WorldWideScience

Sample records for omega particle beams

  1. Lightweight HPC beam OMEGA

    Science.gov (United States)

    Sýkora, Michal; Jedlinský, Petr; Komanec, Jan

    2017-09-01

    In the design and construction of precast bridge structures, a general goal is to achieve the maximum possible span length. Often, the weight of individual beams makes them difficult to handle, which may be a limiting factor in achieving the desired span. The design of the OMEGA beam aims to solve a part of these problems. It is a thin-walled shell made of prestressed high-performance concrete (HPC) in the shape of inverted Ω character. The concrete shell with prestressed strands is fitted with a non-stressed tendon already in the casting yard and is more easily transported and installed on the site. The shells are subsequently completed with mild steel reinforcement and cores are cast in situ together with the deck. The OMEGA beams can also be used as an alternative to steel - concrete composite bridges. Due to the higher production complexity, OMEGA beam can hardly substitute conventional prestressed beams like T or PETRA completely, but it can be a useful alternative for specific construction needs.

  2. Omega spectrometer ready for SPS beams

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    Two different beams arrive into the Omega magnet: - a tagged photon beam for a charm search - experiment WA4 by the Bonn-CERN-Daresbury-Ecole Polytechnique-Glasgow-Lancaster-Manchester-Orsay-Sheffield Collaboration; - a separated hadron beam, at first for a beam-dump experiment - WA12 by the Birmingham-CERN-Ecole Polytechnique-MPI, Munich-Neuchâtel Collaboration. Beams of either negative or positive pions or kaons, protons or antiprotons, all at an energy around 40 GeV were made to impinge on a copper target where a shower of hadrons was produced and, on occasion, two muons which before detection passed through an iron absorber (not visible here). WA12 was completed in February 1977. At the centre, on top of the superconducting magnet, the hut containing the TV cameras, These observe the particle events occurring in the spark chambers in the magnet below.

  3. FEM simulation of static loading test of the Omega beam

    Science.gov (United States)

    Bílý, Petr; Kohoutková, Alena; Jedlinský, Petr

    2017-09-01

    The paper deals with a FEM simulation of static loading test of the Omega beam. Omega beam is a precast prestressed high-performance concrete element with the shape of Greek letter omega. Omega beam was designed as a self-supporting permanent formwork member for construction of girder bridges. FEM program ATENA Science was exploited for simulation of load-bearing test of the beam. The numerical model was calibrated using the data from both static loading test and tests of material properties. Comparison of load-displacement diagrams obtained from the experiment and the model was conducted. Development of cracks and crack patterns were compared. Very good agreement of experimental data and the FEM model was reached. The calibrated model can be used for design of optimized Omega beams in the future without the need of expensive loading tests. The calibrated material model can be also exploited in other types of FEM analyses of bridges constructed with the use of Omega beams, such as limit state analysis, optimization of shear connectors, prediction of long-term deflections or prediction of crack development.

  4. Omega: A 24-beam UV irradiation facility

    International Nuclear Information System (INIS)

    Richardson, M.C.; Beich, W.; Delettrez, J.

    1985-01-01

    The authors report on the characterization and performance of the 24-beam Omega laser facility under full third harmonic (351-nm) upconversion. This system provides for the first time a multibeam laser facility for the illumination of spherical targets with UV laser light in symmetric irradiation conditions with energies in the kilojoule range. This facility is capable of providing sufficient irradiation uniformity to test concepts of direct drive laser fusion with UV-driven ablation targets. The results of initial studies of ablatively driven DT-fueled glass microballoon targets will be described. The 24-beam Omega Nd:phosphate glass facility is capable of providing at 1054 nm output powers in excess of 10 TW in short ( 10 4 full system shots to date) irradiation facility with beam synchronism of approx. =3 psec, beam placement accuracy on target of 10 μm, and interbeam energy variance of approx. =2%. From measured target plane intensity distributions, overall illumination uniformity with tangentially focused beams is estimated to be approx. =5%. In 1984, a symmetric set of six beams was upconverted to 351-nm radiation using the polarization-mismatch scheme developed by Craxton. Monolithic cells of 20-cm clear aperture containing both frequency and doubler and tripler type II KDP crystals in index-matching propylene carbonate liquid were incorporated to output of six of the Omega beams with a full set of UV beam diagnostics

  5. Irradiation uniformity of spherical targets by multiple uv beams from OMEGA

    International Nuclear Information System (INIS)

    Beich, W.; Dunn, M.; Hutchison, R.

    1984-01-01

    Direct-drive laser fusion demands extremely high levels of irradiation uniformity to ensure uniform compression of spherical targets. The assessment of illumination uniformity of targets irradiated by multiple beams from the OMEGA facility is made with the aid of multiple beams spherical superposition codes, which take into account ray tracing and absorption and a detailed knowledge of the intensity distribution of each beam in the target plane. In this report, recent estimates of the irradiation uniformity achieved with 6 and 12 uv beams of OMEGA will be compared with previous measurements in the IR, and predictions will be made for the uv illumination uniformity achievable with 24 beams of OMEGA

  6. Golden Jubilee photos: The Alpha and the OMEGA

    CERN Multimedia

    2004-01-01

    In 1972, the OMEGA spectrometer was commissioned in the West Area and more than a million collisions were recorded that very first year. OMEGA was equipped with spark chambers - replaced at the end of the 1970s by electronic detectors - and a 15 000-tonne superconducting magnet. On this photo we can see the magnet's lower coil and, in the foreground, the support plate for the upper coil. No fewer than 48 experiments made use of this device, exploiting beams of various particles at various energies - from the PS at the beginning, and then from the highest energy beams of the SPS. OMEGA thus played a key role in many physics results and activities, notably the production of the J/psi particle, the study of particles carrying charm or beauty quarks, the study of «gluonia», and the CERN heavy ion programme. The OMEGA experiments ceased in 1996 when the facilities in the West Hall were shut down in preparation for the construction of the LHC.

  7. Mitigation of cross-beam energy transfer: Implication of two-state focal zooming on OMEGA

    International Nuclear Information System (INIS)

    Froula, D. H.; Kessler, T. J.; Igumenshchev, I. V.; Betti, R.; Goncharov, V. N.; Huang, H.; Hu, S. X.; Hill, E.; Kelly, J. H.; Meyerhofer, D. D.; Shvydky, A.; Zuegel, J. D.

    2013-01-01

    Cross-beam energy transfer (CBET) during OMEGA low-adiabat cryogenic experiments reduces the hydrodynamic efficiency by ∼35%, which lowers the calculated one-dimensional (1-D) yield by a factor of 7. CBET can be mitigated by reducing the diameter of the laser beams relative to the target diameter. Reducing the diameter of the laser beams by 30%, after a sufficient conduction zone has been generated (two-state zooming), is predicted to maintain low-mode uniformity while recovering 90% of the kinetic energy lost to CBET. A radially varying phase plate is proposed to implement two-state zooming on OMEGA. A beam propagating through the central half-diameter of the phase plate will produce a large spot, while a beam propagating through the outer annular region of the phase plate will produce a narrower spot. To generate the required two-state near-field laser-beam profile, a picket driver with smoothing by spectral dispersion (SSD) would pass through an apodizer, forming a beam of half the standard diameter. A second main-pulse driver would co-propagate without SSD through its own apodizer, forming a full-diameter annular beam. Hydrodynamic simulations, using the designed laser spots produced by the proposed zooming scheme on OMEGA, show that implementing zooming will increase the implosion velocity by 25% resulting in a 4.5× increase in the 1-D neutron yield. Demonstrating zooming on OMEGA would validate a viable direct-drive CBET mitigation scheme and help establish a pathway to hydrodynamically equivalent direct-drive–ignition implosions by increasing the ablation pressure (1.6×), which will allow for more stable implosions at ignition-relevant velocities

  8. Strange particles: production by Cosmotron beams as observed in diffusion cloud chambers

    International Nuclear Information System (INIS)

    Fowler, W.B.

    1989-01-01

    Proton beams, from the 1GeV Cosmotron accelerator at Brookhaven, were used in the 1950s to produce strange particles. One big leap forward technologically was the development of the diffusion cloud chamber which made detecting particle tracks more accurate and sensitive. A large co-operative team worked on its development. By the mid 1950s enough tracks had been observed to show the associated production of strange particles. It was the same Brookhaven workers who developed the eighty-inch hydrogen bubble chamber which took the first photograph of the long predicted omega minus particle at the end of the decade. (UK)

  9. The Omega RICH in the CERN hyperon beam experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, U; Beusch, W; Boss, M; Engelfried, J; Gerassimov, S G; Klempt, W; Lennert, P; Martens, K; Newbold, D; Rieseberg, H; Siebert, H -W; Smith, V J; Thilmann, O; Waelder, G

    1999-08-21

    The Omega RICH, a large-aperture detector for identification of secondary pions, kaons, and (anti) protons was in operation at the CERN Omega spectrometer facility between 1984 and 1994. Cherenkov photons from a 5 m long radiator were detected in drift chambers with quartz windows, using TMAE-loaded counting gases. The RICH was used by experiments WA69 and WA82, until 1988. It was then equipped with new drift chambers and mirrors and was in use since 1990 in experiments WA89 and WA94. The setup in the WA89 hyperon beam experiment is described in more detail and efficiencies, resolutions, and physics results are discussed.

  10. Measurement of the $\\Omega_{c}^{0}$ lifetime

    CERN Document Server

    Adamovich, M.I.; Alexandrov, Yu.A.; Barberis, D.; Beck, M.; Berat, C.; Beusch, W.; Boss, M.; Brons, S.; Bruckner, W.; Buenerd, M.; Buscher, C.; Charignon, F.; Chauvin, J.; Chudakov, E.A.; Dropmann, F.; Engelfried, J.; Faller, F.; Fournier, A.; Gerasimov, S.; Godbersen, M.; Grafstrom, P.; Haller, T.; Heidrich, M.; Hurst, R.B.; Konigsmann, Kay; Konorov, I.; Martens, K.; Martin, P.; Masciocchi, S.; Michaels, R.; Muller, U.; Newsom, C.; Paul, S.; Povh, B.; Ren, Z.; Rey-Campagnolle, M.; Rosner, G.; Rossi, L.; Rudolph, H.; Schmitt, L.; Siebert, H.W.; Simon, A.; Smith, V.J.; Thilmann, O.; Trombini, A.; Vesin, E.; Volkemer, B.; Vorwalter, K.; Walcher, T.; Walder, G.; Werding, R.; Wittmann, E.; Zavertyaev, M.V.

    1995-01-01

    We present the measurement of the lifetime of the Omega_c we have performed using three independent data samples from two different decay modes. Using a Sigma- beam of 340 GeV/c we have obtained clean signals for the Omega_c decaying into Xi- K- pi+ pi+ and Omega- pi+ pi- pi+, avoiding topological cuts normally used in charm analysis. The short but measurable lifetime of the Omega_c is demonstrated by a clear enhancement of the signals at short but finite decay lengths. Using a continuous maximum likelihood method we determined the lifetime to be tau(Omega_c) = 55 +13-11(stat) +18-23(syst) fs. This makes the Omega_c the shortest living weakly decaying particle observed so far. The short value of the lifetime confirms the predicted pattern of the charmed baryon lifetimes and demonstrates that the strong interaction plays a vital role in the lifetimes of charmed hadrons.

  11. Application of OMEGA Monte Carlo codes for radiation therapy treatment planning

    International Nuclear Information System (INIS)

    Ayyangar, Komanduri M.; Jiang, Steve B.

    1998-01-01

    The accuracy of conventional dose algorithms for radiosurgery treatment planning is limited, due to the inadequate consideration of the lateral radiation transport and the difficulty of acquiring accurate dosimetric data for very small beams. In the present paper, some initial work on the application of Monte Carlo method in radiation treatment planning in general, and in radiosurgery treatment planning in particular, has been presented. Two OMEGA Monte Carlo codes, BEAM and DOSXYZ, are used. The BEAM code is used to simulate the transport of particles in the linac treatment head and radiosurgery collimator. A phase space file is obtained from the BEAM simulation for each collimator size. The DOSXYZ code is used to calculate the dose distribution in the patient's body reconstructed from CT slices using the phase space file as input. The accuracy of OMEGA Monte Carlo simulation for radiosurgery dose calculation is verified by comparing the calculated and measured basic dosimetric data for several radiosurgery beams and a 4 x 4 cm 2 conventional beam. The dose distributions for three clinical cases are calculated using OMEGA codes as the dose engine for an in-house developed radiosurgery treatment planning system. The verification using basic dosimetric data and the dose calculation for clinical cases demonstrate the feasibility of applying OMEGA Monte Carlo code system to radiosurgery treatment planning. (author)

  12. Omega-3 PUFA concentration by a novel PVDF nano-composite membrane filled with nano-porous silica particles.

    Science.gov (United States)

    Ghasemian, Samaneh; Sahari, Mohammad Ali; Barzegar, Mohsen; Ahmadi Gavlighi, Hasan

    2017-09-01

    In this study, polyvinylidene fluoride (PVDF) and nano-porous silica particle were used to fabricate an asymmetric nano-composite membrane. Silica particles enhanced the thermal stability of PVDF/SiO 2 membranes; increasing the decomposition temperature from 371°C to 408°C. Cross sectional morphology showed that silica particles were dispersed in polymer matrix uniformly. However, particle agglomeration was found at higher loading of silica (i.e., 20 by weight%). The separation performance of nano-composite membranes was also evaluated using the omega-3 polyunsaturated fatty acids (PUFA) concentration at a temperature and pressure of 30°C and 4bar, respectively. Silica particle increased the omega-3PUFA concentration from 34.8 by weight% in neat PVDF to 53.9 by weight% in PVDF with 15 by weight% of silica. Moreover, PVDF/SiO 2 nano-composite membranes exhibited enhanced anti-fouling property compared to neat PVDF membrane. Fouling mechanism analysis revealed that complete pore blocking was the predominant mechanism occurring in oil filtration. The concentration of omega-3 polyunsaturated fatty acids (PUFA) is important in the oil industries. While the current methods demand high energy consumptions in concentrating the omega-3, membrane separation technology offers noticeable advantages in producing pure omega-3 PUFA. Moreover, concentrating omega-3 via membrane separation produces products in the triacylglycerol form which possess better oxidative stability. In this work, the detailed mechanisms of fouling which limits the performance of membrane separation were investigated. Incorporating silica particles to polymeric membrane resulted in the formation of mixed matrix membrane with improved anti-fouling behaviour compared to the neat polymeric membrane. Hence, the industrial potential of membrane processing to concentrate omega-3 fatty acids is enhanced. Copyright © 2017. Published by Elsevier Ltd.

  13. The Omega spectrometer

    CERN Multimedia

    CERN PhotoLab

    1974-01-01

    The huge superconducting magnet (3 m inside coil diameter, 2 m gap, 18 kGauss) contains a large number of optical spark chambers partly surrounding a hydrogen target which is hit by the beam entering from behind. The half cylindrical aluminium hut houses eight television cameras viewing the spark chambers from the top. The big gas Cerenkov counter in front of the picture (6 m x 4 m x 3 m) which identifies fast forward particles was constructed at Saclay as a contribution of one of the Omega.

  14. Symmetry control using beam phasing in ∼0.2 NIF scale high temperature Hohlraum experiment on OMEGA

    International Nuclear Information System (INIS)

    Delamater, Norman D.; Wilson, Goug C.; Kyrala, George A.; Seifter, Achim; Hoffman, N.M.; Dodd, E.; Glebov, V.

    2009-01-01

    Results are shown from recent experiments at the Omega laser facility, using 40 Omega beams driving the hohlraum with 3 cones from each side and up to 19.5 kJ of laser energy. Beam phasing is achieved by decreasing the energy separately in each of the three cones, by 3 kJ, for a total drive energy of 16.5kJ. This results in a more asymmetric drive, which will vary the shape of the imploded symmetry capsule core from round to oblate or prolate in a systematic and controlled manner. These results would be the first demonstration of beam phasing for implosions in such 'high temperature' (275 eV) hohlraums at Omega. Dante measurements confirmed the predicted peak drive temperatures of 275 eV. Implosion core time dependent x-ray images were obtained from framing camera data which show the expected change in symmetry due to beam phasing and which also agree well with post processed hydro code calculations. Time resolved hard x-ray data has been obtained and it was found that the hard x-rays are correlated mainly with the low angle 21 o degree cone.

  15. Spherical shock-ignition experiments with the 40 + 20-beam configuration on OMEGA

    Energy Technology Data Exchange (ETDEWEB)

    Theobald, W.; Anderson, K. S.; Delettrez, J. A.; Glebov, V. Yu.; Gotchev, O. V.; Hohenberger, M.; Hu, S. X.; Marshall, F. J.; Sangster, T. C.; Seka, W.; Stoeckl, C.; Yaakobi, B. [Laboratory for Laser Energetics and Fusion Science Center, University of Rochester, Rochester, New York 14623 (United States); Nora, R.; Betti, R.; Meyerhofer, D. D. [Laboratory for Laser Energetics and Fusion Science Center, University of Rochester, Rochester, New York 14623 (United States); Department of Mechanical Engineering and Physics at the University of Rochester, Rochester, New York 14623 (United States); Lafon, M. [Laboratory for Laser Energetics and Fusion Science Center, University of Rochester, Rochester, New York 14623 (United States); University of Bordeaux, CEA, CNRS, CELIA (Centre Lasers Intenses et Applications), F-33400 Talence (France); Casner, A. [CEA, DAM, DIF, F-91297 Arpajon (France); Ribeyre, X.; Schurtz, G. [University of Bordeaux, CEA, CNRS, CELIA (Centre Lasers Intenses et Applications), F-33400 Talence (France); Frenje, J. A. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); and others

    2012-10-15

    Spherical shock-ignition experiments on OMEGA used a novel beam configuration that separates low-intensity compression beams and high-intensity spike beams. Significant improvements in the performance of plastic-shell, D{sub 2} implosions were observed with repointed beams. The analysis of the coupling of the high-intensity spike beam energy into the imploding capsule indicates that absorbed hot-electron energy contributes to the coupling. The backscattering of laser energy was measured to reach up to 36% at single-beam intensities of {approx}8 Multiplication-Sign 10{sup 15} W/cm{sup 2}. Hard x-ray measurements revealed a relatively low hot-electron temperature of {approx}30 keV independent of intensity and timing. At the highest intensity, stimulated Brillouin scattering occurs near and above the quarter-critical density and the two-plasmon-decay instability is suppressed.

  16. Polar-Direct-Drive Experiments on OMEGA

    International Nuclear Information System (INIS)

    Marshall, F.J.; Craxton, R.S.; Bonino, M.J.; Epstein, R.; Glebov, V.Yu.; Jacobs-Perkins, D.; Knauer, J.P.; Marozas, J.A.; McKenty, P.W.; Noyes, S.G.; Radha, P.B.; Seka, W.; Skupsky, S.; Smalyuk

    2006-01-01

    Polar direct drive (PDD), a promising ignition path for the NIF while the beams are in the indirect-drive configuration, is currently being investigated on the OMEGA laser system by using 40 beams in six rings repointed to more uniformly illuminate the target. The OMEGA experiments are being performed with standard, ''warm'' targets with and without the use of an equatorial ''Saturn-like'' toroidally shaped CH ring. Target implosion symmetry is diagnosed with framed x-ray backlighting using additional OMEGA beams and by time-integrated x-ray imaging of the stagnating core

  17. Superconducting RF separator for Omega Spectrometer

    CERN Multimedia

    1977-01-01

    The photo shows an Nb-deflector for the superconducting RF separator ready for installation in its cryostat (visible at the back). Each deflector was about 3 m long. L. Husson and P. Skacel (Karlsruhe) stand on the left, A. Scharding (CERN) stands on the right. This particle separator, the result of a collaboration between the Gesellshaft für Kernforschung, Karlsruhe, and CERN was installed in the S1 beam line to Omega spectrometer. (See Annual Report 1977.)

  18. In 1972, the OMEGA spectrometer was commissioned in the West Area and more than a million collisions were recorded that very first year.

    CERN Multimedia

    CERN PhotoLab

    1972-01-01

    OMEGA was equipped with spark chambers - replaced at the end of the 1970s by electronic detectors - and a 15 000-tonne superconducting magnet. On this photo we can see the magnet's lower coil and, in the foreground, the support plate for the upper coil. No fewer than 48 experiments made use of this device, exploiting beams of various particles at various energies - from the PS at the beginning, and then from the highest energy beams of the SPS. OMEGA thus played a key role in many physics results and activities, notably the production of the J/psi particle, the study of particles carrying charm or beauty quarks, the study of «gluonia», and the CERN heavy ion programme. The OMEGA experiments ceased in 1996 when the facilities in the West Hall were shut down in preparation for the construction of the LHC.

  19. Polarimetry diagnostic on OMEGA EP using a 10-ps, 263-nm probe beam

    International Nuclear Information System (INIS)

    Davies, A.; Haberberger, D.; Boni, R.; Ivancic, S.; Brown, R.; Froula, D. H.

    2014-01-01

    A polarimetry diagnostic was built and characterized for magnetic-field measurements in laser-plasma experiments on the OMEGA EP laser. This diagnostic was built into the existing 4ω (263-nm) probe system that employs a 10-ps laser pulse collected with an f/4 imaging system. The diagnostic measures the rotation of the probe beam's polarization. The polarimeter uses a Wollaston prism to split the probe beam into orthogonal polarization components. Spatially localized intensity variations between images indicate polarization rotation. Magnetic fields can be calculated by combining the polarimetry data with the measured plasma density profile obtained from angular filter refractometry

  20. Polarimetry diagnostic on OMEGA EP using a 10-ps, 263-nm probe beam.

    Science.gov (United States)

    Davies, A; Haberberger, D; Boni, R; Ivancic, S; Brown, R; Froula, D H

    2014-11-01

    A polarimetry diagnostic was built and characterized for magnetic-field measurements in laser-plasma experiments on the OMEGA EP laser. This diagnostic was built into the existing 4ω (263-nm) probe system that employs a 10-ps laser pulse collected with an f/4 imaging system. The diagnostic measures the rotation of the probe beam's polarization. The polarimeter uses a Wollaston prism to split the probe beam into orthogonal polarization components. Spatially localized intensity variations between images indicate polarization rotation. Magnetic fields can be calculated by combining the polarimetry data with the measured plasma density profile obtained from angular filter refractometry.

  1. Hydrodynamic simulations of integrated experiments planned for OMEGA/OMEGA EP laser systems

    International Nuclear Information System (INIS)

    Delettrez, J. A.; Myatt, J.; Radha, P. B.; Stoeckl, C.; Meyerhofer, D. D.

    2005-01-01

    Integrated fast-ignition experiments for the combined OMEGA/OMEGA EP laser systems have been simulated with the multidimensional hydrodynamic code DRACO. In the simplified electron transport model included in DRACO, the electrons are introduced at the pole of a 2-D simulation and transported in a straight line toward the target core, depositing their energy according to a recently published slowing-down formula.1 Simulations, including alpha transport, of an OMEGA cryogenic target designed to reach a 1-D fuel R of 500 mg/cm2 have been carried out for 1-D (clean) and, more realistic, 2-D (with nonuniformities) implosions to assess the sensitivity to energy, timing, and irradiance of the Gaussian fast-ignitor beam. The OMEGA laser system provides up to 30 kJ of compression energy, and OMEGA EP will provide two short pulse beams, each with energies up to 2.6 kJ. For the 1-D case, the neutron yield is predicted to be in excess of 1015 (compared to 1014 for no ignitor beam) over a timing range of about 80 ps. This talk will present these results and new 2-D simulation results that include the effects of realistic cryogenic target perturbations on the compressed core. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-92SF19460, the University of Rochester, and the New York State Energy Research and Development Authority. The support of DOE does not constitute an endorsement by DOE of the views expressed in this article. (Author)

  2. A measurement of the Omega /sup -/ lifetime

    CERN Document Server

    Bourquin, M; Chatelus, Y; Chollet, J C; Degré, A; Froidevaux, D; Fyfe, A R; Gaillard, J M; Gee, C N P; Gibson, W M; Igo-Kemenes, P; Jeffreys, P W; Merkel, B; Morand, R; Plothow, H; Repellin, J P; Saunders, B J; Sauvage, G; Schiby, B; Siebert, H W; Smith, V J; Streit, K P; Strub, R; Tovey, Stuart N; Tresher, J J

    1979-01-01

    In an experiment at the CERN-SPS charged-hyperon beam, a sample of 2500 Omega /sup -/ to Lambda K/sup -/ decays has been collected at Omega /sup -/ momenta at 98.5 and 115 GeV/c. The Omega /sup -/ lifetime is found to be tau /sub Omega /=(0.822+or-0.028)*10/sup -10/ s. (15 refs).

  3. OMEGA upgrade staging options

    International Nuclear Information System (INIS)

    Kelly, J.H.; Shoup, M.J.; Smith, D.L.

    1989-01-01

    The authors discuss how they are designing an upgrade to its 24-beam OMEGA laser system, OMEGA is a frequency tripled, all-rod system capable of producing 2 kJ at 0.8 ns on target. Important direct-drive-target-ignition physics could be investigated with an upgraded system capable of producing a shaped pulse consisting of a long (5ns) low-intensity, foot, smoothly transitioning into a short (0.5 ns), intense, compression pulse. The total pulse energy is 30 kJ, which, from target-irradiation uniformity considerations, must be distributed over 60 beams

  4. Measurement of the Omega0(c) lifetime

    International Nuclear Information System (INIS)

    Iori, M.

    2007-01-01

    The authors report a precise measurement of the (Omega) c 0 lifetime. The data were taken by the SELEX (E781) experiment using 600 GeV/c Σ - , π - and p beams. The measurement has been made using 83 ± 19 reconstructed (Omega) c 0 in the (Omega) - π - π + π + and (Omega) - π + decay modes. The lifetime of the (Omega) c 0 is measured to be 65 ± 13(stat) ± 9(sys) fs

  5. Polarimetry diagnostic on OMEGA EP using a 10-ps, 263-nm probe beam

    Energy Technology Data Exchange (ETDEWEB)

    Davies, A., E-mail: adavies@lle.rochester.edu; Haberberger, D.; Boni, R.; Ivancic, S.; Brown, R.; Froula, D. H. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2014-11-15

    A polarimetry diagnostic was built and characterized for magnetic-field measurements in laser-plasma experiments on the OMEGA EP laser. This diagnostic was built into the existing 4ω (263-nm) probe system that employs a 10-ps laser pulse collected with an f/4 imaging system. The diagnostic measures the rotation of the probe beam's polarization. The polarimeter uses a Wollaston prism to split the probe beam into orthogonal polarization components. Spatially localized intensity variations between images indicate polarization rotation. Magnetic fields can be calculated by combining the polarimetry data with the measured plasma density profile obtained from angular filter refractometry.

  6. OMEGA EP: High-Energy Petawatt Capability for the OMEGA Laser Facility

    International Nuclear Information System (INIS)

    Kelly, J.H.; Waxer, L.J.; Bagnoud, V.; Begishev, I.A.; Bromage, J.; Kruschwitz, B.E.; Kessler, T.J.; Loucks, S.J.; Maywar, D.N.; McCrory, R.L.; Meyerhofer, D.D.; Morse, S.F.B.; Oliver, J.B.; Rigatti, A.L.; Schmid, A.W.; Stoeckl, C.; Dalton, S.; Folnsbee, L.; Guardalben, M.J.; Jungquist, R.; Puth, J.; Shoup III, M.J.; Weiner, D.; Zuegel, J.D.

    2006-01-01

    OMEGA EP (Extended Performance) is a petawatt-class addition to the existing 30-kJ, 60-beam OMEGA Laser Facility at the University of Rochester. When completed, it will consist of four beamlines, each capable of producing up to 6.5 kJ at 351 nm in a 1 to 10 ns pulse. Two of the beamlines will produce up to 2.6 kJ in a pulse-width range of 1 to 100 ps at 1053 nm using chirped-pulse amplification (CPA). This paper reviews both the OMEGA EP performance objectives and the enabling technologies required to meet these goals

  7. OMEGA EP high-energy petawatt laser: progress and prospects

    International Nuclear Information System (INIS)

    Maywar, D N; Kelly, J H; Waxer, L J; Morse, S F B; Begishev, I A; Bromage, J; Dorrer, C; Edwards, J L; Folnsbee, L; Guardalben, M J; Jacobs, S D; Jungquist, R; Kessler, T J; Kidder, R W; Kruschwitz, B E; Loucks, S J; Marciante, J R; McCrory, R L; Meyerhofer, D D; Okishev, A V

    2008-01-01

    OMEGA EP (extended performance) is a petawatt-class addition to the existing 30-kJ, 60-beam OMEGA Laser Facility at the University of Rochester. It will enable high-energy picosecond backlighting of high-energy-density experiments and inertial confinement fusion implosions, the investigation of advanced-ignition experiments such as fast ignition, and the exploration of high-energy-density phenomena. The OMEGA EP short-pulse beams have the flexibility to be directed to either the existing OMEGA target chamber, or the new, auxiliary OMEGA EP target chamber for independent experiments. This paper will detail progress made towards activation, which is on schedule for completion in April 2008

  8. Bubble chamber: Omega production and decay

    CERN Multimedia

    1973-01-01

    This image is of real particle tracks taken from the CERN 2 m liquid hydrogen bubble chamber and shows the production and decay of a negative omega particle. A negative kaon enters the chamber which decays into many particles, including a negative omega that travels a short distance before decaying into more particles. The invention of bubble chambers in 1952 revolutionized the field of particle physics, allowing real tracks left by particles to be seen and photographed by expanding liquid that had been heated to boiling point.

  9. PARTICLE BEAMS: Frontier course

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1987-01-15

    Driven by the quest for higher energies and optimal physics conditions, the behaviour of particle beams in accelerators and storage rings is the subject of increasing attention. Thus the second course organized jointly by the US and CERN Accelerator Schools looked towards the frontiers of particle beam knowledge. The programme held at South Padre Island, Texas, from 23-29 October attracted 125 participants including some 35 from Europe.

  10. PARTICLE BEAMS: Frontier course

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Driven by the quest for higher energies and optimal physics conditions, the behaviour of particle beams in accelerators and storage rings is the subject of increasing attention. Thus the second course organized jointly by the US and CERN Accelerator Schools looked towards the frontiers of particle beam knowledge. The programme held at South Padre Island, Texas, from 23-29 October attracted 125 participants including some 35 from Europe

  11. Dai Omega, a large solid angle axial focusing superconducting surface muon channel

    International Nuclear Information System (INIS)

    Miyadera, H.; Nagamine, K.; Shimomura, K.; Nishiyama, K.; Tanaka, H.; Fukuchi, K.; Makimura, S.; Ishida, K.

    2003-01-01

    An axial focusing surface muon channel, Dai Omega, was installed at KEK-MSL in the summer of 2001. Large aperture superconducting coils are utilized instead of quadrupole magnets. Dai Omega adopts an axial focusing beam path using symmetric magnetic fields from four coils. Computer simulations were performed on constructing Dai Omega, and the calculated solid angle acceptance of Dai Omega was larger than 1 sr at the optimum momentum. The momentum acceptance of Dai Omega was 6% FWHM. Dai Omega improved the solid angle acceptance by almost 20 times, in comparison with conventional muon channels. Beam tuning tests of Dai Omega have been carried out, and a beam intensity of 10 6 μ + /s was achieved at KEK-NML (500 MeV, 5 μA), which was almost comparable with that of RAL (800 MeV, 200 μA)

  12. OMEGA EP: High-energy peta-watt capability for the OMEGA laser facility

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, J.H.; Waxer, L.J.; Bagnoud, V.; Begishev, I.A.; Bromage, J.; Kruschwitz, B.E.; Kessler, T.J.; Loucks, S.J.; Maywar, D.N.; McCrory, R.L.; Meyerhofer, D.D.; Morse, S.F.B.; Oliver, J.B.; Rigatti, A.L.; Schmid, A.W.; Stoeckl, C.; Dalton, S.; Folnsbee, L.; Guardalben, M.J.; Jungquist, R.; Puth, J.; Shoup III, M.J.; Weiner, D.; Zuegel, J.D. [Rochester Univ., Lab. for Laser Energetics, NY (United States)

    2006-06-15

    OMEGA EP (Extended Performance) is a peta-watt-class addition to the existing 30-kJ, 60-beam OMEGA Laser Facility at the University of Rochester. When completed, it will consist of four beamlines, each capable of producing up to 6.5 kJ at 351 nm in a 1 to 10 ns pulse. Two of the beamlines will produce up to 2.6 kJ in a pulse-width range of 1 to 100 ps at 1053 nm using chirped-pulse amplification (CPA). This paper reviews both the OMEGA EP performance objectives and the enabling technologies required to meet these goals. (authors)

  13. OMEGA EP: High-energy peta-watt capability for the OMEGA laser facility

    International Nuclear Information System (INIS)

    Kelly, J.H.; Waxer, L.J.; Bagnoud, V.; Begishev, I.A.; Bromage, J.; Kruschwitz, B.E.; Kessler, T.J.; Loucks, S.J.; Maywar, D.N.; McCrory, R.L.; Meyerhofer, D.D.; Morse, S.F.B.; Oliver, J.B.; Rigatti, A.L.; Schmid, A.W.; Stoeckl, C.; Dalton, S.; Folnsbee, L.; Guardalben, M.J.; Jungquist, R.; Puth, J.; Shoup III, M.J.; Weiner, D.; Zuegel, J.D.

    2006-01-01

    OMEGA EP (Extended Performance) is a peta-watt-class addition to the existing 30-kJ, 60-beam OMEGA Laser Facility at the University of Rochester. When completed, it will consist of four beamlines, each capable of producing up to 6.5 kJ at 351 nm in a 1 to 10 ns pulse. Two of the beamlines will produce up to 2.6 kJ in a pulse-width range of 1 to 100 ps at 1053 nm using chirped-pulse amplification (CPA). This paper reviews both the OMEGA EP performance objectives and the enabling technologies required to meet these goals. (authors)

  14. Particle beam accelerator

    International Nuclear Information System (INIS)

    Turner, N.L.

    1982-01-01

    A particle beam accelerator is described which has several electrodes that are selectively short circuited together synchronously with changes in the magnitude of a DC voltage applied to the accelerator. By this method a substantially constant voltage gradient is maintained along the length of the unshortened electrodes despite variations in the energy applied to the beam by the accelerator. The invention has particular application to accelerating ion beams that are implanted into semiconductor wafers. (U.K.)

  15. OMEGA: a short-wavelength laser for fusion experiments

    International Nuclear Information System (INIS)

    Soures, J.M.; Hutchison, R.J.; Jacobs, S.D.; Lund, L.D.; McCrory, R.L.; Richardson, M.C.

    1983-01-01

    The OMEGA, Nd:glass laser facility was constructed for the purpose of investigating the feasibility of direct-drive laser fusion. With 24 beams producing a total energy of 4 kJ or a peak power of 12 TW, OMEGA is capable of nearly uniform illumination of spherical targets. Six of the OMEGA beams have recently been converted to short-wavelength operation (351 nm). In this paper, we discuss details of the system design and performance, with particular emphasis on the frequency-conversion system and multi-wavelength diagnostic system

  16. Rare Nonleptonic Decays of the Omega Hyperon: Measurement of the Branching Ratios for Omega-+ --> Xi*0(1530) (anti-Xi*0(1530)) pi-+ and Omega-+ --> Xi-+ pi+- pi-+

    International Nuclear Information System (INIS)

    Kamaev, Oleg; IIT, Chicago

    2007-01-01

    A clean signal of 78 (24) events has been observed in the rare nonleptonic particle (antiparticle) decay modes (Omega) # -+# → Ξ # -+π# ± π # -+# using data collected with the HyperCP spectrometer during Fermilab's 1999 fixed-target run. We obtain B((Omega) - → Ξ - π + π - ) = [4.32 ± 0.56(stat) ± 0.28(syst)] x 10 -4 and B((Omega) + → Ξ + π - π + ) = 3.13 ± 0.71(stat) ± 0.20(syst) x 10 -4 . This is the first observation of the antiparticle mode. Our measurement for the particle mode agrees with the previous experimental result and has an order-of-magnitude better precision. We extract the contribution from the resonance decay mode (Omega) # -+# → Ξ* 1530 0 ((ovr Ξ* 1530 0 ))π # -+# to the final state Ξ # -+π# ± π # -+#. This the first actual measurement of the resonance-mode branching ratios, gives B((Omega) - → Ξ* 1530 0 π - ) = [4.55 ± 2.33(stat) ± 0.38(syst)] x 10 -5 , B((Omega) + → (ovr Ξ* 1530 0 )π + ) = [1.40 ± 2.83(stat) ± 0.12(syst)] x 10 -5 and disagrees with the current Particle Data Group review value, being ∼ 14 times smaller. Since the central value of the resonance-mode branching ratio is less than two standard deviations away from zero, we also calculate branching ratio upper limits at 90% confidence level: B((Omega) - → Ξ* 1530 0 π - ) -5 and B((Omega) + → (ovr Ξ* 1530 0 ) π + ) -5 . This analysis provides new data on nonleptonic hyperon decays which allows studies of how weak interaction processes occur in the presence of strong interactions

  17. The Omega spectrometer in the West Hall.

    CERN Multimedia

    CERN PhotoLab

    1976-01-01

    Inside the hut which sits on top of the superconducting magnet are the TV cameras that observe the particle events occurring in the spark chambers in the magnet gap below. On the background the two beam lines feeding the spectrometer target, for separated hadrons up to 40 GeV, on the right, for 80 GeV electrons, on the left, respectively. The latter strikes a radiator thus sending into Omega tagged photons up to 80 GeV. On the foreground, the two sections of the large gas Cerenkov counter working at atmospheric pressure, used for trigger purpose.

  18. Numerical investigation of a plasma beam entering transverse magnetic fields

    International Nuclear Information System (INIS)

    Koga, J.; Geary, J.L.; Tajima, T.; Rostoker, N.

    1988-11-01

    We study plasma beam injection into transverse magnetic fields using both electrostatic and electromagnetic particle-in-cell (PIC) codes. In the case of small beam momentum or energy (low drift kinetic /beta/) we study both large and small ion gyroradius beams. Large ion gyroradius beams with a large dielectric constant /epsilon/ /muchreverse arrowgt/ (M/m)/sup /1/2// are found to propagate across the magnetic field via E /times/ B drifts at nearly the initial injection velocity, where /epsilon/ = 1 + (/omega//sup pi//sup 2/)/(/Omega//sub i//sup 2/) and (M/m) is the ion to electron mass ratio. Beam degradation and undulations are observed in agreement with previous experimental and analytical results. When /epsilon/ is on the order of (M/m)/sup /1/2//, the plasma beam propagates across field lines at only half its initial velocity and loses its coherent structure. When /epsilon/ is much less than (M/m)/sup /1/2//, the beam particles decouple at the magnetic field boundary, scattering the electrons and slightly deflecting the ions. For small ion gyroradius beam injection a flute type instability is observed at the beam magnetic fields interface. In the case of large beam momentum or energy (high drift kinetic /beta/) we observe good penetration of a plasma beam which shields the magnetic field from the interior of the beam (diagmagnetism). 25 refs., 13 figs., 1 tab

  19. Intense particle beam and multiple applications

    International Nuclear Information System (INIS)

    Ueda, M.; Machida, M.

    1988-01-01

    The Multiple Application Intense Particle Beam project is an experiment in which an injector of high energy neutral or ionized particles will be used to diagnose high density and high temperature plasmas. The acceleration of the particles will be carried out feeding a diode with a high voltage pulse produced by a Marx generator. Other apllications of intense particle beam generated by this injector that could be explored in the future include: heating and stabilization of compact toroids, treatment of metallic surfaces and ion implantation. (author) [pt

  20. The Particle Beam Optics Interactive Computer Laboratory

    International Nuclear Information System (INIS)

    Gillespie, George H.; Hill, Barrey W.; Brown, Nathan A.; Babcock, R. Chris; Martono, Hendy; Carey, David C.

    1997-01-01

    The Particle Beam Optics Interactive Computer Laboratory (PBO Lab) is an educational software concept to aid students and professionals in learning about charged particle beams and particle beam optical systems. The PBO Lab is being developed as a cross-platform application and includes four key elements. The first is a graphic user interface shell that provides for a highly interactive learning session. The second is a knowledge database containing information on electric and magnetic optics transport elements. The knowledge database provides interactive tutorials on the fundamental physics of charged particle optics and on the technology used in particle optics hardware. The third element is a graphical construction kit that provides tools for students to interactively and visually construct optical beamlines. The final element is a set of charged particle optics computational engines that compute trajectories, transport beam envelopes, fit parameters to optical constraints and carry out similar calculations for the student designed beamlines. The primary computational engine is provided by the third-order TRANSPORT code. Augmenting TRANSPORT is the multiple ray tracing program TURTLE and a first-order matrix program that includes a space charge model and support for calculating single particle trajectories in the presence of the beam space charge. This paper describes progress on the development of the PBO Lab

  1. FY14 LLNL OMEGA Experimental Programs

    Energy Technology Data Exchange (ETDEWEB)

    Heeter, R. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fournier, K. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Baker, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Barrios, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bernstein, L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brown, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Celliers, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chen, H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Coppari, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fratanduono, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Johnson, M. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Huntington, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jenei, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kraus, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ma, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martinez, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McNabb, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Millot, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Moore, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nagel, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Park, H. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Patel, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Perez, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ping, Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pollock, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ross, J. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rygg, J. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Smith, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zylstra, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Collins, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Landen, O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wan, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hsing, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-10-13

    In FY14, LLNL’s High-Energy-Density Physics (HED) and Indirect Drive Inertial Confinement Fusion (ICF-ID) programs conducted several campaigns on the OMEGA laser system and on the EP laser system, as well as campaigns that used the OMEGA and EP beams jointly. Overall these LLNL programs led 324 target shots in FY14, with 246 shots using just the OMEGA laser system, 62 shots using just the EP laser system, and 16 Joint shots using Omega and EP together. Approximately 31% of the total number of shots (62 OMEGA shots, 42 EP shots) shots supported the Indirect Drive Inertial Confinement Fusion Campaign (ICF-ID). The remaining 69% (200 OMEGA shots and 36 EP shots, including the 16 Joint shots) were dedicated to experiments for High- Energy-Density Physics (HED). Highlights of the various HED and ICF campaigns are summarized in the following reports.

  2. FY15 LLNL OMEGA Experimental Programs

    Energy Technology Data Exchange (ETDEWEB)

    Heeter, R. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Baker, K. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Barrios, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Beckwith, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Casey, D. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Celliers, P. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chen, H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Coppari, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fournier, K. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fratanduono, D. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Frenje, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Huntington, C. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kraus, R. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lazicki, A. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martinez, D. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McNaney, J. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Millot, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pak, A. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Park, H. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ping, Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pollock, B. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Smith, R. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wehrenberg, C. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Widmann, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Collins, G. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Landen, O. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wan, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hsing, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-12-04

    In FY15, LLNL’s High-Energy-Density Physics (HED) and Indirect Drive Inertial Confinement Fusion (ICF-ID) programs conducted several campaigns on the OMEGA laser system and on the EP laser system, as well as campaigns that used the OMEGA and EP beams jointly. Overall these LLNL programs led 468 target shots in FY15, with 315 shots using just the OMEGA laser system, 145 shots using just the EP laser system, and 8 Joint shots using Omega and EP together. Approximately 25% of the total number of shots (56 OMEGA shots and 67 EP shots, including the 8 Joint shots) supported the Indirect Drive Inertial Confinement Fusion Campaign (ICF-ID). The remaining 75% (267 OMEGA shots and 86 EP shots) were dedicated to experiments for High-Energy-Density Physics (HED). Highlights of the various HED and ICF campaigns are summarized in the following reports.

  3. The Particle Beam Optics Interactive Computer Laboratory

    International Nuclear Information System (INIS)

    Gillespie, G.H.; Hill, B.W.; Brown, N.A.; Babcock, R.C.; Martono, H.; Carey, D.C.

    1997-01-01

    The Particle Beam Optics Interactive Computer Laboratory (PBO Lab) is an educational software concept to aid students and professionals in learning about charged particle beams and particle beam optical systems. The PBO Lab is being developed as a cross-platform application and includes four key elements. The first is a graphic user interface shell that provides for a highly interactive learning session. The second is a knowledge database containing information on electric and magnetic optics transport elements. The knowledge database provides interactive tutorials on the fundamental physics of charged particle optics and on the technology used in particle optics hardware. The third element is a graphical construction kit that provides tools for students to interactively and visually construct optical beamlines. The final element is a set of charged particle optics computational engines that compute trajectories, transport beam envelopes, fit parameters to optical constraints and carry out similar calculations for the student designed beamlines. The primary computational engine is provided by the third-order TRANSPORT code. Augmenting TRANSPORT is the multiple ray tracing program TURTLE and a first-order matrix program that includes a space charge model and support for calculating single particle trajectories in the presence of the beam space charge. This paper describes progress on the development of the PBO Lab. copyright 1997 American Institute of Physics

  4. Quantum mechanics of charged particle beam optics

    CERN Document Server

    Khan, Sameen Ahmed

    2018-01-01

    Theory of charged particle beam optics is basic to the design and working of charged particle beam devices from electron microscopes to accelerator machines. Traditionally, the optical elements of the devices are designed and operated based on classical mechanics and classical electromagnetism, and only certain specific quantum mechanical aspects are dealt with separately using quantum theory. This book provides a systematic approach to quantum theory of charged particle beam optics, particularly in the high energy cases such as accelerators or high energy electron microscopy.

  5. Iconic representation of particle beams using personal computers

    International Nuclear Information System (INIS)

    Dasgupta, S.; Sarkar, D.; Mallik, C.

    1992-01-01

    The idea of representing the character of a charged particle beam by means of its emittance ellipses, is essentially a mathematical one. For quick understanding of the beam character in a more user-friendly way, unit beam cells with particles having a uniform nature, have been pictured by suitably shaped 3-D solids. The X and Y direction momenta at particular cell areas of the particle beam combine together to give a proportionate orientation to the solid in the pseudo 3-D world of the graphic screen, creating a physical picture of the particle beam. This is expected to facilitate the comprehension of total characteristics of a beam in cases of online control of transport lines and their designs, when interfaced with various ray-tracing programs. The implementation is done in an IBM-PC environment. (author)

  6. Enhancements to the timing of the OMEGA laser system to improve illumination uniformity

    Science.gov (United States)

    Donaldson, W. R.; Katz, J.; Kosc, T. Z.; Kelly, J. H.; Hill, E. M.; Bahr, R. E.

    2016-09-01

    Two diagnostics have been developed to improve the uniformity on the OMEGA Laser System, which is used for inertial confinement fusion (ICF) research. The first diagnostic measures the phase of an optical modulator (used for the spectral dispersion technique employed on OMEGA to enhance spatial smoothing), which adds bandwidth to the optical pulse. Setting this phase precisely is required to reduce pointing errors. The second diagnostic ensures that the arrival times of all the beams are synchronized. The arrival of each of the 60 OMEGA beams is measured by placing a 1-mm diffusing sphere at target chamber center. By comparing the arrival time of each beam with respect to a reference pulse, the measured timing spread of the OMEGA Laser System is now 3.8 ps.

  7. OMEGA project

    International Nuclear Information System (INIS)

    Shibuya, E.H.

    1989-01-01

    The OMEGA - Observation of Multiple particle production, Exotic Interactions and Gamma-ray Air Shower-project is presented. The project try to associate photosensitive detectors from experiences of hadronic interactions with electronic detectors used by experiences that investigate extensive atmospheric showers. (M.C.K.)

  8. Collected abstracts on particle beam diagnostic systems

    International Nuclear Information System (INIS)

    Hickok, R.L.

    1979-01-01

    This report contains a compilation of abstracts on work related to particle beam diagnostics for high temperature plasmas. The abstracts were gathered in early 1978 and represent the status of the various programs as of that date. It is not suggested that this is a comprehensive list of all the work that is going on in the development of particle beam diagnostics, but it does provide a representative view of the work in this field. For example, no abstracts were received from the U.S.S.R. even though they have considerable activity in particle beam diagnostics

  9. Sandia's recent results in particle beam research

    International Nuclear Information System (INIS)

    Yonas, G.

    1977-01-01

    Recent results in the Sandia particle beam fusion research program are briefly discussed. Ignition of pellet fusion targets by both electron and ion beams are under study. Power concentration, dielectric breakdown, diode optimization, and beam-target interaction experiments are briefly described. Magnetic insulation considerations are discussed. Efforts to utilize higher impedance diode sources and reduce minimum power pulse widths are described. Analyses indicate that particle beam ignition systems might yield pellet gains greater than 10 in hybrid and approximately 100 in pure fusion reactors. A bibliography of 23 references is included

  10. Nonlinear interaction of colliding beams in particle storage rings

    International Nuclear Information System (INIS)

    Herrera, J.C.; Month, M.

    1979-01-01

    When two beams of high energy particles moving in opposite directions are brought into collision, a large amount of energy is available for the production of new particles. However to obtain a sufficiently high event rate for rare processes, such as the production of the intermediate vector boson (Z 0 and W +- ), large beam currents are also required. Under this circumstance, the high charge density of one beam results in a classical electromagnetic interaction on the particles in the other beam. This very nonlinear space charge force, caled the beam-beam force, limits the total circulating charge and, thereby, the ultimate performance of the colliding ring system. The basic nature of the beam-beam force is discussed, indicating how it is quite different in the case of continuous beams, which cross each other at an angle as compared to the case of bunched beams which collide head-on. Some experimental observations on the beam-beam interaction in proton-proton and electron-positron beams are then reviewed and interpreted. An important aspect of the beam-beam problem in storage rings is to determine at what point in the analysis of the particle dynamics is it relevant to bring in the concepts of stochasticity, slow diffusion, and resonance overlap. These ideas are briefly discussed

  11. The cooling of particle beams

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1994-10-01

    A review is given of the various methods which can be employed for cooling particle beams. These methods include radiation damping, stimulated radiation damping, ionization cooling, stochastic cooling, electron cooling, laser cooling, and laser cooling with beam coupling. Laser Cooling has provided beams of the lowest temperatures, namely 1 mK, but only for ions and only for the longitudinal temperature. Recent theoretical work has suggested how laser cooling, with the coupling of beam motion, can be used to reduce the ion beam temperature in all three directions. The majority of this paper is devoted to describing laser cooling and laser cooling with beam coupling

  12. Deflection system for charged-particle beam

    Energy Technology Data Exchange (ETDEWEB)

    Bates, T

    1982-01-13

    A system is described for achromatically deflecting a beam of charged particles without producing net divergence of the beam comprising three successive magnetic deflection means which deflect the beam alternately in opposite directions; the first and second deflect by angles of less than 50/sup 0/ and the third by an angle of at least 90/sup 0/. Particles with different respective energies are transversely spaced as they enter the third deflection means, but emerge completely superimposed in both position and direction and may be brought to a focus in each of two mutually perpendicular planes, a short distance thereafter. Such a system may be particularly compact, especially in the direction in which the beam leaves the system. It is suitable for deflecting a beam of electrons from a linear accelerator so producing a vertical beam of electron (or with an X-ray target, of X-rays) which can be rotated about a horizontal patient for radiation therapy.

  13. Shutter designed to block high-energy particle beams

    International Nuclear Information System (INIS)

    Donnadille, B.

    1976-01-01

    A description is given of a shutter designed for temporarily closing off an opening formed in the wall of an irradiation room for the passage of a particle beam. A cylindrical metal block can rotate about its axis and occupy two stable positions which are 180 0 from one another. A cylindrical cage closed at its two ends by two circular plates is equipped respectively with eccentric holes for the passage of the particle beam. The block is provided with a longitudinal passage through which there can pass the particle beam and a blind hole or ''pit'' disposed symmetrically to the longitudinal passage and which can block the particle beam according to the positioning of the block by respect with the eccentric holes

  14. Calibrations for charged particle tracking and measurements of w photoproduction with the GlueX detector

    Energy Technology Data Exchange (ETDEWEB)

    Staib, Michael [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2017-09-21

    The GlueX experiment is a new experimental facility at Jefferson Lab in Newport News, VA. The experiment aims to map out the spectrum of hybrid mesons in the light quark sector. Measurements of the spin-density matrix elements in omega photoproduction are performed with a linear polarized photon beam on an unpolarized proton target, and presented in bins of Mandelstam t for beam energies of 8.4-9.0 GeV. The spin-density matrix elements are exclusively measured through two decays of the omega meson: omega -> pi^+ pi^- pi^0 and omega ->pi^0 gamma. A description of the experimental apparatus is presented. Several methods used in the calibration of the charged particle tracking system are described. These measurements greatly improve the world statistics in this energy range. These are the first results measured through the omega ->pi^0 gamma decay at this energy. Results are generally consistent with a theoretical model based on diffractive production with Pomeron and pseudoscalar exchange in the t-channel.

  15. Coulomb interactions in particle beams

    International Nuclear Information System (INIS)

    Jansen, G.H.

    1988-01-01

    This thesis presents a theoretical description of the Coulomb interaction between identical charged particles (electrons or ions) in focussed beam. The charge-density effects as well as the various statistical interaction effects, known as the Boersch effect and the 'trajectory displacement effect', are treated. An introductory literature survey is presented from which the large differences in theoretical approach appear. Subsequently the methods are investigated which are used in studies of comparable problems in plasma physics and stellar dynamics. These turn out to be applicable to particle beams only for certain extreme conditions. The approach finally chosen in this study is twofold. On the one hand use is made of a semi-analytical model in which the statistical and dynamical aspects of the N-particle problem are reduced to two-particle problem. This model results in a number of explicit equations in the experimental parameters, with ties of the beam can be determined directly. On the other hand use has been made of a purely numerical Monte Carlo model in which the kinematical equations of an ensemble interacting particles with 'at random' chosen starting conditions are solved exactly. This model does not lead to general expressions, but yields a specific numerical prediction for each simulated experimental situation. The results of both models appear to agree well mutually. This yields a consistent theory which complements the existing knowledge of particle optics and which allow the description of systems in which the interaction between particles can not be neglected. The predictions of this theory are qualitatively and quantitatively compared with those from some other models, recently reported in literature. (author). 256 refs.; 114 figs.; 1180 schemes; 5 tabs

  16. Radial particle distributions in PARMILA simulation beams

    International Nuclear Information System (INIS)

    Boicourt, G.P.

    1984-03-01

    The estimation of beam spill in particle accelerators is becoming of greater importance as higher current designs are being funded. To the present, no numerical method for predicting beam-spill has been available. In this paper, we present an approach to the loss-estimation problem that uses probability distributions fitted to particle-simulation beams. The properties of the PARMILA code's radial particle distribution are discussed, and a broad class of probability distributions are examined to check their ability to fit it. The possibility that the PARMILA distribution is a mixture is discussed, and a fitting distribution consisting of a mixture of two generalized gamma distributions is found. An efficient algorithm to accomplish the fit is presented. Examples of the relative prediction of beam spill are given. 26 references, 18 figures, 1 table

  17. Particles beams and applications

    International Nuclear Information System (INIS)

    Uzureau, J.L.

    1996-01-01

    This issue of the ''Chocs'' journal is devoted to particles beams used by the D.A.M. (Direction of Military Applications) and to their applications. The concerned beams are limited to those in an energy range from hundred of Kev to several Gev. Light ions (protons, deuterons, alpha) where it is easy to produce neutrons sources and heavy ions (from carbon to gold). (N.C.). 8 refs., 2 figs

  18. Particle beam fusion progress report, January-June 1980

    International Nuclear Information System (INIS)

    1981-05-01

    An overview and technical summaries are given for research progress in each of the following general areas: (1) fusion target studies; (2) target experiments; (3) particle beam source theory; (4) diagnostics development; (5) particle beam experiments; (6) pulsed power research and development; (7) pulse power application; and (8) Electron Beam Fusion Accelerator project

  19. Method of measuring a profile of the density of charged particles in a particle beam

    International Nuclear Information System (INIS)

    Hyman, L.G.; Jankowski, D.J.

    1975-01-01

    A profile of the relative density of charged particles in a beam is obtained by disposing a number of rods parallel to each other in a plane perpendicular to the beam and shadowing the beam. A second number of rods is disposed perpendicular to the first rods in a plane perpendicular to the beam and also shadowing the beam. Irradiation of the rods by the beam of charged particles creates radioactive isotopes in a quantity proportional to the number of charged particles incident upon the rods. Measurement of the radioactivity of each of the rods provides a measure of the quantity of radioactive material generated thereby and, together with the location of the rods, provides information sufficient to identify a profile of the density of charged particles in the beam

  20. First measurement of the Omega /sup -/ decay branching ratios

    CERN Document Server

    Bourquin, M; Chatelus, Y; Chollet, J C; Degré, A; Froidevaux, D; Fyfe, A R; Gaillard, J M; Gee, C N P; Gibson, W M; Igo-Kemenes, P; Jeffreys, P W; Merkel, B; Morand, R; Plothow, H; Repellin, J P; Saunders, B J; Sauvage, G; Schiby, B; Siebert, H W; Smith, V J; Streit, K P; Strub, R; Thresher, J J; Tovey, Stuart N

    1979-01-01

    In an experiment in the CERN-SPS charged-hyperon beam, the main Omega /sup -/ decay branching ratios have been measured to be Gamma ( Omega /sup -/ to Lambda K/sup -/)/ Gamma (all)=0.686+or-0.013, Gamma ( Omega /sup -/ to Xi /sup 0/ pi /sup -/)/ Gamma (all) =0.234+or-0.013, Gamma ( Omega /sup -/ to Xi /sup -/ pi /sup 0/)/ Gamma (all)=0.080+or-0.008. The relative branching ratio of the two Xi pi modes provides a test of the Delta I=1/2 rule in decuplet-octet transitions. A search has also been made for the rare decay modes Omega /sup -/ to Lambda pi /sup -/, Omega /sup -/ to Xi /sup -/ gamma , Omega /sup -/ to Xi /sup -/ pi /sup +/ pi /sup -/ and Omega /sup -/ to Xi /sup 0/e/sup -/ nu . (6 refs).

  1. Generation of auroral hectometer radio emission at the laser cyclotron resonance ([omega][sub p][>=][omega][sub H]). Generatsiya avroral'nogo gektometrovogo radioizlucheniya na mazernom tsiklotronnom rezonatore ([omega][sub p]>or approx. [omega][sub H])

    Energy Technology Data Exchange (ETDEWEB)

    Vlasov, V G [Irkutskij Politekhnicheskij Inst., Irkutsk (Russian Federation)

    1992-06-01

    Generation of auroral hectometer (AHR) and kilometer (AKR) radio emission at a maser cyclotron resonance (MCR) in a relatively dense plasma ([omega][sub p][>=][omega][sub H]) is theoretically studied. The conclusion is made that availability of two-dimensional small-scale inhomogeneity of plasma density is the basic condition for the AHR generation at the MCR by auroral electron beams. The small-scale inhomogeneity of the auroral plasma, measured on satelites, meets by its parameters the conditions for the generation of auroral radio emission.

  2. OMEGA Upgrade preliminary design

    International Nuclear Information System (INIS)

    Craxton, R.S.

    1989-10-01

    The OMEGA laser system at the Laboratory for Laser Energetics of the University of Rochester is the only major facility in the United States capable of conducting fully diagnosed, direct-drive, spherical implosion experiments. As such, it serves as the national Laser Users Facility, benefiting scientists throughout the country. The University's participation in the National Inertial Confinement Fusion (ICF) program underwent review by a group of experts under the auspices of the National Academy of Sciences (the Happer Committee) in 1985. The Happer Committee recommended that the OMEGA laser be upgraded in energy to 30 kJ. To this end, Congress appropriated $4,000,000 for the preliminary design of the OMEGA Upgrade, spread across FY88 and FY89. This document describes the preliminary design of the OMEGA Upgrade. The proposed enhancements to the existing OMEGA facility will result in a 30-kHJ, 351-nm, 60-beam direct-drive system, with a versatile pulse-shaping facility and a 1%--2% uniformity of target drive. The Upgrade will allow scientists to explore the ignition-scaling regime, and to study target behavior that is hydrodynamically equivalent to that of targets appropriate for a laboratory microfusion facility (LMF). In addition, it will be possible to perform critical interaction experiments with large-scale-length uniformly irradiated plasmas

  3. Charged particle beams

    CERN Document Server

    Humphries, Stanley

    2013-01-01

    Detailed enough for a text and sufficiently comprehensive for a reference, this volume addresses topics vital to understanding high-power accelerators and high-brightness-charged particle beams. Subjects include stochastic cooling, high-brightness injectors, and the free electron laser. Humphries provides students with the critical skills necessary for the problem-solving insights unique to collective physics problems. 1990 edition.

  4. FY16 LLNL Omega Experimental Programs

    Energy Technology Data Exchange (ETDEWEB)

    Heeter, R. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ali, S. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Benstead, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Celliers, P. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Coppari, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Eggert, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Erskine, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Panella, A. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fratanduono, D. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hua, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Huntington, C. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jarrott, L. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jiang, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kraus, R. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lazicki, A. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); LePape, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martinez, D. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McNaney, J. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Millot, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Moody, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pak, A. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Park, H. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ping, Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pollock, B. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rinderknecht, H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ross, J. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rubery, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sio, H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Smith, R. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Swadling, G. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wehrenberg, C. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Collins, G. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Landen, O. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wan, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hsing, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-12-01

    In FY16, LLNL’s High-Energy-Density Physics (HED) and Indirect Drive Inertial Confinement Fusion (ICF-ID) programs conducted several campaigns on the OMEGA laser system and on the EP laser system, as well as campaigns that used the OMEGA and EP beams jointly. Overall, these LLNL programs led 430 target shots in FY16, with 304 shots using just the OMEGA laser system, and 126 shots using just the EP laser system. Approximately 21% of the total number of shots (77 OMEGA shots and 14 EP shots) supported the Indirect Drive Inertial Confinement Fusion Campaign (ICF-ID). The remaining 79% (227 OMEGA shots and 112 EP shots) were dedicated to experiments for High-Energy-Density Physics (HED). Highlights of the various HED and ICF campaigns are summarized in the following reports. In addition to these experiments, LLNL Principal Investigators led a variety of Laboratory Basic Science campaigns using OMEGA and EP, including 81 target shots using just OMEGA and 42 shots using just EP. The highlights of these are also summarized, following the ICF and HED campaigns. Overall, LLNL PIs led a total of 553 shots at LLE in FY 2016. In addition, LLNL PIs also supported 57 NLUF shots on Omega and 31 NLUF shots on EP, in collaboration with the academic community.

  5. FY16 LLNL Omega Experimental Programs

    International Nuclear Information System (INIS)

    Heeter, R. F.; Ali, S. J.; Benstead, J.; Celliers, P. M.; Coppari, F.; Eggert, J.; Erskine, D.; Panella, A. F.; Fratanduono, D. E.; Hua, R.; Huntington, C. M.; Jarrott, L. C.; Jiang, S.; Kraus, R. G.; Lazicki, A. E.; LePape, S.; Martinez, D. A.; McNaney, J. M.; Millot, M. A.; Moody, J.; Pak, A. E.; Park, H. S.; Ping, Y.; Pollock, B. B.; Rinderknecht, H.; Ross, J. S.; Rubery, M.; Sio, H.; Smith, R. F.; Swadling, G. F.; Wehrenberg, C. E.; Collins, G. W.; Landen, O. L.; Wan, A.; Hsing, W.

    2016-01-01

    In FY16, LLNL's High-Energy-Density Physics (HED) and Indirect Drive Inertial Confinement Fusion (ICF-ID) programs conducted several campaigns on the OMEGA laser system and on the EP laser system, as well as campaigns that used the OMEGA and EP beams jointly. Overall, these LLNL programs led 430 target shots in FY16, with 304 shots using just the OMEGA laser system, and 126 shots using just the EP laser system. Approximately 21% of the total number of shots (77 OMEGA shots and 14 EP shots) supported the Indirect Drive Inertial Confinement Fusion Campaign (ICF-ID). The remaining 79% (227 OMEGA shots and 112 EP shots) were dedicated to experiments for High-Energy-Density Physics (HED). Highlights of the various HED and ICF campaigns are summarized in the following reports. In addition to these experiments, LLNL Principal Investigators led a variety of Laboratory Basic Science campaigns using OMEGA and EP, including 81 target shots using just OMEGA and 42 shots using just EP. The highlights of these are also summarized, following the ICF and HED campaigns. Overall, LLNL PIs led a total of 553 shots at LLE in FY 2016. In addition, LLNL PIs also supported 57 NLUF shots on Omega and 31 NLUF shots on EP, in collaboration with the academic community.

  6. Interaction of Macro-particles with LHC proton beam

    CERN Document Server

    Zimmermann, F; Xagkoni, A

    2010-01-01

    We study the interaction of macro-particles residing inside the LHC vacuum chamber, e.g. soot or thermalinsulation fragments, with the circulating LHC proton beam. The coupled equations governing the motion and charging rate of metallic or dielectric micron-size macroparticles are solved numerically to determine the time spent by such “dust” particles close to the path of the beam as well as the resulting proton-beam losses, which could lead to a quench of superconducting magnets and, thereby, to a premature beam abort.

  7. Anisotropy-Driven Instability in Intense Charged Particle Beams

    CERN Document Server

    Startsev, Edward; Qin, Hong

    2005-01-01

    In electrically neutral plasmas with strongly anisotropic distribution functions, free energy is available to drive different collective instabilities such as the electrostatic Harris instability and the transverse electromagnetic Weibel instability. Such anisotropies develop naturally in particle accelerators and may lead to a detoriation of beam quality. We have generalized the analysis of the classical Harris and Weibel instabilities to the case of a one-component intense charged particle beam with anisotropic temperature including the important effects of finite transverse geometry and beam space-charge. For a long costing beam, the delta-f particle-in-cell code BEST and the eighenmode code bEASt have been used to determine detailed 3D stability properties over a wide range of temperature anisotropy and beam intensity. A theoretical model is developed which describes the essential features of the linear stage of these instabilities. Both, the simulations and analytical theory, clearly show that moderately...

  8. Hyperon Beam Experiment

    CERN Multimedia

    2002-01-01

    The experiment WA89 uses the upgraded Omega facility together with a hyperon beam installed at the end of the H1 beamline. The beam can deliver 2~10$ ^{5} \\% Sigma ^- $ per machine burst at 330 GeV/c with a background of 5 10$ ^{5} \\% \\pi ^- $. \\\\ \\\\ The goals of the experiment are: observation of charmed particles, mainly the charmed-strange baryons and measurements of their production in the kinematical range x$ _{F} $~$>$~0.2, and their decay properties, a search for exotic states such as U(3100) observed in the previous CERN hyperon beam experiment WA62, measurements of hyperon polarization and production properties. \\\\ \\\\ A vertex detector consisting of 24 silicon microstrip planes with 25~$\\mu$m pitch and 6~planes with 50~$\\mu$m pitch provides track measurements of sufficient accuracy to identify the decays of short living charmed particles and measure their lifetimes. A RICH detector provides good $\\pi$/K separation for momenta up to 100~GeV/c and $\\pi$/p separation up to 150~GeV/c. Photons are detecte...

  9. Nonlinear Charge and Current Neutralization of an Ion Beam Pulse in a Pre-formed Plasma

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.; Shvets, Gennady; Startsev, Edward; Davidson, Ronald C.

    2001-01-01

    The propagation of a high-current finite-length ion beam in a cold pre-formed plasma is investigated. The outcome of the calculation is the quantitative prediction of the degree of charge and current neutralization of the ion beam pulse by the background plasma. The electric magnetic fields generated by the ion beam are studied analytically for the nonlinear case where the plasma density is comparable in size with the beam density. Particle-in-cell simulations and fluid calculations of current and charge neutralization have been performed for parameters relevant to heavy ion fusion assuming long, dense beams with el >> V(subscript b)/omega(subscript b), where V(subscript b) is the beam velocity and omega subscript b is the electron plasma frequency evaluated with the ion beam density. An important conclusion is that for long, nonrelativistic ion beams, charge neutralization is, for all practical purposes, complete even for very tenuous background plasmas. As a result, the self-magnetic force dominates the electric force and the beam ions are always pinched during beam propagation in a background plasma

  10. Nonlinear Charge and Current Neutralization of an Ion Beam Pulse in a Pre-formed Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Igor D. Kaganovich; Gennady Shvets; Edward Startsev; Ronald C. Davidson

    2001-01-30

    The propagation of a high-current finite-length ion beam in a cold pre-formed plasma is investigated. The outcome of the calculation is the quantitative prediction of the degree of charge and current neutralization of the ion beam pulse by the background plasma. The electric magnetic fields generated by the ion beam are studied analytically for the nonlinear case where the plasma density is comparable in size with the beam density. Particle-in-cell simulations and fluid calculations of current and charge neutralization have been performed for parameters relevant to heavy ion fusion assuming long, dense beams with el >> V(subscript b)/omega(subscript b), where V(subscript b) is the beam velocity and omega subscript b is the electron plasma frequency evaluated with the ion beam density. An important conclusion is that for long, nonrelativistic ion beams, charge neutralization is, for all practical purposes, complete even for very tenuous background plasmas. As a result, the self-magnetic force dominates the electric force and the beam ions are always pinched during beam propagation in a background plasma.

  11. Microwave and particle beam sources and directed energy concepts

    International Nuclear Information System (INIS)

    Brandt, H.E.

    1989-01-01

    This book containing the proceedings of the SPIE on microwave and particle beam sources and directed energy concepts. Topics covered include: High power microwave sources, Direct energy concepts, Advanced accelerators, and Particle beams

  12. Physical aspects of heavy charged particle beams for radiotherapy

    International Nuclear Information System (INIS)

    Kawashima, Katsuhiro

    1989-01-01

    Physical properties of heavy ion beams are discussed to improve the physical dose distributions in view of radiotherapy. Preservation of the structural and functional integrity of adjacent normal tissue is required to achieve great probability of tumor control. This will be accomplished with the reduction of irradiated volume of normal tissues and with greater relative biological effectiveness (RBE) on tumor cells than that on surrounding normal cells. This suggests the use of heavy ion beams as new source of radiation that increases the therapeutic ratio. The basis of the improvement in the physical dose distribution by use of heavy charged particles is due to the finite range of the beams and to the less multiple coulomb scattering of the particles having a heavier atomic mass than proton. The depth dose distributions and dose profiles of heavy particle beams are discussed in this article. The lateral sharpness of heavy charged particles is comparable to the penumbra of high energy photon and electron beams and is not of clinical concern due to less coulomb scattering of heavy ions to lateral direction in traversing a medium. The dose gradient at the end of range of primary beam is dependent upon the energy spread and range straggling of the particles. The magnitude of range straggling is nearly proportional to the range and inversely proportional to the inverse square root of the particle mass. Heavy ion beams also undergo nuclear interactions, in which the primary beam may produce lower atomic number particles. Therefore, the dose beyond the Bragg peak is due to those fragments. Fragmentation increases as a function of the atomic mass to the 2/3 power and with the energy of the particles. Thus, the production of fragments diminishes the depth dose advantages of heavy ions. The choice of ion for radiotherapy may depend on evaluation of important parameter for tumor control. (J.P.N.)

  13. Particle beam fusion progress report January 1979 through June 1979

    International Nuclear Information System (INIS)

    1980-10-01

    The following chapters are included: (1) fusion target studies, (2) target experiments, (3) particle beam source development, (4) particle beam experiments, (5) pulsed power research and development, (6) pulsed fusion applications, and (7) electron beam fusion accelerator project

  14. Charged particle beam monitoring by means of synchrotron radiation

    International Nuclear Information System (INIS)

    Panasyuk, V.S.; Anevskij, S.I.

    1984-01-01

    Optical methods for monitoring the number of accelerated electrons and electron energy by means of beam synchrotron radiation (SR) as well as peculiarities of SR characteristics of beams with a small radius of the orbit are considered. Optical methods for charged particle beam monitoring are shown to ensure operative and precise monitoring the number of particles and particle energy. SR sources with large axial dimensions of an electron beam have specific spectral angular and polarization characteristics. If electron angular distribution at deflection from the median plane is noticeably wider than angular distribution of SR of a certain electron, relative SR characteristics of these soUrces are calculated with high accuracy

  15. Fundamentals of relativistic particle beam optics

    International Nuclear Information System (INIS)

    Cornacchia, M.

    1995-12-01

    This lecture introduces the nonaccelerator-specialist to the motion of charged particles in a Storage Ring. The topics of discussion are restricted to the linear and nonlinear dynamics of a single particle in the transverse plane, i.e., the plane perpendicular to the direction of motion. The major omissions for a complete review of accelerator theory, for which a considerable literature exists, are the energy and phase oscillations (1). Other important accelerator physics aspects not treated here are the collective instabilities (2), the role of synchrotron radiation in electron storage rings (3), scattering processes (4), and beam-beam effects in colliding beam facilities (5). Much of the discussion that follows applies equally well to relativistic electron, proton, or ion synchrotrons. In this narrative, we refer to the particle as electron. After a broad overview, the magnetic forces acting on the electrons and the associated differential equations of motion are discussed. Solutions of the equations are given without derivation; the method of solution is outlined. and references for deeper studies are given. In this paper, the word electron is used to signify electron or positron. The dynamics of a single particle are not affected by the sign of its charge when the magnetic field direction is changed accordingly

  16. Particle-beam-fusion progress report, July 1979 through December 1979

    International Nuclear Information System (INIS)

    1981-01-01

    The following chapters are included in this semi-annual progress report: (1) fusion target studies, (2) target experiments, (3) particle-beam source developments, (4) particle beam experiments, (5) pulsed power, (6) pulsed power applications, and (7) electron beam fusion accelerator project

  17. Plasma focusing and diagnosis of high energy particle beams

    International Nuclear Information System (INIS)

    Chen, Pisin.

    1990-09-01

    Various novel concepts of focusing and diagnosis of high energy charged particle beams, based on the interaction between the relativistic particle beam and the plasma, are reviewed. This includes overdense thin plasma lenses, and (underdense) adiabatic plasma lens, and two beam size monitor concepts. In addition, we introduce another mechanism for measuring flat beams based on the impulse received by heavy ions in an underdense plasma. Theoretical investigations show promise of focusing and diagnosing beams down to sizes where conventional methods are not possible to provide. 21 refs

  18. Physical properties of charged particle beams for use in radiotherapy

    International Nuclear Information System (INIS)

    Knapp, E.A.

    1975-01-01

    The physical properties of the possible charged particle beams used for cancer radiotherapy are reviewed. Each property is discussed for all interesting particles (π, p, α, Ne ion) and the differences are emphasized. This is followed by a short discussion of the several beam delivery systems used in particle therapy today, emphasizing the differences in the problems for the several different radiations, particularly the differences between the accelerated particle beams and those of a secondary nature. Dose calculation techniques are described

  19. First results of the University of Maryland electron beam transport experiment

    International Nuclear Information System (INIS)

    Namkung, W.; Loschialpo, P.; Reiser, M.; Suter, J.; Lawson, J.D.

    1981-01-01

    A study is made of emittance growth in periodically focused intense beams. For initial studies, the electron gun consists of a 1-cm diam., dispenser-type cathode and an anode covered with a wire mesh. To avoid neutralization, 5 /mu/s, 60 Hz pulses are used and the current is 230 mA at 5 kV. By varying the voltage from 10 kV to 500 volts the space charge depression, /omega/sub //omega/sub //o, of the particle oscillation frequencies in the focusing channel can be changed from approximately 0.04 to approximately 0.2. Further increase of /omega/sub //omega/sub //o should be possible with modified guns and the use of emittance control grids. Four prototype solenoids have been built, and the results of experiments with the first two are presented. 8 refs

  20. Study of the production of {phi}, {rho}, {omega} mesons in the ultra-relativistic heavy ion collisions at the SPS of CERN; Etude de la production des mesons {phi}, {rho} et {omega} dans les collisions d'ions lourds ultra-relativistes au SPS du CERN (dans l'experience NA50)

    Energy Technology Data Exchange (ETDEWEB)

    Villatte, L

    2001-03-28

    The NA50 experiment is one of the experiment using the SPS (Super Proton Synchrotron) beam at CERN (european laboratory for particle physics). One of the common aim of the SPS experiment is to look for the existence of a new state of the nuclear matter: the quark-gluon plasma. Among the proposed signatures of the quark-gluon plasma is the enhanced production of particles containing strange quarks. In the current work, the NA50/NA38 experiment data are analysed and the relative production of the {phi} and {rho} + {omega} mesons are obtained from Pb-Pb collisions at 158 and S-U at 200 GeV per nucleon. The measured ({phi}/({rho} +{omega})){mu}{mu} ratio as a function of the transverse mass does not present any unexpected behavior, however, central collisions as compared to peripheral collisions show an increase by a factor 1.7. The {phi} and {rho}+{omega} multiplicities are extracted for the Pb-Pb collisions and show that the enhancement of the ({phi}/({rho}+{omega})){mu}{mu} ratio is due to the {phi} meson production increase. The evolution of the {phi} meson multiplicity, versus the number of participant nucleus (N{sub part}), is different from that of the multi-strange baryons. The effective temperatures are deduced from the study of the {phi} and {rho} + {omega} production cross sections with respect to the transverse mass and compared to those obtained by other experiments and other particles. An additional study is done to extract the K/{pi} ratio versus N{sub part}. (authors)

  1. About spaces of $\\omega_1$-$\\omega_2$-ultradifferentiable functions

    OpenAIRE

    Schmets, Jean; Valdivia, Manuel

    2008-01-01

    Let $\\Omega_1$ and $\\Omega_2$ be non empty open subsets of $\\mathbb R^r$ and $\\mathbb R^s$ respectively and let $\\omega_1$ and $\\omega_2$ be weights. We introduce the spaces of ultradifferentiable functions $\\mathcal{E}_{(\\omega_1,\\omega_2)}(\\Omega_1 \\times \\Omega_2)$, $\\mathcal{D}_{(\\omega_1,\\omega_2)}(\\Omega_1 \\times \\Omega_2)$, $\\mathcal{E}_{\\{\\omega_1,\\omega_2\\}}(\\Omega_1 \\times \\Omega_2)$ and $\\mathcal{D}_{\\{\\omega_1,\\omega_2\\}}(\\Omega_1 \\times \\Omega_2)$, study their l...

  2. Symmetry Breaking and transition form factors from {eta} and {omega} decays

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Ankhi, E-mail: ankhi@iiti.ac.in [IIT Indore (India); Collaboration: WASA-at-COSY Collaboration

    2013-03-15

    The WASA-at-COSY collaboration uses meson production and the decays for the realization of the physics goals. Different rare decay channels of the mesons have to be analyzed in order to investigate symmetry breaking patterns. The combination of high intensity COSY (COoler SYnchrotron) beams and the WASA 4{pi} detector setup allows us to study the rare decay channels of light mesons. We are analyzing different symmetry breaking decay channels of {eta} mesons. One rare decay channel {eta}{yields}{pi}{sup + }{pi}{sup -} e{sup + }e{sup -} is being used to test CP violation. The asymmetry in the angle between the electron and pion planes can give insight about the degree of CP violation. The study of another rare decay channel {eta}{yields}{pi}{sup 0}e{sup + }e{sup -} is a test of C-parity violation. Our analysis of transition form factors of different mesons via conversion decays ({eta}{yields}{gamma}{gamma}{sup *}{yields}e{sup + }e{sup -} {gamma}, {omega}{yields}{pi}{sup 0}e{sup + }e{sup -}) provides insight about hadron structure. The transition form-factor of the {omega} meson provides information about the form factor in the time-like region where the two vector particles (the {omega} and the intermediate virtual photon) have an invariant mass squared will be discussed.

  3. Electron beam driven disordering in small particles

    International Nuclear Information System (INIS)

    Vanfleet, R.R.; Mochel, J.

    1997-01-01

    Small metal particles in the range of a few nanometers in diameter are seen to progressively disorder when the 100 keV electron beam of a Scanning Transmission Electron Microscope (STEM) is held stationary on the particle. The diffraction pattern of the individual particle is seen to progress from an initial array of indexable diffraction spots to a mixture of diffraction spots and amorphous-like rings and finally to rings with no persistent diffraction spots. After the electron beam is removed, the particles will recrystallize after minutes or hours. Only particles below a critical size are seen to fully disorder. The authors have observed this in platinum, palladium, rhodium, and iridium and based on the model of disordering process believe it is a universal effect. It has also been observed with a platinum ruthenium alloy. They discuss the mechanism of this disordering and the structure of the resulting disordering particle for the case of platinum clusters

  4. Pulling cylindrical particles using a soft-nonparaxial tractor beam

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Ding, Weiqiang; Wang, Maoyan

    2017-01-01

    In order to pull objects towards the light source a single tractor beam inevitably needs to be strongly nonparaxial. This stringent requirement makes such a tractor beam somewhat hypothetical. Here we reveal that the cylindrical shape of dielectric particles can effectively mitigate the nonparaxi......In order to pull objects towards the light source a single tractor beam inevitably needs to be strongly nonparaxial. This stringent requirement makes such a tractor beam somewhat hypothetical. Here we reveal that the cylindrical shape of dielectric particles can effectively mitigate...... the nonparaxiality requirements, reducing the incidence angle of the partial plane waves of the light beam down to 45 degrees and even to 30 degrees for respectively dipole and dipole-quadrupole objects. The optical pulling force attributed to the interaction of magnetic dipole and magnetic quadrupole moments...... and sorting of targeted particles....

  5. OMEGA polar-drive target designs

    International Nuclear Information System (INIS)

    Radha, P. B.; Marozas, J. A.; Marshall, F. J.; Shvydky, A.; Collins, T. J. B.; Goncharov, V. N.; McKenty, P. W.; Sangster, T. C.; Skupsky, S.; McCrory, R. L.; Meyerhofer, D. D.

    2012-01-01

    Low-adiabat polar-drive (PD) [Skupsky et al., Phys. Plasmas 11, 2763 (2004)] implosion designs for the OMEGA [Boehly et al., Opt. Commun. 133, 495 (1997)] laser are described. These designs for cryogenic deuterium–tritium and warm plastic shells use a temporal laser pulse shape with three pickets followed by a main pulse [Goncharov et al., Phys. Rev. Lett. 104, 165001 (2010)]. The designs are at two different on-target laser intensities, with different in-flight aspect ratios (IFARs). These designs permit studies of implosion energetics and target performance closer to ignition-relevant intensities (∼7 × 10 14 W/cm 2 at the quarter-critical surface, where nonlocal heat conduction and laser–plasma interactions can play an important role) but at lower values of IFAR ∼ 22 or at lower intensity (∼3 × 10 14 W/cm 2 ) but at a higher IFAR (IFAR ∼ 32, where shell instability can play an important role). PD geometry requires repointing of laser beams to improve shell symmetry. The higher-intensity designs optimize target performance by repointing beams to a lesser extent, compensating for the reduced equatorial drive by increasing the energies of the repointed beams. They also use custom beam profiles that improve equatorial illumination at the expense of irradiation at higher latitudes. These latter designs will be studied when new phase plates for the OMEGA Laser System, corresponding to the custom beam profiles, are obtained.

  6. Study of the Production and Decay Properties of using the OMEGA Spectrometer

    CERN Multimedia

    2002-01-01

    The aim of the experiment is to study beauty particles production and decay in a 350~GeV negative pion beam, using a scintillating optical fibre target in conjunction with a silicon microstrip telescope and the Omega spectrometer.\\\\ \\\\ A multiparticle high $p _{T}$ ~trigger together with an impact parameter trigger and muon selection is employed to enrich the $ B \\bar{B} $ ~signal. An automatic system of reconstructing tracks and vertices has been developed to select beauty decay topologies. A 50~day run should yield about 200~ $ B \\bar{B} $ events per nanobarn. \\\\ \\\\ Fast, high resolution micro-tracking has been realized with the scintillating fibre detector, but some technical problems are still under study. \\\\ \\\\ The collaboration is continuing with the R&D programme and at the same time has joined with the WA82 collaboration in a common proposal to study beauty production and decay with the Omega spectrometer using the better-known technique of silicon microstrip (this is approved as WA92).

  7. Scattering of a high-order Bessel beam by a spheroidal particle

    Science.gov (United States)

    Han, Lu

    2018-05-01

    Within the framework of generalized Lorenz-Mie theory (GLMT), scattering from a homogeneous spheroidal particle illuminated by a high-order Bessel beam is formulated analytically. The high-order Bessel beam is expanded in terms of spheroidal vector wave functions, where the spheroidal beam shape coefficients (BSCs) are computed conveniently using an intrinsic method. Numerical results concerning scattered field in the far zone are displayed for various parameters of the incident Bessel beam and of the scatter. These results are expected to provide useful insights into the scattering of a Bessel beam by nonspherical particles and particle manipulation applications using Bessel beams.

  8. Soviet exoatmospheric neutral particle beam research

    International Nuclear Information System (INIS)

    Leiss, J.E.; Abrams, R.H.; Ehlers, K.W.; Farrell, J.A.; Gillespie, G.H.; Jameson, R.A.; Keefe, D.; Parker, R.K.

    1988-02-01

    This technical assessment was performed by a panel of eight U.S. scientists and engineers who are familiar with Soviet research through their own research experience, their knowledge of the published scientific literature and conference proceedings, and personal contacts with Soviet scientists and other foreign colleagues. Most of the technical components of a neutral particle beam generating system including the ion source, the accelerator, the accelerator radio frequency power supply, the beam conditioning and aiming system, and the beam neutralizer system are addressed. It does not address a number of other areas important to an exoatmospheric neutral beam system

  9. Charged particle beam scanning using deformed high gradient insulator

    Science.gov (United States)

    Chen, Yu -Jiuan

    2015-10-06

    Devices and methods are provided to allow rapid deflection of a charged particle beam. The disclosed devices can, for example, be used as part of a hadron therapy system to allow scanning of a target area within a patient's body. The disclosed charged particle beam deflectors include a dielectric wall accelerator (DWA) with a hollow center and a dielectric wall that is substantially parallel to a z-axis that runs through the hollow center. The dielectric wall includes one or more deformed high gradient insulators (HGIs) that are configured to produce an electric field with an component in a direction perpendicular to the z-axis. A control component is also provided to establish the electric field component in the direction perpendicular to the z-axis and to control deflection of a charged particle beam in the direction perpendicular to the z-axis as the charged particle beam travels through the hollow center of the DWA.

  10. Dynamical coupled channel approach to omega meson production

    Energy Technology Data Exchange (ETDEWEB)

    Mark Paris

    2007-09-10

    The dynamical coupled channel approach of Matsuyama, Sato, and Lee is used to study the $\\omega$--meson production induced by pions and photons scattering from the proton. The parameters of the model are fixed in a two-channel (\\omega N,\\pi N) calculation for the non-resonant and resonant contributions to the $T$ matrix by fitting the available unpolarized differential cross section data. The polarized photon beam asymmetry is predicted and compared to existing data.

  11. Energy distribution of projectile fragment particles in heavy ion therapeutic beam

    Energy Technology Data Exchange (ETDEWEB)

    Matsufuji, Naruhiro; Tomura, Hiromi; Futami, Yasuyuki [National Inst. of Radiological Sciences, Chiba (Japan)] [and others

    1998-03-01

    Production of fragment particles in a patient`s body is one of important problems for heavy charged particle therapy. It is required to know the yield and the energy spectrum for each fragment element - so called `beam quality` to understand the effect of therapeutic beam precisely. In this study, fragment particles produced by practical therapeutic beam of HIMAC were investigated with using tissue-equivalent material and a detector complex. From the results, fragment particles were well identified by difference of their atomic numbers and the beam quality was derived. Responses of the detectors in this energy region were also researched. (author)

  12. Inclusive Production of the $\\omega$ and $\\eta$ Mesons in Z Decays, and the Muonic Branching Ratio of the $\\omega$

    CERN Document Server

    Heister, A.; Barate, R.; De Bonis, I.; Decamp, D.; Goy, C.; Lees, J.P.; Merle, E.; Minard, M.N.; Pietrzyk, B.; Boix, G.; Bravo, S.; Casado, M.P.; Chmeissani, M.; Crespo, J.M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, L.; Grauges, E.; Martinez, M.; Merino, G.; Miquel, R.; Mir, L.M.; Pacheco, A.; Ruiz, H.; Colaleo, A.; Creanza, D.; de Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Azzurri, P.; Buchmuller, O.; Cattaneo, M.; Cerutti, F.; Clerbaux, B.; Drevermann, H.; Forty, R.W.; Frank, M.; Gianotti, F.; Greening, T.C.; Hansen, J.B.; Harvey, J.; Hutchcroft, D.E.; Janot, P.; Jost, B.; Kado, M.; Mato, P.; Moutoussi, A.; Ranjard, F.; Rolandi, Gigi; Schlatter, D.; Schneider, O.; Sguazzoni, G.; Tejessy, W.; Teubert, F.; Valassi, A.; Videau, I.; Ward, J.; Badaud, F.; Falvard, A.; Gay, P.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J-C.; Pallin, D.; Perret, P.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Nilsson, B.S.; Waananen, A.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Bonneaud, G.; Brient, J.-C.; Rouge, A.; Rumpf, M.; Swynghedauw, M.; Verderi, M.; Videau, H.; Ciulli, V.; Focardi, E.; Parrini, G.; Antonelli, A.; Antonelli, M.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G.P.; Passalacqua, L.; Pepe-Altarelli, M.; Spagnolo, P.; Halley, A.; Lynch, J.G.; Negus, P.; O'Shea, V.; Raine, C.; Thompson, A.S.; Wasserbaech, S.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E.E.; Putzer, A.; Sommer, J.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D.M.; Cameron, W.; Dornan, P.J.; Girone, M.; Marinelli, N.; Sedgbeer, J.K.; Thompson, J.C.; Ghete, V.M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bouhova-Thacker, E.; Bowdery, C.K.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Pearson, M.R.; Robertson, N.A.; Jakobs, K.; Kleinknecht, K.; Quast, G.; Renk, B.; Sander, H.G.; Wachsmuth, H.; Zeitnitz, C.; Bonissent, A.; Carr, J.; Coyle, P.; Leroy, O.; Payre, P.; Rousseau, D.; Talby, M.; Ragusa, F.; David, A.; Dietl, H.; Ganis, G.; Huttmann, K.; Lutjens, G.; Mannert, C.; Manner, W.; Moser, H.G.; Settles, R.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Davier, M.; Duflot, L.; Grivaz, J.F.; Heusse, P.; Jacholkowska, A.; Lefrancois, J.; Veillet, J.J.; Yuan, C.; Bagliesi, Giuseppe; Boccali, T.; Foa, L.; Giammanco, A.; Giassi, A.; Ligabue, F.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciaba, A.; Tenchini, R.; Venturi, A.; Verdini, P.G.; Blair, G.A.; Cowan, G.; Green, M.G.; Medcalf, T.; Misiejuk, A.; Strong, J.A.; Teixeira-Dias, P.; von Wimmersperg-Toeller, J.H.; Clifft, R.W.; Edgecock, T.R.; Norton, P.R.; Tomalin, I.R.; Bloch-Devaux, Brigitte; Colas, P.; Emery, S.; Kozanecki, W.; Lancon, E.; Lemaire, M.C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.F.; Roussarie, A.; Schuller, J.P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Konstantinidis, N.; Litke, A.M.; Taylor, G.; Beddall, A.; Booth, C.N.; Cartwright, S.; Combley, F.; Lehto, M.; Thompson, L.F.; Affholderbach, K.; Boehrer, Armin; Brandt, S.; Grupen, C.; Ngac, A.; Prange, G.; Sieler, U.; Giannini, G.; Rothberg, J.; Armstrong, S.R.; Berkelman, Karl; Cranmer, K.; Ferguson, D.P.S.; Gao, Y.; Gonzalez, S.; Hayes, O.J.; Hu, H.; Jin, S.; Kile, J.; McNamara, P.A., III; Nielsen, J.; Pan, Y.B.; von Wimmersperg-Toeller, J.H.; Wiedenmann, W.; Wu, J.; Wu, Sau Lan; Wu, X.; Zobernig, G.

    2002-01-01

    The inclusive production of the omega(782) vector meson in hadronic Z decays is measured and compared to model predictions. The analysis is based on 4 million hadronic Z decays recorded by the ALEPH detector between 1991 and 1995. The production rate for x_p = p_meson/p_beam > 0.05 is measured in the omega -> pi^+ pi^- pi^0 decay mode and found to be 0.585 +- 0.019_stat +- 0.033_sys per event. Inclusive eta meson production is also measured in the same decay channel for x_p > 0.10, obtaining 0.355 +- 0.011_stat +- 0.024_sys per event. The branching ratio for omega -> mu^+ mu^- is investigated. A total of 18.1 +- 5.9 events are observed, from which the muonic branching ratio is measured for the first time to be BR(omega -> mu^+ mu^-) = (9.0 +- 2.9_stat +- 1.1_sys)*10^-5.

  13. Merging for Particle-Mesh Complex Particle Kinetic Modeling of the Multiple Plasma Beams

    Science.gov (United States)

    Lipatov, Alexander S.

    2011-01-01

    We suggest a merging procedure for the Particle-Mesh Complex Particle Kinetic (PMCPK) method in case of inter-penetrating flow (multiple plasma beams). We examine the standard particle-in-cell (PIC) and the PMCPK methods in the case of particle acceleration by shock surfing for a wide range of the control numerical parameters. The plasma dynamics is described by a hybrid (particle-ion-fluid-electron) model. Note that one may need a mesh if modeling with the computation of an electromagnetic field. Our calculations use specified, time-independent electromagnetic fields for the shock, rather than self-consistently generated fields. While a particle-mesh method is a well-verified approach, the CPK method seems to be a good approach for multiscale modeling that includes multiple regions with various particle/fluid plasma behavior. However, the CPK method is still in need of a verification for studying the basic plasma phenomena: particle heating and acceleration by collisionless shocks, magnetic field reconnection, beam dynamics, etc.

  14. Workshop: Keeping track of particle beams

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    How to monitor the beam in a particle accelerator - to measure beam position, intensity, profile, transverse and longitudinal emittance, and losses - was the topic of the first US National Workshop on Accelerator Instrumentation, at Brookhaven in October. Sponsored by the US Department of Energy, the meeting drew more than a hundred physicists and engineers from other national labs and from industry

  15. Workshop: Keeping track of particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1990-01-15

    How to monitor the beam in a particle accelerator - to measure beam position, intensity, profile, transverse and longitudinal emittance, and losses - was the topic of the first US National Workshop on Accelerator Instrumentation, at Brookhaven in October. Sponsored by the US Department of Energy, the meeting drew more than a hundred physicists and engineers from other national labs and from industry.

  16. Design study of beam position monitors for measuring second-order moments of charged particle beams

    Science.gov (United States)

    Yanagida, Kenichi; Suzuki, Shinsuke; Hanaki, Hirofumi

    2012-01-01

    This paper presents a theoretical investigation on the multipole moments of charged particle beams in two-dimensional polar coordinates. The theoretical description of multipole moments is based on a single-particle system that is expanded to a multiparticle system by superposition, i.e., summing over all single-particle results. This paper also presents an analysis and design method for a beam position monitor (BPM) that detects higher-order (multipole) moments of a charged particle beam. To calculate the electric fields, a numerical analysis based on the finite difference method was created and carried out. Validity of the numerical analysis was proven by comparing the numerical with the analytical results for a BPM with circular cross section. Six-electrode BPMs with circular and elliptical cross sections were designed for the SPring-8 linac. The results of the numerical calculations show that the second-order moment can be detected for beam sizes ≧420μm (circular) and ≧550μm (elliptical).

  17. Sandia's recent results in particle beam fusion research

    International Nuclear Information System (INIS)

    Yonas, G.

    Sandia's latest achievements in the particle beam fusion program are enumerated and pulse power accelerators offering a route to an experimental reactor ignition system are discussed. Four interdependent elements of the program are investigated: 1) power concentration and dielectric breakdown, 2) beam focusing and transport, 3) beam target interaction, and 4) implosion hydrodynamics. Results of the spherical target irradiation experiment on the 1 TW Proto I accelerator and the successful neutron production experiment using the 0.25 TW electron beam from the Rehyd generator are reported. Beam propagation in plasma discharge channels and magnetically insulated vacuum transmission lines have been tested as alternative ways of the power transport. The first-time operation of the Proto II accelerator at 6 TW level is the first step in scaling of intense particle accelerators to higher power levels. (J.U.)

  18. Cryogenic Beam Screens for High-Energy Particle Accelerators

    CERN Document Server

    Baglin, V; Tavian, L; van Weelderen, R

    2013-01-01

    Applied superconductivity has become a key enabling technology for high-energy particle accelerators, thus making them large helium cryogenic systems operating at very low temperature. The circulation of high-intensity particle beams in these machines generates energy deposition in the first wall through different processes. For thermodynamic efficiency, it is advisable to intercept these beam-induced heat loads, which may be large in comparison with cryostat heat in-leaks, at higher temperature than that of the superconducting magnets of the accelerator, by means of beam screens located in the magnet apertures. Beam screens may also be used as part of the ultra-high vacuum system of the accelerator, by sheltering the gas molecules cryopumped on the beam pipe from impinging radiation and thus avoiding pressure runaway. Space being extremely tight in the magnet apertures, cooling of the long, slender beam screens also raises substantial problems in cryogenic heat transfer and fluid flow. We present sizing rule...

  19. Determination of Beam Intensity and Position in a Particle Accelerator

    CERN Document Server

    Kasprowicz, Grzegorz; Raich, Uli

    2011-10-04

    A subject of the thesis is conception, design, implementation, tests and deployment of new position measurement system of particle bunch in the CERN PS circular accelerator. The system is based on novel algorithms of particle position determination. The Proton Synchrotron accelerator (PS), installed at CERN†, although commissioned in 1959, still plays a central role in the production of beams for the Antiproton Decelerator, Super Proton Synchrotron, various experimental areas and for the Large Hadron Collider (LHC)‡. The PS produces beams of different types of particles, mainly protons, but also various species of ions. Almost all these particle beams pass through the PS. The quality of the beams delivered to the LHC has a direct impact on the effective luminosity, and therefore the performance of the instrumentation of the PS is of great importance. The old trajectory and orbit measurement system of the PS is dated back to 1988 and no longer fulfilled present day requirements. It used 40 beam posi...

  20. Determination of beam intensity and position in a particle accelerator

    CERN Document Server

    Kasprowicz, G

    2011-01-01

    A subject of the thesis is conception, design, implementation, tests and deployment of new position measurement system of particle bunch in the CERN PS circular accelerator. The system is based on novel algorithms of particle position determination. The Proton Synchrotron accelerator (PS), installed at CERN, although commissioned in 1959, still plays a central role in the production of beams for the Antiproton Decelerator, Super Proton Synchrotron, various experimental areas and for the Large Hadron Collider (LHC). The PS produces beams of different types of particles, mainly protons, but also various species of ions. Almost all these particle beams pass through the PS. The quality of the beams delivered to the LHC has a direct impact on the effective luminosity, and therefore the performance of the instrumentation of the PS is of great importance. The old trajectory and orbit measurement system of the PS is dated back to 1988 and no longer fulfilled present day requirements. It used 40 beam position monitors...

  1. Dust particle diffusion in ion beam transport region

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, N.; Okajima, Y.; Romero, C. F.; Kuwata, Y.; Kasuya, T.; Wada, M., E-mail: mwada@mail.doshisha.ac.jp [Graduate school of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321 (Japan)

    2016-02-15

    Dust particles of μm size produced by a monoplasmatron ion source are observed by a laser light scattering. The scattered light signal from an incident laser at 532 nm wavelength indicates when and where a particle passes through the ion beam transport region. As the result, dusts with the size more than 10 μm are found to be distributed in the center of the ion beam, while dusts with the size less than 10 μm size are distributed along the edge of the ion beam. Floating potential and electron temperature at beam transport region are measured by an electrostatic probe. This observation can be explained by a charge up model of the dust in the plasma boundary region.

  2. Behaviors of ellipsoidal micro-particles within a two-beam optical levitator

    International Nuclear Information System (INIS)

    Petkov, T.; Yang, M.; Ren, K.F.; Pouligny, B.; Loudet, J.-C.

    2017-01-01

    The two-beam levitator (TBL) is a standard optical setup made of a couple of counter-propagating beams. Note worthily, TBLs allow the manipulation and trapping of particles at long working distances. While much experience has been accumulated in the trapping of single spherical particles in TBLs, the behaviors of asymmetrical particles turn out to be more complex, and even surprising. Here, we report observations with prolate ellipsoidal polystyrene particles, with varying aspect ratio and ratio of the two beam powers. Generalizing the earlier work by Mihiretie et al. in single beam geometries [JQSRT 126, 61 (2013)], we observe that particles may be either static, or permanently oscillating, and that the two-beam geometry produces new particle responses: some of them are static, but non-symmetrical, while others correspond to new types of oscillations. A two-dimensional model based on ray-optics qualitatively accounts for these configurations and for the “primary” oscillations of the particles. Furthermore, levitation powers measured in the experiments are in fair agreement with those computed from GLMT (Generalized Lorentz Mie Theory), MLFMA (Multilevel Fast Multipole Algorithm) and approximate ray-optics methods. - Highlights: • Spheroids in two-laser beam geometry may stabilize in asymmetric configurations. • Particles undergo different types of oscillations, in polar and azimuthal angles. • Polar angle oscillations and asymmetric equilibriums are predicted by ray-optics. • The basic levitation force decreases with particle aspect ratio. • Experiments, simple ray optics and MLFMA calculations show similar tendencies.

  3. Sandia's Particle Beam Fusion Program

    International Nuclear Information System (INIS)

    Sweeney, M.A.

    1979-01-01

    Sandia's Particle Beam Fusion Program is investigating pulsed electron and light ion beam accelerators, with the goal of demonstrating the practical application of such drivers as igniters in inertial confinement fusion (ICF) reactors. Recent developments in the program are described. Traditionally, two requirements of ICF reactor operation have been the most difficult to satisfy in conceptual designs. Adequate standoff of critical components from damaging pellet emissions must be assured, and the shot repetition rate must be consistent with the desired reactor power level at reasonable pellet gains. Progress in power compression, beam focusing and transport, first-wall protection schemes, and net-energy-gain target design shows how these requirements can be met

  4. Carbon Fiber Damage in Particle Beam

    CERN Document Server

    Dehning, B; Kroyer, T; Meyer, M; Sapinski, M

    2011-01-01

    Carbon fibers are commonly used as moving targets in beam wire scanners. The heating of the fiber due to energy loss of the particles travelling through is simulated with Geant4. The heating induced by the beam electromagnetic field is estimated with ANSYS. The heat transfer and sublimation processes are modelled. Due to the model nonlinearity, a numerical approach based on discretization of the wire movement is used to solve it for particular beams. Radiation damage to the fiber is estimated with SRIM. The model is tested with available SPS and LEP data and a dedicated damage test on the SPS beam is performed followed by a post-mortem analysis of the wire remnants. Predictions for the LHC beams are made.

  5. A ring image Cerenkov detector for the CERN Omega Spectrometer

    International Nuclear Information System (INIS)

    Davenport, M.; Deol, R.S.; Flower, P.S.

    1983-05-01

    A development program has been undertaken to produce a large ring image Cerenkov detector (RICH) for use at the CERN Omega Spectrometer. A prototype Cerenkov counter has been constructed and successfully operated in a high energy particle beam, Cerenkov rings having been observed in an experimental time projection chamber (TPC) using the photoionising agents Triethylamine (TEA) and Tetrakis (dimethylamine) ethylene (TMAE). Systematic measurements have been made of the optical properties of window materials and reflecting surfaces in the vacuum ultraviolet region. Results of these tests are presented, and the design of the large detector based on these experiences together with Monte Carlo simulations of the events expected in the WA69 experiment, is discussed. (author)

  6. Beam profile effects on NPB [neutral particle beam] performance

    International Nuclear Information System (INIS)

    LeClaire, R.J. Jr.

    1988-03-01

    A comparison of neutral particle beam brightness for various neutral beam profiles indicates that the widely used assumption of a Gaussian profile may be misleading for collisional neutralizers. An analysis of available experimental evidence shows that lower peaks and higher tails, compared to a Gaussian beam profile, are observed out of collisional neutralizers, which implies that peak brightness is over estimated, and for a given NPB platform-to-target range, the beam current (power), dwell time or some combination of such engagement parameters would have to be altered to maintain a fixed dose on target. Based on the present analysis, this factor is nominally about 2.4 but may actually be as low as 1.8 or as high as 8. This is an important consideration in estimating NPB constellation performance in SDI engagement contexts. 2 refs., 6 figs

  7. Optically induced rotation of Rayleigh particles by vortex beams with different states of polarization

    International Nuclear Information System (INIS)

    Li, Manman; Yan, Shaohui; Yao, Baoli; Liang, Yansheng; Lei, Ming; Yang, Yanlong

    2016-01-01

    Optical vortex beams carry optical orbital angular momentum (OAM) and can induce an orbital motion of trapped particles in optical trapping. We show that the state of polarization (SOP) of vortex beams will affect the details of this optically induced orbital motion to some extent. Numerical results demonstrate that focusing the vortex beams with circular, radial or azimuthal polarizations can induce a uniform orbital motion on a trapped Rayleigh particle, while in the focal field of the vortex beam with linear polarization the particle experiences a non-uniform orbital motion. Among the formers, the vortex beam with circular polarization induces a maximum optical torque on the particle. Furthermore, by varying the topological charge of the vortex beams, the vortex beam with circular polarization gives rise to an optimum torque superior to those given by the other three vortex beams. These facts suggest that the circularly polarized vortex beam is more suitable for rotating particles. - Highlights: • States of polarization of vortex beams affect the optically induced orbital motion of particles. • The dependences of the force and orbital torque on the topological charge, the size and the absorptivity of particles were calculated. • Focused vortex beams with circular, radial or azimuthal polarizations induce a uniform orbital motion on particles. • Particles experience a non-uniform orbital motion in the focused linearly polarized vortex beam. • The circularly polarized vortex beam is a superior candidate for rotating particles.

  8. Optical trapping and manipulation of Mie particles with Airy beam

    International Nuclear Information System (INIS)

    Zhao, Ziyu; Zang, Weiping; Tian, Jianguo

    2016-01-01

    In this paper we calculate the radiation forces and moving trajectories of Mie particles induced by 1D Airy beams using the plane wave spectrum method and arbitrary beam theory. Numerical results show that both the transverse and the longitudinal radiation forces are deeply dependent on the relative refractive index, radii and positions of the scattering particles illuminated by the Airy beam. Due to the radiation forces, Mie particles with different radii and initial positions can be dragged into the nearest main intensity lobes, and move along parabolic trajectories in the direction of the Poynting vector. At the ends of these trajectories, in the presence of Brownian force, the trapped scattering particles show irregular Brownian movement near their equilibrium positions. This characteristic property of Airy beams enables optical sorting to be used more easily in the colloidal and biological sciences. (paper)

  9. Scattering of aerosol particles by a Hermite-Gaussian beam in marine atmosphere.

    Science.gov (United States)

    Huang, Qingqing; Cheng, Mingjian; Guo, Lixin; Li, Jiangting; Yan, Xu; Liu, Songhua

    2017-07-01

    Based on the complex-source-point method and the generalized Lorenz-Mie theory, the scattering properties and polarization of aerosol particles by a Hermite-Gaussian (HG) beam in marine atmosphere is investigated. The influences of beam mode, beam width, and humidity on the scattered field are analyzed numerically. Results indicate that when the number of HG beam modes u (v) increase, the radar cross section of aerosol particles alternating appears at maximum and minimum values in the forward and backward scattering, respectively, because of the special petal-shaped distribution of the HG beam. The forward and backward scattering of aerosol particles decreases with the increase in beam waist. When beam waist is less than the radius of the aerosol particle, a minimum value is observed in the forward direction. The scattering properties of aerosol particles by the HG beam are more sensitive to the change in relative humidity compared with those by the plane wave and the Gaussian beam (GB). The HG beam shows superiority over the plane wave and the GB in detecting changes in the relative humidity of marine atmosphere aerosol. The effects of relative humidity on the polarization of the HG beam have been numerically analyzed in detail.

  10. Uniformity of the soft-x-ray emissions from gold foils irradiated by OMEGA laser beams determined by a two-mirror normal-incidence microscope with multilayer coatings

    International Nuclear Information System (INIS)

    Seely, John F.; Boehly, Thomas; Pien, Gregory; Bradley, David

    1998-01-01

    A two-mirror normal-incidence microscope with multilayer coatings was used to image the soft-x-ray emissions from planar foils irradiated by OMEGA laser beams. The bandpass of the multilayer coatings was centered at a wavelength of 48.3 Angstrom (257-eV energy) and was 0.5 Angstrom wide. Five overlapping OMEGA beams, without beam smoothing, were typically incident on the gold foils. The total energy was 1500 J, and the focused intensity was 6x10 13 Wcm -2 . The 5.8x magnified images were recorded by a gated framing camera at various times during the 3-ns laser pulse. A pinhole camera imaged the x-ray emission in the energy range of >2 keV. On a spatial scale of 10 μm, it was found that the soft-x-ray images at 257 eV were quite uniform and featureless. In contrast, the hard-x-ray images in the energy range of >2 kev were highly nonuniform with numerous features of size 150 μm. copyright 1998 Optical Society of America

  11. Simulation of Particle Fluxes at the DESY-II Test Beam Facility

    International Nuclear Information System (INIS)

    Schuetz, Anne

    2015-05-01

    In the course of this Master's thesis ''Simulation of Particle Fluxes at the DESY-II Test Beam Facility'' the test beam generation for the DESY test beam line was studied in detail and simulated with the simulation software SLIC. SLIC uses the Geant4 toolkit for realistic Monte Carlo simulations of particles passing through detector material.After discussing the physics processes relevant for the test beam generation and the principles of the beam generation itself, the software used is introduced together with a description of the functionality of the Geant4 Monte Carlo simulation. The simulation of the test beam line follows the sequence of the test beam generation. Therefore, it starts with the simulation of the beam bunch of the synchrotron accelerator DESY-II, and proceeds step by step with the single test beam line components. An additional benefit of this thesis is the provision of particle flux and trajectory maps, which make fluxes directly visible by following the particle tracks through the simulated beam line. These maps allow us to see each of the test beam line components, because flux rates and directions change rapidly at these points. They will also guide the decision for placements of future test beam line components and measurement equipment.In the end, the beam energy and its spread, and the beam rate of the final test beam in the test beam area were studied in the simulation, so that the results can be compared to the measured beam parameters. The test beam simulation of this Master's thesis will serve as a key input for future test beam line improvements.

  12. Pulsed power particle beam fusion research

    International Nuclear Information System (INIS)

    Yonas, G.

    1979-01-01

    Although substantial progress has been made in the last few years in developing the technology of intense particle beam drivers, there are still several unanswered questions which will determine their ultimate feasibility as fusion ignition systems. The questions of efficiency, cost, and single pulse scalability appear to have been answered affirmatively but repetitive pulse technology is still in its infancy. The allowable relatively low pellet gains and high available beam energies should greatly ease questions of pellet implosion physics. Insofar as beam-target coupling is concerned, ion deposition is thought to be understood and our measurements of enhanced electron deposition agree with theory. With the development of plasma discharges for intense beam transport and concentration it appears that light ion beams will be the preferred approach for reactors

  13. Particle beam dynamics simulations using the POOMA framework

    International Nuclear Information System (INIS)

    Humphrey, W.; Ryne, R.; Cleland, T.; Cummings, J.; Habib, S.; Mark, G.; Ji Qiang

    1998-01-01

    A program for simulation of the dynamics of high intensity charged particle beams in linear particle accelerators has been developed in C++ using the POOMA Framework, for use on serial and parallel architectures. The code models the trajectories of charged particles through a sequence of different accelerator beamline elements such as drift chambers, quadrupole magnets, or RF cavities. An FFT-based particle-in-cell algorithm is used to solve the Poisson equation that models the Coulomb interactions of the particles. The code employs an object-oriented design with software abstractions for the particle beam, accelerator beamline, and beamline elements, using C++ templates to efficiently support both 2D and 3D capabilities in the same code base. The POOMA Framework, which encapsulates much of the effort required for parallel execution, provides particle and field classes, particle-field interaction capabilities, and parallel FFT algorithms. The performance of this application running serially and in parallel is compared to an existing HPF implementation, with the POOMA version seen to run four times faster than the HPF code

  14. Design study of beam position monitors for measuring second-order moments of charged particle beams

    Directory of Open Access Journals (Sweden)

    Kenichi Yanagida

    2012-01-01

    Full Text Available This paper presents a theoretical investigation on the multipole moments of charged particle beams in two-dimensional polar coordinates. The theoretical description of multipole moments is based on a single-particle system that is expanded to a multiparticle system by superposition, i.e., summing over all single-particle results. This paper also presents an analysis and design method for a beam position monitor (BPM that detects higher-order (multipole moments of a charged particle beam. To calculate the electric fields, a numerical analysis based on the finite difference method was created and carried out. Validity of the numerical analysis was proven by comparing the numerical with the analytical results for a BPM with circular cross section. Six-electrode BPMs with circular and elliptical cross sections were designed for the SPring-8 linac. The results of the numerical calculations show that the second-order moment can be detected for beam sizes ≧420  μm (circular and ≧550  μm (elliptical.

  15. Electromagnetic field of a circular beam of relativistic particles

    International Nuclear Information System (INIS)

    Vybiral, B.

    1978-01-01

    The generalized Coulomb law and the generalized Biot-Savart-Laplace law are derived for an element of a beam of charged relativistic particles moving generally irregularly. These laws are utilized for the description of an electromagnetic field of a circular beam of relativistic regularly moving particles. It is shown that in the points on the axis of the beam the intensity of the electric field is given by an expression precisely corresponding to the classical Coulomb law for charges at rest and the induction of the magnetic field corresponds to the classical Biot-Savart-Laplace law for conductive currents. From the numerical solution it follows that in the points outside the axis the induction of the magnetic field rises with the velocity of the particles. For a velocity nearing that of light in vacuum it assumes a definite value (with the exception of the points lying on the beam). (author)

  16. Treatment facilities, human resource development, and future prospect of particle beam therapy

    International Nuclear Information System (INIS)

    Tamaki, Tomoaki; Nakano, Takashi

    2015-01-01

    The number of particle beam therapy facilities is increasing globally. Among the countries practicing particle beam therapy, Japan is one of the leading countries in the field with four operating carbon-ion therapy facilities and ten operating proton therapy facilities. With the increasing number of particle beam therapy facilities, the human resource development is becoming extremely important, and there has been many such efforts including the Gunma University Program for Cultivating Global Leaders in Heavy Ion Therapeutics and Engineering, which aimed to educate and train the radiation oncologists, medical physicists, accelerator engineers, and radiation biologists to become global leaders in the field of particle beam therapy. In the future, the benefit and effectiveness of particle beam therapy should be discussed and elucidated objectively in a framework of comprehensive cancer care. (author)

  17. A fast iterative method for computing particle beams penetrating matter

    International Nuclear Information System (INIS)

    Boergers, C.

    1997-01-01

    Beams of microscopic particles penetrating matter are important in several fields. The application motivating our parameter choices in this paper is electron beam cancer therapy. Mathematically, a steady particle beam penetrating matter, or a configuration of several such beams, is modeled by a boundary value problem for a Boltzmann equation. Grid-based discretization of this problem leads to a system of algebraic equations. This system is typically very large because of the large number of independent variables in the Boltzmann equation (six if time independence is the only dimension-reducing assumption). If grid-based methods are to be practical at all, it is therefore necessary to develop fast solvers for the discretized problems. This is the subject of the present paper. For two-dimensional, mono-energetic, linear particle beam problems, we describe an iterative domain decomposition algorithm based on overlapping decompositions of the set of particle directions and computationally demonstrate its rapid, grid independent convergence. There appears to be no fundamental obstacle to generalizing the method to three-dimensional, energy dependent problems. 34 refs., 15 figs., 6 tabs

  18. Splitting families and the Noetherian type of $\\beta\\omega-\\omega$

    OpenAIRE

    Milovich, David

    2007-01-01

    Extending some results of Malykhin, we prove several independence results about base properties of $\\beta\\omega-\\omega$ and its powers, especially the Noetherian type $Nt(\\beta\\omega-\\omega)$, the least $\\kappa$ for which $\\beta\\omega-\\omega$ has a base that is $\\kappa$-like with respect to containment. For example, $Nt(\\beta\\omega-\\omega)$ is never less than the splitting number, but can consistently be that $\\omega_1$, $2^\\omega$, $(2^\\omega)^+$, or strictly between $\\omega_1$ and $2^\\omega...

  19. Compressed beam directed particle nuclear energy generator

    International Nuclear Information System (INIS)

    Salisbury, W.W.

    1985-01-01

    This invention relates to the generation of energy from the fusion of atomic nuclei which are caused to travel towards each other along collision courses, orbiting in common paths having common axes and equal radii. High velocity fusible ion beams are directed along head-on circumferential collision paths in an annular zone wherein beam compression by electrostatic focusing greatly enhances head-on fusion-producing collisions. In one embodiment, a steady radial electric field is imposed on the beams to compress the beams and reduce the radius of the spiral paths for enhancing the particle density. Beam compression is achieved through electrostatic focusing to establish and maintain two opposing beams in a reaction zone

  20. Particle Rate and Host Accelerator Beam Loss on the MICE Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Dobbs, Adam James [Imperial College, London (United Kingdom)

    2011-10-01

    A study is presented of particle rates in the MICE Muon Beamline and their relationship to beam loss produced in ISIS. A brief overview of neutrino physics is presented, together with a discussion on the Neutrino Factory as a motivation for MICE. An overview of MICE itself is then presented, highlighting the need for a systematic understanding of the relationship between the MICE target parameters, ISIS beam loss, and MICE particle rate. The variation of beam loss with target depth is examined and observed to be non-linear. The variation of beam loss with respect to the target dip time in the ISIS cycle is examined and observed to be approximately linear for dip times between 11.1 ms and 12.6 ms after ISIS injection, before tailing at earlier dip times. The variation of beam loss with particle rate is also observed to follow an approximately linear relationship from 0.05 V.ms to 4.7 V.ms beam loss, with a further strong indication that this continues up to 7.1 V.ms. Particle identification using time-of-flight data is used to give an insight into the relative abundances of each particle species present in the MICE beam. Estimates of muon rate are then produced as a function of beam loss. At a level of 2 V.ms beam loss ~10.9 muons per spill for a 3.2 ms spill with negative π → μ optics, and ~31.1 muons per 1 ms spill with positive π → μ optics are observed. Simulations using the ORBIT particle tracking code of the beam loss distributions around the ISIS ring, caused by the MICE target, are also presented and the implications for MICE running discussed.

  1. Measurement of secondary particle production induced by particle therapy ion beams impinging on a PMMA target

    Directory of Open Access Journals (Sweden)

    Toppi M.

    2016-01-01

    Full Text Available Particle therapy is a technique that uses accelerated charged ions for cancer treatment and combines a high irradiation precision with a high biological effectiveness in killing tumor cells [1]. Informations about the secondary particles emitted in the interaction of an ion beam with the patient during a treatment can be of great interest in order to monitor the dose deposition. For this purpose an experiment at the HIT (Heidelberg Ion-Beam Therapy Center beam facility has been performed in order to measure fluxes and emission profiles of secondary particles produced in the interaction of therapeutic beams with a PMMA target. In this contribution some preliminary results about the emission profiles and the energy spectra of the detected secondaries will be presented.

  2. Neutral-particle-beam production and injection

    International Nuclear Information System (INIS)

    Post, D.; Pyle, R.

    1982-07-01

    This paper is divided into two sections: the first is a discussion of the interactions of neutral beams with confined plasmas, the second is concerned with the production and diagnosis of the neutral beams. In general we are dealing with atoms, molecules, and ions of the isotopes of hydrogen, but some heavier elements (for example, oxygen) will be mentioned. The emphasis will be on single-particle collisions; selected atomic processes on surfaces will be included

  3. Test of a Diamond Detector Using Unbunched Beam Halo Particles

    CERN Document Server

    Dehning, B; Pernegger, H; Dobos, D; Frais-Kolbl, H; Griesmayer, E

    2010-01-01

    A pCVD diamond detector has been evaluated as a beam loss monitor for future applications in the LHC accelerator. The test monitor was mounted in the SPS BA5 downstream of a LHC collimator during the LHC beam set-up. CVD diamond particle detectors are already in use in the CERN experiments ATLAS, CMS, LHCb and Alice. This is a proven technology with high radiation tolerance and very fast signal read-out. It can be used for single-particle detection, as well as for measuring particle cascades, for timing measurements on the nanosecond scale and for beam protection systems. Despite the read-out being made through 250 m of CK50 cable, the tests have shown a very good signal-to-noise ratio of 6.8, an excellent double-pulse resolution of less than 5 ns and a high dynamic range of 1:350 MIP particles. The efficiency of particle detection is practically 100% for charged particles.

  4. Three-dimensional hydrodynamic simulations of OMEGA implosions

    Science.gov (United States)

    Igumenshchev, I. V.; Michel, D. T.; Shah, R. C.; Campbell, E. M.; Epstein, R.; Forrest, C. J.; Glebov, V. Yu.; Goncharov, V. N.; Knauer, J. P.; Marshall, F. J.; McCrory, R. L.; Regan, S. P.; Sangster, T. C.; Stoeckl, C.; Schmitt, A. J.; Obenschain, S.

    2017-05-01

    The effects of large-scale (with Legendre modes ≲ 10) asymmetries in OMEGA direct-drive implosions caused by laser illumination nonuniformities (beam-power imbalance and beam mispointing and mistiming), target offset, and variation in target-layer thickness were investigated using the low-noise, three-dimensional Eulerian hydrodynamic code ASTER. Simulations indicate that these asymmetries can significantly degrade the implosion performance. The most important sources of the asymmetries are the target offsets ( ˜10 to 20 μm), beam-power imbalance ( σrms˜10 %), and variations ( ˜5 %) in target-layer thickness. Large-scale asymmetries distort implosion cores, resulting in a reduced hot-spot confinement and an increased residual kinetic energy of implosion targets. The ion temperature inferred from the width of simulated neutron spectra is influenced by bulk fuel motion in the distorted hot spot and can result in up to an ˜1 -keV increase in apparent temperature. Similar temperature variations along different lines of sight are observed. Demonstrating hydrodynamic equivalence to ignition designs on OMEGA requires a reduction in large-scale target and laser-imposed nonuniformities, minimizing target offset, and employing highly efficient mid-adiabat (α = 4) implosion designs, which mitigate cross-beam energy transfer and suppress short-wavelength Rayleigh-Taylor growth.

  5. Measurements of $\\jpsi$ decays into $\\omega\\pio$, $\\omega\\eta$, and $\\omega\\etap$

    OpenAIRE

    Ablikim, M.

    2005-01-01

    Based on $5.8 \\times 10^7 \\jpsi$ events collected with BESII at the Beijing Electron-Positron Collider (BEPC), the decay branching fractions of $\\jpsi\\to\\omega\\pio$, $\\omega\\eta$, and $\\omega\\etap$ are measured using different $\\eta$ and $\\etap$ decay modes. The results are higher than previous measurements. The $\\omega\\pio$ electromagnetic form factor is also obtained.

  6. Suppression of tilting instability of a compact torus by energetic particle beams

    International Nuclear Information System (INIS)

    Nomura, Yasuyuki.

    1984-11-01

    It is shown that the tilting instability of a compact torus can be suppressed by toroidally circulating energetic particle beams. The stabilizing mechanism is based on the properties of the forced oscillation in the motion of beam particles in a plasma ring. The required beam current for the stabilization is estimated to be sufficiently small compared to the plasma current in the case that the angular velocity of beam particles is close to the betatron frequency. This stabilizing method is applied to a field reversed configuration. Effects of the plasma surface current and beam divergences are also examined. (author)

  7. Design of an electronic charged particle spectrometer to measure (ρR), yield, and implosion symmetry on the OMEGA Upgrade

    International Nuclear Information System (INIS)

    Hicks, D.G.; Li, C.K.; Petrasso, R.D.; Wenzel, K.W.; Knauer, J.P.

    1994-11-01

    The preliminary design for a state-of-the-art diagnostic that will measure a broad energy spectrum of charged particles generated in the OMEGA Upgrade facility is investigated. Using a set of photodiodes (∼10) and a 0.8 Tesla permanent magnet, the diagnostic will uniquely determine particle energies and identities from 0.2 MeV up to the maximum charged particle energies (10.6 MeV tritons, 12.5 MeV deuterons and 17.4 MeV protons). With its high density picture elements, each photodiode has 10 6 single-hit detectors, giving the spectrometer a dynamic range of 1 - 10 5 particles/shot. For example, in the case of a DT yield of 10 9 neutrons, about 100 knock-on charged particles will be detected when the spectrometer aperture is 60 cm from the implosion. Furthermore, the measurement of knock-on D and T spectra will allow ρR's up to 0.15 g/cm 2 to be measured (for a 1 keV plasma), or 0.3 g/cm 2 2 if hydrogen doping is used. In addition, the yield and slowing down of secondary protons may be used to determine ρR up to 0.3 g/cm 2 . Significantly, this diagnostic will also directly measure the DD fusion yield and energy degradation of nascent 3 MeV protons. By using two such compact spectrometers to measure the yield and spectra on widely separated ports around the OMEGA Upgrade target chamber, the implosion and bum symmetry can be determined. Furthermore, the ion temperature, and, in principle, even the electron temperature can be measured. The diagnostic and its development will be fully tested at several critical steps, utilizing 0.2-16 MeV protons (and several other charged particles and neutrons) from our absolutely calibrated Cockcroft-Walton facility

  8. Neutral particle beam alternative concept for ITER

    International Nuclear Information System (INIS)

    Sedgley, D.; Brook, J.; Luzzi, T.; Deutsch, L.

    1989-01-01

    An analysis of an ITER neutral particle beam system is presented. The analysis covers the neutralizer, ion dumps, pumping, and geometric aspects. The US beam concept for ITER consists of three or four clusters of beamlines delivering approximately 80 MW total of 1.6-MeV deuterium to three or four reactor ports. Each cluster has three self-contained beamlines featuring plasma neutralizers and electrostatic ion dumps. In this study, each of the beamlines has two source assemblies with separate gas neutralizers and magnetic ion dumps. Deuterium is injected into the gas neutralizers by a separate system. Saddle-shaped copper coils augment the tokamak poloidal field to turn the charged particles into the ion dumps. The gas flow from the source, neutralizer, and ion dump is pumped by regenerable cryopanels. The effect of the port between the TF coils and the beam injection angle on the plasma footprint was studied

  9. Civilian applications of particle-beam-initiated inertial confinement fusion technology

    International Nuclear Information System (INIS)

    Varnado, S.G.; Mitchiner, J.L.

    1977-05-01

    Electrical power generation by controlled fusion may provide a partial solution to the world's long-term energy supply problem. Achievement of a fusion reaction requires the confinement of an extremely hot plasma for a time long enough to allow fuel burnup. Inertial confinement of the plasma may be possible through the use of tightly focused, relativistic electron or ion beams to compress a fuel pellet. The Sandia Particle Beam Fusion program is developing the particle-beam accelerators necessary to achieve fuel ignition. In this report we review the status of the particle-beam fusion technology development program and identify several potential civilian applications for this technology. We describe program objectives, discuss the specific accelerators presently under development, and briefly review the results of beam-focusing and target-irradiation experiments. Then we identify and discuss applications for the beam technology and for the fusion neutrons. The applications are grouped into near-term, intermediate-term, and long-term categories. Near-term applications for the beam technology include electron-beam (e-beam) pumping of gas lasers and several commercial applications. Intermediate-term applications (pellet gain less than 50) include hybrid reactors for electrical power production and fissile fuel breeding, pure fusion reactors for electrical power production, and medical therapy using ion accelerators. In the long term, complex, high-gain pellets may be used in pure fusion reactors

  10. Particle beams and plasmas

    International Nuclear Information System (INIS)

    Hofmann, A.; Messerschmid, E.; Lawson, J.D.

    1976-01-01

    These lectures present a survey of some of the concepts of plasma physics and look at some situations familiar to particle-accelerator physicists from the point of view of a plasma physicist, with the intention of helping to link together the two fields. At the outset, basic plasma concepts are presented, including definitions of a plasma, characteristic parameters, magnetic pressure and confinement. This is followed by a brief discussion on plasma kinetic theory, non-equilibrium plasma, and the temperature of moving plasmas. Examples deal with beams in the CERN Intersecting Storage Rings as well as with non-steady beams in cyclic accelerators and microwave tubes. In the final chapters, time-varying systems are considered: waves in free space and the effect of cylinder bounds, wave motion in cold stationary plasmas, and waves in plasmas with well-defined streams. The treatment throughout is informal, with emphasis on the essential physical properties of continuous beams in accelerators and storage rings in relation to the corresponding problems in plasma physics and microwave tubes. (Author)

  11. New Spectral Method for Halo Particle Definition in Intense Mis-matched Beams

    Energy Technology Data Exchange (ETDEWEB)

    Dorf, Mikhail A.; Davidson, Ronald C.; Startsev, Edward A.

    2011-04-27

    An advanced spectral analysis of a mis-matched charged particle beam propagating through a periodic focusing transport lattice is utilized in particle-in-cell (PIC) simulations. It is found that the betatron frequency distribution function of a mismatched space-charge-dominated beam has a bump-on-tail structure attributed to the beam halo particles. Based on this observation, a new spectral method for halo particle definition is proposed that provides the opportunity to carry out a quantitative analysis of halo particle production by a beam mismatch. In addition, it is shown that the spectral analysis of the mismatch relaxation process provides important insights into the emittance growth attributed to the halo formation and the core relaxation processes. Finally, the spectral method is applied to the problem of space-charge transport limits.

  12. Pulsed power accelerators for particle beam fusion

    International Nuclear Information System (INIS)

    Martin, T.H.; Barr, G.W.; VanDevender, J.P.; White, R.A.; Johnson, D.L.

    1980-01-01

    Sandia National Laboratories is completing the construction phase of the Particle Beam Fusion Accelerator-I (PBFA-I). Testing of the 36 module, 30 TW, 1 MJ output accelerator is in the initial stages. The 4 MJ, PBFA Marx generator has provided 3.6 MA into water-copper sulfate load resistors with a spread from first to last Marx firing between 15 to 25 ns and an output power of 5.7 TW. This accelerator is a modular, lower voltage, pulsed power device that is capable of scaling to power levels exceeding 100 TW. The elements of the PBFA technology and their integration into an accelerator system for particle beam fusion will be discussed

  13. Laser beam accelerator

    International Nuclear Information System (INIS)

    Tajima, T.; Dawson, J.M.

    1981-01-01

    Parallel intense photon (laser, microwave, etc.) beams /omega/sub //0, k/sub 0/ and /omega/sub //1, k/sub 1/ shone on a plasma with frequency separation equal to the plasma frequency /omega/sub //p is capable of accelerating plasma electrons to high energies in large flux. The photon beat excites through the forward Raman scattering large amplitude plasmons whose phase velocity is equal to (/omega/ /sub 0/-/omega/sub //1)/(k/sub 0/-k/sub 1/), close to c in an underdense plasma. The multiple forward Raman instability produces smaller and smaller frequency and group velocity of photons; thus the photons slow down in the plasma by emitting accelerated electrons (inverse Cherenkov process). 6 refs

  14. Studies of fuel-bulk flows using charged-particle and neutron spectrometry on OMEGA and the NIF

    Science.gov (United States)

    Gatu Johnson, M.; Rinderknecht, H.; Rosenberg, M.; Sio, H.; Zylstra, A.; Frenje, J.; Li, C. K.; Seguin, F.; Petrasso, R.; Delettrez, J.; Glebov, V.; Knauer, J.; McKenty, P.; Sangster, T. C.; Appelbe, B.; Amendt, P.; Bellei, C.; Bionta, R.; Bleuel, D.; Caggiano, J.; Casey, D.; Edwards, J.; Hatarik, R.; Hatchett, S.; Landen, O.

    2013-10-01

    A. MACKINNON, J. MCNANEY, D. MUNRO, J. PINO, S. WILKS, C. YEAMANS, LLNL, J. KILKENNY, A. NIKROO, GA - Charged-particle and neutron spectra are used to study fuel-bulk flows, which are indicative of implosion asymmetries and inefficient conversion of kinetic energy to thermal energy. We distinguish between (i) collective, directional motion of the burn region, which manifests itself as a directional shift of the fusion-product spectrum, and (ii) radial flow, which appears as an additional broadening of the spectrum relative to expected based on Ti Doppler broadening. In this talk, we will present neutron and charged particle spectra from OMEGA and the NIF, which display the effect of these phenomena and their relation to implosion asymmetry. This work was supported in part by the U.S. DOE, LLNL and LLE.

  15. Optical diagnostic suite (schlieren, interferometry, and grid image refractometry) on OMEGA EP using a 10-ps, 263-nm probe beam

    Energy Technology Data Exchange (ETDEWEB)

    Froula, D. H.; Boni, R.; Bedzyk, M.; Craxton, R. S.; Ehrne, F.; Ivancic, S.; Jungquist, R.; Shoup, M. J.; Theobald, W.; Weiner, D. [Laboratory for Laser Energetics, University of Rochester, 250 E. River Rd., Rochester, New York 14616 (United States); Kugland, N. L.; Rushford, M. C. [Lawrence Livermore National Laboratory, University of California, P. O. Box 808, Livermore, California 94551 (United States)

    2012-10-15

    A 10-ps, 263-nm (4{omega}) laser is being built to probe plasmas produced on the OMEGA EP [J. H. Kelly, L. J. Waxer, V. Bagnoud, I. A. Begishev, J. Bromage, B. E. Kruschwitz, T. E. Kessler, S. J. Loucks, D. N. Maywar, R. L. McCrory et al., J. Phys. IV France 133, 75-80 (2006)]. A suite of optical diagnostics (schlieren, interferometry, and grid image refractometry) has been designed to diagnose and characterize a wide variety of plasmas. Light scattered by the probe beam is collected by an f/4 catadioptric telescope and a transport system is designed to image with a near-diffraction-limited resolution ({approx}1 -{mu}m full width at half maximum) over a 5-mm field of view to a diagnostic table. The transport system provides a contrast greater than 1 : 10{sup 4} with respect to all wavelengths outside of the 263 {+-} 2 nm measurement range.

  16. A magnetic field cloak for charged particle beams

    Science.gov (United States)

    Capobianco-Hogan, K. G.; Cervantes, R.; Deshpande, A.; Feege, N.; Krahulik, T.; LaBounty, J.; Sekelsky, R.; Adhyatman, A.; Arrowsmith-Kron, G.; Coe, B.; Dehmelt, K.; Hemmick, T. K.; Jeffas, S.; LaByer, T.; Mahmud, S.; Oliveira, A.; Quadri, A.; Sharma, K.; Tishelman-Charny, A.

    2018-01-01

    Shielding charged particle beams from transverse magnetic fields is a common challenge for particle accelerators and experiments. We demonstrate that a magnetic field cloak is a viable solution. It allows for the use of dipole magnets in the forward regions of experiments at an Electron Ion Collider (EIC) and other facilities without interfering with the incoming beams. The dipoles can improve the momentum measurements of charged final state particles at angles close to the beam line and therefore increase the physics reach of these experiments. In contrast to other magnetic shielding options (such as active coils), a cloak requires no external powering. We discuss the design parameters, fabrication, and limitations of a magnetic field cloak and demonstrate that cylinders made from 45 layers of YBCO high-temperature superconductor, combined with a ferromagnetic shell made from epoxy and stainless steel powder, shield more than 99% of a transverse magnetic field of up to 0.45 T (95% shielding at 0.5 T) at liquid nitrogen temperature. The ferromagnetic shell reduces field distortions caused by the superconductor alone by 90% at 0.45 T.

  17. High resolution, position sensitive detector for energetic particle beams

    International Nuclear Information System (INIS)

    Marsh, E.P.; Strathman, M.D.; Reed, D.A.; Odom, R.W.; Morse, D.H.; Pontau, A.E.

    1993-01-01

    The performance and design of an imaging position sensitive, particle beam detector will be presented. The detector is minimally invasive, operates a wide dynamic range (>10 10 ), and exhibits high spatial resolution. The secondary electrons produced when a particle beam passes through a thin foil are imaged using stigmatic ion optics onto a two-dimensional imaging detector. Due to the low scattering cross section of the 6 nm carbon foil the detector is a minimal perturbation on the primary beam. A prototype detector with an image resolution of approximately 5 μm for a field of view of 1 mm has been reported. A higher resolution detector for imaging small beams (<50 μm) with an image resolution of better than 0.5 μm has since been developed and its design is presented. (orig.)

  18. Determination of Beam Intensity and Position in a Particle Accelerator

    CERN Document Server

    Kasprowicz, Grzegorz

    2010-01-01

    The Proton Synchrotron accelerator (PS), installed at CERN, although commissioned in 1959, still plays a central role in the production of beams for the Antiproton Decelerator, Super Proton Synchrotron, various experimental areas and for the Large Hadron Collider (LHC). The PS produces beams of different types of particles, mainly protons, but also various species of ions. Almost all these particle beams pass through the PS. The quality of the beams delivered to the LHC has a direct impact on the effective luminosity, and therefore the performance of the instrumentation of the PS is of great importance. The old trajec- tory and orbit measurement system of the PS dated back to 1988 and no longer fulfilled present day requirements. It used 40 beam position monitors (BPMs) and an analogue signal processing chain to acquire the trajectory of one single particle bunch out of many, over two consecutive turns at a maximum rate of once every 5ms. The BPMs were in good condition, however the electronics was aging and ...

  19. Particle beam generator using a radioactive source

    Science.gov (United States)

    Underwood, D.G.

    1993-03-30

    The apparatus of the present invention selects from particles emitted by a radioactive source those particles having momentum within a desired range and focuses the selected particles in a beam having at least one narrow cross-dimension, and at the same time attenuates potentially disruptive gamma rays and low energy particles. Two major components of the present invention are an achromatic bending and focusing system, which includes sector magnets and quadrupole, and a quadrupole doublet final focus system. Permanent magnets utilized in the apparatus are constructed of a ceramic (ferrite) material which is inexpensive and easily machined.

  20. Operational characteristics of the OMEGA short-wavelength laser fusion facility

    International Nuclear Information System (INIS)

    Soures, J.M.; Hutchison, R.; Jacobs, S.; McCrory, R.L.; Peck, R.; Seka, W.

    1984-01-01

    Twelve beams of the OMEGA, 24 beam direct-drive laser facility have been converted to 351-nm wavelength operation. The performance characteristics of this short-wavelength facility will be discussed. Beam-to-beam energy balance of +-2.3% and on-target energy, at 351-nm, in excess of 70 J per beam have been demonstrated. Long-term performance (>600 shots) of the system has been optimized by appropriate choice of index matching liquid, optical materials and coatings. The application of this system in direct-drive laser fusion experiments will be discussed

  1. Direct-drive high-convergence-ratio implosion studies on the OMEGA laser system

    International Nuclear Information System (INIS)

    Marshall, F. J.; Delettrez, J. A.; Epstein, R.; Glebov, V. Yu.; Harding, D. R.; McKenty, P. W.; Meyerhofer, D. D.; Radha, P. B.; Seka, W.; Skupsky, S.

    2000-01-01

    A series of direct-drive implosion experiments, using room-temperature, gas-filled CH targets, are performed on the University of Rochester's OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. The target performance at stagnation and its dependence on beam smoothing and pulse shaping is investigated. Compressed core conditions are diagnosed using x-ray and neutron spectroscopy, and x-ray imaging. The individual beams of OMEGA are smoothed by spectral dispersion in two dimensions (2D SSD) with laser bandwidths up to ∼0.3 THz, with 1 ns square to 2.5 ns shaped pulses. A clear dependence of target performance on pulse shape and beam smoothing is seen, with the target performance (yield, areal density, and shell integrity) improving as SSD bandwidth is applied. (c)

  2. High resolution, position sensitive detector for energetic particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, E P [Charles Evans and Associates, Redwood City, CA (United States); Strathman, M D [Charles Evans and Associates, Redwood City, CA (United States); Reed, D A [Charles Evans and Associates, Redwood City, CA (United States); Odom, R W [Charles Evans and Associates, Redwood City, CA (United States); Morse, D H [Sandia National Labs., Livermore, CA (United States); Pontau, A E [Sandia National Labs., Livermore, CA (United States)

    1993-05-01

    The performance and design of an imaging position sensitive, particle beam detector will be presented. The detector is minimally invasive, operates a wide dynamic range (>10[sup 10]), and exhibits high spatial resolution. The secondary electrons produced when a particle beam passes through a thin foil are imaged using stigmatic ion optics onto a two-dimensional imaging detector. Due to the low scattering cross section of the 6 nm carbon foil the detector is a minimal perturbation on the primary beam. A prototype detector with an image resolution of approximately 5 [mu]m for a field of view of 1 mm has been reported. A higher resolution detector for imaging small beams (<50 [mu]m) with an image resolution of better than 0.5 [mu]m has since been developed and its design is presented. (orig.)

  3. Aerosol nucleation induced by a high energy particle beam

    DEFF Research Database (Denmark)

    Enghoff, Martin Andreas Bødker; Pedersen, Jens Olaf Pepke; Uggerhøj, Ulrik I.

    2011-01-01

    We have studied sulfuric acid aerosol nucleation in an atmospheric pressure reaction chamber using a 580 MeV electron beam to ionize the volume of the reaction chamber. We find a clear contribution from ion-induced nucleation and consider this to be the first unambiguous observation of the ion......-effect on aerosol nucleation using a particle beam under conditions that resemble the Earth's atmosphere. By comparison with ionization using a gamma source we further show that the nature of the ionizing particles is not important for the ion-induced component of the nucleation. This implies that inexpensive...... ionization sources - as opposed to expensive accelerator beams - can be used for investigations of ion-induced nucleation....

  4. Method and split cavity oscillator/modulator to generate pulsed particle beams and electromagnetic fields

    Science.gov (United States)

    Clark, M. Collins; Coleman, P. Dale; Marder, Barry M.

    1993-01-01

    A compact device called the split cavity modulator whose self-generated oscillating electromagnetic field converts a steady particle beam into a modulated particle beam. The particle beam experiences both signs of the oscillating electric field during the transit through the split cavity modulator. The modulated particle beam can then be used to generate microwaves at that frequency and through the use of extractors, high efficiency extraction of microwave power is enabled. The modulated beam and the microwave frequency can be varied by the placement of resistive wires at nodes of oscillation within the cavity. The short beam travel length through the cavity permit higher currents because both space charge and pinching limitations are reduced. The need for an applied magnetic field to control the beam has been eliminated.

  5. A Study of Particle Beam Spin Dynamics for High Precision Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, Andrew J. [Northern Illinois Univ., DeKalb, IL (United States)

    2017-05-01

    In the search for physics beyond the Standard Model, high precision experiments to measure fundamental properties of particles are an important frontier. One group of such measurements involves magnetic dipole moment (MDM) values as well as searching for an electric dipole moment (EDM), both of which could provide insights about how particles interact with their environment at the quantum level and if there are undiscovered new particles. For these types of high precision experiments, minimizing statistical uncertainties in the measurements plays a critical role. \\\\ \\indent This work leverages computer simulations to quantify the effects of statistical uncertainty for experiments investigating spin dynamics. In it, analysis of beam properties and lattice design effects on the polarization of the beam is performed. As a case study, the beam lines that will provide polarized muon beams to the Fermilab Muon \\emph{g}-2 experiment are analyzed to determine the effects of correlations between the phase space variables and the overall polarization of the muon beam.

  6. Heavy Particle Beams in Tumor Radiotherapy

    International Nuclear Information System (INIS)

    Ayad, M.

    1999-01-01

    Using heavy particles beam in the tumor radiotherapy is advantageous to the conventional radiation with photons and electrons. One of the advantages of the heavy charged particle is the energy deposition processes which give a well defined range in tissue, a Bragg peak of ionization in the depth-dose distribution and slow scattering, while the dose to the surrounding healthy tissue in the vicinity is minimized. These processes can show the relation between the heavy particle and the conventional radiation is illustrated with respect to the depth dose and the relative dose. The usage of neutrons (Thermal or epithermal) in therapy necessitates implementation of capture material leading to the production of heavy charged particles (a-particles) as a result of the nuclear interaction in between. Experimentally it is found that 80% of the absorbed dose is mainly due to the presence of capture material

  7. The omega-6/omega-3 fatty acid ratio: health implications

    Directory of Open Access Journals (Sweden)

    Simopoulos Artemis P.

    2010-09-01

    Full Text Available Today, Western diets are characterized by a higher omega-6 and a lower omega-3 fatty acid intake, whereas during the Paleolithic period when human’s genetic profile was established, there was a balance between omega-6 and omega-3 fatty acids. Their balance is an important determinant for brain development and in decreasing the risk for coronary heart disease (CHD, hypertension, cancer, diabetes, arthritis, and other autoimmune and possibly neurodegenerative diseases. Both omega-6 and omega-3 fatty acids influence gene expression. Because of single nucleotide polymorphisms (SNPs in their metabolic pathways, blood levels of omega-6 and omega-3 fatty acids are determined by both endogenous metabolism and dietary intake making the need of balanced dietary intake essential for health and disease prevention. Whether an omega-6/omega-3 ratio of 3:1 to 4:1 could prevent the pathogenesis of many diseases induced by today’s Western diets (AFSSA, 2010, a target of 1:1 to 2:1 appears to be consistent with studies on evolutionary aspects of diet, neurodevelopment, and genetics. A target of omega-6/omega-3 fatty acid ratio of 1:1 to 2:1 appears to be consistent with studies on evolutionary aspects of diet, neurodevelopment and genetics. A balanced ratio of omega-6/omega-3 fatty acids is important for health and in the prevention of CHD and possibly other chronic diseases.

  8. Particle-beam driven inertial confinement fusion. A theoretical approach of the particle beam-matter interaction

    International Nuclear Information System (INIS)

    Duborgel, Bernard; Dufour, J.M.; Fedotoff, Michel; Gouard, Philippe.

    1981-11-01

    A major difficulty in the relativistic electron beam (REB) inertial confinement approach is the low REB-target coupling resulting from long electron range in the matter. The beam stagnation mechanism, induced in a thin target by macroscopic electric and magnetic fields, can appreciably enhance this coupling. The chapter 2 of the rapport contributes to the theoretical study of this effect. Models and numerical programs are described, which permit to establish the characteristics of this mechanism and evaluate the role of the various parameters. These models were used to interpret thin foils heating experiments performed on CHANTECLAIR generator at the Centre of Valduc. The orientation of particle research to the light ions beams (LIB) has to led to an intensive study of ions-matter interaction. DEPION model described in chapter 3 of the report provides an evaluation of energy deposition characteristics for any ion incident upon a target, taking into account their evolution during the plasma heating phase [fr

  9. Theoretical and Computational Investigation of Periodically Focused Intense Charged-Particle Beams

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chiping [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center

    2013-06-26

    The purpose of this report is to summarize results of theoretical and computational investigations of periodically focused intense charged-particle beams in parameter regimes relevant to the development of advanced high-brightness, high-power accelerators for high-energy physics research. The breakthroughs and highlights in our research in the period from April 1, 2010 to March 30, 2013 were: a) Theory and simulation of adiabatic thermal Child-Langmuir flow; b) Particle-in-cell simulations of adiabatic thermal beams in periodic solenoidal focusing field; c)Dynamics of charged particles in an adiabatic thermal beam equilibrium in a periodic solenoidal focusing field; d) Training of undergraduate researchers and graduate student in accelerator and beam physics. A brief introduction and summary is presented. Detailed descriptions of research results are provided in an appendix of publications at the end of the report.

  10. Engineering aspects of particle beam fusion systems

    International Nuclear Information System (INIS)

    Cook, D.L.

    1982-01-01

    The Department of Energy is supporting research directed toward demonstration of DT fuel ignition in an Inertial Confinement Fusion (ICF) capsule. As part of the ICF effort, two major Particle Beam Fusion Accelerators (PBFA I and II) are being developed at Sandia National Laboratories with the objective of providing energetic light ion beams of sufficient power density for target implosion. Supporting light ion beam research is being performed at the Naval Research Laboratory and at Cornell University. If the answers to several key physics and engineering questions are favorable, pulsed power accelerators will be able to provide an efficient and inexpensive approach to high target gain and eventual power production applications

  11. Engineering aspects of particle-beam fusion systems

    International Nuclear Information System (INIS)

    Cook, D.L.

    1982-01-01

    The Department of Energy is supporting research directed toward demonstration of DT fuel ignition in an Inertial Confinement Fusion (ICF) capsule. As part of the ICF effort, two major Particle Beam Fusion Accelerators (PBFA I and II) are being developed at Sandia National Laboratories with the objective of providing energetic light ion beams of sufficient power density for target implosion. Supporting light ion beam research is being performed at the Naval Research Laboratory and at Cornell University. If the answers to several key physics and engineering questions are favorable, pulsed power accelerators will be able to provide an efficient and inexpensive approach to high target gain and eventual power production applications

  12. Fundamentals of particle beam dynamics and phase space

    International Nuclear Information System (INIS)

    Weng, W.T.; Mane, S.R.

    1991-01-01

    This report discusses the following topics on synchrotron accelerators: Transverse motion---betatron oscillations; machine lattice; representation of a particle beam; and longitudinal motion---synchrotron oscillations

  13. Study of the one-way speed of light anisotropy with particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Wojtsekhowski, Bogdan B. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2017-04-01

    Concepts of high precision studies of the one-way speed of light anisotropy are discussed. The high energy particle beam allows measurement of a one-way speed of light anisotropy (SOLA) via analysis of the beam momentum variation with sidereal phase without the use of synchronized clocks. High precision beam position monitors could provide accurate monitoring of the beam orbit and determination of the particle beam momentum with relative accuracy on the level of 10^-10, which corresponds to a limit on SOLA of 10^-18 with existing storage rings. A few additional versions of the experiment are also presented.

  14. Characterisation of electron beams from laser-driven particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Brunetti, E.; Manahan, G. G.; Shanks, R. P.; Islam, M. R.; Ersfeld, B.; Anania, M. P.; Cipiccia, S.; Issac, R. C.; Vieux, G.; Welsh, G. H.; Wiggins, S. M.; Jaroszynski, D. A. [Physics Department, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2012-12-21

    The development, understanding and application of laser-driven particle accelerators require accurate measurements of the beam properties, in particular emittance, energy spread and bunch length. Here we report measurements and simulations showing that laser wakefield accelerators can produce beams of quality comparable to conventional linear accelerators.

  15. Laser and plasma diagnostics for the OMEGA Upgrade Laser System (invited) (abstract)

    International Nuclear Information System (INIS)

    Letzring, S.A.

    1995-01-01

    The upgraded OMEGA laser system will be capable of delivering up to 30 kJ of 351-nm laser light with various temporal pulse shapes onto a variety of targets for both ICF and basic plasma physics experiments. ICF experiments will cover a wide parameter space up to near-ignition conditions, and basic interaction and plasma physics experiments will cover previously unattainable parameter spaces. The laser system is the tool with which the experiments are performed; the diagnostics, both of the laser system and the interaction between the laser and the target, form the heart of the experiment. A new suite of diagnostics is now being designed and constructed. Most of these are based on diagnostics previously fielded on the OMEGA laser system very successfully over the last ten years, but there are some new diagnostics, both for the laser and the interaction experiments, which have had to be invented. Laser system diagnostics include high-energy, full-beam calorimetry for all of the 60 beams of the upgrade; a novel, multispectral energy-measuring system for assessing the tuning of the frequency-multiplying crystals; a beam-balance diagnostic that forms the heart of the energy-balance system; and a peak power diagnostic that forms the heart of the power-balance system. Target diagnostics will include the usual time-integrated x-ray imaging systems, both pinhole cameras and x-ray microscopes; x-ray spectrometers, both imaging and spatially integrating; plamsa calorimeters, including x-ray calorimetry; and time-resolved x-ray diagnostics, both nonimaging and imaging in one and two dimensions. Neutron diagnostics will include several measurements of total yield, secondary, and possibly tertiary yield and neutron spectroscopy with several time-of-flight spectrometers. Other measurements will include ''knock-on'' particle measurements and neutron activation of shell materials as a diagnostic of compressed fuel and shell density

  16. Literature in focus: Particle beams from theory to practice

    CERN Multimedia

    2003-01-01

    Wednesday 1st October 16 h00 - Central Library CERN's Frank Zimmermann and DESY's Michiko G. Minty had their book 'Measurement and control of charged particle beams' published a few months ago by Springer. Frank Zimmermann, a young but already well established accelerator physicist, was awarded the European Accelerator Prize by the Interdivisional Group on Accelerators of the European Physical Society last year. Mr. Zimmermann was particularly cited for his significant contribution to the understanding of fast ion and electron cloud instabilities. The book is the first comprehensive and systematic review of all methods used for the measurement, correction, and control of the beam dynamics of modern particle accelerators and is intended for graduate students starting research or work in the field of beam physics. Specific techniques and methods for relativistic beams are illustrated by examples from operational accelerators, like CERN, DESY, SLAC, KEK, LBNL, and FNAL. Problems and solutions enhance the book...

  17. X-ray flux and X-ray burn through experiments on reduced-scale targets at the Nif and OMEGA lasers

    International Nuclear Information System (INIS)

    Schneider, M.B.; Hinkel, D.E.; Young, B.K.; Holder, J.P.; Langdon, A.B.; Bower, D.E.; Bruns, H.C.; Campbell, K.M.; Celeste, J.R.; Compton, S.; Costa, R.L.; Dewald, E.L.; Dixit, S.N.; Eckart, M.J.; Eder, D.C.; Edwards, M.J.; Ellis, A.D.; Emig, J.A.; Froula, D.H.; Glebov, V.; Glenzer, S.H.; Hargrove, D.; Haynam, C.A.; Heeter, R.F.; Henesian, M.A.; Holtmeier, G.; James, D.L.; Jancaitis, K.S.; Kalantar, D.H.; Kamperschroer, J.H.; Kauffman, R.L.; Kimbrough, J.; Kirkwood, R.; Koniges, A.E.; Landen, O.L.; Landon, M.; Lee, F.D.; MacGowan, B.J.; Mackinnon, A.J.; Manes, K.R.; Marshall, C.; May, M.J.; McDonald, J.W.; Menapace, J.; Moon, S.J.; Moses, E.I.; Munro, D.H.; Murray, J.R.; Niemann, C.; Piston, K.; Power, G.D.; Rekow, V.; Ruppe, J.A.; Schein, J.; Shepherd, R.; Singh, M.S.; Sorce, C.; Springer, P.T.; Still, C.H.; Suter, L.J.; Tietbohl, G.L.; Turner, R.E.; Van Wonterghem, B.M.; Wallace, R.J.; Warrick, A.; Weber, F.; Wegner, P.J.; Williams, E.A.; Young, P.E.; Baldis, H.A.; Constantin, C.G.; Bahr, R.; Roberts, S.; Seka, W.; Stoeckl, C.; Pellinen, D.; Watts, P.

    2006-01-01

    An experimental campaign to maximize radiation drive in small-scale hohlraums has been carried out at the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (Livermore, USA) and at the OMEGA laser at the Laboratory for Laser Energetics (Rochester, USA). The small-scale hohlraums, laser energy, laser pulse, and diagnostics were similar at both facilities but the geometries were very different. The NIF experiments used on-axis laser beams whereas the OMEGA experiments used 19 beams in three beam cones. In the cases when the lasers coupled well and produced similar radiation drive, images of X-ray burn-through and laser deposition indicate the pattern of plasma filling is very different. The OMEGA targets fill faster than the NIF targets, which helps explain the time behavior of the X-ray fluences. (authors)

  18. X-ray flux and X-ray burn through experiments on reduced-scale targets at the Nif and OMEGA lasers

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, M.B.; Hinkel, D.E.; Young, B.K.; Holder, J.P.; Langdon, A.B.; Bower, D.E.; Bruns, H.C.; Campbell, K.M.; Celeste, J.R.; Compton, S.; Costa, R.L.; Dewald, E.L.; Dixit, S.N.; Eckart, M.J.; Eder, D.C.; Edwards, M.J.; Ellis, A.D.; Emig, J.A.; Froula, D.H.; Glebov, V.; Glenzer, S.H.; Hargrove, D.; Haynam, C.A.; Heeter, R.F.; Henesian, M.A.; Holtmeier, G.; James, D.L.; Jancaitis, K.S.; Kalantar, D.H.; Kamperschroer, J.H.; Kauffman, R.L.; Kimbrough, J.; Kirkwood, R.; Koniges, A.E.; Landen, O.L.; Landon, M.; Lee, F.D.; MacGowan, B.J.; Mackinnon, A.J.; Manes, K.R.; Marshall, C.; May, M.J.; McDonald, J.W.; Menapace, J.; Moon, S.J.; Moses, E.I.; Munro, D.H.; Murray, J.R.; Niemann, C.; Piston, K.; Power, G.D.; Rekow, V.; Ruppe, J.A.; Schein, J.; Shepherd, R.; Singh, M.S.; Sorce, C.; Springer, P.T.; Still, C.H.; Suter, L.J.; Tietbohl, G.L.; Turner, R.E.; Van Wonterghem, B.M.; Wallace, R.J.; Warrick, A.; Weber, F.; Wegner, P.J.; Williams, E.A.; Young, P.E. [Lawrence Livermore National Lab., Livermore, CA (United States); Baldis, H.A.; Constantin, C.G. [California at Davis Univ., CA (United States); Bahr, R.; Roberts, S.; Seka, W.; Stoeckl, C. [Laboratory for Laser Energetics, Rochester, NY (United States); Pellinen, D.; Watts, P. [Bechtel Nevada Corporation, Livermore, CA (United States)

    2006-06-15

    An experimental campaign to maximize radiation drive in small-scale hohlraums has been carried out at the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (Livermore, USA) and at the OMEGA laser at the Laboratory for Laser Energetics (Rochester, USA). The small-scale hohlraums, laser energy, laser pulse, and diagnostics were similar at both facilities but the geometries were very different. The NIF experiments used on-axis laser beams whereas the OMEGA experiments used 19 beams in three beam cones. In the cases when the lasers coupled well and produced similar radiation drive, images of X-ray burn-through and laser deposition indicate the pattern of plasma filling is very different. The OMEGA targets fill faster than the NIF targets, which helps explain the time behavior of the X-ray fluences. (authors)

  19. Particle beam digital phase control system for COSY

    International Nuclear Information System (INIS)

    Schnase, A.

    1994-02-01

    Particle accelerators require that the orbit of the charged particles in the vacuum chamber is controlled to fulfil narrow limits. This is done by magnetic deflection systems and exactly adjusted rf-acceleration. Up to now the necessary control-functions were realised with analogue parts. This work describes a digital phase control system that works in real time and is used with the proton accelerator COSY. The physical design of the accelerator sets the accuracy-specifications of the revolution frequency (<1 Hz in the whole range from 400 kHz to 1.6 MHz), the phase-difference (<0.01 ), the signal-to-noise-ratio (<-60 dBc) and the update rate (<1 μs) of the parameters. In a typical operation the beam is first bunched and synchronised to the reference oscillator. After that the beam influences the rf-system with the help of charge detectors and now the rf-systems will be synchronised with the bunched beam. This control-loop is modelled and simulated with PSPICE. (orig.)

  20. Coherent electromagnetic radiation of a modulated beam of charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Pankratov, S G [The State Committee of Standards of the USSR, Moscow, USSR

    1977-12-27

    The intensity of electromagnetic radiation produced by a modulated beam of charged particles is estimated. The coherence effect is due to the modulation, i.e. to periodicity in the particles distribution.

  1. Collimation of particle beams from thick accretion discs

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, M [N. Copernicus Astronomical Center, Warszawa (Poland); Wilson, D B [Cambridge Univ. (UK). Inst. of Astronomy

    1981-11-01

    The acceleration and collimation of particle beams in the funnel of thick accretion discs is studied in the approximation that the flow is optically thin. Such flows can be collimated to within approximately 0.1 radians by sufficiently thick discs. The flow cannot convert more than a small fraction of the disc's (super-Eddington) luminosity into the energy flow of a narrow beam without being optically thick.

  2. OMEGA 6

    Directory of Open Access Journals (Sweden)

    Fivi Melva Diana

    2012-09-01

    Full Text Available Kejadian gizi kurang di Indonesia dari tahun ke tahun masihtinggi Penyebab tingginya angka kejadian gizi kurang di Indonesia salah satunya diduga karena kurangnya konsumsi makanan sumber omega 6, secara alami terdapat pada minyak biji-bijian, minyakjagung dan kacang kedelai. Omega 6 merupakan asam lemak tak jenuh ganda yang mempunyai banyak manfaat terutama untuk pertumbuhan dan perkembangan kecerdasan balita. Tulisan ini membahas tentang defenisi omega 6, sumber, klasifikasi, manfaat dan kerugian bila mengkonsumsi omega 6. Disarankan untuk melakukan penelitian lebih lanjut mengenai hubungan konsumsi omega 6 dengan tumbuh-kembang anak, selain itu bagi ibu-ibu disarankan untuk memperhatikan konsumsi makanan dari sumber omega 6 guna pengoptimalan tumbuh-kembang anak. Hal ini jika terlaksana dapat memberikan dukungan terhadap program pemerintah di bidang promosi kesehatan.

  3. Production of $\\omega(782)$ in pp collisions at $\\sqrt{s}$ = 7 TeV

    CERN Document Server

    2018-01-01

    The production of $\\omega(782)$meson has been measured at mid-rapidity in pp collisions at $\\sqrt{s}$ = 7 TeV with the ALICE detector at the Large Hadron Collider (LHC). The particles are reconstructed in the $\\omega\\rightarrow\\pi^{0}\\pi^{+}\\pi^{-}$ decay channel. A data sample with an integrated luminosity of 6 nb$^{-1}$ has been used to measure the invariant differential cross section of the $\\omega$ meson and the $p_{T}$-differential $\\omega /\\pi^{0}$ ratio in the transverse momentum range $2<$p_{T}$<17$ GeV/$c$. The measured cross section and the $\\omega /\\pi^{0}$ ratio are found to be in agreement with predictions of PYTHIA and PHOJET events generators. Furthermore, the $\\omega /\\pi^{0}$ ratio is consistent with previous measurements by other experiments at lower energies within uncertainties.

  4. Assessment of essential fatty acid and omega 3-fatty acid status by measurement of erythrocyte 20 : 3 omega 9 (Mead acid), 22 : 5 omega 6/20 : 4 omega 6 and 22 : 5 omega 6/22 : 6 omega 3

    NARCIS (Netherlands)

    Smit, EN; Martini, IA; Woltil, HA; Boersma, ER; Muskiet, FAJ

    2002-01-01

    Background. Early suspicion of essential fatty acid deficiency (EFAD) or omega3-deficiency may rather focus on polyunsaturated fatty acid (PUFA) or long-chain PUFA (LCP) analyses than clinical symptoms. We determined cut-off values for biochemical EFAD, omega3-and omega3/22:6omega3 [docosahexaenoic

  5. Assessment of essential fatty acid and omega 3-fatty acid status by measurement of erythrocyte 20 : 3 omega 9 (Mead acid), 22 : 5 omega 6/20 : 4 omega 6 and 22 : 5 omega 6/22 : 6 omega 3

    NARCIS (Netherlands)

    Smit, EN; Martini, IA; Woltil, HA; Boersma, ER; Muskiet, FAJ

    Background. Early suspicion of essential fatty acid deficiency (EFAD) or omega3-deficiency may rather focus on polyunsaturated fatty acid (PUFA) or long-chain PUFA (LCP) analyses than clinical symptoms. We determined cut-off values for biochemical EFAD, omega3-and omega3/22:6omega3 [docosahexaenoic

  6. Development of a Charged Particle Microbeam for Single-Particle Subcellular Irradiations at the MIT Laboratory for Accelerator Beam Application

    International Nuclear Information System (INIS)

    Yanch, Jacquelyn C.

    2004-01-01

    The development of a charged particle microbeam for single particle, subcellular irradiations at the Massachusetts Institute of Technology Laboratory for Accelerator Beam Applications (MIT LABA) was initiated under this NEER aeard. The Microbeam apparatus makes use of a pre-existing electrostatic accelerator with a horizontal beam tube

  7. Cerenkov counters at the Omega Facility

    CERN Multimedia

    1975-01-01

    P. Petroff on the left. Here one sees both the gas Cerenkov counters sitting in front of the magnet to select forward emitted particles. The smaller one, working at high pressure, sits nearest to the Omega magnet (see photo 7505073X), the other (see photo 7505071X) works at atmospheric pressure.

  8. Meat-based functional foods for dietary equilibrium omega-6/omega-3.

    Science.gov (United States)

    Reglero, Guillermo; Frial, Paloma; Cifuentes, Alejandro; García-Risco, Mónica R; Jaime, Laura; Marin, Francisco R; Palanca, Vicente; Ruiz-Rodríguez, Alejandro; Santoyo, Susana; Señoráns, Francisco J; Soler-Rivas, Cristina; Torres, Carlos; Ibañez, Elena

    2008-10-01

    Nutritionists encourage improving the diet by combining meat products with fish or other sea-related foods, in order to equilibrate the omega-6/omega-3 ratio. Strong scientific evidence supports the beneficial health effects of a balanced omega-6/omega-3 PUFA (poly unsaturated fatty acids) diets. In the present work, the scientific bases of new functional meat products with both a balanced omega-6/omega-3 ratio and a synergic combination of antioxidants are discussed. The aim is to contribute to the dietary equilibrium omega-6/omega-3 and to increase the antioxidant intake. Conventional meat products supplemented with a specific fatty acids and antioxidants combination led to functional foods with healthier nutritional parameters.

  9. High gradient lens for charged particle beam

    Science.gov (United States)

    Chen, Yu-Jiuan

    2014-04-29

    Methods and devices enable shaping of a charged particle beam. A dynamically adjustable electric lens includes a series of alternating a series of alternating layers of insulators and conductors with a hollow center. The series of alternating layers when stacked together form a high gradient insulator (HGI) tube to allow propagation of the charged particle beam through the hollow center of the HGI tube. A plurality of transmission lines are connected to a plurality of sections of the HGI tube, and one or more voltage sources are provided to supply an adjustable voltage value to each transmission line of the plurality of transmission lines. By changing the voltage values supplied to each section of the HGI tube, any desired electric field can be established across the HGI tube. This way various functionalities including focusing, defocusing, acceleration, deceleration, intensity modulation and others can be effectuated on a time varying basis.

  10. Numerical simulations of intense charged particle beam propagation in a dielectric wakefield accelerator

    International Nuclear Information System (INIS)

    Gai, W.; Kanareykin, A.D.; Kustov, A.L.; Simpson, J.

    1995-01-01

    The propagation of an intense electron beam through a long dielectric tube is a critical issue for the success of the dielectric wakefield acceleration scheme. Due to the head-tail instability, a high current charged particle beam cannot propagate long distance without external focusing. In this paper we examine the beam handling and control problem in the dielectric wakefield accelerator. We show that for the designed 15.6 GHz and 20 GHz dielectric structures a 150 MeV, 40 endash 100 nC beam can be controlled and propagate up to 5 meters without significant particle losses by using external applied focusing and defocusing channel (FODO) around the dielectric tube. Particle dynamics of the accelerated beam is also studied. Our results show that for typical dielectric acceleration structures, the head-tail instabilities can be conveniently controlled in the same way as the driver beam. copyright 1995 American Institute of Physics

  11. Streamlined Darwin methods for particle beam injectors

    International Nuclear Information System (INIS)

    Boyd, J.K.

    1987-01-01

    Physics issues that involve inductive effects, such as beam fluctuations, electromagnetic (EM) instability, or interactions with a cavity require a time-dependent simulation. The most elaborate time-dependent codes self-consistently solve Maxwell's equations and the force equation for a large number of macroparticles. Although these full EM particle-in-cell (PIC) codes have been used to study a broad range of phenomena, including beam injectors, they have several drawbacks. In an explicit solution of Maxwell's equations, the time step is restricted by a Courant condition. A second disadvantage is the production of anomalously large numerical fluctuations, caused by representing many real particles by a single computational macroparticle. Last, approximate models of internal boundaries can create nonphysical radiation in a full EM simulation. In this work, many of the problems of a fully electromagnetic simulation are avoided by using the Darwin field model. The Darwin field model is the magnetoinductive limit of Maxwell's equations, and it retains the first-order relativistic correction to the particle Lagrangian. It includes the part of the displacement current necessary to satisfy the charge-continuity equation. This feature is important for simulation of nonneutral beams. Because the Darwin model does not include the solenoidal vector component of the displacement current, it cannot be used to study high-frequency phenomena or effects caused by rapid current changes. However, because wave motion is not followed, the Courant condition of a fully electromagnetic code can be exceeded. In addition, inductive effects are modeled without creating nonphysical radiation

  12. Study of \\Omega_c^0 and \\Omega_c^{*0} Baryons at Belle

    OpenAIRE

    Solovieva, E.; Chistov, R.; Collaboration, for the Belle

    2008-01-01

    We report results from a study of the charmed double strange baryons \\Omega_c^0 and \\Omega_c^{*0} at Belle. The \\Omega_c^0 is reconstructed using the \\Omega_c^0 --> \\Omega^- \\pi^+ decay mode, and its mass is measured to be (2693.6 \\pm 0.3 {+1.8 \\atop -1.5}) MeV/c^2. The \\Omega_c^{*0} baryon is reconstructed in the \\Omega_c^0 \\gamma mode. The mass difference M_{\\Omega_c^{*0}} - M_{\\Omega_c^0} is measured to be (70.7 \\pm 0.9 {+0.1 \\atop -0.9}) MeV/c^2. The analysis is performed using 673 fb^{-1...

  13. Beams '96. Proceedings of the 11th international conference on high power particle beams. Vol. II

    International Nuclear Information System (INIS)

    Jungwirth, K.; Ullschmied, J.

    1996-01-01

    The scientific programme of the conference carved the physics and technology of intense beams of charged particles, from basic experimental and theoretical problems of beam generation, transport and interaction with various media, up to beam and pulsed power applications in science and in industry. The breakdown of the papers by main topical groups is as follows: radiation sources, Z-pinches, accelerate related topics, astrophysics, ICF, ION Beam Physics, ION DIODES, ION RINGS, Beam plasma systems, diagnostic and others. This volumes contains 160 contributions, out which 133 have been input to INIS

  14. Beams `96. Proceedings of the 11th international conference on high power particle beams. Vol. II

    Energy Technology Data Exchange (ETDEWEB)

    Jungwirth, K.; Ullschmied, J. [eds.

    1997-12-31

    The scientific programme of the conference carved the physics and technology of intense beams of charged particles, from basic experimental and theoretical problems of beam generation, transport and interaction with various media, up to beam and pulsed power applications in science and in industry. The breakdown of the papers by main topical groups is as follows: radiation sources, Z-pinches, accelerate related topics, astrophysics, ICF, ION Beam Physics, ION DIODES, ION RINGS, Beam plasma systems, diagnostic and others. This volumes contains 160 contributions, out which 133 have been input to INIS.

  15. Dynamics and transport of laser-accelerated particle beams

    International Nuclear Information System (INIS)

    Becker, Stefan

    2010-01-01

    The subject of this thesis is the investigation and optimization of beam transport elements in the context of the steadily growing field of laser-driven particle acceleration. The first topic is the examination of the free vacuum expansion of an electron beam at high current density. It could be shown that particle tracking codes which are commonly used for the calculation of space charge effects will generate substantial artifacts in the regime considered here. The artifacts occurring hitherto predominantly involve insufficient prerequisites for the Lorentz transformation, the application of inadequate initial conditions and non negligible retardation artifacts. A part of this thesis is dedicated to the development of a calculation approach which uses a more adequate ansatz calculating space charge effects for laser-accelerated electron beams. It can also be used to validate further approaches for the calculation of space charge effects. The next elements considered are miniature magnetic quadrupole devices for the focusing of charged particle beams. General problems involved with their miniaturization concern distorting higher order field components. If these distorting components cannot be controlled, the field of applications is very limited. In this thesis a new method for the characterization and compensation of the distorting components was developed, which might become a standard method when assembling these permanent magnet multipole devices. The newly developed characterization method has been validated at the Mainz Microtron (MAMI) electron accelerator. Now that we can ensure optimum performance, the first application of permanent magnet quadrupole devices in conjunction with laser-accelerated ion beams is presented. The experiment was carried out at the Z-Petawatt laser system at Sandia National Laboratories. A promising application for laser-accelerated electron beams is the FEL in a university-scale size. The first discussion of all relevant aspects

  16. Dynamics and transport of laser-accelerated particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Stefan

    2010-04-19

    The subject of this thesis is the investigation and optimization of beam transport elements in the context of the steadily growing field of laser-driven particle acceleration. The first topic is the examination of the free vacuum expansion of an electron beam at high current density. It could be shown that particle tracking codes which are commonly used for the calculation of space charge effects will generate substantial artifacts in the regime considered here. The artifacts occurring hitherto predominantly involve insufficient prerequisites for the Lorentz transformation, the application of inadequate initial conditions and non negligible retardation artifacts. A part of this thesis is dedicated to the development of a calculation approach which uses a more adequate ansatz calculating space charge effects for laser-accelerated electron beams. It can also be used to validate further approaches for the calculation of space charge effects. The next elements considered are miniature magnetic quadrupole devices for the focusing of charged particle beams. General problems involved with their miniaturization concern distorting higher order field components. If these distorting components cannot be controlled, the field of applications is very limited. In this thesis a new method for the characterization and compensation of the distorting components was developed, which might become a standard method when assembling these permanent magnet multipole devices. The newly developed characterization method has been validated at the Mainz Microtron (MAMI) electron accelerator. Now that we can ensure optimum performance, the first application of permanent magnet quadrupole devices in conjunction with laser-accelerated ion beams is presented. The experiment was carried out at the Z-Petawatt laser system at Sandia National Laboratories. A promising application for laser-accelerated electron beams is the FEL in a university-scale size. The first discussion of all relevant aspects

  17. New technique for levitating solid particles using a proton beam

    International Nuclear Information System (INIS)

    Misconi, N.Y.

    1996-01-01

    A new technique for levitating solid particles inside a vacuum chamber is developed using a proton beam. This new technique differs from the classical laser-levitation technique invented by Ashkin in that it does not heat up light-absorbing levitated particles to vaporization. This unique property of the method will make it possible to levitate real interplanetary dust particles in a vacuum chamber and study their spin-up dynamics in a ground-based laboratory. It is found that a flux of protons from a proton gun of ∼ 10 15 cm -2 sec -1 is needed to levitate a 10-mm particle. Confinement of the levitated particle can be achieved by a Z or θ pinch to create a gravity well, or by making the beam profile doughnut in shape. In levitating real interplanetary particles, two spin-up mechanisms can be investigated using this technique: one is the Paddack Effect and the other is a spin-up mechanism by the interaction of F-coronal dust with CMEs (Coronal Mass Ejections). The real interplanetary particles were collected by Brownie and associates (also known as the Brownie Particles) from the earth's upper atmosphere. (author)

  18. CAS course on Intensity Limitations in Particle Beams at CERN

    CERN Multimedia

    CERN Accelerator School

    2015-01-01

    The CERN Accelerator School (CAS) recently organised a specialised course on Intensity Limitations in Particle Beams, at CERN from 2 to 11 November, 2015.     Many accelerators and storage rings, whether intended for particle physics experiments, synchrotron light sources or industrial applications, require beams of high brightness and the highest possible intensities. A good understanding of the possible limitations is required to achieve the desired performance. This course covered the interaction of beams with their surroundings and with other beams, as well as further collective effects. The lectures on the effects and possible mitigations were complemented by tutorials. The course was very successful, with 66 students representing 14 nationalities attending. Most participants came from European counties, but also from Armenia, China and Russia. Feedback from the participants was positive, reflecting the standard of the lectures and teaching. In addition to the academic pro...

  19. Lasers and particle beam for fusion and strategic defense

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    This special issue of the Journal of Fusion Energy consists of the edited transscripts of a symposium on the applications of laser and particle beams to fusion and strategic defense. Its eleven papers discuss these topics: the Strategic Defense Initiative; accelerators for heavy ion fusion; rf accelerators for fusion and strategic defense; Pulsed power, ICF, and the Strategic Defense Initiative; chemical lasers; the feasibility of KrF lasers for fusion; the damage resistance of coated optic; liquid crystal devices for laser systems; fusion neutral-particle beam research and its contribution to the Star Wars program; and induction linacs and free electron laser amplifiers for ICF devices and directed-energy weapons

  20. Study of Omega-proton correlations in heavy-ion collisions

    Science.gov (United States)

    Han, Yifei; STAR Collaboration

    2015-10-01

    Recently the STAR experiment at RHIC measured Lambda-Lambda correlations from Au+Au collisions at √{sNN} = 200 GeV to search for the H particle (uuddss). The correlation strength indicated that the Lambda-Lambda interaction is weak and is unlikely to be attractive enough to form a bound state. A recent lattice QCD calculation predicted a possible di-baryon bound state with Omega-nucleon. Thus, we will extend the correlation measurements to Omega-proton, which could potentially be a sensitive approach to search for such a state. We will present the Omega-proton correlations based on data collected by STAR in Au+Au collisions at √{sNN} =200 GeV, and discuss the physics implications. for the STAR collaboration.

  1. Baryon spectroscopy and the omega minus

    Energy Technology Data Exchange (ETDEWEB)

    Samios, N.P.

    1994-12-31

    In this report, I will mainly discuss baryon resonances with emphasis on the discovery of the {Omega}{sup {minus}}. However, for completeness, I will also present some data on the meson resonances which together with the baryons led to the uncovering of the SU(3) symmetry of particles and ultimately to the concept of quarks.

  2. Ponderomotive enhancement of charged particle beam limiting current

    International Nuclear Information System (INIS)

    Grebogi, C.; Uhm, H.S.

    1987-01-01

    The space charge limiting current problem is investigated for a magnetized particle beam propagating in a cylindrical drift tube and in presence of a waveguide mode. It is shown that with a proper choice of a waveguide mode, the limiting current can be greatly enhanced due to ponderomotive effects. Physically, this is accomplished by using the ponderomotive energy to reduce the potential depression due to the beam's self space charge field. Formulas for the limiting current as a function of beam energy and waveguide r.f. field for solid and hollow beams are derived. It is found from these formulas that, in appropriate parameter regimes, the space charge limiting current, say, of a 250kV bem can be enhanced by 70%

  3. Omega phase in materials

    International Nuclear Information System (INIS)

    Sikka, S.K.; Vohra, Y.K.; Chidambaram, R.

    1982-01-01

    The subject is covered in sections, entitled: introduction; occurrence and some systematics of omega phase (omega phase in Ti, Zr and Hf under high pressures; omega phase in Group IV transition metal alloys; omega in other systems; omega embryos at high temperatures); crystallography (omega structure; relationship of ω-structure to bcc (β) and hcp (α) structures); physical properties; kinetics of formation, synthesis and metastability of omega phase (kinetics of α-ω transformation under high pressures; kinetics of β-ω transformation; synthesis and metastability studies); electronic structure of omega phase (electronic structure models; band structure calculations; theoretical results and experimental studies); electronic basis for omega phase stability (unified phase diagram; stability of omega phase); omega phase formation under combined thermal and pressure treatment in alloys (Ti-V alloys under pressure - a prototype case study; P-X phase diagrams for alloys; transformation mechanisms and models for diffuse omega phase (is omega structure a charge density distortion of the bcc phase; nature of incommensurate ω-structure and models for diffuse scattering); conclusion. (U.K.)

  4. Laser-driven particle and photon beams and some applications

    International Nuclear Information System (INIS)

    Ledingham, K W D; Galster, W

    2010-01-01

    Outstanding progress has been made in high-power laser technology in the last 10 years with laser powers reaching petawatt (PW) values. At present, there are 15 PW lasers built or being built around the world and plans are afoot for new, even higher power, lasers reaching values of exawatt (EW) or even zetawatt (ZW) powers. Petawatt lasers generate electric fields of 10 12 V m -1 with a large fraction of the total pulse energy being converted to relativistic electrons with energies reaching in excess of 1 GeV. In turn these electrons result in the generation of beams of protons, heavy ions, neutrons and high-energy photons. These laser-driven particle beams have encouraged many to think of carrying out experiments normally associated with conventional nuclear accelerators and reactors. To this end a number of introductory articles have been written under a trial name 'Laser Nuclear Physics' (Ledingham and Norreys 1999 Contemp. Phys. 40 367, Ledingham et al 2002 Europhys. News. 33 120, Ledingham et al 2003 Science 300 1107, Takabe et al 2001 J. Plasma Fusion Res. 77 1094). However, even greater strides have been made in the last 3 or 4 years in laser technology and it is timely to reassess the potential of laser-driven particle and photon beams. It must be acknowledged right from the outset that to date laser-driven particle beams have yet to compete favourably with conventional nuclear accelerator-generated beams in any way and so this is not a paper comparing laser and conventional accelerators. However, occasionally throughout the paper as a reality check, it will be mentioned what conventional nuclear accelerators can do.

  5. Laser-driven particle and photon beams and some applications

    Energy Technology Data Exchange (ETDEWEB)

    Ledingham, K W D; Galster, W, E-mail: K.Ledingham@phys.strath.ac.u [SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2010-04-15

    Outstanding progress has been made in high-power laser technology in the last 10 years with laser powers reaching petawatt (PW) values. At present, there are 15 PW lasers built or being built around the world and plans are afoot for new, even higher power, lasers reaching values of exawatt (EW) or even zetawatt (ZW) powers. Petawatt lasers generate electric fields of 10{sup 12} V m{sup -1} with a large fraction of the total pulse energy being converted to relativistic electrons with energies reaching in excess of 1 GeV. In turn these electrons result in the generation of beams of protons, heavy ions, neutrons and high-energy photons. These laser-driven particle beams have encouraged many to think of carrying out experiments normally associated with conventional nuclear accelerators and reactors. To this end a number of introductory articles have been written under a trial name 'Laser Nuclear Physics' (Ledingham and Norreys 1999 Contemp. Phys. 40 367, Ledingham et al 2002 Europhys. News. 33 120, Ledingham et al 2003 Science 300 1107, Takabe et al 2001 J. Plasma Fusion Res. 77 1094). However, even greater strides have been made in the last 3 or 4 years in laser technology and it is timely to reassess the potential of laser-driven particle and photon beams. It must be acknowledged right from the outset that to date laser-driven particle beams have yet to compete favourably with conventional nuclear accelerator-generated beams in any way and so this is not a paper comparing laser and conventional accelerators. However, occasionally throughout the paper as a reality check, it will be mentioned what conventional nuclear accelerators can do.

  6. Beams '96. Proceedings of the 11th international conference on high power particle beams. Vol. I

    International Nuclear Information System (INIS)

    Jungwirth, K.; Ullschmied, J.

    1996-01-01

    The Proceedings contain the full texts of 60 orals and 243 poster papers presented at the Conference. The scientific programme of the conference covered the physics and technology of intense beams of charged particles, from basic experimental and theoretical problems of beam generation, transport and interaction with various media, up to beam and pulsed power applications in science and in industry. The breakdown of the papers by main topical groups is as follows: electron beams, beam-plasma systems, high-power microwaves (62), imploding liners, z-pinches, plasma foci (53), pulsed power technology and its applications (53), ion beams and ICF (41), industrial applications of electron and ion beams (36), radiation sources (23), diagnostics (14), and others (21). (J.U.)

  7. Beams `96. Proceedings of the 11th international conference on high power particle beams. Vol. I

    Energy Technology Data Exchange (ETDEWEB)

    Jungwirth, K.; Ullschmied, J. [eds.

    1997-12-31

    The Proceedings contain the full texts of 60 orals and 243 poster papers presented at the Conference. The scientific programme of the conference covered the physics and technology of intense beams of charged particles, from basic experimental and theoretical problems of beam generation, transport and interaction with various media, up to beam and pulsed power applications in science and in industry. The breakdown of the papers by main topical groups is as follows: electron beams, beam-plasma systems, high-power microwaves (62), imploding liners, z-pinches, plasma foci (53), pulsed power technology and its applications (53), ion beams and ICF (41), industrial applications of electron and ion beams (36), radiation sources (23), diagnostics (14), and others (21). (J.U.).

  8. RF fields due to Schottky noise in a coasting particle beam

    CERN Document Server

    Faltin, L

    1977-01-01

    The RF fields inside a rectangular chamber excited by the Schottky noise current inherently present in a coasting particle beam are calculated, using a simple beam model. Vertical betatron oscillations are assumed. The power flow accompanying the beam is given as well as the resulting characteristic impedance. Numerical results are presented.

  9. Understanding the branching ratios of \\chi_{c1}\\to\\phi\\phi, \\omega\\omega, \\omega\\phi observed at BES-III

    OpenAIRE

    Chen, Dian-Yong; He, Jun; Li, Xue-Qian; Liu, Xiang

    2009-01-01

    In this work, we discuss the contribution of the mesonic loops to the decay rates of $\\chi_{c1}\\to \\phi\\phi,\\,\\omega\\omega$ which are suppressed by the helicity selection rules and $\\chi_{c1}\\to \\phi\\omega$ which is a double-OZI forbidden process. We find that the mesonic loop effects naturally explain the clear signals of $\\chi_{c1}\\to \\phi\\phi,\\,\\omega\\omega$ decay modes observed by the BES collaboration. Moreover, we investigate the effects of the $\\omega-\\phi$ mixing which may result in t...

  10. Signal amplification and Pierce's instability in convergent particle beams

    International Nuclear Information System (INIS)

    Gnavi, G.; Gratton, F.T.

    1988-01-01

    Relativistic electron beams flowing between cylindrical and spherical electrodes (or solid angles sections of electrodes with these geometries) are studied. The beams are focused through the axis in the cylindrical case or through the center when spherical electrodes are considered. It is assumed that the external electrode is part of a device which accelerates the particles, the inner electrode is passive and removes the beams from the system. Electrons move by inertia in the interelectrode space, neutralized by an ion background. Properties of radial, small amplitude, perturbations are analyzed theoretically. Previous analyses of counterstreaming beams indicated that convergence modifies considerably the oscillations spectrum. Here, results on the amplification of signals when a beam is modulated at the external electrode are reported. Then, conditions for the instability of a beam when it flows through grounded electrodes (Pierce's instability of only one beam) are examined

  11. Method for varying the diameter of a beam of charged particles

    International Nuclear Information System (INIS)

    Ko, W.C.; Sawatzky, E.

    1977-01-01

    In the bombardment of targets with beams of charged particles, a method is described for varying and controlling the diameter of such beams by passing the beam through an envelope of conductive material. The envelope is spaced from and coaxial with the beam. A selected dc potential is applied to the envelope, and the beam diameter is controlled by changing this applied potential in a direction away from ground potential to increase the beam diameter or by changing the potential in a direction toward ground potential to decrease said beam diameter

  12. Technique for measuring charged particle distribution in a pulsed beam. Sposob izmereniya raspredeleniya zaryazhennykh chastits v impul'snom puchke

    Energy Technology Data Exchange (ETDEWEB)

    Zakutin, V V; Shenderovich, A M

    1988-11-07

    Technique for measuring charged particle distribution in a pulsed beam by producing beam imprint on a target is described. In order to measure beam particle distribution in longitudinal direction, all beam particles are deflected simultaneously to the target, located in parallel with initial direction of beam motion, by transverse pulse magnetic field, homogeneous in the field of trajectories of beam particle motion in the field. The invention enables to conduct measurements of longitudinal distribution of particle density in beams of 10{sup -9}-10{sup -11}s duration, this corresponds to longitudinal beam dimensions from 30 cm down to 3 mm. 1 fig.

  13. Using the particle beam optics lab. (PBO LABtm) for beamline design and analysis

    International Nuclear Information System (INIS)

    Gillespie, G.H.; Hill, B.W.; Martono, H.; Moore, J.M.; Lampel, M.C.; Brown, N.A.

    1999-01-01

    The Particle Beam Optics Interactive Computer Laboratory (PBO Lab) represents a new approach to providing software for particle beam optics modeling. The PBO Lab includes four key elements: a graphic user interface shell; a graphic beamline construction kit for users to interactively and visually construct optical beam lines; a knowledge database on the physics and technology of optical elements, and various charged particle optics computational engines. A first-order matrix code, including a space charge model, can be used to produce scaled images of beamlines together with overlays of single trajectories and beam envelopes. The qualitative results of graphically sliding beamline components, or adjusting bend angles, can be explored interactively. Quantitative computational engines currently include the third-order TRANSPORT code and the multi-particle ray tracing program TURTLE. The use of the PBO Lab for designing and analyzing a second order achromatic bend is illustrated with the Windows 95/NT version of the software. (authors)

  14. Course Notes: United States Particle Accelerator School Beam Physics with Intense Space-Charge

    International Nuclear Information System (INIS)

    Barnard, J.J.; Lund, S.M.

    2008-01-01

    The purpose of this course is to provide a comprehensive introduction to the physics of beams with intense space charge. This course is suitable for graduate students and researchers interested in accelerator systems that require sufficient high intensity where mutual particle interactions in the beam can no longer be neglected. This course is intended to give the student a broad overview of the dynamics of beams with strong space charge. The emphasis is on theoretical and analytical methods of describing the acceleration and transport of beams. Some aspects of numerical and experimental methods will also be covered. Students will become familiar with standard methods employed to understand the transverse and longitudinal evolution of beams with strong space charge. The material covered will provide a foundation to design practical architectures. In this course, we will introduce you to the physics of intense charged particle beams, focusing on the role of space charge. The topics include: particle equations of motion, the paraxial ray equation, and the Vlasov equation; 4-D and 2-D equilibrium distribution functions (such as the Kapchinskij-Vladimirskij, thermal equilibrium, and Neuffer distributions), reduced moment and envelope equation formulations of beam evolution; transport limits and focusing methods; the concept of emittance and the calculation of its growth from mismatches in beam envelope and from space-charge non-uniformities using system conservation constraints; the role of space-charge in producing beam halos; longitudinal space-charge effects including small amplitude and rarefaction waves; stable and unstable oscillation modes of beams (including envelope and kinetic modes); the role of space charge in the injector; and algorithms to calculate space-charge effects in particle codes. Examples of intense beams will be given primarily from the ion and proton accelerator communities with applications from, for example, heavy-ion fusion, spallation

  15. A theory of two-beam acceleration of charged particles in a plasma waveguide

    International Nuclear Information System (INIS)

    Ostrovsky, A.O.

    1993-11-01

    The progress made in recent years in the field of high-current relativistic electron beam (REB) generation has aroused a considerable interest in studying REB potentialities for charged particle acceleration with a high acceleration rate T = 100MeV/m. It was proposed, in particular, to employ high-current REB in two-beam acceleration schemes (TBA). In these schemes high current REB (driving beam) excites intense electromagnetic waves in the electrodynamic structure which, in their turn, accelerate particles of the other beam (driven beam). The TBA schemes can be divided into two groups. The first group includes the schemes, where the two beams (driving and driven) propagate in different electrodynamic structures coupled with each other through the waveguides which ensure the microwave power transmission to accelerate driven beam particles. The second group includes the TBA schemes, where the driving and driven beams propagate in one electrodynamic structure. The main aim of this work is to demonstrate by theory the possibility of realizing effectively the TBA scheme in the plasma waveguide. The physical model of the TBA scheme under study is formulated. A set of equations describing the excitation of RF fields by a high-current REB and the acceleration of driven beam electrons is also derived. Results are presented on the the linear theory of plasma wave amplification by the driving beam. The range of system parameters, at which the plasma-beam instability develops, is defined. Results of numerical simulation of the TBA scheme under study are also presented. The same section gives the description of the dynamics of accelerated particle bunching in the high-current REB-excited field. Estimates are given for the accelerating field intensities in the plasma and electron acceleration rates

  16. Focused transport of intense charged particle beams. Final technical report FY/93

    International Nuclear Information System (INIS)

    1997-01-01

    Many recent developments in accelerator technology have increased the need for a better understanding of the physics of intense-beam transport. Of particular interest to the work described here is the appearance, as beam intensities are increased, of a class of nonlinear phenomena which involve the collective interaction of the beam particles. Beam intensity, used as a measure of the importance of space-charge collective behavior, depends on the ratio of current to emittance. The nonlinear beam dynamics, and any resulting emittance growth, which are characteristic of the intense-beam regime, can therefore occur even at low currents in any accelerator system with sufficiently high intensity, especially in the low beta section. Furthermore, since emittance of a beam is difficult to reduce, the ultimate achievement of necessary beam luminosities requires the consideration of possible causes of longitudinal and transverse emittance growth at every stage of the beam lifetime. The research program described here has addressed the fundamental physics which comes into play during the transport, acceleration and focusing of intense beams. Because of the long term and ongoing nature of the research program discussed here, this report is divided into two sections. The first section constitutes a long term revue of the accomplishments which have resulted from the research effort reported, especially in pioneering the use of particle-in-cell (PIC) computer simulation techniques for simulation of the dynamics of space-charge-dominated beams in particle accelerators. The following section emphasizes, in more detail, the accomplishments of the FY 92/93 period immediately prior to the termination of this particular avenue of support. 41 refs

  17. Dose calculations algorithm for narrow heavy charged-particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Barna, E A; Kappas, C [Department of Medical Physics, School of Medicine, University of Patras (Greece); Scarlat, F [National Institute for Laser and Plasma Physics, Bucharest (Romania)

    1999-12-31

    The dose distributional advantages of the heavy charged-particles can be fully exploited by using very efficient and accurate dose calculation algorithms, which can generate optimal three-dimensional scanning patterns. An inverse therapy planning algorithm for dynamically scanned, narrow heavy charged-particle beams is presented in this paper. The irradiation `start point` is defined at the distal end of the target volume, right-down, in a beam`s eye view. The peak-dose of the first elementary beam is set to be equal to the prescribed dose in the target volume, and is defined as the reference dose. The weighting factor of any Bragg-peak is determined by the residual dose at the point of irradiation, calculated as the difference between the reference dose and the cumulative dose delivered at that point of irradiation by all the previous Bragg-peaks. The final pattern consists of the weighted Bragg-peaks irradiation density. Dose distributions were computed using two different scanning steps equal to 0.5 mm, and 1 mm respectively. Very accurate and precise localized dose distributions, conform to the target volume, were obtained. (authors) 6 refs., 3 figs.

  18. The GRA beam-splitter experiments and wave-particle duality of light

    International Nuclear Information System (INIS)

    Kaloyerou, P.N.

    2005-01-01

    Full text: Grangier, Roger and Aspect (GRA) performed a beam-splitter experiment to demonstrate particle behaviour of light and a Mach-Zehnder interferometer experiment to demonstrate wave behaviour of light. The distinguishing feature of these experiments is the use of a gating system to produce near ideal single photon states. With the demonstration of both wave and particle behaviour (in the two mutually exclusive experiments) they claim to have demonstrated the dual wave-particle behaviour of light. The demonstration of the wave behaviour of light is not in dispute. But, we want to demonstrate, contrary to the claims of GRA, that their beam-splitter experiment does not conclusively confirm the particle behaviour of light, and hence does not demonstrate particle-wave duality. Our demonstration consists of providing a detailed model, not involving particles, of GRA's 'which-path' experiment. The model uses the causal interpretation of quantum fields. We will also give a brief outline a model for the second 'interference' GRA experiment. (author)

  19. Demonstrating ignition hydrodynamic equivalence in direct-drive cryogenic implosions on OMEGA

    International Nuclear Information System (INIS)

    Goncharov, V N; Regan, S P; Sangster, T C; Betti, R; Boehly, T R; Campbell, E M; Delettrez, J A; Edgell, D H; Epstein, R; Forrest, C J; Froula, D H; Glebov, V Yu; Harding, D R; Hu, S X; Igumenshchev, I V; Marshall, F J; McCrory, R L; Michel, D T; Myatt, J F; Radha, P B

    2016-01-01

    Achieving ignition in a direct-drive cryogenic implosion at the National Ignition Facility (NIF) requires reaching central stagnation pressures in excess of 100 Gbar, which is a factor of 3 to 4 less than what is required for indirect-drive designs. The OMEGA Laser System is used to study the physics of cryogenic implosions that are hydrodynamically equivalent to the spherical ignition designs of the NIF. Current cryogenic implosions on OMEGA have reached 56 Gbar, and implosions with shell convergence CR< 17 and fuel adiabat α > 3.5 proceed close to 1-D predictions. Demonstrating hydrodynamic equivalence on OMEGA will require reducing coupling losses caused by cross-beam energy transfer (CBET), minimizing long- wavelength nonuniformity seeded by power imbalance and target offset, and removing target debris occumulated during cryogenic target production. (paper)

  20. Stochastic-hydrodynamic model of halo formation in charged particle beams

    Directory of Open Access Journals (Sweden)

    Nicola Cufaro Petroni

    2003-03-01

    Full Text Available The formation of the beam halo in charged particle accelerators is studied in the framework of a stochastic-hydrodynamic model for the collective motion of the particle beam. In such a stochastic-hydrodynamic theory the density and the phase of the charged beam obey a set of coupled nonlinear hydrodynamic equations with explicit time-reversal invariance. This leads to a linearized theory that describes the collective dynamics of the beam in terms of a classical Schrödinger equation. Taking into account space-charge effects, we derive a set of coupled nonlinear hydrodynamic equations. These equations define a collective dynamics of self-interacting systems much in the same spirit as in the Gross-Pitaevskii and Landau-Ginzburg theories of the collective dynamics for interacting quantum many-body systems. Self-consistent solutions of the dynamical equations lead to quasistationary beam configurations with enhanced transverse dispersion and transverse emittance growth. In the limit of a frozen space-charge core it is then possible to determine and study the properties of stationary, stable core-plus-halo beam distributions. In this scheme the possible reproduction of the halo after its elimination is a consequence of the stationarity of the transverse distribution which plays the role of an attractor for every other distribution.

  1. particle simulation for electrostatic oscillation of virtual cathode in relativistic electron beams

    International Nuclear Information System (INIS)

    Chen Deming; Wang Min

    1990-01-01

    The virtual cathode oscillation in relativistic electron beams is studied by a 1-D electrostatic particle simulation code with finite-size-particle model. When injection current is less than the space charge limiting current, electron beam propagates stably and transsmits completely. When injection current exceeds the space charge limit, its propagation is unstable, a part of electrons reflect and the other electrons transsmit. The position and potential of the virtual cathode caused by space charge effects oscillate periodically. When the beam current increases, the virtual cathode position closer to the injection plane and its oscillating region gets narrower, the virtual cathode potential decreases and its amplitude increases, the oscillation frequency increases above the beam plasma frequency

  2. On topological groups admitting a base at identity indexed with $\\omega^\\omega$

    OpenAIRE

    Leiderman, Arkady G.; Pestov, Vladimir G.; Tomita, Artur H.

    2015-01-01

    A topological group $G$ is said to have a local $\\omega^\\omega$-base if the neighbourhood system at identity admits a monotone cofinal map from the directed set $\\omega^\\omega$. In particular, every metrizable group is such, but the class of groups with a local $\\omega^\\omega$-base is significantly wider. The aim of this article is to better understand the boundaries of this class, by presenting new examples and counter-examples. Ultraproducts and non-arichimedean ordered fields lead to natur...

  3. Overpopulation of $\\bar \\Omega$ in pp collisions a way to distinguish statistical hadronization from string dynamics

    CERN Document Server

    Bleicher, M; Keränen, A; Aichelin, Jörg; Bass, S A; Becattini, F; Redlich, Krzysztof; Werner, K

    2002-01-01

    The $\\bar{\\Omega}/\\Omega$ ratio originating from string decays is predicted to be larger than unity in proton proton interactions at SPS energies ($E_{\\rm lab}$=160 GeV). The anti-omega dominance increases with decreasing beam energy. This surprising behavior is caused by the combinatorics of quark-antiquark production in small and low-mass strings. Since this behavior is not found in a statistical description of hadron production in proton proton collisions, it may serve as a key observable to probe the hadronization mechanism in such collisions.

  4. Particle-in-cell/accelerator code for space-charge dominated beam simulation

    Energy Technology Data Exchange (ETDEWEB)

    2012-05-08

    Warp is a multidimensional discrete-particle beam simulation program designed to be applicable where the beam space-charge is non-negligible or dominant. It is being developed in a collaboration among LLNL, LBNL and the University of Maryland. It was originally designed and optimized for heave ion fusion accelerator physics studies, but has received use in a broader range of applications, including for example laser wakefield accelerators, e-cloud studies in high enery accelerators, particle traps and other areas. At present it incorporates 3-D, axisymmetric (r,z) planar (x-z) and transverse slice (x,y) descriptions, with both electrostatic and electro-magnetic fields, and a beam envelope model. The code is guilt atop the Python interpreter language.

  5. Optical force exerted on a Rayleigh particle by a vector arbitrary-order Bessel beam

    International Nuclear Information System (INIS)

    Yang, Ruiping; Li, Renxian

    2016-01-01

    An analytical description of optical force on a Rayleigh particle by a vector Bessel beam is investigated. Linearly, radially, azimuthally, and circularly polarized Bessel beams are considered. The radial, azimuthal, and axial forces by a vector Bessel beam are numerically simulated. The effect of polarization, order of beams, and half-cone angle to the optical force are mainly discussed. For Bessel beams of larger half-cone angle, the non-paraxiality of beams plays an important role in optical forces. Numerical calculations show that optical forces, especially azimuthal forces, are very sensitive to the polarization of beams. - Highlights: • Optical force exerted on a Rayleigh particle by a vector Bessel beam is analytically derived. • Radial, azimuthal, and axial forces are numerically analyzed. • The effect of polarization, order of beam, and non-paraxiality is analyzed.

  6. Three-dimensional modeling of direct-drive cryogenic implosions on OMEGA

    International Nuclear Information System (INIS)

    Igumenshchev, I. V.; Goncharov, V. N.; Marshall, F. J.; Knauer, J. P.; Campbell, E. M.

    2016-01-01

    The effects of large-scale (with Legendre modes ≲10) laser-imposed nonuniformities in direct-drive cryogenic implosions on the OMEGA laser system are investigated using three-dimension hydrodynamic simulations performed using a newly developed code ASTER. Sources of these nonuniformities include an illumination pattern produced by 60 OMEGA laser beams, capsule offsets (~10 to 20 μm), and imperfect pointing, energy balance, and timing of the beams (with typical σ rms ~10 μm, 10%, and 5 ps, respectively). Two implosion designs using 26-kJ triple-picket laser pulses were studied: a nominal design, in which a 880-μm-diameter capsule is illuminated by the same-diameter beams, and a “R75” design using a capsule of 900 μm in diameter and beams of 75% of this diameter. Simulations found that nonuniformities because of capsule offsets and beam imbalance have the largest effect on implosion performance. These nonuniformities lead to significant distortions of implosion cores resulting in an incomplete stagnation. The shape of distorted cores is well represented by neutron images, but loosely in x-rays. Simulated neutron spectra from perturbed implosions show large directional variations and up to ~ 2 keV variation of the hot spot temperature inferred from these spectra. The R75 design is more hydrodynamically efficient because of mitigation of crossed-beam energy transfer, but also suffers more from the nonuniformities. Furthermore, simulations predict a performance advantage of this design over the nominal design when the target offset and beam imbalance σ rms are reduced to less than 5 μm and 5%, respectively

  7. Plasma-parameter measurements using neutral-particle-beam attenuation

    International Nuclear Information System (INIS)

    Foote, J.H.; Molvik, A.W.; Turner, W.C.

    1982-01-01

    Intense and energetic neutral-particle-beam injection used for fueling or heating magnetically confined, controlled-fusion experimental plasmas can also provide diagnostic measurements of the plasmas. The attenuation of an atomic beam (mainly from charge-exchange and ionization interactions) when passing through a plasma gives the plasma line density. Orthogonal arrays of highly collimated detectors of the secondary-electron-emission type have been used in magnetic-mirror experiments to measure neutral-beam attenuation along chords through the plasma volume at different radial and axial positions. The radial array is used to infer the radial plasma-density profile; the axial array, to infer the axial plasma-density profile and the ion angular distribution at the plasma midplane

  8. AFLP analysis of rice transformed with maize DNA by particle beam

    International Nuclear Information System (INIS)

    Ji Shengdong; Chen Peng; Wang Jiachuan; Yuan Zhao; Yue Chunhui; Wang Zhifeng

    2009-01-01

    Many stable heritable rice lines were obtained via five years agricultural selection, which were derived from rice (oryza stative Japonica) Yujing-6 transgened with large fraction DNA of Zhengdan-14 (zea mays L.) by particle beam method. 18 pairs optimum selective primers were got by screening from 64 pairs AFLP selective primers via experiment on two mutant lines, which could amplify many DNA fingerprints and also could amplify polymorphic bands and target bands, both in this two mutant lines. Then the two mutant lines and two controls were analyzed with AFLP, the results showed that many polymorphic bands (such as novel bands, target bands, missing bands) were found in mutant lines. The discrepancy in DNA level indicated that rice, transgened with large fraction DNA of Zhengdan-14 by particle beam, might be inserted maize DNA and inherited steadily in some degree. It also indicated that it was possible to cultivate novel rice variety transformed with wide DNA by particle beam. (authors)

  9. Green frequency-doubled laser-beam propagation in high-temperature hohlraum plasmas.

    Science.gov (United States)

    Niemann, C; Berger, R L; Divol, L; Froula, D H; Jones, O; Kirkwood, R K; Meezan, N; Moody, J D; Ross, J; Sorce, C; Suter, L J; Glenzer, S H

    2008-02-01

    We demonstrate propagation and small backscatter losses of a frequency-doubled (2omega) laser beam interacting with inertial confinement fusion hohlraum plasmas. The electron temperature of 3.3 keV, approximately a factor of 2 higher than achieved in previous experiments with open geometry targets, approaches plasma conditions of high-fusion yield hohlraums. In this new temperature regime, we measure 2omega laser-beam transmission approaching 80% with simultaneous backscattering losses of less than 10%. These findings suggest that good laser coupling into fusion hohlraums using 2omega light is possible.

  10. Online neural trigger for optimizing data acquisition during particle beam calibration tests with calorimeters

    International Nuclear Information System (INIS)

    Silva, P.V.M. da; Seixas, J.M. de; Damazio, D.O.; Ferreira, B.C.

    2004-01-01

    For LHC, the hadronic calorimetry of the ATLAS detector is performed by Tilecal, a scintillating tile calorimeter. For calibration purposes, a fraction of the Tilecal modules is placed in particle beam lines. Despite beam high quality, experimental beam contamination is observed and this masks the actual performance of the calorimeter. For optimizing the calibration task, an online neural particle classifier was developed for Tilecal. Envisaging a neural trigger for incoming particles, a neural process runs integrated to the data acquisition task and performs online training for particle identification. The neural classification performance is evaluated by correlating the neural response to classical methodology, confirming an ability for outsider identification at levels as high as 99.3%

  11. Online neural trigger for optimizing data acquisition during particle beam calibration tests with calorimeters

    CERN Document Server

    Da Silva, P V M; De Seixas, J M; Ferreira, B C

    2004-01-01

    For LHC, the hadronic calorimetry of the ATLAS detector is performed by Tilecal, a scintillating tile calorimeter. For calibration purposes, a fraction of the Tilecal modules is placed in particle beam lines. Despite beam high quality, experimental beam contamination is observed and this masks the actual performance of the calorimeter. For optimizing the calibration task, an online neural particle classifier was developed for Tilecal. Envisaging a neural trigger for incoming particles, a neural process runs integrated to the data acquisition task and performs online training for particle identification. The neural classification performance is evaluated by correlating the neural response to classical methodology, confirming an ability for outsider identification at levels as high as 99.3%.

  12. Transverse-target-spin asymmetry in exclusive $\\omega$-meson electroproduction

    CERN Document Server

    Airapetian, A.; Akopov, Z.; Aschenauer, E.C.; Augustyniak, W.; Avetissian, A.; Belostotski, S.; Blok, H.P.; Borissov, A.; Bryzgalov, V.; Capitani, G.P.; Ciullo, G.; Contalbrigo, M.; Dalpiaz, P.F.; Deconinck, W.; De Leo, R.; De Sanctis, E.; Diefenthaler, M.; Di Nezza, P.; Düren, M.; Elbakian, G.; Ellinghaus, F.; Felawka, L.; Frullani, S.; Gabbert, D.; Gapienko, G.; Gapienko, V.; Gharibyan, V.; Giordano, F.; Gliske, S.; Hasch, D.; Hoek, M.; Holler, Y.; Ivanilov, A.; Jackson, H.E.; Joosten, S.; Kaiser, R.; Karyan, G.; Keri, T.; Kinney, E.; Kisselev, A.; Korotkov, V.; Kozlov, V.; Krivokhijine, V.G.; Lagamba, L.; Lapikás, L.; Lehmann, I.; Lenisa, P.; Lorenzon, W.; Ma, B.Q.; Manaenkov, S.I.; Mao, Y.; Marianski, B.; Marukyan, H.; Miyachi, Y.; Movsisyan, A.; Muccifora, V.; Naryshkin, Y.; Nass, A.; Negodaev, M.; Nowak, W.D.; Pappalardo, L.L.; Perez-Benito, R.; Petrosyan, A.; Reimer, P.E.; Reolon, A.R.; Riedl, C.; Rith, K.; Rosner, G.; Rostomyan, A.; Rubin, J.; Ryckbosch, D.; Salomatin, Y.; Schnell, G.; Seitz, B.; Shibata, T.A.; Statera, M.; Steffens, E.; Steijger, J.J.M.; Stinzing, F.; Taroian, S.; Terkulov, A.; Truty, R.; Trzcinski, A.; Tytgat, M.; Van Haarlem, Y.; Van Hulse, C.; Vikhrov, V.; Vilardi, I.; Vogel, C.; Wang, S.; Yaschenko, S.; Yen, S.; Zihlmann, B.; Zupranski, P.

    2015-12-17

    Hard exclusive electroproduction of $\\omega$ mesons is studied with the HERMES spectrometer at the DESY laboratory by scattering 27.6 GeV positron and electron beams off a transversely polarized hydrogen target. The amplitudes of five azimuthal modulations of the single-spin asymmetry of the cross section with respect to the transverse proton polarization are measured. They are determined in the entire kinematic region as well as for two bins in photon virtuality and momentum transfer to the nucleon. Also, a separation of asymmetry amplitudes into longitudinal and transverse components is done. These results are compared to a phenomenological model that includes the pion pole contribution. Within this model, the data favor a positive $\\pi\\omega$ transition form factor.

  13. An Expert System For Tuning Particle-Beam Accelerators

    Science.gov (United States)

    Lager, Darrel L.; Brand, Hal R.; Maurer, William J.; Searfus, Robert M.; Hernandez, Jose E.

    1989-03-01

    We have developed a proof-of-concept prototype of an expert system for tuning particle beam accelerators. It is designed to function as an intelligent assistant for an operator. In its present form it implements the strategies and reasoning followed by the operator for steering through the beam transport section of the Advanced Test Accelerator at Lawrence Livermore Laboratory's Site 300. The system is implemented in the language LISP using the Artificial Intelligence concepts of frames, daemons, and a representation we developed called a Monitored Decision Script.

  14. Nonlinear Delta-f Particle Simulations of Collective Effects in High-Intensity Bunched Beams

    CERN Document Server

    Qin, Hong; Hudson, Stuart R; Startsev, Edward

    2005-01-01

    The collective effects in high-intensity 3D bunched beams are described self-consistently by the nonlinear Vlasov-Maxwell equations.* The nonlinear delta-f method,** a particle simulation method for solving the nonlinear Vlasov-Maxwell equations, is being used to study the collective effects in high-intensity 3D bunched beams. The delta-f method, as a nonlinear perturbative scheme, splits the distribution function into equilibrium and perturbed parts. The perturbed distribution function is represented as a weighted summation over discrete particles, where the particle orbits are advanced by equations of motion in the focusing field and self-consistent fields, and the particle weights are advanced by the coupling between the perturbed fields and the zero-order distribution function. The nonlinear delta-f method exhibits minimal noise and accuracy problems in comparison with standard particle-in-cell simulations. A self-consistent 3D kinetic equilibrium is first established for high intensity bunched beams. The...

  15. Nonlinear delta f Simulations of Collective Effects in Intense Charged Particle Beams

    CERN Document Server

    Hong Qi

    2003-01-01

    A nonlinear delta(f) particle simulation method based on the Vlasov-Maxwell equations has been recently developed to study collective processes in high-intensity beams, where space-charge and magnetic self-field effects play a critical role in determining the nonlinear beam dynamics. Implemented in the Beam Equilibrium, Stability and Transport (BEST) code [H. Qin, R.C. Davidson, and W.W. Lee, Physical Review -- Special Topics on Accelerator and Beams 3 (2000) 084401; 3 (2000) 109901.], the nonlinear delta(f) method provides a low-noise and self-consistent tool for simulating collective interactions and nonlinear dynamics of high-intensity beams in modern and next-generation accelerators and storage rings, such as the Spallation Neutron Source and heavy ion fusion drivers. A wide range of linear eigenmodes of high-intensity charged-particle beams can be systematically studied using the BEST code. Simulation results for the electron-proton two-stream instability in the Proton Storage Ring experiment [R. Macek, ...

  16. The least-action method, cold dark matter, and omega

    Science.gov (United States)

    Dunn, A. M.; Laflamme, R.

    1995-01-01

    Peebles has suggested an interesting technique, called the least-action method, to trace positions of galaxies back in time. This method applied on the Local Group galaxies seems to indicate that we live in an omega approximately = 0.1 universe. We have studied a cold dark matter (CDM) N-body simulation with omega = 0.2 and H = 50 km/s/Mpc and compared trajectories traced back by the least-action method with the ones given by the center of mass of the CDM halos. We show that the agreement between these sets of trajectories is at best qualitative. We also show that the line-of-sight peculiar velocities of halos are underestimated. This discrepancy is due to orphans, i.e., CDM particles which do not end up in halos. We vary the value of omega in the least-action method until the line-of-sight velocities agree with the CDM ones. The best value for this omega underestimates one of the CDM simulations by a factor of 4-5.

  17. Omega phase in materials

    International Nuclear Information System (INIS)

    Sikka, S.K.; Vohra, Y.K.; Chidambaram, R.

    1982-01-01

    The subject is reviewed under the headings: introduction; occurrence and some systematics of omega phase; crystallography; physical properties; kinetics of formation, synthesis and metastability of omega phase; electronic structure of omega phase; electronic basis for omega phase stability; omega phase formation under combined thermal and pressure treatment in alloys; transformation mechanisms and models for diffuse omega phase; conclusion. The following elements of nuclear interest (or their alloys) are included: Zr, Hf, Nb, V, Mo. (U.K.)

  18. CERN Accelerator School: Intensity Limitations in Particle Beams | 2-11 November

    CERN Multimedia

    2015-01-01

    Registration is now open for the CERN Accelerator School’s specialised course on Intensity Limitations in Particle Beams, to be held at CERN between 2 and 11 November 2015.   This course will mainly be of interest to staff in accelerator laboratories, university departments and companies manufacturing accelerator equipment. Many accelerators and storage rings, whether intended for particle physics experiments, synchrotron light sources or industrial applications, require beams of high brightness and the highest possible intensities. A good understanding of the possible limitations is required to achieve the desired performance. The programme for this course will cover the interaction of beams with their surroundings, with other beams and further collective effects. Lectures on the effects and possible mitigations will be complemented by tutorials. Further information can be found at: http://cas.web.cern.ch/cas/Intensity-Limitations-2015/IL-advert.html   http:/...

  19. Electrostatic plasma lens for focusing negatively charged particle beams.

    Science.gov (United States)

    Goncharov, A A; Dobrovolskiy, A M; Dunets, S M; Litovko, I V; Gushenets, V I; Oks, E M

    2012-02-01

    We describe the current status of ongoing research and development of the electrostatic plasma lens for focusing and manipulating intense negatively charged particle beams, electrons, and negative ions. The physical principle of this kind of plasma lens is based on magnetic isolation electrons providing creation of a dynamical positive space charge cloud in shortly restricted volume propagating beam. Here, the new results of experimental investigations and computer simulations of wide-aperture, intense electron beam focusing by plasma lens with positive space charge cloud produced due to the cylindrical anode layer accelerator creating a positive ion stream towards an axis system is presented.

  20. Open boundaries for particle beams within fit-simulations

    International Nuclear Information System (INIS)

    Balk, M.C.; Schuhmann, R.; Weiland, T.

    2006-01-01

    A method is proposed to simulate open boundary conditions for charged particle beams with v< c in time domain or frequency domain within the Finite Integration Technique (FIT). Inside the calculation domain the moving charged particles are represented by a line current. Further, the simulated field components at the boundary of the calculation domain have to be modified for an undisturbed transmission of the space-charge field. This can be realised by a 'scattered field' formulation. The method is verified by several calculations

  1. Ef: Software for Nonrelativistic Beam Simulation by Particle-in-Cell Algorithm

    Science.gov (United States)

    Boytsov, A. Yu.; Bulychev, A. A.

    2018-04-01

    Understanding of particle dynamics is crucial in construction of electron guns, ion sources and other types of nonrelativistic beam devices. Apart from external guiding and focusing systems, a prominent role in evolution of such low-energy beams is played by particle-particle interaction. Numerical simulations taking into account these effects are typically accomplished by a well-known particle-in-cell method. In practice, for convenient work a simulation program should not only implement this method, but also support parallelization, provide integration with CAD systems and allow access to details of the simulation algorithm. To address the formulated requirements, development of a new open source code - Ef - has been started. It's current features and main functionality are presented. Comparison with several analytical models demonstrates good agreement between the numerical results and the theory. Further development plans are discussed.

  2. Ef: Software for Nonrelativistic Beam Simulation by Particle-in-Cell Algorithm

    Directory of Open Access Journals (Sweden)

    Boytsov A. Yu.

    2018-01-01

    Full Text Available Understanding of particle dynamics is crucial in construction of electron guns, ion sources and other types of nonrelativistic beam devices. Apart from external guiding and focusing systems, a prominent role in evolution of such low-energy beams is played by particle-particle interaction. Numerical simulations taking into account these effects are typically accomplished by a well-known particle-in-cell method. In practice, for convenient work a simulation program should not only implement this method, but also support parallelization, provide integration with CAD systems and allow access to details of the simulation algorithm. To address the formulated requirements, development of a new open source code - Ef - has been started. It's current features and main functionality are presented. Comparison with several analytical models demonstrates good agreement between the numerical results and the theory. Further development plans are discussed.

  3. Magnet Lattice Design for the Transmission of Power Using Particle Beams

    Energy Technology Data Exchange (ETDEWEB)

    Marley, Daniel; /North Carolina State U. /SLAC

    2012-08-24

    As the amount of electricity generated by renewable energy sources continues to increase, the current method of power transmission will not serve as an adequate method for transmitting power over very long distances. A new method for transmitting power is proposed using particle beams in a storage ring. Particle beams offer an incredibly energy efficient alternative to transmission lines in transmitting power over very long distances. A thorough investigation of the magnet lattice design for this storage ring is presented. The design demonstrates the ability to design a ring with stable orbits over a 381.733 km circumference. Double bend achromats and FODO cells are implemented to achieve appropriate {beta} functions and dispersion functions for 9-11 GeV electron beams.

  4. Movement of a charged particle beam in the Earth magnetosphere

    International Nuclear Information System (INIS)

    Veselovskij, I.S.

    1977-01-01

    The motion of a charged particle beam injected into the Earth magnetosphere in a dipole magnetic field was investigated. Examined were the simplest stationary distributions of particles. The evolution of the distribution function after pulse injection of the beam into the magnetosphere was studied. It was shown that the pulse shape depends on its starting duration. A long pulse spreads on the base and narrows on the flat top with the distance away from the point of injection. A short pulse spreads both on the base and along the height. The flat top is not present. An analytical expression for the pulse shape as a time function is given

  5. Spill control and intensity monitoring for the Bevatron--Bevalac external particle beams

    International Nuclear Information System (INIS)

    Barale, J.J.; Crebbin, K.C.

    1975-03-01

    Time-intensity modulation in beam spill can be of primary concern in some experiments. The major source of this beam structure is from main-guide field-magnet power supply ripple. If the time constants are appropriate, then final control of beam structure can be accomplished by closed loop control of the intensity of beam spill. The response characteristics of the feedback system will determine the final structure. At high beam fluxes signal to noise ratio of beam detectors, in the feedback loop, can be improved by at least four orders of magnitude by using photomultiplier tubes and a water Cherenkov counter in place of the normal secondary emission monitor. At beam fluxes below 10 10 particles per second (PPS), a plastic scintillator and photomultiplier tube are used in the feedback system. A plastic scintillator and photomultiplier are also used in the beam as intensity monitors. At intensities below about 10 7 PPS standard counting techniques are used. For intensities between 10 6 to 110 9 PPS, the photomultiplier is used as a current source driving an integrating circuit which is then calibrated to read the number of particles per pulse. (U.S.)

  6. Topical application of omega-3-, omega-6-, and omega-9-rich oil emulsions for cutaneous wound healing in rats.

    Science.gov (United States)

    Ishak, Wan Maznah Wan; Katas, Haliza; Yuen, Ng Pei; Abdullah, Maizaton Atmadini; Zulfakar, Mohd Hanif

    2018-04-17

    Wound healing is a physiological event that generates reconstitution and restoration of granulation tissue that ends with scar formation. As omega fatty acids are part of membrane phospholipids and participate in the inflammatory response, we investigated the effects of omega-3, omega-6, and omega-9 fatty acids in the form of oils on wound healing. Linseed (LO), evening primrose (EPO), and olive oils (OO) rich in omega-3, omega-6, and omega-9 fatty acids were formulated into emulsions and were topically applied on rats with excision wounds. All omega-3-, omega-6-, and omega-9-rich oil formulations were found to accelerate wound closure compared to untreated, with significant improvement (p < 0.05) being observed at day 14. EPO induced early deposition of collagen as evaluated by Masson trichrome staining that correlated well with the hydroxyproline content assay, with the highest level at days 3 and 7. Vascular endothelial growth factor (VEGF) showed greater amount of new microvasculature formed in the EPO-treated group, while moderate improvement occurs in the LO and OO groups. EPO increased both the expression of proinflammatory cytokines and growth factors in the early stage of healing and declined at the later stage of healing. LO modulates the proinflammatory cytokines and chemokine but did not affect the growth factors. In contrast, OO induced the expression of growth factors rather than proinflammatory cytokines. These data suggest that LO, EPO, and OO emulsions promote wound healing but they accomplish this by different mechanisms.

  7. Observation of an Excited Charm Baryon OmegaC* Decaying to OmegaC0 Gamma

    OpenAIRE

    The BABAR Collaboration; Aubert, B.

    2006-01-01

    We report the first observation of an excited singly-charm baryon OmegaC* (css) in the radiative decay OmegaC0 Gamma, where the OmegaC0 baryon is reconstructed in the decays to the final states Omega-pi+, Omega-pi+pi0, Omega-pi+pi-pi+, and Cascade-K-pi+pi+. This analysis is performed using a dataset of 230.7 fb$-1} collected by the BABAR detector at the PEP-II asymmetric-energy B Factory at the Stanford Linear Accelerator Center. The mass difference between the OmegaC* and the OmegaC0 baryons...

  8. Observation of an Excited Charm Baryon Omega*C Decaying to OmegaC0 Gamma

    International Nuclear Information System (INIS)

    Aubert, B

    2006-01-01

    The authors report the first observation of an excited singly-charmed baryon (Omega)* c (css) in the radiative decay (Omega) c 0 γ, where the (Omega) c 0 baryon is reconstructed in the decays to the final states (Omega) - π + , (Omega) - π + π 0 , (Omega) - π + π - π + , and Ξ - K - π + π + . This analysis is performed using a dataset of 230.7 fb -1 collected by the BABAR detector at the PEP-II asymmetric-energy B Factory at the Stanford Linear Accelerator Center. The mass difference between the (Omega)* c and the (Omega) c 0 baryons is measured to be 70.8 ± 1.0(stat) ± 1.1(syst) MeV/c 2 . They also measure the ratio of inclusive production cross sections of (Omega)* c and (Omega) c 0 in e + e - annihilation

  9. DART: A simulation code for charged particle beams

    International Nuclear Information System (INIS)

    White, R.C.; Barr, W.L.; Moir, R.W.

    1989-01-01

    This paper presents a recently modified version of the 2-D code, DART, which can simulate the behavior of a beam of charged particles whose trajectories are determined by electric and magnetic fields. This code was originally used to design laboratory-scale and full-scale beam direct converters. Since then, its utility has been expanded to allow more general applications. The simulation includes space charge, secondary electrons, and the ionization of neutral gas. A beam can contain up to nine superimposed beamlets of different energy and species. The calculation of energy conversion efficiency and the method of specifying the electrode geometry are described. Basic procedures for using the code are given, and sample input and output fields are shown. 7 refs., 18 figs

  10. Self-consistent particle distribution of a bunched beam in RF field

    CERN Document Server

    Batygin, Y K

    2002-01-01

    An analytical solution for the self-consistent particle equilibrium distribution in an RF field with transverse focusing is found. The solution is attained in the approximation of a high brightness beam. The distribution function in phase space is determined as a stationary function of the energy integral. Equipartitioning of the beam distribution between degrees of freedom follows directly from the choice of the stationary distribution function. Analytical expressions for r-z equilibrium beam profile and maximum beam current in RF field are obtained.

  11. Estudo da Polarizacao dos Hiperons $\\Xi^-$ E $\\Omega^-$

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho De Gouvea, Andre Luiz [Pontifical Catholic Univ., Rio de Janeiro (Brazil)

    1995-01-01

    ln this thesis the polarization of the $\\Xi^-$ hyperon and the $\\Xi^+$ antihyperon produced in the Fermilab Experiment E791 was determined by the analysis of the weak decay $\\Xi^- \\to \\Lambda^0 + \\pi^-$. For $\\Xi^-$ produced in the interaction between a 500 GeV/c $\\pi^-$ beam and a unpolarized carbon (platinum) target in the region $p_t$ > 0.8 GeV/c and $X_F$ > 0, -10.9% ± 1.5% (-14.7% ± 3.1%) polarization was obtained perpendicular to the production plane and -5.92% ± 1.69% (-2.41%±3.53% $\\approx O$) polarization was measured for $\\Xi^+$. Evidence was also found for a polarized $\\Omega^-$ hyperon produced in the same experiment in the region $X_F$ >0, after analysis of the weak decay $\\Omega^- \\to \\Lambda^0 + K^-$.

  12. The f2(1565) in pbar-p -> (omega-omega)pizero interactions at rest

    CERN Document Server

    Baker, C.A.; Batty, C.J.; Braune, K.; Bugg, D.V.; Cramer, O.; Crede, V.; Djaoshvili, N.; Dunnweber, W.; Faessler, M.A.; Hessey, N.P.; Hidas, P.; Hodd, C.; Jamnik, D.; Kilinowsky, H.; Kisiel, J.; Klempt, E.; Kolo, C.; Montanet, L.; Pick, B.; Roethel, W.; Sarantsev, A.; Scott, I.; Strassburger, C.; Thoma, U.; Volcker, C.; Wallis, S.; Walther, D.; Wittmack, K.; Zou, B.S.

    2011-01-01

    Data are presented on the reaction pbar-p -> omega-omega-pizero at rest from the Crystal Barrel detector. These data identify a strong signal due to f2(1565) -> omega-omega. The relative production from initial pbar-p states 3P2, 3P1 and 1S0 is well determined from omega-omega decay angular correlations; P-state annihilation dominates strongly. A combined fit is made with data on pbar-p -> 3pizero at rest, where f2(1565) -> pizero-pizero is observed.

  13. Systems and methods of varying charged particle beam spot size

    Science.gov (United States)

    Chen, Yu-Jiuan

    2014-09-02

    Methods and devices enable shaping of a charged particle beam. A modified dielectric wall accelerator includes a high gradient lens section and a main section. The high gradient lens section can be dynamically adjusted to establish the desired electric fields to minimize undesirable transverse defocusing fields at the entrance to the dielectric wall accelerator. Once a baseline setting with desirable output beam characteristic is established, the output beam can be dynamically modified to vary the output beam characteristics. The output beam can be modified by slightly adjusting the electric fields established across different sections of the modified dielectric wall accelerator. Additional control over the shape of the output beam can be excreted by introducing intentional timing de-synchronization offsets and producing an injected beam that is not fully matched to the entrance of the modified dielectric accelerator.

  14. FDTD approach to optical forces of tightly focused vector beams on metal particles.

    Science.gov (United States)

    Qin, Jian-Qi; Wang, Xi-Lin; Jia, Ding; Chen, Jing; Fan, Ya-Xian; Ding, Jianping; Wang, Hui-Tian

    2009-05-11

    We propose an improved FDTD method to calculate the optical forces of tightly focused beams on microscopic metal particles. Comparison study on different kinds of tightly focused beams indicates that trapping efficiency can be altered by adjusting the polarization of the incident field. The results also show the size-dependence of trapping forces exerted on metal particles. Transverse tapping forces produced by different illumination wavelengths are also evaluated. The numeric simulation demonstrates the possibility of trapping moderate-sized metal particles whose radii are comparable to wavelength.

  15. Omega-3 Index and Anti-Arrhythmic Potential of Omega-3 PUFAs.

    Science.gov (United States)

    Tribulova, Narcis; Szeiffova Bacova, Barbara; Egan Benova, Tamara; Knezl, Vladimir; Barancik, Miroslav; Slezak, Jan

    2017-10-30

    Omega-3 polyunsaturated fatty acids (PUFAs), namely eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are permanent subjects of interest in relation to the protection of cardiovascular health and the prevention of the incidence of both ventricular and atrial arrhythmias. The purpose of this updated review is to focus on the novel cellular and molecular effects of omega-3 PUFAs, in the context of the mechanisms and factors involved in the development of cardiac arrhythmias; to provide results of the most recent studies on the omega-3 PUFA anti-arrhythmic efficacy and to discuss the lack of the benefit in relation to omega-3 PUFA status. The evidence is in the favor of omega-3 PUFA acute and long-term treatment, perhaps with mitochondria-targeted antioxidants. However, for a more objective evaluation of the anti-arrhythmic potential of omega-3 PUFAs in clinical trials, it is necessary to monitor the basal pre-interventional omega-3 status of individuals, i.e., red blood cell content, omega-3 index and free plasma levels. In the view of evidence-based medicine, it seems to be crucial to aim to establish new approaches in the prevention of cardiac arrhythmias and associated morbidity and mortality that comes with these conditions.

  16. Open boundaries for particle beams within fit-simulations

    Energy Technology Data Exchange (ETDEWEB)

    Balk, M.C. [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder, Schlossgartenstr. 8, 64289 Darmstadt (Germany)]. E-mail: balk@temf.tu-darmstadt.de; Schuhmann, R. [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder, Schlossgartenstr. 8, 64289 Darmstadt (Germany); Weiland, T. [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder, Schlossgartenstr. 8, 64289 Darmstadt (Germany)

    2006-03-01

    A method is proposed to simulate open boundary conditions for charged particle beams with vparticles are represented by a line current. Further, the simulated field components at the boundary of the calculation domain have to be modified for an undisturbed transmission of the space-charge field. This can be realised by a 'scattered field' formulation. The method is verified by several calculations.

  17. Observation of chi(c1) Decays into Vector Meson Pairs phi phi, omega omega, and omega phi

    NARCIS (Netherlands)

    Ablikim, M.; Achasov, M. N.; An, L.; An, Q.; An, Z. H.; Bai, J. Z.; Baldini, R.; Ban, Y.; Becker, J.; Berger, N.; Bertani, M.; Bian, J. M.; Bondarenko, O.; Boyko, I.; Briere, R. A.; Bytev, V.; Cai, X.; Cao, G. F.; Cao, X. X.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, Y.; Chen, Y. B.; Cheng, H. P.; Chu, Y. P.; Cronin-Hennessy, D.; Dai, H. L.; Dai, J. P.; Dedovich, D.; Deng, Z. Y.; Denysenko, I.; Destefanis, M.; Ding, Y.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Duan, M. Y.; Fan, R. R.; Fang, J.; Fang, S. S.; Feng, C. Q.; Fu, C. D.; Fu, J. L.; Gao, Y.; Geng, C.; Goetzen, K.; Gong, W. X.; Greco, M.; Grishin, S.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, Y. P.; Hao, X. Q.; Harris, F. A.; He, K. L.; He, M.; He, Z. Y.; Heng, Y. K.; Hou, Z. L.; Hu, H. M.; Hu, J. F.; Hu, T.; Huang, B.; Huang, G. M.; Huang, J. S.; Huang, X. T.; Huang, Y. P.; Hussain, T.; Ji, C. S.; Ji, Q.; Ji, X. B.; Ji, X. L.; Jia, L. K.; Jiang, L. L.; Jiang, X. S.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Jing, F. F.; Kavatsyuk, M.; Komamiya, S.; Kuehn, W.; Lange, J. S.; Leung, J. K. C.; Li, Cheng; Li, Cui; Li, D. M.; Li, F.; Li, G.; Li, H. B.; Li, J. C.; Li, Lei; Li, N. B.; Li, Q. J.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, X. R.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Liao, X. T.; Liu, B. J.; Liu, B. J.; Liu, C. L.; Liu, C. X.; Liu, C. Y.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, G. C.; Liu, H.; Liu, H. B.; Liu, H. M.; Liu, H. W.; Liu, J. P.; Liu, K.; Liu, K. Y.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, X. H.; Liu, Y. B.; Liu, Y. W.; Liu, Yong; Liu, Z. A.; Liu, Z. Q.; Loehner, H.; Lu, G. R.; Lu, H. J.; Lu, J. G.; Lu, Q. W.; Lu, X. R.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Ma, C. L.; Ma, F. C.; Ma, H. L.; Ma, Q. M.; Ma, T.; Ma, X.; Ma, X. Y.; Maggiora, M.; Malik, Q. A.; Mao, H.; Mao, Y. J.; Mao, Z. P.; Messchendorp, J. G.; Min, J.; Mitchell, R. E.; Mo, X. H.; Muchnoi, N. Yu.; Nefedov, Y.; Ning, Z.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pelizaeus, M.; Peters, K.; Ping, J. L.; Ping, R. G.; Poling, R.; Pun, C. S. J.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, X. S.; Qiu, J. F.; Rashid, K. H.; Rong, G.; Ruan, X. D.; Sarantsev, A.; Schulze, J.; Shao, M.; Shen, C. P.; Shen, X. Y.; Sheng, H. Y.; Shepherd, M. R.; Song, X. Y.; Sonoda, S.; Spataro, S.; Spruck, B.; Sun, D. H.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, X. D.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tang, X. F.; Tian, H. L.; Toth, D.; Varner, G. S.; Wan, X.; Wang, B. Q.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, Q.; Wang, S. G.; Wang, X. L.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. Y.; Wei, D. H.; Wen, Q. G.; Wen, S. P.; Wiedner, U.; Wu, L. H.; Wu, N.; Wu, W.; Wu, Z.; Xiao, Z. J.; Xie, Y. G.; Xu, G. F.; Xu, G. M.; Xu, H.; Xu, Y.; Xu, Z. R.; Xu, Z. Z.; Xue, Z.; Yan, L.; Yan, W. B.; Yan, Y. H.; Yang, H. X.; Yang, M.; Yang, T.; Yang, Y.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yu, B. X.; Yu, C. X.; Yu, L.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zhang, B. X.; Zhang, B. Y.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, L.; Zhang, S. H.; Zhang, T. R.; Zhang, X. J.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, H. S.; Zhao, Jiawei; Zhao, Jingwei; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, S. J.; Zhao, T. C.; Zhao, X. H.; Zhao, Y. B.; Zhao, Z. G.; Zhao, Z. L.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, Y. H.; Zheng, Z. P.; Zhong, B.; Zhong, J.; Zhong, L.; Zhou, L.; Zhou, X. K.; Zhou, X. R.; Zhu, C.; Zhu, K.; Zhu, K. J.; Zhu, S. H.; Zhu, X. L.; Zhu, X. W.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zou, B. S.; Zou, J. H.; Zuo, J. X.; Zweber, P.

    2011-01-01

    Using (106 +/- 4) x 10(6) psi(3686) events accumulated with the BESIII detector at the BEPCII e(+) e(-) collider, we present the first measurement of decays of chi(c1) to vector meson pairs phi phi, omega omega, and omega phi. The branching fractions are measured to be (4.4 +/- 0.3 +/- 0.5) x

  18. Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam

    International Nuclear Information System (INIS)

    Maschke, A. W.

    1985-01-01

    A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow throughout the assembly

  19. Inclusive Production of the $\\omega(782)$ Vector Meson in Hadronic Decays of the Z

    CERN Document Server

    Beddall, A

    1995-01-01

    The inclusive production of the omega(782) vector meson in hadronic Z decays is studied and compared to model predictions. The analysis is based on 1,005,535 hadronic Z decays recorded by the ALEPH detector in the 1992 and 1993 running periods of LEP. Decays of the omega -> pi^+ pi^- pi^0 are reconstructed for x_p > 0.05, where x_p = p/p_{beam}. For this momentum range the omega production rate is measured to be 0.633 +- 0.025(stat) +- 0.056(sys) per event. An extrapolation to x_p = 0 yields a total production rate of 1.061 +- 0.041(stat) +- 0.093(sys) +- 0.042(extrap) per event.

  20. Transverse-structure electrostatic charged particle beam lens

    Science.gov (United States)

    Moran, M.J.

    1998-10-13

    Electrostatic particle-beam lenses using a concentric co-planar array of independently biased rings can be advantageous for some applications. Traditional electrostatic lenses often consist of axial series of biased rings, apertures, or tubes. The science of lens design has devoted much attention to finding axial arrangements that compensate for the substantial optical aberrations of the individual elements. Thus, as with multi-element lenses for light, a multi-element charged-particle lens can have optical behavior that is far superior to that of the individual elements. Transverse multiple-concentric-ring lenses achieve high performance, while also having advantages in terms of compactness and optical versatility. 7 figs.

  1. Impact of beam ions on α-particle measurements by collective Thomson scattering in ITER

    DEFF Research Database (Denmark)

    Egedal, J.; Bindslev, H.; Budny, R.V.

    2005-01-01

    Collective Thomson scattering (CTS) has been proposed as a viable diagnostic for characterizing fusion born a-distributions in ITER. However, the velocities of the planned 1 MeV deuterium heating beam ions in 1TER are similar to that of fusion born a-particles and may therefore mask the measureme......Collective Thomson scattering (CTS) has been proposed as a viable diagnostic for characterizing fusion born a-distributions in ITER. However, the velocities of the planned 1 MeV deuterium heating beam ions in 1TER are similar to that of fusion born a-particles and may therefore mask...... and the alpha-particles are calculated. Our investigations show that the CTS measurements of alpha-particles will not be masked by the presence of the beam ions in H-mode plasmas. In lower density reversed shear plasmas, only a part of the CTS alpha-particle spectrum will be perturbed....

  2. Achievements and challenges in particle beam fusion research

    International Nuclear Information System (INIS)

    Yonas, G.

    1978-01-01

    Recent developments in particle beam fusion research, as well as critical issues which remain to be solved are summarized. Until now primary emphasis has been on driver development, but as sources have increased in energy output and intensity and diagnostic techniques have improved, implosion studies have been initiated

  3. Deeply virtual and exclusive electroproduction of omega mesons

    International Nuclear Information System (INIS)

    Morand, L.

    2005-01-01

    The exclusive omega electroproduction off the proton was studied in a large kinematical domain above the nucleon resonance region and for the highest possible photon virtuality (Q 2 ) with the 5.75 GeV beam at CEBAF and the CLAS spectrometer. Cross sections were measured up to large values of the four-momentum transfer (-t 2 ) to the proton. The contributions of the interference terms sigma TT and sigma TL to the cross sections, as well as an analysis of the omega spin density matrix, indicate that helicity is not conserved in this process. The t-channel pi 0 exchange, or more generally the exchange of the associated Regge trajectory, seems to dominate the reaction γ* p → omega p, even for Q 2 as large as 5 GeV 2 . Contributions of handbag diagrams, related to Generalized Parton Distributions in the nucleon, are therefore difficult to extract for this process. Remarkably, the high-t behavior of the cross sections is nearly Q 2 -independent, which may be interpreted as a coupling of the photon to a point-like object in this kinematical limit

  4. Deeply virtual and exclusive electroproduction of omega mesons

    Energy Technology Data Exchange (ETDEWEB)

    Morand, L; Et. Al.

    2005-04-01

    The exclusive omega electroproduction off the proton was studied in a large kinematical domain above the nucleon resonance region and for the highest possible photon virtuality (Q{sup 2}) with the 5.75 GeV beam at CEBAF and the CLAS spectrometer. Cross sections were measured up to large values of the four-momentum transfer (-t < 2.7 GeV{sup 2}) to the proton. The contributions of the interference terms sigma{sub TT} and sigma{sub TL} to the cross sections, as well as an analysis of the omega spin density matrix, indicate that helicity is not conserved in this process. The t-channel pi{sup 0} exchange, or more generally the exchange of the associated Regge trajectory, seems to dominate the reaction {gamma}* p {yields} omega p, even for Q{sup 2} as large as 5 GeV{sub 2}. Contributions of handbag diagrams, related to Generalized Parton Distributions in the nucleon, are therefore difficult to extract for this process. Remarkably, the high-t behavior of the cross sections is nearly Q{sup 2}-independent, which may be interpreted as a coupling of the photon to a point-like object in this kinematical limit.

  5. Diaphragm flange and method for lowering particle beam impedance at connected beam tubes of a particle accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Biallas, George Herman

    2017-07-04

    A diaphragm flange for connecting the tubes in a particle accelerator while minimizing beamline impedance. The diaphragm flange includes an outer flange and a thin diaphragm integral with the outer flange. Bolt holes in the outer flange provide a means for bolting the diaphragm flange to an adjacent flange or beam tube having a mating bolt-hole pattern. The diaphragm flange includes a first surface for connection to the tube of a particle accelerator beamline and a second surface for connection to a CF flange. The second surface includes a recessed surface therein and a knife-edge on the recessed surface. The diaphragm includes a thickness that enables flexing of the integral diaphragm during assembly of beamline components. The knife-edge enables compression of a soft metal gasket to provide a leak-tight seal.

  6. DART: a simulation code for charged particle beams

    International Nuclear Information System (INIS)

    White, R.C.; Barr, W.L.; Moir, R.W.

    1988-01-01

    This paper presents a recently modified verion of the 2-D DART code designed to simulate the behavior of a beam of charged particles whose paths are affected by electric and magnetic fields. This code was originally used to design laboratory-scale and full-scale beam direct converters. Since then, its utility has been expanded to allow more general applications. The simulation technique includes space charge, secondary electron effects, and neutral gas ionization. Calculations of electrode placement and energy conversion efficiency are described. Basic operation procedures are given including sample input files and output. 7 refs., 18 figs

  7. Method and apparatus for positioning a beam of charged particles

    International Nuclear Information System (INIS)

    Michail, M.S.; Woodard, O.C.; Yourke, H.S.

    1975-01-01

    A beam of charged particles is stepped from one predetermined position to another to form a desired pattern on a semiconductor wafer. There is a dynamic correction for the deviation of the actual position of the beam from its predetermined position, so that the beam is applied to the deviated position rather than the predetermined position. Through the location of four registration marks, the writing field is precisely defined. Writing fields may be interconnected by the sharing of registration marks, enabling the construction of chips which are larger than a single writing field. (auth)

  8. Summary test results of the particle-beam diagnostics for the Advanced Photon Source (APS) subsystems

    International Nuclear Information System (INIS)

    Lumpkin, A.; Wang, X.; Sellyey, W.; Patterson, D.; Kahana, E.

    1994-01-01

    During the first half of 1994, a number of the diagnostic systems for measurement of the charged-particle beam parameters throughout the subsystems of the Advanced Photon Source (APS) have been installed and tested. The particle beams eventually will involve 450-MeV to 7-GeV positrons and with different pulse formats. The first test and commissionin results for beam profiles, beam position monitors, loss rate monitors, current monitors, and synchrotron radiation photon monitors hve been obtained using 200- to 350-MeV electron beams injected into the subsystems. Data presented are principally from the transport lines and the positron accumulator ring

  9. Alpha-particle simulation using NBI beam and ICRF wave

    International Nuclear Information System (INIS)

    Ogawa, Y.; Hamada, Y.

    1984-07-01

    A new idea to produce the distribution function similar to that of alpha-particles in an ignited plasma has been proposed. This concept is attributed to the acceleration of the injected beam up to about 1 MeV/nucleon by the ICRF wave with cyclotron higher harmonics. This new method makes it possible to perform the simulation experiments for alpha-particles under the condition of moderate plasma parameters (e.g., Tsub(e) = 4 keV, nsub(e) = 3.5x10 19 m -3 and B sub(T) = 3 T). And it is found that 3ωsub(ci) ICRF wave is preferable compared with other cyclotron harmonics, from the viewpoints of the effective tail formation with smaller bulk ion heating and lower amplitude of the applied electric field. The formula for the maximum energy of the extended beam is also derived. (author)

  10. Status of optics on the OMEGA laser after 18 months of operation

    International Nuclear Information System (INIS)

    Rigatti, A.L.; Smith, D.J.

    1997-01-01

    The 60-beam OMEGA laser has sustained approximately 1000 target shots without significant damage to the optics. Approximately 3000 optics on the OMEGA laser system were closely monitored during their installation, and inspections continue throughout the operation of the system. A review of the condition of these optics at each stage of the laser and a summary of the peak incident fluences are presented. The most severe damage on OMEGA is seen on the input, fused-silica, spatial filter lenses. Since these optics are under vacuum, inspection of damaged lenses occurs on a more frequent cycle to track the growth of the defect and to maintain the system's safety. An optic is replaced well before massive failure is expected to occur. Other optics on the system that exhibit different types of damage are BK-7 spatial filter lenses, focus lenses, and target mirrors. The majority of OMEGA optics are not damaging. These include the polarizers, frequency-conversion crystals, primary pickoff lenses, calorimeters, and liquid-crystal optics. Laser glass and development optics such as distributed phase plates are not covered in this review

  11. Heavy particle beam cancer treatment apparatus, HIMAC, and clinical trial

    International Nuclear Information System (INIS)

    Soga, Fuminori

    1994-01-01

    The clinical trial was begun in June, 1994, on the treatment of cancer patients using heavy particle beam for the first time in Japan in National Institute of Radiological Sciences. It is the result of promoting the construction of Heavy Ion Medical Accelerator in Chiba (HIMAC) with the first period construction cost of 32.6 billion yen as a part of the 10 year general strategy against cancer. This is only one facility of this kind in the world. The features of heavy particle beam as radiation therapy are the excellent concentration of dose distribution, biological effect and so on. The nuclides to be used are those having the atomic number from helium to argon. The acceleration energy of ions was set at 800 MeV per nucleon so as to reach 30 cm in human bodies. The beam intensity is 5 Gy/min to finish irradiation within 1 min. The maximum irradiation field is 22 cm in diameter. The specification of the HIMAC accelerator is summarized. The Penning Ionization Gauge and the electron cyclotron resonance ion sources were installed for the reliability. The radio frequency quadrupole linear accelerator is suitable to accelerate low velocity, high intensity beam. Two synchrotrons of 41 m mean diameter are installed. High energy beam transport system, irradiation equipment, and the clinical trial are reported. (K.I.)

  12. Using Caenorhabditis elegans to Uncover Conserved Functions of Omega-3 and Omega-6 Fatty Acids

    Science.gov (United States)

    Watts, Jennifer L.

    2016-01-01

    The nematode Caenorhabditis elegans is a powerful model organism to study functions of polyunsaturated fatty acids. The ability to alter fatty acid composition with genetic manipulation and dietary supplementation permits the dissection of the roles of omega-3 and omega-6 fatty acids in many biological process including reproduction, aging and neurobiology. Studies in C. elegans to date have mostly identified overlapping functions of 20-carbon omega-6 and omega-3 fatty acids in reproduction and in neurons, however, specific roles for either omega-3 or omega-6 fatty acids are beginning to emerge. Recent findings with importance to human health include the identification of a conserved Cox-independent prostaglandin synthesis pathway, critical functions for cytochrome P450 derivatives of polyunsaturated fatty acids, the requirements for omega-6 and omega-3 fatty acids in sensory neurons, and the importance of fatty acid desaturation for long lifespan. Furthermore, the ability of C. elegans to interconvert omega-6 to omega-3 fatty acids using the FAT-1 omega-3 desaturase has been exploited in mammalian studies and biotechnology approaches to generate mammals capable of exogenous generation of omega-3 fatty acids. PMID:26848697

  13. Development of a relativistic Particle In Cell code PARTDYN for linear accelerator beam transport

    Energy Technology Data Exchange (ETDEWEB)

    Phadte, D., E-mail: deepraj@rrcat.gov.in [LPD, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Patidar, C.B.; Pal, M.K. [MAASD, Raja Ramanna Centre for Advanced Technology, Indore (India)

    2017-04-11

    A relativistic Particle In Cell (PIC) code PARTDYN is developed for the beam dynamics simulation of z-continuous and bunched beams. The code is implemented in MATLAB using its MEX functionality which allows both ease of development as well higher performance similar to a compiled language like C. The beam dynamics calculations carried out by the code are compared with analytical results and with other well developed codes like PARMELA and BEAMPATH. The effect of finite number of simulation particles on the emittance growth of intense beams has been studied. Corrections to the RF cavity field expressions were incorporated in the code so that the fields could be calculated correctly. The deviations of the beam dynamics results between PARTDYN and BEAMPATH for a cavity driven in zero-mode have been discussed. The beam dynamics studies of the Low Energy Beam Transport (LEBT) using PARTDYN have been presented.

  14. Some fundamental aspects of fluctuations and coherence in charged-particle beams in storage rings

    International Nuclear Information System (INIS)

    Chattopadhyay, S.

    1984-01-01

    A conceptual survey and exposition is presented of some fundamental aspects of fluctuations and coherence, as well as the interplay between the two, in coasting charged-particle beams - both continuous and bunched - in storage rings. A detailed study is given of the spectral properties of the incoherent phase-space Schottky fluctuations, their propagation as waves in the beam, and the analytic complex coherent beam electromagnetic response or transfer function. The modification or distortion of these by collective interactions is examined in terms of simple regeneration mechanisms. Collective or coherent forces in the beam-storage-ring system are described by defining suitable impedance functions or propagators, and a brief discussion of the coherent collective modes and their stability is provided, including a general and rigorous description of the Nyquist stability criterion. The nature of the critical fluctuations near an instability threshold is explored. The concept of Landau damping and its connection with phase-mixing within the beam is outlined. The important connection between the incoherent fluctuations and the beam response, namely the Fluctuation-Dissipation relation, is revealed. A brief discussion is given of the information degrees of freedom, and effective temperature of the fluctuation signals. Appendices provide a short resume of some general aspects of various interactions in a charged-particle beam-environment system in a storage ring and a general introduction to kinetic theory as applied to particle beams. (orig.)

  15. Advanced methods for the computation of particle beam transport and the computation of electromagnetic fields and beam-cavity interactions

    International Nuclear Information System (INIS)

    Dragt, A.J.; Gluckstern, R.L.

    1992-11-01

    The University of Maryland Dynamical Systems and Accelerator Theory Group carries out research in two broad areas: the computation of charged particle beam transport using Lie algebraic methods and advanced methods for the computation of electromagnetic fields and beam-cavity interactions. Important improvements in the state of the art are believed to be possible in both of these areas. In addition, applications of these methods are made to problems of current interest in accelerator physics including the theoretical performance of present and proposed high energy machines. The Lie algebraic method of computing and analyzing beam transport handles both linear and nonlinear beam elements. Tests show this method to be superior to the earlier matrix or numerical integration methods. It has wide application to many areas including accelerator physics, intense particle beams, ion microprobes, high resolution electron microscopy, and light optics. With regard to the area of electromagnetic fields and beam cavity interactions, work is carried out on the theory of beam breakup in single pulses. Work is also done on the analysis of the high frequency behavior of longitudinal and transverse coupling impedances, including the examination of methods which may be used to measure these impedances. Finally, work is performed on the electromagnetic analysis of coupled cavities and on the coupling of cavities to waveguides

  16. Particle-in-Cell Code BEAMPATH for Beam Dynamics Simulations in Linear Accelerators and Beamlines

    International Nuclear Information System (INIS)

    Batygin, Y.

    2004-01-01

    A code library BEAMPATH for 2 - dimensional and 3 - dimensional space charge dominated beam dynamics study in linear particle accelerators and beam transport lines is developed. The program is used for particle-in-cell simulation of axial-symmetric, quadrupole-symmetric and z-uniform beams in a channel containing RF gaps, radio-frequency quadrupoles, multipole lenses, solenoids and bending magnets. The programming method includes hierarchical program design using program-independent modules and a flexible combination of modules to provide the most effective version of the structure for every specific case of simulation. Numerical techniques as well as the results of beam dynamics studies are presented

  17. Particle-in-Cell Code BEAMPATH for Beam Dynamics Simulations in Linear Accelerators and Beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Batygin, Y.

    2004-10-28

    A code library BEAMPATH for 2 - dimensional and 3 - dimensional space charge dominated beam dynamics study in linear particle accelerators and beam transport lines is developed. The program is used for particle-in-cell simulation of axial-symmetric, quadrupole-symmetric and z-uniform beams in a channel containing RF gaps, radio-frequency quadrupoles, multipole lenses, solenoids and bending magnets. The programming method includes hierarchical program design using program-independent modules and a flexible combination of modules to provide the most effective version of the structure for every specific case of simulation. Numerical techniques as well as the results of beam dynamics studies are presented.

  18. Non-perturbative measurement of low-intensity charged particle beams

    Science.gov (United States)

    Fernandes, M.; Geithner, R.; Golm, J.; Neubert, R.; Schwickert, M.; Stöhlker, T.; Tan, J.; Welsch, C. P.

    2017-01-01

    Non-perturbative measurements of low-intensity charged particle beams are particularly challenging to beam diagnostics due to the low amplitude of the induced electromagnetic fields. In the low-energy antiproton decelerator (AD) and the future extra low energy antiproton rings at CERN, an absolute measurement of the beam intensity is essential to monitor the operation efficiency. Superconducting quantum interference device (SQUID) based cryogenic current comparators (CCC) have been used for measuring slow charged beams in the nA range, showing a very good current resolution. But these were unable to measure fast bunched beams, due to the slew-rate limitation of SQUID devices and presented a strong susceptibility to external perturbations. Here, we present a CCC system developed for the AD machine, which was optimised in terms of its current resolution, system stability, ability to cope with short bunched beams, and immunity to mechanical vibrations. This paper presents the monitor design and the first results from measurements with a low energy antiproton beam obtained in the AD in 2015. These are the first CCC beam current measurements ever performed in a synchrotron machine with both coasting and short bunched beams. It is shown that the system is able to stably measure the AD beam throughout the entire cycle, with a current resolution of 30 {nA}.

  19. Erosion tests of materials by energetic particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Schechter, D.E.; Tsai, C.C.; Sluss, F.; Becraft, W.R.; Hoffman, D.J.

    1985-01-01

    The internal components of magnetic fusion devices must withstand erosion from and high heat flux of energetic plasma particles. The selection of materials for the construction of these components is important to minimize contamination of the plasma. In order to study various materials' comparative resistance to erosion by energetic particles and their ability to withstand high heat flux, water-cooled copper swirl tubes coated or armored with various materials were subjected to bombardment by hydrogen and helium particle beams. Materials tested were graphite, titanium carbide (TiC), chromium, nickel, copper, silver, gold, and aluminum. Details of the experimental arrangement and methods of application or attachment of the materials to the copper swirl tubes are presented. Results including survivability and mass losses are discussed.

  20. Dosimetric consequences of pencil beam width variations in scanned beam particle therapy

    International Nuclear Information System (INIS)

    Chanrion, M A; Ammazzalorso, F; Wittig, A; Engenhart-Cabillic, R; Jelen, U

    2013-01-01

    Scanned ion beam delivery enables the highest degree of target dose conformation attainable in external beam radiotherapy. Nominal pencil beam widths (spot sizes) are recorded during treatment planning system commissioning. Due to changes in the beam-line optics, the actual spot sizes may differ from these commissioning values, leading to differences between planned and delivered dose. The purpose of this study was to analyse the dosimetric consequences of spot size variations in particle therapy treatment plans. For 12 patients with skull base tumours and 12 patients with prostate carcinoma, scanned-beam carbon ion and proton treatment plans were prepared and recomputed simulating spot size changes of (1) ±10% to simulate the typical magnitude of fluctuations, (2) ±25% representing the worst-case scenario and (3) ±50% as a part of a risk analysis in case of fault conditions. The primary effect of the spot size variation was a dose deterioration affecting the target edge: loss of target coverage and broadening of the lateral penumbra (increased spot size) or overdosage and contraction of the lateral penumbra (reduced spot size). For changes ⩽25%, the resulting planning target volume mean 95%-isodose line coverage (CI-95%) deterioration was ranging from negligible to moderate. In some cases changes in the dose to adjoining critical structures were observed. (paper)

  1. Multiple Coulomb scattering of high-energy heavy charged particle beams used in biology and medicine

    International Nuclear Information System (INIS)

    Wong, M.; Schimmerling, W.; Ludewigt, B.; Phillips, M.; Curtis, S.; Tobias, C.A.

    1987-01-01

    The authors measured lateral displacement and angular distributions of high-energy heavy charged particles emerging from a target at the Lawrence Berkeley Laboratory BEVALAC with beams used in radiobiology experiments. Multiple Coulomb scattering occurring in the target material generally spreads the beam laterally and increases its divergence. The apparatus consists of four sets of position-sensitive semiconductor detectors located along the beam line. Each providing two position signals and one energy signal. The difference between the two position signals is used to determine the particle position in one dimension. The two position signals are constrained to add up to the energy deposition signal in order to reject multiple-particle traversals. The vector directions for the incident and emerging particles are reconstructed in three dimensions from their measured coordinated positions. Lateral and angular distributions are reported for beams of high-energy neon, iron and uranium ions incident on targets of aluminum, cooper, lead and water

  2. Study on short-lived particles with emulsion techniques

    International Nuclear Information System (INIS)

    Prentis, D.D.

    1984-01-01

    Experiments on measuring the lifetimes are reviewed and the decay mechanisms for c-, b-quark, tau-lepton and charmed hadron are disclosed by means of emulsion chambers and hybride techniques (HT) of the emulsion-spectrometer type. The dominant development of hybride emulsion technique is traced beginning with the early experiments on measuring the lifetime of particles with emulsion (approximately 10 -13 s) and emulsion chambers. The layouts of arrangement of emulsions, counters and chambers are presented. Experiments on neutrino beams in the Fermilab and CERN using a foot bubble chamber and the Big European Bubble Chamber (BEBC) are briefly described. HT experiments with a muon beam and neutrino beams in the Fermilab, with a photon beam in CERN with the use of the modified Omega are considered in detail. The results on measuring the lifetimes of the particles investigated are presented. The lengths of decay tracks, hypothetical decays, fitted masses, leVels of permissible limit of kinematic analysis, pulses of charmed baryons and intrinsic lifetimes of candidates for decay Λsub(c)sup(+), D +- , D 0 , F + - mesons are tabulated. The maximum likelihood method has been applied to determine the lifetimes from complete data on decays. It is noted that new developments in the field of semiconductor detectors and automation of emulsion measurements can extend possibilities of HT for investigation of both charmed

  3. Transverse instabilities of relativistic particle beams in accelerators and storage rings. I

    International Nuclear Information System (INIS)

    Zotter, B.

    1977-01-01

    This paper deals with transverse instabilities in coasting beams. A short description is given of the mechanism which leads to transverse instabilities, due essentially to the reaction of the electromagnetic fields caused by an oscillating beam on the particle motion. The methods used to calculate the electromagnetic fields are described and one of them is used to calculate the dispersion relation coefficients as well as the transverse coupling impedance, of a cylindrical beam in a concentric vacuum chamber with finite wall resistivity. In the last sections the dispersion relation is derived from the equation of motion of a single particle. The concept of the stability diagram is introduced and the stability criterion is discussed from several points of view. (Auth.)

  4. Balancing omega-6 and omega-3 fatty acids in ready-to-use therapeutic foods (RUTF)

    DEFF Research Database (Denmark)

    Brenna, J Thomas; Akomo, Peter; Bahwere, Paluku

    2015-01-01

    with altered PUFA content and looked at the effects on circulating omega-3 docosahexaenoic acid (DHA) status as a measure of overall omega-3 status. Supplemental oral administration of omega-3 DHA or reduction of RUTF omega-6 linoleic acid using high oleic peanuts improved DHA status, whereas increasing omega...

  5. Characteristics of particle beam acceleration on KUMS tandem electrostatic accelerator 5SDH-2

    OpenAIRE

    谷池, 晃; 古山, 雄一; 北村, 晃

    2006-01-01

    The KUMS tandem electrostatic accelerator, 5SDH-2, was installed in 1996. Ten years have passed since it installed and we obtain some data for accelerator operations. We report the particle beam characteristics such as relation between beam species and switcher magnet current, and dependence of ion charge fraction on stripper gas thickness. We also try to generate nitrogen ion beams, and low energy ion beams.

  6. Group velocity effects in broadband frequency conversion on OMEGA. 1998 summer research program for high school juniors at the University of Rochester's Laboratory for Laser Energetic. Student research reports

    International Nuclear Information System (INIS)

    Grossman, P.

    1999-03-01

    The powerful lasers needed for ICF can only produce light in the infrared wavelengths. However, the one micron wavelength produced by the neodymium glass that powers OMEGA and other lasers used for fusion research does not efficiently compress the fuel pellet. This happens because the infrared light is not well absorbed by the target, and because of the creation of suprathermal electrons. These suprathermal electrons preheat the fuel, adding extra resistance to compression. To eliminate these problems associated with longer wavelengths of light, the process of frequency converting the laser beam was invented. This process efficiently converts the initial beam to a beam which has three times the frequency and one third the wavelength. The third-harmonic beam, in the UV range, has a better absorption rate. The PV-WAVE computer program that the author has written has shown that increasing the frequency of SSD (Smoothing by Spectral Dispersion) on OMEGA to approximately 10 GHz as planned will not hurt the third harmonic generation conversion efficiency significantly. The increased bandwidth and increased frequency of SSD will make the laser beams that strike the target on OMEGA much smoother and more uniform than ever before. Therefore it is both safe and advisable to add a second tripler crystal to the OMEGA system and decrease the SSD time cycle to around 100 picoseconds. Since the conversion efficiency remains high up to approximately 30 GHz, more experiments on OMEGA may be carried out with even higher modulation frequencies. These modifications to the existing OMEGA laser should make target irradiation more uniform, leading to more uniform compression and hopefully, a higher energy yield

  7. A CVD diamond beam telescope for charged particle tracking

    CERN Document Server

    Adam, W; Bergonzo, P; de Boer, Wim; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; D'Angelo, P; Dabrowski, W; Delpierre, P A; Dulinski, W; Doroshenko, J; Doucet, M; van Eijk, B; Fallou, A; Fischer, P; Fizzotti, F; Kania, D R; Gan, K K; Grigoriev, E; Hallewell, G D; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kaplon, J; Kass, R; Keil, M; Knöpfle, K T; Koeth, T W; Krammer, Manfred; Meuser, S; Lo Giudice, A; MacLynne, L; Manfredotti, C; Meier, D; Menichelli, D; Mishina, M; Moroni, L; Noomen, J; Oh, A; Pan, L S; Pernicka, Manfred; Perera, L P; Riester, J L; Roe, S; Rudge, A; Russ, J; Sala, S; Sampietro, M; Schnetzer, S; Sciortino, S; Stelzer, H; Stone, R; Suter, B; Trischuk, W; Tromson, D; Vittone, E; Weilhammer, Peter; Wermes, N; Wetstein, M; Zeuner, W; Zöller, M

    2002-01-01

    CVD diamond is a radiation hard sensor material which may be used for charged particle tracking near the interaction region in experiments at high luminosity colliders. The goal of the work described here is to investigate the use of several detector planes made of CVD diamond strip sensors for charged particle tracking. Towards this end a tracking telescope composed entirely of CVD diamond planes has been constructed. The telescope was tested in muon beams and its tracking capability has been investigated.

  8. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity

    Science.gov (United States)

    Simopoulos, Artemis P.

    2016-01-01

    In the past three decades, total fat and saturated fat intake as a percentage of total calories has continuously decreased in Western diets, while the intake of omega-6 fatty acid increased and the omega-3 fatty acid decreased, resulting in a large increase in the omega-6/omega-3 ratio from 1:1 during evolution to 20:1 today or even higher. This change in the composition of fatty acids parallels a significant increase in the prevalence of overweight and obesity. Experimental studies have suggested that omega-6 and omega-3 fatty acids elicit divergent effects on body fat gain through mechanisms of adipogenesis, browning of adipose tissue, lipid homeostasis, brain-gut-adipose tissue axis, and most importantly systemic inflammation. Prospective studies clearly show an increase in the risk of obesity as the level of omega-6 fatty acids and the omega-6/omega-3 ratio increase in red blood cell (RBC) membrane phospholipids, whereas high omega-3 RBC membrane phospholipids decrease the risk of obesity. Recent studies in humans show that in addition to absolute amounts of omega-6 and omega-3 fatty acid intake, the omega-6/omega-3 ratio plays an important role in increasing the development of obesity via both AA eicosanoid metabolites and hyperactivity of the cannabinoid system, which can be reversed with increased intake of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). A balanced omega-6/omega-3 ratio is important for health and in the prevention and management of obesity. PMID:26950145

  9. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity

    Directory of Open Access Journals (Sweden)

    Artemis P. Simopoulos

    2016-03-01

    Full Text Available In the past three decades, total fat and saturated fat intake as a percentage of total calories has continuously decreased in Western diets, while the intake of omega-6 fatty acid increased and the omega-3 fatty acid decreased, resulting in a large increase in the omega-6/omega-3 ratio from 1:1 during evolution to 20:1 today or even higher. This change in the composition of fatty acids parallels a significant increase in the prevalence of overweight and obesity. Experimental studies have suggested that omega-6 and omega-3 fatty acids elicit divergent effects on body fat gain through mechanisms of adipogenesis, browning of adipose tissue, lipid homeostasis, brain-gut-adipose tissue axis, and most importantly systemic inflammation. Prospective studies clearly show an increase in the risk of obesity as the level of omega-6 fatty acids and the omega-6/omega-3 ratio increase in red blood cell (RBC membrane phospholipids, whereas high omega-3 RBC membrane phospholipids decrease the risk of obesity. Recent studies in humans show that in addition to absolute amounts of omega-6 and omega-3 fatty acid intake, the omega-6/omega-3 ratio plays an important role in increasing the development of obesity via both AA eicosanoid metabolites and hyperactivity of the cannabinoid system, which can be reversed with increased intake of eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA. A balanced omega-6/omega-3 ratio is important for health and in the prevention and management of obesity.

  10. Charged-particle beam diagnostics for the Advanced Photon Source (APS)

    International Nuclear Information System (INIS)

    Lumpkin, A.H.; Decker, G.; Kahana, E.; Patterson, D.; Sellyey, W.; Wang, X.; Chung, Y.

    1992-01-01

    Plans, prototypes, and initial test results for the charged-particle beam (e - , e + ) diagnostic systems on the injector rings, their transport lines, and the storage ring for the Advanced Photon Source (APS) are presented. The APS will be a synchrotron radiation user facility with one of the world's brightest x-ray sources in the 10-keV to 100-keV regime. Its 200-MeV electron linac, 450-MeV positron linac, positron accumulator ring, 7-GeV booster synchrotron, 7-GeV storage ring, and undulator test lines will also demand the development and demonstration of key particle-beam characterization techniques over a wide range of parameter space. Some of these parameter values overlap or approach those projected for fourth generation light sources (linac-driven FELs and high brightness storage rings) as described at a recent workshop. Initial results from the diagnostics prototypes on the linac test stand operating at 45-MeV include current monitor data, beam loss monitor data, and video digitization using VME architecture

  11. PHOTOMETRIC SUPERNOVA COSMOLOGY WITH BEAMS AND SDSS-II

    Energy Technology Data Exchange (ETDEWEB)

    Hlozek, Renee [Oxford Astrophysics, Department of Physics, University of Oxford, Keble Road, Oxford, OX1 3RH (United Kingdom); Kunz, Martin [Department de physique theorique, Universite de Geneve, 30, quai Ernest-Ansermet, CH-1211 Geneve 4 (Switzerland); Bassett, Bruce; Smith, Mat; Newling, James [African Institute for Mathematical Sciences, 68 Melrose Road, Muizenberg 7945 (South Africa); Varughese, Melvin [Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch, Cape Town, 7700 (South Africa); Kessler, Rick; Frieman, Joshua [The Kavli Institute for Cosmological Physics, The University of Chicago, 933 East 56th Street, Chicago, IL 60637 (United States); Bernstein, Joseph P.; Kuhlmann, Steve; Marriner, John [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Campbell, Heather; Lampeitl, Hubert; Nichol, Robert C. [Institute of Cosmology and Gravitation, Dennis Sciama Building Burnaby Road Portsmouth PO1 3FX (United Kingdom); Dilday, Ben [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Goleta, CA 93117 (United States); Falck, Bridget; Riess, Adam G. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Sako, Masao [Department of Physics and Astronomy, University of Pennsylvania, 203 South 33rd Street, Philadelphia, PA 19104 (United States); Schneider, Donald P., E-mail: rhlozek@astro.princeton.edu [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States)

    2012-06-20

    Supernova (SN) cosmology without spectroscopic confirmation is an exciting new frontier, which we address here with the Bayesian Estimation Applied to Multiple Species (BEAMS) algorithm and the full three years of data from the Sloan Digital Sky Survey II Supernova Survey (SDSS-II SN). BEAMS is a Bayesian framework for using data from multiple species in statistical inference when one has the probability that each data point belongs to a given species, corresponding in this context to different types of SNe with their probabilities derived from their multi-band light curves. We run the BEAMS algorithm on both Gaussian and more realistic SNANA simulations with of order 10{sup 4} SNe, testing the algorithm against various pitfalls one might expect in the new and somewhat uncharted territory of photometric SN cosmology. We compare the performance of BEAMS to that of both mock spectroscopic surveys and photometric samples that have been cut using typical selection criteria. The latter typically either are biased due to contamination or have significantly larger contours in the cosmological parameters due to small data sets. We then apply BEAMS to the 792 SDSS-II photometric SNe with host spectroscopic redshifts. In this case, BEAMS reduces the area of the {Omega}{sub m}, {Omega}{sub {Lambda}} contours by a factor of three relative to the case where only spectroscopically confirmed data are used (297 SNe). In the case of flatness, the constraints obtained on the matter density applying BEAMS to the photometric SDSS-II data are {Omega}{sup BEAMS}{sub m} = 0.194 {+-} 0.07. This illustrates the potential power of BEAMS for future large photometric SN surveys such as Large Synoptic Survey Telescope.

  12. Performance of GEM detectors in high intensity particle beams

    CERN Document Server

    Bachmann, S; Ketzer, B; Deutel, M; Ropelewski, Leszek; Sauli, Fabio; Bondar, A E; Buzulutskov, A F; Shekhtman, L I; Sokolov, A; Tatarinov, A A; Vasilev, A; Kappler, S; Schulte, E C

    2001-01-01

    We describe extensive tests of Double GEM and Triple GEM detectors, including full size prototypes for the COMPASS experiment, exposed to high intensity muon, proton and pion beams at the Paul~Scherrer Institute and at CERN. The measurements aim at detecting problems possible under these operation conditions, the main concern being the occurrence of discharges induced by beam particles. Results on the dependence of the probability for induced discharges on the experimental environment are presented and discussed. Implications for the application of GEM~detectors in experiments at high luminosity colliders are illustrated.

  13. New density estimation methods for charged particle beams with applications to microbunching instability

    International Nuclear Information System (INIS)

    Terzic, B.; Bassi, G.

    2011-01-01

    In this paper we discuss representations of charge particle densities in particle-in-cell simulations, analyze the sources and profiles of the intrinsic numerical noise, and present efficient methods for their removal. We devise two alternative estimation methods for charged particle distribution which represent significant improvement over the Monte Carlo cosine expansion used in the 2D code of Bassi et al. (G. Bassi, J.A. Ellison, K. Heinemann and R. Warnock Phys. Rev. ST Accel. Beams 12 080704 (2009)G. Bassi and B. Terzic, in Proceedings of the 23rd Particle Accelerator Conference, Vancouver, Canada, 2009 (IEEE, Piscataway, NJ, 2009), TH5PFP043), designed to simulate coherent synchrotron radiation (CSR) in charged particle beams. The improvement is achieved by employing an alternative beam density estimation to the Monte Carlo cosine expansion. The representation is first binned onto a finite grid, after which two grid-based methods are employed to approximate particle distributions: (i) truncated fast cosine transform; and (ii) thresholded wavelet transform (TWT). We demonstrate that these alternative methods represent a staggering upgrade over the original Monte Carlo cosine expansion in terms of efficiency, while the TWT approximation also provides an appreciable improvement in accuracy. The improvement in accuracy comes from a judicious removal of the numerical noise enabled by the wavelet formulation. The TWT method is then integrated into the CSR code (G. Bassi, J.A. Ellison, K. Heinemann and R. Warnock Phys. Rev. ST Accel. Beams 12 080704 (2009)), and benchmarked against the original version. We show that the new density estimation method provides a superior performance in terms of efficiency and spatial resolution, thus enabling high-fidelity simulations of CSR effects, including microbunching instability.

  14. Robust design of broadband EUV multilayer beam splitters based on particle swarm optimization

    International Nuclear Information System (INIS)

    Jiang, Hui; Michette, Alan G.

    2013-01-01

    A robust design idea for broadband EUV multilayer beam splitters is introduced that achieves the aim of decreasing the influence of layer thickness errors on optical performances. Such beam splitters can be used in interferometry to determine the quality of EUVL masks by comparing with a reference multilayer. In the optimization, particle swarm techniques were used for the first time in such designs. Compared to conventional genetic algorithms, particle swarm optimization has stronger ergodicity, simpler processing and faster convergence

  15. Frontiers of particle beam and high energy density plasma science using pulse power technology

    International Nuclear Information System (INIS)

    Masugata, Katsumi

    2011-04-01

    The papers presented at the symposium on “Frontiers of Particle Beam and High Energy Density Plasma Science using Pulse Power Technology” held in November 20-21, 2009 at National Institute for Fusion Science are collected. The papers reflect the present status and resent progress in the experiment and theoretical works on high power particle beams and high energy density plasmas produced by pulsed power technology. (author)

  16. High-Performance Cryogenic Designs for OMEGA and the National Ignition Facility

    Science.gov (United States)

    Goncharov, V. N.; Collins, T. J. B.; Marozas, J. A.; Regan, S. P.; Betti, R.; Boehly, T. R.; Campbell, E. M.; Froula, D. H.; Igumenshchev, I. V.; McCrory, R. L.; Myatt, J. F.; Radha, P. B.; Sangster, T. C.; Shvydky, A.

    2016-10-01

    The main advantage of laser symmetric direct drive (SDD) is a significantly higher coupled drive laser energy to the hot-spot internal energy at stagnation compared to that of laser indirect drive. Because of coupling losses resulting from cross-beam energy transfer (CBET), however, reaching ignition conditions on the NIF with SDD requires designs with excessively large in-flight aspect ratios ( 30). Results of cryogenic implosions performed on OMEGA show that such designs are unstable to short-scale nonuniformity growth during shell implosion. Several CBET reduction strategies have been proposed in the past. This talk will discuss high-performing designs using several CBET-mitigation techniques, including using drive laser beams smaller than the target size and wavelength detuning. Designs that are predicted to reach alpha burning regimes as well as a gain of 10 to 40 at the NIF-scale will be presented. Hydrodynamically scaled OMEGA designs with similar CBET-reduction techniques will also be discussed. This material is based upon work supported by the Department Of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  17. Some peculiarity of element analysis using charged particle beams

    International Nuclear Information System (INIS)

    Kobzev, A.P.; Abu-Alazm, S.M.; Helal, A.I.; Zahran, N.F.

    2002-01-01

    Multilayer structures, SiC -layers at Si substrate, have been analyzed by RBS, NR, ERD and PIXE methods using the charged particle beams from EG-5 Van de Graaff accelerator of JINR. The depth profiles of the based deposited layers were obtained for the multilayer structures

  18. Particle beam fusion. Progress report, April 1978-December 1978

    International Nuclear Information System (INIS)

    1979-12-01

    During this period substantial improvements in the theoretical basis for particle beam fusion as well as the execution of critical experiments were instrumental in further definition of the optimum route to our goals of demonstrating scientific and practical feasibility. The major emphasis in the program continues to be focused primarily on issues of power concentration and energy deposition of intense particle beams in solid targets. This utilization of program resources is directed toward conducting significant target implosion and thermonuclear burn experiments using EBFA-I (1 MJ) in the 1981-1983 time period. This step, using EBFA-I, will then set the stage for net energy gain experiments to follow on EBFA-II (> 2 MJ) after 1985. Current program emphasis and activities differ substantially from those stressed in the laser approaches to inertial confinement fusion. Here the critical issues relate to delivering the needed power densities and energies to appropriate targets and to insure that the coupling of energy is efficient and matches target requirements

  19. Overpopulation of Omega; in pp collisions: a way to distinguish statistical hadronization from string dynamics.

    Science.gov (United States)

    Bleicher, M; Liu, F M; Keränen, A; Aichelin, J; Bass, S A; Becattini, F; Redlich, K; Werner, K

    2002-05-20

    The Omega/Omega ratio originating from string decays is predicted to be larger than unity in proton-proton interactions at SPS energies ( E(lab) = 160 GeV). The antiomega dominance increases with decreasing beam energy. This surprising behavior is caused by the combinatorics of quark-antiquark production in small and low-mass strings. Since this behavior is not found in a statistical description of hadron production in proton-proton collisions, it may serve as a key observable to probe the hadronization mechanism in such collisions.

  20. Perpendicular diffusion of a dilute beam of charged particles in the PK-4 dusty plasma

    Science.gov (United States)

    Liu, Bin; Goree, John

    2015-09-01

    We study the random walk of a dilute beam of projectile dust particles that drift through a target dusty plasma. This random walk is a diffusion that occurs mainly due to Coulomb collisions with target particles that have a different size. In the direction parallel to the drift, projectiles exhibit mobility-limited motion with a constant average velocity. We use a 3D molecular dynamics (MD) simulation of the dust particle motion to determine the diffusion and mobility coefficients for the dilute beam. The dust particles are assumed to interact with a shielded Coulomb repulsion. They also experience gas drag. The beam particles are driven by a prescribed net force that is not applied to the target particles; in the experiments this net force is due to an imbalance of the electric and ion drag forces. This simulation is motivated by microgravity experiments, with the expectation that the scattering of projectiles studied here will be observed in upcoming PK-4 experiments on the International Space Station. Supported by NASA and DOE.

  1. Numerical studies of emittance exchange in 2-D charged-particle beams

    International Nuclear Information System (INIS)

    Guy, F.W.

    1986-01-01

    We describe results obtained from a two-dimensional particle-following computer code that simulates a continuous, nonrelativistic, elliptical charged-particle beam with linear continuous focusing. Emittances and focusing strengths can be different in the two transverse directions. The results can be applied, for example, for a quadrupole transport system in a smooth approximation to a real beam with unequal emittances in the two planes. The code was used to study emittance changes caused by kinetic-energy exchange between transverse directions and by shifts in charge distributions. Simulation results for space-charge-dominated beams agree well with analytic formulas. From simulation results, an empirical formula was developed for a ''partition parameter'' (the ratio of kinetic energies in the two directions) as a function of initial conditions and beamline length. Quantitative emittance changes for each transverse direction can be predicted by using this parameter. Simulation results also agree with Hofmann's generalized differential equation relating emittance and field energy

  2. Charged particle therapy with mini-segmented beams

    Directory of Open Access Journals (Sweden)

    F. Avraham eDilmanian

    2015-12-01

    Full Text Available One of the fundamental attributes of proton therapy and carbon ion therapy is the ability of these charged particles to spare tissue distal to the targeted tumor. This significantly reduces normal tissue toxicity and has the potential to translate to a wider therapeutic index. Although, in general, particle therapy also reduces dose to the proximal tissues, particularly in the vicinity of the target, dose to the skin and to other very superficial tissues tends to be higher than that of megavoltage x-rays. The methods presented here, namely Interleaved carbon minibeams and Radiosurgery with arrays of proton and light ion minibeams, both utilize beams segmented into arrays of parallel minibeams of about 0.3 mm incident beam size. These minibeam arrays spare tissues, as demonstrated by synchrotron x-ray experiments. An additional feature of particle minibeams is their gradual broadening due to multiple Coulomb scattering as they penetrate tissues. In the case of interleaved carbon minibeams, which do not broaden much, two arrays of planar carbon minibeams that remain parallel at target depth, are aimed at the target from 90º angles and made to interleave at the target to produce a solid radiation field within the target. As a result the surrounding tissues are exposed only to individual carbon minibeam arrays and are therefore spared. The method was used in four-directional geometry at the NASA Space Radiation Laboratory to ablate a 6.5-mm target in a rabbit brain at a single exposure with 40 Gy physical absorbed dose. Contrast-enhanced magnetic resonance imaging and histology six month later showed very focal target necrosis with nearly no damage to the surrounding brain. As for minibeams of protons and light ions, for which the minibeam broadening is substantial, measurements at MD Anderson Cancer Center in Houston, Texas, and Monte Carlo simulations showed that the broadening minibeams will merge with their neighbors at a certain tissue depth

  3. Study of Strange and Multistrange Particles in Ultrarelativistic Nucleus-Nucleus Collisions

    CERN Multimedia

    Vande vyvre, P; Feofilov, G; Snoeys, W; Hetland, K F; Campbell, M; Klempt, W

    2002-01-01

    % NA57\\\\ \\\\ The goal of the experiment is to study the production of strange and multi-strange particles in nucleus-nucleus collisions. This study was initiated at the OMEGA spectrometer, where three ion experiments have been performed: WA85 (S-W and p-W collisions at 200 A GeV/c), WA94 (S-S and p-S collisions at 200 A GeV/c) and WA97 (Pb-Pb, p-Pb and p-Be collisions at 160 A GeV/c).\\\\ \\\\ The experiment aims at extending the scope of WA97 by:\\\\ \\\\ - investigating the beam energy dependence of the enhancements of multi-strange particle production reported by the previous experiments, and by\\\\ \\\\\\\\ \\\\- measuring the yields of strange and multi-strange particles over an extended centrality range compared with the previous experiments.\\\\ \\\\ The apparatus consists mainly of silicon pixel detector planes.

  4. Neutral particle beam distributed data acquisition system

    International Nuclear Information System (INIS)

    Daly, R.T.; Kraimer, M.R.; Novick, A.H.

    1987-01-01

    A distributed data acquisition system has been designed to support experiments at the Argonne Neutral Particle Beam Accelerator. The system uses a host VAXstation II/GPX computer acting as an experimenter's station linked via Ethernet with multiple MicroVAX IIs and rtVAXs dedicated to acquiring data and controlling hardware at remote sites. This paper describes the hardware design of the system, the applications support software on the host and target computers, and the real-time performance

  5. A particle swarm optimization algorithm for beam angle selection in intensity-modulated radiotherapy planning

    International Nuclear Information System (INIS)

    Li Yongjie; Yao Dezhong; Yao, Jonathan; Chen Wufan

    2005-01-01

    Automatic beam angle selection is an important but challenging problem for intensity-modulated radiation therapy (IMRT) planning. Though many efforts have been made, it is still not very satisfactory in clinical IMRT practice because of overextensive computation of the inverse problem. In this paper, a new technique named BASPSO (Beam Angle Selection with a Particle Swarm Optimization algorithm) is presented to improve the efficiency of the beam angle optimization problem. Originally developed as a tool for simulating social behaviour, the particle swarm optimization (PSO) algorithm is a relatively new population-based evolutionary optimization technique first introduced by Kennedy and Eberhart in 1995. In the proposed BASPSO, the beam angles are optimized using PSO by treating each beam configuration as a particle (individual), and the beam intensity maps for each beam configuration are optimized using the conjugate gradient (CG) algorithm. These two optimization processes are implemented iteratively. The performance of each individual is evaluated by a fitness value calculated with a physical objective function. A population of these individuals is evolved by cooperation and competition among the individuals themselves through generations. The optimization results of a simulated case with known optimal beam angles and two clinical cases (a prostate case and a head-and-neck case) show that PSO is valid and efficient and can speed up the beam angle optimization process. Furthermore, the performance comparisons based on the preliminary results indicate that, as a whole, the PSO-based algorithm seems to outperform, or at least compete with, the GA-based algorithm in computation time and robustness. In conclusion, the reported work suggested that the introduced PSO algorithm could act as a new promising solution to the beam angle optimization problem and potentially other optimization problems in IMRT, though further studies need to be investigated

  6. An electrostatic beam line for accelerator mass spectroscopy of exotic particles

    International Nuclear Information System (INIS)

    Elmore, D.; Kubik, P.W.; Hemmick, T.; Teng, R.; Kagan, H.; Haas, P.; Boyd, R.N.; Turner, R.; Nitz, D.; Ciampa, D.; Olsen, S.L.; Gentile, T.; Haelen, T.

    1985-01-01

    An all-electrostatic charged particle spectrometer has been constructed to perform high sensitivity searches for exotic states of matter. This spectrometer consists of an electrosatic beam line capable of mass independent charged particle transport and selection together with time-of-flight, energy loss and total energy detectors. This system has been used in conjunction with the tandem electrostatic accelerator at the Nuclear Structure Research Laboratory of the University of Rochester to search for fractionally charged or anomalously heavy particles. (orig.)

  7. Transport of intense particle beams with application to heavy ion fusion

    International Nuclear Information System (INIS)

    Buchanan, H.L.; Chambers, F.W.; Lee, E.P.; Yu, S.S.; Briggs, R.J.; Rosenbluth, M.N.

    1979-01-01

    An attractive feature of the high energy (> GeV) heavy ion beam approach to inertial fusion, as compared with other particle beam systems, is the relative simplicity involved in the transport and focusing of energy on the target inside a reactor chamber. While this focusing could be done in vacuum by conventional methods with multiple beams, there are significant advantages in reactor design if one can operate at gas pressures around one torr. In this paper we summarize the results of our studies of heavy ion beam transport in gases. With good enough charge and current neutralization, one could get a ballistically-converging beam envelope down to a few millimeters over a 10 meter path inside the chamber. Problems of beam filamentation place important restrictions on this approach. We also discuss transport in a self-focused mode, where a relatively stable pressure window is predicted similar to the observed window for electron beam transport

  8. Omega-6/Omega-3 and PUFA/SFA in Colossoma macropomum Grown in Roraima, Brazil

    Directory of Open Access Journals (Sweden)

    Antonio Alves Melho Filho

    2013-05-01

    Full Text Available In this study was evaluated the fatty acids composition of tambaqui (Colossoma macropomum fillet, fish species cultivated in Roraima State, Brazil. For the extraction of tambaqui oil was used Sohxlet device and then it was methylated. The oil  was identified using a gas chromatograph and were identified 24 acids and these were divided into characteristic groups such as: saturated fatty acids (SFA, monounsaturated fatty acids (MUFA, polyunsaturated fatty acids (PUFA and series fatty acids omega-6 and omega-3. The ratios obtained were PUFA/SFA and omega-6/omega-3. The results of chromatographic analysis were subjected to tests by variance ANOVA and multiple comparisons of Tukey at 5%. The ratios omega-6/omega-3 and PUFA/SFA showed values ​​of 8.58 and 0.75 respectively.

  9. Charged-particle beam: a safety mandate

    International Nuclear Information System (INIS)

    Young, K.C.

    1983-01-01

    The Advanced Test Accelerator (ATA) is a recent development in the field of charged particle beam research at Lawrence Livermore National Laboratory. With this experimental apparatus, researchers will characterize intense pulses of electron beams propagated through air. Inherent with the ATA concept was the potential for exposure to hazards, such as high radiation levels and hostile breathing atmospheres. The need for a comprehensive safety program was mandated; a formal system safety program was implemented during the project's conceptual phase. A project staff position was created for a safety analyst who would act as a liaison between the project staff and the safety department. Additionally, the safety analyst would be responsible for compiling various hazards analyses reports, which formed the basis of th project's Safety Analysis Report. Recommendations for safety features from the hazards analysis reports were incorporated as necessary at appropriate phases in project development rather than adding features afterwards. The safety program established for the ATA project faciliated in controlling losses and in achieving a low-level of acceptable risk

  10. Cooling and focusing of a relativistic charged particle beam in crossed laser field

    International Nuclear Information System (INIS)

    Li Fuli

    1987-01-01

    A new method to focus a relativistic charged particle beam is suggested and studied. This idea is based on the use of the ponderomotive force which arises when a periodic electromagnetic field is created, as in the case of two crossed laser beams. (author)

  11. A FDTD solution of scattering of laser beam with orbital angular momentum by dielectric particles: Far-field characteristics

    International Nuclear Information System (INIS)

    Sun, Wenbo; Hu, Yongxiang; Weimer, Carl; Ayers, Kirk; Baize, Rosemary R.; Lee, Tsengdar

    2017-01-01

    Electromagnetic (EM) beams with orbital angular momentum (OAM) may have great potential applications in communication technology and in remote sensing of the Earth-atmosphere system and outer planets. Study of their interaction with optical lenses and dielectric or metallic objects, or scattering of them by particles in the Earth-atmosphere system, is a necessary step to explore the advantage of the OAM EM beams. In this study, the 3-dimensional (3D) scattered-field (SF) finite-difference time domain (FDTD) technique with the convolutional perfectly matched layer (CPML) absorbing boundary conditions (ABC) is applied to calculate the scattering of the purely azimuthal (the radial mode number is assumed to be zero) Laguerre–Gaussian (LG) beams with the OAM by dielectric particles. We found that for OAM beam's interaction with dielectric particles, the forward-scattering peak in the conventional phase function (P11) disappears, and light scattering peak occurs at a scattering angle of ~15° to 45°. The disappearance of forward-scattering peak means that, in laser communications most of the particle-scattered noise cannot enter the receiver, thus the received light is optimally the original OAM-encoded signal. This feature of the OAM beam also implies that in lidar remote sensing of the atmospheric particulates, most of the multiple-scattering energy will be off lidar sensors, and this may result in an accurate profiling of particle layers in the atmosphere or in the oceans by lidar, or even in the ground when a ground penetration radar (GPR) with the OAM is applied. This far-field characteristics of the scattered OAM light also imply that the optical theorem, which is derived from plane-parallel wave scattering case and relates the forward scattering amplitude to the total cross section of the scatterer, is invalid for the scattering of OAM beams by dielectric particles. - Highlights: • Scattering of orbital angular momentum (OAM) laser beam by dielectric

  12. Comparison of Omega-2 and Omega-3 calibration explosions basing on regional seismic data

    International Nuclear Information System (INIS)

    Mikhajlova, N.N.; Sokolova, I.N.

    2001-01-01

    Comparison of different parameters of seismic records of Omega-2 and Omega-3 calibration explosions was performed. It was shown that despite the equal charge the level of seismic oscillations was lower during the Omega-3 explosion than during Omega-2. Spectral composition, polarization of oscillations, wave picture is identical at a given station for both explosions. Assumptions were made on the reason of such difference in seismic effect. (author)

  13. Quasi-periodic solutions of nonlinear beam equations with quintic quasi-periodic nonlinearities

    Directory of Open Access Journals (Sweden)

    Qiuju Tuo

    2015-01-01

    Full Text Available In this article, we consider the one-dimensional nonlinear beam equations with quasi-periodic quintic nonlinearities $$ u_{tt}+u_{xxxx}+(B+ \\varepsilon\\phi(tu^5=0 $$ under periodic boundary conditions, where B is a positive constant, $\\varepsilon$ is a small positive parameter, $\\phi(t$ is a real analytic quasi-periodic function in t with frequency vector $\\omega=(\\omega_1,\\omega_2,\\dots,\\omega_m$. It is proved that the above equation admits many quasi-periodic solutions by KAM theory and partial Birkhoff normal form.

  14. Nonlinear δf Simulation Studies of Intense Charged Particle Beams with Large Temperature Anisotropy

    International Nuclear Information System (INIS)

    Startsev, Edward A.; Davidson, Ronald C.; Qin, Hong

    2002-01-01

    In this paper, a 3-D nonlinear perturbative particle simulation code (BEST) [H. Qin, R.C. Davidson and W.W. Lee, Physical Review Special Topics on Accelerators and Beams 3 (2000) 084401] is used to systematically study the stability properties of intense nonneutral charged particle beams with large temperature anisotropy (T perpendicularb >> T parallelb ). The most unstable modes are identified, and their eigenfrequencies, radial mode structure, and nonlinear dynamics are determined for axisymmetric perturbations with ∂/∂θ = 0

  15. Designing symmetric polar direct drive implosions on the Omega laser facility

    Energy Technology Data Exchange (ETDEWEB)

    Krasheninnikova, Natalia S.; Cobble, James A.; Murphy, Thomas J.; Tregillis, Ian L.; Bradley, Paul A.; Hakel, Peter; Hsu, Scott C.; Kyrala, George A.; Obrey, Kimberly A.; Schmitt, Mark J.; Baumgaertel, Jessica A.; Batha, Steven H. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2014-04-15

    Achieving symmetric capsule implosions with Polar Direct Drive [S. Skupsky et al., Phys. Plasmas 11, 2763 (2004); R. S. Craxton et al., Phys. Plasmas 12, 056304 (2005); F. J. Marshall et al., J. Phys. IV France 133, 153–157 (2006)] has been explored during recent Defect Induced Mix Experiment campaign on the Omega facility at the Laboratory for Laser Energetics. To minimize the implosion asymmetry due to laser drive, optimized laser cone powers, as well as improved beam pointings, were designed using 3D radiation-hydrodynamics code HYDRA [M. M. Marinak et al., Phys. Plasmas 3, 2070 (1996)]. Experimental back-lit radiographic and self-emission images revealed improved polar symmetry and increased neutron yield which were in good agreement with 2D HYDRA simulations. In particular, by reducing the energy in Omega's 21.4° polar rings by 16.75%, while increasing the energy in the 58.9° equatorial rings by 8.25% in such a way as to keep the overall energy to the target at 16 kJ, the second Legendre mode (P{sub 2}) was reduced by a factor of 2, to less than 4% at bang time. At the same time the neutron yield increased by 62%. The polar symmetry was also improved relative to nominal DIME settings by a more radical repointing of OMEGA's 42.0° and 58.9° degree beams, to compensate for oblique incidence and reduced absorption at the equator, resulting in virtually no P{sub 2} around bang time and 33% more yield.

  16. Laser focusing of high-energy charged-particle beams

    International Nuclear Information System (INIS)

    Channell, P.J.

    1986-01-01

    It is shown that laser focusing of high-energy charged-particle beams using the inverse Cherenkov effect is well suited for applications with large linear colliders. Very high gradient (>0.5 MG/cm) lenses result that can be added sequentially without AG cancellation. These lenses are swell understood, have small geometric aberrations, and offer the possibility of correlating phase and energy aberrations to produce an achromatic final focus

  17. Method and system for automatically correcting aberrations of a beam of charged particles

    International Nuclear Information System (INIS)

    1975-01-01

    The location of a beam of charged particles within a deflection field is determined by its orthogonal deflection voltages. With the location of the beam in the field, correction currents are supplied to a focus coil and to each of a pair of stigmator coils to correct for change of focal length and astigmatism due to the beam being deflected away from the center of its deflection field

  18. Moment approach to charged particle beam dynamics

    International Nuclear Information System (INIS)

    Channell, P.J.

    1983-01-01

    We have derived the hierarchy of moment equations that describes the dynamics of charged-particle beams in linear accelerators and can truncate the hierarchy at any level either by discarding higher moments or by a cumulant expansion discarding only correlation functions. We have developed a procedure for relating the density expansion linearly to the moments to any order. The relation of space-charge fields to the density has been derived; and an accurate, systematic, and computationally convenient expansion of the resultant integrals has been developed

  19. Automated detection and analysis of particle beams in laser-plasma accelerator simulations

    International Nuclear Information System (INIS)

    Ushizima, Daniela Mayumi; Geddes, C.G.; Cormier-Michel, E.; Bethel, E. Wes; Jacobsen, J.; Prabhat; Ruebel, O.; Weber, G.; Hamann, B.

    2010-01-01

    Numerical simulations of laser-plasma wakefield (particle) accelerators model the acceleration of electrons trapped in plasma oscillations (wakes) left behind when an intense laser pulse propagates through the plasma. The goal of these simulations is to better understand the process involved in plasma wake generation and how electrons are trapped and accelerated by the wake. Understanding of such accelerators, and their development, offer high accelerating gradients, potentially reducing size and cost of new accelerators. One operating regime of interest is where a trapped subset of electrons loads the wake and forms an isolated group of accelerated particles with low spread in momentum and position, desirable characteristics for many applications. The electrons trapped in the wake may be accelerated to high energies, the plasma gradient in the wake reaching up to a gigaelectronvolt per centimeter. High-energy electron accelerators power intense X-ray radiation to terahertz sources, and are used in many applications including medical radiotherapy and imaging. To extract information from the simulation about the quality of the beam, a typical approach is to examine plots of the entire dataset, visually determining the adequate parameters necessary to select a subset of particles, which is then further analyzed. This procedure requires laborious examination of massive data sets over many time steps using several plots, a routine that is unfeasible for large data collections. Demand for automated analysis is growing along with the volume and size of simulations. Current 2D LWFA simulation datasets are typically between 1GB and 100GB in size, but simulations in 3D are of the order of TBs. The increase in the number of datasets and dataset sizes leads to a need for automatic routines to recognize particle patterns as particle bunches (beam of electrons) for subsequent analysis. Because of the growth in dataset size, the application of machine learning techniques for

  20. Charged particle beam current monitoring tutorial

    International Nuclear Information System (INIS)

    Webber, R.C.

    1994-10-01

    A tutorial presentation is made on topics related to the measurement of charged particle beam currents. The fundamental physics of electricity and magnetism pertinent to the problem is reviewed. The physics is presented with a stress on its interpretation from an electrical circuit theory point of view. The operation of devices including video pulse current transformers, direct current transformers, and gigahertz bandwidth wall current style transformers is described. Design examples are given for each of these types of devices. Sensitivity, frequency response, and physical environment are typical parameters which influence the design of these instruments in any particular application. Practical engineering considerations, potential pitfalls, and performance limitations are discussed

  1. Nuclear and particle physics with inverse compton γ-ray beam

    International Nuclear Information System (INIS)

    Fujiwara, Mamoru

    2004-01-01

    A new facility for GeV γ-ray beams in the energy range of 1.5 - 2.4 GeV is now used to develop hadron physics, and lead to an important finding of ''Penta-quark'' hadron, Θ + particle at 1540 MeV. The experimental results to observe φ and K + mesons guide us to a new look of quark dynamics with strangeness quarks. A beam line for MeV γ-rays is discussed in view of the observation of the parity violation due to the weak-strong coupling in nuclear medium. (author)

  2. Laser-accelerated proton beams as a new particle source

    Energy Technology Data Exchange (ETDEWEB)

    Nuernberg, Frank

    2010-11-15

    The framework of this thesis is the investigation of the generation of proton beams using high-intensity laser pulses. In this work, an experimental method to fully reconstruct laser-accelerated proton beam parameters, called radiochromic film imaging spectroscopy (RIS), was developed. Since the proton beam expansion is a plasma expansion with accompanying electrons, a low-energy electron spectrometer was developed, built and tested to study the electron distribution matching to the proton beam energy distribution. Two experiments were carried out at the VULCAN Petawatt laser with the aim of showing dynamic control and enhancement of proton acceleration using multiple or defocused laser pulses. Irradiating the target with a long pulse, low-intensity laser (10{sup 12} W/cm{sup 2}) prior to the main pulse ({proportional_to}ns), an optimum pre-plasma density scale length of 60 {mu}m is generated leading to an enhancement of the maximum proton energy ({proportional_to}25%), the proton flux (factor of 3) and the beam uniformity. Proton beams were generated more efficiently than previously by driving thinner target foils at a lower intensity over a large area. The optimum condition was a 2 {mu}m foil irradiated with an intensity of 10{sup 19} W/cm{sup 2} onto a 60 {mu}m spot. Laser to proton beam efficiencies of 7.8% have been achieved (2.2% before) - one of the highest conversion efficiencies ever achieved. In the frame of this work, two separate experiments at the TRIDENT laser system have shown that these laser-accelerated proton beams, with their high number of particles in a short pulse duration, are well-suited for creating isochorically heated matter in extreme conditions. Besides the manipulation of the proton beam parameters directly during the generation, the primary aim of this thesis was the capture, control and transport of laser-accelerated proton beams by a solenoidal magnetic field lense for further purpose. In a joint project proposal, the laser and

  3. Laser-accelerated proton beams as a new particle source

    International Nuclear Information System (INIS)

    Nuernberg, Frank

    2010-01-01

    The framework of this thesis is the investigation of the generation of proton beams using high-intensity laser pulses. In this work, an experimental method to fully reconstruct laser-accelerated proton beam parameters, called radiochromic film imaging spectroscopy (RIS), was developed. Since the proton beam expansion is a plasma expansion with accompanying electrons, a low-energy electron spectrometer was developed, built and tested to study the electron distribution matching to the proton beam energy distribution. Two experiments were carried out at the VULCAN Petawatt laser with the aim of showing dynamic control and enhancement of proton acceleration using multiple or defocused laser pulses. Irradiating the target with a long pulse, low-intensity laser (10 12 W/cm 2 ) prior to the main pulse (∝ns), an optimum pre-plasma density scale length of 60 μm is generated leading to an enhancement of the maximum proton energy (∝25%), the proton flux (factor of 3) and the beam uniformity. Proton beams were generated more efficiently than previously by driving thinner target foils at a lower intensity over a large area. The optimum condition was a 2 μm foil irradiated with an intensity of 10 19 W/cm 2 onto a 60 μm spot. Laser to proton beam efficiencies of 7.8% have been achieved (2.2% before) - one of the highest conversion efficiencies ever achieved. In the frame of this work, two separate experiments at the TRIDENT laser system have shown that these laser-accelerated proton beams, with their high number of particles in a short pulse duration, are well-suited for creating isochorically heated matter in extreme conditions. Besides the manipulation of the proton beam parameters directly during the generation, the primary aim of this thesis was the capture, control and transport of laser-accelerated proton beams by a solenoidal magnetic field lense for further purpose. In a joint project proposal, the laser and plasma physics group of the Technische Universitat

  4. SU-C-207A-06: On-Line Beam Range Verification with Multiple Scanning Particle Beams: Initial Feasibility Study with Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Y; Sun, X; Lu, W; Jia, X; Wang, J; Shao, Y [The University of Texas Southwestern Medical Ctr., Dallas, TX (United States)

    2016-06-15

    Purpose: To investigate the feasibility and requirement for intra-fraction on-line multiple scanning particle beam range verifications (BRVs) with in-situ PET imaging, which is beyond the current single-beam BRV with extra factors that will affect the BR measurement accuracy, such as beam diameter, separation between beams, and different image counts at different BRV positions. Methods: We simulated a 110-MeV proton beam with 5-mm diameter irradiating a uniform PMMA phantom by GATE simulation, which generated nuclear interaction-induced positrons. In this preliminary study, we simply duplicated these positrons and placed them next to the initial protons to approximately mimic the two spatially separated positron distributions produced by two beams parallel to each other but with different beam ranges. These positrons were then imaged by a PET (∼2-mm resolution, 10% sensitivity, 320×320×128 mm^3 FOV) with different acquisition times. We calculated the positron activity ranges (ARs) from reconstructed PET images and compared them with the corresponding ARs of original positron distributions. Results: Without further image data processing and correction, the preliminary study show the errors between the measured and original ARs varied from 0.2 mm to 2.3 mm as center-to-center separations and range differences were in the range of 8–12 mm and 2–8 mm respectively, indicating the accuracy of AR measurement strongly depends on the beam separations and range differences. In addition, it is feasible to achieve ≤ 1.0-mm accuracy for both beams with 1-min PET acquisition and 12 mm beam separation. Conclusion: This study shows that the overlap between the positron distributions from multiple scanning beams can significantly impact the accuracy of BRVs of distributed particle beams and need to be further addressed beyond the established method of single-beam BRV, but it also indicates the feasibility to achieve accurate on-line multi-beam BRV with further improved

  5. Analysis of ultra-relativistic charged particle beam and stretched wire measurement interactions with cylindrically symmetric structures

    International Nuclear Information System (INIS)

    Deibele, C.E.

    1996-01-01

    The beam impedance and wakefield are quantities which describe the stability of charged particles in their trajectory within an accelerator. The stretched wire measurement technique is a method which estimates the beam impedance and wakefield. Definitions for the beam impedance, the wakefield, and the stretched wire measurement are presented. A pillbox resonator with circular beampipes is studied for its relatively simple profile and mode structure. Theoretical predictions and measurement data are presented for the interaction of various charged particle beams and center conductor geometries between the cavity and beampipe. Time domain predictions for the stretched wire measurement and wakefield are presented and are shown to be a linear interaction

  6. Phase space imaging of a beam of charged particles by frictional forces

    International Nuclear Information System (INIS)

    Daniel, H.

    1977-01-01

    In the case of frictional forces, defined by always acting opposite to the particle motion, Liouville's theorem does not apply. The effect of such forces on a beam of charged particles is calculated in closed form. Emphasis is given to the phase space imaging by a moderator. Conditions for an increase in phase space density are discussed. (Auth.)

  7. Omega-3 fatty acids (image)

    Science.gov (United States)

    Omega-3 fatty acids are a form of polyunsaturated fat that the body derives from food. Omega-3s (and omega-6s) are known as essential fatty acids (EFAs) because they are important for good health. ...

  8. Measurement of charged particle yields from therapeutic beams in view of the design of an innovative hadrontherapy dose monitor

    CERN Document Server

    Battistoni, G; Bini, F; Collamati, F; Collini, F; De Lucia, E; Durante, M; Faccini, R; Ferroni, F; Frallicciardi, P M; La Tessa, C; Marafini, M; Mattei, I; Miraglia, F; Morganti, S; Ortega, P G; Patera, V; Piersanti, L; Pinci, D; Russomando, A; Sarti, A; Schuy, C; Sciubba, A; Senzacqua, M; Solfaroli Camillocci, E; Vanstalle, M; Voena, C

    2015-01-01

    Particle Therapy (PT) is an emerging technique, which makes use of charged particles to efficiently cure different kinds of solid tumors. The high precision in the hadrons dose deposition requires an accurate monitoring to prevent the risk of under-dosage of the cancer region or of over-dosage of healthy tissues. Monitoring techniques are currently being developed and are based on the detection of particles produced by the beam interaction into the target, in particular: charged particles, result of target and/or projectile fragmentation, prompt photons coming from nucleus de-excitation and back-to-back γ s, produced in the positron annihilation from β + emitters created in the beam interaction with the target. It has been showed that the hadron beam dose release peak can be spatially correlated with the emission pattern of these secondary particles. Here we report about secondary particles production (charged fragments and prompt γ s) performed at different beam and energies that have a particular relevan...

  9. Beam-Based Error Identification and Correction Methods for Particle Accelerators

    CERN Document Server

    AUTHOR|(SzGeCERN)692826; Tomas, Rogelio; Nilsson, Thomas

    2014-06-10

    Modern particle accelerators have tight tolerances on the acceptable deviation from their desired machine parameters. The control of the parameters is of crucial importance for safe machine operation and performance. This thesis focuses on beam-based methods and algorithms to identify and correct errors in particle accelerators. The optics measurements and corrections of the Large Hadron Collider (LHC), which resulted in an unprecedented low β-beat for a hadron collider is described. The transverse coupling is another parameter which is of importance to control. Improvement in the reconstruction of the coupling from turn-by-turn data has resulted in a significant decrease of the measurement uncertainty. An automatic coupling correction method, which is based on the injected beam oscillations, has been successfully used in normal operation of the LHC. Furthermore, a new method to measure and correct chromatic coupling that was applied to the LHC, is described. It resulted in a decrease of the chromatic coupli...

  10. Observation of scattered light between omega/2 and 3/2 omega in short wavelength laser produced plasmas

    International Nuclear Information System (INIS)

    Goldman, L.M.; Seka, W.; Tanaka, K.; Simon, A.; Short, R.

    1984-01-01

    Extensive measurements have been carried out on scattered radiation in the spectral region between omega/2 and 3/2 omega from plasmas produced by 351 nm lasers. The relative intensities of the continuum radiation relative to the line features at omega/2 and 3/2 omega will be shown. A new spectral feature has been observed between 3/2 omega and omega which may be interpreted as an upscattered component produced by ordinary Raman scattering. The overall experimental evidence for ordinary Raman scattering vs stimulated Raman scattering will be discussed

  11. Universal graphs at $\\aleph_{\\omega_1+1}$

    OpenAIRE

    Davis, Jacob

    2016-01-01

    Starting from a supercompact cardinal we build a model in which $2^{\\aleph_{\\omega_1}}=2^{\\aleph_{\\omega_1+1}}=\\aleph_{\\omega_1+3}$ but there is a jointly universal family of size $\\aleph_{\\omega_1+2}$ of graphs on $\\aleph_{\\omega_1+1}$. The same technique will work for any uncountable cardinal in place of $\\omega_1$.

  12. Measurements of B Meson Decays to omega K* and omega rho

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B.

    2005-02-14

    We describe searches for B meson decays to the charmless vector-vector final states {omega}K* and {omega}{rho} in 89 million B{bar B} pairs produced in e{sup +}e{sup -} annihilation at {radical}s = 10.58 GeV.

  13. Occurrence of particle debris field during focused Ga ion beam milling of glassy carbon

    Energy Technology Data Exchange (ETDEWEB)

    Hu Qin [Centre for Industrial Photonics, Institute for Manufacturing, Department of Engineering, University of Cambridge, Alan Reece Building, 17 Charles Babbage Road, Cambridge, CB3 0FS (United Kingdom); O' Neill, William, E-mail: wo207@eng.cam.ac.uk [Centre for Industrial Photonics, Institute for Manufacturing, Department of Engineering, University of Cambridge, Alan Reece Building, 17 Charles Babbage Road, Cambridge, CB3 0FS (United Kingdom)

    2010-08-01

    To explore the machining characteristics of glassy carbon by focused ion beam (FIB), particles induced by FIB milling on glassy carbon have been studied in the current work. Nano-sized particles in the range of tens of nanometers up to 400 nm can often be found around the area subject to FIB milling. Two ion beam scanning modes - slow single scan and fast repetitive scan - have been tested. Fewer particles are found in single patterns milled in fast repetitive scan mode. For a group of test patterns milled in a sequence, it was found that a greater number of particles were deposited around sites machined early in the sequence. In situ EDX analysis of the particles showed that they were composed of C and Ga. The formation of particles is related to the debris generated at the surrounding areas, the low melting point of gallium used as FIB ion source and the high contact angle of gallium on glassy carbon induces de-wetting of Ga and the subsequent formation of Ga particles. Ultrasonic cleaning can remove over 98% of visible particles. The surface roughness (R{sub a}) of FIB milled areas after cleaning is less than 2 nm.

  14. Occurrence of particle debris field during focused Ga ion beam milling of glassy carbon

    International Nuclear Information System (INIS)

    Hu Qin; O'Neill, William

    2010-01-01

    To explore the machining characteristics of glassy carbon by focused ion beam (FIB), particles induced by FIB milling on glassy carbon have been studied in the current work. Nano-sized particles in the range of tens of nanometers up to 400 nm can often be found around the area subject to FIB milling. Two ion beam scanning modes - slow single scan and fast repetitive scan - have been tested. Fewer particles are found in single patterns milled in fast repetitive scan mode. For a group of test patterns milled in a sequence, it was found that a greater number of particles were deposited around sites machined early in the sequence. In situ EDX analysis of the particles showed that they were composed of C and Ga. The formation of particles is related to the debris generated at the surrounding areas, the low melting point of gallium used as FIB ion source and the high contact angle of gallium on glassy carbon induces de-wetting of Ga and the subsequent formation of Ga particles. Ultrasonic cleaning can remove over 98% of visible particles. The surface roughness (R a ) of FIB milled areas after cleaning is less than 2 nm.

  15. Particle beam technology for control of atomic-bonding state in materials

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Junzo [Kyoto Univ. (Japan). Faculty of Engineering

    1997-03-01

    The atomic-bonding state in materials can be controlled through `kinetic bonding` process by energetic particle beams which have a sufficient atomic kinetic energy. In order to clarify the `kinetic bonding` process the negative-ion beam deposition is considered as an ideal method because the negative ion has no additional active energies. Sputter type heavy negative-ion sources can be used for this purpose. Carbon films prepared by carbon negative-ion beam deposition have a strong dependency of the film properties on ion beam kinetic energy and have a quite high thermal conductivity which is comparable to that of the IIb diamond at a kinetic energy of 50-100 eV/atom. It suggests that new or metastable materials could be formed through the `kinetic bonding` process. Negative-ion beams can also be used for ion implantation, in which charging problems are perfectly reduced. (author)

  16. Cylindrical particle manipulation and negative spinning using a nonparaxial Hermite-Gaussian light-sheet beam

    Science.gov (United States)

    Mitri, F. G.

    2016-10-01

    Based on the angular spectrum decomposition method (ASDM), a nonparaxial solution for the Hermite-Gaussian (HG m ) light-sheet beam of any order m is derived. The beam-shape coefficients (BSCs) are expressed in a compact form and computed using the standard Simpson’s rule for numerical integration. Subsequently, the analysis is extended to evaluate the longitudinal and transverse radiation forces as well as the spin torque on an absorptive dielectric cylindrical particle in 2D without any restriction to a specific range of frequencies. The dynamics of the cylindrical particle are also examined based on Newton’s second law of motion. The numerical results show that a Rayleigh or Mie cylindrical particle can be trapped, pulled or propelled in the optical field depending on its initial position in the cross-sectional plane of the HG m light-sheet. Moreover, negative or positive axial spin torques can arise depending on the choice of the non-dimensional size parameter ka (where k is the wavenumber and a is the radius of the cylinder) and the location of the absorptive cylinder in the beam. This means that the HG m light-sheet beam can induce clockwise or anti-clockwise rotations depending on its shift from the center of the cylinder. In addition, individual vortex behavior can arise in the cross-sectional plane of wave propagation. The present analysis presents an analytical model to predict the optical radiation forces and torque induced by a HG m light-sheet beam on an absorptive cylinder for applications in optical light-sheet tweezers, optical micro-machines, particle manipulation and opto-fluidics to name a few areas of research.

  17. Self-modulated dynamics of a relativistic charged particle beam in plasma wake field excitation

    Energy Technology Data Exchange (ETDEWEB)

    Akhter, T.; Fedele, R. [Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli Federico II and INFN Sezione di Napoli, Napoli (Italy); Nicola, S. De [CNR-SPIN and INFN Sezione di Napoli, Napoli (Italy); Tanjia, F. [Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli Federico II and INFN Sezione di Napoli, Napoli (Italy); Jovanović, D. [Institute of Physics, University of Belgrade, Belgrade (Serbia); Mannan, A. [Department of Physics, Jahangirnagar University, Savar, Dhaka (Bangladesh)

    2016-09-01

    The self-modulated dynamics of a relativistic charged particle beam is provided within the context of the theory of plasma wake field excitation. The self-consistent description of the beam dynamics is provided by coupling the Vlasov equation with a Poisson-type equation relating the plasma wake potential to the beam density. An analysis of the beam envelope self-modulation is then carried out and the criteria for the occurrence of the instability are discussed thereby.

  18. Exclusive {omega}{pi}{sup 0} production with muons at COMPASS

    Energy Technology Data Exchange (ETDEWEB)

    Bettinelli, Massimo Maria

    2010-02-02

    In the present thesis the exclusive reaction {mu}+N{yields}{mu}'+{omega}{pi}{sup 0}+N is studied from collisions of a polarized muon beam (160 GeV/c momentum) with a polarized {sup 6}LiD target. The goal is the quantitative determination of the spin-parity (J{sup P}) 1{sup -} contribution in the {omega}{pi}{sup 0} signal, which is in theoretical models identified as the first radial excitation of the {rho}(770) meson with mass {proportional_to}1250 MeV/c{sup 2}. The concurring 1{sup +} in this mass region is the known b{sub 1}(1235) with dominant {omega}{pi}{sup 0} decay. The power of the electromagnetic calorimeter ECAL2 was studied by means of exclusive {omega} and the existence of crystals detected. It was shown that the contribution of the energy calibration of a single crystal to the observed {pi}{sup 0} width is small. The {omega}{pi}{sup 0} selection for the {omega}{pi}{sup 0} gives the kinematical range of the reaction: Squared mass of the virtual photon ({gamma}{sup *}): left angle Q{sup 2} right angle {proportional_to}10{sup -1} (GeV/c{sup 2}){sup 2}; Bjorken variable left angle x{sub B} right angle {proportional_to}10{sup -3}; energy in the photon-nucleon c. m. rest system: left angle W right angle {proportional_to}13.5 GeV; inclination of the exponential t-distribution: b=5.27{+-}0.29 GeV{sup -2}. The background was determined by means of a fit of the accociated {lambda} distribution in a height of 19{+-}4% (<11% in the {omega}{pi}{sup 0} peak for incoherent scattering). The spin-parity was studied by the consideration of numerous angular distributions for the relative orientations of muon scattering, {omega}{pi}{sup 0} production, and decay planes. Acceptance corrections were calculated by means of a self-developed Monte-Carlo generator. We observed a 42.1{+-}29.2% strong J{sup P}=1{sup -} contribution (77.2{sub -35.2}{sup 22.8}% for incoherent scattering), compatible with theoretical prediction. For this contribution the conservation of the

  19. Cold-fluid theory of equilibrium and stability of a high-intensity periodically twisted ellipse-shaped charged-particle beam

    Directory of Open Access Journals (Sweden)

    Jing Zhou

    2006-03-01

    Full Text Available It is shown that there exists an exact paraxial cold-fluid equilibrium of a high-intensity, space-charge-dominated charged-particle beam with a periodically twisted elliptic cross section in a nonaxisymmetric periodic magnetic field. Generalized envelope equations, which determine the beam envelopes, ellipse orientation, density, and internal flow velocity profiles, are derived. Nonrelativistic and relativistic examples of such beam equilibria are presented. The equilibrium and stability of such beams are demonstrated by self-consistent particle-in-cell (PIC simulations.

  20. Omega test series - an overview

    International Nuclear Information System (INIS)

    Knowles, C.P.

    2001-01-01

    The United States Defense Threat Reduction Agency (DTRA) has supported a series of high explosive calibration experiments that were conducted in the Degelen Mountain area of the Semipalatinsk Test Site (STS) in the Republic of Kazakhstan (ROK). This paper will provide an overview of the second and third tests of this series which have been designated Omega-2 and Omega-3. Omega-2 was conducted on Saturday, September 25, 1999 and Omega-3 on Saturday, July 29, 2000. (author)

  1. Supersonic beams at high particle densities: model description beyond the ideal gas approximation.

    Science.gov (United States)

    Christen, Wolfgang; Rademann, Klaus; Even, Uzi

    2010-10-28

    Supersonic molecular beams constitute a very powerful technique in modern chemical physics. They offer several unique features such as a directed, collision-free flow of particles, very high luminosity, and an unsurpassed strong adiabatic cooling during the jet expansion. While it is generally recognized that their maximum flow velocity depends on the molecular weight and the temperature of the working fluid in the stagnation reservoir, not a lot is known on the effects of elevated particle densities. Frequently, the characteristics of supersonic beams are treated in diverse approximations of an ideal gas expansion. In these simplified model descriptions, the real gas character of fluid systems is ignored, although particle associations are responsible for fundamental processes such as the formation of clusters, both in the reservoir at increased densities and during the jet expansion. In this contribution, the various assumptions of ideal gas treatments of supersonic beams and their shortcomings are reviewed. It is shown in detail that a straightforward thermodynamic approach considering the initial and final enthalpy is capable of characterizing the terminal mean beam velocity, even at the liquid-vapor phase boundary and the critical point. Fluid properties are obtained using the most accurate equations of state available at present. This procedure provides the opportunity to naturally include the dramatic effects of nonideal gas behavior for a large variety of fluid systems. Besides the prediction of the terminal flow velocity, thermodynamic models of isentropic jet expansions permit an estimate of the upper limit of the beam temperature and the amount of condensation in the beam. These descriptions can even be extended to include spinodal decomposition processes, thus providing a generally applicable tool for investigating the two-phase region of high supersaturations not easily accessible otherwise.

  2. Synthesis of omega-hydroxy carboxylic acids and alpha,omega-dimethyl ketones using alpha,omega-diols as alkylating agents.

    Science.gov (United States)

    Iuchi, Yosuke; Hyotanishi, Megumi; Miller, Brittany E; Maeda, Kensaku; Obora, Yasushi; Ishii, Yasutaka

    2010-03-05

    Synthesis of omega-hydroxy carboxylic acids and alpha,omega-dimethyl diketones was successfully achieved by using alpha,omega-diols as alkylating agents under the influence of an iridium catalyst. For example, the alkylation of butyl cyanoacetate with 1,13-tridecanediol in the presence of [IrCl(cod)](2) or [IrCl(coe)(2)](2) gave rise to butyl 2-cyano-15-hydroxypentadecanoate in good yield which is easily converted to cyclopentadecanolide (CPDL). In addition, the alkylation of acetone with 1,10-decanediol in the presence of [IrCl(cod)](2) and KOH resulted in an important muscone precursor, 2,15-hexadecanedione (HDDO), in good yield.

  3. A re-examination of symmetry/Group relationships as applied ot the elementary particles

    International Nuclear Information System (INIS)

    Byrd, K.; Cole R.

    1993-01-01

    The purpose of this investigation is to apply Group Theory to the elementary particles. Group Theory is a mathematical discipline used to predict the existence of elementary particles by physicists. Perhaps, the most famous application of Group Theory to the elementary particles was by Murray Gell-Mann in 1964. Gell-Mann used the theory to predict the existence and characteristics of the then undiscovered Omega Minus Particle. Group Theory relies heavily on symmetry relationships and expresses them in terms of geometry. Existence and the characteristics of a logical intuitable, but unobserved member of a group are given by extrapolation of the geometric relationships and characteristics of the known members of the group. In this study, the Delta, Sigma, Chi and Omega baryons are used to illustrate how physicists apply geometry and symmetrical relationships to predict new particles. The author's hypothesis is that by using the D3 crystal symmetry group and Gell-Mann's baryons, three new particles will be predicted. The results of my new symmetry predicts the Omega 2, Omega 3, and Chi 3. However, the Chi 3 does not have characteristics consistent with those of the other known group members

  4. Thin-Film Polarizers for the OMEGA EP Laser System

    International Nuclear Information System (INIS)

    Oliver, J.B.; Rigatti, A.L.; Howe, J.D.; Keck, J.; Szczepanski, J.; Schmid, A.W.; Papernov, S.; Kozlov, A.; Kosc, T.Z.

    2006-01-01

    Thin-film polarizers are essential components of large laser systems such as OMEGA EP and the NIF because of the need to switch the beam out of the primary laser cavity (in conjunction with a plasma-electrode Pockels cell) as well as providing a well-defined linear polarization for frequency conversion and protecting the system from back-reflected light. The design and fabrication of polarizers for pulse-compressed laser systems is especially challenging because of the spectral bandwidth necessary for chirped-pulse amplification

  5. Technical review of the Sandia Laboratories' Particle Beam Fusion Program

    International Nuclear Information System (INIS)

    1979-01-01

    This report considers the technical aspects of Sandia Laboratories' Particle Beam Fusion Program and examines the program's initial goals, the progress made to date towards reaching those goals, and the future plans or methods of reaching those original or modified goals. A summary of Sandia Laboratories' effort, which seeks to demonstrate that high voltage pulsed power generated high-current electron or light ion beams can be used to ignite a deuterium or tritium pellet, is provided. A brief review and assessment of the Sandia Pulse Power Program is given. Several critical issues and summaries of the committee members' opinions are discussed

  6. Beam-Beam Effects

    International Nuclear Information System (INIS)

    Herr, W; Pieloni, T

    2014-01-01

    One of the most severe limitations in high-intensity particle colliders is the beam-beam interaction, i.e. the perturbation of the beams as they cross the opposing beams. This introduction to beam-beam effects concentrates on a description of the phenomena that are present in modern colliding beam facilities

  7. Self-consistent simulation studies of periodically focused intense charged-particle beams

    International Nuclear Information System (INIS)

    Chen, C.; Jameson, R.A.

    1995-01-01

    A self-consistent two-dimensional model is used to investigate intense charged-particle beam propagation through a periodic solenoidal focusing channel, particularly in the regime in which there is a mismatch between the beam and the focusing channel. The present self-consistent studies confirm that mismatched beams exhibit nonlinear resonances and chaotic behavior in the envelope evolution, as predicted by an earlier envelope analysis [C. Chen and R. C. Davidson, Phys. Rev. Lett. 72, 2195 (1994)]. Transient effects due to emittance growth are studied, and halo formation is investigated. The halo size is estimated. The halo characteristics for a periodic focusing channel are found to be qualitatively the same as those for a uniform focusing channel. A threshold condition is obtained numerically for halo formation in mismatched beams in a uniform focusing channel, which indicates that relative envelope mismatch must be kept well below 20% to prevent space-charge-dominated beams from developing halos

  8. Analysis of the dynamic behavior of an intense charged particle beam using the semigroup approach

    International Nuclear Information System (INIS)

    Stafford, M.A.

    1984-01-01

    Dynamic models of a charged particle beam subject to external electromagnetic fields are cast into the abstract Cauchy problem form. Various applications of intense charged particle beams, i.e., beams whose self electromagnetic fields are significant, might require, or be enhanced by, the use of dynamic control constructed from suitably processed measurements of the state of the beam. This research provides a mathematical foundation for future engineering development of estimation and control designs for such beams. Beginning with the Vlasov equation, successively simpler models of intense beams are presented, along with their corresponding assumptions. Expression of a model in abstract Cauchy problem form is useful in determining whether the model is well posed. Solutions of well-posed problems can be expressed in terms of a one-parameter semigroup of linear operators. The semigroup point of view allows the application of the rapidly maturing modern control theory of infinite dimensional system. An appropriate underlying Banach space is identified for a simple, but nontrivial, single degree of freedom model (the electrostatic approximation model), and the associated one-parameter semigroup of linear operators is characterized

  9. Electroproduction of pairs at beam-beam collision

    International Nuclear Information System (INIS)

    Bajer, V.N.; Katkov, V.M.; Strakhovenko, V.M.

    1989-01-01

    Charged particle pair production at beam-beam collision in electron-positron linear colliders has been discussed taking into account a finite size of the beams (both longitudinal and transverse) and end effects. Contributions of the main acting mechanisms are singled out which depend on the energy of initial particles and the masses of created particles. A spectral distribution of produced particles is presented. 15 refs

  10. Particle beam dynamics in a magnetically insulated coaxial diode

    International Nuclear Information System (INIS)

    Korenev, V.G.; Magda, I.I.; Sinitsin, V.G.

    2015-01-01

    The dynamics of charged particle beams emitted from a cathode into a smooth coaxial diode with magnetic insulation is studied with the aid of 3-D PIC simulation. The processes controlling space charge formation and its evolution in the diode are modeled for geometries typical of high-voltage millimeter wave magnetrons that are characterized by very high values of emission currents, hence high space charge densities.

  11. Technical Challenges and Scientific Payoffs of Muon BeamAccelerators for Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Zisman, Michael S.

    2007-09-25

    Historically, progress in particle physics has largely beendetermined by development of more capable particle accelerators. Thistrend continues today with the recent advent of high-luminosityelectron-positron colliders at KEK and SLAC operating as "B factories,"the imminent commissioning of the Large Hadron Collider at CERN, and theworldwide development effort toward the International Linear Collider.Looking to the future, one of the most promising approaches is thedevelopment of muon-beam accelerators. Such machines have very highscientific potential, and would substantially advance thestate-of-the-art in accelerator design. A 20-50 GeV muon storage ringcould serve as a copious source of well-characterized electron neutrinosor antineutrinos (a Neutrino Factory), providing beams aimed at detectorslocated 3000-7500 km from the ring. Such long baseline experiments areexpected to be able to observe and characterize the phenomenon ofcharge-conjugation-parity (CP) violation in the lepton sector, and thusprovide an answer to one of the most fundamental questions in science,namely, why the matter-dominated universe in which we reside exists atall. By accelerating muons to even higher energies of several TeV, we canenvision a Muon Collider. In contrast with composite particles likeprotons, muons are point particles. This means that the full collisionenergy is available to create new particles. A Muon Collider has roughlyten times the energy reach of a proton collider at the same collisionenergy, and has a much smaller footprint. Indeed, an energy frontier MuonCollider could fit on the site of an existing laboratory, such asFermilab or BNL. The challenges of muon-beam accelerators are related tothe facts that i) muons are produced as a tertiary beam, with very large6D phase space, and ii) muons are unstable, with a lifetime at rest ofonly 2 microseconds. How these challenges are accommodated in theaccelerator design will be described. Both a Neutrino Factory and a Muon

  12. Survey of atomic data base needs and accuracies for helium beam stopping and alpha particle diagnostics for ITER

    International Nuclear Information System (INIS)

    Summers, H.P.; Hellermann, M. von.

    1992-01-01

    This report is concerned with establishing a recommended collection of atomic collision data for the modelling, experimental investigation and exploitation of helium beams. The motivation stems from proposals for diagnostic beams for the ITER tokamak, targeted at alpha particle measurement via double charge transfer, neutralized alpha particle analysis and spectroscopic analysis of recombination radiation. The report discusses the beam energies, species involved in collisions with the helium atom beam (fuel, helium ash and plasma impurities) and plasma conditions prevailing in large tokamak devices. It also lists the required cross-section data

  13. Studies of emittance growth and halo particle production in intense charged particle beams using the Paul Trap Simulator Experiment

    International Nuclear Information System (INIS)

    Gilson, Erik P.; Davidson, Ronald C.; Dorf, Mikhail; Efthimion, Philip C.; Majeski, Richard; Chung, Moses; Gutierrez, Michael S.; Kabcenell, Aaron N.

    2010-01-01

    The Paul Trap Simulator Experiment (PTSX) is a compact laboratory experiment that places the physicist in the frame-of-reference of a long, charged-particle bunch coasting through a kilometers-long magnetic alternating-gradient (AG) transport system. The transverse dynamics of particles in both systems are described by the same set of equations, including nonlinear space-charge effects. The time-dependent voltages applied to the PTSX quadrupole electrodes in the laboratory frame are equivalent to the spatially periodic magnetic fields applied in the AG system. The transverse emittance of the charge bunch, which is a measure of the area in the transverse phase space that the beam distribution occupies, is an important metric of beam quality. Maintaining low emittance is an important goal when defining AG system tolerances and when designing AG systems to perform beam manipulations such as transverse beam compression. Results are reviewed from experiments in which white noise and colored noise of various amplitudes and durations have been applied to the PTSX electrodes. This noise is observed to drive continuous emittance growth and increase in root-mean-square beam radius over hundreds of lattice periods. Additional results are reviewed from experiments that determine the conditions necessary to adiabatically reduce the charge bunch's transverse size and simultaneously maintain high beam quality. During adiabatic transitions, there is no change in the transverse emittance. The transverse compression can be achieved either by a gradual change in the PTSX voltage waveform amplitude or frequency. Results are presented from experiments in which low emittance is achieved by using focusing-off-defocusing-off waveforms.

  14. Nonlinear dynamics for charges particle beams with a curved axis in the matrix - recursive model

    Energy Technology Data Exchange (ETDEWEB)

    Dymnikov, A D [University of St Petersburg, (Russian Federation). Institute of Computational Mathematics and Control Process

    1994-12-31

    In this paper a new matrix and recursive approach has been outlined for treating nonlinear optics of charged particle beams. This approach is a new analytical and computational tool for designers of optimal beam control systems. 9 refs.

  15. Nonlinear dynamics for charges particle beams with a curved axis in the matrix - recursive model

    Energy Technology Data Exchange (ETDEWEB)

    Dymnikov, A.D. [University of St Petersburg, (Russian Federation). Institute of Computational Mathematics and Control Process

    1993-12-31

    In this paper a new matrix and recursive approach has been outlined for treating nonlinear optics of charged particle beams. This approach is a new analytical and computational tool for designers of optimal beam control systems. 9 refs.

  16. Nonlinear dynamics for charges particle beams with a curved axis in the matrix - recursive model

    International Nuclear Information System (INIS)

    Dymnikov, A.D.

    1993-01-01

    In this paper a new matrix and recursive approach has been outlined for treating nonlinear optics of charged particle beams. This approach is a new analytical and computational tool for designers of optimal beam control systems. 9 refs

  17. Beam Dynamics in an Electron Lens with the Warp Particle-in-cell Code

    CERN Document Server

    Stancari, Giulio; Redaelli, Stefano

    2014-01-01

    Electron lenses are a mature technique for beam manipulation in colliders and storage rings. In an electron lens, a pulsed, magnetically confined electron beam with a given current-density profile interacts with the circulating beam to obtain the desired effect. Electron lenses were used in the Fermilab Tevatron collider for beam-beam compensation, for abort-gap clearing, and for halo scraping. They will be used in RHIC at BNL for head-on beam-beam compensation, and their application to the Large Hadron Collider for halo control is under development. At Fermilab, electron lenses will be implemented as lattice elements for nonlinear integrable optics. The design of electron lenses requires tools to calculate the kicks and wakefields experienced by the circulating beam. We use the Warp particle-in-cell code to study generation, transport, and evolution of the electron beam. For the first time, a fully 3-dimensional code is used for this purpose.

  18. Observation of the doubly strange b-Baryon (Omega)b-

    International Nuclear Information System (INIS)

    Hernandez Orduna, Jose de Jesus

    2011-01-01

    This thesis reports the first experimental evidence of the doubly strange b-baryon (Omega) b - (ssb) following the decay channel (Omega) b - → J/ψ(1S) μ + μ - (Omega) - Λ K - p π - in p(bar p) collisions at √s = 1.96 Tev. Using approximately 1.3 fb -1 of data collected with the D0 detector at the Fermilab Tevatron Collider, they observe 17.8 ± 4.9(stat) ± 0.8(syst) (Omega) b - signal events at 6.165 ± 0.010(stat) ± 0.013(syst) GeV/c 2 with a corresponding significance of 5.4 σ, meaning that the probability of the signal coming from a fluctuation in the background is 6.7 x 10 -8 . The theoretical model we have to describe what we believe are the building blocks of nature and the interactions between them, is known as Standard Model. The Standard Model is the combination of Electroweak Theory and Quantum Chromodynamics into a single core in the attempt to include all interactions of subatomic particles except those due to gravity in a simple framework. This model has proved highly accurate in predicting certain interactions, but it does not explain all aspects of subatomic particles. For example, it cannot say how many particles there should be or what their masses are. The search goes on for a more complete theory, and in particular an unified field theory describing the strong, weak, and electromagnetic forces. Twelve elementary particles are known in the Standard Model: the Fermions. They have spin -1/2 and obey the Pauli Exclusion Principle. Fermions are divided into six Quarks: up u, down d, charm c, strange s, top t and, bottom b; and six Leptons: electron e, muon μ, tau τ, electron neutrino ν e , muon neutrino ν μ and, tau neutrino ν τ . Quarks interact via the strong force because they carry color charge, electromagnetically because of their electric charge and via the weak nuclear interaction because of the weak isospin. Quarks form color-neutral composite particles known as Hadrons which are divided in Mesons, containing a quark and an

  19. A new method of measurement of trace elements by using particle beams

    International Nuclear Information System (INIS)

    Matsumoto, Shinji

    1982-01-01

    A new method of measurement of light elements by using the particle beam from an accelerator was developed. This paper reports on the results of analyses of N-15 and O-18. The tandem accelerator of University of Tokyo was used to accelerate proton beam. The energy of protons was determined from the excitation curves of elastic scattering by N-15, O-18 and O-16. The scattering by O-16 was background count. Therefore, The measurement was made at the energy of small background and large true counting. Biological samples were examined. The linearity of counts with the concentration of N-15 and O-18 was confirmed. The cells which contain glycine (O-18, 71.8 percent) and methionine (N-15, 95 percent) were analyzed. The peaks of N-15 and O-18 were well separated from teh peaks by N-14 and O-16. The natural amounts of N-15 in adenine and O-18 in glucose were also measured. The resonance reaction method of measurement by using particle beam was developed. (Kato, T.)

  20. Charged beam dynamics, particle accelerators and free electron lasers

    CERN Document Server

    Dattoli, Giuseppe; Sabia, Elio; Artioli, Marcello

    2017-01-01

    Charged Beam Dynamics, Particle Accelerators and Free Electron Lasers summarises different topics in the field of accelerators and of Free Electron Laser (FEL) devices. It is intended as a reference manual for the different aspects of FEL devices, explaining how to design both a FEL device and the accelerator providing the driving beam. It covers both theoretical and experimental aspects, allowing researchers to attempt a first design of a FEL device in different operating conditions. It provides an analysis of what is already available, what is needed, and what the challenges are to determine new progress in this field. All chapters contain complements and exercises that are designed in such a way that the reader will gradually acquire self-confidence with the matter treated in the book.

  1. OoTran, an object-oriented program for charged-particle beam transport design

    International Nuclear Information System (INIS)

    Ninane, A.; Ferte, J.M.; Mareschal, P.; Sibomana, M.; Somers, F.

    1990-01-01

    The OoTran program is a new object-oriented program for charged-particle beam transport computation. Using a simple menu interface, the user builds his beam line with magnetic and electric elements taken from a standard library. The program computes the beam transport using a well-known first-order matrix formalism and displays 'in real time' the computed beam envelope. The menu editor provides functions to interactively modify the beam line. Ootran is written in C++ and uses two object libraries: OOPS, the Object-Oriented Program Support Class Library, which is a collection of classes similar to those of Smalltalk-80; and InterViews, a C++ graphical-interface toolkit based on the X-Window system. OoTran is running on DECstation 3100, VAXstation 2000 and SUN 3, with the ULTRIX and SUN OS operating systems. (orig.)

  2. Regulation of rabbit lung cytochrome P-450 prostaglandin omega-hydroxylase (P-450/sub PG-omega/) during pregnancy

    International Nuclear Information System (INIS)

    Muerhoff, A.S.; Williams, D.E.; Jackson, V.; Leithauser, M.T.; Waterman, M.R.; Johnson, E.F.; Masters, B.S.S.

    1987-01-01

    The mechanism of induction during pregnancy of a rabbit lung prostaglandin omega-hydroxylase cytochrome P-450 has been investigated. This activity has been demonstrated to be induced over 100-fold in 28-day pregnant rabbits, as compared to nonpregnant rabbits. The induction is reflected by an increase in the amount of P-450/sub PG-omega/ protein as measured by Western blotting. P-450/sub PG-omega/ microsomal protein increases throughout gestation concomitant with an increase in PGE 1 omega-hydroxylase activity. Elucidation of the level of induction involved extraction of RNA from rabbit lungs obtained at various days of gestation followed by in vitro translation of the RNA in the presence of 35 S-methionine. Immunoprecipitation of newly synthesized P-450 and analysis of the immunoisolates by SDS-PAGE, autoradiography and densitometry of the P-450/sub PG-omega/ band revealed that the P-450/sub PG-omega/ mRNA levels followed the gestational time-dependent increase observed for both PGE 1 omega-hydroxylase activity and P-450/sub PG-omega/ protein, i.e., a gradual increase peaking at 28-days, dropping precipitously to near control levels following parturition. These data suggest that control of P-450/sub PG-omega expression occurs at the transcriptional level. Western blots of human lung bronchioloalveolar-carcinoma cell lines NCL-H322 and NCL-H358 utilizing a guinea pig IgG to P-450/sub PG-omega/ detect a cross-reactive species

  3. Hadronic decay properties of newly observed $\\Omega_c$ baryons

    OpenAIRE

    Zhao, Ze; Ye, Dan-Dan; Zhang, Ailin

    2017-01-01

    Hadronic decay widths of the newly observed charmed strange baryons, $\\Omega_c(3000)^0$, $\\Omega_c(3050)^0$, $\\Omega_c(3066)^0$, $\\Omega_c(3090)^0$ and $\\Omega_c(3119)^0$ have been calculated in a $^3P_0$ model. Our results indicate that $\\Omega_c(3066)^0$ and $\\Omega_c(3090)^0$ can be interpreted as the $1P-$wave $\\Omega_{c2}(\\frac{3}{2}^-)$ or $\\Omega_{c2}(\\frac{5}{2}^-)$. Though the measured masses of $\\Omega_c(3000)^0$, $\\Omega_c(3050)^0$ and $\\Omega_c(3119)^0$ are lower than existed theo...

  4. Ion desorption induced by charged particle beams: mechanisms and mass spectroscopy

    International Nuclear Information System (INIS)

    Silveira, E.F. da; Schweikert, E.A.

    1988-01-01

    Surface analysis, through desorption, induced by fast particles, is presented and discussed. The stopping of projectils is essentially made by collisions with the target electrons. The desorbed particles are generally emmited with kinetic energy from 0.1 to 20 eV. Mass, charge, velocity and emission angle give information about the surface components, its structure as well as beam-solid interaction processes. Time-of-flight mass spectroscopy of desorbed ions, determine the mass of organic macromolecules and biomolecules. (A.C.A.S.) [pt

  5. A protective lipidomic biosignature associated with a balanced omega-6/omega-3 ratio in fat-1 transgenic mice.

    NARCIS (Netherlands)

    Astarita, G.; McKenzie, J.H.; Wang, B.; Strassburg, K.; Doneanu, A.; Johnson, J.; Baker, A.; Hankemeier, T.; Murphy, J.; Vreeken, R.J.; Langridge, J.; Kang, J.X.

    2014-01-01

    A balanced omega-6/omega-3 polyunsaturated fatty acid (PUFA) ratio has been linked to health benefits and the prevention of many chronic diseases. Current dietary intervention studies with different sources of omega-3 fatty acids (omega-3) lack appropriate control diets and carry many other

  6. System of coefficients for charged-particle beam linear transformation by a magnetic dipole element

    International Nuclear Information System (INIS)

    Tarantin, N.I.

    1979-01-01

    A new technique for consideration of dipole magnet ion-optical effect has been developed to study the problems of commutation and monochromatization of a charged particle beam. In a new form obtained are systematized coefficients of linear transformation (CLT) of the charged particle beam for radial and axial motions in a magnetic dipole element (MDE) including a dipole magnet and two gaps without magnetic field. Given is a method of graphic determination of MDE parameters and main CLT. The new form of coefficients and conditions of the transformations feasibility considerably facilitates the choice and calculation of dipole elements

  7. Omega-3 Index of Canadian adults.

    Science.gov (United States)

    Langlois, Kellie; Ratnayake, Walisundera M N

    2015-11-01

    Cardioprotective properties have been associated with two fatty acids-eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The Omega-3 Index indicates the percentage of EPA+DHA in red blood cell fatty acids. Omega-3 Index levels of the Canadian population have not been directly measured. Data for respondents aged 20 to 79 from cycle 3 (2012/2013) of the Canadian Health Measures Survey were used to calculate means and the prevalence of Omega-3 Index coronary heart disease (CHD) risk cut-offs-high (4% or less), moderate (more than 4% to less than 8%), and low (8% or more)-by sociodemographic and lifestyle characteristics, including fish consumption and use of omega-3 supplements. Associations between the Omega-3 Index and CHD-related factors including biomarkers, risk factors, and previous CHD events, were examined in multivariate regression models. The mean Omega-3 Index level of Canadians aged 20 to 79 was 4.5%. Levels were higher for women, older adults, Asians and other non-white Canadians, omega-3 supplement users, and fish consumers; levels were lower for smokers and people who were obese. Fewer than 3% of adults had levels associated with low CHD risk; 43% had levels associated with high risk. No CHD-related factor was associated with the Omega-3 Index when control variables were taken into account. Omega-3 Index levels among Canadian adults were strongly related to age, race, supplement use, fish consumption, smoking status and obesity. Fewer than 3% of adults had Omega-3 Index levels associated with low risk for CHD.

  8. Numerical simulation of Gaussian beam scattering by complex particles of arbitrary shape and structure

    International Nuclear Information System (INIS)

    Han, Y.P.; Cui, Z.W.; Gouesbet, G.

    2012-01-01

    An efficient numerical method based on the surface integral equations is introduced to simulate the scattering of Gaussian beam by complex particles that consist of an arbitrarily shaped host particle and multiple internal inclusions of arbitrary shape. In particular, the incident focused Gaussian beam is described by the Davis fifth-order approximate expressions in combination with rotation defined by Euler angles. The established surface integral equations are discretized with the method of moments, where the unknown equivalent electric and magnetic currents induced on the surfaces of the host particle and the internal inclusions are expanded using the Rao-Wilton-Glisson (RWG) basis functions. The resultant matrix equations are solved by using the parallel conjugate gradient method. The proposed numerical method is validated and its capability illustrated in several characteristic examples.

  9. Numerical Study of Instabilities Driven by Energetic Neutral Beam Ions in NSTX

    International Nuclear Information System (INIS)

    Belova, E.V.; Gorelenkov, N.N.; Cheng, C.Z.; Fredrickson, E.D.

    2003-01-01

    Recent experimental observations from NSTX [National Spherical Torus Experiment] suggest that many modes in a subcyclotron frequency range are excited during neutral-beam injection (NBI). These modes have been identified as Compressional Alfven Eigenmodes (CAEs) and Global Alfven Eigenmodes (GAEs), which are driven unstable through the Doppler-shifted cyclotron resonance with the beam ions. The injection velocities of the NBI ions in NSTX are large compared to Alfven velocity, V(sub)0 > 3V(sub)A, and a strong anisotropy in the fast-ion pitch-angle distribution provides the energy source for the instabilities. Recent interest in the excitation of Alfven Eigenmodes in the frequency range omega less than or approximately equal to omega(sub)ci, where omega(sub)ci is the ion cyclotron frequency, is related to the possibility that these modes can provide a mechanism for direct energy transfer from super-Alfvenic beam ions to thermal ions. Numerical simulations are required in order to find a self-consistent mode structure, and to include the effects of finite-Larmor radius (FLR), the nonlinear effects, and the thermal plasma kinetic effects

  10. PROPERTIES OF THE $omega$ MESON

    Energy Technology Data Exchange (ETDEWEB)

    Shafer, J. B.; Murray, J. J.; Ferro-Luzzi, M.; Huwe, D. O.

    1963-06-15

    Properties of the omega meson were studied from the reaction K/sup -/ + p yields LAMBDA + omega in a 72-in. hydrogen bubble chamber. The momentum of the K/sup -/ mesons was 1.2 to 1.75 Bev/c. The mass of the omega meson is found to be 782 Mev with a width, predominated by three-meson( pi ) decay mode, estimated to be less than 4 Mev. Branching ratios for omega -meson decay into pi /sup +/ pi /sup -/ pi /sup o/, pi /sup o/ gamma , pi /sup +/ i/ sup -/, and e/sup +/e/sup -o/ were determined. (R.E.U.)

  11. Omega-3 deficiency impairs honey bee learning

    Science.gov (United States)

    Arien, Yael; Dag, Arnon; Zarchin, Shlomi; Masci, Tania

    2015-01-01

    Deficiency in essential omega-3 polyunsaturated fatty acids (PUFAs), particularly the long-chain form of docosahexaenoic acid (DHA), has been linked to health problems in mammals, including many mental disorders and reduced cognitive performance. Insects have very low long-chain PUFA concentrations, and the effect of omega-3 deficiency on cognition in insects has not been studied. We show a low omega-6:3 ratio of pollen collected by honey bee colonies in heterogenous landscapes and in many hand-collected pollens that we analyzed. We identified Eucalyptus as an important bee-forage plant particularly poor in omega-3 and high in the omega-6:3 ratio. We tested the effect of dietary omega-3 deficiency on olfactory and tactile associative learning of the economically highly valued honey bee. Bees fed either of two omega-3–poor diets, or Eucalyptus pollen, showed greatly reduced learning abilities in conditioned proboscis-extension assays compared with those fed omega-3–rich diets, or omega-3–rich pollen mixture. The effect on performance was not due to reduced sucrose sensitivity. Omega-3 deficiency also led to smaller hypopharyngeal glands. Bee brains contained high omega-3 concentrations, which were only slightly affected by diet, suggesting additional peripheral effects on learning. The shift from a low to high omega-6:3 ratio in the Western human diet is deemed a primary cause of many diseases and reduced mental health. A similar shift seems to be occurring in bee forage, possibly an important factor in colony declines. Our study shows the detrimental effect on cognitive performance of omega-3 deficiency in a nonmammal. PMID:26644556

  12. Optical method for mapping the transverse phase space of a charged particle beam

    International Nuclear Information System (INIS)

    Fiorito, R.B.; Shkvarunets, A.G.; O'Shea, P.G.

    2002-01-01

    We are developing an all optical method to map the transverse phase space map of a charged particle beam. Our technique employs OTR interferometry (OTRI) in combination with a scanning pinhole to make local orthogonal (x,y) divergence and trajectory angle measurements as function of position within the transverse profile of the beam. The localized data allows a reconstruction of the horizontal and vertical phase spaces of the beam. We have also demonstrated how single and multiple pinholes can in principle be used to make such measurements simultaneously

  13. SU-F-J-197: A Novel Intra-Beam Range Detection and Adaptation Strategy for Particle Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, M; Jiang, S; Shao, Y; Lu, W [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: In-vivo range detection/verification is crucial in particle therapy for effective and safe delivery. The state-of-art techniques are not sufficient for in-vivo on-line range verification due to conflicts among patient dose, signal statistics and imaging time. We propose a novel intra-beam range detection and adaptation strategy for particle therapy. Methods: This strategy uses the planned mid-range spots as probing beams without adding extra radiation to patients. Such choice of probing beams ensures the Bragg peaks to remain inside the tumor even with significant range variation from the plan. It offers sufficient signal statistics for in-beam positron emission tomography (PET) due to high positron activity of therapeutic dose. The probing beam signal can be acquired and reconstructed using in-beam PET that allows for delineation of the Bragg peaks and detection of range shift with ease of detection enabled by single-layered spots. If the detected range shift is within a pre-defined tolerance, the remaining spots will be delivered as the original plan. Otherwise, a fast re-optimization using range-shifted beamlets and accounting for the probing beam dose is applied to consider the tradeoffs posed by the online anatomy. Simulated planning and delivery studies were used to demonstrate the effectiveness of the proposed techniques. Results: Simulations with online range variations due to shifts of various foreign objects into the beam path showed successful delineation of the Bragg peaks as a result of delivering probing beams. Without on-line delivery adaptation, dose distribution was significantly distorted. In contrast, delivery adaptation incorporating detected range shift recovered well the planned dose. Conclusion: The proposed intra-beam range detection and adaptation utilizing the planned mid-range spots as probing beams, which illuminate the beam range with strong and accurate PET signals, is a safe, practical, yet effective approach to address range

  14. Severe signal loss in diamond beam loss monitors in high particle rate environments by charge trapping in radiation-induced defects

    CERN Document Server

    Kassel, Florian; Dabrowski, Anne; de Boer, Wim

    2016-01-01

    The beam condition monitoring leakage (BCML) system is a beam monitoring device in the compact muon solenoid (CMS) experiment at the large hadron collider (LHC). As detectors 32 poly-crystalline (pCVD) diamond sensors are positioned in rings around the beam pipe. Here, high particle rates occur from the colliding beams scattering particles outside the beam pipe. These particles cause defects, which act as traps for the ionization, thus reducing the charge collection efficiency (CCE). However, the loss in CCE was much more severe than expected from low rate laboratory measurements and simulations, especially in single-crystalline (sCVD) diamonds, which have a low initial concentration of defects. The reason why in real experiments the CCE is much worse than in laboratory experiments is related to the ionization rate. At high particle rates the trapping rate of the ionization is so high compared with the detrapping rate, that space charge builds up. This space charge reduces locally the internal electric field,...

  15. Optical diagnostic suite (schlieren, interferometry, and grid image refractometry) on OMEGA EP using a 10-ps, 263-nm probe beam.

    Science.gov (United States)

    Froula, D H; Boni, R; Bedzyk, M; Craxton, R S; Ehrne, F; Ivancic, S; Jungquist, R; Shoup, M J; Theobald, W; Weiner, D; Kugland, N L; Rushford, M C

    2012-10-01

    A 10-ps, 263-nm (4ω) laser is being built to probe plasmas produced on the OMEGA EP [J. H. Kelly, L. J. Waxer, V. Bagnoud, I. A. Begishev, J. Bromage, B. E. Kruschwitz, T. E. Kessler, S. J. Loucks, D. N. Maywar, R. L. McCrory et al., J. Phys. IV France 133, 75-80 (2006)]. A suite of optical diagnostics (schlieren, interferometry, and grid image refractometry) has been designed to diagnose and characterize a wide variety of plasmas. Light scattered by the probe beam is collected by an f/4 catadioptric telescope and a transport system is designed to image with a near-diffraction-limited resolution (~1 - μm full width at half maximum) over a 5-mm field of view to a diagnostic table. The transport system provides a contrast greater than 1 : 10(4) with respect to all wavelengths outside of the 263 ± 2 nm measurement range.

  16. Optical diagnostic suite (schlieren, interferometry, and grid image refractometry) on OMEGA EP using a 10-ps, 263-nm probe beam

    International Nuclear Information System (INIS)

    Froula, D. H.; Boni, R.; Bedzyk, M.; Craxton, R. S.; Ehrne, F.; Ivancic, S.; Jungquist, R.; Shoup, M. J.; Theobald, W.; Weiner, D.; Kugland, N. L.; Rushford, M. C.

    2012-01-01

    A 10-ps, 263-nm (4ω) laser is being built to probe plasmas produced on the OMEGA EP [J. H. Kelly, L. J. Waxer, V. Bagnoud, I. A. Begishev, J. Bromage, B. E. Kruschwitz, T. E. Kessler, S. J. Loucks, D. N. Maywar, R. L. McCrory et al., J. Phys. IV France 133, 75–80 (2006)]. A suite of optical diagnostics (schlieren, interferometry, and grid image refractometry) has been designed to diagnose and characterize a wide variety of plasmas. Light scattered by the probe beam is collected by an f/4 catadioptric telescope and a transport system is designed to image with a near-diffraction-limited resolution (∼1 −μm full width at half maximum) over a 5-mm field of view to a diagnostic table. The transport system provides a contrast greater than 1 : 10 4 with respect to all wavelengths outside of the 263 ± 2 nm measurement range.

  17. Theory of using magnetic deflections to combine charged particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Steckbeck, Mackenzie K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Doyle, Barney Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    Several radiation effects projects in the Ion Beam Lab (IBL) have recently required two disparate charged particle beams to simultaneously strike a single sample through a single port of the target chamber. Because these beams have vastly different mass–energy products (MEP), the low-MEP beam requires a large angle of deflection toward the sample by a bending electromagnet. A second electromagnet located further upstream provides a means to compensate for the small angle deflection experienced by the high-MEP beam during its path through the bending magnet. This paper derives the equations used to select the magnetic fields required by these two magnets to achieve uniting both beams at the target sample. A simple result was obtained when the separation of the two magnets was equivalent to the distance from the bending magnet to the sample, and the equation is given by: Bs= 1/2(rc/rs) Bc, where Bs and Bc are the magnetic fields in the steering and bending magnet and rc/rs is the ratio of the radii of the bending magnet to that of the steering magnet. This result is not dependent upon the parameters of the high MEP beam, i.e. energy, mass, charge state. Therefore, once the field of the bending magnet is set for the low-MEP beam, and the field in the steering magnet is set as indicted in the equation, the trajectory path of any high-MEP beam will be directed into the sample.

  18. Developmentally dependent and different roles of fatty acids OMEGA-6 and OMEGA-3

    DEFF Research Database (Denmark)

    Mourek, J; Mourek, J

    2011-01-01

    The developmentally-dependent differences in the biological significances and effects of PUFA-OMEGA-6 (namely of arachidonic acid) and PUFA-OMEGA-3 (namely of docosahexaenoic acid) are discussed. The clinical results as well as developmental experiences are indicating a hypothesis of the evolution...... that created mutual relationship between those two substances (with immunological basis and following recuperation). The anti-inflammatory actions of PUFA-OMEGA-3 are the most visible (and significant) contrasts as compared with the large affects of namely arachidonic acid and its metabolites....

  19. The recent performance of the Omega RICH detector in experiment WA89 at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, U [Mainz Univ. (Germany). Inst. fuer Kernphysik; [European Organization for Nuclear Research, Geneva (Switzerland). Div. Particle Physics Experiments; Beusch, W [European Organization for Nuclear Research, Geneva (Switzerland). Div. Particle Physics Experiments; Boss, M [Heidelberg Univ. (Germany). Physikalisches Inst.; Engelfried, J [Heidelberg Univ. (Germany). Physikalisches Inst.; Gerassimov, S G [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Klempt, W [European Organization for Nuclear Research, Geneva (Switzerland). Div. Particle Physics Experiments; Lennert, P [Heidelberg Univ. (Germany). Physikalisches Inst.; Martens, K [Heidelberg Univ. (Germany). Physikalisches Inst.; Newbold, D [Department of Physics, Univ., Bristol (United Kingdom); Rieseberg, H [Heidelberg Univ. (Germany). Physikalisches Inst.; Siebert, H W [Heidelberg Univ. (Germany). Physikalisches Inst.; Smith, V J [Department of Physics, Univ., Bristol (United Kingdom); Thilmann, O [Heidelberg Univ. (Germany). Physikalisches Inst.; Waelder, G [Heidelberg Univ. (Germany). Physikalisches Inst.

    1996-03-01

    The hyperon beam experiment WA89 at CERN uses the upgraded Omega RICH detector for identification of {pi}, K and p/p from {Sigma}{sup -}-N reactions. Cherenkov photons from a 5 m long nitrogen radiator are detected in drift chambers with TMAE-loaded ethane. Recent results on the performance of the detector are presented. (orig.).

  20. Omega-6 Fatty Acids

    Science.gov (United States)

    Omega-6 fatty acids are types of fats. Some types are found in vegetable oils, including corn, evening primrose seed, safflower, and soybean oils. Other types of omega-6 fatty acids are found in black currant seed, borage seed, ...

  1. Charged particle beam propagation studies at the Naval Research Laboratory

    International Nuclear Information System (INIS)

    Meger, R.A.; Hubbard, R.F.; Antoniades, J.A.; Fernsler, R.F.; Lampe, M.; Murphy, D.P.; Myers, M.C.; Pechacek, R.E.; Peyser, T.A.; Santos, J.; Slinker, S.P.

    1993-01-01

    The Plasma Physics Division of the Naval Research Laboratory has been performing research into the propagation of high current electron beams for 20 years. Recent efforts have focused on the stabilization of the resistive hose instability. Experiments have utilized the SuperIBEX e-beam generator (5-MeV, 100-kA, 40-ns pulse) and a 2-m diameter, 5-m long propagation chamber. Full density air propagation experiments have successfully demonstrated techniques to control the hose instability allowing stable 5-m transport of 1-2 cm radius, 10-20 kA total current beams. Analytic theory and particle simulations have been used to both guide and interpret the experimental results. This paper will provide background on the program and summarize the achievements of the NRL propagation program up to this point. Further details can be found in other papers presented in this conference

  2. A FDTD solution of scattering of laser beam with orbital angular momentum by dielectric particles: Far-field characteristics

    Science.gov (United States)

    Sun, Wenbo; Hu, Yongxiang; Weimer, Carl; Ayers, Kirk; Baize, Rosemary R.; Lee, Tsengdar

    2017-02-01

    Electromagnetic (EM) beams with orbital angular momentum (OAM) may have great potential applications in communication technology and in remote sensing of the Earth-atmosphere system and outer planets. Study of their interaction with optical lenses and dielectric or metallic objects, or scattering of them by particles in the Earth-atmosphere system, is a necessary step to explore the advantage of the OAM EM beams. In this study, the 3-dimensional (3D) scattered-field (SF) finite-difference time domain (FDTD) technique with the convolutional perfectly matched layer (CPML) absorbing boundary conditions (ABC) is applied to calculate the scattering of the purely azimuthal (the radial mode number is assumed to be zero) Laguerre-Gaussian (LG) beams with the OAM by dielectric particles. We found that for OAM beam's interaction with dielectric particles, the forward-scattering peak in the conventional phase function (P11) disappears, and light scattering peak occurs at a scattering angle of 15° to 45°. The disappearance of forward-scattering peak means that, in laser communications most of the particle-scattered noise cannot enter the receiver, thus the received light is optimally the original OAM-encoded signal. This feature of the OAM beam also implies that in lidar remote sensing of the atmospheric particulates, most of the multiple-scattering energy will be off lidar sensors, and this may result in an accurate profiling of particle layers in the atmosphere or in the oceans by lidar, or even in the ground when a ground penetration radar (GPR) with the OAM is applied. This far-field characteristics of the scattered OAM light also imply that the optical theorem, which is derived from plane-parallel wave scattering case and relates the forward scattering amplitude to the total cross section of the scatterer, is invalid for the scattering of OAM beams by dielectric particles.

  3. Effects of Diets Enriched in Omega-9 or Omega-6 Fatty Acids on Reproductive Process

    Directory of Open Access Journals (Sweden)

    Seyedeh Neda Mousavi

    2016-08-01

    Full Text Available Objective: Maternal type and amounts of dietary fatty acids affect on reproductive process in the mice. The present study investigated the effects of maternal supplementation with different amounts of omega-6 or omega-9 during pregnancy on the number of offspring, sex-ratio and duration of gestation.Materials and methods: Eight-week-old female C57BL/6 mice were randomly assigned into four dietary groups including low omega-6 (16%; LO6, low omega-9 (16%; LO9, high omega-6 (45%; HO6 and high omega-9 (45%; HO9 during gestation. Number of offspring, sex-ratio and duration of pregnancy were compared among four dietary groups.Results: There was significant difference between LO6 and HO6 (p < 0.0001, LO9 and HO9 (p < 0.0001 groups in total number of pups. The number of female and male offspring were significantly different between LO6 and LO9 (p = 0.009 and p = 0.001, respectively, LO9 and HO9 (p = 0.01 and p = 0.025 groups. Duration of pregnancy was significantly higher in low fat diet than high fat diet groups (< 0.001.Conclusion: High fat diet reduced number of pups, gestation duration and lead to early labor. Omega-9 fatty acids shifted sex of offspring to females.

  4. Omega-3 Fatty Acids

    Science.gov (United States)

    Omega-3 fatty acids are used together with lifestyle changes (diet, weight-loss, exercise) to reduce the amount of triglycerides (a fat- ... in people with very high triglycerides. Omega-3 fatty acids are in a class of medications called antilipemic ...

  5. Opening and construction of facilities in succession for particle beam therapy of cancer

    International Nuclear Information System (INIS)

    Nakano, Takashi; Yamamoto, Kazutaka; Hishikawa, Yoshio; Totoki, Tadahide; Hoshino, Junichi; Aoki, Takashi; Yoshiyuki, Takeshi; Hirabayashi, Masayuki; Nakamura, Fumito

    2011-01-01

    This feature article describes the current state of practical particle beam therapy of cancer, its future prospect, recent opening/construction of its facilities and manufacturers' view with following 9 topics presented by relevant experts. Gunma University (topic 1) started the carbon ion therapy from Mar., 2010, and has treated more than 100 cancer patients to aim the treatment of about 600 patients/year after several years. Fukui Prefectural Hospital Proton Therapy Center (topic 2) started from this March with proton beams for patients with its therapeutic standard, in cooperation with insurance companies and hotels for patients' convenience. Medipolis Proton Therapy and Research Center (Kagoshima Pref.) (topic 3) started this year with proton beams for 13 patients hitherto with reference protocol of Hyogo Ion Beam Medical Center. A new stereotactic irradiation system of proton beams for breast cancer has been developed. Construction of Saga Heavy Ion Medical Accelerator in Tosu (Saga Pref.) (topic 4) began this year to be completed in 2013. Aizawa Hospital (Nagano Pref.) (topic 5) plans to introduce the small-sized proton accelerator-gantry system (Sumitomo Heavy Ind., Ltd.) aiming the practice in 2013. Association for Nuclear Technology in Medicine (topic 6) reports the trends of current and future construction inside/outside Japan. Manufacturers comment their respective business: high-speed scanning irradiation system, next generation handling system of patient and particle beam therapy information system by Toshiba (topic 7); designation of the whole heavy ion beam therapy system (with NIRS), proton beam (as in topic 5) and system of BNCT (boron neutron-capture therapy) (Kyoto Univ.) by Sumitomo Heavy Ind., Ltd. (topic 8); and small-size proton therapeutic machine with 4D tracing capability for patient's movement (Hokkaido Univ.) and with spot-scanning irradiation technique by Hitachi (topic 9). (author)

  6. Beam-induced motion correction for sub-megadalton cryo-EM particles.

    Science.gov (United States)

    Scheres, Sjors Hw

    2014-08-13

    In electron cryo-microscopy (cryo-EM), the electron beam that is used for imaging also causes the sample to move. This motion blurs the images and limits the resolution attainable by single-particle analysis. In a previous Research article (Bai et al., 2013) we showed that correcting for this motion by processing movies from fast direct-electron detectors allowed structure determination to near-atomic resolution from 35,000 ribosome particles. In this Research advance article, we show that an improved movie processing algorithm is applicable to a much wider range of specimens. The new algorithm estimates straight movement tracks by considering multiple particles that are close to each other in the field of view, and models the fall-off of high-resolution information content by radiation damage in a dose-dependent manner. Application of the new algorithm to four data sets illustrates its potential for significantly improving cryo-EM structures, even for particles that are smaller than 200 kDa. Copyright © 2014, Scheres.

  7. Tetrahedral hohlraums at omega

    International Nuclear Information System (INIS)

    Kyrala, G.A.; Goldman, S.R.; Batha, S.H.; Wallace, J.M.; Klare, K.A.; Schappert, G.T.; Oertel, J.; Turner, R.E.

    2000-01-01

    We have initiated a study of the usefulness of tetrahedrally illuminated spherical hohlraums, using the Omega laser beams, to drive planar shocks in packages that require indirect drive. A first suite of experiments used spherical hohlraums with a 2-μm thick gold wall surrounded by a 100-μm thick epoxy layer and had an internal diameter of 2.8 mm. Four laser entrance holes each of diameter 700 μm, located on the tips of a regular tetrahedron were used. The shock velocities and the shock uniformities were measured using optical shock break out techniques. The hohlraum x-ray radiation spectrum was also measured using a 10-channel x-ray detector. Tentatively, peak temperatures approaching 195 eV were achieved and shock speeds of 60 μm/ns were measured, when the hohlraum was driven by 22 kJ of 3 ω radiation. (authors)

  8. Determination of charged particle beam parameters with taking into account of space charge

    International Nuclear Information System (INIS)

    Ishkhanov, B.S.; Poseryaev, A.V.; Shvedunov, V.I.

    2005-01-01

    One describes a procedure to determine the basic parameters of a paraxial axially-symmetric beam of charged particles taking account of space charge contribution. The described procedure is based on application of the general equation for beam envelope. Paper presents data on its convergence and resistance to measurement errors. The position determination error of crossover (stretching) and radius of beam in crossover is maximum 15% , while the emittance determination error depends on emittance and space charge correlation. The introduced procedure was used to determine parameters of the available electron gun 20 keV energy beam with 0.64 A current. The derived results turned to agree closely with the design parameters [ru

  9. Intense electron and ion beams

    CERN Document Server

    Molokovsky, Sergey Ivanovich

    2005-01-01

    Intense Ion and Electron Beams treats intense charged-particle beams used in vacuum tubes, particle beam technology and experimental installations such as free electron lasers and accelerators. It addresses, among other things, the physics and basic theory of intense charged-particle beams; computation and design of charged-particle guns and focusing systems; multiple-beam charged-particle systems; and experimental methods for investigating intense particle beams. The coverage is carefully balanced between the physics of intense charged-particle beams and the design of optical systems for their formation and focusing. It can be recommended to all scientists studying or applying vacuum electronics and charged-particle beam technology, including students, engineers and researchers.

  10. Omega-3 fatty acids upregulate adult neurogenesis

    OpenAIRE

    Beltz, Barbara S.; Tlusty, Michael F.; Benton, Jeannie L.; Sandeman, David C.

    2007-01-01

    Omega-3 fatty acids play crucial roles in the development and function of the central nervous system. These components, which must be obtained from dietary sources, have been implicated in a variety of neurodevelopmental and psychiatric disorders. Furthermore, the presence of omega-6 fatty acids may interfere with omega-3 fatty acid metabolism. The present study investigated whether changes in dietary ratios of omega-3:omega-6 fatty acids influence neurogenesis in the lobster (Homarus america...

  11. The effect of errors in charged particle beams

    International Nuclear Information System (INIS)

    Carey, D.C.

    1987-01-01

    Residual errors in a charged particle optical system determine how well the performance of the system conforms to the theory on which it is based. Mathematically possible optical modes can sometimes be eliminated as requiring precisions not attainable. Other plans may require introduction of means of correction for the occurrence of various errors. Error types include misalignments, magnet fabrication precision limitations, and magnet current regulation errors. A thorough analysis of a beam optical system requires computer simulation of all these effects. A unified scheme for the simulation of errors and their correction is discussed

  12. Physics and Beam Monitoring with Forward Shower Counters (FSC) in CMS

    CERN Document Server

    Bell, Alan James; Hall-Wilton, Richard; Veres, Gabor Istvan; Khoze, Valery; Albrow, Michael; Mokhov, Nikolai; Rakhno, Igor; Brucken, Erik; Lamsa, Jerry; Lauhakangas, Rauno; Orava, Risto; Debbins, Paul; Norbeck, Edwin; Onel, Yasar; Schmidt, Ianos; Grachov, Oleg; Murray, Michael; Gronberg, Jeffrey; Hollar, Jonathan; Snow, Gregory R; Sobol, Andrei; Samoylenko, Vladimir; Penzo, Aldo

    2010-01-01

    We propose to add forward shower counters, FSC, to CMS along the beam pipes, with 59 m $\\lesssim z \\lesssim$ 140 m. These will detect showers from very forward particles with $7 \\lesssim \\eta \\lesssim 11$ interacting in the beam pipe and surrounding material. They increase the total rapidity coverage of CMS to nearly $\\Delta\\Omega = 4\\pi$, thus detecting most of the inelastic cross section $\\sigma_{inel}$, including low mass diffraction. They will help increase our understanding of all high cross section processes, which is important for understanding the ``underlying event'' backgrounds to most physics searches. To the extent that the luminosity is well known, they may (together with all of CMS) provide the best measurement of $\\sigma_{inel}$ at the LHC. They are most useful when the luminosity per bunch crossing is still low enough to provide single (no pile-up) collisions. They will allow measurements of single diffraction: $p+p\\rightarrow p \\oplus X$ (where $\\oplus$ means a rapidity gap) for lower mass...

  13. Technical Challenges and Scientific Payoffs of Muon Beam Accelerators for Particle Physics

    International Nuclear Information System (INIS)

    Zisman, Michael S.

    2007-01-01

    Historically, progress in particle physics has largely been determined by development of more capable particle accelerators. This trend continues today with the recent advent of high-luminosity electron-positron colliders at KEK and SLAC operating as 'B factories', the imminent commissioning of the Large Hadron Collider at CERN, and the worldwide development effort toward the International Linear Collider. Looking to the future, one of the most promising approaches is the development of muon-beam accelerators. Such machines have very high scientific potential, and would substantially advance the state-of-the-art in accelerator design. A 20-50 GeV muon storage ring could serve as a copious source of well-characterized electron neutrinos or antineutrinos (a Neutrino Factory), providing beams aimed at detectors located 3000-7500 km from the ring. Such long baseline experiments are expected to be able to observe and characterize the phenomenon of charge-conjugation-parity (CP) violation in the lepton sector, and thus provide an answer to one of the most fundamental questions in science, namely, why the matter-dominated universe in which we reside exists at all. By accelerating muons to even higher energies of several TeV, we can envision a Muon Collider. In contrast with composite particles like protons, muons are point particles. This means that the full collision energy is available to create new particles. A Muon Collider has roughly ten times the energy reach of a proton collider at the same collision energy, and has a much smaller footprint. Indeed, an energy frontier Muon Collider could fit on the site of an existing laboratory, such as Fermilab or BNL. The challenges of muon-beam accelerators are related to the facts that (1) muons are produced as a tertiary beam, with very large 6D phase space, and (2) muons are unstable, with a lifetime at rest of only 2 microseconds. How these challenges are accommodated in the accelerator design will be described. Both a

  14. Particle beam source development

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Electron beam research directed toward providing improved in-diode pinched beam sources and establishing the efficiency and feasibility for superposition of many beams progressed in three major areas. Focusing stability has been improved from large effective aspect ratio (radius/gap of emitting surface) diodes. Substantial progress toward establishing the feasibility of combining beams guided along ionized current-carrying channels has been made. Two beams have been transported and overlayed on a target. Theoretical and experimental measurements on channel formation have resulted in specifications for the capacitor bank channel initiation system for a 12-beam combination experiment on Proto II. An additional area of beam research has been the development of a small pulsed X-ray source to yield high quality flash X-radiography of pellets. A source yielding approximately 100-μm resolution of objects has been demonstrated and work continues to improve the convenience and reliability of this source. The effort to extend the capability of higher power conventional pulse power generators to accelerate ions (rather than electrons), and assess the feasibility of this technology variation for target experiments and reactors has progressed. Progress toward development of a multistage accelerator for ions with pulse power technology centered on development of a new laboratory facility and design and procurement of hardware for a five-stage test apparatus for the Pulslac concept

  15. Statistical study of auroral omega bands

    Directory of Open Access Journals (Sweden)

    N. Partamies

    2017-09-01

    Full Text Available The presence of very few statistical studies on auroral omega bands motivated us to test-use a semi-automatic method for identifying large-scale undulations of the diffuse aurora boundary and to investigate their occurrence. Five identical all-sky cameras with overlapping fields of view provided data for 438 auroral omega-like structures over Fennoscandian Lapland from 1996 to 2007. The results from this set of omega band events agree remarkably well with previous observations of omega band occurrence in magnetic local time (MLT, lifetime, location between the region 1 and 2 field-aligned currents, as well as current density estimates. The average peak emission height of omega forms corresponds to the estimated precipitation energies of a few keV, which experienced no significant change during the events. Analysis of both local and global magnetic indices demonstrates that omega bands are observed during substorm expansion and recovery phases that are more intense than average substorm expansion and recovery phases in the same region. The omega occurrence with respect to the substorm expansion and recovery phases is in a very good agreement with an earlier observed distribution of fast earthward flows in the plasma sheet during expansion and recovery phases. These findings support the theory that omegas are produced by fast earthward flows and auroral streamers, despite the rarity of good conjugate observations.

  16. An alpha particle measurement system using an energetic neutral helium beam in ITER (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Sasao, M.; Tanaka, N.; Terai, K.; Kaneko, O. [Graduate school of Engineering, Tohoku University, Sendai 980-8579 (Japan); Kisaki, M.; Kobuchi, T.; Tsumori, K.; Okamoto, A.; Kitajima, S. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Shinto, K. [IFMIF R and D Center, Japan Atomic Energy Agency, Rokkasho, Aomori 039-3212 (Japan); Wada, M. [Graduate School of Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321 (Japan)

    2012-02-15

    An energetic helium neutral beam is involved in the beam neutralization measurement system of alpha particles confined in a DT fusion plasma. A full size strong-focusing He{sup +} ion source (2 A, the beam radius of 11.3 mm, the beam energy less than 20 keV). Present strong-focusing He{sup +} ion source shows an emittance diagram separated for each beamlet of multiple apertures without phase space mixing, despite the space charge of a beamlet is asymmetric and the beam flow is non-laminar. The emittance of beamlets in the peripheral region was larger than that of center. The heat load to the plasma electrode was studied to estimate the duty factor for the ITER application.

  17. Gas dynamics considerations in a non-invasive profile monitor for charged particle beams

    CERN Document Server

    Tzoganis, Vasilis; Welsch, Carsten P

    2014-01-01

    A non-invasive, gas jet-based, beam profile monitor has been developed in the QUASAR Group at the Cockcroft Institute, UK. This allows on-line measurement of the 2-dimensional transverse profile of particle beams with negligible disturbance to either primary beam or accelerator vacuum. The monitor is suitable for use with beams across a wide range of energies and intensities. In this setup a nozzle-skimmer system shapes a thin supersonic gas jet into a curtain. However, the small dimensions of the gas inlet nozzle and subsequent skimmers were shown to be the cause of many operational problems. In this paper, the dynamics of gas jet formation transport and shaping is discussed before an image-processing based alignment technique is introduced. Furthermore, experimental results obtained with a 5 keV electron beam are discussed and the effects of gas stagnation pressure on the acquired beam are presented.

  18. The generation of high-power charge particle micro beams and its interaction with condensed matter

    International Nuclear Information System (INIS)

    Vogel, N.; Skvortsov, V.A.

    1996-01-01

    As has been observed experimentally, the action of a picosecond laser beam on an Al-target in air gives rise to the generation and acceleration of high-power micro electron and ion beams. An original theoretical model for describing the generation and particle acceleration of such micro beams as a result of the micro channeling effect is presented. It was found that extreme states of matter, with compression in the Gbar pressure range, can be produced by such micro beams. (author). 3 figs., 12 refs

  19. Proton beam shaped by “particle lens” formed by laser-driven hot electrons

    International Nuclear Information System (INIS)

    Zhai, S. H.; Shen, B. F.; Wang, W. P.; Zhang, H.; Zhang, L. G.; Huang, S.; Xu, Z. Z.; He, S. K.; Lu, F.; Zhang, F. Q.; Deng, Z. G.; Dong, K. G.; Wang, S. Y.; Zhou, K. N.; Xie, N.; Wang, X. D.; Liu, H. J.; Zhao, Z. Q.; Gu, Y. Q.; Zhang, B. H.

    2016-01-01

    Two-dimensional tailoring of a proton beam is realized by a “particle lens” in our experiment. A large quantity of electrons, generated by an intense femtosecond laser irradiating a polymer target, produces an electric field strong enough to change the trajectory and distribution of energetic protons flying through the electron area. The experiment shows that a strip pattern of the proton beam appears when hot electrons initially converge inside the plastic plate. Then the shape of the proton beam changes to a “fountain-like” pattern when these hot electrons diffuse after propagating a distance.

  20. Proposed particle-beam characterizations for the APS undulator test line

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.; Borland, M.; Milton, S.

    1993-09-01

    A research and development effort is underway at the Advanced Photon Source (APS) to use an rf gun as a low-emittance electron source for injection into the 100- to 650-MeV linac subsystem and subsequently to an undulator test area. This configuration would combine the acceleration capability of the 200-MeV S-band electron linac and the in-line 450-MeV positron linac that normally provide positrons to the positron accumulator ring (PAR). A transport line that bypasses the PAR will bring the electrons to the undulator test area. Characterization techniques will be discussed for the electron beam with a normalized, rms emittance of <10 {pi} mm mrad (1{sigma}) at micropulse charges of up to 350 pC and micropulse durations of {approximately}5 ps (FWHM). Tests proposed include measurement of particle beam transport effects (at one-tenth the storage ring beam rigidity) caused by small undulator field errors as well as operations intended to produce coherent, short wavelength radiation (<200 nm).

  1. Analysis of charged particle induced reactions for beam monitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Surendra Babu, K. [IOP, Academia Sinica, Taipe, Taiwan (China); Lee, Young-Ouk [Nuclear Data Evaluation Laboratory, Korea Atomic Energy Research Institute (Korea, Republic of); Mukherjee, S., E-mail: smukherjee_msuphy@yahoo.co.in [Department of Physics, Faculty of Science, M.S. University of Baroda, Vadodara 390 002 (India)

    2012-07-15

    The reaction cross sections for different residual nuclides produced in the charged particle (p, d, {sup 3}He and {alpha}) induced reactions were calculated and compared with the existing experimental data which are important for beam monitoring and medical diagnostic applications. A detailed literature compilation and comparison were made on the available data sets for the above reactions. These calculations were carried out using the statistical model code TALYS up to 100 MeV, which contains Kalbach's latest systematic for the emission of complex particles and complex particle-induced reactions. All optical model calculations were performed by ECIS-03, which is built into TALYS. The level density, optical model potential parameters were adjusted to get the better description of experimental data. Various pre-equilibrium models were used in the present calculations with default parameters.

  2. SPIDER beam dump as diagnostic of the particle beam

    Energy Technology Data Exchange (ETDEWEB)

    Zaupa, M., E-mail: matteo.zaupa@igi.cnr.it; Sartori, E. [Università degli Studi di Padova, Via 8 Febbraio 2, Padova 35122 (Italy); Consorzio RFX, Corso Stati Uniti 4, Padova 35127 (Italy); Dalla Palma, M.; Brombin, M.; Pasqualotto, R. [Consorzio RFX, Corso Stati Uniti 4, Padova 35127 (Italy)

    2016-11-15

    The beam power produced by the negative ion source for the production of ion of deuterium extracted from RF plasma is mainly absorbed by the beam dump component which has been designed also for measuring the temperatures on the dumping panels for beam diagnostics. A finite element code has been developed to characterize, by thermo-hydraulic analysis, the sensitivity of the beam dump to the different beam parameters. The results prove the capability of diagnosing the beam divergence and the horizontal misalignment, while the entity of the halo fraction appears hardly detectable without considering the other foreseen diagnostics like tomography and beam emission spectroscopy.

  3. Omega-3s in food emulsions

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte

    2008-01-01

    There is an increasing interest in the use of healthy long chain omega-3 oils in foods. Incorporation of omega-3 oils into foods decreases their oxidative stability and therefore precautions need to be taken to avoid lipid oxidation. This review summarises the major factors to take into considera...... into consideration when developing food emulsions enriched with omega-3 oils and examples on how oxidation can be reduced in products such as mayonnaise, spreads, milk, yoghurt are also given.......There is an increasing interest in the use of healthy long chain omega-3 oils in foods. Incorporation of omega-3 oils into foods decreases their oxidative stability and therefore precautions need to be taken to avoid lipid oxidation. This review summarises the major factors to take...

  4. Development and testing of an ion probe for tightly-bunched particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Ngo, M.; Pasour, J.

    1996-06-01

    Many high-energy physics experiments require a high-quality and well-diagnosed charged-particle beam (CPB). Precise knowledge of beam size, position, and charge distribution is often crucial to the success of the experiment. It is also important in many applications that the diagnostic used to determine the beam parameters be nonintercepting and nonperturbing. This requirement rules out many diagnostics, such as wire scanners, thin foils which produce Cerenkov or transition radiation, and even some rf cavity diagnostics. Particularly difficult to diagnose are tightly-focused (r{sub b} << 1 mm), short-duration (psec) beams, such as those in state-of-the-art or next-generation particle colliders. In this paper we describe an ion probe that is capable of penetrating the space-charge field of densely bunched CPBs without perturbation, thereby enabling the measurement of the microstructure of the bunch. This diagnostic probe uses a finely-focused stream of ions to interact with the CPB. Related techniques have been discussed in the literature. In fact, the present work evolved from an electron deflection diagnostic for CPBs that we previously described. A similar electron probe was tested even earlier at TRIUMF and in the Former Soviet Union. Electron probes have also been used to measure plasma sheaths and potentials and the neutralization of heavy ion beams. Also, Mendel has used an ion beam (22 keV He{sup +}) to probe rapidly varying fields in plasmas. The probe ions are injected across the beam tube and into the path of the high-energy CPB. The ions are deflected by the CPB, and the direction and magnitude of the deflection are directly related to the spatial and temporal charge distribution of the CPB. Easily-resolved deflections can be produced by microbunches having total charge on the order of a nCoul and pulse durations of a few psec. The deflected ions are monitored with a suitable detector, in this case a microchannel plate capable of detecting single ions.

  5. Particle confinement by a radially polarized laser Bessel beam

    Science.gov (United States)

    Laredo, Gilad; Kimura, Wayne D.; Schächter, Levi

    2017-03-01

    The stable trajectory of a charged particle in an external guiding field is an essential condition for its acceleration or for forcing it to generate radiation. Examples of possible guiding devices include a solenoidal magnetic field or permanent periodic magnet in klystrons, a wiggler in free-electron lasers, the lattice of any accelerator, and finally the crystal lattice for the case of channeling radiation. We demonstrate that the trajectory of a point-charge in a radially polarized laser Bessel beam may be stable similarly to the case of a positron that bounces back and forth in the potential well generated by two adjacent atomic planes. While in the case of channeling radiation, the transverse motion is controlled by a harmonic oscillator equation, for a Bessel beam the transverse motion is controlled by the Mathieu equation. Some characteristics of the motion are presented.

  6. [Experiments on the OMEGA Laser System]. LLE Review. Quarterly report, July-September 1985. Volume 24

    International Nuclear Information System (INIS)

    Skupsky, S.

    1985-01-01

    This volume of the LLE Review contains articles on the first 24-beam uv experiments on the OMEGA laser system, the use of absorption spectroscopy to diagnose high-density compressions, the development of a new target fabrication technique to coat mechanically unsupported laser-fusion targets with a parylene layer, the use of liquid crystals as laser-beam apodizers, the investigation of the process of melting using a subpicosecond probe, the development of a new picosecond oscilloscope, and the National Laser Users Facility activities for June-September 1985. 80 refs., 36 figs

  7. Stability of the particle transverse motion in an electron linear accelerator with beam recirculation

    International Nuclear Information System (INIS)

    Volodin, V.A.

    1979-01-01

    Conditions, under which beam transverse instabilities appear in the electron linear accelerator (ELA) with a double particle acceleration due to excitation of asymmetric stray waves in the accelerating waveguide, and their peculiarities have been investigated. It is shown that in the ELA with beam recirculation the conditions under which the beam transverse instability appears can be determined with the help of the ''interaction function'' which depends on both the accelerating structure and the focusing in the beam transport channel. Comparison is made with characteristics of this phenomenon in conventional ELA, and possible reasons for the decrease of a starting current in ELA with recirculation are shown

  8. Electromagnetic Weible Instability in Intense Charged Particle Beams with Large Energy Anisotropy

    International Nuclear Information System (INIS)

    Startsev, Edward A.; Davidson, Ronald C.

    2003-01-01

    In plasmas with strongly anisotropic distribution functions, collective instabilities may develop if there is sufficient coupling between the transverse and longitudinal degrees of freedom. Our previous numerical and theoretical studies of intense charged particle beams with large temperature anisotropy [E. A. Startsev, R. C. Davidson and H. Qin, PRSTAB, 6, 084401 (2003); Phys. Plasmas 9, 3138 (2002)] demonstrated that a fast, electrostatic, Harris-like instability develops, and saturates nonlinearly, for sufficiently large temperature anisotropy (T perpendi c ular b /T parallelb >> 1). The total distribution function after saturation, however, is still far from equipartitioned. In this paper the linearized Vlasov-Maxwell equations are used to investigate detailed properties of the transverse electromagnetic Weibel-type instability for a long charge bunch propagating through a cylindrical pipe of radius r w . The kinetic stability analysis is carried out for azimuthally symmetric perturbations about a two-temperature thermal equilibrium distribution in the smooth-focusing approximation. The most unstable modes are identified, and their eigenfrequencies, radial mode structure and instability thresholds are determined. The stability analysis shows that, although there is free energy available to drive the electromagnetic Weibel instability, the finite transverse geometry of the charged particle beam introduces a large threshold value for the temperature anisotropy ((T perpendi c ularb /T parallelb ) Weibel >> (T perpendi c ularb /T parallelb ) Harris ) below which the instability is absent. Hence, unlike the case of an electrically neutral plasma, the Weibel instability is not expected to play as significant a role in the process of energy isotropization of intense unneutralized charged particle beams as the electrostatic Harris-type instability

  9. Proposed neutral-beam diagnostics for fast confined alpha particles in a burning plasma

    International Nuclear Information System (INIS)

    Schlachter, A.S.; Cooper, W.S.

    1986-10-01

    Diagnostic methods for fast confined alpha particles are essential for a burning plasma experiment. Several methods which use energetic neutral beams have been proposed. We review these methods and discuss system considerations for their implementation

  10. Electron behavior in ion beam neutralization in electric propulsion: full particle-in-cell simulation

    International Nuclear Information System (INIS)

    Usui, Hideyuki; Hashimoto, Akihiko; Miyake, Yohei

    2013-01-01

    By performing full Particle-In-Cell simulations, we examined the transient response of electrons released for the charge neutralization of a local ion beam emitted from an ion engine which is one of the electric propulsion systems. In the vicinity of the engine, the mixing process of electrons in the ion beam region is not so obvious because of large difference of dynamics between electrons and ions. A heavy ion beam emitted from a spacecraft propagates away from the engine and forms a positive potential region with respect to the background. Meanwhile electrons emitted for a neutralizer located near the ion engine are electrically attracted or accelerated to the core of the ion beam. Some electrons with the energy lower than the ion beam potential are trapped in the beam region and move along with the ion beam propagation with a multi-streaming structure in the beam potential region. Since the locations of the neutralizer and the ion beam exit are different, the above-mentioned bouncing motion of electrons is also observed in the direction of the beam diameter

  11. Balanced and optimal bianisotropic particles: maximizing power extracted from electromagnetic fields

    International Nuclear Information System (INIS)

    Ra'di, Younes; Tretyakov, Sergei A

    2013-01-01

    Here we introduce the concept of ‘optimal particles’ for strong interactions with electromagnetic fields. We assume that a particle occupies a given electrically small volume in space and study the required optimal relations between the particle polarizabilities. In these optimal particles, the inclusion shape and material are chosen so that the particles extract the maximum possible power from given incident fields. It appears that for different excitation scenarios the optimal particles are bianisotropic chiral, omega, moving and Tellegen particles. The optimal dimensions of resonant canonical chiral and omega particles are found analytically. Such optimal particles have extreme properties in scattering (e.g., zero backscattering or invisibility). Planar arrays of optimal particles possess extreme properties in reflection and transmission (e.g. total absorption or magnetic-wall response), and volumetric composites of optimal particles realize, for example, such extreme materials as the chiral nihility medium. (paper)

  12. Model for diffusion of a narrow beam of charged particles

    International Nuclear Information System (INIS)

    Eisenhauer, C.

    1980-01-01

    A simple analytic expression is presented to describe the three-dimensioned spatial distribution of flux or energy deposition by a narrow beam of charged particles. In this expression distances are expressed in terms of a scaling parameter that is proportional to the mean square scattering angle in a single collision. Finite ranges are expressed in terms of the continuous-slowing-down range. Track-length distributions for one-velocity particles and energy deposition for electrons are discussed. Comparisons with rigorous Monte Carlo calculations show that departures from the analytic expression can be expressed as a slowly varying function of order unity. This function can be used as a basis for interpolation over a wide range of source energies and materials

  13. Advances in 4D treatment planning for scanned particle beam therapy - report of dedicated workshops

    NARCIS (Netherlands)

    Bert, Christoph; Graeff, Christian; Riboldi, Marco; Nill, Simeon; Baroni, Guido; Knopf, Antje-Christin

    2014-01-01

    We report on recent progress in the field of mobile tumor treatment with scanned particle beams, as discussed in the latest editions of the 4D treatment planning workshop. The workshop series started in 2009, with about 20 people from 4 research institutes involved, all actively working on particle

  14. Beam Techniques - Beam Control and Manipulation

    International Nuclear Information System (INIS)

    Minty, Michiko G

    2003-01-01

    We describe commonly used strategies for the control of charged particle beams and the manipulation of their properties. Emphasis is placed on relativistic beams in linear accelerators and storage rings. After a brief review of linear optics, we discuss basic and advanced beam control techniques, such as transverse and longitudinal lattice diagnostics, matching, orbit correction and steering, beam-based alignment, and linac emittance preservation. A variety of methods for the manipulation of particle beam properties are also presented, for instance, bunch length and energy compression, bunch rotation, changes to the damping partition number, and beam collimation. The different procedures are illustrated by examples from various accelerators. Special topics include injection and extraction methods, beam cooling, spin transport and polarization

  15. Beam Techniques - Beam Control and Manipulation

    Energy Technology Data Exchange (ETDEWEB)

    Minty, Michiko G

    2003-04-24

    We describe commonly used strategies for the control of charged particle beams and the manipulation of their properties. Emphasis is placed on relativistic beams in linear accelerators and storage rings. After a brief review of linear optics, we discuss basic and advanced beam control techniques, such as transverse and longitudinal lattice diagnostics, matching, orbit correction and steering, beam-based alignment, and linac emittance preservation. A variety of methods for the manipulation of particle beam properties are also presented, for instance, bunch length and energy compression, bunch rotation, changes to the damping partition number, and beam collimation. The different procedures are illustrated by examples from various accelerators. Special topics include injection and extraction methods, beam cooling, spin transport and polarization.

  16. Integration of the Omega-3 readout chip into a high energy physics experimental data acquisition system

    International Nuclear Information System (INIS)

    Beker, H.; Chesi, E.; Martinengo, P.

    1997-01-01

    The Omega-3 readout chip is presented in detail elsewhere in the same proceedings. We here describe the integration of the chip into present and future experiments describing both hardware and software aspects. We cover preliminary tests in the laboratory and on the beam. The WA97 experiment has already used a pixel telescope in the past and intends to upgrade to the Omega-3 chip. A newly proposed experiment at CERN studying strangeness production in heavy ion collisions also plans to use a similar telescope. Finally, we give an outlook on the ongoing developments in the pixel readout architecture in the context of ALICE, the heavy ion experiment at the LHC collider. (orig.)

  17. Omega-3 and omega-6 content of medicinal foods for depressed patients: implications from the Iranian Traditional Medicine

    NARCIS (Netherlands)

    Tavakkoli-Kakhki, Mandana; Motavasselian, Malihe; Mosaddegh, Mahmoud; Esfahani, Mohammad Mahdi; Kamalinejad, Mohammad; Nematy, Mohsen; Eslami, Saeid

    2014-01-01

    Considering the increasing prevalence of depression in modern societies and the positive effects of omega-3 polyunsaturated fatty acids on depression, this study aims to investigate the omega-3 and omega-6 content of various foodstuffs, prescribed or prohibited by Iranian Traditional Medicine (ITM).

  18. Modeling an emittance-dominated elliptical sheet beam with a 212-dimensional particle-in-cell code

    International Nuclear Information System (INIS)

    Carlsten, Bruce E.

    2005-01-01

    Modeling a 3-dimensional (3-D) elliptical beam with a 212-D particle-in-cell (PIC) code requires a reduction in the beam parameters. The 212-D PIC code can only model the center slice of the sheet beam, but that can still provide useful information about the beam transport and distribution evolution, even if the beam is emittance dominated. The reduction of beam parameters and resulting interpretation of the simulation is straightforward, but not trivial. In this paper, we describe the beam parameter reduction and emittance issues related to the initial beam distribution. As a numerical example, we use the case of a sheet beam designed for use with a planar traveling-wave amplifier for high power generator for RF ranging from 95 to 300GHz [Carlsten et al., IEEE Trans. Plasma Sci. 33 (2005) 85]. These numerical techniques also apply to modeling high-energy elliptical bunches in RF accelerators

  19. Aerosol nucleation induced by a high energy particle beam

    DEFF Research Database (Denmark)

    Enghoff, Martin Andreas Bødker; Pedersen, Jens Olaf Pepke; Uggerhøj, Ulrik I.

    The effect of ions in aerosol nucleation is a subject where much remains to be discovered. That ions can enhance nucleation has been shown by theory, observations, and experiments. However, the exact mechanism still remains to be determined. One question is if the nature of the ionization affects...... the nucleation. This is an essential question since many experiments have been performed using radioactive sources that ionize differently than the cosmic rays which are responsible for the majority of atmospheric ionization. Here we report on an experimental study of sulphuric acid aerosol nucleation under near...... atmospheric conditions using a 580 MeV electron beam to ionize the volume of the reaction chamber. We find a clear and significant contribution from ion induced nucleation and consider this to be an unambiguous observation of the ion-effect on aerosol nucleation using a particle beam under conditions not far...

  20. Secondary particle tracks generated by ion beam irradiation

    Science.gov (United States)

    García, Gustavo

    2015-05-01

    The Low Energy Particle Track Simulation (LEPTS) procedure is a powerful complementary tool to include the effect of low energy electrons and positrons in medical applications of radiation. In particular, for ion-beam cancer treatments provides a detailed description of the role of the secondary electrons abundantly generated around the Bragg peak as well as the possibility of using transmuted positron emitters (C11, O15) as a complement for ion-beam dosimetry. In this study we present interaction probability data derived from IAM-SCAR corrective factors for liquid environments. Using these data, single electron and positron tracks in liquid water and pyrimidine have been simulated providing information about energy deposition as well as the number and type of interactions taking place in any selected ``nanovolume'' of the irradiated area. In collaboration with Francisco Blanco, Universidad Complutense de Madrid; Antonio Mu noz, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Diogo Almeida, Filipe Ferreira da Silva, Paulo Lim ao-Vieira, Universidade Nova de Lisboa. Supported by the Spanish and Portuguese governments.

  1. Hubungan Asupan Asam Lemak Omega-3 dan Omega-6 dengan Tekanan Darah Wanita Usia 30 – 50 Tahun

    OpenAIRE

    Sari, Mega Lucyta; Probosari, Enny; Wijayanti, Hartanti Sandi

    2017-01-01

    Background: Hypertension is one of the major risk factors for cardiovascular disease. Decreased intake of omega-3 and increased intake of omega-6 can increase the risk of hypertension. Hypertension cases in Indonesia are highest in women especially aged 30 - 50 years. This study aimed to determine correlation of omega-3 and omega-6 intake with blood pressure in women aged 30-50 years.Method : This was an observational research with cross-sectional study design. Fifty four subjects were select...

  2. High performance capsule implosions on the OMEGA Laser facility with rugby hohlraums

    International Nuclear Information System (INIS)

    Robey, H. F.; Amendt, P.; Park, H.-S.; Town, R. P. J.; Milovich, J. L.; Doeppner, T.; Hinkel, D. E.; Wallace, R.; Sorce, C.; Strozzi, D. J.; Philippe, F.; Casner, A.; Caillaud, T.; Landoas, O.; Liberatore, S.; Monteil, M.-C.; Seguin, F.; Rosenberg, M.; Li, C. K.; Petrasso, R.

    2010-01-01

    Rugby-shaped hohlraums have been proposed as a method for x-ray drive enhancement for indirectly driven capsule implosions. This concept has recently been tested in a series of shots on the OMEGA laser facility [T. R. Boehly, D. L. Brown, R. S. Craxton et al., Opt. Commun. 133, 495 (1997)]. In this paper, experimental results are presented comparing the performance of D 2 -filled capsules between standard cylindrical Au hohlraums and rugby-shaped hohlraums. The rugby hohlraums demonstrated 18% more x-ray drive energy as compared with the cylinders, and the high-performance design of these implosions (both cylinder and rugby) also provided ≅20x more deuterium (DD) neutrons than any previous indirectly driven campaign on OMEGA and ≅3x more than ever achieved on NOVA [E. M. Campbell, Laser Part. Beams 9, 209 (1991)] implosions driven with nearly twice the laser energy. This increase in performance enables, for the first time, a measurement of the neutron burn history and imaging of the neutron core shapes in an indirectly driven implosion. Previous DD neutron yields had been too low to register this key measurement of capsule performance and the effects of dynamic mix. A wealth of additional data on the fuel areal density from the suite of charged particle diagnostics was obtained on a subset of the shots that used D 3 He rather than D 2 fuel. Comparisons of the experimental results with numerical simulations are shown to be in very good agreement. The design techniques employed in this campaign, e.g., smaller laser entrance holes and hohlraum case-to-capsule ratios, provide added confidence in the pursuit of ignition on the National Ignition Facility [J. D. Lindl, P. Amendt, R. L. Berger et al., Phys. Plasmas 11, 339 (2004)].

  3. High performance capsule implosions on the OMEGA Laser facility with rugby hohlraumsa)

    Science.gov (United States)

    Robey, H. F.; Amendt, P.; Park, H.-S.; Town, R. P. J.; Milovich, J. L.; Döppner, T.; Hinkel, D. E.; Wallace, R.; Sorce, C.; Strozzi, D. J.; Philippe, F.; Casner, A.; Caillaud, T.; Landoas, O.; Liberatore, S.; Monteil, M.-C.; Séguin, F.; Rosenberg, M.; Li, C. K.; Petrasso, R.; Glebov, V.; Stoeckl, C.; Nikroo, A.; Giraldez, E.

    2010-05-01

    Rugby-shaped hohlraums have been proposed as a method for x-ray drive enhancement for indirectly driven capsule implosions. This concept has recently been tested in a series of shots on the OMEGA laser facility [T. R. Boehly, D. L. Brown, R. S. Craxton et al., Opt. Commun. 133, 495 (1997)]. In this paper, experimental results are presented comparing the performance of D2-filled capsules between standard cylindrical Au hohlraums and rugby-shaped hohlraums. The rugby hohlraums demonstrated 18% more x-ray drive energy as compared with the cylinders, and the high-performance design of these implosions (both cylinder and rugby) also provided ≈20× more deuterium (DD) neutrons than any previous indirectly driven campaign on OMEGA and ≈3× more than ever achieved on NOVA [E. M. Campbell, Laser Part. Beams 9, 209 (1991)] implosions driven with nearly twice the laser energy. This increase in performance enables, for the first time, a measurement of the neutron burn history and imaging of the neutron core shapes in an indirectly driven implosion. Previous DD neutron yields had been too low to register this key measurement of capsule performance and the effects of dynamic mix. A wealth of additional data on the fuel areal density from the suite of charged particle diagnostics was obtained on a subset of the shots that used D H3e rather than D2 fuel. Comparisons of the experimental results with numerical simulations are shown to be in very good agreement. The design techniques employed in this campaign, e.g., smaller laser entrance holes and hohlraum case-to-capsule ratios, provide added confidence in the pursuit of ignition on the National Ignition Facility [J. D. Lindl, P. Amendt, R. L. Berger et al., Phys. Plasmas 11, 339 (2004)].

  4. Dispersion of Sound in Dilute Suspensions with Nonlinear Particle Relaxation

    Science.gov (United States)

    Kandula, Max

    2010-01-01

    The theory accounting for nonlinear particle relaxation (viscous and thermal) has been applied to the prediction of dispersion of sound in dilute suspensions. The results suggest that significant deviations exist for sound dispersion between the linear and nonlinear theories at large values of Omega(Tau)(sub d), where Omega is the circular frequency, and Tau(sub d) is the Stokesian particle relaxation time. It is revealed that the nonlinear effect on the dispersion coefficient due to viscous contribution is larger relative to that of thermal conduction

  5. Remarks on the differential algebraic approach to particle beam optics by M. Berz

    International Nuclear Information System (INIS)

    Garczynski, V.

    1992-01-01

    The underlying mathematical structure of the differential algebraic approach of M. Berz to particle beam optics is isomorphic to the familiar truncated polynomial algebra. Concrete examples of derivations in this algebra, consistent with the truncation operation, are given

  6. BOA, Beam Optics Analyzer A Particle-In-Cell Code

    International Nuclear Information System (INIS)

    Bui, Thuc

    2007-01-01

    The program was tasked with implementing time dependent analysis of charges particles into an existing finite element code with adaptive meshing, called Beam Optics Analyzer (BOA). BOA was initially funded by a DOE Phase II program to use the finite element method with adaptive meshing to track particles in unstructured meshes. It uses modern programming techniques, state-of-the-art data structures, so that new methods, features and capabilities are easily added and maintained. This Phase II program was funded to implement plasma simulations in BOA and extend its capabilities to model thermal electrons, secondary emissions, self magnetic field and implement a more comprehensive post-processing and feature-rich GUI. The program was successful in implementing thermal electrons, secondary emissions, and self magnetic field calculations. The BOA GUI was also upgraded significantly, and CCR is receiving interest from the microwave tube and semiconductor equipment industry for the code. Implementation of PIC analysis was partially successful. Computational resource requirements for modeling more than 2000 particles begin to exceed the capability of most readily available computers. Modern plasma analysis typically requires modeling of approximately 2 million particles or more. The problem is that tracking many particles in an unstructured mesh that is adapting becomes inefficient. In particular memory requirements become excessive. This probably makes particle tracking in unstructured meshes currently unfeasible with commonly available computer resources. Consequently, Calabazas Creek Research, Inc. is exploring hybrid codes where the electromagnetic fields are solved on the unstructured, adaptive mesh while particles are tracked on a fixed mesh. Efficient interpolation routines should be able to transfer information between nodes of the two meshes. If successfully developed, this could provide high accuracy and reasonable computational efficiency.

  7. Influence of incoherent scattering on stochastic deflection of high-energy negative particle beams in bent crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kirillin, I.V. [Akhiezer Institute for Theoretical Physics, National Science Center ' ' Kharkov Institute of Physics and Technology' ' , Kharkov (Ukraine); Shul' ga, N.F. [Akhiezer Institute for Theoretical Physics, National Science Center ' ' Kharkov Institute of Physics and Technology' ' , Kharkov (Ukraine); V.N. Karazin Kharkov National University, Kharkov (Ukraine); Bandiera, L. [INFN Sezione di Ferrara, Ferrara (Italy); Guidi, V.; Mazzolari, A. [INFN Sezione di Ferrara, Ferrara (Italy); Universita degli Studi di Ferrara, Dipartimento di Fisica e Scienze della Terra, Ferrara (Italy)

    2017-02-15

    An investigation on stochastic deflection of high-energy negatively charged particles in a bent crystal was carried out. On the basis of analytical calculation and numerical simulation it was shown that there is a maximum angle at which most of the beam is deflected. The existence of a maximum, which is taken in the correspondence of the optimal radius of curvature, is a novelty with respect to the case of positively charged particles, for which the deflection angle can be freely increased by increasing the crystal length. This difference has to be ascribed to the stronger contribution of incoherent scattering affecting the dynamics of negative particles that move closer to atomic nuclei and electrons. We therefore identified the ideal parameters for the exploitation of axial confinement for negatively charged particle beam manipulation in future high-energy accelerators, e.g., ILC or muon colliders. (orig.)

  8. EFFECT OF PARTICLE SIZE AND PACKING RATIO OF PID ON VIBRATION AMPLITUDE OF BEAM

    Directory of Open Access Journals (Sweden)

    P.S. Kachare

    2013-06-01

    Full Text Available Everything in the universe that has mass possesses stiffness and intrinsic damping. Owing to the stiffness property, mass will vibrate when excited and its intrinsic damping property will act to stop the vibration. The particle impact damper (PID is a very interesting damper that affects impact and friction effects of particles by means of energy dissipation. PID is a means for achieving high structural damping by using a particle-filled enclosure attached to a structure. The particles absorb the kinetic energy of the structure and convert it into heat through inelastic collisions between the particles themselves and between the particles and the walls of the enclosure. In this work, PID is measured for a cantilever mild steel beam with an enclosure attached to its free end; copper particles are used in this study. The PID is found to be highly nonlinear. The most useful observation is that for a very small weight penalty (about 7% to 8 %, the maximum damped amplitude of vibration at resonance with a PID, is about 9 to 10 times smaller than that without a PID. It is for more than that of with only intrinsic material damping of a majority of structural metals. A satisfactory comparison of damping with and without particles through experimentation is observed. The effect of the size of the particles on the damping performance of the beam and the effective packing ratio can be identified. It is also shown that as the packing ratio changes, the contributions of the phenomena of impact and friction towards damping also change. It is encouraging that despite its deceptive simplicity, the model captures the essential physics of PID.

  9. 100 years of elementary particles [Beam Line, vol. 27, issue 1, Spring 1997

    Energy Technology Data Exchange (ETDEWEB)

    Pais, Abraham; Weinberg, Steven; Quigg, Chris; Riordan, Michael; Panofsky, Wolfgang K.H.; Trimble, Virginia

    1997-04-01

    This issue of Beam Line commemorates the 100th anniversary of the April 30, 1897 report of the discovery of the electron by J.J. Thomson and the ensuing discovery of other subatomic particles. In the first three articles, theorists Abraham Pais, Steven Weinberg, and Chris Quigg provide their perspectives on the discoveries of elementary particles as well as the implications and future directions resulting from these discoveries. In the following three articles, Michael Riordan, Wolfgang Panofsky, and Virginia Trimble apply our knowledge about elementary particles to high-energy research, electronics technology, and understanding the origin and evolution of our Universe.

  10. 100 years of elementary particles [Beam Line, vol. 27, number 1, Spring 1997

    International Nuclear Information System (INIS)

    Pais, Abraham; Weinberg, Steven; Quigg, Chris; Riordan, Michael; Panofsky, Wolfgang K.H.; Trimble, Virginia

    1997-01-01

    This issue of Beam Line commemorates the 100th anniversary of the April 30, 1897 report of the discovery of the electron by J.J. Thomson and the ensuing discovery of other subatomic particles. In the first three articles, theorists Abraham Pais, Steven Weinberg, and Chris Quigg provide their perspectives on the discoveries of elementary particles as well as the implications and future directions resulting from these discoveries. In the following three articles, Michael Riordan, Wolfgang Panofsky, and Virginia Trimble apply our knowledge about elementary particles to high-energy research, electronics technology, and understanding the origin and evolution of our Universe

  11. Radiation therapy with laser-driven accelerated particle beams: physical dosimetry and spatial dose distribution

    Energy Technology Data Exchange (ETDEWEB)

    Reinhardt, Sabine; Assmann, Walter [Ludwig-Maximilians Universitaet Muenchen (Germany); Kneschaurek, Peter; Wilkens, Jan [MRI, Technische Universitaet Muenchen (Germany)

    2011-07-01

    One of the main goals of the Munich Centre for Advanced Photonics (MAP) is the application of laser driven accelerated (LDA) particle beams for radiation therapy. Due to the unique acceleration process ultrashort particle pulses of high intensity (> 10{sup 7} particles /cm{sup 2}/ns) are generated, which makes online detection an ambitious task. So far, state of the art detection of laser accelerated ion pulses are non-electronic detectors like radiochromic films (RCF), imaging plates (IP) or nuclear track detectors (e.g. CR39). All these kind of detectors are offline detectors requiring several hours of processing time. For this reason they are not qualified for an application in radiation therapy where quantitative real time detection of the beam is an essential prerequisite. Therefore we are investigating pixel detectors for real time monitoring of LDA particle pulses. First tests of commercially available systems with 8-20 MeV protons are presented. For radiobiological experiments second generation Gafchromic films (EBT2) have been calibrated with protons of 12 and 20 MeV for a dose range of 0.3-10 Gy. Dose verification in proton irradiation of subcutaneous tumours in mice was successfully accomplished using these films.

  12. Sheet beam model for intense space charge: Application to Debye screening and the distribution of particle oscillation frequencies in a thermal equilibrium beam

    Directory of Open Access Journals (Sweden)

    Steven M. Lund

    2011-05-01

    Full Text Available A one-dimensional Vlasov-Poisson model for sheet beams is reviewed and extended to provide a simple framework for analysis of space-charge effects. Centroid and rms envelope equations including image-charge effects are derived and reasonable parameter equivalences with commonly employed 2D transverse models of unbunched beams are established. This sheet-beam model is then applied to analyze several problems of fundamental interest. A sheet-beam thermal equilibrium distribution in a continuous focusing channel is constructed and shown to have analogous properties to two- and three-dimensional thermal equilibrium models in terms of the equilibrium structure and Debye screening properties. The simpler formulation for sheet beams is exploited to explicitly calculate the distribution of particle oscillation frequencies within a thermal equilibrium beam. It is shown that as space-charge intensity increases, the frequency distribution becomes broad, suggesting that beams with strong space-charge can have improved stability relative to beams with weak space-charge.

  13. Omega-3 fiskeolie

    DEFF Research Database (Denmark)

    Lunde, Anita; Sørensen, Jan

    2009-01-01

    Rapport afgrænser sig til evidensbaserede helbredsmæssige gevinster ved et øget indtag af langkædede omega-3, som opnås ved en kost rig på fisk eller som et tilskud af fiskeolier. Der gennemføres en systematisk litteraturgennemgang, som baserer sig på et evidensniveau svarende til styrke A. Det...... betyder, at gennemgangen inkluderer metaanalyser/oversigtsartikler af enten eksperimentelle studier eller observationsstudier, endvidere indgår udvalgte større RCT, som er refereret i meta-analyserne. Sammenfattende findes på baggrund af litteraturgennemgang, at tilskud af omega-3 har effekt på...... hjertesygdom ved at nedsætte mortaliteten. Effekten er mest evident ved personer i særlig risiko for at udvikle hjerte-karsygdom, eller som sekundær/tertiær profylakse. Tilsvarende findes også ved tilskud af omega-3 en forebyggende effekt i forhold til iskæmisk apopleksi. Af mulige virkningsmekanismer viser...

  14. Characterisation of Medipix3 Silicon Detectors in a Charged-Particle Beam

    CERN Document Server

    Akiba, K.; Aoude, R.Tourinho; van Beuzekom, M.; Buytaert, J.; Collins, P.; Dosil Suárez, A.; Dumps, R.; Gallas, A.; Hombach, C.; Hynds, D.; John, M.; Leflat, A.; Li, Y.; Pérez-Trigo, E.; Plackett, R.; Reid, M.M.; Rodríguez Pérez, P.; Schindler, H.; Tsopelas, P.; Vázquez Sierra, C.; Velthuis, J.J.; Wysokiński, M.

    2016-01-21

    While designed primarily for X-ray imaging applications, the Medipix3 ASIC can also be used for charged-particle tracking. In this work, results from a beam test at the CERN SPS with irradiated and non-irradiated sensors are presented and shown to be in agreement with simulation, demonstrating the suitability of the Medipix3 ASIC as a tool for characterising pixel sensors.

  15. Upgrade of the MIT Linear Electrostatic Ion Accelerator (LEIA) for nuclear diagnostics development for Omega, Z and the NIF.

    Science.gov (United States)

    Sinenian, N; Manuel, M J-E; Zylstra, A B; Rosenberg, M; Waugh, C J; Rinderknecht, H G; Casey, D T; Sio, H; Ruszczynski, J K; Zhou, L; Gatu Johnson, M; Frenje, J A; Séguin, F H; Li, C K; Petrasso, R D; Ruiz, C L; Leeper, R J

    2012-04-01

    The MIT Linear Electrostatic Ion Accelerator (LEIA) generates DD and D(3)He fusion products for the development of nuclear diagnostics for Omega, Z, and the National Ignition Facility (NIF). Significant improvements to the system in recent years are presented. Fusion reaction rates, as high as 10(7) s(-1) and 10(6) s(-1) for DD and D(3)He, respectively, are now well regulated with a new ion source and electronic gas control system. Charged fusion products are more accurately characterized, which allows for better calibration of existing nuclear diagnostics. In addition, in situ measurements of the on-target beam profile, made with a CCD camera, are used to determine the metrology of the fusion-product source for particle-counting applications. Finally, neutron diagnostics development has been facilitated by detailed Monte Carlo N-Particle Transport (MCNP) modeling of neutrons in the accelerator target chamber, which is used to correct for scattering within the system. These recent improvements have resulted in a versatile platform, which continues to support the existing nuclear diagnostics while simultaneously facilitating the development of new diagnostics in aid of the National Ignition Campaign at the National Ignition Facility. © 2012 American Institute of Physics

  16. Anti-inflammatory effects of omega 3 and omega 6 polyunsaturated fatty acids in cardiovascular disease and metabolic syndrome.

    Science.gov (United States)

    Tortosa-Caparrós, Esther; Navas-Carrillo, Diana; Marín, Francisco; Orenes-Piñero, Esteban

    2017-11-02

    A lipid excess produces a systemic inflammation process due to tumor necrosis factor-α, interleukin-6 and C-reactive protein synthesis. Simultaneously, this fat excess promotes the appearance of insulin resistance. All this contributes to the development of atherosclerosis and increases the risk of cardiovascular diseases (CVDs). On the other hand, polyunsaturated fatty acids (PUFAs), especially eicosapentaenoic acid and docosahexaenoic acid (omega 3), and arachidonic acid (omega 6) have shown anti-inflammatory properties. Lately, an inverse relationship between omega-3 fatty acids, inflammation, obesity and CVDs has been demonstrated. To check fatty acids effect, the levels of some inflammation biomarkers have been analyzed. Leptin, adiponectin and resistin represent a group of hormones associated with the development of CVDs, obesity, type 2 diabetes mellitus and insulin resistance and are modified in obese/overweight people comparing to normal weight people. Omega-3 PUFAs have been shown to decrease the production of inflammatory mediators, having a positive effect in obesity and diabetes mellitus type-2. Moreover, they significantly decrease the appearance of CVD risk factors. Regarding omega-6 PUFA, there is controversy whether their effects are pro- or anti-inflammatory. The aim of this manuscript is to provide a comprehensive overview about the role of omega-3 and omega-6 PUFAs in CVDs and metabolic syndrome.

  17. Omega 3 fatty acids increase spontaneous release of cytosolic components from tumor cells

    International Nuclear Information System (INIS)

    Jenski, L.J.; Sturdevant, L.K.; Ehringer, W.D.; Stillwell, W.

    1991-01-01

    Mice fed menhaden (fish) oil or coconut oil-rich diets were inoculated intraperitoneally with a rapidly growing leukemia, T27A. After one week, the tumor cells were harvested, and 51Cr was used to label intracellular molecules. Spontaneous release of 51Cr was used as a measure of plasma membrane permeability. Compared to cells from mice fed coconut oil (rich in saturated fatty acids), tumor cells from mice fed menhaden oil (rich in long chain polyunsaturated omega 3 fatty acids) showed an increased level of spontaneous 51Cr release, which was exacerbated by increased temperature and reduced by extracellular protein. At physiological salt concentrations, the released 51Cr was detected in particles of approximately 2700 daltons. Enhanced permeability correlated with the incorporation of dietary (fish oil) omega 3 polyunsaturated fatty acids docosahexaenoic and eicosapentaenoic acid into the tumor cells. The results demonstrate that omega 3 fatty acids are incorporated into cellular constituents of tumor cells and change properties associated with the plasma membrane. This result suggests that dietary manipulation may be used to enhance tumor cell permeability and contribute to tumor eradication

  18. Analytical linear energy transfer model including secondary particles: calculations along the central axis of the proton pencil beam

    International Nuclear Information System (INIS)

    Marsolat, F; De Marzi, L; Mazal, A; Pouzoulet, F

    2016-01-01

    In proton therapy, the relative biological effectiveness (RBE) depends on various types of parameters such as linear energy transfer (LET). An analytical model for LET calculation exists (Wilkens’ model), but secondary particles are not included in this model. In the present study, we propose a correction factor, L sec , for Wilkens’ model in order to take into account the LET contributions of certain secondary particles. This study includes secondary protons and deuterons, since the effects of these two types of particles can be described by the same RBE-LET relationship. L sec was evaluated by Monte Carlo (MC) simulations using the GATE/GEANT4 platform and was defined by the ratio of the LET d distributions of all protons and deuterons and only primary protons. This method was applied to the innovative Pencil Beam Scanning (PBS) delivery systems and L sec was evaluated along the beam axis. This correction factor indicates the high contribution of secondary particles in the entrance region, with L sec values higher than 1.6 for a 220 MeV clinical pencil beam. MC simulations showed the impact of pencil beam parameters, such as mean initial energy, spot size, and depth in water, on L sec . The variation of L sec with these different parameters was integrated in a polynomial function of the L sec factor in order to obtain a model universally applicable to all PBS delivery systems. The validity of this correction factor applied to Wilkens’ model was verified along the beam axis of various pencil beams in comparison with MC simulations. A good agreement was obtained between the corrected analytical model and the MC calculations, with mean-LET deviations along the beam axis less than 0.05 keV μm −1 . These results demonstrate the efficacy of our new correction of the existing LET model in order to take into account secondary protons and deuterons along the pencil beam axis. (paper)

  19. Pair production of exotic particles at pp(p-barp) colliding beams

    International Nuclear Information System (INIS)

    Borisov, G.V.; Pirogov, Yu.F.; Rudakov, K.R.

    1986-01-01

    A complete set of differential cross sections has been obtained in Born approximation for pair production of exotic particles with various spins J=0, 1/2, 1 and quantum numbers (colored and colorless) both in qq-bar and gg-collisions. The connection of the unitarity of vector boson processes with gauge invariance, factorization properties of non-Abelian gauge amplitudes and the presence of kinematic zeros is used. Besides, the problem of admissibility of massless limit for these processes is being discussed. The yield of exotic particle pairs at pp(p-barp) colliding beams in TeV energy range have been calculated and limits for the accessible mass range have been found

  20. DIETARY OMEGA-3 FATTY ACIDS MODIFIED THE ASSOCIATION OF PULMONARY FUNCTION WITH AIR POLLUTION IN ADOLESCENTS

    Science.gov (United States)

    Previous children's studies in North America and Germany have shown that ambient sulfate particles are associated with an increased prevalence of bronchitis and decreased lung function. We have now investigated the ability of dietary intake of anti-inflammatory omega-3 fatty aci...

  1. Interaction for solitary waves in coasting charged particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shi-Wei; Hong, Xue-Ren; Shi, Yu-Ren; Duan, Wen-shan, E-mail: duanws@nwnu.edu.cn [College of Physics and Electronic Engineering and Joint Laboratory of Atomic an Molecular Physics of NWNU and IMPCAS, Northwest Normal University, Lanzhou 730070 (China); Qi, Xin; Yang, Lei, E-mail: lyang@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Han, Jiu-Ning [College of Physics and Electromechanical Engineering, Hexi University, Zhangye 734000 (China)

    2014-03-15

    By using the extended Poincare-Lighthill-Kuo perturbation method, the collision of solitary waves in a coasting charged particle beams is studied. The results show that the system admits a solution with two solitary waves, which move in opposite directions and can be described by two Korteweg-deVries equation in small-amplitude limit. The collision of two solitary waves is elastic, and after the interaction they preserve their original properties. Then the weak phase shift in traveling direction of collision between two solitary waves is derived explicitly.

  2. Preparation and characterization of {omega}-functionalized polystyrene-magnetite nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Liming [Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 (China)]. E-mail: cejlm@zju.edu.cn; Sun Weilin [Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Kim, Jungahn [Polymer Hybrids Center, Korea Institute of Science and Technology, Seoul 130-650 (Korea, Republic of)

    2007-02-15

    Magnetite (Fe{sub 3}O{sub 4}) nanoparticles were prepared by in situ precipitation and oxidation of ferrous ions in the presence of {omega}-functionalized polystyrenes having carboxylate, sulfonate, thiol, and thiolated groups. Based on the results for the orthogonal experimental design, both the ratio of the concentration of iron precursor to polymer and the reaction temperature were the major factors controlling the particle size and its shape morphology. By adjusting the reaction conditions, the iron oxide particle size can be effectively controlled in the range between 2 and 20 nm. The magnetite-based polymer composite was characterized by UV-vis spectroscopy, thermogravimetric analysis, transmission electron microscopy, and X-ray diffraction. Magnetization measurements revealed that the nanocomposite materials exhibit superparamagnetic behavior at room temperature.

  3. Numerical Studies of Electromagnetic Instabilities in Intense Charged Particle Beams with Large Energy Anisotropy

    CERN Document Server

    Startsev, Edward; Lee, Wei-li

    2005-01-01

    In intense charged particle beams with large energy anisotropy, free energy is available to drive transverse electromagnetic Weibel-type instabilities. Such slow-wave transverse electromagnetic instabilities can be described by the so-called Darwin model, which neglects the fast-wave portion of the displacement current. The Weibel instability may also lead to an increase in the longitudinal velocity spread, which would make the focusing of the beam difficult and impose a limit on the minimum spot size achievable in heavy ion fusion experiments. This paper reports the results of recent numerical studies of the Weibel instability using the Beam Eigenmode And Spectra (bEASt) code for space-charge-dominated, low-emittance beams with large tune depression. To study the nonlinear stage of the instability, the Darwin model is being developed and incorporated into the Beam Equilibrium Stability and Transport(BEST) code.

  4. Circular motion of particles suspended in a Gaussian beam with circular polarization validates the spin part of the internal energy flow

    DEFF Research Database (Denmark)

    Angelsky, O. V.; Bekshaev, A. Ya.; Maksimyak, P. P.

    2012-01-01

    switching to the right (left) circular polarization, the particles performed spinning motion in agreement with the angular momentum imparted by the field, but they were involved in an orbital rotation around the beam axis as well, which in previous works [Y. Zhao et al, Phys. Rev. Lett. 99, 073901 (2007......Non-spherical dielectric microparticles were suspended in a water-filled cell and exposed to a coherent Gaussian light beam with controlled state of polarization. When the beam polarization is linear, the particles were trapped at certain off-axial position within the beam cross section. After...... of inhomogeneously polarized paraxial beams [A. Bekshaev et al, J. Opt. 13, 053001 (2011)]....

  5. The renormalized theory of beam-beam interaction

    International Nuclear Information System (INIS)

    Chin, Yong Ho.

    1988-06-01

    A new approach to calculate analytically the particle distribution in the presence of beam-beam interaction and synchrotron radiation effects for an electron-positron colliding beam storage ring is presented. The method is based on correct calculation of the Green's function which includes the full effect of the beam-beam force on the distortion of particle orbits, borrowing the renormalization technique of quantum field therory. By this way, the theory is applicable to any level of beam-beam interaction, no matter whether chaos ensues in phase space or not. This paper is devoted mostly to verificaiton of the theory by comparison with the results of computer simulations. Fairly good agreements are obtained. 5 refs., 3 figs

  6. Computational study of scattering of a zero-order Bessel beam by large nonspherical homogeneous particles with the multilevel fast multipole algorithm

    Science.gov (United States)

    Yang, Minglin; Wu, Yueqian; Sheng, Xinqing; Ren, Kuan Fang

    2017-12-01

    Computation of scattering of shaped beams by large nonspherical particles is a challenge in both optics and electromagnetics domains since it concerns many research fields. In this paper, we report our new progress in the numerical computation of the scattering diagrams. Our algorithm permits to calculate the scattering of a particle of size as large as 110 wavelengths or 700 in size parameter. The particle can be transparent or absorbing of arbitrary shape, smooth or with a sharp surface, such as the Chebyshev particles or ice crystals. To illustrate the capacity of the algorithm, a zero order Bessel beam is taken as the incident beam, and the scattering of ellipsoidal particles and Chebyshev particles are taken as examples. Some special phenomena have been revealed and examined. The scattering problem is formulated with the combined tangential formulation and solved iteratively with the aid of the multilevel fast multipole algorithm, which is well parallelized with the message passing interface on the distributed memory computer platform using the hybrid partitioning strategy. The numerical predictions are compared with the results of the rigorous method for a spherical particle to validate the accuracy of the approach. The scattering diagrams of large ellipsoidal particles with various parameters are examined. The effect of aspect ratios, as well as half-cone angle of the incident zero-order Bessel beam and the off-axis distance on scattered intensity, is studied. Scattering by asymmetry Chebyshev particle with size parameter larger than 700 is also given to show the capability of the method for computing scattering by arbitrary shaped particles.

  7. Beam position monitor sensitivity for low-β beams

    International Nuclear Information System (INIS)

    Shafer, R.E.

    1993-01-01

    At low velocities, the EM field of a particle in a conducting beam tube is no longer a TEM wave, but has a finite longitudinal extent. The net effect of this is to reduce the coupling of the high-frequency Fourier components of the beam current to BPM (beam position monitor) electrodes, which modifies the BPM sensitivity to beam displacement. This effect is especially pronounced for high-frequency, large-aperture pickups used for low-β beams. Non-interceptive beam position monitors used in conjunction with high frequency RFQ (radio-frequency-quadrupole) and DTL (drift-tube-linac) accelerators fall into this category. When testing a BPM with a thin wire excited with either pulses or high-frequency sinusoidal currents, the EM wave represents the principal (TEM) mode in a coaxial transmission line, which is equivalent to a highly relativistic (β = 1) beam. Thus wire measurements are not suitable for simulating slow particle beams in high bandwidth diagnostic devices that couple to the image currents in the beam tube wall. Attempts to load the tin wire either capacitively or inductively to slow the EM wave down have met with limited success. In general, the equations used to represent the 2-D response of cylindrical-geometry BPMs to charged-particle beams make several assumptions: (1) the BPM electrodes are flush with and grounded to the surface of the conducting beam tube; (2) the beam is a line source (pencil beam); (3) the longitudinal extent of the EM field of a beam particle at the beam tube wall is zero, corresponding to a highly relativistic beam. The purpose of this paper is to make some quantitative estimates of the corrections to the conventional approximations when a BPM is used to measure the position of low velocity (low-β) beams

  8. Automatic Beam Path Analysis of Laser Wakefield Particle Acceleration Data

    Energy Technology Data Exchange (ETDEWEB)

    Rubel, Oliver; Geddes, Cameron G.R.; Cormier-Michel, Estelle; Wu, Kesheng; Prabhat,; Weber, Gunther H.; Ushizima, Daniela M.; Messmer, Peter; Hagen, Hans; Hamann, Bernd; Bethel, E. Wes

    2009-10-19

    Numerical simulations of laser wakefield particle accelerators play a key role in the understanding of the complex acceleration process and in the design of expensive experimental facilities. As the size and complexity of simulation output grows, an increasingly acute challenge is the practical need for computational techniques that aid in scientific knowledge discovery. To that end, we present a set of data-understanding algorithms that work in concert in a pipeline fashion to automatically locate and analyze high energy particle bunches undergoing acceleration in very large simulation datasets. These techniques work cooperatively by first identifying features of interest in individual timesteps, then integrating features across timesteps, and based on the information derived perform analysis of temporally dynamic features. This combination of techniques supports accurate detection of particle beams enabling a deeper level of scientific understanding of physical phenomena than hasbeen possible before. By combining efficient data analysis algorithms and state-of-the-art data management we enable high-performance analysis of extremely large particle datasets in 3D. We demonstrate the usefulness of our methods for a variety of 2D and 3D datasets and discuss the performance of our analysis pipeline.

  9. Polarized target as analyzer of polarization of particle beam with spin Ssub(B)=1/2

    International Nuclear Information System (INIS)

    Golovin, V.M.; Golubeva, M.B.; Gornushkin, Yu.A.

    1982-01-01

    A possibility of using a polarized target as a target analyzer of beam particle polarization (Ssub(T)=1/2 Psub(T) vector) so that all the components of beam polarization Ssub(B)=1/2 anti Psub(B) should be determined in one experiment, is revealed. A proton polarization target is considered as a polarization target-analyzer. Asub(SK) and Asub(kk) asymmetry tensors are considered for elastic pp and pn scatterings by amplitudes of NN scattering which attain the values of 0.3-0.9 at 95-400 MeV. Asub(kk)(pp) and Asub(sk)(pp) are experimentally measured in the 445-576 MeV range. It is found that their highest absolute values are equal to 0.4-0.5 and 0.2-0.3 respectively. Elastic proton scattering on polarized electrons may be another variant of using polarized target for measuring proton beam polarization. Asub(sk) and Asub(kk) components of asymmetry tensor of elastic pe scattering are graphically presented. A possibility of using a polarized charge with spin I=1/2 as a target-analyzer of particle beam polarization is marked

  10. Production of $\\Sigma^{0}$ and $\\Omega^{-}$ in Z decays

    CERN Document Server

    Adam, W; Agasi, E; Ajinenko, I; Aleksan, Roy; Alekseev, G D; Alemany, R; Allport, P P; Almehed, S; Amaldi, Ugo; Amato, S; Andreazza, A; Andrieux, M L; Antilogus, P; Apel, W D; Arnoud, Y; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barate, R; Barbi, M S; Bardin, Dimitri Yuri; Baroncelli, A; Bärring, O; Barrio, J A; Bartl, Walter; Bates, M J; Battaglia, Marco; Baubillier, M; Baudot, J; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Belous, K S; Benvenuti, Alberto C; Berggren, M; Bertrand, D; Bianchi, F; Bigi, M; Bilenky, S M; Billoir, P; Bloch, D; Blume, M; Blyth, S; Bolognese, T; Bonesini, M; Bonivento, W; Booth, P S L; Borisov, G; Bosio, C; Bosworth, S; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Bozzo, M; Branchini, P; Brand, K D; Brenke, T; Brenner, R A; Bricman, C; Brillault, L; Brown, R C A; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Burgsmüller, T; Buschmann, P; Buys, A; Cabrera, S; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Cankocak, K; Cao, F; Carena, F; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Cerrito, L; Chabaud, V; Chapkin, M M; Charpentier, P; Chaussard, L; Chauveau, J; Checchia, P; Chelkov, G A; Chen, M; Chierici, R; Chliapnikov, P V; Chochula, P; Chorowicz, V; Chudoba, J; Cindro, V; Collins, P; Contreras, J L; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; Dahl-Jensen, Erik; Dahm, J; D'Almagne, B; Dam, M; Damgaard, G; Dauncey, P D; Davenport, Martyn; Da Silva, W; Defoix, C; Deghorain, A; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Brabandere, S; De Clercq, C; La Vaissière, C de; De Lotto, B; De Min, A; De Paula, L S; De Saint-Jean, C; Dijkstra, H; Di Ciaccio, Lucia; Djama, F; Dolbeau, J; Dönszelmann, M; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Dufour, Y; Edsall, D M; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Elsing, M; Engel, J P; Ershaidat, N; Erzen, B; Espirito-Santo, M C; Falk, E; Fassouliotis, D; Feindt, Michael; Ferrer, A; Filippas-Tassos, A; Firestone, A; Fischer, P A; Föth, H; Fokitis, E; Fontanelli, F; Formenti, F; Franek, B J; Frenkiel, P; Fries, D E C; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gandelman, M; García, C; García, J; Gaspar, C; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Gerdyukov, L N; Gibbs, M; Gokieli, R; Golob, B; Gopal, Gian P; Gorn, L; Górski, M; Guz, Yu; Gracco, Valerio; Graziani, E; Grosdidier, G; Grzelak, K; Gumenyuk, S A; Gunnarsson, P; Günther, M; Guy, J; Hahn, F; Hahn, S; Hallgren, A; Hamacher, K; Hao, W; Harris, F J; Hedberg, V; Henriques, R P; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Higón, E; Hilke, Hans Jürgen; Hill, T S; Holmgren, S O; Holt, P J; Holthuizen, D J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huet, K; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, L B; Jönsson, P E; Joram, Christian; Juillot, P; Kaiser, M; Kapusta, F; Karafasoulis, K; Karlsson, M; Karvelas, E; Katsanevas, S; Katsoufis, E C; Keränen, R; Khomenko, B A; Khovanskii, N N; King, B J; Kjaer, N J; Klein, H; Klovning, A; Kluit, P M; Köne, B; Kokkinias, P; Koratzinos, M; Korcyl, K; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Kramer, P H; Krammer, Manfred; Kreuter, C; Kronkvist, I J; Krumshtein, Z; Krupinski, W; Kubinec, P; Kucewicz, W; Kurvinen, K L; Lacasta, C; Laktineh, I; Lamblot, S; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Last, I; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Legan, C K; Leitner, R; Lemoigne, Y; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Liko, D; Lindner, R; Lipniacka, A; Lippi, I; Lörstad, B; Loken, J G; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Maehlum, G; Maio, A; Malychev, V; Mandl, F; Marco, J; Marco, R P; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Maron, T; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Masik, J; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; Medbo, J; Merk, M; Meroni, C; Meyer, S; Meyer, W T; Michelotto, M; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Møller, R; Mönig, K; Monge, M R; Morettini, P; Müller, H; Mundim, L M; Murray, W J; Muryn, B; Myatt, Gerald; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Nawrocki, K; Negri, P; Neumann, W; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nieuwenhuizen, M; Nikolaenko, V; Niss, P; Nomerotski, A; Normand, Ainsley; Oberschulte-Beckmann, W; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Österberg, K; Ouraou, A; Paganini, P; Paganoni, M; Pagès, P; Palka, H; Papadopoulou, T D; Papageorgiou, K; Pape, L; Parkes, C; Parodi, F; Passeri, A; Pegoraro, M; Peralta, L; Pernegger, H; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Petrovykh, M; Phillips, H T; Piana, G; Pierre, F; Pimenta, M; Pindo, M; Plaszczynski, S; Podobrin, O; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Prest, M; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Rames, J; Ratoff, P N; Read, A L; Reale, M; Rebecchi, P; Redaelli, N G; Reid, D; Renton, P B; Resvanis, L K; Richard, F; Richardson, J; Rídky, J; Rinaudo, G; Ripp, I; Romero, A; Roncagliolo, I; Ronchese, P; Roos, L; Rosenberg, E I; Rosso, E; Roudeau, Patrick; Rovelli, T; Rückstuhl, W; Ruhlmann-Kleider, V; Ruiz, A; Rybicki, K; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salt, J; Sánchez, J; Sannino, M; Schimmelpfennig, M; Schneider, H; Schwickerath, U; Schyns, M A E; Sciolla, G; Scuri, F; Seager, P; Sedykh, Yu; Segar, A M; Seitz, A; Sekulin, R L; Shellard, R C; Siccama, I; Siegrist, P; Simonetti, S; Simonetto, F; Sissakian, A N; Sitár, B; Skaali, T B; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Solovyanov, O; Sosnowski, R; Souza-Santos, D; Spassoff, Tz; Spiriti, E; Sponholz, P; Squarcia, S; Stanescu, C; Stapnes, Steinar; Stavitski, I; Stichelbaut, F; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Tavernet, J P; Chikilev, O G; Tilquin, A; Timmermans, J; Tkatchev, L G; Todorov, T; Toet, D Z; Tomaradze, A G; Tomé, B; Tonazzo, A; Tortora, L; Tranströmer, G; Treille, D; Trischuk, W; Tristram, G; Trombini, A; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tyndel, M; Tzamarias, S; Überschär, B; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; Van der Velde, C; van Apeldoorn, G W; van Dam, P; Van Doninck, W K; Van Eldik, J; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Vilanova, D; Vincent, P; Vitale, L; Vlasov, E; Vodopyanov, A S; Vrba, V; Wahlen, H; Walck, C; Waldner, F; Weierstall, M; Weilhammer, Peter; Weiser, C; Wetherell, Alan M; Wicke, D; Wickens, J H; Wielers, M; Wilkinson, G R; Williams, W S C; Winter, M; Woschnagg, K; Yip, K; Yushchenko, O P; Zach, F; Zaitsev, A; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zito, M; Zontar, D; Zuberi, R; Zucchelli, G C; Zumerle, G

    1996-01-01

    Reconstructed \\lam\\ baryon decays and photon conversions in DELPHI are used to measure the \\sig\\ production rate from hadronic Z^0 decays at LEP. The number of \\sig\\ decays per hadronic Z decay is found to be: \\begin{center} = \\wffe{0.070}{0.010}{0.010 }{}. \\end{center} \\bigskip The \\Omega^- production rate is similarly measured to be: \\begin{center} = \\wffe{0.0014}{0.0002}{0.0004}{} \\end{center} by a combination of methods using constrained fits to the whole decay chain and particle identification.

  11. Omega documentation

    Energy Technology Data Exchange (ETDEWEB)

    Howerton, R.J.; Dye, R.E.; Giles, P.C.; Kimlinger, J.R.; Perkins, S.T.; Plechaty, E.F.

    1983-08-01

    OMEGA is a CRAY I computer program that controls nine codes used by LLNL Physical Data Group for: 1) updating the libraries of evaluated data maintained by the group (UPDATE); 2) calculating average values of energy deposited in secondary particles and residual nuclei (ENDEP); 3) checking the libraries for internal consistency, especially for energy conservation (GAMCHK); 4) producing listings, indexes and plots of the library data (UTILITY); 5) producing calculational constants such as group averaged cross sections and transfer matrices for diffusion and Sn transport codes (CLYDE); 6) producing and updating standard files of the calculational constants used by LLNL Sn and diffusion transport codes (NDFL); 7) producing calculational constants for Monte Carlo transport codes that use group-averaged cross sections and continuous energy for particles (CTART); 8) producing and updating standard files used by the LLNL Monte Carlo transport codes (TRTL); and 9) producing standard files used by the LANL pointwise Monte Carlo transport code MCNP (MCPOINT). The first four of these functions and codes deal with the libraries of evaluated data and the last five with various aspects of producing calculational constants for use by transport codes. In 1970 a series, called PD memos, of internal and informal memoranda was begun. These were intended to be circulated among the group for comment and then to provide documentation for later reference whenever questions arose about the subject matter of the memos. They have served this purpose and now will be drawn upon as source material for this more comprehensive report that deals with most of the matters covered in those memos.

  12. Omega documentation

    International Nuclear Information System (INIS)

    Howerton, R.J.; Dye, R.E.; Giles, P.C.; Kimlinger, J.R.; Perkins, S.T.; Plechaty, E.F.

    1983-08-01

    OMEGA is a CRAY I computer program that controls nine codes used by LLNL Physical Data Group for: 1) updating the libraries of evaluated data maintained by the group (UPDATE); 2) calculating average values of energy deposited in secondary particles and residual nuclei (ENDEP); 3) checking the libraries for internal consistency, especially for energy conservation (GAMCHK); 4) producing listings, indexes and plots of the library data (UTILITY); 5) producing calculational constants such as group averaged cross sections and transfer matrices for diffusion and Sn transport codes (CLYDE); 6) producing and updating standard files of the calculational constants used by LLNL Sn and diffusion transport codes (NDFL); 7) producing calculational constants for Monte Carlo transport codes that use group-averaged cross sections and continuous energy for particles (CTART); 8) producing and updating standard files used by the LLNL Monte Carlo transport codes (TRTL); and 9) producing standard files used by the LANL pointwise Monte Carlo transport code MCNP (MCPOINT). The first four of these functions and codes deal with the libraries of evaluated data and the last five with various aspects of producing calculational constants for use by transport codes. In 1970 a series, called PD memos, of internal and informal memoranda was begun. These were intended to be circulated among the group for comment and then to provide documentation for later reference whenever questions arose about the subject matter of the memos. They have served this purpose and now will be drawn upon as source material for this more comprehensive report that deals with most of the matters covered in those memos

  13. Polarization of the sigma minus hyperon produced by a polarized neutral particle beam

    International Nuclear Information System (INIS)

    Nguyen, A.N.

    1992-01-01

    A spin transfer technique has been tried in an attempt to produce a beam of polarized hyperons. The method makes use of a two-stage targeting scheme where unpolarized protons from Fermilab's Tevatron incident on target number one (Cu) at production angles of ±2.0 mrad would produce a beam of particles containing polarized Λs and Ξs as well as neutrons and Ks. This secondary beam would then be swept magnetically to retain only neutral particles and brought to bear on target number two (Cu) at 0.0 mrad, producing a tertiary beam of hyperons. The polarization of some 1.3 millions reconstructed Σ - → nπ - events in this tertiary beam (the Σ - having been produced in the inclusive reaction neutrals + Cu → Σ - + X) has been measured at average Σ - momenta 320 GeV/c (1.14 millions events) and 410 GeV/c (135,000 events) and found to be |P| = 3.9 ± 3.2 ± 1.8% and |P| = 13.9 ± 8.1 ± 2.0% respectively, where the first uncertainty is statistical and the second systematic. These polarizations are small and consistent with zero, and preclude a meaningful measurement of the Σ - magnetic moment by the spin precession method. The sign of the polarizations at the target is ambiguous, giving rise to two possible different solutions for the magnetic moment-one of two possible different solutions for the magnetic moment-one of which distinctly disagrees with the world average value for the moment. However, this solution fits the data slightly better than the other. This inconsistency would not exist if the polarization is, in fact, zero

  14. A study of the $\\omega\\omega$ channel produced in central pp interactions at 450 GeV/c

    CERN Document Server

    Barberis, D.; Close, F.E.; Danielsen, K.M.; Donskov, S.V.; Earl, B.C.; Evans, D.; French, B.R.; Hino, T.; Inaba, S.; Jacholkowski, A.; Jacobsen, T.; Khaustov, G.V.; Kinson, J.B.; Kirk, A.; Kondashov, A.A.; Lednev, A.A.; Lenti, V.; Minashvili, I.; Peigneux, J.P.; Romanovsky, V.; Russakovich, N.; Semenov, A.; Shagin, P.M.; Shimizu, H.; Singovsky, A.V.; Sobol, A.; Stassinaki, M.; Stroot, J.P.; Takamatsu, K.; Tsuru, T.; Villalobos Baillie, O.; Votruba, M.F.; Yasu, Y.

    2000-01-01

    The reaction pp -> pf (omega omega) ps has been studied at 450 GeV/c and a spin analysis of the omega omega channel has been performed for the first time in central production. Evidence is found for the f2(1910) in the JPC = 2++ wave with spin projection JZ = 2. This is the only state observed in central production with spin projection JZ = 2. Its dPT and phi dependencies are similar to those observed for other glueball candidates. In addition, evidence is found for a state with JPC = 4++ consistent with the f4(2300). The f0(2000), previously observed in the rho rho final state, is confirmed.

  15. Determination of particles concentration in Black Sea waters from spectral beam attenuation coefficient

    Science.gov (United States)

    Korchemkina, E. N.; Latushkin, A. A.; Lee, M. E.

    2017-11-01

    The methods of determination of concentration and scattering by suspended particles in seawater are compared. The methods considered include gravimetric measurements of the mass concentration of suspended matter, empirical and analytical calculations based on measurements of the light beam attenuation coefficient (BAC) in 4 spectral bands, calculation of backscattering by particles using satellite measurements in the visible spectral range. The data were obtained in two cruises of the R/V "Professor Vodyanitsky" in the deep-water part of the Black Sea in July and October 2016., Spatial distribution of scattering by marine particles according to satellite data is in good agreement with the contact measurements.

  16. A search for non-$q\\bar{q}$ mesons at the CERN Omega Spectrometer

    CERN Document Server

    Kirk, A.

    1999-01-01

    The non-Abelian nature of QCD suggests that particles that have a gluon constituent, such as glueballs or hybrids, should exist. Experiments WA76, WA91 and WA102 have performed a dedicated search for these states in central production using the CERN Omega Spectrometer. Several non-qqbar candidates have been observed. This paper presents a study of central meson production as a function of the difference in transverse momentum (dPT) of the exchanged particles which shows that undisputed qqbar mesons are suppressed at small dPT whereas the glueball candidates are enhanced.

  17. Macroscopic Description of Pressure-anisotropy-driven Collective Instability in Intense Charged Particle Beams

    International Nuclear Information System (INIS)

    Strasburg, Sean; Davidson, Ronald C.

    2000-01-01

    The macroscopic warm-fluid model developed by Lund and Davidson [Phys.Plasmas 5, 3028 (1998)] is used in the smooth-focusing approximation to investigate detailed stability properties of an intense charged particle beam with pressure anisotropy, assuming small-amplitude electrostatic perturbations about a waterbag equilibrium

  18. Choice of primary transducers of beam parameters for measuring and control systems of charged particle accelerators

    International Nuclear Information System (INIS)

    Rybin, V.M.

    1981-01-01

    Investigations on classification of primary transducers (pT) of the main parameters of charged particle beams are conducted for development of the common series on the base of program- controlled module systems for measuring the parameters of charged particle beams. The PT classification is exercised by: the physical principle of single transformation, the degree of effect on the beam, principle of operation, design, performance, location. It is shown that the optimal choice of PT and their parameters should be necessarily executed in several stages: estimation of the limiting possibilities of PT; choice of PT by time and metrological characteristics as well as sensitivity for the determined operation conditions; choice of the PT by the degree of effect on the beam: choice of the PT type with account of its design performance and location, determination of PT parameters with account of possibility of information, energy and design compatibility of the used standard. The classification results of magnetoinduction and acoustic transducers have shown that the number of their modifications does not exceed 100 [ru

  19. Mergers as an Omega estimator

    International Nuclear Information System (INIS)

    Carlberg, R.G.

    1990-01-01

    The redshift dependence of the fraction of galaxies which are merging or strongly interacting is a steep function of Omega and depends on the ratio of the cutoff velocity for interactions to the pairwise velocity dispersion. For typical galaxies the merger rate is shown to vary as (1 + z)exp m, where m is about 4.51 (Omega)exp 0.42, for Omega near 1 and a CDM-like cosmology. The index m has a relatively weak dependence on the maximum merger velocity, the mass of the galaxy, and the background cosmology, for small variations around a cosmology with a low redshift, z of about 2, of galaxy formation. Estimates of m from optical and IRAS galaxies have found that m is about 3-4, but with very large uncertainties. If quasar evolution follows the evolution of galaxy merging and m for quasars is greater than 4, then Omega is greater than 0.8. 21 refs

  20. First in-beam studies of a Resistive-Plate WELL gaseous multiplier

    CERN Document Server

    Bressler, S.; Pitt, M.; Kudella, S.; Azevedo, C.D.R.; Amaro, F.D.; Jorge, M.R.; dos Santos, J.M.F.; Veloso, J.F.C.A.; Natal da Luz, H.; Arazi, L.; Olivieri, E.; Breskin, A.

    2016-01-12

    We present the results of the first in-beam studies of a medium size (10$\\times$10 cm$^2$) Resistive-Plate WELL (RPWELL): a single-sided THGEM coupled to a pad anode through a resistive layer of high bulk resistivity ($\\sim$10$^9 \\Omega$cm). The 6.2~mm thick (excluding readout electronics) single-stage detector was studied with 150~GeV muons and pions. Signals were recorded from 1$\\times$1 cm$^2$ square copper pads with APV25-SRS readout electronics. The single-element detector was operated in Ne\\(5% $\\mathrm{CH_{4}}$) at a gas gain of a few times 10$^4$, reaching 99$\\%$ detection efficiency at average pad multiplicity of $\\sim$1.2. Operation at particle fluxes up to $\\sim$10$^4$ Hz/cm$^2$ resulted in $\\sim$23$\\%$ gain drop leading to $\\sim$5$\\%$ efficiency loss. The striking feature was the discharge-free operation, also in intense pion beams. These results pave the way towards robust, efficient large-scale detectors for applications requiring economic solutions at moderate spatial and energy resolutions.

  1. Effect of omega-3 on auditory system

    Directory of Open Access Journals (Sweden)

    Vida Rahimi

    2014-01-01

    Full Text Available Background and Aim: Omega-3 fatty acid have structural and biological roles in the body 's various systems . Numerous studies have tried to research about it. Auditory system is affected a s well. The aim of this article was to review the researches about the effect of omega-3 on auditory system.Methods: We searched Medline , Google Scholar, PubMed, Cochrane Library and SID search engines with the "auditory" and "omega-3" keywords and read textbooks about this subject between 19 70 and 20 13.Conclusion: Both excess and deficient amounts of dietary omega-3 fatty acid can cause harmful effects on fetal and infant growth and development of brain and central nervous system esspesially auditory system. It is important to determine the adequate dosage of omega-3.

  2. Time-resolved absorption measurements on OMEGA

    International Nuclear Information System (INIS)

    Jaanimagi, P.A.; DaSilva, L.; Delettrez, J.; Gregory, G.G.; Richardson, M.C.

    1986-01-01

    Time-resolved measurements of the incident laser light that is scattered and/or refracted from targets irradiated by the 24 uv-beam OMEGA laser at LLE, have provided some interesting features related to time-resolved absorption. The decrease in laser absorption characteristic of irradiating a target that implodes during the laser pulse has been observed. The increase in absorption expected as the critical density surface moves from a low to a high Z material in the target has also been noted. The detailed interpretation of these results is made through comparisons with simulation using the code LILAC, as well as with streak data from time-resolved x-ray imaging and spectroscopy. In addition, time and space-resolved imaging of the scattered light yields information on laser irradiation uniformity conditions on the target. The report consists of viewgraphs

  3. Method and system for correcting an aberration of a beam of charged particles

    Energy Technology Data Exchange (ETDEWEB)

    1975-06-20

    A beam of charged particles is deflected in a closed path such as a square over a cross wire grid, for example, at a constant velocity by an X Y deflection system. A small high frequency jitter is added at both axes of deflection to cause oscillation of the beam at 45deg to the X and Y axes. From the time that the leading edge of the oscillating beam passes over the wire until the trailing edge of the beam passes over the wire, an envelope of the oscillations produced by the jitter is obtained. A second envelope is obtained when the leading edge of the beam exits from being over the wire until the trailing edge of the beam ceases to be over the wire. Thus, a pair of envelopes is produced as the beam passes over each wire of the grid. The number of pulses exceeding ten percent of the peak voltage in the eight envelopes produced by the beam completing a cycle in its closed path around the grid are counted and compared with those counted during the previous cycle of the beam moving in its closed path over the grid. As the number of pulses decreases, the quality of the focus of the beam increases so that correction signals are applied to the focus coil in accordance with whether the number of pulses is increasing or decreasing.

  4. Method and system for correcting an aberration of a beam of charged particles

    International Nuclear Information System (INIS)

    1975-01-01

    A beam of charged particles is deflected in a closed path such as a square over a cross wire grid, for example, at a constant velocity by an X Y deflection system. A small high frequency jitter is added at both axes of deflection to cause oscillation of the beam at 45deg to the X and Y axes. From the time that the leading edge of the oscillating beam passes over the wire until the trailing edge of the beam passes over the wire, an envelope of the oscillations produced by the jitter is obtained. A second envelope is obtained when the leading edge of the beam exits from being over the wire until the trailing edge of the beam ceases to be over the wire. Thus, a pair of envelopes is produced as the beam passes over each wire of the grid. The number of pulses exceeding ten percent of the peak voltage in the eight envelopes produced by the beam completing a cycle in its closed path around the grid are counted and compared with those counted during the previous cycle of the beam moving in its closed path over the grid. As the number of pulses decreases, the quality of the focus of the beam increases so that correction signals are applied to the focus coil in accordance with whether the number of pulses is increasing or decreasing

  5. A summary of some beam-beam models

    International Nuclear Information System (INIS)

    Chao, A.W.

    1989-01-01

    Two categories of theoretical models for the beam-beam interaction are reviewed: the linear-lens models and the single-resonance models. In a linear-lens model, the beam-beam force is linearized and represented by a localized linear lens. Analyses of incoherent single particle effects can be performed exactly in these models by using matrix techniques. Although the results do not agree with the experimental observations in many respects, the linear-lens models constitute a starting point of our understanding of the beam-beam interaction. In the single-resonance models, one is concerned with the possible incoherent instabilities as the betatron tune of some of the particles is close to a certain rational number. It is assumed in these models that one and only one such rational number dominates the single-particle beam-beam effects. It is found that static single resonances cannot explain many of the experimental results. Some attempts have been made to modify the static single-resonance theory by including some mechanisms for diffusive tune fluctuations or periodic tune modulations. These modified single-resonance models have met only with some limited qualitative success. 21 refs., 13 figs

  6. Omega-3 and omega-6 content of medicinal foods for depressed patients: implications from the Iranian Traditional Medicine

    Directory of Open Access Journals (Sweden)

    Mandana Tavakkoli-Kakhki

    2014-06-01

    Full Text Available Objectives: Considering the increasing prevalence of depression in modern societies and the positive effects of omega-3 polyunsaturated fatty acids on depression, this study aims to investigate the omega-3 and omega-6 content of various foodstuffs, prescribed or prohibited by Iranian Traditional Medicine (ITM. Materials and Methods: Firstly, reliable sources of Iranian Traditional Medicine were reviewed in order to identify the prescribed and prohibited foodstuffs for depressed patients. Afterwards, according to the online database of United States Department of Agriculture (URL: http://ndb.nal.usda.gov/ndb/search/list, the ratio of linoleic acid to alpha linolenic acid (as representatives of omega-6 and omega-3, respectively was identified in each foodstuff. Finally, the ratios of omega-6 to omega-3 were compared between seven food groups of vegetables, fruits, dry goods, high protein products, dairies, breads, and spices. Results: Based on the resources of Iranian Traditional Medicine, the following foods are prescribed for depressed patients: basil, coriander, spinach, lettuce, squash, peppermint, dill, chicory, celery, beet, quince, cucumber, watermelon, grape, peach, pomegranate, banana, apple, currant, pistachio, dried fig, almond, egg, chicken, lamb, trout, milk, bread without bran,saffron, oregano, and coriander seeds. On the other hand, cabbage, eggplant, onion, garlic, broad beans, lentils, beef, whole wheat bread, and mustard are prohibited. It should be noted that omega-3 content in some prescribed foods is more than that of the prohibited ones. Conclusion: The present study showed that mint, basil, spinach, lettuce, squash, lamb, saffron, oregano, cucumber, pistachio, milk, and also wild trout can be considered as medicinal foods for depressed patients.

  7. Implementation of a secondary-ion tritium beam by means of the associated particle technique and its test on a gold target

    Energy Technology Data Exchange (ETDEWEB)

    Policroniades, R.; Fernández-Arnáiz, J.; Murillo, G.; Moreno, E.; Villaseñor, P.; Méndez, B. [Departamento de Aceleradores, Instituto Nacional de Investigaciones Nucleares, Carr. México-Toluca S/N, Ocoyoacac, Estado de México 52750 (Mexico); Chávez, E.; Ortíz-Salazar, M.E.; Huerta, A. [Instituto de Física, Universidad Nacional Autónoma de México, A.P. 20-364, México, D.F. 01000 (Mexico); Varela-González, A. [Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, A.P. 20-364, México, D.F. 01000 (Mexico)

    2014-05-21

    In this work we present the implementation and characterization of a (secondary ion) tritium beam generated through the D(d,t)p reaction, at deuteron energies of 2.0 and 1.88 MeV, tagging the tritium ions with the associated particle technique. In order to prove its utility as a projectile for scientific applications, this beam was made to impinge on a thin gold target to observe expected elastic scattering events. - Highlights: • A new secondary ion tritium beam obtained through the D(d,t)3He reaction. • Tritium beam tagging by the associated particle technique. • A low energy Tritium beam without radiation contamination of equipment. • Tritium elastic scattering on gold.

  8. Implementation of a secondary-ion tritium beam by means of the associated particle technique and its test on a gold target

    International Nuclear Information System (INIS)

    Policroniades, R.; Fernández-Arnáiz, J.; Murillo, G.; Moreno, E.; Villaseñor, P.; Méndez, B.; Chávez, E.; Ortíz-Salazar, M.E.; Huerta, A.; Varela-González, A.

    2014-01-01

    In this work we present the implementation and characterization of a (secondary ion) tritium beam generated through the D(d,t)p reaction, at deuteron energies of 2.0 and 1.88 MeV, tagging the tritium ions with the associated particle technique. In order to prove its utility as a projectile for scientific applications, this beam was made to impinge on a thin gold target to observe expected elastic scattering events. - Highlights: • A new secondary ion tritium beam obtained through the D(d,t)3He reaction. • Tritium beam tagging by the associated particle technique. • A low energy Tritium beam without radiation contamination of equipment. • Tritium elastic scattering on gold

  9. Inclusive Rates and Spectra of the Lambda, Cascade, and Omega Hyperons at BaBar

    International Nuclear Information System (INIS)

    Chien, A

    2008-01-01

    We employ Runs 1-4 off-peak data sample (about 21.5 fb -1 ) to produce the current world-best spectra and production rates measurements for three strangely-flavored baryons: the Λ hyperon, the cascade hyperon, and the (Omega) hyperon. These improved measurements shall enable theoretical and phenomelogical workers to generate more realistic models for the hadronization process, currently one of the unresolved problem areas in the standard model of particle physics. This analysis was conducted using codes from release 16 series. We report the production rate at 10.54 GeV for the Λ as 0.0900 ± 0.0006(stat.) ± 0.0039(sys.) per hadronic event. Our measured production rate at the same energy for the cascade hyperon is 0.00562 ± 0.00013(stat.) ± 0.00045(sys.) per hadronic event, while that for the (Omega) hyperon is 0.00027 ± 0.00004(stat.) ± 0.0008(sys.) per hadronic event. The spectral measurements for the respective particles also constitute current world-best measurements

  10. Experimental evidence of adiabatic splitting of charged particle beams using stable islands of transverse phase space

    Directory of Open Access Journals (Sweden)

    S. Gilardoni

    2006-10-01

    Full Text Available Recently, a novel technique to perform multiturn extraction from a circular particle accelerator was proposed. It is based on beam splitting and trapping, induced by a slow crossing of a nonlinear resonance, inside stable islands of transverse phase space. Experiments at the CERN Proton Synchrotron started in 2002 and evidence of beam splitting was obtained by summer 2004. In this paper, the measurement results achieved with both a low- and a high-intensity, single-bunch proton beam are presented.

  11. Beam losses and beam halos in accelerators for new energy sources

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1995-01-01

    Large particle accelerators are proposed as drivers for new ways to produce electricity from nuclear fusion and fission reactions. The accelerators must be designed to deliver large particle beam currents to a target facility with very little beam spill along the accelerator itself, in order that accelerator maintenance can be accomplished without remote manipulators. Typically, particle loss is preceded by the formation of a tenuous halo of particles around the central beam core, caused by beam dynamics effects, often coupled with the slight imperfections inevitable in a practical design. If the halo becomes large enough, particles may be scraped off along the accelerator. The tolerance for beam spill in different applications is discussed, halo mechanisms and recent work to explore and understand their dynamics are reviewed, and possible directions for future investigation are outlined. 17 refs., 10 figs

  12. High dietary ratio of omega-6 to omega-3 polyunsaturated acids during pregnancy and prevalence of post-partum depression.

    Science.gov (United States)

    da Rocha, Camilla M M; Kac, Gilberto

    2012-01-01

    Observational studies suggest association between low concentrations of omega-3 family fatty acids and greater risk for post-partum depression (PPD). The objective was to investigate the effect of unbalanced dietary intake of omega-6/omega-3 ratio >9:1 in the prevalence for PPD. The study comprises a prospective cohort with four waves of follow-up during pregnancy and one following delivery. PPD was evaluated according to the Edinburgh Post-partum Depression Scale (PPD ≥ 11) in 106 puerperae between 2005 and 2007, in Rio de Janeiro, Brazil. Independent variables included socio-demographic, obstetric, pre-pregnancy body mass index (BMI) and dietary intake data, which were obtained by means of a food frequency questionnaire in the first trimester of pregnancy. Statistical analysis involved calculation of PPD prevalence and multivariate Poisson regression with robust variance. PPD prevalence amounted to 26.4% [n = 28; confidence interval (CI) 95%: 18.0-34.8], and higher prevalences of PPD were observed in women who consumed an omega-6/omega-3 ratio >9:1 (60.0%) and in those with pre-pregnancy BMI <18.5 kg/m(2) (66.7%). These variables held as factors associated to PPD in the multivariate model, elevating the chances of occurrence of the outcome in 2.50 (CI 95%: 1.21-5.14) and 4.01 times (CI 95%: 1.96-8.20), respectively. Analyses were adjusted for age, schooling, pre-pregnancy BMI, lipids consumption and time elapsed since delivery. It verified an association between omega-6/omega-3 ratio above 9:1, the levels recommended by the Institute of Medicine, and the prevalence of PPD. These results add to the evidence regarding the importance of omega-6 and omega-3 fatty acids in the regulation of mental health mechanisms. © 2010 Blackwell Publishing Ltd.

  13. Observation of the (Omega)b- Baryon and Measurement of the Properties of the Ξb- and (Omega)b- Baryons

    International Nuclear Information System (INIS)

    Aaltonen, T.; Adelman, Jahred A.; Akimoto, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, Dante E.; Anastassov, A.; Annovi, Alberto; Antos, Jaroslav; Apollinari, G.; Apresyan, A.

    2009-01-01

    The authors report the observation of the bottom, doubly-strange baryon (Omega) b - through the decay chain (Omega) b - → J/ψ(Omega) - , where J/ψ → μ + μ - , (Omega) - → ΛK - , and Λ → p π - , using 4.2 fb -1 of data from p(bar p) collisions at √s = 1.96 TeV, and recorded with the Collider Detector at Fermilab. A signal is observed whose probability of arising from a background fluctuation is 4.0 x 10 -8 , or 5.5 Gaussian standard deviations. The (Omega) b - mass is measured to be 6054.4 ± 6.8(stat.) ± 0.9(syst.) MeV/c 2 . The lifetime of the (Omega) b - baryon is measured to be 1.13 -0.40 +0.53 (stat.) ± 0.02(syst.) ps. In addition, for the Ξ b - baryon they measure a mass of 5790.9 ± 2.6(stat.) ± 0.8(syst.) MeV/c 2 and a lifetime of 1.56 -0.25 +0.27 (stat.) ± 0.02(syst.) ps.

  14. Preventive effects of omega-3 and omega-6 Fatty acids on peroxide mediated oxidative stress responses in primary human trabecular meshwork cells.

    Directory of Open Access Journals (Sweden)

    Theofilos Tourtas

    Full Text Available Pathologic processes in glaucoma include increased apoptosis, accumulation of extracellular material in the trabecular meshwork and optic nerve, condensations of the cytoskeleton and precocious cellular senescence. Oxidative stress was shown to generate these alterations in primary ocular cells. Fatty acids omega-3 and -6 are alleged to constitute a prophylaxis against these deleterious effects. Here, we tested actual preventive effects omega-3 and -6 against peroxide induced stress responses in primary human trabecular meshwork cells. Changes of mitochondrial activity, proliferation, heat shock proteins, extracellular matrix components, and inflammatory markers were evaluated. Alterations of the cytoskeleton were evaluated by phalloidin labeling. Here we report a repressive effect of omega-6 on metabolic activity and proliferation, which was not detected for omega-3. Both agents were able to prevent the anti-proliferative effect of H₂O₂, but only omega-3 prevented metabolic repression. Expression of heat shock protein 27 was unaltered by both fatty acids, whereas heat shock protein 90 was significantly induced by both. Omega-6 increased fibronectin and connective tissue growth factor synthesis, as well as the amount of secreted fibronectin. Omega-3, instead, induced plasminogen activator inhibitor 1 synthesis. H₂O₂ further increased fibronectin production in omega-6 supplemented cells, which was not the case in omega-3 treated cells. H₂O₂ stimulation of plasminogen activator inhibitor 1 and connective tissue growth factor was repressed by both fatty acids. Both fatty acids appeared to abolish H₂O₂ mediated stimulation of nuclear factor κB and IL-6, but not IL-1α and IL-8. H₂O₂ induced formation of cross-linked actin networks and stress fibers, which was reduced by preemptive application of omega-3. Omega-6, in contrast, had no protective effect on that, and even seemed to promote condensation. Based on the observed side

  15. Production of structured lipid with a low omega-6/omega-3 fatty acids ratio by enzymatic interesterification

    International Nuclear Information System (INIS)

    Ilyasoglu, H.

    2017-01-01

    A structured lipid (SL) constituting omega fatty acids was synthesized by using linseed and grape seed oils as substrates via a lipase-catalyzed reaction. Lipozyme® TL IM was used as a biocatalyst. Good quadratic models predicting the incorporation of omega fatty acids were achieved via the Response surface methodology (RSM). The optimal conditions for targeted omega-6/omega-3 fatty acid ratio (2:1) were obtained at a substrate molar ratio 1.4, time 8.4 h, and enzyme amount 6.4%. The SL contained linoleic acid (43 g 100g-1), which was mainly located in the sn-2 position (40 g 100g-1). α-Linoleic acid, and α-linolenic acid at the sn-2 position were 22 g 100g-1, and 11 g 100g-1, respectively. The oxidative stability of the SL, and SL with antioxidants was also investigated. The produced SL may be proposed as a source of a balanced intake of omega fatty acids and an ingredient in functional food formulations. [es

  16. National direct-drive program on OMEGA and the National Ignition Facility

    Science.gov (United States)

    Goncharov, V. N.; Regan, S. P.; Campbell, E. M.; Sangster, T. C.; Radha, P. B.; Myatt, J. F.; Froula, D. H.; Betti, R.; Boehly, T. R.; Delettrez, J. A.; Edgell, D. H.; Epstein, R.; Forrest, C. J.; Glebov, V. Yu; Harding, D. R.; Hu, S. X.; Igumenshchev, I. V.; Marshall, F. J.; McCrory, R. L.; Michel, D. T.; Seka, W.; Shvydky, A.; Stoeckl, C.; Theobald, W.; Gatu-Johnson, M.

    2017-01-01

    A major advantage of the laser direct-drive (DD) approach to ignition is the increased fraction of laser drive energy coupled to the hot spot and relaxed hot-spot requirements for the peak pressure and convergence ratios relative to the indirect-drive approach at equivalent laser energy. With the goal of a successful ignition demonstration using DD, the recently established national strategy has several elements and involves multiple national and international institutions. These elements include the experimental demonstration on OMEGA cryogenic implosions of hot-spot conditions relevant for ignition at MJ-scale energies available at the National Ignition Facility (NIF) and developing an understanding of laser-plasma interactions and laser coupling using DD experiments on the NIF. DD designs require reaching central stagnation pressures in excess of 100 Gbar. The current experiments on OMEGA have achieved inferred peak pressures of 56 Gbar (Regan et al 2016 Phys. Rev. Lett. 117 025001). Extensive analysis of the cryogenic target experiments and two- and three-dimensional simulations suggest that power balance, target offset, and target quality are the main limiting factors in target performance. In addition, cross-beam energy transfer (CBET) has been identified as the main mechanism reducing laser coupling. Reaching the goal of demonstrating hydrodynamic equivalence on OMEGA includes improving laser power balance, target position, and target quality at shot time. CBET must also be significantly reduced and several strategies have been identified to address this issue.

  17. Study of the near-threshold omega phi mass enhancement in doubly OZI-suppressed J/psi -> gamma omega phi decays

    NARCIS (Netherlands)

    Ablikim, M.; Achasov, M. N.; Albayrak, O.; Ambrose, D. J.; An, F. F.; An, Q.; Bai, J. Z.; Ban, Y.; Becker, J.; Bennett, J. V.; Bertani, M.; Bian, J. M.; Boger, E.; Bondarenko, O.; Boyko, I.; Briere, R. A.; Bytev, V.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, J.C.; Chen, M.L.; Chen, S. J.; Chen, X.; Chen, Y.B.; Cheng, H. P.; Chu, Y. P.; Cronin-Hennessy, D.; Dai, H. L.; Dai, J.P.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; Ding, W. M.; Ding, Y.; Dong, L. Y.; Dong, M. Y.; Kalantar-Nayestanaki, N.; Kavatsyuk, M.; Liu, Cheng; Loehner, H.; Messchendorp, J. G.

    2013-01-01

    A 2:25 x 10(8) J/psi event sample accumulated with the BESIII detector is used to study the doubly Okubo-Zweig-Iizuka-suppressed decay modes J/psi -> gamma omega phi, omega -> pi(+)pi(-)pi(0), phi -> K+K-. A strong deviation (> 30 sigma) from three-body J/psi -> gamma omega phi phase space is

  18. Omega-3 index and prognosis in acute coronary chest pain patients with a low dietary intake of omega-3.

    Science.gov (United States)

    de la Fuente, Ricardo León; Naesgaard, Patrycja Anna; Nilsen, Stein Tore; Woie, Leik; Aarsland, Torbjørn; Gundersen, Thomas; Nilsen, Dennis W T

    2013-04-01

    The omega-3 index (eicosapentaenoic acid + docosahexaenoic acid) content in red blood cell membranes has been suggested as a novel risk marker for cardiac death. Objective. To assess the ability of the omega-3 index to predict all-cause mortality, cardiac death and sudden cardiac death following hospitalization with an acute coronary syndrome (ACS), and to include arachidonic acid (AA) in risk assessment. The omega-3 index was measured in 572 consecutive patients (median 63 years and 59% males) admitted with chest pain and suspected ACS in an inland Northern Argentinean city with a dietary habit that was essentially based on red meat and a low intake of fish. Clinical endpoints were collected during a 5-year follow-up period, median 3.6 years, range 1 day to 5.5 years. Stepwise Cox regression analysis was employed to compare the rate of new events in the quartiles of the omega-3 index measured at inclusion. Multivariable analysis was performed. No statistical significant differences in baseline characteristics were noted between quartiles of the omega-3 index. The median of the adjusted omega-3 index was 3.6%. During the follow-up period, 100 (17.5%) patients died. Event rates were similar in all quartiles of the omega-3 index, with no statistical significant differences. AA added no prognostic information. In a population with a low intake of fish and fish oils, the adjusted omega-3 index did not predict fatal events following hospitalization in patients with acute chest pain and suspected ACS.

  19. Getting ready for SPS beam

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    View from downstream of the WA7 experiment along beam H1B. In the foreground are scintillator hodoscopes and immediately behind them, is a threshold Cerenkov counter, standing on its edge. The WA7 control hut is located on the right, over the concrete shielding blocks. Still more right, the other branch of the H1 beam, E1A/H1A, runs towards the Omega Facility. WA7 by the CERN-Genoa-LAPP, Annecy-Niels Bohr Institute, Copenhagen-Oslo, University College, London Collaboration was meant to study two-body reactions at large transverse momentum.

  20. QBeRT: an innovative instrument for qualification of particle beam in real-time

    Science.gov (United States)

    Gallo, G.; Lo Presti, D.; Bonanno, D. L.; Longhitano, F.; Bongiovanni, D. G.; Reito, S.; Randazzo, N.; Leonora, E.; Sipala, V.; Tommasino, F.

    2016-11-01

    This paper describes an innovative beam diagnostic and monitoring system composed of a position sensitive detector and a residual range detector, based on scintillating optical fiber and on an innovative read-out strategy and reconstruction algorithm. The position sensitive detector consists of four layers of pre-aligned and juxtaposed scintillating fibres arranged to form two identical overlying and orthogonal planes. The 500 μm square section fibres are optically coupled to two Silicon Photomultiplier arrays using a channel reduction system patented by the Istituto Nazionale di Fisica Nucleare. The residual range detector is a stack of sixty parallel layers of the same fibres used in the position detector, each of which is optically coupled to a channel of Silicon Photomultiplier array by wavelength shifting fibres. The sensitive area of the two detectors is 9 × 9 cm2. After being fully characterized at CATANA proton therapy facility, the performance of the prototypes was tested during last year also at TIFPA proton irradiation facility. The unique feature of these detectors is the possibility to work in imaging conditions (e.g. a particle at a time up to 106 particles per second) and in therapy conditions up to 109 particles per second. The combined use of the two detectors, in imaging conditions, as an example of application, allows the particle radiography of an object. In therapy conditions, in particular, the system measures the position, the profiles, the energy and the fluence of the beam.

  1. QBeRT: an innovative instrument for qualification of particle beam in real-time

    International Nuclear Information System (INIS)

    Gallo, G.; Presti, D. Lo; Bonanno, D.L.; Longhitano, F.; Bongiovanni, D.G.; Reito, S.; Randazzo, N.; Leonora, E.; Sipala, V.; Tommasino, F.

    2016-01-01

    This paper describes an innovative beam diagnostic and monitoring system composed of a position sensitive detector and a residual range detector, based on scintillating optical fiber and on an innovative read-out strategy and reconstruction algorithm. The position sensitive detector consists of four layers of pre-aligned and juxtaposed scintillating fibres arranged to form two identical overlying and orthogonal planes. The 500 μm square section fibres are optically coupled to two Silicon Photomultiplier arrays using a channel reduction system patented by the Istituto Nazionale di Fisica Nucleare. The residual range detector is a stack of sixty parallel layers of the same fibres used in the position detector, each of which is optically coupled to a channel of Silicon Photomultiplier array by wavelength shifting fibres. The sensitive area of the two detectors is 9 × 9 cm 2 . After being fully characterized at CATANA proton therapy facility, the performance of the prototypes was tested during last year also at TIFPA proton irradiation facility. The unique feature of these detectors is the possibility to work in imaging conditions (e.g. a particle at a time up to 10 6 particles per second) and in therapy conditions up to 10 9 particles per second. The combined use of the two detectors, in imaging conditions, as an example of application, allows the particle radiography of an object. In therapy conditions, in particular, the system measures the position, the profiles, the energy and the fluence of the beam.

  2. Particle beam experiments for the analysis of reactive sputtering processes in metals and polymer surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Corbella, Carles; Grosse-Kreul, Simon; Kreiter, Oliver; Arcos, Teresa de los; Benedikt, Jan; Keudell, Achim von [RD Plasmas with Complex Interactions, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum (Germany)

    2013-10-15

    A beam experiment is presented to study heterogeneous reactions relevant to plasma-surface interactions in reactive sputtering applications. Atom and ion sources are focused onto the sample to expose it to quantified beams of oxygen, nitrogen, hydrogen, noble gas ions, and metal vapor. The heterogeneous surface processes are monitored in situ by means of a quartz crystal microbalance and Fourier transform infrared spectroscopy. Two examples illustrate the capabilities of the particle beam setup: oxidation and nitriding of aluminum as a model of target poisoning during reactive magnetron sputtering, and plasma pre-treatment of polymers (PET, PP)

  3. Food supplementation for workers: flour enriched with omega -3

    Directory of Open Access Journals (Sweden)

    Adriana Nery de Oliveira

    2015-01-01

    Full Text Available The objective of this study was preparing a product (omega-3 flour to increase the nutritional value of the food for workers concerning the content of omega-3 fatty acids (n-3 FA. The omega-3 flour was prepared using waste (head sardines and leaves of carrot, flaxseed flour, manioc flour and spices. The fatty acids (FA concentration was analyzed by gas chromatography. A total of 28 FA were identified in the omega-3 flour. The concentration of eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA were 329.23mg EPA 100 g-1 omega-3 flour and 545.35 mg DHA 100 g-1 omega-3 flour. To meet the minimum requirements of omega -3, it is necessary the intake 2.5 to 3 tablespoons (soup of omega-3 flour day-1.There were analyzed two meals (A and B generally consumed by workers without and with the addition of the omega-3 flour (1 and 2 tablespoons to verify if there was an increase of n-3 FA. It was concluded that there was a significant increase of these FA in both meals. It was found that the omega-3 flour is constituted of a good nutritional value, especially the n-3 FA, so the product can be used as a supplement in the feeding of the workers as well as in other segments.

  4. Semileptonic Decays of Heavy Omega Baryons in a Quark Model

    International Nuclear Information System (INIS)

    Muslema Pervin; Winston Roberts; Simon Capstick

    2006-01-01

    The semileptonic decays of (Omega) c and (Omega) b are treated in the framework of a constituent quark model developed in a previous paper on the semileptonic decays of heavy Λ baryons. Analytic results for the form factors for the decays to ground states and a number of excited states are evaluated. For (Omega) b to (Omega) c the form factors obtained are shown to satisfy the relations predicted at leading order in the heavy-quark effective theory at the non-recoil point. A modified fit of nonrelativistic and semirelativistic Hamiltonians generates configuration-mixed baryon wave functions from the known masses and the measured Λ c + → Λe + ν rate, with wave functions expanded in both harmonic oscillator and Sturmian bases. Decay rates of (Omega) b to pairs of ground and excited (Omega) c states related by heavy-quark symmetry calculated using these configuration-mixed wave functions are in the ratios expected from heavy-quark effective theory, to a good approximation. Our predictions for the semileptonic elastic branching fraction of (Omega) Q vary minimally within the models we use. We obtain an average value of (84 ± 2%) for the fraction of (Omega) c → Ξ (*) decays to ground states, and 91% for the fraction of (Omega) c → (Omega) (*) decays to the ground state (Omega). The elastic fraction of (Omega) b → (Omega) c ranges from about 50% calculated with the two harmonic-oscillator models, to about 67% calculated with the two Sturmian models

  5. Cosmology with decaying particles

    Energy Technology Data Exchange (ETDEWEB)

    Turner, M.S.

    1984-09-01

    We consider a cosmological model in which an unstable massive relic particle species (denoted by X) has an initial mass density relative to baryons ..beta../sup -1/ identically equal rho/sub X//rho/sub B/ >> 1, and then decays recently (redshift z less than or equal to 1000) into particles which are still relativistic today (denoted by R). We write down and solve the coupled equations for the cosmic scale factor a(t), the energy density in the various components (rho/sub X/, rho/sub R/, rho/sub B/), and the growth of linear density perturbations (delta rho/rho). The solutions form a one parameter (..beta..) family of solutions; physically ..beta../sup -1/ approx. = (..cap omega../sub R//..cap omega../sub NR/) x (1 + z/sub D/) = (ratio today of energy density of relativistic to nonrelativistic particles) x (1 + redshift of (decay)). We discuss the observational implications of such a cosmological model and compare our results to earlier results computed in the simultaneous decay approximation. In an appendix we briefly consider the case where one of the decay products of the X is massive and becomes nonrelativistic by the present epoch. 21 references.

  6. The production of {eta} and {omega} mesons in 3.5 GeV p+p interaction in HADES

    Energy Technology Data Exchange (ETDEWEB)

    Teilab, Khaled

    2011-08-31

    The study of meson production in proton-proton collisions in the energy range up to one GeV above the production threshold provides valuable information about the nature of the nucleon-nucleon interaction. Theoretical models describe the interaction between nucleons via the exchange of mesons. In such models, different mechanisms contribute to the production of the mesons in nucleon-nucleon collisions. The measurement of total and differential production cross sections provide information which can help in determining the magnitude of the various mechanisms. Moreover, such cross section information serves as an input to the transport calculations which describe e.g. the production of e{sup +}e{sup -} pairs in proton- and pion-induced reactions as well as in heavy ion collisions. In this thesis, the production of {omega} and {eta} mesons in proton-proton collisions at 3.5 GeV beam energy was studied using the High Acceptance DiElectron Spectrometer (HADES) installed at the Schwerionensynchrotron (SIS 18) at the Helmholtzzentrum fuer Schwerionenforschung in Darmstadt. About 80 000 {omega} mesons and 35 000 {eta} mesons were reconstructed. Total production cross sections of both mesons were determined. Furthermore, the collected statistics allowed for extracting angular distributions of both mesons as well as performing Dalitz plot studies. The {omega} and {eta} mesons were reconstructed via their decay into three pions ({pi}{sup +}{pi}{sup -}{pi}{sup 0}) in the exclusive reaction pp {yields} pp{pi}{sup +}{pi}{sup -}{pi}{sup 0}. The charged particles were identified via their characteristic energy loss, via the measurement of their time of flight and momentum, or using kinematics. The neutral pion was reconstructed using the missing mass method. A kinematic fit was applied to improve the resolution and to select events in which a {pi}{sup 0} was produced. The correction of measured yields for the effects of spectrometer acceptance was done as a function of four

  7. Superconducting quantum interference monitor of charged particle beam current

    International Nuclear Information System (INIS)

    Gertsev, K.F.; Mikheev, M.S.

    1981-01-01

    Description and test results of the monitor of charged particle beam current on the base of the high-frequency superconducting quantum interference detector with lead slotted shield are presented. The toroidal superconducting coil, which covers the measured beam has 16 turns wound by the lead belt of 7 mm width with 0.5 mm gaps between the turns. A superconducting low-coupling monitor having two holes and point oxidated niobium contact has been used in the mode of quanta counting of magnetic flux. The lead point shield was 2 mm thick and it had 30 mm aperture. The coefficient of background shielding within 0-200 Hz frequency range constituted more than 10 8 . The threshold current resolution of the monitor had the value less than 01 μA √Hz. The suggested monitor requires helium cooling. The proposed design of the monitor is applicable for mounting on the vacuum chamber when it is surrounded by helium conductor. In other cases mounting of low-powerful autonomic system or cryostat of helium storage up to several weeks is possible [ru

  8. Two-stream sausage and hollowing instabilities in high-intensity particle beams

    International Nuclear Information System (INIS)

    Uhm, Han S.; Davidson, Ronald C.; Kaganovich, Igor

    2001-01-01

    Axisymmetric two-stream instabilities in high-intensity particle beams are investigated analytically by making use of the Vlasov-Maxwell equations in the smooth-focusing approximation. The eigenfunctions for the axisymmetric radial modes are calculated self-consistently in order to determine the dispersion relation describing collective stability properties. Stability properties for the sausage and hollowing modes, characterized by radial mode numbers n=1 and n=2, respectively, are investigated, and the dispersion relations are obtained for the complex eigenfrequency ω in terms of the axial wavenumber k and other system parameters. The eigenfunctions obtained self-consistently for the sausage and hollowing modes indicate that the perturbations exist only inside the beam. Therefore, the location of the conducting wall does not have an effect on stability behavior. The growth rates of the sausage and hollowing modes are of the same order of magnitude as that of the hose (dipole-mode) instability. Therefore, it is concluded that the axisymmetric sausage and hollowing instabilities may also be deleterious to intense ion beam propagation when a background component of electrons is presented

  9. Scattering of Gaussian beam by a spherical particle with a spheroidal inclusion

    International Nuclear Information System (INIS)

    Zhang Huayong; Liao Tongqing

    2011-01-01

    A generalized Lorenz-Mie theory framework (GLMT) is applied to the study of Gaussian beam scattering by a spherical particle with an embedded spheroid at the center. By virtue of a transformation between the spherical and spheroidal vector wave functions, a theoretical procedure is developed to deal with the boundary conditions. Numerical results of the normalized differential scattering cross section are presented.

  10. Study of chemically synthesized ZnO nano particles under a bio template using radioactive ion beam

    CERN Multimedia

    This is a project proposal to study nano sized semiconductor ZnO system, useful in biology and medicinal purposes, using radioactive ion beam from ISOLDE. Doping of the nano particles with Cu, Cd and Ga ions (in their variable valancy states) are expected to impart changes in the electrical structure and properties in the said system under study. The morphological changes, chemical environment, micro structure, electrical and optical properties of the nano size particles of ZnO system (developed under a bio template of folic acid) after the interaction with radioactive ion beam will be studied. The provision of perturbed angular correlation (PAC) study with respect to the changes in chemical environment, where ever possible will be attempted.

  11. Development of a PIXE (Particle Induced X-ray Emission) analysis device using an extracted proton beam

    International Nuclear Information System (INIS)

    Saidi, A.

    1989-01-01

    The experimental device described allows the extention of the PIXE (Particle Induced X-ray Emission) method to the analysis, by means of proton beams, of solid or liquid samples, which can not be analyzed under vacuum conditions. The homogeneity of the surfaces to be analysed and elements (in the atmosphere) which absorb X-rays must be taken into account. Liquid samples do not need special care. The results show that: at high energies, the extracted beam sensibility is of the same order of magnitude as those obtained under vacuum; at low energies, the performance under vacuum conditions is better. The particles energy losses, at the exit membrane and in the outer atmosphere, decrease the X-rays production efficiency [fr

  12. Beam instability during high-current heavy-ion beam transport

    International Nuclear Information System (INIS)

    Kikuchi, T.; Someya, T.; Kawata, S.; Nakajima, M.; Horioka, K.

    2005-01-01

    In driver system for heavy ion inertial fusion, beam dynamics is investigated by particle-in-cell simulations during final beam bunching. The particle simulations predict that the beam is transported with the localized transverse charge distribution induced by the strong space charge effect. The calculation results also show that the emittance growth during the longitudinal bunch compression for various particle distributions at the initial conditions and with two types of transverse focusing model, which are a continuous focusing and an alternating gradient focusing lattice configurations. (author)

  13. Measurement of the Spin of the Omega- Hyperon at Babar

    International Nuclear Information System (INIS)

    Aubert, B.

    2006-01-01

    A measurement of the spin of the (Omega) - hyperon produced through the exclusive process Ξ c 0 → (Omega) - K + is presented using a total integrated luminosity of 116 fb -1 recorded with the BABAR detector at the e + e - asymmetric-energy B-Factory at SLAC. Under the assumption that the Ξ c 0 has spin 1/2, the angular distribution of the Λ from (Omega) - → ΛK - decay is inconsistent with all half-integer (Omega) - spin values other than 3/2. Lower statistics data for the process (Omega) c 0 → (Omega) - π + from a 230 fb -1 sample are also found to be consistent with (Omega) - spin 3/2. If the Ξ c 0 spin were 3/2, an (Omega) - spin of 5/2 cannot be excluded

  14. Studies on the nondestructive emittance measurement at a negative-hydrogen-ion beam; Untersuchungen zur zerstoerungsfreien Emittanzmessung an einem negativen Wasserstoffionenstrahl

    Energy Technology Data Exchange (ETDEWEB)

    Gabor, C.

    2007-07-01

    In the present thesis the already known idea to apply photodetechment for the diagnosis at a H{sup -} beam has be newly interpretated and improved. Thereby a nondestructive emittance measurement method was developed, which is especially suited for future high-current accelerator projects. For emittance measurements thereby mechanical components can be totally abandoned, if at a small part of the H{sup -} ions the additional with only 0.754 eV weak bound electron is separated by photodetachment {Dirac_h}{omega}+H{sup -}{yields}H{sup 0}+e{sup -}. The neutralized H{sup -} ions can be magnetically or electrostatically separated from the electrons and the remaining H{sup -} ions. Especially the neutral particles are offered by their insensitivity against external electromagnetic fields for the determination of the phase-space distribution of the ion beam. Also the momentum transfer by photodetechment can be neglected at the neutralized ions. The detection of the divergence angle has been pursued by a scintillator with a CCD camera. For the calculation of the number of neutralized particles a simplified model under assumption of homogeneous density distributions was developed. The aim of the approximation was to make statements about the requirement on the laser system and the detector. Thereby especially the suitability of the measurement for high beam currents and beam parameters, as they are typically present behind a RFQ. Further aspects like the influence of the angle between laser and ion beams, relativistic ion beam, as well as the position and angular resolution have been also object of the discussion.

  15. Beam dynamics calculations for the linac booster beam line

    International Nuclear Information System (INIS)

    Lu, J.Q.; Cramer, J.G.; Storm, D.W.

    1987-01-01

    Beam optics focusing characteristics both in the transverse and longitudinal directions of the superconducting linac booster beam line are calculated for different particles. Three computer programs, which are TRANSPORT, LYRA and ENTIME, are used to simulate particle motions. The first one is used to simulate the particle radial motions. The effects of energy increase on to the transverse phase space area are considered by putting in accelerating matrices of each resonators. The second program is used to simulate particle longitudinal motions. Beam longitudinal motions are calculated with program ENTIME also, with which visual pictures in the Energy-Time phase space can be displayed on the terminal screen. Besides, the stability of the particle periodic motions in the radial directions are considered and calculated

  16. Omega-3 and Omega-6 Fatty Acids Act as Inhibitors of the Matrix Metalloproteinase-2 and Matrix Metalloproteinase-9 Activity.

    Science.gov (United States)

    Nicolai, Eleonora; Sinibaldi, Federica; Sannino, Gianpaolo; Laganà, Giuseppina; Basoli, Francesco; Licoccia, Silvia; Cozza, Paola; Santucci, Roberto; Piro, Maria Cristina

    2017-08-01

    Polyunsaturated fatty acids have been reported to play a protective role in a wide range of diseases characterized by an increased metalloproteinases (MMPs) activity. The recent finding that omega-3 and omega-6 fatty acids exert an anti-inflammatory effect in periodontal diseases has stimulated the present study, designed to determine whether such properties derive from a direct inhibitory action of these compounds on the activity of MMPs. To this issue, we investigated the effect exerted by omega-3 and omega-6 fatty acids on the activity of MMP-2 and MMP-9, two enzymes that actively participate to the destruction of the organic matrix of dentin following demineralization operated by bacteria acids. Data obtained (both in vitro and on ex-vivo teeth) reveal that omega-3 and omega-6 fatty acids inhibit the proteolytic activity of MMP-2 and MMP-9, two enzymes present in dentin. This observation is of interest since it assigns to these compounds a key role as MMPs inhibitors, and stimulates further study to better define their therapeutic potentialities in carious decay.

  17. Rare B Meson Decays With Omega Mesons

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lei; /Colorado U.

    2006-04-24

    Rare charmless hadronic B decays are particularly interesting because of their importance in understanding the CP violation, which is essential to explain the matter-antimatter asymmetry in our universe, and of their roles in testing the ''effective'' theory of B physics. The study has been done with the BABAR experiment, which is mainly designed for the study of CP violation in the decays of neutral B mesons, and secondarily for rare processes that become accessible with the high luminosity of the PEP-II B Factory. In a sample of 89 million produced B{bar B} pairs on the BABAR experiment, we observed the decays B{sup 0} {yields} {omega}K{sup 0} and B{sup +} {yields} {omega}{rho}{sup +} for the first time, made more precise measurements for B{sup +} {yields} {omega}h{sup +} and reported tighter upper limits for B {yields} {omega}K* and B{sup 0} {yields} {omega}{rho}{sup 0}.

  18. The Omega-Infinity Limit of Single Spikes

    CERN Document Server

    Axenides, Minos; Linardopoulos, Georgios

    A new infinite-size limit of strings in RxS2 is presented. The limit is obtained from single spike strings by letting their angular velocity omega become infinite. We derive the energy-momenta relation of omega-infinity single spikes as their linear velocity v-->1 and their angular momentum J-->1. Generally, the v-->1, J-->1 limit of single spikes is singular and has to be excluded from the spectrum and be studied separately. We discover that the dispersion relation of omega-infinity single spikes contains logarithms in the limit J-->1. This result is somewhat surprising, since the logarithmic behavior in the string spectra is typically associated with their motion in non-compact spaces such as AdS. Omega-infinity single spikes seem to completely cover the surface of the 2-sphere they occupy, so that they may essentially be viewed as some sort of "brany strings". A proof of the sphere-filling property of omega-infinity single spikes is given in the appendix.

  19. Spatial, spectral and statistical properties of the electrostatic fluctuations and measurements of the scattering of the beam in a strongly turbulent plasma

    Science.gov (United States)

    McFarland, Michael Duane

    The purpose of this investigation is to measure the spatial, spectral and statistical properties of the high (/omega/ ~/ ω pe) and low (/omega/ ~/ ωpi) frequency electrostatic fluctuations in an unmagnetized, statistically stable, beam-driven, strongly turbulent plasma and compare the results to theoretical predictions. In addition the scattering of the electron beam in both angle and energy is measured and compared to theory. This study is motivated by the recent advances in statistical theories of strong Langmuir turbulence and the glaring lack of confirmatory experimental data. With the advent of modern computers and electronics, enormous data sets are now routinely digitize and subjected to sophisticated statistical and spectral analysis. These methods, along with traditional procedures and an innovative technique known as a 'conditional trigger', are used to extract ensemble averages from the turbulent system for comparison with the theoretical models. It is found that the high-frequency fluctuations consist of low-level wave activity /langle W/rangle/ ~/ 10-2 - 103 punctuated by semi-periodic, intense, spiky field events /langle W/rangle/ ~/ 1, where /langle W/rangle is the normalized intensity. The low- level wave activity has a spectral spread Δ k/k/ ~/ /Delta/omega//omega/ ~ 30%, dispersion relation v beam/ ~/ /omega/k, and correlation length lc/ /approx/ 3λES, where λES is the electrostatic wavelength, and shows evidence of low-intensity parametric decay products. The intense field events, on the other hand, show little correlation for l/ >/ λES, have a full-width-at-half-maximum of 1 f/ /n2/ /propto/ β where β ~/ 1.3 for the experiment and is predicted to be β ~/ 1.98 by the model. The scattering of the electron beam in angle for a typical wave intensity level /langle W/rangle/ ~/ 0.04 is Θ ~/ 3o, and in energy is Δ U/ ~/ 25 eV for a 400 eV beam. The scattering of the beam in both angle and energy is found to agree well with theory.

  20. Charged corpuscular beam detector

    Energy Technology Data Exchange (ETDEWEB)

    Hikawa, H; Nishikawa, Y

    1970-09-29

    The present invention relates to a charged particle beam detector which prevents transient phenomena disturbing the path and focusing of a charged particle beam travelling through a mounted axle. The present invention provides a charged particle beam detector capable of decreasing its reaction to the charge in energy of the charged particle beam even if the relative angle between the mounted axle and the scanner is unstable. The detector is characterized by mounting electrically conductive metal pieces of high melting point onto the face of a stepped, heat-resistant electric insulating material such that the pieces partially overlap each other and individually provide electric signals, whereby the detector is no longer affected by the beam. The thickness of the metal piece is selected so that an eddy current is not induced therein by an incident beam, thus the incident beam is not affected. The detector is capable of detecting a misaligned beam since the metal pieces partially overlap each other.

  1. Development and testing of an ion probe for tightly-bunched particle beams

    International Nuclear Information System (INIS)

    Ngo, M.; Pasour, J.

    1996-06-01

    Many high-energy physics experiments require a high-quality and well-diagnosed charged-particle beam (CPB). Precise knowledge of beam size, position, and charge distribution is often crucial to the success of the experiment. It is also important in many applications that the diagnostic used to determine the beam parameters be nonintercepting and nonperturbing. This requirement rules out many diagnostics, such as wire scanners, thin foils which produce Cerenkov or transition radiation, and even some rf cavity diagnostics. Particularly difficult to diagnose are tightly-focused (r b + ) to probe rapidly varying fields in plasmas. The probe ions are injected across the beam tube and into the path of the high-energy CPB. The ions are deflected by the CPB, and the direction and magnitude of the deflection are directly related to the spatial and temporal charge distribution of the CPB. Easily-resolved deflections can be produced by microbunches having total charge on the order of a nCoul and pulse durations of a few psec. The deflected ions are monitored with a suitable detector, in this case a microchannel plate capable of detecting single ions

  2. Gamma-H2AX foci in cells exposed to a mixed beam of X-rays and alpha particles

    Science.gov (United States)

    2012-01-01

    Background Little is known about the cellular effects of exposure to mixed beams of high and low linear energy transfer radiation. So far, the effects of combined exposures have mainly been assessed with clonogenic survival or cytogenetic methods, and the results are contradictory. The gamma-H2AX assay has up to now not been applied in this context, and it is a promising tool for investigating the early cellular response to mixed beam irradiation. Purpose To determine the dose response and repair kinetics of gamma-H2AX ionizing radiation-induced foci in VH10 human fibroblasts exposed to mixed beams of 241Am alpha particles and X-rays. Results VH10 human fibroblasts were irradiated with each radiation type individually or both in combination at 37°C. Foci were scored for repair kinetics 0.5, 1, 3 and 24 h after irradiation (one dose per irradiation type), and for dose response at the 1 h time point. The dose response effect of mixed beam was additive, and the relative biological effectiveness for alpha particles (as compared to X-rays) was of 0.76 ± 0.52 for the total number of foci, and 2.54 ± 1.11 for large foci. The repair kinetics for total number of foci in cells exposed to mixed beam irradiation was intermediate to that of cells exposed to alpha particles and X-rays. However, for mixed beam-irradiated cells the frequency and area of large foci were initially lower than predicted and increased during the first 3 hours of repair (while the predicted number and area did not). Conclusions The repair kinetics of large foci after mixed beam exposure was significantly different from predicted based on the effect of the single dose components. The formation of large foci was delayed and they did not reach their maximum area until 1 h after irradiation. We hypothesize that the presence of low X-ray-induced damage engages the DNA repair machinery leading to a delayed DNA damage response to the more complex DNA damage induced by alpha particles. PMID:23121736

  3. Simulation of Beam-Beam Background at CLIC

    CERN Document Server

    Sailer, Andre

    2010-01-01

    The dense beams used at CLIC to achieve a high luminosity will cause a large amount of background particles through beam-beam interactions. Generator level studies with GuineaPig and full detector simulation studies with an ILD based CLIC detector have been performed to evaluate the amount of beam-beam background hitting the vertex detector.

  4. Simulation of Beam-Beam Background at CLIC

    CERN Document Server

    Sailer, A

    2010-01-01

    The dense beams used at CLIC to achieve a high luminosity will cause a large amount of background particles through beam-beam interactions. Generator level studies with GUINEAPIG and full detector simulation studies with an ILD based CLIC detector have been performed to evaluate the amount of beam-beam back- ground hitting the vertex detector.

  5. Scanned beams of high-energy charged particles and features of their collimation

    International Nuclear Information System (INIS)

    Zor'ko, K.I.; Kudoyarov, M.F.; Matyukov, A.V.; Mukhin, S.A.; Patrova, M.Ya.

    2007-01-01

    The coordinate distributions of the accelerated charged particle flux density that are simultaneously formed by sinusoidal scanning and collimation are analyzed. Under certain formation conditions, the edge portions of these distributions are shown to take a two-humped shape. The experimental data obtained are in good agreement with the calculation. Recommendations are made about practical use of these beams in view of the above effects [ru

  6. Particle-in-cell simulations of electron beam control using an inductive current divider

    Energy Technology Data Exchange (ETDEWEB)

    Swanekamp, S. B.; Angus, J. R.; Cooperstein, G.; Ottinger, P. F.; Richardson, A. S.; Schumer, J. W.; Weber, B. V. [Plasma Physics Division, Naval Research Laboratory, Washington, District of Columbia 20375 (United States)

    2015-11-15

    Kinetic, time-dependent, electromagnetic, particle-in-cell simulations of the inductive current divider are presented. The inductive current divider is a passive method for controlling the trajectory of an intense, hollow electron beam using a vacuum structure that inductively splits the beam's return current. The current divider concept was proposed and studied theoretically in a previous publication [Swanekamp et al., Phys. Plasmas 22, 023107 (2015)]. A central post carries a portion of the return current (I{sub 1}), while the outer conductor carries the remainder (I{sub 2}) with the injected beam current given by I{sub b} = I{sub 1} + I{sub 2}. The simulations are in agreement with the theory which predicts that the total force on the beam trajectory is proportional to (I{sub 2}−I{sub 1}) and the force on the beam envelope is proportional to I{sub b}. Independent control over both the current density and the beam angle at the target is possible by choosing the appropriate current-divider geometry. The root-mean-square (RMS) beam emittance (ε{sub RMS}) varies as the beam propagates through the current divider to the target. For applications where control of the beam trajectory is desired and the current density at the target is similar to the current density at the entrance foil, there is a modest 20% increase in ε{sub RMS} at the target. For other applications where the beam is pinched to a current density ∼5 times larger at the target, ε{sub RMS} is 2–3 times larger at the target.

  7. Gyrokinetic modelling of the quasilinear particle flux for plasmas with neutral-beam fuelling

    Science.gov (United States)

    Narita, E.; Honda, M.; Nakata, M.; Yoshida, M.; Takenaga, H.; Hayashi, N.

    2018-02-01

    A quasilinear particle flux is modelled based on gyrokinetic calculations. The particle flux is estimated by determining factors, namely, coefficients of off-diagonal terms and a particle diffusivity. In this paper, the methodology to estimate the factors is presented using a subset of JT-60U plasmas. First, the coefficients of off-diagonal terms are estimated by linear gyrokinetic calculations. Next, to obtain the particle diffusivity, a semi-empirical approach is taken. Most experimental analyses for particle transport have assumed that turbulent particle fluxes are zero in the core region. On the other hand, even in the stationary state, the plasmas in question have a finite turbulent particle flux due to neutral-beam fuelling. By combining estimates of the experimental turbulent particle flux and the coefficients of off-diagonal terms calculated earlier, the particle diffusivity is obtained. The particle diffusivity should reflect a saturation amplitude of instabilities. The particle diffusivity is investigated in terms of the effects of the linear instability and linear zonal flow response, and it is found that a formula including these effects roughly reproduces the particle diffusivity. The developed framework for prediction of the particle flux is flexible to add terms neglected in the current model. The methodology to estimate the quasilinear particle flux requires so low computational cost that a database consisting of the resultant coefficients of off-diagonal terms and particle diffusivity can be constructed to train a neural network. The development of the methodology is the first step towards a neural-network-based particle transport model for fast prediction of the particle flux.

  8. EFEK SUPLEMENTASI OMEGA-3 PADA PENDERITA ARTRITIS REUMATOID

    Directory of Open Access Journals (Sweden)

    Reviana Christiani

    2012-11-01

    Full Text Available Effects of Omega-3 Supplementation on Patients With Rheumatoid Arthritis.A study on omega-3 supplementation was conducted to women of 55-90 years old with active rheumatoid arthritis who stay at home for elderly (in six nursing home in Bogor. The objective of this study is to see the effects of omega-3 supplementation on patients with active rheumatoid arthritis. Sixty subjects (respondents were devided into two groups. The first group, 30 respondents, were given an omega-3 capsuls (180 mg EPA and 120 mg DHA every day for two months; the second group, also 30 respondents, were given placebo capsules (equal. Data collected including identity of respondents, anthropometric, clinical status, radiology (rontgen, and blood sample analysis (LED and ARF. The results of this study showed that omega-3 supplementation proportionally decreased the quantity of patients with morning stiffness significantly, decreased the quantity of patients with joint swelling (not significant, failed inreducing the quantity of patients with joint pain, and failed in changing the value of RF (from + to - of patients. The omega-3 supplementation on patients with active rheumatoid arthritis also failed in decreasing the average of LED of the patients, and failed in changing the result of rontgen.Keywords: rheumatoid arthritis, EPA & DHA omega-3, supplementtaion, elderly.

  9. Nano/micro particle beam for ceramic deposition and mechanical etching

    International Nuclear Information System (INIS)

    Chun, Doo-Man; Kim, Min-Saeng; Kim, Min-Hyeng; Ahn, Sung-Hoon; Yeo, Jun-Cheol; Lee, Caroline Sunyong

    2010-01-01

    Nano/micro particle beam (NPB) is a newly developed ceramic deposition and mechanical etching process. Additive (deposition) and subtractive (mechanical etching) processes can be realized in one manufacturing process using ceramic nano/micro particles. Nano- or micro-sized powders are sprayed through the supersonic nozzle at room temperature and low vacuum conditions. According to the process conditions, the ceramic powder can be deposited on metal substrates without thermal damage, and mechanical etching can be conducted in the same process with a simple change of process conditions and powders. In the present work, ceramic aluminum oxide (Al 2 O 3 ) thin films were deposited on metal substrates. In addition, the glass substrate was etched using a mask to make small channels. Deposited and mechanically etched surface morphology, coating thickness and channel depth were investigated. The test results showed that the NPB provides a feasible additive and subtractive process using ceramic powders.

  10. 3D Simulations of Space Charge Effects in Particle Beams

    Energy Technology Data Exchange (ETDEWEB)

    Adelmann, A

    2002-10-01

    For the first time, it is possible to calculate the complicated three-dimensional proton accelerator structures at the Paul Scherrer Institut (PSI). Under consideration are external and self effects, arising from guiding and space-charge forces. This thesis has as its theme the design, implementation and validation of a tracking program for charged particles in accelerator structures. This work form part of the discipline of Computational Science and Engineering (CSE), more specifically in computational accelerator modelling. The physical model is based on the collisionless Vlasov-Maxwell theory, justified by the low density ({approx} 10{sup 9} protons/cm{sup 3}) of the beam and of the residual gas. The probability of large angle scattering between the protons and the residual gas is then sufficiently low, as can be estimated by considering the mean free path and the total distance a particle travels in the accelerator structure. (author)

  11. 3D Simulations of Space Charge Effects in Particle Beams

    International Nuclear Information System (INIS)

    Adelmann, A.

    2002-10-01

    For the first time, it is possible to calculate the complicated three-dimensional proton accelerator structures at the Paul Scherrer Institut (PSI). Under consideration are external and self effects, arising from guiding and space-charge forces. This thesis has as its theme the design, implementation and validation of a tracking program for charged particles in accelerator structures. This work form part of the discipline of Computational Science and Engineering (CSE), more specifically in computational accelerator modelling. The physical model is based on the collisionless Vlasov-Maxwell theory, justified by the low density (∼ 10 9 protons/cm 3 ) of the beam and of the residual gas. The probability of large angle scattering between the protons and the residual gas is then sufficiently low, as can be estimated by considering the mean free path and the total distance a particle travels in the accelerator structure. (author)

  12. Choice of theoretical model for beam scattering at accelerator output foil for particle energy determination

    International Nuclear Information System (INIS)

    Balagyra, V.S.; Ryabka, P.M.

    1999-01-01

    For measuring the charged particle energy calculations of mean square angles of electron beam multiple Coulomb scattering at output combined accelerator target were undertaken according to seven theoretical models. Mollier method showed the best agreement with experiments

  13. Omega-3/Omega-6 Fatty Acids for Attention Deficit Hyperactivity Disorder: A Randomized Placebo-Controlled Trial in Children and Adolescents

    Science.gov (United States)

    Johnson, Mats; Ostlund, Sven; Fransson, Gunnar; Kadesjo, Bjorn; Gillberg, Christopher

    2009-01-01

    Objective: The aim of the study was to assess omega 3/6 fatty acids (eye q) in attention deficit hyperactivity disorder (ADHD). Method: The study included a randomized, 3-month, omega 3/6 placebo-controlled, one-way crossover trial with 75 children and adolescents (8-18 years), followed by 3 months with omega 3/6 for all. Investigator-rated ADHD…

  14. Efectos y controversias de los ácidos grasos omega-3: effects and controversies Omega-3 fatty acids

    Directory of Open Access Journals (Sweden)

    Fernando Manzur

    Full Text Available Gracias al descubrimieno del mecanismo de acción de los ácidos grasos omega-3 para disminuir las arritmias ventriculares, éstos han vuelto a cobrar importancia por su efecto cardio-protector. La ingestión de ácidos grasos omega-3 disminuye el riesgo de trombosis y accidentes cerebro-vasculares al disminuir los lípidos sanguíneos, mejorando en esta forma la función endotelial. Sin embargo, algunos estudios epidemiológicos no han encontrado una relación directa a este respecto y además hay controversia respecto a las dosis necesarias para lograr este efecto cardio-protector. Hay estudios que reportan que el contenido de metil-mercurio en peces afecta la disposición de los ácidos grasos omega-3. En el Caribe colombiano se ha encontrado contaminación de peces con metil-mercurio.Thanks to the discovery of omega-3 fatty acids’ mechanism of action, these have regained importance due to its cardio-protective effect. The ingestion of omega-3 fatty acids diminishes the risk of thrombosis and cerebro-vascular accidents by lowering serum lipids and improving endothelial function. Nevertheless, some epidemiological studies have not found a direct relationship with them and there is controversy with regard to the doses needed in order to achieve this cardio-protective effect. There are studies reporting that the methyl-mercury content in fish affects omega-3 fatty acids’ disposal. In the Colombian Caribbean region, fish contamination with methyl-mercury has been found.

  15. Coherent production of {epsilon}{sup +} particles in crystal using proton beam from SSC

    Energy Technology Data Exchange (ETDEWEB)

    Okorokov, V.V.; Dubin, A.Yu. [ITER, Moscow, (Russian Federation)

    1995-05-01

    The unique possibilities of the SSC can be ideally used for a new generation of coherent generation experiments with relativistic protons which require 20 Tev energy of the incident beam. The availability of 20 Tev proton beam at SSC allows new experiments on coherent production of {var_epsilon}{sup +} particle by relativistic proton in crystal. Experiment carried out at low energies can now be extended with protons in very narrow energy region (resonance energy, which easy can be calculated) using the new accelerator facilities at SSC. We propose to study coherent production via the Coulomb field of the cristal atoms to excite the transition p + {gamma}{implies} {var_epsilon} {sup +} (1189).

  16. Physics of Neutralization of Intense Charged Particle Beam Pulses by a Background Plasma

    International Nuclear Information System (INIS)

    Kaganovich, I.D.; Davidson, R.C.; Dorf, M.A.; Startsev, E.A.; Sefkow, A.B; Friedman, A.F.; Lee, E.P.

    2009-01-01

    Neutralization and focusing of intense charged particle beam pulses by a background plasma forms the basis for a wide range of applications to high energy accelerators and colliders, heavy ion fusion, and astrophysics. For example, for ballistic propagation of intense ion beam pulses, background plasma can be used to effectively neutralize the beam charge and current, so that the self-electric and self-magnetic fields do not affect the ballistic propagation of the beam. From the practical perspective of designing advanced plasma sources for beam neutralization, a robust theory should be able to predict the self-electric and self-magnetic fields during beam propagation through the background plasma. The major scaling relations for the self-electric and self-magnetic fields of intense ion charge bunches propagating through background plasma have been determined taking into account the effects of transients during beam entry into the plasma, the excitation of collective plasma waves, the effects of gas ionization, finite electron temperature, and applied solenoidal and dipole magnetic fields. Accounting for plasma production by gas ionization yields a larger self-magnetic field of the ion beam compared to the case without ionization, and a wake of current density and self-magnetic field perturbations is generated behind the beam pulse. A solenoidal magnetic field can be applied for controlling the beam propagation. Making use of theoretical models and advanced numerical simulations, it is shown that even a small applied magnetic field of about 100G can strongly affect the beam neutralization. It has also been demonstrated that in the presence of an applied magnetic field the ion beam pulse can excite large-amplitude whistler waves, thereby producing a complex structure of self-electric and self-magnetic fields. The presence of an applied solenoidal magnetic field may also cause a strong enhancement of the radial self-electric field of the beam pulse propagating

  17. Beam halo studies using a three-dimensional particle-core model

    Directory of Open Access Journals (Sweden)

    Ji Qiang

    2000-06-01

    Full Text Available In this paper we present a study of beam halo based on a three-dimensional particle-core model of an ellipsoidal bunched beam in a constant focusing channel including the effects of nonlinear rf focusing. For an initially mismatched beam, three linear envelope modes—a high frequency mode, a low frequency mode, and a quadrupole mode—are identified for an azimuthally symmetric bunched beam. The high frequency mode has three components all in phase; the low frequency mode has the transverse components in phase and the longitudinal component 180° out of phase; the quadrupole mode has no longitudinal component, and the two transverse components in the mode are 180° out of phase. We also study the case of an ellipsoidal bunched beam without azimuthal symmetry and find that the high frequency mode and the low frequency mode are still present but the quadrupole mode is replaced by a new mode with transverse components 180° out of phase and a nonzero longitudinal component. Previous studies, which generally addressed the situation where the longitudinal-to-transverse focusing strength is roughly 0.6 or less, conclude that the oscillation of the high frequency mode is predominantly transverse, and that of the low frequency mode is predominantly longitudinal. In this paper we present a systematic study of the features of the modes as a function of the longitudinal-to-transverse focusing strength ratio. We find that, when the ratio is greater than unity, the high frequency mode may contain a significant longitudinal component. Thus, excitation of the high frequency mode in this situation can be responsible for the formation of longitudinal beam halo. Furthermore, while previous studies have observed halo amplitudes roughly 2–3 times the matched beam edge, for the present parameters we observe much larger amplitudes (5 times or more. This is due to the fact that the longitudinal-to-transverse focusing ratio used here is greater than that of previous

  18. Beam diagnostics for low energy beams

    Directory of Open Access Journals (Sweden)

    J. Harasimowicz

    2012-12-01

    Full Text Available Low-energetic ion and antimatter beams are very attractive for a number of fundamental studies. The diagnostics of such beams, however, is a challenge due to low currents down to only a few thousands of particles per second and significant fraction of energy loss in matter at keV beam energies. A modular set of particle detectors has been developed to suit the particular beam diagnostic needs of the ultralow-energy storage ring (USR at the future facility for low-energy antiproton and ion research, accommodating very low beam intensities at energies down to 20 keV. The detectors include beam-profile monitors based on scintillating screens and secondary electron emission, sensitive Faraday cups for absolute intensity measurements, and capacitive pickups for beam position monitoring. In this paper, the design of all detectors is presented in detail and results from beam measurements are shown. The resolution limits of all detectors are described and options for further improvement summarized. Whilst initially developed for the USR, the instrumentation described in this paper is also well suited for use in other low-intensity, low-energy accelerators, storage rings, and beam lines.

  19. Tight focusing of a radially polarized Laguerre–Bessel–Gaussian beam and its application to manipulation of two types of particles

    International Nuclear Information System (INIS)

    Nie, Zhongquan; Shi, Guang; Li, Dongyu; Zhang, Xueru; Wang, Yuxiao; Song, Yinglin

    2015-01-01

    The intensity distributions near the focus for radially polarized Laguerre–Bessel–Gaussian beams by a high numerical aperture objective in the immersion liquid are computed based on the vector diffraction theory. We compare the focusing properties of the radially polarized Laguerre–Bessel–Gaussian beams with those of Laguerre–Gaussian and Bessel–Gaussian modes. Furthermore, the effects of the optimally designed concentric three-zone phase filters on the intensity profiles in the focal region are examined. We further analyze the radiation forces on Rayleigh particles produced by the highly focused radially polarized Laguerre–Bessel–Gaussian beams using the specially engineered three-zone phase filters. - Highlights: • The tightly focusing of radially polarized LBG beams is examined. • The focusing performances of LBG beams are preferable over that of LG and BG modes. • A bright spot and an optical cage can be formed by special phase modulation. • These special focusing patterns can stably manipulate two types of particles

  20. Simulationen zur Optimierung der omega-Rekonstruktion in ALICE

    CERN Document Server

    AUTHOR|(CDS)2239688; Khoukaz, Alfons

    In this thesis pp-collisions at $\\sqrt{s}$ = 7 TeV are simulated using PYTHIA and the produced omega-mesons are reconstructed via the $\\omega \\to \\pi^+\\pi^-\\pi^0$ decay-channel. By using further simulations of single omega-mesons, kinematic angle cuts are extracted and applied to the simulation data in order to check, whether or not the reconstruction can be improved.