac mortality in the overall studied population, their low levels (especially DHA and AA) in heart tissues are associated with high cardiac mortality in cadavers with a history of CHD.

  10. Generation of fad2 transgenic mice that produce omega-6 fatty acids

    Institute of Scientific and Technical Information of China (English)

    CHEN Qing; LIU Qing; WU ZhiFang; WANG ZongYi; GOU KeMian

    2009-01-01

    Fatty acid desaturase-2 (FAD2)introduces a double bond in position △12 in oleic acid (18:1)to form linoleic acid (18:2 n-6)in higher plants and microbes.A new transgenic expression cassette,containing CMV promoter/fad2 cDNA/SV40 polyA,was constructedto produce transgenic mice.Among 63 healthy offspring,10 founders (15.9%)integrated the cotton fad2 transgene into their genomes,as demonstrated by PCR and Southern blotting analysis.All founder mice were fertile and heterozygous fad2 female and nontransgenic littermates were used for fatty acid analysis using gas chromatography.One fad2 transgenic line showed substantial differences in the fatty acid profiles and the level of linoleic acid was increased 19% (P<0.05)in transgenic muscles compared to their nontransgenic littermates.Moreover,it exhibited an 87% and a 9% increase (P<0.05)in arachidonic acid (20:4 n-6)in muscles and liver,compared to their nontransgenic littermates.The results indicate that the plant fad2 gene can be functionally expressed in transgenic mice and may playan active role in conversion of oleic acid into linoleic acid.

  11. Generation of fad2 transgenic mice that produce omega-6 fatty acids

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Fatty acid desaturase-2 (FAD2) introduces a double bond in position 12 in oleic acid (18:1) to form linoleic acid (18:2 n-6) in higher plants and microbes. A new transgenic expression cassette, containing CMV promoter/fad2 cDNA/SV40 polyA, was constructedto produce transgenic mice. Among 63 healthy offspring, 10 founders (15.9%) integrated the cotton fad2 transgene into their genomes, as demonstrated by PCR and Southern blotting analysis. All founder mice were fertile and heterozygous fad2 female and nontransgenic littermates were used for fatty acid analysis using gas chromatography. One fad2 transgenic line showed substantial differences in the fatty acid profiles and the level of linoleic acid was increased 19% (P<0.05) in transgenic muscles compared to their nontransgenic littermates. Moreover, it exhibited an 87% and a 9% increase (P<0.05) in arachidonic acid (20:4 n-6) in muscles and liver, compared to their nontransgenic littermates. The results indicate that the plant fad2 gene can be functionally expressed in transgenic mice and may playan active role in conversion of oleic acid into linoleic acid.

  12. Omega 3 and omega 6 fatty acids in human and animal health: an African perspective.

    Science.gov (United States)

    Dunbar, B S; Bosire, R V; Deckelbaum, R J

    2014-12-01

    Lipids are essential for plant and animal development, growth and nutrition and play critical roles in health and reproduction. The dramatic increase in the human population has put increasing pressure on human food sources, especially of those sources of food which contain adequate levels of polyunsaturated fatty acids (PUFAs) and more importantly, sources of food which have favorable ratios of the n-3 (18-carbon, α-linolenic acid, ALA) to n-6 (18-carbon linoleic acid, LA) PUFAs. Recent studies have demonstrated the beneficial effects of the n-3 PUFAs in diets as well as potentially negative effects of excessive levels of n-6 PUFAs in diets. This review discusses these human health issues relating to changes in diets based on environmental and industrial changes as well as strategies in East Africa for improving lipid composition of food using indigenous sources.

  13. High Fat Diet Exposure during Fetal Life Enhances Plasma and Hepatic Omega-6 Fatty Acid Profiles in Fetal Wistar Rats

    Directory of Open Access Journals (Sweden)

    Marlon E. Cerf

    2015-08-01

    Full Text Available Pregnant rats were fed a high fat diet (HFD for the first (HF1, second (HF2, third (HF3 or all three weeks (HFG of gestation. Maintenance on a HFD during specific periods of gestation was hypothesized to alter fetal glycemia, insulinemia, induce insulin resistance; and alter fetal plasma and hepatic fatty acid (FA profiles. At day 20 of gestation, fetal plasma and hepatic FA profiles were determined by gas chromatography; body weight, fasting glycemia, insulinemia and the Homeostasis Model Assessment (HOMA-insulin resistance were also determined. HF3 fetuses were heaviest concomitant with elevated glycemia and insulin resistance (p < 0.05. HFG fetuses had elevated plasma linoleic (18:2 n-6 and arachidonic (20:4 n-6 acid proportions (p < 0.05. In the liver, HF3 fetuses displayed elevated linoleic, eicosatrienoic (20:3 n-6 and arachidonic acid proportions (p < 0.05. HFG fetuses had reduced hepatic docosatrienoic acid (22:5 n-3 proportions (p < 0.05. High fat maintenance during the final week of fetal life enhances hepatic omega-6 FA profiles in fetuses concomitant with hyperglycemia and insulin resistance thereby presenting a metabolically compromised phenotype.

  14. A porcine gluteus medius muscle genome-wide transcriptome analysis: dietary effects of omega-6 and omega-3 fatty acids on biological mechanisms

    NARCIS (Netherlands)

    Ogłuszka, Magdalena; Szostak, Agnieszka; Pas, te Marinus F.W.; Poławska, Ewa; Urbański, Paweł; Blicharski, Tadeusz; Pareek, Chandra Shekhar; Juszczuk-Kubiak, Edyta; Dunkelberger, Jenelle R.; Horbańczuk, Jarosław O.; Pierzchała, Mariusz

    2017-01-01


    Background

    The level of omega-6 and omega-3 polyunsaturated fatty acids can affect many cellular systems and function via nuclear receptors or the bioactive lipid regulation of gene expression. The objective of this study was to investigate changes in the muscle transcriptome and the b

  15. Preventive effects of omega-3 and omega-6 Fatty acids on peroxide mediated oxidative stress responses in primary human trabecular meshwork cells.

    Directory of Open Access Journals (Sweden)

    Theofilos Tourtas

    Full Text Available Pathologic processes in glaucoma include increased apoptosis, accumulation of extracellular material in the trabecular meshwork and optic nerve, condensations of the cytoskeleton and precocious cellular senescence. Oxidative stress was shown to generate these alterations in primary ocular cells. Fatty acids omega-3 and -6 are alleged to constitute a prophylaxis against these deleterious effects. Here, we tested actual preventive effects omega-3 and -6 against peroxide induced stress responses in primary human trabecular meshwork cells. Changes of mitochondrial activity, proliferation, heat shock proteins, extracellular matrix components, and inflammatory markers were evaluated. Alterations of the cytoskeleton were evaluated by phalloidin labeling. Here we report a repressive effect of omega-6 on metabolic activity and proliferation, which was not detected for omega-3. Both agents were able to prevent the anti-proliferative effect of H₂O₂, but only omega-3 prevented metabolic repression. Expression of heat shock protein 27 was unaltered by both fatty acids, whereas heat shock protein 90 was significantly induced by both. Omega-6 increased fibronectin and connective tissue growth factor synthesis, as well as the amount of secreted fibronectin. Omega-3, instead, induced plasminogen activator inhibitor 1 synthesis. H₂O₂ further increased fibronectin production in omega-6 supplemented cells, which was not the case in omega-3 treated cells. H₂O₂ stimulation of plasminogen activator inhibitor 1 and connective tissue growth factor was repressed by both fatty acids. Both fatty acids appeared to abolish H₂O₂ mediated stimulation of nuclear factor κB and IL-6, but not IL-1α and IL-8. H₂O₂ induced formation of cross-linked actin networks and stress fibers, which was reduced by preemptive application of omega-3. Omega-6, in contrast, had no protective effect on that, and even seemed to promote condensation. Based on the observed side

  16. Distribution of omega-6 and omega-3 polyunsaturated fatty acids in the whole rat body and 25 compartments.

    Science.gov (United States)

    Salem, N M; Lin, Y H; Moriguchi, T; Lim, S Y; Salem, N; Hibbeln, J R

    2015-09-01

    The steady state compositions of omega-6 and omega-3 polyunsaturated fatty acids (PUFA) throughout the various viscera and tissues within the whole body of rats have not previously been described in a comprehensive manner. Dams consumed diets containing 10wt% fat (15% linoleate and 3% α-linolenate). Male offspring (n=9) at 7-week of age were euthanized and dissected into 25 compartments. Total lipid fatty acids for each compartment were quantified by GC/FID and summed for the rat whole body; total n-6 PUFA was 12wt% and total n-3 PUFA was 2.1% of total fatty acids. 18:2n-6 accounted for 84% of the total n-6 PUFA, 20:4n-6 was 12%, 18:3n-3 was 59% of the total n-3 PUFA, 20:5n-3 was 2.1%, and 22:6n-3 was 32%. The white adipose tissue contained the greatest amounts of 18:2n-6 (1.5g) and 18:3n-3 (0.2g). 20:4n-6 was highest in muscle (60mg) and liver (57mg), while 22:6n-3 was greatest in muscle (46mg), followed by liver (27mg) and carcass (20mg). In terms of fatty acid composition expressed as a percentage, 18:2n-6 was the highest in the heart (13wt%), while 18:3n-3 was about 1.3wt% for skin, white adipose tissue and fur. 20:4n-6 was highest (21-25wt%) in the circulation, kidney, and spleen, while 22:6n-3 was highest in the brain (12wt%), followed by the heart (7.9wt%), liver (5.9wt%), and spinal cord (5.1wt%). Selectivity was greatest when comparing 22:6n-3 in brain (12%) to white adipose (0.08%) (68-fold) and 22:5n-6 in testes (15.6%) compared to white adipose (0.02%), 780-fold.

  17. Higher de novo synthesized fatty acids and lower omega 3-and omega 6-long-chain polyunsaturated fatty acids in umbilical vessels of women with preeclampsia and high fish intakes

    NARCIS (Netherlands)

    Huiskes, Victor J. B.; Kuipers, Remko S.; Velzing-Aarts, Francien V.; Dijck-Brouwer, D. A. Janneke; van der Meulen, Jan; Muskiet, Frits A. J.

    2009-01-01

    Umbilical veins (UV) and arteries (UA) of preeclamptic women in Curacao harbor lower long-chain polyunsaturated fatty acids (LCP). The present aim was to test these findings in Mwanza (Tanzania), whose inhabitants have high LCP omega 3 and LCP omega 6 intakes from Lake Victoria fish. Women with pree

  18. Higher de novo synthesized fatty acids and lower omega 3-and omega 6-long-chain polyunsaturated fatty acids in umbilical vessels of women with preeclampsia and high fish intakes

    NARCIS (Netherlands)

    Huiskes, Victor J. B.; Kuipers, Remko S.; Velzing-Aarts, Francien V.; Dijck-Brouwer, D. A. Janneke; van der Meulen, Jan; Muskiet, Frits A. J.

    2009-01-01

    Umbilical veins (UV) and arteries (UA) of preeclamptic women in Curacao harbor lower long-chain polyunsaturated fatty acids (LCP). The present aim was to test these findings in Mwanza (Tanzania), whose inhabitants have high LCP omega 3 and LCP omega 6 intakes from Lake Victoria fish. Women with

  19. Higher de novo synthesized fatty acids and lower omega 3-and omega 6-long-chain polyunsaturated fatty acids in umbilical vessels of women with preeclampsia and high fish intakes

    NARCIS (Netherlands)

    Huiskes, Victor J. B.; Kuipers, Remko S.; Velzing-Aarts, Francien V.; Dijck-Brouwer, D. A. Janneke; van der Meulen, Jan; Muskiet, Frits A. J.

    2009-01-01

    Umbilical veins (UV) and arteries (UA) of preeclamptic women in Curacao harbor lower long-chain polyunsaturated fatty acids (LCP). The present aim was to test these findings in Mwanza (Tanzania), whose inhabitants have high LCP omega 3 and LCP omega 6 intakes from Lake Victoria fish. Women with pree

  20. Effect of Different Omega-6/Omega-3 Polyunsaturated Fatty Acid Ratios on the Formation of Monohydroxylated Fatty Acids in THP-1 Derived Macrophages

    Directory of Open Access Journals (Sweden)

    Kathrin Keeren

    2015-04-01

    Full Text Available Omega-6 and omega-3 polyunsaturated fatty acids (n-6 and n-3 PUFA can modulate inflammatory processes. In western diets, the content of n-6 PUFA is much higher than that of n-3 PUFA, which has been suggested to promote a pro-inflammatory phenotype. The aim of this study was to analyze the effect of modulating the n-6/n-3 PUFA ratio on the formation of monohydroxylated fatty acid (HO-FAs derived from the n-6 PUFA arachidonic acid (AA and the n-3 PUFAs eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA in THP-1 macrophages by means of LC-MS. Lipid metabolites were measured in THP-1 macrophage cell pellets. The concentration of AA-derived hydroxyeicosatetraenoic acids (HETEs was not significantly changed when incubated THP-1 macrophages in a high AA/(EPA+DHA ratio of 19/1 vs. a low ratio AA/(EPA+DHA of 1/1 (950.6 ± 110 ng/mg vs. 648.2 ± 92.4 ng/mg, p = 0.103. Correspondingly, the concentration of EPA-derived hydroxyeicosapentaenoic acids (HEPEs and DHA-derived hydroxydocosahexaenoic acids (HDHAs were significantly increased (63.9 ± 7.8 ng/mg vs. 434.4 ± 84.3 ng/mg, p = 0.012 and 84.9 ± 18.3 ng/mg vs. 439.4 ± 82.7 ng/mg, p = 0.014, respectively. Most notable was the strong increase of 18-hydroxyeicosapentaenoic acid (18-HEPE formation in THP-1 macrophages, with levels of 170.9 ± 40.2 ng/mg protein in the high n-3 PUFA treated cells. Thus our data indicate that THP-1 macrophages prominently utilize EPA and DHA for monohydroxylated metabolite formation, in particular 18-HEPE, which has been shown to be released by macrophages to prevent pressure overload-induced maladaptive cardiac remodeling.

  1. Food sources of total omega 6 fatty acids (18:2 + 20:4), listed in descending order by percentages of their contribution to intake, based on data from the National Health and Nutrition Examination Survey 2005-2006

    Science.gov (United States)

    Food sources of total omega 6 fatty acids (18:2 + 20:4), listed in descending order by percentages of their contribution to intake, based on data from the National Health and Nutrition Examination Survey 2005-2006

  2. Adipose tissue omega-3 and omega-6 fatty acid content and breast cancer in the euramic study

    NARCIS (Netherlands)

    Simonsen, N.; Veer, P. van 't; Strain, J.J.; Martin-Moreno, J.M.; Huttunen, J.K.; Navajas, J.F.-C.; Martin, B.C.; Thamm, M.; Kardinaal, A.F.M.; Kok, F.J.; Kohlmeier, L.

    1998-01-01

    The fatty acid content of adipose tissue in postmenopausal breast cancer cases and controls from five European countries in the European Community Multicenter Study on Antioxidants, Myocardial Infarction, and Cancer (EURAMIC) breast cancer study (1991-1992) was used to explore the hypothesis that

  3. Adipose tissue omega-3 and omega-6 fatty acid content and breast cancer in the euramic study

    NARCIS (Netherlands)

    Simonsen, N.; Veer, P. van 't; Strain, J.J.; Martin-Moreno, J.M.; Huttunen, J.K.; Navajas, J.F.-C.; Martin, B.C.; Thamm, M.; Kardinaal, A.F.M.; Kok, F.J.; Kohlmeier, L.

    1998-01-01

    The fatty acid content of adipose tissue in postmenopausal breast cancer cases and controls from five European countries in the European Community Multicenter Study on Antioxidants, Myocardial Infarction, and Cancer (EURAMIC) breast cancer study (1991-1992) was used to explore the hypothesis that fa

  4. Mechanisms involved in the differential reduction of omega-3 and omega-6 highly unsaturated fatty acids by structural heart disease resulting in "HUFA deficiency".

    Science.gov (United States)

    Rupp, Heinz; Rupp, Thomas P; Alter, Peter; Maisch, Bernhard

    2012-01-01

    The causes of reduced levels of omega-3 and omega-6 highly unsaturated fatty acids ("HUFA deficiency") in heart failure remain unresolved. HUFA profiles were examined in the serum of 331 patients with failing versus nonfailing heart disease. Arachidonic acid was positively correlated (P acid (EPA) (r = 0.40) and docosahexaenoic acid (DHA) (r = 0.53) and negatively with palmitic (r = 0.42), palmitoleic (r = 0.38), and oleic acid (r = 0.48). Delta-5 desaturase activity was reduced (P heart failure patients with low ejection fraction, dilatation, increased wall stress, and reduced heart rate variability (SDNN). In these patients, the reduced (P acid (P = 0.05) arose from separate influences involving reduced cardiac contractility (arachidonic acid and palmitic acid predicted by ejection fraction) and chamber dilatation (DHA and oleic acid predicted by end-diastolic diameter). A low DHA (0.2%-0.9% versus 1.4%-3.1%) was associated (P fatty acid oxidation (CPT-1 inhibition). Based on administration of omega-3 HUFA (OMACOR), dilatation is identified as a target for 1-2 g omega-3 HUFA·day(-1). Interventions for reduced arachidonic acid remain to be explored.

  5. Analysis of epidermal lipids in normal and atopic dogs, before and after administration of an oral omega-6/omega-3 fatty acid feed supplement. A pilot study.

    Science.gov (United States)

    Popa, Iuliana; Pin, Didier; Remoué, Noëlle; Remoué, Nathalie; Osta, Bilal; Callejon, Sylvie; Videmont, Emilie; Gatto, Hugues; Portoukalian, Jacques; Haftek, Marek

    2011-12-01

    Alterations of the lipid expression in the skin of human and canine atopic subjects may be one of the key factors in the disease development. We have analyzed the ultrastructure of the clinically uninvolved skin of atopic dogs and compared it with the lipid composition of their tape-stripped stratum corneum (SC). The effect of a 2 month treatment of atopic dogs by food supplementation with a mixture of essential fatty acids was evaluated on skin samples taken before and after the treatment period. Electron microscopy revealed that the non-lesional skin of atopic dogs exhibited an abnormal and largely incomplete structure of the lamellar lipids with little cohesion between the corneocyte strata. The SC of atopic dogs was characterized by a significant decrease in the lipid content when compared to the healthy controls. Following oral supplementation with the mixture of essential fatty acids, the overall lipid content of the SC markedly increased. This feature was observed both with the free and, most importantly, with the protein-bound lipids (cholesterol, fatty acids and ceramides), the latter constituting the corneocyte-bound scaffold for ordinate organisation of the extracellular lipid bi-layers. Indeed, the semi-quantitative electron microscopy study revealed that the treatment resulted in a significantly improved organization of the lamellar lipids in the lower SC, comparable to that of the healthy dogs. Our results indicate the potential interest of long-term alimentary supplementation with omega-6 and omega-3 essential fatty acids in canine atopic dermatitis.

  6. Changing the omega-6 to omega-3 fatty acid ratio in sow diets alters serum, colostrum, and milk fatty acid profiles, but has minimal impact on reproductive performance.

    Science.gov (United States)

    Eastwood, L; Leterme, P; Beaulieu, A D

    2014-12-01

    This experiment tested the hypothesis that reducing the omega-6 (n-6) to omega-3 (n-3) fatty acid (FA) ratio in sow diets will improve performance, characterized by increased litter size, decreased preweaning mortality, and improved growth performance. Second, we determined if the FA profile in sow and piglet blood, colostrum, and milk are altered when sows are fed diets with varied n-6:n-3 ratios and if the dietary FA ratio impacts circulating concentrations of IgG, IgA, eicosapentaenoic (EPA), or docosahexaenoic (DHA) acid. Sows (n=150) were assigned to 1 of 5 treatments (each divided into gestation and lactation diets) on d 80 of gestation. Period 1 (P1) is defined as d 80 of gestation to weaning and Period 2 (P2) refers to the subsequent breeding to weaning. Diets were wheat and barley based (5% crude fat) and treatments consisted of a control (tallow), 3 diets with plant oil-based n-6:n-3 ratios (9:1P, 5:1P, and 1:1P), and a 5:1 fish oil diet (5:1F). Litter size was unaffected by treatment during P1 and P2 (P>0.10). In P1, birth weight was unaffected by diet (P>0.10); however, weaning weight (P=0.019) and ADG from birth to weaning (P=0.011) were greatest for piglets born to 9:1P and 5:1P sows. During P2, 5:1F sows consumed 10% less feed during lactation (P=0.036), tended to have reduced piglet birth weights (P=0.052), and piglet weaning weight was reduced by 0.8 kg (P=0.040) relative to the other diets. Colostrum and piglet serum IgA and IgG concentrations were unaffected by diet (P>0.10). Serum n-3 FA were greatest in sows (Pdiets and in their offspring (P=0.014). Serum α-linolenic acid (ALA) was greatest in 1:1P sows and EPA and DHA were greatest in 5:1F sows (P0.10). Relative to piglets of sows consuming the control diet, EPA was 2.5-fold greater in the 1:1P group and 4-fold greater in 5:1F group (Pdiets with plant-based n-6:n-3 ratios of 5:1 or 1:1 did not impact performance relative to a control group but improved the conversion of ALA into EPA and

  7. Fatty acid composition in major depression: decreased omega 3 fractions in cholesteryl esters and increased C20: 4 omega 6/C20:5 omega 3 ratio in cholesteryl esters and phospholipids.

    Science.gov (United States)

    Maes, M; Smith, R; Christophe, A; Cosyns, P; Desnyder, R; Meltzer, H

    1996-04-26

    Recently, there were some reports that major depression may be accompanied by alterations in serum total cholesterol, cholesterol ester and omega 3 essential fatty acid levels and by an increased C20: 4 omega 6/C20: 5 omega 3, i.e., arachidonic acid/eicosapentaenoic, ratio. The present study aimed to examine fatty acid composition of serum cholesteryl esters and phospholipids in 36 major depressed, 14 minor depressed and 24 normal subjects. Individual saturated (e.g., C14:0; C16:0, C18:0) and unsaturated (e.g., C18:1, C18:2, C20:4) fatty acids in phospholipid and cholesteryl ester fractions were assayed and the sums of the percentages of omega 6 and omega 3, saturated, branched chain and odd chain fatty acids, monoenes as well as the ratios omega 6/omega 3 and C20:4 omega 6/C20:5 omega 3 were calculated. Major depressed subjects had significantly higher C20:4 omega 6/C20:5 omega 3 ratio in both serum cholesteryl esters and phospholipids and a significantly increased omega 6/omega 3 ratio in cholesteryl ester fraction than healthy volunteers and minor depressed subjects. Major depressed subjects had significantly lower C18:3 omega 3 in cholesteryl esters than normal controls. Major depressed subjects showed significantly lower total omega 3 polyunsaturated fatty acids in cholesteryl esters and significantly lower C20:5 omega 3 in serum cholesteryl esters and phospholipids than minor depressed subjects and healthy controls. These findings suggest an abnormal intake or metabolism of essential fatty acids in conjunction with decreased formation of cholesteryl esters in major depression.

  8. Insulin-like growth factors (IGFs) and IGF binding proteins in active Crohn's disease treated with omega-3 or omega-6 fatty acids and corticosteroids

    DEFF Research Database (Denmark)

    Eivindson, Martin; Grønbaek, Henning; Nielsen, Jens Nederby

    2005-01-01

    of the present study was to examine the effects of enteral nutrition, Impact Powder, as adjuvant therapy to corticosteroid treatment on changes in the GH/IGF-I axis in patients with Crohn's disease (CD). MATERIAL AND METHODS: The patients were randomized to 3-IP (omega-3-fatty acid (FA), 3 g/day) or 6-IP (omega......-6-FA, 9 g/day). Changes in total IGF-I (tIGF-I) and total IGF-II (tIGF-II), free IGF-I (fIGF-I), IGF binding proteins (IGFBP-1 and IGFBP-3), IGFBP-3 protease activity and insulin levels were examined in 31 patients with active CD (CDAI: 186-603) during treatment with prednisolone (40 mg for 1 week...

  9. The differential expression of omega-3 and omega-6 fatty acid metabolising enzymes in colorectal cancer and its prognostic significance.

    Science.gov (United States)

    Alnabulsi, Abdo; Swan, Rebecca; Cash, Beatriz; Alnabulsi, Ayham; Murray, Graeme I

    2017-06-06

    Colorectal cancer is a common malignancy and one of the leading causes of cancer-related deaths. The metabolism of omega fatty acids has been implicated in tumour growth and metastasis. This study has characterised the expression of omega fatty acid metabolising enzymes CYP4A11, CYP4F11, CYP4V2 and CYP4Z1 using monoclonal antibodies we have developed. Immunohistochemistry was performed on a tissue microarray containing 650 primary colorectal cancers, 285 lymph node metastasis and 50 normal colonic mucosa. The differential expression of CYP4A11 and CYP4F11 showed a strong association with survival in both the whole patient cohort (hazard ratio (HR)=1.203, 95% CI=1.092-1.324, χ(2)=14.968, P=0.001) and in mismatch repair-proficient tumours (HR=1.276, 95% CI=1.095-1.488, χ(2)=9.988, P=0.007). Multivariate analysis revealed that the differential expression of CYP4A11 and CYP4F11 was independently prognostic in both the whole patient cohort (P=0.019) and in mismatch repair proficient tumours (P=0.046). A significant and independent association has been identified between overall survival and the differential expression of CYP4A11 and CYP4F11 in the whole patient cohort and in mismatch repair-proficient tumours.

  10. Omega-3 and Omega-6 Polyunsaturated Fatty Acid Levels and Correlations with Symptoms in Children with Attention Deficit Hyperactivity Disorder, Autistic Spectrum Disorder and Typically Developing Controls

    Science.gov (United States)

    Niyonsenga, Theophile; Duff, Jacques

    2016-01-01

    Background There is evidence that children with Attention Deficit Hyperactivity Disorder (ADHD) and Autistic Spectrum Disorder (ASD) have lower omega-3 polyunsaturated fatty acid (n-3 PUFA) levels compared with controls and conflicting evidence regarding omega-6 (n-6) PUFA levels. Objectives This study investigated whether erythrocyte n-3 PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were lower and n-6 PUFA arachidonic acid (AA) higher in children with ADHD, ASD and controls, and whether lower n-3 and higher n-6 PUFAs correlated with poorer scores on the Australian Twin Behaviour Rating Scale (ATBRS; ADHD symptoms) and Test of Variable Attention (TOVA) in children with ADHD, and Childhood Autism Rating Scale (CARS) in children with ASD. Methods Assessments and blood samples of 565 children aged 3–17 years with ADHD (n = 401), ASD (n = 85) or controls (n = 79) were analysed. One-way ANOVAs with Tukey’s post-hoc analysis investigated differences in PUFA levels between groups and Pearson’s correlations investigated correlations between PUFA levels and ATBRS, TOVA and CARS scores. Results Children with ADHD and ASD had lower DHA, EPA and AA, higher AA/EPA ratio and lower n-3/n-6 than controls (Pfatty acid metabolism in these disorders. PMID:27232999

  11. Omega 6 to omega 3 fatty acid imbalance early in life leads to persistent reductions in DHA levels in glycerophospholipids in rat hypothalamus even after long-term omega 3 fatty acid repletion.

    Science.gov (United States)

    Li, Duo; Weisinger, Harrison S; Weisinger, Richard S; Mathai, Michael; Armitage, James A; Vingrys, Algis J; Sinclair, Andrew J

    2006-06-01

    Failure to provide omega 3 fatty acids in the perinatal period results in alterations in nerve growth factor levels, dopamine production and permanent elevations in blood pressure. The present study investigated whether changes in brain (i.e., hypothalamus) glycerophospholipid fatty acid profiles induced by a diet rich in omega 6 fatty acids and very low in alpha-linolenic acid (ALA) during pregnancy and the perinatal period could be reversed by subsequent feeding of a diet containing ALA. Female rats (6 per group) were mated and fed either a low ALA diet or a control diet containing ALA throughout pregnancy and until weaning of the pups at 3 weeks. At weaning, the pups (20 per group) remained on the diet of their mothers until 9 weeks, when half the pups were switched onto the other diet, thus generating four groups of animals. At 33 weeks, pups were killed, the hypothalamus dissected from the male rats and analysed for glycerophospholipid fatty acids. In the animals fed the diet with very little ALA and then re-fed the control diet containing high levels of ALA for 24 weeks, the DHA levels were still significantly less than the control values in PE, PS and PI fractions, by 9%, 18% and 34%, respectively. In this group, but not in the other dietary groups, ALA was detected in all glycerophospholipid classes at 0.2-1.7% of the total fatty acids. The results suggest that omega 6-3 PUFA imbalance early in life leads to irreversible changes in hypothalamic composition. The increased ALA and reduced DHA proportions in the animals re-fed ALA in later life are consistent with a dysfunction or down-regulation of the conversion of ALA to 18:4n-3 by the delta-6 desaturase.

  12. Effect of omega-3 and omega-6 polyunsaturated fatty acid enriched diet on plasma IGF-1 and testosterone concentration, puberty and semen quality in male buffalo.

    Science.gov (United States)

    Tran, L V; Malla, B A; Sharma, A N; Kumar, Sachin; Tyagi, Nitin; Tyagi, A K

    2016-10-01

    The objective of the present study was to evaluate the effect of omega-3 and omega-6 PUFA enriched diet on plasma IGF-1 and testosterone concentrations, puberty, sperm fatty acid profile and semen quality in male buffalo. Eighteen male buffalo calves were distributed randomly in three different groups and fed concentrate mixture along with green fodder and wheat straw in 50:40:10 ratios as per requirements. Basis ration of animals in group I was supplemented with 4% of prilled fat (PFA), while in group II and group III were added 4.67% of Calcium salt from Soybean (CaSFA) and Linseed oil (CaLFA), respectively. Male buffalo fed omega-3 PUFA high diet significantly increased concentrations of IGF-1 and testosterone in plasma as compared to two other diets (pdiet (CaLFA) had the largest influence as compared to other diets (PFA and CaSFA). Feeding of n-3 PUFA rich diet significantly increased the DHA (C22:6n-3) content in sperm (pdiet increased IGF-1 and testosterone secretion, reduced pubertal age and improved both fresh and post-thawing semen quality in male buffalo.

  13. Plasma concentrations of PGFM and uterine and ovarian responses in early lactation dairy cows fed omega-3 and omega-6 fatty acids.

    Science.gov (United States)

    Dirandeh, E; Towhidi, A; Pirsaraei, Z Ansari; Hashemi, F Adib; Ganjkhanlou, M; Zeinoaldini, S; Roodbari, A Rezaei; Saberifar, T; Petit, H V

    2013-07-15

    A total of 120 dairy cows were assigned randomly to three diets to determine the effects of omega-6 or omega-3 fatty acid (FA) supplementation on uterine diseases, ovarian responses, and blood concentrations of estradiol, progesterone, and PGFM in lactating Holstein dairy cows. Diets contained either protected palm oil (C), extruded linseed (L), or roasted whole soybeans (S), and they were fed from calving to Day 70 postpartum. Estrous cycles were synchronized and ovarian follicular development was monitored daily for an entire cycle. There were no differences among diets in the incidence of lameness, mastitis, or metritis, but the incidence of clinical endometritis was lower (P < 0.05) in cows fed S (0%) compared with cows fed C (28.2%) and L (20.5%). Uterine involution in cows fed S occurred 3.77 and 2.78 days earlier, respectively, than in those fed C and L. The PGFM response 60 minutes after an oxytocin challenge was highest for cows fed S and lowest for cows fed L. Mean plasma progesterone concentration on Day 15 of the synchronized cycle was higher in cows fed S (14.5 ng/mL) and L (15.0 ng/mL) than in those fed C (12.0 ng/mL). The ovulatory follicle on Day 21 of the estrous cycle (estrous = Day 0) was larger in cows fed S (16.1 ± 0.9 mm) and L (15.7 ± 0.7 mm) compared with cows fed C (13.2 ± 0.87 mm; P = 0.02) but there were no significant differences between cows fed diets S and L. The mean number of small and medium follicles and diameter of subordinate follicle were similar among diets. In conclusion, feeding a source of omega-6 FA can be a strategy to improve uterine health after calving, although a source of omega-3 FA such as L should be fed after uterine involution to decrease PGF2α secretion.

  14. Reduced dietary omega-6 to omega-3 fatty acid ratio and 12/15-lipoxygenase deficiency are protective against chronic high fat diet-induced steatohepatitis.

    Directory of Open Access Journals (Sweden)

    Milos Lazic

    Full Text Available Obesity is associated with metabolic perturbations including liver and adipose tissue inflammation, insulin resistance, and type 2 diabetes. Omega-6 fatty acids (ω6 promote and omega-3 fatty acids (ω3 reduce inflammation as they can be metabolized to pro- and anti-inflammatory eicosanoids, respectively. 12/15-lipoxygenase (12/15-LO enzymatically produces some of these metabolites and is induced by high fat (HF diet. We investigated the effects of altering dietary ω6/ω3 ratio and 12/15-LO deficiency on HF diet-induced tissue inflammation and insulin resistance. We examined how these conditions affect circulating concentrations of oxidized metabolites of ω6 arachidonic and linoleic acids and innate and adaptive immune system activity in the liver. For 15 weeks, wild-type (WT mice were fed either a soybean oil-enriched HF diet with high dietary ω6/ω3 ratio (11∶1, HFH, similar to Western-style diet, or a fat Kcal-matched, fish oil-enriched HF diet with a low dietary ω6/ω3 ratio of 2.7∶1 (HFL. Importantly, the total saturated, monounsaturated and polyunsaturated fat content was matched in the two HF diets, which is unlike most published fish oil studies in mice. Despite modestly increased food intake, WT mice fed HFL were protected from HFH-diet induced steatohepatitis, evidenced by decreased hepatic mRNA expression of pro-inflammatory genes and genes involved in lymphocyte homing, and reduced deposition of hepatic triglyceride. Furthermore, oxidized metabolites of ω6 arachidonic acid were decreased in the plasma of WT HFL compared to WT HFH-fed mice. 12/15-LO knockout (KO mice were also protected from HFH-induced fatty liver and elevated mRNA markers of inflammation and lymphocyte homing. 12/15-LOKO mice were protected from HFH-induced insulin resistance but reducing dietary ω6/ω3 ratio in WT mice did not ameliorate insulin resistance or adipose tissue inflammation. In conclusion, lowering dietary ω6/ω3 ratio in HF diet

  15. Omega-3 and Omega-6 Polyunsaturated Fatty Acid Levels and Correlations with Symptoms in Children with Attention Deficit Hyperactivity Disorder, Autistic Spectrum Disorder and Typically Developing Controls.

    Directory of Open Access Journals (Sweden)

    Natalie Parletta

    Full Text Available There is evidence that children with Attention Deficit Hyperactivity Disorder (ADHD and Autistic Spectrum Disorder (ASD have lower omega-3 polyunsaturated fatty acid (n-3 PUFA levels compared with controls and conflicting evidence regarding omega-6 (n-6 PUFA levels.This study investigated whether erythrocyte n-3 PUFAs eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA were lower and n-6 PUFA arachidonic acid (AA higher in children with ADHD, ASD and controls, and whether lower n-3 and higher n-6 PUFAs correlated with poorer scores on the Australian Twin Behaviour Rating Scale (ATBRS; ADHD symptoms and Test of Variable Attention (TOVA in children with ADHD, and Childhood Autism Rating Scale (CARS in children with ASD.Assessments and blood samples of 565 children aged 3-17 years with ADHD (n = 401, ASD (n = 85 or controls (n = 79 were analysed. One-way ANOVAs with Tukey's post-hoc analysis investigated differences in PUFA levels between groups and Pearson's correlations investigated correlations between PUFA levels and ATBRS, TOVA and CARS scores.Children with ADHD and ASD had lower DHA, EPA and AA, higher AA/EPA ratio and lower n-3/n-6 than controls (P<0.001 except AA between ADHD and controls: P = 0.047. Children with ASD had lower DHA, EPA and AA than children with ADHD (P<0.001 for all comparisons. ATBRS scores correlated negatively with EPA (r = -.294, P<0.001, DHA (r = -.424, P<0.001, n-3/n-6 (r = -.477, P<0.001 and positively with AA/EPA (r = .222, P <.01. TOVA scores correlated positively with DHA (r = .610, P<0.001, EPA (r = .418, P<0.001 AA (r = .199, P<0.001, and n-3/n-6 (r = .509, P<0.001 and negatively with AA/EPA (r = -.243, P<0.001. CARS scores correlated significantly with DHA (r = .328, P = 0.002, EPA (r = -.225, P = 0.038 and AA (r = .251, P = 0.021.Children with ADHD and ASD had low levels of EPA, DHA and AA and high ratio of n-6/n-3 PUFAs and these correlated significantly with symptoms. Future research should further

  16. Dietary Vitamin E Is More Effective than Omega-3 and Omega-6 Fatty Acid for Improving The Kinematic Characteristics of Rat Sperm

    Directory of Open Access Journals (Sweden)

    AliReza Alizadeh

    2016-07-01

    Full Text Available Objective Although key roles for dietary vitamin E (VITE and fatty acid (FA in fertility have been confirmed, limited data are available on the effects of VITE alone, or a constant level of VITE supplemented by dietary omega-6 and omega-3 FAs in combination on male reproduction. Consequently in this paper, the effects of VITE, sunflower oil, fish oil and their combination on rat sperm were investigated. Materials and Methods We divided 50 mature male Wistar rats into 5 groups (n=10 in a experimental completely randomized design for eight weeks: i. Control (CTR: standard diet; ii. Vitamin E diet (VITE: 2 times greater than recommendations; iii. Sunflower oil group (n-6 [gavaged with 0.5 ml/day/rat sunflower oil+VITE diet]; iv. Fish oil group (n-3: [gavaged with 0.5 ml/day/rat fish oil+VITE diet] and v. n-3+n-6 group [gavaged with 0.3 ml fish oil/day/rat+0.2 ml sunflower oil/day/rat+VITE diet]. The sperm parameters were measured by computer assisted semen analyzer (CASA. All data were analyzed with SPSS software. Results Feed intake decreased in groups which were administered sunflower oil compared with the other groups (P<0.05. The groups which received only VITE or fish oil+VITE had a significantly higher concentration of sperm compared with the n-6+n-3 and CTR group (P<0.05. VITE and n-3 showed significant improved progressive motility compared to the CTR group, whereas the n-6 and n-6+n-3 groups were in the middle (P<0.05. The highest sperm kinematic parameters were observed in the VITE only group. There was no strong correlation between sperm parameters and blood lipid profiles. Conclusion Dietary VITE and fish oil+VITE can improve sperm quality. Our findings can be a focus for improvements in sperm quantity and motility in fertile animals using only dietary VITE.

  17. Dietary intake of fish, omega-3, omega-6 polyunsaturated fatty acids and vitamin D and the prevalence of psychotic-like symptoms in a cohort of 33 000 women from the general population

    Directory of Open Access Journals (Sweden)

    Lewander Tommy

    2010-05-01

    Full Text Available Abstract Background Low intake of fish, polyunsaturated fatty acids (PUFA and vitamin D deficiency has been suggested to play a role in the development of schizophrenia. Our aim was to evaluate the association between the intake of different fish species, PUFA and vitamin D and the prevalence of psychotic-like symptoms in a population-based study among Swedish women. Methods Dietary intake was estimated using a food frequency questionnaire among 33 623 women aged 30-49 years at enrolment (1991/92. Information on psychotic-like symptoms was derived from a follow-up questionnaire in the years 2002/03. Participants were classified into three predefined levels: low, middle and high frequency of symptoms. The association between diet and psychotic-like symptoms was summarized in terms of relative risks (RR and corresponding 95% confidence intervals and was evaluated by energy-adjusted multinomial logistic regression. Results 18 411 women were classified as having a low level of psychotic-like symptoms, 14 395 as middle and 817 as having a high level. The risk of high level symptoms was 53% (95% CI, 30-69% lower among women who ate fish 3-4 times per week compared to women who never ate fish. The risk was also lower for women with a high intake of omega-3 and omega-6 PUFA compared to women with a lower intake of these fatty acids. The effect was most pronounced for omega-6 PUFAs. The RR comparing the highest to the lowest quartile of omega-6 PUFAs intake was 0.78 (95% CI, 0.64-0.97. The associations were J-shaped with the strongest reduced risk for an intermediate intake of fish or PUFA. For fatty fish (herring/mackerel, salmon-type fish, the strongest inverse association was found for an intermediate intake (RR: 0.81, 95% CI, 0.66-0.98, whereas a high intake of fatty fish was associated with an increased risk of psychotic-like symptoms (RR: 1.90, 95% CI, 1.34-2.70. Women in the highest compared with the lowest quartile of vitamin D consumption

  18. Ácidos graxos poliinsaturados ômega-3 e ômega-6: importância e ocorrência em alimentos Omega-3 and omega-6 polyunsaturated fatty acids: importance and occurrence in foods

    Directory of Open Access Journals (Sweden)

    Clayton Antunes Martin

    2006-12-01

    Full Text Available Os ácidos graxos poliinsaturados abrangem as famílias de ácidos graxos ômega-3 e ômega-6. Os ácidos graxos de cadeia muito longa, como os ácidos araquidônico e docosaexaenóico, desempenham importantes funções no desenvolvimento e funcionamento do cérebro e da retina. Esse grupo de ácidos graxos não pode ser obtido pela síntese de novo, mas pode ser sintetizado a partir dos ácidos linoléico e alfa-linolênico presentes na dieta. Neste artigo são considerados os principais fatores que podem inibir a atividade das enzimas dessaturases envolvidas na síntese dos ácidos graxos de cadeia muito longa. São apresentadas as recomendações da razão ômega-6/ômega-3 na dieta, propostas em diversos países, sendo verificada a convergência para o intervalo de 4 a 5:1. São relacionados alimentos que podem contribuir para aumentar a ingestão do ácido alfa-linolênico e dos ácidos graxos de cadeia muito longa. A essencialidade dos ácidos graxos de cadeia muito longa é muito dependente do metabolismo do indivíduo, sendo que a razão n-6/n-3 da dieta exerce grande influência nesse sentido.Polyunsaturated fatty acids include the classes of fatty acids designated as omega-3 and omega-6. Very-long-chain polyunsaturated fatty acids as arachidonic and docosahexaenoic have important roles in the development and functioning of the brain and retina. This group of fatty acids cannot be synthesized by de novo pathway, but can be formed from linoleic and alpha-linolenic acid present in diet. In this article, the main factors that can inhibit desaturase enzymes activity involved in the synthesis of MLC-PUFAs are considered. Recommendations of omega-6/omega-3 ratio in diet proposed in several countries are presented, showing a coverage range from 4 to 5:1. Foods that are sources of alpha-linolenic acid and Very-long-chain are listed. The essentiality of Very-long-chain is very dependent of individual metabolism, and omega-6/omega-3 dietary ratio

  19. Structural Insight into the Differential Effects of Omega-3 and Omega-6 Fatty Acids on the Production of Aβ Peptides and Amyloid Plaques*

    OpenAIRE

    Amtul, Zareen; Uhrig, Markus; Rozmahel, Richard F.; Beyreuther, Konrad

    2010-01-01

    Several studies have shown the protective effects of dietary enrichment of various lipids in several late-onset animal models of Alzheimer Disease (AD); however, none of the studies has determined which structure within a lipid determines its detrimental or beneficial effects on AD. High-sensitivity enzyme-linked immunosorbent assay (ELISA) shows that saturated fatty acids (SFAs), upstream omega-3 FAs, and arachidonic acid (AA) resulted in significantly higher secretion of both Aβ 40 and 42 p...

  20. Omega-3/Omega-6 Fatty Acids for Attention Deficit Hyperactivity Disorder: A Randomized Placebo-Controlled Trial in Children and Adolescents

    Science.gov (United States)

    Johnson, Mats; Ostlund, Sven; Fransson, Gunnar; Kadesjo, Bjorn; Gillberg, Christopher

    2009-01-01

    Objective: The aim of the study was to assess omega 3/6 fatty acids (eye q) in attention deficit hyperactivity disorder (ADHD). Method: The study included a randomized, 3-month, omega 3/6 placebo-controlled, one-way crossover trial with 75 children and adolescents (8-18 years), followed by 3 months with omega 3/6 for all. Investigator-rated ADHD…

  1. Omega-3/Omega-6 Fatty Acids for Attention Deficit Hyperactivity Disorder: A Randomized Placebo-Controlled Trial in Children and Adolescents

    Science.gov (United States)

    Johnson, Mats; Ostlund, Sven; Fransson, Gunnar; Kadesjo, Bjorn; Gillberg, Christopher

    2009-01-01

    Objective: The aim of the study was to assess omega 3/6 fatty acids (eye q) in attention deficit hyperactivity disorder (ADHD). Method: The study included a randomized, 3-month, omega 3/6 placebo-controlled, one-way crossover trial with 75 children and adolescents (8-18 years), followed by 3 months with omega 3/6 for all. Investigator-rated ADHD…

  2. Genetic variants in the metabolism of omega-6 and omega-3 fatty acids: their role in the determination of nutritional requirements and chronic disease risk.

    Science.gov (United States)

    Simopoulos, Artemis P

    2010-07-01

    The tissue composition of polyunsaturated fatty acids is important to health and depends on both dietary intake and metabolism controlled by genetic polymorphisms that should be taken into consideration in the determination of nutritional requirements. Therefore at the same dietary intake of linoleic acid (LA) and alpha-linolenic acid (ALA), their respective health effects may differ due to genetic differences in metabolism. Delta-5 and delta-6 desaturases, FADS1 and FADS2, respectively, influence the serum, plasma and membrane phospholipid levels of LA, ALA and long-chain polyunsaturated fatty acids during pregnancy, lactation, and may influence an infant's IQ, atopy and coronary heart disease (CHD) risk. At low intakes of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), polymorphisms at the 5-lipoxygenase (5-LO) level increase the risk for CHD whereas polymorphisms at cyclooxgenase-2 increase the risk for prostate cancer. At high intakes of LA the risk for breast cancer increases. EPA and DHA influence gene expression. In future, intervention studies on the biological effects of LA, ALA and LC-PUFAs, and the effects of genetic variants in FADS1 and FADS2, 5-LO and cyclooxygenase-2 should be taken into consideration both in the determination of nutritional requirements and chronic disease risk. Furthermore, genome-wide association studies need to include environmental exposures and include diet in the interaction between genetic variation and disease association.

  3. Inhibition of mammary tumor promotion by dietary D,L-2-difluoromethylornithine in combination with omega-3 and omega-6 fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Bunce, O.R.; Abou-El-Ela, S.H. (Univ. of Georgia, Athens (United States))

    1990-02-26

    The authors laboratory has shown an inhibitor effect on mammary tumor promotion by a 20% corn oil diet when D,L-2-difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase (ODC), was fed to female rats with 7,12-dimethylbenz(a)anthracene (DMBA)-induced mammary tumors. Analyses of mammary adenocarcinomas from these rats showed that DFMO not only inhibited ODC but also eicosanoid synthesis. Inhibition of tumor promotion, ODC activity and eicosanoid synthesis was additive when dietary combinations of DFMO and menhaden oil were fed. However, when 0.5% DFMO was fed along with 20% dietary fat, signs of toxicity were seen. The overall objective of this study was to establish the minimal and non-toxic dose of DFMO which can give an additive or synergistic antipromoter effect when fed along with dietary n-3 and/or n-6 fatty acids to female Sprague-Dawley rats with DMBA-induced mammary tumors. Four dietary levels of DFMO (0, 0.125, 0.250, and 0.500%) were fed in diets containing 20% fat as either corn, black currant seed or menhaden oil. Dose response effects on tumorigenicity as well as toxicity were noted. Long chain n-3 fatty acids gave greater inhibition of tumorigenesis than shorter chain fatty acids when combined with DFMO. DFMO (0.25%) inhibited tumorigenesis without toxic effects on weight gain, whereas, 0.125% DFMO did not alter tumorigenesis. Supporting biochemical data are presented.

  4. [Food sources and adequacy of intake of omega 3 and omega-6 fatty acids in a representative sample of Spanish adults].

    Science.gov (United States)

    Ortega Anta, Rosa M; González Rodríguez, Liliana G; Villalobos Cruz, Tania K; Perea Sánchez, José Miguel; Aparicio Vizuete, Aránzazu; López Sobaler, Ana María

    2013-11-01

    Introducción y Objetivos: Teniendo en cuenta la importancia sanitaria del aporte de ácidos grasos omega 3 y omega 6 y ante la escasez de estudios sobre el tema en colectivos españoles se plantea la conveniencia de conocer la ingesta de estos ácidos grasos, su adecuación a los objetivos nutricionales marcados y sus fuentes alimentarias en una muestra representativa de la población española. Métodos: Se ha estudiado un colectivo de 1068 adultos (521 varones y 547 mujeres) de 17 a 60 años, seleccionados en diez provincias españolas, que constituyen una muestra representativa de la población, a nivel nacional. Se determino la ingesta de ácidos grasos poliinsaturados (AGP), ácidos grasos omega-3, α-linolénico (ALA), ácido eicosapentaenoico (EPA), docosahexaenoico (DHA), ácidos grasos omega-6, ácido linoléico (LA) y araquidónico, en g/día y en porcentaje de la energía, utilizando un “Registro del consumo de alimentos” durante 3 días consecutivos, incluyendo un domingo, recogiendo también datos personales, sanitarios y antropométricos de los individuos estudiados. Resultados y Discusión: Mientras que la ingesta de grasa total y grasa saturada fue superior a la marcada como aconsejable en el 89.2% y 93.3% de los individuos, respectivamente, sin embargo con la ingesta de AGP sucede lo contrario, siendo más frecuente el aporte insuficiente (79.2% de los estudiados tienen ingesta menor del 6% de la energía). Resulta especialmente bajo el aporte de ácidos grasos omega-3 (1.850.82 g/día), que proporcionan menos del 1% de la energía en el 85.3% de los individuos, en concreto el ALA (1.400.55 g/día) no supera el 0.5% de la energía en el 53.7% de los casos y el EPA+DHA (0.550.58 g/día) no superan los 0.5 g/día en el 64.6%. Por otra parte, el aporte de ácidos grasos omega-6 fue más adecuado (10,953.79 g/día) y en concreto el de LA (10.773.76 g/día) supuso menos del 3% de la energía en el 25.5% de los estudiados. Las

  5. The Association between Cerebral White Matter Lesions and Plasma Omega-3 to Omega-6 Polyunsaturated Fatty Acids Ratio to Cognitive Impairment Development

    Directory of Open Access Journals (Sweden)

    Michihiro Suwa

    2015-01-01

    Full Text Available Objective. Cerebral white matter hyperintensity (WMH with magnetic resonance imaging (MRI has a potential for predicting cognitive impairment. Serum polyunsaturated fatty acid (PUFA levels are important for evaluating the extent of atherosclerosis. We investigated whether abnormal PUFA levels affected WMH grading and cognitive function in patients without significant cognitive impairment. Methods. Atherosclerotic risk factors, the internal carotid artery (ICA plaque, and serum ratios of eicosapentaenoic to arachidonic acids (EPA/AA and docosahexaenoic to arachidonic acids (DHA/AA were assessed in 286 patients. The relationship among these risk factors, WMH, and cognitive function was evaluated using WMH grading and the Mini-Mental State Examination (MMSE. Results. The development of WMH was associated with aging, hypertension, ICA plaques, and a low serum EPA/AA ratio (<0.38, obtained as the median value but was not related to dyslipidemia, diabetes, smoking, and a low serum DHA/AA ratio (<0.84, obtained as the median value. In addition, the MMSE score deteriorated slightly with the progression of WMH (29.7 ± 1.0 compared to 28.4 ± 2.1, P<0.0001. Conclusions. The progression of WMH was associated with a low serum EPA/AA ratio and accompanied minimal deterioration in cognitive function. Sufficient omega-3 PUFA intake may be effective in preventing the development of cognitive impairment.

  6. Saturated, omega-6 and omega-3 dietary fatty acid effects on the characteristics of fresh, frozen-thawed semen and blood parameters in rams.

    Science.gov (United States)

    Esmaeili, V; Shahverdi, A H; Alizadeh, A R; Alipour, H; Chehrazi, M

    2014-02-01

    The aim of this study was to investigate the effects of several dietary fatty acids (FAs) on semen quality and blood parameters in rams. We gave diet-supplemented treatments (35 g day(-1) ram(-1)) by C16:0 (palm oil), C18:2 [sunflower oil (SO)] and an n-3 source [fish oil (FO)] to 12 rams, who were fed for 15 weeks during their breeding season. Semen was collected once per week. Semen samples were extended with Tris-based cryoprotective diluents, then cooled to 5 °C and stored in liquid nitrogen. Positive responses were seen with FO after 4 weeks. The mean prefreezing semen characteristics improved with the intake of FO (P oil 5.3 × 10(9). Rams that received FO had the highest total testosterone concentrations (11.3 ng ml(-1) for FO, 10.8 ng ml(-1) for SO and 10.2 ng ml(-1) for palm oil) during the experiment (P characteristics after thawing (P oils.

  7. Inflammation and wound healing in cats with chronic gingivitis/stomatitis after extraction of all premolars and molars were not affected by feeding of two diets with different omega-6/omega-3 polyunsaturated fatty acid ratios.

    Science.gov (United States)

    Corbee, R J; Booij-Vrieling, H E; van de Lest, C H A; Penning, L C; Tryfonidou, M A; Riemers, F M; Hazewinkel, H A W

    2012-08-01

    Feline chronic gingivitis/stomatitis (FCGS) is a painful inflammatory disease in cats. Extraction of teeth, including all premolars and molars, has been shown to be the therapy of choice in cats not responding sufficiently to home care (e.g. tooth brushing) and/or medical treatment (corticosteroids and/or antibiotics). In this study, we hypothesize that a cat food with an omega-6 polyunsaturated fatty acid (ω6 PUFA) to ω3 PUFA ratio of 10:1 reduces inflammation of the FCGS and accelerates soft tissue wound healing of the gingiva after dental extractions, compared to a cat food with a ω6:ω3 PUFA ratio of 40:1. The cats were fed diets with chicken fat and fish oil as sources of fatty acids. In one diet, part of the fish oil was replaced by safflower oil, resulting in two diets with ω6:ω3 PUFA ratios of 10:1 and 40:1. This double-blinded study in two groups of seven cats revealed that dietary fatty acids influence the composition of plasma cholesteryl esters and plasma levels of inflammatory cytokines. The diet with the 10:1 ratio lowered PGD(2) , PGE(2) and LTB(4) plasma levels significantly, compared to the diet with the 40:1 ratio (p = 0.05, p = 0.04, and p = 0.02 respectively). However, feeding diets with dietary ω6:ω3 PUFA ratios of 10:1 and 40:1, given to cats with FCGS for 4 weeks after extraction of all premolars and molars, did not alter the degree of inflammation or wound healing.

  8. Effect of Dietary Omega-3 to Omega-6 Ratio on Growth Performance, Immune Response, Carcass Traits and Meat Fatty Acids Profile of Broiler Chickens

    Directory of Open Access Journals (Sweden)

    El-Katcha MI

    2014-12-01

    Full Text Available This experiment was conducted to study the effect of dietary n-3 to n-6 ratio on performance, immune response, blood parameters and fatty acids profile of broiler chickens. A total number of 192 one day old broiler chicks were randomly alloctted into 6 groups. Chicks of groups 1, 2, 3, 4, 5 and 6 were fed balanced corn-soybean diets containing n-3 to n-6 ratios of 1:1, 1:3, 1:5, 1:7, 1:9 and 1:11, respectively. Different n-3 to n-6 ratioes had no significant effect on growth performance parameters. The best dressing percentage was recorded in group 3 while no significant difference was noticed in the weight of organs except for a significant increase in the weight of gizzard in group 4. There was a variable effect of the n-3 to n-6 ratio on parameters of innate immunity. The highest lymphocyte percentage was detected in group 5. Antibody titers against Newcastle disease (ND and Avian Influenza (AI increased in wider ratio groups. The lowest glucose level was detected in group 4. Though serum albumin and total protein were decreased in group 3, serum globulin increased in groups 2 and 3. The lowest cholesterol content of breast meat was detected in group 3 and the highest content was detected in group 6. The cholesterol content of the thigh recorded opposite results. Narrow dietary n-3 to n-6 groups tended to record higher n-3 PUFAs content especially DHA in breast meat. While wider n-3 to n-6 ratio groups tended to deposit more SFAS, MUFAs and n-6 PUFAs than the narrower ratio groups. The best n-3 to n-6 ratio of breast meat was recorded in group 2 receiving dietary n-3 to n-6 ratio of 1:3. From the results of this study, it could be concluded that the dietary n-3 to n-6 ratio had no significant effect on growth performance of broiler chickens. The best dressing percentage was detected in group with the ratio of 1:5. The ratio of 1:3 recorded the best health state parameters.

  9. A low omega-6 polyunsaturated fatty acid (n-6 PUFA) diet increases omega-3 (n-3) long chain PUFA status in plasma phospholipids in humans.

    Science.gov (United States)

    Wood, K E; Lau, A; Mantzioris, E; Gibson, R A; Ramsden, C E; Muhlhausler, B S

    2014-04-01

    This study aimed to determine the effect of reducing the dietary linoleic acid (LA) intake from ~5% to PUFA (LCPUFA) status in humans. Thirty-six participants followed a PUFA content of plasma and erythrocyte phospholipids were significantly reduced after the low LA diet phase (P<0.001). The n-3 LCPUFA content of plasma phospholipids was significantly increased after the low LA diet compared to baseline (6.22% vs. 5.53%, P<0.001). These data demonstrate that reducing LA intake for 4 weeks increases n-3 LCPUFA status in humans in the absence of increased n-3 LCPUFA intake.

  10. Ácidos graxos poli-insaturados n-3 e n-6: metabolismo em mamíferos e resposta imune Omega-3 and omega-6 polyunsaturated fatty acids: metabolism in mammals and immune response

    Directory of Open Access Journals (Sweden)

    João Ângelo De Lima Perini

    2010-12-01

    Full Text Available A experimentação animal apresenta uma grande importância para o desenvolvimento da ciência. O uso de camundongos em experimentos ocorre devido à semelhança destes animais com os seres humanos, fácil criação e manutenção e resposta experimental bastante rápida. Esses animais possuem as mesmas enzimas dessaturases e elongases que os humanos, por isso são usados em pesquisas envolvendo incorporação e síntese de ácidos graxos em tecidos. Os ácidos graxos da família ômega-3 e ômega-6 são de suma importância na dieta humana, pois estes não são sintetizados pela síntese de novo e são precursores dos ácidos graxos poli-insaturados de cadeia muito longa, como os ácidos eicosapentaenóico, docosahexaenóico e araquidônico. Estes desempenham funções importantes no organismo, como a síntese de eicosanóides que estão envolvidos diretamente no sistema imune e nas respostas inflamatórias. A razão entre o consumo de ácidos graxos n-6 e n-3 na dieta é um importante fator para determinar a ingestão adequada de ácidos graxos bem como prevenir o aparecimento de doenças. Este artigo tem como objetivo avaliar a incorporação de ácidos graxos em tecidos de animais e discutir a importância dos ácidos da família n-3 e seus metabólitos no sistema imunológico.Experiments with animals are very important for the improvement of science. The use of mice in experiments is due to their similarity with humans, the easy of raising and maintaining them and their very fast response. These animals have the same desaturase and elongase enzymes as humans and so they are used in research involving the incorporation and synthesis of fatty acids in tissues. The fatty acids omega-3 and omega-6 are extremely important in the human diet because they are not synthesized de novo and are precursors of very long-chain polyunsaturated fatty acids, such as the eicosapentaenoic, docosahexaenoic and arachidonic acids. These acids play important roles

  11. Omega-3 fatty acids (image)

    Science.gov (United States)

    Omega-3 fatty acids are a form of polyunsaturated fat that the body derives from food. Omega-3s (and omega-6s) are known as essential fatty acids (EFAs) because they are important for good health. ...

  12. OMEGA 6

    Directory of Open Access Journals (Sweden)

    Fivi Melva Diana

    2012-09-01

    Full Text Available Kejadian gizi kurang di Indonesia dari tahun ke tahun masihtinggi Penyebab tingginya angka kejadian gizi kurang di Indonesia salah satunya diduga karena kurangnya konsumsi makanan sumber omega 6, secara alami terdapat pada minyak biji-bijian, minyakjagung dan kacang kedelai. Omega 6 merupakan asam lemak tak jenuh ganda yang mempunyai banyak manfaat terutama untuk pertumbuhan dan perkembangan kecerdasan balita. Tulisan ini membahas tentang defenisi omega 6, sumber, klasifikasi, manfaat dan kerugian bila mengkonsumsi omega 6. Disarankan untuk melakukan penelitian lebih lanjut mengenai hubungan konsumsi omega 6 dengan tumbuh-kembang anak, selain itu bagi ibu-ibu disarankan untuk memperhatikan konsumsi makanan dari sumber omega 6 guna pengoptimalan tumbuh-kembang anak. Hal ini jika terlaksana dapat memberikan dukungan terhadap program pemerintah di bidang promosi kesehatan.

  13. The Impact of the 6:3 Polyunsaturated Fatty Acid Ratio on Intermediate Markers of Breast Cancer

    Science.gov (United States)

    2008-05-01

    omega -6 (n-6) polyunsaturated fatty acids ( PUFAs ) promote breast cancer whereas omega -3 (n- 3) PUFAs inhibit breast cancer...11 4 1 Introduction Experimental evidence suggests that omega -6 (n-6) polyunsaturated fatty acid ( PUFA ) intake promotes breast cancer growth (1...pitt.edu 15 ABSTRACT Elevated intake of omega -6 (n-6) polyunsaturated fatty acids ( PUFAs ) may promote breast cancer, whereas

  14. Influence of fish oil in the concentration of conjugated linoleic acid and omega 6 and 3 in buffalo milk

    Directory of Open Access Journals (Sweden)

    E.M. Patiño

    2012-04-01

    Full Text Available The aim of this research work was to investigate the influence of fish oil supplementation on the concentration of conjugated linoleic acid (CLA and omega 6 and 3 in samples of buffalo milk. A total of 24 female buffaloes separated at random into three groups were fed for 49 days with: natural pasture (group I, supplemented with 70mL of fish oil (group II and 140mL of fish oil (group III. In the experiment the concentration of CLA showed differences (P<0.05 among the three groups, with a maximum of 7.14mg/g fat in group II. No significant differences were found in omega-6 among the three groups. The highest value of 3.82mg/g fat corresponded to group I, whicht had not been supplemented with fish oil. Significant differences were observed in omega 3 (P<0.05 in groups II and III with respect to group I. The highest average value of 2.42mg/g fat was obtained in group III. The closest relationship omega 6/3 (1.37:1 was observed in group III. As a result, the diets of groups II and III, which included fish oil, increased significantly the content of CLA and omega 3 with reductions in levels of omega 6.

  15. Study of Thiosemicarbazone Derivative of Essential Fatty Acid

    OpenAIRE

    2014-01-01

    Essential fatty acids results in numerous health benefits. Only two fatty acids are known to be essential for human alpha-linolenic acid (an omega-3 fatty acid) and linoleic acid (an omega-6 fatty acid).The importance of omega-3 fatty acids for physical well-being has been recognised for several decades . Omega-3 fatty acids have anti-inflammatory, antithrombotic, antiarrhythmic and hypolipidaemic effects. Cannabis sativa (Hemp) is an angiosperm belonging to the cannabaceae family and cannabi...

  16. Omega-6/Omega-3 and PUFA/SFA in Colossoma macropomum Grown in Roraima, Brazil

    Directory of Open Access Journals (Sweden)

    Antonio Alves Melho Filho

    2013-05-01

    Full Text Available In this study was evaluated the fatty acids composition of tambaqui (Colossoma macropomum fillet, fish species cultivated in Roraima State, Brazil. For the extraction of tambaqui oil was used Sohxlet device and then it was methylated. The oil  was identified using a gas chromatograph and were identified 24 acids and these were divided into characteristic groups such as: saturated fatty acids (SFA, monounsaturated fatty acids (MUFA, polyunsaturated fatty acids (PUFA and series fatty acids omega-6 and omega-3. The ratios obtained were PUFA/SFA and omega-6/omega-3. The results of chromatographic analysis were subjected to tests by variance ANOVA and multiple comparisons of Tukey at 5%. The ratios omega-6/omega-3 and PUFA/SFA showed values ​​of 8.58 and 0.75 respectively.

  17. Fatty acids - trans fatty acids

    Science.gov (United States)

    The data supporting a negative effect of dietary trans fatty acids on cardiovascular disease risk is consistent. The primary dietary sources of trans fatty acids include partially hydrogenated fat and rudiment fat. The adverse effect of trans fatty acids on plasma lipoprotein profiles is consisten...

  18. The Effect of Low Omega-3/Omega-6 Ratio on Auditory Nerve Conduction in Rat Pups.

    Directory of Open Access Journals (Sweden)

    Saeid Farahani

    2015-06-01

    Full Text Available The biological effects of omega-3 and omega-6 fatty acids are determined by their mutual interactions. This interaction extremely affects various functions. Lower consumption of omega-3 during gestation leads to various disorders, even in hearing. We aimed to assess the effect of low omega-3/omega-6 ratios on auditory nerve conduction. In this experimental study, the auditory brainstem response test was performed on 24-day-old rat (n=14. The rats were divided into case (low omega-3/omega-6 ratio during gestation and lactation and control groups. Variables such as P1, P3, and P4 absolute latency period, interpeaks (P3-P4, P1-P3, and P1-P4, and P4/P1 amplitude ratio were measured. We found an increased P4 omega-3/omega-6 ratio in the group with a low omega-3/omega-6 ratio (P0.05.  Also, no significant difference was observed between the groups with respect to the P1-P3 interpeak latency (IPL periods (P>0.05; while the P1-P4 and P3-P4 IPLs were significantly increased in the group with a low omega-3/omega-6 ratio (P<0.05. The P4/P1 amplitude ratio significantly decreased in the group with a low omega-3/omega-6 ratio (P<0.05. Results confirmed the negative effects of low omega-3/omega-6 ratio on the auditory system and hearing.

  19. Transgenic Mice Convert Carbohydrates to Essential Fatty Acids

    OpenAIRE

    Pai, Victor J.; Bin Wang; Xiangyong Li; Lin Wu; Kang, Jing X.

    2014-01-01

    Transgenic mice (named “Omega mice”) were engineered to carry both optimized fat-1 and fat-2 genes from the roundworm Caenorhabditis elegans and are capable of producing essential omega-6 and omega-3 fatty acids from saturated fats or carbohydrates. When maintained on a high-saturated fat diet lacking essential fatty acids or a high-carbohydrate, no-fat diet, the Omega mice exhibit high tissue levels of both omega-6 and omega-3 fatty acids, with a ratio of ∼1∶1. This study thus presents an in...

  20. The possible role of essential fatty acids in the pathophysiology of malnutrition : a review

    NARCIS (Netherlands)

    Smit, EN; Muskiet, FAJ; Boersma, ER

    2004-01-01

    Biochemical evidence of essential fatty acid deficiency (EFAD) may exist in protein-energy malnutrition (PEM). EFAD is characterised by low 18:2omega6, often in combination with low 20:4omega6 and 22:6omega3, and high 18: 1 omega9 and 20:3omega9. Some PEM symptoms, notably skin changes, impaired res

  1. Fatty Acid Desaturases, Polyunsaturated Fatty Acid Regulation, and Biotechnological Advances.

    Science.gov (United States)

    Lee, Je Min; Lee, Hyungjae; Kang, SeokBeom; Park, Woo Jung

    2016-01-04

    Polyunsaturated fatty acids (PUFAs) are considered to be critical nutrients to regulate human health and development, and numerous fatty acid desaturases play key roles in synthesizing PUFAs. Given the lack of delta-12 and -15 desaturases and the low levels of conversion to PUFAs, humans must consume some omega-3 and omega-6 fatty acids in their diet. Many studies on fatty acid desaturases as well as PUFAs have shown that fatty acid desaturase genes are closely related to different human physiological conditions. Since the first front-end desaturases from cyanobacteria were cloned, numerous desaturase genes have been identified and animals and plants have been genetically engineered to produce PUFAs such as eicosapentaenoic acid and docosahexaenoic acid. Recently, a biotechnological approach has been used to develop clinical treatments for human physiological conditions, including cancers and neurogenetic disorders. Thus, understanding the functions and regulation of PUFAs associated with human health and development by using biotechnology may facilitate the engineering of more advanced PUFA production and provide new insights into the complexity of fatty acid metabolism.

  2. Fatty Acid Desaturases, Polyunsaturated Fatty Acid Regulation, and Biotechnological Advances

    Directory of Open Access Journals (Sweden)

    Je Min Lee

    2016-01-01

    Full Text Available Polyunsaturated fatty acids (PUFAs are considered to be critical nutrients to regulate human health and development, and numerous fatty acid desaturases play key roles in synthesizing PUFAs. Given the lack of delta-12 and -15 desaturases and the low levels of conversion to PUFAs, humans must consume some omega-3 and omega-6 fatty acids in their diet. Many studies on fatty acid desaturases as well as PUFAs have shown that fatty acid desaturase genes are closely related to different human physiological conditions. Since the first front-end desaturases from cyanobacteria were cloned, numerous desaturase genes have been identified and animals and plants have been genetically engineered to produce PUFAs such as eicosapentaenoic acid and docosahexaenoic acid. Recently, a biotechnological approach has been used to develop clinical treatments for human physiological conditions, including cancers and neurogenetic disorders. Thus, understanding the functions and regulation of PUFAs associated with human health and development by using biotechnology may facilitate the engineering of more advanced PUFA production and provide new insights into the complexity of fatty acid metabolism.

  3. Dietary Supplementation of Polyunsaturated Fatty Acids in Caenorhabditis elegans

    OpenAIRE

    Deline, Marshall L.; Vrablik, Tracy L.; Watts, Jennifer L.

    2013-01-01

    Fatty acids are essential for numerous cellular functions. They serve as efficient energy storage molecules, make up the hydrophobic core of membranes, and participate in various signaling pathways. Caenorhabditis elegans synthesizes all of the enzymes necessary to produce a range of omega-6 and omega-3 fatty acids. This, combined with the simple anatomy and range of available genetic tools, make it an attractive model to study fatty acid function. In order to investigate the genetic pathways...

  4. A protective lipidomic biosignature associated with a balanced omega-6/omega-3 ratio in fat-1 transgenic mice.

    NARCIS (Netherlands)

    Astarita, G.; McKenzie, J.H.; Wang, B.; Strassburg, K.; Doneanu, A.; Johnson, J.; Baker, A.; Hankemeier, T.; Murphy, J.; Vreeken, R.J.; Langridge, J.; Kang, J.X.

    2014-01-01

    A balanced omega-6/omega-3 polyunsaturated fatty acid (PUFA) ratio has been linked to health benefits and the prevention of many chronic diseases. Current dietary intervention studies with different sources of omega-3 fatty acids (omega-3) lack appropriate control diets and carry many other confound

  5. Omega-3 Fatty Acids in the Management of Epilepsy.

    Science.gov (United States)

    Tejada, Silvia; Martorell, Miquel; Capó, Xavier; Tur, Josep A; Pons, Antoni; Sureda, Antoni

    2016-01-01

    Omega-3 and omega-6 fatty acids are polyunsaturated fatty acids (PUFAs) with multiple double bonds. Linolenic and alpha-linolenic acids are omega-6 and omega-3 PUFAs, precursors for the synthesis of long-chain PUFAs (LC-PUFAs), such as arachidonic acid (omega-6 PUFA), and eicosapentaenoic and docosahexaenoic acids (omega-3 PUFAs). The three most important omega-3 fatty acids are alpha-linolenic, eicosapentaenoic and docosahexaenoic acids, which cannot be synthesized in enough amounts by the body, and therefore they must be supplied by the diet. Omega-3 fatty acids are essential for the correct functioning of the organism and participate in many physiological processes in the brain. Epilepsy is a common and heterogeneous chronic brain disorder characterized by recurrent epileptic seizures leading to neuropsychiatric disabilities. The prevalence of epilepsy is high achieving about 1% of the general population. There is evidence suggesting that omega-3 fatty acids may have neuroprotective and anticonvulsant effects and, accordingly, may have a potential use in the treatment of epilepsy. In the present review, the potential use of omega-3 fatty acids in the treatment of epilepsy, and the possible proposed mechanisms of action are discussed. The present article summarizes the recent knowledge of the potential protective role of dietary omega-3 fatty acids in epilepsy.

  6. Polyunsaturated fatty acids and epilepsy.

    Science.gov (United States)

    Taha, Ameer Y; Burnham, W McIntyre; Auvin, Stéphane

    2010-08-01

    Omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) are dietary fatty acids that are involved in a myriad of physiologic processes in the brain. There is some evidence suggesting that PUFAs-and particularly omega-3 PUFAs-may have anticonvulsant effects, both in humans and in animals. In the present review, we assess the evidence related to the antiseizure properties of the n-3 PUFAs, discuss their possible mechanism(s) of action, and make recommendations for future clinical trials. In general, the available data from cell cultures and whole animal studies support the idea that the n-3 PUFAs have antiseizure properties. Future clinical trials involving the n-3 PUFAs should involve higher doses and longer periods of administration in order to definitively assess their possible antiseizure effects.

  7. Fatty acid facts, Part I. Essential fatty acids as treatment for depression, or food for mood?

    Science.gov (United States)

    Pawels, E K J; Volterrani, D

    2008-10-01

    The epidemic character of depressive disorders has prompted further research into dietary habits that could make an etiological contribution. One clear change in the diet of the population in developed countries has been the replacement of omega-3 polyunsaturated fatty acids by saturated fats and trans-fats as well as by omega-6 polyunsaturated fatty acids. Omega-3 and omega-6 fatty acids are essential fatty acids, and the members of the -3 and -6 series are crucial for human health. In biochemical processes there is a competition between these two series. A higher dietary intake of omega-6 results in the excessive incorporation of these molecules in the cell membrane with numerous pathological consequences, presumably due to the formation of proinflammatory eicosanoids. Members of the omega-3 family and their derivatives modulate the inflammatory action. Essential fatty acids play a major role in brain development and brain functioning. The omega-3 series members docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) provide fluidity to the cell membrane, facilitating certain processes including neurotransmission and ion channel flow. It is thought that omega-3 deficiency during the fetal and postnatal period may have a long-term effect at various levels. Epidemiological studies have demonstrated a positive association between omega-3 deficits and mood disorders. As for treatment, there is convincing evidence that add-on omega-3 fatty acids to standard antidepressant pharmacotherapy results in improved mood. There is no evidence that fatty acid monotherapy has a mood-elevating effect, with a possible exception for childhood depression. There are indications that omega-3 has a prophylactic effect on perinatal depression and has a negative effect on natural killer cell activity and T-lymphocyte function. These observations need further study in view of the popularity of self-medication. Copyright 2008 Prous Science, S.A.U. or its licensors. All rights reserved.

  8. [Biology of essential fatty acids (EFA)].

    Science.gov (United States)

    Dobryniewski, Jacek; Szajda, Sławomir Dariusz; Waszkiewicz, Napoleon; Zwierz, Krzysztof

    2007-01-01

    Essential Fatty Acids (EFA), are unsaturated fatty acids not produced by human being, but essential for proper functioning of the human body. To EFA-s belongs: linoleic acid (LA) (18:2,cis detla(9,12), omega6)--precursor o f gamma-linolenic acid (GLA), gamma-linolenic acid (GLA) (18:3,cisA6,9,12, )6) and alpha-linolenic acid (ALA)(18:3,cisdelta(9, 12, 15), omega3)--product of dehydrogenation of linoleic acid (LA). Most important EFA is gamma-linolenic acid (GLA)--18 carbons, one-carboxylic, non-branched fatty acid with 3 double cis-bonds (the last is situated by 6-th carbon from methylic end). The diet devoided of EFA leads to decreased growth, skin and kidney injury and infertility. Modern research of GLA and others EFA's is concerned mainly on therapeutic impact on the inflammatory process. The biogenic amines, cytokines, prostaglandins, tromboxanes and leukotrienes are the main inflammatory mediators. The last three are described with the common name eicosanoides (eico-twenty). Eicosanoides are synthesized from 20-carbon unsaturated fatty acids: dihomo-gamma-linoleic (DGLA) (20:3, cis delta(8,11,14), omega6), arachidonic acid (AA-20:4, cis delta(5,8,11,14), omega6), and eicosapentaenoic acid (EPA-20:5, cis delta(5,8,11,14,17, omega3). Derivatives of gamma and gamma-linolenic acids regulate the inflammatory process, through their opposed activity. PG2, leucotrien C4 and tromboxan A2 have the strongest proinflammatory action. Derivatives of alpha-linolenic acid 15-HETE and prostaglandin E1 (PGE1) have weak pro-inflammatory action, or even anti-inflammatory (PGE1), and additionally, they inhibit the transformation of arachidonic acid (AA) to leukotriens. delta6-desaturase (transformes linolenic acid into gamma-linolenic acid by making additional double bond) is the slowest step of the fatty acid metabolism. It's activity is impaired by many physiological and pathologic factors and leads to gamma-linolenic acid (GLA) deficiency. The gamma-linolenic acid

  9. A protective lipidomic biosignature associated with a balanced omega-6/omega-3 ratio in fat-1 transgenic mice.

    Directory of Open Access Journals (Sweden)

    Giuseppe Astarita

    Full Text Available A balanced omega-6/omega-3 polyunsaturated fatty acid (PUFA ratio has been linked to health benefits and the prevention of many chronic diseases. Current dietary intervention studies with different sources of omega-3 fatty acids (omega-3 lack appropriate control diets and carry many other confounding factors derived from genetic and environmental variability. In our study, we used the fat-1 transgenic mouse model as a proxy for long-term omega-3 supplementation to determine, in a well-controlled manner, the molecular phenotype associated with a balanced omega-6/omega-3 ratio. The fat-1 mouse can convert omega-6 to omega-3 PUFAs, which protect against a wide variety of diseases including chronic inflammatory diseases and cancer. Both wild-type (WT and fat-1 mice were subjected to an identical diet containing 10% corn oil, which has a high omega-6 content similar to that of the Western diet, for a six-month duration. We used a multi-platform lipidomic approach to compare the plasma lipidome between fat-1 and WT mice. In fat-1 mice, an unbiased profiling showed a significant increase in the levels of unesterified eicosapentaenoic acid (EPA, EPA-containing cholesteryl ester, and omega-3 lysophosphospholipids. The increase in omega-3 lipids is accompanied by a significant reduction in omega-6 unesterified docosapentaenoic acid (omega-6 DPA and DPA-containing cholesteryl ester as well as omega-6 phospholipids and triacylglycerides. Targeted lipidomics profiling highlighted a remarkable increase in EPA-derived diols and epoxides formed via the cytochrome P450 (CYP450 pathway in the plasma of fat-1 mice compared with WT mice. Integration of the results of untargeted and targeted analyses has identified a lipidomic biosignature that may underlie the healthful phenotype associated with a balanced omega-6/omega-3 ratio, and can potentially be used as a circulating biomarker for monitoring the health status and the efficacy of omega-3 intervention in humans.

  10. Effect of supplementation of arachidonic acid (AA) or a combination of AA plus docosahexaenoic acid on breastmilk fatty acid composition

    NARCIS (Netherlands)

    Smit, EN; Koopmann, M; Boersma, ER; Muskiet, FAJ

    2000-01-01

    We investigated whether supplementation with arachidonic acid (20:4 omega 6; AA), ora combination of AA and docosahexaenoic acid (22:6 omega 3; DHA) would affect human milk polyunsaturated fatty acid (PUFA) composition. Ten women were daily supplemented with 300 mg AA, eight with 300 mg AA, 110 mg e

  11. Prenatal long-chain polyunsaturated fatty acid status : the importance of a balanced intake of docosahexaenoic acid and arachidonic acid

    NARCIS (Netherlands)

    Hadders-Algra, Mijna

    2008-01-01

    This review addresses the effect of prenatal long-chain polyunsaturated fatty acid (LCPUFA) status on neuro-developmental outcome. It focuses on the major LPCUFA doxosahexaenoic acid (DNA; 22:6 omega 3) and arachidonic acid (AA; 20:4 omega 6). Due to enzymatic competition high DHA intake results in

  12. Prenatal long-chain polyunsaturated fatty acid status : the importance of a balanced intake of docosahexaenoic acid and arachidonic acid

    NARCIS (Netherlands)

    Hadders-Algra, Mijna

    2008-01-01

    This review addresses the effect of prenatal long-chain polyunsaturated fatty acid (LCPUFA) status on neuro-developmental outcome. It focuses on the major LPCUFA doxosahexaenoic acid (DNA; 22:6 omega 3) and arachidonic acid (AA; 20:4 omega 6). Due to enzymatic competition high DHA intake results in

  13. Effect of supplementation of arachidonic acid (AA) or a combination of AA plus docosahexaenoic acid on breastmilk fatty acid composition

    NARCIS (Netherlands)

    Smit, EN; Koopmann, M; Boersma, ER; Muskiet, FAJ

    We investigated whether supplementation with arachidonic acid (20:4 omega 6; AA), ora combination of AA and docosahexaenoic acid (22:6 omega 3; DHA) would affect human milk polyunsaturated fatty acid (PUFA) composition. Ten women were daily supplemented with 300 mg AA, eight with 300 mg AA, 110 mg

  14. Using 3–6 differences in essential fatty acids rather than 3/6 ratios gives useful food balance scores

    Directory of Open Access Journals (Sweden)

    Lands Bill

    2012-05-01

    Full Text Available Abstract Background The vitamin-like omega-3 and omega-6 essential fatty acids are converted in the body to a large family of hormones which act at selective receptors that occur on nearly every cell and tissue. A relative omega-3 deficit allows overabundant actions of omega-6 hormones to develop into health disorders. People need simple, explicit information on the balance of essential fatty acids in their foods to avoid accumulating unintended imbalances in their tissue omega-3 and omega-6 fatty acids. Results We developed an Omega 3–6 Balance Food Score that summarizes in a single value the balance among eleven omega-3 and omega-6 essential fatty acids in a food. The value allows a quantitative estimate of the impact of each food item on the proportions of omega-3 and omega-6 that will accumulate in the 20- and 22-carbon highly unsaturated fatty acids of blood, which is an important health risk assessment biomarker. Conclusions The impact of an individual food item upon a useful health risk assessment biomarker is easily evident in a simple, explicit value for the balance among eleven essential fatty acids nutrients. Foods with more positive Omega 3–6 Balance Food Scores will increase the percent of omega-3 in the biomarker, whereas those with more negative Scores will increase the percent of omega-6 in the biomarker.

  15. A balance of omega-3 and omega-6 polyunsaturated fatty acids is important in pregnancy

    Directory of Open Access Journals (Sweden)

    Olatunji Anthony Akerele

    2016-09-01

    Full Text Available Emerging evidence suggests that omega (n-3 PUFA and their metabolites improve maternal and neonatal health outcomes by modifying gestation length, and reducing the recurrence of pre-term delivery. N-3 PUFA has been associated with prolonged gestation and increased birth dimensions such as birth weight and head circumference. However, mothers giving birth to larger babies are at an increased risk of having dysfunctional labour, genital tract laceration, and delivery via caesarean section. Likewise, high infant weight at birth has been linked to several metabolic and cardiovascular disorders in the offspring. Prolonged gestation also leads to reduced placental function which has been implicated in fetal distress, and perinatal death. Till date, the mechanism through which high n-3 PUFA intake during pregnancy increases gestation length and birth weight is vaguely understood. Early and later stages of pregnancy is characterised by increased production of pro-inflammatory cytokines which are required for pregnancy establishment and labour regulation respectively. Conversely, mid-stage of pregnancy requires anti-inflammatory cytokines necessary for uterine quiescence, pregnancy maintenance and optimal fetal growth. Apparently, changes in the profiles of local cytokines in the uterus during different stages of pregnancy have a profound effect on pregnancy progression. This review focuses on the intake of n-3 and n-6 PUFA during pregnancy and the impact it has on gestation length and infant weight at birth, with a particular emphasis on the expression of inflammatory cytokines required for timely pregnancy establishment (embryo reception and implantation and labour induction. It is concluded that an appropriate dose of n-3 and n-6 PUFA needs to be established during different stages of pregnancy.

  16. Effect of fatty acids on leukocyte function

    Directory of Open Access Journals (Sweden)

    Pompéia C.

    2000-01-01

    Full Text Available Fatty acids have various effects on immune and inflammatory responses, acting as intracellular and intercellular mediators. Polyunsaturated fatty acids (PUFAs of the omega-3 family have overall suppressive effects, inhibiting lymphocyte proliferation, antibody and cytokine production, adhesion molecule expression, natural killer cell activity and triggering cell death. The omega-6 PUFAs have both inhibitory and stimulatory effects. The most studied of these is arachidonic acid that can be oxidized to eicosanoids, such as prostaglandins, leukotrienes and thromboxanes, all of which are potent mediators of inflammation. Nevertheless, it has been found that many of the effects of PUFA on immune and inflammatory responses are not dependent on eicosanoid generation. Fatty acids have also been found to modulate phagocytosis, reactive oxygen species production, cytokine production and leukocyte migration, also interfering with antigen presentation by macrophages. The importance of fatty acids in immune function has been corroborated by many clinical trials in which patients show improvement when submitted to fatty acid supplementation. Several mechanisms have been proposed to explain fatty acid modulation of immune response, such as changes in membrane fluidity and signal transduction pathways, regulation of gene transcription, protein acylation, and calcium release. In this review, evidence is presented to support the proposition that changes in cell metabolism also play an important role in the effect of fatty acids on leukocyte functioning, as fatty acids regulate glucose and glutamine metabolism and mitochondrial depolarization.

  17. Essential Fatty Acids and Attention-Deficit-Hyperactivity Disorder: A Systematic Review

    Science.gov (United States)

    Raz, Raanan; Gabis, Lidia

    2009-01-01

    Aim: Essential fatty acids (EFAs), also known as omega-3 and omega-6 fatty acids, have been claimed to have beneficial effects as a treatment for attention-deficit-hyperactivity disorder (ADHD). Animal experiments have provided information about the role of EFA in the brain, and several mechanisms of EFA activity are well known. The current review…

  18. Essential Fatty Acids and Attention-Deficit-Hyperactivity Disorder: A Systematic Review

    Science.gov (United States)

    Raz, Raanan; Gabis, Lidia

    2009-01-01

    Aim: Essential fatty acids (EFAs), also known as omega-3 and omega-6 fatty acids, have been claimed to have beneficial effects as a treatment for attention-deficit-hyperactivity disorder (ADHD). Animal experiments have provided information about the role of EFA in the brain, and several mechanisms of EFA activity are well known. The current review…

  19. The Relationship between Dietary Fatty Acids and Inflammatory Genes on the Obese Phenotype and Serum Lipids

    OpenAIRE

    Yael T. Joffe; Malcolm Collins; Goedecke, Julia H.

    2013-01-01

    Obesity, a chronic low-grade inflammatory condition is associated with the development of many comorbidities including dyslipidemia. This review examines interactions between single nucleotide polymorphisms (SNP) in the inflammatory genes tumor necrosis alpha (TNFA) and interleukin-6 (IL-6) and dietary fatty acids, and their relationship with obesity and serum lipid levels. In summary, dietary fatty acids, in particular saturated fatty acids and the omega-3 and omega-6 polyunsaturated fatty a...

  20. Polyunsaturated fatty acids for multiple sclerosis treatment

    Directory of Open Access Journals (Sweden)

    Monserrat Kong-González

    2015-01-01

    Full Text Available INTRODUCTION Fatty acids have an important role in structure and function of the nervous system. Recently, epidemiologic studies on neurodegenerative disorders have evaluated the usefulness of polyunsaturated fatty acids on multiple sclerosis. OBJECTIVE To examine recent studies, clinical trials, and reviews on the therapeutic effect of polyunsaturated fatty acids in multiple sclerosis. METHODS We conducted a search in MEDLINE/PubMed and Cochrane Library with the terms "fatty acids", "omega-3" and "omega-6" in combination with "multiple sclerosis". Articles were selected according to their relevance on the topic. RESULTS Epidemiologic studies have shown benefits of dietary supplementation with polyunsaturated fatty acids -especially omega-3- in relation to inflammatory, autoimmune and neurodegenerative disorders. In contrast, the studies do not show a beneficial effect of polyunsaturated fatty acids in multiple sclerosis. However, there are limitations related to design and sample issues in these studies CONCLUSIONS There is some evidence of a protective effect of polyunsaturated fatty acids on the risk of multiple sclerosis. Despite this, to date controlled trials have not produced definite results on the benefits of supplementation with polyunsaturated fatty acids in patients with multiple sclerosis. Any potential benefit will have to be confirmed in the long term.

  1. Significance of long-chain polyunsaturated fatty acids (PUFAs) for the development and behaviour of children.

    Science.gov (United States)

    Schuchardt, Jan Philipp; Huss, Michael; Stauss-Grabo, Manuela; Hahn, Andreas

    2010-02-01

    omega-6 and omega-3 polyunsaturated fatty acids (PUFAs) play a central role in the normal development and functioning of the brain and central nervous system. Long-chain PUFAs (LC-PUFAs) such as eicosapentaenoic acid (EPA, C20:5omega-3), docosahexaenoic acid (DHA, C22:6omega-3) and arachidonic acid (AA, C20:4omega-6), in particular, are involved in numerous neuronal processes, ranging from effects on membrane fluidity to gene expression regulation. Deficiencies and imbalances of these nutrients, not only during the developmental phase but throughout the whole life span, have significant effects on brain function. Numerous observational studies have shown a link between childhood developmental disorders and omega-6:omega-3 fatty acid imbalances. For instance, neurocognitive disorders such as attention-deficit hyperactivity disorder (ADHD), dyslexia, dyspraxia and autism spectrum disorders are often associated with a relative lack of omega-3 fatty acids. In addition to a high omega-6 fatty acid intake and, in many cases, an insufficient supply of omega-3 fatty acids among the population, evidence is increasing to suggest that PUFA metabolism can be impaired in individuals with ADHD. In this context, PUFA imbalances are being discussed as potential risk factors for neurodevelopmental disorders. Another focus is whether the nutritive PUFA requirements-especially long-chain omega-3 fatty acid requirements-are higher among some individuals. Meanwhile, several controlled studies investigated the clinical benefits of LC-PUFA supplementation in affected children and adolescents, with occasionally conflicting results.

  2. Potential Production of Polyunsaturated Fatty Acids from Microalgae

    Directory of Open Access Journals (Sweden)

    Noer Abyor Handayani

    2011-07-01

    Full Text Available Currently, public awareness of healthcare importance increase. Polyunsaturated fatty acid is an essential nutrition for us, such arachidonic acid, docosahexaenoic acid and eicosapentaenoic acid. The need of Polyunsaturated fatty acid generally derived from fish oil, but fish oil has a high risk chemical contamination. Microalgae are single cell microorganism, one of Phaeodactylum tricornutum which have relatively high content of eicosapentaenoic acid (29,8%. Biotechnology market of Polyunsaturated fatty acid is very promising for both foods and feeds, because the availability of abundant raw materials and suitable to develop in the tropics. This literature review discusses about the content of Polyunsaturated fatty acid in microalgae, omega-3, omega-6, Polyunsaturated fatty acid production processes, and applications in public health

  3. Fish oil prevents essential fatty acid deficiency and enhances growth: clinical and biochemical implications.

    Science.gov (United States)

    Strijbosch, Robert A M; Lee, Sang; Arsenault, Danielle A; Andersson, Charlotte; Gura, Kathleen M; Bistrian, Bruce R; Puder, Mark

    2008-05-01

    Fish oil, a rich source of omega-3 fatty acids, has never been used as the sole source of lipid in clinical practice for fear of development of essential fatty acid deficiency, as it lacks the believed requisite levels of linoleic acid, an omega-6 fatty acid. The objectives of this study were to establish biochemical standards for fish oil as the sole fat and to test the hypothesis that fish oil contains adequate amounts of omega-6 fatty acids to prevent essential fatty acid deficiency. Forty mice were divided into 2 groups that were either pair fed or allowed to eat ad libitum. In each group, 4 subgroups of 5 mice were fed 1%, 5%, and 10% fish oil diets by weight or a control soybean diet for 9 weeks. Blood was collected at 4 time points, and fatty acid analysis was performed. Food intake and weight status were monitored. All groups but the pair-fed 1% fish oil group gained weight, and the 5% fish oil group showed the highest caloric efficiency in both pair-fed and ad libitum groups. Fatty acid profiles for the 1% fish oil group displayed clear essential fatty acid deficiency, 5% fish oil appeared marginal, and 10% and soybean oil diets were found to prevent essential fatty acid deficiency. Fish oil enhances growth through higher caloric efficiency. We established a total omega-6 fatty acid requirement of between 0.30% and 0.56% of dietary energy, approximately half of the conventionally believed 1% as linoleic acid. This can presumably be attributed to the fact that fish oil contains not only a small amount of linoleic acid, but also arachidonic acid, which has greater efficiency to meet omega-6 fatty acid requirements.

  4. Effects of Diets High in Unsaturated Fatty Acids on Socially Induced Stress Responses in Guinea Pigs

    OpenAIRE

    Matthias Nemeth; Eva Millesi; Karl-Heinz Wagner; Bernard Wallner

    2014-01-01

    Unsaturated fatty acids (UFAs), such as omega-3 and omega-6 poly- and omega-9 monounsaturated fatty acids are important nutrients and major components of neuronal cell membranes. They play a major role in modulating brain functions and physiology and may therefore diminish behavioral and physiological stress reactions in corroboration with decreased cortisol concentrations. Functionally, cortisol itself can modulate several behaviors and also the fatty acid metabolism in the long term. But on...

  5. Determination of Fatty Acid in Asparagus by Gas Chromatography

    Directory of Open Access Journals (Sweden)

    Zehra HAJRULAI-MUSLIU

    2016-05-01

    Full Text Available Asparagus contain a lot of macronutrients and micronutrients including folate, dietary fibre (soluble and insoluble and phenolic compounds. Also asparagus is a good source of unsaturated linoleic and linolenic fatty acids which are precursors for Eicosapentanoic acid (EPA and Docosahexanoic acid (DHA. Unsaturated fatty acids have important biological effects and they have important role in human health. The objective of this study was to analyze fatty acid composition of asparagus as a potential source of linoleic and linolenic acid - a precursor for EPA and DHA. For this reason we analyzed fifty seven samples of asparagus collected from the local market. We used AOAC 996.06 method and analyses were performed with gas chromatograph with flame-ionization detector (GC-FID. The highest concentration of fatty acid in the asparagus was linoleic acid (C18:2n6 which content in asparagus is 25.620±1.0%. Also, asparagus is good source of -linolenic fatty acid (C18:3n3 and content of this fatty acid in asparagus is 8.840±0.3%. The omega-6 to omega-3 (n6/n3 ratio in asparagus was 3.19. Polyunsaturated fatty acids (PUFAs were higher than monounsaturated fatty acids (MUFAs, and from saturated fatty acids, palmitic acid was most frequent with 24.324±1.0%. From our study we can conclude that asparagus is very good source of unsaturated fatty acids, especially linoleic and linolenic fatty acids.

  6. Structural Equation Modeling for Analyzing Erythrocyte Fatty Acids in Framingham

    Directory of Open Access Journals (Sweden)

    James V. Pottala

    2014-01-01

    Full Text Available Research has shown that several types of erythrocyte fatty acids (i.e., omega-3, omega-6, and trans are associated with risk for cardiovascular diseases. However, there are complex metabolic and dietary relations among fatty acids, which induce correlations that are typically ignored when using them as risk predictors. A latent variable approach could summarize these complex relations into a few latent variable scores for use in statistical models. Twenty-two red blood cell (RBC fatty acids were measured in Framingham (N = 3196. The correlation matrix of the fatty acids was modeled using structural equation modeling; the model was tested for goodness-of-fit and gender invariance. Thirteen fatty acids were summarized by three latent variables, and gender invariance was rejected so separate models were developed for men and women. A score was developed for the polyunsaturated fatty acid (PUFA latent variable, which explained about 30% of the variance in the data. The PUFA score included loadings in opposing directions among three omega-3 and three omega-6 fatty acids, and incorporated the biosynthetic and dietary relations among them. Whether the PUFA factor score can improve the performance of risk prediction in cardiovascular diseases remains to be tested.

  7. Fatty acid intake in relation to reproductive hormones and testicular volume among young healthy men

    Directory of Open Access Journals (Sweden)

    Lidia Mínguez-Alarcón

    2017-01-01

    Full Text Available Emerging evidence suggests that dietary fats may influence testicular function. However, most of the published literature on this field has used semen quality parameters as the only proxy for testicular function. We examined the association of fat intake with circulating reproductive hormone levels and testicular volume among healthy young Spanish men. This is a cross-sectional study among 209 healthy male volunteers conducted between October 2010 and November 2011 in Murcia Region of Spain. Participants completed questionnaires on lifestyle, diet, and smoking, and each underwent a physical examination, and provided a blood sample. Linear regression was used to examine the association between each fatty acid type and reproductive hormone levels and testicular volumes. Monounsaturated fatty acids intake was inversely associated with serum blood levels of calculated free testosterone, total testosterone, and inhibin B. A positive association was observed between the intake of polyunsaturated fatty acids, particularly of omega-6 polyunsaturated fatty acids, and luteinizing hormone concentrations. In addition, the intake of trans fatty acids was associated with lower total testosterone and calculated free testosterone concentrations (P trend = 0.01 and 0.02, respectively. The intake of omega-3 polyunsaturated fatty acids was positively related to testicular volume while the intake of omega-6 polyunsaturated fatty acids and trans fatty acids was inversely related to testicular volume. These data suggest that fat intake, and particularly intake of omega 3, omega 6, and trans fatty acids, may influence testicular function.

  8. Palmitic acid (16:0) competes with omega-6 linoleic and omega-3 ɑ-linolenic acids for FADS2 mediated Δ6-desaturation.

    Science.gov (United States)

    Park, Hui Gyu; Kothapalli, Kumar S D; Park, Woo Jung; DeAllie, Christian; Liu, Lei; Liang, Allison; Lawrence, Peter; Brenna, J Thomas

    2016-02-01

    Sapienic acid, 16:1n-10 is the most abundant unsaturated fatty acid on human skin where its synthesis is mediated by FADS2 in the sebaceous glands. The FADS2 product introduces a double bond at the Δ6, Δ4 and Δ8 positions by acting on at least ten substrates, including 16:0, 18:2n-6, and 18:3n-3. Our aim was to characterize the competition for accessing FADS2 mediated Δ6 desaturation between 16:0 and the most abundant polyunsaturated fatty acids (PUFA) in the human diet, 18:2n-6 and 18:3n-3, to evaluate whether competition may be relevant in other tissues and thus linked to metabolic abnormalities associated with FADS2 or fatty acid levels. MCF7 cells stably transformed with FADS2 biosynthesize 16:1n-10 from exogenous 16:0 in preference to 16:1n-7, the immediate product of SCD highly expressed in cancer cell lines, and 16:1n-9 via partial β-oxidation of 18:1n-9. Increasing availability of 18:2n-6 or 18:3n-3 resulted in decreased bioconversion of 16:0 to 16:1n-10, simultaneously increasing the levels of highly unsaturated products. FADS2 cells accumulate the desaturation-elongation products 20:3n-6 and 20:4n-3 in preference to the immediate desaturation products 18:3n-6 and 18:4n-3 implying prompt/coupled elongation of the nascent desaturation products. MCF7 cells incorporate newly synthesized 16:1n-10 into phospholipids. These data suggest that excess 16:0 due to, for instance, de novo lipogenesis from high carbohydrate or alcohol consumption, inhibits synthesis of highly unsaturated fatty acids, and may in part explain why supplemental preformed EPA and DHA in some studies improves insulin resistance and other factors related to diabetes and metabolic syndrome aggravated by excess calorie consumption.

  9. Omega-3 Fatty Acids

    Science.gov (United States)

    Omega-3 fatty acids are used together with lifestyle changes (diet, weight-loss, exercise) to reduce the ... the blood in people with very high triglycerides. Omega-3 fatty acids are in a class of ...

  10. Food for thought: dietary changes in essential fatty acid ratios and the increase in autism spectrum disorders

    NARCIS (Netherlands)

    Elst, K. van; Bruining, H.; Birtoli, B.; Terreaux, C.; Buitelaar, J.; Kas, M.J.

    2014-01-01

    The last decades have shown a spectacular and partially unexplained rise in the prevalence of autism spectrum disorders (ASD). This rise in ASD seems to parallel changes in the dietary composition of fatty acids. This change is marked by the replacement of cholesterol by omega-6 (n-6) fatty acids in

  11. n-3 Polyunsaturated Fatty Acids and their Role in Cancer Chemoprevention

    OpenAIRE

    Gu, Zhennan; Shan, Kai; Chen, Haiqin; Chen, Yong Q.

    2015-01-01

    Polyunsaturated fatty acids (PUFAs), including omega-3 (n-3) and omega-6 (n-6) PUFAs, are essential for human health. Recent research shows n-3 PUFAs and their mediators can inhibit inflammation, angiogenesis and cancer via multiple mechanisms, including reduced release of n-6 fatty acid arachidonic acid from cell membranes, inhibition of enzymatic activities, and direct competition with arachidonic acid for enzymatic conversions. In this review, we discuss inflammation-related cancer, anti-i...

  12. Immunoglobulin and fatty acids

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention relates to a composition comprising 0.1-10 w/w % immunoglobulin (Ig), 4-14 w/w % saturated fatty acids, 4-14 w/w % mono-unsaturated fatty acids and 0-5 w/w % poly-unsaturated fatty acids, wherein the weight percentages are based on the content of dry matter in the composition...

  13. Fatty acids as modulators of neutrophil recruitment, function and survival.

    Science.gov (United States)

    Rodrigues, Hosana G; Takeo Sato, Fabio; Curi, Rui; Vinolo, Marco A R

    2016-08-15

    Neutrophils are well-known to act in the destruction of invading microorganisms. They have also been implicated in the activation of other immune cells including B- and T-lymphocytes and in the resolution of inflammation and tissue regeneration. Neutrophils are produced in the bone marrow and released into the circulation from where they migrate to tissues to perform their effector functions. Neutrophils are in constant contact with fatty acids that can modulate their function, activation and fate (survival or cell death) through different mechanisms. In this review, the effects of fatty acids pertaining to five classes, namely, long-chain saturated fatty acids (LCSFAs), short-chain fatty acids (SCFAs), and omega-3 (n-3), omega-6 (n-6) and omega-9 (n-9) unsaturated fatty acids, on neutrophils and the relevance of these effects for disease development are discussed.

  14. Autistic children exhibit decreased levels of essential Fatty acids in red blood cells.

    Science.gov (United States)

    Brigandi, Sarah A; Shao, Hong; Qian, Steven Y; Shen, Yiping; Wu, Bai-Lin; Kang, Jing X

    2015-05-04

    Omega-6 (n-6) and omega-3 (n-3) polyunsaturated fatty acids (PUFA) are essential nutrients for brain development and function. However, whether or not the levels of these fatty acids are altered in individuals with autism remains debatable. In this study, we compared the fatty acid contents between 121 autistic patients and 110 non-autistic, non-developmentally delayed controls, aged 3-17. Analysis of the fatty acid composition of red blood cell (RBC) membrane phospholipids showed that the percentage of total PUFA was lower in autistic patients than in controls; levels of n-6 arachidonic acid (AA) and n-3 docosahexaenoic acid (DHA) were particularly decreased (pautism.

  15. Dietary supplementation of polyunsaturated fatty acids in Caenorhabditis elegans.

    Science.gov (United States)

    Deline, Marshall L; Vrablik, Tracy L; Watts, Jennifer L

    2013-11-29

    Fatty acids are essential for numerous cellular functions. They serve as efficient energy storage molecules, make up the hydrophobic core of membranes, and participate in various signaling pathways. Caenorhabditis elegans synthesizes all of the enzymes necessary to produce a range of omega-6 and omega-3 fatty acids. This, combined with the simple anatomy and range of available genetic tools, make it an attractive model to study fatty acid function. In order to investigate the genetic pathways that mediate the physiological effects of dietary fatty acids, we have developed a method to supplement the C. elegans diet with unsaturated fatty acids. Supplementation is an effective means to alter the fatty acid composition of worms and can also be used to rescue defects in fatty acid-deficient mutants. Our method uses nematode growth medium agar (NGM) supplemented with fatty acid sodium salts. The fatty acids in the supplemented plates become incorporated into the membranes of the bacterial food source, which is then taken up by the C. elegans that feed on the supplemented bacteria. We also describe a gas chromatography protocol to monitor the changes in fatty acid composition that occur in supplemented worms. This is an efficient way to supplement the diets of both large and small populations of C. elegans, allowing for a range of applications for this method.

  16. The yin and yang of 15-lipoxygenase-1 and delta-desaturases: Dietary omega-6 linoleic acid metabolic pathway in prostate

    Directory of Open Access Journals (Sweden)

    Kelavkar Uddhav

    2006-03-01

    Full Text Available Abstract One of the major components in high-fat diets (Western diet is the omega (ω, n-6 polyunsaturated fatty acid (PUFA called linoleic acid (LA. Linoleic acid is the precursor for arachidonic acid (AA. These fatty acids are metabolized to an array of eicosanoids and prostaglandins depending upon the enzymes in the pathway. Aberrant expression of the catabolic enzymes such as cyclooxygenases (COX-1 and/or -2 or lipoxygenases (5-LO, 12-LO, 15-LO-1, and 15-LO-2 that convert PUFA either AA and/or LA to bioactive lipid metabolites appear to significantly contribute to the development of PCa. However, PUFA and its cellular interactions in PCa are poorly understood. We therefore examined the mRNA levels of key enzymes involved in the LA and AA pathways in 18 human donor (normal prostates compared to 60 prostate tumors using the Affymetrix U95Av2 chips. This comparative (normal donor versus prostate cancer study showed that: 1 the level of 15-LO-1 expression (the key enzyme in the LA pathway is low (P P P = 0.001, elongase (P = 0.16 and 15-lipoxygenase-2 (15-LO-2, P = 0.74 are higher in donor (normal prostates, and 2 Contrary to the observation in the normal tissues, significantly high levels of only 15-LO-1; whereas low levels of delta-6 desaturase, elongase, delta-5 desaturase and 15-LO-2 respectively, were observed in PCa tissues. Although the cyclooxygenase (COX-1 and COX-2 mRNA levels were high in PCa, no significant differences were observed when compared in donor tissues. Our study underscores the importance of promising dietary intervention agents such as the omega-3 fatty acids as substrate competitors of LA/AA, aimed primarily at high 15-LO-1 and COX-2 as the molecular targets in PCa initiation and/or progression.

  17. Increased [omega]6-Containing Phospholipids and Primary [omega]6 Oxidation Products in the Brain Tissue of Rats on an [omega]3-Deficient Diet

    National Research Council Canada - National Science Library

    Paul H Axelsen; Robert C Murphy; Miki Igarashi; Stanley I Rapoport

    2016-01-01

      Polyunsaturated fatty acyl (PUFA) chains in both the [omega]3 and [omega]6 series are essential for normal animal brain development, and cannot be interconverted to compensate for a dietary deficiency of one or the other...

  18. Plasma and erythrocyte fatty acid patterns in patients with recurrent depression

    DEFF Research Database (Denmark)

    Assies, Johanna; Pouwer, François; Lok, Anja

    2010-01-01

    BACKGROUND: The polyunsaturated fatty acid (PUFA) composition of (nerve) cell membranes may be involved in the pathophysiology of depression. Studies so far, focussed mainly on omega-3 and omega-6 PUFAs. In the present study, saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs......) and PUFAs of the omega-3, -6 and -9 series in plasma and erythrocytes of patients with recurrent major depressive disorder (MDD-R) were compared with controls. METHODOLOGY AND PRINCIPAL FINDINGS: We carried out a case-control study. The sample consisted of 137 patients with MDD-R and 65 matched non...... status of patients with MDD-R not only differs with regard to omega-3 and omega-6 PUFAs, but also concerns other fatty acids. These alterations may be due to: differences in diet, changes in synthesizing enzyme activities, higher levels of chronic (oxidative) stress but may also result from adaptive...

  19. Induction of a Pregnancy-Like Mammary Gland Differentiation by Docosapentaenoic Omega-3 Fatty Acid

    Science.gov (United States)

    2008-09-01

    omega-6 fatty acid content and breast cancer in the EURAMIC study. European Com- munity Multicenter Study on Antioxidants, Myocardial Infarction , and...also sug gests that th ere is no significant association between n-3 PUFA and cancer incidence (1). However, results fr om studies of n-3 PUFA

  20. Omega-3 Fatty Acids in Modern Parenteral Nutrition: A Review of the Current Evidence

    OpenAIRE

    Stanislaw Klek

    2016-01-01

    Intravenous lipid emulsions are an essential component of parenteral nutrition regimens. Originally employed as an efficient non-glucose energy source to reduce the adverse effects of high glucose intake and provide essential fatty acids, lipid emulsions have assumed a larger therapeutic role due to research demonstrating the effects of omega-3 and omega-6 polyunsaturated fatty acids (PUFA) on key metabolic functions, including inflammatory and immune response, coagulation, and cell signaling...

  1. Impaired plasma phospholipids and relative amounts of essential polyunsaturated fatty acids in autistic patients from Saudi Arabia

    Directory of Open Access Journals (Sweden)

    El-Ansary Afaf K

    2011-04-01

    Full Text Available Abstract Backgrounds Autism is a developmental disorder characterized by social and emotional deficits, language impairments and stereotyped behaviors that manifest in early postnatal life. This study aims to compare the relative concentrations of essential fatty acids (Linoleic and α- linolenic, their long chain polyunsaturated fatty acids and phospholipids in plasma of autistic patients from Saudi Arabia with age-matching controls. Methods 25 autistic children aged 3-15 years and 16 healthy children as control group were included in this study. Relative concentration of essential fatty acids/long chain polyunsaturated fatty acids and omega-3/omega-6 fatty acid series together with phosphatidylethanolamine, phosphatidylserine and phosphatidylcholine were measured in plasma of both groups. Results Remarkable alteration of essential fatty acids/long chain polyunsaturated fatty acids, omeg-3/omega-6 and significant lower levels of phospholipids were reported. Reciever Operating characteristics (ROC analysis of the measured parameters revealed a satisfactory level of sensitivity and specificity. Conclusion Essential fatty acids/long chain polyunsaturated fatty acids and omeg-3/omega-6 ratios, phosphatidylethanolamine, phosphatidylserine and phosphatidylcholine could be used as potential biomarkers that point to specific mechanisms in the development of autism and may help tailor treatment or prevention strategies.

  2. Essential fatty acids and lipid mediators. Endocannabinoids

    Directory of Open Access Journals (Sweden)

    G. Caramia

    2012-03-01

    Full Text Available In 1929 Burr and Burr discovered the essential fatty acids omega-6 and omega-3. Since then, researchers have shown a growing interest in polyunsaturated fatty acids (PUFA as precursors of “lipid mediator” molecules, often with opposing effects, prostaglandins, prostacyclins, thromboxanes, leukotrienes, lipossines, resolvines, protectines, maresins that regulate immunity, platelet aggregation, inflammation, etc. They showed that the balance between omega-3 and omega-6 acids has a profound influence on all the body’s inflammatory responses and a raised level of PUFA omega-3 in tissue correlate with a reduced incidence of degenerative cardiovascular disease, some mental illnesses such as depression, and neuro-degenerative diseases such as Alzheimer’s. The CYP-catalyzed epoxidation and hydroxylation of arachidonic acid (AA were established recently as the so-called third branch of AGE cascade. Cytochrome P450 (CYP epoxygenases convert AA to four epoxyeicosatrienoic acid (EET regioisomers, that produce vascular relaxation anti-inflammatory effects on blood vessels and in the kidney, promote angiogenesis, and protect ischemic myocardium and brain. Eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA are accessible to CYP enzymes in the same way as AA. Metabolites derived from EPA include epoxyeicosatetraenoic acids (EETR and hydroxyeicosapentaenoic acids (19- and 20-HEPE, whereas DHA include epoxydocosapentaenoic acids (EDPs hydroxydocosahexaenoic acids (21- and 22-HDoHE. For many of the CYP isoforms, the n-3 PUFAs are the preferred substrates and the available data suggest that some of the vasculo- and cardioprotective effects attributed to dietary n-3 PUFAs may be mediated by CYP-dependent metabolites of EPA and DHA. From AA derives also endocannabinoids like anandamide (N-arachidonoylethanolamine and 2-arachidonoylglycerol, capable of mimicking the pharmacological actions of the active principle of Cannabis sativa preparations such as

  3. Fats and fatty acids

    Science.gov (United States)

    The absolute fat requirement of the human species is the amount of essential fatty acids needed to maintain optimal fatty acid composition of all tissues and normal eicosanoid synthesis. At most, this requirement is no more than about 5% of an adequate energy intake. However, fat accounts for appro...

  4. Effect of stearidonic acid-enriched soybean oil on fatty acid profile and metabolic parameters in lean and obese Zucker rats

    OpenAIRE

    Casey, John M; Banz, William J.; Krul, Elaine S; Butteiger, Dustie N; Goldstein, Daniel A.; Davis, Jeremy E.

    2013-01-01

    Background Consumption of marine-based oils high in omega-3 polyunsaturated fatty acids (n3PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) is known to protect against obesity-related pathologies. It is less clear whether traditional vegetable oils with high omega-6 polyunsaturated fatty acid (n6PUFA) content exhibit similar therapeutic benefits. As such, this study examined the metabolic effects of a plant-based n3PUFA, stearidonic acid (SDA), in polygenic obese rodents. Me...

  5. [Combined effect of environmental temperature and trematodes on fatty acids composition of lipids of Littorina saxatilis (Olivi 1792) (Gastropoda, Prosobranchia)].

    Science.gov (United States)

    Arakelova, E S; Chebotareva, M A; Zabelinskiĭ, S A

    2004-01-01

    An effect of environmental temperatures and invasion by helminthes larvae on fatty acids composition of digestive gland lipids of marine littoral gastropod Littorina saxatilis from White Sea and Barents Sea was investigated. We have compared gastropods from boreal and subarctic populations. It was found that gastropods from waters of lower temperature have increased omega3/omega6 fatty acids ratio. However, saturation index of individual membrane phospholipids was not affected. Also, content of eicosenoic acid (20:1) in individual phospholipids was not affected by temperature. Invasion increases the omega3/omega6 ratio of common lipids but not the omega3/omega6 ratio of common and individual phospholipids with the exception of phosphatidilcholine of cold water mollusks from Barents Sea that had this ratio doubled. In contrast to temperature, invasion affects the content of eicosenoic acid that was increased in the investigated organs. Adaptability of these effects is discussed regarding parasite-host system.

  6. Halogenated fatty acids

    DEFF Research Database (Denmark)

    Mu, Huiling; Wesén, Clas; Sundin, Peter

    1997-01-01

    Chlorinated fatty acids have been found to be major contributors to organohalogen compounds in fish, bivalves, jellyfish, and lobster, and they have been indicated to contribute considerably to organohalogens in marine mammals. Brominated fatty acids have been found in marine sponges. Also......, chlorinated lipids have been found in meat exposed to hypochlorite disinfected water, and in chlorine-treated flour and in products made from such flour. Following exposure to chlorine bleached pulp mill effluents, aquatic organisms may have elevated concentrations of chlorinated fatty acids in their lipids....... However, a natural production of halogenated fatty acids is also possible. In this paper we summarize the present knowledge of the occurrence of halogenated fatty acids in lipids and suggested ways of their formation. In Part II (Trends Anal. Chem. 16 (1997) 274) we deal with methods...

  7. Thiamine and fatty acid content of Lake Michigan Chinook salmon

    Science.gov (United States)

    Honeyfield, D.C.; Peters, A.K.; Jones, M.L.

    2008-01-01

    Nutritional status of Lake Michigan Chinook salmon (Oncorhynchus tshawytscha) is inadequately documented. An investigation was conducted to determine muscle and liver thiamine content and whole body fatty acid composition in small, medium and large Chinook salmon. Muscle and liver thiamine concentrations were highest in small salmon, and tended to decrease with increasing fish size. Muscle thiamine was higher in fall than spring in large salmon. The high percentage of Chinook salmon (24-32% in fall and 58-71% in spring) with muscle thiamine concentration below 500 pmol/g, which has been associated with loss of equilibrium and death in other Great Lake salmonines, suggest that Chinook appear to rely less on thiamine than other Great Lakes species for which such low concentrations would be associated with thiamine deficiency (Brown et al. 2005b). A positive correlation was observed between liver total thiamine and percent liver lipids (r = 0.53, P salmon, liver lipids were observed to be low in fish with less than 4,000 pmol/g liver total thiamine. In individuals with greater than 4,000 pmol/g liver thiamine, liver lipid increased with thiamine concentration. Individual fatty acids declined between fall and spring. Essential omega-3 fatty acids appear to be conserved as lipid content declined. Arachidonic acid (C20:4n6), an essential omega-6 fatty acid was not different between fall and spring, although the sum of omega-6 (Sw6) fatty acids declined over winter. Elevated concentrations of saturated fatty acids (sum) were observed in whole body tissue lipid. In summary, thiamine, a dietary essential vitamin, and individual fatty acids were found to vary in Lake Michigan Chinook salmon by fish size and season of the year.

  8. Effects of diets high in unsaturated Fatty acids on socially induced stress responses in Guinea pigs.

    Science.gov (United States)

    Nemeth, Matthias; Millesi, Eva; Wagner, Karl-Heinz; Wallner, Bernard

    2014-01-01

    Unsaturated fatty acids (UFAs), such as omega-3 and omega-6 poly- and omega-9 monounsaturated fatty acids are important nutrients and major components of neuronal cell membranes. They play a major role in modulating brain functions and physiology and may therefore diminish behavioral and physiological stress reactions in corroboration with decreased cortisol concentrations. Functionally, cortisol itself can modulate several behaviors and also the fatty acid metabolism in the long term. But only little is known about the behavioral and physiological influences of dietary UFAs in a social group, where individuals are regularly exposed to stressful situations. Therefore, the aim of this study was to determine the effects of dietary UFAs on saliva cortisol concentrations and behavioral responses in socially confronted guinea pigs. Three groups of animals were additionally supplemented with 500 mg chia seeds (high in omega-3), walnuts (high in omega-6), or peanuts (high in omega-9) per kg bodyweight each day and compared to a control group. During social confrontation saliva cortisol concentrations significantly increased in all groups, which was accompanied by a loss in bodyweight. However, cortisol levels remained lower in the chia and walnut groups compared to controls. Additionally, the walnut group displayed significantly increased locomotion, while no differences between groups were detected in socio-positive, sexual, or aggressive behaviors. Total plasma omega-3, omega-6, and omega-9 fatty acids were significantly increased in the corresponding groups, due to the dietary supplementations. However, a significant decrease in plasma omega-3 and an increase in plasma n-6 fatty acids were detected in the chia group when comparing the measurements before and after social confrontation. We conclude that both omega-3 and omega-6 polyunsaturated fatty acids can diminish behavioral and physiological stress responses to the social environment, enabling individuals to cope

  9. Effects of diets high in unsaturated Fatty acids on socially induced stress responses in Guinea pigs.

    Directory of Open Access Journals (Sweden)

    Matthias Nemeth

    Full Text Available Unsaturated fatty acids (UFAs, such as omega-3 and omega-6 poly- and omega-9 monounsaturated fatty acids are important nutrients and major components of neuronal cell membranes. They play a major role in modulating brain functions and physiology and may therefore diminish behavioral and physiological stress reactions in corroboration with decreased cortisol concentrations. Functionally, cortisol itself can modulate several behaviors and also the fatty acid metabolism in the long term. But only little is known about the behavioral and physiological influences of dietary UFAs in a social group, where individuals are regularly exposed to stressful situations. Therefore, the aim of this study was to determine the effects of dietary UFAs on saliva cortisol concentrations and behavioral responses in socially confronted guinea pigs. Three groups of animals were additionally supplemented with 500 mg chia seeds (high in omega-3, walnuts (high in omega-6, or peanuts (high in omega-9 per kg bodyweight each day and compared to a control group. During social confrontation saliva cortisol concentrations significantly increased in all groups, which was accompanied by a loss in bodyweight. However, cortisol levels remained lower in the chia and walnut groups compared to controls. Additionally, the walnut group displayed significantly increased locomotion, while no differences between groups were detected in socio-positive, sexual, or aggressive behaviors. Total plasma omega-3, omega-6, and omega-9 fatty acids were significantly increased in the corresponding groups, due to the dietary supplementations. However, a significant decrease in plasma omega-3 and an increase in plasma n-6 fatty acids were detected in the chia group when comparing the measurements before and after social confrontation. We conclude that both omega-3 and omega-6 polyunsaturated fatty acids can diminish behavioral and physiological stress responses to the social environment, enabling

  10. Effects of n3 Intake on Plasma Phospholipid Fatty Acids and Sex Hormone Profiles in Postmenopausal Women: Potential for Breast Cancer Risk Reduction

    Science.gov (United States)

    Breast cancer risk is associated with dietary fat intake. Omega-6 fatty acids (n6) promote while omega-3 fatty acids (n3) inhibit tumorigenesis. Increased sex hormone (SH) concentrations are associated with risk of breast cancer. The effects of total fat and n3 on SH and PLFA were assessed in a f...

  11. Trans Fatty Acids

    Science.gov (United States)

    Doyle, Ellin

    1997-09-01

    Fats and their various fatty acid components seem to be a perennial concern of nutritionists and persons concerned with healthful diets. Advice on the consumption of saturated, polyunsaturated, monounsaturated, and total fat bombards us from magazines and newspapers. One of the newer players in this field is the group of trans fatty acids found predominantly in partially hydrogenated fats such as margarines and cooking fats. The controversy concerning dietary trans fatty acids was recently addressed in an American Heart Association (AHA) science advisory (1) and in a position paper from the American Society of Clinical Nutrition/American Institute of Nutrition (ASCN/AIN) (2). Both reports emphasize that the best preventive strategy for reducing risk for cardiovascular disease and some types of cancer is a reduction in total and saturated fats in the diet, but a reduction in the intake of trans fatty acids was also recommended. Although the actual health effects of trans fatty acids remain uncertain, experimental evidence indicates that consumption of trans fatty acids adversely affects serum lipid levels. Since elevated levels of serum cholesterol and triacylglycerols are associated with increased risk of cardiovascular disease, it follows that intake of trans fatty acids should be minimized.

  12. Omega-3 Fatty Acids in Modern Parenteral Nutrition: A Review of the Current Evidence.

    Science.gov (United States)

    Klek, Stanislaw

    2016-03-07

    Intravenous lipid emulsions are an essential component of parenteral nutrition regimens. Originally employed as an efficient non-glucose energy source to reduce the adverse effects of high glucose intake and provide essential fatty acids, lipid emulsions have assumed a larger therapeutic role due to research demonstrating the effects of omega-3 and omega-6 polyunsaturated fatty acids (PUFA) on key metabolic functions, including inflammatory and immune response, coagulation, and cell signaling. Indeed, emerging evidence suggests that the effects of omega-3 PUFA on inflammation and immune response result in meaningful therapeutic benefits in surgical, cancer, and critically ill patients as well as patients requiring long-term parenteral nutrition. The present review provides an overview of the mechanisms of action through which omega-3 and omega-6 PUFA modulate the immune-inflammatory response and summarizes the current body of evidence regarding the clinical and pharmacoeconomic benefits of intravenous n-3 fatty acid-containing lipid emulsions in patients requiring parenteral nutrition.

  13. Chemical Composition and Fatty Acids of Glodok Fish by High Thermal Processing

    Directory of Open Access Journals (Sweden)

    Sri Purwaningsih

    2014-11-01

    Full Text Available Glodok is an economically underrated fish with a high nutrient content. The research aims to study the changes on chemical composition, fatty acids, omega-6 and omega-3 ratio in glodok muscle after processing with different methods of boiling, steaming, and boiling with addition of salt (3%. The results showed that the treatment (boiling, steaming, and boiling with addition of salt gives a significant effect (α=0.05 in water content, ash, lipid content, nervonat acid, linoleic acid, arachidonic acid, EPA, and DHA. The best processing method was steaming. The ratio of omega-3 and omega-6 in fresh glodok fish was 2,1:1, which is higher than WHO recommendation of 0,6:1,7.Keywords: chemical composition, fatty acid, glodok fish, processing

  14. Fatty Acid Biosynthesis IX

    DEFF Research Database (Denmark)

    Carey, E. M.; Hansen, Heinz Johs. Max; Dils, R.

    1972-01-01

    # 1. I. [I-14C]Acetate was covalently bound to rabbit mammary gland fatty acid synthetase by enzymic transacylation from [I-14C]acetyl-CoA. Per mole of enzyme 2 moles of acetate were bound to thiol groups and up to I mole of acetate was bound to non-thiol groups. # 2. 2. The acetyl-fatty acid...... synthetase complex was isolated free from acetyl-CoA. It was rapidly hydrolysed at 30°C, but hydrolysis was greatly diminished at o°C and triacetic lactone synthesis occurred. In the presence of malonyl-CoA and NADPH, all the acetate bound to fatty acid synthetase was incorporated into long-chain fatty acids....... Hydrolysis of bound acetate and incorporation of bound acetate into fatty acids were inhibited to the same extent by guanidine hydrochloride. # 3. 3. Acetate was also covalently bound to fatty acid synthetase by chemical acetylation with [I-14C]acetic anhydride in the absence of CoASH. A total of 60 moles...

  15. Designer laying hen diets to improve egg fatty acid profile and maintain sensory quality.

    Science.gov (United States)

    Goldberg, Erin M; Ryland, Donna; Gibson, Robert A; Aliani, Michel; House, James D

    2013-07-01

    The fatty acid composition of eggs is highly reflective of the diet of the laying hen; therefore, nutritionally important fatty acids can be increased in eggs in order to benefit human health. To explore the factors affecting the hen's metabolism and deposition of fatty acids of interest, the current research was divided into two studies. In Study 1, the fatty acid profile of eggs from Bovan White hens fed either 8%, 14%, 20%, or 28% of the omega-6 fatty acid, linoleic acid (LA) (expressed as a percentage of total fatty acids), and an additional treatment of 14% LA containing double the amount of saturated fat (SFA) was determined. Omega-6 fatty acids and docosapentaenoic acid (DPA) in the yolk were significantly (P hens fed either (1) 15% or 30% of the omega-3 fatty acid, alpha-linolenic acid (ALA) (of total fatty acids), and (2) low (0.5), medium (1), or high (2) ratios of SFA: LA+OA. Increasing this ratio resulted in marked increases in lauric acid, ALA, EPA, DPA, and docosahexaenoic acid (DHA), with decreases in LA and arachidonic acid. Increasing the dietary ALA content from 15% to 30% (of total fatty acids) did not overcome the DHA plateau observed in the yolk. No significant differences (P ≥ 0.05) in aroma or flavor between cooked eggs from the different dietary treatments were observed among trained panelists (n = 8). The results showed that increasing the ratio of SFA: LA+OA in layer diets has a more favorable effect on the yolk fatty acid profile compared to altering the LA content at the expense of OA, all while maintaining sensory quality.

  16. Correlation of omega-3 levels in serum phospholipid from 2053 human blood samples with key fatty acid ratios

    Directory of Open Access Journals (Sweden)

    Rowe William

    2009-12-01

    Full Text Available Abstract Background This research was conducted to explore the relationships between the levels of omega-3 fatty acids in serum phospholipid and key fatty acid ratios including potential cut-offs for risk factor assessment with respect to coronary heart disease and fatal ischemic heart disease. Methods Blood samples (n = 2053 were obtained from free-living subjects in North America and processed for determining the levels of total fatty acids in serum phospholipid as omega-3 fatty acids including EPA (eicosapentaenoic acid, 20:5 n-3 and DHA (docosahexaenoic acid, 22:6 n-3 by combined thin-layer and gas-liquid chromatographic analyses. The omega-3 levels were correlated with selected omega-6: omega-3 ratios including AA (arachidonic acid, 20:4n-6: EPA and AA:(EPA+DHA. Based on previously-published levels of omega-3 fatty acids considered to be in a 'lower risk' category for heart disease and related fatality, 'lower risk' categories for selected fatty acid ratios were estimated. Results Strong inverse correlations between the summed total of omega-3 fatty acids in serum phospholipid and all four ratios (omega-6:omega-3 (n-6:n-3, AA:EPA, AA:DHA, and AA:(EPA+DHA were found with the most potent correlation being with the omega-6:omega-3 ratio (R2 = 0.96. The strongest inverse relation for the EPA+DHA levels in serum phospholipid was found with the omega-6: omega-3 ratio (R2 = 0.94 followed closely by the AA:(EPA+DHA ratio at R2 = 0.88. It was estimated that 95% of the subjects would be in the 'lower risk' category for coronary heart disease (based on total omega-3 ≥ 7.2% with omega-6:omega-3 ratios Conclusions Strong inverse correlations between the levels of omega-3 fatty acids in serum (or plasma phospholipid and omega-6: omega-3 ratios are apparent based on this large database of 2053 samples. Certain fatty acid ratios may aid in cardiovascular disease-related risk assessment if/when complete profiles are not available.

  17. New insights into the health effects of dietary saturated and omega-6 and omega-3 polyunsaturated fatty acids

    National Research Council Canada - National Science Library

    de Lorgeril, Michel; Salen, Patricia

    2012-01-01

    .... Reducing dietary saturated fat and replacing it with polyunsaturated fat is still the main dietary strategy to prevent cardiovascular diseases, although major flaws have been reported in the analyses...

  18. The potential role of omega-3 fatty acids supplements in increasing athletic performance

    Directory of Open Access Journals (Sweden)

    Șerban GLIGOR

    2017-03-01

    Full Text Available Polyunsaturated omega-3 and omega-6 fatty acids are essential fatty acids that cannot be produced by the body itself and therefore must be provided through nutrition. Omega-6 and particularly omega-3 fatty acids have important roles in the organism, contributing to the maintenance and promotion of health. The optimal proportion of omega-6/omega-3 fatty acids is 2:1, or even better 1:1. They are involved in normal growth and development, play a role in the prevention of coronary and cardiovascular diseases, of diabetes mellitus, of arterial hypertension, arthritis and cancer. Omega-3 fatty acids mainly have an anti-inflammatory effect, but also act as hypolipidemic and antithrombotic agents. A potential role of omega-3 fatty acids is that of increasing physical performance. Their role in the physical activity refers on one side to the global health of athletes and on the other side to their anti-inflammatory effect, as high intensity physical exercise induces increased free-radical production and microtraumas, with the induction of an inflammatory status. The anti-inflammatory effect of these fatty acids manifests through an increased production of endogenous antioxidant enzymes, through decreasing the production of prostaglandins metabolites, decreasing the production of leukotriene B4, etc. They are also effective on reducing muscle pain post eccentric exercise and on decreasing the severity of bronchoconstriction induced by exercise, as well as improving pulmonary function variables. In conclusion it seems that supplementing diets with omega-3 fatty acids, apart from having benefic effects on health and on the prevention and management of certain affections, proves to be a beneficial for physical activity and athletic performance.

  19. Omega-3 fatty acids in baked freshwater fish from south of Brazil.

    Science.gov (United States)

    Andrade, A D; Visentainer, J V; Matsushita, M; de Souza, N E

    1997-03-01

    Lipid and fatty acid levels in the edible flesh of 17 baked freshwater fish from Brazil's southern region were determined. Analyses of fatty acids methyl esters were performed by gas chromatography. Palmitic acid (C16:0) was the predominant saturated fatty acid, accouting for 50-70% of total saturated acids. Linoleic acid (C18:2 omega 6), linolenic acid (C18:3 omega 3), and docosahexaenoic acid (C22:6 omega 3) were the predominant polyunsatured fatty acids (PUFA). The data revealed that species such as barbado, corvina, pintado, and truta were good sources of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and that most freshwater fish examined were good sources of PUFA-omega 3.

  20. High Omega-3 Polyunsaturated Fatty Acids in fat-1 Mice Reduce Inflammatory Pain.

    Science.gov (United States)

    Zhang, Enji; Kim, Jwa-Jin; Shin, Nara; Yin, Yuhua; Nan, Yongshan; Xu, Yinshi; Hong, Jinpyo; Hsu, Tzung Min; Chung, Woosuk; Ko, Youngkwon; Lee, Wonhyung; Lim, Kyu; Kim, Dong Woon; Lee, Sun Yeul

    2017-06-01

    Omega-3 and omega-6 polyunsaturated fatty acids (PUFAs), such as α-linolenic and linoleic acids, are essential fatty acids in mammals, because they cannot be synthesized de novo. However, fat-1 transgenic mice can synthesize omega-3 PUFAs from omega-6 PUFAs without dietary supplementation of omega-3, leading to abundant omega-3 PUFA accumulation in various tissues. In this study, we used fat-1 transgenic mice to investigate the role of omega-3 PUFAs in response to inflammatory pain. A high omega-3 PUFA tissue content attenuated formalin-induced pain sensitivity, microglial activation, inducible nitric oxide synthase expression, and the phosphorylation of NR2B, a subunit of the N-methyl-d-aspartate (NMDA) receptor. Our findings suggest that elevated omega-3 PUFA levels inhibit NMDA receptor activity in the spinal dorsal horn and modulate inflammatory pain transmission by regulating signal transmission at the spinal dorsal horn, leading to the attenuation of chemically induced inflammatory pain.

  1. Halogenated fatty acids

    DEFF Research Database (Denmark)

    Mu, Huiling; Sundin, Peter; Wesén, Clas

    1997-01-01

    Halogenated fatty acids are the major contributors to organohalogen compounds in lipids of marine mammals, fish, and bivalves. For the initial characterization of these recently noticed compounds, a determination of the halogen concentration has usually been combined with some lipid isolation...... and separation method. This review covers separation by solid phase chromatography, gel permeation chromatography, and liquid-liquid extraction, followed by halogen determination. All studies performed according to this outline have indicated that the major organohalogen compounds are chlorinated fatty acids...... bound in different lipids. For the detection and identification of individual, halogenated fatty acid methyl esters (FAMEs) liberated from the lipids, gas chromatography (GC) has been employed together with detection methods such as electron capture detection, electrolytic conductivity detection (ELCD...

  2. Fatty acid metabolism in infants with functional and inflamatory bowel diseases

    Directory of Open Access Journals (Sweden)

    Marushko RV

    2014-06-01

    Full Text Available Summary. Over past years, considerable attention is paid to the role of fatty acids, especially polyunsaturated, in the development of various gastrointestinal diseases, among which the most common are functional and inflammatory bowel diseases. The need for studies of fatty acid disorders is to clarify the pathogenetic mechanisms in which fatty acids participate in the development intestinal pathology. The aim of this study to elaborate the optimal preventive and therapeutic measures to reduce the incidence of these diseases and provide the effective treatment, especially in early childhood . Objective: To study the profile features of fatty acids in infants with functional and inflammatory bowel diseases. Patients and methods: Were examined 149 children aged from 6 months to 3 years, divided into 3 groups: 52 children with chronic non-ulcerative non-specific colitis, 49 children with functional constipation and 47 children with functional diarrhea. Verification of diagnoses was provided in accordance with the «Standardised cinical protocols of medical care for children with digestive diseases». Analysis of fatty acid's profile was evaluated by the method blood gas chromatography. Results: All the examined children had fatty acid disorders. The level of saturated fatty acids was decreased and the concentration of polyunsaturated fatty acids was increased in the expence of omega 6 polyunsaturated fatty acids (PUFA, in particularly, linoleic and arachidonic acids. The greatest changes were observed in patients with chronic non-ulcerative non-specific colitis which can be considered as important links in the pathogenesis of chronic inflammation. In functional bowel disorders imbalance of fatty acids is likely to be a risk factor in development significant lesions in the intestinal mucosa. Conclusions: Given the presence of lipid imbalance in inflammatory bowel disease as well as in intestinal functional disorders, which is characterized by a

  3. Fatty acids of Thiobacillus thiooxidans.

    Science.gov (United States)

    Levin, R A

    1971-12-01

    Fatty acid spectra were made on Thiobacillus thiooxidans cultures both in the presence and absence of organic compounds. Small additions of glucose or acetate had no significant effect either on growth or fatty acid content. The addition of biotin had no stimulatory effect but did result in slight quantitative changes in the fatty acid spectrum. The predominant fatty acid was a C(19) cyclopropane acid.

  4. Lowered omega3 polyunsaturated fatty acids in serum phospholipids and cholesteryl esters of depressed patients.

    Science.gov (United States)

    Maes, M; Christophe, A; Delanghe, J; Altamura, C; Neels, H; Meltzer, H Y

    1999-03-22

    Depression is associated with a lowered degree of esterification of serum cholesterol, an increased C20:4omega6/C20:5omega3 ratio and decreases in omega3 fractions in fatty acids (FAs) or in the red blood cell membrane. The aims of the present study were to examine: (i) serum phospholipid and cholesteryl ester compositions of individual saturated fatty acids (SFAs), monounsaturated FAs (MUFAs) and polyunsaturated FAs (PUFAs) in major depressed patients vs. healthy volunteers; (ii) the relationships between the above FAs and lowered serum zinc (Zn), a marker of the inflammatory response in depression; and (iii) the effects of subchronic treatment with antidepressants on FAs in depression. The composition of the FAs was determined by means of thin layer chromatography in conjunction with gas chromatography. Lipid concentrations were assayed by enzymatic colorimetric methods. The oxidative potential index (OPI) of FAs was computed in 34 major depressed inpatients and 14 normal volunteers. Major depression was associated with: increased MUFA and C22:5omega3 proportions and increased C20:4omega6/C20:5omega3 and C22:5omega6/C22:6omega3 ratios; lower C22:4omega6, C20:5omega3 and C22:5omega3 fractions in phospholipids; lower C18:3omega3, C20:5omega3 and total (sigma)omega3 FAs, and higher C20:4omega6/C20:5omega3 and sigmaomega6/sigmaomega3 ratios in cholesteryl esters; lower serum concentrations of phospholipids and cholesteryl esters; and a decreased OPI. In depression, there were significant and positive correlations between serum Zn and C20:5omega3 and C22:6omega3 fractions in phospholipids; and significant inverse correlations between serum Zn and the sigmaomega6/sigmaomega3, C20:4omega6/C20:5omega3, and C22:5omega6/C22:6omega3 ratios in phospholipids. There was no significant effect of antidepressive treatment on any of the FAs. The results show that, in major depression, there is a deficiency of omega3 PUFAs and a compensatory increase in MUFAs and C22:5omega6 in

  5. The importance of omega-3 fatty acids for behaviour, cognition and mood

    OpenAIRE

    Richardson, Alexandra J.

    2003-01-01

    There is mounting evidence that functional deficiencies or imbalances in certain highly unsaturated fatty acids (HUFA) of the omega-3 and omega-6 series may contribute to a wide range of developmental and psychiatric conditions, including dyslexia, dyspraxia, attention deficit hyperactivity disorder (ADHD), autism, depression, bipolar disorder and the schizophrenia spectrum. These nutrients are essential to the development and function of the brain, but the omega-3 HUFA in particular (eicosap...

  6. Regulation of polyisoprenylated methylated protein methyl esterase by polyunsaturated fatty acids and prostaglandins

    OpenAIRE

    Amissah, Felix; Taylor, Shalina; Duverna, Randolph; Ayuk-Takem, Lambert T.; Lamango, Nazarius S

    2011-01-01

    Polyisoprenylation is a set of secondary modifications involving proteins whose aberrant activities are implicated in cancers and degenerative disorders. The last step of the pathway involves an ester-forming polyisoprenylated protein methyl transferase- and hydrolytic polyisoprenylated methylated protein methyl esterase (PMPMEase)-catalyzed reactions. Omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) have been linked with antitumorigeneis and tumorigenesis, respectively. PUFAs are stru...

  7. The antibacterial activity of various saturated and unsaturated fatty acids against several oral pathogens.

    Science.gov (United States)

    Choi, Jae-Suk; Park, Nam-Hee; Hwang, Seon-Yeong; Sohn, Jae Hak; Kwak, Inseok; Cho, Kwang Keun; Choi, In Soon

    2013-07-01

    The antibacterial activity of various saturated fatty acids (SFA) and unsaturated fatty acids (USFA) against different oral pathogens which are implicated in the cause of dental caries, stomatitis, gingivitis, and periodontitis was examined. The saturated fatty acids Pa, StA and ArA, and the unsaturated omega-7 fatty acids PLA and omega-9 fatty acids OA showed either none to low antimicrobial activity against all of the 12 oral pathogenic strains used in this study. In contrast, the omega-3 PUFAs, ALA, SDA, EPA and DHA, and the omega-6 PUFAs, LA, GLA, and AA showed considerable antimicrobial activity against 8, 7, 6 and 5 strains, and 6, 10 and 5 strains, respectively. In particular, the omega-3 and omega-6 PUFAs showed strong antimicrobial activity against Porphyromonas gingivalis KCTC 381, the cause of periodontitis, and against Aggregatibacter segnis KCTC 5968, Fusobacterium nucleatum subsp. Polymorphum KCTC 5172 and Prevotella intermedia KCTC 25611, all organisms implicated in the cause of gingivitis. To date, no bacterial resistance to free fatty acids has been encountered and no resistance phenotype has emerged. Therefore, these results suggest that PUFAs may be useful in the development of therapeutic agents for oral diseases, and in particular, in the development of agents that have minimal side effects and against which there is no bacterial resistance.

  8. MERCURY-CONTAMINATED FISH AND ESSENTIAL FATTY ACIDS: PROBLEMS AND SOLUTIONS

    Directory of Open Access Journals (Sweden)

    Cropotova Janna

    2012-06-01

    Full Text Available Fish consumption is an important part of human diet due to essential omega-3 fatty acids found naturally in this product. Many researchers from all over the world found that high mercury concentrations in the body reduced the heart-protective effects of the fatty acids in fish oils. People shouldn't be constrained by choosing between the health hazards related to toxins caused by industrial pollution and the nutritional benefits provided by consummation of essential fatty acids contained in oily fish. It is very important to find an alternative natural source of essential omega-3 fatty acids EPA and DHA to restore an optimal ratio between omega-6 and omega-3 fatty acids in the human diet.

  9. Original Research: Effect of various dietary fats on fatty acid profile in duck liver: Efficient conversion of short-chain to long-chain omega-3 fatty acids.

    Science.gov (United States)

    Chen, Xi; Du, Xue; Shen, Jianliang; Lu, Lizhi; Wang, Weiqun

    2017-01-01

    Omega-3 fatty acids, especially long-chain omega-3 fatty acids, have been associated with potential health benefits for chronic disease prevention. Our previous studies found that dietary omega-3 fatty acids could accumulate in the meat and eggs in a duck model. This study was to reveal the effects of various dietary fats on fatty acid profile and conversion of omega-3 fatty acids in duck liver. Female Shan Partridge Ducks were randomly assigned to five dietary treatments, each consisting of 6 replicates of 30 birds. The experimental diets substituted the basal diet by 2% of flaxseed oil, rapeseed oil, beef tallow, or fish oil, respectively. In addition, a dose response study was further conducted for flaxseed and fish oil diets at 0.5%, 1%, and 2%, respectively. At the end of the five-week treatment, fatty acids were extracted from the liver samples and analyzed by GC-FID. As expected, the total omega-3 fatty acids and the ratio of total omega-3/omega-6 significantly increased in both flaxseed and fish oil groups when compared with the control diet. No significant change of total saturated fatty acids or omega-3 fatty acids was found in both rapeseed and beef tallow groups. The dose response study further indicated that 59-81% of the short-chain omega-3 ALA in flaxseed oil-fed group was efficiently converted to long-chain DHA in the duck liver, whereas 1% of dietary flaxseed oil could produce an equivalent level of DHA as 0.5% of dietary fish oil. The more omega-3 fatty acids, the less omega-6 fatty acids in the duck liver. Taken together, this study showed the fatty acid profiling in the duck liver after various dietary fat consumption, provided insight into a dose response change of omega-3 fatty acids, indicated an efficient conversion of short- to long-chain omega-3 fatty acid, and suggested alternative long-chain omega-3 fatty acid-enriched duck products for human health benefits.

  10. Food for thought: dietary changes in essential fatty acid ratios and the increase in autism spectrum disorders.

    Science.gov (United States)

    van Elst, Kim; Bruining, Hilgo; Birtoli, Barbara; Terreaux, Christian; Buitelaar, Jan K; Kas, Martien J

    2014-09-01

    The last decades have shown a spectacular and partially unexplained rise in the prevalence of autism spectrum disorders (ASD). This rise in ASD seems to parallel changes in the dietary composition of fatty acids. This change is marked by the replacement of cholesterol by omega-6 (n-6) fatty acids in many of our food products, resulting in a drastically increased ratio of omega-6/omega-3 (n-6/n-3). In this context, we review the available knowledge on the putative role of fatty acids in neurodevelopment and describe how disturbances in n-6/n-3 ratios may contribute to the emergence of ASDs. Both clinical and experimental research is discussed. We argue that a change in the ratio of n-6/n-3, especially during early life, may induce developmental changes in brain connectivity, synaptogenesis, cognition and behavior that are directly related to ASD.

  11. Egg fatty acid composition from lake trout fed two Lake Michigan prey fish species.

    Science.gov (United States)

    Honeyfield, D.C.; Fitzsimons, J.D.; Tillitt, D.E.; Brown, S.B.

    2009-01-01

    We previously demonstrated that there were significant differences in the egg thiamine content in lake trout Salvelinus namaycush fed two Lake Michigan prey fish (alewife Alosa pseudoharengus and bloater Coregonus hoyi). Lake trout fed alewives produced eggs low in thiamine, but it was unknown whether the consumption of alewives affected other nutritionally important components. In this study we investigated the fatty acid composition of lake trout eggs when females were fed diets that resulted in different egg thiamine concentrations. For 2 years, adult lake trout were fed diets consisting of four combinations of captured alewives and bloaters (100% alewives; 65% alewives, 35% bloaters; 35% alewives, 65% bloaters; and 100% bloaters). The alewife fatty acid profile had higher concentrations of arachidonic acid and total omega-6 fatty acids than the bloater profile. The concentrations of four fatty acids (cis-13, 16-docosadienoic, eicosapentaenoic, docosapentaenoic, and docosahexaenoic acids) were higher in bloaters than in alewives. Although six fatty acid components were higher in lake trout eggs in 2001 than in 2000 and eight fatty acids were lower, diet had no effect on any fatty acid concentration measured in lake trout eggs in this study. Based on these results, it appears that egg fatty acid concentrations differ between years but that the egg fatty acid profile does not reflect the alewife-bloater mix in the diet of adults. The essential fatty acid content of lake trout eggs from females fed alewives and bloaters appears to be physiologically regulated and adequate to meet the requirements of developing embryos.

  12. Egg fatty acid composition from lake trout fed two Lake Michigan prey fish species.

    Science.gov (United States)

    Honeyfield, Dale C; Fitzsimons, John D; Tillitt, Donald E; Brown, Scott B

    2009-12-01

    We previously demonstrated that there were significant differences in the egg thiamine content in lake trout Salvelinus namaycush fed two Lake Michigan prey fish (alewife Alosa pseudoharengus and bloater Coregonus hoyi). Lake trout fed alewives produced eggs low in thiamine, but it was unknown whether the consumption of alewives affected other nutritionally important components. In this study we investigated the fatty acid composition of lake trout eggs when females were fed diets that resulted in different egg thiamine concentrations. For 2 years, adult lake trout were fed diets consisting of four combinations of captured alewives and bloaters (100% alewives; 65% alewives, 35% bloaters; 35% alewives, 65% bloaters; and 100% bloaters). The alewife fatty acid profile had higher concentrations of arachidonic acid and total omega-6 fatty acids than the bloater profile. The concentrations of four fatty acids (cis-13, 16-docosadienoic, eicosapentaenoic, docosapentaenoic, and docosahexaenoic acids) were higher in bloaters than in alewives. Although six fatty acid components were higher in lake trout eggs in 2001 than in 2000 and eight fatty acids were lower, diet had no effect on any fatty acid concentration measured in lake trout eggs in this study. Based on these results, it appears that egg fatty acid concentrations differ between years but that the egg fatty acid profile does not reflect the alewife-bloater mix in the diet of adults. The essential fatty acid content of lake trout eggs from females fed alewives and bloaters appears to be physiologically regulated and adequate to meet the requirements of developing embryos.

  13. Plasma and brain fatty acid profiles in mild cognitive impairment and Alzheimer's disease.

    Science.gov (United States)

    Cunnane, Stephen C; Schneider, Julie A; Tangney, Christine; Tremblay-Mercier, Jennifer; Fortier, Mélanie; Bennett, David A; Morris, Martha Clare

    2012-01-01

    Alzheimer's disease (AD) is generally associated with lower omega-3 fatty acid intake from fish but despite numerous studies, it is still unclear whether there are differences in omega-3 fatty acids in plasma or brain. In matched plasma and brain samples provided by the Memory and Aging Project, fatty acid profiles were quantified in several plasma lipid classes and in three brain cortical regions. Fatty acid data were expressed as % composition and as concentrations (mg/dL for plasma or mg/g for brain). Differences in plasma fatty acid profiles between AD, mild cognitive impairment (MCI), and those with no cognitive impairment (NCI) were most apparent in the plasma free fatty acids (lower oleic acid isomers and omega-6 fatty acids in AD) and phospholipids (lower omega-3 fatty acids in AD). In brain, % DHA was lower only in phosphatidylserine of mid-frontal cortex and superior temporal cortex in AD compared to NCI (-14% and -12%, respectively; both p < 0.05). The only significant correlation between plasma and brain fatty acids was between % DHA in plasma total lipids and % DHA in phosphatidylethanolamine of the angular gyrus, but only in the NCI group (+0.77, p < 0.05). We conclude that AD is associated with altered plasma status of both DHA and other fatty acids unrelated to DHA, and that the lipid class-dependent nature of these differences reflects a combination of differences in intake and metabolism.

  14. Atherogenicity index and health-related fatty acids in different stages of lactation from Friesian, Jersey and Friesian×Jersey cross cow milk under a pasture-based dairy system.

    Science.gov (United States)

    Nantapo, C T W; Muchenje, V; Hugo, A

    2014-03-01

    The objective of the study was to investigate the effect of stage of lactation on the fatty acid profiles of milk from Friesian, Jersey and Friesian×Jersey cows. Linoleic acid in pastures was highest in the second phase which coincided with mid-lactation days (pfatty acids were observed for milk from Friesian cows. Highest conjugated fatty acids, α-linolenic acid, linoleic acid, saturated fatty acids, polyunsaturated fatty acids, omega-6, and omega-3 were observed in early lactation. Atherogenicity index and desaturase activity indices were highest in late lactation. In conclusion, stage of lactation and genotype affected milk health-related fatty acid profiles.

  15. [The individual fatty acids in blood plasma, erythrocytes and lipoproteins. The comparison of tests results of patients with ischemic heart disease and volunteers].

    Science.gov (United States)

    Titov, V N; Aripovskiĭ, A V; Kaba, S I; Kolesnik, P O; Vezhdel, M I; Shiriaeva, Iu K

    2012-07-01

    According to the generally accepted theory, the atherosclerosis is a kind of disorder of metabolism of lipids which chemically are the ethers of fatty lipids with spirits. Hence, the atherosclerosis is fatty acids pathology. In conformity with the biologic classification, among fatty acids it is functionally valid to distinguish saturated fatty acids without double bonds; monoenic fatty acids with one double bond; unsaturated fatty acids with two or three double bonds and polyenic fatty acids with four of six double bonds in chain. The saturated and monenic fatty acids are the substrates for cells to groundwork energy, ATP The unsaturated fatty acids in vivo are needed to form membranes. The polyenic fatty acids are essential since they are precursors of cell synthesis of humoral regulators--eicosanoids (prostanoids and leukotrienes). To clarify the pathogenesis of the "metabolic pandemics" most prevalent in human population, the quantitative determination of individual fatty acids in blood plasma and erythrocytes using gas chromatography technique is needed. It is necessary to evaluate the content of medium chain fatty acids; palmitic and stearic saturated fatty acids; oleic monoenic fatty acid and its transforms--linoleic, linolenic and dihomo-gamma-linolenic unsaturated fatty acids; essential polyenic omega-6 arachidonic, omega-3 eicosapentaenoic and docosahexaenoic fatty acids. The higher is in food the content of palmitic saturated fatty acid, palmitoleic and trans-vaccenic monoenic fatty acids, the more is in patient diet of beef meat and products of fat cow's milk. The higher is ratio of palmitic/oleic fatty acids the lower is the risk of formation of atheromatosis of arteries intima and development of ischemic heart disease and vice versa. The decrease of ratio of omega-3/omega-6 essential polyenic fatty acids is undesirable in prognostic sense. The metabolism of these acids differs and functional activity of omega-3 eicosanoid type 3 is higher In case of

  16. Dietary Omega-3 Fatty Acids Increase Survival and Decrease Bacterial Load in Mice Subjected to Staphylococcus aureus-Induced Sepsis.

    Science.gov (United States)

    Svahn, Sara L; Ulleryd, Marcus A; Grahnemo, Louise; Ståhlman, Marcus; Borén, Jan; Nilsson, Staffan; Jansson, John-Olov; Johansson, Maria E

    2016-04-01

    Sepsis caused by Staphylococcus aureus is increasing in incidence. With the alarming use of antibiotics,S. aureus is prone to become methicillin resistant. Antibiotics are the only widely used pharmacological treatment for sepsis. Interestingly, mice fed high-fat diet (HFD) rich in polyunsaturated fatty acids have better survival of S. aureus-induced sepsis than mice fed HFD rich in saturated fatty acids (HFD-S). To investigate what component of polyunsaturated fatty acids, i.e., omega-3 or omega-6 fatty acids, exerts beneficial effects on the survival of S. aureus-induced sepsis, mice were fed HFD rich in omega-3 or omega-6 fatty acids for 8 weeks prior to inoculation with S. aureus Further, mice fed HFD-S were treated with omega-3 fatty acid metabolites known as resolvins. Mice fed HFD rich in omega-3 fatty acids had increased survival and decreased bacterial loads compared to those for mice fed HFD-S after S. aureus-induced sepsis. Furthermore, the bacterial load was decreased in resolvin-treated mice fed HFD-S after S. aureus-induced sepsis compared with that in mice treated with vehicle. Dietary omega-3 fatty acids increase the survival of S. aureus-induced sepsis by reversing the deleterious effect of HFD-S on mouse survival.

  17. Differences in fatty acid composition between aquatic and terrestrial insects used as food in human nutrition.

    Science.gov (United States)

    Fontaneto, Diego; Tommaseo-Ponzetta, Mila; Galli, Claudio; Risé, Patrizia; Glew, Robert H; Paoletti, Maurizio G

    2011-01-01

    Edible insects may be a source of long-chain polyunsaturated fatty acids (LC-PUFA). The aim of this article is to test for differences in aquatic and terrestrial insects used in human nutrition. We implemented linear models and discovered that differences in the proportion of LC-PUFA between aquatic and terrestrial insects do exist, with terrestrial insects being significantly richer in particular omega-6 fatty acids. In conclusion, any kind of insect may provide valuable sources of LC-PUFA. Because terrestrial insects are more abundant and easier to collect, they can be considered a better source of LC-PUFA than aquatic ones.

  18. Prevention of Sports Injuries by Marine Omega-3 Fatty Acids.

    Science.gov (United States)

    Bryhn, Morten

    2015-01-01

    Sport injuries are common and costly for the professional athlete, the "weekend warrior," and the community. Acute injuries are treated according to current guidelines with the aim of bringing the athlete back into the arena. These guidelines have not taken into account new scientific results of the inflammatory process following a trauma. The 4 hallmarks of inflammation, namely, pain, swelling, redness, and heat, are results of an adequate inflammatory response with the aim of bringing the affected tissue back to restitution (Latin: restitutio ad integrum). Cooling of the affected limb and anti-inflammatory drugs are widely used but may deter healing. The healing process is governed by fatty acids of the omega-3 and omega-6 series. In order to facilitate healing, these fatty acids have to be present in significant amounts in the affected tissues before the trauma occurs. This is particularly relevant for marine omega-3 fatty acids, which are often running low due to insignificant intake of seafood, common in individuals practicing sports. High-energy sports often lead to head and brain trauma. Continuous head traumata may even result in later mental defects. Saturation of brain cells with omega-3 fatty acids, in particular docosahexaenoic acid (DHA), may facilitate healing after brain trauma, thereby counteracting negative long-term results. The present understanding of a normal inflammatory process leading to restitution will be discussed along with data from recent scientific trials.

  19. Fish Lipids as a Valuable Source of Polyunsaturated Fatty Acids

    Science.gov (United States)

    Merdzhanova, Albena; Ivanov, Ivaylo; Dobreva, Diana A.; Makedonski, Lyubomir

    2017-03-01

    This article presents information about omega-3 (h-3) and omega-6 (n-6) polyunsaturated fatty acid (PUFA) contents in a broad range of commercially important fish species available on Bulgarian fish markets. The aim is to raise consumers' awareness and encourage them to eat fish. Fish species from the Black Sea coast have relatively high proportion of n-3 PUFAs, of which more than 80% is by EPf (eicosapentaenoic acid, C 20:5 n-3) and DHA (docosahexaenoic acid, C 22:6 n-3). Extensive epidemiological studies show that fish consumption is inversely associated with the incidence of cardiovascular diseases (CVD), stroke and the functioning of the brain. About 0.5 g of omega-3 (EPA+DHA) a day or two savings of oily fish a week are required to reduce the risk of death from CVD. PUFAs needs should be satisfied not only with food additives but with fish lipids containing food.

  20. [Fatty acids in sardine canned in tomato sauce from different fishing areas of the Mexican Pacific].

    Science.gov (United States)

    Castro Gónzalez, M I; Montaño Benavides, S; Pérez-Gil Romo, F

    2001-12-01

    Numerous investigations have pointed out the importance that the fatty acids have in the process health-illness, and that the marine resources are excellent sources of the series omega 3 and omega 6. In Mexico, the sardine is a product of marine origin of wide consumption due to its high readiness and low cost. The objective of the present study was to determine the fatty acids profile (FA) in sardine canned in tomato sauce coming from different fishing areas (A) of the Mexican Pacific. There were randomly obtained 8 commercial mark (5 cans of each mark) of sardine canned in tomato sauce; they were classified in sardine of South Baja California Sur (A1), Sonora (A2) and Sinaloa (A3). The samples without draining were liquified and thereafter were obtained the methyl esters of fatty acids that were analyzed by gas chromatography with a flame ionization detector. In all the areas they were identified and quantified as 3 FA omega 3 (linolenic, EPA and DHA) and 2 AG omega 6 (linoleic and arachidonic); this source is rich in FA monounsaturated and also presents a considerable quantity of trans FA (18:1n9t and 18:2n6t). The DHA was the most abundant AG in all the areas (3064-4704 mg/100 g); finally, the relationships omega 3/omega 6 were from 3.5 (A1) up to 8.9 (A3). In conclusion, sardine canned in tomato sauce of the mexican Pacific is a rich food in omega-3 and omega-6 FA, independently of the processing area.

  1. Development of low birthweight infants at 19 months of age correlates with early intake and status of long-chain polyunsaturated fatty acids

    NARCIS (Netherlands)

    Woltil, HA; van Beusekom, CM; Okken-Beukens, M; Schaafsma, A; Muskiet, FAJ; Okken, A

    1999-01-01

    We investigated the influence of early nutrition with and without long-chain polyunsaturated fatty acids (LCP) on later development of less than or equal to 2500 g newborns receiving preterm formula without LCP (n=75), preterm formula with 18:3 omega 6 and LCP omega 3 (at two doses; n=26) or their m

  2. Development of low birthweight infants at 19 months of age correlates with early intake and status of long-chain polyunsaturated fatty acids

    NARCIS (Netherlands)

    Woltil, HA; van Beusekom, CM; Okken-Beukens, M; Schaafsma, A; Muskiet, FAJ; Okken, A

    1999-01-01

    We investigated the influence of early nutrition with and without long-chain polyunsaturated fatty acids (LCP) on later development of less than or equal to 2500 g newborns receiving preterm formula without LCP (n=75), preterm formula with 18:3 omega 6 and LCP omega 3 (at two doses; n=26) or their

  3. Development of low birthweight infants at 19 months of age correlates with early intake and status of long-chain polyunsaturated fatty acids

    NARCIS (Netherlands)

    Woltil, HA; van Beusekom, CM; Okken-Beukens, M; Schaafsma, A; Muskiet, FAJ; Okken, A

    1999-01-01

    We investigated the influence of early nutrition with and without long-chain polyunsaturated fatty acids (LCP) on later development of less than or equal to 2500 g newborns receiving preterm formula without LCP (n=75), preterm formula with 18:3 omega 6 and LCP omega 3 (at two doses; n=26) or their m

  4. Omega-3 fatty acids for breast cancer prevention and survivorship.

    Science.gov (United States)

    Fabian, Carol J; Kimler, Bruce F; Hursting, Stephen D

    2015-05-04

    Women with evidence of high intake ratios of the marine omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) relative to the omega-6 arachidonic acid have been found to have a reduced risk of breast cancer compared with those with low ratios in some but not all case-control and cohort studies. If increasing EPA and DHA relative to arachidonic acid is effective in reducing breast cancer risk, likely mechanisms include reduction in proinflammatory lipid derivatives, inhibition of nuclear factor-κB-induced cytokine production, and decreased growth factor receptor signaling as a result of alteration in membrane lipid rafts. Primary prevention trials with either risk biomarkers or cancer incidence as endpoints are underway but final results of these trials are currently unavailable. EPA and DHA supplementation is also being explored in an effort to help prevent or alleviate common problems after a breast cancer diagnosis, including cardiac and cognitive dysfunction and chemotherapy-induced peripheral neuropathy. The insulin-sensitizing and anabolic properties of EPA and DHA also suggest supplementation studies to determine whether these omega-3 fatty acids might reduce chemotherapy-associated loss of muscle mass and weight gain. We will briefly review relevant omega-3 fatty acid metabolism, and early investigations in breast cancer prevention and survivorship.

  5. INFLUENCE OF THERMAL HEATING ON THE FATTY ACID COMPOSITION OF TURKEY MEAT ENRICHED WITH LINSEED OIL

    Directory of Open Access Journals (Sweden)

    V. V. Gushchin

    2016-01-01

    Full Text Available Abstract The paper examines the problem of optimization of the fatty acid composition of lipids in poultry meat, which is widely used in nutrition. The omega-6 content is significantly higher than the omega-3 content in the composition of poultry meat lipids, which is not optimal for assimilation and needs a correction. The possibility of turkey meat enrichment with linseed oil was investigated with the aim of ensuring the omega-6 to omega-3 ratio in the minced meat formulations, which provides for the nutritionally adequate balance not higher than 10 units. The paper also presents the results of the investigation of the fatty acids composition and fatty acid balance of the lipid fraction of minced meat as well as the changes due to thermal heating of meat formulations in the water medium with a temperature of 95±2  °C to a product core temperature of 70±1  °C. According to the data of the investigations, the omega-6 : omega-3 ratio in the minced meat formulations before thermal treatment was 6.5 to 7.7 units compared to the control (42 units; after thermal treatment, it was 6.5 to 8.0 units for the minced meat formulations, which included vegetable oils with linseed oil. The data on the fatty acid composition of the formulations correspond to the indicators of the fatty acid balance which was RL1…3=0.47 – 0.57 and RL1…6 = 0.32 – 0.37 units for enriched minced meat before thermal treatment and 0.48 – 0.57 and 0.31 – 0.38 units after thermal treatment, respectively. The results confirm the possibility to enrich minced meat formulations with linseed oil when producing meat balls, which can be extended to other types of products.

  6. Differing Daphnia magna assimilation efficiencies for terrestrial, bacterial, and algal carbon and fatty acids.

    Science.gov (United States)

    Taipale, Sami J; Brett, Michael T; Hahn, Martin W; Martin-Creuzburg, Dominik; Yeung, Sean; Hiltunen, Minna; Strandberg, Ursula; Kankaala, Paula

    2014-02-01

    There is considerable interest in the pathways by which carbon and growth-limiting elemental and biochemical nutrients are supplied to upper trophic levels. Fatty acids and sterols are among the most important molecules transferred across the plant-animal interface of food webs. In lake ecosystems, in addition to phytoplankton, bacteria and terrestrial organic matter are potential trophic resources for zooplankton, especially in those receiving high terrestrial organic matter inputs. We therefore tested carbon, nitrogen, and fatty acid assimilation by the crustacean Daphnia magna when consuming these resources. We fed Daphnia with monospecific diets of high-quality (Cryptomonas marssonii) and intermediate-quality (Chlamydomonas sp. and Scenedesmus gracilis) phytoplankton species, two heterotrophic bacterial strains, and particles from the globally dispersed riparian grass, Phragmites australis, representing terrestrial particulate organic carbon (t-POC). We also fed Daphnia with various mixed diets, and compared Daphnia fatty acid, carbon, and nitrogen assimilation across treatments. Our results suggest that bacteria were nutritionally inadequate diets because they lacked sterols and polyunsaturated omega-3 and omega-6 (omega-3 and omega-6) fatty acids (PUFAs). However, Daphnia were able to effectively use carbon and nitrogen from Actinobacteria, if their basal needs for essential fatty acids and sterols were met by phytoplankton. In contrast to bacteria, t-POC contained sterols and omega-6 and omega-3 fatty acids, but only at 22%, 1.4%, and 0.2% of phytoplankton levels, respectively, which indicated that t-POC food quality was especially restricted with regard to omega-3 PUFAs. Our results also showed higher assimilation of carbon than fatty acids from t-POC and bacteria into Daphnia, based on stable-isotope and fatty acids analysis, respectively. A relatively high (>20%) assimilation of carbon and fatty acids from t-POC was observed only when the proportion of t

  7. Pork as a Source of Omega-3 (n-3) Fatty Acids.

    Science.gov (United States)

    Dugan, Michael E R; Vahmani, Payam; Turner, Tyler D; Mapiye, Cletos; Juárez, Manuel; Prieto, Nuria; Beaulieu, Angela D; Zijlstra, Ruurd T; Patience, John F; Aalhus, Jennifer L

    2015-12-16

    Pork is the most widely eaten meat in the world, but typical feeding practices give it a high omega-6 (n-6) to omega-3 (n-3) fatty acid ratio and make it a poor source of n-3 fatty acids. Feeding pigs n-3 fatty acids can increase their contents in pork, and in countries where label claims are permitted, claims can be met with limited feeding of n-3 fatty acid enrich feedstuffs, provided contributions of both fat and muscle are included in pork servings. Pork enriched with n-3 fatty acids is, however, not widely available. Producing and marketing n-3 fatty acid enriched pork requires regulatory approval, development costs, quality control costs, may increase production costs, and enriched pork has to be tracked to retail and sold for a premium. Mandatory labelling of the n-6/n-3 ratio and the n-3 fatty acid content of pork may help drive production of n-3 fatty acid enriched pork, and open the door to population-based disease prevention polices (i.e., food tax to provide incentives to improve production practices). A shift from the status-quo, however, will require stronger signals along the value chain indicating production of n-3 fatty acid enriched pork is an industry priority.

  8. Pork as a Source of Omega-3 (n-3 Fatty Acids

    Directory of Open Access Journals (Sweden)

    Michael E.R. Dugan

    2015-12-01

    Full Text Available Pork is the most widely eaten meat in the world, but typical feeding practices give it a high omega-6 (n-6 to omega-3 (n-3 fatty acid ratio and make it a poor source of n-3 fatty acids. Feeding pigs n-3 fatty acids can increase their contents in pork, and in countries where label claims are permitted, claims can be met with limited feeding of n-3 fatty acid enrich feedstuffs, provided contributions of both fat and muscle are included in pork servings. Pork enriched with n-3 fatty acids is, however, not widely available. Producing and marketing n-3 fatty acid enriched pork requires regulatory approval, development costs, quality control costs, may increase production costs, and enriched pork has to be tracked to retail and sold for a premium. Mandatory labelling of the n-6/n-3 ratio and the n-3 fatty acid content of pork may help drive production of n-3 fatty acid enriched pork, and open the door to population-based disease prevention polices (i.e., food tax to provide incentives to improve production practices. A shift from the status-quo, however, will require stronger signals along the value chain indicating production of n-3 fatty acid enriched pork is an industry priority.

  9. Pork as a Source of Omega-3 (n-3) Fatty Acids

    Science.gov (United States)

    Dugan, Michael E.R.; Vahmani, Payam; Turner, Tyler D.; Mapiye, Cletos; Juárez, Manuel; Prieto, Nuria; Beaulieu, Angela D.; Zijlstra, Ruurd T.; Patience, John F.; Aalhus, Jennifer L.

    2015-01-01

    Pork is the most widely eaten meat in the world, but typical feeding practices give it a high omega-6 (n-6) to omega-3 (n-3) fatty acid ratio and make it a poor source of n-3 fatty acids. Feeding pigs n-3 fatty acids can increase their contents in pork, and in countries where label claims are permitted, claims can be met with limited feeding of n-3 fatty acid enrich feedstuffs, provided contributions of both fat and muscle are included in pork servings. Pork enriched with n-3 fatty acids is, however, not widely available. Producing and marketing n-3 fatty acid enriched pork requires regulatory approval, development costs, quality control costs, may increase production costs, and enriched pork has to be tracked to retail and sold for a premium. Mandatory labelling of the n-6/n-3 ratio and the n-3 fatty acid content of pork may help drive production of n-3 fatty acid enriched pork, and open the door to population-based disease prevention polices (i.e., food tax to provide incentives to improve production practices). A shift from the status-quo, however, will require stronger signals along the value chain indicating production of n-3 fatty acid enriched pork is an industry priority. PMID:26694475

  10. Intake of omega-3 fatty acids contributes to bone mineral density at the hip in a younger Japanese female population.

    Science.gov (United States)

    Kuroda, T; Ohta, H; Onoe, Y; Tsugawa, N; Shiraki, M

    2017-06-23

    This study investigated the relationships between intakes of polyunsaturated fatty acids, omega-3 fatty acids, and omega-6 fatty acids and bone mineral density in Japanese women aged 19 to 25 years. Intakes of omega-3 fatty acids (n-3) were positively associated with peak bone mass at the hip. Lifestyle factors such as physical activity and nutrition intake are known to optimize the peak bone mass (PBM). Recently, intake of polyunsaturated fatty acids (PUFAs) has been reported to contribute to bone metabolism. In this study, the relationships of intakes of n-3 and omega-6 (n-6) fatty acids with PBM were evaluated in Japanese female subjects. A total of 275 healthy female subjects (19-25 years) having PBM were enrolled, and lumbar and total hip bone mineral density (BMD) and bone metabolic parameters were measured. Dietary intakes of total energy, total n-3 fatty acids, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and total n-6 fatty acids were assessed by a self-administered questionnaire. Physical activity information was also assessed. The mean ± SD age was 20.6 ± 1.4 years, and BMI was 21.2 ± 2.7 kg/m(2). BMI and serum bone alkaline phosphatase contributed significantly to lumbar BMD on multiple regression analysis. Intake of n-3 fatty acids and physical activity were also significantly related to total hip BMD. Using EPA or DHA instead of total n-3 fatty acids in the model did not result in a significant result. Adequate total n-3 fatty acid intake may help maximize PBM at the hip.

  11. Brain and Liver Headspace Aldehyde Concentration Following Dietary Supplementation with n-3 Polyunsaturated Fatty Acids.

    Science.gov (United States)

    Ross, Brian M; Babay, Slim; Malik, Imran

    2015-11-01

    Reactive oxygen species react with unsaturated fatty acids to form a variety of metabolites including aldehydes. Many aldehydes are volatile enough to be detected in headspace gases of blood or cultured cells and in exhaled breath, in particular propanal and hexanal which are derived from omega-3 and omega-6 polyunsaturated fatty acids, respectively. Aldehydes are therefore potential non-invasive biomarkers of oxidative stress and of various diseases in which oxidative stress is thought to play a role including cancer, cardiovascular disease and diabetes. It is unclear, however, how changes in the abundance of the fatty acid precursors, for example by altered dietary intake, affect aldehyde concentrations. We therefore fed male Wistar rats diets supplemented with either palm oil or a combination of palm oil plus an n-3 fatty acid (alpha-linolenic, eicosapentaenoic, or docosahexaenoic acids) for 4 weeks. Fatty acid analysis revealed large changes in the abundance of both n-3 and n-6 fatty acids in the liver with smaller changes observed in the brain. Despite the altered fatty acid abundance, headspace concentrations of C1-C8 aldehydes, and tissue concentrations of thiobarbituric acid reactive substances, did not differ between the 4 dietary groups. Our data suggest that tissue aldehyde concentrations are independent of fatty acid abundance, and further support their use as volatile biomarkers of oxidative stress.

  12. Omega-3 Fatty Acids during Pregnancy

    Science.gov (United States)

    OMEGA-3 FATTY ACIDS DURING PREGNANCY S HARE W ITH W OMEN OMEGA-3 FATTY ACIDS DURING PREGNANCY During pregnancy, your ... the foods you eat and vitamins you take. Omega-3 fatty acids (omega-3s) are an important ...

  13. Fatty acid profile of gamma-irradiated and cooked African oil bean seed (Pentaclethra macrophylla Benth).

    Science.gov (United States)

    Olotu, Ifeoluwa; Enujiugha, Victor; Obadina, Adewale; Owolabi, Kikelomo

    2014-11-01

    The safety and shelf-life of food products can be, respectively, ensured and extended with important food-processing technologies such as irradiation. The joint effect of cooking and 10 kGy gamma irradiation on the fatty acid composition of the oil of Pentaclethra macrophylla Benth was evaluated. Oils from the raw seed, cooked seeds, irradiated seeds (10 kGy), cooked, and irradiated seeds (10 kGy) were extracted and analyzed for their fatty acid content. An omega-6-fatty acid (linoleic acid) was the principal unsaturated fatty acid in the bean seed oil (24.6%). Cooking significantly (P oil sample to have the highest total fatty acid content (154.9%), unsaturated to saturated fatty acid ratio (109.6), and unsaturated fatty acid content (153.9%). 10 kGy irradiation induces the formation of C20:5 (eicosapentaenoic), while cooking induced the formation of C20:4 (arachidic acid), C22:6 (Heneicosanoic acid), and C22:2 (docosadienoic acid). Combined 10 kGy cooking and irradiation increased the susceptibility of the oil of the African oil bean to rancidity.

  14. Omega-3 fatty acids moderate effects of physical activity on cognitive function.

    Science.gov (United States)

    Leckie, Regina L; Manuck, Stephen B; Bhattacharjee, Neha; Muldoon, Matthew F; Flory, Janine M; Erickson, Kirk I

    2014-07-01

    Greater amounts of physical activity (PA) and omega-3 fatty acids have both been independently associated with better cognitive performance. Because of the overlapping biological effects of omega-3 fatty acids and PA, fatty acid intake may modify the effects of PA on neurocognitive function. The present study tested this hypothesis by examining whether the ratio of serum omega-6 to omega-3 fatty acid levels would moderate the association between PA and executive and memory functions in 344 participants (Mean age=44.42 years, SD=6.72). The Paffenbarger Physical Activity Questionnaire (PPAQ), serum fatty acid levels, and performance on a standard neuropsychological battery were acquired on all subjects. A principal component analysis reduced the number of cognitive outcomes to three factors: n-back working memory, Trail Making test, and Logical Memory. We found a significant interaction between PA and the ratio of omega-6 to omega-3 fatty acid serum levels on Trail Making performance and n-back performance, such that higher amounts of omega-3 levels offset the deleterious effects of lower amounts of PA. These effects remained significant in a subsample (n=299) controlling for overall dietary fat consumption. There were no significant additive or multiplicative benefits of higher amounts of both omega-3 and PA on cognitive performance. Our results demonstrate that a diet high in omega-3 fatty acids might mitigate the effect of lower levels of PA on cognitive performance. This study illuminates the importance of understanding dietary and PA factors in tandem when exploring their effects on neurocognitive health.

  15. Omega-3 fatty acids in health and disease and in growth and development.

    Science.gov (United States)

    Simopoulos, A P

    1991-09-01

    Several sources of information suggest that man evolved on a diet with a ratio of omega 6 to omega 3 fatty acids of approximately 1 whereas today this ratio is approximately 10:1 to 20-25:1, indicating that Western diets are deficient in omega 3 fatty acids compared with the diet on which humans evolved and their genetic patterns were established. Omega-3 fatty acids increase bleeding time; decrease platelet aggregation, blood viscosity, and fibrinogen; and increase erythrocyte deformability, thus decreasing the tendency to thrombus formation. In no clinical trial, including coronary artery graft surgery, has there been any evidence of increased blood loss due to ingestion of omega 3 fatty acids. Many studies show that the effects of omega 3 fatty acids on serum lipids depend on the type of patient and whether the amount of saturated fatty acids in the diet is held constant. In patients with hyperlipidemia, omega 3 fatty acids decrease low-density-lipoprotein (LDL) cholesterol if the saturated fatty acid content is decreased, otherwise there is a slight increase, but at high doses (32 g) they lower LDL cholesterol; furthermore, they consistently lower serum triglycerides in normal subjects and in patients with hypertriglyceridemia whereas the effect on high-density lipoprotein (HDL) varies from no effect to slight increases. The discrepancies between animal and human studies most likely are due to differences between animal and human metabolism. In clinical trials eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in the form of fish oils along with antirheumatic drugs improve joint pain in patients with rheumatoid arthritis; have a beneficial effect in patients with ulcerative colitis; and in combination with drugs, improve the skin lesions, lower the hyperlipidemia from etretinates, and decrease the toxicity of cyclosporin in patients with psoriasis. In various animal models omega 3 fatty acids decrease the number and size of tumors and increase the time

  16. Handmade cloned transgenic sheep rich in omega-3 Fatty acids.

    Science.gov (United States)

    Zhang, Peng; Liu, Peng; Dou, Hongwei; Chen, Lei; Chen, Longxin; Lin, Lin; Tan, Pingping; Vajta, Gabor; Gao, Jianfeng; Du, Yutao; Ma, Runlin Z

    2013-01-01

    Technology of somatic cell nuclear transfer (SCNT) has been adapted worldwide to generate transgenic animals, although the traditional procedure relies largely on instrumental micromanipulation. In this study, we used the modified handmade cloning (HMC) established in cattle and pig to produce transgenic sheep with elevated levels of omega-3 (n-3) fatty acids. Codon-optimized nematode mfat-1 was inserted into a eukaryotic expression vector and was transferred into the genome of primary ovine fibroblast cells from a male Chinese merino sheep. Reverse transcriptase PCR, gas chromatography, and chromosome analyses were performed to select nuclear donor cells capable of converting omega-6 (n-6) into n-3 fatty acids. Blastocysts developed after 7 days of in vitro culture were surgically transplanted into the uterus of female ovine recipients of a local sheep breed in Xinjiang. For the HMC, approximately 8.9% (n  =925) of reconstructed embryos developed to the blastocyst stage. Four recipients became pregnant after 53 blastocysts were transplanted into 29 naturally cycling females, and a total of 3 live transgenic lambs were produced. Detailed analyses on one of the transgenic lambs revealed a single integration of the modified nematode mfat-1 gene at sheep chromosome 5. The transgenic sheep expressed functional n-3 fatty acid desaturase, accompanied by more than 2-folds reduction of n-6/n-3 ratio in the muscle (psheep produced by the HMC. Compared to the traditional SCNT method, HMC showed an equivalent efficiency but proved cheaper and easier in operation.

  17. Echium oil: A valuable source of n-3 and n-6 fatty acids

    Directory of Open Access Journals (Sweden)

    MIR Miquel

    2008-07-01

    Full Text Available Echium oil is a vegetable oil of non-GMO plant origin extracted from the seeds of Echium plantagineum containing significant amounts of omega-3 fatty acid Stearidonic Acid (SDA and omega-6 acid γ-linolenic acid (GLA. Typical fatty acid composition of Echium oil is: Oleic acid (18:1 n-9 16%, Linoleic acid (LA, 18:2 n-6 19%, γ-linolenic acid (GLA, 18:3 n-610%, α-linolenic acid (ALA, 18:3 n-3 30% and Stearidonic acid (SDA, 18:4 n-3 13%. This natural ratio of fatty acids, trough their metabolism, deliver enhanced plasma concentrations of eicosapentaenoic (EPA, 20:5 n-3, docosapentaenoic (DPA, 22:5 n-3 and dihomo-γ-linolenic (DGLA, 20:3 n-6 acids without increasing the concentrations of arachidonic acid (AA, 20:4 n-6. GLA is commonly associated with the anti-inflammatory effects of oils such as evening primrose oil and borage oil. Supplementation with GLA can markedly increase serum AA with subsequent pro-inflammatory effects. The presence of stearidonic acid in echium oil prevents the accumulation of serum AA and AA-derived eicosanoids without preventing the accumulation of DGLA which is the real n-6 precursor of anti-inflammatory eicosanoids. SDA is an intermediate in the biosynthetic conversion of ALA to EPA. As SDA is the product of the rate-limiting ∆6-desaturase step and due the efficiency of the elongase and ∆5-desaturase steps, SDA is readily converted to EPA. SDA has the physiologic benefits of EPA, for instance, lowering the serum triglycerides in hypertriglyceridemic subjects. Therefore echium oil is a true alternative for vegetarians or those who do not eat fish, to benefit from the anti-inflammatory effects of omega-3 and omega-6 long chain polyunsaturated fatty acids.

  18. Role of bioactive fatty acids in nonalcoholic fatty liver disease.

    Science.gov (United States)

    Juárez-Hernández, Eva; Chávez-Tapia, Norberto C; Uribe, Misael; Barbero-Becerra, Varenka J

    2016-08-02

    Nonalcoholic fatty liver disease (NAFLD) is characterized by fat deposition in hepatocytes, and a strong association with nutritional factors. Dietary fatty acids are classified according to their biochemical properties, which confer their bioactive roles. Monounsaturated fatty acids have a dual role in various human and murine models. In contrast, polyunsaturated fatty acids exhibit antiobesity, anti steatosic and anti-inflammatory effects. The combination of these forms of fatty acids-according to dietary type, daily intake and the proportion of n-6 to n-3 fats-can compromise hepatic lipid metabolism. A chemosensory rather than a nutritional role makes bioactive fatty acids possible biomarkers for NAFLD. Bioactive fatty acids provide health benefits through modification of fatty acid composition and modulating the activity of liver cells during liver fibrosis. More and better evidence is necessary to elucidate the role of bioactive fatty acids in nutritional and clinical treatment strategies for patients with NAFLD.

  19. Omega-3 and omega-6 content of medicinal foods for depressed patients: implications from the Iranian Traditional Medicine

    Directory of Open Access Journals (Sweden)

    Mandana Tavakkoli-Kakhki

    2014-06-01

    Full Text Available Objectives: Considering the increasing prevalence of depression in modern societies and the positive effects of omega-3 polyunsaturated fatty acids on depression, this study aims to investigate the omega-3 and omega-6 content of various foodstuffs, prescribed or prohibited by Iranian Traditional Medicine (ITM. Materials and Methods: Firstly, reliable sources of Iranian Traditional Medicine were reviewed in order to identify the prescribed and prohibited foodstuffs for depressed patients. Afterwards, according to the online database of United States Department of Agriculture (URL: http://ndb.nal.usda.gov/ndb/search/list, the ratio of linoleic acid to alpha linolenic acid (as representatives of omega-6 and omega-3, respectively was identified in each foodstuff. Finally, the ratios of omega-6 to omega-3 were compared between seven food groups of vegetables, fruits, dry goods, high protein products, dairies, breads, and spices. Results: Based on the resources of Iranian Traditional Medicine, the following foods are prescribed for depressed patients: basil, coriander, spinach, lettuce, squash, peppermint, dill, chicory, celery, beet, quince, cucumber, watermelon, grape, peach, pomegranate, banana, apple, currant, pistachio, dried fig, almond, egg, chicken, lamb, trout, milk, bread without bran,saffron, oregano, and coriander seeds. On the other hand, cabbage, eggplant, onion, garlic, broad beans, lentils, beef, whole wheat bread, and mustard are prohibited. It should be noted that omega-3 content in some prescribed foods is more than that of the prohibited ones. Conclusion: The present study showed that mint, basil, spinach, lettuce, squash, lamb, saffron, oregano, cucumber, pistachio, milk, and also wild trout can be considered as medicinal foods for depressed patients.

  20. [The fatty acids of membranes of erythrocytes in women with ischemic heart disease under effect of statins].

    Science.gov (United States)

    Dygaĭ, A M; Kotlovskiĭ, M Iu; Kirichenko, D A; Iakimovich, I Iu; Trereshina, D S; Kotlovskiĭ, Iu V; Titiov, V N

    2014-03-01

    The technique of evaluation of metabolism of fatty acids in vivo consists in detection of content of fatty acids in phospholipids of membranes of erythrocytes. The fatty acids are received with food, through synthesis on liver from carbohydrates and by katabolism of very long-chain polyolefinic fatty acids of food in peroxisomes of hepatocytes (oxidation, saturation and desaturation). In position sn-1 phospholipids more often than palmitic fatty acid (14%) stearic fatty acid is esterified (21% of all fatty acids). The palmitic, stearic and lignoceric saturated fatty acids are esterified into sn-1 phospholipids as 2:3:1. The simvastatin (80 mg per day) increased content of margarine, tricosanoic and hexacosanoic fatty acids by decrease of level of palmitic fatty acid. The ratio omega-3 polyolefinic fatty acids/omega-6 polyolefinic fatty acids reliably increased. The statins increase content of omega-3 polyolefinic fatty acids. In practice, it is necessary to differentiate the terms "atherosclerosis" and "atheromatosis". The atherosclerosis is a syndrome of intracellular deficiency of polyolefinic fatty acids, derangement of function of cells in vivo under decrease of biological availability for all cells (absorption blockage). The atheromatosis is such most significant clinically symptom of atherosclerosis as accumulation of non-saturated and polyolefinic fatty acids in pool of collection and utilization of biological "garbage" from blood plasma, in intima of elastic type arteries. The statins activate absorption of low density lipoproteins by cells and normalize biological availability of polyolefinic fatty acids which have a positive effect under atherosclerosis and on formation of atheromatosis.

  1. Omega-3 Fatty Acids and their Role in Central Nervous System - A Review.

    Science.gov (United States)

    Wysoczański, Tomasz; Sokoła-Wysoczańska, Ewa; Pękala, Jolanta; Lochyński, Stanisław; Czyż, Katarzyna; Bodkowski, Robert; Herbinger, Grzegorz; Patkowska-Sokoła, Bożena; Librowski, Tadeusz

    2016-01-01

    Polyunsaturated fatty acids (PUFAs) are crucial for our health and wellbeing; therefore, they have been widely investigated for their roles in maintaining human health and in disease treatment. Most Western diets include significant amount of saturated and omega-6 fatty acids and insufficient quantity of omega-3; however, the balance between omega-6 and omega-3 PUFA, in particular, is essential for the formation of pro- and anti-inflammatory lipids to promote health and prevent disease. As our daily diet affects our health, this paper draws attention to unique representatives of the omega-3 fatty acid group: alpha-linolenic acid and its derivatives. Recently, this has been shown to be effective in treating and preventing various diseases. It has been confirmed that omega-3 PUFAs may act as therapeutic agents as well and their significant role against inflammatory diseases, such as cardiovascular and neurodegenerative diseases, has been described. Some of nutritional factors have been described as a significant modifiers, which can influence brain elasticity and thus, effect on central nervous system functioning. Therefore, appropriate dietary management appears to be a non-invasive and effective approach to counteract neurological and cognitive disorders.

  2. Variation in Lake Michigan alewife (Alosa pseudoharengus) thiaminase and fatty acids composition

    Science.gov (United States)

    Honeyfield, D.C.; Tillitt, D.E.; Fitzsimons, J.D.; Brown, S.B.

    2010-01-01

    Thiaminase activity of alewife (Alosa pseudoharengus) is variable across Lake Michigan, yet factors that contribute to the variability in alewife thiaminase activity are unknown. The fatty acid content of Lake Michigan alewife has not been previously reported. Analysis of 53 Lake Michigan alewives found a positive correlation between thiaminase activity and the following fatty acid: C22:ln9, sum of omega-6 fatty acids (Sw6), and sum of the polyunsaturated fatty acids. Thiaminase activity was negatively correlated with C15:0, C16:0, C17:0, C18:0, C20:0, C22:0, C24:0, C18:ln9t, C20:3n3, C22:2, and the sum of all saturated fatty acids (SAFA). Multi-variant regression analysis resulted in three variables (C18:ln9t, Sw6, SAFA) that explained 71% (R2=0.71, P<0.0001) of the variation in thiaminase activity. Because the fatty acid content of an organism is related is food source, diet may be an important factor modulating alewife thiaminase activity. These data suggest there is an association between fatty acids and thiaminase activity in Lake Michigan alewife.

  3. [Fatty acids of the tuna of different fishing areas of the Mexican Pacific, canned in oil and water].

    Science.gov (United States)

    Castro Gónzalez, M I; Montaño Benavides, S; Pérez-Gil Romo, F

    2001-12-01

    A direct relationship exists between the state of health and the diet, and inside this some components, such as the fatty acids (FA), influence mostly in the prevention of certain illnesses (coronary heart disease, hypertension, rheumatoid arthritis, inflammatory answer, and arterial pressure). One of the main sources of essential FA are the marine products; the tuna is a marine food of wide consumption in Mexico due its readiness and low cost. The objective of this work was to determine the profile of fatty acids (FA) in tuna canned in oil and in water coming from three fishing areas of the Mexican Pacific. There were randomly obtained 7 oil-tuna commercial marks (AA) and 5 water- tuna (AW) coming from the next fishery areas: Baja California Sur (L1), Colima (L2) and Mazatlán (L3). The samples without draining were liquefied and thereafter it was obtained the methyl esters of fatty acids that were analyzed by gas chromatography with a flame ionization detector. In all the areas were identified 20 FA (mg/100 g); three AG omega 3 (EPA, DHA and linolenic) and two omega 6 (linoleic and arachidonic). In the AA of the three areas the most abundant saturated FA were estearric and palmitic acids, the most abundant monounsaturated fatty acid was the cis-vaccenic, followed by the oleic acid. The behavior of those omega 3 in the AA of the three areas were similar: with the less quantity was the linolenic acid (447-755), continued by the EPA (979-1323) and finally high concentrations of DHA (1862-3327). In the AW the DHA was the most abundant fatty acid in all the areas (1086-4456), the most abundant monounsaturated fatty acid was the palmitic (640-3809). It was observed the presence of trans fatty acids in high quantities in AW: linolelaidic (1394-1495) and elaidic (377-1234). The relationship omega 3/omega 6 in the AA was similar in L1 and L2, and lower in L3; in AW was higher in L2 and L3. In conclusion, evident variation exists in the content of FA among areas; it could

  4. Reversible phenotypic modulation induced by deprivation of exogenous essential fatty acids.

    Science.gov (United States)

    Laposata, M; Minda, M; Capriotti, A M; Hartman, E J; Furth, E E; Iozzo, R V

    1988-12-01

    Essential fatty acid deficiency, produced by deprivation of omega-6 and omega-3 fatty acids, is a condition characterized by renal disease, dermatitis, and infertility. Although many of the biochemical aspects of this disorder have been investigated, little is known about the ultrastructural changes induced by essential fatty acid deficiency. Using a unique fatty acid-deficient cell line (EFD-1), which demonstrates the in vivo fatty acid changes of essential fatty acid deficiency, and the prostaglandin E2-producing mouse fibrosarcoma line from which it was derived (HSDM1C1), we correlated ultrastructural and biochemical changes induced by prolonged deprivation of all exogenous lipids and subsequent repletion of selected essential fatty acids. We found that in cells deprived of all exogenous lipids, there was dilation of rough endoplasmic reticulum and an associated defect in protein secretion; these changes were specifically reversed by arachidonate. There was also an accumulation of secondary lysosomes containing degraded membranes in these cells with an associated increase in phospholipids relative to parent HSDM1C1 cells. Cytoplasmic lipid bodies present in parent cells disappeared, with an associated decrease in triacylglycerol. After just 2 days in lipid-free medium, all these changes were apparent, and prostaglandin E2 production was markedly impaired despite normal amounts of cellular arachidonate. Incubation of EFD-1 cells with arachidonate, the major prostaglandin precursor fatty acid, induced a reversion to the HSDM1C1 phenotype, whereas other fatty acids were totally ineffective. These results indicate changes in fatty acid metabolism in essential fatty acid deficiency are associated with marked alterations in ultrastructure and secretion of protein from cells.

  5. Evaluation of Culture Conditions to Obtain Fatty Acids from Saline Microalgae Species: Dunaliella salina, Sinecosyfis sp., and Chroomonas sp.

    Science.gov (United States)

    Castilla Casadiego, D. A.; Albis Arrieta, A. R.; Angulo Mercado, E. R.; Cervera Cahuana, S. J.; Baquero Noriega, K. S.; Suárez Escobar, A. F.; Morales Avendaño, E. D.

    2016-01-01

    The use of the saline microalgae, Dunaliella salina, Sinecosyfis sp., and Chroomonas sp., was explored as an alternative source for the production of fatty acids using fertilizer and glycerol as culture media. The nutrient medium used contained “Nutrifoliar,” a commercial fertilizer, and/or glycerol, in natural sea water. The microalgae were placed in cultures with different conditions. The parameters that favored the largest production of fatty acids were 24 hours of agitation and illumination, 1620 L/day of air supply, 2.25 L of air/min, and a temperature of 32°C using “Nutrifoliar” as the culture media. Results indicated that, from 3 g of microalgae in wet base of Chroomonas sp., 54.43 mg of oil was produced. The chromatographic characterization of oil obtained revealed the presence of essential fatty acids such as 9,12,15-octadecatrienoic acid (omega-3) and 4,7,10-hexadecatrienoic acid (omega-6) from the species Dunaliella salina. On the other hand, 9,12-octadecadienoic acid (omega-6) and cis-11-eicosenoic acid (omega-9) were identified from the species Chroomonas sp. The temperature variations played an important role in the velocity of growth or the production of the algae biomass, the amount of oil, and the ability to produce fatty acids. PMID:27376085

  6. Evaluation of Culture Conditions to Obtain Fatty Acids from Saline Microalgae Species: Dunaliella salina, Sinecosyfis sp., and Chroomonas sp.

    Directory of Open Access Journals (Sweden)

    D. A. Castilla Casadiego

    2016-01-01

    Full Text Available The use of the saline microalgae, Dunaliella salina, Sinecosyfis sp., and Chroomonas sp., was explored as an alternative source for the production of fatty acids using fertilizer and glycerol as culture media. The nutrient medium used contained “Nutrifoliar,” a commercial fertilizer, and/or glycerol, in natural sea water. The microalgae were placed in cultures with different conditions. The parameters that favored the largest production of fatty acids were 24 hours of agitation and illumination, 1620 L/day of air supply, 2.25 L of air/min, and a temperature of 32°C using “Nutrifoliar” as the culture media. Results indicated that, from 3 g of microalgae in wet base of Chroomonas sp., 54.43 mg of oil was produced. The chromatographic characterization of oil obtained revealed the presence of essential fatty acids such as 9,12,15-octadecatrienoic acid (omega-3 and 4,7,10-hexadecatrienoic acid (omega-6 from the species Dunaliella salina. On the other hand, 9,12-octadecadienoic acid (omega-6 and cis-11-eicosenoic acid (omega-9 were identified from the species Chroomonas sp. The temperature variations played an important role in the velocity of growth or the production of the algae biomass, the amount of oil, and the ability to produce fatty acids.

  7. Omega-3 Fatty Acids in Modern Parenteral Nutrition: A Review of the Current Evidence

    Directory of Open Access Journals (Sweden)

    Stanislaw Klek

    2016-03-01

    Full Text Available Intravenous lipid emulsions are an essential component of parenteral nutrition regimens. Originally employed as an efficient non-glucose energy source to reduce the adverse effects of high glucose intake and provide essential fatty acids, lipid emulsions have assumed a larger therapeutic role due to research demonstrating the effects of omega-3 and omega-6 polyunsaturated fatty acids (PUFA on key metabolic functions, including inflammatory and immune response, coagulation, and cell signaling. Indeed, emerging evidence suggests that the effects of omega-3 PUFA on inflammation and immune response result in meaningful therapeutic benefits in surgical, cancer, and critically ill patients as well as patients requiring long-term parenteral nutrition. The present review provides an overview of the mechanisms of action through which omega-3 and omega-6 PUFA modulate the immune-inflammatory response and summarizes the current body of evidence regarding the clinical and pharmacoeconomic benefits of intravenous n-3 fatty acid-containing lipid emulsions in patients requiring parenteral nutrition.

  8. Potential Benefits of Omega-3 Fatty Acids in Non-Melanoma Skin Cancer

    Directory of Open Access Journals (Sweden)

    Homer S. Black

    2016-02-01

    Full Text Available Considerable circumstantial evidence has accrued from both experimental animal and human clinical studies that support a role for omega-3 fatty acids (FA in the prevention of non-melanoma skin cancer (NMSC. Direct evidence from animal studies has shown that omega-3 FA inhibit ultraviolet radiation (UVR induced carcinogenic expression. In contrast, increasing levels of dietary omega-6 FA increase UVR carcinogenic expression, with respect to a shorter tumor latent period and increased tumor multiplicity. Both omega-6 and omega-3 FA are essential FA, necessary for normal growth and maintenance of health and although these two classes of FA exhibit only minor structural differences, these differences cause them to act significantly differently in the body. Omega-6 and omega-3 FA, metabolized through the lipoxygenase (LOX and cyclooxygenase (COX pathways, lead to differential metabolites that are influential in inflammatory and immune responses involved in carcinogenesis. Clinical studies have shown that omega-3 FA ingestion protects against UVR-induced genotoxicity, raises the UVR-mediated erythema threshold, reduces the level of pro-inflammatory and immunosuppressive prostaglandin E2 (PGE2 in UVR-irradiated human skin, and appears to protect human skin from UVR-induced immune-suppression. Thus, there is considerable evidence that omega-3 FA supplementation might be beneficial in reducing the occurrence of NMSC, especially in those individuals who are at highest risk.

  9. Potential Benefits of Omega-3 Fatty Acids in Non-Melanoma Skin Cancer.

    Science.gov (United States)

    Black, Homer S; Rhodes, Lesley E

    2016-02-04

    Considerable circumstantial evidence has accrued from both experimental animal and human clinical studies that support a role for omega-3 fatty acids (FA) in the prevention of non-melanoma skin cancer (NMSC). Direct evidence from animal studies has shown that omega-3 FA inhibit ultraviolet radiation (UVR) induced carcinogenic expression. In contrast, increasing levels of dietary omega-6 FA increase UVR carcinogenic expression, with respect to a shorter tumor latent period and increased tumor multiplicity. Both omega-6 and omega-3 FA are essential FA, necessary for normal growth and maintenance of health and although these two classes of FA exhibit only minor structural differences, these differences cause them to act significantly differently in the body. Omega-6 and omega-3 FA, metabolized through the lipoxygenase (LOX) and cyclooxygenase (COX) pathways, lead to differential metabolites that are influential in inflammatory and immune responses involved in carcinogenesis. Clinical studies have shown that omega-3 FA ingestion protects against UVR-induced genotoxicity, raises the UVR-mediated erythema threshold, reduces the level of pro-inflammatory and immunosuppressive prostaglandin E2 (PGE₂) in UVR-irradiated human skin, and appears to protect human skin from UVR-induced immune-suppression. Thus, there is considerable evidence that omega-3 FA supplementation might be beneficial in reducing the occurrence of NMSC, especially in those individuals who are at highest risk.

  10. Omega-3 fatty acids and antioxidants in edible wild plants.

    Science.gov (United States)

    Simopoulos, Artemis P

    2004-01-01

    Human beings evolved on a diet that was balanced in the omega-6 and omega-3 polyunsaturated fatty acids (PUFA), and was high in antioxidants. Edible wild plants provide alpha-linolenic acid (ALA) and higher amounts of vitamin E and vitamin C than cultivated plants. In addition to the antioxidant vitamins, edible wild plants are rich in phenols and other compounds that increase their antioxidant capacity. It is therefore important to systematically analyze the total antioxidant capacity of wild plants and promote their commercialization in both developed and developing countries. The diets of Western countries have contained increasingly larger amounts of linoleic acid (LA), which has been promoted for its cholesterol-lowering effect. It is now recognized that dietary LA favors oxidative modification of low density lipoprotein (LDL) cholesterol and increases platelet response to aggregation. In contrast, ALA intake is associated with inhibitory effects on the clotting activity of platelets, on their response to thrombin, and on the regulation of arachidonic acid (AA) metabolism. In clinical studies, ALA contributed to lowering of blood pressure, and a prospective epidemiological study showed that ALA is inversely related to the risk of coronary heart disease in men. Dietary amounts of LA as well as the ratio of LA to ALA appear to be important for the metabolism of ALA to longer-chain omega-3 PUFAs. Relatively large reserves of LA in body fat. as are found in vegans or in the diet of omnivores in Western societies, would tend to slow down the formation of long-chain omega-3 fatty acids from ALA. Therefore, the role of ALA in human nutrition becomes important in terms of long-term dietary intake. One advantage of the consumption of ALA over omega-3 fatty acids from fish is that the problem of insufficient vitamin E intake does not exist with high intake of ALA from plant sources.

  11. Polyunsaturated fatty acids and calcaneal ultrasound parameters among Inuit women from Nuuk (Greenland: a longitudinal study

    Directory of Open Access Journals (Sweden)

    Alexandra-Cristina Paunescu

    2013-06-01

    Full Text Available Background. The traditional diet of Inuit people comprises large amounts of fish and marine mammals that are rich in omega-3 polyunsaturated fatty acids (PUFAs. Results from in vitro studies, laboratory animal experiments and population studies suggest that omega-3 PUFA intake and a high omega-3/omega-6 ratio exert a positive effect on bone health. Objective. This longitudinal study was conducted to examine the relationship between omega-3 and omega-6 PUFA status and quantitative ultrasound (QUS parameters in Greenlandic Inuit women. Methods. The study included 118 Inuit women from Nuuk (Greenland, aged 49–64 years, whose QUS parameters measured at baseline (year 2000, along with PUFA status and covariates, and follow-up QUS measurements 2 years later (year 2002. QUS parameters [speed of sound (SOS; broadband ultrasound attenuation (BUA] were measured at the right calcaneus with a water-bath Lunar Achilles instrument. Omega-3 and omega-6 PUFA contents of erythrocyte membrane phospholipids were measured after transmethylation by gas chromatography coupled with a flame ionization detector. Relationships between QUS parameters and different PUFAs were studied in multiple linear regression models. Results. Increasing values of EPA, DHA and the omega-3/omega-6 PUFA ratio were associated with increased BUA values measured at follow-up (year 2002. These associations were still present in models adjusted for several confounders and covariates. We found little evidence of associations between PUFAs and SOS values. Conclusion. The omega-3 PUFA intake from marine food consumption seems to have a positive effect on bone intrinsic quality and strength, as revealed by higher BUA values in this group of Greenlandic Inuit women.

  12. The relationship between dietary fatty acids and inflammatory genes on the obese phenotype and serum lipids.

    Science.gov (United States)

    Joffe, Yael T; Collins, Malcolm; Goedecke, Julia H

    2013-05-21

    Obesity, a chronic low-grade inflammatory condition is associated with the development of many comorbidities including dyslipidemia. This review examines interactions between single nucleotide polymorphisms (SNP) in the inflammatory genes tumor necrosis alpha (TNFA) and interleukin-6 (IL-6) and dietary fatty acids, and their relationship with obesity and serum lipid levels. In summary, dietary fatty acids, in particular saturated fatty acids and the omega-3 and omega-6 polyunsaturated fatty acids, impact the expression of the cytokine genes TNFA and IL-6, and alter TNFα and IL-6 production. In addition, sequence variants in these genes have also been shown to alter their gene expression and plasma levels, and are associated with obesity, measures of adiposity and serum lipid concentrations. When interactions between dietary fatty acids and TNFA and IL-6 SNPs on obesity and serum lipid were analyzed, both the quantity and quality of dietary fatty acids modulated the relationship between TNFA and IL-6 SNPs on obesity and serum lipid profiles, thereby impacting the association between phenotype and genotype. Researching these diet-gene interactions more extensively, and understanding the role of ethnicity as a confounder in these relationships, may contribute to a better understanding of the inter-individual variability in the obese phenotype.

  13. Roles of unsaturated fatty acids (especially omega-3 fatty acids) in the brain at various ages and during ageing.

    Science.gov (United States)

    Bourre, J M

    2004-01-01

    Among various organs, in the brain, the fatty acids most extensively studied are omega-3 fatty acids. Alpha-linolenic acid (18:3omega3) deficiency alters the structure and function of membranes and induces minor cerebral dysfunctions, as demonstrated in animal models and subsequently in human infants. Even though the brain is materially an organ like any other, that is to say elaborated from substances present in the diet (sometimes exclusively), for long it was not accepted that food can have an influence on brain structure, and thus on its function. Lipids, and especially omega-3 fatty acids, provided the first coherent experimental demonstration of the effect of diet (nutrients) on the structure and function of the brain. In fact the brain, after adipose tissue, is the organ richest in lipids, whose only role is to participate in membrane structure. First it was shown that the differentiation and functioning of cultured brain cells requires not only alpha-linolenic acid (the major component of the omega-3, omega3 family), but also the very long omega-3 and omega-6 carbon chains (1). It was then demonstrated that alpha-linolenic acid deficiency alters the course of brain development, perturbs the composition and physicochemical properties of brain cell membranes, neurones, oligodendrocytes, and astrocytes (2). This leads to physicochemical modifications, induces biochemical and physiological perturbations, and results in neurosensory and behavioural upset (3). Consequently, the nature of polyunsaturated fatty acids (in particular omega-3) present in formula milks for infants (premature and term) conditions the visual and cerebral abilities, including intellectual. Moreover, dietary omega-3 fatty acids are certainly involved in the prevention of some aspects of cardiovascular disease (including at the level of cerebral vascularization), and in some neuropsychiatric disorders, particularly depression, as well as in dementia, notably Alzheimer's disease. Recent

  14. Composition of w-3 and w-6 fatty acids in freeze-dried chicken embryo eggs with different days of development

    Directory of Open Access Journals (Sweden)

    Campos Célia Maria Teixeira de

    2004-01-01

    Full Text Available Fatty acids omega--3 and omega--6 composition and specially DHA were determined in freeze-dried chicken embryo eggs with pre-determined incubation periods. Fertile and embryo eggs presented palmitic (23.18 + 0.54%, stearic (7.70 + 0.28%, palmitoleic (3.00 + 0.19%, oleic (36.28 + 0.58%, linoleic (22.18 + 0.34%, linolenic (1.08 + 0.04%, arachidonic (2.04 + 0.03%, docosahexaenoic (0.91 + 0.03%, total omega-3 acids (2.26 + 0.10% and total omega-6 acids (24.62 + 0.33%. There were no significant differences in total contents of omega-3 fatty acids (p=0.1226 between freeze-dried chicken embryo eggs with different incubation periods (3, 5, 7, 9, and 11 days and fertile freeze-dried chicken eggs (day 0. However, there were significant differences in total medium contents of omega-6 fatty acids (p=0.0001. There was also a strong statistical evidence that quadratic model was related with expected values of DHA content (p= 0.0013.

  15. Omega-3 fatty acids and inflammatory processes: from molecules to man.

    Science.gov (United States)

    Calder, Philip C

    2017-09-12

    Inappropriate, excessive or uncontrolled inflammation contributes to a range of human diseases. Inflammation involves a multitude of cell types, chemical mediators and interactions. The present article will describe nutritional and metabolic aspects of omega-6 (n-6) and omega-3 (n-3) fatty acids and explain the roles of bioactive members of those fatty acid families in inflammatory processes. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are n-3 fatty acids found in oily fish and fish oil supplements. These fatty acids are capable of partly inhibiting many aspects of inflammation including leucocyte chemotaxis, adhesion molecule expression and leucocyte-endothelial adhesive interactions, production of eicosanoids like prostaglandins and leukotrienes from the n-6 fatty acid arachidonic acid and production of pro-inflammatory cytokines. In addition, EPA gives rise to eicosanoids that often have lower biological potency than those produced from arachidonic acid, and EPA and DHA give rise to anti-inflammatory and inflammation resolving mediators called resolvins, protectins and maresins. Mechanisms underlying the anti-inflammatory actions of EPA and DHA include altered cell membrane phospholipid fatty acid composition, disruption of lipid rafts, inhibition of activation of the pro-inflammatory transcription factor nuclear factor κB so reducing expression of inflammatory genes and activation of the anti-inflammatory transcription factor peroxisome proliferator-activated receptor γ. Animal experiments demonstrate benefit from EPA and DHA in a range of models of inflammatory conditions. Human trials demonstrate benefit of oral n-3 fatty acids in rheumatoid arthritis and in stabilizing advanced atherosclerotic plaques. Intravenous n-3 fatty acids may have benefits in critically ill patients through reduced inflammation. The anti-inflammatory and inflammation resolving actions of EPA, DHA and their derivatives are of clinical relevance. © 2017 The Author

  16. Low omega-6 vs. low omega-6 plus high omega-3 dietary intervention for Chronic Daily Headache: Protocol for a randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Smith Sunyata

    2011-04-01

    Full Text Available Abstract Background Targeted analgesic dietary interventions are a promising strategy for alleviating pain and improving quality of life in patients with persistent pain syndromes, such as chronic daily headache (CDH. High intakes of the omega-6 (n-6 polyunsaturated fatty acids (PUFAs, linoleic acid (LA and arachidonic acid (AA may promote physical pain by increasing the abundance, and subsequent metabolism, of LA and AA in immune and nervous system tissues. Here we describe methodology for an ongoing randomized clinical trial comparing the metabolic and clinical effects of a low n-6, average n-3 PUFA diet, to the effects of a low n-6 plus high n-3 PUFA diet, in patients with CDH. Our primary aim is to determine if: A both diets reduce n-6 PUFAs in plasma and erythrocyte lipid pools, compared to baseline; and B the low n-6 plus high n-3 diet produces a greater decline in n-6 PUFAs, compared to the low n-6 diet alone. Secondary clinical outcomes include headache-specific quality-of-life, and headache frequency and intensity. Methods Adults meeting the International Classification of Headache Disorders criteria for CDH are included. After a 6-week baseline phase, participants are randomized to a low n-6 diet, or a low n-6 plus high n-3 diet, for 12 weeks. Foods meeting nutrient intake targets are provided for 2 meals and 2 snacks per day. A research dietitian provides intensive dietary counseling at 2-week intervals. Web-based intervention materials complement dietitian advice. Blood and clinical outcome data are collected every 4 weeks. Results Subject recruitment and retention has been excellent; 35 of 40 randomized participants completed the 12-week intervention. Preliminary blinded analysis of composite data from the first 20 participants found significant reductions in erythrocyte n-6 LA, AA and %n-6 in HUFA, and increases in n-3 EPA, DHA and the omega-3 index, indicating adherence. Trial Registration ClinicalTrials.gov (NCT01157208

  17. Fatty Acid Oxidation Disorders

    Science.gov (United States)

    ... acid oxidation disorders are tested for in newborn screening? The March of Dimes recommends that all babies ... in behavior Diarrhea, nausea (feeling sick to your stomach) and throwing up Drowsiness Fever Fussiness Little appetite ...

  18. Handmade cloned transgenic sheep rich in omega-3 Fatty acids.

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    Full Text Available Technology of somatic cell nuclear transfer (SCNT has been adapted worldwide to generate transgenic animals, although the traditional procedure relies largely on instrumental micromanipulation. In this study, we used the modified handmade cloning (HMC established in cattle and pig to produce transgenic sheep with elevated levels of omega-3 (n-3 fatty acids. Codon-optimized nematode mfat-1 was inserted into a eukaryotic expression vector and was transferred into the genome of primary ovine fibroblast cells from a male Chinese merino sheep. Reverse transcriptase PCR, gas chromatography, and chromosome analyses were performed to select nuclear donor cells capable of converting omega-6 (n-6 into n-3 fatty acids. Blastocysts developed after 7 days of in vitro culture were surgically transplanted into the uterus of female ovine recipients of a local sheep breed in Xinjiang. For the HMC, approximately 8.9% (n  =925 of reconstructed embryos developed to the blastocyst stage. Four recipients became pregnant after 53 blastocysts were transplanted into 29 naturally cycling females, and a total of 3 live transgenic lambs were produced. Detailed analyses on one of the transgenic lambs revealed a single integration of the modified nematode mfat-1 gene at sheep chromosome 5. The transgenic sheep expressed functional n-3 fatty acid desaturase, accompanied by more than 2-folds reduction of n-6/n-3 ratio in the muscle (p<0.01 and other major organs/tissues (p<0.05. To our knowledge, this is the first report of transgenic sheep produced by the HMC. Compared to the traditional SCNT method, HMC showed an equivalent efficiency but proved cheaper and easier in operation.

  19. Seasonal changes in the microbial community of a salt marsh, measured by phospholipid fatty acid analysis

    DEFF Research Database (Denmark)

    Keith-Roach, Miranda; Bryan, N.D.; Bardgett, R.D.;

    2002-01-01

    to characterise biogeochemical processes occurring at this site. Phospholipid fatty acid (PLFA) analysis of sediment samples collected at monthly intervals was used to measure seasonal changes in microbial biomass and community structure. The PLFA data were analysed using multivariate techniques (Ward's method...... defined, showing differences in the community structure over the course of a year. At all times, the microbial community was dominated by PLFA associated with aerobic bacteria, but this was most pronounced in summer (August). The abundance of branched fatty acids, a measure of the biomass of anaerobes......, started to increase later in the year than did those associated with aerobes and the fungal biomarker 18:2omega6 showed a brief late-summer peak. The salt marsh remained mildly oxic throughout the year despite the increase in microbial respiration, suggested by the large increases in the abundance of PLFA...

  20. Maastricht essential fatty acid birth cohort

    NARCIS (Netherlands)

    Van der Wurff, Inge; De Groot, Renate; Stratakis, Nikos; Gielen, Marij; Hornstra, Gerard; Zeegers, Maurice

    2016-01-01

    The Maastricht Essential Fatty Acid Birth cohort (MEFAB) was established in 1989 to study the changes in fatty acid concentration during pregnancy and how this related to the fatty acid concentrations of the neonate. The original sample contains data of 1203 subjects. Some participants whom particip

  1. Characteristics of fatty acid distribution is associated with colorectal cancer prognosis.

    Science.gov (United States)

    Zhang, Junjie; Zhang, Lijian; Ye, Xiaoxia; Chen, Liyu; Zhang, Liangtao; Gao, Yihua; Kang, Jing X; Cai, Chun

    2013-05-01

    To investigate tissue fatty acid distribution in relation to the incidence of colorectal cancer prognosis, adjacent normal tissue and cancerous tissue from 35 samples of clinically incident colorectal cancer were obtained. Fatty acids were measured in the colorectal mucosa phospholipid fraction by gas chromatography mass spectrometry. Palmitoleic acid and oleic acid were significantly lower in colorectal cancerous tissue, ranging from 20% to 50% less than the adjacent normal tissue. The omega-6 (n-6) fatty acid family members (20:2, 20:3, 20:4 and 22:4) were higher by 1-3 fold in cancerous colorectal tissue. Contrary with the high level of n-6 fatty acids, about a 37% to 87% reduction in EPA and DHA was observed in colorectal cancerous tissue. A higher level of linoleic acid and arachidonic acid was detected in the C cancer stage than in the B cancer stage (pdistribution of colorectal tissue is strongly linked to the incidence of colorectal cancer. This study also provides scientific basis for identifying novel biomarkers for the diagnosis and treatment of cancer.

  2. Fatty Acid-Related Phylogeny of Myxobacteria as an Approach to Discover Polyunsaturated Omega-3/6 Fatty Acids ▿ †

    Science.gov (United States)

    Garcia, Ronald; Pistorius, Dominik; Stadler, Marc; Müller, Rolf

    2011-01-01

    In an analysis of 47 aerobic myxobacterial strains, representing 19 genera in suborders Cystobacterineae, Nannocystineae, Sorangiineae, and a novel isolate, “Aetherobacter” SBSr008, an enormously diverse array of fatty acids (FAs) was found. The distribution of straight-chain fatty acids (SCFAs) and branched-chain fatty acids (BCFAs) supports the reported clustering of strains in the phylogenetic tree based on 16S rRNA genes. This finding additionally allows the prediction and assignment of the novel isolate SBSr008 into its corresponding taxon. Sorangiineae predominantly contains larger amounts of SCFA (57 to 84%) than BCFA. On the other hand, Cystobacterineae exhibit significant BCFA content (53 to 90%), with the exception of the genus Stigmatella. In Nannocystineae, the ratio of BCFA and SCFA seems dependent on the taxonomic clade. Myxobacteria could also be identified and classified by using their specific and predominant FAs as biomarkers. Nannocystineae is remarkably unique among the suborders for its absence of hydroxy FAs. After the identification of arachidonic (AA) FA in Phaselicystidaceae, eight additional polyunsaturated fatty acids (PUFAs) belonging to the omega-6 and omega-3 families were discovered. Here we present a comprehensive report of FAs found in aerobic myxobacteria. Gliding bacteria belonging to Flexibacter and Herpetosiphon were chosen for comparative analysis to determine their FA profiles in relation to the myxobacteria. PMID:21317327

  3. Therapeutic Effects of Omega-3 Fatty Acids on Chronic Kidney Disease-Associated Pruritus: a Literature Review.

    Science.gov (United States)

    Panahi, Yunes; Dashti-Khavidaki, Simin; Farnood, Farahnoosh; Noshad, Hamid; Lotfi, Mahsa; Gharekhani, Afshin

    2016-12-01

    Uremic pruritus remains one of the most tormenting, frequent and potentially disabling problem in chronic kidney disease (CKD) patients. However, an area of substantial etiological interest with relation to uremic pruritus is the essential fatty acids deficiency. So we performed a literature review to elucidate the efficacy of omega-3 fatty acids on uremic pruritus. This review evaluated all of the studies published in English language, focusing on the clinical effects of omega-3 fatty acids on uremic pruritus. The literature review was conducted in December 2015 and carried out by searching Scopus, Medline, Cochrane central register of controlled trials, and Cochrane database of systematic reviews. The search terms were "kidney injury", "kidney failure", "chronic kidney disease", "end-stage renal disease", "dialysis", "hemodialysis", "peritoneal dialysis", "pruritus", "itch", "skin problems", "fish oil", "omega 3", "n-3 fatty acids", "polyunsaturated fatty acids", "docosahexaenoic acid", and "eicosapentaenoic acid". Four small studies investigating potential benefits of omega-3 fatty acids on symptoms of uremic pruritus were found. Among them, three small randomized controlled trials have shown a significant improvement in pruritus symptoms (evaluated by a standard questionnaire) in CKD patients who took omega-3 supplement compared to omega-6, omega-9, and placebo supplementation. Despite numerous limitations of the studies, it is worth noting that even minor reduction in itching symptoms may be clinically significant for CKD patients. Therefore, and considering multiple health benefits of omega-3 fatty acids in advanced CKD and negligible risk profile, omega-3 intake can wisely be applied to CKD patients with uremic pruritus.

  4. Oleic Acid: Natural variation and potential enhancement in oilseed crops.

    Science.gov (United States)

    Oleic acid is a monounsaturated omega 9 fatty acid (MUFA, C18:1) which can be found in various plant lipids and animal fats. Unlike omega 3 (a-linolenic acid, C18:3) and omega 6 (linoleic acid, C18:2) fatty acids which are essential because they cannot be synthesized by humans and must be obtained f...

  5. Productivity and Composition of Fatty Acids in Chicks fed with Azadirachta indica A. Juss

    Directory of Open Access Journals (Sweden)

    Imna Trigueros V

    2015-05-01

    Full Text Available ABSTRACT Objective. Evaluate the productivity and composition of fatty acids in chicks fed diets enriched with neem Azadirachta indica A. Juss seed flour. Materials and methods. 80 mixed broiler chicks of Arbor Acres stock and levels 0, 1, 3 and 5% neem seed flour added to a commercial diet were evaluated. 20 experimental units were included in each treatment for five weeks. The consumption and weight gain were recorded, as well as the composition of fatty acids in the fat by means of alkaline transesterification. Data was statistically analyzed by a completely random procedure and the measurements were compared with the Tukey test(p≤0.05. Results. The greatest weight gain, consumption and best feed conversion were found in the treatment that contains 1% neem seed flour. It also produced the increase in the proportion of polyunsaturated fatty acids, especially linoleic acid (C18:2 Omega-6 and eicosapentaenoic acid (C20:5 omega-3, and the proportion of palmitic acid (C16:0. The consumption of feed diminished when 5% of neem flour was added. Conclusions. It was demonstrated that incorporating 1% neem seed flour in the diet of broiler chicks modifies the consumption of fatty acids without harming its productive behavior.

  6. Characterization of specific membrane fatty acids as chemotaxonomic markers for sulfate-reducing bacteria involved in anaerobic oxidation of methane

    DEFF Research Database (Denmark)

    Elvert, M.; Boetius, A.; Knittel, K.

    2003-01-01

    into bacterial biomass is indicated by carbon isotope values of specific fatty acids as low as -103parts per thousand. Specific fatty acids released from bacterial membranes include C(16:1omega5c) , C(17:1omega6c) , and cyC(17:0omega5,6) , all of which have been fully characterized by mass spectrometry....... These unusual fatty acids continuously display the lowest delta (13)C values in all sediment horizons and two of them are detected in high abundance (i.e., C(16:1omega5c) and cyC(17:0omega5,6) ). Combined with microscopic examination by fluorescence in situ hybridization specifically targeting sulfate...

  7. Altered Preconception Fatty Acid Intake Is Associated with Improved Pregnancy Rates in Overweight and Obese Women Undertaking in Vitro Fertilisation

    Directory of Open Access Journals (Sweden)

    Lisa J. Moran

    2016-01-01

    Full Text Available Maternal preconception diet is proposed to affect fertility. Prior research assessing the effect of altering the fatty acid profile on female fertility is conflicting. The aim of this study was to assess the effect of preconception maternal diet, specifically fatty acid profile, on pregnancies and live births following in vitro fertilisation (IVF. Forty-six overweight and obese women undergoing IVF were randomised to a diet and physical activity intervention (intervention or standard care (control. Outcome measures included pregnancy, live birth and pre-study dietary intake from food frequency questionnaire. Twenty pregnancies (n = 12/18 vs. n = 8/20, p = 0.12 and 12 live births (n = 7/18 vs. n = 5/20, p = 0.48 occurred following the intervention with no differences between the treatment groups. On analysis adjusted for BMI and smoking status, women who became pregnant had higher levels of polyunsaturated fatty acid (PUFA intake (p = 0.03, specifically omega-6 PUFA and linoleic acid (LA (p = 0.045 with a trend for an elevated intake of omega-3 PUFA (p = 0.06. There were no dietary differences for women who did or did not have a live birth. Maternal preconception PUFA, and specifically omega-6 and LA intake, are associated with improved pregnancy rates in overweight and obese women undergoing IVF. This has implications for optimising fertility through preconception nutrition.

  8. Molten fatty acid based microemulsions.

    Science.gov (United States)

    Noirjean, Cecile; Testard, Fabienne; Dejugnat, Christophe; Jestin, Jacques; Carriere, David

    2016-06-21

    We show that ternary mixtures of water (polar phase), myristic acid (MA, apolar phase) and cetyltrimethylammonium bromide (CTAB, cationic surfactant) studied above the melting point of myristic acid allow the preparation of microemulsions without adding a salt or a co-surfactant. The combination of SANS, SAXS/WAXS, DSC, and phase diagram determination allows a complete characterization of the structures and interactions between components in the molten fatty acid based microemulsions. For the different structures characterized (microemulsion, lamellar or hexagonal phases), a similar thermal behaviour is observed for all ternary MA/CTAB/water monophasic samples and for binary MA/CTAB mixtures without water: crystalline myristic acid melts at 52 °C, and a thermal transition at 70 °C is assigned to the breaking of hydrogen bounds inside the mixed myristic acid/CTAB complex (being the surfactant film in the ternary system). Water determines the film curvature, hence the structures observed at high temperature, but does not influence the thermal behaviour of the ternary system. Myristic acid is partitioned in two "species" that behave independently: pure myristic acid and myristic acid associated with CTAB to form an equimolar complex that plays the role of the surfactant film. We therefore show that myristic acid plays the role of a solvent (oil) and a co-surfactant allowing the fine tuning of the structure of oil and water mixtures. This solvosurfactant behaviour of long chain fatty acid opens the way for new formulations with a complex structure without the addition of any extra compound.

  9. Docosahexaenoic acid (DHA, an essential fatty acid for the proper functioning of neuronal cells: their role in mood disorders

    Directory of Open Access Journals (Sweden)

    2009-06-01

    Full Text Available The brain and the nervous system are tissues with high contents of two polyunsaturated fatty acids: arachidonic acid (20:4, omega-6, AA and docosahexaenoic acid (22:6, omega-3, DHA. Despite their abundance in these tissues, AA and DHA cannot be re-synthesized in mammals. However, the concentration of these fatty acids can be modulated by dietary intake. AA and DHA must be provided by the diet as such (preformed or through the respective omega-6 and omega-3 precursors from vegetable origin. Linoleic acid, the precursor of AA is very abundant in the western diet and therefore the formation of AA from linoleic acid is not restrictive. On the other hand, alpha linolenic acid, the precursor of DHA is less available in our diet and preformed DHA is highly restrictive in some populations. During the last period of gestation and during the early post natal period, neurodevelopment occurs exceptionally quickly, and significant amounts of omega-6 and omega-3 polyunsaturated fatty acids, especially DHA, are critical to allow neurite outgrowth and the proper brain and retina development and function. In this review various functions of DHA in the nervous system, its metabolism into phospholipids, and its involvement in different neurological and mood disorders, such as Alzheimer’s disease, depression, and others are revised.

    El cerebro y el sistema nervioso son tejidos con un alto contenido de dos ácidos grasos poliinsaturados: el ácido araquidónico (20:4, omega-6, AA y el ácido docosahexaenoico (22:6, omega-3, DHA. A pesar de la abundancia de estos ácidos grasos en dichos tejidos los mamíferos no los pueden sintetizar de novo. Sin embargo, la concentración de estos ácidos grasos puede ser modificada por la dieta. El AA y el DHA pueden ser aportados por la dieta como tales (preformados o a partir de los respectivos precursores de origen vegetal. El ácido linoleico, precursor del AA es muy abundante en la dieta occidental, por lo cual la

  10. Autistic Children Exhibit Decreased Levels of Essential Fatty Acids in Red Blood Cells

    Directory of Open Access Journals (Sweden)

    Sarah A. Brigandi

    2015-05-01

    Full Text Available Omega-6 (n-6 and omega-3 (n-3 polyunsaturated fatty acids (PUFA are essential nutrients for brain development and function. However, whether or not the levels of these fatty acids are altered in individuals with autism remains debatable. In this study, we compared the fatty acid contents between 121 autistic patients and 110 non-autistic, non-developmentally delayed controls, aged 3–17. Analysis of the fatty acid composition of red blood cell (RBC membrane phospholipids showed that the percentage of total PUFA was lower in autistic patients than in controls; levels of n-6 arachidonic acid (AA and n-3 docosahexaenoic acid (DHA were particularly decreased (p < 0.001. In addition, plasma levels of the pro-inflammatory AA metabolite prostaglandin E2 (PGE2 were higher in a subset of the autistic participants (n = 20 compared to controls. Our study demonstrates an alteration in the PUFA profile and increased production of a PUFA-derived metabolite in autistic patients, supporting the hypothesis that abnormal lipid metabolism is implicated in autism.

  11. Unsaturated fatty acids induce mesenchymal stem cells to increase secretion of angiogenic mediators.

    Science.gov (United States)

    Smith, Andria N; Muffley, Lara A; Bell, Austin N; Numhom, Surawej; Hocking, Anne M

    2012-09-01

    Mesenchymal stem cells (MSC) represent emerging cell-based therapies for diabetes and associated complications. Ongoing clinical trials are using exogenous MSC to treat type 1 and 2 diabetes, cardiovascular disease and non-healing wounds due to diabetes. The majority of these trials are aimed at exploiting the ability of these multipotent mesenchymal stromal cells to release soluble mediators that reduce inflammation and promote both angiogenesis and cell survival at sites of tissue damage. Growing evidence suggests that MSC secretion of soluble factors is dependent on tissue microenvironment. Despite the contribution of fatty acids to the metabolic environment of type 2 diabetes, almost nothing is known about their effects on MSC secretion of growth factors and cytokines. In this study, human bone marrow-derived MSC were exposed to linoleic acid, an omega-6 polyunsaturated fatty acid, or oleic acid, a monounsaturated fatty acid, for seven days in the presence of 5.38 mM glucose. Outcomes measured included MSC proliferation, gene expression, protein secretion and chemotaxis. Linoleic and oleic acids inhibited MSC proliferation and altered MSC expression and secretion of known mediators of angiogenesis. Both unsaturated fatty acids induced MSC to increase secretion of interleukin-6, VEGF and nitric oxide. In addition, linoleic acid but not oleic acid induced MSC to increase production of interleukin-8. Collectively these data suggest that exposure to fatty acids may have functional consequences for MSC therapy. Fatty acids may affect MSC engraftment to injured tissue and MSC secretion of cytokines and growth factors that regulate local cellular responses to injury.

  12. Fatty acid composition of selected prosthecate bacteria.

    Science.gov (United States)

    Carter, R N; Schmidt, J M

    1976-10-11

    The cellular fatty acid composition of 14 strains of Caulobacter speices and types, two species of Prosthecomicrobium, and two species of Asticcacaulis was determined by gas-liquid chromatography. In most of these bacteria, the major fatty acids were octadecenoic acid (C18:1), hexadecenoic acid (C16:1) and hexadecanoic acid (C16:0). Some cyclopropane and branched chain fatty acids were detected in addition to the straight chained acids. Hydroxytetradecanoic acid was an important component of P.enhydrum but significant amounts of hydroxy acids were not detected in other prosthecate bacteria examined.

  13. Aspirin increases mitochondrial fatty acid oxidation.

    Science.gov (United States)

    Uppala, Radha; Dudiak, Brianne; Beck, Megan E; Bharathi, Sivakama S; Zhang, Yuxun; Stolz, Donna B; Goetzman, Eric S

    2017-01-08

    The metabolic effects of salicylates are poorly understood. This study investigated the effects of aspirin on fatty acid oxidation. Aspirin increased mitochondrial long-chain fatty acid oxidation, but inhibited peroxisomal fatty acid oxidation, in two different cell lines. Aspirin increased mitochondrial protein acetylation and was found to be a stronger acetylating agent in vitro than acetyl-CoA. However, aspirin-induced acetylation did not alter the activity of fatty acid oxidation proteins, and knocking out the mitochondrial deacetylase SIRT3 did not affect the induction of long-chain fatty acid oxidation by aspirin. Aspirin did not change oxidation of medium-chain fatty acids, which can freely traverse the mitochondrial membrane. Together, these data indicate that aspirin does not directly alter mitochondrial matrix fatty acid oxidation enzymes, but most likely exerts its effects at the level of long-chain fatty acid transport into mitochondria. The drive on mitochondrial fatty acid oxidation may be a compensatory response to altered mitochondrial morphology and inhibited electron transport chain function, both of which were observed after 24 h incubation of cells with aspirin. These studies provide insight into the pathophysiology of Reye Syndrome, which is known to be triggered by aspirin ingestion in patients with fatty acid oxidation disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Insulin resistance, inflammation, and serum fatty acid composition.

    Science.gov (United States)

    Fernández-Real, José-Manuel; Broch, Montserrat; Vendrell, Joan; Ricart, Wifredo

    2003-05-01

    Fatty acids (FAs) have been involved in the development of chronic inflammatory conditions such as insulin resistance and obesity. However, the relation among insulin resistance, obesity, inflammatory activity (circulating interleukin [IL]-6) and dietary FAs has been scarcely studied in otherwise healthy subjects. We aimed to study these interactions in 123 overweight (BMI 26.9 +/- 2.4 kg/m(2) [means +/- SD]) subjects and 109 lean (BMI 21.7 +/- 1.7 kg/m(2), P cromatography. The percentage of saturated FAs (r = 0.30, P = 0.01) and omega-6 FAs (r = -0.32, P = 0.001) were significantly associated with circulating IL-6, whereas the percentage of omega-3 FAs correlated negatively with C-reactive protein in overweight subjects (P = 0.04). Saturated-to-omega-3 and saturated-to-omega-6 FA ratios were significantly and positively associated with C-reactive protein (P < 0.0001) and IL-6 (P < 0.001), respectively. In contrast, none of these associations reached statistical significance in lean subjects. Those subjects in the most insulin-sensitive quintile (homeostasis model assessment value) showed a significantly higher percentage of linoleic acid (C18:2 varpi6) (P = 0.03) and a significantly lower level of araquidic (C20:0) (P = 0.04), behenic (C22:0) (P = 0.009), lignoceric (C24:0) (P = 0.02), and nervonic (C24:1 varpi9) (P = 0.001) FAs than the remaining subjects. In parallel, the most insulin-sensitive subjects showed significantly decreased C-reactive protein (P = 0.03). Serum C-reactive protein was significantly associated with percent linoleic acid and eicosapentaenoic acid in nonsmoking men (P = 0.03 and P = 0.04, respectively) and with docosahexaenoic acid in nonsmoking women (r = -0.46, P < 0.0001). We constructed a multivariant regression analysis to predict circulating IL-6. Age, BMI, waist-to-hip ratio (WHR), smoking status, and the relation of saturated to omega-6 or saturated to omega-3 FAs were considered as independent variables separately in men and women

  15. Egg yolk as a source of long-chain polyunsaturated fatty acids in infant feeding.

    Science.gov (United States)

    Simopoulos, A P; Salem, N

    1992-02-01

    In this paper we compare the fatty acid content of egg yolks from hens fed four different feeds as a source of docosahexaenoic acid to supplement infant formula. Greek eggs contain more docosahexaenoic acid (DHA, 22:6 omega 3) and less linoleic acid (LA, 18:2 omega 6) and alpha-linolenic acid (LNA, 18:3 omega 3) than do fish-meal or flax eggs. Two to three grams of Greek egg yolk may provide an adequate amount of DHA and arachidonic acid for a preterm neonate. Mean intake of breast milk at age 1 mo provides 250 mg long-chain omega 3 fatty acids. This amount can be obtained from less than 1 yolk of a Greek egg (0.94), greater than 1 yolk of flax eggs (1.6) and fish-meal eggs (1.4), or 8.3 yolks of supermarket eggs. With proper manipulation of the hens' diets, eggs could be produced with fatty acid composition similar to that of Greek eggs.

  16. Dietary Omega-3 Polyunsaturated Fatty Acids Alter Fatty Acid Composition of Lipids and CYP2E1 Expression in Rat Liver Tissue.

    Science.gov (United States)

    Maksymchuk, Oksana; Shysh, Angela; Chashchyn, Mykola; Moibenko, Olexyi

    2016-07-21

    Omega-3 polyunsaturated fatty acids (PUFAs) are used for the treatment and prevention of numerous pathologies in humans. As recently found, PUFAs play significantly protective roles in liver, cardiovascular system and kidney. They also are widely used in total parenteral nutrition. We evaluated the effect of omega-3 PUFA consumption on liver fatty acid composition and the expression of CYP2E1, one of the key enzymes in detoxification and prooxidant systems of liver cells. To estimate the oxidative stress in liver tissue, the antioxidant status and the level of lipid peroxidation were determined in a rodent model. Animals were divided into two groups: control (n = 10) and experimental (n = 10). Epadol-containing omega-3 PUFA fish oil capsules were administered to Wistar rats within 4 weeks (0.1 mL/100 g b.w./day). The consumption of omega-3 PUFAs resulted in changes of fatty acid composition of liver tissue. A significant increase was detected in the α-linolenic, eicosapentaenoic and docosahexaenoic acid content (5.1-, 16-, and 1.3-fold, respectively, p omega-3:omega-6 ratio. Consumption of omega-3 PUFAs led to a 3-fold (p < 0.05) increase in CYP2E1 content, which could entail enhanced Nrf2 expression levels and increases in the HO-1 content in rat liver. The alteration in CYP2E1 expression did not have an impact on the level of lipid peroxidation and on the prooxidant/antioxidant balance.

  17. FATTY ACID CONTENT IN BROILER´S ROSS 308 MEAT MUSCLES AFTER USING BEE POLLEN AND PROBIOTIC AS SUPPLEMENTARY DIET INTO THEIR FEED MIXTURE

    Directory of Open Access Journals (Sweden)

    Peter Haščík

    2014-08-01

    Full Text Available The present experiment was aimed to study the effect of the bee pollen and probiotic on broiler´s meat fatty acid. A total of 120 one day old chicks, which were divided into 4 groups (n=30. Central, E1 (400 mg.kg-1 bee pollen, E2 (3.3 g probiotic and E3 (400 mg.kg-1 bee pollen + 3.3 g probiotic of complete feed mixture, the probiotic has been added through drinking water. After 42 days broiler has been slaughtered to determine meat fatty acid concentrations. We found that the probiotic was increased about (78.9% of the essential fatty and bee pollen was increased about (68.4% of essential fatty acid in the experimental groups and there were found significant differences (P≤0.05 in monounsaturated acid (MUFA, heptadecanoic acid and omega-6 between control and E1groups. The mixed between bee pollen and probiotic were reduce the content of the essential fatty acid. However, bee pollen and probiotic were decreased nonessential fatty acid in broiler meat muscles and they were found significant difference (P≤0.05 in saturated fatty acid (SFA between control and E1, also between control and myristic acid. It was concluded that the bee pollen and probiotic have increased the fatty acid and decrease the non essential fatty acid in broiler meat muscles.

  18. Treating asthma with omega-3 fatty acids: where is the evidence? A systematic review

    Directory of Open Access Journals (Sweden)

    Sampson M

    2006-07-01

    Full Text Available Abstract Background Considerable interest exists in the potential therapeutic value of dietary supplementation with the omega-3 fatty acids. Given the interplay between pro-inflammatory omega-6 fatty acids, and the less pro-inflammatory omega-3 fatty acids, it has been thought that the latter could play a key role in treating or preventing asthma. The purpose was to systematically review the scientific-medical literature in order to identify, appraise, and synthesize the evidence for possible treatment effects of omega-3 fatty acids in asthma. Methods Medline, Premedline, Embase, Cochrane Central Register of Controlled Trials, CAB Health, and, Dissertation Abstracts were searched to April 2003. We included randomized controlled trials (RCT's of subjects of any age that used any foods or extracts containing omega-3 fatty acids as treatment or prevention for asthma. Data included all asthma related outcomes, potential covariates, characteristics of the study, design, population, intervention/exposure, comparators, and co interventions. Results Ten RCT's were found pertinent to the present report. Conclusion Given the largely inconsistent picture within and across respiratory outcomes, it is impossible to determine whether or not omega-3 fatty acids are an efficacious adjuvant or monotherapy for children or adults. Based on this systematic review we recommend a large randomized controlled study of the effects of high-dose encapsulated omega-3 fatty acids on ventilatory and inflammatory measures of asthma controlling diet and other asthma risk factors. This review was limited because Meta-analysis was considered inappropriate due to missing data; poorly or heterogeneously defined populations, interventions, intervention-comparator combinations, and outcomes. In addition, small sample sizes made it impossible to meaningfully assess the impact on clinical outcomes of co-variables. Last, few significant effects were found.

  19. Electrogenicity of hepatocellular fatty acid uptake.

    Science.gov (United States)

    Elsing, C; Kassner, A; Gajdzik, L; Graf, J; Stremmel, W

    1998-08-18

    Sensitivity of cellular fatty acids uptake to the membrane potential difference is still a matter of controversy. For direct evaluation of potential sensitivity the effect of changing membrane potential on uptake of a fluorescent long chain fatty acid derivative, 12-NBD-stearate, in isolated rat hepatocytes, was examined. Changes in membrane potential were achieved by patch clamp procedures. Fatty acid influx was simultaneously determined by recording of cell fluorescence. Hyperpolarization from -30 to -70 mV accelerated fatty acid influx whereas depolarization to +50 mV reduced uptake. After obtaining equilibrium hyperpolarization increased cell fluorescence, whereas depolarization pushed NBD-stearate out of cells. Potential sensitivity of uptake was dependent on the fatty acid concentrations in the medium with most prominent effects at low unbound concentrations. These data show that, at low fatty acid concentrations, uptake is, in part, driven by an intracellular negative electric membrane potential.

  20. Determination of fatty acids percentages and profile extracted from cuttlefish of Iranian coasts of Persian Gulf and Oman Sea

    Institute of Scientific and Technical Information of China (English)

    Yosief Ali Asadpour

    2014-01-01

    Objective: To determine the fatty acid profile extracted from cuttlefish of Persian Gulf and Oman Sea, including Ancistrocheirus, Enoploteuthidae, Cranchiidae, Ommastrephidae and Loliginidae. Methods:Oil was extracted by the Bligh and Dyer method. The fatty acid profile of the oil was determined by gas chromatography. Results:The results showed that (13±5)% of wet weight of cuttlefish is oil. The results also showed that cuttlefish oil has 29.40% saturated fatty acids and 23.70% single-band unsaturated fatty acids, and the total value of the unsaturated multiple-band is 40.20%, the contents of arachidonic acid 2.78%, linolenic acid 3.10%, linoleic acid 5.20%, docosahexaenoic acid 15.40%, and eicosapentaenoic acid 9.60% out of the total fatty acids of the same may be mentioned. Conclusions:The results of the current study described that cuttlefish is considered for the first time as the new and rich source of omega-3 and omega-6.

  1. Composition and Fatty Acid Profile of Goat Meat Sausages with Added Rice Bran

    Directory of Open Access Journals (Sweden)

    Fatemeh Malekian

    2014-01-01

    Full Text Available A scientific consensus on the relationship between obesity, obesity related diseases, and diet has emerged. One of the factors is overconsumption of the red meats such as pork and beef. Goat meat has the potential to replace these traditionally consumed meats. Rice bran is a rich source of antioxidants such as vitamin E. In this study, goat meat sausages were formulated to contain 0, 1.5 or 3 percent stabilized rice bran. Proximate and fatty acid composition, α-tocopherol, cholesterol concentration, and antioxidant activities of cooked goat meat sausages containing varying percentages of rice bran were measured. Data were analyzed using a fixed effects model. The fat percentage in the goat meat sausages increased in response to increasing rice bran percentages (P<0.001. Saturated fatty acids concentration decreased linearly (P<0.01, while unsaturated fatty acids and omega-3 and omega-6 fatty acids increased linearly in response to increasing rice bran percentages (P<0.05. The concentration of α-tocopherol in sausages increased linearly in response to increasing rice bran percentages (P<0.01. Also, antioxidant activity increased linearly in sausages in response to added rice bran (P<0.01. The cholesterol concentration of sausages did not vary significantly in response to added rice bran.

  2. Fatty acid content of selected seed oils.

    Science.gov (United States)

    Orhan, Ilkay; Sener, Bilge

    2002-01-01

    Fatty acid content of selected seed oils from world-wide edible fruits, Ceratonia ciliqua (carob) from Caesalpiniaceae family, Diospyros kaki (persimmon) from Ebenaceae family, Zizyphus jujuba (jujube) from Rhamnaceae family, and Persea gratissima (avocado pear) from Lauraceae family, were determined by capillary gas chromatography- mass spectrometry (GC-MS) to find new natural sources for essential fatty acids. Among the seed oils analyzed, Ceratonia ciliqua has been found to have the highest essential fatty acid content.

  3. Fatty Acids in Veterinary Medicine and Research

    OpenAIRE

    Rutland, Catrin S.; Mostyn, Alison; Simpson, Siobhan

    2017-01-01

    Fatty acid regulation is an essential process for all animals. A number of studies have shown that diet affects the levels/availability of fatty acids in the body but increasingly evidence shows that disease states can alter the amounts within the body too. Fatty acid levels and availability have been altered by a number of diseases, disorders and reactions including inflammatory responses, heart disease and heart failure and wound repair. They are also essential during the growth and develop...

  4. Omega-3 fatty acids: Mechanisms of benefit and therapeutic effects in pediatric and adult NAFLD.

    Science.gov (United States)

    Nobili, Valerio; Alisi, Anna; Musso, Giovanni; Scorletti, Eleonora; Calder, Philip C; Byrne, Christopher D

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD) is currently considered the most common liver disease in industrialized countries, and it is estimated that it will become the most frequent indication for liver transplantation in the next decade. NAFLD may be associated with moderate (i.e. steatosis) to severe (i.e. steatohepatitis and fibrosis) liver damage and affects all age groups. Furthermore, subjects with NAFLD may be at a greater risk of other obesity-related complications later in life, and people with obesity and obesity-related complications (e.g. metabolic syndrome, type 2 diabetes and cardiovascular disease) are at increased risk of developing NAFLD. To date, there is no licensed treatment for NAFLD and therapy has been mainly centered on weight loss and increased physical activity. Unfortunately, it is often difficult for patients to adhere to the advised lifestyle changes. Therefore, based on the known pathogenesis of NAFLD, several clinical trials with different nutritional supplementation and prescribed drugs have been undertaken or are currently underway. Experimental evidence has emerged about the health benefits of omega-3 fatty acids, a group of polyunsaturated fatty acids that are important for a number of health-related functions. Omega-3 fatty acids are present in some foods (oils, nuts and seeds) that also contain omega-6 fatty acids, and the best sources of exclusively omega-3 fatty acids are oily fish, krill oil and algae. In this review, we provide a brief overview of the pathogenesis of NAFLD, and we also discuss the molecular and clinical evidence for the benefits of different omega-3 fatty acid preparations in NAFLD.

  5. Supplementation with Omega-3 Fatty Acids in Psychiatric Disorders: A Review of Literature Data.

    Science.gov (United States)

    Bozzatello, Paola; Brignolo, Elena; De Grandi, Elisa; Bellino, Silvio

    2016-07-27

    A new application for omega-3 fatty acids has recently emerged, concerning the treatment of several mental disorders. This indication is supported by data of neurobiological research, as highly unsaturated fatty acids (HUFAs) are highly concentrated in neural phospholipids and are important components of the neuronal cell membrane. They modulate the mechanisms of brain cell signaling, including the dopaminergic and serotonergic pathways. The aim of this review is to provide a complete and updated account of the empirical evidence of the efficacy and safety that are currently available for omega-3 fatty acids in the treatment of psychiatric disorders. The main evidence for the effectiveness of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) has been obtained in mood disorders, in particular in the treatment of depressive symptoms in unipolar and bipolar depression. There is some evidence to support the use of omega-3 fatty acids in the treatment of conditions characterized by a high level of impulsivity and aggression and borderline personality disorders. In patients with attention deficit hyperactivity disorder, small-to-modest effects of omega-3 HUFAs have been found. The most promising results have been reported by studies using high doses of EPA or the association of omega-3 and omega-6 fatty acids. In schizophrenia, current data are not conclusive and do not allow us either to refuse or support the indication of omega-3 fatty acids. For the remaining psychiatric disturbances, including autism spectrum disorders, anxiety disorders, obsessive-compulsive disorder, eating disorders and substance use disorder, the data are too scarce to draw any conclusion. Concerning tolerability, several studies concluded that omega-3 can be considered safe and well tolerated at doses up to 5 g/day.

  6. Supplementation with Omega-3 Fatty Acids in Psychiatric Disorders: A Review of Literature Data

    Directory of Open Access Journals (Sweden)

    Paola Bozzatello

    2016-07-01

    Full Text Available A new application for omega-3 fatty acids has recently emerged, concerning the treatment of several mental disorders. This indication is supported by data of neurobiological research, as highly unsaturated fatty acids (HUFAs are highly concentrated in neural phospholipids and are important components of the neuronal cell membrane. They modulate the mechanisms of brain cell signaling, including the dopaminergic and serotonergic pathways. The aim of this review is to provide a complete and updated account of the empirical evidence of the efficacy and safety that are currently available for omega-3 fatty acids in the treatment of psychiatric disorders. The main evidence for the effectiveness of eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA has been obtained in mood disorders, in particular in the treatment of depressive symptoms in unipolar and bipolar depression. There is some evidence to support the use of omega-3 fatty acids in the treatment of conditions characterized by a high level of impulsivity and aggression and borderline personality disorders. In patients with attention deficit hyperactivity disorder, small-to-modest effects of omega-3 HUFAs have been found. The most promising results have been reported by studies using high doses of EPA or the association of omega-3 and omega-6 fatty acids. In schizophrenia, current data are not conclusive and do not allow us either to refuse or support the indication of omega-3 fatty acids. For the remaining psychiatric disturbances, including autism spectrum disorders, anxiety disorders, obsessive-compulsive disorder, eating disorders and substance use disorder, the data are too scarce to draw any conclusion. Concerning tolerability, several studies concluded that omega-3 can be considered safe and well tolerated at doses up to 5 g/day.

  7. Veal fatty acid composition of different breeds

    Directory of Open Access Journals (Sweden)

    Ivica Kos

    2010-01-01

    Full Text Available Veal fatty acid composition in M. Longissimus thoracis was investigated in different calf breeds (Simmental, Holstein, Simmental x Holstein. Calves were reared on the same farm under identical feeding and handling conditions. Simmental calves had higher polyunsaturated fatty acid (PUFA but lower saturated fatty acid (SFA and monounsaturated fatty acid (MUFA values than Holstein and crossbreed calves (P<0,05. The PUFA/SFA ratio was the highest in Simmental calves and the lowest in Holstein calves. Simmental calves also had the highest n-6/n-3 ratio while the crossbreed calves had the lowest n-6/n-3 ratio.

  8. Plasma and erythrocyte fatty acid patterns in patients with recurrent depression: a matched case-control study.

    Directory of Open Access Journals (Sweden)

    Johanna Assies

    Full Text Available BACKGROUND: The polyunsaturated fatty acid (PUFA composition of (nerve cell membranes may be involved in the pathophysiology of depression. Studies so far, focussed mainly on omega-3 and omega-6 PUFAs. In the present study, saturated fatty acids (SFAs, monounsaturated fatty acids (MUFAs and PUFAs of the omega-3, -6 and -9 series in plasma and erythrocytes of patients with recurrent major depressive disorder (MDD-R were compared with controls. METHODOLOGY AND PRINCIPAL FINDINGS: We carried out a case-control study. The sample consisted of 137 patients with MDD-R and 65 matched non-depressed controls. In plasma and erythrocytes of patients with MDD-R the concentrations of most of the SFAs and MUFAs, and additionally erythrocyte PUFAs, all with a chain length > 20 carbon (C atoms, were significantly lower than in the controls. In contrast, the concentrations of most of the shorter chain members (< or = 18C of the SFAs and MUFAs were significantly higher in the patients. Estimated activities of several elongases in plasma of patients were significantly altered, whereas delta-9 desaturase activity for C14:0 and C18:0 was significantly higher. CONCLUSIONS/SIGNIFICANCE: The fatty acid status of patients with MDD-R not only differs with regard to omega-3 and omega-6 PUFAs, but also concerns other fatty acids. These alterations may be due to: differences in diet, changes in synthesizing enzyme activities, higher levels of chronic (oxidative stress but may also result from adaptive strategies by providing protection against enhanced oxidative stress and production of free radicals.

  9. Chemical and fatty acids composition of rump cap from young bulls fed protected or unprotected oils

    Directory of Open Access Journals (Sweden)

    Emanuel Almeida de Oliveira

    2015-10-01

    Full Text Available Strategies to improve the nutritional aspects of beef, mainly the fatty acids composition, have become an important goal to the scientific community. The use of different oils sources could be an interesting device due its polyunsaturated fatty acids composition. The chemical and fatty acid composition of rump cap (Biceps femoris from 35 Nellore young bulls finished at feedlot (96 days were analyzed. These animals were fed a control diet with sugar cane and concentrate without oil or diets containing sugar cane and concentrate with different sources of oil (soybean or linseed, protected or not from ruminal degradation. A randomized block design was adopted with five treatments and seven replications. The means were compared using orthogonal contrasts at 0.05 significance level. Animals fed diets with oil showed higher levels (P<0.05 of protein and lower levels (P<0.05 of ash than control diet. Lower cholesterol (P<0.05 levels resulted from linseed oil added treatment compared to soybean oil (37.70 and 43.80 mg/100 g, respectively; on the other hand, cholesterol levels increased (P<0.05 for protected oils compared to non-protected (44.53 and 33.97 mg/100 g. Oil added diets resulted in higher (P<0.05 linolenic acid levels. Linseed oil increased (P<0.05 the levels of the fatty acids C14:1, C16:1 and C18:1 n9. Addition of linseed oil, whether protected or not, to the animal diets improves the fatty acid composition of the rump cap by increasing the amount of omega-3 fatty acids and improving the omega-6:omega-3 ratio.

  10. Intake of fatty acids in Western Europe with emphasis on trans fatty acids: The TRANSFAIR study

    NARCIS (Netherlands)

    Hulshof, K.F.A.M; Erp van - Baart, M.A.; Anttolainen, M.; Becker, W.; Church, S.M.; Couet, C.; Hermann-Kunz, E.; Kesteloot, H.; Leth, T.; Martins, I.; Moreiras, O.; Moschandreas, J.; Pizzoferrato, L.; Rimestad, A.H.; Thorgeirsdottir, H.; Amelsvoort, J.M.M. van; Aro, A.; Kafatos, A.G.; Lanzmann-Petithory, D.; Poppel, G. van

    1999-01-01

    Objective: To assess the intake of trans fatty acids (TFA) and other fatty acids in 14 Western European countries. Design and subjects: A maximum of 100 foods per country were sampled and centrally analysed. Each country calculated the intake of individual trans and other fatty acids, clusters of fa

  11. Intake of fatty acids in Western Europe with emphasis on trans fatty acids: The TRANSFAIR study

    NARCIS (Netherlands)

    Hulshof, K.F.A.M; Erp van - Baart, M.A.; Anttolainen, M.; Becker, W.; Church, S.M.; Couet, C.; Hermann-Kunz, E.; Kesteloot, H.; Leth, T.; Martins, I.; Moreiras, O.; Moschandreas, J.; Pizzoferrato, L.; Rimestad, A.H.; Thorgeirsdottir, H.; Amelsvoort, J.M.M. van; Aro, A.; Kafatos, A.G.; Lanzmann-Petithory, D.; Poppel, G. van

    1999-01-01

    Objective: To assess the intake of trans fatty acids (TFA) and other fatty acids in 14 Western European countries. Design and subjects: A maximum of 100 foods per country were sampled and centrally analysed. Each country calculated the intake of individual trans and other fatty acids, clusters of

  12. Omega 3 fatty acids reduce myeloid progenitor cell frequency in the bone marrow of mice and promote progenitor cell differentiation

    Directory of Open Access Journals (Sweden)

    Sollars Vincent E

    2009-03-01

    Full Text Available Abstract Background Omega 3 fatty acids have been found to inhibit proliferation, induce apoptosis, and promote differentiation in various cell types. The processes of cell survival, expansion, and differentiation are of key importance in the regulation of hematopoiesis. We investigated the role of omega 3 fatty acids in controlling the frequency of various myeloid progenitor cells in the bone marrow of mice. Increased progenitor cell frequency and blocked differentiation are characteristics of hematopoietic disorders of the myeloid lineage, such as myeloproliferative diseases and myeloid leukemias. Results We found that increasing the proportion of omega 3 fatty acids relative to the proportion of omega 6 fatty acids in the diet caused increased differentiation and reduced the frequency of myeloid progenitor cells in the bone marrow of mice. Furthermore, this had no adverse effect on peripheral white blood cell counts. Conclusion Our results indicate that omega 3 fatty acids impact hematopoietic differentiation by reducing myeloid progenitor cell frequency in the bone marrow and promoting progenitor cell differentiation. Further exploration of this discovery could lead to the use of omega 3 fatty acids as a therapeutic option for patients that have various disorders of hematopoiesis.

  13. Fatty acid composition of muscle tissue measured in amphibians living in radiologically contaminated and non-contaminated environments.

    Science.gov (United States)

    Audette-Stuart, M; Ferreri, C; Festarini, A; Carr, J

    2012-09-01

    Fatty acid composition was identified as a potential biological indicator of the effects of environmental exposure to radiological contaminants. This end point was measured in muscle tissues of Mink frogs ( Rana septentrionalis ) obtained from a radiologically contaminated pond and from a non-contaminated pond. It was also measured after the frogs obtained from both ponds were exposed to a 4 Gy (60)Co γ radiation dose delivered in vivo at a dose rate of approximately 8 Gy/min. Statistically significant differences for the increase of a couple of polyunsaturated omega-3 fatty acid residues and the decrease of a polyunsaturated omega-6 fatty acid residue were observed between radiologically contaminated and non-contaminated frogs, indicating a partial remodeling of muscle lipids in response to a chronic low-dose tritium exposure. The effects of an acute high-dose exposure to (60)Co γ radiation, either for the radiologically contaminated or non-contaminated frogs indicated fast post-irradiation fatty acid changes with an increase of polyunsaturated and decrease of saturated fatty acid contents. Fatty acid composition was found to be a sensitive marker that may be useful to study and monitor biota health in environments that are radiologically contaminated, as well as for understanding the differences between low chronic and high acute stress responses.

  14. Report on the distribution of essential and non essential fatty acids in common edible fishes of Porto-Novo coastal waters, southeast coast of India

    Institute of Scientific and Technical Information of China (English)

    A.R.Nazar

    2012-01-01

    Objective: The objective of the study was to evaluate the essential and non essential fatty acids and the distribution of Omega-3 and Omega-6 fatty acids in twenty commonly consumed edible fishes of parangipettai coastal waters. Methods: For fatty acid analysis, each fish specimens were beheaded, eviscerated and filleted manually. The tissue samples were oven dried at 67℃ for 24hrs.After that the samples ware grounded finely with pestle and mortar. The saponified samples were cooled at room temperature for 25 min, they were acidified and methylated by adding 2 ml 54% 6 N Hcl in 46% aqueous methanol and incubated at 80℃ for 10 min in water bath. Following the base wash step, the FAMEs were cleaned in anhydrous sodium sulphate and then transferred in to GC sample vial for analysis. FAMEs were separated by gas chromatograph. Results: The results of the present study revealed that the most abundant individual FAs were Palmitic acid, Oleic acid, Arachidonic acid (AA), Docosahexaenoic acid (DHA) in most the tissues. The total Arachidonic acid (C20:4ω-6) was found to be higher proportion (0.17-4.86%), when compared with other Omega-6 fatty acids. The values found for Linoleic acid (C18:2 ω-6) ranging from 0-7.23%. Siganus javus has 7.23% of Linoleic acid. Conclusion: Fatty acids are the principle components in lipids. The nutritional importance of fish consumption is in great extent associated with the content of omega-3 fatty acids. Sea food is an important dietary food for human beings. It constitute higher amount of protein, lipids, vitamins and essential and nonessential metals and low concentration of carbohydrates.

  15. Omega-3 Fatty Acids and Inflammatory Processes

    Directory of Open Access Journals (Sweden)

    Philip C. Calder

    2010-03-01

    Full Text Available Long chain fatty acids influence inflammation through a variety of mechanisms; many of these are mediated by, or at least associated with, changes in fatty acid composition of cell membranes. Changes in these compositions can modify membrane fluidity, cell signaling leading to altered gene expression, and the pattern of lipid mediator production. Cell involved in the inflammatory response are typically rich in the n-6 fatty acid arachidonic acid, but the contents of arachidonic acid and of the n-3 fatty acids eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA can be altered through oral administration of EPA and DHA. Eicosanoids produced from arachidonic acid have roles in inflammation. EPA also gives rise to eicosanoids and these often have differing properties from those of arachidonic acid-derived eicosanoids. EPA and DHA give rise to newly discovered resolvins which are anti-inflammatory and inflammation resolving. Increased membrane content of EPA and DHA (and decreased arachidonic acid content results in a changed pattern of production of eicosanoids and resolvins. Changing the fatty acid composition of cells involved in the inflammatory response also affects production of peptide mediators of inflammation (adhesion molecules, cytokines etc.. Thus, the fatty acid composition of cells involved in the inflammatory response influences their function; the contents of arachidonic acid, EPA and DHA appear to be especially important. The anti-inflammatory effects of marine n-3 PUFAs suggest that they may be useful as therapeutic agents in disorders with an inflammatory component.

  16. Polyunsaturated fatty acids (PUFAs) for children with specific learning disorders.

    Science.gov (United States)

    Tan, May Loong; Ho, Jacqueline J; Teh, Keng Hwang

    2016-09-28

    About 5% of school children have a specific learning disorder, defined as unexpected failure to acquire adequate abilities in reading, writing or mathematics that is not a result of reduced intellectual ability, inadequate teaching or social deprivation. Of these events, 80% are reading disorders. Polyunsaturated fatty acids (PUFAs), in particular, omega-3 and omega-6 fatty acids, which normally are abundant in the brain and in the retina, are important for learning. Some children with specific learning disorders have been found to be deficient in these PUFAs, and it is argued that supplementation of PUFAs may help these children improve their learning abilities. 1. To assess effects on learning outcomes of supplementation of polyunsaturated fatty acids (PUFAs) for children with specific learning disorders.2. To determine whether adverse effects of supplementation of PUFAs are reported in these children. In November 2015, we searched CENTRAL, Ovid MEDLINE, Embase, PsycINFO, 10 other databases and two trials registers. We also searched the reference lists of relevant articles. Randomised controlled trials (RCTs) or quasi-RCTs comparing PUFAs with placebo or no treatment in children younger than 18 years with specific learning disabilities, as diagnosed in accordance with the fifth (or earlier) edition of theDiagnostic and Statistical Manual of Mental Disorders (DSM-5), or the 10th (or earlier) revision of the International Classification of Diseases (ICD-10) or equivalent criteria. We included children with coexisting developmental disorders such as attention deficit hyperactivity disorder (ADHD) or autism. Two review authors (MLT and KHT) independently screened the titles and abstracts of articles identified by the search and eliminated all studies that did not meet the inclusion criteria. We contacted study authors to ask for missing information and clarification, when needed. We used the GRADE approach to assess the quality of evidence. Two small studies

  17. Different impacts of short-chain fatty acids on saturated and polyunsaturated fatty acid biosynthesis in Aurantiochytrium sp. SD116.

    Science.gov (United States)

    Song, Xiaojin; Tan, Yanzhen; Liu, Yajun; Zhang, Jingtao; Liu, Guanglei; Feng, Yingang; Cui, Qiu

    2013-10-16

    Aurantiochytrium is an important docosahexaenoic acid (DHA) producer containing two kinds of fatty acid synthesis pathways, that is, the fatty acid synthase pathway (FAS) for saturated fatty acid synthesis and the polyketide synthase pathway (PKS) for polyunsaturated fatty acid synthesis. To understand the regulation mechanism between the two pathways, the impacts of six short-chain fatty acids on the fatty acid synthesis of Aurantiochytrium sp. SD116 were studied. All short-chain fatty acids showed little effect on the cell growth, but some of them significantly affected lipid accumulation and fatty acid composition. Pentanoic acid and isovaleric acid greatly inhibited the synthesis of saturated fatty acids, whereas the polyunsaturated fatty acid synthesis was not affected. Analysis of malic enzyme activity, which supplied NADPH for saturated fatty acids biosynthesis, indicated that the two fatty acid synthesis pathways can utilize different substrates and possess independent sources of NADPH.

  18. Fatty Acid Composition of Agaricus bisporus (Lange) Sing.

    OpenAIRE

    Aktümsek, Abdurrahman; ÖZTÜRK, Celâleddin; KAŞIK, Giyasettin

    1998-01-01

    Fatty acid compositions of fruit body, stem, lamellae and total of Agaricus bisporus were seperately analysed by GLC. In the all fatty acid compositions of A. bisporus, linoleic acid were predominant. Percentages of linoleic acid were varied between 53.45 - 68.78%. It was showed that the other major fatty acids were palmitic, oleic and stearic acid in the fatty acid compositions.

  19. Phylogenomic reconstruction of archaeal fatty acid metabolism

    Science.gov (United States)

    Dibrova, Daria V.; Galperin, Michael Y.; Mulkidjanian, Armen Y.

    2014-01-01

    While certain archaea appear to synthesize and/or metabolize fatty acids, the respective pathways still remain obscure. By analyzing the genomic distribution of the key lipid-related enzymes, we were able to identify the likely components of the archaeal pathway of fatty acid metabolism, namely, a combination of the enzymes of bacterial-type β-oxidation of fatty acids (acyl-CoA-dehydrogenase, enoyl-CoA hydratase, and 3-hydroxyacyl-CoA dehydrogenase) with paralogs of the archaeal acetyl-CoA C-acetyltransferase, an enzyme of the mevalonate biosynthesis pathway. These three β-oxidation enzymes working in the reverse direction could potentially catalyze biosynthesis of fatty acids, with paralogs of acetyl-CoA C-acetyltransferase performing addition of C2 fragments. The presence in archaea of the genes for energy-transducing membrane enzyme complexes, such as cytochrome bc complex, cytochrome c oxidase, and diverse rhodopsins, was found to correlate with the presence of the proposed system of fatty acid biosynthesis. We speculate that because these membrane complexes functionally depend on fatty acid chains, their genes could have been acquired via lateral gene transfer from bacteria only by those archaea that already possessed a system of fatty acid biosynthesis. The proposed pathway of archaeal fatty acid metabolism operates in extreme conditions and therefore might be of interest in the context of biofuel production and other industrial applications. PMID:24818264

  20. Fatty acids in an estuarine mangrove ecosystem.

    Science.gov (United States)

    Alikunhi, Nabeel M; Narayanasamy, Rajendran; Kandasamy, Kathiresan

    2010-06-01

    Fatty acids have been successfully used to trace the transfer of organic matter in coastal and estuarine food webs. To delineate these web connections, fatty acid profiles were analyzed in species of microbes (Azotobacter vinelandii, and Lactobacillus xylosus), prawns (Metapenaeus monoceros and Macrobrachium rosenbergii) and finfish (Mugil cephalus), that are associated with decomposing leaves of two mangrove species, Rhizophora apiculata and Avicennia marina. The fatty acids, except long chain fatty acids, exhibit changes during decomposition of mangrove leaves with a reduction of saturated fatty acids and an increase of monounsaturated fatty acids. The branched fatty acids are absent in undecomposed mangrove leaves, but present significantly in the decomposed leaves and in prawns and finfish, representing an important source for them. This revealed that the microbes are dominant producers that contribute significantly to the fishes and prawns in the mangrove ecosystem. This work has proved the fatty acid biomarkers as an effective tool for identifying the trophic interactions among dominant producers and consumers in this mangrove.

  1. Dioxygenation of polyunsaturated fatty acids in fungi

    NARCIS (Netherlands)

    Wadman, M.W.

    2007-01-01

    Polyunsaturated fatty acids play a central role in all biological systems. They are constituents of the plasma membrane and serve as precursors to signaling molecules generated in response to external events. The conversion of polyunsaturated fatty acids into signaling molecules starts by the hydrol

  2. Nickel inhibits mitochondrial fatty acid oxidation.

    Science.gov (United States)

    Uppala, Radha; McKinney, Richard W; Brant, Kelly A; Fabisiak, James P; Goetzman, Eric S

    2015-08-07

    Nickel exposure is associated with changes in cellular energy metabolism which may contribute to its carcinogenic properties. Here, we demonstrate that nickel strongly represses mitochondrial fatty acid oxidation-the pathway by which fatty acids are catabolized for energy-in both primary human lung fibroblasts and mouse embryonic fibroblasts. At the concentrations used, nickel suppresses fatty acid oxidation without globally suppressing mitochondrial function as evidenced by increased glucose oxidation to CO2. Pre-treatment with l-carnitine, previously shown to prevent nickel-induced mitochondrial dysfunction in neuroblastoma cells, did not prevent the inhibition of fatty acid oxidation. The effect of nickel on fatty acid oxidation occurred only with prolonged exposure (>5 h), suggesting that direct inhibition of the active sites of metabolic enzymes is not the mechanism of action. Nickel is a known hypoxia-mimetic that activates hypoxia inducible factor-1α (HIF1α). Nickel-induced inhibition of fatty acid oxidation was blunted in HIF1α knockout fibroblasts, implicating HIF1α as one contributor to the mechanism. Additionally, nickel down-regulated the protein levels of the key fatty acid oxidation enzyme very long-chain acyl-CoA dehydrogenase (VLCAD) in a dose-dependent fashion. In conclusion, inhibition of fatty acid oxidation by nickel, concurrent with increased glucose metabolism, represents a form of metabolic reprogramming that may contribute to nickel-induced carcinogenesis.

  3. Historical perspectives on fatty acid chemistry

    Science.gov (United States)

    Fatty acids are basic renewable chemical building blocks that can be used as intermediates for a multitude of products. Today the global value of fatty acids exceeds 18 billion dollars and is expected to increase to nearly 26 billion over the period from 2014-2019. From it auspicious beginnings, the...

  4. Mechanisms of gene regulation by fatty acids

    NARCIS (Netherlands)

    Georgiadi, A.; Kersten, A.H.

    2012-01-01

    Consumption of specific dietary fatty acids has been shown to influence risk and progression of several chronic diseases, such as cardiovascular disease, obesity, cancer, and arthritis. In recent years, insights into the mechanisms underlying the biological effects of fatty acids have improved consi

  5. Incorporation of extracellular fatty acids by a fatty acid kinase-dependent pathway in Staphylococcus aureus.

    Science.gov (United States)

    Parsons, Joshua B; Frank, Matthew W; Jackson, Pamela; Subramanian, Chitra; Rock, Charles O

    2014-04-01

    Acyl-CoA and acyl-acyl carrier protein (ACP) synthetases activate exogenous fatty acids for incorporation into phospholipids in Gram-negative bacteria. However, Gram-positive bacteria utilize an acyltransferase pathway for the biogenesis of phosphatidic acid that begins with the acylation of sn-glycerol-3-phosphate by PlsY using an acyl-phosphate (acyl-PO4 ) intermediate. PlsX generates acyl-PO4 from the acyl-ACP end-products of fatty acid synthesis. The plsX gene of Staphylococcus aureus was inactivated and the resulting strain was both a fatty acid auxotroph and required de novo fatty acid synthesis for growth. Exogenous fatty acids were only incorporated into the 1-position and endogenous acyl groups were channeled into the 2-position of the phospholipids in strain PDJ39 (ΔplsX). Extracellular fatty acids were not elongated. Removal of the exogenous fatty acid supplement led to the rapid accumulation of intracellular acyl-ACP and the abrupt cessation of fatty acid synthesis. Extracts from the ΔplsX strain exhibited an ATP-dependent fatty acid kinase activity, and the acyl-PO4 was converted to acyl-ACP when purified PlsX is added. These data reveal the existence of a novel fatty acid kinase pathway for the incorporation of exogenous fatty acids into S. aureus phospholipids.

  6. Solution Structure and Backbone Dynamics of Human Liver Fatty Acid Binding Protein: Fatty Acid Binding Revisited

    OpenAIRE

    Cai, Jun; Lücke, Christian; Chen, Zhongjing; Qiao, Ye; Klimtchuk, Elena; Hamilton, James A.

    2012-01-01

    Liver fatty acid binding protein (L-FABP), a cytosolic protein most abundant in liver, is associated with intracellular transport of fatty acids, nuclear signaling, and regulation of intracellular lipolysis. Among the members of the intracellular lipid binding protein family, L-FABP is of particular interest as it can i), bind two fatty acid molecules simultaneously and ii), accommodate a variety of bulkier physiological ligands such as bilirubin and fatty acyl CoA. To better understand the p...

  7. Propylenated fatty acids as emulsifiers

    Directory of Open Access Journals (Sweden)

    El-Shattory, Y.

    1999-08-01

    Full Text Available Hydroxy propylenyl stéarate, palmitate, laurate, oléate and linoleate were prepared by reaction of propylene oxide with fatty acid at 160 °C for five hours stirring in presence of potassium hydroxide as a catalyst. Physico-chemical properties of the five products, regarding their use as emulsifiers, were determined.

    Se prepararon estearato, palmitato, laurato, oleato y linoleato de hidroxipropilenilos mediante reacción de oxido de propileno con ácido graso a 160 °C durante cinco horas de agitación en presencia de hidróxido potásico como catalizador. Se determinaron las propiedades físico-químicas de los cinco productos, en cuanto a su uso como emulsionantes.

  8. Hexadecenoic Fatty Acid Isomers in Human Blood Lipids and Their Relevance for the Interpretation of Lipidomic Profiles.

    Directory of Open Access Journals (Sweden)

    Anna Sansone

    Full Text Available Monounsaturated fatty acids (MUFA are emerging health biomarkers, and in particular the ratio between palmitoleic acid (9cis-16:1 and palmitic acid (16:0 affords the delta-9 desaturase index that is increased in obesity. Recently, other positional and geometrical MUFA isomers belonging to the hexadecenoic family (C16 MUFA were found in circulating lipids, such as sapienic acid (6cis-16:1, palmitelaidic acid (9trans-16:1 and 6trans-16:1. In this work we report: i the identification of sapienic acid as component of human erythrocyte membrane phospholipids with significant increase in morbidly obese patients (n = 50 compared with age-matched lean controls (n = 50; and ii the first comparison of erythrocyte membrane phospholipids (PL and plasma cholesteryl esters (CE in morbidly obese patients highlighting that some of their fatty acid levels have opposite trends: increases of both palmitic and sapienic acids with the decrease of linoleic acid (9cis,12cis-18:2, omega-6 in red blood cell (RBC membrane PL were reversed in plasma CE, whereas the increase of palmitoleic acid was similar in both lipid species. Consequentially, desaturase enzymatic indexes gave different results, depending on the lipid class used for the fatty acid content. The fatty acid profile of morbidly obese subjects also showed significant increases of stearic acid (C18:0 and C20 omega-6, as well as decreases of oleic acid (9cis-18:1 and docosahexaenoic acid (C22:6 omega-3 as compared with lean healthy controls. Trans monounsaturated and polyunsaturated fatty acids were also measured and found significantly increased in both lipid classes of morbidly obese subjects. These results highlight the C16 MUFA isomers as emerging metabolic marker provided that the assignment of the double bond position and geometry is correctly performed, thus identifying the corresponding lipidomic pathway. Since RBC membrane PL and plasma CE have different fatty acid trends, caution must also be used in

  9. Reduced bone breakage and increased bone strength in free range laying hens fed omega-3 polyunsaturated fatty acid supplemented diets.

    Science.gov (United States)

    Tarlton, John F; Wilkins, Lindsay J; Toscano, Michael J; Avery, Nick C; Knott, Lynda

    2013-02-01

    The omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) are the immediate precursors to a number of important mediators of immunity, inflammation and bone function, with products of omega-6 generally thought to promote inflammation and favour bone resorption. Western diets generally provide a 10 to 20-fold deficit in omega-3 PUFAs compared with omega-6, and this is thought to have contributed to the marked rise in incidence of disorders of modern human societies, such as heart disease, colitis and perhaps osteoporosis. Many of our food production animals, fed on grains rich in omega-6, are also exposed to a dietary deficit in omega-3, with perhaps similar health consequences. Bone fragility due to osteoporotic changes in laying hens is a major economic and welfare problem, with our recent estimates of breakage rates indicating up to 95% of free range hens suffer breaks during lay. Free range hens housed in full scale commercial systems were provided diets supplemented with omega-3 alpha linolenic acid, and the skeletal benefits were investigated by comparison to standard diets rich in omega-6. There was a significant 40-60% reduction in keel bone breakage rate, and a corresponding reduction in breakage severity in the omega-3 supplemented hens. There was significantly greater bone density and bone mineral content, alongside increases in total bone and trabecular volumes. The mechanical properties of the omega-3 supplemented hens were improved, with strength, energy to break and stiffness demonstrating significant increases. Alkaline phosphatase (an osteoblast marker) and tartrate-resistant acid phosphatase (an osteoclast marker) both showed significant increases with the omega-3 diets, indicating enhanced bone turnover. This was corroborated by the significantly lower levels of the mature collagen crosslinks, hydroxylysyl pyridinoline, lysyl pyridinoline and histidinohydroxy-lysinonorleucine, with a corresponding significant shift in the mature

  10. Omega-6/Omega-3 and PUFA/SFA in Colossoma macropomum Grown in Roraima, Brazil

    OpenAIRE

    Antonio Alves de Melho Filho; Hamilton Hermes Oliveira; Ricardo Carvalho Santos

    2013-01-01

    In this study was evaluated the fatty acids composition of tambaqui (Colossoma macropomum) fillet, fish species cultivated in Roraima State, Brazil. For the extraction of tambaqui oil was used Sohxlet device and then it was methylated. The oil  was identified using a gas chromatograph and were identified 24 acids and these were divided into characteristic groups such as: saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA) and series fatty acids ...

  11. Changes of cellular fatty acids of soil Actinobacteria producing antibiotics

    OpenAIRE

    LIPENSKÁ, Ivana

    2010-01-01

    Changes of cellular fatty acids in membrane of Actinobacteria. Changes of fatty acids are significant biomarkers of changing conditions of surroundings. This can also indicate production of antibiotics along with production of atypical fatty acids.

  12. [Fatty acid composition and cholesterol content in naturally canned jurel, sardine, salmon, and tuna].

    Science.gov (United States)

    Romero, N; Robert, P; Masson, L; Luck, C; Buschmann, L

    1996-03-01

    To obtain more information about fatty acid profile and cholesterol content of fat extracted from canned fish in brine habitually consumed in Chile, four different species Jurel (Trachurus murphyi), Sardine (Sardinops sagax), Salmon (Oncorhynchus kisutch) and Tuna (Thunnus alalunga) were analyzed. The GLC of fatty acid methyl esters showed that the main group of fatty acids belongs to polyunsaturated, being omega-3 family the more important. The principal representants were eicosapentaenoic (EPA) and docosahexaenoic acids (DHA), with percentages between 5%-11% and 12%-22% respectively. Omega-6 family was represented mainly by arachidonic acid (AA) with percentages between 2%-4%. Cholesterol content was similar to the values found in other animal origen meats. The figures were between 41-86 mg of cholesterol per 100 g of edible product, Tuna in brine, was the product with the lowest content of cholesterol. The calculated amount of EPA, DHA and total omega-3 fatty acids indicated values between 95-604, 390-1163 and 609-2775 mg respectively per 100 g of edible product. Due these results is important to emphasize the consumption of this type of canned fish in brine, that they really represent a good dietary source of mainly polyunsaturated omega-3 fatty acids. The international recommendations indicate to increase the consumption of fish, due the beneficial effects described in relation with cardiovascular disease, which is the mean cause of death in Chile, country with a wide variety of marine origen foods, but with a contradictory answer about its consumption which is not incorporated in the current diet.

  13. Impact of enteral supplements enriched with omega-3 fatty acids and/or omega-6 fatty acids, arginine and ribonucleic acid compounds on leptin levels and nutritional status in active Crohn's disease treated with prednisolone

    DEFF Research Database (Denmark)

    Nielsen, Aneta Aleksandra; Nielsen, Jens Nederby; Grønbaek, Henning;

    2007-01-01

    BACKGROUND: Patients with Crohn's disease (CD) often develop malnutrition due to disease activity. We aimed to assess the effect of two different enteral supplements of Impact(R) Powder (IP; Novartis, Switzerland) on leptin levels and nutritional status in active CD patients during prednisolone t...

  14. Impact of enteral supplements enriched with omega-3 fatty acids and/or omega-6 fatty acids, arginine and ribonucleic acid compounds on leptin levels and nutritional status in active Crohn's disease treated with prednisolone

    DEFF Research Database (Denmark)

    Nielsen, Aneta Aleksandra; Nielsen, Jens Nederby; Grønbaek, Henning

    2007-01-01

    BACKGROUND: Patients with Crohn's disease (CD) often develop malnutrition due to disease activity. We aimed to assess the effect of two different enteral supplements of Impact(R) Powder (IP; Novartis, Switzerland) on leptin levels and nutritional status in active CD patients during prednisolone t...

  15. The effect of dietary fat level and quality on plasma lipoprotein lipids and plasma fatty acids in normocholesterolemic subjects.

    Science.gov (United States)

    Sanders, K; Johnson, L; O'Dea, K; Sinclair, A J

    1994-02-01

    This study examined the effect on the plasma lipids and plasma phospholipid and cholesteryl ester fatty acids of changing froma typical western diet to a very low fat (VLF) vegetarian diet containing one egg/day. The effect of the addition of saturated, monounsaturated or polyunsaturated fat (PUFA) to the VLF diet was also examined. Three groups of 10 subjects (6 women, 4 men) were fed the VLF diet (10% energy as fat) for two weeks, and then in the next two weeks the dietary fat in each group was increased by 10% energy/week using butter, olive oil or safflower oil. The fat replaced dietary carbohydrate. The VLF diet reduced both the low density lipoprotein (LDL)- and high density lipoprotein (HDL)-cholesterol levels; addition of the monounsaturated fats and PUFA increased the HDL-cholesterol levels, whereas butter increased the cholesterol levels in both the LDL- and HDL-fractions. The VLF diet led to significant reductions in the proportion of linoleic acid (18:2 omega 6) and eicosapentaenoic acid (20:5 omega 3) and to increases in palmitoleic (16:1), eicosatrienoic (20:3 omega 6) and arachidonic acids (20:4 omega 6) in both phospholipids and cholesteryl esters. Addition of butter reversed the changes seen on the VLF diet, with the exception of 16:1, which remained elevated. Addition of olive oil resulted in a significant rise in the proportion of 18:1 and significant decreases in all omega 3 PUFA except 22:6 compared with the usual diet. The addition of safflower oil resulted in significant increases in 18:2 and 20:4 omega 6 and significant decreases in 18:1, 20:5 omega 3 and 22:5 omega 3. These results indicate that the reduction of saturated fat content of the diet (unsaturated fat, reduced the total plasma cholesterol levels by approximately 12% in normocholesterolemic subjects. Although the VLF vegetarian diet reduced both LDL- and HDL-cholesterol levels, the long-term effects of VLF diets are unlikely to be deleterious since populations which habitually

  16. Fatty acids profile of Sacha Inchi oil and blends by 1H NMR and GC-FID.

    Science.gov (United States)

    Vicente, Juarez; de Carvalho, Mario Geraldo; Garcia-Rojas, Edwin E

    2015-08-15

    This study aimed at the characterization of blends of Sacha Inchi oil (SIO) with different ratios of SO (soybean oil) and CO (corn oil) by nuclear magnetic resonance ((1)H NMR), compared with the data obtained by gas chromatography with a flame ionization detector (GC-FID). The (1)H NMR and GC-FID data from different ratios of SIO were adjusted by a second order polynomial equation. The two techniques were highly correlated (R(2) values ranged from 0.995 to 0.999), revealing that (1)H NMR is an efficient methodology for the quantification of omega-3 fatty acids in oils rich in omega-6 fatty acids or vice versa such as SO and CO and, on the other hand, can be used to quantify ω-6 in oils rich in ω-3, such as SIO.

  17. Composition of amino acids, fatty acids and dietary fibre monomers ...

    African Journals Online (AJOL)

    Composition of amino acids, fatty acids and dietary fibre monomers in kernels of ... Nuts are rich in protein and essential amino acids, and have a high energy value ... of protein, especially when combined with foods with high lysine content.

  18. Chia seed (Salvia hispanica L.) as an omega-3 fatty acid source for broilers: influence on fatty acid composition, cholesterol and fat content of white and dark meats, growth performance, and sensory characteristics.

    Science.gov (United States)

    Ayerza, R; Coates, W; Lauria, M

    2002-06-01

    Five thousand four hundred, 1-d-old, male, Ross 308, broiler chicks were fed for 49 d to compare diets containing 10 and 20% chia (Salvia hispanica L.) seed to a control diet. Cholesterol content, total fat content, and fatty acid composition of white and dark meats were determined at the end of the trial. A taste panel assessed meat flavor and preference. Cholesterol content was not significantly different among treatments; however, the 10% chia diet produced a lower fat content in the dark meat than did the control diet. Palmitic fatty acid content was less in both meat types when chia was fed, with differences being significant (P < 0.05), except for the white meat and the 20% chia diet. alpha-Linolenic fatty acid was significantly higher (P < 0.05) in the white and dark meats with the chia diets. Chia significantly lowered the saturated fatty acid content as well as the saturated:polyunsaturated fatty acid and omega-6:omega-3 ratios of the white and dark meats compared to the control diet. No significant differences in flavor or preference ratings were detected among diets. Body weight and feed conversion were significantly lower with the chia diets than with the control, with weight reductions up to 6.2% recorded with the 20% chia diet.

  19. Role of cytochrome P450 enzymes in the bioactivation of polyunsaturated fatty acids.

    Science.gov (United States)

    Konkel, Anne; Schunck, Wolf-Hagen

    2011-01-01

    Cytochrome P450 (CYP)-dependent metabolites of arachidonic acid (AA), such as epoxyeicosatrienoic acids and 20-hydroxyeicosatetraenoic acid, serve as second messengers of various hormones and growth factors and play pivotal roles in the regulation of vascular, renal and cardiac function. As discussed in the present review, virtually all of the major AA metabolizing CYP isoforms accept a variety of other polyunsaturated fatty acids (PUFA), including linoleic, eicosapentaenoic (EPA) and docosahexaenoic acids (DHA), as efficient alternative substrates. The metabolites of these alternative PUFAs also elicit profound biological effects. The CYP enzymes respond to alterations in the chain-length and double bond structure of their substrates with remarkable changes in the regio- and stereoselectivity of product formation. The omega-3 double bond that distinguishes EPA and DHA from their omega-6 counterparts provides a preferred epoxidation site for CYP1A, CYP2C, CYP2J and CYP2E subfamily members. CYP4A enzymes that predominantly function as AA ω-hydroxylases show largely increased (ω-1)-hydroxylase activities towards EPA and DHA. Taken together, these findings indicate that CYP-dependent signaling pathways are highly susceptible to changes in the relative bioavailability of the different PUFAs and may provide novel insight into the complex mechanisms that link essential dietary fatty acids to the development of cardiovascular disease. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Influence of Zeolite on fatty acid composition and egg quality in Tunisian Laying Hens

    Directory of Open Access Journals (Sweden)

    Fendri Imen

    2012-06-01

    Full Text Available Abstract Background The health benefits of omega-3 and omega-6 polyunsaturated fatty acids (PUFA are generally recognized. Unfortunately, in most Mediterranean countries, the recommended daily intake of these compounds is rarely met. Therefore, enrichment of commonly occurring foods can boost intake of these fatty acids. In this regard, eggs are an interesting target, as they form an integral part of the diet. Result Zeolite (Clinoptilolites was added to Laying Hens feed at concentrations 1% or 2% and was evaluated for its effects on performance of the production and on egg quality. The Laying Hens were given access to 110 g of feed mixtures daily that was either a basal diet or a ‘zeolite diet’ (the basal diet supplemented with clinoptilolite at a level of 1% or 2%. It was found that zeolite treatment had a positive and significatif (p  Conclusion This study showed the significance of using zeolite, as a feed additive for Laying Hens, as part of a comprehensive program to control egg quality and to increase level of polyunsaturated fatty acids on egg.

  1. Omega-3 fatty acids and cardiovascular disease.

    Science.gov (United States)

    Jain, A P; Aggarwal, K K; Zhang, P-Y

    2015-01-01

    Cardioceuticals are nutritional supplements that contain all the essential nutrients including vitamins, minerals, omega-3-fatty acids and other antioxidants like a-lipoic acid and coenzyme Q10 in the right proportion that provide all round protection to the heart by reducing the most common risks associated with the cardiovascular disease including high low-density lipoprotein cholesterol and triglyceride levels and factors that contribute to coagulation of blood. Omega-3 fatty acids have been shown to significantly reduce the risk for sudden death caused by cardiac arrhythmias and all-cause mortality in patients with known coronary heart disease. Omega-3 fatty acids are also used to treat hyperlipidemia and hypertension. There are no significant drug interactions with omega-3 fatty acids. The American Heart Association recommends consumption of two servings of fish per week for persons with no history of coronary heart disease and at least one serving of fish daily for those with known coronary heart disease. Approximately 1 g/day of eicosapentaenoic acid plus docosahexaenoic acid is recommended for cardio protection. Higher dosages of omega-3 fatty acids are required to reduce elevated triglyceride levels (2-4 g/day). Modest decreases in blood pressure occur with significantly higher dosages of omega-3 fatty acids.

  2. Fatty acid synthesis is inhibited by inefficient utilization of unusual fatty acids for glycerolipid assembly.

    Science.gov (United States)

    Bates, Philip D; Johnson, Sean R; Cao, Xia; Li, Jia; Nam, Jeong-Won; Jaworski, Jan G; Ohlrogge, John B; Browse, John

    2014-01-21

    Degradation of unusual fatty acids through β-oxidation within transgenic plants has long been hypothesized as a major factor limiting the production of industrially useful unusual fatty acids in seed oils. Arabidopsis seeds expressing the castor fatty acid hydroxylase accumulate hydroxylated fatty acids up to 17% of total fatty acids in seed triacylglycerols; however, total seed oil is also reduced up to 50%. Investigations into the cause of the reduced oil phenotype through in vivo [(14)C]acetate and [(3)H]2O metabolic labeling of developing seeds surprisingly revealed that the rate of de novo fatty acid synthesis within the transgenic seeds was approximately half that of control seeds. RNAseq analysis indicated no changes in expression of fatty acid synthesis genes in hydroxylase-expressing plants. However, differential [(14)C]acetate and [(14)C]malonate metabolic labeling of hydroxylase-expressing seeds indicated the in vivo acetyl-CoA carboxylase activity was reduced to approximately half that of control seeds. Therefore, the reduction of oil content in the transgenic seeds is consistent with reduced de novo fatty acid synthesis in the plastid rather than fatty acid degradation. Intriguingly, the coexpression of triacylglycerol synthesis isozymes from castor along with the fatty acid hydroxylase alleviated the reduced acetyl-CoA carboxylase activity, restored the rate of fatty acid synthesis, and the accumulation of seed oil was substantially recovered. Together these results suggest a previously unidentified mechanism that detects inefficient utilization of unusual fatty acids within the endoplasmic reticulum and activates an endogenous pathway for posttranslational reduction of fatty acid synthesis within the plastid.

  3. Indole-3-acetic acid (IAA) induced changes in oil content, fatty acid profiles and expression of four fatty acid biosynthetic genes in Chlorella vulgaris at early stationary growth phase.

    Science.gov (United States)

    Jusoh, Malinna; Loh, Saw Hong; Chuah, Tse Seng; Aziz, Ahmad; Cha, Thye San

    2015-03-01

    Microalgae lipids and oils are potential candidates for renewable biodiesel. Many microalgae species accumulate a substantial amount of lipids and oils under environmental stresses. However, low growth rate under these adverse conditions account for the decrease in overall biomass productivity which directly influence the oil yield. This study was undertaken to investigate the effect of exogenously added auxin (indole-3-acetic acid; IAA) on the oil content, fatty acid compositions, and the expression of fatty acid biosynthetic genes in Chlorella vulgaris (UMT-M1). Auxin has been shown to regulate growth and metabolite production of several microalgae. Results showed that oil accumulation was highest on days after treatment (DAT)-2 with enriched levels of palmitic (C16:0) and stearic (C18:0) acids, while the linoleic (C18:2) and α-linolenic (C18:3n3) acids levels were markedly reduced by IAA. The elevated levels of saturated fatty acids (C16:0 and C18:0) were consistent with high expression of the β-ketoacyl ACP synthase I (KAS I) gene, while low expression of omega-6 fatty acid desaturase (ω-6 FAD) gene was consistent with low production of C18:2. However, the increment of stearoyl-ACP desaturase (SAD) gene expression upon IAA induction did not coincide with oleic acid (C18:1) production. The expression of omega-3 fatty acid desaturase (ω-3 FAD) gene showed a positive correlation with the synthesis of PUFA and C18:3n3.

  4. Omega-3 fatty acid supplementation in horses

    OpenAIRE

    Tanja Hess; Trinette Ross-Jones

    2014-01-01

    Polyunsaturated omega-3 fatty acids (n-3 PUFA) are a family of essential fatty acids with many biological activities. These fatty acids are incorporated into cell membranes, changing their structural and functional characteristics. N-3 PUFA can act by modulating inflammatory responses at different levels. Omega-3 PUFA can be converted in the body to longer-chain n-3 PUFA at a limited rate and are differently converted in body systems. It appears that when specific longer-chain n-3 PUFA are de...

  5. Intra-thallus differentiation of fatty acid and pigment profiles in some temperate Fucales and Laminariales.

    Science.gov (United States)

    Schmid, Matthias; Stengel, Dagmar B

    2015-02-01

    Intra-thallus variation in fatty acid and pigment contents and profiles was investigated in five species of Laminariales (Alaria esculenta, Laminaria digitata, Laminaria hyperborea, Saccharina latissima, and Saccorhiza polyschides), and three Fucales (Ascophyllum nodosum, Fucus serratus, and Himanthalia elongata). Significant variation occurred across all species and compounds examined. Total fatty acids were generally higher in the fronds, with highest levels and largest variability observed in A. nodosum (1.5% of dry weight (DW) in the base, 6.3% of DW in frond tips). Percentages of the omega-3 fatty acids 18:4 n-3 and 20:5 n-3 were generally higher in more distal parts, while 20:4 n-6 exhibited a contrasting pattern, with higher levels in basal structures and holdfasts. Trends for pigments were similar to those for fatty acids in Laminariales. In the Fucales, highest levels were detected in the mid-fronds, with lower concentrations in meristematic areas. Highest levels and greatest variability in pigments (e.g., chl a) was observed in F. serratus (1.07 mg · g(-1) DW in the base, 3.04 mg · g(-1) DW in the mid frond). Intra-thallus variability was attributed to physiological functions of the respective thallus sections, e.g., photosynthetic activity, meristematic tissue, and to variations in physical attributes of the structures investigated. Regarding potential commercial nutritional applications, fronds appeared to represent most suitable source materials, due to higher levels of pigments, polyunsaturated fatty acids, and more preferable omega-3/omega-6 ratios.

  6. Fatty acid composition of milk from cows fed low purity glycerin

    Directory of Open Access Journals (Sweden)

    Murilo de Almeida Meneses

    2015-04-01

    Full Text Available This study aimed to evaluate the effect of inclusion of low purity glycerin in the diet on the fatty acid composition of milk of crossbred cows. We used 15 crossbred Holstein x Zebu cows distributed in three Latin squares 5 x 5, the following treatments: control (no addition of glycerin in the diet; inclusion of 5% glycerin in the diet dry matter; inclusion of 10% glycerol in the diet dry matter; inclusion of 15% glycerol in the diet dry matter, and the inclusion of 20% glycerol in the diet dry matter. The inclusion of glycerin in the diet had no effect (P<0.05 the concentration of butyric acid (C4:0. In contrast, we observed a quadratic effect (P<0.05 on the concentrations of fatty acids caproic C6:0 (= 11.33 the point of maximum, caprylic C8:0 (= 9.50 the point of maximum and capric C10:0 (= 6.66 the point of maximum also short chain fatty acids, following the same trend of milk production. Decreased linearly (P<0.05 concentrations of medium chain fatty acids, fatty acids Lauric C12:0, Myristic C14:0, myristoleic C14:1, pentadecanoic C15:0, Pentadecenoico: C15:1, Palmitic C16:0 and palmitoleic C16:1. Was observed increased linearly (P<0.05 on concentrations of polyunsaturated fatty acids and monounsaturated. In contrast, the concentration of saturated fatty acids decreased linearly (P<0.05. The concentration of fatty acids Omega 6 series showed decreasing linear effect (P<0.05. As for the concentration of Omega 3, there was no effect of adding glycerin. The PUFA SFA-1 ratio showed linear growth (P<0.05 and the ratio n-6 n-3-1 showed a quadratic effect (P<0.05, with of 6.66 the point of maximum. The concentration of conjugated linoleic acid total had increased linearly (P<0.05. It is recommended the inclusion of glycerin in the diet of dairy cows to the level of 20% based on dry matter.

  7. Production of hydroxy fatty acids by microbial fatty acid-hydroxylation enzymes.

    Science.gov (United States)

    Kim, Kyoung-Rok; Oh, Deok-Kun

    2013-12-01

    Hydroxy fatty acids are widely used in chemical, food, and cosmetic industries as starting materials for the synthesis of polymers and as additives for the manufacture of lubricants, emulsifiers, and stabilizers. They have antibiotic, anti-inflammatory, and anticancer activities and therefore can be applied for medicinal uses. Microbial fatty acid-hydroxylation enzymes, including P450, lipoxygenase, hydratase, 12-hydroxylase, and diol synthase, synthesize regio-specific hydroxy fatty acids. In this article, microbial fatty acid-hydroxylation enzymes, with a focus on region-specificity and diversity, are summarized and the production of mono-, di-, and tri-hydroxy fatty acids is introduced. Finally, the production methods of regio-specific and diverse hydroxy fatty acids, such as gene screening, protein engineering, metabolic engineering, and combinatory biosynthesis, are suggested. © 2013.

  8. Fatty Acid Composition of Meat from Ruminants, with Special Emphasis on trans Fatty Acids

    DEFF Research Database (Denmark)

    Leth, Torben; Ovesen, L.; Hansen, K.

    1998-01-01

    The fatty acid composition was determined in 39 samples of beef, 20 samples of veal, and 34 samples of lamb, representative of the supply of ruminant meat in Denmark. Five cuts of beef and veal and three cuts of lamb with increasing fat content were selected, and analysis of the fatty acid methyl...... esters was performed by gas-liquid chromatography (GLC) on a polar 50-m capillary column CP Sil 88 with flame-ionization detection. Lamb had the highest content of saturated fatty acids (52.8 +/- 1.8 g/100 g fatty acids), higher than beef and veal (45.3 +/- 3.1 and 45.4 +/- 0.8 g/100 g fatty acids...... of trans fatty acids from ruminant meat is estimated at 0.2 g/d....

  9. Antisense technologies targeting fatty acid synthetic enzymes.

    Science.gov (United States)

    Lin, Jinshun; Liu, Feng; Jiang, Yuyang

    2012-05-01

    Fatty acid synthesis is a coordinated process involving multiple enzymes. Overexpression of some of these enzymes plays important roles in tumor growth and development. Therefore, these enzymes are attractive targets for cancer therapies. Antisense agents provide highly specific inhibition of the expression of target genes and thus have served as powerful tools for gene functional studies and potential therapeutic agents for cancers. This article reviews different types of antisense agents and their applications in the modulation of fatty acid synthesis. Patents of antisense agents targeting fatty acid synthetic enzymes are introduced. In addition, miR-122 has been shown to regulate the expression of fatty acid synthetic enzymes, and thus antisense agent patents that inhibit miR-122 expression are also discussed.

  10. Introduction to fatty acids and lipids.

    Science.gov (United States)

    Burdge, Graham C; Calder, Philip C

    2015-01-01

    The purpose of this article is to describe the structure, function and metabolism of fatty acids and lipids that are of particular importance in the context of parenteral nutrition. Lipids are a heterogeneous group of molecules that share the common property of hydrophobicity. Lipids range in structure from simple short hydrocarbon chains to more complex molecules, including triacylglycerols, phospholipids and sterols and their esters. Lipids within each class may differ structurally. Fatty acids are common components of complex lipids, and these differ according to chain length and the presence, number and position of double bonds in the hydrocarbon chain. Structural variation among complex lipids and among fatty acids gives rise to functional differences that result in different impacts upon metabolism and upon cell and tissue responses. Fatty acids and complex lipids exhibit a variety of structural variations that influence their metabolism and their functional effects.

  11. Fatty Acid Composition of Meat from Ruminants, with Special Emphasis on trans Fatty Acids

    DEFF Research Database (Denmark)

    Leth, Torben; Ovesen, L.; Hansen, K.

    1998-01-01

    esters was performed by gas-liquid chromatography (GLC) on a polar 50-m capillary column CP Sil 88 with flame-ionization detection. Lamb had the highest content of saturated fatty acids (52.8 +/- 1.8 g/100 g fatty acids), higher than beef and veal (45.3 +/- 3.1 and 45.4 +/- 0.8 g/100 g fatty acids...

  12. Dietary omega-3 fatty acids for women.

    Science.gov (United States)

    Bourre, Jean-Marie

    2007-01-01

    This review details the specific needs of women for omega-3 fatty acids, including alpha linoleic acid (ALA) and the very long chain fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Omega-3 fatty acid (dietary or in capsules) ensures that a woman's adipose tissue contains a reserve of these fatty acids for the developing fetus and the breast-fed newborn infant. This ensures the optimal cerebral and cognitive development of the infant. The presence of large quantities of EPA and DHA in the diet slightly lengthens pregnancy, and improves its quality. Human milk contains both ALA and DHA, unlike that of other mammals. Conditions such as diabetes can alter the fatty acid profile of mother's milk, while certain diets, like those of vegetarians, vegans, or even macrobiotic diets, can have the same effect, if they do not include seafood. ALA, DHA and EPA, are important for preventing ischemic cardiovascular disease in women of all ages. Omega-3 fatty acids can help to prevent the development of certain cancers, particularly those of the breast and colon, and possibly of the uterus and the skin, and are likely to reduce the risk of postpartum depression, manic-depressive psychosis, dementias (Alzheimer's disease and others), hypertension, toxemia, diabetes and, to a certain extend, age-related macular degeneration. Omega-3 fatty acids could play a positive role in the prevention of menstrual syndrome and postmenopausal hot flushes. The normal western diet contains little ALA (less than 50% of the RDA). The only adequate sources are rapeseed oil (canola), walnuts and so-called "omega-3" eggs (similar to wild-type or Cretan eggs). The amounts of EPA and DHA in the diet vary greatly from person to person. The only good sources are fish and seafood, together with "omega-3" eggs.

  13. [Elimination of all trans fatty acids].

    Science.gov (United States)

    Katan, M B

    2008-02-09

    At the start of the 20th century, the production of trans fatty acids was originally largely driven by the increasing demand for margarine. The two Dutch margarine firms Van den Bergh and Jurgens played an important role in this early development. In the early 1990s it was shown that trans fatty acids increase the risk of heart disease. Unilever, the successor to Van den Bergh and Jurgens, then took the lead in eliminating trans fatty acids from retail foods worldwide. As a result, intake in The Netherlands fell from 15 g per day in 1980 to 3 g per day in 2003. Dairy products and meat are now the major source of trans fatty acids. The effects on health of these ruminant trans fatty acids are unclear. There are three lessons to be learned from the rise and fall of trans fatty acids. First, a history of safe use does not guarantee safety of food components, because routine surveillance will fail to detect adverse effects on common illnesses with long incubation periods. Second, it shows that it is more effective and easier to change the composition of foods than to change consumer behaviour. And third, governments can have a major impact on consumers' health by mandating the use of healthier food ingredients.

  14. Fatty acid oxidation and ketogenesis in astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Auestad, N.

    1988-01-01

    Astrocytes were derived from cortex of two-day-old rat brain and grown in primary culture to confluence. The metabolism of the fatty acids, octanoate and palmitate, to CO{sub 2} in oxidative respiration and to the formation of ketone bodies was examined by radiolabeled tracer methodology. The net production of acetoacetate was also determined by measurement of its mass. The enzymes in the ketogenic pathway were examined by measuring enzymic activity and/or by immunoblot analyses. Labeled CO{sub 2} and labeled ketone bodies were produced from the oxidation of fatty acids labeled at carboxy- and {omega}-terminal carbons, indicating that fatty acids were oxidized by {beta}-oxidation. The results from the radiolabeled tracer studies also indicated that a substantial proportion of the {omega}-terminal 4-carbon unit of the fatty acids bypassed the {beta}-ketothiolase step of the {beta}-oxidation pathway. The ({sup 14}C)acetoacetate formed from the (1-{sup 14}C)labeled fatty acids, obligated to pass through the acetyl-CoA pool, contained 50% of the label at carbon 3 and 50% at carbon 1. In contrast, the ({sup 14}C)acetoacetate formed from the ({omega}-1)labeled fatty acids contained 90% of the label at carbon 3 and 10% at carbon 1.

  15. Trans fatty acids and cardiovascular risk.

    Science.gov (United States)

    Wilson, T A; McIntyre, M; Nicolosi, R J

    2001-01-01

    Trans fatty acids are found in partially hydrogenated vegetable oil, in meats, and in dairy products. Their effect on blood cholesterol concentrations was examined decades ago, but recently there has been renewed interest in understanding how trans fatty acids affect blood lipids and lipoprotein cholesterol concentrations. Current advice to reduce cardiovascular disease (CVD) risk includes decreasing the consumption of saturated and total fat to help manage blood cholesterol concentrations. Saturated fat contributes significantly to total fat intake and markedly raises blood cholesterol concentrations. Trans fatty acids, which are consumed in much smaller quantities, have been shown to be modestly hypercholesterolemic in studies that have substituted hydrogenated vegetable oils for unhydrogenated oils. In contrast, when partially hydrogenated vegetable oils containing trans fatty acids are substituted for cholesterol-raising saturated fats, blood cholesterol levels are reduced. Partially hydrogenated vegetable oils are used in place of saturated fat in many food products. These foods can help consumers lower their saturated fat intake to achieve dietary recommendations. The following review critically examines the role of hydrogenated fats in the food supply, the metabolism of trans fatty acids, and the scientific literature surrounding the effects of partially hydrogenated vegetable oils and trans fatty acids on blood cholesterol concentrations and cardiovascular disease risk.

  16. The interaction between ApoA2 -265T>C polymorphism and dietary fatty acids intake on oxidative stress in patients with type 2 diabetes mellitus.

    Science.gov (United States)

    Zamani, Elham; Sadrzadeh-Yeganeh, Haleh; Sotoudeh, Gity; Keramat, Laleh; Eshraghian, Mohammadreza; Rafiee, Masoumeh; Koohdani, Fariba

    2017-08-01

    Apolipoprotein A2 (APOA2) -265T>C polymorphism has been studied in relation to oxidative stress and various dietary fatty acids. Since the interaction between APOA2 polymorphism and dietary fatty acids on oxidative stress has not yet discussed, we aimed to investigate the interaction on oxidative stress in type 2 diabetes mellitus (T2DM) patients. The subjects were 180 T2DM patients with known APOA2 genotype, either TT, TC or CC. Superoxide dismutase (SOD) activity was determined by colorimetric method. Total antioxidant capacity (TAC) and serum level of 8-isoprostane F2α were measured by spectrophotometry and ELISA, respectively. Dietary intake was collected through a food frequency questionnaire. Based on the median intake, fatty acids intake was dichotomized into high or low groups. The interaction between APOA2 polymorphism and dietary fatty acids intake was analyzed by ANCOVA multivariate interaction model. Higher than median intake of omega-6 polyunsaturated fatty acids (n-6 PUFA) was associated with increased serum level of 8-isoprostane F2α in subjects with TT/TC genotype (p = 0.004), and higher than median intake of omega-3 polyunsaturated fatty acids (n-3 PUFA) was associated with increased serum SOD activity in CC genotype (p fatty acids intake on oxidative stress. More investigations on different populations are required to confirm the interaction.

  17. Analysis of Fatty Acid Content and Composition in Microalgae

    NARCIS (Netherlands)

    Breuer, G.; Evers, W.A.C.; Vree, de J.H.; Kleinegris, D.M.M.; Martens, D.E.; Wijffels, R.H.; Lamers, P.P.

    2013-01-01

    A method to determine the content and composition of total fatty acids present in microalgae is described. Fatty acids are a major constituent of microalgal biomass. These fatty acids can be present in different acyl-lipid classes. Especially the fatty acids present in triacylglycerol (TAG) are of c

  18. The effect of linoleic acid on the whole body synthesis rates of polyunsaturated fatty acids from α-linolenic acid and linoleic acid in free-living rats.

    Science.gov (United States)

    Domenichiello, Anthony F; Kitson, Alex P; Chen, Chuck T; Trépanier, Marc-Olivier; Stavro, P Mark; Bazinet, Richard P

    2016-04-01

    Docosahexaenoic acid (DHA) is thought to be important for brain function. The main dietary source of DHA is fish, however, DHA can also be synthesized from precursor omega-3 polyunsaturated fatty acids (n-3 PUFA), the most abundantly consumed being α-linolenic acid (ALA). The enzymes required to synthesize DHA from ALA are also used to synthesize longer chain omega-6 (n-6) PUFA from linoleic acid (LNA). The large increase in LNA consumption that has occurred over the last century has led to concern that LNA and other n-6 PUFA outcompete n-3 PUFA for enzymes involved in DHA synthesis, and therefore, decrease overall DHA synthesis. To assess this, rats were fed diets containing LNA at 53 (high LNA diet), 11 (medium LNA diet) or 1.5% (low LNA diet) of the fatty acids with ALA being constant across all diets (approximately 4% of the fatty acids). Rats were maintained on these diets from weaning for 8 weeks, at which point they were subjected to a steady-state infusion of labeled ALA and LNA to measure DHA and arachidonic acid (ARA) synthesis rates. DHA and ARA synthesis rates were generally highest in rats fed the medium and high LNA diets, while the plasma half-life of DHA was longer in rats fed the low LNA diet. Therefore, increasing dietary LNA, in rats, did not impair DHA synthesis; however, low dietary LNA led to a decrease in DHA synthesis with tissue concentrations of DHA possibly being maintained by a longer DHA half-life.

  19. Corn oil versus lard: Metabolic effects of omega-3 fatty acids in mice fed obesogenic diets with different fatty acid composition.

    Science.gov (United States)

    Pavlisova, Jana; Bardova, Kristina; Stankova, Barbora; Tvrzicka, Eva; Kopecky, Jan; Rossmeisl, Martin

    2016-05-01

    Mixed results have been obtained regarding the level of insulin resistance induced by high-fat diets rich in saturated fatty acids (SFA) when compared to those enriched by polyunsaturated fatty acids (PUFA), and how metabolic effects of marine PUFA of n-3 series, i.e. docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), depend on dietary lipid background. Here we compared two high-fat diets, in which the major lipid constituent was based either on SFA in the form of pork lard (LHF diet) or PUFA of n-6 series (Omega-6) as corn oil (cHF diet). Both cHF and LHF parental diets were also supplemented with EPA+DHA (∼30 g/kg diet) to produce cHF+F and LHF+F diet, respectively. Male C57BL/6N mice were fed the experimental diets for 8 weeks. Insulin sensitivity was assessed by hyperinsulinemic-euglycemic clamps in mice fed LHF and cHF diets, and then metabolic effects of cHF+F and LHF+F diets were assessed focusing on the liver and epididymal white adipose tissue (eWAT). Both LHF and cHF induced comparable weight gain and the level of insulin resistance, however LHF-fed mice showed increased hepatic steatosis associated with elevated activity of stearoyl-CoA desaturase-1 (SCD1), and lower plasma triacylglycerol levels when compared to cHF. Despite lowering hepatic SCD1 activity, which was concomitant with reduced hepatic steatosis reaching the level observed in cHF+F mice, LHF+F did not decrease adiposity and the weight of eWAT, and rather further impaired insulin sensitivity relative to cHF+F, that tended to improve it. In conclusion, high-fat diets containing as much as ∼35 weight% as lipids induce similar weight gain and impairment of insulin sensitivity irrespective whether they are based on SFA or Omega-6. Although the SFA-rich diet containing EPA+DHA efficiently reduced hepatic steatosis, it did so without a corresponding improvement in insulin sensitivity and in the absence of effect on adiposity.

  20. Omega 3 fatty acids and the eye.

    Science.gov (United States)

    Cakiner-Egilmez, Tulay

    2008-01-01

    The health benefits of fish oil have been known for decades. Most of the health benefits of fish oil can be attributed to the presence of omega-3 essential fatty acids such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Clinical studies have suggested that DHA and EPA lower triglycerides; slow the buildup of atherosclerotic plaques; lower blood pressure slightly; as well as reduce the risk of death, heart attack, and arrhythmias. Studies have also shown that omega-3 fatty acids may slow the progression of vision loss from AMD and reverse the signs of dry eye syndrome.

  1. Expression of fatty acid synthase in nonalcoholic fatty liver disease.

    Science.gov (United States)

    Dorn, Christoph; Riener, Marc-Oliver; Kirovski, Georgi; Saugspier, Michael; Steib, Kathrin; Weiss, Thomas S; Gäbele, Erwin; Kristiansen, Glen; Hartmann, Arndt; Hellerbrand, Claus

    2010-03-25

    Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic lipid accumulation which starts with simple hepatic steatosis and may progress toward inflammation (nonalcoholic steatohepatitis [NASH]). Fatty acid synthase (FASN) catalyzes the last step in fatty acid biosynthesis, and thus, it is believed to be a major determinant of the maximal hepatic capacity to generate fatty acids by de novo lipogenesis. The aim of this study was to analyze the correlation between hepatic steatosis and inflammation with FASN expression. In vitro incubation of primary human hepatocytes with fatty acids dose-dependently induced cellular lipid-accumulation and FASN expression, while stimulation with TNF did not affect FASN levels. Further, hepatic FASN expression was significantly increased in vivo in a murine model of hepatic steatosis without significant inflammation but not in a murine NASH model as compared to control mice. Also, FASN expression was not increased in mice subjected to bile duct ligation, an experimental model characterized by severe hepatocellular damage and inflammation. Furthermore, FASN expression was analyzed in 102 human control or NAFLD livers applying tissue micro array technology and immunohistochemistry, and correlated significantly with the degree of hepatic steatosis, but not with inflammation or ballooning of hepatocytes. Quantification of FASN mRNA expression in human liver samples confirmed significantly higher FASN levels in hepatic steatosis but not in NASH, and expression of SREBP1, which is the main transcriptional regulator of FASN, paralleled FASN expression levels in human and experimental NAFLD. In conclusion, the transcriptional induction of FASN expression in hepatic steatosis is impaired in NASH, while hepatic inflammation in the absence of steatosis does not affect FASN expression, suggesting that FASN may serve as a new diagnostic marker or therapeutic target for the progression of NAFLD.

  2. [Omega-3 fatty acids in psychiatry].

    Science.gov (United States)

    Bourre, Jean-Marie

    2005-02-01

    The brain is one of the organs with the highest level of lipids (fats). Brain lipids, formed of fatty acids, participate in the structure of membranes, for instance 50 % fatty acids are polyunsaturated in the gray matter, 1/3 are of the omega-3 family, and are thus of dietary origin. The omega-3 fatty acids (mainly alpha-linolenic acid, ALA) participated in one of the first experimental demonstration of the effect of dietary substances (nutrients) on the structure and function of the brain. Experiments were first of all carried out on ex vivo cultured brain cells, then on in vivo brain cells (neurons, astrocytes and oligodendrocytes) from animals fed ALA deficient diet, finally on physicochemical (membrane fluidity), biochemical, physiological, neurosensory (vision an auditory responses), and behavioural or learning parameters. These findings indicated that the nature of polyunsaturated fatty acids (in particular omega-3) present in formula milks for human infants determines to a certain extend the visual, neurological, and intellectual abilities. Thus, in view of these results and of the high polyunsaturated fatty acid content of the brain, it is normal to consider that they could be involved in psychiatric diseases and in the cognitive decline of ageing. Omega-3 fatty acids appear effective in the prevention of stress, however their role as regulator of mood is a matter for discussion. Indeed, they play a role in the prevention of some disorders including depression (especially post partum), as well as in dementia, particularly Alzheimer's disease. Their role in major depression and bipolar disorder (manic-depressive disease), only poorly documented, is not clearly demonstrated. The intervention of omega-3 in dyslexia, autism, and schizophrenia has been suggested, but it does not necessarily infer a nutritional problems. The respective importance of the vascular system (where the omega-3 are actually active) and the cerebral parenchyma itself, remain to be

  3. Production of unusual fatty acids in rapeseed

    Directory of Open Access Journals (Sweden)

    Roscoe Thomas

    2002-01-01

    Full Text Available Vegetable-derived oils are of interest for industrial applications partly because of the chemical similarity of plant oils to mineral oils but also because of the economic need to reduce overproduction of seed oils for nutritional use. Complex oils can be produced in seeds as a low cost agricultural product based on renewable solar energy that requires less refining and is biodegradable and thus produces less adverse effects on the environment. In addition, biotechnologies have accelerated selection programmes and increased the genetic diversity available for the development of new varieties of oilseeds with specific fatty acid compositions. In the developing oilseed, energy and carbon are stored as lipid under the form of triacylglycerol, that is, a glycerol molecule to which three fatty acids are esterified. Fatty acids comprise a linear chain of carbon atoms, the first of which carries an organic acid group. The chain length and the presence of double bonds determine the properties of the fatty acid which in turn determine the physical and chemical properties of the oil of storage lipids and hence their economic value. In addition to the common C16- and C18-saturated and unsaturated fatty acids of membrane lipids, the seed storage lipids of many plant species contain unusual fatty acids (UFAs which can vary in chain length, in the degree of unsaturation, possess double bonds in unusual positions, or can contain additional functional groups such as hydroxy, epoxy, cyclic and acetylenic groups [1]. These unusual fatty acids are of value as industrial feedstocks and their uses include the production of fuels and lubricants, soap and detergents, paints and varnishes, adhesives and plastics (Figure 1.

  4. Digestion and absorption of fatty acids in the ruminant

    OpenAIRE

    Cuvelier, Christine; Cabaraux, Jean-François; Dufrasne, Isabelle; Istasse, Louis; Hornick, Jean-Luc

    2005-01-01

    From a biochemical point of view, in ruminants, there are two major groups of fatty acids. They are firstly the volatile fatty acids from the rumen metabolism of dietary carbohydrates, and secondly the fatty acids from the rumen metabolism of lipids. This second group is made of the fatty acids synthesized by the microorganisms of the rumen and the fatty acids originating from the hydrolysis of dietary triacylglycerols, which are mostly hydrogenated by microorganisms in the rumen before intes...

  5. Supplementation of polyunsaturated fatty acids, magnesium and zinc in children seeking medical advice for attention-deficit/hyperactivity problems - an observational cohort study

    Directory of Open Access Journals (Sweden)

    Völp Andreas

    2010-09-01

    Full Text Available Abstract Background Polyunsaturated fatty acids are essential nutrients for humans. They are structural and functional components of cell membranes and pre-stages of the hormonally and immunologically active eicosanoids. Recent discoveries have shown that the long-chained omega-3 fatty acids eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA also play an important role in the central nervous system. They are essential for normal brain functioning including attention and other neuropsychological skills. Materials and methods In our large observational study we monitored 810 children from 5 to 12 years of age referred for medical help and recommended for consuming polyunsaturated fatty acids (PUFA in combination with zinc and magnesium by a physician over a period of at least 3 months. The food supplement ESPRICO® (further on referred to as the food supplement is developed on the basis of current nutritional science and containing a combination of omega-3 and omega-6 fatty acids as well as magnesium and zinc. Study objective was to evaluate the nutritional effects of the PUFA-zinc-magnesium combination on symptoms of attention deficit, impulsivity, and hyperactivity as well as on emotional problems and sleep related parameters. Assessment was performed by internationally standardised evaluation scales, i.e. SNAP-IV and SDQ. Tolerance (adverse events and acceptance (compliance of the dietary therapy were documented. Results After 12 weeks of consumption of a combination of omega-3 and omega-6 fatty acids as well as magnesium and zinc most subjects showed a considerable reduction in symptoms of attention deficit and hyperactivity/impulsivity assessed by SNAP-IV. Further, the assessment by SDQ revealed fewer emotional problems at the end of the study period compared to baseline and also sleeping disorders. Mainly problems to fall asleep, decreased during the 12 week nutritional therapy. Regarding safety, no serious adverse events occurred. A

  6. Amino and fatty acids in carbonaceous meteorites

    Science.gov (United States)

    Kvenvolden, K. A.

    1974-01-01

    Analyses of two carbonaceous meteorites have provided much of the latest evidence which seems to support Oparin's theory on the origin of life. The meteorites involved are the Murray meteorite, which fell in 1950, and the Murchison meteorite, which fell in 1969. The amino acids in the two meteorites are similar in composition. Eight of the twenty amino acids found belong to amino acids present in proteins. A number of monocarboxylic and dicarboxylic fatty acids were also found in the meteorites.

  7. Proportions of rumen volatile fatty acids in relation to milk fatty acid profiles

    NARCIS (Netherlands)

    Vlaeminck, B.; Fievez, V.; Dhanoa, M.S.; Vuuren, van A.M.; Dewhurst, R.J.

    2003-01-01

    Three experiments were conducted in order to develop and validate principal component (PC) regressions for predicting rumen volatile fatty acid (VFA) proportions, based on a combination of milk odd and branched chain fatty acids (MOBCFA). Grass- or legume silage and concentrate-based diets were fed

  8. High ratio of omega 6/omega 3 ratio children with neuropathies; cause or effect

    National Research Council Canada - National Science Library

    Cortés, E; Hidalgo, M J; Rizo-Baeza, M M; Aguilar, M J; Gil, V

    2013-01-01

    .... This paper studies the proportion of these fatty acids. We analyzed the fatty acids of n- 3 and n-6 in sera and membrane phospholipid with 374 children neuropathies and 34 healthy children, using gas chromatography with mass detector...

  9. Fatty Acid and Cholesterol Concentrations in Usually Consumed Fish in Brazil

    Directory of Open Access Journals (Sweden)

    Carlos Scherr

    2015-02-01

    Full Text Available Background: Several studies have demonstrated clinical benefits of fish consumption for the cardiovascular system. These effects are attributed to the increased amounts of polyunsaturated fatty acids in these foods. However, the concentrations of fatty acids may vary according to region. Objective: The goal of this study was to determine the amount of,cholesterol and fatty acids in 10 Brazilian fishes and in a non-native farmed salmon usually consumed in Brazil. Methods: The concentrations of cholesterol and fatty acids, especially omega-3, were determined in grilled fishes. Each fish sample was divided in 3 sub-samples (chops and each one was extracted from the fish to minimize possible differences in muscle and fat contents. Results: The largest cholesterol amount was found in white grouper (107.6 mg/100 g of fish and the smallest in badejo (70 mg/100 g. Omega-3 amount varied from 0.01 g/100 g in badejo to 0.900 g/100 g in weakfish. Saturated fat varied from 0.687 g/100 g in seabass to 4.530 g/100 g in filhote. The salmon had the greatest concentration of polyunsaturated fats (3.29 g/100 g and the highest content of monounsaturated was found in pescadinha (5.98 g/100 g. Whiting and boyfriend had the best omega-6/omega 3 ratios respectively 2.22 and 1.19, however these species showed very little amounts of omega-3. Conclusion: All studied Brazilian fishes and imported salmon have low amounts of saturated fat and most of them also have low amounts of omega-3.

  10. The relation of red blood cell fatty acids with vascular stiffness, cardiac structure and left ventricular function: the Framingham Heart Study.

    Science.gov (United States)

    Kaess, Bernhard M; Harris, William S; Lacey, Sean; Larson, Martin G; Hamburg, Naomi M; Vita, Joseph A; Robins, Sander J; Benjamin, Emelia J; Mitchell, Gary F; Vasan, Ramachandran S

    2015-02-01

    Polyunsaturated fatty acids have been associated with beneficial influences on cardiovascular health. However, the underlying mechanisms are not clear, and data on the relations of polyunsaturated fatty acids to subclinical disease measures such as vascular stiffness and cardiac function are sparse and inconclusive. In a large community-based cohort, we examined the relations of omega-3 and other fatty acids to a comprehensive panel of vascular function measures (assessing microvascular function and large artery stiffness), cardiac structure and left ventricular function. Red blood cell (RBC) membrane fatty acid composition, a measure of long-term fatty acid intake, was assessed in participants of the Framingham Offspring Study and Omni cohorts and related to tonometry-derived measures of vascular stiffness and to a panel of echocardiographic traits using partial correlations. Up to n=3055 individuals (56% women, mean age 66 years) were available for analyses. In age- and sex-adjusted models, higher RBC omega-3 content was moderately associated (p≤0.002) with several measures of vascular stiffness and function in a protective direction. However, after multivariable adjustment, only an association of higher RBC omega-3 content with lower carotid-femoral pulse wave velocity (a measure of aortic stiffness) remained significant (r = -0.06, p=0.002). In secondary analyses, higher linoleic acid, the major nutritional omega-6 fatty acid, was associated with smaller left atrial size, even after multivariable adjustment (r = -0.064, pacid. The clinical significance of these modest associations remains to be elucidated.

  11. Molar extinction coefficients of some fatty acids

    Science.gov (United States)

    Sandhu, G. K.; Singh, Kulwant; Lark, B. S.; Gerward, L.

    2002-10-01

    The attenuation of gamma rays in some fatty acids, viz. formic acid (CH 2O 2), acetic acid (C 2H 4O 2), propionic acid (C 3H 6O 2), butyric acid (C 4H 8O 2), n-hexanoic acid (C 6H 12O 2), n-caprylic acid (C 8H 16O 2), lauric acid (C 12H 24O 2), myristic acid (C 14H 28O 2), palmitic acid (C 16H 32O 2), oleic acid (C 18H 34O 2) and stearic acid (C 18H 36O 2), has been measured at the photon energies 81, 356, 511, 662, 1173 and 1332 keV. Experimental values for the molar extinction coefficient, the effective atomic number and the electron density have been derived and compared with theoretical calculations. There is good agreement between experiment and theory.

  12. Production of hydroxylated fatty acids in genetically modified plants

    Energy Technology Data Exchange (ETDEWEB)

    Somerville, Chris (Portola Valley, CA); Broun, Pierre (Burlingame, CA); van de Loo, Frank (Weston, AU); Boddupalli, Sekhar S. (Manchester, MI)

    2011-08-23

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  13. ​ENRICHING THE CHILD’S DIET WITH POLYENOIC ACIDS AND PREBIOTICS IS THE PATH TO HEALTHY EATING

    Directory of Open Access Journals (Sweden)

    T.E. Borovik

    2010-01-01

    Full Text Available The article provides information on healthy eating and discusses the issues in reducing the consumption by the population of essential and functional food components, insufficient adaption of humans to aggressive environmental factors and the need to enrich the diet with micronutrients, omega-3 and omega-6 polyunsaturated fatty acids, and prebiotics that have a control impact on the body. The article contains information on the biological role of polyunsaturated fatty acids and prebiotics, their ability to enrich children’s diets. Key words: healthy eating, child, micronutrients, omega-3 and omega-6 polyunsaturated fatty acids, prebiotics, diet enrichment. (Pediatric Pharmacology. – 2010; 7(6:86-92

  14. Therapeutic Benefits Of ?-3 Fatty Acids from Fish

    OpenAIRE

    Samanta S Khora

    2013-01-01

    Fatty acids play important roles in human nutrition and disease management. Fish are rich in Omega-3 Long Chain Polyunsaturated Fatty Acids (LC- PUFAs). Marine fish are the best source of these fatty acids. They typically include eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The major health maintenance and prevention of diseases recognized in EPA and DHA. These forms of fatty acids have excellent body usability com...

  15. Unusual fatty acid substitution in lipids and lipopolysaccharides of Helicobacter pylori.

    OpenAIRE

    Geis, G; Leying, H; Suerbaum, S; Opferkuch, W

    1990-01-01

    Cellular fatty acids, phospholipid fatty acids, and lipopolysaccharide fatty acids of four strains of Helicobacter pylori were analyzed by gas-liquid chromatography. The presence of myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, 19-carbon cyclopropane fatty acid, beta-hydroxypalmitic acid, and beta-hydroxystearic acid was confirmed. In phospholipids, myristic acid and 19-carbon cyclopropane fatty acid were the major fatty acids. Hydroxy fatty acids and unsaturated fatt...

  16. Probing fatty acid metabolism in bacteria, cyanobacteria, green microalgae and diatoms with natural and unnatural fatty acids.

    Science.gov (United States)

    Beld, Joris; Abbriano, Raffaela; Finzel, Kara; Hildebrand, Mark; Burkart, Michael D

    2016-04-01

    In both eukaryotes and prokaryotes, fatty acid synthases are responsible for the biosynthesis of fatty acids in an iterative process, extending the fatty acid by two carbon units every cycle. Thus, odd numbered fatty acids are rarely found in nature. We tested whether representatives of diverse microbial phyla have the ability to incorporate odd-chain fatty acids as substrates for their fatty acid synthases and their downstream enzymes. We fed various odd and short chain fatty acids to the bacterium Escherichia coli, cyanobacterium Synechocystis sp. PCC 6803, green microalga Chlamydomonas reinhardtii and diatom Thalassiosira pseudonana. Major differences were observed, specifically in the ability among species to incorporate and elongate short chain fatty acids. We demonstrate that E. coli, C. reinhardtii, and T. pseudonana can produce longer fatty acid products from short chain precursors (C3 and C5), while Synechocystis sp. PCC 6803 lacks this ability. However, Synechocystis can incorporate and elongate longer chain fatty acids due to acyl-acyl carrier protein synthetase (AasS) activity, and knockout of this protein eliminates the ability to incorporate these fatty acids. In addition, expression of a characterized AasS from Vibrio harveyii confers a similar capability to E. coli. The ability to desaturate exogenously added fatty acids was only observed in Synechocystis and C. reinhardtii. We further probed fatty acid metabolism of these organisms by feeding desaturase inhibitors to test the specificity of long-chain fatty acid desaturases. In particular, supplementation with thia fatty acids can alter fatty acid profiles based on the location of the sulfur in the chain. We show that coupling sensitive gas chromatography mass spectrometry to supplementation of unnatural fatty acids can reveal major differences between fatty acid metabolism in various organisms. Often unnatural fatty acids have antibacterial or even therapeutic properties. Feeding of short

  17. Kinetics of chronic inflammation in Nile tilapia fed n‑3 and n‑6 essential fatty acids

    Directory of Open Access Journals (Sweden)

    Róberson Sakabe

    2013-03-01

    Full Text Available The objective of this work was to investigate the effect of dietary supplementation with essential fatty acids on the kinetics of macrophage accumulation and giant cell formation in Nile tilapia (Oreochromis niloticus. The supplementation sources were soybean oil (SO, source of omega 6, n‑6 and linseed oil (LO, source of omega 3, n‑3, in the following proportions: 100% SO; 75% SO + 25% LO; 50% SO + 50% LO; 25% SO + 75% LO; and 100% LO (four replicates per treatment. After a feeding period of three months, growth performance was evaluated, and glass coverslips were implanted into the subcutaneous connective tissue of fish, being removed for examination at 2, 4, 6, and 8 days after implantation. Growth performance did not differ between treatments. Fish fed 100% linseed oil diet had the greatest macrophage accumulation and the fastest Langhans cell formation on the sixth day. On the eighth day, Langhans cells were predominant on the coverslips implanted in the fish feed 75 and 100% linseed oil. n‑3 fatty acids may contribute to macrophage recruitment and giant cell formation in fish chronic inflammatory response to foreign body.

  18. The role of dietary fatty acids in children's behaviour and learning.

    Science.gov (United States)

    Portwood, M M

    2006-01-01

    A growing awareness and understanding of the profiles of local children in County Durham, UK, experiencing learning and behavioural difficulties throughout the education system, has resulted in a number of school based nutritional intervention studies being undertaken. Evidence suggests that some children and young adults with developmental difficulties have a deficiency of particular omega 3 and omega 6 polyunsaturated fatty acids and supplementation with these nutrients can have an impact on their behaviour, concentration and performance on standardised assessments. The first randomised placebo controlled trial to be carried out on children in Durham with developmental coordination disorder has demonstrated significant effects of fatty acid supplementation on behaviour, reading and spelling performance. We are conducting further scientific studies within Durham and neighbouring Authorities in the North of England to be published at a future time. We have also carried out a number of open label treatment studies within schools to help us understand better the role that nutritional intervention can play across a broader range of age groups and abilities. The results suggest positive outcomes for a substantial proportion of children who are more able to engage with the educational opportunities presented to them. This is an important finding to be shared with educationalists, health professionals and importantly the parents.

  19. MILK PRODUCTION AND MODIFICATION OF MILK FATTY ACID OF DAIRY COWS FED PUFA-CONCENTRATE

    Directory of Open Access Journals (Sweden)

    E. Sulistyowati

    2014-10-01

    Full Text Available Some fatty acid supplements in concentrate containing Curcuma xanthorrhiza, ROXB wereevaluated for effects on milk yield, milk fat and protein, including milk fatty acid. Four lactating (4 ± 1.5months Fries Holland (FH cows were allocated into four treatments of concentrate containing 4.5%palm oil (CP0, 4.5% corn oil (CP1, 4.5% roasted ground corn (CP2, and 1.5% corn oil and 3% roastedground corn (CP3, respectively, in 4 x 4 Latin Square experimental design with 3 d-period. Resultsshowed that there were no significant (P>0.05 effects on milk yield, milk fat and protein, and milk fattyacid. However, the highest average of milk production was found in CP2 (8.63 kg/d. Milk fat wasdecreasing to 3.81% in conjunction with the more potential total PUFA (71.81% in CP3 with corn oiland roasted ground corn. Ratio of omega-6 to omega-3 in milk was the same in both, CP2 and CP3, itwas 2.14. However , since the objective of this research was to improve milk yield as well as milkcomponents and health concern, therefore the CP2 with roasted ground corn was considered as theoptimal one.

  20. Breaking the cycle: the role of omega-3 polyunsaturated fatty acids in inflammation-driven cancers.

    Science.gov (United States)

    Patterson, William L; Georgel, Philippe T

    2014-10-01

    Chronic inflammation is a cyclical, self-stimulating process. Immune cells called to sites of inflammation release pro-inflammatory signaling molecules that stimulate activation of inducible enzymes and transcription factors. These enzymes and transcription factors then stimulate production of signaling molecules that attract more immune cells and induce more enzymatic and transcriptional activity, creating a perpetual loop of inflammation. This self-renewing pool of inflammatory stimuli makes for an ideal tumor microenvironment, and chronic inflammation has been linked to oncogenesis, tumor growth, tumor cell survival, and metastasis. Three protein pathways in particular, nuclear factor kappa B (NF-kB), cyclooxygenase (COX), and lipoxygenase (LOX), provide excellent examples of the cyclical, self-renewing nature of chronic inflammation-driven cancers. NF-kB is an inducible transcription factor responsible for the expression of a vast number of inflammation and cancer related genes. COX and LOX convert omega-6 (n-6) and omga-3 (n-3) polyunsaturated fatty acids (PUFA) into pro- and anti-inflammatory signaling molecules. These signaling molecules stimulate or repress activity of all three of these pathways. In this review, we will discuss the pro- and anti-inflammatory functions of these fatty acids and their role in chronic inflammation and cancer progression.

  1. Prevalent mutations in fatty acid oxidation disorders

    DEFF Research Database (Denmark)

    Gregersen, N; Andresen, B S; Bross, P

    2000-01-01

    UNLABELLED: The mutational spectrum in a given disease-associated gene is often comprised of a large number of different mutations, of which a single or a few are present in a large proportion of diseased individuals. Such prevalent mutations are known in four genes of the fatty acid oxidation: t...... of the disease in question and determination of the carrier frequency in the general population may help in elucidating the penetrance of the genotype. This is exemplified in disorders of mitochondrial fatty acid oxidation....

  2. Fatty acids, eicosanoids and PPAR gamma.

    Science.gov (United States)

    Marion-Letellier, Rachel; Savoye, Guillaume; Ghosh, Subrata

    2016-08-15

    Peroxisome proliferator-activated receptor γ (PPARγ) belongs to the family of nuclear nuclear receptors and is mainly expressed in adipose tissue, hematopoietic cells and the large intestine. Contrary to other nuclear receptors that mainly bind a single specific ligand, there are numerous natural PPARγ ligands, in particular fatty acids or their derivatives called eicosanoids. PPARγ have pleiotropic functions: (i) glucose and lipid metabolism regulation, (ii) anti-inflammatory properties, (iii) oxidative stress inhibition, (iv) improvement of endothelial function. Its role has been mainly studied by the use synthetic agonists. In this review, we will focus on the effects of PPARγ mediated through fatty acids and how these have beneficial health properties.

  3. SLC27 fatty acid transport proteins.

    Science.gov (United States)

    Anderson, Courtney M; Stahl, Andreas

    2013-01-01

    The uptake and metabolism of long chain fatty acids (LCFA) are critical to many physiological and cellular processes. Aberrant accumulation or depletion of LCFA underlie the pathology of numerous metabolic diseases. Protein-mediated transport of LCFA has been proposed as the major mode of LCFA uptake and activation. Several proteins have been identified to be involved in LCFA uptake. This review focuses on the SLC27 family of fatty acid transport proteins, also known as FATPs, with an emphasis on the gain- and loss-of-function animal models that elucidate the functions of FATPs in vivo and how these transport proteins play a role in physiological and pathological situations.

  4. Fatty acid composition of forage herb species

    DEFF Research Database (Denmark)

    Warner, D.; Jensen, Søren Krogh; Cone, J.W.

    2010-01-01

    The use of alternative forage species in grasslands for intensive livestock production is receiving renewed attention. Data on fatty acid composition of herbs are scarce, so four herbs (Plantago lanceolata, Achillea millefolium, Cichorium intybus, Pastinaca sativa) and one grass species (timothy......, Phleum pratense) were sown in a cutting trial. The chemical composition and concentration of fatty acids (FA) of individual species were determined during the growing season. Concentrations of crude protein and FA were generally higher in the herbs than in timothy. C. intybus had the highest nutritive...

  5. Fatty acids and coronary heart disease

    OpenAIRE

    Woodside, J.V.; Kromhout, D

    2005-01-01

    During the last century much evidence has accumulated to suggest that from a public health perspective the type of fat is more important than the amount of fat. Saturated and trans-fatty acids increase and both n-6 and n-3 PUFA decrease the risk of CHD. Most of the knowledge about the effects of dietary fatty acids on CHD risk is based on observational studies and controlled dietary experiments with intermediate end points (e.g. blood lipoprotein fractions). Information from high-quality rand...

  6. Nutrition and brain aging: role of fatty acids with an epidemiological perspective

    Directory of Open Access Journals (Sweden)

    Samieri Cécilia

    2011-07-01

    Full Text Available In the absence of identified etiologic treatment for dementia, the potential preventive role of nutrition may offer an interesting perspective. The objective of the thesis of C. Samieri was to study the association between nutrition and brain aging in 1,796 subjects, aged 65 y or older, from the Bordeaux sample of the Three-City study, with a particular emphasis on fatty acids. Considering the multidimensional nature of nutritional data, several complementary strategies were used. At the global diet level, dietary patterns actually observed in the population were identified by exploratory methods. Older subjects with a ‘‘healthy’’ pattern, who consumed more than 3.5 weekly servings of fish in men and more than 6 daily servings of fruits and vegetables in women, showed a better cognitive and psychological health. Adherence to the Mediterranean diet, measured according to a score-based confirmatory method, was associated with slower global cognitive decline after 5 y of follow-up. At the nutrient biomarker level, higher plasma eicosapentaenoic acid (EPA, a long-chain omega-3 fatty acid, was associated with a decreased dementia risk, and the omega-6-to-omega-3 fatty acids ratio to an increased risk, particularly in depressed subjects. EPA was also related to slower working memory decline in depressed subjects or in carriers of the e4 allele of the ApoE gene. Docosahexaenoic acid was related to slower working memory decline only in ApoE4 carriers. Overall, this work suggests a positive impact of a healthy diet rich in fruits and vegetables and fish, and notably the Mediterranean diet, on cognition in older subjects. Long-chain n-3 PUFA, in particular EPA, may be key protective nutrients against risk of dementia and cognitive decline.

  7. The impact of FADS genetic variants on ω6 polyunsaturated fatty acid metabolism in African Americans

    Directory of Open Access Journals (Sweden)

    Rudock Megan E

    2011-05-01

    Full Text Available Abstract Background Arachidonic acid (AA is a long-chain omega-6 polyunsaturated fatty acid (PUFA synthesized from the precursor dihomo-gamma-linolenic acid (DGLA that plays a vital role in immunity and inflammation. Variants in the Fatty Acid Desaturase (FADS family of genes on chromosome 11q have been shown to play a role in PUFA metabolism in populations of European and Asian ancestry; no work has been done in populations of African ancestry to date. Results In this study, we report that African Americans have significantly higher circulating levels of plasma AA (p = 1.35 × 10-48 and lower DGLA levels (p = 9.80 × 10-11 than European Americans. Tests for association in N = 329 individuals across 80 nucleotide polymorphisms (SNPs in the Fatty Acid Desaturase (FADS locus revealed significant association with AA, DGLA and the AA/DGLA ratio, a measure of enzymatic efficiency, in both racial groups (peak signal p = 2.85 × 10-16 in African Americans, 2.68 × 10-23 in European Americans. Ancestry-related differences were observed at an upstream marker previously associated with AA levels (rs174537, wherein, 79-82% of African Americans carry two copies of the G allele compared to only 42-45% of European Americans. Importantly, the allelic effect of the G allele, which is associated with enhanced conversion of DGLA to AA, on enzymatic efficiency was similar in both groups. Conclusions We conclude that the impact of FADS genetic variants on PUFA metabolism, specifically AA levels, is likely more pronounced in African Americans due to the larger proportion of individuals carrying the genotype associated with increased FADS1 enzymatic conversion of DGLA to AA.

  8. Canola Oil in Lactating Dairy Cow Diets Reduces Milk Saturated Fatty Acids and Improves Its Omega-3 and Oleic Fatty Acid Content.

    Science.gov (United States)

    Welter, Katiéli Caroline; Martins, Cristian Marlon de Magalhães Rodrigues; de Palma, André Soligo Vizeu; Martins, Mellory Martinson; Dos Reis, Bárbara Roqueto; Schmidt, Bárbara Laís Unglaube; Saran Netto, Arlindo

    2016-01-01

    To produce milk that is healthier for human consumption, the present study evaluated the effect of including canola oil in the diet of dairy cows on milk production and composition as well as the nutritional quality of this milk fat. Eighteen Holstein cows with an average daily milk yield of 22 (± 4) kg/d in the middle stage of lactation were used. The cows were distributed in 6 contemporary 3x3 Latin squares consisting of 3 periods and 3 treatments: control diet (without oil), 3% inclusion of canola oil in the diet and 6% inclusion of canola oil in the diet (dry matter basis). The inclusion of 6% canola oil in the diet of lactating cows linearly reduced the milk yield by 2.51 kg/d, short-chain fatty acids (FA) by 41.42%, medium chain FA by 27.32%, saturated FA by 20.24%, saturated/unsaturated FA ratio by 39.20%, omega-6/omega-3 ratio by 39.45%, and atherogenicity index by 48.36% compared with the control treatment. Moreover, with the 6% inclusion of canola oil in the diet of cows, there was an increase in the concentration of long chain FA by 45.91%, unsaturated FA by 34.08%, monounsaturated FA by 40.37%, polyunsaturated FA by 17.88%, milk concentration of omega-3 by 115%, rumenic acid (CLA) by 16.50%, oleic acid by 44.87% and h/H milk index by 94.44% compared with the control treatment. Thus, the inclusion of canola oil in the diet of lactating dairy cows makes the milk fatty acid profile nutritionally healthier for the human diet; however, the lactating performance of dairy cows is reduce.

  9. Canola Oil in Lactating Dairy Cow Diets Reduces Milk Saturated Fatty Acids and Improves Its Omega-3 and Oleic Fatty Acid Content.

    Directory of Open Access Journals (Sweden)

    Katiéli Caroline Welter

    Full Text Available To produce milk that is healthier for human consumption, the present study evaluated the effect of including canola oil in the diet of dairy cows on milk production and composition as well as the nutritional quality of this milk fat. Eighteen Holstein cows with an average daily milk yield of 22 (± 4 kg/d in the middle stage of lactation were used. The cows were distributed in 6 contemporary 3x3 Latin squares consisting of 3 periods and 3 treatments: control diet (without oil, 3% inclusion of canola oil in the diet and 6% inclusion of canola oil in the diet (dry matter basis. The inclusion of 6% canola oil in the diet of lactating cows linearly reduced the milk yield by 2.51 kg/d, short-chain fatty acids (FA by 41.42%, medium chain FA by 27.32%, saturated FA by 20.24%, saturated/unsaturated FA ratio by 39.20%, omega-6/omega-3 ratio by 39.45%, and atherogenicity index by 48.36% compared with the control treatment. Moreover, with the 6% inclusion of canola oil in the diet of cows, there was an increase in the concentration of long chain FA by 45.91%, unsaturated FA by 34.08%, monounsaturated FA by 40.37%, polyunsaturated FA by 17.88%, milk concentration of omega-3 by 115%, rumenic acid (CLA by 16.50%, oleic acid by 44.87% and h/H milk index by 94.44% compared with the control treatment. Thus, the inclusion of canola oil in the diet of lactating dairy cows makes the milk fatty acid profile nutritionally healthier for the human diet; however, the lactating performance of dairy cows is reduce.

  10. Liver Fatty Acid Composition and Inflammation in Mice Fed with High-Carbohydrate Diet or High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Lorena Gimenez da Silva-Santi

    2016-10-01

    Full Text Available Both high-carbohydrate diet (HCD and high-fat diet (HFD modulate liver fat accumulation and inflammation, however, there is a lack of data on the potential contribution of carbohydrates and lipids separately. For this reason, the changes in liver fatty acid (FA composition in male Swiss mice fed with HCD or HFD were compared, at the time points 0 (before starting the diets, and after 7, 14, 28 or 56 days. Activities of stearoyl-CoA desaturase-1 (SCD-1, ∆-6 desaturase (D6D, elongases and de novo lipogenesis (DNL were estimated. Liver mRNA expression of acetyl-CoA carboxylase 1 (ACC1 was evaluated as an additional indicator of the de novo lipogenesis. Myeloperoxidase activity, nitric oxide (NO production, and mRNA expressions of F4/80, type I collagen, interleukin (IL-6, IL-1β, IL-10, and tumor necrosis factor-α (TNF-α were measured as indication of the liver inflammatory state. The HCD group had more intense lipid deposition, particularly of saturated fatty acids (SFAs and monounsaturated fatty acids (MUFAs. This group also showed higher DNL, SCD-1, and D6D activities associated with increased NO concentration, as well as myeloperoxidase activity. Livers from the HFD group showed higher elongase activity, stored more polyunsaturated fatty acids (PUFAs and had a lower omega-6/omega-3 fatty acid (n-6/n-3 ratio. In conclusion, liver lipid accumulation, fatty acids (FA composition and inflammation were modulated by the dietary composition of lipids and carbohydrates. The HCD group had more potent lipogenic and inflammatory effects in comparison with HFD.

  11. Technological Aspects of Chemoenzymatic Epoxidation of Fatty Acids, Fatty Acid Esters and Vegetable Oils: A Review

    Directory of Open Access Journals (Sweden)

    Eugeniusz Milchert

    2015-12-01

    Full Text Available The general subject of the review is analysis of the effect of technological parameters on the chemoenzymatic epoxidation processes of vegetable oils, fatty acids and alkyl esters of fatty acids. The technological parameters considered include temperature, concentration, amount of hydrogen peroxide relative to the number of unsaturated bonds, the amounts of enzyme catalysts, presence of solvent and amount of free fatty acids. Also chemical reactions accompanying the technological processes are discussed together with different technological options and significance of the products obtained.

  12. Effect of dietary argan oil on fatty acid composition, proliferation, and phospholipase D activity of rat thymocytes.

    Science.gov (United States)

    Benzaria, Amal; Meskini, Nadia; Dubois, Madeleine; Croset, Martine; Némoz, Georges; Lagarde, Michel; Prigent, Annie-France

    2006-06-01

    Argan oil is receiving increasing attention due to its potential health benefits in the prevention of cardiovascular risk, but no information to date is available about its possible effect on immune cells and functions. To address this issue male rats were fed one of five diets that contained fish oil, argan oil, olive oil, coconut oil, or sunflower oil for 4 wk. The fatty acid composition of plasma and thymocyte lipids was then analyzed in relation to the mitogen-induced proliferation and phospholipase D (PLD) activity of thymocytes. The 18:2omega-6 proportion in thymocyte phospholipids from rats fed argan oil was significantly lower than that observed in phospholipids from rats fed sunflower oil and fish oil but higher than that found in the olive oil and coconut oil groups. Further, a significant positive linear relation was found between thymocyte proliferation and the 18:2omega-6 proportion in thymocyte phospholipids, whatever the diet. The proliferation response of thymocytes to mitogenic activation was also inversely correlated to PLD activity measured in intact thymocytes. Subsequent western blotting experiments indicated that the diet-induced variations in PLD activity mainly reflected variations in the expression of PLD2 protein. On the whole, the present study shows that the effects of argan oil on immune cells are very similar to those of olive oil, and that, as a consequence, argan oil can be used as a balanced dietary supply without marked adverse effects on immune cell function.

  13. Omega-3 Polyunsaturated Fatty Acids Inhibited Tumor Growth via Preventing the Decrease of Genomic DNA Methylation in Colorectal Cancer Rats.

    Science.gov (United States)

    Huang, Qionglin; Wen, Juan; Chen, Guangzhao; Ge, Miaomiao; Gao, Yihua; Ye, Xiaoxia; Liu, Chunan; Cai, Chun

    2016-01-01

    Omge-3 polyunsaturated fatty acids (PUFAs) exhibited significant effect in inhibiting various tumors. However, the mechanisms of its anticancer role have not been fully demonstrated. The declination of 5-methylcytosine (5 mC) was closely associated with poor prognosis of tumors. To explore whether omega-3 PUFAs influences on DNA methylation level in tumors, colorectal cancer (CRC) rat model were constructed using N-methyl phosphite nitrourea and omega-3 PUFAs were fed to part of the rats during tumor induction. The PUFAs contents in the rats of 3 experimental groups were measured using gas chromatography and 5 mC level were detected by liquid chromatography tandem mass spectrometry. The results showed that tumor incidence in omega-3 treated rats was much lower than in CRC model rats, which confirmed significant antitumor role of omega-3 PUFAs. Six PUFA members categorized to omega-3 and omega-6 families were quantified and the ratio of omega-6/omega-3 PUFAs was remarkably lower in omega-3 PUFAs treatment group than in CRC model group. 5 mC content in omega-3 PUFAs treated rats was higher than in CRC model rats, suggesting omega-3 PUFAs promoted 5 mC synthesis. Therefore, omega-3 PUFAs probably inhibited tumor growth via regulating DNA methylation process, which provided a novel anticancer mechanism of omega-3 PUFAs from epigenetic view.

  14. Fatty Acids as Surfactants on Aerosol Particles

    Science.gov (United States)

    Tervahattu, H.; Juhanoja, J.; Niemi, J.

    2003-12-01

    Fatty acids (n-alcanoic acids) are common compounds in numerous anthropogenic and natural emissions. According to Rogge et al. (1993), catalyst-equipped automobiles emitted more than 600 μg km-1 of fatty acids which was over 50% of all identified organics in fine aerosol emissions. Coal burning produces fatty acids ranging from about 1700 mg kg-1 for bituminous coal to over 10000 mg kg-1 for lignite (Oros and Simoneit, 2000). Similarly, biomass burning is an important source for aerosol fatty acids. They are the major identified compound group in deciduous tree smoke, their total emission factor being measured as 1589 mg kg-1 which was 56% of all identified organic compounds (Oros and Simoneit, 2001a). Large amounts of fatty acid are also emitted from burning of conifer trees and grass (Oros and Simoneit, 2001a; Simoneit, 2002). Fatty acids have been reported to be major constituents of marine aerosols in many investigations (Barger and Garrett, 1976; Gagosian et. al, 1981; Sicre et al., 1990; Stephanou, 1992). It has been suggested that as the marine aerosol particles form, they acquire a coating of organic surfactants (Blanchard, 1964; Gill et al., 1983; Middlebrook et al., 1998; Ellison et al., 1999). Amphiphilic molecules, including lipids, can be assembled as monomolecular layers at air/water interfaces as well as transported to a solid support. Recently, we could show by time-of-flight secondary ion mass spectrometry that fatty acids are important ingredients of the outermost surface layer of the sea-salt aerosol particles (Tervahattu et al., 2002). In their TOF-SIMS studies on the surface composition of atmospheric aerosols, Peterson and Tyler (2002) found fatty acids on the surface of Montana forest fire particles. In this work we have studied by TOF-SIMS the surface chemical composition of aerosol particles emitted from field fires in the Baltic and other East European countries and transported to Finland as well as aerosol particles transported from

  15. Effect of variations in the fatty acid chain on functional properties of oligofructose fatty acid esters

    NARCIS (Netherlands)

    Kempen, van S.E.H.J.; Schols, H.A.; Linden, van der E.; Sagis, L.M.C.

    2014-01-01

    Oligofructose fatty acid esters are surfactants that considerably lower the surface tension of an air/water interface, provide the interface with a high dilatational modulus and lead to a high foam stability. In this study, we investigate the effect of the molecular structure of oligofructose fatty

  16. Essential fatty acids and human brain.

    Science.gov (United States)

    Chang, Chia-Yu; Ke, Der-Shin; Chen, Jen-Yin

    2009-12-01

    The human brain is nearly 60 percent fat. We've learned in recent years that fatty acids are among the most crucial molecules that determine your brain's integrity and ability to perform. Essential fatty acids (EFAs) are required for maintenance of optimal health but they can not synthesized by the body and must be obtained from dietary sources. Clinical observation studies has related imbalance dietary intake of fatty acids to impaired brain performance and diseases. Most of the brain growth is completed by 5-6 years of age. The EFAs, particularly the omega-3 fatty acids, are important for brain development during both the fetal and postnatal period. Dietary decosahexaenoic acid (DHA) is needed for the optimum functional maturation of the retina and visual cortex, with visual acuity and mental development seemingly improved by extra DHA. Beyond their important role in building the brain structure, EFAs, as messengers, are involved in the synthesis and functions of brain neurotransmitters, and in the molecules of the immune system. Neuronal membranes contain phospholipid pools that are the reservoirs for the synthesis of specific lipid messengers on neuronal stimulation or injury. These messengers in turn participate in signaling cascades that can either promote neuronal injury or neuroprotection. The goal of this review is to give a new understanding of how EFAs determine our brain's integrity and performance, and to recall the neuropsychiatric disorders that may be influenced by them. As we further unlock the mystery of how fatty acids affect the brain and better understand the brain's critical dependence on specific EFAs, correct intake of the appropriate diet or supplements becomes one of the tasks we undertake in pursuit of optimal wellness.

  17. Fatty acids and coronary heart disease

    NARCIS (Netherlands)

    Woodside, J.V.; Kromhout, D.

    2005-01-01

    During the last century much evidence has accumulated to suggest that from a public health perspective the type of fat is more important than the amount of fat. Saturated and trans-fatty acids increase and both n-6 and n-3 PUFA decrease the risk of CHD. Most of the knowledge about the effects of

  18. Trans Fatty Acids and Cardiovascular Disease

    NARCIS (Netherlands)

    Mozaffarian, D.; Katan, M.B.; Ascherio, A.; Stampfer, M.J.; Willett, W.C.

    2006-01-01

    Trans fats, unsaturated fatty acids with at least one double bond in the trans configuration (Figure 1), are formed during the partial hydrogenation of vegetable oils, a process that converts vegetable oils into semisolid fats for use in margarines, commercial cooking, and manufacturing processes. F

  19. Dietary Fatty Acids and Predementia Syndromes

    Directory of Open Access Journals (Sweden)

    Vincenzo Solfrizzi

    2009-01-01

    Full Text Available An increasing body of epidemiological evidence suggests that elevated saturated fatty acids (SFA could have negative effects on age-related cognitive decline (ARCD. Furthermore, a reduction of risk for cognitive decline and mild cognitive impairment (MCI has been found in population samples with elevated fish consumption, and high intake of monounsaturated fatty acids (MUFA and polyunsaturated fatty acids (PUFA, particularly n-3 PUFA. However, recent findings from clinical trials with n-3 PUFA supplementation showed efficacy on depressive symptoms in non–Vapolipoprotein E (APOE ε4 carriers, and on cognitive symptoms only in very mild Alzheimer's disease (AD subgroups, MCI patients, and cognitively unimpaired non-APOE ε4 carriers. These data, together with epidemiological evidence, support the idea that n-3 PUFA may play a role in maintaining adequate cognitive functioning in predementia syndromes, but not when the AD process has already taken over. Therefore, at present, no definitive dietary recommendations on fish and unsaturated fatty acids consumption, or lower intake of saturated fat, in relation to the risk for dementia and cognitive decline are possible.

  20. Trans Fatty Acids and Cardiovascular Disease

    NARCIS (Netherlands)

    Mozaffarian, D.; Katan, M.B.; Ascherio, A.; Stampfer, M.J.; Willett, W.C.

    2006-01-01

    Trans fats, unsaturated fatty acids with at least one double bond in the trans configuration (Figure 1), are formed during the partial hydrogenation of vegetable oils, a process that converts vegetable oils into semisolid fats for use in margarines, commercial cooking, and manufacturing processes. F

  1. Fatty acids and coronary heart disease

    NARCIS (Netherlands)

    Woodside, J.V.; Kromhout, D.

    2005-01-01

    During the last century much evidence has accumulated to suggest that from a public health perspective the type of fat is more important than the amount of fat. Saturated and trans-fatty acids increase and both n-6 and n-3 PUFA decrease the risk of CHD. Most of the knowledge about the effects of die

  2. Omega-3 fatty acid supplementation in horses

    Directory of Open Access Journals (Sweden)

    Tanja Hess

    2014-12-01

    Full Text Available Polyunsaturated omega-3 fatty acids (n-3 PUFA are a family of essential fatty acids with many biological activities. These fatty acids are incorporated into cell membranes, changing their structural and functional characteristics. N-3 PUFA can act by modulating inflammatory responses at different levels. Omega-3 PUFA can be converted in the body to longer-chain n-3 PUFA at a limited rate and are differently converted in body systems. It appears that when specific longer-chain n-3 PUFA are desired these need to be supplemented directly in the diet. In different species some evidence indicates a potential effect on improving insulin sensitivity. Recently, a novel class of n-3 PUFA-derived anti-inflammatory mediators have been recognized, termed E-series and D-series resolvins, formed from EPA and DHA, respectively. N-3 PUFA derived resolvins and protectins are heavily involved in the resolution of inflammation. Supplementation with n-3 fatty acids in horses may help manage chronic inflammatory conditions such as osteoarthritis, equine metabolic syndrome, laminitis, and thereby help to improve longevity of sport horse.

  3. Fatty Acid Content of Indonesian Aquatic Microalgae

    Directory of Open Access Journals (Sweden)

    TRI PRARTONO

    2010-12-01

    Full Text Available High utilization of fossil fuel increases the level of carbon dioxide in the atmosphere and results in global warming phenomenon. These things establish the world’s thought to look for the other alternative energy that can reduce the use of fossil fuel even to be replaced by the substitute. Recently, Indonesia has been doing the research of microalgae as a feedstock of an alternative biofuel. Fatty acid content that microalgae have is also high to produce biofuel. The steps used in this research is a 7 days cultivation, harvesting, extraction using hexane, and fatty acid identification using Gas Chromatography of microalgae species. Fatty acid component in some species such as Chlorella sp., Scenedesmus sp., Nannochloropsis sp., and Isochrysis sp. is between 0.21-29.5%; 0.11-25.16%; 0.30-42.32%; 2.06-37.63%, respectively, based on dry weight calculation. The high content of fatty acid in some species of microalgae showed the potential to be the feedstock of producing biofuel in overcoming the limited utilization from petroleum (fossil fuel presently.

  4. Methods of refining and producing isomerized fatty acid esters and fatty acids from natural oil feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.; Beltran, Leslie V.; Kunz, Linda A.; Pals, Tessa M.; Quinn, Jordan R; Behrends, Jr., Raymond T.; Bernhardt, Randal J.

    2016-07-05

    Methods are provided for refining natural oil feedstocks and producing isomerized esters and acids. The methods comprise providing a C4-C18 unsaturated fatty ester or acid, and isomerizing the fatty acid ester or acid in the presence of heat or an isomerization catalyst to form an isomerized fatty ester or acid. In some embodiments, the methods comprise forming a dibasic ester or dibasic acid prior to the isomerizing step. In certain embodiments, the methods further comprise hydrolyzing the dibasic ester to form a dibasic acid. In certain embodiments, the olefin is formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having unsaturated esters.

  5. An Investigation into the Association between DNA Damage and Dietary Fatty Acid in Men with Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Karen S. Bishop

    2015-01-01

    Full Text Available Prostate cancer is a growing problem in New Zealand and worldwide, as populations adopt a Western style dietary pattern. In particular, dietary fat is believed to be associated with oxidative stress, which in turn may be associated with cancer risk and development. In addition, DNA damage is associated with the risk of various cancers, and is regarded as an ideal biomarker for the assessment of the influence of foods on cancer. In the study presented here, 20 men with prostate cancer adhered to a modified Mediterranean style diet for three months. Dietary records, blood fatty acid levels, prostate specific antigen, C-reactive protein and DNA damage were assessed pre- and post-intervention. DNA damage was inversely correlated with dietary adherence (p = 0.013 and whole blood monounsaturated fatty acids (p = 0.009 and oleic acid (p = 0.020. DNA damage was positively correlated with the intake of dairy products (p = 0.043, red meat (p = 0.007 and whole blood omega-6 polyunsaturated fatty acids (p = 0.015. Both the source and type of dietary fat changed significantly over the course of the dietary intervention. Levels of DNA damage were correlated with various dietary fat sources and types of dietary fat.

  6. Fatty Acid Biosynthesis Revisited: Structure Elucidation and Metabolic Engineering

    Science.gov (United States)

    Beld, Joris; Lee, D. John

    2014-01-01

    Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery. Fatty acid synthases resemble an iterative assembly line, with an acyl carrier protein conveying the growing fatty acid to necessary enzymatic domains for modification. Each catalytic domain is a unique enzyme spanning a wide range of folds and structures. Although they harbor the same enzymatic activities, two different types of fatty acid synthase architectures are observed in nature. During recent years, strained petroleum supplies have driven interest in engineering organisms to either produce more fatty acids or specific high value products. Such efforts require a fundamental understanding of the enzymatic activities and regulation of fatty acid synthases. Despite more than one hundred years of research, we continue to learn new lessons about fatty acid synthases’ many intricate structural and regulatory elements. In this review, we summarize each enzymatic domain and discuss efforts to engineer fatty acid synthases, providing some clues to important challenges and opportunities in the field. PMID:25360565

  7. Short communication Fatty acid and cholesterol content, chemical ...

    African Journals Online (AJOL)

    user

    This study aimed to determine the fatty acid and chemical composition and ... ground in a knife mill, homogenized and frozen at -18 ºC pending analysis in triplicate. .... 2008), the qualitative and quantitative fatty acid composition were different,.

  8. Determination of Fatty Acids Profile and Physicochemical Study of Sea Lettuce (Ulva lactuca Oil from Bushehr City Coasts

    Directory of Open Access Journals (Sweden)

    Soror Shaghuli

    2017-05-01

    Full Text Available Background: Sea lettuce is a kind green alga with scientific name "Ulva lactuca", has many uses in many countries. With Notice to the presence of this alga in the coasts of Bushehr and its ease of propagation and cultivation, we can take advantage of beneficial interest. The objectives of this current study was to determine the amount of total fat, survey the quality and quantity of some physicochemical parameters and the profile of fatty acids in its oil. Materials and Methods: After samples collecting of sea lettuce (Sea lettuce from Bushehr coasts, sample preparation and extraction of fat, quantity of some physicochemical parameters according to AOAC method; and fatty acid profile were analyzed by gas chromatography with flame ionization detection (GC-FID. Results: The acidity index in extracted oil in Shoraye-shahr, Bandargah and Naftkesh regions were, 0.73, 0.73 and 0.72 respectively, and the peroxide value was 0.75, 0.74 and 0.75 respectively. The refractive index and average oil contents for all areas were reported 3 % and 1412, respectively. In the three mentioned regions, sixteen fatty acids including (C6, (C10, (C12, (C13, (C14, (C15, (C16, (C17, (C18, (C19, (C20, (C21, (C18: 1, (C18: 2, (C18: 3 were identified with different amounts. Palmitic acid had the highest levels in all three regions. Conclusion: Sea lettuce contains different fatty acids that each of them has different applications in food industry, medicine and cosmetics. The favorable amounts of omega-3 and omega-6 fatty acids in the sea lettuce oil increase their nutritional importance. Caltivating of this beneficial alga is suggested due to the appropriate geographic climate of Bushehr.

  9. Fatty acid composition of human milk and infant formulas

    Directory of Open Access Journals (Sweden)

    Ivančica Delaš

    2005-04-01

    Full Text Available The appropriate fatty acid composition of membrane lipids is necessary for structure and function of the developing nervous system. Rapid synthesis of brain tissue occurs during the last trimester of pregnancy and the early postnatal weeks. This synthesis of brain structure involves the formation of complex lipids, many of which contain significant quantities of essential fatty acids and their higher homologs. This study was undertaken to elucidate how fatty acid compositions of available diets for infants meet the requirements for essential fatty acids. Samples of infant formulas, present on the market, as well as milk samples obtained from breast feeding mothers, were extracted by chloroform : methanol mixtures in order to obtain total lipids. Fatty acid methyl esters were prepared and fatty acid composition was revealed by gas chromatography. Special interest was directed to the content of long chain polyunsaturated fatty acids. The results have shown that infant formulas, designed to substitute mothers’ breast milk, contain medium chain fatty acids (C 10:0, C 12:0, along with the other saturated fatty acids, in the amounts acceptable for infants’ energy consumption. Although linoleic acid (C18:2, n-6 was present at the level expected to cover needs for essential fatty acids, most of the tested products did not contain sufficient amounts of long chain polyunsaturated fatty acids, despite the fact that these fatty acids are necessary for undisturbed brain development, ignoring the strong recommendations that they should be used as a supplement in infants’ food.

  10. 21 CFR 172.863 - Salts of fatty acids.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Salts of fatty acids. 172.863 Section 172.863 Food... Multipurpose Additives § 172.863 Salts of fatty acids. The food additive salts of fatty acids may be safely..., magnesium, potassium, and sodium salts of the fatty acids conforming with § 172.860 and/or oleic...

  11. Trans Fatty Acids: Their Chemical Structures, Formation and Dietary Intake

    OpenAIRE

    O. Daglioglu; Tasan, M.

    2005-01-01

    Trans fatty acids are unsaturated fatty acids with at least a double bond in trans configuration or geometry.The double-bond angle of the trans fatty acids is smaller than the cis isomeric configuration and the acylchain is more linear, resulting in a more rigid molecule with different physical properties such as a highermelting point and greater thermodynamic stability. These appear in dairy fat because of ruminal activity, andin hydrogenated oils. Trans unsaturated fatty acids are solid fat...

  12. Distinct fatty acid profile of ten brown macroalgae

    OpenAIRE

    Graça Silva; Pereira, Renato B.; Patrícia Valentão; Andrade, Paula B.; Carla Sousa

    2013-01-01

    It is widely accepted that the consumption of ω-3 polyunsaturated fatty acids has beneficial effects on human health. In this work, ten brown macroalgae species collected along the Portuguese west coast were studied for their fatty acids composition by GC-MS after alkaline hydrolysis and derivatization. The results of this survey showed that different macroalgae from the same region display distinct fatty acids profile. Concerning ω-3 polyunsaturated fatty acids, eicosapentaenoic ac...

  13. Les rôles physiologiques majeurs exercés par les acides gras polyinsaturés (AGPI

    Directory of Open Access Journals (Sweden)

    Guesnet Philippe

    2005-09-01

    Full Text Available Polyunsaturated fatty acids (PUFAs are essential nutrients for mammals and the human species, and belong to either of two distinct and not interconvertible series, omega 6 and omega 3. The metabolic precursors of these two series, linoleic and α-linolenic acids respectively, are the dietary essential fatty acids. These two fatty acids, once absorbed, lead to the specific synthesis and incorporation in practically all cell membranes of long-chain active PUFA derivatives such as arachidonic acid for the omega 6 series and eicosapentaenoic and docosahexaenoic acids for the omega 3 series. Long-chain PUFA affect many physiological functions because they are essential factors in many cellular functions by regulating physical properties of membranes, eicosanoid signalling and gene expression of encoding enzymes of triglyceride storage and fatty acid oxidation. The consumption of omega 6 and omega 3 fatty acids in equilibrated proportions could be crucial in the regulation of cellular physiology and in the prevention of pathologies such as cardiovascular, autoimmune and inflammatory diseases, diabetes and obesity, certain neuropsychiatric affections, etc. Indeed, the dietary intake of omega 3 fatty acid (α-linolenate and also docosahexaenoate are crucial parameters in the development of retinal and neural function in the newborn infant. On the other hand, a high ratio of omega6/omega 3 fatty acids in cell membranes due to an excessive consumption of omega 6 fatty acids and a relative omega 3 fatty acid deficiency, may promote the pathogenesis of several diseases, including cardiovascular diseases, metabolic syndrome, inflammatory disorders and obesity.

  14. Les rôles physiologiques majeurs exercés par les acides gras polyinsaturés (AGPI)

    OpenAIRE

    Guesnet Philippe; Alessandri Jean-Marc; Astorg Pierre; Pifferi Fabien; Lavialle Monique

    2005-01-01

    Polyunsaturated fatty acids (PUFAs) are essential nutrients for mammals and the human species, and belong to either of two distinct and not interconvertible series, omega 6 and omega 3. The metabolic precursors of these two series, linoleic and α-linolenic acids respectively, are the dietary essential fatty acids. These two fatty acids, once absorbed, lead to the specific synthesis and incorporation in practically all cell membranes of long-chain active PUFA derivatives such as arachidonic ac...

  15. 21 CFR 573.914 - Salts of volatile fatty acids.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Salts of volatile fatty acids. 573.914 Section 573... Food Additive Listing § 573.914 Salts of volatile fatty acids. (a) Identity. The food additive is a... contains ammonium or calcium salts of volatile fatty acids and shall conform to the...

  16. 75 FR 71556 - Polyoxyalkylated Glycerol Fatty Acid Esters; Tolerance Exemption

    Science.gov (United States)

    2010-11-24

    ... AGENCY 40 CFR Part 180 Polyoxyalkylated Glycerol Fatty Acid Esters; Tolerance Exemption AGENCY... from the requirement of a tolerance for residues of polyoxyalkylated glycerol fatty acid esters; the... ethylene oxide or propylene oxide, also known as polyoxyalkylated glycerol fatty acid esters, when used as...

  17. 21 CFR 172.854 - Polyglycerol esters of fatty acids.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyglycerol esters of fatty acids. 172.854 Section... HUMAN CONSUMPTION Multipurpose Additives § 172.854 Polyglycerol esters of fatty acids. Polyglycerol esters of fatty acids, up to and including the decaglycerol esters, may be safely used in food in...

  18. A Review of the Metabolic Origins of Milk Fatty Acids

    Directory of Open Access Journals (Sweden)

    Anamaria COZMA

    2013-08-01

    Full Text Available Milk fat and its fatty acid profile are important determinants of the technological, sensorial, and nutritional properties of milk and dairy products. The two major processes contributing to the presence of fatty acids in ruminant milk are the mammary lipogenesis and the lipid metabolism in the rumen. Among fatty acids, 4:0 to 12:0, almost all 14:0 and about a half of 16:0 in milk fat derive from de novo synthesis within the mammary gland. De novo synthesis utilizes as precursors acetate and butyrate produced through carbohydrates ruminal fermentation and involves acetyl-CoA carboxylase and fatty acid synthetase as key enzymes. The rest of 16:0 and all of the long-chain fatty acids derive from mammary uptake of circulating lipoproteins and nonesterified fatty acids that originate from digestive absorption of lipids and body fat mobilization. Further, long-chain fatty acids as well as medium-chain fatty acids entering the mammary gland can be desaturated via Δ-9 desaturase, an enzyme that acts by adding a cis-9-double bond on the fatty acid chain. Moreover, ruminal biohydrogenation of dietary unsaturated fatty acids results in the formation of numerous fatty acids available for incorporation into milk fat. Ruminal biohydrogenation is performed by rumen microbial population as a means of protection against the toxic effects of polyunsaturated fatty acids. Within the rumen microorganisms, bacteria are principally responsible for ruminal biohydrogenation when compared to protozoa and anaerobic fungi.

  19. Naturally occurring fatty acids: source, chemistry and uses

    Science.gov (United States)

    Natural occurring fatty acids are a large and complex class of compounds found in plants and animals. Fatty acids are abundant and of interest because of their renewability, biodegradability, biocompatibility, low cost, and fascinating chemistry. Of the many fatty acids, only 20-25 of them are widel...

  20. Trans fatty acids and cardiovascular health: research completed?

    NARCIS (Netherlands)

    Brouwer, I.A.; Wanders, A.J.; Katan, M.B.

    2013-01-01

    This review asks the question if further research on trans fatty acids and cardiovascular health is needed. We therefore review the evidence from human studies on trans fatty acids and cardiovascular health, and provide a quantitative review of effects of trans fatty acid intake on lipoproteins. The

  1. Relationship between fatty acids and the endocrine and neuroendocrine system.

    Science.gov (United States)

    Bhathena, Sam J

    2006-01-01

    Significant interactions exist between fatty acids and the endocrine system. Dietary fatty acids alter both hormone and neuropeptide concentrations and also their receptors. In addition, hormones affect the metabolism of fatty acids and the fatty acid composition of tissue lipids. The principal hormones involved in lipid metabolism are insulin, glucagon, catecholamines, cortisol and growth hormone. The concentrations of these hormones are altered in chronic degenerative conditions such as diabetes and cardiovascular disease, which in turn leads to alterations in tissue lipids. Lipogenesis and lipolysis, which modulate fatty acid concentrations in plasma and tissues, are under hormonal control. Neuropeptides are also involved in lipid metabolism in brain and other tissues. Polyunsaturated fatty acids are also precursors for eicosanoids including prostaglandins, leucotrienes, and thromboxanes, which have hormone-like activities. Fatty acids in turn affect the endocrine system. Saturated and trans fatty acids decrease insulin concentration leading to insulin resistance. In contrast, polyunsaturated fatty acids increase plasma insulin concentration and decrease insulin resistance. In humans, omega3 polyunsaturated fatty acids alter the levels of opioid peptides in plasma. Free fatty acids have been reported to inhibit glucagon release. Fatty acids also affect receptors for hormones and neuropeptides.

  2. Fatty acid supply of growing pigs in Central Vietnam

    NARCIS (Netherlands)

    Nguyen, Linh Quang

    2002-01-01

    This thesis concerns the influence of essential dietary fatty acids on the fatty acid composition of adipose tissue and growth performance of growing pigs kept on samll holdings in Central Vietnam. Essential fatty acids cannot be synthesized by the body and have to be ingested with the feed. There a

  3. Marine lipids and the bioavailability of omega-3 fatty acids

    DEFF Research Database (Denmark)

    Mu, Huiling; Müllertz, Anette

    2015-01-01

    Marine lipids are enriched with omega-3 fatty acids, especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Omega-3 fatty acids are important membrane lipids and have many recognized health benefits, the bioavailability of these fatty acids can therefore be important for achieving...... of omega-3 fatty acids has been reported to be affected by several factors; among the important factors were the digestion and absorption processes of omega-3 containing lipids in the gastrointestinal tract. Both lipid structures and food structures can affect the bioavailability of omega-3 fatty acids....... Human studies have shown that the relative bioavailability of omega-3 fatty acids from fish oil (triglyceride formulation) was similar to that from fish, whereas lower relative bioavailability was observed from fatty acid ethyl ester (FAEE) formulation in comparison with other lipid formulations...

  4. Effect of brown seaweed lipids on fatty acid composition and lipid hydroperoxide levels of mouse liver.

    Science.gov (United States)

    Airanthi, M K Widjaja-Adhi; Sasaki, Naoya; Iwasaki, Sayaka; Baba, Nobuko; Abe, Masayuki; Hosokawa, Masashi; Miyashita, Kazuo

    2011-04-27

    Brown seaweed lipids from Undaria pinnatifida (Wakame), Sargassum horneri (Akamoku), and Cystoseira hakodatensis (Uganomoku) contained several bioactive compounds, namely, fucoxanthin, polyphenols, and omega-3 polyunsaturated fatty acids (PUFA). Fucoxanthin and polyphenol contents of Akamoku and Uganomoku lipids were higher than those of Wakame lipids, while Wakame lipids showed higher total omega-3 PUFA content than Akamoku and Uganomoku lipids. The levels of docosahexaenoic acid (DHA) and arachidonic acid (AA) in liver lipids of KK-A(y) mouse significantly increased by Akamoku and Uganomoku lipid feeding as compared with the control, but not by Wakame lipid feeding. Fucoxanthin has been reported to accelerate the bioconversion of omega-3 PUFA and omega-6 PUFA to DHA and AA, respectively. The higher hepatic DHA and AA level of mice fed Akamoku and Uganomoku lipids would be attributed to the higher content of fucoxanthin of Akamoku and Uganomoku lipids. The lipid hydroperoxide levels of the liver of mice fed brown seaweed lipids were significantly lower than those of control mice, even though total PUFA content was higher in the liver of mice fed brown seaweed lipids. This would be, at least in part, due to the antioxidant activity of fucoxanthin metabolites in the liver.

  5. Sex-Specific Effects of Diets High in Unsaturated Fatty Acids on Spatial Learning and Memory in Guinea Pigs.

    Directory of Open Access Journals (Sweden)

    Matthias Nemeth

    Full Text Available Unsaturated fatty acids (UFAs, including omega-3, omega-6 polyunsaturated and omega-9 monounsaturated fatty acids, are essential components and modulators of neuromembranes and may affect various aspects of physiology and cognition. UFAs are suggested to positively affect spatial learning and memory and also to diminish the negative consequences of physiological stress on cognitive abilities. Due to pronounced sex differences in neurophysiological functions, we hypothesize that these UFA-related effects might differ between male and female individuals. We therefore determined the effects of dietary UFAs on cognitive performances in a radial-Y-maze in male and female guinea pigs in relation to saliva cortisol concentrations, a marker for physiological stress. Animals were assigned to four treatment groups and maintained on diets enriched in either chia seeds (omega-3, walnuts (omega-6, or peanuts (omega-9, or a control diet. Female learning abilities throughout a three-day learning phase were positively affected by omega-3 and omega-9, as determined by a decreasing latency to pass the test and the number of conducted errors, while males generally showed distinct learning abilities, irrespective of the diet. A sex difference in learning performances was found in the control group, with males outperforming females, which was not detected in the UFA-supplemented groups. This was paralleled by significantly increased saliva cortisol concentrations in males throughout the cognition test compared to females. Three days after this learning phase, UFA-supplemented males and all females showed unchanged performances, while control males showed an increased latency and therefore an impaired performance. These results were corroborated by pronounced differences in the plasma UFA-status, corresponding to the different dietary treatments. Our findings indicate sex-specific effects of dietary UFAs, apparently enhancing spatial learning abilities only in

  6. Sex-Specific Effects of Diets High in Unsaturated Fatty Acids on Spatial Learning and Memory in Guinea Pigs.

    Science.gov (United States)

    Nemeth, Matthias; Millesi, Eva; Wagner, Karl-Heinz; Wallner, Bernard

    2015-01-01

    Unsaturated fatty acids (UFAs), including omega-3, omega-6 polyunsaturated and omega-9 monounsaturated fatty acids, are essential components and modulators of neuromembranes and may affect various aspects of physiology and cognition. UFAs are suggested to positively affect spatial learning and memory and also to diminish the negative consequences of physiological stress on cognitive abilities. Due to pronounced sex differences in neurophysiological functions, we hypothesize that these UFA-related effects might differ between male and female individuals. We therefore determined the effects of dietary UFAs on cognitive performances in a radial-Y-maze in male and female guinea pigs in relation to saliva cortisol concentrations, a marker for physiological stress. Animals were assigned to four treatment groups and maintained on diets enriched in either chia seeds (omega-3), walnuts (omega-6), or peanuts (omega-9), or a control diet. Female learning abilities throughout a three-day learning phase were positively affected by omega-3 and omega-9, as determined by a decreasing latency to pass the test and the number of conducted errors, while males generally showed distinct learning abilities, irrespective of the diet. A sex difference in learning performances was found in the control group, with males outperforming females, which was not detected in the UFA-supplemented groups. This was paralleled by significantly increased saliva cortisol concentrations in males throughout the cognition test compared to females. Three days after this learning phase, UFA-supplemented males and all females showed unchanged performances, while control males showed an increased latency and therefore an impaired performance. These results were corroborated by pronounced differences in the plasma UFA-status, corresponding to the different dietary treatments. Our findings indicate sex-specific effects of dietary UFAs, apparently enhancing spatial learning abilities only in females and protecting

  7. Chronic copper exposure and fatty acid composition of the amphipod Dikerogammarus villosus: Results from a field study

    Energy Technology Data Exchange (ETDEWEB)

    Maazouzi, Chafik [Universite de Metz, Laboratoire Interactions Ecotoxicologie Biodiversite Ecosystemes (LIEBE), CNRS UMR 7146, Avenue General Delestraint, 57070 Metz (France)], E-mail: maazouzi@univ-metz.fr; Masson, Gerard [Universite de Metz, Laboratoire Interactions Ecotoxicologie Biodiversite Ecosystemes (LIEBE), CNRS UMR 7146, Avenue General Delestraint, 57070 Metz (France)], E-mail: masson1@univ-metz.fr; Izquierdo, Maria Soledad [Grupo de Investigacion en Acuicultura, ULPGC and ICCM, P.O. Box 56, 35200 Telde, Las Palmas de Gran Canaria (Spain)], E-mail: mizquierdo@dbio.ulpgc.es; Pihan, Jean-Claude [Universite de Metz, Laboratoire Interactions Ecotoxicologie Biodiversite Ecosystemes (LIEBE), CNRS UMR 7146, Avenue General Delestraint, 57070 Metz (France)], E-mail: pihan@univ-metz.fr

    2008-11-15

    Field study allows assessment of long-term effects on fatty acid (FA) composition of organisms under chronic exposure to metals. One expected effect of copper is peroxidation of lipids and essentially polyunsaturated fatty acids (PUFA). FA analysis was established for the amphipod Dikerogammarus villosus subjected to different degrees of copper exposure (4-40 {mu}g Cu L{sup -1}). A previous study in our team showed that this species regulates its body Cu concentration (106-135 mg Cu kg{sup -1} dry weight). Despite the high capacity of bioaccumulation, the absence of a correlation between copper concentration in D. villosus and water prevents its use as bioindicator of copper pollution. Both sexes from the most polluted site showed the lowest total FA content, but the highest PUFA percent, mainly of the long-chained variety (C20-C22). Mechanisms leading to the prevention of lipid peroxidation in this species were discussed (metallothioneins and intracellular granules) and proposed with support from literature data. - Under chronic copper exposure, Dikerogammarus villosus loses in total fatty acids content but increases its essential {omega}3 and {omega}6 PUFA percent.

  8. Altered development and function of the placental regions in preeclampsia and its association with long-chain polyunsaturated fatty acids.

    Science.gov (United States)

    Rani, Alka; Wadhwani, Nisha; Chavan-Gautam, Preeti; Joshi, Sadhana

    2016-09-01

    The placenta is an essential organ formed during pregnancy that mainly transfers nutrients from the mother to the fetus. Nutrients taken up by the placenta are required for its own growth and development and to optimize fetal growth. Hence, placental function is an important determinant of pregnancy outcome. Among various nutrients, fatty acids, especially long-chain polyunsaturated fatty acids (LCPUFAs), including omega 3 and omega 6 fatty acids, are essential for placental development from the time of implantation. Studies have associated these LCPUFAs with placental development through their roles in regulating oxidative stress, angiogenesis, and inflammation, which may in turn influence their transfer to the fetus. The placenta has a heterogeneous morphology with variable regional vasculature, oxidative stress, and LCPUFA levels in healthy pregnancies depending upon the location within the placenta. However, these regional structural and functional parameters are found to be disturbed in pathological conditions, such as preeclampsia (PE), thereby affecting pregnancy outcome. Hence, the alterations in LCPUFA metabolism and transport in different regions of the PE placenta as compared with normal placenta could potentially be contributing to the pathological features of PE. The regional variations in development and function of the placenta and its possible association with placental LCPUFA metabolism and transport in normal and PE pregnancies are discussed in this review. WIREs Dev Biol 2016, 5:582-597. doi: 10.1002/wdev.238 For further resources related to this article, please visit the WIREs website.

  9. Analytical Characterization of Butter Oil Enriched with Omega-3 and 6 Fatty Acid Sthrough Chia (Salvia hispanica L. Seed Oil

    Directory of Open Access Journals (Sweden)

    Muhammad Nadeem

    2015-12-01

    Full Text Available Analytical characterization of blends of butter oil and chia (Salvia hispanica L. seed oil was performed. Chia oil was added in butter oil at four different levels i.e. 6.25%, 12.5%, 18.75% and 25% (T1, T2, T3 and T4, butter oil without any addition of chia oil served as control. Blends of butter oil and chia oil were packaged in tin containers, stored at ambient temperature (34±2oC for 90-days. Iodine values of control, T1, T2, T3 and T4 were 36.85, 45.63, 57.22, 67.45 and 76.37 (cg/g.Concentration of omega-3 fatty acids in T1, T2, T3 and T4 were 4.17%, 7.39%, 12.55% and 16.74%. The extent of omega-6 fatty acids in T1, T2, T3 and T4 was 2.81%, 2.94%, 3.15% and 3.32%.Concentration of omega-3 and 6 fatty acids in butter oil can be increased by chia oil.

  10. Milk Chemical Composition of Dairy Cows Fed Rations Containing Protected Omega-3 Fatty Acids and Fermented Rice Bran

    Directory of Open Access Journals (Sweden)

    Sudibya

    2013-12-01

    Full Text Available The research was conducted to investigate the effect of ration containing protected omega-3 and fermented rice bran on chemical composition of dairy milk. The research employed 10 female PFH dairy cows of 2-4 years old with body weight 300-375 kg. The research was assigned in randomized complete block design. The treatment consisted of P0= control ration, P1= P0 + 20% fermented rice bran, P2= P1 + 4% soya bean oil, P3= P1 + 4% protected tuna fish oil and P4= P1 + 4% protected lemuru fish oil. The results showed that the effects of fish oil supplementation in the rations significantly (P<0.01 decreased feed consumption, cholesterol, low density lipoprotein, lipids, and saturated fatty acids. Meanwhile, it increased milk production, content of high density lipoprotein, omega-3, omega-6 and unsaturated fatty acids in the dairy cows milk. It is concluded that the inclusion of 4% protected fish oil in the rations can produce healthy milk by decreasing milk cholesterol and increasing omega-3 fatty acids content.

  11. Human placenta metabolizes fatty acids: implications for fetal fatty acid oxidation disorders and maternal liver diseases.

    Science.gov (United States)

    Shekhawat, Prem; Bennett, Michael J; Sadovsky, Yoel; Nelson, D Michael; Rakheja, Dinesh; Strauss, Arnold W

    2003-06-01

    The role of fat metabolism during human pregnancy and in placental growth and function is poorly understood. Mitochondrial fatty acid oxidation disorders in an affected fetus are associated with maternal diseases of pregnancy, including preeclampsia, acute fatty liver of pregnancy, and the hemolysis, elevated liver enzymes, and low platelets syndrome called HELLP. We have investigated the developmental expression and activity of six fatty acid beta-oxidation enzymes at various gestational-age human placentas. Placental specimens exhibited abundant expression of all six enzymes, as assessed by immunohistochemical and immunoblot analyses, with greater staining in syncytiotrophoblasts compared with other placental cell types. beta-Oxidation enzyme activities in placental tissues were higher early in gestation and lower near term. Trophoblast cells in culture oxidized tritium-labeled palmitate and myristate in substantial amounts, indicating that the human placenta utilizes fatty acids as a significant metabolic fuel. Thus human placenta derives energy from fatty acid oxidation, providing a potential explanation for the association of fetal fatty acid oxidation disorders with maternal liver diseases in pregnancy.

  12. Fatty acid composition of Mediterranean buffalo milk fat

    Directory of Open Access Journals (Sweden)

    V. Proto

    2010-04-01

    Full Text Available The purpose of this research was to investigate the variation in fatty acid composition of milk fat from four buffalo (Bubalus bubalis herds under different feeding management and ration composition. Changes in milk fatty acid composition were monitored on a weekly basis. Saturated fatty acids (65.5% predominated in buffalo milk fat; monounsaturated and polyunsaturated fatty acids were 27.0% and 4.5%, respectively. Of saturated fatty acids, the content of palmitic acid was the highest (30.6% followed by stearic acid (12.0% and myristic acid (10.7%. Of the unsaturated fatty acids the content of oleic acid was the highest (26.6%. The average content of conjugated linoleic acid (0.76±0.33 was higher than the maximal values generally reported for dairy cow.

  13. Chemical composition and fatty acid contents in farmed freshwater prawns

    Directory of Open Access Journals (Sweden)

    Carolina de Gasperi Portella

    2013-08-01

    Full Text Available The objective of this work was to evaluate the chemical composition and fatty acid contents of Amazonian and giant river prawns. After four-month farming, with the same diet for both species, palmitic and stearic acids were the main saturated fatty acids. Oleic acid was the main monounsatured fatty acid, and the eicosapentaenoic and docosahexaenoic acids were the most abundant polyunsaturated acids. Amazonian prawn has higher levels of protein and polyunsaturated fatty acids than those of the giant river prawn, which shows its potential for aquaculture.

  14. Profiling of esterified fatty acids as biomarkers in the blood of dengue fever patients using a microliter-scale extraction followed by gas chromatography and mass spectrometry.

    Science.gov (United States)

    Khedr, Alaa; Hegazy, Maha; Kamal, Ahmed; Shehata, Mostafa A

    2015-01-01

    An improved gas chromatography with mass spectrometry procedure was developed to highlight the esterified fatty acids in 100 μL blood of dengue fever patients in the early febrile phase versus healthy volunteers. 24 adult patients and 24 healthy volunteers were included in this study. The recoveries of targeted esterified fatty acids content were in the range of 92.10-101.00% using methanol/dichloromethane (2:1, v/v) as the extraction solvent. An efficient chromatographic separation of targeted 17 esterified fatty acid methyl esters was obtained. The limits of detection and quantification were within the range of 16-131 and 53-430 ng/mL, respectively. The relative standard deviation of intraday and interday precision values ranged from 0.4 to 5.0%. The statistical data treatment showed a significant decrease of the content of four saturated fatty acids, C14:0, C15:0, C16:0, and C18:0 (P value dengue fever patients. Moreover, the amount of three omega-6 fatty acids including C18:3n6, C18:2n6, and C20:4n6 was dramatically decreased in the blood of dengue fever patients to a limit of 50 ± 10%.

  15. Alternations in Cholesterol and Fatty Acids Composition in Egg Yolk of Rhode Island Red x Fyoumi Hens Fed with Hemp Seeds (Cannabis sativa L.

    Directory of Open Access Journals (Sweden)

    Suhaib Shahid

    2015-01-01

    Full Text Available The present study was designed to evaluate the influence of hemp seed (HS supplementation on egg yolk cholesterol and fatty acid composition in laying hens. Sixty hens (Rhode Island Red x Fyoumi were evenly distributed into four groups (three replicates per group at the peak production (34 weeks. HS was included into the ration at the level of 0.0 (HS-0, 15 (HS-15, 20 (HS-20, and 25% (HS-25 and continued the supplementation for consecutively three weeks. At the end of the experiment, three eggs per replicate were randomly collected and analyzed for egg yolk fatty acids and cholesterol profile. The statistical analysis of the result revealed that supplementation of HS-25 significantly (P<0.05 decreased egg yolk total cholesterol, myristic (C14:0, palmitic (C16:0, and stearic (C18:0. Similarly, total as well as individual monounsaturated fatty acids decreased significantly (P<0.05 while total and individual polyunsaturated fatty acids increased significantly in the HS-25. In addition, total omega-3 and omega-6 increased significantly in the HS-25 group. From the present result, we concluded that addition of HS at the rate of 25% to the diet of laying hens augmented the cholesterol and fatty acids profile in egg yolk.

  16. Adipose tissue Fatty Acid patterns and changes in antrhropometry

    DEFF Research Database (Denmark)

    Dahm, Christina Catherine; Gorst-Rasmussen, Anders; Jakobsen, Marianne Uhre

    2011-01-01

    in adipose tissue fatty acids and changes in anthropometry. Methods 34 fatty acid species from adipose tissue biopsies were determined in a random sample of 1100 men and women from a Danish cohort study. We used sex-specific principal component analysis and multiple linear regression to investigate......Introduction Diets rich in n-3 long chain polyunsaturated fatty acids (LC-PUFA), but low in n-6 LC-PUFA and 18:1 trans-fatty acids (TFA), may lower the risk of overweight and obesity. These fatty acids have often been investigated individually. We explored associations between global patterns...

  17. Omega-3 fatty acids (ῳ-3 fatty acids) in epilepsy: animal models and human clinical trials.

    Science.gov (United States)

    DeGiorgio, Christopher M; Taha, Ameer Y

    2016-10-01

    There is growing interest in alternative and nutritional therapies for drug resistant epilepsy. ῳ-3 fatty acids such as fish or krill oil are widely available supplements used to lower triglycerides and enhance cardiovascular health. ῳ-3 fatty acids have been studied extensively in animal models of epilepsy. Yet, evidence from randomized controlled clinical trials in epilepsy is at an early stage. This report focuses on the key ῳ-3 fatty acids DHA and EPA, their incorporation into the lipid bilayer, modulation of ion channels, and mechanisms of action in reducing excitability within the central nervous system. This paper presents pre-clinical evidence from mouse, rat, and canine models, and reports the efficacy of n-3 fatty acids in randomized controlled clinical trials. An English language search of PubMed and Google scholar for the years 1981-2016 was performed for animal studies and human randomized controlled clinical trials. Expert commentary: Basic science and animal models provide a cogent rationale and substantial evidence for a role of ῳ-3 fatty acids in reducing seizures. Results in humans are limited. Recent Phase II RCT evidence suggests that low to moderate dose of ῳ-3 fatty acids reduce seizures; however, larger multicenter randomized trials are needed to confirm or refute the evidence. The safety, health effects, low cost and ease of use make ῳ-3 fatty acids an intriguing alternative therapy for drug resistant epilepsy. Though safety of profile is excellent, the human data is not yet sufficient to support efficacy in drug resistant epilepsy at this time.

  18. Effect of oilseeds rich in linoleic and linolenic acids on milk production and milk fatty acid composition in dairy cows

    Institute of Scientific and Technical Information of China (English)

    Yanxia GAO; Tao SUN; Jianguo LI

    2009-01-01

    Nine multiparous cows averaging 93±13 days in milk production (DIM) were used in a triple 3×3 Latin square design to determine the effects of feeding them whole roasted flaxseed, cracked roasted soybean and fresh alfalfa in the diet on milk production, milk fatty acid profiles and the digestibility of nutrients. Each experimental period lasted 30 d and a sample collection was performed during the last 7 d. The cows were fed on the control basal diet (CON) or diets containing whole roasted flaxseed (FLA) or cracked roasted soybean (SOY). All diets were fed as a total mixed ration (TMR) and had similar concentrations of crude protein (CP), Net Energy Lactation (NEL), acid detergent fibre (ADF) and neutral detergent fibre (NDF). The dry matter intake (DMI) was not significantly different (P>0.05), but tended to increase in FLA and SOY diets compared with the control (P > 0.05). Cows in all treatments had a similar milk yield, although 4% fat corrected milk (FCM) yield was higher on the FLA and SOY diets than on the CON diet. Milk fat percentage (3.45%) increased in the FLA diet compared with the control (3.31%) and SOY diets (3.39%). Milk protein percentages were similar among the diets (P > 0.05). There were similar digestibilities of DM, CP and ADF among the treatments and lower digestibilities of NDF and ether extract in the SOY diet compared with the CON diet. Feeding various oilseeds significantly increased the concentrations of C18:1, C18:3 and conjugated linoleic acid (CLA). The FLA diet decreased the ratio of omega-6 to omega-3 fatty-acids in the milk, which would improve the nutritive value of the milk.

  19. Essential fatty acid requirements of cats: pathology of essential fatty acid deficiency.

    Science.gov (United States)

    MacDonald, M L; Anderson, B C; Rogers, Q R; Buffington, C A; Morris, J G

    1984-07-01

    The pathologic changes of essential fatty acid (EFA) deficiency were studied in specific-pathogen-free, domestic shorthair cats which were fed purified diets for 1.5 to 2.5 years. Cats fed an EFA-deficient diet exhibited signs of deficiency: severe fatty degeneration of the liver, excessive fat in the kidneys, dystrophic mineralization of the adrenal glands, degeneration of the testes, and hyperkeratosis of the skin. Minor clinical pathologic changes were consistent with liver damage. Fatty acid analyses of plasma lipids revealed low concentrations of linoleate and other n6-fatty acids, and high concentrations of n7- and n9-fatty acids, consistent with EFA deficiency. These signs of deficiency were prevented by including safflower seed oil in the diet at a concentration to supply linoleate at 6.7% of dietary energy. Therefore, linoleate is an EFA for the cat, despite negligible conversion of linoleate to arachidonate in cat liver. However, in cats fed a diet containing linoleate, but lacking arachidonate, there was mild mineralization of the kidneys, and the neutral fat content of the liver was slightly higher than that of cats fed a diet containing arachidonate and other long-chain polyunsaturated fatty acids. Also, 2 of the 19 cats fed arachidonate-deficient diets developed unusual inflammatory skin lesions. In cats fed a diet containing hydrogenated coconut oil, safflower seed oil, and chicken fat, fatty livers developed despite the presence of high levels of linoleate. The fatty livers appeared to result from a specific deleterious effect of the medium-chain triglycerides in hydrogenated coconut oil. Most of the organ pathologic changes of EFA deficiency in the cat can be prevented by feeding dietary linoleate. Linoleate meets the EFA requirement for functions which depend on proper membrane structure: growth, lipid transport, normal skin and coat condition, and maintenance of the epidermal permeability barrier. However, dietary arachidonate is required by the

  20. Polyunsaturated fatty acid metabolism in prostate cancer.

    Science.gov (United States)

    Berquin, Isabelle M; Edwards, Iris J; Kridel, Steven J; Chen, Yong Q

    2011-12-01

    Polyunsaturated fatty acids (PUFA) play important roles in the normal physiology and in pathological states including inflammation and cancer. While much is known about the biosynthesis and biological activities of eicosanoids derived from ω6 PUFA, our understanding of the corresponding ω3 series lipid mediators is still rudimentary. The purpose of this review is not to offer a comprehensive summary of the literature on fatty acids in prostate cancer but rather to highlight some of the areas where key questions remain to be addressed. These include substrate preference and polymorphic variants of enzymes involved in the metabolism of PUFA, the relationship between de novo lipid synthesis and dietary lipid metabolism pathways, the contribution of cyclooxygenases and lipoxygenases as well as terminal synthases and prostanoid receptors in prostate cancer, and the potential role of PUFA in angiogenesis and cell surface receptor signaling.

  1. Laser signals' nonlinear change in fatty acids

    CERN Document Server

    Ghelmez-Dumitru, M; Piscureanu, M; Sterian, A

    2003-01-01

    Previous works showed that thin layers of fatty acids and fatty acid-cholesterol mixtures behaved as optical liquid crystals, even at low incident laser power. The paper presents an experimental and computer study of laser signals, emergent from such samples, in presence of fluctuations. The optical emergent laser beams' features at different incident parameters were experimentally determined for different type (c.w. and pulsed) lasers, as for example helium-neon and Nd sup 3 sup + glass lasers. The results were correlated with the amount of cholesterol in mixtures and with their response in external electric field. These measurements are in all cases affected by fluctuations. We developed some computer-based procedures, by using the TableCurve3D from Jandel Scientific software and equations Runge-Kutta in MATLAB for taking into account these fluctuations.

  2. Fatty acids composition of 10 microalgal species

    Directory of Open Access Journals (Sweden)

    Thidarat Noiraksar

    2005-11-01

    Full Text Available Fatty acids composition of 10 species of microalgae was determined at the exponential phase and the stationary phase. The microalgae consist of two species of diatoms, Bacillariophyceae, (Nitzschia cf. ovalis, Thalassiosira sp. five species of green microalgae, Prasinophyceae (Tetraselmis sp. and Chlorophyceae, (Dictyosphaerium pulchellum, Stichococcus sp., Chlorella sp., Scenedesmus falcatus and three species of blue green microalgae, Cyanophyceae (Anacystis sp., Synechococcus sp., Synechocystis sp..Medium for culture diatoms and green microalgae was F/2, and BG-11 media was used for Cyanophyceae. The microalgae were cultured beneath light intensity 143 μEm-2s-1, light: dark illustration 12:12 hrs., temperature 28ºC, and salinities 8-30 psu. The microalgae were harvested for analyzing fatty acid by centrivugal machine at 3500 rpm. for 5 min. at temperature 20ºC and stored at -80ºC prior to analysis.Fatty acids composition of microalgae differed from species to species. The majority fatty acids composition of diatoms at the exponential phase and the stationary phase were C16:1n-7 (17.12-31.47% and 28.22-42.02%, C16:0 (13.25-19.61% and 18.83-20.67%, C20:5 n-3 (16.65-26.67% and 11.32-23.68% respectively. The principle fatty acids composition of green microalgae, Prasinophyceae, Tetraselmis sp. were C18:3n-3 (16.17-16.67%, C16:0 (15.33-17.45%, C18:1n-9 (12.25-15.43%, C18:2n-6 (9.66-19.97%. The fatty acids composition of green microalgae, Chlorophyceae, were C18:3 n-3 (20.02-26.49% and 15.35- 30.63%, C16:0 (5.76-17.61% and 11.41-20.03%, C18:2n-6 (4.67-17.54% and 7.48-20.61% respectively. The major amounts of fatty acids content of blue green microalgae were C16:1n-7 (9.28-34.91% and 34.48- 35.04%, C14:0 (13.34-25.96% and 26.69-28.24%, C16:0 (5.89-29.15% and 5.70-16.81% except for Anacystis sp.which had a high amount of C18:3 n-3 (23.18-27.98% but low amount of C14:0 (3.66-4.98%.Bacillariophyceae contained the highest amount of highly unsaturated

  3. Synthesis and structural analysis of 13C-fatty acids

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The 13C-labeled fatty acids octanoic-1-13C acid and palmitic-l-13C acid were synthetically prepared from Ba 13CO3. The yield of the former was more than 90% and that of the latter was above 85%. MS, IR, 1H-NMR and 13NMR were performed to analyze the structures of the two 13C-fatty acids, compared with their unlabeled fatty acids.

  4. Succinct synthesis of saturated hydroxy fatty acids and

    DEFF Research Database (Denmark)

    Kaspersen, Mads Holmgaard; Jenkins, Laura; Dunlop, Julia

    2017-01-01

    Saturated hydroxy fatty acids make up a class of underexplored lipids with potentially interesting biological activities. We report a succinct and general synthetic route to saturated hydroxy fatty acids hydroxylated at position 6 or higher, and exemplify this with the synthesis of hydroxylauric...... acids. All regioisomers of hydroxylauric acids were tested on free fatty acid receptors FFA1, FFA4 and GPR84. The results show that the introduction of a hydroxy group and its position have a high impact on receptor activity....

  5. Fatty acid and sn-2 fatty acid composition in human milk from Granada (Spain) and in infant formulas.

    Science.gov (United States)

    López-López, A; López-Sabater, M C; Campoy-Folgoso, C; Rivero-Urgell, M; Castellote-Bargalló, A I

    2002-12-01

    To investigate differences in fatty acid and sn-2 fatty acid composition in colostrum, transitional and mature human milk, and in term infant formulas. Departament de Nutrició i Bromatologia, University of Barcelona, Spain and University Hospital of Granada, Spain. One-hundred and twenty mothers and 11 available types of infant formulas for term infants. We analysed the fatty acid composition of colostrum (n=40), transitional milk (n=40), mature milk (n=40) and 11 infant formulas. We also analysed the fatty acid composition at sn-2 position in colostrum (n=12), transitional milk (n=12), mature milk (n=12), and the 11 infant formulas. Human milk in Spain had low saturated fatty acids, high monounsaturated fatty acids and high linolenic acid. Infant formulas and mature human milk had similar fatty acid composition. In mature milk, palmitic acid was preferentially esterified at the sn-2 position (86.25%), and oleic and linoleic acids were predominantly esterified at the sn-1,3 positions (12.22 and 22.27%, respectively, in the sn-2 position). In infant formulas, palmitic acid was preferentially esterified at the sn-1,3 positions and oleic and linoleic acids had higher percentages at the sn-2 position than they do in human milk. Fatty acid composition of human milk in Spain seems to reflect the Mediterranean dietary habits of mothers. Infant formulas resemble the fatty acid profile of human milk, but the distribution of fatty acids at the sn-2 position is markedly different.

  6. Adipose tissue Fatty Acid patterns and changes in antrhropometry

    DEFF Research Database (Denmark)

    Dahm, Christina Catherine; Gorst-Rasmussen, Anders; Jakobsen, Marianne Uhre

    2011-01-01

    Introduction Diets rich in n-3 long chain polyunsaturated fatty acids (LC-PUFA), but low in n-6 LC-PUFA and 18:1 trans-fatty acids (TFA), may lower the risk of overweight and obesity. These fatty acids have often been investigated individually. We explored associations between global patterns...... in adipose tissue fatty acids and changes in anthropometry. Methods 34 fatty acid species from adipose tissue biopsies were determined in a random sample of 1100 men and women from a Danish cohort study. We used sex-specific principal component analysis and multiple linear regression to investigate...... the associations of adipose tissue fatty acid patterns with changes in weight, waist circumference (WC), and WC controlled for changes in body mass index (WCBMI), adjusting for confounders. Results 7 principal components were extracted for each sex, explaining 77.6% and 78.3% of fatty acid variation in men...

  7. Importance of a balanced omega 6/omega 3 ratio for the maintenance of health. Nutritional recomendations

    OpenAIRE

    C. Gómez Candela; L. M.ª Bermejo López; V. Loria Kohen

    2011-01-01

    The modification of dietary patterns has led to a change in fatty acid consumption, with an increase in the consumption of -6 fatty acids and a markerd reduction in the consumption of -3 fatty acids. This in turn has given rise to an imbalance in the -6/ -3 ratio, which is now very different from the original 1:1 ratio of humans in the past. Given the involvement of -6 and -3 essential fatty acids in disease processes, the present article examines changes in dietary...

  8. Unsaturated fatty acids, desaturases, and human health.

    Science.gov (United States)

    Lee, Hyungjae; Park, Woo Jung

    2014-02-01

    With the increasing concern for health and nutrition, dietary fat has attracted considerable attention. The composition of fatty acids in a diet is important since they are associated with major diseases, such as cancers, diabetes, and cardiovascular disease. The biosynthesis of unsaturated fatty acids (UFA) requires the expression of dietary fat-associated genes, such as SCD, FADS1, FADS2, and FADS3, which encode a variety of desaturases, to catalyze the addition of a double bond in a fatty acid chain. Recent studies using new molecular techniques and genomics, as well as clinical trials have shown that these genes and UFA are closely related to physiological conditions and chronic diseases; it was found that the existence of alternative transcripts of the desaturase genes and desaturase isoforms might affect human health and lipid metabolism in different ways. In this review, we provide an overview of UFA and desaturases associated with human health and nutrition. Moreover, recent findings of UFA, desaturases, and their associated genes in human systems are discussed. Consequently, this review may help elucidate the complicated physiology of UFA in human health and diseases.

  9. Effect of n-3 and n-6 Polyunsaturated Fatty Acids on Microsomal P450 Steroidogenic Enzyme Activities and In Vitro Cortisol Production in Adrenal Tissue From Yorkshire Boars.

    Science.gov (United States)

    Xie, Xuemei; Wang, Xudong; Mick, Gail J; Kabarowski, Janusz H; Wilson, Landon Shay; Barnes, Stephen; Walcott, Gregory P; Luo, Xiaoping; McCormick, Kenneth

    2016-04-01

    Dysregulation of adrenal glucocorticoid production is increasingly recognized to play a supportive role in the metabolic syndrome although the mechanism is ill defined. The adrenal cytochrome P450 (CYP) enzymes, CYP17 and CYP21, are essential for glucocorticoid synthesis. The omega-3 and omega-6 polyunsaturated fatty acids (PUFA) may ameliorate metabolic syndrome, but it is unknown whether they have direct actions on adrenal CYP steroidogenic enzymes. The aim of this study was to determine whether PUFA modify adrenal glucocorticoid synthesis using isolated porcine microsomes. The enzyme activities of CYP17, CYP21, 11β-hydroxysteroid dehydrogenase type 1, hexose-6-phosphate dehydrogenase (H6PDH), and CYP2E1 were measured in intact microsomes treated with fatty acids of disparate saturated bonds. Cortisol production was measured in a cell-free in vitro model. Microsomal lipid composition after arachidonic acid (AA) exposure was determined by sequential window acquisition of all theoretical spectra-mass spectrometry. Results showed that adrenal microsomal CYP21 activity was decreased by docosapentaenoic acid (DPA), docosahexaenoic acid (DHA), eicosapentaenoic acid, α-linolenic acid, AA, and linoleic acid, and CYP17 activity was inhibited by DPA, DHA, eicosapentaenoic acid, and AA. Inhibition was associated with the number of the PUFA double bonds. Similarly, cortisol production in vitro was decreased by DPA, DHA, and AA. Endoplasmic enzymes with intraluminal activity were unaffected by PUFA. In microsomes exposed to AA, the level of AA or oxidative metabolites of AA in the membrane was not altered. In conclusion, these observations suggest that omega-3 and omega-6 PUFA, especially those with 2 or more double bonds (DPA, DHA, and AA), impede adrenal glucocorticoid production.

  10. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Science.gov (United States)

    2010-04-01

    ... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and as... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Oleic acid derived from tall oil fatty acids....

  11. Omega-3 and omega-6 DPA equally inhibit the sphingosylphosphorylcholine-induced Ca2+-sensitization of vascular smooth muscle contraction via inhibiting Rho-kinase activation and translocation

    Science.gov (United States)

    Zhang, Ying; Zhang, Min; Lyu, Bochao; Kishi, Hiroko; Kobayashi, Sei

    2017-01-01

    We previously reported that eicosapentaenoic acid (EPA), an omega-3 polyunsaturated fatty acid (n-3 PUFA), effectively inhibits sphingosylphosphorylcholine (SPC)-induced Ca2+-sensitization of vascular smooth muscle (VSM) contraction which is a major cause of cardiovascular and cerebrovascular vasospasm, and EPA is utilized clinically to prevent cerebrovascular vasospasm. In this study, we clearly demonstrate that docosapentaenoic acid (DPA), which exists in two forms as omega-3 (n-3) and omega-6 (n-6) PUFA, strongly inhibits SPC-induced contraction in VSM tissue and human coronary artery smooth muscle cells (CASMCs), with little effect on Ca2+-dependent contraction. Furthermore, n-3 and n-6 DPA inhibited the activation and translocation of Rho-kinase from cytosol to cell membrane. Additionally, SPC-induced phosphorylation of myosin light chain (MLC) was inhibited in n-3 and n-6 DPA pretreated smooth muscleVSM cells and tissues. In summary, we provide direct evidence that n-3 and n-6 DPA effectively equally inhibits SPC-induced contraction by inhibiting Rho-kinase activation and translocation to the cell membrane. PMID:28169288

  12. A study of petroleum fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Goncharov, I.V.; Kulachenko, V.I.

    1980-01-01

    The results of a study conducted through a method of gas liquid chromatography of n-fatty acids, separated from the oils of a number of deposits of Western Siberia, are discussed. In particular, the molecular mass distribution of n-acids and paraffins, as well as the free acids and the thermodestruction acids in the oil of the Fedorovsk deposit, were studied. The existence of a predominance of acids of even structure in the range of C/sub 16/-C/sub 20/ is common for the free and bound acids. At the same time, it is noted that for the time being, it is difficult to provide an unambiguous explanation for the obtained results. But one fact is certain: the free, in the form of complex ethers, as well as the form of the compounds which liberate the acids after precise thermal action. The individual composition of the acids of all three forms is different. A specific regularity is traced in the distribution of the n-acids in the oil fractions. It is explained that the molecular mass distribution of the acids in the fractions and in the initial oil is identical.

  13. Engineered Production of Short Chain Fatty Acid in Escherichia coli Using Fatty Acid Synthesis Pathway.

    Science.gov (United States)

    Jawed, Kamran; Mattam, Anu Jose; Fatma, Zia; Wajid, Saima; Abdin, Malik Z; Yazdani, Syed Shams

    2016-01-01

    Short-chain fatty acids (SCFAs), such as butyric acid, have a broad range of applications in chemical and fuel industries. Worldwide demand of sustainable fuels and chemicals has encouraged researchers for microbial synthesis of SCFAs. In this study we compared three thioesterases, i.e., TesAT from Anaerococcus tetradius, TesBF from Bryantella formatexigens and TesBT from Bacteroides thetaiotaomicron, for production of SCFAs in Escherichia coli utilizing native fatty acid synthesis (FASII) pathway and modulated the genetic and bioprocess parameters to improve its yield and productivity. E. coli strain expressing tesBT gene yielded maximum butyric acid titer at 1.46 g L-1, followed by tesBF at 0.85 g L-1 and tesAT at 0.12 g L-1. The titer of butyric acid varied significantly depending upon the plasmid copy number and strain genotype. The modulation of genetic factors that are known to influence long chain fatty acid production, such as deletion of the fadD and fadE that initiates the fatty acid degradation cycle and overexpression of fadR that is a global transcriptional activator of fatty acid biosynthesis and repressor of degradation cycle, did not improve the butyric acid titer significantly. Use of chemical inhibitor cerulenin, which restricts the fatty acid elongation cycle, increased the butyric acid titer by 1.7-fold in case of TesBF, while it had adverse impact in case of TesBT. In vitro enzyme assay indicated that cerulenin also inhibited short chain specific thioesterase, though inhibitory concentration varied according to the type of thioesterase used. Further process optimization followed by fed-batch cultivation under phosphorous limited condition led to production of 14.3 g L-1 butyric acid and 17.5 g L-1 total free fatty acid at 28% of theoretical yield. This study expands our understanding of SCFAs production in E. coli through FASII pathway and highlights role of genetic and process optimization to enhance the desired product.

  14. Engineered Production of Short Chain Fatty Acid in Escherichia coli Using Fatty Acid Synthesis Pathway

    Science.gov (United States)

    Jawed, Kamran; Mattam, Anu Jose; Fatma, Zia; Wajid, Saima; Abdin, Malik Z.; Yazdani, Syed Shams

    2016-01-01

    Short-chain fatty acids (SCFAs), such as butyric acid, have a broad range of applications in chemical and fuel industries. Worldwide demand of sustainable fuels and chemicals has encouraged researchers for microbial synthesis of SCFAs. In this study we compared three thioesterases, i.e., TesAT from Anaerococcus tetradius, TesBF from Bryantella formatexigens and TesBT from Bacteroides thetaiotaomicron, for production of SCFAs in Escherichia coli utilizing native fatty acid synthesis (FASII) pathway and modulated the genetic and bioprocess parameters to improve its yield and productivity. E. coli strain expressing tesBT gene yielded maximum butyric acid titer at 1.46 g L-1, followed by tesBF at 0.85 g L-1 and tesAT at 0.12 g L-1. The titer of butyric acid varied significantly depending upon the plasmid copy number and strain genotype. The modulation of genetic factors that are known to influence long chain fatty acid production, such as deletion of the fadD and fadE that initiates the fatty acid degradation cycle and overexpression of fadR that is a global transcriptional activator of fatty acid biosynthesis and repressor of degradation cycle, did not improve the butyric acid titer significantly. Use of chemical inhibitor cerulenin, which restricts the fatty acid elongation cycle, increased the butyric acid titer by 1.7-fold in case of TesBF, while it had adverse impact in case of TesBT. In vitro enzyme assay indicated that cerulenin also inhibited short chain specific thioesterase, though inhibitory concentration varied according to the type of thioesterase used. Further process optimization followed by fed-batch cultivation under phosphorous limited condition led to production of 14.3 g L-1 butyric acid and 17.5 g L-1 total free fatty acid at 28% of theoretical yield. This study expands our understanding of SCFAs production in E. coli through FASII pathway and highlights role of genetic and process optimization to enhance the desired product. PMID:27466817

  15. Separation of cis-fatty acids from saturated and trans-fatty acids by nanoporous polydicyclopentadiene membranes.

    Science.gov (United States)

    Gupta, Abhinaba; Bowden, Ned B

    2013-02-01

    This article describes the separation of mixtures of fatty acid salts using a new organic solvent nanofiltration membrane based on polydicyclopentadiene (PDCPD). Mixtures of free fatty acids could not be separated by the membranes because they permeated at similar rates. When triisobutylamine was added to the fatty acids, the cis-fatty acid salts (oleic, petroselinic, vaccenic, linoleic, and linolenic acid) had slower permeation though the membranes than saturated (stearic acid) and trans-fatty acid (elaidic acid) salts. The reason for the difference in permeation was due to the formation of stable salt pairs between the amine and fatty acids that increased their cross-sectional areas. The fatty acid salts derived from saturated and trans-fatty acids were smaller than the critical area cutoff for the PDCPD membranes, so they readily permeated. In contrast, the fatty acid salts derived from the cis-fatty acids had critical areas larger than critical area cutoff of the PDPCD membranes and had slowed permeation. The partitioning coefficients of fatty acids and fatty acid salts were investigated to demonstrate that they were not responsible for the difference in permeation. The use of pressure was investigated to greatly accelerate the permeation through the membranes. For a solvent mixture of 35/65 (v/v) toluene/hexanes, the permeation of solvent was approximately 39 L m(-2) h(-1). This value is similar to values reported for permeation through membranes used in industry. The separation of a mixture of fatty acids based on the composition of soybean oil was investigated using pressure. The saturated fatty acid salts were almost completely removed from the cis-fatty acid salts when iBu(3)N was used as the amine to form the salt pairs. The separation of the cis-fatty acids found in soybean oil was investigated with Pr(3)N as the amine. The oleic acid salt (oleic acid has one cis double bond) preferentially permeated the membrane while the linoleic (two cis double bonds

  16. Effect of gamma irradiation at various temperatures and packaging conditions on chicken tissues. 1. Fatty acid profiles of neutral and polar lipids separated from muscle irradiated at -20/sup 0/C

    Energy Technology Data Exchange (ETDEWEB)

    Rady, A.H.; Maxwell, R.J.; Wierbicki, E.; Phillips, J.G.

    1988-01-01

    A lipid composition study on irradiated chicken muscle is reported. All muscle samples, packed either under air or vacuum, were gamma irradiated (-20/sup 0/C) at 0, 1, 3, 6 and 10 kGy using /sup 137/Cs (dose rate 0.1 kGymin). Lipids were isolated from the muscle using a dry column extraction method with concomitant isolation of separated neutral and polar fractions. Lipid isolates were converted to their methyl esters and analyzed by capillary column gas chromatography with computer assisted data storage, followed by data consolidation and statistical computer analysis. Separated fatty acid profiles for neutral and polar lipids were obtained as normalized reports (each fatty acid as percentage of total fatty acids) and as gravimetric reports (mg of each fatty acid100 g tissue). Normalized reports showed only negligible occurrence of significant changes in fatty acid profiles of neutral muscle lipid fractions regardless of irradiation doses (0 to 10 kGy) in either air and vacuum packaging. These differences were not apparent when the data were compiled as gravimetric reports. The polar lipid fractions containing the nutritionally significant ..omega..3 and ..omega..6 fatty acids showed only slight changes in normalized and gravimetric reports and were similarly unaffected with increasing levels of irradiation. Additionally, no new fatty acids or other artifacts due to gamma-irradiation were observed in detectable amounts by gas chromatography in any lipid fractions

  17. Dietary intake and food sources of total and individual polyunsaturated fatty acids in the Belgian population over 15 years old.

    Science.gov (United States)

    Sioen, Isabelle; Vyncke, Krishna; De Maeyer, Mieke; Gerichhausen, Monique; De Henauw, Stefaan

    2013-07-01

    Advances in our knowledge of the physiological functions of dietary polyunsaturated fatty acids (PUFAs) have led to an increased interest in food sources and the level of dietary intake of these nutrients. Up to now, no representative data was available for the Belgian adult population. This study aimed to describe data on the intake and food sources of total and individual omega-6 and omega-3 PUFA for the Belgian population over 15 years old. PUFA intakes were assessed for 3,043 Belgian adults, based on two non-consecutive 24 h recalls. Usual intakes were calculated using the multiple source method. The results showed that the intake of linoleic acid (LA) is in accordance with the recommendation for almost all Belgian adults. However, the intake of omega-3 PUFA is suboptimal for a large part of the studied population and also the intake of total PUFA should be increased for a part of the population. The main food source of LA and α-linolenic acid (ALA) was the group of fats and oils (60.6 % for LA and 53.1 % for ALA). Fish and fish products were the most important sources of long chain omega-3 PUFA. Age influenced fatty acids intake, with higher intake of omega-3 PUFA in the older age groups. To fill the gap between the intake and recommendation of total PUFA, and in particular omega-3 PUFA, sustainable strategies and efficient consumer communication strategies will be needed.

  18. Nitro-fatty acids: novel anti-inflammatory lipid mediators

    Directory of Open Access Journals (Sweden)

    H. Rubbo

    2013-09-01

    Full Text Available Nitro-fatty acids are formed and detected in human plasma, cell membranes, and tissue, modulating metabolic as well as inflammatory signaling pathways. Here we discuss the mechanisms of nitro-fatty acid formation as well as their key chemical and biochemical properties. The electrophilic properties of nitro-fatty acids to activate anti-inflammatory signaling pathways are discussed in detail. A critical issue is the influence of nitroarachidonic acid on prostaglandin endoperoxide H synthases, redirecting arachidonic acid metabolism and signaling. We also analyze in vivo data supporting nitro-fatty acids as promising pharmacological tools to prevent inflammatory diseases.

  19. Bioavailability of long-chain omega-3 fatty acids.

    Science.gov (United States)

    Schuchardt, Jan Philipp; Hahn, Andreas

    2013-07-01

    Supplements have reached a prominent role in improving the supply of long-chain omega-3 fatty acids, such as Eicosapentaenoic acid (EPA 20:5n-3) and Docosahexaenoic acid (DHA 22:6n-3). Similar to other nutrients, the availability of omega-3 fatty acids is highly variable and determined by numerous factors. However, the question of omega-3 fatty acids bioavailability has long been disregarded, which may have contributed to the neutral or negative results concerning their effects in several studies. This review provides an overview of the influence of chemical binding form (free fatty acids bound in ethylesters, triacylglycerides or phospholipids), matrix effects (capsule ingestion with concomitant intake of food, fat content in food) or galenic form (i.e. microencapsulation, emulsification) on the bioavailability of omega-3 fatty acids. There is a need to systematically investigate the bioavailability of omega-3 fatty acids formulations, which might be a key to designing more effective studies in the future.

  20. Trans fatty acids and cardiovascular health: research completed?

    Science.gov (United States)

    Brouwer, I A; Wanders, A J; Katan, M B

    2013-05-01

    This review asks the question if further research on trans fatty acids and cardiovascular health is needed. We therefore review the evidence from human studies on trans fatty acids and cardiovascular health, and provide a quantitative review of effects of trans fatty acid intake on lipoproteins. The results show that the effect of industrially produced trans fatty acids on heart health seen in observational studies is larger than predicted from changes in lipoprotein concentrations. There is debate on the effect of ruminant trans fatty acids and cardiovascular disease. Of special interest is conjugated linoleic acid (CLA), which is produced industrially for sale as supplements. Observational studies do not show higher risks of cardiovascular disease with higher intakes of ruminant trans fatty acids. However, CLA, industrial and ruminant trans fatty acids all raise plasma low-density lipoprotein and the total to high-density lipoprotein ratio. Gram for gram, all trans fatty acids have largely the same effect on blood lipoproteins. In conclusion, the detrimental effects of industrial trans fatty acids on heart health are beyond dispute. The exact size of effect will remain hard to determine. Further research is warranted on the effects of ruminant trans fatty acids and CLA on cardiovascular disease and its risk factors.

  1. ANALYSIS OF FATTY ACID CONTENT OF RAW MIANALYSIS OF FATTY ACID CONTENT OF RAW MILK

    Directory of Open Access Journals (Sweden)

    Juraj Čuboň

    2013-02-01

    Full Text Available In this work was analysedquality of raw cow’s milkof dairy cows which was fed with winter food ration of feed. Milk was observed in terms of the composition of milk fat and fatty acids during the months of August, October, December and February. The proportion of saturated fatty acids in milk fat was 63.22 % and it was found the highest proportion of palmitic acid 34.85%myristic acid accounted for 11.44 % and 10.86 % stearic acid. Linoleic acid, which is given special attention in view of the favourable effect on cholesterol, consisted of 3.48 % milk fat. The average proportion of unsaturated fatty acids in milk fat was 36.76 % of which 32.77 % were monounsaturated and polyunsaturated 4.0 %. A high proportion of milk fat formed monounsaturated oleic acid 30.92 %. The proportion of linoleic acid in milk fat was 3.48 % and 0.31 % linoleic acid.

  2. Optimization of creamy vegetable spreads for fatty acid composition

    Directory of Open Access Journals (Sweden)

    A. N. Ostrikov

    2012-01-01

    Full Text Available Cream-plant spreads optimization method by fatty acid content is developed. Product organoleptic properties analysis is carried out, its microstructure and fatty acid content is evaluated, acid and peroxide numbers are defined. Milk plasma active acidity alteration is examined and rational shelf life is determined.

  3. Caveolar fatty acids and acylation of caveolin-1.

    Directory of Open Access Journals (Sweden)

    Qian Cai

    Full Text Available PURPOSE: Caveolae are cholesterol and sphingolipids rich subcellular domains on plasma membrane. Caveolae contain a variety of signaling proteins which provide platforms for signaling transduction. In addition to enriched with cholesterol and sphingolipids, caveolae also contain a variety of fatty acids. It has been well-established that acylation of protein plays a pivotal role in subcellular location including targeting to caveolae. However, the fatty acid compositions of caveolae and the type of acylation of caveolar proteins remain largely unknown. In this study, we investigated the fatty acids in caveolae and caveolin-1 bound fatty acids. METHODS: Caveolae were isolated from Chinese hamster ovary (CHO cells. The caveolar fatty acids were extracted with Folch reagent, methyl esterificated with BF3, and analyzed by gas chromatograph-mass spectrometer (GC/MS. The caveolin-1 bound fatty acids were immunoprecipitated by anti-caveolin-1 IgG and analyzed with GC/MS. RESULTS: In contrast to the whole CHO cell lysate which contained a variety of fatty acids, caveolae mainly contained three types of fatty acids, 0.48 µg palmitic acid, 0.61 µg stearic acid and 0.83 µg oleic acid/caveolae preparation/5 × 10(7 cells. Unexpectedly, GC/MS analysis indicated that caveolin-1 was not acylated by myristic acid; instead, it was acylated by palmitic acid and stearic acid. CONCLUSION: Caveolae contained a special set of fatty acids, highly enriched with saturated fatty acids, and caveolin-1 was acylated by palmitic acid and stearic acid. The unique fatty acid compositions of caveolae and acylation of caveolin-1 may be important for caveolae formation and for maintaining the function of caveolae.

  4. TECHNOLOGY FOR OIL ENRICHED BY POLYUNSATURATED FATTY ACIDS

    Directory of Open Access Journals (Sweden)

    K. Leshukov

    2012-03-01

    Full Text Available The technology of butter with the "OmegaTrin" complex with the balanced content of polynonsaturated fat acids is developed. Studied the fatty acid composition of milk - raw materials, optimal amount of insertion of polyunsaturated fatty acids, organoleptic characteristics of enriched butter; studied physico-chemical properties and biological value (biological effectiveness of the final product, fatty acid composition of a new product, set the shelf life and developed an oil recipe.

  5. Targets for modulation of fatty acid oxidation in the heart.

    Science.gov (United States)

    Lopaschuk, Gary D

    2004-03-01

    Fatty acids are a major source of fuel used by the heart to provide large amounts of energy necessary to sustain contractile function. In the healthy heart, a balance between fatty acid and carbohydrate use ensures that energy supply to the heart matches demand. However, myocardial ischemia causes profound changes in metabolism, including alterations in glucose and fatty acid metabolism that can lead to excessive myocardial fatty acid oxidation, which occurs at the expense of glucose oxidation. This contributes to cellular acidosis, a decrease in cardiac efficiency and contractile dysfunction in the ischemic heart. Inhibition of fatty acid oxidation has recently emerged as a promising approach to the prevention of these adverse effects of fatty acids. As a result, a number of key enzymes involved in the metabolism of fatty acids are potential targets for therapeutic intervention in myocardial ischemia. This includes inhibition of fatty acid uptake into the myocyte, inhibition of mitochondrial fatty acid uptake and direct inhibition of fatty acid beta-oxidation. This review describes these potential targets for modulation of energy metabolism in the heart.

  6. Analysis of fatty acid content and composition in microalgae.

    Science.gov (United States)

    Breuer, Guido; Evers, Wendy A C; de Vree, Jeroen H; Kleinegris, Dorinde M M; Martens, Dirk E; Wijffels, René H; Lamers, Packo P

    2013-10-01

    A method to determine the content and composition of total fatty acids present in microalgae is described. Fatty acids are a major constituent of microalgal biomass. These fatty acids can be present in different acyl-lipid classes. Especially the fatty acids present in triacylglycerol (TAG) are of commercial interest, because they can be used for production of transportation fuels, bulk chemicals, nutraceuticals (ω-3 fatty acids), and food commodities. To develop commercial applications, reliable analytical methods for quantification of fatty acid content and composition are needed. Microalgae are single cells surrounded by a rigid cell wall. A fatty acid analysis method should provide sufficient cell disruption to liberate all acyl lipids and the extraction procedure used should be able to extract all acyl lipid classes. With the method presented here all fatty acids present in microalgae can be accurately and reproducibly identified and quantified using small amounts of sample (5 mg) independent of their chain length, degree of unsaturation, or the lipid class they are part of. This method does not provide information about the relative abundance of different lipid classes, but can be extended to separate lipid classes from each other. The method is based on a sequence of mechanical cell disruption, solvent based lipid extraction, transesterification of fatty acids to fatty acid methyl esters (FAMEs), and quantification and identification of FAMEs using gas chromatography (GC-FID). A TAG internal standard (tripentadecanoin) is added prior to the analytical procedure to correct for losses during extraction and incomplete transesterification.

  7. The effect of dietary n-3/n-6 polyunsaturated fatty acid ratio on salmonid alphavirus subtype 1 (SAV-1) replication in tissues of experimentally infected rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Lopez-Jimena, Benjamin; Lyons, Philip; Herath, Tharangani; Richards, Randolph H; Leaver, Michael; Bell, J Gordon; Adams, Alexandra; Thompson, Kim D

    2015-07-09

    Salmon pancreas disease (SPD) is one of the most commercially significant viral diseases of farmed Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) in Europe. In this study, the potential for dietary mitigation of the disease using different polyunsaturated fatty acid (PUFA) profiles was assessed in rainbow trout. We experimentally infected fish with salmonid alphavirus subtype 1 (SAV-1), the causative agent of SPD. These fish were fed two diets with different n-3/n-6 PUFA ratio (high omega 3, 3.08, and high omega 6, 0.87). We assessed the influence of the diets on the fatty acid composition of the heart at 0 days post infection (d.p.i.) (after 4 weeks of feeding the experimental diets prior to SAV-1 infection), and sampled infected and control fish at 5, 15 and 30d.p.i. Viral E1 and E2 glycoprotein genes were quantified by two absolute real-time PCRs in all the organs sampled, and significantly lower levels of the virus were evident in the organs of fish fed with high omega 6. Characteristic pathological lesions were identified in infected fish as early as 5d.p.i., with no significant differences in the pathology lesion scores between the two dietary regimes. This study shows that decreasing the n-3/n-6 PUFA ratio in experimental diets of rainbow trout changes the fatty acid content of the fish, and is associated with reduced SAV-1 replication in rainbow trout.

  8. Metabolomics of dietary fatty acid restriction in patients with phenylketonuria.

    Directory of Open Access Journals (Sweden)

    Ulrike Mütze

    Full Text Available BACKGROUND: Patients with phenylketonuria (PKU have to follow a lifelong phenylalanine restricted diet. This type of diet markedly reduces the intake of saturated and unsaturated fatty acids especially long chain polyunsaturated fatty acids (LC-PUFA. Long-chain saturated fatty acids are substrates of mitochondrial fatty acid oxidation for acetyl-CoA production. LC-PUFA are discussed to affect inflammatory and haemostaseological processes in health and disease. The influence of the long term PKU diet on fatty acid metabolism with a special focus on platelet eicosanoid metabolism has been investigated in the study presented here. METHODOLOGY/PRINCIPAL FINDINGS: 12 children with PKU under good metabolic control and 8 healthy controls were included. Activated fatty acids (acylcarnitines C6-C18 in dried blood and the cholesterol metabolism in serum were analyzed by liquid chromatographic tandem mass spectrometry (LC-MS/MS. Fatty acid composition of plasma glycerophospholipids was determined by gas chromatography. LC-PUFA metabolites were analyzed in supernatants by LC-MS/MS before and after platelet activation and aggregation using a standardized protocol. Patients with PKU had significantly lower free carnitine and lower activated fatty acids in dried blood compared to controls. Phytosterols as marker of cholesterol (re- absorption were not influenced by the dietary fatty acid restriction. Fatty acid composition in glycerophospholipids was comparable to that of healthy controls. However, patients with PKU showed significantly increased concentrations of y-linolenic acid (C18:3n-6 a precursor of arachidonic acid. In the PKU patients significantly higher platelet counts were observed. After activation with collagen platelet aggregation and thromboxane B(2 and thromboxane B(3 release did not differ from that of healthy controls. CONCLUSION/SIGNIFICANCE: Long-term dietary fatty acid restriction influenced the intermediates of mitochondrial beta

  9. Omega-3 fatty acids and depression: scientific evidence and biological mechanisms.

    Science.gov (United States)

    Grosso, Giuseppe; Galvano, Fabio; Marventano, Stefano; Malaguarnera, Michele; Bucolo, Claudio; Drago, Filippo; Caraci, Filippo

    2014-01-01

    The changing of omega-6/omega-3 polyunsaturated fatty acids (PUFA) in the food supply of Western societies occurred over the last 150 years is thought to promote the pathogenesis of many inflammatory-related diseases, including depressive disorders. Several epidemiological studies reported a significant inverse correlation between intake of oily fish and depression or bipolar disorders. Studies conducted specifically on the association between omega-3 intake and depression reported contrasting results, suggesting that the preventive role of omega-3 PUFA may depend also on other factors, such as overall diet quality and the social environment. Accordingly, tertiary prevention with omega-3 PUFA supplement in depressed patients has reached greater effectiveness during the last recent years, although definitive statements on their use in depression therapy cannot be yet freely asserted. Among the biological properties of omega-3 PUFA, their anti-inflammatory effects and their important role on the structural changing of the brain should be taken into account to better understand the possible pathway through which they can be effective both in preventing or treating depression. However, the problem of how to correct the inadequate supply of omega-3 PUFA in the Westernized countries' diet is a priority in order to set food and health policies and also dietary recommendations for individuals and population groups.

  10. Omega-3 Fatty Acids and Depression: Scientific Evidence and Biological Mechanisms

    Directory of Open Access Journals (Sweden)

    Giuseppe Grosso

    2014-01-01

    Full Text Available The changing of omega-6/omega-3 polyunsaturated fatty acids (PUFA in the food supply of Western societies occurred over the last 150 years is thought to promote the pathogenesis of many inflammatory-related diseases, including depressive disorders. Several epidemiological studies reported a significant inverse correlation between intake of oily fish and depression or bipolar disorders. Studies conducted specifically on the association between omega-3 intake and depression reported contrasting results, suggesting that the preventive role of omega-3 PUFA may depend also on other factors, such as overall diet quality and the social environment. Accordingly, tertiary prevention with omega-3 PUFA supplement in depressed patients has reached greater effectiveness during the last recent years, although definitive statements on their use in depression therapy cannot be yet freely asserted. Among the biological properties of omega-3 PUFA, their anti-inflammatory effects and their important role on the structural changing of the brain should be taken into account to better understand the possible pathway through which they can be effective both in preventing or treating depression. However, the problem of how to correct the inadequate supply of omega-3 PUFA in the Westernized countries’ diet is a priority in order to set food and health policies and also dietary recommendations for individuals and population groups.

  11. Omega-3 polyunsaturated fatty acids: Their potential role in blood pressure prevention and management

    Directory of Open Access Journals (Sweden)

    Claudio Borghi

    2010-05-01

    Full Text Available Omega-3 polyunsaturated fatty acids (PUFAs from fish and fish oils appear to protect against coronary heart disease: their dietary intake is in fact inversely associated to cardiovascular disease morbidity/mortality in population studies. Recent evidence suggests that at least part of their heart protective effect is mediated by a relatively small but significant decrease in blood pressure level. In fact, omega-3 PUFAs exhibit wide-ranging biological actions that include regulating both vasomotor tone and renal sodium excretion, partly competing with omega- 6 PUFAs for common metabolic enzymes and thereby decreasing the production of vasocostrincting rather than vasodilating and anti-inflammatory eicosanoids. PUFAs also reduce angiotensin- converting enzyme (ACE activity, angiotensin II formation, TGF-beta expression, enhance eNO generation and activate the parasympathetic nervous system. The final result is improved vasodilation and arterial compliance of both small and large arteries. Preliminary clinical trials involving dyslipidemic patients, diabetics and elderly subjects, as well as normotensive and hypertensive subjects confirm this working hypothesis. Future research will clarify if PUFA supplementation could improve the antihypertensive action of specific blood pressure lowering drug classes and of statins.

  12. Hyperinsulinemia and skeletal muscle fatty acid trafficking.

    Science.gov (United States)

    Kanaley, Jill A; Shadid, Samyah; Sheehan, Michael T; Guo, ZengKui; Jensen, Michael D

    2013-08-15

    We hypothesized that insulin alters plasma free fatty acid (FFA) trafficking into intramyocellular (im) long-chain acylcarnitines (imLCAC) and triglycerides (imTG). Overnight-fasted adults (n = 41) received intravenous infusions of [U-¹³C]palmitate (0400-0900 h) and [U-¹³C]oleate (0800-1400 h) to label imTG and imLCAC. A euglycemic-hyperinsulinemic (1.0 mU·kg fat-free mass⁻¹·min⁻¹) clamp (0800-1400 h) and two muscle biopsies (0900 h, 1400 h) were performed. The patterns of [U-¹³C]palmitate incorporation into imTG-palmitate and palmitoylcarnitine were similar to those we reported in overnight postabsorptive adults (saline control); the intramyocellular palmitoylcarnitine enrichment was not different from and correlated with imTG-palmitate enrichment for both the morning (r = 0.38, P = 0.02) and afternoon (r = 0.44, P = 0.006) biopsy samples. Plasma FFA concentrations, flux, and the incorporation of plasma oleate into imTG-oleate during hyperinsulinemia were ~1/10th of that observed in the previous saline control studies (P women than men, suggesting that sex differences in intramyocellular palmitate trafficking may occur under hyperinsulinemic conditions. We conclude that plasma FFA trafficking into imTG during hyperinsulinemia is markedly suppressed, and these newly incorporated FFA fatty acids do not readily enter the LCAC preoxidative pools. Hyperinsulinemia does not seem to inhibit the entry of fatty acids from imTG pools that were labeled under fasting conditions, possibly reflecting the presence of two distinct imTG pools that are differentially regulated by insulin.

  13. Lipase catalyzed synthesis of epoxy-fatty acids

    Institute of Scientific and Technical Information of China (English)

    CHEN, Qian; LI, Zu-Yi

    2000-01-01

    Lipase catalyzed synthesis of epoxy-fatty acidas from unsaturated carboxylic acids was investigated.Under mild conditions unsaturated arboxylic acids were convcveed to peroxide,then the unsaturated peroxycarboxylic acids epoxidised the C=C bond of themselves

  14. Identification of characteristic fatty acids to quantify triacylglycerols in microalgae

    Directory of Open Access Journals (Sweden)

    Peili eShen

    2016-02-01

    Full Text Available The fatty acid profiles of lipids from microalgae are unique. Polyunsaturated fatty acids are generally enriched in polar lipids, whereas saturated and monounsaturated fatty acids constitute the majority of fatty acids in triacylglycerols (TAG. Each species has characteristic fatty acids, and their content is positively or negatively correlated with TAGs. The marine oleaginous diatom Phaeodactylum tricornutum was used as the paradigm to determine the quantitative relationship between TAG and characteristic fatty acid content. Fatty acid profiles and TAG content of Phaeodactylum tricornutum were determined in a time course. C16:0/C16:1 and eicosapentaenoic acid (EPA, C20:5n3 were identified as characteristic fatty acids in TAGs and polar lipids, respectively. The percentage of those characteristic fatty acids in total fatty acids had a significant linear relationship with TAG content and thus the correlation coefficient presenting r2 were 0.96, 0.94 and 0.97 respectively. The fatty acid-based method for TAG quantification could also be applied to other microalgae such as Nannochloropsis oceanica in which the r2 of C16:0, EPA were 0.94, 0.97 respectively and Chlorella pyrenoidosa, whose r2 value correspondingly between C18:1, C18:3 and TAG content were 0.91, 0.99 as well. This characteristic fatty acid-based method provided a distinct way to quantify TAGs in microalgae, by which TAGs could be measured precisely by immediate transesterification from wet biomass rather than using conventional methods. This procedure simplified the operation and required smaller samples than conventional methods.

  15. Enhancement of neutrophil-mediated killing of Plasmodium falciparum asexual blood forms by fatty acids: importance of fatty acid structure.

    Science.gov (United States)

    Kumaratilake, L M; Ferrante, A; Robinson, B S; Jaeger, T; Poulos, A

    1997-10-01

    Effects of fatty acids on human neutrophil-mediated killing of Plasmodium falciparum asexual blood forms were investigated by using a quantitative radiometric assay. The results showed that the antiparasitic activity of neutrophils can be greatly increased (>threefold) by short-term treatment with fatty acids with 20 to 24 carbon atoms and at least three double bonds. In particular, the n-3 polyenoic fatty acids, eicosapentaenoic and docosahexaenoic acids, and the n-6 fatty acid, arachidonic acid, significantly enhanced neutrophil antiparasitic activity. This effect was >1.5-fold higher than that induced by an optical concentration of the known agonist cytokine tumor necrosis factor alpha (TNF-alpha). At suboptimal concentrations, the combination of arachidonic acid and TNF-alpha caused a synergistic increase in neutrophil-mediated parasite killing. The fatty acid-induced effect was independent of the availability of serum opsonins but dependent on the structure of the fatty acids. The length of the carbon chain, degree of unsaturation, and availability of a free carboxyl group were important determinants of fatty acid activity. The fatty acids which increased neutrophil-mediated killing primed the enhanced superoxide radical generation of neutrophils in response to P. falciparum as detected by chemiluminescence. Scavengers of oxygen radicals significantly reduced the fatty acid-enhanced parasite killing, but cyclooxygenase and lipoxygenase inhibitors had no effect. These findings have identified a new class of immunoenhancers that could be exploited to increase resistance against Plasmodium species.

  16. Hyperinsulinemia and skeletal muscle fatty acid trafficking

    Science.gov (United States)

    Kanaley, Jill A.; Shadid, Samyah; Sheehan, Michael T.; Guo, ZengKui

    2013-01-01

    We hypothesized that insulin alters plasma free fatty acid (FFA) trafficking into intramyocellular (im) long-chain acylcarnitines (imLCAC) and triglycerides (imTG). Overnight-fasted adults (n = 41) received intravenous infusions of [U-13C]palmitate (0400–0900 h) and [U-13C]oleate (0800–1400 h) to label imTG and imLCAC. A euglycemic-hyperinsulinemic (1.0 mU·kg fat-free mass−1·min−1) clamp (0800–1400 h) and two muscle biopsies (0900 h, 1400 h) were performed. The patterns of [U-13C]palmitate incorporation into imTG-palmitate and palmitoylcarnitine were similar to those we reported in overnight postabsorptive adults (saline control); the intramyocellular palmitoylcarnitine enrichment was not different from and correlated with imTG-palmitate enrichment for both the morning (r = 0.38, P = 0.02) and afternoon (r = 0.44, P = 0.006) biopsy samples. Plasma FFA concentrations, flux, and the incorporation of plasma oleate into imTG-oleate during hyperinsulinemia were ∼1/10th of that observed in the previous saline control studies (P < 0.001). At the time of the second biopsy, the enrichment in oleoylcarnitine was <25% of that in imTG-oleate and was not correlated with imTG-oleate enrichment. The intramyocellular nonesterified fatty acid-palmitate-to-imTG-palmitate enrichment ratio was greater (P < 0.05) in women than men, suggesting that sex differences in intramyocellular palmitate trafficking may occur under hyperinsulinemic conditions. We conclude that plasma FFA trafficking into imTG during hyperinsulinemia is markedly suppressed, and these newly incorporated FFA fatty acids do not readily enter the LCAC preoxidative pools. Hyperinsulinemia does not seem to inhibit the entry of fatty acids from imTG pools that were labeled under fasting conditions, possibly reflecting the presence of two distinct imTG pools that are differentially regulated by insulin. PMID:23820622

  17. Hyperinsulinemia and skeletal muscle fatty acid trafficking

    OpenAIRE

    Kanaley, Jill A.; Shadid, Samyah; Sheehan, Michael T.; Guo, ZengKui; Jensen, Michael D

    2013-01-01

    We hypothesized that insulin alters plasma free fatty acid (FFA) trafficking into intramyocellular (im) long-chain acylcarnitines (imLCAC) and triglycerides (imTG). Overnight-fasted adults (n = 41) received intravenous infusions of [U-13C]palmitate (0400–0900 h) and [U-13C]oleate (0800–1400 h) to label imTG and imLCAC. A euglycemic-hyperinsulinemic (1.0 mU·kg fat-free mass−1·min−1) clamp (0800–1400 h) and two muscle biopsies (0900 h, 1400 h) were performed. The patterns of [U-13C]palmitate in...

  18. The Danish trans-fatty acids ban

    DEFF Research Database (Denmark)

    Vallgårda, Signild

    2017-01-01

    In 2003 an executive order was issued banning industrially produced trans-fatty acids above a low level in food items in Denmark. To date, only a few other countries have followed Denmark’s example. The way health consequences of trans fats were translated by the different actors enabled...... the creation of alliances between researchers, politicians, administration and industry. Danish researchers interpreted the research in a way to suit their ‘mental maps’ and to support their initially set goal to reduce industrially produced trans fats. The process displayed a ‘co-production’ where research...

  19. Feedlot lamb meat fatty acids profile characterization employing gas chromatography

    Directory of Open Access Journals (Sweden)

    M.I. Cruz-Gonzalez

    2014-06-01

    Full Text Available Fat is an important constituent in diet, not only as an energy source, but for its essential fatty acids associated to fats in foods, considering that some polyunsaturated fatty acids like linoleic, linolenic and arachidonic cannot be synthesized by superior animals like humans. Scientific evidence show that the fatty acids ingest can affect the thrombotic tendency, cardiac rhythm, endothelial function systematic inflammation, insulin sensibility and oxidative stress. Samples from 21 ovine crossbreds from Pelibuey, Blackbelly, Dorper and Katahadin (40 kg average weight feed with corn based balanced diets were taken from loin area 18 h after refrigeration. Saturated and polyunsaturated fatty acids levels were analyzed by gas chromatography. Results in this work showed that the healthy fatty acids levels are higher as compared to saturated fatty acids levels, indicating that this meat can influence consumer’s buying choice decision regarded to their health.

  20. Fatty acids, inflammation and intestinal health in pigs.

    Science.gov (United States)

    Liu, Yulan

    2015-01-01

    The intestine is not only critical for nutrient digestion and absorption, but also is the largest immune organ in the body. However, in pig production, inflammation induced by numerous factors, such as pathogen infection and stresses (e.g., weaning), results in intestinal mucosal injury and dysfunction, and consequently results in poor growth of pigs. Dietary fatty acids not only play critical roles in energy homeostasis and cellular membrane composition, but also exert potent effects on intestinal development, immune function, and inflammatory response. Recent studies support potential therapeutic roles for specific fatty acids (short chain and medium chain fatty acids and long chain polyunsaturated fatty acids) in intestinal inflammation of pigs. Results of these new lines of work indicate trophic and cytoprotective effects of fatty acids on intestinal integrity in pigs. In this article, we review the effect of inflammation on intestinal structure and function, and the role of specific fatty acids on intestinal health of pigs, especially under inflammatory conditions.

  1. Exposure to omega-3 fatty acids at early age accelerate bone growth and improve bone quality.

    Science.gov (United States)

    Koren, Netta; Simsa-Maziel, Stav; Shahar, Ron; Schwartz, Betty; Monsonego-Ornan, Efrat

    2014-06-01

    Omega-3 fatty acids (FAs) are essential nutritional components that must be obtained from foods. Increasing evidence validate that omega-3 FAs are beneficial for bone health, and several mechanisms have been suggested to mediate their effects on bone, including alterations in calcium absorption and urinary calcium loss, prostaglandin synthesis, lipid oxidation, osteoblast formation and inhibition of osteoclastogenesis. However, to date, there is scant information regarding the effect of omega-3 FAs on the developing skeleton during the rapid growth phase. In this study we aim to evaluate the effect of exposure to high levels of omega-3 FAs on bone development and quality during prenatal and early postnatal period. For this purpose, we used the fat-1 transgenic mice that have the ability to convert omega-6 to omega-3 fatty acids and the ATDC5 chondrogenic cell line as models. We show that exposure to high concentrations of omega-3 FAs at a young age accelerates bone growth through alterations of the growth plate, associated with increased chondrocyte proliferation and differentiation. We further propose that those effects are mediated by the receptors G-protein coupled receptor 120 (GPR120) and hepatic nuclear factor 4α, which are expressed by chondrocytes in culture. Additionally, using a combined study on the structural and mechanical bone parameters, we show that high omega-3 levels contribute to superior trabecular and cortical structure, as well as to stiffer bones and improved bone quality. Most interestingly, the fat-1 model allowed us to demonstrate the role of maternal high omega-3 concentration on bone growth during the gestation and postnatal period. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Polyunsaturated fatty acids and suicide risk in mood disorders: A systematic review.

    Science.gov (United States)

    Pompili, Maurizio; Longo, Lucia; Dominici, Giovanni; Serafini, Gianluca; Lamis, Dorian A; Sarris, Jerome; Amore, Mario; Girardi, Paolo

    2017-03-06

    Deficiency of omega-3 polyunsaturated fatty acids (PUFAs) and an alteration between the ratio of omega-3 and omega-6 PUFAs may contribute to the pathogenesis of bipolar disorder and unipolar depression. Recent epidemiological studies have also demonstrated an association between the depletion of PUFAs and suicide. Our aim was to investigate the relationship between PUFAs and suicide; assess whether the depletion of PUFAs may be considered a risk factor for suicidal behavior; in addition to detailing the potential use of PUFAs in clinical practice. We performed a systematic review on PUFAs and suicide in mood disorders, searching MedLine, Excerpta Medica, PsycLit, PsycInfo, and Index Medicus for relevant epidemiological, post-mortem, and clinical studies from January 1997 to September 2016. A total of 20 articles from peer-reviewed journals were identified and selected for this review. The reviewed studies suggest that subjects with psychiatric conditions have a depletion of omega-3 PUFAs compared to control groups. This fatty acid depletion has also been found to contribute to suicidal thoughts and behavior in some cases. However, large epidemiological studies have generally not supported this finding, as the depletion of omega-3 PUFAs was not statistically different between controls and patients diagnosed with a mental illness and/or who engaged in suicidal behavior. Increasing PUFA intake may be relevant in the treatment of depression, however in respect to the prevention of suicide, the data is currently not supportive of this approach. Changes in levels of PUFAs may however be a risk factor to evaluate when assessing for suicide risk. Clinical studies should be conducted to prospectively assess whether prescriptive long-term use of PUFAs in PUFA-deficient people with depression, may have a preventative role in attenuating suicide.

  3. Effects of dietary inulin on bacterial growth, short-chain fatty acid production and hepatic lipid metabolism in gnotobiotic mice.

    Science.gov (United States)

    Weitkunat, Karolin; Schumann, Sara; Petzke, Klaus Jürgen; Blaut, Michael; Loh, Gunnar; Klaus, Susanne

    2015-09-01

    In literature, contradictory effects of dietary fibers and their fermentation products, short-chain fatty acids (SCFA), are described: On one hand, they increase satiety, but on the other hand, they provide additional energy and promote obesity development. We aimed to answer this paradox by investigating the effects of fermentable and non-fermentable fibers on obesity induced by high-fat diet in gnotobiotic C3H/HeOuJ mice colonized with a simplified human microbiota. Mice were fed a high-fat diet supplemented either with 10% cellulose (non-fermentable) or inulin (fermentable) for 6 weeks. Feeding the inulin diet resulted in an increased diet digestibility and reduced feces energy, compared to the cellulose diet with no differences in food intake, suggesting an increased intestinal energy extraction from inulin. However, we observed no increase in body fat/weight. The additional energy provided by the inulin diet led to an increased bacterial proliferation in this group. Supplementation of inulin resulted further in significantly elevated concentrations of total SCFA in cecum and portal vein plasma, with a reduced cecal acetate:propionate ratio. Hepatic expression of genes involved in lipogenesis (Fasn, Gpam) and fatty acid elongation/desaturation (Scd1, Elovl3, Elovl6, Elovl5, Fads1 and Fads2) were decreased in inulin-fed animals. Accordingly, plasma and liver phospholipid composition were changed between the different feeding groups. Concentrations of omega-3 and odd-chain fatty acids were increased in inulin-fed mice, whereas omega-6 fatty acids were reduced. Taken together, these data indicate that, during this short-term feeding, inulin has mainly positive effects on the lipid metabolism, which could cause beneficial effects during obesity development in long-term studies.

  4. Emerging roles for specific fatty acids in developmental processes

    OpenAIRE

    Vrablik, Tracy L.; Watts, Jennifer L.

    2012-01-01

    Animals synthesize a vast range of fatty acids serving diverse cellular functions. The roles of specific fatty acids in early development are just beginning to be characterized. In this Perspective, a study by Kniazeva et al. (in the March 15, 2012, issue) that describes the particular combination of a branched chain fatty acid and an acyl-CoA synthetase required for critical cellular processes during early embryogenesis in C. elegans is discussed.

  5. Important bioactive properties of omega-3 fatty acids

    OpenAIRE

    Rui Xu

    2015-01-01

    Good health has been linked with healthy diet. N-3 fatty acids are required for proper functioning of many physiological systems. There is a large body of evidence documenting the effects of polyunsaturated fatty acids with the first double bond at the third position from methyl-terminal on health benefits. Scientific evidence is accumulating to substantiate the role omega-3 fatty acids play in conditions such as cardiovascular disease, certain cancers and other diseases. The availability of ...

  6. Fatty acid biosynthesis in novel ufa mutants of Neurospora crassa.

    Science.gov (United States)

    Goodrich-Tanrikulu, M; Stafford, A E; Lin, J T; Makapugay, M I; Fuller, G; McKeon, T A

    1994-10-01

    New mutants of Neurospora crassa having the ufa phenotype have been isolated. Two of these mutants, like previously identified ufa mutants, require an unsaturated fatty acid for growth and are almost completely blocked in the de novo synthesis of unsaturated fatty acids. The new mutations map to a different chromosomal location than previously characterized ufa mutations. This implies that at least one additional genetic locus controls the synthesis of unsaturated fatty acids in Neurospora.

  7. The Arachidonic Acid Metabolome Serves as a Conserved Regulator of Cholesterol Metabolism

    NARCIS (Netherlands)

    Demetz, Egon; Schroll, Andrea; Auer, Kristina; Heim, Christiane; Patsch, Josef R.; Eller, Philipp; Theurl, Markus; Theurl, Igor; Theurl, Milan; Seifert, Markus; Lener, Daniela; Stanzl, Ursula; Haschka, David; Asshoff, Malte; Dichtl, Stefanie; Nairz, Manfred; Huber, Eva; Stadlinger, Martin; Moschen, Alexander R.; Li, Xiaorong; Pallweber, Petra; Scharnagl, Hubert; Stojakovic, Tatjana; Maerz, Winfried; Kleber, Marcus E.; Garlaschelli, Katia; Uboldi, Patrizia; Catapano, Alberico L.; Stellaard, Frans; Rudling, Mats; Kuba, Keiji; Imai, Yumiko; Arita, Makoto; Schuetz, John D.; Pramstaller, Peter P.; Tietge, Uwe J. F.; Trauner, Michael; Norata, Giuseppe D.; Claudel, Thierry; Hicks, Andrew A.; Weiss, Guenter; Tancevski, Ivan

    2014-01-01

    Cholesterol metabolism is closely interrelated with cardiovascular disease in humans. Dietary supplementation with omega-6 polyunsaturated fatty acids including arachidonic acid (AA) was shown to favorably affect plasma LDL-C and HDL-C. However, the underlying mechanisms are poorly understood. By co

  8. Intestinal absorption of essential fatty acids under physiological and essential fatty acid-deficient conditions

    NARCIS (Netherlands)

    Minich, DM; Vonk, RJ; Verkade, HJ

    The adequate supply of essential fatty acids (EFA) to the body depends upon sufficient dietary intake and subsequent efficient intestinal absorption. Lipid malabsorption is not only a leading cause of EFA deficiency (EFAD), but also occurs secondarily to EFAD. Understanding the relationship between

  9. Ruminal fatty acid metabolism : altering rumen biohydrolgenation to improve milk fatty acid profile of dairy cows

    NARCIS (Netherlands)

    Sterk, A.R.

    2011-01-01

    Nutritional guidelines promote a reduced intake of saturated fatty acids (FA) and increased intake of unsaturated FA by humans. Milk and dairy products contain a high proportion of saturated FA caused by extensive alterations of dietary lipids in the rumen through the processes of lipolysis and

  10. Intake of fatty acids in Western Europe with emphasis on trans fatty acids: The TRANSFAIR study

    DEFF Research Database (Denmark)

    Hulshof, K. F. A. M.; Erp-Baart, M. A. van; Anttolainen, M.;

    1999-01-01

    and from clusters of fatty acids was less. Only in Finland, Italy, Norway and Portugal total fat did provide on average less than 35% of energy intake. Saturated fatty acids (SFA) provided on average between 10% and 19% of total energy intake, with the lowest contribution in most Mediterranean countries....... TFA intake ranged from 0.5% (Greece, Italy) to 2.1% (Iceland) of energy intake among men and from 0.8% (Greece) to 1.9% among women (Iceland) (1.2-6.7 g/d and 1.7-4.1 g/d, respectively). The TFA intake was lowest in Mediterranean countries (0.5-0.8 en%) but was also below 1% of energy in Finland...... and Germany. Moderate intakes were seen in Belgium, The Netherlands, Norway and UK and highest intake in Iceland. Trans isomers of C-18:1 were the most TFA in the diet. Monounsaturated fatty acids contributed 9-12% of mean daily energy intake (except for Greece, nearly 18%) and polyunsaturated fatty acids 3...

  11. Long-chain polyunsaturated fatty acid (LCPUFA requirement for brain development: A personal view

    Directory of Open Access Journals (Sweden)

    Gibson Robert A

    2016-01-01

    Full Text Available Dietary docosahexaenoic acid (DHA is known to accumulate in the infant brain and clinical trials have established that dietary DHA is associated with improvements in visual and neural function in preterm infants. Thus, an elevated DHA status is considered to be important throughout infancy for brain development. While DHA can be added directly to infant foods, there have been important studies to show that infants can partially meet their own DHA requirements by consuming adequate levels of omega 3 alpha linolenic acid (ALA. A key requirement to allow for the conversion of ALA to DHA and to maximise its incorporation into tissues is a diet that is also low in omega 6 linoleic acid (LA. Such diets are hard to find commercially because dietary guidelines dictate that ~3% energy of infant diets should be in the form of LA. These estimates were based on early animal experiments in which basal diets were devoid of both LA and ALA. However, recent animal experiments have indicated that the level of LA required to avoid essential fatty acid deficiency is much lower when ALA is also present in the diet. When a wide range diets are evaluated in animal systems, it is possible to see that the level of DHA found in the blood of animals fed diets containing only LA and ALA can reach levels similar to that of animals fed diets rich in fish oil, but only when the ALA:LA ratio is high and the total amount of dietary polyunsaturated fatty acids (PUFA is low. Diets that are rich in either monounsaturates or saturates meet these requirements. Importantly, there are human infant studies that have tested such diets and demonstrated that human infants accumulate greater amounts of DHA than when diets are high in LA. It might be time to reconsider the dietary requirement of the two essential fatty acids LA and ALA in human infants in terms of their ability to enhance endogenous synthesis of DHA rather than more adult biomarkers like cholesterol levels.

  12. Dietary omega-3 fatty acid intake and cardiovascular risk.

    Science.gov (United States)

    Psota, Tricia L; Gebauer, Sarah K; Kris-Etherton, Penny

    2006-08-21

    Dietary omega-3 fatty acids decrease the risk of cardiovascular disease (CVD). Both epidemiologic and interventional studies have demonstrated beneficial effects of omega-3 fatty acids on many CVD end points, including all CVD (defined as all coronary artery disease [CAD], fatal and nonfatal myocardial infarction [MI], and stroke combined), all CAD, fatal and nonfatal MI, stroke, sudden cardiac death, and all-cause mortality. Much of the evidence comes from studies with fish oil and fish; to a lesser extent, data relate to plant-derived omega-3 fatty acids. Cardioprotective benefits have been observed with daily consumption of as little as 25 to 57 g (approximately 1 to 2 oz) of fish high in omega-3 fatty acids, an intake equivalent to >or=1 fish meal weekly or even monthly, with greater intakes decreasing risk further in a dose-dependent manner, up to about 5 servings per week. Fish, including farm-raised fish and their wild counterparts, are the major dietary sources of the longer-chain omega-3 fatty acids. Sources of plant-derived omega-3 fatty acids include flaxseed, flaxseed oil, walnuts, canola oil, and soybean oil. Because of the remarkable cardioprotective effects of omega-3 fatty acids, consumption of food sources that provide omega-3 fatty acids--especially the longer-chain fatty acids (>or=20 carbons) from marine sources--should be increased in the diet to decrease CVD risk significantly.

  13. Echinococcus granulosus fatty acid binding proteins subcellular localization.

    Science.gov (United States)

    Alvite, Gabriela; Esteves, Adriana

    2016-05-01

    Two fatty acid binding proteins, EgFABP1 and EgFABP2, were isolated from the parasitic platyhelminth Echinococcus granulosus. These proteins bind fatty acids and have particular relevance in flatworms since de novo fatty acids synthesis is absent. Therefore platyhelminthes depend on the capture and intracellular distribution of host's lipids and fatty acid binding proteins could participate in lipid distribution. To elucidate EgFABP's roles, we investigated their intracellular distribution in the larval stage by a proteomic approach. Our results demonstrated the presence of EgFABP1 isoforms in cytosolic, nuclear, mitochondrial and microsomal fractions, suggesting that these molecules could be involved in several cellular processes.

  14. Effects of fatty acid activation on photosynthetic production of fatty acid-based biofuels in Synechocystis sp. PCC6803

    Directory of Open Access Journals (Sweden)

    Gao Qianqian

    2012-03-01

    Full Text Available Abstract Background Direct conversion of solar energy and carbon dioxide to drop in fuel molecules in a single biological system can be achieved from fatty acid-based biofuels such as fatty alcohols and alkanes. These molecules have similar properties to fossil fuels but can be produced by photosynthetic cyanobacteria. Results Synechocystis sp. PCC6803 mutant strains containing either overexpression or deletion of the slr1609 gene, which encodes an acyl-ACP synthetase (AAS, have been constructed. The complete segregation and deletion in all mutant strains was confirmed by PCR analysis. Blocking fatty acid activation by deleting slr1609 gene in wild-type Synechocystis sp. PCC6803 led to a doubling of the amount of free fatty acids and a decrease of alkane production by up to 90 percent. Overexpression of slr1609 gene in the wild-type Synechocystis sp. PCC6803 had no effect on the production of either free fatty acids or alkanes. Overexpression or deletion of slr1609 gene in the Synechocystis sp. PCC6803 mutant strain with the capability of making fatty alcohols by genetically introducing fatty acyl-CoA reductase respectively enhanced or reduced fatty alcohol production by 60 percent. Conclusions Fatty acid activation functionalized by the slr1609 gene is metabolically crucial for biosynthesis of fatty acid derivatives in Synechocystis sp. PCC6803. It is necessary but not sufficient for efficient production of alkanes. Fatty alcohol production can be significantly improved by the overexpression of slr1609 gene.

  15. Fatty acids profiling reveals potential candidate markers of semen quality.

    Science.gov (United States)

    Zerbinati, C; Caponecchia, L; Rago, R; Leoncini, E; Bottaccioli, A G; Ciacciarelli, M; Pacelli, A; Salacone, P; Sebastianelli, A; Pastore, A; Palleschi, G; Boccia, S; Carbone, A; Iuliano, L

    2016-11-01

    Previous reports showed altered fatty acid content in subjects with altered sperm parameters compared to normozoospermic individuals. However, these studies focused on a limited number of fatty acids, included a short number of subjects and results varied widely. We conducted a case-control study involving 155 patients allocated into four groups, including normozoospermia (n = 33), oligoasthenoteratozoospermia (n = 32), asthenozoospermia (n = 25), and varicocoele (n = 44). Fatty acid profiling, including 30 species, was analyzed by a validated gas chromatography (GC) method on the whole seminal fluid sample. Multinomial logistic regression modeling was used to identify the associations between fatty acids and the four groups. Specimens from 15 normozoospermic subjects were also analyzed for fatty acids content in the seminal plasma and spermatozoa to study the distribution in the two compartments. Fatty acids lipidome varied markedly between the four groups. Multinomial logistic regression modeling revealed that high levels of palmitic acid, behenic acid, oleic acid, and docosahexaenoic acid (DHA) confer a low risk to stay out of the normozoospermic group. In the whole population, seminal fluid stearic acid was negatively correlated (r = -0.53), and DHA was positively correlated (r = 0.65) with sperm motility. Some fatty acids were preferentially accumulated in spermatozoa and the highest difference was observed for DHA, which was 6.2 times higher in spermatozoa than in seminal plasma. The results of this study highlight complete fatty acids profile in patients with different semen parameters. Given the easy-to-follow and rapid method of analysis, fatty acid profiling by GC method can be used for therapeutic purposes and to measure compliance in infertility trials using fatty acids supplements. © 2016 American Society of Andrology and European Academy of Andrology.

  16. PPAR/RXR Regulation of Fatty Acid Metabolism and Fatty Acid -Hydroxylase (CYP4 Isozymes: Implications for Prevention of Lipotoxicity in Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    James P. Hardwick

    2009-01-01

    Full Text Available Fatty liver disease is a common lipid metabolism disorder influenced by the combination of individual genetic makeup, drug exposure, and life-style choices that are frequently associated with metabolic syndrome, which encompasses obesity, dyslipidemia, hypertension, hypertriglyceridemia, and insulin resistant diabetes. Common to obesity related dyslipidemia is the excessive storage of hepatic fatty acids (steatosis, due to a decrease in mitochondria -oxidation with an increase in both peroxisomal -oxidation, and microsomal -oxidation of fatty acids through peroxisome proliferator activated receptors (PPARs. How steatosis increases PPAR activated gene expression of fatty acid transport proteins, peroxisomal and mitochondrial fatty acid -oxidation and -oxidation of fatty acids genes regardless of whether dietary fatty acids are polyunsaturated (PUFA, monounsaturated (MUFA, or saturated (SFA may be determined by the interplay of PPARs and HNF4 with the fatty acid transport proteins L-FABP and ACBP. In hepatic steatosis and steatohepatitis, the -oxidation cytochrome P450 CYP4A gene expression is increased even with reduced hepatic levels of PPAR. Although numerous studies have suggested the role ethanol-inducible CYP2E1 in contributing to increased oxidative stress, Cyp2e1-null mice still develop steatohepatitis with a dramatic increase in CYP4A gene expression. This strongly implies that CYP4A fatty acid -hydroxylase P450s may play an important role in the development of steatohepatitis. In this review and tutorial, we briefly describe how fatty acids are partitioned by fatty acid transport proteins to either anabolic or catabolic pathways regulated by PPARs, and we explore how medium-chain fatty acid (MCFA CYP4A and long-chain fatty acid (LCFA CYP4F -hydroxylase genes are regulated in fatty liver. We finally propose a hypothesis that increased CYP4A expression with a decrease in CYP4F genes may promote the progression of steatosis to

  17. [Raman spectrometry of several saturated fatty acids and their salts].

    Science.gov (United States)

    Luo, Man; Guan, Ping; Liu, Wen-hui; Liu, Yan

    2006-11-01

    Saturated fatty acids and their salts widely exist in the nature, and they are well known as important chemical materials. Their infrared spectra have been studied in detail. Nevertheless, few works on the Raman spectra characteristics of saturated fatty acids and their salts have been published before. Man-made crystals of acetic acid, stearic acid, calcium acetate, magnesium acetate, calcium stearate and magnesium stearate were investigated by means of Fourier transform Raman spectrometry for purpose of realizing their Raman spectra. Positive ions can cause the distinctions between the spectra of saturated fatty acids and their salts. The differences in mass and configuration between Ca2+ and Mg2+ result in the Raman spectra's diversity between calcium and magnesium salts of saturated fatty acids. Meanwhile, it is considered that the long carbon chain weakened the influence of different positive ions on the salts of saturated fatty acids.

  18. Marine lipids and the bioavailability of omega-3 fatty acids

    DEFF Research Database (Denmark)

    Mu, Huiling; Müllertz, Anette

    2015-01-01

    Marine lipids are enriched with omega-3 fatty acids, especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Omega-3 fatty acids are important membrane lipids and have many recognized health benefits, the bioavailability of these fatty acids can therefore be important for achieving...... the beneficial healthy effects. As important membrane lipids, the incorporation and depletion kinetics of EPA and DHA in biological membranes have been found to be different, DHA was depleted slowly from both erythrocyte and plasma membranes due to the slow re-synthesis of DHA in the body. The bioavailability...... of omega-3 fatty acids has been reported to be affected by several factors; among the important factors were the digestion and absorption processes of omega-3 containing lipids in the gastrointestinal tract. Both lipid structures and food structures can affect the bioavailability of omega-3 fatty acids...

  19. Antineoplastic unsaturated fatty acids from Fijian macroalgae.

    Science.gov (United States)

    Jiang, Ren-Wang; Hay, Mark E; Fairchild, Craig R; Prudhomme, Jacques; Roch, Karine Le; Aalbersberg, William; Kubanek, Julia

    2008-10-01

    Phytochemical analysis of Fijian populations of the green alga Tydemania expeditionis led to the isolation of two unsaturated fatty acids, 3(zeta)-hydroxy-octadeca-4(E),6(Z),15(Z)-trienoic acid (1) and 3(zeta)-hydroxy-hexadeca-4(E),6(Z)-dienoic acid (2), along with the known 3(zeta)-hydroxy-octadeca-4(E),6(Z)-dienoic acid (4). Investigations of the red alga Hydrolithon reinboldii led to identification of a glycolipid, lithonoside (3), and five known compounds, 15-tricosenoic acid, hexacosa-5,9-dienoic methyl ester, beta-sitosterol, 10(S)-hydroxypheophytin A, and 10(R)-hydroxypheophytin A. The structures of 1-3 were elucidated by spectroscopic methods (1D and 2D NMR spectroscopy and ESI-MS). Compounds 1, 2, and 4, containing conjugated double bonds, demonstrated moderate inhibitory activity against a panel of tumor cell lines (including breast, colon, lung, prostate and ovarian cells) with IC(50) values ranging from 1.3 to 14.4 microM. The similar cell selectivity patterns of these three compounds suggest that they might act by a common, but unknown, mechanism of action.

  20. Effect of liver fatty acid binding protein on fatty acid movement between liposomes and rat liver microsomes.

    Science.gov (United States)

    McCormack, M; Brecher, P

    1987-01-01

    Although movement of fatty acids between bilayers can occur spontaneously, it has been postulated that intracellular movement is facilitated by a class of proteins named fatty acid binding proteins (FABP). In this study we have incorporated long chain fatty acids into multilamellar liposomes made of phosphatidylcholine, incubated them with rat liver microsomes containing an active acyl-CoA synthetase, and measured formation of acyl-CoA in the absence or presence of FABP purified from rat liver. FABP increased about 2-fold the accumulation of acyl-CoA when liposomes were the fatty acid donor. Using fatty acid incorporated into liposomes made either of egg yolk lecithin or of dipalmitoylphosphatidylcholine, it was found that the temperature dependence of acyl-CoA accumulation in the presence of FABP correlated with both the physical state of phospholipid molecules in the liposomes and the binding of fatty acid to FABP, suggesting that fatty acid must first desorb from the liposomes before FABP can have an effect. An FABP-fatty acid complex incubated with microsomes, in the absence of liposomes, resulted in greater acyl-CoA formation than when liposomes were present, suggesting that desorption of fatty acid from the membrane is rate-limiting in the accumulation of acyl-CoA by this system. Finally, an equilibrium dialysis cell separating liposomes from microsomes on opposite sides of a Nuclepore filter was used to show that liver FABP was required for the movement and activation of fatty acid between the compartments. These studies show that liver FABP interacts with fatty acid that desorbs from phospholipid bilayers, and promotes movement to a membrane-bound enzyme, suggesting that FABP may act intracellularly by increasing net desorption of fatty acid from cell membranes. PMID:3446187

  1. Resolution and quantification of isomeric fatty acids by silver ion HPLC: fatty acid composition of aniseed oil (Pimpinella anisum, Apiaceae).

    Science.gov (United States)

    Denev, Roumen V; Kuzmanova, Ivalina S; Momchilova, Svetlana M; Nikolova-Damyanova, Boryana M

    2011-01-01

    A silver ion HPLC procedure is described that is suitable to determine the fatty acid composition of plant seed oils. After conversion of fatty acids to p-methoxyphenacyl derivatives, it was possible to achieve baseline resolution of all fatty acid components with 0 to 3 double bonds, including the positionally isomeric 18:1 fatty acids oleic acid (cis 9-18:1), petroselinic acid (cis 6-18:1), and cis-vaccenic acid (cis 11-18:1), in aniseed oil (Pimpinella anisum, Apiaceae) by a single gradient run on a single cation exchange column laboratory converted to the silver ion form. The UV detector response (280 nm) was linearly related to the fatty acid concentration in the range 0.01 to 3.5 mg/mL.

  2. Importance of a balanced omega 6/omega 3 ratio for the maintenance of health: Nutritional recommendations

    Directory of Open Access Journals (Sweden)

    C. Gómez Candela

    Full Text Available The modification of dietary patterns has led to a change in fatty acid consumption, with an increase in the consumption of ω-6 fatty acids and a markerd reduction in the consumption of ω-3 fatty acids. This in turn has given rise to an imbalance in the ω-6/ω-3 ratio, which is now very different from the original 1:1 ratio of humans in the past. Given the involvement of ω-6 and ω-3 essential fatty acids in disease processes, the present article examines changes in dietary patterns that have led to the present reduction in the consumption of ω-3 essential fatty acids, and to study the importance of the ω-6/ω-3 balance in maintaining good health. In addition, an assese-ment is made of the established recommendations for preventing a poor intake of ω-3 essential fatty acids, and the possible options for compensating the lack of these fatty acids in the diet.

  3. Overproduction of fatty acids in engineered Saccharomyces cerevisiae.

    Science.gov (United States)

    Li, Xiaowei; Guo, Daoyi; Cheng, Yongbo; Zhu, Fayin; Deng, Zixin; Liu, Tiangang

    2014-09-01

    The long hydrocarbon fatty acyl chain is energy rich, making it an ideal precursor for liquid transportation fuels and high-value oleo chemicals. As Saccharomyces cerevisiae has many advantages for industrial production compared to Escherichia coli. Here, we attempted to engineer Saccharomyces cerevisiae for overproduction of fatty acids. First, disruption of the beta-oxidation pathway, elimination of the acyl-CoA synthetases, overexpression of different thioesterases and acetyl-CoA carboxylase ACC1, and engineering the supply of precursor acetyl-CoA. The engineered strain XL122 produced more than 120 mg/L of fatty acids. In parallel, we inactivated ADH1, the dominant gene for ethanol production, to redirect the metabolic flux to fatty acids synthesis. The engineered strain DG005 produced about 140 mg/L fatty acids. Additionally, Acetyl-CoA carboxylase was identified as a critical bottleneck of fatty acids synthesis in S. cerevisiae with a cell-free system. However, overexpression of ACC1 has little effect on fatty acids biosynthesis. As it has been reported that phosphorylation of ACC1 may influent its activity, so phosphorylation sites of ACC1 were further identified. Although the regulatory mechanisms remain unclear, our results provide rationale for future studies to target this critical step. All these efforts, particularly the discovery of the limiting step are critical for developing a "cell factory" for the overproduction of fatty acids by using type I fatty acids synthase in yeast or other fungi.

  4. Metabonomics Reveals Drastic Changes in Anti-Inflammatory/Pro-Resolving Polyunsaturated Fatty Acids-Derived Lipid Mediators in Leprosy Disease

    Science.gov (United States)

    Amaral, Julio J.; Antunes, Luis Caetano M.; de Macedo, Cristiana S.; Mattos, Katherine A.; Han, Jun; Pan, Jingxi; Candéa, André L. P.; Henriques, Maria das Graças M. O.; Ribeiro-Alves, Marcelo; Borchers, Christoph H.; Sarno, Euzenir N.; Bozza, Patrícia T.; Finlay, B. Brett; Pessolani, Maria Cristina V.

    2013-01-01

    Despite considerable efforts over the last decades, our understanding of leprosy pathogenesis remains limited. The complex interplay between pathogens and hosts has profound effects on host metabolism. To explore the metabolic perturbations associated with leprosy, we analyzed the serum metabolome of leprosy patients. Samples collected from lepromatous and tuberculoid patients before and immediately after the conclusion of multidrug therapy (MDT) were subjected to high-throughput metabolic profiling. Our results show marked metabolic alterations during leprosy that subside at the conclusion of MDT. Pathways showing the highest modulation were related to polyunsaturated fatty acid (PUFA) metabolism, with emphasis on anti-inflammatory, pro-resolving omega-3 fatty acids. These results were confirmed by eicosanoid measurements through enzyme-linked immunoassays. Corroborating the repertoire of metabolites altered in sera, metabonomic analysis of skin specimens revealed alterations in the levels of lipids derived from lipase activity, including PUFAs, suggesting a high lipid turnover in highly-infected lesions. Our data suggest that omega-6 and omega-3, PUFA-derived, pro-resolving lipid mediators contribute to reduced tissue damage irrespectively of pathogen burden during leprosy disease. Our results demonstrate the utility of a comprehensive metabonomic approach for identifying potential contributors to disease pathology that may facilitate the development of more targeted treatments for leprosy and other inflammatory diseases. PMID:23967366

  5. Metabonomics reveals drastic changes in anti-inflammatory/pro-resolving polyunsaturated fatty acids-derived lipid mediators in leprosy disease.

    Directory of Open Access Journals (Sweden)

    Julio J Amaral

    Full Text Available Despite considerable efforts over the last decades, our understanding of leprosy pathogenesis remains limited. The complex interplay between pathogens and hosts has profound effects on host metabolism. To explore the metabolic perturbations associated with leprosy, we analyzed the serum metabolome of leprosy patients. Samples collected from lepromatous and tuberculoid patients before and immediately after the conclusion of multidrug therapy (MDT were subjected to high-throughput metabolic profiling. Our results show marked metabolic alterations during leprosy that subside at the conclusion of MDT. Pathways showing the highest modulation were related to polyunsaturated fatty acid (PUFA metabolism, with emphasis on anti-inflammatory, pro-resolving omega-3 fatty acids. These results were confirmed by eicosanoid measurements through enzyme-linked immunoassays. Corroborating the repertoire of metabolites altered in sera, metabonomic analysis of skin specimens revealed alterations in the levels of lipids derived from lipase activity, including PUFAs, suggesting a high lipid turnover in highly-infected lesions. Our data suggest that omega-6 and omega-3, PUFA-derived, pro-resolving lipid mediators contribute to reduced tissue damage irrespectively of pathogen burden during leprosy disease. Our results demonstrate the utility of a comprehensive metabonomic approach for identifying potential contributors to disease pathology that may facilitate the development of more targeted treatments for leprosy and other inflammatory diseases.

  6. Pseudo catalytic transformation of volatile fatty acids into fatty acid methyl esters.

    Science.gov (United States)

    Jung, Jong-Min; Cho, Jinwoo; Kim, Ki-Hyun; Kwon, Eilhann E

    2016-03-01

    Instead of anaerobic digestion of biodegradable wastes for producing methane, this work introduced the transformation of acidogenesis products (VFAs) into fatty acid methyl esters (FAMEs) to validate the feasible production of short-chained fatty alcohols via hydrogenation of FAMEs. In particular, among VFAs, this work mainly described the mechanistic explanations for transforming butyric acid into butyric acid methyl ester as a case study. Unlike the conventional esterification process (conversion efficiency of ∼94%), the newly introduced esterification under the presence of porous materials via the thermo-chemical process reached up to ∼99.5%. Furthermore, the newly introduced esterification via the thermo-chemical pathway in this work showed extremely high tolerance of impurities: the conversion efficiency under the presence of impurities reached up to ∼99±0.3%; thus, the inhibition behaviors attributed from the impurities used for the experimental work were negligible.

  7. Dynamic regulation of fatty acid pools for improved production of fatty alcohols in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Teixeira, Paulo Goncalves; Ferreira, Raphael; Zhou, Yongjin J.

    2017-01-01

    faa4 Delta strain constitutively expressing a carboxylic acid reductase from Mycobacterium marinum (MmCAR) and an endogenous alcohol dehydrogenase (Adh5) for in vivo production of fatty alcohols from FFAs. We observed production of fatty acids and fatty alcohols with different rates leading to high...... loss of precursors that compromises the process yield. In the present study, we aimed for dynamic expression of the fatty acyl-CoA synthetase gene FAA1 to regulate FFA and acyl-CoA pools in order to improve fatty alcohol production yields. Results: We analyzed the metabolite dynamics of a faa1 Delta...... levels of FFAs not being converted to the final product. To address the issue, we expressed the MmCAR + Adh5 pathway together with a fatty acyl-CoA reductase from Marinobacter aquaeolei to enable fatty alcohol production simultaneously from FFA and acyl-CoA, respectively. Then, we expressed FAA1 under...

  8. Fatty acids composition in fruits of wild rose species

    Directory of Open Access Journals (Sweden)

    Renata Nowak

    2011-01-01

    Full Text Available The oil content and fatty acids profile of a number of Polish wild species of rose fruits were examined by GC. The total fatty acid contents ranged from 6.5% to 12.9% of dry mass in fruits. The composition of oils was similar in the investigated species. 17 components were identified. An average composition was estimated as follows: linoleic acid (44.4-55.7%, a-linolenic acid (18.6-31.4%, oleic acid (13.5-20.3%, palmitic acid (2.3-3.3%, stearic acid (1-2.5%, octadecenoic acid (0.38-0.72%, eicosenoic acid (0.3-0.7%, eicosadienoic acid (0-0.16%, erucic acid (0.03-0.17% and minor fatty acids. The results indicate that rose fruits are a rich source of unsaturated fatty acids, especially in R. rubiginosa, R. rugosa and R. dumalis. There were statistically significant (p<0.05 differences in fatty acid compositions of some species. Fatty acids were suggested to have a potential chemotaxonomic value in this genus.

  9. Increased Brain Fatty Acid Uptake in Metabolic Syndrome

    Science.gov (United States)

    Karmi, Anna; Iozzo, Patricia; Viljanen, Antti; Hirvonen, Jussi; Fielding, Barbara A.; Virtanen, Kirsi; Oikonen, Vesa; Kemppainen, Jukka; Viljanen, Tapio; Guiducci, Letizia; Haaparanta-Solin, Merja; Någren, Kjell; Solin, Olof; Nuutila, Pirjo

    2010-01-01

    OBJECTIVE To test whether brain fatty acid uptake is enhanced in obese subjects with metabolic syndrome (MS) and whether weight reduction modifies it. RESEARCH DESIGN AND METHODS We measured brain fatty acid uptake in a group of 23 patients with MS and 7 age-matched healthy control subjects during fasting conditions using positron emission tomography (PET) with [11C]-palmitate and [18F]fluoro-6-thia-heptadecanoic acid ([18F]-FTHA). Sixteen MS subjects were restudied after 6 weeks of very low calorie diet intervention. RESULTS At baseline, brain global fatty acid uptake derived from [18F]-FTHA was 50% higher in patients with MS compared with control subjects. The mean percentage increment was 130% in the white matter, 47% in the gray matter, and uniform across brain regions. In the MS group, the nonoxidized fraction measured using [11C]-palmitate was 86% higher. Brain fatty acid uptake measured with [18F]-FTHA-PET was associated with age, fasting serum insulin, and homeostasis model assessment (HOMA) index. Both total and nonoxidized fractions of fatty acid uptake were associated with BMI. Rapid weight reduction decreased brain fatty acid uptake by 17%. CONCLUSIONS To our knowledge, this is the first study on humans to observe enhanced brain fatty acid uptake in patients with MS. Both fatty acid uptake and accumulation appear to be increased in MS patients and reversed by weight reduction. PMID:20566663

  10. Polyunsaturated fatty acids and inflammatory diseases.

    Science.gov (United States)

    Gil, A

    2002-10-01

    Inflammation is overall a protective response, whose main goal is to liberate the human being of cellular lesions caused by micro-organisms, toxins, allergens, etc., as well as its consequences, and of death cells and necrotic tissues. Chronic inflammation, which is detrimental to tissues, is the basic pathogenic mechanism of hypersensitivity reactions against xenobiotics. Other frequent pathologies, for instance atherosclerosis, chronic hepatitis, inflammatory bowel disease (IBD), liver cirrhosis, lung fibrosis, psoriasis, and rheumatoid arthritis are also chronic inflammatory diseases. Chemical mediators of inflammation are derived from blood plasma or different cell-type activity. Biogenic amines, eicosanoids and cytokines are within the most important mediators of inflammatory processes. The different activities of eicosanoids derived from arachidonic acid (20:4 n-6) versus those derived from eicosapentaenoic acid (20:5 n-3) are one of the most important mechanisms to explain why n-3, or omega-3, polyunsaturated fatty acids (PUFA) exhibit anti-inflammatory properties in many inflammatory diseases. Dietary supplements ranging 1-8 g per day of n-3 PUFA have been reportedly beneficial in the treatment of IBD, eczema, psoriasis and rheumatoid arthritis. In addition, recent experimental studies in rats with experimental ulcerative colitis, induced by intrarectal injection of trinitrobenzene sulphonic acid, have documented that treatment with n-3 long-chain PUFA reduces mucosal damage as assessed by biochemical and histological markers of inflammation. Moreover, the defence antioxidant system in this model is enhanced in treated animals, provided that the n-3 PUFA supply is adequately preserved from oxidation.

  11. Genetic variability of fatty acids in bovine milk

    Directory of Open Access Journals (Sweden)

    Soyeurt H.

    2008-01-01

    Full Text Available Fatty acids composition of bovine milk influences the technological properties of butterfat and also presents some potential benefits for human health. Impact of feeding on fat composition is well described in the literature; less information is available about the impact of genetics. Based on few studies, essentially conducted to isolate some feeding effect, the breed seemed to influence the fatty acids composition. The variation in the activity of δ-9 desaturase, key enzyme in the production of monounsaturated fatty acids and conjugated linoleic acids in milk, could explain these differences. Very few studies have been focussing on the estimation of genetic parameters of fatty acids composition. However, the moderate heritability estimates observed by these studies for the major fatty acids could suggest a potential genetic effect.

  12. Modifications of proteins by polyunsaturated fatty acid peroxidation products

    DEFF Research Database (Denmark)

    Refsgaard, Hanne; Tsai, Lin; Stadtman, Earl

    2000-01-01

    The ability of unsaturated fatty acid methyl esters to modify amino acid residues in bovine serum albumin (BSA), glutamine synthetase, and insulin in the presence of a metal-catalyzed oxidation system [ascorbate/Fe(lll)/O-2] depends on the degree of unsaturation of the fatty acid. The fatty acid......-dependent generation of carbonyl groups and loss of lysine residues increased in the order methyl linoleate fatty acids were oxidized in the presence...... in the formation of protein carbonyls, These results are consistent with the proposition that metal-catalyzed oxidation of polyunsaturated fatty acids can contribute to the generation of protein carbonyls by direct interaction of lipid oxidation products (alpha,beta-unsaturated aldehydes) with lysine residues...

  13. [Possible route for thiamine participation in fatty acid synthesis].

    Science.gov (United States)

    Buko, V U; Larin, F S

    1976-01-01

    The possibility of thiamine partaking in the synthesis of fatty acids through the functions unrelated to the catalytic properties of thiamine-diphosphate was studied. Rats kept on a fat-free ration devoid of thiamine were given thiamine of thiochrome with no vitaminic properties. The total fatty acids content in different tissues and incorporation therein of tagged acetate and pyruvate was determined, while the fatty acids composition of the liver was investigated by using gas chromatography. Thiamine and thiochrome produced a similar effect on a number of the study factors, i.e. they forced down the total acids level in the spleen, intensified incorporation of tagged acetate and pyruvate in fatty acids of the heart and uniformly changed the fatty acids composition in the liver. It is suggested that the unindirectional effects of thiamine and thiochrome is due to the oxidative transformation of thiamine into thiochrome.

  14. Sex Steroid Modulation of Fatty Acid Utilization and Fatty Acid Binding Protein Concentration in Rat Liver

    Science.gov (United States)

    Ockner, Robert K.; Lysenko, Nina; Manning, Joan A.; Monroe, Scott E.; Burnett, David A.

    1980-01-01

    The mechanism by which sex steroids influence very low density hepatic lipoprotein triglyceride production has not been fully elucidated. In previous studies we showed that [14C]oleate utilization and incorporation into triglycerides were greater in hepatocyte suspensions from adult female rats than from males. The sex differences were not related to activities of the enzymes of triglyceride biosynthesis, whereas fatty acid binding protein (FABP) concentration in liver cytosol was greater in females. These findings suggested that sex differences in lipoprotein could reflect a sex steroid influence on the availability of fatty acids for hepatocellular triglyceride biosynthesis. In the present studies, sex steroid effects on hepatocyte [14C]oleate utilization and FABP concentration were investigated directly. Hepatocytes from immature (30-d-old) rats exhibited no sex differences in [14C]oleate utilization. With maturation, total [14C]oleate utilization and triglyceride biosynthesis increased moderately in female cells and decreased markedly in male cells; the profound sex differences in adults were maximal by age 60 d. Fatty acid oxidation was little affected. Rats were castrated at age 30 d, and received estradiol, testosterone, or no hormone until age 60 d, when hepatocyte [14C]oleate utilization was studied. Castration virtually eliminated maturational changes and blunted the sex differences in adults. Estradiol or testosterone largely reproduced the appropriate adult pattern of [14C]oleate utilization regardless of the genotypic sex of the treated animal. In immature females and males, total cytosolic FABP concentrations were similar. In 60-d-old animals, there was a striking correlation among all groups (females, males, castrates, and hormone-treated) between mean cytosolic FABP concentration on the one hand, and mean total [14C]oleate utilization (r = 0.91) and incorporation into triglycerides (r = 0.94) on the other. In 30-d-old animals rates of [14C

  15. Sources and Bioactive Properties of Conjugated Dietary Fatty Acids.

    Science.gov (United States)

    Hennessy, Alan A; Ross, Paul R; Fitzgerald, Gerald F; Stanton, Catherine

    2016-04-01

    The group of conjugated fatty acids known as conjugated linoleic acid (CLA) isomers have been extensively studied with regard to their bioactive potential in treating some of the most prominent human health malignancies. However, CLA isomers are not the only group of potentially bioactive conjugated fatty acids currently undergoing study. In this regard, isomers of conjugated α-linolenic acid, conjugated nonadecadienoic acid and conjugated eicosapentaenoic acid, to name but a few, have undergone experimental assessment. These studies have indicated many of these conjugated fatty acid isomers commonly possess anti-carcinogenic, anti-adipogenic, anti-inflammatory and immune modulating properties, a number of which will be discussed in this review. The mechanisms through which these bioactivities are mediated have not yet been fully elucidated. However, existing evidence indicates that these fatty acids may play a role in modulating the expression of several oncogenes, cell cycle regulators, and genes associated with energy metabolism. Despite such bioactive potential, interest in these conjugated fatty acids has remained low relative to the CLA isomers. This may be partly attributed to the relatively recent emergence of these fatty acids as bioactives, but also due to a lack of awareness regarding sources from which they can be produced. In this review, we will also highlight the common sources of these conjugated fatty acids, including plants, algae, microbes and chemosynthesis.

  16. Pentadecanoic and Heptadecanoic Acids: Multifaceted Odd-Chain Fatty Acids.

    Science.gov (United States)

    Pfeuffer, Maria; Jaudszus, Anke

    2016-07-01

    The odd-chain fatty acids (OCFAs) pentadecanoic acid (15:0) and heptadecanoic acid (17:0), which account for only a small proportion of total saturated fatty acids in milk fat and ruminant meat, are accepted biomarkers of dairy fat intake. However, they can also be synthesized endogenously, for example, from gut-derived propionic acid (3:0). A number of studies have shown an inverse association between OCFA concentrations in human plasma phospholipids or RBCs and risk of type 2 diabetes and cardiovascular disease. We propose a possible involvement in metabolic regulation from the assumption that there is a link between 15:0 and 17:0 and the metabolism of other short-chain, medium-chain, and longer-chain OCFAs. The OCFAs 15:0 and 17:0 can be elongated to very-long-chain FAs (VLCFAs) such as tricosanoic acid (23:0) and pentacosanoic acid (25:0) in glycosphingolipids, particularly found in brain tissue, or can be derived from these VLCFAs. Their chains can be shortened, yielding propionyl-coenzyme A (CoA). Propionyl-CoA, by succinyl-CoA, can replenish the citric acid cycle (CAC) with anaplerotic intermediates and, thus, improve mitochondrial energy metabolism. Mitochondrial function is compromised in a number of disorders and may be impaired with increasing age. Optimizing anaplerotic intermediate availability for the CAC may help to cope with demands in times of increased metabolic stress and with aging. OCFAs may serve as substrates for synthesis of both odd-numbered VLCFAs and propionyl-CoA or store away excess propionic acid.

  17. Fatty acid-amino acid conjugates diversification in lepidopteran caterpillars.

    Science.gov (United States)

    Yoshinaga, Naoko; Alborn, Hans T; Nakanishi, Tomoaki; Suckling, David M; Nishida, Ritsuo; Tumlinson, James H; Mori, Naoki

    2010-03-01

    Fatty acid amino acid conjugates (FACs) have been found in noctuid as well as sphingid caterpillar oral secretions; in particular, volicitin [N-(17-hydroxylinolenoyl)-L-glutamine] and its biochemical precursor, N-linolenoyl-L-glutamine, are known elicitors of induced volatile emissions in corn plants. These induced volatiles, in turn, attract natural enemies of the caterpillars. In a previous study, we showed that N-linolenoyl-L-glutamine in larval Spodoptera litura plays an important role in nitrogen assimilation which might be an explanation for caterpillars synthesizing FACs despite an increased risk of attracting natural enemies. However, the presence of FACs in lepidopteran species outside these families of agricultural interest is not well known. We conducted FAC screening of 29 lepidopteran species, and found them in 19 of these species. Thus, FACs are commonly synthesized through a broad range of lepidopteran caterpillars. Since all FAC-containing species had N-linolenoyl-L-glutamine and/or N-linoleoyl-L-glutamine in common, and the evolutionarily earliest species among them had only these two FACs, these glutamine conjugates might be the evolutionarily older FACs. Furthermore, some species had glutamic acid conjugates, and some had hydroxylated FACs. Comparing the diversity of FACs with lepidopteran phylogeny indicates that glutamic acid conjugates can be synthesized by relatively primitive species, while hydroxylation of fatty acids is limited mostly to larger and more developed macrolepidopteran species.

  18. Modulating fatty acid oxidation in heart failure.

    Science.gov (United States)

    Lionetti, Vincenzo; Stanley, William C; Recchia, Fabio A

    2011-05-01

    In the advanced stages of heart failure, many key enzymes involved in myocardial energy substrate metabolism display various degrees of down-regulation. The net effect of the altered metabolic phenotype consists of reduced cardiac fatty oxidation, increased glycolysis and glucose oxidation, and rigidity of the metabolic response to changes in workload. Is this metabolic shift an adaptive mechanism that protects the heart or a maladaptive process that accelerates structural and functional derangement? The question remains open; however, the metabolic remodelling of the failing heart has induced a number of investigators to test the hypothesis that pharmacological modulation of myocardial substrate utilization might prove therapeutically advantageous. The present review addresses the effects of indirect and direct modulators of fatty acid (FA) oxidation, which are the best pharmacological agents available to date for 'metabolic therapy' of failing hearts. Evidence for the efficacy of therapeutic strategies based on modulators of FA metabolism is mixed, pointing to the possibility that the molecular/biochemical alterations induced by these pharmacological agents are more complex than originally thought. Much remains to be understood; however, the beneficial effects of molecules such as perhexiline and trimetazidine in small clinical trials indicate that this promising therapeutic strategy is worthy of further pursuit.

  19. Incorporated fish oil fatty acids prevent action potential shortening induced by circulating fish oil fatty acids

    Directory of Open Access Journals (Sweden)

    Hester M Den Ruijter

    2010-11-01

    Full Text Available Increased consumption of fatty fish, rich in omega-3 polyunsaturated fatty acids (3-PUFAs reduces the severity and number of arrhythmias. Long term 3-PUFA-intake modulates the activity of several cardiac ion channels leading to cardiac action potential shortening. Circulating 3-PUFAs in the bloodstream and incorporated 3-PUFAs in the cardiac membrane have a different mechanism to shorten the action potential. It is, however, unknown whether circulating 3-PUFAs in the bloodstream enhance or diminish the effects of incorporated 3-PUFAs. In the present study, we address this issue. Rabbits were fed a diet rich in fish oil (3 or sunflower oil (9, as control for 3 weeks. Ventricular myocytes were isolated by enzymatic dissociation and action potentials were measured using the perforated patch clamp technique in the absence and presence of acutely administered 3-PUFAs. Plasma of 3 fed rabbits contained more free eicosapentaenoic acid (EPA and isolated myocytes of 3 fed rabbits contained higher amounts of both EPA and docosahexaenoic acid (DHA in their sarcolemma compared to control. In the absence of acutely administered fatty acids, 3 myocytes had a shorter action potential with a more negative plateau than 9 myocytes. In the 9 myocytes, but not in the 3 myocytes, acute administration of a mixture of EPA+DHA shortened the action potential significantly. From these data we conclude that incorporated 3-PUFAs into the sarcolemma and acutely administered 3 fatty acids do not have a cumulative effect on action potential duration and morphology. As a consequence, patients with a high cardiac 3-PUFA status will probably not benefit from short term 3 supplementation as an antiarrhythmic therapy.

  20. Syntrophic degradation of fatty acids by methanogenic communities

    NARCIS (Netherlands)

    Stams, A.J.M.; Worm, P.; Sousa, D.Z.; Alves, M.M.; Plugge, C.M.

    2012-01-01

    In methanogenic environments degradation of fatty acids is a key process in the conversion of organic matter to methane and carbon dioxide. For degradation of fatty acids with three or more carbon atoms syntrophic communities are required. This chapter describes the general features of syntrophic de

  1. Interaction between fatty acid and the elastin network

    NARCIS (Netherlands)

    Vreeswijk, van J.

    1995-01-01

    The aim of the present study was to investigate the interaction between salts of fatty acids (FAS) and elastin. Absorption of fatty acids in elastin may affect the elasticity of elastin-containing tissue. Such phenomena could, for instance, be of relevance for the understanding of the

  2. 40 CFR 721.3629 - Triethanolamine salts of fatty acids.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Triethanolamine salts of fatty acids... Substances § 721.3629 Triethanolamine salts of fatty acids. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as triethanolamine salts of...

  3. Why do polyunsaturated fatty acids lower serum cholesterol?

    NARCIS (Netherlands)

    Beynen, A.C.; Katan, M.B.

    1985-01-01

    Replacement of saturated by polyunsaturated fatty acids in the diet may lower serum very low-density and low-density lipoprotein concentrations because the liver preferentially converts polyunsaturated fatty acids into ketone bodies instead of into very low-density lipoprotein triglycerides. Thus un

  4. Polyunsaturated fatty acid status of Dutch vegans and omnivores

    NARCIS (Netherlands)

    Fokkema, M R; Brouwer, D A; Hasperhoven, M B; Hettema, Y; Bemelmans, W J; Muskiet, F A

    2000-01-01

    We compared the polyunsaturated fatty acid (PUFA) status of Dutch vegans and omnivores to investigate whether disparities can be explained by different diets and long chain PUFA (LCP) synthesis rates. Dietary intakes and fatty acid compositions of erythrocytes (RBC), platelets (PLT), plasma choleste

  5. Distillation of natural fatty acids and their chemical derivatives

    Science.gov (United States)

    Well over 1,000 different fatty acids are known which are natural components of fats, oils (triacylglycerols), and other related compounds. These fatty acids can have different alkyl chain lengths, 0-6 carbon-carbon double bonds possessing cis- or trans-geometry, and can contain a variety of functio...

  6. Volatile fatty acids production in ruminants and the role of ...

    African Journals Online (AJOL)

    Yomi

    organic volatile fatty acids (VFAs) and microbial protein then become available to the ... short-chain fatty acids and lactate (Ritzhaupt et al.,. 1998a,b; Muller et al., 2002; .... staining for MCT4 was visualized in strata spinosum and basale. In the ...

  7. DETERGENCY OF THE 12 TO 18 CARBON SATURATED FATTY ACIDS

    Science.gov (United States)

    saturated fatty acids ) were explored to determine the relationship of the detergencies of such systems to the physico-chemical nature (HLB, hydrophile...suggested that in such systems the chief action is van der Waals adsorption between hydr oxide mole ratio adducts of tridecyl alcohol are poor detergents of the saturated fatty acids .

  8. Lipase-mediated resolution of branched chain fatty acids

    NARCIS (Netherlands)

    Heinsman, N.W.J.T.; Franssen, M.C.R.; Padt, A. van der; Boom, R.M.; Riet, K. van 't; Groot, A.E. de

    2002-01-01

    Branched chain fatty acids (BCFAs) are fatty acids substituted with alkyl groups. Many of them are chiral and therefore occur in two enantiomeric forms. This review describes their occurrence in Nature, their biosynthesis, their properties as flavours, and their enzymatic kinetic resolution. Many li

  9. Interaction between fatty acid salts and the elastin network.

    NARCIS (Netherlands)

    Vreeswijk, van J.

    1995-01-01

    The aim of the present study was to investigate the interaction between salts of fatty acids (FAS) and elastin. Absorption of fatty acids in elastin may affect the elasticity of elastin-containing tissue. Such phenomena could, for instance, be of relevance for the understanding of the formation of a

  10. An overview of the properties of fatty acid alkyl esters

    Science.gov (United States)

    Fatty acid alkyl esters of plant oils, especially in the form of methyl esters, have numerous applications with fuel use having received the most attention in recent times due to the potential high volume. Various properties imparted by neat fatty acid alkyl esters have been shown to influence fuel ...

  11. Chemical Sciences A comparative study of triglyceride and fatty acid ...

    African Journals Online (AJOL)

    Log in or Register to get access to full text downloads. ... Triglyceride and fatty acid composition were determined for palm oils from three different ... Much of the variations occurred in triglycerides with two or more unsaturated fatty acids in their ...

  12. Increased brain fatty acid uptake in metabolic syndrome

    DEFF Research Database (Denmark)

    Karmi, Anna; Iozzo, Patricia; Viljanen, Antti

    2010-01-01

    To test whether brain fatty acid uptake is enhanced in obese subjects with metabolic syndrome (MS) and whether weight reduction modifies it.......To test whether brain fatty acid uptake is enhanced in obese subjects with metabolic syndrome (MS) and whether weight reduction modifies it....

  13. Alternative origins for omega-3 fatty acids in the diet

    NARCIS (Netherlands)

    Lenihan-Geels, Georgia; Bishop, Karen S.

    2016-01-01

    Fish and seafood are important sources for LC PUFAs, EPA and DHA. These fatty acids may be synthesised in the body from short-chain fatty acids, including ALA; however, the enzymes involved in this pathway are considered inefficient. This means direct EPA and DHA sources are an important part of

  14. Fatty acid profile of 25 alternative lipid feedstocks

    Science.gov (United States)

    This study reports the fatty acid profiles of 25 alternative lipid feedstocks for the production of bio-based fuels and chemicals. Lipids were extracted using hexane from oil-bearing seeds using a standard Soxhlet apparatus. Fatty acid profiles were measured using gas chromatography-flame ionization...

  15. Polyunsaturated fatty acid status of Dutch vegans and omnivores

    NARCIS (Netherlands)

    Fokkema, M R; Brouwer, D A; Hasperhoven, M B; Hettema, Y; Bemelmans, W J; Muskiet, F A

    2000-01-01

    We compared the polyunsaturated fatty acid (PUFA) status of Dutch vegans and omnivores to investigate whether disparities can be explained by different diets and long chain PUFA (LCP) synthesis rates. Dietary intakes and fatty acid compositions of erythrocytes (RBC), platelets (PLT), plasma

  16. Polyunsaturated fatty acid status of Dutch vegans and omnivores

    NARCIS (Netherlands)

    Fokkema, M R; Brouwer, D A; Hasperhoven, M B; Hettema, Y; Bemelmans, W J; Muskiet, F A

    2000-01-01

    We compared the polyunsaturated fatty acid (PUFA) status of Dutch vegans and omnivores to investigate whether disparities can be explained by different diets and long chain PUFA (LCP) synthesis rates. Dietary intakes and fatty acid compositions of erythrocytes (RBC), platelets (PLT), plasma choleste

  17. Lipase-mediated resolution of branched chain fatty acids

    NARCIS (Netherlands)

    Heinsman, N.W.J.T.; Franssen, M.C.R.; Padt, A. van der; Boom, R.M.; Riet, K. van 't; Groot, A.E. de

    2002-01-01

    Branched chain fatty acids (BCFAs) are fatty acids substituted with alkyl groups. Many of them are chiral and therefore occur in two enantiomeric forms. This review describes their occurrence in Nature, their biosynthesis, their properties as flavours, and their enzymatic kinetic resolution. Many li

  18. New phenstatin-fatty acid conjugates: synthesis and evaluation.

    Science.gov (United States)

    Chen, Jinhui; Brown, David P; Wang, Yi-Jun; Chen, Zhe-Sheng

    2013-09-15

    New phenstatin-fatty acid conjugates have been synthesized and tested against the KB-3-1, H460, MCF-7 and HEK293 cell lines, with an increase in anti-proliferative activity being observed at the micro-molar level paralleling an increase in un-saturation in the fatty acid component.

  19. Seasonal changes on total fatty acid composition of carp (Cyprinus ...

    African Journals Online (AJOL)

    USER

    2010-06-21

    Jun 21, 2010 ... the melting temperatures of ω3 fatty acids are lower than ω6 fatty acids ... caught, they were transported on ice to the laboratories, filleted and frozen. .... is essential in the diet to help prevent coronary heart disease by reducing ...

  20. Synthesis of fatty acid starch esters in supercritical carbon dioxide

    NARCIS (Netherlands)

    Muljana, Henky; van der Knoop, Sjoerd; Keijzer, Danielle; Picchioni, Francesco; Janssen, Leon P. B. M.; Heeres, Hero J.

    2010-01-01

    This manuscript describes an exploratory study on the synthesis of fatty acid/potato starch esters using supercritical carbon dioxide (scCO(2)) as the solvent. The effects of process variables such as pressure (6-25 MPa), temperature (120-150 degrees C) and various basic catalysts and fatty acid der

  1. Analysis of fatty acid composition in human bone marrow aspirates.

    Science.gov (United States)

    Deshimaru, Ryota; Ishitani, Ken; Makita, Kazuya; Horiguchi, Fumi; Nozawa, Shiro

    2005-09-01

    In the present study, the fatty acid composition of bone marrow aspirates and serum phospholipids in nine patients with hematologic diseases was investigated, and the effect of fatty acids on osteoblast differentiation in ST2 cells was examined. The concentrations of oleic acid and palmitic acid were significantly higher in bone marrow aspirates than in serum phospholipids, but the concentrations of other fatty acids did not differ. The rate of alkaline phosphatase positive ST2 cells induced by BMP2 was significantly increased by oleic acid, but was unaffected by the presence or absence of palmitic acid. We conclude that the fatty acid composition of bone marrow aspirates differs from that of serum phospholipids. This difference may affect osteoblast differentiation in the bone marrow microenvironment.

  2. Obesogenic diets enriched in oleic acid vs saturated fatty acids differentially modify polyunsaturated fatty acid composition in liver and visceral adipose

    Science.gov (United States)

    Emerging evidence indicates that the fatty acid composition of obesogenic diets impacts physiologic outcomes. Much attention is focused on the biologic effects of consuming monounsaturated fatty acids (MUFA) vs saturated fatty acids (SFA). We investigated the extent to which an obesogenic diet high ...

  3. Replacement of dietary saturated fatty acids by trans fatty acids lowers serum HDL cholesterol and impairs endothelial function in healthy men and women

    NARCIS (Netherlands)

    Roos, de N.M.; Bots, M.L.; Katan, M.B.

    2001-01-01

    We tested whether trans fatty acids and saturated fatty acids had different effects on flow-mediated vasodilation (FMD), a risk marker of coronary heart disease (CHD). Consumption of trans fatty acids is related to increased risk of CHD, probably through effects on lipoproteins. Trans fatty acids di

  4. Complex Pharmacology of Free Fatty Acid Receptors

    DEFF Research Database (Denmark)

    Milligan, Graeme; Shimpukade, Bharat; Ulven, Trond

    2017-01-01

    G protein-coupled receptors (GPCRs) are historically the most successful family of drug targets. In recent times it has become clear that the pharmacology of these receptors is far more complex than previously imagined. Understanding of the pharmacological regulation of GPCRs now extends beyond...... pharmacology have shaped understanding of the complex pharmacology of receptors that recognize and are activated by nonesterified or "free" fatty acids (FFAs). The FFA family of receptors is a recently deorphanized set of GPCRs, the members of which are now receiving substantial interest as novel targets...... for the treatment of metabolic and inflammatory diseases. Further understanding of the complex pharmacology of these receptors will be critical to unlocking their ultimate therapeutic potential....

  5. Polyunsaturated fatty acids and prostate cancer risk

    DEFF Research Database (Denmark)

    Khankari, Nikhil K; Murff, Harvey J; Zeng, Chenjie

    2016-01-01

    BACKGROUND: Prostate cancer is a common cancer worldwide with no established modifiable lifestyle factors to guide prevention. The associations between polyunsaturated fatty acids (PUFAs) and prostate cancer risk have been inconsistent. Using Mendelian randomisation, we evaluated associations...... between PUFAs and prostate cancer risk. METHODS: We used individual-level data from a consortium of 22 721 cases and 23 034 controls of European ancestry. Externally-weighted PUFA-specific polygenic risk scores (wPRSs), with explanatory variation ranging from 0.65 to 33.07%, were constructed and used...... to evaluate associations with prostate cancer risk per one standard deviation (s.d.) increase in genetically-predicted plasma PUFA levels using multivariable-adjusted unconditional logistic regression. RESULTS: No overall association was observed between the genetically-predicted PUFAs evaluated in this study...

  6. Determination of free fatty acids in beer.

    Science.gov (United States)

    Bravi, Elisabetta; Marconi, Ombretta; Sileoni, Valeria; Perretti, Giuseppe

    2017-01-15

    Free fatty acids (FFA) content of beer affects the ability to form a stable head of foam and plays an important role in beer staling. Moreover, the presence of saturated FAs is related sometimes to gushing problems in beer. The aim of this research was to validate an analytical method for the determination of FFAs in beer. The extraction of FFAs in beer was achieved via Liquid-Liquid Cartridge Extraction (LLCE), the FFAs extract was purified by Solid Phase Extraction (SPE), methylated by boron trifluoride in methanol, and injected into GC-FID system. The performance criteria demonstrate that this method is suitable for the analysis of medium and long chain FFAs in beer. The proposed method was tested on four experimental beers.

  7. Omega 3 fatty acids in psychiatry

    Directory of Open Access Journals (Sweden)

    Pavlović D.M.

    2013-01-01

    Full Text Available Omega-3 long-chain polyunsaturated fatty acids (ω-3 LC-PUFAs are thought to be important for normal dopaminergic, glutamatergic and serotonergic neurotransmission. Depression is less prevalent in societies with high fish consumption, and depressed patients have significantly lower red blood cell ω-3 levels. Studies with ω-3 supplementation have led to controversial results. A significantly longer remission of bipolar symptomatology has been confirmed from a high-dose DHA and EPA mixture. Greater seafood consumption per capita has been connected with a lower prevalence of bipolar spectrum disorders. Reduced levels of ω-6 and ω-3 PUFAs were found in patients with schizophrenia. [Projekat Ministarstva nauke Republike Srbije, br. 175033 i br. 175022

  8. Increased Production of Fatty Acids and Triglycerides in Aspergillus oryzae by Enhancing Expressions of Fatty Acid Synthesis-Related Genes

    Energy Technology Data Exchange (ETDEWEB)

    Tamano, Koichi; Bruno, Kenneth S.; Karagiosis, Sue A.; Culley, David E.; Deng, Shuang; Collett, James R.; Umemura, Myco; Koike, Hideaki; Baker, Scott E.; Machida, Masa

    2013-01-01

    Microbial production of fats and oils is being developedas a means of converting biomass to biofuels. Here we investigate enhancing expression of enzymes involved in the production of fatty acids and triglycerides as a means to increase production of these compounds in Aspergillusoryzae. Examination of the A.oryzaegenome demonstrates that it contains twofatty acid synthases and several other genes that are predicted to be part of this biosynthetic pathway. We enhancedthe expressionof fatty acid synthesis-related genes by replacing their promoters with thepromoter fromthe constitutively highly expressedgene tef1. We demonstrate that by simply increasing the expression of the fatty acid synthasegenes we successfullyincreasedtheproduction of fatty acids and triglyceridesby more than two fold. Enhancement of expression of the fatty acid pathway genes ATP-citrate lyase and palmitoyl-ACP thioesteraseincreasedproductivity to a lesser extent.Increasing expression ofacetyl-CoA carboxylase caused no detectable change in fatty acid levels. Increases in message level for each gene were monitored usingquantitative real-time RT-PCR. Our data demonstrates that a simple increase in the abundance of fatty acid synthase genes can increase the detectable amount of fatty acids.

  9. Important bioactive properties of omega-3 fatty acids

    Directory of Open Access Journals (Sweden)

    Rui Xu

    2015-06-01

    Full Text Available Good health has been linked with healthy diet. N-3 fatty acids are required for proper functioning of many physiological systems. There is a large body of evidence documenting the effects of polyunsaturated fatty acids with the first double bond at the third position from methyl-terminal on health benefits. Scientific evidence is accumulating to substantiate the role omega-3 fatty acids play in conditions such as cardiovascular disease, certain cancers and other diseases. The availability of n-3 fatty acids to various tissues is of major importance to health and depends on dietary intake for both normal development and in the prevention and management of chronic diseases.In this review we will summarize the biological properties of omega-3 fatty acids.

  10. Heterogeneity in limb fatty acid kinetics in type 2 diabetes

    DEFF Research Database (Denmark)

    Sacchetti, M; Olsen, D B; Saltin, B

    2005-01-01

    AIMS/HYPOTHESIS: In order to test the hypothesis that disturbances in skeletal muscle fatty acid metabolism with type 2 diabetes are not equally present in the upper and lower limbs, we studied fatty acid kinetics simultaneously across the arm and leg of type 2 diabetic patients (n=6) and matched...... control subjects (n=7) for 5 h under baseline conditions and during a 4-h hyperinsulinaemic-euglycaemic clamp. METHODS: Limb fatty acid kinetics was determined by means of continuous [U-(13)C]palmitate infusion and measurement of arteriovenous differences. RESULTS: The systemic palmitate rate...... in the dysregulation of skeletal muscle fatty acid metabolism, with only the leg, but not the arm, showing an impairment of fatty acid kinetics at baseline and during a hyperinsulinaemic-euglycaemic clamp causing a physiological increase in insulin concentration....

  11. Trans-fatty acids and cardiovascular risk: does origin matter?

    Science.gov (United States)

    Dawczynski, Christine; Lorkowski, Stefan

    2016-09-01

    Several studies have aimed to unravel the contribution of different types of dietary fatty acids to human health and disease. Investigations have consistently shown that high consumption of industrially produced trans-fatty acids from partially hydrogenated vegetable oils is harmful to human health, in particular cardiovascular health. Therefore, the U.S. Food and Drug Administration announced that partially hydrogenated oils are no longer 'generally recognized as safe', and trans-fatty acids are not permitted in the U.S. food supply. On the other hand, recent studies analyzing the association between circulating trans-fatty acids and disease have revealed that some ruminant-specific trans-fatty acids are associated with a reduction in incidence of disease. In this special report, we highlight recent findings and point out perspectives for future studies on this topic.

  12. Essential fatty acids as functional components of foods- a review.

    Science.gov (United States)

    Kaur, Narinder; Chugh, Vishal; Gupta, Anil K

    2014-10-01

    During the recent decades, awareness towards the role of essential fatty acids in human health and disease prevention has been unremittingly increasing among people. Fish, fish oils and some vegetable oils are rich sources of essential fatty acids. Many studies have positively correlated essential fatty acids with reduction of cardiovascular morbidity and mortality, infant development, cancer prevention, optimal brain and vision functioning, arthritis, hypertension, diabetes mellitus and neurological/neuropsychiatric disorders. Beneficial effects may be mediated through several different mechanisms, including alteration in cell membrane composition, gene expression or eicosanoid production. However, the mechanisms whereby essential fatty acids affect gene expression are complex and involve multiple processes. Further understanding of the molecular aspects of essential fatty acids will be the key to devising novel approaches to the treatment and prevention of many diseases.

  13. Omega-3 fatty acids and cytochrome P450-derived eicosanoids in cardiovascular diseases: Which actions and interactions modulate hemodynamics?

    Science.gov (United States)

    Bonafini, Sara; Fava, Cristiano

    2017-01-01

    Increasing interest is focused on omega-3 fatty acids (FA) because of their potential beneficial effects, particularly in cardiovascular disease prevention. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), two major omega-3 FA, are mainly consumed through diet, particularly from fish and seafood intake, whereas alpha-linolenic acid (ALA) is present in high amounts in leafy green vegetables, nuts and seeds. The hypothesis of a cardiovascular protective action of omega-3 FA derives mainly from observational studies, whereas the evidence from interventional studies is not always consistent. Nonetheless, clinical trials and meta-analyses indicate a positive action, at minimum on blood pressure (BP). Omega-3 FA may act through different biological pathways; however, in our review, we seek to revisit, most notably, the role of their metabolites via cytochrome P450 (CYP450) in hemodynamic modulation. We emphasize that the effect of omega-3 FA may depend on their balance with other dietary compounds, particularly omega-6 FA, which compete for the same pathways, thus modulating the production of metabolites. Furthermore, the biological activity of omega-3 FA might be better explained by the complex balance and interactions between a variety of nutrients and polymorphisms of genes implicated in specific metabolic pathways.

  14. Nature of the elements transporting long-chain fatty acids through the red cell membrane

    DEFF Research Database (Denmark)

    Bojesen, Inge Norby; Bojesen, Eigil

    1998-01-01

    Docosahexaenoic acid, linoleic acid, red cell membrane, transporting elements, transport kinetics,