WorldWideScience

Sample records for oligomers neurotoxicity providing

  1. Mitochondrial Ca2+ overload underlies Abeta oligomers neurotoxicity providing an unexpected mechanism of neuroprotection by NSAIDs.

    Directory of Open Access Journals (Sweden)

    Sara Sanz-Blasco

    Full Text Available Dysregulation of intracellular Ca(2+ homeostasis may underlie amyloid beta peptide (Abeta toxicity in Alzheimer's Disease (AD but the mechanism is unknown. In search for this mechanism we found that Abeta(1-42 oligomers, the assembly state correlating best with cognitive decline in AD, but not Abeta fibrils, induce a massive entry of Ca(2+ in neurons and promote mitochondrial Ca(2+ overload as shown by bioluminescence imaging of targeted aequorin in individual neurons. Abeta oligomers induce also mitochondrial permeability transition, cytochrome c release, apoptosis and cell death. Mitochondrial depolarization prevents mitochondrial Ca(2+ overload, cytochrome c release and cell death. In addition, we found that a series of non-steroidal anti-inflammatory drugs (NSAIDs including salicylate, sulindac sulfide, indomethacin, ibuprofen and R-flurbiprofen depolarize mitochondria and inhibit mitochondrial Ca(2+ overload, cytochrome c release and cell death induced by Abeta oligomers. Our results indicate that i mitochondrial Ca(2+ overload underlies the neurotoxicity induced by Abeta oligomers and ii inhibition of mitochondrial Ca(2+ overload provides a novel mechanism of neuroprotection by NSAIDs against Abeta oligomers and AD.

  2. Mitochondrial Ca2+ overload underlies Abeta oligomers neurotoxicity providing an unexpected mechanism of neuroprotection by NSAIDs.

    Science.gov (United States)

    Sanz-Blasco, Sara; Valero, Ruth A; Rodríguez-Crespo, Ignacio; Villalobos, Carlos; Núñez, Lucía

    2008-07-23

    Dysregulation of intracellular Ca(2+) homeostasis may underlie amyloid beta peptide (Abeta) toxicity in Alzheimer's Disease (AD) but the mechanism is unknown. In search for this mechanism we found that Abeta(1-42) oligomers, the assembly state correlating best with cognitive decline in AD, but not Abeta fibrils, induce a massive entry of Ca(2+) in neurons and promote mitochondrial Ca(2+) overload as shown by bioluminescence imaging of targeted aequorin in individual neurons. Abeta oligomers induce also mitochondrial permeability transition, cytochrome c release, apoptosis and cell death. Mitochondrial depolarization prevents mitochondrial Ca(2+) overload, cytochrome c release and cell death. In addition, we found that a series of non-steroidal anti-inflammatory drugs (NSAIDs) including salicylate, sulindac sulfide, indomethacin, ibuprofen and R-flurbiprofen depolarize mitochondria and inhibit mitochondrial Ca(2+) overload, cytochrome c release and cell death induced by Abeta oligomers. Our results indicate that i) mitochondrial Ca(2+) overload underlies the neurotoxicity induced by Abeta oligomers and ii) inhibition of mitochondrial Ca(2+) overload provides a novel mechanism of neuroprotection by NSAIDs against Abeta oligomers and AD.

  3. Alpha-synuclein oligomers - neurotoxic molecules in Parkinson’s disease and other Lewy body disorders

    Directory of Open Access Journals (Sweden)

    Martin Ingelsson

    2016-09-01

    Full Text Available Adverse intra- and extracellular effects of toxic α-synuclein are believed to be central to the pathogenesis in Parkinson’s disease and other disorders with Lewy body pathology in the nervous system. One of the physiological roles of α-synuclein relates to the regulation of neurotransmitter release at the presynapse, although it is still unclear whether this mechanism depends on the action of monomers or smaller oligomers. As for the pathogenicity, accumulating evidence suggest that prefibrillar species, rather than the deposits per se, are responsible for the toxicity in affected cells. In particular, larger oligomers or protofibrils of α-synuclein have been shown to impair protein degradation as well as the function of several organelles, such as the mitochondria and the endoplasmic reticulum. Accumulating evidence further suggest that oligomers/protofibrils may have a toxic effect on the synapse, which may lead to disrupted electrophysiological properties. In addition, recent data indicate that oligomeric α-synuclein species can spread between cells, either as free-floating proteins or via extracellular vesicles, and thereby act as seeds to propagate disease between interconnected brain regions. Taken together, several lines of evidence suggest that α-synuclein have neurotoxic properties and therefore should be an appropriate molecular target for therapeutic intervention in Parkinson’s disease and other disorders with Lewy pathology. In this context, immunotherapy with monoclonal antibodies against α-synuclein oligomers/protofibrils should be a particularly attractive treatment option.

  4. Ellagic acid promotes A{beta}42 fibrillization and inhibits A{beta}42-induced neurotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Ying [Department of Histology and Embryology, College of Basic Medical Science, China Medical University, Shenyang 110001 (China); Tsinghua University School of Medicine, Haidian District, Beijing 100084 (China); Yang, Shi-gao; Du, Xue-ting; Zhang, Xi; Sun, Xiao-xia; Zhao, Min [Tsinghua University School of Medicine, Haidian District, Beijing 100084 (China); Sun, Gui-yuan, E-mail: sungy2004@sohu.com [Department of Histology and Embryology, College of Basic Medical Science, China Medical University, Shenyang 110001 (China); Liu, Rui-tian, E-mail: rtliu@tsinghua.edu.cn [Tsinghua University School of Medicine, Haidian District, Beijing 100084 (China)

    2009-12-25

    Smaller, soluble oligomers of {beta}-amyloid (A{beta}) play a critical role in the pathogenesis of Alzheimer's disease (AD). Selective inhibition of A{beta} oligomer formation provides an optimum target for AD therapy. Some polyphenols have potent anti-amyloidogenic activities and protect against A{beta} neurotoxicity. Here, we tested the effects of ellagic acid (EA), a polyphenolic compound, on A{beta}42 aggregation and neurotoxicity in vitro. EA promoted A{beta} fibril formation and significant oligomer loss, contrary to previous results that polyphenols inhibited A{beta} aggregation. The results of transmission electron microscopy (TEM) and Western blot displayed more fibrils in A{beta}42 samples co-incubated with EA in earlier phases of aggregation. Consistent with the hypothesis that plaque formation may represent a protective mechanism in which the body sequesters toxic A{beta} aggregates to render them harmless, our MTT results showed that EA could significantly reduce A{beta}42-induced neurotoxicity toward SH-SY5Y cells. Taken together, our results suggest that EA, an active ingredient in many fruits and nuts, may have therapeutic potential in AD.

  5. Atorvastatin prevents Aβ oligomer-induced neurotoxicity in cultured rat hippocampal neurons by inhibiting Tau cleavage

    Science.gov (United States)

    Sui, Hai-juan; Zhang, Ling-ling; Liu, Zhou; Jin, Ying

    2015-01-01

    Aim: The proteolytic cleavage of Tau is involved in Aβ-induced neuronal dysfunction and cell death. In this study, we investigated whether atorvastatin could prevent Tau cleavage and hence prevent Aβ1–42 oligomer (AβO)-induced neurotoxicity in cultured cortical neurons. Methods: Cultured rat hippocampal neurons were incubated in the presence of AβOs (1.25 μmol/L) with or without atorvastatin pretreatment. ATP content and LDH in the culture medium were measured to assess the neuronal viability. Caspase-3/7 and calpain protease activities were detected. The levels of phospho-Akt, phospho-Erk1/2, phospho-GSK3β, p35 and Tau proteins were measured using Western blotting. Results: Treatment of the neurons with AβO significantly decreased the neuronal viability, induced rapid activation of calpain and caspase-3/7 proteases, accompanied by Tau degradation and relatively stable fragments generated in the neurons. AβO also suppressed Akt and Erk1/2 kinase activity, while increased GSK3β and Cdk5 activity in the neurons. Pretreatment with atorvastatin (0.5, 1, 2.5 μmol/L) dose-dependently inhibited AβO-induced activation of calpain and caspase-3/7 proteases, and effectively diminished the generation of Tau fragments, attenuated synaptic damage and increased neuronal survival. Atorvastatin pretreatment also prevented AβO-induced decreases in Akt and Erk1/2 kinase activity and the increases in GSK3β and Cdk5 kinase activity. Conclusion: Atorvastatin prevents AβO-induced neurotoxicity in cultured rat hippocampal neurons by inhibiting calpain- and caspase-mediated Tau cleavage. PMID:25891085

  6. Amyloid-β oligomer detection by ELISA in cerebrospinal fluid and brain tissue.

    Science.gov (United States)

    Bruggink, Kim A; Jongbloed, Wesley; Biemans, Elisanne A L M; Veerhuis, Rob; Claassen, Jurgen A H R; Kuiperij, H Bea; Verbeek, Marcel M

    2013-02-15

    Amyloid-β (Aβ) deposits are important pathological hallmarks of Alzheimer's disease (AD). Aβ aggregates into fibrils; however, the intermediate oligomers are believed to be the most neurotoxic species and, therefore, are of great interest as potential biomarkers. Here, we have developed an enzyme-linked immunosorbent assay (ELISA) specific for Aβ oligomers by using the same capture and (labeled) detection antibody. The ELISA predominantly recognizes relatively small oligomers (10-25 kDa) and not monomers. In brain tissue of APP/PS1 transgenic mice, we found that Aβ oligomer levels increase with age. However, for measurements in human samples, pretreatment to remove human anti-mouse antibodies (HAMAs) was required. In HAMA-depleted human hippocampal extracts, the Aβ oligomer concentration was significantly increased in AD compared with nondemented controls. Aβ oligomer levels could also be quantified in pretreated cerebrospinal fluid (CSF) samples; however, no difference was detected between AD and control groups. Our data suggest that levels of small oligomers might not be suitable as biomarkers for AD. In addition, we demonstrate the importance of avoiding HAMA interference in assays to quantify Aβ oligomers in human body fluids. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Tau oligomers impair memory and induce synaptic and mitochondrial dysfunction in wild-type mice

    Directory of Open Access Journals (Sweden)

    Jackson George R

    2011-06-01

    Full Text Available Abstract Background The correlation between neurofibrillary tangles of tau and disease progression in the brains of Alzheimer's disease (AD patients remains an area of contention. Innovative data are emerging from biochemical, cell-based and transgenic mouse studies that suggest that tau oligomers, a pre-filament form of tau, may be the most toxic and pathologically significant tau aggregate. Results Here we report that oligomers of recombinant full-length human tau protein are neurotoxic in vivo after subcortical stereotaxic injection into mice. Tau oligomers impaired memory consolidation, whereas tau fibrils and monomers did not. Additionally, tau oligomers induced synaptic dysfunction by reducing the levels of synaptic vesicle-associated proteins synaptophysin and septin-11. Tau oligomers produced mitochondrial dysfunction by decreasing the levels of NADH-ubiquinone oxidoreductase (electron transport chain complex I, and activated caspase-9, which is related to the apoptotic mitochondrial pathway. Conclusions This study identifies tau oligomers as an acutely toxic tau species in vivo, and suggests that tau oligomers induce neurodegeneration by affecting mitochondrial and synaptic function, both of which are early hallmarks in AD and other tauopathies. These results open new avenues for neuroprotective intervention strategies of tauopathies by targeting tau oligomers.

  8. Protein misfolding cyclic amplification induces the conversion of recombinant prion protein to PrP oligomers causing neuronal apoptosis.

    Science.gov (United States)

    Yuan, Zhen; Yang, Lifeng; Chen, Baian; Zhu, Ting; Hassan, Mohammad Farooque; Yin, Xiaomin; Zhou, Xiangmei; Zhao, Deming

    2015-06-01

    The formation of neurotoxic prion protein (PrP) oligomers is thought to be a key step in the development of prion diseases. Recently, it was determined that the sonication and shaking of recombinant PrP can convert PrP monomers into β-state oligomers. Herein, we demonstrate that β-state oligomeric PrP can be generated through protein misfolding cyclic amplification from recombinant full-length hamster, human, rabbit, and mutated rabbit PrP, and that these oligomers can be used for subsequent research into the mechanisms of PrP-induced neurotoxicity. We have characterized protein misfolding cyclic amplification-induced monomer-to-oligomer conversion of PrP from three species using western blotting, circular dichroism, size-exclusion chromatography, and resistance to proteinase K (PK) digestion. We have further shown that all of the resulting β-oligomers are toxic to primary mouse cortical neurons independent of the presence of PrP(C) in the neurons, whereas the corresponding monomeric PrP were not toxic. In addition, we found that this toxicity is the result of oligomer-induced apoptosis via regulation of Bcl-2, Bax, and caspase-3 in both wild-type and PrP(-/-) cortical neurons. It is our hope that these results may contribute to our understanding of prion transformation within the brain. We found that β-state oligomeric PrPs can be generated through protein misfolding cyclic amplification (PMCA) from recombinant full-length hamster, human, rabbit, and mutated rabbit PrP. β-oligomers are toxic to primary mouse cortical neurons independent of the presence of PrP(C) in the neurons, while the corresponding monomeric PrPs were not toxic. This toxicity is the result of oligomers-induced apoptosis via regulation of Bcl-2, Bax, and caspase-3. These results may contribute to our understanding of prion transformation within the brain. © 2015 International Society for Neurochemistry.

  9. Optimization of the All-D Peptide D3 for Aβ Oligomer Elimination.

    Directory of Open Access Journals (Sweden)

    Antonia Nicole Klein

    Full Text Available The aggregation of amyloid-β (Aβ is postulated to be the crucial event in Alzheimer's disease (AD. In particular, small neurotoxicoligomers are considered to be responsible for the development and progression of AD. Therefore, elimination of thesis oligomers represents a potential causal therapy of AD. Starting from the well-characterized d-enantiomeric peptide D3, we identified D3 derivatives that bind monomeric Aβ. The underlying hypothesis is that ligands bind monomeric Aβ and stabilize these species within the various equilibria with Aβ assemblies, leading ultimately to the elimination of Aβ oligomers. One of the hereby identified d-peptides, DB3, and a head-to-tail tandem of DB3, DB3DB3, were studied in detail. Both peptides were found to: (i inhibit the formation of Thioflavin T-positive fibrils; (ii bind to Aβ monomers with micromolar affinities; (iii eliminate Aβ oligomers; (iv reduce Aβ-induced cytotoxicity; and (v disassemble preformed Aβ aggregates. The beneficial effects of DB3 were improved by DB3DB3, which showed highly enhanced efficacy. Our approach yielded Aβ monomer-stabilizing ligands that can be investigated as a suitable therapeutic strategy against AD.

  10. Self-propagative replication of Aβ oligomers suggests potential transmissibility in Alzheimer disease.

    Directory of Open Access Journals (Sweden)

    Amit Kumar

    Full Text Available The aggregation of amyloid-β (Aβ peptide and its deposition in parts of the brain form the central processes in the etiology of Alzheimer disease (AD. The low-molecular weight oligomers of Aβ aggregates (2 to 30 mers are known to be the primary neurotoxic agents whose mechanisms of cellular toxicity and synaptic dysfunction have received substantial attention in the recent years. However, how these toxic agents proliferate and induce widespread amyloid deposition throughout the brain, and what mechanism is involved in the amplification and propagation of toxic oligomer species, are far from clear. Emerging evidence based on transgenic mice models indicates a transmissible nature of Aβ aggregates and implicates a prion-like mechanism of oligomer propagation, which manifests as the dissemination and proliferation of Aβ toxicity. Despite accumulating evidence in support of a transmissible nature of Aβ aggregates, a clear, molecular-level understanding of this intriguing mechanism is lacking. Recently, we reported the characterization of unique replicating oligomers of Aβ42 (12-24 mers in vitro called Large Fatty Acid-derived Oligomers (LFAOs (Kumar et al., 2012, J. Biol. Chem. In the current report, we establish that LFAOs possess physiological activity by activating NF-κB in human neuroblastoma cells, and determine the experimental parameters that control the efficiency of LFAO replication by self-propagation. These findings constitute the first detailed report on monomer - oligomer lateral propagation reactions that may constitute potential mechanism governing transmissibility among Aβ oligomers. These data support the previous reports on transmissible mechanisms observed in transgenic animal models.

  11. Aβ42 oligomers selectively disrupt neuronal calcium release.

    Science.gov (United States)

    Lazzari, Cristian; Kipanyula, Maulilio J; Agostini, Mario; Pozzan, Tullio; Fasolato, Cristina

    2015-02-01

    Accumulation of amyloid-β (Aβ) peptides correlates with aging and progression of Alzheimer's disease (AD). Aβ peptides, which cause early synaptic dysfunctions, spine loss, and memory deficits, also disturb intracellular Ca(2+) homeostasis. By cytosolic and endoplasmic reticulum Ca(2+) measurements, we here define the short-term effects of synthetic Aβ42 on neuronal Ca(2+) dynamics. When applied acutely at submicromolar concentration, as either oligomers or monomers, Aβ42 did not cause Ca(2+) release or Ca(2+) influx. Similarly, 1-hour treatment with Aβ42 modified neither the resting cytosolic Ca(2+) level nor the long-lasting Ca(2+) influx caused by KCl-induced depolarization. In contrast, Aβ42 oligomers, but not monomers, significantly altered Ca(2+) release from stores with opposite effects on inositol 1,4,5-trisphosphate (IP3)- and caffeine-induced Ca(2+) mobilization without alteration of the total store Ca(2+) content. Ca(2+) dysregulation by Aβ42 oligomers involves metabotropic glutamate receptor 5 and requires network activity and the intact exo-endocytotic machinery, being prevented by tetrodotoxin and tetanus toxin. These findings support the idea that Ca(2+) store dysfunction is directly involved in Aβ42 neurotoxicity and represents a potential therapeutic target in AD-like dementia. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Oxidation reduces the fibrillation but not the neurotoxicity of the prion peptide PrP106-126

    DEFF Research Database (Denmark)

    Bergstrøm, Linda Alice; Chabry, J.; Bastholm, L.

    2007-01-01

    There is increasing evidence that soluble oligomers of misfolded protein may play a role in the pathogenesis of protein misfolding diseases including the transmissible spongiform encephalopathies (TSE) where the protein involved is the prion protein, PrP. The effect of oxidation on fibrillation...... tendency and neurotoxicity of different molecular variants of the prion peptide PrP106-126 was investigated. It was found that methionine oxidation significantly reduced amyloid fibril formation and proteinase K resistance, but it did not reduce (but rather increase slightly) the neurotoxicity...

  13. Aging Enables Ca2+ Overload and Apoptosis Induced by Amyloid-β Oligomers in Rat Hippocampal Neurons: Neuroprotection by Non-Steroidal Anti-Inflammatory Drugs and R-Flurbiprofen in Aging Neurons.

    Science.gov (United States)

    Calvo-Rodríguez, María; García-Durillo, Mónica; Villalobos, Carlos; Núñez, Lucía

    2016-07-22

    The most important risk factor for Alzheimer's disease (AD) is aging. Neurotoxicity in AD has been linked to dyshomeostasis of intracellular Ca2+ induced by small aggregates of the amyloid-β peptide 1-42 (Aβ42 oligomers). However, how aging influences susceptibility to neurotoxicity induced by Aβ42 oligomers is unknown. In this study, we used long-term cultures of rat hippocampal neurons, a model of neuronal in vitro aging, to investigate the contribution of aging to Ca2+ dishomeostasis and neuron cell death induced by Aβ42 oligomers. In addition, we tested whether non-steroidal anti-inflammatory drugs (NSAIDs) and R-flurbiprofen prevent apoptosis acting on subcellular Ca2+ in aged neurons. We found that Aβ42 oligomers have no effect on young hippocampal neurons cultured for 2 days in vitro (2 DIV). However, they promoted apoptosis modestly in mature neurons (8 DIV) and these effects increased dramatically after 13 DIV, when neurons display many hallmarks of in vivo aging. Consistently, cytosolic and mitochondrial Ca2+ responses induced by Aβ42 oligomers increased dramatically with culture age. At low concentrations, NSAIDs and the enantiomer R-flurbiprofen lacking anti-inflammatory activity prevent Ca2+ overload and neuron cell death induced by Aβ42 oligomers in aged neurons. However, at high concentrations R-flurbiprofen induces apoptosis. Thus, Aβ42 oligomers promote Ca2+ overload and neuron cell death only in aged rat hippocampal neurons. These effects are prevented by low concentrations of NSAIDs and R-flurbiprofen acting on mitochondrial Ca2+ overload.

  14. Role of Prion Protein Aggregation in Neurotoxicity

    Directory of Open Access Journals (Sweden)

    Tullio Florio

    2012-07-01

    Full Text Available In several neurodegenerative diseases, such as Parkinson, Alzheimer’s, Huntington, and prion diseases, the deposition of aggregated misfolded proteins is believed to be responsible for the neurotoxicity that characterizes these diseases. Prion protein (PrP, the protein responsible of prion diseases, has been deeply studied for the peculiar feature of its misfolded oligomers that are able to propagate within affected brains, inducing the conversion of the natively folded PrP into the pathological conformation. In this review, we summarize the available experimental evidence concerning the relationship between aggregation status of misfolded PrP and neuronal death in the course of prion diseases. In particular, we describe the main findings resulting from the use of different synthetic (mainly PrP106-126 and recombinant PrP-derived peptides, as far as mechanisms of aggregation and amyloid formation, and how these different spatial conformations can affect neuronal death. In particular, most data support the involvement of non-fibrillar oligomers rather than actual amyloid fibers as the determinant of neuronal death.

  15. Rutin improves spatial memory in Alzheimer's disease transgenic mice by reducing Aβ oligomer level and attenuating oxidative stress and neuroinflammation.

    Science.gov (United States)

    Xu, Peng-Xin; Wang, Shao-Wei; Yu, Xiao-Lin; Su, Ya-Jing; Wang, Teng; Zhou, Wei-Wei; Zhang, He; Wang, Yu-Jiong; Liu, Rui-Tian

    2014-05-01

    Alzheimer's disease (AD) is a progressive, neurodegenerative disease characterized by extracellular β-amyloid (Aβ) plaques and intracellular neurofibrillary tangles in the brain. Aβ aggregation is closely associated with neurotoxicity, oxidative stress, and neuronal inflammation. The soluble Aβ oligomers are believed to be the most neurotoxic form among all forms of Aβ aggregates. We have previously reported a polyphenol compound rutin that could inhibit Aβ aggregation and cytotoxicity, attenuate oxidative stress, and decrease the production of nitric oxide and proinflammatory cytokines in vitro. In the current study, we investigated the effect of rutin on APPswe/PS1dE9 transgenic mice. Results demonstrated that orally administered rutin significantly attenuated memory deficits in AD transgenic mice, decreased oligomeric Aβ level, increased super oxide dismutase (SOD) activity and glutathione (GSH)/glutathione disulfide (GSSG) ratio, reduced GSSG and malondialdehyde (MDA) levels, downregulated microgliosis and astrocytosis, and decreased interleukin (IL)-1β and IL-6 levels in the brain. These results indicated that rutin is a promising agent for AD treatment because of its antioxidant, anti-inflammatory, and reducing Aβ oligomer activities. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Nanoscale Synaptic Membrane Mimetic Allows Unbiased High Throughput Screen That Targets Binding Sites for Alzheimer?s-Associated A? Oligomers

    OpenAIRE

    Wilcox, Kyle C.; Marunde, Matthew R.; Das, Aditi; Velasco, Pauline T.; Kuhns, Benjamin D.; Marty, Michael T.; Jiang, Haoming; Luan, Chi-Hao; Sligar, Stephen G.; Klein, William L.

    2015-01-01

    Despite their value as sources of therapeutic drug targets, membrane proteomes are largely inaccessible to high-throughput screening (HTS) tools designed for soluble proteins. An important example comprises the membrane proteins that bind amyloid β oligomers (AβOs). AβOs are neurotoxic ligands thought to instigate the synapse damage that leads to Alzheimer's dementia. At present, the identities of initial AβO binding sites are highly uncertain, largely because of extensive protein-protein int...

  17. Preparation of Stable Amyloid-β Oligomers Without Perturbative Methods.

    Science.gov (United States)

    Kotler, Samuel A; Ramamoorthy, Ayyalusamy

    2018-01-01

    Soluble amyloid-β (Aβ) oligomers have become a focal point in the study of Alzheimer's disease due to their ability to elicit cytotoxicity. A number of recent studies have concentrated on the structural characterization of soluble Aβ oligomers to gain insight into their mechanism of toxicity. Consequently, providing reproducible protocols for the preparation of such oligomers is of utmost importance. The method presented in this chapter details a protocol for preparing an Aβ oligomer, with a primarily disordered secondary structure, without the need for chemical modification or amino acid substitution. Due to the stability of these disordered Aβ oligomers and the reproducibility with which they form, they are amenable for biophysical and high-resolution structural characterization.

  18. Oligomers and Polymers Based on Pentacene Building Blocks

    Science.gov (United States)

    Lehnherr, Dan; Tykwinski, Rik R.

    2010-01-01

    Functionalized pentacene derivatives continue to provide unique materials for organic semiconductor applications. Although oligomers and polymers based on pentacene building blocks remain quite rare, recent synthetic achievements have provided a number of examples with varied structural motifs. This review highlights recent work in this area and, when possible, contrasts the properties of defined-length pentacene oligomers to those of mono- and polymeric systems.

  19. Electron beam curing of acrylic oligomers

    International Nuclear Information System (INIS)

    Seto, J.; Arakawa, S.; Ishimoto, C.; Miyashita, M.; Nagai, T.; Noguchi, T.; Shibata, A.

    1984-01-01

    The electron-beam curing process of acrylic oligomers, with and without γ-Fe 2 O 3 pigment filler and blended linear polymer, was investigated in terms of molecular structure and reaction mechanism. The polymerized fraction of trimethylolpropane-triacrylate (TMPTA) oligomers increases with increasing total dose, and is independent of the dose rate. Since the reaction rate is linearly dependent on the dose rate, the reaction mechanism involves monomolecular termination. The reaction rate does not depend on the number of functional groups of the oligomer at low doses, but above 0.3 Mrad the rate is slower for oligomers of higher functionality. A gel is formed more readily upon curing of a polyfunctional than a monofunctional oligomer, especially at high conversion to polymer; the resulting loss of flexibility of the polymer chains slows the reaction. Decrease of the molecular weight per functional group results in lower conversion; this is also due to the loss of chain flexibility, which is indicated as well by a higher glass-transition temperature. Modification of the acrylate oligomers with urethane results in more effective cross-linking reactions because of the more rigid molecular chains. Addition of γ-Fe 2 O 3 pigment reduces the reaction rate very little, but has the effect of providing added structural integrity, as indicated by the decrease of solvent-extractable material and the improvement of anti-abrasion properties. However, the flexibility of the coating and its adhesion to a PET base film are diminished. To increase the flexibility, linear polyvinylchloride and/or polyurethane were added to the acrylic oligomers. Final conversion to polymer was nearly 100 percent, and a higher elastic modulus and better antiabrasion properties were realized

  20. Oligomers and Polymers Based on Pentacene Building Blocks

    Directory of Open Access Journals (Sweden)

    Dan Lehnherr

    2010-04-01

    Full Text Available Functionalized pentacene derivatives continue to provide unique materials for organic semiconductor applications. Although oligomers and polymers based on pentacene building blocks remain quite rare, recent synthetic achievements have provided a number of examples with varied structural motifs. This review highlights recent work in this area and, when possible, contrasts the properties of defined-length pentacene oligomers to those of mono- and polymeric systems.

  1. PIPERIDINE OLIGOMERS AND COMBINATORIAL LIBRARIES THEREOF

    DEFF Research Database (Denmark)

    1999-01-01

    The present invention relates to piperidine oligomers, methods for the preparation of piperidine oligomers and compound libraries thereof, and the use of piperidine oligomers as drug substances. The present invention also relates to the use of combinatorial libraries of piperidine oligomers...... in libraries (arrays) of compounds especially suitable for screening purposes....

  2. Hyperforin prevents beta-amyloid neurotoxicity and spatial memory impairments by disaggregation of Alzheimer's amyloid-beta-deposits.

    Science.gov (United States)

    Dinamarca, M C; Cerpa, W; Garrido, J; Hancke, J L; Inestrosa, N C

    2006-11-01

    The major protein constituent of amyloid deposits in Alzheimer's disease (AD) is the amyloid beta-peptide (Abeta). In the present work, we have determined the effect of hyperforin an acylphloroglucinol compound isolated from Hypericum perforatum (St John's Wort), on Abeta-induced spatial memory impairments and on Abeta neurotoxicity. We report here that hyperforin: (1) decreases amyloid deposit formation in rats injected with amyloid fibrils in the hippocampus; (2) decreases the neuropathological changes and behavioral impairments in a rat model of amyloidosis; (3) prevents Abeta-induced neurotoxicity in hippocampal neurons both from amyloid fibrils and Abeta oligomers, avoiding the increase in reactive oxidative species associated with amyloid toxicity. Both effects could be explained by the capacity of hyperforin to disaggregate amyloid deposits in a dose and time-dependent manner and to decrease Abeta aggregation and amyloid formation. Altogether these evidences suggest that hyperforin may be useful to decrease amyloid burden and toxicity in AD patients, and may be a putative therapeutic agent to fight the disease.

  3. A Fluorescent Oligothiophene-Bis-Triazine ligand interacts with PrP fibrils and detects SDS-resistant oligomers in human prion diseases.

    Science.gov (United States)

    Imberdis, Thibaut; Ayrolles-Torro, Adeline; Duarte Rodrigues, Alysson; Torrent, Joan; Alvarez-Martinez, Maria Teresa; Kovacs, Gabor G; Verdier, Jean-Michel; Robitzer, Mike; Perrier, Véronique

    2016-01-26

    Prion diseases are characterized by the accumulation in the central nervous system of an abnormally folded isoform of the prion protein, named PrP(Sc). Aggregation of PrP(Sc) into oligomers and fibrils is critically involved in the pathogenesis of prion diseases. Oligomers are supposed to be the key neurotoxic agents in prion disease, so modulation of prion aggregation pathways with small molecules can be a valuable strategy for studying prion pathogenicity and for developing new diagnostic and therapeutic approaches. We previously identified thienyl pyrimidine compounds that induce SDS-resistant PrP(Sc) (rSDS-PrP(Sc)) oligomers in prion-infected samples. Due to the low effective doses of the thienyl pyrimidine hits, we synthesized a quaterthiophene-bis-triazine compound, called MR100 to better evaluate their diagnostic and therapeutic potentials. This molecule exhibits a powerful activity inducing rSDS-PrP(Sc) oligomers at nanomolar concentrations in prion-infected cells. Fluorescence interaction studies of MR100 with mouse PrP fibrils showed substantial modification of the spectrum, and the interaction was confirmed in vitro by production of rSDS-oligomer species upon incubation of MR100 with fibrils in SDS-PAGE gel. We further explored whether MR100 compound has a potential to be used in the diagnosis of prion diseases. Our results showed that: (i) MR100 can detect rSDS-oligomers in prion-infected brain homogenates of various species, including human samples from CJD patients; (ii) A protocol, called "Rapid Centrifugation Assay" (RCA), was developed based on MR100 property of inducing rSDS-PrP(Sc) oligomers only in prion-infected samples, and avoiding the protease digestion step. RCA allows the detection of both PK-sensitive and PK-resistant PrP(Sc) species in rodents samples but also from patients with different CJD forms (sporadic and new variant); (iii) A correlation could be established between the amount of rSDS-PrP(Sc) oligomers revealed by MR100 and the

  4. Eckmaxol, a Phlorotannin Extracted from Ecklonia maxima, Produces Anti-β-amyloid Oligomer Neuroprotective Effects Possibly via Directly Acting on Glycogen Synthase Kinase 3β.

    Science.gov (United States)

    Wang, Jialing; Zheng, Jiachen; Huang, Chunhui; Zhao, Jiaying; Lin, Jiajia; Zhou, Xuezhen; Naman, C Benjamin; Wang, Ning; Gerwick, William H; Wang, Qinwen; Yan, Xiaojun; Cui, Wei; He, Shan

    2018-04-10

    Alzheimer's disease is a progressive neurodegenerative disorder that mainly affects the elderly. Soluble β-amyloid oligomer, which can induce neurotoxicity, is generally regarded as the main neurotoxin in Alzheimer's disease. Here we report that eckmaxol, a phlorotannin extracted from the brown alga Ecklonia maxima, could produce neuroprotective effects in SH-SY5Y cells. Eckmaxol effectively prevented but did not rescue β-amyloid oligomer-induced neuronal apoptosis and increase of intracellular reactive oxygen species. Eckmaxol also significantly reversed the decreased expression of phospho-Ser9-glycogen synthase kinase 3β and increased expression of phospho-extracellular signal-regulated kinase, which was induced by Aβ oligomer. Moreover, both glycogen synthase kinase 3β and mitogen activated protein kinase inhibitors produced neuroprotective effects in SH-SY5Y cells. Furthermore, eckmaxol showed favorable interaction in the ATP binding site of glycogen synthase kinase 3β and mitogen activated protein kinase. These results suggested that eckmaxol might produce neuroprotective effects via concurrent inhibition of glycogen synthase kinase 3β and extracellular signal-regulated kinase pathways, possibly via directly acting on glycogen synthase kinase 3β and mitogen activated protein kinase. Based on the central role that β-amyloid oligomers play in the pathogenesis of Alzheimer's disease and the high annual production of Ecklonia maxima for alginate and other nutritional ingredients, this report represents a new candidate for the treatment of Alzheimer's disease, and also expands the potential application of Ecklonia maxima and its constituents in the field of pharmacology.

  5. Nanoscale Synaptic Membrane Mimetic Allows Unbiased High Throughput Screen That Targets Binding Sites for Alzheimer's-Associated Aβ Oligomers.

    Directory of Open Access Journals (Sweden)

    Kyle C Wilcox

    Full Text Available Despite their value as sources of therapeutic drug targets, membrane proteomes are largely inaccessible to high-throughput screening (HTS tools designed for soluble proteins. An important example comprises the membrane proteins that bind amyloid β oligomers (AβOs. AβOs are neurotoxic ligands thought to instigate the synapse damage that leads to Alzheimer's dementia. At present, the identities of initial AβO binding sites are highly uncertain, largely because of extensive protein-protein interactions that occur following attachment of AβOs to surface membranes. Here, we show that AβO binding sites can be obtained in a state suitable for unbiased HTS by encapsulating the solubilized synaptic membrane proteome into nanoscale lipid bilayers (Nanodiscs. This method gives a soluble membrane protein library (SMPL--a collection of individualized synaptic proteins in a soluble state. Proteins within SMPL Nanodiscs showed enzymatic and ligand binding activity consistent with conformational integrity. AβOs were found to bind SMPL Nanodiscs with high affinity and specificity, with binding dependent on intact synaptic membrane proteins, and selective for the higher molecular weight oligomers known to accumulate at synapses. Combining SMPL Nanodiscs with a mix-incubate-read chemiluminescence assay provided a solution-based HTS platform to discover antagonists of AβO binding. Screening a library of 2700 drug-like compounds and natural products yielded one compound that potently reduced AβO binding to SMPL Nanodiscs, synaptosomes, and synapses in nerve cell cultures. Although not a therapeutic candidate, this small molecule inhibitor of synaptic AβO binding will provide a useful experimental antagonist for future mechanistic studies of AβOs in Alzheimer's model systems. Overall, results provide proof of concept for using SMPLs in high throughput screening for AβO binding antagonists, and illustrate in general how a SMPL Nanodisc system can

  6. Nanoscale Synaptic Membrane Mimetic Allows Unbiased High Throughput Screen That Targets Binding Sites for Alzheimer's-Associated Aβ Oligomers.

    Science.gov (United States)

    Wilcox, Kyle C; Marunde, Matthew R; Das, Aditi; Velasco, Pauline T; Kuhns, Benjamin D; Marty, Michael T; Jiang, Haoming; Luan, Chi-Hao; Sligar, Stephen G; Klein, William L

    2015-01-01

    Despite their value as sources of therapeutic drug targets, membrane proteomes are largely inaccessible to high-throughput screening (HTS) tools designed for soluble proteins. An important example comprises the membrane proteins that bind amyloid β oligomers (AβOs). AβOs are neurotoxic ligands thought to instigate the synapse damage that leads to Alzheimer's dementia. At present, the identities of initial AβO binding sites are highly uncertain, largely because of extensive protein-protein interactions that occur following attachment of AβOs to surface membranes. Here, we show that AβO binding sites can be obtained in a state suitable for unbiased HTS by encapsulating the solubilized synaptic membrane proteome into nanoscale lipid bilayers (Nanodiscs). This method gives a soluble membrane protein library (SMPL)--a collection of individualized synaptic proteins in a soluble state. Proteins within SMPL Nanodiscs showed enzymatic and ligand binding activity consistent with conformational integrity. AβOs were found to bind SMPL Nanodiscs with high affinity and specificity, with binding dependent on intact synaptic membrane proteins, and selective for the higher molecular weight oligomers known to accumulate at synapses. Combining SMPL Nanodiscs with a mix-incubate-read chemiluminescence assay provided a solution-based HTS platform to discover antagonists of AβO binding. Screening a library of 2700 drug-like compounds and natural products yielded one compound that potently reduced AβO binding to SMPL Nanodiscs, synaptosomes, and synapses in nerve cell cultures. Although not a therapeutic candidate, this small molecule inhibitor of synaptic AβO binding will provide a useful experimental antagonist for future mechanistic studies of AβOs in Alzheimer's model systems. Overall, results provide proof of concept for using SMPLs in high throughput screening for AβO binding antagonists, and illustrate in general how a SMPL Nanodisc system can facilitate drug discovery

  7. Characteristics of tau oligomers

    Directory of Open Access Journals (Sweden)

    Yan eRen

    2013-07-01

    Full Text Available In Alzheimer disease (AD and other tauopathies, microtubule-associated protein tau becomes hyperphosphorylated, undergoes conformational changes, aggregates, eventually becoming neurofibrillary tangles (NFTs. As accumulating evidence suggests that NFTs themselves may not be toxic, attention is now turning toward the role of intermediate tau oligomers in AD pathophysiology. Sarkosyl extraction is a standard protocol for investigating insoluble tau aggregates in brains. There is a growing consensus that sarkosyl-insoluble tau correlates with the pathological features of tauopathy. While sarkosyl-insoluble tau from tauopathy brains has been well characterized as a pool of filamentous tau, other dimers, multimers, and granules of tau are much less well understood. There are protocols for identifying these tau oligomers. In this mini review, we discuss the characteristics of tau oligomers isolated via different methods and materials.

  8. Applications of oligomers for nanostructured conducting polymers.

    Science.gov (United States)

    Wang, Yue; Tran, Henry D; Kaner, Richard B

    2011-01-03

    This Feature Article provides an overview of the distinctive nanostructures that aniline oligomers form and the applications of these oligomers for shaping the nanoscale morphologies and chirality of conducting polymers. We focus on the synthetic methods for achieving such goals and highlight the underlying mechanisms. The clear advantages of each method and their possible drawbacks are discussed. Assembly and applications of these novel organic (semi)conducting nanomaterials are also outlined. We conclude this article with our perspective on the main challenges, new opportunities, and future directions for this nascent yet vibrant field of research. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Nanoscale Synaptic Membrane Mimetic Allows Unbiased High Throughput Screen That Targets Binding Sites for Alzheimer’s-Associated Aβ Oligomers

    Science.gov (United States)

    Wilcox, Kyle C.; Marunde, Matthew R.; Das, Aditi; Velasco, Pauline T.; Kuhns, Benjamin D.; Marty, Michael T.; Jiang, Haoming; Luan, Chi-Hao; Sligar, Stephen G.; Klein, William L.

    2015-01-01

    Despite their value as sources of therapeutic drug targets, membrane proteomes are largely inaccessible to high-throughput screening (HTS) tools designed for soluble proteins. An important example comprises the membrane proteins that bind amyloid β oligomers (AβOs). AβOs are neurotoxic ligands thought to instigate the synapse damage that leads to Alzheimer’s dementia. At present, the identities of initial AβO binding sites are highly uncertain, largely because of extensive protein-protein interactions that occur following attachment of AβOs to surface membranes. Here, we show that AβO binding sites can be obtained in a state suitable for unbiased HTS by encapsulating the solubilized synaptic membrane proteome into nanoscale lipid bilayers (Nanodiscs). This method gives a soluble membrane protein library (SMPL)—a collection of individualized synaptic proteins in a soluble state. Proteins within SMPL Nanodiscs showed enzymatic and ligand binding activity consistent with conformational integrity. AβOs were found to bind SMPL Nanodiscs with high affinity and specificity, with binding dependent on intact synaptic membrane proteins, and selective for the higher molecular weight oligomers known to accumulate at synapses. Combining SMPL Nanodiscs with a mix-incubate-read chemiluminescence assay provided a solution-based HTS platform to discover antagonists of AβO binding. Screening a library of 2700 drug-like compounds and natural products yielded one compound that potently reduced AβO binding to SMPL Nanodiscs, synaptosomes, and synapses in nerve cell cultures. Although not a therapeutic candidate, this small molecule inhibitor of synaptic AβO binding will provide a useful experimental antagonist for future mechanistic studies of AβOs in Alzheimer’s model systems. Overall, results provide proof of concept for using SMPLs in high throughput screening for AβO binding antagonists, and illustrate in general how a SMPL Nanodisc system can facilitate drug

  10. Elevated environmental temperature and methamphetamine neurotoxicity

    International Nuclear Information System (INIS)

    Miller, Diane B.; O'Callaghan, James P.

    2003-01-01

    Amphetamines have been of considerable research interest for the last several decades. More recent work has renewed interest in the role of ambient temperature in both the toxicity and neurotoxicity of these drugs. We have determined that the striatal dopaminergic neurotoxicity observed in the mouse is linked in some fashion to both body and environmental temperature. Most studies of d-methamphetamine (d-METH) neurotoxicity are conducted at standard laboratory ambient temperatures (e.g., ∼21-22 deg. C) and utilizing a repeated dosage regimen (e.g., three to four injections spaced 2 h apart). A lowering of the ambient temperature provides neuro protection, while an elevation increases neurotoxicity. d-METH causes long-term depletions of triatal dopamine (DA) that are accompanied by other changes that are indicative of nerve terminal degeneration. These include argyrophilia, as detected by silver degeneration stains, and an elevation in glial fibrillary acidic protein (GFAP), a marker of reactive gliosis in response to injury, as well as a long-term decrease in tyrosine hydroxylase (TH) protein levels. here we show that increasing the ambient temperature during and for some time following dosing increases the neurotoxicity of d-METH. Mice (female 57BL6/J) given a single dosage of d-METH (20 mg/kg s.c.) and maintained at the usual laboratory ambient temperature show minimal striatal damage (an ∼15% depletion of DA and an ∼ 86% increase in GFAP). substantial striatal damage (e.g., an ∼70% depletion of DA and an ∼200% elevation in GFAP) was induced by this regimen if mice were maintained at 27 deg. C for 24 or 72 h following dosing. An increase in neurotoxicity was also apparent in mice kept at an elevated temperature for only 5 or 9 h, but keeping animals at 27 deg. C for 24 or 72 h was the most effective in increasing the neurotoxicity of d-METH. Our data show how a relatively minor change in ambient temperature can have a major impact on the degree of

  11. Synthesis and characterization of thermally stable oligomer-metal ...

    African Journals Online (AJOL)

    The thermal stabilities of the oligomer-metal complexes were compared by thermogravimetric (TG) and differential thermal (DTA) analyses. According to TG, oligomer-metal complexes were stable against to temperature and thermooxidative decomposition. The weight losses of oligomer-metal complexes were found to be 5 ...

  12. Fibril specific, conformation dependent antibodies recognize a generic epitope common to amyloid fibrils and fibrillar oligomers that is absent in prefibrillar oligomers

    Directory of Open Access Journals (Sweden)

    Rasool Suhail

    2007-09-01

    Full Text Available Abstract Background Amyloid-related degenerative diseases are associated with the accumulation of misfolded proteins as amyloid fibrils in tissue. In Alzheimer disease (AD, amyloid accumulates in several distinct types of insoluble plaque deposits, intracellular Aβ and as soluble oligomers and the relationships between these deposits and their pathological significance remains unclear. Conformation dependent antibodies have been reported that specifically recognize distinct assembly states of amyloids, including prefibrillar oligomers and fibrils. Results We immunized rabbits with a morphologically homogeneous population of Aβ42 fibrils. The resulting immune serum (OC specifically recognizes fibrils, but not random coil monomer or prefibrillar oligomers, indicating fibrils display a distinct conformation dependent epitope that is absent in prefibrillar oligomers. The fibril epitope is also displayed by fibrils of other types of amyloids, indicating that the epitope is a generic feature of the polypeptide backbone. The fibril specific antibody also recognizes 100,000 × G soluble fibrillar oligomers ranging in size from dimer to greater than 250 kDa on western blots. The fibrillar oligomers recognized by OC are immunologically distinct from prefibrillar oligomers recognized by A11, even though their sizes overlap broadly, indicating that size is not a reliable indicator of oligomer conformation. The immune response to prefibrillar oligomers and fibrils is not sequence specific and antisera of the same specificity are produced in response to immunization with islet amyloid polypeptide prefibrillar oligomer mimics and fibrils. The fibril specific antibodies stain all types of amyloid deposits in human AD brain. Diffuse amyloid deposits stain intensely with anti-fibril antibody although they are thioflavin S negative, suggesting that they are indeed fibrillar in conformation. OC also stains islet amyloid deposits in transgenic mouse models of type

  13. Pathophysiology of Manganese-Associated Neurotoxicity

    Science.gov (United States)

    Racette, Brad A.; Aschner, Michael; Guilarte, Tomas R.; Dydak, Ulrike; Criswell, Susan R.; Zheng, Wei

    2012-01-01

    Conference Summary Manganese (Mn) is a well established neurotoxin associated with specific damage to the basal ganglia in humans. The phenotype associated with Mn neurotoxicity was first described in two workers with occupational exposure to Mn oxide.(Couper, 1837) Although the description did not use modern clinical terminology, a parkinsonian illness characterized by slowness of movement (bradykinesia), masked facies, and gait impairment (postural instability) appears to have predominated. Nearly 100 years later an outbreak of an atypical parkinsonian illness in a Chilean Mn mine provided a phenotypic description of a fulminant neurologic disorder with parkinsonism, dystonia, and neuropsychiatric symptoms.(Rodier J, 1955) Exposures associated with this syndrome were massive and an order of magnitude greater than modern exposures.(Rodier J, 1955; Hobson et al., 2011) The clinical syndrome associated with Mn neurotoxicity has been called manganism. Modern exposures to Mn occur primarily through occupations in the steel industry and welding. These exposures are often chronic and varied, occurring over decades in the healthy workforce. Although the severe neurologic disorder described by Rodier and Couper are no longer seen, several reports have suggested a possible increased risk of neurotoxicity in these workers.(Racette et al., 2005b; Bowler et al., 2007; Harris et al., 2011) Based upon limited prior imaging and pathologic investigations into the pathophysiology of neurotoxicity in Mn exposed workers,(Huang et al., 2003) many investigators have concluded that the syndrome spares the dopamine system distinguishing manganism from Parkinson disease (PD), the most common cause of parkinsonism in the general population, and a disease with characteristic degenerative changes in the dopaminergic system.(Jankovic, 2005) The purpose of this symposium was to highlight recent advances in the understanding of the pathophysiology of Mn associated neurotoxicity from C. elegans

  14. EGb761 provides a protective effect against Aβ1-42 oligomer-induced cell damage and blood-brain barrier disruption in an in vitro bEnd.3 endothelial model.

    Directory of Open Access Journals (Sweden)

    Wen-bin Wan

    Full Text Available Alzheimer's disease (AD is the most common form of senile dementia which is characterized by abnormal amyloid beta (Aβ accumulation and deposition in brain parenchyma and cerebral capillaries, and leads to blood-brain barrier (BBB disruption. Despite great progress in understanding the etiology of AD, the underlying pathogenic mechanism of BBB damage is still unclear, and no effective treatment has been devised. The standard Ginkgo biloba extract EGb761 has been widely used as a potential cognitive enhancer for the treatment of AD. However, the cellular mechanism underlying the effect remain to be clarified. In this study, we employed an immortalized endothelial cell line (bEnd.3 and incubation of Aβ(1-42 oligomer, to mimic a monolayer BBB model under conditions found in the AD brain. We investigated the effect of EGb761 on BBB and found that Aβ1-42 oligomer-induced cell injury, apoptosis, and generation of intracellular reactive oxygen species (ROS, were attenuated by treatment with EGb761. Moreover, treatment of the cells with EGb761 decreased BBB permeability and increased tight junction scaffold protein levels including ZO-1, Claudin-5 and Occludin. We also found that the Aβ(1-42 oligomer-induced upregulation of the receptor for advanced glycation end-products (RAGE, which mediates Aβ cytotoxicity and plays an essential role in AD progression, was significantly decreased by treatment with EGb761. To our knowledge, we provide the first direct in vitro evidence of an effect of EGb761 on the brain endothelium exposed to Aβ(1-42 oligomer, and on the expression of tight junction (TJ scaffold proteins and RAGE. Our results provide a new insight into a possible mechanism of action of EGb761. This study provides a rational basis for the therapeutic application of EGb761 in the treatment of AD.

  15. Comprehensive neurotoxicity assessment

    NARCIS (Netherlands)

    Kulig, B.M.

    1996-01-01

    Significant progress has been made in recent years in terms of both the conceptualization of neurotoxicity assessment strategies as well as in the development of behavioral techniques for evaluating neurotoxic exposures. A tiered approach, for example, has been advocated as an assessment strategy in

  16. Laser-Induced Population Inversion in Rhodamine 6G for Lysozyme Oligomer Detection.

    Science.gov (United States)

    Hanczyc, Piotr; Sznitko, Lech

    2017-06-06

    Fluorescence spectroscopy is a common method for detecting amyloid fibrils in which organic fluorophores are used as markers that exhibit an increase in quantum yield upon binding. However, most of the dyes exhibit enhanced emission only when bound to mature fibrils, and significantly weaker signals are obtained in the presence of amyloid oligomers. In the concept of population inversion, a laser is used as an excitation source to keep the major fraction of molecules in the excited state to create the pathways for the occurrence of stimulated emission. In the case of the proteins, the conformational changes lead to the self-ordering and thus different light scattering conditions that can influence the optical signatures of the generated light. Using this methodology, we show it is possible to optically detect amyloid oligomers using commonly available staining dyes in which population inversion can be induced. The results indicate that rhodamine 6G molecules are complexed with oligomers, and using a laser-assisted methodology, weakly emissive states can be detected. Significant spectral red-shifting of rhodamine 6G dispersed with amyloid oligomers and a notable difference determined by comparison of spectra of the fibrils suggest the existence of specific dye aggregates around the oligomer binding sites. This approach can provide new insights into intermediate oligomer states that are believed to be responsible for toxic seeding in neurodegeneration diseases.

  17. Biophysical characterization data on Aβ soluble oligomers produced through a method enabling prolonged oligomer stability and biological buffer conditions

    Directory of Open Access Journals (Sweden)

    Amanda C. Crisostomo

    2015-09-01

    Aβ1-40 soluble oligomers are produced that are suitable for biophysical studies requiring sufficient transient stability to exist in their “native” conformation in biological phosphate-saline buffers for extended periods of time. The production involves an initial preparation of highly monomeric Aβ in a phosphate saline buffer that transitions to fibrils and oligomers through time incubation alone, without added detergents or non-aqueous chemicals. This criteria ensures that the only difference between initial monomeric Aβ reactant and subsequent Aβ oligomer products is their degree of peptide assembly. A number of chemical and biophysical methods were used to characterize the monomeric reactants and soluble oligomer and amyloid fibril products, including chemical cross-linking, Western blots, fraction solubility, thioflvain T binding, size exclusion chromatography, transmission electron micrscopy, circular dichroism spectroscopy, and fluorescence resonance energy transfer.

  18. Radiation inactivation method provides evidence that membrane-bound mitochondrial creatine kinase is an oligomer

    International Nuclear Information System (INIS)

    Quemeneur, E.; Eichenberger, D.; Goldschmidt, D.; Vial, C.; Beauregard, G.; Potier, M.

    1988-01-01

    Lyophilized suspensions of rabbit heart mitochondria have been irradiated with varying doses of gamma rays. Mitochondrial creatine kinase activity was inactivated exponentially with a radiation inactivation size of 352 or 377 kDa depending upon the initial medium. These values are in good agreement with the molecular mass previously deduced from by permeation experiments: 357 kDa. This is the first direct evidence showing that the native form of mitochondrial creatine kinase is associated to the inner membrane as an oligomer, very likely an octamer

  19. Structural and functional properties of prefibrillar α-synuclein oligomers.

    Science.gov (United States)

    Pieri, Laura; Madiona, Karine; Melki, Ronald

    2016-04-14

    The deposition of fibrillar alpha-synuclein (α-syn) within inclusions (Lewy bodies and Lewy neurites) in neurons and glial cells is a hallmark of synucleinopathies. α-syn populates a variety of assemblies ranging from prefibrillar oligomeric species to fibrils whose specific contribution to neurodegeneration is still unclear. Here, we compare the specific structural and biological properties of distinct soluble prefibrillar α-syn oligomers formed either spontaneously or in the presence of dopamine and glutaraldehyde. We show that both on-fibrillar assembly pathway and distinct dopamine-mediated and glutaraldehyde-cross-linked α-syn oligomers are only slightly effective in perturbing cell membrane integrity and inducing cytotoxicity, while mature fibrils exhibit the highest toxicity. In contrast to low-molecular weight and unstable oligomers, large stable α-syn oligomers seed the aggregation of soluble α-syn within reporter cells although to a lesser extent than mature α-syn fibrils. These oligomers appear elongated in shape. Our findings suggest that α-syn oligomers represent a continuum of species ranging from unstable low molecular weight particles to mature fibrils via stable elongated oligomers composed of more than 15 α-syn monomers that possess seeding capacity.

  20. Boron-rich oligomers for BNCT

    International Nuclear Information System (INIS)

    Gula, M.; Perleberg, O.; Gabel, D.

    2000-01-01

    The synthesis of two BSH derivatives is described, which can be used for oligomerization in DNA-synthesizers. Synthesis pathways lead to final products in five and six steps, respectively. Because of chirality interesting results were expected. NMR-measurements confirm this expectation. Possible oligomers with high concentrations of boron can be attached to biomolecules. These oligomers can be explored with several imaging methods (EELS, PEM) to determine the lower detection limit of boron with these methods. (author)

  1. Electrografting of conductive oligomers and polymers using diazonium electroreduction

    International Nuclear Information System (INIS)

    Lacroix, Jean Christophe; Trippe-Allard, Gaelle; Ghilane, Jalal; Martin, Pascal

    2014-01-01

    This paper describes the attachment of conjugated oligomers onto electrode surface through the reduction of diazonium compounds. In this connection some properties of conjugated oligomers and of layers grafted through diazonium electroreduction will first be briefly presented. The electrochemical behavior of conjugated oligomers grafted on a surface using diazonium electroreduction will then be discussed. (paper)

  2. Electrografting of conductive oligomers and polymers using diazonium electroreduction

    Science.gov (United States)

    Lacroix, Jean Christophe; Trippe-Allard, Gaelle; Ghilane, Jalal; Martin, Pascal

    2014-03-01

    This paper describes the attachment of conjugated oligomers onto electrode surface through the reduction of diazonium compounds. In this connection some properties of conjugated oligomers and of layers grafted through diazonium electroreduction will first be briefly presented. The electrochemical behavior of conjugated oligomers grafted on a surface using diazonium electroreduction will then be discussed.

  3. Prevention of dopaminergic neurotoxicity by targeting nitric oxide and peroxynitrite: implications for the prevention of methamphetamine-induced neurotoxic damage.

    Science.gov (United States)

    Imam, S Z; Islam, F; Itzhak, Y; Slikker, W; Ali, S F

    2000-09-01

    Methamphetamine (METH) is a neurotoxic psychostimulant that produces catecholaminergic brain damage by producing oxidative stress and free radical generation. The role of oxygen and nitrogen radicals is well documented as a cause of METH-induced neurotoxic damage. In this study, we have obtained evidence that METH-induced neurotoxicity is the resultant of interaction between oxygen and nitrogen radicals, and it is mediated by the production of peroxynitrite. We have also assessed the effects of inhibitors of neuronal nitric oxide synthase (nNOS) as well as scavenger of nitric oxide and a peroxynitrite decomposition catalyst. Significant protective effects were observed with the inhibitor of nNOS, 7-nitroindazole (7-NI), as well as by the selective peroxynitrite scavenger or decomposition catalyst, 5,10,15,20-tetrakis(2,4,6-trimethyl-3,5-sulfonatophenyl)porphyrinato iron III (FeTPPS). However, the use of a nitric oxide scavenger, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO), did not provide any significant protection against METH-induced hyperthermia or peroxynitrite generation and the resulting dopaminergic neurotoxicity. In particular, treatment with FeTPPS completely prevented METH-induced hyperthermia, peroxynitrite production, and METH-induced dopaminergic depletion. Together, these data demonstrate that METH-induced dopaminergic neurotoxicity is mediated by the generation of peroxynitrite, which can be selectively protected by nNOS inhibitors or peroxynitrite scavenger or decomposition catalysts.

  4. Scutellarin Mitigates Aβ-Induced Neurotoxicity and Improves Behavior Impairments in AD Mice

    Directory of Open Access Journals (Sweden)

    Yue-Qin Zeng

    2018-04-01

    Full Text Available Alzheimer’s disease (AD is pathologically characterized by excessive accumulation of amyloid-beta (Aβ within extracellular spaces of the brain. Aggregation of Aβ has been shown to trigger oxidative stress, inflammation, and neurotoxicity resulting in cognitive dysfunction. In this study, we use models of cerebral Aβ amyloidosis to investigate anti-amyloidogenic effects of scutellarin in vitro and in vivo. Our results show that scutellarin, through binding to Aβ42, efficiently inhibits oligomerization as well as fibril formation and reduces Aβ oligomer-induced neuronal toxicity in cell line SH-SY5Y. After nine months of treatment in APP/PS1 double-transgenic mice, scutellarin significantly improves behavior, reduces soluble and insoluble Aβ levels in the brain and plasma, decreases Aβ plaque associated gliosis and levels of proinflammatory cytokines TNF-α and IL-6, attenuates neuroinflammation, displays anti-amyloidogenic effects, and highlights the beneficial effects of intervention on development or progression of AD-like neuropathology.

  5. Tau Oligomers as Pathogenic Seeds: Preparation and Propagation In Vitro and In Vivo.

    Science.gov (United States)

    Gerson, Julia E; Sengupta, Urmi; Kayed, Rakez

    2017-01-01

    Tau oligomers have been shown to be the main toxic tau species in a number of neurodegenerative disorders. In order to study tau oligomers both in vitro and in vivo, we have established methods for the reliable preparation, isolation, and detection of tau oligomers. Methods for the seeding of tau oligomers, isolation of tau oligomers from tissue, and detection of tau oligomers using tau oligomer-specific antibodies by biochemical and immunohistochemical methods are detailed below.

  6. Electron beam curing polyurethane acrylate oligomer in air

    International Nuclear Information System (INIS)

    Zhu, Zhenkang; Chen, Xing; Zhou, Jichun; Ma, Zue-Teh

    1988-01-01

    It has been found according to our synthesis that a novel kind of polyurethane acrylate oligomer can be cured by electron beam in the presence of oxygen, even at normal atomospheric levels, without any additives. Irradiation of the oligomer with substantially complete cure to a solid non-tacky state is quite remarkable. It has the same gel content (90 %) in air as in nitrogen at dose of 33 kGy. Double bond conversion of the oligomer is about 50 % by I.R. (author)

  7. Biomarkers of adult and developmental neurotoxicity

    International Nuclear Information System (INIS)

    Slikker, William; Bowyer, John F.

    2005-01-01

    Neurotoxicity may be defined as any adverse effect on the structure or function of the central and/or peripheral nervous system by a biological, chemical, or physical agent. A multidisciplinary approach is necessary to assess adult and developmental neurotoxicity due to the complex and diverse functions of the nervous system. The overall strategy for understanding developmental neurotoxicity is based on two assumptions: (1) significant differences in the adult versus the developing nervous system susceptibility to neurotoxicity exist and they are often developmental stage dependent; (2) a multidisciplinary approach using neurobiological, including gene expression assays, neurophysiological, neuropathological, and behavioral function is necessary for a precise assessment of neurotoxicity. Application of genomic approaches to developmental studies must use the same criteria for evaluating microarray studies as those in adults including consideration of reproducibility, statistical analysis, homogenous cell populations, and confirmation with non-array methods. A study using amphetamine to induce neurotoxicity supports the following: (1) gene expression data can help define neurotoxic mechanism(s) (2) gene expression changes can be useful biomarkers of effect, and (3) the site-selective nature of gene expression in the nervous system may mandate assessment of selective cell populations

  8. Reversible Lithium Neurotoxicity: Review of the Literature

    Science.gov (United States)

    Netto, Ivan

    2012-01-01

    Objective: Lithium neurotoxicity may be reversible or irreversible. Reversible lithium neurotoxicity has been defined as cases of lithium neurotoxicity in which patients recovered without any permanent neurologic sequelae, even after 2 months of an episode of lithium toxicity. Cases of reversible lithium neurotoxicity differ in clinical presentation from those of irreversible lithium neurotoxicity and have important implications in clinical practice. This review aims to study the clinical presentation of cases of reversible lithium neurotoxicity. Data Sources: A comprehensive electronic search was conducted in the following databases: MEDLINE (PubMed), 1950 to November 2010; PsycINFO, 1967 to November 2010; and SCOPUS (EMBASE), 1950 to November 2010. MEDLINE and PsycINFO were searched by using the OvidSP interface. Study Selection: A combination of the following search terms was used: lithium AND adverse effects AND central nervous system OR neurologic manifestation. Publications cited include articles concerned with reversible lithium neurotoxicity. Data Extraction: The age, sex, clinical features, diagnostic categories, lithium doses, serum lithium levels, precipitating factors, and preventive measures of 52 cases of reversible lithium neurotoxicity were extracted. Data Synthesis: Among the 52 cases of reversible lithium neurotoxicity, patients ranged in age from 10 to 80 years and a greater number were female (P = .008). Most patients had affective disorders, schizoaffective disorders, and/or depression (P lithium levels were less than or equal to 1.5 mEq/L (P lithium, underlying brain pathology, abnormal tissue levels, specific diagnostic categories, and elderly populations were some of the precipitating factors reported for reversible lithium neurotoxicity. The preventive measures were also described. Conclusions: Reversible lithium neurotoxicity presents with a certain clinical profile and precipitating factors for which there are appropriate

  9. Reversible lithium neurotoxicity: review of the literatur.

    Science.gov (United States)

    Netto, Ivan; Phutane, Vivek H

    2012-01-01

    Lithium neurotoxicity may be reversible or irreversible. Reversible lithium neurotoxicity has been defined as cases of lithium neurotoxicity in which patients recovered without any permanent neurologic sequelae, even after 2 months of an episode of lithium toxicity. Cases of reversible lithium neurotoxicity differ in clinical presentation from those of irreversible lithium neurotoxicity and have important implications in clinical practice. This review aims to study the clinical presentation of cases of reversible lithium neurotoxicity. A comprehensive electronic search was conducted in the following databases: MEDLINE (PubMed), 1950 to November 2010; PsycINFO, 1967 to November 2010; and SCOPUS (EMBASE), 1950 to November 2010. MEDLINE and PsycINFO were searched by using the OvidSP interface. A combination of the following search terms was used: lithium AND adverse effects AND central nervous system OR neurologic manifestation. Publications cited include articles concerned with reversible lithium neurotoxicity. The age, sex, clinical features, diagnostic categories, lithium doses, serum lithium levels, precipitating factors, and preventive measures of 52 cases of reversible lithium neurotoxicity were extracted. Among the 52 cases of reversible lithium neurotoxicity, patients ranged in age from 10 to 80 years and a greater number were female (P = .008). Most patients had affective disorders, schizoaffective disorders, and/or depression (P lithium levels were less than or equal to 1.5 mEq/L (P lithium, underlying brain pathology, abnormal tissue levels, specific diagnostic categories, and elderly populations were some of the precipitating factors reported for reversible lithium neurotoxicity. The preventive measures were also described. Reversible lithium neurotoxicity presents with a certain clinical profile and precipitating factors for which there are appropriate preventive measures. This recognition will help in early diagnosis and prompt treatment of

  10. Protection against β-amyloid neurotoxicity by a non-toxic endogenous N-terminal β-amyloid fragment and its active hexapeptide core sequence.

    Science.gov (United States)

    Forest, Kelly H; Alfulaij, Naghum; Arora, Komal; Taketa, Ruth; Sherrin, Tessi; Todorovic, Cedomir; Lawrence, James L M; Yoshikawa, Gene T; Ng, Ho-Leung; Hruby, Victor J; Nichols, Robert A

    2018-01-01

    High levels (μM) of beta amyloid (Aβ) oligomers are known to trigger neurotoxic effects, leading to synaptic impairment, behavioral deficits, and apoptotic cell death. The hydrophobic C-terminal domain of Aβ, together with sequences critical for oligomer formation, is essential for this neurotoxicity. However, Aβ at low levels (pM-nM) has been shown to function as a positive neuromodulator and this activity resides in the hydrophilic N-terminal domain of Aβ. An N-terminal Aβ fragment (1-15/16), found in cerebrospinal fluid, was also shown to be a highly active neuromodulator and to reverse Aβ-induced impairments of long-term potentiation. Here, we show the impact of this N-terminal Aβ fragment and a shorter hexapeptide core sequence in the Aβ fragment (Aβcore: 10-15) to protect or reverse Aβ-induced neuronal toxicity, fear memory deficits and apoptotic death. The neuroprotective effects of the N-terminal Aβ fragment and Aβcore on Aβ-induced changes in mitochondrial function, oxidative stress, and apoptotic neuronal death were demonstrated via mitochondrial membrane potential, live reactive oxygen species, DNA fragmentation and cell survival assays using a model neuroblastoma cell line (differentiated NG108-15) and mouse hippocampal neuron cultures. The protective action of the N-terminal Aβ fragment and Aβcore against spatial memory processing deficits in amyloid precursor protein/PSEN1 (5XFAD) mice was demonstrated in contextual fear conditioning. Stabilized derivatives of the N-terminal Aβcore were also shown to be fully protective against Aβ-triggered oxidative stress. Together, these findings indicate an endogenous neuroprotective role for the N-terminal Aβ fragment, while active stabilized N-terminal Aβcore derivatives offer the potential for therapeutic application. © 2017 International Society for Neurochemistry.

  11. Pigments and oligomers for inks - moving towards the best combination

    International Nuclear Information System (INIS)

    Hutchinson, I.; Smith, S.; Grierson, W.; Devine, E.

    1999-01-01

    The formulation of UV curable printing inks depends on several complex factors. If the individual components of the ink are not complementary, then performance problems can arise. One critical combination is that between the pigment and the oligomer. In a new approach to improve understanding of pigment/oligomer interactions, the resources of a pigment manufacturer and an oligomer manufacturer have been combined to investigate the problem. Initial screening of process yellow pigments and several oligomer types highlighted performance variations which were then examined in more detail

  12. The antigen-binding fragment of human gamma immunoglobulin prevents amyloid β-peptide folding into β-sheet to form oligomers

    Science.gov (United States)

    Valls-Comamala, Victòria; Guivernau, Biuse; Bonet, Jaume; Puig, Marta; Perálvarez-Marín, Alex; Palomer, Ernest; Fernàndez-Busquets, Xavier; Altafaj, Xavier; Tajes, Marta; Puig-Pijoan, Albert; Vicente, Rubén; Oliva, Baldomero; Muñoz, Francisco J.

    2017-01-01

    The amyloid beta-peptide (Aβ) plays a leading role in Alzheimer's disease (AD) physiopathology. Even though monomeric forms of Aβ are harmless to cells, Aβ can aggregate into β-sheet oligomers and fibrils, which are both neurotoxic. Therefore, one of the main therapeutic approaches to cure or delay AD onset and progression is targeting Aβ aggregation. In the present study, we show that a pool of human gamma immunoglobulins (IgG) protected cortical neurons from the challenge with Aβ oligomers, as assayed by MTT reduction, caspase-3 activation and cytoskeleton integrity. In addition, we report the inhibitory effect of IgG on Aβ aggregation, as shown by Thioflavin T assay, size exclusion chromatography and atomic force microscopy. Similar results were obtained with Palivizumab, a human anti-sincitial virus antibody. In order to dissect the important domains, we cleaved the pool of human IgG with papain to obtain Fab and Fc fragments. Using these cleaved fragments, we functionally identified Fab as the immunoglobulin fragment inhibiting Aβ aggregation, a result that was further confirmed by an in silico structural model. Interestingly, bioinformatic tools show a highly conserved structure able to bind amyloid in the Fab region. Overall, our data strongly support the inhibitory effect of human IgG on Aβ aggregation and its neuroprotective role. PMID:28467807

  13. Binding Sites for Amyloid-β Oligomers and Synaptic Toxicity

    Science.gov (United States)

    Smith, Levi M.; Strittmatter, Stephen M.

    2017-01-01

    In Alzheimer’s disease (AD), insoluble and fibrillary amyloid-β (Aβ) peptide accumulates in plaques. However, soluble Aβ oligomers are most potent in creating synaptic dysfunction and loss. Therefore, receptors for Aβ oligomers are hypothesized to be the first step in a neuronal cascade leading to dementia. A number of cell-surface proteins have been described as Aβ binding proteins, and one or more are likely to mediate Aβ oligomer toxicity in AD. Cellular prion protein (PrPC) is a high-affinity Aβ oligomer binding site, and a range of data delineates a signaling pathway leading from Aβ complexation with PrPC to neuronal impairment. Further study of Aβ binding proteins will define the molecular basis of this crucial step in AD pathogenesis. PMID:27940601

  14. α-Synuclein oligomers induced by docosahexaenoic acid affect membrane integrity.

    Directory of Open Access Journals (Sweden)

    Chiara Fecchio

    Full Text Available A key feature of Parkinson disease is the aggregation of α-synuclein and its intracellular deposition in fibrillar form. Increasing evidence suggests that the pathogenicity of α-synuclein is correlated with the activity of oligomers formed in the early stages of its aggregation process. Oligomers toxicity seems to be associated with both their ability to bind and affect the integrity of lipid membranes. Previously, we demonstrated that α-synuclein forms oligomeric species in the presence of docosahexaenoic acid and that these species are toxic to cells. Here we studied how interaction of these oligomers with membranes results in cell toxicity, using cellular membrane-mimetic and cell model systems. We found that α-synuclein oligomers are able to interact with large and small unilamellar negatively charged vesicles acquiring an increased amount of α-helical structure, which induces small molecules release. We explored the possibility that oligomers effects on membranes could be due to pore formation, to a detergent-like effect or to fibril growth on the membrane. Our biophysical and cellular findings are consistent with a model where α-synuclein oligomers are embedded into the lipid bilayer causing transient alteration of membrane permeability.

  15. Thermodynamically stable amyloid-β monomers have much lower membrane affinity than the small oligomers

    Directory of Open Access Journals (Sweden)

    Bidyut eSarkar

    2013-04-01

    Full Text Available Amyloid beta (Aβ is an extracellular 39-43 residue long peptide present in the mammalian cerebrospinal fluid, whose aggregation is associated with Alzheimer’s disease. Small oligomers of Aβ are currently thought to be the key to toxicity. However, it is not clear why the monomers of Aβ are non-toxic, and at what stage of aggregation toxicity emerges. Interactions of Aβ with cell membranes is thought to be the initiator of toxicity, but membrane-binding studies with different preparations of monomers and oligomers have not settled this issue. We have earlier found that thermodynamically stable Aβ monomers emerge spontaneously from oligomeric mixtures upon long term incubation in physiological solutions (Nag et al, JBC, 2011. Here we show that the membrane-affinity of these stable Aβ monomers is much lower than that of a mixture of small oligomers (containing dimers to decamers, providing a clue to the emergence of toxicity. Fluorescently labeled Aβ40 monomers show negligible binding to cell membranes of a neuronal cell line (RN46A at physiological concentrations (250 nM, while oligomers at the same concentrations show strong binding within 30 minutes of incubation. The increased affinity most likely does not require any specific neuronal receptor, since this difference in membrane-affinity was also observed in a somatic cell-line (HEK 293T. Similar results are also obtained for Aβ42 monomers and oligomers. Minimal amount of cell death is observed at these concentrations even after 36 hours of incubation. It is likely that membrane binding precedes subsequent slower toxic events induced by Aβ. Our results a provide an explanation for the non-toxic nature of Aβ monomers, b suggest that Aβ toxicity emerges at the initial oligomeric phase, and c provide a quick assay for monitoring the benign-to-toxic transformation of Aβ.

  16. Laccase-Catalyzed Synthesis of Low-Molecular-Weight Lignin-Like Oligomers and their Application as UV-Blocking Materials.

    Science.gov (United States)

    Lim, Jieyan; Sana, Barindra; Krishnan, Ranganathan; Seayad, Jayasree; Ghadessy, Farid J; Jana, Satyasankar; Ramalingam, Balamurugan

    2018-02-02

    The laccase-catalyzed oxidative polymerization of monomeric and dimeric lignin model compounds was carried out with oxygen as the oxidant in aqueous medium. The oligomers were characterized by using gel permeation chromatography (GPC) and matrix-assisted laser desorption ionization time-of-flight mass spectroscopy (MALDI-TOF MS) analysis. Oxidative polymerization led to the formation of oligomeric species with a number-average molecular weight (M n ) that ranged from 700 to 2300 Da with a low polydispersity index. Spectroscopic analysis provided insight into the possible modes of linkages present in the oligomers, and the oligomerization is likely to proceed through the formation of C-C linkages between phenolic aromatic rings. The oligomers were found to show good UV light absorption characteristics with high molar extinction coefficient (5000-38 000 m -1  cm -1 ) in the UV spectral region. The oligomers were blended independently with polyvinyl chloride (PVC) by using solution blending to evaluate the compatibility and UV protection ability of the oligomers. The UV/Vis transmittance spectra of the oligomer-embedded PVC films indicated that these lignin-like oligomers possessed a notable ability to block UV light. In particular, oligomers obtained from vanillyl alcohol and the dimeric lignin model were found to show good photostability in accelerated UV weathering experiments. The UV-blocking characteristics and photostability were finally compared with the commercial low-molecular-weight UV stabilizer 2,4-dihydroxybenzophenone. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Brain infusion of α-synuclein oligomers induces motor and non-motor Parkinson's disease-like symptoms in mice.

    Science.gov (United States)

    Fortuna, Juliana T S; Gralle, Matthias; Beckman, Danielle; Neves, Fernanda S; Diniz, Luan P; Frost, Paula S; Barros-Aragão, Fernanda; Santos, Luís E; Gonçalves, Rafaella A; Romão, Luciana; Zamberlan, Daniele C; Soares, Felix A A; Braga, Carolina; Foguel, Debora; Gomes, Flávia C A; De Felice, Fernanda G; Ferreira, Sergio T; Clarke, Julia R; Figueiredo, Cláudia P

    2017-08-30

    Parkinson's disease (PD) is characterized by motor dysfunction, which is preceded by a number of non-motor symptoms including olfactory deficits. Aggregation of α-synuclein (α-syn) gives rise to Lewy bodies in dopaminergic neurons and is thought to play a central role in PD pathology. However, whether amyloid fibrils or soluble oligomers of α-syn are the main neurotoxic species in PD remains controversial. Here, we performed a single intracerebroventricular (i.c.v.) infusion of α-syn oligomers (α-SYOs) in mice and evaluated motor and non-motor symptoms. Familiar bedding and vanillin essence discrimination tasks showed that α-SYOs impaired olfactory performance of mice, and decreased TH and dopamine levels in the olfactory bulb early after infusion. The olfactory deficit persisted until 45days post-infusion (dpi). α- SYO-infused mice behaved normally in the object recognition and forced swim tests, but showed increased anxiety-like behavior in the open field and elevated plus maze tests 20 dpi. Finally, administration of α-SYOs induced late motor impairment in the pole test and rotarod paradigms, along with reduced TH and dopamine content in the caudate putamen, 45 dpi. Reduced number of TH-positive cells was also seen in the substantia nigra of α-SYO-injected mice compared to control. In conclusion, i.c.v. infusion of α-SYOs recapitulated some of PD-associated non-motor symptoms, such as increased anxiety and olfactory dysfunction, but failed to recapitulate memory impairment and depressive-like behavior typical of the disease. Moreover, α-SYOs i.c.v. administration induced motor deficits and loss of TH and dopamine levels, key features of PD. Results point to α-syn oligomers as the proximal neurotoxins responsible for early non-motor and motor deficits in PD and suggest that the i.c.v. infusion model characterized here may comprise a useful tool for identification of PD novel therapeutic targets and drug screening. Copyright © 2017 Elsevier B.V. All

  18. Star-shaped tetrathiafulvalene oligomers towards the construction of conducting supramolecular assembly.

    Science.gov (United States)

    Iyoda, Masahiko; Hasegawa, Masashi

    2015-01-01

    The construction of redox-active supramolecular assemblies based on star-shaped and radially expanded tetrathiafulvalene (TTF) oligomers with divergent and extended conjugation is summarized. Star-shaped TTF oligomers easily self-aggregate with a nanophase separation to produce supramolecular structures, and their TTF units stack face-to-face to form columnar structures using the fastener effect. Based on redox-active self-organizing supramolecular structures, conducting nanoobjects are constructed by doping of TTF oligomers with oxidants after the formation of such nanostructures. Although radical cations derived from TTF oligomers strongly interact in solution to produce a mixed-valence dimer and π-dimer, it seems to be difficult to produce nanoobjects of radical cations different from those of neutral TTF oligomers. In some cases, however, radical cations form nanostructured fibers and rods by controlling the supramolecular assembly, oxidation states, and counter anions employed.

  19. Radiation curable oligomers

    International Nuclear Information System (INIS)

    Huemmer, T.F.; Edison, B.A.

    1977-01-01

    A process is described for the high energy radiation curing of oligomers for use as coatings. The method is particularly applicable to the reaction products of certain low molecular weight epoxy compounds and certain low molecular weight mono-hydroxy vinyl compounds having at least one vinylic unsaturation. The curable mixture is applied as a thin film and cured very quickly

  20. Electrorheology of aniline oligomers

    Czech Academy of Sciences Publication Activity Database

    Mrlík, M.; Sedlačík, M.; Pavlínek, V.; Bober, Patrycja; Trchová, Miroslava; Stejskal, Jaroslav; Sáha, P.

    2013-01-01

    Roč. 291, č. 9 (2013), s. 2079-2086 ISSN 0303-402X R&D Projects: GA ČR GA202/09/1626 Institutional support: RVO:61389013 Keywords : anilin e oligomers * polyaniline * electrorheology Subject RIV: JI - Composite Materials Impact factor: 2.410, year: 2013

  1. Accumulation of oligomer-prone α-synuclein exacerbates synaptic and neuronal degeneration in vivo.

    Science.gov (United States)

    Rockenstein, Edward; Nuber, Silke; Overk, Cassia R; Ubhi, Kiren; Mante, Michael; Patrick, Christina; Adame, Anthony; Trejo-Morales, Margarita; Gerez, Juan; Picotti, Paola; Jensen, Poul H; Campioni, Silvia; Riek, Roland; Winkler, Jürgen; Gage, Fred H; Winner, Beate; Masliah, Eliezer

    2014-05-01

    In Parkinson's disease and dementia with Lewy bodies, α-synuclein aggregates to form oligomers and fibrils; however, the precise nature of the toxic α-synuclein species remains unclear. A number of synthetic α-synuclein mutations were recently created (E57K and E35K) that produce species of α-synuclein that preferentially form oligomers and increase α-synuclein-mediated toxicity. We have shown that acute lentiviral expression of α-synuclein E57K leads to the degeneration of dopaminergic neurons; however, the effects of chronic expression of oligomer-prone α-synuclein in synapses throughout the brain have not been investigated. Such a study could provide insight into the possible mechanism(s) through which accumulation of α-synuclein oligomers in the synapse leads to neurodegeneration. For this purpose, we compared the patterns of neurodegeneration and synaptic damage between a newly generated mThy-1 α-synuclein E57K transgenic mouse model that is prone to forming oligomers and the mThy-1 α-synuclein wild-type mouse model (Line 61), which accumulates various forms of α-synuclein. Three lines of α-synuclein E57K (Lines 9, 16 and 54) were generated and compared with the wild-type. The α-synuclein E57K Lines 9 and 16 were higher expressings of α-synuclein, similar to α-synuclein wild-type Line 61, and Line 54 was a low expressing of α-synuclein compared to Line 61. By immunoblot analysis, the higher-expressing α-synuclein E57K transgenic mice showed abundant oligomeric, but not fibrillar, α-synuclein whereas lower-expressing mice accumulated monomeric α-synuclein. Monomers, oligomers, and fibrils were present in α-synuclein wild-type Line 61. Immunohistochemical and ultrastructural analyses demonstrated that α-synuclein accumulated in the synapses but not in the neuronal cells bodies, which was different from the α-synuclein wild-type Line 61, which accumulates α-synuclein in the soma. Compared to non-transgenic and lower-expressing mice, the

  2. A peptide disrupting the D2R-DAT interaction protects against dopamine neurotoxicity.

    Science.gov (United States)

    Su, Ping; Liu, Fang

    2017-09-01

    Dopamine reuptake from extracellular space to cytosol leads to accumulation of dopamine, which triggers neurotoxicity in dopaminergic neurons. Previous studies have shown that both dopamine D2 receptor (D2R) and dopamine transporter (DAT) are involved in dopamine neurotoxicity. However, blockade of either D2R or DAT causes side effects due to antagonism of other physiological functions of these two proteins. We previously found that DAT can form a protein complex with D2R and its cell surface expression is facilitated via D2R-DAT interaction, which regulates dopamine reuptake and intracellular dopamine levels. Here we found that an interfering peptide (DAT-S1) disrupting the D2R-DAT interaction protects neurons against dopamine neurotoxicity, and this effect is mediated by inhibiting DAT cell surface expression and inhibiting both caspase-3 and PARP-1 cleavage. This study demonstrates the role of the D2R-DAT complex in dopamine neurotoxicity and investigated the potential mechanisms, which might help better understand the mechanisms of dopamine neurotoxicity. The peptide may provide some insights to improve treatments for dopamine neurotoxicity and related diseases, such as Parkinson's disease, as well as methamphetamine- and 3,4-methsylenedioxy methamphetamine-induced neurotoxicity. Copyright © 2017. Published by Elsevier Inc.

  3. α-Synuclein oligomers and clinical implications for Parkinson disease

    Science.gov (United States)

    Kalia, Lorraine V.; Kalia, Suneil K.; McLean, Pamela J.; Lozano, Andres M.; Lang, Anthony E.

    2012-01-01

    Protein aggregation within the central nervous system has been recognized as a defining feature of neurodegenerative diseases since the early 20th century. Since that time, there has been a growing list of neurodegenerative disorders, including Parkinson disease, which are characterized by inclusions of specific pathogenic proteins. This has led to the long-held dogma that these characteristic protein inclusions, which are composed of large insoluble fibrillar protein aggregates and visible by light microscopy, are responsible for cell death in these diseases. However, the correlation between protein inclusion formation and cytotoxicity is inconsistent suggesting another form of the pathogenic proteins may be contributing to neurodegeneration. There is emerging evidence implicating soluble oligomers, smaller protein aggregates not detectable by conventional microscopy, as potential culprits in the pathogenesis of neurodegenerative diseases. The protein α-synuclein is well recognized to contribute to the pathogenesis of Parkinson disease and is the major component of Lewy bodies and Lewy neurites. However, α-synuclein also forms oligomeric species with certain conformations being toxic to cells. The mechanisms by which these α-synuclein oligomers cause cell death are being actively investigated as they may provide new strategies for diagnosis and treatment of Parkinson disease and related disorders. Here we review the possible role of α-synuclein oligomers in cell death in Parkinson disease and discuss the potential clinical implications. PMID:23225525

  4. Neuroprotective effects of statins against amyloid β-induced neurotoxicity

    Directory of Open Access Journals (Sweden)

    Hsin-Hua Li

    2018-01-01

    Full Text Available A growing body of evidence suggests that disruption of the homeostasis of lipid metabolism affects the pathogenesis of Alzheimer's disease (AD. In particular, dysregulation of cholesterol homeostasis in the brain has been reported to considerably increase the risk of developing AD. Thus, dysregulation of lipid homeostasis may increase the amyloid β (Aβ levels by affecting amyloid precursor protein (APP cleavage, which is the most important risk factor involved in the pathogenesis of AD. Previous research demonstrated that Aβ can trigger neuronal insulin resistance, which plays an important role in response to Aβ-induced neurotoxicity in AD. Epidemiological studies also suggested that statin use is associated with a decreased incidence of AD. Therefore, statins are believed to be a good candidate for conferring neuroprotective effects against AD. Statins may play a beneficial role in reducing Aβ-induced neurotoxicity. Their effect involves a putative mechanism beyond its cholesterol-lowering effects in preventing Aβ-induced neurotoxicity. However, the underlying molecular mechanisms of the protective effect of statins have not been clearly determined in Aβ-induced neurotoxicity. Given that statins may provide benefits beyond the inhibition of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA reductase, these drugs may also improve the brain. Thus, statins may have beneficial effects on impaired insulin signaling by activating AMP-activated protein kinase (AMPK in neuronal cells. They play a potential therapeutic role in targeting Aβ-mediated neurotoxicity.

  5. Immunosuppressant-Associated Neurotoxicity Responding to Olanzapine

    Directory of Open Access Journals (Sweden)

    James A. Bourgeois

    2014-01-01

    Full Text Available Immunosuppressants, particularly tacrolimus, can induce neurotoxicity in solid organ transplantation cases. A lower clinical threshold to switch from tacrolimus to another immunosuppressant agent has been a common approach to reverse this neurotoxicity. However, immunosuppressant switch may place the graft at risk, and, in some cases, continuation of the same treatment protocol may be necessary. We report a case of immunosuppressant-associated neurotoxicity with prominent neuropsychiatric manifestation and describe psychiatric intervention with olanzapine that led to clinical improvement while continuing tacrolimus maintenance.

  6. Unraveling the Role of Π - Conjugation in Thiophene Oligomers for Optoelectronic Properties by DFT/TDDFT Approach

    Directory of Open Access Journals (Sweden)

    Gajalakshmi

    Full Text Available ABSTRACT Thiophene oligomer has been investigated using DFT/TDDFT calculations with an aim to check its suitability for opto electronic applications and also to analyse the influence of π-bridge. Our results revealed that thiophene oligomers have excellent π-conjugation throughout. FMO analysis give an estimate of band gap of thiophene oligomer and further revealed HOMO are localized on π - bridge, donor group and LUMO are localized on π - bridge and acceptor group. A TDDFT calculation has been performed to understand the absorption properties of them in gas phase and solvent phase. PCM calculations convey that absorption maxima show positive solvatochromism. Among the designed candidates, the one with more π - bridge show higher wavelength of absorption maxima and would be a choice for better optoelectronic materials. NBO analysis provides support for complete delocalization in these systems. It is interesting to note that oligomer with more π-bridge display an enhanced optoelectronic properties than with less π - bridge.

  7. Amyloid oligomers and protofibrils, but not filaments, self-replicate from native lysozyme.

    Science.gov (United States)

    Mulaj, Mentor; Foley, Joseph; Muschol, Martin

    2014-06-25

    Self-assembly of amyloid fibrils is the molecular mechanism best known for its connection with debilitating human disorders such as Alzheimer's disease but is also associated with various functional cellular responses. There is increasing evidence that amyloid formation proceeds along two distinct assembly pathways involving either globular oligomers and protofibrils or rigid monomeric filaments. Oligomers, in particular, have been implicated as the dominant molecular species responsible for pathogenesis. Yet the molecular mechanisms regulating their self-assembly have remained elusive. Here we show that oligomers/protofibrils and monomeric filaments, formed along distinct assembly pathways, display critical differences in their ability to template amyloid growth at physiological vs denaturing temperatures. At physiological temperatures, amyloid filaments remained stable but could not seed growth of native monomers. In contrast, oligomers and protofibrils not only remained intact but were capable of self-replication using native monomers as the substrate. Kinetic data further suggested that this prion-like growth mode of oligomers/protofibrils involved two distinct activities operating orthogonal from each other: autocatalytic self-replication of oligomers from native monomers and nucleated polymerization of oligomers into protofibrils. The environmental changes to stability and templating competence of these different amyloid species in different environments are likely to be important for understanding the molecular mechanisms underlying both pathogenic and functional amyloid self-assembly.

  8. Mechanistic insight into neurotoxicity induced by developmental insults

    International Nuclear Information System (INIS)

    Tamm, Christoffer; Ceccatelli, Sandra

    2017-01-01

    Epidemiological and/or experimental studies have shown that unfavorable prenatal environmental factors, such as stress or exposure to certain neurotoxic environmental contaminants, may have adverse consequences for neurodevelopment. Alterations in neurogenesis can have harmful effects not only for the developing nervous system, but also for the adult brain where neurogenesis is believed to play a role in learning, memory, and even in depression. Many recent advances in the understanding of the complex process of nervous system development can be integrated into the field of neurotoxicology. In the past 15 years we have been using cultured neural stem or progenitor cells to investigate the effects of neurotoxic stimuli on cell survival, proliferation and differentiation, with special focus on heritable effects. This is an overview of the work performed by our group in the attempt to elucidate the mechanisms of developmental neurotoxicity and possibly provide relevant information for the understanding of the etiopathogenesis of complex brain disorders. - Highlights: • The developing nervous system is highly sensitive to toxic insults. • Neural stem cells are relevant models for mechanistic studies as well as for identifying heritable effects due to epigenetic changes. • Depending on the dose, the outcome of exposure to neurotoxicants ranges from altered proliferation and differentiation to cell death. • The elucidation of neurotoxicity mechanisms is relevant for understanding the etiopathogenesis of developmental and adult nervous system disorders.

  9. Effects of lattice fluctuations on electronic transmission in metal/conjugated-oligomer/metal structures

    International Nuclear Information System (INIS)

    Yu, Z.G.; Smith, D.L.; Saxena, A.; Bishop, A.R.

    1997-01-01

    The electronic transmission across metal/conjugated-oligomer/metal structures in the presence of lattice fluctuations is studied for short oligomer chains. The lattice fluctuations are approximated by static white noise disorder. Resonant transmission occurs when the energy of an incoming electron coincides with a discrete electronic level of the oligomer. The corresponding transmission peak diminishes in intensity with increasing disorder strength. Because of disorder there is an enhancement of the electronic transmission for energies that lie within the electronic gap of the oligomer. If fluctuations are sufficiently strong, a transmission peak within the gap is found at the midgap energy E=0 for degenerate conjugated oligomers (e.g., trans-polyacetylene) and E≠0 for AB-type degenerate oligomers. These results can be interpreted in terms of soliton-antisoliton states created by lattice fluctuations. copyright 1997 The American Physical Society

  10. Effect of phenolic oligomer on adhesion of poly (ethylene terephthalate) film laminated steel sheets by Electron Beam Curing method

    International Nuclear Information System (INIS)

    Masuhara, Kenichi; Mori, Koji; Koshiishi, Kenji; Sasaki, Takashi.

    1995-01-01

    Adhesion of poly (ethylene terephthalate) film by Electron Beam Curing (EBC) method which can be thought as an energy-saving process was studied for the purpose of bestowing economically design and distinctness of image on thermosetting high molecular weight polyester precoated steel sheets. Adhesion of EB curable resins onto metal is generally poor. In this report, addition of EB curable phenolic resole oligomer with bifunctional acrylates to the top coat used for precoated steel was studied in order to increase the adhesion of an EB curable adhesive, and it was found that the phenolic oligomer is tremendously effective for the improvement of adhesion. The reasons why the phenolic oligomer provides excellent adhesion were 1) elongation at break of the top coat to which the phenolic oligomer is added is little decreased by EB irradiation, and the formability does not reduce. 2) As the phenolic oligomer is unevenly distributed to the surface layer of the top coat, it is suggested that the contact frequency of the phenolic oligomer to the EB curable adhesive is so high that graft polymerization between them is liable to occur. (author)

  11. General anesthetics in children: neurotoxic or neuroprotective?

    Directory of Open Access Journals (Sweden)

    Jéssica Farias Rebouças

    2017-02-01

    Full Text Available Introduction: general anesthetics are involved in neuroprotection in adults after ischemic events and cognitive impairment, thus, they also may be associated with learning disorders in children exposed to them before three years of age. Objective: Describe about the neurotoxic effects of general anesthetics in experimental animals and children. Method: This is a systematic review, performed from search in databases and on PubMed using the keywords "neurotoxicity" and "general anesthetics," and "general anesthetics," "neurotoxicity", "children", "young child "and" pediatric ". Results: The search resulted in 185 articles. Out of these, 78 met our inclusion criteria. We found that there was a significant evidence of neurotoxicity induced by general anesthetics in experimental animals that were just born, resulting in late and permanent cognitive deficits. This effect was associated with multiple exposures, exposure length of time and combination of drugs. However, some studies found cognitive impairment after a single exposure to anesthetic. Conclusion: There is insufficient evidence to state that general anesthetics are neurotoxic and have the potential to trigger learning and behavior disabilities in children. However, we suggest caution in indicating surgery in children under three years old, analyzing risk-benefit and inserting the family in the decision process.   Keywords: Neurotoxicity; Neuroprotection; Cognitive Impairment; Children; General Anesthesics

  12. Synergistic influence of phosphorylation and metal ions on tau oligomer formation and coaggregation with α-synuclein at the single molecule level

    Directory of Open Access Journals (Sweden)

    Nübling Georg

    2012-07-01

    Full Text Available Abstract Background Fibrillar amyloid-like deposits and co-deposits of tau and α-synuclein are found in several common neurodegenerative diseases. Recent evidence indicates that small oligomers are the most relevant toxic aggregate species. While tau fibril formation is well-characterized, factors influencing tau oligomerization and molecular interactions of tau and α-synuclein are not well understood. Results We used a novel approach applying confocal single-particle fluorescence to investigate the influence of tau phosphorylation and metal ions on tau oligomer formation and its coaggregation with α-synuclein at the level of individual oligomers. We show that Al3+ at physiologically relevant concentrations and tau phosphorylation by GSK-3β exert synergistic effects on the formation of a distinct SDS-resistant tau oligomer species even at nanomolar protein concentration. Moreover, tau phosphorylation and Al3+ as well as Fe3+ enhanced both formation of mixed oligomers and recruitment of α-synuclein in pre-formed tau oligomers. Conclusions Our findings provide a new perspective on interactions of tau phosphorylation, metal ions, and the formation of potentially toxic oligomer species, and elucidate molecular crosstalks between different aggregation pathways involved in neurodegeneration.

  13. Central neurotoxicity of immunomodulatory drugs in multiple myeloma

    Directory of Open Access Journals (Sweden)

    Urmeel H. Patel

    2015-03-01

    Full Text Available Immunomodulatory drugs (IMiDs currently used in the treatment of multiple myeloma, are thalidomide, lenalidomide and pomalidomide. One of the most common side effects of thalidomide is neurotoxicity, predominantly in the form of peripheral neuropathy. We report 6 cases of significant central neurotoxicity associated with IMiD therapy. Treatment with thalidomide (1 patient, lenalidomide (4 patients, and pomalidomide (1 patient was associated with various clinical manifestations of central neurotoxicity, including reversible coma, amnesia, expressive aphasia, and dysarthria. Central neurotoxicity should be recognized as an important side effect of IMiD therapy.

  14. Central neurotoxicity of immunomodulatory drugs in multiple myeloma.

    Science.gov (United States)

    Patel, Urmeel H; Mir, Muhammad A; Sivik, Jeffrey K; Raheja, Divisha; Pandey, Manoj K; Talamo, Giampaolo

    2015-02-24

    Immunomodulatory drugs (IMiDs) currently used in the treatment of multiple myeloma, are thalidomide, lenalidomide and pomalidomide. One of the most common side effects of thalidomide is neurotoxicity, predominantly in the form of peripheral neuropathy. We report 6 cases of significant central neurotoxicity associated with IMiD therapy. Treatment with thalidomide (1 patient), lenalidomide (4 patients), and pomalidomide (1 patient) was associated with various clinical manifestations of central neurotoxicity, including reversible coma, amnesia, expressive aphasia, and dysarthria. Central neurotoxicity should be recognized as an important side effect of IMiD therapy.

  15. Antioxidant Activity of Hispidin Oligomers from Medicinal Fungi: A DFT Study

    Directory of Open Access Journals (Sweden)

    El Hassane Anouar

    2014-03-01

    Full Text Available Hispidin oligomers are styrylpyrone pigments isolated from the medicinal fungi Inonotus xeranticus and Phellinus linteus. They exhibit diverse biological activities and strong free radical scavenging activity. To rationalize the antioxidant activity of a series of four hispidin oligomers and determine the favored mechanism involved in free radical scavenging, DFT calculations were carried out at the B3P86/6-31+G (d, p level of theory in gas and solvent. The results showed that bond dissociation enthalpies of OH groups of hispidin oligomers (ArOH and spin density delocalization of related radicals (ArO• are the appropriate parameters to clarify the differences between the observed antioxidant activities for the four oligomers. The effect of the number of hydroxyl groups and presence of a catechol moiety conjugated to a double bond on the antioxidant activity were determined. Thermodynamic and kinetic studies showed that the PC-ET mechanism is the main mechanism involved in free radical scavenging. The spin density distribution over phenoxyl radicals allows a better understanding of the hispidin oligomers formation.

  16. Occupational Neurotoxic Diseases in Taiwan

    Directory of Open Access Journals (Sweden)

    Chi-Hung Liu

    2012-12-01

    Full Text Available Occupational neurotoxic diseases have become increasingly common in Taiwan due to industrialization. Over the past 40 years, Taiwan has transformed from an agricultural society to an industrial society. The most common neurotoxic diseases also changed from organophosphate poisoning to heavy metal intoxication, and then to organic solvent and semiconductor agent poisoning. The nervous system is particularly vulnerable to toxic agents because of its high metabolic rate. Neurological manifestations may be transient or permanent, and may range from cognitive dysfunction, cerebellar ataxia, Parkinsonism, sensorimotor neuropathy and autonomic dysfunction to neuromuscular junction disorders. This study attempts to provide a review of the major outbreaks of occupational neurotoxins from 1968 to 2012. A total of 16 occupational neurotoxins, including organophosphates, toxic gases, heavy metals, organic solvents, and other toxic chemicals, were reviewed. Peer-reviewed articles related to the electrophysiology, neuroimaging, treatment and long-term follow up of these neurotoxic diseases were also obtained. The heavy metals involved consisted of lead, manganese, organic tin, mercury, arsenic, and thallium. The organic solvents included n-hexane, toluene, mixed solvents and carbon disulfide. Toxic gases such as carbon monoxide, and hydrogen sulfide were also included, along with toxic chemicals including polychlorinated biphenyls, tetramethylammonium hydroxide, organophosphates, and dimethylamine borane. In addition we attempted to correlate these events to the timeline of industrial development in Taiwan. By researching this topic, the hope is that it may help other developing countries to improve industrial hygiene and promote occupational safety and health care during the process of industrialization.

  17. High-resolution NMR characterization of low abundance oligomers of amyloid-β without purification.

    Science.gov (United States)

    Kotler, Samuel A; Brender, Jeffrey R; Vivekanandan, Subramanian; Suzuki, Yuta; Yamamoto, Kazutoshi; Monette, Martine; Krishnamoorthy, Janarthanan; Walsh, Patrick; Cauble, Meagan; Holl, Mark M Banaszak; Marsh, E Neil G; Ramamoorthy, Ayyalusamy

    2015-07-03

    Alzheimer's disease is characterized by the misfolding and self-assembly of the amyloidogenic protein amyloid-β (Aβ). The aggregation of Aβ leads to diverse oligomeric states, each of which may be potential targets for intervention. Obtaining insight into Aβ oligomers at the atomic level has been a major challenge to most techniques. Here, we use magic angle spinning recoupling (1)H-(1)H NMR experiments to overcome many of these limitations. Using (1)H-(1)H dipolar couplings as a NMR spectral filter to remove both high and low molecular weight species, we provide atomic-level characterization of a non-fibrillar aggregation product of the Aβ1-40 peptide using non-frozen samples without isotopic labeling. Importantly, this spectral filter allows the detection of the specific oligomer signal without a separate purification procedure. In comparison to other solid-state NMR techniques, the experiment is extraordinarily selective and sensitive. A resolved 2D spectra could be acquired of a small population of oligomers (6 micrograms, 7% of the total) amongst a much larger population of monomers and fibers (93% of the total). By coupling real-time (1)H-(1)H NMR experiments with other biophysical measurements, we show that a stable, primarily disordered Aβ1-40 oligomer 5-15 nm in diameter can form and coexist in parallel with the well-known cross-β-sheet fibrils.

  18. Genotoxicity of styrene oligomers extracted from polystyrene intended for use in contact with food

    Directory of Open Access Journals (Sweden)

    Makoto Nakai

    2014-01-01

    Full Text Available Here, we conducted in vitro genotoxicity tests to evaluate the genotoxicity of styrene oligomers extracted from polystyrene intended for use in contact with food. Styrene oligomers were extracted with acetone and the extract was subjected to the Ames test (OECD test guideline No. 471 and the in vitro chromosomal aberration test (OECD test guideline No. 473 under good laboratory practice conditions. The concentrations of styrene dimers and trimers in the concentrated extract were 540 and 13,431 ppm, respectively. Extraction with acetone provided markedly higher concentrations of styrene oligomers compared with extraction with 50% ethanol aqueous solution, which is the food simulant currently recommended for use in safety assessments of polystyrene by both the United States Food and Drug Administration and the European Food Safety Authority. And these high concentrations of styrene dimers and trimers were utilized for the evaluation of genotoxicity in vitro. Ames tests using five bacterial tester strains were negative both in the presence or absence of metabolic activation. The in vitro chromosomal aberration test using Chinese hamster lung cells (CHL/IU was also negative. Together, these results suggest that the risk of the genotoxicity of styrene oligomers that migrate from polystyrene food packaging into food is very low.

  19. Photo-electron spectroscopy study of energy levels in conjugated oligomers

    NARCIS (Netherlands)

    Veenstra, SC; Heeres, A; Stalmach, U; Wildeman, J; Hadziioannou, G; Sawatzky, GA; Jonkman, HT; Moss, SC

    2002-01-01

    We report on the valence orbital structure of poly(para-phenylenevinylene) (PPV)-like oligomers. We studied these molecules as isolated oligomers in the gas phase, as well as in thin films deposited on metal substrates. We use a simple model based on a previously reported Hamiltonian that accurately

  20. The Effects of IGF-1 on Trk Expressing DRG Neurons with HIV-gp120- Induced Neurotoxicity.

    Science.gov (United States)

    Li, Hao; Liu, Zhen; Chi, Heng; Bi, Yanwen; Song, Lijun; Liu, Huaxiang

    2016-01-01

    HIV envelope glycoprotein gp120 is the main protein that causes HIVassociated sensory neuropathy. However, the underlying mechanisms of gp120-induced neurotoxicity are still unclear. There are lack effective treatments for relieving HIV-related neuropathic symptoms caused by gp120-induced neurotoxicity. In the present study, tyrosine kinase receptor (Trk)A, TrkB, and TrkC expression in primary cultured dorsal root ganglion (DRG) neurons with gp120-induced neurotoxicity was investigated. The effects of IGF-1 on distinct Trk-positive DRG neurons with gp120-induced neurotoxicity were also determined. The results showed that gp120 not only dose-dependently induced DRG neuronal apoptosis and inhibited neuronal survival and neurite outgrowth, but also decreased distinct Trk expression levels. IGF-1 rescued DRG neurons from apoptosis and improved neuronal survival of gp120 neurotoxic DRG neurons in vitro. IGF-1 also improved TrkA and TrkB, but not TrkC, expression in gp120 neurotoxic conditions. The effects of IGF-1 could be blocked by preincubation with the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002. These results suggested that gp120 may have a wide range of neurotoxicity on different subpopulations of DRG neurons, while IGF-1 might only relieve some subpopulations of DRG neurons with gp120-induced neurotoxicity. These data provide novel information of mechanisms of gp120 neurotoxicity on primary sensory neurons and the potential therapeutic effects of IGF-1 on gp120-induced neurotoxicity.

  1. Corneal Neurotoxicity Due to Topical Benzalkonium Chloride

    OpenAIRE

    Sarkar, Joy; Chaudhary, Shweta; Namavari, Abed; Ozturk, Okan; Chang, Jin-Hong; Yco, Lisette; Sonawane, Snehal; Khanolkar, Vishakha; Hallak, Joelle; Jain, Sandeep

    2012-01-01

    Topical application of benzalkonium chloride (BAK) to the eye causes dose-related corneal neurotoxicity. Corneal inflammation and reduction in aqueous tear production accompany neurotoxicity. Cessation of BAK treatment leads to recovery of corneal nerve density.

  2. Solvent free low-melt viscosity imide oligomers and thermosetting polymide composites

    Science.gov (United States)

    Chuang, Chun-Hua (Inventor)

    2012-01-01

    .[.This invention relates to the composition and a solvent-free process for preparing novel imide oligomers and polymers specifically formulated with effective amounts of a dianhydride such as 2,3,3',4-biphenyltetra carboxylic dianydride (a-BPDA), at least one aromatic diamine and an endcapped of 4-phenylethynylphthalic anhydride (PEPA) or nadic anhydride to produce imide oligomers that possess a low-melt viscosity of 1-60 poise at 260-280.degree. C. When the imide oligomer melt is cured at about 371.degree. C. in a press or autoclave under 100-500 psi, the melt resulted in a thermoset polyimide having a glass transition temperature (T.sub.g) equal to and above 310.degree. C. A novel feature of this process is that the monomers; namely the dianhydrides, diamines and the endcaps, are melt processable to form imide oligomers at temperatures ranging between 232-280.degree. C. (450-535.degree. F.) without any solvent. These low-melt imide oligomers can be easily processed by resin transfer molding (RTM), vacuum-assisted resin transfer molding (VARTM) or the resin infusion process with fiber preforms e.g. carbon, glass or quartz preforms to produce polyimide matrix composites with 288-343.degree. C. (550-650.degree. F.) high temperature performance capability..]. .Iadd.This invention relates to compositions and a solvent-free reaction process for preparing imide oligomers and polymers specifically derived from effective amounts of dianhydrides such as 2,3,3',4'-biphenyltetracarboxylic dianhydride (a-BPDA), at least one aromatic polyamine and an end-cap such as 4-phenylethynyphthalic anhydride (PEPA) or nadic anhydride to produce imide oligomers that possess a low-melt viscosity of 1-60 poise at 260.degree. C.-280.degree. C..Iaddend.

  3. Computer simulations and theoretical aspects of the depletion interaction in protein-oligomer mixtures.

    Science.gov (United States)

    Boncina, M; Rescic, J; Kalyuzhnyi, Yu V; Vlachy, V

    2007-07-21

    The depletion interaction between proteins caused by addition of either uncharged or partially charged oligomers was studied using the canonical Monte Carlo simulation technique and the integral equation theory. A protein molecule was modeled in two different ways: either as (i) a hard sphere of diameter 30.0 A with net charge 0, or +5, or (ii) as a hard sphere with discrete charges (depending on the pH of solution) of diameter 45.4 A. The oligomers were pictured as tangentially jointed, uncharged, or partially charged, hard spheres. The ions of a simple electrolyte present in solution were represented by charged hard spheres distributed in the dielectric continuum. In this study we were particularly interested in changes of the protein-protein pair-distribution function, caused by addition of the oligomer component. In agreement with previous studies we found that addition of a nonadsorbing oligomer reduces the phase stability of solution, which is reflected in the shape of the protein-protein pair-distribution function. The value of this function in protein-protein contact increases with increasing oligomer concentration, and is larger for charged oligomers. The range of the depletion interaction and its strength also depend on the length (number of monomer units) of the oligomer chain. The integral equation theory, based on the Wertheim Ornstein-Zernike approach applied in this study, was found to be in fair agreement with Monte Carlo results only for very short oligomers. The computer simulations for a model mimicking the lysozyme molecule (ii) are in qualitative agreement with small-angle neutron experiments for lysozyme-dextran mixtures.

  4. Endocytic pathways mediating oligomeric Aβ42 neurotoxicity

    Directory of Open Access Journals (Sweden)

    Laxton Kevin

    2010-05-01

    Full Text Available Abstract Background One pathological hallmark of Alzheimer's disease (AD is amyloid plaques, composed primarily of amyloid-β peptide (Aβ. Over-production or diminished clearance of the 42 amino acid form of Aβ (Aβ42 in the brain leads to accumulation of soluble Aβ and plaque formation. Soluble oligomeric Aβ (oAβ has recently emerged to be as a likely proximal cause of AD. Results Here we demonstrate that endocytosis is critical in mediating oAβ42-induced neurotoxicity and intraneuronal accumulation of Aβ. Inhibition of clathrin function either with a pharmacological inhibitor, knock-down of clathrin heavy chain expression, or expression of the dominant-negative mutant of clathrin-assembly protein AP180 did not block oAβ42-induced neurotoxicity or intraneuronal accumulation of Aβ. However, inhibition of dynamin and RhoA by expression of dominant negative mutants reduced neurotoxicity and intraneuronal Aβ accumulation. Pharmacologic inhibition of the dynamin-mediated endocytic pathway by genistein also reduced neurotoxicity. Conclusions These data suggest that dynamin-mediated and RhoA-regulated endocytosis are integral steps for oligomeric Aβ42-induced neurotoxicity and intraneuronal Aβ accumulation.

  5. Donor-acceptor-donor thienyl/bithienyl-benzothiadiazole/quinoxaline model oligomers: experimental and theoretical studies.

    Science.gov (United States)

    Pina, João; de Melo, J Seixas; Breusov, D; Scherf, Ullrich

    2013-09-28

    A comprehensive spectral and photophysical investigation of four donor-acceptor-donor (DAD) oligomers consisting of electron-deficient 2,1,3-benzothiadiazole or quinoxaline moieties linked to electron-rich thienyl or bithienyl units has been undertaken. Additionally, a bis(dithienyl) substituted naphthalene was also investigated. The D-A-D nature of these oligomers resulted in the presence of an intramolecular charge transfer (ICT) state, which was further substantiated by solvatochromism studies (analysis with the Lippert-Mataga formalism). Hereby, significant differences have been obtained for the fluorescence quantum yields of the oligomers in the non-polar solvent methylcyclohexane vs. the polar ethanol. The study was further complemented with the determination of the optimized ground-state molecular geometries for the oligomers together with the prediction of the lowest vertical one-electron excitation energy and the relevant molecular orbital contours using DFT calculations. The electronic transitions show a clear HOMO to LUMO charge-transfer character. In contrast to the thiophene oligomers (the oligothiophenes with n = 1-7), where the intersystem crossing (ISC) yield decreases with n, the studied DAD oligomers were found to show an increase in the ISC efficiency with the number of (donor) thienyl units.

  6. Neurotoxic effects of ecstasy on the thalamus

    NARCIS (Netherlands)

    de Win, Maartje M. L.; Jager, Gerry; Booij, Jan; Reneman, Liesbeth; Schilt, Thelma; Lavini, Cristina; Olabarriaga, Sílvia D.; Ramsey, Nick F.; den Heeten, Gerard J.; van den Brink, Wim

    2008-01-01

    Background Neurotoxic effects of ecstasy have been reported, although it remains unclear whether effects can be attributed to ecstasy, other recreational drugs or a combination of these. Aims To assess specific/independent neurotoxic effects of heavy ecstasy use and contributions of amphetamine,

  7. Solvent Free Low-Melt Viscosity Imide Oligomers And Thermosetting Polyimide Composites

    Science.gov (United States)

    Chuang, CHun-Hua (Inventor)

    2006-01-01

    This invention relates to the composition and a solvent-free process for preparing novel imide oligomers and polymers specifically formulated with effective amounts of a dianhydride such as 2,3,3',4-biphenyltetra carboxylic dianydride (a-BPDA), at least one aromatic diamine' and an endcapped of 4-phenylethynylphthalic anhydride (PEPA) or nadic anhydride to produce imide oligomers that possess a low-melt viscosity of 1-60 poise at 260-280" C. When the imide oligomer melt is cured at about 371 C. in a press or autoclave under 100-500 psi, the melt resulted in a thermoset polyimide having a glass transition temperature (T(sub g)) equal to and above 310 C. A novel feature of this process is that the monomers; namely the dianhydrides, diamines and the endcaps, are melt processable to form imide oligomers at temperatures ranging between 232-280 C. (450-535 F) without any solvent. These low-melt imide oligomers can be easily processed by resin transfer molding (RTM), vacuum-assisted resin transfer molding (VARTM) or the resin infusion process with fiber preforms e.g. carbon, glass or quartz preforms to produce polyimide matrix composites with 288-343C (550-650 F) high temperature performance capability.

  8. Management of paclitaxel-induced neurotoxicity

    Directory of Open Access Journals (Sweden)

    Manisha Bhutani

    2011-12-01

    Full Text Available Paclitaxel exerts its antitumor activity by promoting microtubule assembly and stabilizing microtubules. Microtubules are important for the development and maintenance of neurons. As a consequence, neurotoxicity is one of the drug’s major side effects. The risk of neurotoxicity depends on dose, duration and schedule of paclitaxel. Risk increases for patients with pre-existing conditions that may cause neuropathy (such as alcohol consumption, diabetes, or renal disease or with simultaneous or prior exposure to other neurotoxic chemotherapy such as platinum-based drugs, vinca alkaloids, immunomodulators, proteasome inhibitors, and epothilones. Patients with paclitaxel-induced neurotoxicity (PINT experience a constellation of symptoms over the course of treatment and beyond, ranging from mild to severe. Typically, the clinical presentation reflects an axonal peripheral neuropathy with glove-and-stocking distribution sensory loss, combined with features suggestive of nerve hyperexcitability including paresthesia, dysesthesia, and pain. Proprioceptive and motor effects become apparent as neuropathy becomes more advanced. These symptoms may be prolonged, severe, disabling, relatively resistant to intervention and adversely affect activities of daily living and thereby quality of life. Management is mainly symptomatic and supportive. Despite attempts to minimize PINT with changes in dose, vehicle, delivery systems, infusion schedule and premedication or co-treatment with neuroprotective agents, PINT remains dose-limiting in many instances and is a barrier to achieving the desired clinical response.

  9. Translocation and neurotoxicity of CdTe quantum dots in RMEs motor neurons in nematode Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Zhao, Yunli; Wang, Xiong; Wu, Qiuli; Li, Yiping; Wang, Dayong

    2015-01-01

    Graphical abstract: - Highlights: • We investigated in vivo neurotoxicity of CdTe QDs on RMEs motor neurons in C. elegans. • CdTe QDs in the range of μg/L caused neurotoxicity on RMEs motor neurons. • Bioavailability of CdTe QDs may be the primary inducer for CdTe QDs neurotoxicity. • Both oxidative stress and cell identity regulate the CdTe QDs neurotoxicity. • CdTe QDs were translocated and deposited into RMEs motor neurons. - Abstract: We employed Caenorhabditis elegans assay system to investigate in vivo neurotoxicity of CdTe quantum dots (QDs) on RMEs motor neurons, which are involved in controlling foraging behavior, and the underlying mechanism of such neurotoxicity. After prolonged exposure to 0.1–1 μg/L of CdTe QDs, abnormal foraging behavior and deficits in development of RMEs motor neurons were observed. The observed neurotoxicity from CdTe QDs on RMEs motor neurons might be not due to released Cd 2+ . Overexpression of genes encoding Mn-SODs or unc-30 gene controlling cell identity of RMEs neurons prevented neurotoxic effects of CdTe QDs on RMEs motor neurons, suggesting the crucial roles of oxidative stress and cell identity in regulating CdTe QDs neurotoxicity. In nematodes, CdTe QDs could be translocated through intestinal barrier and be deposited in RMEs motor neurons. In contrast, CdTe@ZnS QDs could not be translocated into RMEs motor neurons and therefore, could only moderately accumulated in intestinal cells, suggesting that ZnS coating might reduce neurotoxicity of CdTe QDs on RMEs motor neurons. Therefore, the combinational effects of oxidative stress, cell identity, and bioavailability may contribute greatly to the mechanism of CdTe QDs neurotoxicity on RMEs motor neurons. Our results provide insights into understanding the potential risks of CdTe QDs on the development and function of nervous systems in animals

  10. Aniline oligomers versus polyaniline

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav; Trchová, Miroslava

    2012-01-01

    Roč. 61, č. 2 (2012), s. 240-251 ISSN 0959-8103 R&D Projects: GA AV ČR IAA400500905; GA AV ČR IAA100500902; GA ČR GA203/08/0686; GA ČR GA202/09/1626 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyaniline * anilin e oligomers * anilin e Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.125, year: 2012

  11. Charge Separation and Recombination in Small Band Gap Oligomer-Fullerene Triads

    NARCIS (Netherlands)

    Karsten, Bram P.; Bouwer, Ricardo K. M.; Hummelen, Jan C.; Williams, Rene M.; Janssen, Rene A. J.

    2010-01-01

    Synthesis and photophysics of a series of thiophene-thienopyrazine small band gap oligomers end-capped at both ends with C(60) are presented In these triads a photoinduced electron transfer reaction occurs between the oligomer as a donor and the fullerene as an acceptor Femtosecond photoinduced

  12. Cetuximab-induced hypomagnesaemia aggravates peripheral sensory neurotoxicity caused by oxaliplatin

    Science.gov (United States)

    Satomi, Machiko; Asama, Toshiyuki; Ebisawa, Yoshiaki; Chisato, Naoyuki; Suno, Manabu; Karasaki, Hidenori; Furukawa, Hiroyuki; Matsubara, Kazuo

    2010-01-01

    Calcium and magnesium replacement is effective in reducing oxaliplatin-induced neurotoxicity. However, cetuximab treatment has been associated with severe hypomagnesaemia. Therefore, we retrospectively investigated whether cetuximab-induced hypomagnesaemia exacerbated oxaliplatin-induced neurotoxicity. Six patients with metastatic colorectal cancer who were previously treated with oxaliplatin-fluorouracil combination therapy were administered cetuximab in combination with irinotecan alone or irinotecan and fluorouracil as a second-line treatment. All patients had normal magnesium levels before receiving cetuximab. The Common Terminology Criteria for Adverse Events version 3.0 was used to evaluate the grade of neurotoxicity, hypomagnesaemia, hypocalcaemia, and hypokalemia every week. All six patients had grade 1 or higher hypomagnesaemia after starting cetuximab therapy. The serum calcium and potassium levels were within the normal range at the onset of hypomagnesaemia. Oxaliplatin-induced neurotoxicity occurred in all patients at the beginning of cetuximab therapy, with grade 1 neurotoxicity in five patients and grade 2 in one patient. After cetuximab administration, the neurotoxicity worsened in all six patients, and three progressed to grade 3. Among the three patients with grade 3 neurotoxicity, two required a dose reduction and one had to discontinue cetuximab therapy. A discontinuation or dose reduction in cetuximab therapy was associated with exacerbated oxaliplatin-induced neurotoxicity due to cetuximab-induced hypomagnesaemia in half of patients who had previously received oxaliplatin. Therefore, when administering cetuximab after oxaliplatin therapy, we suggest serially evaluating serum magnesium levels and neurotoxicity. PMID:22811813

  13. Involvement of glial cells in the neurotoxicity of parathion and chlorpyrifos

    International Nuclear Information System (INIS)

    Zurich, M.-G.; Honegger, P.; Schilter, B.; Costa, L.G.; Monnet-Tschudi, F.

    2004-01-01

    An in vitro model, the aggregating brain cell culture of fetal rat telencephalon, has been used to investigate the influence of glial cells on the neurotoxicity of two organophosphorus pesticides (OPs), chlorpyrifos and parathion. Mixed-cell aggregate cultures were treated continuously for 10 days between DIV 5 and 15. Parathion induced astrogliosis at concentration at which MAP-2 immunostaining, found here to be more sensitive than neuron-specific enzyme activities, was not affected. In contrast, chlorpyrifos induced a comparatively weak gliotic reaction, and only at concentrations at which neurons were already affected. After similar treatments, increased neurotoxicity of parathion and chlorpyrifos was found in aggregate cultures deprived of glial cells. These results suggest that glial cells provide neuroprotection against OPs toxicity. To address the question of the difference in toxicity between parathion and chlorpyrifos, the toxic effects of their leaving groups, p-nitrophenol and trichloropyridinol, were studied in mixed-cell aggregates. General cytotoxicity was more pronounced for trichloropyridinol and both compounds had similar toxic effects on neuron-specific enzyme activities. In contrast, trichloropyridinol induced a much stronger decrease in glutamine synthetase activity, the enzymatic marker of astrocytes. Trichloropyridinol may exert a toxic effect on astrocytes, compromising their neuroprotective function, thus exacerbating the neurotoxicity of chlorpyrifos. This is in line with the suggestion that glial cells may contribute to OPs neurotoxicity, and with the view that OPs may exert their neurotoxic effects through different mechanisms

  14. Structural Investigations of on-pathway Oligomers of α-Synuclein

    DEFF Research Database (Denmark)

    Pedersen, Martin Nors; Horvath, Istvan; Weise, Christoph F.

    Academy of Sciences of the United States of America 108(8): 3246-3251. Horvath, I., et al. (2012). "Mechanisms of protein oligomerization: In-hibitor of functional amyloids templates a-synuclein fibrilla-tion." Journal of the American Chemical Society. Spillantini, M. G., et al. (1997). "[alpha...... by decomposition of SAXS data from the evolving fibrillating solution (Giehm et al. 2011). NMR data have furthermore suggested that the C-terminal is exposed on oligomers obtained by incubation with the ligand FN075 (Horvath et al. 2012). In this study we aim at obtaining SAXS data from isolated stabilized...... oligomer (MAX-lab, May 2012); data analysis is in progress. ITC experiments are furthermore planned to more accurately determine the stoichiometry between α-synuclein and FN075. Horvath and co-workers have already shown that the FN075 stabilized oligomer is on pathway. We have shown that the in...

  15. Characterization of methacrylate-based composites containing thio-urethane oligomers.

    Science.gov (United States)

    Bacchi, Atais; Nelson, Morgan; Pfeifer, Carmem S

    2016-02-01

    To evaluate the ability of thio-urethane oligomers to improve the properties of restorative composite resins. Oligomers were synthesized by combining 1,6-hexanediol-diissocyante (aliphatic) with pentaerythritol tetra-3-mercaptopropionate (PETMP) or 1,3-bis(1-isocyanato-1-methylethyl)benzene (aromatic) with trimethylol-tris-3-mercaptopropionate (TMP), at 1:2 isocyanate:thiol, leaving pendant thiols. Oligomers were added at 0-20 wt% to BisGMA-TEGDMA (70-30 wt%). Silanated inorganic fillers were added (70 wt%). Materials were photoactivated at 800 mW/cm(2) filtered to 320-500 nm. Near-IR was used to follow degree of methacrylate conversion (DC). Mechanical properties were evaluated in three-point bending with 2 mm × 2 mm × 25 mm bars for flexural strength/modulus and toughness (FS/E, and T) according to ISO 4049, and 2 mm × 5 mm × 25 mm notched specimens for fracture toughness (KIC). Polymerization stress (PS) was measured on the Bioman. Results were analyzed with ANOVA/Tukey's test (α=5%). Significant increase in DC was observed in thio-urethane-containing materials especially for the group with 20 wt% of aliphatic version. Materials composed by oligomers also promoted higher FS, E, and KIC in comparison to controls irrespective of thio-urethane type. A significant increase in toughness was detected by ANOVA, but not distinguished in the groups. The PS was significantly reduced by the presence of thio-urethane for almost all groups. The use of thio-urethane oligomer to compose methacrylate-based restorative composite promote increase in DC, FS, E and KIC while significant reduces PS. A simple additive was shown to reduce stress while increasing convrersion and mechanical properties, mainly fracture toughness. This has he potential of increasing the service life of dental composites, without changing current operatory procedures. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. Acrylate oligomers in ultraviolet cured PSA's glass transition, molecular weight versus peel strength

    International Nuclear Information System (INIS)

    Miller, H.C.

    1999-01-01

    Typically those not skilled in the art relate Glass Transition Temperature to Pressure Sensitive Adhesives. You need a low Tg material to prepare good pressure sensitive adhesives. This report deals with a wide range acrylate terminated oligomers in a standard formulation. Molecular weight, chemical structure variations are examined versus the Glass Transition of the oligomers and final peel strength. Each formulated adhesive will require unique oligomer properties to reach one hundred newtons per 100 millimeters (5.71 pounds per square inch) peel strength. Excellent peel strengths may be obtained with oligomer molecular weight ranging from six thousand to one thousand molecular weight and glass transition temperatures ranging from minus seventy four degrees centigrade up to thirteen degrees centigrade

  17. Synthesis of soybean oil-based thiol oligomers.

    Science.gov (United States)

    Wu, Jennifer F; Fernando, Shashi; Weerasinghe, Dimuthu; Chen, Zhigang; Webster, Dean C

    2011-08-22

    Industrial grade soybean oil (SBO) and thiols were reacted to generate thiol-functionalized oligomers via a thermal, free radical initiated thiol-ene reaction between the SBO double bond moieties and the thiol functional groups. The effect of the reaction conditions, including thiol concentration, catalyst loading level, reaction time, and atmosphere, on the molecular weight and the conversion to the resultant soy-thiols were examined in a combinatorial high-throughput fashion using parallel synthesis, combinatorial FTIR, and rapid gel permeation chromatography (GPC). High thiol functionality and concentration, high thermal free radical catalyst concentration, long reaction time, and the use of a nitrogen reaction atmosphere were found to favor fast consumption of the SBO, and produced high molecular weight products. The thiol conversion during the reaction was inversely affected by a high thiol concentration, but was favored by a long reaction time and an air reaction atmosphere. These experimental observations were explained by the initial low affinity of the SBO and thiol, and the improved affinity between the generated soy-thiol oligomers and unreacted SBO during the reaction. The synthesized soy-thiol oligomers can be used for renewable thiol-ene UV curable materials and high molecular solids and thiourethane thermal cure materials. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Alpha 7 nicotinic acetylcholine receptor-mediated protection against ethanol-induced neurotoxicity.

    Science.gov (United States)

    de Fiebre, NancyEllen C; de Fiebre, Christopher M

    2003-11-01

    The alpha(7)-selective nicotinic partial agonist 3-[2,4-dimethoxybenzylidene]anabaseine (DMXB) was examined for its ability to modulate ethanol-induced neurotoxicity in primary cultures of rat neurons. Primary cultures of hippocampal neurons were established from Long-Evans, embryonic day (E)-18 rat fetuses and maintained for 7 days. Ethanol (0-150 mM), DMXB (0-56 microM), or both were subsequently co-applied to cultures. Ethanol was added two additional times to the cultures to compensate for evaporation. After 5 days, neuronal viability was assessed with the MTT cell proliferation assay. Results demonstrated that ethanol reduces neuronal viability in a concentration-dependent fashion and that DMXB protects against this ethanol-induced neurotoxicity, also in a concentration-dependent fashion. These results support the suggestion that nicotinic partial agonists may be useful in treating binge drinking-induced neurotoxicity and may provide clues as to why heavy drinkers are usually smokers.

  19. Acute D2/D3 dopaminergic agonism but chronic D2/D3 antagonism prevents NMDA antagonist neurotoxicity.

    Science.gov (United States)

    Farber, Nuri B; Nemmers, Brian; Noguchi, Kevin K

    2006-09-15

    Antagonists of the N-methyl-D-aspartate (NMDA) glutamate receptor, most likely by producing disinhibtion in complex circuits, acutely produce psychosis and cognitive disturbances in humans, and neurotoxicity in rodents. Studies examining NMDA Receptor Hypofunction (NRHypo) neurotoxicity in animals, therefore, may provide insights into the pathophysiology of psychotic disorders. Dopaminergic D2 and/or D3 agents can modify psychosis over days to weeks, suggesting involvement of these transmitter system(s). We studied the ability of D2/D3 agonists and antagonists to modify NRHypo neurotoxicity both after a one-time acute exposure and after chronic daily exposure. Here we report that D2/D3 dopamine agonists, probably via D3 receptors, prevent NRHypo neurotoxicity when given acutely. The protective effect with D2/D3 agonists is not seen after chronic daily dosing. In contrast, the antipsychotic haloperidol does not affect NRHypo neurotoxicity when given acutely at D2/D3 doses. However, after chronic daily dosing of 1, 3, or 5 weeks, haloperidol does prevent NRHypo neurotoxicity with longer durations producing greater protection. Understanding the changes that occur in the NRHypo circuit after chronic exposure to dopaminergic agents could provide important clues into the pathophysiology of psychotic disorders.

  20. Intrahippocampal Administration of Amyloid-β1–42 Oligomers Acutely Impairs Spatial Working Memory, Insulin Signaling, and Hippocampal Metabolism

    Science.gov (United States)

    Pearson-Leary, Jiah; McNay, Ewan C.

    2017-01-01

    Increasing evidence suggests that abnormal brain accumulation of amyloid-β1–42 (Aβ1–42) oligomers plays a causal role in Alzheimer’s disease (AD), and in particular may cause the cognitive deficits that are the hallmark of AD. In vitro, Aβ1–42 oligomers impair insulin signaling and suppress neural functioning. We previously showed that endogenous insulin signaling is an obligatory component of normal hippocampal function, and that disrupting this signaling led to a rapid impairment of spatial working memory, while delivery of exogenous insulin to the hippocampus enhanced both memory and metabolism; diet-induced insulin resistance both impaired spatial memory and prevented insulin from increasing metabolism or cognitive function. Hence, we tested the hypothesis that Aβ1–42 oligomers could acutely impair hippocampal metabolic and cognitive processes in vivo in the rat. Our findings support this hypothesis: Aβ1–42 oligomers impaired spontaneous alternation behavior while preventing the task-associated dip in hippocampal ECF glucose observed in control animals. In addition, Aβ1–42 oligomers decreased plasma membrane translocation of the insulin-sensitive glucose transporter 4 (GluT4), and impaired insulin signaling as measured by phosphorylation of Akt. These data show in vivo that Aβ1–42 oligomers can rapidly impair hippocampal cognitive and metabolic processes, and provide support for the hypothesis that elevated Aβ1–42 leads to cognitive impairment via interference with hippocampal insulin signaling. PMID:22430529

  1. Taxane-Induced Peripheral Neurotoxicity

    Directory of Open Access Journals (Sweden)

    Roser Velasco

    2015-04-01

    Full Text Available Taxane-derived agents are chemotherapy drugs widely employed in cancer treatment. Among them, paclitaxel and docetaxel are most commonly administered, but newer formulations are being investigated. Taxane antineoplastic activity is mainly based on the ability of the drugs to promote microtubule assembly, leading to mitotic arrest and apoptosis in cancer cells. Peripheral neurotoxicity is the major non-hematological adverse effect of taxane, often manifested as painful neuropathy experienced during treatment, and it is sometimes irreversible. Unfortunately, taxane-induced neurotoxicity is an uncertainty prior to the initiation of treatment. The present review aims to dissect current knowledge on real incidence, underlying pathophysiology, clinical features and predisposing factors related with the development of taxane-induced neuropathy.

  2. Preparation of Chito-Oligomers by Hydrolysis of Chitosan in the Presence of Zeolite as Adsorbent

    Science.gov (United States)

    Ibrahim, Khalid A.; El-Eswed, Bassam I.; Abu-Sbeih, Khaleel A.; Arafat, Tawfeeq A.; Al Omari, Mahmoud M. H.; Darras, Fouad H.; Badwan, Adnan A.

    2016-01-01

    An increasing interest has recently been shown to use chitin/chitosan oligomers (chito-oligomers) in medicine and food fields because they are not only water-soluble, nontoxic, and biocompatible materials, but they also exhibit numerous biological properties, including antibacterial, antifungal, and antitumor activities, as well as immuno-enhancing effects on animals. Conventional depolymerization methods of chitosan to chito-oligomers are either chemical by acid-hydrolysis under harsh conditions or by enzymatic degradation. In this work, hydrolysis of chitosan to chito-oligomers has been achieved by applying adsorption-separation technique using diluted HCl in the presence of different types of zeolite as adsorbents. The chito-oligomers were retrieved from adsorbents and characterized by differential scanning calorimetry (DSC), liquid chromatography/mass spectroscopy (LC/MS), and ninhydrin test. PMID:27455287

  3. Thio-urethane oligomers improve the properties of light-cured resin cements.

    Science.gov (United States)

    Bacchi, Ataís; Consani, Rafael L; Martim, Gedalias C; Pfeifer, Carmem S

    2015-05-01

    Thio-urethanes were synthesized by combining 1,6-hexanediol-diissocyante (aliphatic) with pentaerythritol tetra-3-mercaptopropionate (PETMP) or 1,3-bis(1-isocyanato-1-methylethyl)benzene (aromatic) with trimethylol-tris-3-mercaptopropionate (TMP), at 1:2 isocyanate:thiol, leaving pendant thiols. Oligomers were added at 10-30 phr to BisGMA-UDMA-TEGDMA (5:3:2, BUT). 25 wt% silanated inorganic fillers were added. Commercial cement (Relyx Veneer, 3M-ESPE) was also evaluated with 10-20 phr of aromatic oligomer. Near-IR was used to follow methacrylate conversion (DC) and rate of polymerization (Rpmax). Mechanical properties were evaluated in three-point bending (ISO 4049) for flexural strength/modulus (FS/FM, and toughness), and notched specimens (ASTM Standard E399-90) for fracture toughness (KIC). Polymerization stress (PS) was measured on the Bioman. Volumetric shrinkage (VS, %) was measured with the bonded disk technique. Results were analyzed with ANOVA/Tukey's test (α=5%). In general terms, for BUT cements, conversion and mechanical properties in flexure increased for selected groups with the addition of thio-urethane oligomers. The aromatic versions resulted in greater FS/FM than aliphatic. Fracture toughness increased by two-fold in the experimental groups (from 1.17 ± 0.36 MPam(1/2) to around 3.23 ± 0.22 MPam(1/2)). Rpmax decreased with the addition of thio-urethanes, though the vitrification point was not statistically different from the control. VS and PS decreased with both oligomers. For the commercial cement, 20 phr of oligomer increased DC, vitrification, reduced Rpmax and also significantly increased KIC, and reduced PS and FM. Thio-urethane oligomers were shown to favorably modify conventional dimethacrylate networks. Significant reductions in polymerization stress were achieved at the same time conversion and fracture toughness increased. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. Multicolored, Low-Voltage-Driven, Flexible Organic Electrochromic Devices Based on Oligomers.

    Science.gov (United States)

    Wan, Zhijun; Zeng, Jinming; Li, Hui; Liu, Ping; Deng, Wenji

    2018-04-20

    In this study, a series of organic conjugated oligomers containing 3,4-ethylenedioxythiophene (EDOT) and aromatic groups are synthesized, which are as follows: 2,5-di(methyl benzoate)-3,4-ethylenedioxy-thiophene (1EDOT-2B-COOCH 3 ), 5,5'-di(methyl benzoate)-2,2'-bi(3,4-ethylenedioxythiophene) (2EDOT-2B-COOCH 3 ), 5,5″-di(methyl benzoate)-2,2':5',2″-ter(3,4-ethylenedioxythiophene) (3EDOT-2B-COOCH 3 ), and 5,5″'-di(methyl benzoate)-2,2':5',2″: 5″,2″'-quater(3,4-ethylenedioxythiophene) (4EDOT-2B-COOCH 3 ). Using these oligomers as active materials, flexible organic electrochromic devices are fabricated. The device structure is indium tin oxide-PET plastic slide (ITO-PET)/active layer/conducting gel/ITO-PET, and the electrochromic properties of oligomers are investigated. These oligomers exhibit reversible color changes upon electrochemical doping and dedoping. The highest optical contrast is exhibited by 4EDOT-2B-COOCH 3 , which is 75.2% at 700 nm. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Peptide oligomers for holographic data storage

    DEFF Research Database (Denmark)

    Berg, Rolf Henrik; Hvilsted, Søren; Ramanujam, P.S.

    1996-01-01

    SEVERAL classes of organic materials (such as photoanisotropic liquid-crystalline polymers(1-4) and photorefractive polymers(5-7)) are being investigated for the development of media for optical data storage. Here we describe a new family of organic materials-peptide oligomers containing azobenzene...

  6. Acrylamide neurotoxicity on the cerebrum of weaning rats

    Directory of Open Access Journals (Sweden)

    Su-min Tian

    2015-01-01

    Full Text Available The mechanism underlying acrylamide-induced neurotoxicity remains controversial. Previous studies have focused on acrylamide-induced toxicity in adult rodents, but neurotoxicity in weaning rats has not been investigated. To explore the neurotoxic effect of acrylamide on the developing brain, weaning rats were gavaged with 0, 5, 15, and 30 mg/kg acrylamide for 4 consecutive weeks. No obvious neurotoxicity was observed in weaning rats in the low-dose acrylamide group (5 mg/kg. However, rats from the moderate- and high-dose acrylamide groups (15 and 30 mg/kg had an abnormal gait. Furthermore, biochemical tests in these rats demonstrated that glutamate concentration was significantly reduced, and γ-aminobutyric acid content was significantly increased and was dependent on acrylamide dose. Immunohistochemical staining showed that in the cerebral cortex, γ-aminobutyric acid, glutamic acid decarboxylase and glial fibrillary acidic protein expression increased remarkably in the moderate- and high-dose acrylamide groups. These results indicate that in weaning rats, acrylamide is positively associated with neurotoxicity in a dose-dependent manner, which may correlate with upregulation of γ-aminobutyric acid and subsequent neuronal degeneration after the initial acrylamide exposure.

  7. Self-assembly of aniline oligomers

    Czech Academy of Sciences Publication Activity Database

    Zhao, Y.; Tomšík, Elena; Wang, J.; Morávková, Zuzana; Zhigunov, Alexander; Stejskal, Jaroslav; Trchová, Miroslava

    2013-01-01

    Roč. 8, č. 1 (2013), s. 129-137 ISSN 1861-4728 R&D Projects: GA ČR GA202/09/1626; GA ČR GAP205/12/0911 Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : morphology * oligoaniline * oligomers Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.935, year: 2013

  8. Serotonergic neurotoxic metabolites of ecstasy identified in rat brain.

    Science.gov (United States)

    Jones, Douglas C; Duvauchelle, Christine; Ikegami, Aiko; Olsen, Christopher M; Lau, Serrine S; de la Torre, Rafael; Monks, Terrence J

    2005-04-01

    The selective serotonergic neurotoxicity of 3,4-methylenedioxyamphetamine (MDA) and 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) depends on their systemic metabolism. We have recently shown that inhibition of brain endothelial cell gamma-glutamyl transpeptidase (gamma-GT) potentiates the neurotoxicity of both MDMA and MDA, indicating that metabolites that are substrates for this enzyme contribute to the neurotoxicity. Consistent with this view, glutathione (GSH) and N-acetylcysteine conjugates of alpha-methyl dopamine (alpha-MeDA) are selective neurotoxicants. However, neurotoxic metabolites of MDMA or MDA have yet to be identified in brain. Using in vivo microdialysis coupled to liquid chromatography-tandem mass spectroscopy and a high-performance liquid chromatography-coulometric electrode array system, we now show that GSH and N-acetylcysteine conjugates of N-methyl-alpha-MeDA are present in the striatum of rats administered MDMA by subcutaneous injection. Moreover, inhibition of gamma-GT with acivicin increases the concentration of GSH and N-acetylcysteine conjugates of N-methyl-alpha-MeDA in brain dialysate, and there is a direct correlation between the concentrations of metabolites in dialysate and the extent of neurotoxicity, measured by decreases in serotonin (5-HT) and 5-hydroxyindole acetic (5-HIAA) levels. Importantly, the effects of acivicin are independent of MDMA-induced hyperthermia, since acivicin-mediated potentiation of MDMA neurotoxicity occurs in the context of acivicin-mediated decreases in body temperature. Finally, we have synthesized 5-(N-acetylcystein-S-yl)-N-methyl-alpha-MeDA and established that it is a relatively potent serotonergic neurotoxicant. Together, the data support the contention that MDMA-mediated serotonergic neurotoxicity is mediated by the systemic formation of GSH and N-acetylcysteine conjugates of N-methyl-alpha-MeDA (and alpha-MeDA). The mechanisms by which such metabolites access the brain and produce selective

  9. Translocation and neurotoxicity of CdTe quantum dots in RMEs motor neurons in nematode Caenorhabditis elegans

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yunli; Wang, Xiong; Wu, Qiuli; Li, Yiping; Wang, Dayong, E-mail: dayongw@seu.edu.cn

    2015-02-11

    Graphical abstract: - Highlights: • We investigated in vivo neurotoxicity of CdTe QDs on RMEs motor neurons in C. elegans. • CdTe QDs in the range of μg/L caused neurotoxicity on RMEs motor neurons. • Bioavailability of CdTe QDs may be the primary inducer for CdTe QDs neurotoxicity. • Both oxidative stress and cell identity regulate the CdTe QDs neurotoxicity. • CdTe QDs were translocated and deposited into RMEs motor neurons. - Abstract: We employed Caenorhabditis elegans assay system to investigate in vivo neurotoxicity of CdTe quantum dots (QDs) on RMEs motor neurons, which are involved in controlling foraging behavior, and the underlying mechanism of such neurotoxicity. After prolonged exposure to 0.1–1 μg/L of CdTe QDs, abnormal foraging behavior and deficits in development of RMEs motor neurons were observed. The observed neurotoxicity from CdTe QDs on RMEs motor neurons might be not due to released Cd{sup 2+}. Overexpression of genes encoding Mn-SODs or unc-30 gene controlling cell identity of RMEs neurons prevented neurotoxic effects of CdTe QDs on RMEs motor neurons, suggesting the crucial roles of oxidative stress and cell identity in regulating CdTe QDs neurotoxicity. In nematodes, CdTe QDs could be translocated through intestinal barrier and be deposited in RMEs motor neurons. In contrast, CdTe@ZnS QDs could not be translocated into RMEs motor neurons and therefore, could only moderately accumulated in intestinal cells, suggesting that ZnS coating might reduce neurotoxicity of CdTe QDs on RMEs motor neurons. Therefore, the combinational effects of oxidative stress, cell identity, and bioavailability may contribute greatly to the mechanism of CdTe QDs neurotoxicity on RMEs motor neurons. Our results provide insights into understanding the potential risks of CdTe QDs on the development and function of nervous systems in animals.

  10. Expression of enzymes in yeast for lignocellulose derived oligomer CBP

    Science.gov (United States)

    McBride, John E.; Wiswall, Erin; Shikhare, Indraneel; Xu, Haowen; Thorngren, Naomi; Hau, Heidi H.; Stonehouse, Emily

    2017-08-29

    The present invention provides a multi-component enzyme system that hydrolyzes hemicellulose oligomers from hardwood which can be expressed, for example, in yeast such as Saccharomyces cerevisiae. In some embodiments, this invention provides for the engineering of a series of biocatalysts combining the expression and secretion of components of this enzymatic system with robust, rapid xylose utilization, and ethanol fermentation under industrially relevant process conditions for consolidated bioprocessing. In some embodiments, the invention utilizes co-cultures of strains that can achieve significantly improved performance due to the incorporation of additional enzymes in the fermentation system.

  11. Direct Correlation Between Ligand-Induced α-Synuclein Oligomers and Amyloid-like Fibril Growth

    DEFF Research Database (Denmark)

    Pedersen, Martin Nors; Foderà, Vito; Horvath, Istvan

    2015-01-01

    link to disease related degenerative activity. Fibrils formed in the presence and absence of FN075 are indistinguishable on microscopic and macroscopic levels. Using small angle X-ray scattering, we reveal that FN075 induced oligomers are similar, but not identical, to oligomers previously observed......Aggregation of proteins into amyloid deposits is the hallmark of several neurodegenerative diseases such as Alzheimer's and Parkinson's disease. The suggestion that intermediate oligomeric species may be cytotoxic has led to intensified investigations of pre-fibrillar oligomers, which...

  12. Preparation of Chito-Oligomers by Hydrolysis of Chitosan in the Presence of Zeolite as Adsorbent

    Directory of Open Access Journals (Sweden)

    Khalid A. Ibrahim

    2016-07-01

    Full Text Available An increasing interest has recently been shown to use chitin/chitosan oligomers (chito-oligomers in medicine and food fields because they are not only water-soluble, nontoxic, and biocompatible materials, but they also exhibit numerous biological properties, including antibacterial, antifungal, and antitumor activities, as well as immuno-enhancing effects on animals. Conventional depolymerization methods of chitosan to chito-oligomers are either chemical by acid-hydrolysis under harsh conditions or by enzymatic degradation. In this work, hydrolysis of chitosan to chito-oligomers has been achieved by applying adsorption-separation technique using diluted HCl in the presence of different types of zeolite as adsorbents. The chito-oligomers were retrieved from adsorbents and characterized by differential scanning calorimetry (DSC, liquid chromatography/mass spectroscopy (LC/MS, and ninhydrin test.

  13. Nanoparticle for delivery of antisense γPNA oligomers targeting CCR5.

    Science.gov (United States)

    Bahal, Raman; McNeer, Nicole Ali; Ly, Danith H; Saltzman, W Mark; Glazer, Peter M

    2013-01-01

    The development of a new class of peptide nucleic acids (PNAs), i.e., gamma PNAs (γPNAs), creates the need for a general and effective method for its delivery into cells for regulating gene expression in mammalian cells. Here we report the antisense activity of a recently developed hydrophilic and biocompatible diethylene glycol (miniPEG)-based gamma peptide nucleic acid called MPγPNAs via its delivery by poly(lactide-co-glycolide) (PLGA)-based nanoparticle system. We show that MPγPNA oligomers designed to bind to the selective region of chemokine receptor 5 (CC R5) transcript, induce potent and sequence-specific antisense effects as compared with regular PNA oligomers. In addition, PLGA nanoparticle delivery of MPγPNAs is not toxic to the cells. The findings reported in this study provide a combination of γPNA technology and PLGA-based nanoparticle delivery method for regulating gene expression in live cells via the antisense mechanism.

  14. Determination of oligomers in virgin and recycled polyethylene terephthalate (PET) samples by UPLC-MS-QTOF.

    Science.gov (United States)

    Ubeda, Sara; Aznar, Margarita; Nerín, Cristina

    2018-03-01

    An oligomer is a molecule that consists of a few monomer units. It can be formed during polymer manufacturing and also due to polymer degradation processes or even during use conditions. Since oligomers are not included in chemical databases, their identification is a complex process. In this work, the oligomers present in 20 different PET pellet samples have been determined. Two different sample treatment procedures, solvent extraction and total dissolution, were applied in order to select the most efficient one. The analyses were carried out by UPLC-MS-QTOF. The use of high resolution mass spectrometry allowed the structural elucidation of these compounds and their correct identification. The main oligomers identified were cyclic as well as lineal from the first, second, and third series. All of them were composed of terephthalic acid (TPA), diethylene glycol (DEG), and ethylene glycol (EG). Quantitative values were very different in both procedures. In total dissolution of PET samples, the concentration of oligomers was always, at least, 10 times higher than in solvent extraction; some of the compounds were only detected when total dissolution was used. Results showed that the oligomers with the highest concentration values were dimers and trimers, cyclic, as well as lineal, from the first and second series. The oligomer with the maximum concentration value was TPA 2 -EG-DEG that was found in all the samples in a concentration range from 2493 to 19,290 ng/g PET. No differences between virgin and recycled PET were found. Migration experiments were performed in two PET bottles, and results showed the transference of most of these oligomers to a fat food simulant (ethanol 95%). Graphical abstract Graphical abstract of the two procedures developd and optimized for identifying oligomers in PET pellets and in migration form PET bottles.

  15. Protective effect of quercetin on bupivacaine-induced neurotoxicity ...

    African Journals Online (AJOL)

    certain side effects, especially neurotoxicity. It has been shown that neurotoxicity caused by local anesthetics such as lidocaine and bupivacaine are related to changes in calcium homeostasis, resulting in intracellular calcium overload [1]. Calcium homeostasis is regulated by many different kinds of calcium channels such.

  16. Theory of microphase separation in homopolymer-oligomer mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Olemskoi, Alexander [Department of Physical Electronics, Sumy State University, Rimskii-Korsakov St. 2, 40007 Sumy (Ukraine)]. E-mail: alex@ufn.ru; Savelyev, Alexey [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290 (United States)]. E-mail: alexsav@unc.edu

    2005-11-01

    This work starts with the review of theoretical methods proposed, during past decades, for description of phase behavior in different polymer systems, involving variety of linear polymers (regular and polydisperse block (co)polymers, random polymers) and the polymer systems with non-covalent bonds of different strength. Microphase separation (MS) into different ordered mesophases is known to be the principal property of such systems. It is shown that most of the theoretical approaches proposed for description of the MS are based on the simple random phase approximation (RPA). It turns out, however, that mean field RPA method applied to description of the systems with non-covalent bonds does not provide the whole picture of MS. We show that the problem here arises when one treats both Flory-Huggins non-associated interactions and non-covalent bonds (hydrogen, ionic) within the unified RPA scheme, which is obviously rough for description of the latter type of interactions. Such a theory was developed in a few recent papers for the systems involving weak hydrogen bonds between homopolymer chains and the low molecular weight oligomers (surfactants). However, it leaves some experimental data unaccounted. The purpose of this review is to consider more detailed theory which is able to explain not only all the experimental data for the above systems but also to take into account the strength variation of non-bonding interactions. In particular, we consider the strong ionic interactions, weak hydrogen bonding, and the interactions of intermediate strength between polymer chain and short oligomers within our unifying theory. To develop such a description in a self-consistent way we propose to use a general field theory of stochastic systems. The mesoscopic (lamellar) structure of the periodically alternating layers of stretched homopolymer chains surrounded by perpendicularly oriented oligomeric tails is studied for the systems with both strong (ionic) and weak (hydrogen

  17. Theory of microphase separation in homopolymer-oligomer mixtures

    International Nuclear Information System (INIS)

    Olemskoi, Alexander; Savelyev, Alexey

    2005-01-01

    This work starts with the review of theoretical methods proposed, during past decades, for description of phase behavior in different polymer systems, involving variety of linear polymers (regular and polydisperse block (co)polymers, random polymers) and the polymer systems with non-covalent bonds of different strength. Microphase separation (MS) into different ordered mesophases is known to be the principal property of such systems. It is shown that most of the theoretical approaches proposed for description of the MS are based on the simple random phase approximation (RPA). It turns out, however, that mean field RPA method applied to description of the systems with non-covalent bonds does not provide the whole picture of MS. We show that the problem here arises when one treats both Flory-Huggins non-associated interactions and non-covalent bonds (hydrogen, ionic) within the unified RPA scheme, which is obviously rough for description of the latter type of interactions. Such a theory was developed in a few recent papers for the systems involving weak hydrogen bonds between homopolymer chains and the low molecular weight oligomers (surfactants). However, it leaves some experimental data unaccounted. The purpose of this review is to consider more detailed theory which is able to explain not only all the experimental data for the above systems but also to take into account the strength variation of non-bonding interactions. In particular, we consider the strong ionic interactions, weak hydrogen bonding, and the interactions of intermediate strength between polymer chain and short oligomers within our unifying theory. To develop such a description in a self-consistent way we propose to use a general field theory of stochastic systems. The mesoscopic (lamellar) structure of the periodically alternating layers of stretched homopolymer chains surrounded by perpendicularly oriented oligomeric tails is studied for the systems with both strong (ionic) and weak (hydrogen

  18. Separation of xylose oligomers using centrifugal partition chromatography with a butanol-methanol-water system.

    Science.gov (United States)

    Lau, Ching-Shuan; Clausen, Edgar C; Lay, Jackson O; Gidden, Jennifer; Carrier, Danielle Julie

    2013-01-01

    Xylose oligomers are the intermediate products of xylan depolymerization into xylose monomers. An understanding of xylan depolymerization kinetics is important to improve the conversion of xylan into monomeric xylose and to minimize the formation of inhibitory products, thereby reducing ethanol production costs. The study of xylan depolymerization requires copious amount of xylose oligomers, which are expensive if acquired commercially. Our approach consisted of producing in-house oligomer material. To this end, birchwood xylan was used as the starting material and hydrolyzed in hot water at 200 °C for 60 min with a 4 % solids loading. The mixture of xylose oligomers was subsequently fractionated by a centrifugal partition chromatography (CPC) with a solvent system of butanol:methanol:water in a 5:1:4 volumetric ratio. Operating in an ascending mode, the butanol-rich upper phase (the mobile phase) eluted xylose oligomers from the water-rich stationary phase at a 4.89 mL/min flow rate for a total fractionation time of 300 min. The elution of xylose oligomers occurred between 110 and 280 min. The yields and purities of xylobiose (DP 2), xylotriose (DP 3), xylotetraose (DP 4), and xylopentaose (DP 5) were 21, 10, 14, and 15 mg/g xylan and 95, 90, 89, and 68 %, respectively. The purities of xylose oligomers from this solvent system were higher than those reported previously using tetrahydrofuran:dimethyl sulfoxide:water in a 6:1:3 volumetric ratio. Moreover, the butanol-based solvent system improved overall procedures by facilitating the evaporation of the solvents from the CPC fractions, rendering the purification process more efficient.

  19. alpha7 Nicotinic acetylcholine receptor knockout selectively enhances ethanol-, but not beta-amyloid-induced neurotoxicity.

    Science.gov (United States)

    de Fiebre, Nancyellen C; de Fiebre, Christopher M

    2005-01-03

    The alpha7 subtype of nicotinic acetylcholine receptor (nAChR) has been implicated as a potential site of action for two neurotoxins, ethanol and the Alzheimer's disease related peptide, beta-amyloid. Here, we utilized primary neuronal cultures of cerebral cortex from alpha7 nAChR null mutant mice to examine the role of this receptor in modulating the neurotoxic properties of subchronic, "binge" ethanol and beta-amyloid. Knockout of the alpha7 nAChR gene selectively enhanced ethanol-induced neurotoxicity in a gene dosage-related fashion. Susceptibility of cultures to beta-amyloid induced toxicity, however, was unaffected by alpha7 nAChR gene null mutation. Further, beta-amyloid did not inhibit the binding of the highly alpha7-selective radioligand, [(125)I]alpha-bungarotoxin. On the other hand, in studies in Xenopus oocytes ethanol efficaciously inhibited alpha7 nAChR function. These data suggest that alpha7 nAChRs modulate the neurotoxic effects of binge ethanol, but not the neurotoxicity produced by beta-amyloid. It is hypothesized that inhibition of alpha7 nAChRs by ethanol provides partial protection against the neurotoxic properties of subchronic ethanol.

  20. GalaxyHomomer: a web server for protein homo-oligomer structure prediction from a monomer sequence or structure.

    Science.gov (United States)

    Baek, Minkyung; Park, Taeyong; Heo, Lim; Park, Chiwook; Seok, Chaok

    2017-07-03

    Homo-oligomerization of proteins is abundant in nature, and is often intimately related with the physiological functions of proteins, such as in metabolism, signal transduction or immunity. Information on the homo-oligomer structure is therefore important to obtain a molecular-level understanding of protein functions and their regulation. Currently available web servers predict protein homo-oligomer structures either by template-based modeling using homo-oligomer templates selected from the protein structure database or by ab initio docking of monomer structures resolved by experiment or predicted by computation. The GalaxyHomomer server, freely accessible at http://galaxy.seoklab.org/homomer, carries out template-based modeling, ab initio docking or both depending on the availability of proper oligomer templates. It also incorporates recently developed model refinement methods that can consistently improve model quality. Moreover, the server provides additional options that can be chosen by the user depending on the availability of information on the monomer structure, oligomeric state and locations of unreliable/flexible loops or termini. The performance of the server was better than or comparable to that of other available methods when tested on benchmark sets and in a recent CASP performed in a blind fashion. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Ultrafast Photoinduced Electron Transfer in a π-Conjugated Oligomer/Porphyrin Complex

    KAUST Repository

    Aly, Shawkat Mohammede

    2014-10-02

    Controlling charge transfer (CT), charge separation (CS), and charge recombination (CR) at the donor-acceptor interface is extremely important to optimize the conversion efficiency in solar cell devices. In general, ultrafast CT and slow CR are desirable for optimal device performance. In this Letter, the ultrafast excited-state CT between platinum oligomer (DPP-Pt(acac)) as a new electron donor and porphyrin as an electron acceptor is monitored for the first time using femtosecond (fs) transient absorption (TA) spectroscopy with broad-band capability and 120 fs temporal resolution. Turning the CT on/off has been shown to be possible either by switching from an organometallic oligomer to a metal-free oligomer or by controlling the charge density on the nitrogen atom of the porphyrin meso unit. Our time-resolved data show that the CT and CS between DPP-Pt(acac) and cationic porphyrin are ultrafast (approximately 1.5 ps), and the CR is slow (ns time scale), as inferred from the formation and the decay of the cationic and anionic species. We also found that the metallic center in the DPP-Pt(acac) oligomer and the positive charge on the porphyrin are the keys to switching on/off the ultrafast CT process.

  2. THC Prevents MDMA Neurotoxicity in Mice.

    Directory of Open Access Journals (Sweden)

    Clara Touriño

    2010-02-01

    Full Text Available The majority of MDMA (ecstasy recreational users also consume cannabis. Despite the rewarding effects that both drugs have, they induce several opposite pharmacological responses. MDMA causes hyperthermia, oxidative stress and neuronal damage, especially at warm ambient temperature. However, THC, the main psychoactive compound of cannabis, produces hypothermic, anti-inflammatory and antioxidant effects. Therefore, THC may have a neuroprotective effect against MDMA-induced neurotoxicity. Mice receiving a neurotoxic regimen of MDMA (20 mg/kg x 4 were pretreated with THC (3 mg/kg x 4 at room (21 degrees C and at warm (26 degrees C temperature, and body temperature, striatal glial activation and DA terminal loss were assessed. To find out the mechanisms by which THC may prevent MDMA hyperthermia and neurotoxicity, the same procedure was carried out in animals pretreated with the CB(1 receptor antagonist AM251 and the CB(2 receptor antagonist AM630, as well as in CB(1, CB(2 and CB(1/CB(2 deficient mice. THC prevented MDMA-induced-hyperthermia and glial activation in animals housed at both room and warm temperature. Surprisingly, MDMA-induced DA terminal loss was only observed in animals housed at warm but not at room temperature, and this neurotoxic effect was reversed by THC administration. However, THC did not prevent MDMA-induced hyperthermia, glial activation, and DA terminal loss in animals treated with the CB(1 receptor antagonist AM251, neither in CB(1 and CB(1/CB(2 knockout mice. On the other hand, THC prevented MDMA-induced hyperthermia and DA terminal loss, but only partially suppressed glial activation in animals treated with the CB(2 cannabinoid antagonist and in CB(2 knockout animals. Our results indicate that THC protects against MDMA neurotoxicity, and suggest that these neuroprotective actions are primarily mediated by the reduction of hyperthermia through the activation of CB(1 receptor, although CB(2 receptors may also contribute to

  3. Current status of developmental neurotoxicity: regulatory view

    DEFF Research Database (Denmark)

    Hass, Ulla

    2003-01-01

    in the testing strategy for new and existing substances, and biocides. Hopefully, this will lead to an improved database for risk assessment of potential developmental neurotoxicants. However, the regulatory authorities and toxicologists will also be faced with the challenge that decisions have to be made......The need for developmental neurotoxicity testing has been recognized for decades and guidelines are available, as the USEPA guideline and the OECD draft TG 426. Regulatory testing of industrial chemicals for developmental neurotoxicity is required to some extent, especially for pesticides in the US....... Until recently, however, developmental neurotoxicity testing of industrial chemicals has not been a clear regulatory requirement in EU, probably due to the lack of an accepted OECD TG. The revised EU Technical Guidance Document for Risk Assessment (EU-TGD) has now included the OECD draft TG 426...

  4. Alzheimer's Toxic Amyloid Beta Oligomers: Unwelcome Visitors to the Na/K ATPase alpha3 Docking Station.

    Science.gov (United States)

    DiChiara, Thomas; DiNunno, Nadia; Clark, Jeffrey; Bu, Riana Lo; Cline, Erika N; Rollins, Madeline G; Gong, Yuesong; Brody, David L; Sligar, Stephen G; Velasco, Pauline T; Viola, Kirsten L; Klein, William L

    2017-03-01

    Toxic amyloid beta oligomers (AβOs) are known to accumulate in Alzheimer's disease (AD) and in animal models of AD. Their structure is heterogeneous, and they are found in both intracellular and extracellular milieu. When given to CNS cultures or injected ICV into non-human primates and other non-transgenic animals, AβOs have been found to cause impaired synaptic plasticity, loss of memory function, tau hyperphosphorylation and tangle formation, synapse elimination, oxidative and ER stress, inflammatory microglial activation, and selective nerve cell death. Memory loss and pathology in transgenic models are prevented by AβO antibodies, while Aducanumab, an antibody that targets AβOs as well as fibrillar Aβ, has provided cognitive benefit to humans in early clinical trials. AβOs have now been investigated in more than 3000 studies and are widely thought to be the major toxic form of Aβ. Although much has been learned about the downstream mechanisms of AβO action, a major gap concerns the earliest steps: How do AβOs initially interact with surface membranes to generate neuron-damaging transmembrane events? Findings from Ohnishi et al (PNAS 2005) combined with new results presented here are consistent with the hypothesis that AβOs act as neurotoxins because they attach to particular membrane protein docks containing Na/K ATPase-α3, where they inhibit ATPase activity and pathologically restructure dock composition and topology in a manner leading to excessive Ca++ build-up. Better understanding of the mechanism that makes attachment of AβOs to vulnerable neurons a neurotoxic phenomenon should open the door to therapeutics and diagnostics targeting the first step of a complex pathway that leads to neural damage and dementia.

  5. Local Anesthetic-Induced Neurotoxicity

    NARCIS (Netherlands)

    Verlinde, Mark; Hollmann, Markus W.; Stevens, Markus F.; Hermanns, Henning; Werdehausen, Robert; Lirk, Philipp

    2016-01-01

    This review summarizes current knowledge concerning incidence, risk factors, and mechanisms of perioperative nerve injury, with focus on local anesthetic-induced neurotoxicity. Perioperative nerve injury is a complex phenomenon and can be caused by a number of clinical factors. Anesthetic risk

  6. Caspase-cleaved tau exhibits rapid memory impairment associated with tau oligomers in a transgenic mouse model.

    Science.gov (United States)

    Kim, YoungDoo; Choi, Hyunwoo; Lee, WonJae; Park, Hyejin; Kam, Tae-In; Hong, Se-Hoon; Nah, Jihoon; Jung, Sunmin; Shin, Bora; Lee, Huikyong; Choi, Tae-Yong; Choo, Hyosun; Kim, Kyung-Keun; Choi, Se-Young; Kayed, Rakez; Jung, Yong-Keun

    2016-03-01

    In neurodegenerative diseases like AD, tau forms neurofibrillary tangles, composed of tau protein. In the AD brain, activated caspases cleave tau at the 421th Asp, generating a caspase-cleaved form of tau, TauC3. Although TauC3 is known to assemble rapidly into filaments in vitro, a role of TauC3 in vivo remains unclear. Here, we generated a transgenic mouse expressing human TauC3 using a neuron-specific promoter. In this mouse, we found that human TauC3 was expressed in the hippocampus and cortex. Interestingly, TauC3 mice showed drastic learning and spatial memory deficits and reduced synaptic density at a young age (2-3months). Notably, tau oligomers as well as tau aggregates were found in TauC3 mice showing memory deficits. Further, i.p. or i.c.v. injection with methylene blue or Congo red, inhibitors of tau aggregation in vitro, and i.p. injection with rapamycin significantly reduced the amounts of tau oligomers in the hippocampus, rescued spine density, and attenuated memory impairment in TauC3 mice. Together, these results suggest that TauC3 facilitates early memory impairment in transgenic mice accompanied with tau oligomer formation, providing insight into the role of TauC3 in the AD pathogenesis associated with tau oligomers and a useful AD model to test drug candidates. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Cyanobacterial Xenobiotics as Evaluated by a Caenorhabditis elegans Neurotoxicity Screening Test

    Science.gov (United States)

    Ju, Jingjuan; Saul, Nadine; Kochan, Cindy; Putschew, Anke; Pu, Yuepu; Yin, Lihong; Steinberg, Christian E. W.

    2014-01-01

    In fresh waters cyanobacterial blooms can produce a variety of toxins, such as microcystin variants (MCs) and anatoxin-a (ANA). ANA is a well-known neurotoxin, whereas MCs are hepatotoxic and, to a lesser degree, also neurotoxic. Neurotoxicity applies especially to invertebrates lacking livers. Current standardized neurotoxicity screening methods use rats or mice. However, in order to minimize vertebrate animal experiments as well as experimental time and effort, many investigators have proposed the nematode Caenorhabditis elegans as an appropriate invertebrate model. Therefore, four known neurotoxic compounds (positive compounds: chlorpyrifos, abamectin, atropine, and acrylamide) were chosen to verify the expected impacts on autonomic (locomotion, feeding, defecation) and sensory (thermal, chemical, and mechanical sensory perception) functions in C. elegans. This study is another step towards successfully establishing C. elegans as an alternative neurotoxicity model. By using this protocol, anatoxin-a adversely affected locomotive behavior and pharyngeal pumping frequency and, most strongly, chemotactic and thermotactic behavior, whereas MC-LR impacted locomotion, pumping, and mechanical behavior, but not chemical sensory behavior. Environmental samples can also be screened in this simple and fast way for neurotoxic characteristics. The filtrate of a Microcystis aeruginosa culture, known for its hepatotoxicity, also displayed mild neurotoxicity (modulated short-term thermotaxis). These results show the suitability of this assay for environmental cyanotoxin-containing samples. PMID:24776722

  8. PrP(Sc-specific antibodies with the ability to immunodetect prion oligomers.

    Directory of Open Access Journals (Sweden)

    Mourad Tayebi

    Full Text Available The development of antibodies with binding capacity towards soluble oligomeric forms of PrPSc recognised in the aggregation process in early stage of the disease would be of paramount importance in diagnosing prion diseases before extensive neuropathology has ensued. As blood transfusion appears to be efficient in the transmission of the infectious prion agent, there is an urgent need to develop reagents that would specifically recognize oligomeric forms of the abnormally folded prion protein, PrPSc.To that end, we show that anti-PrP monoclonal antibodies (called PRIOC mAbs derived from mice immunised with native PrP-coated microbeads are able to immunodetect oligomers/multimers of PrPSc. Oligomer-specific immunoreactivity displayed by these PRIOC mAbs was demonstrated as large aggregates of immunoreactive deposits in prion-permissive neuroblastoma cell lines but not in equivalent non-infected or prn-p(0/0 cell lines. In contrast, an anti-monomer PrP antibody displayed diffuse immunoreactivity restricted to the cell membrane. Furthermore, our PRIOC mAbs did not display any binding with monomeric recombinant and cellular prion proteins but strongly detected PrPSc oligomers as shown by a newly developed sensitive and specific ELISA. Finally, PrioC antibodies were also able to bind soluble oligomers formed of Aβ and α-synuclein. These findings demonstrate the potential use of anti-prion antibodies that bind PrPSc oligomers, recognised in early stage of the disease, for the diagnosis of prion diseases in blood and other body fluids.

  9. Amyloid β oligomers induce interleukin-1β production in primary microglia in a cathepsin B- and reactive oxygen species-dependent manner

    Energy Technology Data Exchange (ETDEWEB)

    Taneo, Jun; Adachi, Takumi [Department of Animal Development and Physiology, Kyoto University, Yoshida-Konoe, Sakyo, Kyoto 606-8501 (Japan); Yoshida, Aiko; Takayasu, Kunio [Responses to Environmental Signals and Stresses, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe, Sakyo, Kyoto, Kyoto 606-8501 (Japan); Takahara, Kazuhiko, E-mail: ktakahar@zoo.zool.kyoto-u.ac.jp [Department of Animal Development and Physiology, Kyoto University, Yoshida-Konoe, Sakyo, Kyoto 606-8501 (Japan); Japan Science and Technology Agency, Core Research for Evolutional Science and Technology (CREST), Tokyo 102-0081 (Japan); Inaba, Kayo [Department of Animal Development and Physiology, Kyoto University, Yoshida-Konoe, Sakyo, Kyoto 606-8501 (Japan); Japan Science and Technology Agency, Core Research for Evolutional Science and Technology (CREST), Tokyo 102-0081 (Japan)

    2015-03-13

    Amyloid β (Aβ) peptide, a causative agent of Alzheimer's disease, forms two types of aggregates: oligomers and fibrils. These aggregates induce inflammatory responses, such as interleukin-1β (IL-1β) production by microglia, which are macrophage-like cells located in the brain. In this study, we examined the effect of the two forms of Aβ aggregates on IL-1β production in mouse primary microglia. We prepared Aβ oligomer and fibril from Aβ (1–42) peptide in vitro. We analyzed the characteristics of these oligomers and fibrils by electrophoresis and atomic force microscopy. Interestingly, Aβ oligomers but not Aβ monomers or fibrils induced robust IL-1β production in the presence of lipopolysaccharide. Moreover, Aβ oligomers induced endo/phagolysosome rupture, which released cathepsin B into the cytoplasm. Aβ oligomer-induced IL-1β production was inhibited not only by the cathepsin B inhibitor CA-074-Me but also by the reactive oxygen species (ROS) inhibitor N-acetylcysteine. Random chemical crosslinking abolished the ability of the oligomers to induce IL-1β. Thus, multimerization and fibrillization causes Aβ oligomers to lose the ability to induce IL-1β. These results indicate that Aβ oligomers, but not fibrils, induce IL-1β production in primary microglia in a cathepsin B- and ROS-dependent manner. - Highlights: • We prepared amyloid β (Aβ) fibrils with minimum contamination of Aβ oligomers. • Primary microglia (MG) produced IL-1β in response to Aβ oligomers, but not fibrils. • Only Aβ oligomers induced leakage of cathepsin B from endo/phagolysosomes. • IL-1β production in response to Aβ oligomers depended on both cathepsin B and ROS. • Crosslinking reduced the ability of the Aβ oligomers to induce IL-1β from MG.

  10. Causative factors for formation of toxic islet amyloid polypeptide oligomer in type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Jeong HR

    2015-11-01

    Full Text Available Hye Rin Jeong, Seong Soo A AnDepartment of Bionano Technology, Gachon Medical Research Institute, Gachon University, Gyeonggi-do, Republic of KoreaAbstract: Human islet amyloid polypeptide (h-IAPP is a peptide hormone that is synthesized and cosecreted with insulin from insulin-secreting pancreatic β-cells. Recently, h-IAPP was proposed to be the main component responsible for the cytotoxic pancreatic amyloid deposits in patients with type 2 diabetes mellitus (T2DM. Since the causative factors of IAPP (or amylin oligomer aggregation are not fully understood, this review will discuss the various forms of h-IAPP aggregation. Not all forms of IAPP aggregates trigger the destruction of β-cell function and loss of β-cell mass; however, toxic oligomers do trigger these events. Once these toxic oligomers form under abnormal metabolic conditions in T2DM, they can lead to cell disruption by inducing cell membrane destabilization. In this review, the various factors that have been shown to induce toxic IAPP oligomer formation will be presented, as well as the potential mechanism of oligomer and fibril formation from pro-IAPPs. Initially, pro-IAPPs undergo enzymatic reactions to produce the IAPP monomers, which can then develop into oligomers and fibrils. By this mechanism, toxic oligomers could be generated by diverse pathway components. Thus, the interconnections between factors that influence amyloid aggregation (eg, absence of PC2 enzyme, deamidation, reduction of disulfide bonds, environmental factors in the cell, genetic mutations, copper metal ions, and heparin will be presented. Hence, this review will aid in understanding the fundamental causative factors contributing to IAPP oligomer formation and support studies for investigating novel T2DM therapeutic approaches, such as the development of inhibitory agents for preventing oligomerization at the early stages of diabetic pathology.Keywords: amyloid aggregation, causative factor, IAPP, islet

  11. PT-symmetry management in oligomer systems

    International Nuclear Information System (INIS)

    Horne, R L; Cuevas, J; Kevrekidis, P G; Whitaker, N; Abdullaev, F Kh; Frantzeskakis, D J

    2013-01-01

    We study the effects of management of the PT-symmetric part of the potential within the setting of Schrödinger dimer and trimer oligomer systems. This is done by rapidly modulating in time the gain/loss profile. This gives rise to a number of interesting properties of the system, which are explored at the level of an averaged equation approach. Remarkably, this rapid modulation provides for a controllable expansion of the region of exact PT-symmetry, depending on the strength and frequency of the imposed modulation. The resulting averaged models are analysed theoretically and their exact stationary solutions are translated into time-periodic solutions through the averaging reduction. These are, in turn, compared with the exact periodic solutions of the full non-autonomous PT-symmetry managed problem and very good agreement is found between the two. (paper)

  12. Changes in gene expression linked to methamphetamine-induced dopaminergic neurotoxicity.

    Science.gov (United States)

    Xie, Tao; Tong, Liqiong; Barrett, Tanya; Yuan, Jie; Hatzidimitriou, George; McCann, Una D; Becker, Kevin G; Donovan, David M; Ricaurte, George A

    2002-01-01

    The purpose of these studies was to examine the role of gene expression in methamphetamine (METH)-induced dopamine (DA) neurotoxicity. First, the effects of the mRNA synthesis inhibitor, actinomycin-D, and the protein synthesis inhibitor, cycloheximide, were examined. Both agents afforded complete protection against METH-induced DA neurotoxicity and did so independently of effects on core temperature, DA transporter function, or METH brain levels, suggesting that gene transcription and mRNA translation play a role in METH neurotoxicity. Next, microarray technology, in combination with an experimental approach designed to facilitate recognition of relevant gene expression patterns, was used to identify gene products linked to METH-induced DA neurotoxicity. This led to the identification of several genes in the ventral midbrain associated with the neurotoxic process, including genes for energy metabolism [cytochrome c oxidase subunit 1 (COX1), reduced nicotinamide adenine dinucleotide ubiquinone oxidoreductase chain 2, and phosphoglycerate mutase B], ion regulation (members of sodium/hydrogen exchanger and sodium/bile acid cotransporter family), signal transduction (adenylyl cyclase III), and cell differentiation and degeneration (N-myc downstream-regulated gene 3 and tau protein). Of these differentially expressed genes, we elected to further examine the increase in COX1 expression, because of data implicating energy utilization in METH neurotoxicity and the known role of COX1 in energy metabolism. On the basis of time course studies, Northern blot analyses, in situ hybridization results, and temperature studies, we now report that increased COX1 expression in the ventral midbrain is linked to METH-induced DA neuronal injury. The precise role of COX1 and other genes in METH neurotoxicity remains to be elucidated.

  13. Dynamics in coarse-grained models for oligomer-grafted silica nanoparticles

    KAUST Repository

    Hong, Bingbing

    2012-01-01

    Coarse-grained models of poly(ethylene oxide) oligomer-grafted nanoparticles are established by matching their structural distribution functions to atomistic simulation data. Coarse-grained force fields for bulk oligomer chains show excellent transferability with respect to chain lengths and temperature, but structure and dynamics of grafted nanoparticle systems exhibit a strong dependence on the core-core interactions. This leads to poor transferability of the core potential to conditions different from the state point at which the potential was optimized. Remarkably, coarse graining of grafted nanoparticles can either accelerate or slowdown the core motions, depending on the length of the grafted chains. This stands in sharp contrast to linear polymer systems, for which coarse graining always accelerates the dynamics. Diffusivity data suggest that the grafting topology is one cause of slower motions of the cores for short-chain oligomer-grafted nanoparticles; an estimation based on transition-state theory shows the coarse-grained core-core potential also has a slowing-down effect on the nanoparticle organic hybrid materials motions; both effects diminish as grafted chains become longer. © 2012 American Institute of Physics.

  14. Interchain interactions in charged diacetylenic oligomers carrying bulk substituents revisited

    International Nuclear Information System (INIS)

    Ottonelli, M.; Izzo, G.M.M.; Comoretto, D.; Musso, G.F.; Dellepiane, G.

    2006-01-01

    We are studying how the electronic properties of an aggregate, built with conjugated oligomers carrying bulk substituents, are affected by intermolecular interactions. In this paper we apply the CEO (Collective Electronic Oscillator) method, on the basis of the semiempirical INDO/S Hamiltonian, to compute the electronic density matrix modifications following the photon absorption in a doubly charged cluster of two units of a fully carbazolyl-substituted oligodiacetylene tetramer, taken as a model system. The picture that had emerged from our previous calculations based on the less sophisticated CIS (Configuration Interaction including Singles) approach is seen to be confirmed. Despite the large separation between the backbones, a through-space charge transfer occurs between the two oligomers due to the fact that the excess charge, contrary to what is generally believed, is not localized on the conjugated backbone, but is spread out over the carbazolyl moieties of the charged molecule. Consideration of this kind of interaction improves the theoretical results obtained for the isolated charged oligomer chain, and aids in better explaining some features of the experimental photoinduced spectra of the corresponding polymer

  15. Developmental neurotoxicity of pyrethroid insecticides in zebrafish embryos.

    Science.gov (United States)

    DeMicco, Amy; Cooper, Keith R; Richardson, Jason R; White, Lori A

    2010-01-01

    Pyrethroid insecticides are one of the most commonly used residential and agricultural insecticides. Based on the increased use of pyrethroids and recent studies showing that pregnant women and children are exposed to pyrethroids, there are concerns over the potential for developmental neurotoxicity. However, there have been relatively few studies on the developmental neurotoxicity of pyrethroids. In this study, we sought to investigate the developmental toxicity of six common pyrethroids, three type I compounds (permethrin, resmethrin, and bifenthrin) and three type II compounds (deltamethrin, cypermethrin, and lambda-cyhalothrin), and to determine whether zebrafish embryos may be an appropriate model for studying the developmental neurotoxicity of pyrethroids. Exposure of zebrafish embryos to pyrethroids caused a dose-dependent increase in mortality and pericardial edema, with type II compounds being the most potent. At doses approaching the LC(50), permethrin and deltamethrin caused craniofacial abnormalities. These findings are consistent with mammalian studies demonstrating that pyrethroids are mildly teratogenic at very high doses. However, at lower doses, body axis curvature and spasms were observed, which were reminiscent of the classic syndromes observed with pyrethroid toxicity. Treatment with diazepam ameliorated the spasms, while treatment with the sodium channel antagonist MS-222 ameliorated both spasms and body curvature, suggesting that pyrethroid-induced neurotoxicity is similar in zebrafish and mammals. Taken in concert, these data suggest that zebrafish may be an appropriate alternative model to study the mechanism(s) responsible for the developmental neurotoxicity of pyrethroid insecticides and aid in identification of compounds that should be further tested in mammalian systems.

  16. Amino siloxane oligomer-linked graphene oxide as an efficient adsorbent for removal of Pb(II) from wastewater

    International Nuclear Information System (INIS)

    Luo, Shenglian; Xu, Xiangli; Zhou, Guiyin; Liu, Chengbin; Tang, Yanhong; Liu, Yutang

    2014-01-01

    Graphical abstract: A high performance sorbent, oligomer-linked graphene oxide, was prepared by using oligomeric poly3-aminopropyltriethoxysilane as crosslinking agents. The sorbent could selectively remove Pb(II) with high adsorption capacity. - Highlights: • Oligomer-linked graphene oxide sharply fattened function groups. • The sorbent exhibited high adsorption capacity toward Pb(II). • Pb, Cu and Fe were selectively removed from smelter industrial effluent. • The sorption could be conducted at a wide pH range of about 4.0–7.0. - Abstract: A high performance sorbent, oligomer-linked graphene oxide (GO) composite, was prepared through simple cross-linking reactions between GO sheets and poly3-aminopropyltriethoxysilane (PAS) oligomers as crosslinking agents. The three-dimensional PAS oligomers prevented GO sheets from aggregation, provided foreign molecules with easier access, and introduced a large amount of amino functional groups. The morphology, structure and property of the PAS-GO composite were determined by scanning electron microscope (SEM), transmission electron microscope (TEM), Fourie transform infrared (FTIR), X-ray diffractometer (XRD), thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS). The adsorption performance of PAS-GO was investigated in removing Pb(II) ions from water. Compared to 3-aminopropyltriethoxysilane functionalized GO (AS-GO) which was prepared by the direct reaction between 3-aminopropyltriethoxysilane and GO, PAS-GO exhibited much higher adsorptivity toward Pb(II) with the maximum adsorption capacity of 312.5 mg/g at 303 K and furthermore the maximum adsorption capacity increased with increasing temperature. The adsorption could be conducted in a wide pH range of 4.0–7.0. Importantly, PAS-GO had a priority tendency to adsorb Pb, Cu and Fe from a mixed solution of metal ions, especially from a practical industrial effluent

  17. Extended Ladder-Type Benzo[ k ]tetraphene-Derived Oligomers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jongbok [Department of Chemistry, Texas A& M University, 3255 TAMU College Station TX 77843-3255 USA; Li, Huanbin [MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Rd Hangzhou 310027 China; Kalin, Alexander J. [Department of Chemistry, Texas A& M University, 3255 TAMU College Station TX 77843-3255 USA; Yuan, Tianyu [Department of Materials Science and Engineering, Texas A& M University, 3003 TAMU College Station TX 77843-3003 USA; Wang, Chenxu [Department of Materials Science and Engineering, Texas A& M University, 3003 TAMU College Station TX 77843-3003 USA; Olson, Troy [Department of Chemistry, Texas A& M University, 3255 TAMU College Station TX 77843-3255 USA; Li, Hanying [MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Rd Hangzhou 310027 China; Fang, Lei [Department of Chemistry, Texas A& M University, 3255 TAMU College Station TX 77843-3255 USA; Department of Materials Science and Engineering, Texas A& M University, 3003 TAMU College Station TX 77843-3003 USA

    2017-10-02

    Well-defined, fused-ring aromatic oligomers represent promising candidates for the fundamental understanding and application of advanced carbon-rich materials, though bottom-up synthesis and structure–property correlation of these compounds remain challenging. In this work, an efficient synthetic route was employed to construct extended benzo[k]tetraphene-derived oligomers with up to 13 fused rings. The molecular and electronic structures of these compounds were clearly elucidated. Precise correlation of molecular sizes and crystallization dynamics was established, thus demonstrating the pivotal balance between intermolecular interaction and molecular mobility for optimized processing of highly ordered solids of these extended conjugated molecules.

  18. Excitations and optical properties of phenylene-based conjugated polymers and oligomers

    Science.gov (United States)

    Brazovskii, S.; Kirova, N.; Bishop, A. R.; Klimov, V.; McBranch, D.; Barashkov, N. N.; Ferraris, J. P.

    1998-01-01

    We present a combined experimental and theoretical study of the ground and photoexcited optical properties of a model oligomer of PPV, MEH-DSB. Our theoretical picture is based upon a band description of electronic states of PPV oligomers, while invoking corrections from Coulomb interactions. The necessary discrete energy levels at low and intermediate energies appear naturally, in addition to the lower energy delocalized states. On this basis we identify the most important features in direct optical absorption for both high (4-6 eV) and low (2-4 eV) photon energies as well as in photoinduced absorption (PA) and stimulated photoemissions (SE) in MEH-DSB solutions, which represent the limit of noninteracting oligomers. While in agreement with previous interpretations for three absorption peaks (2.74, 4.46 and 6.2 eV), we give a new assignment for the most disputed 3.62 eV one as well as for the two PA peaks.

  19. Nitrogen-Containing, Light-Absorbing Oligomers Produced in Aerosol Particles Exposed to Methylglyoxal, Photolysis, and Cloud Cycling.

    Science.gov (United States)

    De Haan, David O; Tapavicza, Enrico; Riva, Matthieu; Cui, Tianqu; Surratt, Jason D; Smith, Adam C; Jordan, Mary-Caitlin; Nilakantan, Shiva; Almodovar, Marisol; Stewart, Tiffany N; de Loera, Alexia; De Haan, Audrey C; Cazaunau, Mathieu; Gratien, Aline; Pangui, Edouard; Doussin, Jean-François

    2018-04-03

    Aqueous methylglyoxal chemistry has often been implicated as an important source of oligomers in atmospheric aerosol. Here we report on chemical analysis of brown carbon aerosol particles collected from cloud cycling/photolysis chamber experiments, where gaseous methylglyoxal and methylamine interacted with glycine, ammonium, or methylammonium sulfate seed particles. Eighteen N-containing oligomers were identified in the particulate phase by liquid chromatography/diode array detection/electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry. Chemical formulas were determined and, for 6 major oligomer products, MS 2 fragmentation spectra were used to propose tentative structures and mechanisms. Electronic absorption spectra were calculated for six tentative product structures by an ab initio second order algebraic-diagrammatic-construction/density functional theory approach. For five structures, matching calculated and measured absorption spectra suggest that they are dominant light-absorbing species at their chromatographic retention times. Detected oligomers incorporated methylglyoxal and amines, as expected, but also pyruvic acid, hydroxyacetone, and significant quantities of acetaldehyde. The finding that ∼80% (by mass) of detected oligomers contained acetaldehyde, a methylglyoxal photolysis product, suggests that daytime methylglyoxal oligomer formation is dominated by radical addition mechanisms involving CH 3 CO*. These mechanisms are evidently responsible for enhanced browning observed during photolytic cloud events.

  20. Inhibitors of Microglial Neurotoxicity: Focus on Natural Products

    Directory of Open Access Journals (Sweden)

    Kyoungho Suk

    2011-01-01

    Full Text Available Microglial cells play a dual role in the central nervous system as they have both neurotoxic and neuroprotective effects. Uncontrolled and excessive activation of microglia often contributes to inflammation-mediated neurodegeneration. Recently, much attention has been paid to therapeutic strategies aimed at inhibiting neurotoxic microglial activation. Pharmacological inhibitors of microglial activation are emerging as a result of such endeavors. In this review, natural products-based inhibitors of microglial activation will be reviewed. Potential neuroprotective activity of these compounds will also be discussed. Future works should focus on the discovery of novel drug targets that specifically mediate microglial neurotoxicity rather than neuroprotection. Development of new drugs based on these targets may require a better understanding of microglial biology and neuroinflammation at the molecular, cellular, and systems levels.

  1. Multiple neurotoxic effects of haloperidol resulting in neuronal death.

    Science.gov (United States)

    Nasrallah, Henry A; Chen, Alexander T

    2017-08-01

    Several published studies have reported an association between antipsychotic medications, especially first-generation agents, and a decline in gray matter volume. This prompted us to review the possible neurotoxic mechanisms of first-generation antipsychotics (FGAs), especially haloperidol, which has been widely used over the past several decades. A PubMed search was conducted using the keywords haloperidol, antipsychotic, neurotoxicity, apoptosis, oxidative stress, and neuroplasticity. No restrictions were placed on the date of the articles or language. Studies with a clearly described methodology were included. Animal, cell culture, and human tissue studies were identified. Thirty reports met the criteria for the search. All studies included haloperidol; a few also included other FGAs (fluphenazine and perphenazine) and/or second-generation agents (SGAs) (aripiprazole, paliperidone, and risperidone). A neurotoxic effect of haloperidol and other FGAs was a common theme across all studies. Minimal (mainly at high doses) or no neurotoxic effects were noted in SGAs. A review of the literature suggests that haloperidol exerts measurable neurotoxic effects at all doses via many molecular mechanisms that lead to neuronal death. A similar effect was observed in 2 other FGAs, but the effect in SGAs was much smaller and occurred mainly at high doses. A stronger binding to serotonin 5HT-2A receptors than to dopamine D2 receptors may have a neuroprotective effect among SGAs. Further studies are warranted to confirm these findings.

  2. Assessing the Developmental Neurotoxicity of 27 ...

    Science.gov (United States)

    Assessing the Developmental Neurotoxicity of 27 Organophosphorus Pesticides Using a Zebrafish Behavioral Assay, Waalkes, M., Hunter, D.L., Jarema, K., Mundy, W., and S. Padilla. The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize organophosphorus pesticides for developmental neurotoxicity. As such, we are exploring a behavioral testing paradigm that can assess the effects of sublethal and subteratogenic concentrations of developmental neurotoxicants on zebrafish (Danio rerio). This in vivo assay quantifies the locomotor response to light stimuli under tandem light and dark conditions in a 96-well plate using a video tracking system on 6 day post fertilization zebrafish larvae. Each of twenty-seven organophosphorus pesticides was tested for their developmental neurotoxic potential by exposing zebrafish embryos/larvae to the pesticide at several concentrations (≤ 100 μM nominal concentration) during the first five days of development, followed by 24 hours of depuration and then behavioral testing. Approximately 22% of the chemicals (Acephate, Dichlorvos, Diazoxon, Bensulide,Tribufos, Tebupirimfos) did not produce any behavioral changes after developmental exposure, while many (Malaoxon Fosthiazate, Dimethoate, Dicrotophos, Ethoprop, Malathion, Naled, Diazinon, Methamidophos, Terbufos, Trichlorfon, Phorate, Pirimiphos-methyl, Profenofos, Z-Tetrachlorvinphos, Chlorpyrifos, Coumaphos, Phosmet, Omethoate) produced changes in swi

  3. Structure–property relationships of synthetic organophosphorus flame retardant oligomers by thermal analysis

    International Nuclear Information System (INIS)

    Bai, Zhiman; Wang, Xin; Tang, Gang; Song, Lei; Hu, Yuan; Yuen, Richard K.K.

    2013-01-01

    Highlights: • Oligomers with different chemical components in molecular chains were synthesized. • FP-3 containing three IFR components possessed high thermal stability. • FP-3 possessed lowest flammability. • FP-3 exhibited a synergistic interaction between gas and condensed phase. - Abstract: A series of flame retardant oligomers with different chemical components in molecular chains, designated as FP-1, FP-2 and FP-3, respectively, were successfully synthesized using solution polycondensation and well characterized. The thermal properties and flammability of these oligomers were investigated by thermogravimetric analysis (TGA) and microscale combustion calorimeter (MCC). The results demonstrated that FP-3 had the lowest flammability in terms of the lowest maximum mass loss rate, and FP-1 possessed the highest thermal stability and char yield, due to its higher stable hexatomic ring structure of piperazine compared with the linear alkane chain structure of neopentyl glycol. The gases evolved during decomposition were analyzed using Fourier transform infrared coupled with the thermogravimetric analyzer (TG–IR) technique. The char residues of the flame retardant oligomers were investigated by scanning electron microscopy (SEM) and Raman spectroscopy. The results demonstrated that FP-3 exhibited a synergistic interaction between the gas phase and condensation phase, increasing its flame retardancy

  4. Neurotoxicity of fragrance compounds: A review.

    Science.gov (United States)

    Pinkas, Adi; Gonçalves, Cinara Ludvig; Aschner, Michael

    2017-10-01

    Fragrance compounds are chemicals belonging to one of several families, which are used frequently and globally in cosmetics, household products, foods and beverages. A complete list of such compounds is rarely found on the ingredients-list of such products, as "fragrance mixtures" are defined as "trade secrets" and thus protected by law. While some information regarding the general toxicity of some of these compounds is available, their neurotoxicity is known to a lesser extent. Here, we discuss the prevalence and neurotoxicity of fragrance compounds belonging to the three most common groups: phthalates, synthetic musks and chemical sensitizers. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Neurotoxic shellfish poisoning: A review

    NARCIS (Netherlands)

    Apeldoorn ME van; Egmond HP van; Speijers GJA; CSR; ARO

    2001-01-01

    Dit literatuuroverzicht bevat informatie betreffende het "neurotoxic shellfish poisoning" (NSP) syndroom en de veroorzakende toxines, nl.de brevetoxines, welke geproduceerd worden door de dinoflagellaat Gymnodinium breve. Chemische structuren en detectie-methodes van de brevetoxines,

  6. Dietary DHA supplementation in an APP/PS1 transgenic rat model of AD reduces behavioral and Aβ pathology and modulates Aβ oligomerization.

    Science.gov (United States)

    Teng, Edmond; Taylor, Karen; Bilousova, Tina; Weiland, David; Pham, Thaidan; Zuo, Xiaohong; Yang, Fusheng; Chen, Ping-Ping; Glabe, Charles G; Takacs, Alison; Hoffman, Dennis R; Frautschy, Sally A; Cole, Gregory M

    2015-10-01

    Increased dietary consumption of docosahexaenoic acid (DHA) is associated with decreased risk for Alzheimer's disease (AD). These effects have been postulated to arise from DHA's pleiotropic effects on AD pathophysiology, including its effects on β-amyloid (Aβ) production, aggregation, and toxicity. While in vitro studies suggest that DHA may inhibit and reverse the formation of toxic Aβ oligomers, it remains uncertain whether these mechanisms operate in vivo at the physiological concentrations of DHA attainable through dietary supplementation. We sought to clarify the effects of dietary DHA supplementation on Aβ indices in a transgenic APP/PS1 rat model of AD. Animals maintained on a DHA-supplemented diet exhibited reductions in hippocampal Aβ plaque density and modest improvements on behavioral testing relative to those maintained on a DHA-depleted diet. However, DHA supplementation also increased overall soluble Aβ oligomer levels in the hippocampus. Further quantification of specific conformational populations of Aβ oligomers indicated that DHA supplementation increased fibrillar (i.e. putatively less toxic) Aβ oligomers and decreased prefibrillar (i.e. putatively more toxic) Aβ oligomers. These results provide in vivo evidence suggesting that DHA can modulate Aβ aggregation by stabilizing soluble fibrillar Aβ oligomers and thus reduce the formation of both Aβ plaques and prefibrillar Aβ oligomers. However, since fibrillar Aβ oligomers still retain inherent neurotoxicity, DHA may need to be combined with other interventions that can additionally reduce fibrillar Aβ oligomer levels for more effective prevention of AD in clinical settings. Published by Elsevier Inc.

  7. Neurite outgrowth in human induced pluripotent stem cell-derived neurons as a high-throughput screen for developmental neurotoxicity or neurotoxicity.

    Science.gov (United States)

    Ryan, Kristen R; Sirenko, Oksana; Parham, Fred; Hsieh, Jui-Hua; Cromwell, Evan F; Tice, Raymond R; Behl, Mamta

    2016-03-01

    Due to the increasing prevalence of neurological disorders and the large number of untested compounds in the environment, there is a need to develop reliable and efficient screening tools to identify environmental chemicals that could potentially affect neurological development. Herein, we report on a library of 80 compounds screened for their ability to inhibit neurite outgrowth, a process by which compounds may elicit developmental neurotoxicity, in a high-throughput, high-content assay using human neurons derived from induced pluripotent stem cells (iPSC). The library contains a diverse set of compounds including those that have been known to be associated with developmental neurotoxicity (DNT) and/or neurotoxicity (NT), environmental compounds with unknown neurotoxic potential (e.g., polycyclic aromatic hydrocarbons (PAHs) and flame retardants (FRs)), as well as compounds with no documented neurotoxic potential. Neurons were treated for 72h across a 6-point concentration range (∼0.3-100μM) in 384-well plates. Effects on neurite outgrowth were assessed by quantifying total outgrowth, branches, and processes. We also assessed the number ofviable cells per well. Concentration-response profiles were evaluated using a Hill model to derive benchmark concentration (BMC) values. Assay performance was evaluated using positive and negative controls and test replicates. Compounds were ranked by activity and selectivity (i.e., specific effects on neurite outgrowth in the absence of concomitant cytotoxicity) and repeat studies were conducted to confirm selectivity. Among the 80 compounds tested, 38 compounds were active, of which 16 selectively inhibited neurite outgrowth. Of these 16 compounds, 12 were known to cause DNT/NT and the remaining 4 compounds included 3 PAHs and 1 FR. In independent repeat studies, 14/16 selective compounds were reproducibly active in the assay, of which only 6 were selective for inhibition of neurite outgrowth. These 6 compounds were

  8. Enthalpies of solvation of ethylene oxide oligomers CH{sub 3}O(CH{sub 2}CH{sub 2}O){sub n}CH{sub 3} (n = 1 to 4) in different H-bonding solvents: Methanol, chloroform, and water. Group contribution method as applied to the polar oligomers

    Energy Technology Data Exchange (ETDEWEB)

    Barannikov, Vladimir P., E-mail: vpb@isc-ras.ru [Institute of Solution Chemistry, Russian Academy of Sciences, Academicheskaya Str. 1, Ivanovo 153045 (Russian Federation); Guseynov, Sabir S.; Vyugin, Anatoliy I. [Institute of Solution Chemistry, Russian Academy of Sciences, Academicheskaya Str. 1, Ivanovo 153045 (Russian Federation)

    2011-12-15

    Highlights: > Solvation enthalpy is found for ethylene oxide oligomers in chloroform and methanol. > Coefficients of solute-solute interaction are determined for oligomers in methanol. > Enthalpies of hydrogen bonding of oligomers with chloroform and water are estimated. > Additivity scheme is developed for describing enthalpies of solvation of oligomers. - Abstract: The enthalpies of solution and solvation of ethylene oxide oligomers CH{sub 3}O(CH{sub 2}CH{sub 2}O){sub n}CH{sub 3} (n = 1 to 4) in methanol and chloroform have been determined from calorimetric measurements at T = 298.15 K. The enthalpic coefficients of pairwise solute-solute interaction for methanol solutions have been calculated. The enthalpic characteristics of the oligomers in methanol, chloroform, water and tetrachloromethane have been compared. The hydrogen bonding of the oligomers with chloroform and water molecules is exhibited in the values of solvation enthalpy and coefficient of solute-solute interaction. This effect is not observed for methanol solvent. The thermochemical data evidence an existence of multi-centred hydrogen bonds in associates of polyethers with the solvent molecules. Enthalpies of hydrogen bonding of the oligomers with chloroform and water have been estimated. The additivity scheme has been developed to describe the enthalpies of solvation of ethylene oxide oligomers, unbranched monoethers and n-alkanes in chloroform, methanol, water, and tetrachloromethane. The correction parameters for contribution of repeated polar groups and correction term for methoxy-compounds have been introduced. The obtained group contributions permit to describe the enthalpies of solvation of unbranched monoethers and ethylene oxide oligomers in the solvents with standard deviation up to 0.6 kJ . mol{sup -1}. The values of group contributions and corrections are strongly influenced by solvent properties.

  9. Elucidating the neurotoxic effects of MDMA and its analogs.

    Science.gov (United States)

    Karuppagounder, Senthilkumar S; Bhattacharya, Dwipayan; Ahuja, Manuj; Suppiramaniam, Vishnu; Deruiter, Jack; Clark, Randall; Dhanasekaran, Muralikrishnan

    2014-04-17

    There is a rapid increase in the use of methylenedioxymethamphetamine (MDMA) and its structural congeners/analogs globally. MDMA and MDMA-analogs have been synthesized illegally in furtive dwellings and are abused due to its addictive potential. Furthermore, MDMA and MDMA-analogs have shown to have induced several adverse effects. Hence, understanding the mechanisms mediating this neurotoxic insult of MDMA-analogs is of immense importance for the public health in the world. We synthesized and investigated the neurotoxic effects of MDMA and its analogs [4-methylenedioxyamphetamine (MDA), 2, 6-methylenedioxyamphetamine (MDMA), and N-ethyl-3, 4-methylenedioxyamphetamine (MDEA)]. The stimulatory or the dopaminergic agonist effects of MDMA and MDMA-analogs were elucidated using the established 6-hydroxydopamine lesioned animal model. Additionally, we also investigated the neurotoxic mechanisms of MDMA and MDMA-analogs on mitochondrial complex-I activity and reactive oxygen species generation. MDMA and MDMA-analogs exhibited stimulatory activity as compared to amphetamines and also induced several behavioral changes in the rodents. MDMA and MDMA-analogs enhanced the reactive oxygen generation and inhibited mitochondrial complex-I activity which can lead to neurodegeneration. Hence the mechanism of neurotoxicity, MDMA and MDMA-analogs can enhance the release of monoamines, alter the monoaminergic neurotransmission, and augment oxidative stress and mitochondrial abnormalities leading to neurotoxicity. Thus, our study will help in developing effective pharmacological and therapeutic approaches for the treatment of MDMA and MDMA-analog abuse. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Endothelial Activation and Blood-Brain Barrier Disruption in Neurotoxicity after Adoptive Immunotherapy with CD19 CAR-T Cells.

    Science.gov (United States)

    Gust, Juliane; Hay, Kevin A; Hanafi, Laïla-Aïcha; Li, Daniel; Myerson, David; Gonzalez-Cuyar, Luis F; Yeung, Cecilia; Liles, W Conrad; Wurfel, Mark; Lopez, Jose A; Chen, Junmei; Chung, Dominic; Harju-Baker, Susanna; Özpolat, Tahsin; Fink, Kathleen R; Riddell, Stanley R; Maloney, David G; Turtle, Cameron J

    2017-12-01

    Lymphodepletion chemotherapy followed by infusion of CD19-targeted chimeric antigen receptor-modified T (CAR-T) cells can be complicated by neurologic adverse events (AE) in patients with refractory B-cell malignancies. In 133 adults treated with CD19 CAR-T cells, we found that acute lymphoblastic leukemia, high CD19 + cells in bone marrow, high CAR-T cell dose, cytokine release syndrome, and preexisting neurologic comorbidities were associated with increased risk of neurologic AEs. Patients with severe neurotoxicity demonstrated evidence of endothelial activation, including disseminated intravascular coagulation, capillary leak, and increased blood-brain barrier (BBB) permeability. The permeable BBB failed to protect the cerebrospinal fluid from high concentrations of systemic cytokines, including IFNγ, which induced brain vascular pericyte stress and their secretion of endothelium-activating cytokines. Endothelial activation and multifocal vascular disruption were found in the brain of a patient with fatal neurotoxicity. Biomarkers of endothelial activation were higher before treatment in patients who subsequently developed grade ≥4 neurotoxicity. Significance: We provide a detailed clinical, radiologic, and pathologic characterization of neurotoxicity after CD19 CAR-T cells, and identify risk factors for neurotoxicity. We show endothelial dysfunction and increased BBB permeability in neurotoxicity and find that patients with evidence of endothelial activation before lymphodepletion may be at increased risk of neurotoxicity. Cancer Discov; 7(12); 1404-19. ©2017 AACR. See related commentary by Mackall and Miklos, p. 1371 This article is highlighted in the In This Issue feature, p. 1355 . ©2017 American Association for Cancer Research.

  11. Formation of soluble amyloid oligomers and amyloid fibrils by the multifunctional protein vitronectin

    Directory of Open Access Journals (Sweden)

    Langen Ralf

    2008-10-01

    Full Text Available Abstract Background The multifunctional protein vitronectin is present within the deposits associated with Alzheimer disease (AD, age-related macular degeneration (AMD, atherosclerosis, systemic amyloidoses, and glomerulonephritis. The extent to which vitronectin contributes to amyloid formation within these plaques, which contain misfolded, amyloidogenic proteins, and the role of vitronectin in the pathophysiology of the aforementioned diseases is currently unknown. The investigation of vitronectin aggregation is significant since the formation of oligomeric and fibrillar structures are common features of amyloid proteins. Results We observed vitronectin immunoreactivity in senile plaques of AD brain, which exhibited overlap with the amyloid fibril-specific OC antibody, suggesting that vitronectin is deposited at sites of amyloid formation. Of particular interest is the growing body of evidence indicating that soluble nonfibrillar oligomers may be responsible for the development and progression of amyloid diseases. In this study we demonstrate that both plasma-purified and recombinant human vitronectin readily form spherical oligomers and typical amyloid fibrils. Vitronectin oligomers are toxic to cultured neuroblastoma and retinal pigment epithelium (RPE cells, possibly via a membrane-dependent mechanism, as they cause leakage of synthetic vesicles. Oligomer toxicity was attenuated in RPE cells by the anti-oligomer A11 antibody. Vitronectin fibrils contain a C-terminal protease-resistant fragment, which may approximate the core region of residues essential to amyloid formation. Conclusion These data reveal the propensity of vitronectin to behave as an amyloid protein and put forth the possibilities that accumulation of misfolded vitronectin may contribute to aggregate formation seen in age-related amyloid diseases.

  12. Is Neurotoxicity of Metallic Nanoparticles the Cascades of Oxidative Stress?

    Science.gov (United States)

    Song, Bin; Zhang, YanLi; Liu, Jia; Feng, XiaoLi; Zhou, Ting; Shao, LongQuan

    2016-06-01

    With the rapid development of nanotechnology, metallic (metal or metal oxide) nanoparticles (NPs) are widely used in many fields such as cosmetics, the food and building industries, and bio-medical instruments. Widespread applications of metallic NP-based products increase the health risk associated with human exposures. Studies revealed that the brain, a critical organ that consumes substantial amounts of oxygen, is a primary target of metallic NPs once they are absorbed into the body. Oxidative stress (OS), apoptosis, and the inflammatory response are believed to be the main mechanisms underlying the neurotoxicity of metallic NPs. Other studies have disclosed that antioxidant pretreatment or co-treatment can reverse the neurotoxicity of metallic NPs by decreasing the level of reactive oxygen species, up-regulating the activities of antioxidant enzymes, decreasing the proportion of apoptotic cells, and suppressing the inflammatory response. These findings suggest that the neurotoxicity of metallic NPs might involve a cascade of events following NP-induced OS. However, additional research is needed to determine whether NP-induced OS plays a central role in the neurotoxicity of metallic NPs, to develop a comprehensive understanding of the correlations among neurotoxic mechanisms and to improve the bio-safety of metallic NP-based products.

  13. Effect of Conjugation Length on Photoinduced Charge-Transfer in π-Conjugated Oligomer-Acceptor Dyads

    KAUST Repository

    Jiang, Junlin

    2017-05-25

    A series of -conjugated oligomer-acceptor dyads were synthesized that feature oligo(phenylene ethynylene) (OPE) conjugated backbones end-capped with a naphthalene diimide (NDI) acceptor. The OPE segments vary in length from 4 to 8 phenylene ethynene units (PEn-NDI, where n = 4, 6 and 8). Fluorescence and transient absorption spectroscopy reveals that intramolecular OPE NDI charge transfer dominates the deactivation of excited states of the PEn-NDI oligomers. Both charge separation (CS) and charge recombination (CR) are strongly exothermic (G0CS ~ -1.1 and G0CR ~ -2.0 eV), and the driving forces do not vary much across the series because the oxidation and reduction potentials and singlet energies of the OPEs do not vary much with their length. Bimolecular photoinduced charge transfer between model OPEs that do not contain the NDI acceptors with methyl viologen was studied, and the results reveal that the absorption of the cation radical state (OPE+•) remains approximately constant ( ~ 575 nm) regardless of oligomer length. This finding suggests that the cation radical (polaron) of the OPE is relatively localized, effectively occupying a confined segment of n 4 repeat units in the longer oligomers. Photoinduced intramolecular electron transfer dynamics in the PEn-NDI series was investigated by UV-visible femtosecond transient absorption spectroscopy with visible and mid-infrared probes. Charge separation occurs on the 1 – 10 ps timescale, with the rates decreasing slightly with increased oligomer length (βCS ~ 0.15 Å-1). The rate for charge-recombination decreases in the sequence PE4-NDI > PE6-NDI ~ PE8-NDI. The discontinuous distance dependence in the rate for charge recombination may be related to the spatial localization of the positive polaron state in the longer oligomers.

  14. Effect of Conjugation Length on Photoinduced Charge-Transfer in π-Conjugated Oligomer-Acceptor Dyads

    KAUST Repository

    Jiang, Junlin; Alsam, Amani Abdu; Wang, Shanshan; Aly, Shawkat Mohammede; Pan, Zhenxing; Mohammed, Omar F.; Schanze, Kirk S.

    2017-01-01

    A series of -conjugated oligomer-acceptor dyads were synthesized that feature oligo(phenylene ethynylene) (OPE) conjugated backbones end-capped with a naphthalene diimide (NDI) acceptor. The OPE segments vary in length from 4 to 8 phenylene ethynene units (PEn-NDI, where n = 4, 6 and 8). Fluorescence and transient absorption spectroscopy reveals that intramolecular OPE NDI charge transfer dominates the deactivation of excited states of the PEn-NDI oligomers. Both charge separation (CS) and charge recombination (CR) are strongly exothermic (G0CS ~ -1.1 and G0CR ~ -2.0 eV), and the driving forces do not vary much across the series because the oxidation and reduction potentials and singlet energies of the OPEs do not vary much with their length. Bimolecular photoinduced charge transfer between model OPEs that do not contain the NDI acceptors with methyl viologen was studied, and the results reveal that the absorption of the cation radical state (OPE+•) remains approximately constant ( ~ 575 nm) regardless of oligomer length. This finding suggests that the cation radical (polaron) of the OPE is relatively localized, effectively occupying a confined segment of n 4 repeat units in the longer oligomers. Photoinduced intramolecular electron transfer dynamics in the PEn-NDI series was investigated by UV-visible femtosecond transient absorption spectroscopy with visible and mid-infrared probes. Charge separation occurs on the 1 – 10 ps timescale, with the rates decreasing slightly with increased oligomer length (βCS ~ 0.15 Å-1). The rate for charge-recombination decreases in the sequence PE4-NDI > PE6-NDI ~ PE8-NDI. The discontinuous distance dependence in the rate for charge recombination may be related to the spatial localization of the positive polaron state in the longer oligomers.

  15. Multiple mechanisms of PCB neurotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, D.O.; Stoner, C.T.; Lawrence, D.A. [Univ. of New York, Albany, NY (United States)] [and others

    1996-12-31

    Polychlorinated biphenyls (PCBs) have been implicated in cancer, but many of the symptoms in humans exposed to PCBs are related to the nervous system and behavior. We demonstrated three different direct mechanisms whereby PCBs are neurotoxic in rats. By using flow cytometry, we demonstrated that the orthosubstituted PCB congener 2,4,4{prime}, but neither TCDD nor the coplanar PCB congener 3,4,5,3{prime},4{prime}, causes rapid death of cerebellar granule cells. The ortho-substituted congener 2,4,4{prime} reduced long-term potentiation, an indicator of cognitive potential, in hippocampal brain slices, but a similar effect was observed for the coplanar congener 3,4,3{prime},4{prime}, indicating that this effect may be caused by both ortho- and coplanar congeners by mechanisms presumably not mediated via the Ah receptor. It was previously shown that some ortho-substituted PCB congeners cause a reduction in levels of the neurotransmitter dopamine, and we present in vitro and in vivo evidence that this is due to reduction of synthesis of dopamine via inhibition of the enzyme tyrosine hydroxylase. Thus, PCBs have a variety of mechanisms of primary neurotoxicity, and neurotoxicity is a characteristic of ortho-substituted, non-dioxin-like congeners as well as some coplanar congeners. The relative contribution of each of these mechanisms to the loss of cognitive function in humans exposed to PCBs remains to be determined. 42 refs., 3 figs., 1 tab.

  16. Neurotoxic shellfish poisoning: A review

    NARCIS (Netherlands)

    Apeldoorn ME van; Egmond HP van; Speijers GJA; CSR; ARO

    2001-01-01

    This review contains information on the neurotoxic shellfish poisoning (NSP) syndrome and the provoking toxins called brevetoxins, produced by the dinoflagellate Gymnodinium breve. Data on chemical structures and detection methods for brevetoxins, sources for brevetoxins, marine organisms associated

  17. Studies on Oligomer Metal Complexes Derived from Bisamic Acid of Pyromellitic Dianhydride and 4-Bromoaniline.

    Science.gov (United States)

    Patel, Yogesh S

    2014-01-01

    Novel oligomer metal complexes (2a-f) of the ligand 2,5-bis((4-bromophenyl)carbamoyl) terephthalic acid (1) were prepared using transition metal salts and characterized by various spectroscopic techniques. The geometry of oligomer metal complexes was carried out by electronic spectral analysis and magnetic measurement studies. Polymeric properties have also been carried out. Ligand was synthesized using pyromellitic dianhydride and 4-bromoaniline. It was duly characterized. All novel synthesized compounds 1 and 2a-f were evaluated for their antibacterial and antifungal activity. The results showed significantly higher antibacterial and antifungal activity of oligomer metal complexes compared to the ligand.

  18. Organic heterostructures based on arylenevinylene oligomers deposited by MAPLE

    Czech Academy of Sciences Publication Activity Database

    Socol, M.; Preda, N.; Vacareanu, L.; Grigoras, M.; Socol, G.; Mihailescu, I. N.; Stanculescu, F.; Jelínek, Miroslav; Stanculescu, A.; Stoicanescu, M.

    2014-01-01

    Roč. 302, May (2014), s. 216-222 ISSN 0169-4332 Institutional support: RVO:68378271 Keywords : organic heterostructures * MAPLE * oligomer * optoelectronica Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.711, year: 2014

  19. Combined HILIC-ELSD/ESI-MS(n) enables the separation, identification and quantification of sugar beet pectin derived oligomers.

    Science.gov (United States)

    Remoroza, C; Cord-Landwehr, S; Leijdekkers, A G M; Moerschbacher, B M; Schols, H A; Gruppen, H

    2012-09-01

    The combined action of endo-polygalacturonase (endo-PGII), pectin lyase (PL), pectin methyl esterase (fungal PME) and RG-I degrading enzymes enabled the extended degradation of methylesterified and acetylated sugar beet pectins (SBPs). The released oligomers were separated, identified and quantified using hydrophilic interaction liquid chromatography (HILIC) with online electrospray ionization ion trap mass spectrometry (ESI-IT-MS(n)) and evaporative light scattering detection (ELSD). By MS(n), the structures of galacturonic acid (GalA) oligomers having an acetyl group in the O-2 and/or O-3 positions eluting from the HILIC column were elucidated. The presence of methylesterified and/or acetylated galacturonic acid units within an oligomer reduced the interaction with the HILIC column significantly compared to the unsubstituted GalA oligomers. The HILIC column enables a good separation of most oligomers present in the digest. The use of ELSD to quantify oligogalacturonides was validated using pure GalA standards and the signal was found to be independent of the chemical structure of the oligomer being detected. The combination of chromatographic and enzymatic strategies enables to distinguish SBPs having different methylesters and acetyl group distribution. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. New strategy for stable-isotope-aided, multidimensional NMR spectroscopy of DNA oligomers

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Okira; Tate, Shin-Ichi; Kainosho, Masatsune [Tokyo Metropolitan Univ., Tokyo (Japan)

    1994-12-01

    Nuclear Magnetic Resonance (NMR) is the most efficient method for determining the solution structures of biomolecules. By applying multidimensional heteronuclear NMR techniques to {sup 13}C/{sup 15}N-labeled proteins, we can determine the solution structures of proteins with molecular mass of 20 to 30kDa at an accuracy similar to that of x-ray crystallography. Improvements in NMR instrumentation and techniques as well as the development of protein engineering methods for labeling proteins have rapidly advanced multidimensional heteronuclear NMR of proteins. In contrast, multidimensional heteronuclear NMR studies of nucleic acids is less advanced because there were no efficient methods for preparing large amounts of labeled DNA/RNA oligomers. In this report, we focused on the chemical synthesis of DNA oligomers labeled at specific residue(s). RNA oligomers with specific labels, which are difficult to synthesize by the enzyme method, can be synthesized by the chemical method. The specific labels are useful for conformational analysis of larger molecules such as protein-nucleic acid complexes.

  1. Biomarkers of cytokine release syndrome and neurotoxicity related to CAR-T cell therapy.

    Science.gov (United States)

    Wang, Zhenguang; Han, Weidong

    2018-01-01

    Severe cytokine release syndrome (CRS) and neurotoxicity following chimeric antigen receptor T cell (CAR-T) therapy can be life-threatening in some cases, and management of those toxicities is still a great challenge for physicians. Researchers hope to understand the pathophysiology of CRS and neurotoxicity, and identify predictive biomarkers that can forecast those toxicities in advance. Some risk factors for severe CRS and/or neurotoxicity including patient and treatment characteristics have been identified in multiple clinical trials of CAR-T cell therapy. Moreover, several groups have identified some predictive biomarkers that are able to determine beforehand which patients may suffer severe CRS and/or neurotoxicity during CAR-T cell therapy, facilitating testing of early intervention strategies for those toxicities. However, further studies are needed to better understand the biology and related risk factors for CRS and/or neurotoxicity, and determine if those identified predictors can be extrapolated to other series. Herein, we review the pathophysiology of CRS and neurotoxicity, and summarize the progress of predictive biomarkers to improve CAR-T cell therapy in cancer.

  2. Diffusion abnormalities of the globi pallidi in manganese neurotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    McKinney, Alexander M.; Filice, Ross W.; Teksam, Mehmet; Casey, Sean; Truwit, Charles; Clark, H. Brent; Woon, Carolyn; Liu, Hai Ying [Department of Radiology, Medical School, Box 292, 420 Delaware Street S.E., 55455, Minneapolis, MN (United States)

    2004-04-01

    Manganese is an essential trace metal required for normal central nervous system function, which is toxic when in excess amounts in serum. Manganese neurotoxicity has been demonstrated in patients with chronic liver/biliary failure where an inability to excrete manganese via the biliary system causes increased serum levels, and in patients on total parenteral nutrition (TPN), occupational/inhalational exposure, or other source of excess exogenous manganese. Manganese has been well described in the literature to deposit selectively in the globi pallidi and to induce focal neurotoxicity. We present a case of a 53-year-old woman who presented for a brain MR 3 weeks after liver transplant due to progressively decreasing level of consciousness. The patient had severe liver failure by liver function tests and bilirubin levels, and had also been receiving TPN since the transplant. The MR demonstrated symmetric hyperintensity on T1-weighted images in the globi pallidi. Apparent diffusion coefficient (ADC) map indicated restricted diffusion in the globi pallidi bilaterally. The patient eventually succumbed to systemic aspergillosis 3 days after the MR. The serum manganese level was 195 mcg/l (micrograms per liter) on postmortem exam (over 20 times the upper limits of normal). The patient was presumed to have suffered from manganese neurotoxicity since elevated serum manganese levels have been shown in the literature to correlate with hyperintensity on T1-weighted images, neurotoxicity symptoms, and focal concentration of manganese in the globi pallidi. Neuropathologic sectioning of the globi pallidi at autopsy was also consistent with manganese neurotoxicity. (orig.)

  3. Design and validation of an ontology-driven animal-free testing strategy for developmental neurotoxicity testing.

    NARCIS (Netherlands)

    Hessel, Ellen V S; Staal, Yvonne C M; Piersma, Aldert H

    2018-01-01

    Developmental neurotoxicity entails one of the most complex areas in toxicology. Animal studies provide only limited information as to human relevance. A multitude of alternative models have been developed over the years, providing insights into mechanisms of action. We give an overview of

  4. Fingerprinting of neurotoxic compounds using a mouse embryonic stem cell dual luminescence reporter assay

    NARCIS (Netherlands)

    Colaianna, M.; Ilmjärv, S.; Peterson, H.; Ilse Kern, I.; Julien, S.; Baquié, M.; allocca, G.; Bosgra, S.; Sachinidis, A.; Hengstler, J.G.; Leist, M.; Krause, K.H.

    2017-01-01

    Identification of neurotoxic drugs and environmental chemicals is an important challenge. However, only few tools to address this topic are available. The aim of this study was to develop a neurotoxicity/developmental neurotoxicity (DNT) test system, using the pluripotent mouse embryonic stem cell

  5. Toxic prefibrillar α-synuclein amyloid oligomers adopt a distinctive antiparallel β-sheet structure.

    Science.gov (United States)

    Celej, María Soledad; Sarroukh, Rabia; Goormaghtigh, Erik; Fidelio, Gerardo D; Ruysschaert, Jean-Marie; Raussens, Vincent

    2012-05-01

    Parkinson's disease is an age-related movement disorder characterized by the presence in the mid-brain of amyloid deposits of the 140-amino-acid protein AS (α-synuclein). AS fibrillation follows a nucleation polymerization pathway involving diverse transient prefibrillar species varying in size and morphology. Similar to other neurodegenerative diseases, cytotoxicity is currently attributed to these prefibrillar species rather than to the insoluble aggregates. Nevertheless, the underlying molecular mechanisms responsible for cytotoxicity remain elusive and structural studies may contribute to the understanding of both the amyloid aggregation mechanism and oligomer-induced toxicity. It is already recognized that soluble oligomeric AS species adopt β-sheet structures that differ from those characterizing the fibrillar structure. In the present study we used ATR (attenuated total reflection)-FTIR (Fourier-transform infrared) spectroscopy, a technique especially sensitive to β-sheet structure, to get a deeper insight into the β-sheet organization within oligomers and fibrils. Careful spectral analysis revealed that AS oligomers adopt an antiparallel β-sheet structure, whereas fibrils adopt a parallel arrangement. The results are discussed in terms of regions of the protein involved in the early β-sheet interactions and the implications of such conformational arrangement for the pathogenicity associated with AS oligomers.

  6. Interface Bond Improvement of Sisal Fibre Reinforced Polylactide Composites with Added Epoxy Oligomer.

    Science.gov (United States)

    Hao, Mingyang; Wu, Hongwu; Qiu, Feng; Wang, Xiwen

    2018-03-07

    To improve the interfacial bonding of sisal fiber-reinforced polylactide biocomposites, polylactide (PLA) and sisal fibers (SF) were melt-blended to fabricate bio-based composites via in situ reactive interfacial compatibilization with addition of a commercial grade epoxy-functionalized oligomer Joncryl ADR @ -4368 (ADR). The FTIR (Fourier Transform infrared spectroscopy) analysis and SEM (scanning electron microscope) characterization demonstrated that the PLA molecular chain was bonded to the fiber surface and the epoxy-functionalized oligomer played a hinge-like role between the sisal fibers and the PLA matrix, which resulted in improved interfacial adhesion between the fibers and the PLA matrix. The interfacial reaction and microstructures of composites were further investigated by thermal and rheological analyses, which indicated that the mobility of the PLA molecular chain in composites was restricted because of the introduction of the ADR oligomer, which in turn reflected the improved interfacial interaction between SF and the PLA matrix. These results were further justified with the calculation of activation energies of glass transition relaxation (∆ E a ) by dynamic mechanical analysis. The mechanical properties of PLA/SF composites were simultaneously reinforced and toughened with the addition of ADR oligomer. The interfacial interaction and structure-properties relationship of the composites are the key points of this study.

  7. Diffusivities and Viscosities of Poly(ethylene oxide) Oligomers

    KAUST Repository

    Hong, Bingbing; Escobedo, Fernando; Panagiotopoulos, Athanassios Z.

    2010-01-01

    Diffusivities and viscosities of poly(ethylene oxide) (PEO) oligomer melts with 1 to 12 repeat units have been obtained from equilibrium molecular dynamics simulations using the TraPPE-UA force field. The simulations generated diffusion coefficients

  8. Synthesis and Electronic Properties of Length-Defined 9,10-Anthrylene-Butadiynylene Oligomers.

    Science.gov (United States)

    Nagaoka, Maiko; Tsurumaki, Eiji; Nishiuchi, Mai; Iwanaga, Tetsuo; Toyota, Shinji

    2018-05-18

    Linear π-conjugated oligomers consisting of anthracene and diacetylene units were readily synthesized by a one-pot process that involved desilylation and oxidative coupling from appropriate building units. We were able to isolate length-defined oligomers ranging from 2-mer to 6-mer as stable and soluble solids. The bathochromic shifts in the UV-vis spectra suggested that the π-conjugation was extended with elongation of the linear chain. Cyclic voltammetric measurements showed characteristic reversible oxidation waves that were dependent on the number of anthracene units.

  9. Amyloid β oligomers in Alzheimer's disease pathogenesis, treatment, and diagnosis.

    Science.gov (United States)

    Viola, Kirsten L; Klein, William L

    2015-02-01

    Protein aggregation is common to dozens of diseases including prionoses, diabetes, Parkinson's and Alzheimer's. Over the past 15 years, there has been a paradigm shift in understanding the structural basis for these proteinopathies. Precedent for this shift has come from investigation of soluble Aβ oligomers (AβOs), toxins now widely regarded as instigating neuron damage leading to Alzheimer's dementia. Toxic AβOs accumulate in AD brain and constitute long-lived alternatives to the disease-defining Aβ fibrils deposited in amyloid plaques. Key experiments using fibril-free AβO solutions demonstrated that while Aβ is essential for memory loss, the fibrillar Aβ in amyloid deposits is not the agent. The AD-like cellular pathologies induced by AβOs suggest their impact provides a unifying mechanism for AD pathogenesis, explaining why early stage disease is specific for memory and accounting for major facets of AD neuropathology. Alternative ideas for triggering mechanisms are being actively investigated. Some research favors insertion of AβOs into membrane, while other evidence supports ligand-like accumulation at particular synapses. Over a dozen candidate toxin receptors have been proposed. AβO binding triggers a redistribution of critical synaptic proteins and induces hyperactivity in metabotropic and ionotropic glutamate receptors. This leads to Ca(2+) overload and instigates major facets of AD neuropathology, including tau hyperphosphorylation, insulin resistance, oxidative stress, and synapse loss. Because different species of AβOs have been identified, a remaining question is which oligomer is the major pathogenic culprit. The possibility has been raised that more than one species plays a role. Despite some key unknowns, the clinical relevance of AβOs has been established, and new studies are beginning to point to co-morbidities such as diabetes and hypercholesterolemia as etiological factors. Because pathogenic AβOs appear early in the disease, they

  10. Size-Dependent Affinity of Glycine and Its Short Oligomers to Pyrite Surface: A Model for Prebiotic Accumulation of Amino Acid Oligomers on a Mineral Surface

    Science.gov (United States)

    Afrin, Rehana; Ganbaatar, Narangerel; Aono, Masashi; Cleaves, H. James; Yano, Taka-aki; Hara, Masahiko

    2018-01-01

    The interaction strength of progressively longer oligomers of glycine, (Gly), di-Gly, tri-Gly, and penta-Gly, with a natural pyrite surface was directly measured using the force mode of an atomic force microscope (AFM). In recent years, selective activation of abiotically formed amino acids on mineral surfaces, especially that of pyrite, has been proposed as an important step in many origins of life scenarios. To investigate such notions, we used AFM-based force measurements to probe possible non-covalent interactions between pyrite and amino acids, starting from the simplest amino acid, Gly. Although Gly itself interacted with the pyrite surface only weakly, progressively larger unbinding forces and binding frequencies were obtained using oligomers from di-Gly to penta-Gly. In addition to an expected increase of the configurational entropy and size-dependent van der Waals force, the increasing number of polar peptide bonds, among others, may be responsible for this observation. The effect of chain length was also investigated by performing similar experiments using l-lysine vs. poly-l-lysine (PLL), and l-glutamic acid vs. poly-l-glutamic acid. The results suggest that longer oligomers/polymers of amino acids can be preferentially adsorbed on pyrite surfaces. PMID:29370126

  11. Resistance of neuronal nitric oxide synthase-deficient mice to methamphetamine-induced dopaminergic neurotoxicity.

    Science.gov (United States)

    Itzhak, Y; Gandia, C; Huang, P L; Ali, S F

    1998-03-01

    Methamphetamine (METH) is a powerful psychostimulant that produces dopaminergic neurotoxicity manifested by a decrease in the levels of dopamine, tyrosine hydroxylase activity and dopamine transporter (DAT) binding sites in the nigrostriatal system. We have recently reported that blockade of the neuronal nitric oxide synthase (nNOS) isoform by 7-nitroindazole provides protection against METH-induced neurotoxicity in Swiss Webster mice. The present study was undertaken to investigate the effect of a neurotoxic dose of METH on mutant mice lacking the nNOS gene [nNOS(-/-)] and wild-type controls. In addition, we sought to investigate the behavioral outcome of exposure to a neurotoxic dose of METH. Homozygote nNOS(-/-), heterozygote nNOS(+/-) and wild-type animals were administered either saline or METH (5 mg/kg x 3). Dopamine, DOPAC and HVA levels, as well as DAT binding site levels, were determined in striatal tissue derived 72 h after the last METH injection. This regimen of METH given to nNOS(-/-) mice affected neither the tissue content of dopamine and its metabolites nor the number of DAT binding sites. Although a moderate reduction in the levels of dopamine (35%) and DAT binding sites (32%) occurred in striatum of heterozygote nNOS(+/-) mice, a more profound depletion of the dopaminergic markers (up to 68%) was observed in the wild-type animals. METH-induced hyperthermia was observed in all animal strains examined except the nNOS(-/-) mice. Investigation of the animals' spontaneous locomotor activity before and after administration of the neurotoxic dose of METH (5 mg/kg x 3) revealed no differences. A low dose of METH (1.0 mg/kg) administered to naive animals (nNOS(-/-) and wild-type) resulted in a similar intensity of locomotor stimulation. However, 68 to 72 h after exposure to the high-dose METH regimen, a marked sensitized responses to a challenge METH injection was observed in the wild-type mice but not in the nNOS(-/-) mice. Taken together, these results

  12. Clinical Neurotoxic Disorders : Past, Present and Future

    Directory of Open Access Journals (Sweden)

    Nag Devika

    2001-01-01

    Full Text Available Neurotoxins have existed on the earth from times immemorial. Old neurotoxic disorders were due to ingestion/ exposure of heavy metals and food like lathyrus sativus over a long period of time. The 20th Century with rapid industrialsation and expanding chemical and drug industry has spawned several new, hitherto unknown disorders. Old disorders continue to exist e.g. fluorosis, arsenicosis, lathyrism, manganism and lead neuropathy, along with new diseases like Minamata disease, subacute myelo optic neuropathy (SMON, MPTP-Parkinsonian syndorme, triorthcresyl phosphate (TOCP neuroparalytic disease, pesticide induced seizures, tremor and neuropathy, solvent encephalopthy, antipileptic drug foetal syndrome and excitotoxin induced behavioural disorders. Studies on pesticides Organochlorine and organophosphates, synthetic pyrethrins, solvents, heavy metals and substances abuse in the Indian context confirm the neurotoxic nature of many synthetic substances. Future problems envisaged are of concern to clinical neurologists as many of these neurotoxic disorders mimic syndromes of well known neurological disease. The new millenium poses a challenge to the clinician as newer compounds in industry, food, drugs and chemical war agents are being developed. Molecular genetics has advanced rapidly with release of the human genome map. Animal cloning and genetically modified plant products have entered the food chain. How safe are these new inventions for the central nervous system is a big question? India cannot afford disasters like Union Carbide′s Bhopal gas leak nor be a silent spectator to manipulative biotechnology. Unless it is proven beyond all doubt to be a safe innovation, Chemicals have to be cautiously introduced in our environment. To Study, ascertain and confirm safety or neurotoxicity is an exciting challenge for the neuroscientists of the 21st century.

  13. Charge transfer in conjugated oligomers encapsulated into carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Almadori, Y.; Alvarez, L.; Michel, T.; Le Parc, R.; Bantignies, J.L.; Hermet, P.; Sauvajol, J.L. [Laboratoire Charles Coulomb UMR 5521, Universite Montpellier 2, 34095 Montpellier (France); Laboratoire Charles Coulomb UMR 5521, CNRS, 34095 Montpellier (France); Arenal, R. [Laboratoire d' Etude des Microstructures, CNRS-ONERA, 92322 Chatillon (France); Laboratorio de Microscopias Avanzadas, Instituto de Nanociencia de Aragon, U. Zaragoza, 50018 Zaragoza (Spain); Babaa, R. [Laboratoire de Chimie des Surfaces et Interfaces, CEA, IRAMIS, SPCSI, 91191 Gif-sur-Yvette Cedex (France); Chemical Engineering Department, University of Technology PETRONAS, UTP, Ipoh-Perak (Malaysia); Jouselme, B.; Palacin, S. [Laboratoire de Chimie des Surfaces et Interfaces, CEA, IRAMIS, SPCSI, 91191 Gif-sur-Yvette Cedex (France)

    2011-11-15

    This study deals with a hybrid system consisting in quaterthiophene derivative encapsulated inside single-walled and multi-walled carbon nanotubes. Investigations of the encapsulation step are performed by transmission electron microscopy. Raman spectroscopy data point out different behaviors depending on the laser excitation energy with respect to the optical absorption of quaterthiophene. At low excitation energy (far from the oligomer resonance window) there is no significant modification of the Raman spectra before and after encapsulation. By contrast, at high excitation energy (close to the oligomer resonance window), Raman spectra exhibit a G-band shift together with an important RBM intensity loss, suggesting a significant charge transfer between the inserted molecule and the host nanotubes. Those results suggest a photo induced process leading to a significant charge transfer. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Structure and properties of binary mixtures polystyrene-epoxyacrylic oligomers irradiated by electrons

    International Nuclear Information System (INIS)

    Lomonosova, N.V.

    1995-01-01

    Using the methods of birefringence, isometrical heating, IR-dichroism and thermal optical analysis change in structure of oriented polymer-oligomer systems on the base of PS (M>10 6 ) and epoxyacrylic (EA) oligomers of aliphatic and aromatic structure is studied during the process of irradiation by fast electrons. Their mechanical properties are studied and it is established that introduction of aliphatic epoxyacrylate to PS and subsequent irradiation allow to obtain composite materials with higher values of strength, modulus of elasticity and softening temperature in isotropic and oriented states. 6 refs., 2 figs., 3 tabs

  15. The Dynamics of Autism Spectrum Disorders: How Neurotoxic Compounds and Neurotransmitters Interact

    Directory of Open Access Journals (Sweden)

    Margot Van de Bor

    2013-08-01

    Full Text Available In recent years concern has risen about the increasing prevalence of Autism Spectrum Disorders (ASD. Accumulating evidence shows that exposure to neurotoxic compounds is related to ASD. Neurotransmitters might play a key role, as research has indicated a connection between neurotoxic compounds, neurotransmitters and ASD. In the current review a literature overview with respect to neurotoxic exposure and the effects on neurotransmitter systems is presented. The aim was to identify mechanisms and related factors which together might result in ASD. The literature reported in the current review supports the hypothesis that exposure to neurotoxic compounds can lead to alterations in the GABAergic, glutamatergic, serotonergic and dopaminergic system which have been related to ASD in previous work. However, in several studies findings were reported that are not supportive of this hypothesis. Other factors also might be related, possibly altering the mechanisms at work, such as time and length of exposure as well as dose of the compound. Future research should focus on identifying the pathway through which these factors interact with exposure to neurotoxic compounds making use of human studies.

  16. An Open-Circuit Voltage and Power Conversion Efficiency Study of Fullerene Ternary Organic Solar Cells Based on Oligomer/Oligomer and Oligomer/Polymer.

    Science.gov (United States)

    Zhang, Guichuan; Zhou, Cheng; Sun, Chen; Jia, Xiaoe; Xu, Baomin; Ying, Lei; Huang, Fei; Cao, Yong

    2017-07-01

    Variations in the open-circuit voltage (V oc ) of ternary organic solar cells are systematically investigated. The initial study of these devices consists of two electron-donating oligomers, S2 (two units) and S7 (seven units), and the electron-accepting [6,6]-phenyl C71 butyric acid methyl ester (PC 71 BM) and reveals that the V oc is continuously tunable due to the changing energy of the charge transfer state (E ct ) of the active layers. Further investigation suggests that V oc is also continuously tunable upon change in E ct in a ternary blend system that consists of S2 and its corresponding polymer (P11):PC 71 BM. It is interesting to note that higher power conversion efficiencies can be obtained for both S2:S7:PC 71 BM and S2:P11:PC 71 BM ternary systems compared with their binary systems, which can be ascribed to an improved V oc due to the higher E ct and an improved fill factor due to the improved film morphology upon the incorporation of S2. These findings provide a new guideline for the future design of conjugated polymers for achieving higher performance of ternary organic solar cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Selective amyloid β oligomer assay based on abasic site-containing molecular beacon and enzyme-free amplification.

    Science.gov (United States)

    Zhu, Linling; Zhang, Junying; Wang, Fengyang; Wang, Ya; Lu, Linlin; Feng, Chongchong; Xu, Zhiai; Zhang, Wen

    2016-04-15

    Amyloid-beta (Aβ) oligomers are highly toxic species in the process of Aβ aggregation and are regarded as potent therapeutic targets and diagnostic markers for Alzheimer's disease (AD). Herein, a label-free molecular beacon (MB) system integrated with enzyme-free amplification strategy was developed for simple and highly selective assay of Aβ oligomers. The MB system was constructed with abasic site (AP site)-containing stem-loop DNA and a fluorescent ligand 2-amino-5,6,7-trimethyl-1,8-naphyridine (ATMND), of which the fluorescence was quenched upon binding to the AP site in DNA stem. Enzyme-free amplification was realized by target-triggered continuous opening of two delicately designed MBs (MB1 and MB2). Target DNA hybridization with MB1 and then MB2 resulted in the release of two ATMND molecules in one binding event. Subsequent target recycling could greatly amplify the detection sensitivity due to the greatly enhanced turn-on emission of ATMND fluorescence. Combining with Aβ oligomers aptamers, the strategy was applied to analyze Aβ oligomers and the results showed that it could quantify Aβ oligomers with high selectivity and monitor the Aβ aggregation process. This novel method may be conducive to improve the diagnosis and pathogenic study of Alzheimer's disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Flame retardant cotton fabrics by electron beam-induced polymerization of vinyl phosphonate oligomer

    International Nuclear Information System (INIS)

    Sawai, Takeshi; Ametani, Kazuo; Enomoto, Ichiro

    1988-01-01

    Vinyl phosphonate oligomer is presently used commercially as a cellulosic flame retardant in conjugation with N-methylol acrylamide, using a persulfate catalyst and a thermal cure. This combination can also be cured at room temperature with electron beams, as can the vinyl phosphonate alone. For the textile application, fixation of flame retardants by electron beams with low energy is one of the most promising applications. For the purpose of preparing flame resistant cotton fabrics such as bed sheets and pajamas, flame retardant curing of vinyl phosphonate oligomer on cotton fabrics was examined using electron beams from a self-sealed electron beam processor and gamma rays from a 60 Co source. A joint investigation was undertaken by the Tokyo Metropolitan Textile Research Institute and Tokyo Metropolitan Isotope Research Center to determine the feasibility of curing vinyl phosphonate oligomer on the cotton fabrics for textile finishing. (author)

  19. Berberine Reduces Neurotoxicity Related to Nonalcoholic Steatohepatitis in Rats

    Directory of Open Access Journals (Sweden)

    Doaa A. Ghareeb

    2015-01-01

    Full Text Available Berberine is a plant alkaloid that has several pharmacological effects such as antioxidant, antilipidemic, and anti-inflammatory effects. Nonalcoholic steatohepatitis (NASH triggers different aspects of disorders such as impaired endogenous lipid metabolism, hypercholesterolemia, oxidative stress, and neurotoxicity. In this study, we examined the mechanism by which NASH induces neurotoxicity and the protective effect of berberine against both NASH and its associated neurotoxicity. NASH induced rats showed significant impairments in lipid metabolism with increased serum triglycerides, cholesterol, and low-density lipoprotein (LDL. The NASH induced group also demonstrated a significant oxidative stress which is characterized by increased TBARs level and decreased antioxidant capacity such as GSH and SOD levels. Moreover, the NASH induction was associated with inflammation which was demonstrated by increased TNFα and nitric oxide levels. Hyperglycemia and hyperinsulinemia were observed in the NASH induced group. Also, our results showed a significant increase in the expression of the acetylcholine esterase (AChE and amyloid beta precursor protein (AβPP. These changes were significantly correlated with decreased insulin degrading enzyme (IDE and beta-amyloid40 (Aβ40 and increased beta-amyloid42 (Aβ42 in the hippocampal region. Daily administration of berberine (50 mg/kg for three weeks ameliorated oxidative stress, inflammation, hyperlipidemia, hyperglycemia, hyperinsulinemia, and the observed neurotoxicity.

  20. Conjugated Polymers and Oligomers: Structural and Soft Matter Aspects

    DEFF Research Database (Denmark)

    This book identifies modern topics and current trends of structural and soft matter aspects of conjugated polymers and oligomers. Each chapter recognizes an active research line where structural perspective dominates research and therefore the book covers fundamental aspects of persistent...

  1. Current research on methamphetamine-induced neurotoxicity: animal models of monoamine disruption.

    Science.gov (United States)

    Kita, Taizo; Wagner, George C; Nakashima, Toshikatsu

    2003-07-01

    Methamphetamine (METH)-induced neurotoxicity is characterized by a long-lasting depletion of striatal dopamine (DA) and serotonin as well as damage to striatal dopaminergic and serotonergic nerve terminals. Several hypotheses regarding the mechanism underlying METH-induced neurotoxicity have been proposed. In particular, it is thought that endogenous DA in the striatum may play an important role in mediating METH-induced neuronal damage. This hypothesis is based on the observation of free radical formation and oxidative stress produced by auto-oxidation of DA consequent to its displacement from synaptic vesicles to cytoplasm. In addition, METH-induced neurotoxicity may be linked to the glutamate and nitric oxide systems within the striatum. Moreover, using knockout mice lacking the DA transporter, the vesicular monoamine transporter 2, c-fos, or nitric oxide synthetase, it was determined that these factors may be connected in some way to METH-induced neurotoxicity. Finally a role for apoptosis in METH-induced neurotoxicity has also been established including evidence of protection of bcl-2, expression of p53 protein, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL), activity of caspase-3. The neuronal damage induced by METH may reflect neurological disorders such as autism and Parkinson's disease.

  2. A simple procedure for preparing chitin oligomers through acetone precipitation after hydrolysis in concentrated hydrochloric acid.

    Science.gov (United States)

    Kazami, Nao; Sakaguchi, Masayoshi; Mizutani, Daisuke; Masuda, Tatsuhiko; Wakita, Satoshi; Oyama, Fumitaka; Kawakita, Masao; Sugahara, Yasusato

    2015-11-05

    Chitin oligomers are of interest because of their numerous biologically relevant properties. To prepare chitin oligomers containing 4-6 GlcNAc units [(GlcNAc)4-6], α- and β-chitin were hydrolyzed with concentrated hydrochloric acid at 40 °C. The reactant was mixed with acetone to recover the acetone-insoluble material, and (GlcNAc)4-6 was efficiently recovered after subsequent water extraction. Composition analysis using gel permeation chromatography and MALDI-TOF mass spectrometry indicated that (GlcNAc)4-6 could be isolated from the acetone-insoluble material with recoveries of approximately 17% and 21% from the starting α-chitin and β-chitin, respectively. The acetone precipitation method is highly useful for recovering chitin oligomers from the acid hydrolysate of chitin. The changes in the molecular size and higher-order structure of chitin during the course of hydrolysis were also analyzed, and a model that explains the process of oligomer accumulation is proposed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. High-capacity conductive nanocellulose paper sheets for electrochemically controlled extraction of DNA oligomers.

    Directory of Open Access Journals (Sweden)

    Aamir Razaq

    Full Text Available Highly porous polypyrrole (PPy-nanocellulose paper sheets have been evaluated as inexpensive and disposable electrochemically controlled three-dimensional solid phase extraction materials. The composites, which had a total anion exchange capacity of about 1.1 mol kg(-1, were used for extraction and subsequent release of negatively charged fluorophore tagged DNA oligomers via galvanostatic oxidation and reduction of a 30-50 nm conformal PPy layer on the cellulose substrate. The ion exchange capacity, which was, at least, two orders of magnitude higher than those previously reached in electrochemically controlled extraction, originated from the high surface area (i.e. 80 m(2 g(-1 of the porous composites and the thin PPy layer which ensured excellent access to the ion exchange material. This enabled the extractions to be carried out faster and with better control of the PPy charge than with previously employed approaches. Experiments in equimolar mixtures of (dT(6, (dT(20, and (dT(40 DNA oligomers showed that all oligomers could be extracted, and that the smallest oligomer was preferentially released with an efficiency of up to 40% during the reduction of the PPy layer. These results indicate that the present material is very promising for the development of inexpensive and efficient electrochemically controlled ion-exchange membranes for batch-wise extraction of biomolecules.

  4. Developmental neurotoxic effects of two pesticides: Behavior and biomolecular studies on chlorpyrifos and carbaryl

    International Nuclear Information System (INIS)

    Lee, Iwa; Eriksson, Per; Fredriksson, Anders; Buratovic, Sonja; Viberg, Henrik

    2015-01-01

    In recent times, an increased occurrence of neurodevelopmental disorders, such as neurodevelopmental delays and cognitive abnormalities has been recognized. Exposure to pesticides has been suspected to be a possible cause of these disorders, as these compounds target the nervous system of pests. Due to the similarities of brain development and composition, these pesticides may also be neurotoxic to humans. We studied two different pesticides, chlorpyrifos and carbaryl, which specifically inhibit acetylcholinesterase (AChE) in the nervous system. The aim of the study was to investigate if the pesticides can induce neurotoxic effects, when exposure occurs during a period of rapid brain growth and maturation. The results from the present study show that both compounds can affect protein levels in the developing brain and induce persistent adult behavior and cognitive impairments, in mice neonatally exposed to a single oral dose of chlorpyrifos (0.1, 1.0 or 5 mg/kg body weight) or carbaryl (0.5, 5.0 or 20.0 mg/kg body weight) on postnatal day 10. The results also indicate that the developmental neurotoxic effects induced are not related to the classical mechanism of acute cholinergic hyperstimulation, as the AChE inhibition level (8–12%) remained below the threshold for causing systemic toxicity. The neurotoxic effects are more likely caused by a disturbed neurodevelopment, as similar behavioral neurotoxic effects have been reported in studies with pesticides such as organochlorines, organophosphates, pyrethroids and POPs, when exposed during a critical window of neonatal brain development. - Highlights: • A single neonatal exposure to chlorpyrifos or carbaryl induced developmental neurotoxic effects. • The neurotoxic effects were not caused by acute AChE inhibition. • The neurotoxic effects manifested as altered levels of neuroproteins in the developing brain. • The neurotoxic effects manifested as adult persistent aberrant behavior and cognitive function.

  5. Developmental neurotoxic effects of two pesticides: Behavior and biomolecular studies on chlorpyrifos and carbaryl

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Iwa; Eriksson, Per; Fredriksson, Anders; Buratovic, Sonja; Viberg, Henrik, E-mail: henrik.viberg@ebc.uu.se

    2015-11-01

    In recent times, an increased occurrence of neurodevelopmental disorders, such as neurodevelopmental delays and cognitive abnormalities has been recognized. Exposure to pesticides has been suspected to be a possible cause of these disorders, as these compounds target the nervous system of pests. Due to the similarities of brain development and composition, these pesticides may also be neurotoxic to humans. We studied two different pesticides, chlorpyrifos and carbaryl, which specifically inhibit acetylcholinesterase (AChE) in the nervous system. The aim of the study was to investigate if the pesticides can induce neurotoxic effects, when exposure occurs during a period of rapid brain growth and maturation. The results from the present study show that both compounds can affect protein levels in the developing brain and induce persistent adult behavior and cognitive impairments, in mice neonatally exposed to a single oral dose of chlorpyrifos (0.1, 1.0 or 5 mg/kg body weight) or carbaryl (0.5, 5.0 or 20.0 mg/kg body weight) on postnatal day 10. The results also indicate that the developmental neurotoxic effects induced are not related to the classical mechanism of acute cholinergic hyperstimulation, as the AChE inhibition level (8–12%) remained below the threshold for causing systemic toxicity. The neurotoxic effects are more likely caused by a disturbed neurodevelopment, as similar behavioral neurotoxic effects have been reported in studies with pesticides such as organochlorines, organophosphates, pyrethroids and POPs, when exposed during a critical window of neonatal brain development. - Highlights: • A single neonatal exposure to chlorpyrifos or carbaryl induced developmental neurotoxic effects. • The neurotoxic effects were not caused by acute AChE inhibition. • The neurotoxic effects manifested as altered levels of neuroproteins in the developing brain. • The neurotoxic effects manifested as adult persistent aberrant behavior and cognitive function.

  6. Computational Design of High-χ Block Oligomers for Accessing 1 nm Domains.

    Science.gov (United States)

    Chen, Qile P; Barreda, Leonel; Oquendo, Luis E; Hillmyer, Marc A; Lodge, Timothy P; Siepmann, J Ilja

    2018-05-22

    Molecular dynamics simulations are used to design a series of high-χ block oligomers (HCBOs) that can self-assemble into a variety of mesophases with domain sizes as small as 1 nm. The exploration of these oligomers with various chain lengths, volume fractions, and chain architectures at multiple temperatures reveals the presence of ordered lamellae, perforated lamellae, and hexagonally packed cylinders. The achieved periods are as small as 3.0 and 2.1 nm for lamellae and cylinders, respectively, which correspond to polar domains of approximately 1 nm. Interestingly, the detailed phase behavior of these oligomers is distinct from that of either solvent-free surfactants or block polymers. The simulations reveal that the behavior of these HCBOs is a product of an interplay between both "surfactant factors" (headgroup interactions, chain flexibility, and interfacial curvature) and "block polymer factors" (χ, chain length N, and volume fraction f). This insight promotes the understanding of molecular features pivotal for mesophase formation at the sub-5 nm length scale, which facilitates the design of HCBOs tailored toward particular desired morphologies.

  7. Backbone conformation affects duplex initiation and duplex propagation in hybridisation of synthetic H-bonding oligomers.

    Science.gov (United States)

    Iadevaia, Giulia; Núñez-Villanueva, Diego; Stross, Alexander E; Hunter, Christopher A

    2018-06-06

    Synthetic oligomers equipped with complementary H-bond donor and acceptor side chains form multiply H-bonded duplexes in organic solvents. Comparison of the duplex forming properties of four families of oligomers with different backbones shows that formation of an extended duplex with three or four inter-strand H-bonds is more challenging than formation of complexes that make only two H-bonds. The stabilities of 1 : 1 complexes formed between length complementary homo-oligomers equipped with either phosphine oxide or phenol recognition modules were measured in toluene. When the backbone is very flexible (pentane-1,5-diyl thioether), the stability increases uniformly by an order of magnitude for each additional base-pair added to the duplex: the effective molarities for formation of the first intramolecular H-bond (duplex initiation) and subsequent intramolecular H-bonds (duplex propagation) are similar. This flexible system is compared with three more rigid backbones that are isomeric combinations of an aromatic ring and methylene groups. One of the rigid systems behaves in exactly the same way as the flexible backbone, but the other two do not. For these systems, the effective molarity for formation of the first intramolecular H-bond is the same as that found for the other two backbones, but additional H-bonds are not formed between the longer oligomers. The effective molarities are too low for duplex propagation in these systems, because the oligomer backbones cannot adopt conformations compatible with formation of an extended duplex.

  8. Alzheimer's-associated Aβ oligomers show altered structure, immunoreactivity and synaptotoxicity with low doses of oleocanthal

    International Nuclear Information System (INIS)

    Pitt, Jason; Roth, William; Lacor, Pascale; Smith, Amos B.; Blankenship, Matthew; Velasco, Pauline; De Felice, Fernanda; Breslin, Paul; Klein, William L.

    2009-01-01

    It now appears likely that soluble oligomers of amyloid-β 1-42 peptide, rather than insoluble fibrils, act as the primary neurotoxin in Alzheimer's disease (AD). Consequently, compounds capable of altering the assembly state of these oligomers (referred to as ADDLs) may have potential for AD therapeutics. Phenolic compounds are of particular interest for their ability to disrupt Aβ oligomerization and reduce pathogenicity. This study has focused on oleocanthal (OC), a naturally-occurring phenolic compound found in extra-virgin olive oil. OC increased the immunoreactivity of soluble Aβ species, when assayed with both sequence- and conformation-specific Aβ antibodies, indicating changes in oligomer structure. Analysis of oligomers in the presence of OC showed an upward shift in MW and a ladder-like distribution of SDS-stable ADDL subspecies. In comparison with control ADDLs, oligomers formed in the presence of OC (Aβ-OC) showed equivalent colocalization at synapses but exhibited greater immunofluorescence as a result of increased antibody recognition. The enhanced signal at synapses was not due to increased synaptic binding, as direct detection of fluorescently-labeled ADDLs showed an overall reduction in ADDL signal in the presence of OC. Decreased binding to synapses was accompanied by significantly less synaptic deterioration assayed by drebrin loss. Additionally, treatment with OC improved antibody clearance of ADDLs. These results indicate oleocanthal is capable of altering the oligomerization state of ADDLs while protecting neurons from the synaptopathological effects of ADDLs and suggest OC as a lead compound for development in AD therapeutics.

  9. Indirubin Derivative 7-Bromoindirubin-3-Oxime (7Bio Attenuates Aβ Oligomer-Induced Cognitive Impairments in Mice

    Directory of Open Access Journals (Sweden)

    Liping Chen

    2017-11-01

    Full Text Available Indirubins are natural occurring alkaloids extracted from indigo dye-containing plants. Indirubins could inhibit various kinases, and might be used to treat chronic myelocytic leukemia, cancer and neurodegenerative disorders. 7-bromoindirubin-3-oxime (7Bio, an indirubin derivative derived from indirubin-3-oxime, possesses inhibitory effects against cyclin-dependent kinase-5 (CDK5 and glycogen synthase kinase-3β (GSK3β, two pharmacological targets of Alzheimer's disease (AD. In this study, we have discovered that 2.3–23.3 μg/kg 7Bio effectively prevented β-amyloid (Aβ oligomer-induced impairments of spatial cognition and recognition without affecting bodyweight and motor functions in mice. Moreover, 7Bio potently inhibited Aβ oligomer-induced expression of interleukin-6 (IL-6 and tumor necrosis factor-α (TNF-α. Furthermore, 7Bio significantly prevented the decreased expression of synapsin-1 and PSD-95, biomarkers of pre-synaptic and post-synaptic proteins in Aβ oligomer-treated mice. The mean optical density (OD with hyper-phosphorylated tau (pTau, glial fibrillary acidic protein (GFAP and CD45 positive staining in the hippocampus of 7Bio-treated mice were significantly decreased compared to those of Aβ oligomer-treated mice. In addition, Western blotting analysis showed that 7Bio attenuated Aβ oligomer-decreased expression of pSer9-GSK3β. Those results suggested that 7Bio could potently inhibit Aβ oligomer-induced neuroinflammation, synaptic impairments, tau hyper-phosphorylation, and activation of astrocytes and microglia, which may contribute to the neuroprotective effects of 7Bio. Based on these findings, we expected that 7Bio might be developed as a novel anti-AD lead compound.

  10. Mercury-induced motor and sensory neurotoxicity: systematic review of workers currently exposed to mercury vapor.

    Science.gov (United States)

    Fields, Cheryl A; Borak, Jonathan; Louis, Elan D

    2017-11-01

    The neurotoxicity of elemental mercury (Hg 0 ) is well-recognized, but it is uncertain whether and for how long neurotoxicity persists; among studies that evaluated previously exposed workers, only one examined workers during and also years after exposure ceased. The aim of this review is to document the type, frequency, and dose-relatedness of objective neurological effects in currently exposed mercury workers and thereby provide first approximations of the effects one would have expected in previously exposed workers evaluated during exposure. We systematically reviewed studies of neurotoxicity in currently exposed mercury workers identified by searching MEDLINE (1950-2015), government reports, textbook chapters, and references cited therein; dental cohorts were not included. Outcomes on physical examination (PE), neurobehavioral (NB) tests, and electrophysiological studies were extracted and evaluated for consistency and dose-relatedness. Forty-five eligible studies were identified, comprising over 3000 workers chronically exposed to a range of Hg 0 concentrations (0.002-1.7 mg/m 3 ). Effects that demonstrated consistency across studies and increased frequency across urine mercury levels (200 μg/L, while NB testing is more appropriate for those with lower U Hg levels. They also provide benchmarks to which findings in workers with historical exposure can be compared.

  11. Charge transport and dielectric relaxation processes in anilin-based oligomers

    Czech Academy of Sciences Publication Activity Database

    Mrlík, M.; Moučka, R.; Ilčíková, M.; Bober, Patrycja; Kazantseva, N.; Špitálský, Z.; Trchová, Miroslava; Stejskal, Jaroslav

    2014-01-01

    Roč. 192, June (2014), s. 37-42 ISSN 0379-6779 Institutional support: RVO:61389013 Keywords : aniline-based oligomers * conductivity * dielectric properties Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.252, year: 2014

  12. Photopolymerizable silicone monomers, oligomers, and resins

    International Nuclear Information System (INIS)

    Jacobine, A.F.; Nakos, S.T.

    1992-01-01

    The purpose of this chapter is to acquaint the general photopolymer researcher with the historical development of the chemistry and technology of photopolymerizable silicone monomers, fluids, and resins. The current status of research in these areas is assessed. The focus of this chapter is not only on the polymer chemistry and application of this technology, but also on important aspects of the synthetic chemistry involved in the preparation of UV-curable silicone monomers, oligomers, and resins. 236 refs., 6 tabs

  13. NEXAFS characterization of DNA components and molecular-orientation of surface-bound DNA oligomers

    International Nuclear Information System (INIS)

    Samuel, Newton T.; Lee, C.-Y.; Gamble, Lara J.; Fischer, Daniel A.; Castner, David G.

    2006-01-01

    Single stranded DNA oligomers (ssDNA) immobilized onto solid surfaces forms the basis for several biotechnological applications such as DNA microarrays, affinity separations, and biosensors. Surface structure of Surface-bound oligomers is expected to significantly influence their biological activity and interactions with the environment. In this study near-edge X-ray absorption fine structure spectroscopy (NEXAFS) is used to characterize the components of DNA (nucleobases, nucleotides and nucleosides) and the orientation information of surface-bound ssDNA. The K-edges of carbon, nitrogen and oxygen have spectra with features that are characteristic of the different chemical species present in the nucleobases of DNA. The effect of addition of the DNA sugar and phosphate components on the NEXAFS K-edge spectra was also investigated. The polarization-dependent nitrogen K-edge NEXAFS data show significant changes for different orientations of surface bound ssDNA. These results establish NEXAFS as a powerful technique for chemical and structural characterization of surface-bound DNA oligomers

  14. Formation of nitrogen-containing oligomers by methylglyoxal and amines in simulated evaporating cloud droplets.

    Science.gov (United States)

    De Haan, David O; Hawkins, Lelia N; Kononenko, Julia A; Turley, Jacob J; Corrigan, Ashley L; Tolbert, Margaret A; Jimenez, Jose L

    2011-02-01

    Reactions of methylglyoxal with amino acids, methylamine, and ammonium sulfate can take place in aqueous aerosol and evaporating cloud droplets. These processes are simulated by drying droplets and bulk solutions of these compounds (at low millimolar and 1 M concentrations, respectively) and analyzing the residuals by scanning mobility particle sizing, nuclear magnetic resonance, aerosol mass spectrometry (AMS), and electrospray ionization MS. The results are consistent with imine (but not diimine) formation on a time scale of seconds, followed by the formation of nitrogen-containing oligomers, methylimidazole, and dimethylimidazole products on a time scale of minutes to hours. Measured elemental ratios are consistent with imidazoles and oligomers being major reaction products, while effective aerosol densities suggest extensive reactions take place within minutes. These reactions may be a source of the light-absorbing, nitrogen-containing oligomers observed in urban and biomass-burning aerosol particles.

  15. Synthesis of alginate oligomers by gamma irradiation and to investigate its antioxidant and prebiotic activity

    International Nuclear Information System (INIS)

    Bhoir, S.A.; Chawla, S.P.

    2016-01-01

    Alginate oligomers formed by alginate lyase have been reported to possess antioxidant activity as well as prebiotic activity. Hence, utility of gamma radiation to depolymerise alginate in its aqueous solution was investigated and its antioxidant and prebiotic activities were screened. 1% aqueous solution of sodium alginate was subjected to gamma irradiation and it's reducing power and ability to scavenge DPPH". and O_2"."."-, chelate iron and prevent heat induced β-carotene bleaching was determined. Prebiotic activity was determined by using alginate oligomers to promote prebiotic activity of Lactobacillus plantarum against E coli. Gamma radiation induced depolymerisation of alginate resulted in formation of oligomers with antioxidant and prebiotic activity. These polymers are potential candidates for utilization as natural preservatives and functional foods

  16. Characterizing the Dynamics of α-Synuclein Oligomers Using Hydrogen/Deuterium Exchange Monitored by Mass Spectrometry

    DEFF Research Database (Denmark)

    Mysling, Simon; Betzer, Cristine; Jensen, Poul Henning

    2013-01-01

    Soluble oligomers formed by α-synuclein (αSN) are suspected to play a central role in neuronal cell death during Parkinson's disease. While studies have probed the surface structure of these oligomers, little is known about the backbone dynamics of αSN when they form soluble oligomers. Using...... analyses performed on αSN fibrils and indicated a possible zipperlike maturation mechanism for αSN aggregates. We find the protected N-terminus (residues 4-17) to be of particular interest, as this region has previously been observed to be highly dynamic for both monomeric and fibrillar αSN. This region...... has mainly been described in relation to membrane binding of αSN, and structuring may be important in relation to disease....

  17. Synthesis of Citric-Acrylate Oligomer and its in-Situ Reaction with Chrome Tanned Collagen (hide powder)

    International Nuclear Information System (INIS)

    Haroun, A.A.; Masoud, R.A.; Bronco, S.; Ciardelli, F.

    2005-01-01

    The purpose of this study was to formulate the new combined system of acrylic and citric acids, which has been prepared by free radical polymerization and esterification reaction at the same time to form citric acrylate (CAC) oligomer through ester linkage and low molecular weight (Mw 2241), in compared with polyacrylic acid. The chemical structure and the reaction mechanism of this oligomer were confirmed by different spectroscopic tools (1 H , 13 C-NMR, ATR-IR), gel permeation chromatography and thermogravimetric analysis (TGA/DTA). The problem of the effect of the masking agents in the chrome tanning of the collagen and the pickling of the hide has been approached from the study of the hydrothermal and mechanical properties, using this new eco-friendly oligomer, which was carried out in-situ treated/grafted chrome tanned collagen (hide powder), and pickled hide. The microemulsion grafting copolymerization of (CAC) using 2.2-azo-bis isobutyronitrile (ABIN), via direct coupling reaction, onto the chrome tanned collagen showed that the free amino groups of the collagen were considered to be a potential site for the in-situ reaction with (CAC) oligomer. Also, using of citric-acrylate (CAC) oligomer, during chrome tanning of leather, instead of the traditional strong acids (sulfuric, hydrochloric and formic) resulted in significant improvement in chrome exhaustion and physical properties

  18. Modulation of hematopoietic progenitor cell fate in vitro by varying collagen oligomer matrix stiffness in the presence or absence of osteoblasts.

    Science.gov (United States)

    Chitteti, Brahmananda Reddy; Kacena, Melissa A; Voytik-Harbin, Sherry L; Srour, Edward F

    2015-10-01

    To recreate the in vivo hematopoietic cell microenvironment or niche and to study the impact of extracellular matrix (ECM) biophysical properties on hematopoietic progenitor cell (HPC) proliferation and function, mouse bone-marrow derived HPC (Lin-Sca1+cKit+/(LSK) were cultured within three-dimensional (3D) type I collagen oligomer matrices. To generate a more physiologic milieu, 3D cultures were established in both the presence and absence of calvariae-derived osteoblasts (OB). Collagen oligomers were polymerized at varying concentration to give rise to matrices of different fibril densities and therefore matrix stiffness (shear storage modulus, 50-800 Pa). Decreased proliferation and increased clonogenicity of LSK cells was associated with increase of matrix stiffness regardless of whether OB were present or absent from the 3D culture system. Also, regardless of whether OB were or were not added to the 3D co-culture system, LSK within 800 Pa collagen oligomer matrices maintained the highest percentage of Lin-Sca1+ cells as well as higher percentage of cells in quiescent state (G0/G1) compared to 50 Pa or 200Pa matrices. Collectively, these data illustrate that biophysical features of collagen oligomer matrices, specifically fibril density-induced modulation of matrix stiffness, provide important guidance cues in terms of LSK expansion and differentiation and therefore maintenance of progenitor cell function. Copyright © 2015. Published by Elsevier B.V.

  19. The Protective Effects of Nigella sativa and Its Constituents on Induced Neurotoxicity

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Khazdair

    2015-01-01

    Full Text Available Nigella sativa (N. sativa is an annual plant and widely used as medicinal plant throughout the world. The seeds of the plant have been used traditionally in various disorders and as a spice to ranges of Persian foods. N. sativa has therapeutic effects on tracheal responsiveness (TR and lung inflammation on induced toxicity by Sulfur mustard. N. sativa has been widely used in treatment of various nervous system disorders such as Alzheimer disease, epilepsy, and neurotoxicity. Most of the therapeutic properties of this plant are due to the presence of some phenolic compounds especially thymoquinone (TQ, which is major bioactive component of the essential oil. The present review is an effort to provide a comprehensive study of the literature on scientific researches of pharmacological activities of the seeds of this plant on induced neurotoxicity.

  20. Disrupting self-assembly and toxicity of amyloidogenic protein oligomers by "molecular tweezers" - from the test tube to animal models.

    Science.gov (United States)

    Attar, Aida; Bitan, Gal

    2014-01-01

    Despite decades of research, therapy for diseases caused by abnormal protein folding and aggregation (amyloidoses) is limited to treatment of symptoms and provides only temporary and moderate relief to sufferers. The failure in developing successful disease-modifying drugs for amyloidoses stems from the nature of the targets for such drugs - primarily oligomers of amyloidogenic proteins, which are distinct from traditional targets, such as enzymes or receptors. The oligomers are metastable, do not have well-defined structures, and exist in dynamically changing mixtures. Therefore, inhibiting the formation and toxicity of these oligomers likely will require out-of-the-box thinking and novel strategies. We review here the development of a strategy based on targeting the combination of hydrophobic and electrostatic interactions that are key to the assembly and toxicity of amyloidogenic proteins using lysine (K)-specific "molecular tweezers" (MTs). Our discussion includes a survey of the literature demonstrating the important role of K residues in the assembly and toxicity of amyloidogenic proteins and the development of a lead MT derivative called CLR01, from an inhibitor of protein aggregation in vitro to a drug candidate showing effective amelioration of disease symptoms in animal models of Alzheimer's and Parkinson's diseases.

  1. Structures of Metalloporphyrin-Oligomer Multianions: Cofacial versus Coplanar Motifs as Resolved by Ion Mobility Spectrometry.

    Science.gov (United States)

    Brendle, Katrina; Schwarz, Ulrike; Jäger, Patrick; Weis, Patrick; Kappes, Manfred

    2016-11-03

    We have combined ion mobility mass spectrometry with quantum chemical calculations to investigate the gas-phase structures of multiply negatively charged oligomers of meso-tetra(4-sulfonatophenyl)metalloporphyrins comprising the divalent metal centers Zn II , Cu II , and Pd II . Sets of candidate structures were obtained by geometry optimizations based on calculations at both the semiempirical PM7 and density functional theory (DFT) levels. The corresponding theoretical cross sections were calculated with the projection approximation and also with the trajectory method. By comparing these collision cross sections with the respective experimental values we were able to assign oligomer structures up to the tetramer. In most cases the cross sections of the lowest energy isomers predicted by theory were found to agree with the measurements to within the experimental uncertainty (2%). Specifically, we find that for a given oligomer size the structures are independent of the metal center but depend strongly on the charge state. Oligomers in low charge states with a correspondingly larger number of sodium counterions tend to form stacked, cofacial structures reminiscent of H-aggregate motifs observed in solution. By contrast, in higher charge states, the stack opens to form coplanar structures.

  2. Natural amyloid-β oligomers acutely impair the formation of a contextual fear memory in mice.

    Science.gov (United States)

    Kittelberger, Kara A; Piazza, Fabrizio; Tesco, Giuseppina; Reijmers, Leon G

    2012-01-01

    Memory loss is one of the hallmark symptoms of Alzheimer's disease (AD). It has been proposed that soluble amyloid-beta (Abeta) oligomers acutely impair neuronal function and thereby memory. We here report that natural Abeta oligomers acutely impair contextual fear memory in mice. A natural Abeta oligomer solution containing Abeta monomers, dimers, trimers, and tetramers was derived from the conditioned medium of 7PA2 cells, a cell line that expresses human amyloid precursor protein containing the Val717Phe familial AD mutation. As a control we used 7PA2 conditioned medium from which Abeta oligomers were removed through immunodepletion. Separate groups of mice were injected with Abeta and control solutions through a cannula into the lateral brain ventricle, and subjected to fear conditioning using two tone-shock pairings. One day after fear conditioning, mice were tested for contextual fear memory and tone fear memory in separate retrieval trials. Three experiments were performed. For experiment 1, mice were injected three times: 1 hour before and 3 hours after fear conditioning, and 1 hour before context retrieval. For experiments 2 and 3, mice were injected a single time at 1 hour and 2 hours before fear conditioning respectively. In all three experiments there was no effect on tone fear memory. Injection of Abeta 1 hour before fear conditioning, but not 2 hours before fear conditioning, impaired the formation of a contextual fear memory. In future studies, the acute effect of natural Abeta oligomers on contextual fear memory can be used to identify potential mechanisms and treatments of AD associated memory loss.

  3. Natural Amyloid-Beta Oligomers Acutely Impair the Formation of a Contextual Fear Memory in Mice

    Science.gov (United States)

    Kittelberger, Kara A.; Piazza, Fabrizio; Tesco, Giuseppina; Reijmers, Leon G.

    2012-01-01

    Memory loss is one of the hallmark symptoms of Alzheimer's disease (AD). It has been proposed that soluble amyloid-beta (Abeta) oligomers acutely impair neuronal function and thereby memory. We here report that natural Abeta oligomers acutely impair contextual fear memory in mice. A natural Abeta oligomer solution containing Abeta monomers, dimers, trimers, and tetramers was derived from the conditioned medium of 7PA2 cells, a cell line that expresses human amyloid precursor protein containing the Val717Phe familial AD mutation. As a control we used 7PA2 conditioned medium from which Abeta oligomers were removed through immunodepletion. Separate groups of mice were injected with Abeta and control solutions through a cannula into the lateral brain ventricle, and subjected to fear conditioning using two tone-shock pairings. One day after fear conditioning, mice were tested for contextual fear memory and tone fear memory in separate retrieval trials. Three experiments were performed. For experiment 1, mice were injected three times: 1 hour before and 3 hours after fear conditioning, and 1 hour before context retrieval. For experiments 2 and 3, mice were injected a single time at 1 hour and 2 hours before fear conditioning respectively. In all three experiments there was no effect on tone fear memory. Injection of Abeta 1 hour before fear conditioning, but not 2 hours before fear conditioning, impaired the formation of a contextual fear memory. In future studies, the acute effect of natural Abeta oligomers on contextual fear memory can be used to identify potential mechanisms and treatments of AD associated memory loss. PMID:22238679

  4. Coronavirus nucleocapsid proteins assemble constitutively in high molecular oligomers

    NARCIS (Netherlands)

    Cong, Yingying; Kriegenburg, Franziska; de Haan, Cornelis A. M.; Reggiori, Fulvio

    2017-01-01

    Coronaviruses (CoV) are enveloped viruses and rely on their nucleocapsid N protein to incorporate the positive-stranded genomic RNA into the virions. CoV N proteins form oligomers but the mechanism and relevance underlying their multimerization remain to be fully understood. Using in vitro pull-down

  5. Shaking alone induces de novo conversion of recombinant prion proteins to β-sheet rich oligomers and fibrils.

    Directory of Open Access Journals (Sweden)

    Carol L Ladner-Keay

    Full Text Available The formation of β-sheet rich prion oligomers and fibrils from native prion protein (PrP is thought to be a key step in the development of prion diseases. Many methods are available to convert recombinant prion protein into β-sheet rich fibrils using various chemical denaturants (urea, SDS, GdnHCl, high temperature, phospholipids, or mildly acidic conditions (pH 4. Many of these methods also require shaking or another form of agitation to complete the conversion process. We have identified that shaking alone causes the conversion of recombinant PrP to β-sheet rich oligomers and fibrils at near physiological pH (pH 5.5 to pH 6.2 and temperature. This conversion does not require any denaturant, detergent, or any other chemical cofactor. Interestingly, this conversion does not occur when the water-air interface is eliminated in the shaken sample. We have analyzed shaking-induced conversion using circular dichroism, resolution enhanced native acidic gel electrophoresis (RENAGE, electron microscopy, Fourier transform infrared spectroscopy, thioflavin T fluorescence and proteinase K resistance. Our results show that shaking causes the formation of β-sheet rich oligomers with a population distribution ranging from octamers to dodecamers and that further shaking causes a transition to β-sheet fibrils. In addition, we show that shaking-induced conversion occurs for a wide range of full-length and truncated constructs of mouse, hamster and cervid prion proteins. We propose that this method of conversion provides a robust, reproducible and easily accessible model for scrapie-like amyloid formation, allowing the generation of milligram quantities of physiologically stable β-sheet rich oligomers and fibrils. These results may also have interesting implications regarding our understanding of prion conversion and propagation both within the brain and via techniques such as protein misfolding cyclic amplification (PMCA and quaking induced conversion (QuIC.

  6. Environmental Chemicals and Human Neurotoxicity: Magnitude ...

    African Journals Online (AJOL)

    Olaleye

    altered neurocthemical, electrophysiological or behavioural functions. The adverse effects of neurotoxicity are among the most feared ill health in humans ... chemicals through air, food, or drinking water. The infamous ..... environment can disrupt the neurological control .... that perception and memory gradually fade,.

  7. Solid state properties of oligomers containing dithienothiophene or fluorene residues suitable for field effect transistor devices

    International Nuclear Information System (INIS)

    Porzio, William; Destri, Silvia; Giovanella, Umberto; Pasini, Mariacecilia; Marin, Luminita; Iosip, Mariana Dana; Campione, Marcello

    2007-01-01

    A series of three thiophene based oligomers has been extensively characterized. The chemical design has been addressed to obtain ionization potential (IP) and electronic affinity (EA) values matching the work function of commonly used electrode materials. Such IP and EA values were tested by cyclovoltammetry. In order to tune electron-donation and drawing strength the sequence of the molecule subunits in the oligomer has been varied. The thermal properties with particular reference to their stability during preparation and operation were checked by using differential scanning calorimetry, polarised light microscopy and thermogravimetric analysis techniques. Prototypes of thin film field effect transistor, based on this series of oligomers have been electrically and structurally characterized. The long axes of the molecules are oriented nearly perpendicular to the gate insulator, in agreement with both highly sensitive X-ray diffraction and atomic force microscopy. From powder diffraction data the structure of oligomer I was solved. A general relation is envisaged between charge mobility and packing closeness in the series. For the most promising molecule a study of mobility/temperature behaviour was performed yielding interesting results

  8. Reversible metronidazole-induced neurotoxicity after 10 weeks of therapy.

    Science.gov (United States)

    AlDhaleei, Wafa; AlMarzooqi, Ayesha; Gaber, Nouran

    2018-04-20

    Metronidazole is a commonly used antimicrobial worldwide. The most common side effects that have been reported are nausea, vomiting and hypersensitivity reactions. However, neurotoxicity has been reported with the use of metronidazole but rather rare. The most common neurological manifestation is peripheral neuropathy involvement in the form of sensory loss. It is worth mentioning that central neurotoxicity is a rare side effect of metronidazole use but reversible. The manifestations vary from a headache, altered mental status to focal neurological deficits. The diagnosis is mainly by neuroimaging in the setting of acute neurological change in the patient status. Here, we report a case of metronidazole-induced neurotoxicity in a 38-year-old male patient who was admitted with a brain abscess and was started on metronidazole for more than 10 weeks. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  9. Severe Dopaminergic Neurotoxicity in Primates After a Common Recreational Dose Regimen of MDMA (``Ecstasy'')

    Science.gov (United States)

    Ricaurte, George A.; Yuan, Jie; Hatzidimitriou, George; Cord, Branden J.; McCann, Una D.

    2002-09-01

    The prevailing view is that the popular recreational drug (+/-)3,4-methylenedioxymethamphetamine (MDMA, or ``ecstasy'') is a selective serotonin neurotoxin in animals and possibly in humans. Nonhuman primates exposed to several sequential doses of MDMA, a regimen modeled after one used by humans, developed severe brain dopaminergic neurotoxicity, in addition to less pronounced serotonergic neurotoxicity. MDMA neurotoxicity was associated with increased vulnerability to motor dysfunction secondary to dopamine depletion. These results have implications for mechanisms of MDMA neurotoxicity and suggest that recreational MDMA users may unwittingly be putting themselves at risk, either as young adults or later in life, for developing neuropsychiatric disorders related to brain dopamine and/or serotonin deficiency.

  10. Amiodarone biokinetics, the formation of its major oxidative metabolite and neurotoxicity after acute and repeated exposure of brain cell cultures.

    Science.gov (United States)

    Pomponio, Giuliana; Zurich, Marie-Gabrielle; Schultz, Luise; Weiss, Dieter G; Romanelli, Luca; Gramowski-Voss, Alexandra; Di Consiglio, Emma; Testai, Emanuela

    2015-12-25

    The difficulty in mimicking nervous system complexity and cell-cell interactions as well as the lack of kinetics information has limited the use of in vitro neurotoxicity data. Here, we assessed the biokinetic profile as well as the neurotoxicity of Amiodarone after acute and repeated exposure in two advanced rodent brain cell culture models, consisting of both neurons and glial cells organized in 2 or 3 dimensions to mimic the brain histiotypic structure and function. A strategy was applied to evidence the abiotic processes possibly affecting Amiodarone in vitro bioavailability, showing its ability to adsorb to the plastic devices. At clinically relevant Amiodarone concentrations, known to induce neurotoxicity in some patients during therapeutic treatment, a complete uptake was observed in both models in 24 h, after single exposure. After repeated treatments, bioaccumulation was observed, especially in the 3D cell model, together with a greater alteration of neurotoxicity markers. After 14 days, Amiodarone major oxidative metabolite (mono-N-desethylamiodarone) was detected at limited levels, indicating the presence of active drug metabolism enzymes (i.e. cytochrome P450) in both models. The assessment of biokinetics provides useful information on the relevance of in vitro toxicity data and should be considered in the design of an Integrated Testing Strategy aimed to identify specific neurotoxic alerts, and to improve the neurotoxicity assay predictivity for human acute and repeated exposure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Distinct Internalization Pathways of Human Amylin Monomers and Its Cytotoxic Oligomers in Pancreatic Cells

    Science.gov (United States)

    Trikha, Saurabh; Jeremic, Aleksandar M.

    2013-01-01

    Toxic human amylin oligomers and aggregates are implicated in the pathogenesis of type 2 diabetes mellitus (TTDM). Although recent studies have shown that pancreatic cells can recycle amylin monomers and toxic oligomers, the exact uptake mechanism and trafficking routes of these molecular forms and their significance for amylin toxicity are yet to be determined. Using pancreatic rat insulinoma (RIN-m5F) beta (β)-cells and human islets as model systems we show that monomers and oligomers cross the plasma membrane (PM) through both endocytotic and non-endocytotic (translocation) mechanisms, the predominance of which is dependent on amylin concentrations and incubation times. At low (≤100 nM) concentrations, internalization of amylin monomers in pancreatic cells is completely blocked by the selective amylin-receptor (AM-R) antagonist, AC-187, indicating an AM-R dependent mechanism. In contrast at cytotoxic (µM) concentrations monomers initially (1 hour) enter pancreatic cells by two distinct mechanisms: translocation and macropinocytosis. However, during the late stage (24 hours) monomers internalize by a clathrin-dependent but AM-R and macropinocytotic independent pathway. Like monomers a small fraction of the oligomers initially enter cells by a non-endocytotic mechanism. In contrast a majority of the oligomers at both early (1 hour) and late times (24 hours) traffic with a fluid-phase marker, dextran, to the same endocytotic compartments, the uptake of which is blocked by potent macropinocytotic inhibitors. This led to a significant increase in extra-cellular PM accumulation, in turn potentiating amylin toxicity in pancreatic cells. Our studies suggest that macropinocytosis is a major but not the only clearance mechanism for both amylin’s molecular forms, thereby serving a cyto-protective role in these cells. PMID:24019897

  12. Benzothienobenzothiophene-based conjugated oligomers as semiconductors for stable organic thin-film transistors.

    Science.gov (United States)

    Yu, Han; Li, Weili; Tian, Hongkun; Wang, Haibo; Yan, Donghang; Zhang, Jingping; Geng, Yanhou; Wang, Fosong

    2014-04-09

    Two benzothienobenzothiophene (BTBT)-based conjugated oligomers, i.e., 2,2'-bi[1]benzothieno[3,2-b][1]benzothiophene (1) and 5,5'-bis([1]benzothieno[3,2-b][1]benzothiophen-2-yl)-2,2'-bithiophene (2), were prepared and characterized. Both oligomers exhibit excellent thermal stability, with 5% weight-loss temperatures (T(L)) above 370 °C; no phase transition was observed before decomposition. The highest occupied molecular orbital (HOMO) levels of 1 and 2 are -5.3 and -4.9 eV, respectively, as measured by ultraviolet photoelectron spectroscopy. Thin-film X-ray diffraction and atomic force microscopy characterizations indicate that both oligomers form highly crystalline films with large domain sizes on octadecyltrimethoxysilane-modified substrates. Organic thin-film transistors with top-contact and bottom-gate geometry based on 1 and 2 exhibited mobilities up to 2.12 cm(2)/V·s for 1 and 1.39 cm(2)/V·s for 2 in an ambient atmosphere. 1-based devices exhibited great air and thermal stabilities, as evidenced by the slight performance degradation after 2 months of storage under ambient conditions and after thermal annealing at temperatures below 250 °C.

  13. A systems biology approach to predictive developmental neurotoxicity of a larvicide used in the prevention of Zika virus transmission

    DEFF Research Database (Denmark)

    Audouze, Karine; Taboureau, Olivier; Grandjean, Philippe

    2018-01-01

    The need to prevent developmental brain disorders has led to an increased interest in efficient neurotoxicity testing. When an epidemic of microcephaly occurred in Brazil, Zika virus infection was soon identified as the likely culprit. However, the pathogenesis appeared to be complex, and a larvi......The need to prevent developmental brain disorders has led to an increased interest in efficient neurotoxicity testing. When an epidemic of microcephaly occurred in Brazil, Zika virus infection was soon identified as the likely culprit. However, the pathogenesis appeared to be complex...... the potential developmental neurotoxicity, and we applied this method to examine the larvicide pyriproxyfen widely used in the prevention of Zika virus transmission. Our computational model covered a wide range of possible pathways providing mechanistic hypotheses between pyriproxyfen and neurological disorders...

  14. Rapamycin-induced oligomer formation system of FRB-FKBP fusion proteins.

    Science.gov (United States)

    Inobe, Tomonao; Nukina, Nobuyuki

    2016-07-01

    Most proteins form larger protein complexes and perform multiple functions in the cell. Thus, artificial regulation of protein complex formation controls the cellular functions that involve protein complexes. Although several artificial dimerization systems have already been used for numerous applications in biomedical research, cellular protein complexes form not only simple dimers but also larger oligomers. In this study, we showed that fusion proteins comprising the induced heterodimer formation proteins FRB and FKBP formed various oligomers upon addition of rapamycin. By adjusting the configuration of fusion proteins, we succeeded in generating an inducible tetramer formation system. Proteins of interest also formed tetramers by fusing to the inducible tetramer formation system, which exhibits its utility in a broad range of biological applications. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. Studies on Oligomer Metal Complexes Derived from Bisamic Acid of Pyromellitic Dianhydride and 4-Bromoaniline

    OpenAIRE

    Patel, Yogesh S.

    2014-01-01

    Novel oligomer metal complexes (2a–f) of the ligand 2,5-bis((4-bromophenyl)carbamoyl) terephthalic acid (1) were prepared using transition metal salts and characterized by various spectroscopic techniques. The geometry of oligomer metal complexes was carried out by electronic spectral analysis and magnetic measurement studies. Polymeric properties have also been carried out. Ligand was synthesized using pyromellitic dianhydride and 4-bromoaniline. It was duly characterized. All novel synthesi...

  16. Developmental neurotoxicity of different pesticides in PC-12 cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Christen, Verena [University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132, Muttenz (Switzerland); Rusconi, Manuel; Crettaz, Pierre [Federal Office of Public Health, Division Chemical Products, 3003 Bern (Switzerland); Fent, Karl, E-mail: karl.fent@bluewin.ch [University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132, Muttenz (Switzerland); Swiss Federal Institute of Technology Zürich (ETH Zürich), Department of Environmental Systems Sciences, Institute of Biogeochemistry and Pollution Dynamics, CH-8092 Zürich (Switzerland)

    2017-06-15

    The detection of developmental neurotoxicity (DNT) of chemicals has high relevance for protection of human health. However, DNT of many pesticides is only little known. Furthermore, validated in vitro systems for assessment of DNT are not well established. Here we employed the rat phaeochromocytoma cell line PC-12 to evaluate DNT of 18 frequently used pesticides of different classes, including neonicotinoids, pyrethroids, organophosphates, organochlorines, as well as quaternary ammonium compounds, the organic compound used in pesticides, piperonyl butoxide, as well as the insect repellent diethyltoluamide (DEET). We determined the outgrowth of neurites in PC-12 cells co-treated with nerve growth factor and different concentrations of biocides for 5 days. Furthermore, we determined transcriptional alterations of selected genes that may be associated with DNT, such as camk2α and camk2β, gap-43, neurofilament-h, tubulin-α and tubulin-β. Strong and dose- dependent inhibition of neurite outgrowth was induced by azamethiphos and chlorpyrifos, and dieldrin and heptachlor, which was correlated with up-regulation of gap-43. No or only weak effects on neurite outgrowth and transcriptional alterations occurred for neonicotinoids acetamiprid, clothianidin, imidacloprid and thiamethoxam, the pyrethroids λ-cyhalothrin, cyfluthrin, deltamethrin, and permethrin, the biocidal disinfectants C12-C14-alkyl(ethylbenzyl)dimethylammonium (BAC), benzalkonium chloride and barquat (dimethyl benzyl ammonium chloride), and piperonyl butoxide and DEET. Our study confirms potential developmental neurotoxicity of some pesticides and provides first evidence that azamethiphos has the potential to act as a developmental neurotoxic compound. We also demonstrate that inhibition of neurite outgrowth and transcriptional alterations of gap-43 expression correlate, which suggests the employment of gap-43 expression as a biomarker for detection and initial evaluation of potential DNT of chemicals

  17. Developmental neurotoxicity of different pesticides in PC-12 cells in vitro

    International Nuclear Information System (INIS)

    Christen, Verena; Rusconi, Manuel; Crettaz, Pierre; Fent, Karl

    2017-01-01

    The detection of developmental neurotoxicity (DNT) of chemicals has high relevance for protection of human health. However, DNT of many pesticides is only little known. Furthermore, validated in vitro systems for assessment of DNT are not well established. Here we employed the rat phaeochromocytoma cell line PC-12 to evaluate DNT of 18 frequently used pesticides of different classes, including neonicotinoids, pyrethroids, organophosphates, organochlorines, as well as quaternary ammonium compounds, the organic compound used in pesticides, piperonyl butoxide, as well as the insect repellent diethyltoluamide (DEET). We determined the outgrowth of neurites in PC-12 cells co-treated with nerve growth factor and different concentrations of biocides for 5 days. Furthermore, we determined transcriptional alterations of selected genes that may be associated with DNT, such as camk2α and camk2β, gap-43, neurofilament-h, tubulin-α and tubulin-β. Strong and dose- dependent inhibition of neurite outgrowth was induced by azamethiphos and chlorpyrifos, and dieldrin and heptachlor, which was correlated with up-regulation of gap-43. No or only weak effects on neurite outgrowth and transcriptional alterations occurred for neonicotinoids acetamiprid, clothianidin, imidacloprid and thiamethoxam, the pyrethroids λ-cyhalothrin, cyfluthrin, deltamethrin, and permethrin, the biocidal disinfectants C12-C14-alkyl(ethylbenzyl)dimethylammonium (BAC), benzalkonium chloride and barquat (dimethyl benzyl ammonium chloride), and piperonyl butoxide and DEET. Our study confirms potential developmental neurotoxicity of some pesticides and provides first evidence that azamethiphos has the potential to act as a developmental neurotoxic compound. We also demonstrate that inhibition of neurite outgrowth and transcriptional alterations of gap-43 expression correlate, which suggests the employment of gap-43 expression as a biomarker for detection and initial evaluation of potential DNT of chemicals

  18. Synthesis of Cycloveratrylene Macrocycles and Benzyl Oligomers Catalysed by Bentonite under Microwave/Infrared and Solvent-Free Conditions

    Directory of Open Access Journals (Sweden)

    Manuel Salmón

    2013-10-01

    Full Text Available Tonsil Actisil FF, which is a commercial bentonitic clay, promotes the formation of cycloveratrylene macrocycles and benzyl oligomers from the corresponding benzyl alcohols in good yields under microwave heating and infrared irradiation in the absence of solvent in both cases. The catalytic reaction is sensitive to the type of substituent on the aromatic ring. Thus, when benzyl alcohol was substituted with a methylenedioxy, two methoxy or three methoxy groups, a cyclooligomerisation process was induced. Unsubstituted, methyl and methoxy benzyl alcohols yielded linear oligomers. In addition, computational chemistry calculations were performed to establish a validated mechanistic pathway to explain the growth of the obtained linear oligomers.

  19. Structure and properties of binary polystyrene-epoxy acrylate oligomer mixtures irradiated by electron beams

    International Nuclear Information System (INIS)

    Lomonosova, N.V.

    1995-01-01

    The change in the structure of oriented polymer-oligomer systems based on polystyrene (PS) with M > 10 6 and epoxy acrylate oligomers (aliphatic and aromatic) under irradiation by accelerated electrons was studied using birefringence, isometric heating, IR dichroism, and thermooptical analysis. Mechanical properties of these systems were investigated. It was found that, by adding aliphatic epoxy acrylate to PS and further irradiating this mixture, one can obtain both isotropic and oriented composites with higher strengths, elasticity moduli, and glass transition temperatures

  20. Methamphetamine generates peroxynitrite and produces dopaminergic neurotoxicity in mice: protective effects of peroxynitrite decomposition catalyst.

    Science.gov (United States)

    Imam, S Z; Crow, J P; Newport, G D; Islam, F; Slikker, W; Ali, S F

    1999-08-07

    Methamphetamine (METH)-induced dopaminergic neurotoxicity is believed to be produced by oxidative stress and free radical generation. The present study was undertaken to investigate if METH generates peroxynitrite and produces dopaminergic neurotoxicity. We also investigated if this generation of peroxynitrite can be blocked by a selective peroxynitrite decomposition catalyst, 5, 10,15, 20-tetrakis(N-methyl-4'-pyridyl)porphyrinato iron III (FeTMPyP) and protect against METH-induced dopaminergic neurotoxicity. Administration of METH resulted in the significant formation of 3-nitrotyrosine (3-NT), an in vivo marker of peroxynitrite generation, in the striatum and also caused a significant increase in the body temperature. METH injection also caused a significant decrease in the concentration of dopamine (DA), 3, 4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) by 76%, 53% and 40%, respectively, in the striatum compared with the control group. Treatment with FeTMPyP blocked the formation of 3-NT by 66% when compared with the METH group. FeTMPyP treatment also provided significant protection against the METH-induced hyperthermia and depletion of DA, DOPAC and HVA. Administration of FeTMPyP alone neither resulted in 3-NT formation nor had any significant effect on DA or its metabolite concentrations. These findings indicate that peroxynitrite plays a role in METH-induced dopaminergic neurotoxicity and also suggests that peroxynitrite decomposition catalysts may be beneficial for the management of psychostimulant abuse. Copyright 1999 Published by Elsevier Science B.V.

  1. Natural amyloid-β oligomers acutely impair the formation of a contextual fear memory in mice.

    Directory of Open Access Journals (Sweden)

    Kara A Kittelberger

    Full Text Available Memory loss is one of the hallmark symptoms of Alzheimer's disease (AD. It has been proposed that soluble amyloid-beta (Abeta oligomers acutely impair neuronal function and thereby memory. We here report that natural Abeta oligomers acutely impair contextual fear memory in mice. A natural Abeta oligomer solution containing Abeta monomers, dimers, trimers, and tetramers was derived from the conditioned medium of 7PA2 cells, a cell line that expresses human amyloid precursor protein containing the Val717Phe familial AD mutation. As a control we used 7PA2 conditioned medium from which Abeta oligomers were removed through immunodepletion. Separate groups of mice were injected with Abeta and control solutions through a cannula into the lateral brain ventricle, and subjected to fear conditioning using two tone-shock pairings. One day after fear conditioning, mice were tested for contextual fear memory and tone fear memory in separate retrieval trials. Three experiments were performed. For experiment 1, mice were injected three times: 1 hour before and 3 hours after fear conditioning, and 1 hour before context retrieval. For experiments 2 and 3, mice were injected a single time at 1 hour and 2 hours before fear conditioning respectively. In all three experiments there was no effect on tone fear memory. Injection of Abeta 1 hour before fear conditioning, but not 2 hours before fear conditioning, impaired the formation of a contextual fear memory. In future studies, the acute effect of natural Abeta oligomers on contextual fear memory can be used to identify potential mechanisms and treatments of AD associated memory loss.

  2. Charge-carrier selective electrodes for organic bulk heterojunction solar cell by contact-printed siloxane oligomers

    International Nuclear Information System (INIS)

    Hwang, Hyun-Sik; Khang, Dahl-Young

    2015-01-01

    ‘Smart’ (or selective) electrode for charge carriers, both electrons and holes, in organic bulk-heterojunction (BHJ) solar cells using insertion layers made of hydrophobically-recovered and contact-printed siloxane oligomers between electrodes and active material has been demonstrated. The siloxane oligomer insertion layer has been formed at a given interface simply by conformally-contacting a cured slab of polydimethylsiloxane stamp for less than 100 s. All the devices, either siloxane oligomer printed at one interface only or printed at both interfaces, showed efficiency enhancement when compared to non-printed ones. The possible mechanism that is responsible for the observed efficiency enhancement has been discussed based on the point of optimum symmetry and photocurrent analysis. Besides its simplicity and large-area applicability, the demonstrated contact-printing technique does not involve any vacuum or wet processing steps and thus can be very useful for the roll-based, continuous production scheme for organic BHJ solar cells. - Highlights: • Carrier-selective insertion layer in organic bulk heterojunction solar cells • Simple contact-printing of siloxane oligomers improves cell efficiency. • Printed siloxane layer reduces carrier recombination at electrode surfaces. • Siloxane insertion layer works equally well at both electrode surfaces. • Patterned PDMS stamp shortens the printing time within 100 s

  3. Increased interleukin-1β levels following low dose MDMA induces tolerance against the 5-HT neurotoxicity produced by challenge MDMA

    Science.gov (United States)

    2011-01-01

    Background Preconditioning is a phenomenon by which tolerance develops to injury by previous exposure to a stressor of mild severity. Previous studies have shown that single or repeated low dose MDMA can attenuate 5-HT transporter loss produced by a subsequent neurotoxic dose of the drug. We have explored the mechanism of delayed preconditioning by low dose MDMA. Methods Male Dark Agouti rats were given low dose MDMA (3 mg/kg, i.p.) 96 h before receiving neurotoxic MDMA (12.5 mg/kg, i.p.). IL-1β and IL1ra levels and 5-HT transporter density in frontal cortex were quantified at 1 h, 3 h or 7 days. IL-1β, IL-1ra and IL-1RI were determined between 3 h and 96 h after low dose MDMA. sIL-1RI combined with low dose MDMA or IL-1β were given 96 h before neurotoxic MDMA and toxicity assessed 7 days later. Results Pretreatment with low dose MDMA attenuated both the 5-HT transporter loss and elevated IL-1β levels induced by neurotoxic MDMA while producing an increase in IL-1ra levels. Low dose MDMA produced an increase in IL-1β at 3 h and in IL-1ra at 96 h. sIL-1RI expression was also increased after low dose MDMA. Coadministration of sIL-1RI (3 μg, i.c.v.) prevented the protection against neurotoxic MDMA provided by low dose MDMA. Furthermore, IL-1β (2.5 pg, intracortical) given 96 h before neurotoxic MDMA protected against the 5-HT neurotoxicity produced by the drug, thus mimicking preconditioning. Conclusions These results suggest that IL-1β plays an important role in the development of delayed preconditioning by low dose MDMA. PMID:22114930

  4. Increased interleukin-1β levels following low dose MDMA induces tolerance against the 5-HT neurotoxicity produced by challenge MDMA

    Directory of Open Access Journals (Sweden)

    Mayado Andrea

    2011-11-01

    Full Text Available Abstract Background Preconditioning is a phenomenon by which tolerance develops to injury by previous exposure to a stressor of mild severity. Previous studies have shown that single or repeated low dose MDMA can attenuate 5-HT transporter loss produced by a subsequent neurotoxic dose of the drug. We have explored the mechanism of delayed preconditioning by low dose MDMA. Methods Male Dark Agouti rats were given low dose MDMA (3 mg/kg, i.p. 96 h before receiving neurotoxic MDMA (12.5 mg/kg, i.p.. IL-1β and IL1ra levels and 5-HT transporter density in frontal cortex were quantified at 1 h, 3 h or 7 days. IL-1β, IL-1ra and IL-1RI were determined between 3 h and 96 h after low dose MDMA. sIL-1RI combined with low dose MDMA or IL-1β were given 96 h before neurotoxic MDMA and toxicity assessed 7 days later. Results Pretreatment with low dose MDMA attenuated both the 5-HT transporter loss and elevated IL-1β levels induced by neurotoxic MDMA while producing an increase in IL-1ra levels. Low dose MDMA produced an increase in IL-1β at 3 h and in IL-1ra at 96 h. sIL-1RI expression was also increased after low dose MDMA. Coadministration of sIL-1RI (3 μg, i.c.v. prevented the protection against neurotoxic MDMA provided by low dose MDMA. Furthermore, IL-1β (2.5 pg, intracortical given 96 h before neurotoxic MDMA protected against the 5-HT neurotoxicity produced by the drug, thus mimicking preconditioning. Conclusions These results suggest that IL-1β plays an important role in the development of delayed preconditioning by low dose MDMA.

  5. The classification of motor neuron defects in the zebrafish embryo toxicity test (ZFET) as an animal alternative approach to assess developmental neurotoxicity.

    Science.gov (United States)

    Muth-Köhne, Elke; Wichmann, Arne; Delov, Vera; Fenske, Martina

    2012-07-01

    Rodents are widely used to test the developmental neurotoxicity potential of chemical substances. The regulatory test procedures are elaborate and the requirement of numerous animals is ethically disputable. Therefore, non-animal alternatives are highly desirable, but appropriate test systems that meet regulatory demands are not yet available. Hence, we have developed a new developmental neurotoxicity assay based on specific whole-mount immunostainings of primary and secondary motor neurons (using the monoclonal antibodies znp1 and zn8) in zebrafish embryos. By classifying the motor neuron defects, we evaluated the severity of the neurotoxic damage to individual primary and secondary motor neurons caused by chemical exposure and determined the corresponding effect concentration values (EC₅₀). In a proof-of-principle study, we investigated the effects of three model compounds thiocyclam, cartap and disulfiram, which show some neurotoxicity-indicating effects in vertebrates, and the positive controls ethanol and nicotine and the negative controls 3,4-dichloroaniline (3,4-DCA) and triclosan. As a quantitative measure of the neurotoxic potential of the test compounds, we calculated the ratios of the EC₅₀ values for motor neuron defects and the cumulative malformations, as determined in a zebrafish embryo toxicity test (zFET). Based on this index, disulfiram was classified as the most potent and thiocyclam as the least potent developmental neurotoxin. The index also confirmed the control compounds as positive and negative neurotoxicants. Our findings demonstrate that this index can be used to reliably distinguish between neurotoxic and non-neurotoxic chemicals and provide a sound estimate for the neurodevelopmental hazard potential of a chemical. The demonstrated method can be a feasible approach to reduce the number of animals used in developmental neurotoxicity evaluation procedures. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Atomistic simulation of CO 2 solubility in poly(ethylene oxide) oligomers

    KAUST Repository

    Hong, Bingbing; Panagiotopoulos, Athanassios Z.

    2013-01-01

    We have performed atomistic molecular dynamics simulations coupled with thermodynamic integration to obtain the excess chemical potential and pressure-composition phase diagrams for CO2 in poly(ethylene oxide) oligomers. Poly(ethylene oxide

  7. Effect of crowding, temperature and age on glia activation and dopaminergic neurotoxicity induced by MDMA in the mouse brain.

    Science.gov (United States)

    Frau, Lucia; Simola, Nicola; Porceddu, Pier Francesca; Morelli, Micaela

    2016-09-01

    3,4-methylenedyoxymethamphetamine (MDMA or "ecstasy"), a recreational drug of abuse, can induce glia activation and dopaminergic neurotoxicity. Since MDMA is often consumed in crowded environments featuring high temperatures, we studied how these factors influenced glia activation and dopaminergic neurotoxicity induced by MDMA. C57BL/6J adolescent (4 weeks old) and adult (12 weeks old) mice received MDMA (4×20mg/kg) in different conditions: 1) while kept 1, 5, or 10×cage at room temperature (21°C); 2) while kept 5×cage at either room (21°C) or high (27°C) temperature. After the last MDMA administration, immunohistochemistry was performed in the caudate-putamen for CD11b and GFAP, to mark microglia and astroglia, and in the substantia nigra pars compacta for tyrosine hydroxylase, to mark dopaminergic neurons. MDMA induced glia activation and dopaminergic neurotoxicity, compared with vehicle administration. Crowding (5 or 10 mice×cage) amplified MDMA-induced glia activation (in adult and adolescent mice) and dopaminergic neurotoxicity (in adolescent mice). Conversely, exposure to a high environmental temperature (27°C) potentiated MDMA-induced glia activation in adult and adolescent mice kept 5×cage, but not dopaminergic neurotoxicity. Crowding and exposure to a high environmental temperature amplified MDMA-induced hyperthermia, and a positive correlation between body temperature and activation of either microglia or astroglia was found in adult and adolescent mice. These results provide further evidence that the administration setting influences the noxious effects of MDMA in the mouse brain. However, while crowding amplifies both glia activation and dopaminergic neurotoxicity, a high environmental temperature exacerbates glia activation only. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Mephedrone does not damage dopamine nerve endings of the striatum, but enhances the neurotoxicity of methamphetamine, amphetamine, and MDMA.

    Science.gov (United States)

    Angoa-Pérez, Mariana; Kane, Michael J; Briggs, Denise I; Francescutti, Dina M; Sykes, Catherine E; Shah, Mrudang M; Thomas, David M; Kuhn, Donald M

    2013-04-01

    Mephedrone (4-methylmethcathinone) is a β-ketoamphetamine stimulant drug of abuse with close structural and mechanistic similarities to methamphetamine. One of the most powerful actions associated with mephedrone is the ability to stimulate dopamine (DA) release and block its re-uptake through its interaction with the dopamine transporter (DAT). Although mephedrone does not cause toxicity to DA nerve endings, its ability to serve as a DAT blocker could provide protection against methamphetamine-induced neurotoxicity like other DAT inhibitors. To test this possibility, mice were treated with mephedrone (10, 20, or 40 mg/kg) prior to each injection of a neurotoxic regimen of methamphetamine (four injections of 2.5 or 5.0 mg/kg at 2 h intervals). The integrity of DA nerve endings of the striatum was assessed through measures of DA, DAT, and tyrosine hydroxylase levels. The moderate to severe DA toxicity associated with the different doses of methamphetamine was not prevented by any dose of mephedrone but was, in fact, significantly enhanced. The hyperthermia caused by combined treatment with mephedrone and methamphetamine was the same as seen after either drug alone. Mephedrone also enhanced the neurotoxic effects of amphetamine and 3,4-methylenedioxymethamphetamine on DA nerve endings. In contrast, nomifensine protected against methamphetamine-induced neurotoxicity. As mephedrone increases methamphetamine neurotoxicity, the present results suggest that it interacts with the DAT in a manner unlike that of other typical DAT inhibitors. The relatively innocuous effects of mephedrone alone on DA nerve endings mask a potentially dangerous interaction with drugs that are often co-abused with it, leading to heightened neurotoxicity. © 2012 International Society for Neurochemistry.

  9. Investigation of the structure of isobutylene oligomers, used in the capacity of stock for succinimide additives, by the method of proton magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Iarmoliuk, V.M.; Garun, Ia.E.; Ostroverkhov, V.G.; Pustovit, V.E.; Tikhonov, V.P.

    1980-01-01

    By the method of proton magnetic resonance, investigation was made of the structure of hydrocarbon framework of isobutylene oligomers of the Salavatsk petrochemical plant, produced by the cation polymerization of the isobutane isobutylene fraction at a temperature from -10 to +20/sup 0/ with A1C1/sub 3/ and used in the production of succinide additives. Determination was made of the qualitative and quantitative compositions of the various structures in the oligomers. It is shown, that as a rule, oligobutenes are not pure oligomers of isobutylene, but represent, at least, fragments of four structures, which can be formed on the basis of isobutylene. The content of the given structures does not affect the reaction capacity of the oligomers in respect to the maleic anhydride. It was established, that the low molecular fraction, contained in oligomers up to 5%, are not isobutylene oligomers, but represent a low molecular polymer of butene-2 and its copolymer with isobutylene.

  10. A role for D1 dopamine receptors in striatal methamphetamine-induced neurotoxicity.

    Science.gov (United States)

    Friend, Danielle M; Keefe, Kristen A

    2013-10-25

    Methamphetamine (METH) exposure results in long-term damage to the dopamine system in both human METH abusers and animal models. One factor that has been heavily implicated in this METH-induced damage to the dopaminergic system is the activation of D1 dopamine (DA) receptors. However, a significant caveat to the studies investigating the role of the receptor in such toxicity is that genetic and pharmacological manipulations of the D1 DA receptor also mitigate METH-induced hyperthermia. Importantly, METH-induced hyperthermia is tightly associated with the neurotoxicity, such that simply cooling animals during METH exposure protects against the neurotoxicity. Therefore, it is difficult to determine whether D1 DA receptors per se play an important role in METH-induced neurotoxicity or whether the protection observed simply resulted from a mitigation of METH-induced hyperthermia. To answer this important question, the current study infused a D1 DA receptor antagonist into striatum during METH exposure while controlling for METH-induced hyperthermia. Here we found that even when METH-induced hyperthermia is maintained, the coadministration of a D1 DA receptor antagonist protects against METH-induced neurotoxicity, strongly suggesting that D1 DA receptors play an important role in METH-induced neurotoxicity apart from the mitigation of METH-induced hyperthermia. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Macrocyclic 2,7-Anthrylene Oligomers.

    Science.gov (United States)

    Yamamoto, Yuta; Wakamatsu, Kan; Iwanaga, Tetsuo; Sato, Hiroyasu; Toyota, Shinji

    2016-05-06

    A macrocyclic compound consisting of six 2,7-anthrylene units was successfully synthesized by Ni-mediated coupling of the corresponding dibromo precursor as a novel π-conjugated compound. This compound was sufficiently stable and soluble in organic solvents due to the presence of mesityl groups. X-ray analysis showed that the molecule had a nonplanar and hexagonal wheel-shaped framework of approximately S6 symmetry. The dynamic process between two S6 structures was observed by using the dynamic NMR technique, the barrier being 58 kJ mol(-1) . The spectroscopic properties of the hexamer were compared with those of analogous linear oligomers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Extracellular Tau Oligomers Induce Invasion of Endogenous Tau into the Somatodendritic Compartment and Axonal Transport Dysfunction

    Science.gov (United States)

    Swanson, Eric; Breckenridge, Leigham; McMahon, Lloyd; Som, Sreemoyee; McConnell, Ian; Bloom, George S.

    2017-01-01

    Aggregates composed of the microtubule associated protein, tau, are a hallmark of Alzheimer’s disease and non-Alzheimer’s tauopathies. Extracellular tau can induce the accumulation and aggregation of intracellular tau, and tau pathology can be transmitted along neural networks over time. There are six splice variants of central nervous system tau, and various oligomeric and fibrillar forms are associated with neurodegeneration in vivo. The particular extracellular forms of tau capable of transferring tau pathology from neuron to neuron remain ill defined, however, as do the consequences of intracellular tau aggregation on neuronal physiology. The present study was undertaken to compare the effects of extracellular tau monomers, oligomers, and filaments comprising various tau isoforms on the behavior of cultured neurons. We found that 2N4R or 2N3R tau oligomers provoked aggregation of endogenous intracellular tau much more effectively than monomers or fibrils, or of oligomers made from other tau isoforms, and that a mixture of all six isoforms most potently provoked intracellular tau accumulation. These effects were associated with invasion of tau into the somatodendritic compartment. Finally, we observed that 2N4R oligomers perturbed fast axonal transport of membranous organelles along microtubules. Intracellular tau accumulation was often accompanied by increases in the run length, run time and instantaneous velocity of membranous cargo. This work indicates that extracellular tau oligomers can disrupt normal neuronal homeostasis by triggering axonal tau accumulation and loss of the polarized distribution of tau, and by impairing fast axonal transport. PMID:28482642

  13. Targeting α-synuclein oligomers

    DEFF Research Database (Denmark)

    van Diggelen, Femke

    Parkinson’s Disease (PD) is a complex disease, characterised by degeneration of neocortical, limbic and nigrostriatal neurons. It is unknown what initiates neurodegeneration, but soluble oligomers of the protein α-synuclein (αSn) seem to be particularly toxic, compared to insoluble fibrils...... unique characteristics, e.g. they were recognized by different conformational antibodies and DHA–αSOs also formed a second elongated species in addition to the dominant spherical species. Although further functional testing is needed, this suggests that each species has its own distinct toxic mechanism......+/K+ ATPase, V-type ATPase, VDAC, CaMKII and Rab-3A. The identification of these targets is a first step towards unravelling the toxic pathways which are activated upon synaptic binding of extracellularly added αSOs, and hopefully will contribute to the discovery of new disease modifying compounds, which can...

  14. Molecular size evolution of oligomers in organic aerosols collected in urban atmospheres and generated in a smog chamber.

    Science.gov (United States)

    Kalberer, Markus; Sax, Mirjam; Samburova, Vera

    2006-10-01

    Only a minor fraction of the total organic aerosol mass can be resolved on a molecular level. High molecular weight compounds in organic aerosols have recently gained much attention because this class of compound potentially explains a major fraction of the unexplained organic aerosol mass. These compounds have been identified with different mass spectrometric methods, and compounds with molecular masses up to 1000 Da are found in secondary organic aerosols (SOA) generated from aromatic and terpene precursors in smog chamber experiments. Here, we apply matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) to SOA particles from two biogenic precursors, alpha-pinene and isoprene. Similar oligomer patterns are found in these two SOA systems, but also in SOA from trimethylbenzene, an anthropogenic SOA precursor. However, different maxima molecular sizes were measured for these three SOA systems. While oligomers in alpha-pinene and isoprene have sizes mostly below 600-700 Da, they grow up to about 1000 Da in trimethylbenzene-SOA. The final molecular size of the oligomers is reached early during the particle aging process, whereas other particle properties related to aging, such as the overall acid concentration or the oligomer concentration, increase continuously over a much longer time scale. This kinetic behavior of the oligomer molecular size growth can be explained by a chain growth kinetic regime. Similar oligomer mass patterns were measured in aqueous extracts of ambient aerosol samples (measured with the same technique). Distinct differences between summer and winter were observed. In summer a few single mass peaks were measured with much higher intensity than in winter, pointing to a possible difference in the formation processes of these compounds in winter and summer.

  15. Peripheral Ammonia as a Mediator of Methamphetamine Neurotoxicity

    Science.gov (United States)

    Halpin, Laura E.; Yamamoto, Bryan K.

    2012-01-01

    Ammonia is metabolized by the liver and has established neurological effects. The current study examined the possibility that ammonia contributes to the neurotoxic effects of methamphetamine (METH). The results show that a binge dosing regimen of METH to the rat increased plasma and brain ammonia concentrations that were paralleled by evidence of hepatotoxicity. The role of peripheral ammonia in the neurotoxic effects of METH was further substantiated by the demonstration that the enhancement of peripheral ammonia excretion blocked the increases in brain and plasma ammonia and attenuated the long term depletions of dopamine and serotonin typically produced by METH. Conversely, the localized perfusion of ammonia in combination with METH, but not METH alone or ammonia alone, into the striatum recapitulated the neuronal damage produced by the systemic administration of METH. Furthermore, this damage produced by the local administration of ammonia and METH was blocked by the GYKI 52466, an AMPA receptor antagonist. These findings highlight the importance of ammonia derived from the periphery as a small molecule mediator of METH neurotoxicity and more broadly emphasize the importance of peripheral organ damage as a possible mechanism that mediates the neuropathology produced by drugs of abuse and other neuroactive molecules. PMID:22993432

  16. Insights into cytokine release syndrome and neurotoxicity after CD19-specific CAR-T cell therapy.

    Science.gov (United States)

    Gauthier, Jordan; Turtle, Cameron J

    2018-04-03

    T-cells engineered to express CD19-specific chimeric antigen receptors (CD19 CAR-T cells) can achieve high response rates in patients with refractory/relapsed (R/R) CD19+ hematologic malignancies. Nonetheless, the efficacy of CD19-specific CAR-T cell therapy can be offset by significant toxicities, such as cytokine release syndrome (CRS) and neurotoxicity. In this report of our presentation at the 2018 Second French International Symposium on CAR-T cells (CAR-T day), we describe the clinical presentations of CRS and neurotoxicity in a cohort of 133 adults treated with CD19 CAR-T cells at the Fred Hutchinson Cancer Research Center, and provide insights into the mechanisms contributing to these toxicities. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  17. Isolation and Quantification of Polyamide Cyclic Oligomers in Kitchen Utensils and Their Migration into Various Food Simulants.

    Science.gov (United States)

    Abe, Yutaka; Mutsuga, Motoh; Ohno, Hiroyuki; Kawamura, Yoko; Akiyama, Hiroshi

    2016-01-01

    Small amounts of cyclic monomers and oligomers are present in polyamide (PA)-based kitchen utensils. In this study, we isolated eight PA-based cyclic monomers and oligomers from kitchen utensils made from PA6 (a polymer of ε-caprolactam) and PA66 (a polymer of 1,6-diaminohexane and adipic acid). Their structures were identified using high-resolution mass spectrometry and 1H- and 13C-nuclear magnetic resonance spectroscopy, and their residual levels in PA-based kitchen utensils and degree of migration into food simulants were quantified by high-performance liquid chromatography/mass spectrometry using purchased PA6 monomer and isolated PA66 monomers, and isolated PA6 and PA66 oligomers as calibration standards. Their total residual levels among 23 PA-based kitchen utensils made from PA6, PA66, and copolymers of PA6 and PA66 (PA6/66) ranged from 7.8 to 20 mg/g. Using water, 20% ethanol, and olive oil as food simulants, the total migration levels of the PA monomers and oligomers ranged from 0.66 to 100 μg/cm2 under most examined conditions. However, the total migration levels of the PA66 monomer and oligomers from PA66 and PA6/66 kitchen utensils into 20% ethanol at 95°C were very high (1,700 and 2,200 μg/cm2, respectively) due to swelling by high-temperature ethanol.

  18. Isolation and Quantification of Polyamide Cyclic Oligomers in Kitchen Utensils and Their Migration into Various Food Simulants.

    Directory of Open Access Journals (Sweden)

    Yutaka Abe

    Full Text Available Small amounts of cyclic monomers and oligomers are present in polyamide (PA-based kitchen utensils. In this study, we isolated eight PA-based cyclic monomers and oligomers from kitchen utensils made from PA6 (a polymer of ε-caprolactam and PA66 (a polymer of 1,6-diaminohexane and adipic acid. Their structures were identified using high-resolution mass spectrometry and 1H- and 13C-nuclear magnetic resonance spectroscopy, and their residual levels in PA-based kitchen utensils and degree of migration into food simulants were quantified by high-performance liquid chromatography/mass spectrometry using purchased PA6 monomer and isolated PA66 monomers, and isolated PA6 and PA66 oligomers as calibration standards. Their total residual levels among 23 PA-based kitchen utensils made from PA6, PA66, and copolymers of PA6 and PA66 (PA6/66 ranged from 7.8 to 20 mg/g. Using water, 20% ethanol, and olive oil as food simulants, the total migration levels of the PA monomers and oligomers ranged from 0.66 to 100 μg/cm2 under most examined conditions. However, the total migration levels of the PA66 monomer and oligomers from PA66 and PA6/66 kitchen utensils into 20% ethanol at 95°C were very high (1,700 and 2,200 μg/cm2, respectively due to swelling by high-temperature ethanol.

  19. A combined semiempirical-DFT study of oligomers within the finite-chain approximation, evolution from oligomers to polymers.

    Science.gov (United States)

    Derosa, Pedro A

    2009-06-01

    A computationally cheap approach combining time-independent density functional theory (TIDFT) and semiempirical methods with an appropriate extrapolation procedure is proposed to accurately estimate geometrical and electronic properties of conjugated polymers using just a small set of oligomers. The highest occupied molecular orbital-lowest unoccupied molecular orbital gap (HLG) obtained at a TIDFT level (B3PW91) for two polymers, trans-polyacetylene--the simplest conjugated polymer, and a much larger poly(2-methoxy-5-(2,9-ethyl-hexyloxy)-1,4-phenylenevinylene (MEH-PPV) polymer converge to virtually the same asymptotic value than the excitation energy obtained with time-dependent DFT (TDDFT) calculations using the same functional. For TIDFT geometries, the HLG is found to converge to a value within the experimentally accepted range for the band gap of these polymers, when an exponential extrapolation is used; however if semiempirical geometries are used, a linear fit of the HLG versus 1/n is found to produce the best results. Geometrical parameters are observed to reach a saturation value in good agreement with experimental information, within the length of oligomers calculated here and no extrapolation was considered necessary. Finally, the performance of three different semiempirical methods (AM1, PM3, and MNDO) and for the TIDFT calculations, the performance of 7 different full electron basis sets (6-311+G**, 6-31+ +G**, 6-311+ +G**, 6-31+G**, 6-31G**, 6-31+G*, and 6-31G) is compared and it is determined that the choice of semiempirical method or the basis set does not significantly affect the results. 2008 Wiley Periodicals, Inc.

  20. Detection of the electronic structure of iron-(iii)-oxo oligomers forming in aqueous solutions.

    Science.gov (United States)

    Seidel, Robert; Kraffert, Katrin; Kabelitz, Anke; Pohl, Marvin N; Kraehnert, Ralph; Emmerling, Franziska; Winter, Bernd

    2017-12-13

    The nature of the small iron-oxo oligomers in iron-(iii) aqueous solutions has a determining effect on the chemical processes that govern the formation of nanoparticles in aqueous phase. Here we report on a liquid-jet photoelectron-spectroscopy experiment for the investigation of the electronic structure of the occurring iron-oxo oligomers in FeCl 3 aqueous solutions. The only iron species in the as-prepared 0.75 M solution are Fe 3+ monomers. Addition of NaOH initiates Fe 3+ hydrolysis which is followed by the formation of iron-oxo oligomers. At small enough NaOH concentrations, corresponding to approximately [OH]/[Fe] = 0.2-0.25 ratio, the iron oligomers can be stabilized for several hours without engaging in further aggregation. Here, we apply a combination of non-resonant as well as iron 2p and oxygen 1s resonant photoelectron spectroscopy from a liquid microjet to detect the electronic structure of the occurring species. Specifically, the oxygen 1s partial electron yield X-ray absorption (PEY-XA) spectra are found to exhibit a peak well below the onset of liquid water and OH - (aq) absorption. The iron 2p absorption gives rise to signal centered between the main absorption bands typical for aqueous Fe 3+ . Absorption bands in both PEY-XA spectra are found to correlate with an enhanced photoelectron peak near 20 eV binding energy, which demonstrates the sensitivity of resonant photoelectron (RPE) spectroscopy to mixing between iron and ligand orbitals. These various signals from the iron-oxo oligomers exhibit maximum intensity at [OH]/[Fe] = 0.25 ratio. For the same ratio, we observe changes in the pH as well as in complementary Raman spectra, which can be assigned to the transition from monomeric to oligomeric species. At approximately [OH]/[Fe] = 0.3 we begin to observe particles larger than 1 nm in radius, detected by small-angle X-ray scattering.

  1. Mitochondrial dysfunction associated with nitric oxide pathways in glutamate neurotoxicity.

    Science.gov (United States)

    Manucha, Walter

    Multiple mechanisms underlying glutamate-induced neurotoxicity have recently been discussed. Likewise, a clear deregulation of the mitochondrial respiratory mechanism has been described in patients with neurodegeneration, oxidative stress, and inflammation. This article highlights nitric oxide, an atypical neurotransmitter synthesized and released on demand by the post-synaptic neurons, and has many important implications for nerve cell survival and differentiation. Consequently, synaptogenesis, synapse elimination, and neurotransmitter release, are nitric oxide-modulated. Interesting, an emergent role of nitric oxide pathways has been discussed as regards neurotoxicity from glutamate-induced apoptosis. These findings suggest that nitric oxide pathways modulation could prevent oxidative damage to neurons through apoptosis inhibition. This review aims to highlight the emergent aspects of nitric oxide-mediated signaling in the brain, and how they can be related to neurotoxicity, as well as the development of neurodegenerative diseases development. Copyright © 2016 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. SAXS and stability studies of iron-induced oligomers of bacterial frataxin CyaY.

    Directory of Open Access Journals (Sweden)

    Mostafa Fekry

    Full Text Available Frataxin is a highly conserved protein found in both prokaryotes and eukaryotes. It is involved in several central functions in cells, which include iron delivery to biochemical processes, such as heme synthesis, assembly of iron-sulfur clusters (ISC, storage of surplus iron in conditions of iron overload, and repair of ISC in aconitase. Frataxin from different organisms has been shown to undergo iron-dependent oligomerization. At least two different classes of oligomers, with different modes of oligomer packing and stabilization, have been identified. Here, we continue our efforts to explore the factors that control the oligomerization of frataxin from different organisms, and focus on E. coli frataxin CyaY. Using small-angle X-ray scattering (SAXS, we show that higher iron-to-protein ratios lead to larger oligomeric species, and that oligomerization proceeds in a linear fashion as a results of iron oxidation. Native mass spectrometry and online size-exclusion chromatography combined with SAXS show that a dimer is the most common form of CyaY in the presence of iron at atmospheric conditions. Modeling of the dimer using the SAXS data confirms the earlier proposed head-to-tail packing arrangement of monomers. This packing mode brings several conserved acidic residues into close proximity to each other, creating an environment for metal ion binding and possibly even mineralization. Together with negative-stain electron microscopy, the experiments also show that trimers, tetramers, pentamers, and presumably higher-order oligomers may exist in solution. Nano-differential scanning fluorimetry shows that the oligomers have limited stability and may easily dissociate at elevated temperatures. The factors affecting the possible oligomerization mode are discussed.

  3. Shear-Induced Amyloid Formation in the Brain: I. Potential Vascular and Parenchymal Processes.

    Science.gov (United States)

    Trumbore, Conrad N

    2016-09-06

    Shear distortion of amyloid-beta (Aβ) solutions accelerates amyloid cascade reactions that may yield different toxic oligomers than those formed in quiescent solutions. Recent experiments indicate that cerebrospinal fluid (CSF) and interstitial fluid (ISF) containing Aβ flow through narrow brain perivascular pathways and brain parenchyma. This paper suggests that such flow causes shear distortion of Aβ molecules involving conformation changes that may be one of the initiating events in the etiology of Alzheimer's disease. Aβ shearing can occur in or around brain arteries and arterioles and is suggested as the origin of cerebral amyloid angiopathy deposits in cerebrovascular walls. Comparatively low flow rates of ISF within the narrow extracellular spaces (ECS) of the brain parenchyma are suggested as a possible initiating factor in both the formation of neurotoxic Aβ42 oligomers and amyloid fibrils. Aβ42 in slow-flowing ISF can gain significant shear energy at or near the walls of tortuous brain ECS flow paths, promoting the formation of a shear-distorted, excited state hydrophobic Aβ42* conformation. This Aβ42* molecule could possibly be involved in one of two paths, one involving rapid adsorption to a brain membrane surface, ultimately forming neurotoxic oligomers on membranes, and the other ultimately forming plaque within the ECS flow pathways. Rising Aβ concentrations combined with shear at or near critical brain membranes are proposed as contributing factors to Alzheimer's disease neurotoxicity. These hypotheses may be applicable in other neurodegenerative diseases, including tauopathies and alpha-synucleinopathies, in which shear-distorted proteins also may form in the brain ECS.

  4. Length dependence of rectification in organic co-oligomer spin rectifiers

    International Nuclear Information System (INIS)

    Hu Gui-Chao; Zhang Zhao; Li Ying; Ren Jun-Feng; Wang Chuan-Kui

    2016-01-01

    The rectification ratio of organic magnetic co-oligomer diodes is investigated theoretically by changing the molecular length. The results reveal two distinct length dependences of the rectification ratio: for a short molecular diode, the charge-current rectification changes little with the increase of molecular length, while the spin-current rectification is weakened sharply by the length; for a long molecular diode, both the charge-current and spin-current rectification ratios increase quickly with the length. The two kinds of dependence switch at a specific length accompanied with an inversion of the rectifying direction. The molecular ortibals and spin-resolved transmission analysis indicate that the dominant mechanism of rectification suffers a change at this specific length, that is, from asymmetric shift of molecular eigenlevels to asymmetric spatial localization of wave functions upon the reversal of bias. This work demonstrates a feasible way to control the rectification in organic co-oligomer spin diodes by adjusting the molecular length. (paper)

  5. Tumor delivery of antisense oligomer using trastuzumab within a streptavidin nanoparticle

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi [University of Massachusetts Medical School, Division of Nuclear Medicine, Department of Radiology, Worcester, MA (United States); Yale University, Yale PET Center, Department of Diagnostic Radiology, New Haven, CT (United States); Liu, Xinrong; Chen, Ling; Cheng, Dengfeng; Rusckowski, Mary [University of Massachusetts Medical School, Division of Nuclear Medicine, Department of Radiology, Worcester, MA (United States); Hnatowich, Donald J. [University of Massachusetts Medical School, Division of Nuclear Medicine, Department of Radiology, Worcester, MA (United States); Umass Medical School, Department of Radiology, Worcester, MA (United States)

    2009-12-15

    Trastuzumab (Herceptin trademark) is often internalized following binding to Her2+ tumor cells. The objective of this study was to investigate whether trastuzumab can be used as a specific carrier to deliver antisense oligomers into Her2+ tumor cells both in vitro and in vivo. A biotinylated MORF oligomer antisense to RhoC mRNA and its biotinylated sense control were labeled with either lissamine for fluorescence detection or {sup 99m}Tc for radioactivity detection and were linked to biotinylated trastuzumab via streptavidin. The nanoparticles were studied in SUM190 (RhoC+, Her2+) study and SUM149 (RhoC+, Her2-) control cells in culture and as xenografts in mice. As evidence of unimpaired Her2+ binding of trastuzumab within the nanoparticle, accumulations were clearly higher in SUM190 compared to SUM149 cells and, by whole-body imaging, targeting of SUM190 tumor was similar to that expected for a radiolabeled trastuzumab. As evidence of internalization, fluorescence microscopy images of cells grown in culture and obtained from xenografts showed uniform cytoplasm distribution of the lissamine-MORF. An invasion assay showed decreased RhoC expression in SUM190 cells when incubated with the antisense MORF nanoparticles at only 100 nM. Both in cell culture and in animals, the nanoparticle with trastuzumab as specific carrier greatly improved tumor delivery of the antisense oligomer against RhoC mRNA into tumor cells overexpressing Her2 and may be of general utility. (orig.)

  6. Chemical and Biological Significance of Oenothein B and Related Ellagitannin Oligomers with Macrocyclic Structure

    Directory of Open Access Journals (Sweden)

    Takashi Yoshida

    2018-03-01

    Full Text Available In 1990, Okuda et al. reported the first isolation and characterization of oenothein B, a unique ellagitannin dimer with a macrocyclic structure, from the Oenothera erythrosepala leaves. Since then, a variety of macrocyclic analogs, including trimeric–heptameric oligomers have been isolated from various medicinal plants belonging to Onagraceae, Lythraceae, and Myrtaceae. Among notable in vitro and in vivo biological activities reported for oenothein B are antioxidant, anti-inflammatory, enzyme inhibitory, antitumor, antimicrobial, and immunomodulatory activities. Oenothein B and related oligomers, and/or plant extracts containing them have thus attracted increasing interest as promising targets for the development of chemopreventive agents of life-related diseases associated with oxygen stress in human health. In order to better understand the significance of this type of ellagitannin in medicinal plants, this review summarizes (1 the structural characteristics of oenothein B and related dimers; (2 the oxidative metabolites of oenothein B up to heptameric oligomers; (3 the distribution of oenotheins and other macrocyclic analogs in the plant kingdom; and (4 the pharmacological activities hitherto documented for oenothein B, including those recently found by our laboratory.

  7. Unraveling the neurotoxicity of titanium dioxide nanoparticles: focusing on molecular mechanisms

    Directory of Open Access Journals (Sweden)

    Bin Song

    2016-04-01

    Full Text Available Titanium dioxide nanoparticles (TiO2 NPs possess unique characteristics and are widely used in many fields. Numerous in vivo studies, exposing experimental animals to these NPs through systematic administration, have suggested that TiO2 NPs can accumulate in the brain and induce brain dysfunction. Nevertheless, the exact mechanisms underlying the neurotoxicity of TiO2 NPs remain unclear. However, we have concluded from previous studies that these mechanisms mainly consist of oxidative stress (OS, apoptosis, inflammatory response, genotoxicity, and direct impairment of cell components. Meanwhile, other factors such as disturbed distributions of trace elements, disrupted signaling pathways, dysregulated neurotransmitters and synaptic plasticity have also been shown to contribute to neurotoxicity of TiO2 NPs. Recently, studies on autophagy and DNA methylation have shed some light on possible mechanisms of nanotoxicity. Therefore, we offer a new perspective that autophagy and DNA methylation could contribute to neurotoxicity of TiO2 NPs. Undoubtedly, more studies are needed to test this idea in the future. In short, to fully understand the health threats posed by TiO2 NPs and to improve the bio-safety of TiO2 NPs-based products, the neurotoxicity of TiO2 NPs must be investigated comprehensively through studying every possible molecular mechanism.

  8. Co-existence of two different α-synuclein oligomers with different core structures determined by hydrogen/deuterium exchange mass spectrometry

    DEFF Research Database (Denmark)

    Paslawski, Wojciech; Mysling, Simon; Thomsen, Karen

    2014-01-01

    Neurodegenerative disorders are characterized by the formation of protein oligomers and amyloid fibrils, which in the case of Parkinson's disease involves the protein α-synuclein (αSN). Cytotoxicity is mainly associated with the oligomeric species, but we still know little about their assembly...... are protected from exchange with D2 O until they dissociate into monomeric αSN by EX1 exchange kinetics. Fewer residues are protected against exchange in oligomer type II, but this type does not revert to αSN monomers. Both oligomers are protected in the core sequence Y39-A89. Based on incubation studies...

  9. Regeneration of cello-oligomers via selective depolymerization of cellulose fibers derived from printed paper wastes.

    Science.gov (United States)

    Voon, Lee Ken; Pang, Suh Cem; Chin, Suk Fun

    2016-05-20

    Cellulose extracted from printed paper wastes were selectively depolymerized under controlled conditions into cello-oligomers of controllable chain lengths via dissolution in an ionic liquid, 1-allyl-3-methylimidazolium chloride (AMIMCl), and in the presence of an acid catalyst, Amberlyst 15DRY. The depolymerization process was optimized against reaction temperature, concentration of acid catalyst, and reaction time. Despite rapid initial depolymerization process, the rate of cellulose depolymerization slowed down gradually upon prolonged reaction time, with 75.0 wt% yield of regenerated cello-oligomers (mean Viscosimetric Degree of Polymerization value of 81) obtained after 40 min. The depolymerization of cellulose fibers at 80 °C appeared to proceed via a second-order kinetic reaction with respect to the catalyst concentration of 0.23 mmol H3O(+). As such, the cellulose depolymerization process could afford some degree of control on the degree of polymerization or chain lengths of cello-oligomers formed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Organization of the resting TCR in nanoscale oligomers.

    Science.gov (United States)

    Schamel, Wolfgang W A; Alarcón, Balbino

    2013-01-01

    Despite the low affinity of the T-cell antigen receptor (TCR) for its peptide/major histocompatibility complex (pMHC) ligand, T cells are very sensitive to their antigens. This paradox can be resolved if we consider that the TCR may be organized into pre-existing oligomers or nanoclusters. Such structures could improve antigen recognition by increasing the functional affinity (avidity) of the TCR-pMHC interaction and by allowing cooperativity between individual TCRs. Up to approximately 20 TCRs become tightly apposed in these nanoclusters, often in a linear manner, and such structures could reflect a relatively generalized phenomenon: the non-random concentration of membrane receptors in specific areas of the plasma membrane known as protein islands. The association of TCRs into nanoclusters can explain the enhanced kinetics of the pMHC-TCR interaction in two dimensional versus three dimensional systems, but also their existence calls for a revision of the TCR triggering models based on pMHC-induced TCR clustering. Interestingly, the B-cell receptor and the FcεRI have also been shown to form nanoclusters, suggesting that the formation of pre-existing receptor oligomers could be widely used in the immune system. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  11. Antisense Phosphorodiamidate Morpholino Oligomers as Novel Antiviral Compounds

    Directory of Open Access Journals (Sweden)

    Yuchen Nan

    2018-04-01

    Full Text Available Phosphorodiamidate morpholino oligomers (PMO are short single-stranded DNA analogs that are built upon a backbone of morpholine rings connected by phosphorodiamidate linkages. As uncharged nucleic acid analogs, PMO bind to complementary sequences of target mRNA by Watson–Crick base pairing to block protein translation through steric blockade. PMO interference of viral protein translation operates independently of RNase H. Meanwhile, PMO are resistant to a variety of enzymes present in biologic fluids, a characteristic that makes them highly suitable for in vivo applications. Notably, PMO-based therapy for Duchenne muscular dystrophy (DMD has been approved by the United States Food and Drug Administration which is now a hallmark for PMO-based antisense therapy. In this review, the development history of PMO, delivery methods for improving cellular uptake of neutrally charged PMO molecules, past studies of PMO antagonism against RNA and DNA viruses, PMO target selection, and remaining questions of PMO antiviral strategies are discussed in detail and new insights are provided.

  12. Single-molecule studies of oligomer extraction and uptake of dyes in poly(dimethylsiloxane) films.

    Science.gov (United States)

    Lange, Jeffrey J; Collinson, Maryanne M; Culbertson, Christopher T; Higgins, Daniel A

    2009-12-15

    Single-molecule microscopic methods were used to probe the uptake, mobility, and entrapment of dye molecules in cured poly(dimethylsiloxane) (PDMS) films as a function of oligomer extraction. The results are relevant to the use of PDMS in microfluidic separations, pervaporation, solid-phase microextraction, and nanofiltration. PDMS films were prepared by spin-casting dilute solutions of Sylgard 184 onto glass coverslips, yielding approximately 1.4 microm thick films after curing. Residual oligomers were subsequently extracted from the films by "spin extraction". In this procedure, 200 microL aliquots of isopropyl alcohol were repeatedly dropped onto the film surface and spun off at 2000 rpm. Samples extracted 5, 10, 20, and 40 times were investigated. Dye molecules were loaded into these films by spin-casting nanomolar dye solutions onto the films. Both neutral perylene diimide (N,N'-bis(butoxypropyl)perylene-3,4,9,10-tetracarboxylic diimide) and cationic rhodamine 6G (R6G) dyes were employed. The films were imaged by confocal fluorescence microscopy. The images obtained depict nonzero populations of fixed and mobile molecules in all films. Cross-correlation methods were used to quantitatively determine the population of fixed molecules in a given region, while a Bayesian burst analysis was used to obtain the total population of molecules. The results show that the total amount of dye loaded increases with increased oligomer extraction, while the relative populations of fixed and mobile molecules decrease and increase, respectively. Bulk R6G data also show greater dye loading with increased oligomer extraction.

  13. An approach for degradation of grape seed and skin proanthocyanidin polymers into oligomers by sulphurous acid.

    Science.gov (United States)

    Luo, Lanxin; Cui, Yan; Cheng, Jinhui; Fang, Bairui; Wei, Zongmin; Sun, Baoshan

    2018-08-01

    To develop an efficient method for degradation of grape seed and skin proanthocyanidins polymers into oligomers, an optimized sulphurous acid degradation conditions for grape seed with the temperature of 60 °C, reaction time of 60 min and sample-sulphurous acid ratio of 1:0.2, and for grape skin with the temperature of 40 °C, reaction time of 60 min and sample-sulphurous acid ratio of 1:0.2, were established. Afterwards, HSCCC and prep-HPLC were used to fractionate and isolate individual proanthocyanidin oligomers from the degradation products. Total of ten dimeric or trimeric procyanidins were obtained, and most of them presented high yield (from 0.7 mg to 13.6 mg per run in grape seed and from 0.5 mg to 4.1 mg per run in grape skin) and high purity (over 90%). The proposed method provides a new way for large preparation of oligomeric proanthocyanidins from naturally abundant and wasted polymeric ones. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Gonadal steroids differentially modulate neurotoxicity of HIV and cocaine: testosterone and ICI 182,780 sensitive mechanism

    Directory of Open Access Journals (Sweden)

    Mactutus Charles F

    2005-06-01

    Full Text Available Abstract Background HIV Associated Dementia (HAD is a common complication of human immunodeficiency virus (HIV infection that erodes the quality of life for patients and burdens health care providers. Intravenous drug use is a major route of HIV transmission, and drug use is associated with increased HAD. Specific proteins released as a consequence of HIV infection (e.g., gp120, the HIV envelope protein and Tat, the nuclear transactivating protein have been implicated in the pathogenesis of HAD. In primary cultures of human fetal brain tissue, subtoxic doses of gp120 and Tat are capable of interacting with a physiologically relevant dose of cocaine, to produce a significant synergistic neurotoxicity. Using this model system, the neuroprotective potential of gonadal steroids was investigated. Results 17β-Estradiol (17β-E2, but not 17α-estradiol (17α-E2, was protective against this combined neurotoxicity. Progesterone (PROG afforded limited neuroprotection, as did dihydrotestosterone (DHT. The efficacy of 5α-testosterone (T-mediated neuroprotection was robust, similar to that provided by 17β-E2. In the presence of the specific estrogen receptor (ER antagonist, ICI-182,780, T's neuroprotection was completely blocked. Thus, T acts through the ER to provide neuroprotection against HIV proteins and cocaine. Interestingly, cholesterol also demonstrated concentration-dependent neuroprotection, possibly attributable to cholesterol's serving as a steroid hormone precursor in neurons. Conclusion Collectively, the present data indicate that cocaine has a robust interaction with the HIV proteins gp120 and Tat that produces severe neurotoxicity, and this toxicity can be blocked through pretreatment with ER agonists.

  15. Programmable Oligomers Targeting 5′-GGGG-3′ in the Minor Groove of DNA and NF-κB Binding Inhibition

    Science.gov (United States)

    Chenoweth, David M.; Poposki, Julie A.; Marques, Michael A.; Dervan, Peter B.

    2009-01-01

    A series of hairpin oligomers containing benzimidazole (Bi) and imidazopyridine (Ip) rings were synthesized and screened to target 5′-WGGGGW-3′, a core sequence in the DNA binding site of NF-κB, a prolific transcription factor important in biology and disease. Five Bi and Ip containing oligomers bound to the 5′-WGGGGW-3′ site with high affinity. One of the oligomers (Im-Im-Im-Im-γ-PyBi-PyBi-β-Dp) was able to inhibit DNA binding by the transcription factor NF-κB. PMID:17095230

  16. Structural fingerprints and their evolution during oligomeric vs. oligomer-free amyloid fibril growth.

    Science.gov (United States)

    Foley, Joseph; Hill, Shannon E; Miti, Tatiana; Mulaj, Mentor; Ciesla, Marissa; Robeel, Rhonda; Persichilli, Christopher; Raynes, Rachel; Westerheide, Sandy; Muschol, Martin

    2013-09-28

    Deposits of fibrils formed by disease-specific proteins are the molecular hallmark of such diverse human disorders as Alzheimer's disease, type II diabetes, or rheumatoid arthritis. Amyloid fibril formation by structurally and functionally unrelated proteins exhibits many generic characteristics, most prominently the cross β-sheet structure of their mature fibrils. At the same time, amyloid formation tends to proceed along one of two separate assembly pathways yielding either stiff monomeric filaments or globular oligomers and curvilinear protofibrils. Given the focus on oligomers as major toxic species, the very existence of an oligomer-free assembly pathway is significant. Little is known, though, about the structure of the various intermediates emerging along different pathways and whether the pathways converge towards a common or distinct fibril structures. Using infrared spectroscopy we probed the structural evolution of intermediates and late-stage fibrils formed during in vitro lysozyme amyloid assembly along an oligomeric and oligomer-free pathway. Infrared spectroscopy confirmed that both pathways produced amyloid-specific β-sheet peaks, but at pathway-specific wavenumbers. We further found that the amyloid-specific dye thioflavin T responded to all intermediates along either pathway. The relative amplitudes of thioflavin T fluorescence responses displayed pathway-specific differences and could be utilized for monitoring the structural evolution of intermediates. Pathway-specific structural features obtained from infrared spectroscopy and Thioflavin T responses were identical for fibrils grown at highly acidic or at physiological pH values and showed no discernible effects of protein hydrolysis. Our results suggest that late-stage fibrils formed along either pathway are amyloidogenic in nature, but have distinguishable structural fingerprints. These pathway-specific fingerprints emerge during the earliest aggregation events and persist throughout the

  17. Structural fingerprints and their evolution during oligomeric vs. oligomer-free amyloid fibril growth

    Science.gov (United States)

    Foley, Joseph; Hill, Shannon E.; Miti, Tatiana; Mulaj, Mentor; Ciesla, Marissa; Robeel, Rhonda; Persichilli, Christopher; Raynes, Rachel; Westerheide, Sandy; Muschol, Martin

    2013-09-01

    Deposits of fibrils formed by disease-specific proteins are the molecular hallmark of such diverse human disorders as Alzheimer's disease, type II diabetes, or rheumatoid arthritis. Amyloid fibril formation by structurally and functionally unrelated proteins exhibits many generic characteristics, most prominently the cross β-sheet structure of their mature fibrils. At the same time, amyloid formation tends to proceed along one of two separate assembly pathways yielding either stiff monomeric filaments or globular oligomers and curvilinear protofibrils. Given the focus on oligomers as major toxic species, the very existence of an oligomer-free assembly pathway is significant. Little is known, though, about the structure of the various intermediates emerging along different pathways and whether the pathways converge towards a common or distinct fibril structures. Using infrared spectroscopy we probed the structural evolution of intermediates and late-stage fibrils formed during in vitro lysozyme amyloid assembly along an oligomeric and oligomer-free pathway. Infrared spectroscopy confirmed that both pathways produced amyloid-specific β-sheet peaks, but at pathway-specific wavenumbers. We further found that the amyloid-specific dye thioflavin T responded to all intermediates along either pathway. The relative amplitudes of thioflavin T fluorescence responses displayed pathway-specific differences and could be utilized for monitoring the structural evolution of intermediates. Pathway-specific structural features obtained from infrared spectroscopy and Thioflavin T responses were identical for fibrils grown at highly acidic or at physiological pH values and showed no discernible effects of protein hydrolysis. Our results suggest that late-stage fibrils formed along either pathway are amyloidogenic in nature, but have distinguishable structural fingerprints. These pathway-specific fingerprints emerge during the earliest aggregation events and persist throughout the

  18. "Nail" and "comb" effects of cholesterol modified NIPAm oligomers on cancer targeting liposomes

    KAUST Repository

    Li, Wengang; Deng, Lin; Moosa, Basem; Wang, Guangchao; Mashat, Afnan; Khashab, Niveen M.

    2014-01-01

    Thermosensitive liposomes are a promising approach to controlled release and reduced drug cytotoxicity. Low molecular weight N-isopropylacrylamide (NIPAm) oligomers (NOs) with different architectures (main chain NOs (MCNOs) and side chain NOs (SCNOs)) were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization and radical polymerization and then separately used to prepare thermosensitive liposomes. A more controlled and enhanced release was observed for both NO liposomes compared to pristine ones. Two release mechanisms depending on the oligomer architecture, namely "nail" for MCNOs and "comb" for SCNOs, are proposed. In addition to thermosensitivity, the cancer targeting property of NO liposomes was achieved by further biotinylation of the delivery system. © The Royal Society of Chemistry.

  19. Liquid Crystalline Thermosets from Ester, Ester-imide, and Ester-amide Oligomers

    Science.gov (United States)

    Dingemans, Theodorus J. (Inventor); Weiser, Erik S. (Inventor); St. Clair, Terry L. (Inventor)

    2009-01-01

    Main chain thermotropic liquid crystal esters, ester-imides, and ester-amides were prepared from AA, BB, and AB type monomeric materials and end-capped with phenylacetylene, phenylmaleimide, or nadimide reactive end-groups. The end-capped liquid crystal oligomers are thermotropic and have, preferably, molecular weights in the range of approximately 1000-15,000 grams per mole. The end-capped liquid crystaloligomers have broad liquid crystalline melting ranges and exhibit high melt stability and very low melt viscosities at accessible temperatures. The end-capped liquid crystal oli-gomers are stable forup to an hour in the melt phase. They are highly processable by a variety of melt process shape forming and blending techniques. Once processed and shaped, the end-capped liquid crystal oigomers were heated to further polymerize and form liquid crystalline thermosets (LCT). The fully cured products are rubbers above their glass transition temperatures.

  20. Amyloid oligomer structure characterization from simulations: A general method

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Phuong H., E-mail: phuong.nguyen@ibpc.fr [Laboratoire de Biochimie Théorique, UPR 9080, CNRS Université Denis Diderot, Sorbonne Paris Cité IBPC, 13 rue Pierre et Marie Curie, 75005 Paris (France); Li, Mai Suan [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Derreumaux, Philippe, E-mail: philippe.derreumaux@ibpc.fr [Laboratoire de Biochimie Théorique, UPR 9080, CNRS Université Denis Diderot, Sorbonne Paris Cité IBPC, 13 rue Pierre et Marie Curie, 75005 Paris (France); Institut Universitaire de France, 103 Bvd Saint-Germain, 75005 Paris (France)

    2014-03-07

    Amyloid oligomers and plaques are composed of multiple chemically identical proteins. Therefore, one of the first fundamental problems in the characterization of structures from simulations is the treatment of the degeneracy, i.e., the permutation of the molecules. Second, the intramolecular and intermolecular degrees of freedom of the various molecules must be taken into account. Currently, the well-known dihedral principal component analysis method only considers the intramolecular degrees of freedom, and other methods employing collective variables can only describe intermolecular degrees of freedom at the global level. With this in mind, we propose a general method that identifies all the structures accurately. The basis idea is that the intramolecular and intermolecular states are described in terms of combinations of single-molecule and double-molecule states, respectively, and the overall structures of oligomers are the product basis of the intramolecular and intermolecular states. This way, the degeneracy is automatically avoided. The method is illustrated on the conformational ensemble of the tetramer of the Alzheimer's peptide Aβ{sub 9−40}, resulting from two atomistic molecular dynamics simulations in explicit solvent, each of 200 ns, starting from two distinct structures.

  1. Neurotoxicity of "ecstasy" and its metabolites in human dopaminergic differentiated SH-SY5Y cells.

    Science.gov (United States)

    Ferreira, Patrícia Silva; Nogueira, Tiago Bernandes; Costa, Vera Marisa; Branco, Paula Sério; Ferreira, Luísa Maria; Fernandes, Eduarda; Bastos, Maria Lourdes; Meisel, Andreas; Carvalho, Félix; Capela, João Paulo

    2013-02-04

    "Ecstasy" (3,4-methylenedioxymethamphetamine or MDMA) is a widely abused recreational drug, reported to produce neurotoxic effects, both in laboratory animals and in humans. MDMA metabolites can be major contributors for MDMA neurotoxicity. This work studied the neurotoxicity of MDMA and its catechol metabolites, α-methyldopamine (α-MeDA) and N-methyl-α-methyldopamine (N-Me-α-MeDA) in human dopaminergic SH-SY5Y cells differentiated with retinoic acid and 12-O-tetradecanoyl-phorbol-13-acetate. Differentiation led to SH-SY5Y neurons with higher ability to accumulate dopamine and higher resistance towards dopamine neurotoxicity. MDMA catechol metabolites were neurotoxic to SH-SY5Y neurons, leading to caspase 3-independent cell death in a concentration- and time-dependent manner. MDMA did not show a concentration- and time-dependent death. Pre-treatment with the antioxidant and glutathione precursor, N-acetylcysteine (NAC), resulted in strong protection against the MDMA metabolites' neurotoxicity. Neither the superoxide radical scavenger, tiron, nor the inhibitor of the dopamine (DA) transporter, GBR 12909, prevented the metabolites' toxicity. Cells exposed to α-MeDA showed an increase in intracellular glutathione (GSH) levels, which, at the 48 h time-point, was not dependent in the activity increase of γ-glutamylcysteine synthetase (γ-GCS), revealing a possible transient effect. Importantly, pre-treatment with buthionine sulfoximine (BSO), an inhibitor of γ-GCS, prevented α-MeDA induced increase in GSH levels, but did not augment this metabolite cytotoxicity. Even so, BSO pre-treatment abolished NAC protective effects against α-MeDA neurotoxicity, which were, at least partially, due to GSH de novo synthesis. Inversely, pre-treatment of cells with BSO augmented N-Me-α-MeDA-induced neurotoxicity, but only slightly affected NAC neuroprotection. In conclusion, MDMA catechol metabolites promote differential toxic effects to differentiated dopaminergic human SH

  2. Effects of salicylate on 3,4-methylenedioxymethamphetamine (MDMA)-induced neurotoxicity in rats.

    Science.gov (United States)

    Yeh, S Y

    1997-11-01

    The drug 3,4-methylenedioxymethamphetamine (MDMA) is a serotonergic neurotoxicant that causes hyperthermia and depletion of serotonin (5-HT) and 5-hydroxy-indole-3-acetic acid (5-HIAA) in the central nervous system. Formation of neurotoxic metabolites of MDMA, e.g., 2,4,5-trihydroxy-methamphetamine and 2,4,5-trihydroxyamphetamine, involves hydroxyl and/or superoxide free radicals. The present study was designed to determine whether the hydroxyl free-radical-trapping agent salicylate could provide protection against MDMA neurotoxicity in rats. In the acute studies, sodium salicylate (12.5-400 mg/kg, calculated as free acid) was injected interperitoneally (i.p.) 1 h before subcutaneous (s.c.) injections of MDMA (20 mg/kg as base). In the chronic studies, sodium salicylate (3.1-100 mg/kg) was injected i.p. 1 h before repeated s.c. injections of MDMA (10 mg/kg as base, twice daily, at 0830 and 1730 h for 4 consecutive days). Repeated MDMA administration depleted contents of 5-HT and 5-HIAA in the frontal cortex, hippocampus and striatum. Coadministration of salicylate plus MDMA did not significantly alter MDMA-induced depletion of 5-HT and 5-HIAA in these tissues. Thus, salicylate, a hydroxyl free-radical-trapping agent, does not protect against MDMA-induced hyperthermia and depletion of 5-HT and 5-HIAA. These observations suggest that MDMA-induced neurotoxicity may occur mainly through the production of superoxide or other radicals rather than hydroxyl free radicals. Salicylate actually potentiated MDMA-induced hyperthermia and lethality, findings that might be of clinical relevance.

  3. Theoretical study of stability geometrical and electronic structure of (BeHsub(2))sub(n) oligomers

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, L P; Boldyrev, A I; Charkin, O P [AN SSSR, Moscow. Inst. Novykh Khimicheskikh Problem

    1983-01-01

    The Hartree-Fock-Ruthane method with the Roos-Siegbahn two-exponent basis is used to calculate stability, geometrical and electronic structures of (BeHsub(2))sub(n) oligomers, where n=1, 2, 3, 4 and 6. It is shown that with the growth of oligomerization degree n stability of linear band structure is increased as compared with other configurations including high-coordination volumetric ones. Tendencies in formation with n growth of geometrical, energetic characteristics, electronic structure of (BeHsub(2))sub(n) oligomers of band type are analysed.

  4. The role of dopamine receptors in the neurotoxicity of methamphetamine.

    Science.gov (United States)

    Ares-Santos, S; Granado, N; Moratalla, R

    2013-05-01

    Methamphetamine is a synthetic drug consumed by millions of users despite its neurotoxic effects in the brain, leading to loss of dopaminergic fibres and cell bodies. Moreover, clinical reports suggest that methamphetamine abusers are predisposed to Parkinson's disease. Therefore, it is important to elucidate the mechanisms involved in methamphetamine-induced neurotoxicity. Dopamine receptors may be a plausible target to prevent this neurotoxicity. Genetic inactivation of dopamine D1 or D2 receptors protects against the loss of dopaminergic fibres in the striatum and loss of dopaminergic neurons in the substantia nigra. Protection by D1 receptor inactivation is due to blockade of hypothermia, reduced dopamine content and turnover and increased stored vesicular dopamine in D1R(-/-) mice. However, the neuroprotective impact of D2 receptor inactivation is partially dependent on an effect on body temperature, as well as on the blockade of dopamine reuptake by decreased dopamine transporter activity, which results in reduced intracytosolic dopamine levels in D2R(-/-) mice. © 2013 The Association for the Publication of the Journal of Internal Medicine.

  5. Prophylactic Neuroprotection of Total Glucosides of Paeoniae Radix Alba against Semen Strychni-Induced Neurotoxicity in Rats: Suppressing Oxidative Stress and Reducing the Absorption of Toxic Components.

    Science.gov (United States)

    Li, Shujuan; Chu, Yanjie; Zhang, Ruowen; Sun, Linjia; Chen, Xiaohui

    2018-04-20

    Strychnos alkaloids (SAs) are the main toxic constituents in Semen Strychni, a traditional Chinese medicine, which is known for its fatal neurotoxicity. Hence, the present study was carried out to evaluate the neurotoxicity induced by SAs and the pre-protective effects of the total glucosides of Paeoniae Radix Alba (TGP). An SA brain damage model was firstly established. The neurotoxicity induced by SAs and the pre-protective effects of TGP were confirmed by physical and behavioral testing, biochemical assay, and histological examination. Then, a liquid chromatography-tandem mass spectrometry method was developed and validated to investigate the time-course change and distribution of strychnine and brucine (two main SAs) in the brain after oral SA administration with or without TGP pretreatment. Biochemical analysis results indicated that TGP could ameliorate the oxidative stress status caused by SAs. Time-course change and distribution studies demonstrated that strychnine and brucine were rapidly absorbed into the brain, peaked early at 0.5 h, and were mainly located in the hippocampus and cerebellum. TGP showed a pre-protective effect against neurotoxicity by reducing the absorption of toxic alkaloids into the brain. These findings could provide beneficial information in facilitating future studies of Semen Strychni neurotoxicity and developing herbal medicines to alleviate neurotoxicity in the clinic.

  6. Prophylactic Neuroprotection of Total Glucosides of Paeoniae Radix Alba against Semen Strychni-Induced Neurotoxicity in Rats: Suppressing Oxidative Stress and Reducing the Absorption of Toxic Components

    Directory of Open Access Journals (Sweden)

    Shujuan Li

    2018-04-01

    Full Text Available Strychnos alkaloids (SAs are the main toxic constituents in Semen Strychni, a traditional Chinese medicine, which is known for its fatal neurotoxicity. Hence, the present study was carried out to evaluate the neurotoxicity induced by SAs and the pre-protective effects of the total glucosides of Paeoniae Radix Alba (TGP. An SA brain damage model was firstly established. The neurotoxicity induced by SAs and the pre-protective effects of TGP were confirmed by physical and behavioral testing, biochemical assay, and histological examination. Then, a liquid chromatography-tandem mass spectrometry method was developed and validated to investigate the time-course change and distribution of strychnine and brucine (two main SAs in the brain after oral SA administration with or without TGP pretreatment. Biochemical analysis results indicated that TGP could ameliorate the oxidative stress status caused by SAs. Time-course change and distribution studies demonstrated that strychnine and brucine were rapidly absorbed into the brain, peaked early at 0.5 h, and were mainly located in the hippocampus and cerebellum. TGP showed a pre-protective effect against neurotoxicity by reducing the absorption of toxic alkaloids into the brain. These findings could provide beneficial information in facilitating future studies of Semen Strychni neurotoxicity and developing herbal medicines to alleviate neurotoxicity in the clinic.

  7. Viscosity of nanoconfined polyamide-6,6 oligomers: atomistic reverse nonequilibrium molecular dynamics simulation.

    Science.gov (United States)

    Eslami, Hossein; Müller-Plathe, Florian

    2010-01-14

    Our new simulation scheme in isosurface-isothermal-isobaric ensemble [Eslami, H.; Mozaffari, F.; Moghadasi, J.; Müller-Plathe, F. J. Chem. Phys. 2008, 129, 194702], developed to simulate confined fluids in equilibrium with bulk, is applied to simulate polyamide-6,6 oligomers confined between graphite surfaces. The reverse nonequilibrium molecular dynamics simulation technique is employed to shear the graphite surfaces. In this work, six confined systems, with different surface separations, as well as the bulk fluid are simulated. Our results show a viscosity increase with respect to the bulk fluid, with decreasing distance between surfaces. Also, the calculated viscosities of the confined systems show an oscillatory behavior with maxima corresponding to well-formed layers between the surfaces. We observe a substantial slip at the surfaces, with the slip length depending on the shear rate and on the slit width. The slip length and the slip velocity show oscillatory behavior with out-of-phase oscillations with respect to the solvation force oscillations. Moreover, the temperature difference between coldest and hottest parts of the simulation box depends on the shear rate and on the layering effect (solvation force oscillations). An analysis of oligomer deformation under flow shows preferential alignment of oligomers parallel to the surfaces with increasing shear rate.

  8. NMR studies of DNA oligomers and their interactions with minor groove binding ligands

    Energy Technology Data Exchange (ETDEWEB)

    Fagan, Patricia A. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1996-05-01

    The cationic peptide ligands distamycin and netropsin bind noncovalently to the minor groove of DNA. The binding site, orientation, stoichiometry, and qualitative affinity of distamycin binding to several short DNA oligomers were investigated by NMR spectroscopy. The oligomers studied contain A,T-rich or I,C-rich binding sites, where I = 2-desaminodeoxyguanosine. I•C base pairs are functional analogs of A•T base pairs in the minor groove. The different behaviors exhibited by distamycin and netropsin binding to various DNA sequences suggested that these ligands are sensitive probes of DNA structure. For sites of five or more base pairs, distamycin can form 1:1 or 2:1 ligand:DNA complexes. Cooperativity in distamycin binding is low in sites such as AAAAA which has narrow minor grooves, and is higher in sites with wider minor grooves such as ATATAT. The distamycin binding and base pair opening lifetimes of I,C-containing DNA oligomers suggest that the I,C minor groove is structurally different from the A,T minor groove. Molecules which direct chemistry to a specific DNA sequence could be used as antiviral compounds, diagnostic probes, or molecular biology tools. The author studied two ligands in which reactive groups were tethered to a distamycin to increase the sequence specificity of the reactive agent.

  9. nNOS inhibitors attenuate methamphetamine-induced dopaminergic neurotoxicity but not hyperthermia in mice.

    Science.gov (United States)

    Itzhak, Y; Martin, J L; Ail, S F

    2000-09-11

    Methamphetamine (METH)-induced dopaminergic neurotoxicity is associated with hyperthermia. We investigated the effect of several neuronal nitric oxide synthase (nNOS) inhibitors on METH-induced hyperthermia and striatal dopaminergic neurotoxicity. Administration of METH (5 mg/kg; q. 3 h x 3) to Swiss Webster mice produced marked hyperthermia and 50-60% depletion of striatal dopaminergic markers 72 h after METH administration. Pretreatment with the nNOS inhibitors S-methylthiocitrulline (SMTC; 10 mg/kg) or 3-bromo-7-nitroindazole (3-Br-7-NI; 20 mg/kg) before each METH injection did not affect the persistent hyperthermia produced by METH, but afforded protection against the depletion of dopaminergic markers. A low dose (25 mg/kg) of the nNOS inhibitor 7-nitroindazole (7-NI) did not affect METH-induced hyperthermia, but a high dose (50 mg/kg) produced significant hypothermia. These findings indicate that low dose of selective nNOS inhibitors protect against METH-induced neurotoxicity with no effect on body temperature and support the hypothesis that nitric oxide (NO) and peroxynitrite have a major role in METH-induced dopaminergic neurotoxicity.

  10. Formation of a stable oligomer of beta-2 microglobulin requires only transient encounter with Cu(II).

    Science.gov (United States)

    Calabrese, Matthew F; Miranker, Andrew D

    2007-03-16

    Beta-2 Microglobulin (beta2m) is a small, globular protein, with high solubility under conditions comparable to human serum. A complication of hemodialysis in renal failure patients is the deposition of unmodified beta2m as amyloid fibers. In vitro, exposure of beta2m to equimolar Cu(2+) under near-physiological conditions can result in self-association leading to amyloid fiber formation. Previously, we have shown that the early steps in this process involve a catalyzed structural rearrangement followed by formation of discrete oligomers. These oligomers, however, have a continued requirement for Cu(2+) while mature fibers are resistant to addition of metal chelate. Here, we report that the transition from Cu(2+) dependent to chelate resistant states occurs in the context of small oligomers, dimeric to hexameric in size. These species require Cu(2+) to form, but once generated, do not need metal cation for stability. Importantly, this transition occurs gradually over several days and the resulting oligomers are isolatable and kinetically stable on timescales exceeding weeks. In addition, formation is enhanced by levels of urea similar to those found in hemodialysis patients. Our results are consistent with our hypothesis that transient encounter of full-length wild-type beta2m with transition metal cation at the dialysis membrane interface is causal to dialysis related amyloidosis.

  11. Microcystin-LR exposure induces developmental neurotoxicity in zebrafish embryo

    International Nuclear Information System (INIS)

    Wu, Qin; Yan, Wei; Liu, Chunsheng; Li, Li; Yu, Liqin; Zhao, Sujuan; Li, Guangyu

    2016-01-01

    Microcystin-LR (MCLR) is a commonly acting potent hepatotoxin and has been pointed out of potentially causing developmental neurotoxicity, but the exact mechanism is little known. In this study, zebrafish embryos were exposed to 0, 0.8, 1.6 or 3.2 mg/L MCLR for 120 h. MCLR exposure through submersion caused serious hatching delay and body length decrease. The content of MCLR in zebrafish larvae was analyzed and the results demonstrated that MCLR can accumulate in zebrafish larvae. The locomotor speed of zebrafish larvae was decreased. Furthermore, the dopamine and acetylcholine (ACh) content were detected to be significantly decreased in MCLR exposure groups. And the acetylcholinesterase (AChE) activity was significantly increased after exposure to 1.6 and 3.2 mg/L MCLR. The transcription pattern of manf, chrnα7 and ache gene was consistent with the change of the dopamine content, ACh content and AChE activity. Gene expression involved in the development of neurons was also measured. α1-tubulin and shha gene expression were down-regulated, whereas mbp and gap43 gene expression were observed to be significantly up-regulated upon exposure to MCLR. The above results indicated that MCLR-induced developmental toxicity might attribute to the disorder of cholinergic system, dopaminergic signaling, and the development of neurons. - Highlights: • MCLR accumulation induces developmental neurotoxicity in zebrafish embryo. • The decrease of dopamine levels might be associated with the MCLR-induced developmental neurotoxicity in zebrafish larvae. • The alternation of cholinergic system might contribute to the change of neurobehavior in zebrafish larvae exposure with MCLR. - MCLR accumulation induces developmental neurotoxicity by affecting cholinergic system, dopaminergic signaling, and the development of neurons in zebrafish embryo.

  12. Some biological actions of PEG-conjugated RNase A oligomers

    Czech Academy of Sciences Publication Activity Database

    Poučková, P.; Škvor, J.; Gotte, G.; Vottariello, F.; Slavík, Tomáš; Matoušek, Josef; Laurents, D. V.; Libonati, M.; Souček, J.

    2006-01-01

    Roč. 53, č. 1 (2006), s. 79-85 ISSN 0028-2685 R&D Projects: GA ČR GA523/04/0755; GA MZd NR8233 Grant - others:Spanish Ministerio de Ciencia y Technologia BQU2003-05227 Institutional research plan: CEZ:AV0Z50450515 Keywords : RNase A oligomers * polyethylene glycol conjugates * anti-tumour activity Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.247, year: 2006

  13. Squalestatin alters the intracellular trafficking of a neurotoxic prion peptide

    Directory of Open Access Journals (Sweden)

    Williams Alun

    2007-11-01

    Full Text Available Abstract Background Neurotoxic peptides derived from the protease-resistant core of the prion protein are used to model the pathogenesis of prion diseases. The current study characterised the ingestion, internalization and intracellular trafficking of a neurotoxic peptide containing amino acids 105–132 of the murine prion protein (MoPrP105-132 in neuroblastoma cells and primary cortical neurons. Results Fluorescence microscopy and cell fractionation techniques showed that MoPrP105-132 co-localised with lipid raft markers (cholera toxin and caveolin-1 and trafficked intracellularly within lipid rafts. This trafficking followed a non-classical endosomal pathway delivering peptide to the Golgi and ER, avoiding classical endosomal trafficking via early endosomes to lysosomes. Fluorescence resonance energy transfer analysis demonstrated close interactions of MoPrP105-132 with cytoplasmic phospholipase A2 (cPLA2 and cyclo-oxygenase-1 (COX-1, enzymes implicated in the neurotoxicity of prions. Treatment with squalestatin reduced neuronal cholesterol levels and caused the redistribution of MoPrP105-132 out of lipid rafts. In squalestatin-treated cells, MoPrP105-132 was rerouted away from the Golgi/ER into degradative lysosomes. Squalestatin treatment also reduced the association between MoPrP105-132 and cPLA2/COX-1. Conclusion As the observed shift in peptide trafficking was accompanied by increased cell survival these studies suggest that the neurotoxicity of this PrP peptide is dependent on trafficking to specific organelles where it activates specific signal transduction pathways.

  14. Mass Spectrometric Characterization of Oligomers in Pseudomonas aeruginosa Azurin Solutions

    Czech Academy of Sciences Publication Activity Database

    Sokolová, L.; Williamson, H.; Sýkora, Jan; Hof, Martin; Gray, H. B.; Brutschy, B.; Vlček, Antonín

    2011-01-01

    Roč. 115, č. 16 (2011), s. 4790-4800 ISSN 1520-6106 R&D Projects: GA MŠk(CZ) ME10124; GA MŠk(CZ) LC06063 Institutional research plan: CEZ:AV0Z40400503 Keywords : mass spectrometry * oligomers * pseudomonas aeruginosa azurin solutions Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.696, year: 2011

  15. Humans Can Taste Glucose Oligomers Independent of the hT1R2/hT1R3 Sweet Taste Receptor.

    Science.gov (United States)

    Lapis, Trina J; Penner, Michael H; Lim, Juyun

    2016-08-23

    It is widely accepted that humans can taste mono- and disaccharides as sweet substances, but they cannot taste longer chain oligo- and polysaccharides. From the evolutionary standpoint, the ability to taste starch or its oligomeric hydrolysis products would be highly adaptive, given their nutritional value. Here, we report that humans can taste glucose oligomer preparations (average degree of polymerization 7 and 14) without any other sensorial cues. The same human subjects could not taste the corresponding glucose polymer preparation (average degree of polymerization 44). When the sweet taste receptor was blocked by lactisole, a known sweet inhibitor, subjects could not detect sweet substances (glucose, maltose, and sucralose), but they could still detect the glucose oligomers. This suggests that glucose oligomer detection is independent of the hT1R2/hT1R3 sweet taste receptor. Human subjects described the taste of glucose oligomers as "starchy," while they describe sugars as "sweet." The dose-response function of glucose oligomer was also found to be indistinguishable from that of glucose on a molar basis. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. A holistic approach to anesthesia-induced neurotoxicity and its implications for future mechanistic studies.

    Science.gov (United States)

    Zanghi, Christine N; Jevtovic-Todorovic, Vesna

    The year 2016 marked the 15th anniversary since anesthesia-induced developmental neurotoxicity and its resulting cognitive dysfunction were first described. Since that time, multiple scientific studies have supported these original findings and investigated possible mechanisms behind anesthesia-induced neurotoxicity. This paper reviews the existing mechanistic literature on anesthesia-induced neurotoxicity in the context of a holistic approach that emphasizes the importance of both neuronal and non-neuronal cells during early postnatal development. Sections are divided into key stages in early neural development; apoptosis, neurogenesis, migration, differentiation, synaptogenesis, gliogenesis, myelination and blood brain barrier/cerebrovasculature. In addition, the authors combine the established literature in the field of anesthesia-induced neurotoxicity with literature from other related scientific fields to speculate on the potential role of non-neuronal cells and to generate new future hypotheses for understanding anesthetic toxicity and its application to the practice of pediatric anesthesia. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Death Adder Envenoming Causes Neurotoxicity Not Reversed by Antivenom - Australian Snakebite Project (ASP-16)

    Science.gov (United States)

    Johnston, Christopher I.; O'Leary, Margaret A.; Brown, Simon G. A.; Currie, Bart J.; Halkidis, Lambros; Whitaker, Richard; Close, Benjamin; Isbister, Geoffrey K.

    2012-01-01

    Background Death adders (Acanthophis spp) are found in Australia, Papua New Guinea and parts of eastern Indonesia. This study aimed to investigate the clinical syndrome of death adder envenoming and response to antivenom treatment. Methodology/Principal Findings Definite death adder bites were recruited from the Australian Snakebite Project (ASP) as defined by expert identification or detection of death adder venom in blood. Clinical effects and laboratory results were collected prospectively, including the time course of neurotoxicity and response to treatment. Enzyme immunoassay was used to measure venom concentrations. Twenty nine patients had definite death adder bites; median age 45 yr (5–74 yr); 25 were male. Envenoming occurred in 14 patients. Two further patients had allergic reactions without envenoming, both snake handlers with previous death adder bites. Of 14 envenomed patients, 12 developed neurotoxicity characterised by ptosis (12), diplopia (9), bulbar weakness (7), intercostal muscle weakness (2) and limb weakness (2). Intubation and mechanical ventilation were required for two patients for 17 and 83 hours. The median time to onset of neurotoxicity was 4 hours (0.5–15.5 hr). One patient bitten by a northern death adder developed myotoxicity and one patient only developed systemic symptoms without neurotoxicity. No patient developed venom induced consumption coagulopathy. Antivenom was administered to 13 patients, all receiving one vial initially. The median time for resolution of neurotoxicity post-antivenom was 21 hours (5–168). The median peak venom concentration in 13 envenomed patients with blood samples was 22 ng/mL (4.4–245 ng/mL). In eight patients where post-antivenom bloods were available, no venom was detected after one vial of antivenom. Conclusions/Significance Death adder envenoming is characterised by neurotoxicity, which is mild in most cases. One vial of death adder antivenom was sufficient to bind all circulating venom. The

  18. Curcumin Attenuated Bupivacaine-Induced Neurotoxicity in SH-SY5Y Cells Via Activation of the Akt Signaling Pathway.

    Science.gov (United States)

    Fan, You-Ling; Li, Heng-Chang; Zhao, Wei; Peng, Hui-Hua; Huang, Fang; Jiang, Wei-Hang; Xu, Shi-Yuan

    2016-09-01

    Bupivacaine is widely used for regional anesthesia, spinal anesthesia, and pain management. However, bupivacaine could cause neuronal injury. Curcumin, a low molecular weight polyphenol, has a variety of bioactivities and may exert neuroprotective effects against damage induced by some stimuli. In the present study, we tested whether curcumin could attenuate bupivacaine-induced neurotoxicity in SH-SY5Y cells. Cell injury was evaluated by examining cell viability, mitochondrial damage and apoptosis. We also investigated the levels of activation of the Akt signaling pathway and the effect of Akt inhibition by triciribine on cell injury following bupivacaine and curcumin treatment. Our findings showed that the bupivacaine treatment could induce neurotoxicity. Pretreatment of the SH-SY5Y cells with curcumin significantly attenuated bupivacaine-induced neurotoxicity. Interestingly, the curcumin treatment increased the levels of Akt phosphorylation. More significantly, the pharmacological inhibition of Akt abolished the cytoprotective effect of curcumin against bupivacaine-induced cell injury. Our data suggest that pretreating SH-SY5Y cells with curcumin provides a protective effect on bupivacaine-induced neuronal injury via activation of the Akt signaling pathway.

  19. Developmental neurotoxicity of Propylthiouracil in rats

    DEFF Research Database (Denmark)

    Petersen, Marta Axelstad; Hansen, P.; Christiansen, S.

    2007-01-01

    early in pregnancy may cause adverse effects on the offspring. This has led to increased concern about thyroid hormone disrupting chemicals (TDCs) in our environment. We have studied how developmental exposure to the known antithyroid agent propylthiouracil (PTU) affects the development of rat pups...... behaviour and hearing function. This supports that exposure to TDC's in general may cause long-lasting developmental neurotoxicity....

  20. Oxidative damage and neurodegeneration in manganese-induced neurotoxicity

    International Nuclear Information System (INIS)

    Milatovic, Dejan; Zaja-Milatovic, Snjezana; Gupta, Ramesh C.; Yu, Yingchun; Aschner, Michael

    2009-01-01

    Exposure to excessive manganese (Mn) levels results in neurotoxicity to the extrapyramidal system and the development of Parkinson's disease (PD)-like movement disorder, referred to as manganism. Although the mechanisms by which Mn induces neuronal damage are not well defined, its neurotoxicity appears to be regulated by a number of factors, including oxidative injury, mitochondrial dysfunction and neuroinflammation. To investigate the mechanisms underlying Mn neurotoxicity, we studied the effects of Mn on reactive oxygen species (ROS) formation, changes in high-energy phosphates (HEP), neuroinflammation mediators and associated neuronal dysfunctions both in vitro and in vivo. Primary cortical neuronal cultures showed concentration-dependent alterations in biomarkers of oxidative damage, F 2 -isoprostanes (F 2 -IsoPs) and mitochondrial dysfunction (ATP), as early as 2 h following Mn exposure. Treatment of neurons with 500 μM Mn also resulted in time-dependent increases in the levels of the inflammatory biomarker, prostaglandin E 2 (PGE 2 ). In vivo analyses corroborated these findings, establishing that either a single or three (100 mg/kg, s.c.) Mn injections (days 1, 4 and 7) induced significant increases in F 2 -IsoPs and PGE 2 in adult mouse brain 24 h following the last injection. Quantitative morphometric analyses of Golgi-impregnated striatal sections from mice exposed to single or three Mn injections revealed progressive spine degeneration and dendritic damage of medium spiny neurons (MSNs). These findings suggest that oxidative stress, mitochondrial dysfunction and neuroinflammation are underlying mechanisms in Mn-induced neurodegeneration.

  1. Dopamine D(1) receptor deletion strongly reduces neurotoxic effects of methamphetamine.

    Science.gov (United States)

    Ares-Santos, S; Granado, N; Oliva, I; O'Shea, E; Martin, E D; Colado, M I; Moratalla, R

    2012-02-01

    Methamphetamine (METH) is a potent, highly addictive psychostimulant consumed worldwide. In humans and experimental animals, repeated exposure to this drug induces persistent neurodegenerative changes. Damage occurs primarily to dopaminergic neurons, accompanied by gliosis. The toxic effects of METH involve excessive dopamine (DA) release, thus DA receptors are highly likely to play a role in this process. To define the role of D(1) receptors in the neurotoxic effects of METH we used D(1) receptor knock-out mice (D(1)R(-/-)) and their WT littermates. Inactivation of D(1)R prevented METH-induced dopamine fibre loss and hyperthermia, and increases in gliosis and pro-inflammatory molecules such as iNOS in the striatum. In addition, D(1)R inactivation prevented METH-induced loss of dopaminergic neurons in the substantia nigra. To explore the relationship between hyperthermia and neurotoxicity, METH was given at high ambient temperature (29 °C). In this condition, D(1)R(-/-) mice developed hyperthermia following drug delivery and the neuroprotection provided by D(1)R inactivation at 23 °C was no longer observed. However, reserpine, which empties vesicular dopamine stores, blocked hyperthermia and strongly potentiated dopamine toxicity in D(1)R(-/-) mice, suggesting that the protection afforded by D(1)R inactivation is due to both hypothermia and higher stored vesicular dopamine. Moreover, electrical stimulation evoked higher DA overflow in D(1)R(-/-) mice as demonstrated by fast scan cyclic voltammetry despite their lower basal DA content, suggesting higher vesicular DA content in D(1)R(-/-) than in WT mice. Altogether, these results indicate that the D(1)R plays a significant role in METH-induced neurotoxicity by mediating drug-induced hyperthermia and increasing the releasable cytosolic DA pool. Copyright © 2011. Published by Elsevier Inc.

  2. Developmental neurotoxicity of different pesticides in PC-12 cells in vitro.

    Science.gov (United States)

    Christen, Verena; Rusconi, Manuel; Crettaz, Pierre; Fent, Karl

    2017-06-15

    The detection of developmental neurotoxicity (DNT) of chemicals has high relevance for protection of human health. However, DNT of many pesticides is only little known. Furthermore, validated in vitro systems for assessment of DNT are not well established. Here we employed the rat phaeochromocytoma cell line PC-12 to evaluate DNT of 18 frequently used pesticides of different classes, including neonicotinoids, pyrethroids, organophosphates, organochlorines, as well as quaternary ammonium compounds, the organic compound used in pesticides, piperonyl butoxide, as well as the insect repellent diethyltoluamide (DEET). We determined the outgrowth of neurites in PC-12 cells co-treated with nerve growth factor and different concentrations of biocides for 5days. Furthermore, we determined transcriptional alterations of selected genes that may be associated with DNT, such as camk2α and camk2β, gap-43, neurofilament-h, tubulin-α and tubulin-β. Strong and dose- dependent inhibition of neurite outgrowth was induced by azamethiphos and chlorpyrifos, and dieldrin and heptachlor, which was correlated with up-regulation of gap-43. No or only weak effects on neurite outgrowth and transcriptional alterations occurred for neonicotinoids acetamiprid, clothianidin, imidacloprid and thiamethoxam, the pyrethroids λ-cyhalothrin, cyfluthrin, deltamethrin, and permethrin, the biocidal disinfectants C12-C14-alkyl(ethylbenzyl)dimethylammonium (BAC), benzalkonium chloride and barquat (dimethyl benzyl ammonium chloride), and piperonyl butoxide and DEET. Our study confirms potential developmental neurotoxicity of some pesticides and provides first evidence that azamethiphos has the potential to act as a developmental neurotoxic compound. We also demonstrate that inhibition of neurite outgrowth and transcriptional alterations of gap-43 expression correlate, which suggests the employment of gap-43 expression as a biomarker for detection and initial evaluation of potential DNT of chemicals

  3. Organization in sol-gel polymerization of methacrylate co-oligomers containing trimethoxysilylpropyl methacrylate

    Czech Academy of Sciences Publication Activity Database

    Vraštil, J.; Matějka, Libor; Špaček, V.; Večeřa, M.; Prokůpek, L.

    2005-01-01

    Roč. 46, č. 25 (2005), s. 11232-11240 ISSN 0032-3861 Institutional research plan: CEZ:AV0Z40500505 Keywords : organic-inorganic hybrid * sol-gel process * oligomers Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.849, year: 2005

  4. Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid and methylglyoxal

    Directory of Open Access Journals (Sweden)

    Y. Tan

    2012-01-01

    Full Text Available Previous experiments have demonstrated that the aqueous OH radical oxidation of methylglyoxal produces low volatility products including pyruvate, oxalate and oligomers. These products are found predominantly in the particle phase in the atmosphere, suggesting that methylglyoxal is a precursor of secondary organic aerosol (SOA. Acetic acid plays a central role in the aqueous oxidation of methylglyoxal and it is a ubiquitous product of gas phase photochemistry, making it a potential "aqueous" SOA precursor in its own right. However, the fate of acetic acid upon aqueous-phase oxidation is not well understood. In this research, acetic acid (20 μM–10 mM was oxidized by OH radicals, and pyruvic acid and methylglyoxal experimental samples were analyzed using new analytical methods, in order to better understand the formation of SOA from acetic acid and methylglyoxal. Glyoxylic, glycolic, and oxalic acids formed from acetic acid and OH radicals. In contrast to the aqueous OH radical oxidation of methylglyoxal, the aqueous OH radical oxidation of acetic acid did not produce succinic acid and oligomers. This suggests that the methylgloxal-derived oligomers do not form through the acid catalyzed esterification pathway proposed previously. Using results from these experiments, radical mechanisms responsible for oligomer formation from methylglyoxal oxidation in clouds and wet aerosols are proposed. The importance of acetic acid/acetate as an SOA precursor is also discussed. We hypothesize that this and similar chemistry is central to the daytime formation of oligomers in wet aerosols.

  5. Protection against MDMA-induced dopaminergic neurotoxicity in mice by methyllycaconitine: involvement of nicotinic receptors.

    Science.gov (United States)

    Chipana, C; Camarasa, J; Pubill, D; Escubedo, E

    2006-09-01

    Methylenedioxymethamphetamine (MDMA) is a relatively selective dopaminergic neurotoxin in mice. Previous studies demonstrated the participation of alpha-7 nicotinic receptors (nAChR) in the neurotoxic effect of methamphetamine. The aim of this paper was to study the role of this receptor type in the acute effects and neurotoxicity of MDMA in mice. In vivo, methyllycaconitine (MLA), a specific alpha-7 nAChR antagonist, significantly prevented MDMA-induced neurotoxicity at dopaminergic but not at serotonergic level, without affecting MDMA-induced hyperthermia. Glial activation was also fully prevented by MLA. In vitro, MDMA induced intrasynaptosomal reactive oxygen species (ROS) generation, which was calcium-, nitric-oxide synthase-, and protein kinase C-dependent. Also, the increase in ROS was prevented by MLA and alpha-bungarotoxin. Experiments with reserpine point to endogenous dopamine (DA) as the main source of MDMA-induced ROS. MLA also brought the MDMA-induced inhibition of [3H]DA uptake down, from 73% to 11%. We demonstrate that a coordinated activation of alpha-7 nAChR, blockade of DA transporter function and displacement of DA from intracellular stores induced by MDMA produces a neurotoxic effect that can be prevented by MLA, suggesting that alpha-7 nAChR have a key role in the MDMA neurotoxicity in mice; however, the involvement of nicotinic receptors containing the beta2 subunit cannot be conclusively ruled out.

  6. Analysis of linear and cyclic oligomers in polyamide-6 without sample preparation by liquid chromatography using the sandwich injection method. II. Methods of detection and quantification and overall long-term performance.

    Science.gov (United States)

    Mengerink, Y; Peters, R; Kerkhoff, M; Hellenbrand, J; Omloo, H; Andrien, J; Vestjens, M; van der Wal, S

    2000-05-05

    By separating the first six linear and cyclic oligomers of polyamide-6 on a reversed-phase high-performance liquid chromatographic system after sandwich injection, quantitative determination of these oligomers becomes feasible. Low-wavelength UV detection of the different oligomers and selective post-column reaction detection of the linear oligomers with o-phthalic dicarboxaldehyde (OPA) and 3-mercaptopropionic acid (3-MPA) are discussed. A general methodology for quantification of oligomers in polymers was developed. It is demonstrated that the empirically determined group-equivalent absorption coefficients and quench factors are a convenient way of quantifying linear and cyclic oligomers of nylon-6. The overall long-term performance of the method was studied by monitoring a reference sample and the calibration factors of the linear and cyclic oligomers.

  7. Cholesterol facilitates interactions between α-synuclein oligomers and charge-neutral membranes

    DEFF Research Database (Denmark)

    van Maarschalkerweerd, Andreas; Vetri, Valeria; Vestergaard, Bente

    2015-01-01

    composed of anionic lipids, while the more physiologically relevant zwitterionic lipids remain intact. We present experimental evidence for significant morphological changes in zwitterionic membranes containing cholesterol, induced by α-synuclein oligomers. Depending on the lipid composition, model...... of cholesterol for mediating interactions between physiologically relevant membranes and α-synuclein....

  8. Effect of Side Chains on Molecular Conformation of Anthracene-Ethynylene-Phenylene-Vinylene Oligomers: A Comparative Density Functional Study With and Without Dispersion Interaction.

    Science.gov (United States)

    Dong, Chuanding; Hoppe, Harald; Beenken, Wichard J D

    2016-06-02

    Using density functional calculations with and without dispersion interaction, we studied the effects of linear octyl and branched 2-ethylhexyl side chains on the oligomer conformation of the conjugated copolymer poly(p-anthracene-ethynylene)-alt-poly(p-phenylene-vinylene). With dispersion included, the branched side chains can cause significant bending of the oligomer backbone, while without dispersion they induce mainly torsional disorder. The oligomers with mainly linear side chains keep good planarity when optimized with and without dispersion. Despite their dramatically different conformations, the calculated absorption spectra of the oligomers with various side chain combinations are very similar, indicating that the conformation of the copolymer is not the main reason for the experimentally observed different spectra of ordered and disordered phases.

  9. Neurotoxicity in long-term survivors of small cell lung cancer

    International Nuclear Information System (INIS)

    Lee, J.S.; Umsawasdi, T.; Lee, Y.Y.; Barkley, H.T. Jr.; Murphy, W.K.; Welch, S.; Valdivieso, M.

    1986-01-01

    Chronic central nervous system neurotoxicity was studied in 38 long-term survivors (greater than or equal to 3 years) of small cell lung cancer who were treated at the University of Texas M. D. Anderson Hospital and Tumor Institute at Houston between 1971 and 1980. All but one patient received combination chemotherapy with or without chest irradiation. Twenty-four patients received whole brain irradiation (Group I), 22 for elective and two for therapeutic purposes, while 14 did not (Group II). Abnormalities in computed tomographic (CT) scans of the brain were more frequently observed in Group I than in Group II (70% vs. 0%, p less than 0.01). Clinical central nervous system neurotoxicity developed in three patients in Group I, while none developed in patients in Group II (p less than 0.05). Patients who received methotrexate and procarbazine after whole brain irradiation were at a higher risk for clinical central nervous system neurotoxicity (p less than 0.05), and for development of periventricular white matter changes in CT brain scans (p less than 0.05) than were patients in Group II. Impaired methylation of the myelin sheath is proposed as a possible underlying pathogenic mechanism

  10. Supersymmetry theory of microphase separation in homopolymer-oligomer mixtures

    International Nuclear Information System (INIS)

    Olemskoi, Alexander; Krakovsky, Ivan; Savelyev, Alexey

    2004-01-01

    The mesoscopic structure of periodically alternating layers of stretched homopolymer chains surrounded by perpendicularly oriented oligomeric tails is studied for systems with both strong (ionic) and weak (hydrogen) interactions. We focus on the consideration of the distribution of oligomers along the homopolymer chains that is described by the effective equation of motion with the segment number playing the role of imaginary time. The supersymmetry technique is developed to consider associative hydrogen bonding, self-action effects, inhomogeneity, and temperature fluctuations in the oligomer distribution. Making use of the self-consistent approach allows one to explain experimentally observed temperature dependence of the structure period and the order-disorder transition temperature and period as functions of the oligomeric fraction for systems with different bonding strengths. A whole set of parameters of the model used is found for strong, intermediate, and weak coupled systems being Poly (4-vinyl pyridine)-dodecyl benzene sulfonic acid [P4VP-(DBSA) x ], P4VP-[Zn(DBS) 2 ] x , and P4VP- 3-pentadecyl Phenol x , respectively. A passage from the former two to the latter is shown to cause a crucial decrease in the magnitude of both parameters of hydrogen bonding and self-action, as well as the order-disorder transition temperature

  11. Rheological and mechanical properties and interfacial stress development of composite cements modified with thio-urethane oligomers.

    Science.gov (United States)

    Bacchi, Ataís; Pfeifer, Carmem S

    2016-08-01

    Thio-urethane oligomers have been shown to reduce stress and increase toughness in highly filled composite materials. This study evaluated the influence of thio-urethane backbone structure on rheological and mechanical properties of resin cements modified with a fixed concentration of the oligomers. Thio-urethane oligomers (TU) were synthesized by combining thiols - pentaerythritol tetra-3-mercaptopropionate (PETMP) or trimethylol-tris-3-mercaptopropionate (TMP) - with isocyanates - 1,6-hexanediol-diissocyante (HDDI) (aliphatic) or 1,3-bis(1-isocyanato-1-methylethyl)benzene (BDI) (aromatic) or dicyclohexylmethane 4,4'-diisocyanate (HMDI) (cyclic), at 1:2 isocyanate:thiol, leaving pendant thiols. 20wt% TU were added to BisGMA-UDMA-TEGDMA (5:3:2). 60wt% silanated inorganic fillers were added. Near-IR was used to follow methacrylate conversion and rate of polymerization ( [Formula: see text] ). Mechanical properties were evaluated in three-point bending (ISO 4049) for flexural strength/modulus (FS/FM, and toughness), and notched specimens (ASTM Standard E399-90) for fracture toughness (KIC). PS was measured on the Bioman. Viscosity (V) and gel-points (defined as the crossover between storage and loss shear moduli (G'/G″)) were obtained with rheometry. Glass transition temperature (Tg), cross-link density and homogeneity of the network were obtained with dynamic mechanical analysis. Film-thickness was evaluated according to ISO 4049. DC and mechanical properties increased and [Formula: see text] and PS decreased with the addition of TUs. Gelation (G'/G″) was delayed and DC at G'/G″ increased in TU groups. Tg and cross-link density dropped in TU groups, while oligomers let to more homogenous networks. An increase in V was observed, with no effect on film-thickness. Significant reductions in PS were achieved at the same time conversion and mechanical properties increased. The addition of thio-urethane oligomers proved successful in improving several key properties

  12. Towards directional assembly of hierarchical structures: aniline oligomers as the model precursors

    Czech Academy of Sciences Publication Activity Database

    Zhao, Y.; Stejskal, Jaroslav; Wang, J.

    2013-01-01

    Roč. 5, č. 7 (2013), s. 2620-2626 ISSN 2040-3364 R&D Projects: GA ČR GAP205/12/0911 Institutional support: RVO:61389013 Keywords : aniline oligomers * hierarchical nanostructures * microflowers Subject RIV: CD - Macromolecular Chemistry Impact factor: 6.739, year: 2013

  13. Side-chain degradation of ultrapure π-conjugated oligomers: implications for organic electronics

    NARCIS (Netherlands)

    Abbel, R.J.; Wolffs, M.; Bovee, R.A.A.; Dongen, van J.L.J.; Lou, X.W.; Henze, O.; Feast, W.J.; Meijer, E.W.; Schenning, A.P.H.J.

    2009-01-01

    The degrdn. of two defect-free pi-conjugated oligomers and the participation of their solubilizing side chains in the process are studied in unprecedented detail. The detected intermediate products reveal a mechanism of successive shortening of alkyl and oligo(ethylene glycol) substituents.

  14. Isolation and Quantification of Polyamide Cyclic Oligomers in Kitchen Utensils and Their Migration into Various Food Simulants

    OpenAIRE

    Abe, Yutaka; Mutsuga, Motoh; Ohno, Hiroyuki; Kawamura, Yoko; Akiyama, Hiroshi

    2016-01-01

    Small amounts of cyclic monomers and oligomers are present in polyamide (PA)-based kitchen utensils. In this study, we isolated eight PA-based cyclic monomers and oligomers from kitchen utensils made from PA6 (a polymer of ε-caprolactam) and PA66 (a polymer of 1,6-diaminohexane and adipic acid). Their structures were identified using high-resolution mass spectrometry and 1H- and 13C-nuclear magnetic resonance spectroscopy, and their residual levels in PA-based kitchen utensils and degree of m...

  15. Multiple sclerosis, brain radiotherapy, and risk of neurotoxicity: The Mayo Clinic experience

    International Nuclear Information System (INIS)

    Miller, Robert C.; Lachance, Daniel H.; Lucchinetti, Claudia F.; Keegan, B. Mark; Gavrilova, Ralitza H.; Brown, Paul D.; Weinshenker, Brian G.; Rodriguez, Moses

    2006-01-01

    Purpose: The aim of this study was a retrospective assessment of neurotoxicity in patients with multiple sclerosis (MS) receiving external beam radiotherapy (EBRT) to the brain. Methods and Materials: We studied 15 consecutively treated patients with MS who received brain EBRT. Neurologic toxicity was assessed with the Common Toxicity Criteria v.3.0. Results: Median follow-up for the 5 living patients was 6.0 years (range, 3.3-27.4 years). No exacerbation of MS occurred in any patient during EBRT. Five patients had Grade 4 neurologic toxicity and 1 had possible Grade 5 toxicity. Kaplan-Meier estimated risk of neurotoxicity greater than Grade 4 at 5 years was 57% (95% confidence interval, 27%-82%). Toxicity occurred at 37.5 to 54.0 Gy at a median of 1.0 year (range, 0.2-4.3 years) after EBRT. Univariate analysis showed an association between opposed-field irradiation of the temporal lobes, central white matter, and brainstem and increased risk of neurotoxicity (p < 0.04). Three of 6 cases of toxicity occurred in patients treated before 1986. Conclusions: External beam radiotherapy of the brain in patients with MS may be associated with an increased risk of neurotoxicity compared with patients without demyelinating illnesses. However, this risk is associated with treatment techniques that may not be comparable to modern, conformal radiotherapy

  16. Involvement of ERK in NMDA receptor-independent cortical neurotoxicity of hydrogen sulfide

    International Nuclear Information System (INIS)

    Kurokawa, Yuko; Sekiguchi, Fumiko; Kubo, Satoko; Yamasaki, Yoshiko; Matsuda, Sachi; Okamoto, Yukari; Sekimoto, Teruki; Fukatsu, Anna; Nishikawa, Hiroyuki; Kume, Toshiaki; Fukushima, Nobuyuki; Akaike, Akinori; Kawabata, Atsufumi

    2011-01-01

    Highlights: ► Hydrogen sulfide causes NMDA receptor-independent neurotoxicity in mouse fetal cortical neurons. ► Activation of ERK mediates the toxicity of hydrogen sulfide. ► Apoptotic mechanisms are involved in the hydrogen-induced cell death. -- Abstract: Hydrogen sulfide (H 2 S), a gasotransmitter, exerts both neurotoxicity and neuroprotection, and targets multiple molecules including NMDA receptors, T-type calcium channels and NO synthase (NOS) that might affect neuronal viability. Here, we determined and characterized effects of NaHS, an H 2 S donor, on cell viability in the primary cultures of mouse fetal cortical neurons. NaHS caused neuronal death, as assessed by LDH release and trypan blue staining, but did not significantly reduce the glutamate toxicity. The neurotoxicity of NaHS was resistant to inhibitors of NMDA receptors, T-type calcium channels and NOS, and was blocked by inhibitors of MEK, but not JNK, p38 MAP kinase, PKC and Src. NaHS caused prompt phosphorylation of ERK and upregulation of Bad, followed by translocation of Bax to mitochondria and release of mitochondrial cytochrome c, leading to the nuclear condensation/fragmentation. These effects of NaHS were suppressed by the MEK inhibitor. Our data suggest that the NMDA receptor-independent neurotoxicity of H 2 S involves activation of the MEK/ERK pathway and some apoptotic mechanisms.

  17. Thallium Toxicity: General Issues, Neurological Symptoms, and Neurotoxic Mechanisms.

    Science.gov (United States)

    Osorio-Rico, Laura; Santamaria, Abel; Galván-Arzate, Sonia

    2017-01-01

    Thallium (Tl + ) is a ubiquitous natural trace metal considered as the most toxic among heavy metals. The ionic ratio of Tl + is similar to that of potassium (K + ), therefore accounting for the replacement of the latter during enzymatic reactions. The principal organelle damaged after Tl + exposure is mitochondria. Studies on the mechanisms of Tl + include intrinsic pathways altered and changes in antiapoptotic and proapoptotic proteins, cytochrome c, and caspases. Oxidative damage pathways increase after Tl + exposure to produce reactive oxygen species (ROS), changes in physical properties of the cell membrane caused by lipid peroxidation, and concomitant activation of antioxidant mechanisms. These processes are likely to account for the neurotoxic effects of the metal. In humans, Tl + is absorbed through the skin and mucous membranes and then is widely distributed throughout the body to be accumulated in bones, renal medulla, liver, and the Central Nervous System. Given the growing relevance of Tl + intoxication, in recent years there is a notorious increase in the number of reports attending Tl + pollution in different countries. In this sense, the neurological symptoms produced by Tl + and its neurotoxic effects are gaining attention as they represent a serious health problem all over the world. Through this review, we present an update to general information about Tl + toxicity, making emphasis on some recent data about Tl + neurotoxicity, as a field requiring attention at the clinical and preclinical levels.

  18. Combining Orthogonal Chain-End Deprotections and Thiol-Maleimide Michael Coupling: Engineering Discrete Oligomers by an Iterative Growth Strategy.

    Science.gov (United States)

    Huang, Zhihao; Zhao, Junfei; Wang, Zimu; Meng, Fanying; Ding, Kunshan; Pan, Xiangqiang; Zhou, Nianchen; Li, Xiaopeng; Zhang, Zhengbiao; Zhu, Xiulin

    2017-10-23

    Orthogonal maleimide and thiol deprotections were combined with thiol-maleimide coupling to synthesize discrete oligomers/macromolecules on a gram scale with molecular weights up to 27.4 kDa (128mer, 7.9 g) using an iterative exponential growth strategy with a degree of polymerization (DP) of 2 n -1. Using the same chemistry, a "readable" sequence-defined oligomer and a discrete cyclic topology were also created. Furthermore, uniform dendrons were fabricated using sequential growth (DP=2 n -1) or double exponential dendrimer growth approaches (DP=22n -1) with significantly accelerated growth rates. A versatile, efficient, and metal-free method for construction of discrete oligomers with tailored structures and a high growth rate would greatly facilitate research into the structure-property relationships of sophisticated polymeric materials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Molecular Dynamics Simulations of Silica Nanoparticles Grafted with Poly(ethylene oxide) Oligomer Chains

    KAUST Repository

    Hong, Bingbing; Panagiotopoulos, Athanassios Z.

    2012-01-01

    A molecular model of silica nanoparticles grafted with poly(ethylene oxide) oligomers has been developed for predicting the transport properties of nanoparticle organic-hybrid materials (NOHMs). Ungrafted silica nanoparticles in a medium of poly(ethylene

  20. Neurotoxic effects of ecstasy on the thalamus.

    Science.gov (United States)

    de Win, Maartje M L; Jager, Gerry; Booij, Jan; Reneman, Liesbeth; Schilt, Thelma; Lavini, Cristina; Olabarriaga, Sílvia D; Ramsey, Nick F; Heeten, Gerard J den; van den Brink, Wim

    2008-10-01

    Neurotoxic effects of ecstasy have been reported, although it remains unclear whether effects can be attributed to ecstasy, other recreational drugs or a combination of these. To assess specific/independent neurotoxic effects of heavy ecstasy use and contributions of amphetamine, cocaine and cannabis as part of The Netherlands XTC Toxicity (NeXT) study. Effects of ecstasy and other substances were assessed with (1)H-magnetic resonance spectroscopy, diffusion tensor imaging, perfusion weighted imaging and [(123)I]2beta-carbomethoxy-3beta-(4-iodophenyl)-tropane ([(123)I]beta-CIT) single photon emission computed tomography (serotonin transporters) in a sample (n=71) with broad variation in drug use, using multiple regression analyses. Ecstasy showed specific effects in the thalamus with decreased [(123)I]beta-CIT binding, suggesting serotonergic axonal damage; decreased fractional anisotropy, suggesting axonal loss; and increased cerebral blood volume probably caused by serotonin depletion. Ecstasy had no effect on brain metabolites and apparent diffusion coefficients. Converging evidence was found for a specific toxic effect of ecstasy on serotonergic axons in the thalamus.

  1. The Effect of H2SO4 Concentration on the Ionic Conductivity of Liquid PMMA Oligomer

    International Nuclear Information System (INIS)

    Norashima Kamaluddin; Famiza Abdul Latif; Han, C.C.; Ruhani Ibrahim; Sharil Fadli Mohamad Zamri; Norashima Kamaluddin; Famiza Abdul Latif; Han, C.C.; Ruhani Ibrahim; Sharil Fadli Mohamad Zamri

    2015-01-01

    To date gel and film type polymer electrolytes have been widely synthesized due to their wide range of electrical properties. However these types of polymer electrolytes exhibit poor mechanical stability and poor electrode-electrolyte contact hence deprive the overall performance of a battery system. Therefore, in order to indulge the advantages of polymer as electrolyte, a new class of polymer electrolyte was synthesized and investigated. In this study, liquid poly(methyl methacrylate) (PMMA) electrolyte was synthesized using the simplest free radical polymerization technique using benzoyl peroxide as the initiator. At this stage, it was found that this liquid PMMA oligomer (MW=3000 g/ mole) has a potential as electrolyte in electrochemical devices. It was found that an ionic conductivity of ∼10 -7 S/ cm at room temperature can be achieved when only small volume of high molarity of sulfuric acid (H 2 SO 4 ) was doped in the liquid PMMA oligomer. The properties of this liquid PMMA oligomer were further investigated using Fourier Transform Infrared Spectroscopy (FTIR). (author)

  2. Hydrogen bonding as the origin of the switching behavior in dithiolated phenylene-vinylene oligomers

    KAUST Repository

    Obodo, Tobechukwu Joshua; Gkionis, Konstantinos; Rungger, Ivan; Sanvito, Stefano; Schwingenschlö gl, Udo

    2013-01-01

    We investigate theoretically the switching behavior of a dithiolated phenylene-vinylene oligomer sandwiched between Au(111) electrodes using self-interaction corrected density-functional theory combined with the nonequilibrium Green

  3. Protective effect of quercetin on bupivacaine-induced neurotoxicity ...

    African Journals Online (AJOL)

    ... bupivacaine, possibly through inhibition of T-type calcium channel. This finding implies a novel mechanism for neuroprotective effect of quercetin, and its potential for treating toxicity arising from the use of local anesthetic agents. Keywords: Quercetin, Bupivacaine, Local anaesthetic, Neuroprotection, Neurotoxicity, T-type ...

  4. Toxicologic evidence of developmental neurotoxicity of environmental chemicals

    DEFF Research Database (Denmark)

    Andersen, H R; Nielsen, J B; Grandjean, P

    2000-01-01

    Developmental neurotoxicity constitutes effects occurring in the offspring primarily as a result of exposure of the mother during pregnancy and lactation. To exert their effect, these chemicals or their metabolites must pass the placenta and/or the blood-brain barrier. In experimental animals, ex...

  5. Hyperammonemia following glufosinate-containing herbicide poisoning: a potential marker of severe neurotoxicity.

    Science.gov (United States)

    Mao, Yan-Chiao; Wang, Jiaan-Der; Hung, Dong-Zong; Deng, Jou-Fang; Yang, Chen-Chang

    2011-01-01

    Glufosinate-ammonium (GLA) is the active ingredient of certain widely used non-selective contact herbicides ("e.g.," Basta). Although it is thought to be much less toxic to humans than to plants, deliberate ingestion of GLA could still lead to serious effects ("e.g.," neurotoxicity) or even death. Three cases presented with delayed-onset neurotoxicity including stupor, delirium, seizures, coma, and amnesia after ingesting large amount of Basta. Considering that GLA could irreversibly inhibit glutamine synthetase (GS) in plants, we performed serial measurements of serum ammonia in those patients and revealed marked hyperammonemia in all of them. All patients recovered with the sequelae of persistent amnesia after receiving intensive care and hemodialysis. We speculated that the occurrence of hyperammonemia might at least be partially related to GS inhibition in humans. Moreover, hyperammonemia could serve as a potential marker of severe neurotoxicity, especially prolonged amnesia, following massive ingestion of GLA-containing herbicides. The possible dose-response relation between GLA exposure and serum ammonia level, however, needs more investigations.

  6. Astragalus Polysaccharide Suppresses 6-Hydroxydopamine-Induced Neurotoxicity in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Haifeng Li

    2016-01-01

    Full Text Available Astragalus membranaceus is a medicinal plant traditionally used in China for a variety of conditions, including inflammatory and neural diseases. Astragalus polysaccharides are shown to reduce the adverse effect of levodopa which is used to treat Parkinson’s disease (PD. However, the neuroprotective effect of Astragalus polysaccharides per se in PD is lacking. Using Caenorhabditis elegans models, we investigated the protective effect of astragalan, an acidic polysaccharide isolated from A. membranaceus, against the neurotoxicity of 6-hydroxydopamine (6-OHDA, a neurotoxin that can induce parkinsonism. We show that 6-OHDA is able to degenerate dopaminergic neurons and lead to the deficiency of food-sensing behavior and a shorter lifespan in C. elegans. Interestingly, these degenerative symptoms can be attenuated by astragalan treatment. Astragalan is also shown to alleviate oxidative stress through reducing reactive oxygen species level and malondialdehyde content and increasing superoxide dismutase and glutathione peroxidase activities and reduce the expression of proapoptotic gene egl-1 in 6-OHDA-intoxicated nematodes. Further studies reveal that astragalan is capable of elevating the decreased acetylcholinesterase activity induced by 6-OHDA. Together, our results demonstrate that the protective effect of astragalan against 6-OHDA neurotoxicity is likely due to the alleviation of oxidative stress and regulation of apoptosis pathway and cholinergic system and thus provide an important insight into the therapeutic potential of Astragalus polysaccharide in neurodegeneration.

  7. MR findings of cyclosporine neurotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Po Song; Ahn, Kook Jin; Ahn, Bo Young; Jung, Hae An; Kim, Hee Je; Lee, Jae Mun [The Catholic Univ. St Mary' s Hospital, Seoul (Korea, Republic of)

    1998-12-01

    To analyze the MR findings of cyclosporine-induced neurotoxicity in patients receiving high dose of cyclosporine and to suggest the possible pathogenetic mechanism. The cases of seven patients (2 males, 5 females;18-36 years old) who suffered seizures after receiving high-dose cyclosporine for bone marrow transplantation due to diseases such as aplastic anemia or leukemia were retrospectively reviewed. We evaluated the location and pattern of abnormal signal intensity seen on T2 weighted images, the presence of contrast enhancement, and the changes seen on follow-up MR performed at intervals of 12-30 days after initial MR in five of seven patients. We analyzed levels of blood cyclosporine and magnesium, and investigated the presence of hypertension at the sity of the seizure. Locations of the lesions were bilateral(n=3D5), unilateral(n=3D2), parietal(n=3D6), occipital(n=3D6), temporal(n=3D4), and in the frontal lobe(n=3D3). Frontal lesions showed high signal intensities in the borderline ischemic zone of the frontal lobe between the territory of the anterior and middle cerebral arteries. In six of the seven patients, cortical and subcortical areas including subcortical U-fibers were seen on T2-weighted images to be involved in the parietooccipital lobes. Only one of the seven showed high signal intensity in the left basal ganglia. All lesions showed high signal intensity on T2-weighted images, and iso to low signal intensity on T1-weighted. In five of seven patients there was no definite enhancement, but in the other two, enhancement was slight. In four of seven patients seizures occurred within high therapeutic ranges(250-450ng/ml), while others suffered such attacks at levels below the therapeutic range. After cyclospirine was administered at a reduced dosage or stopped, follow-up MR images showed the complete or near-total disappearance of the abnormal findings previously described. Only two patients had hypertension, and the others normotension. Five of the

  8. MR findings of cyclosporine neurotoxicity

    International Nuclear Information System (INIS)

    Yang, Po Song; Ahn, Kook Jin; Ahn, Bo Young; Jung, Hae An; Kim, Hee Je; Lee, Jae Mun

    1998-01-01

    To analyze the MR findings of cyclosporine-induced neurotoxicity in patients receiving high dose of cyclosporine and to suggest the possible pathogenetic mechanism. The cases of seven patients (2 males, 5 females;18-36 years old) who suffered seizures after receiving high-dose cyclosporine for bone marrow transplantation due to diseases such as aplastic anemia or leukemia were retrospectively reviewed. We evaluated the location and pattern of abnormal signal intensity seen on T2 weighted images, the presence of contrast enhancement, and the changes seen on follow-up MR performed at intervals of 12-30 days after initial MR in five of seven patients. We analyzed levels of blood cyclosporine and magnesium, and investigated the presence of hypertension at the sity of the seizure. Locations of the lesions were bilateral(n=3D5), unilateral(n=3D2), parietal(n=3D6), occipital(n=3D6), temporal(n=3D4), and in the frontal lobe(n=3D3). Frontal lesions showed high signal intensities in the borderline ischemic zone of the frontal lobe between the territory of the anterior and middle cerebral arteries. In six of the seven patients, cortical and subcortical areas including subcortical U-fibers were seen on T2-weighted images to be involved in the parietooccipital lobes. Only one of the seven showed high signal intensity in the left basal ganglia. All lesions showed high signal intensity on T2-weighted images, and iso to low signal intensity on T1-weighted. In five of seven patients there was no definite enhancement, but in the other two, enhancement was slight. In four of seven patients seizures occurred within high therapeutic ranges(250-450ng/ml), while others suffered such attacks at levels below the therapeutic range. After cyclospirine was administered at a reduced dosage or stopped, follow-up MR images showed the complete or near-total disappearance of the abnormal findings previously described. Only two patients had hypertension, and the others normotension. Five of the

  9. Atomistic simulation of CO 2 solubility in poly(ethylene oxide) oligomers

    KAUST Repository

    Hong, Bingbing

    2013-10-02

    We have performed atomistic molecular dynamics simulations coupled with thermodynamic integration to obtain the excess chemical potential and pressure-composition phase diagrams for CO2 in poly(ethylene oxide) oligomers. Poly(ethylene oxide) dimethyl ether, CH3O(CH 2CH2O)nCH3 (PEO for short) is a widely applied physical solvent that forms the major organic constituent of a class of novel nanoparticle-based absorbents. Good predictions were obtained for pressure-composition-density relations for CO2 + PEO oligomers (2 ≤ n ≤ 12), using the Potoff force field for PEO [J. Chem. Phys. 136, 044514 (2012)] together with the TraPPE model for CO2 [AIChE J. 47, 1676 (2001)]. Water effects on Henrys constant of CO2 in PEO have also been investigated. Addition of modest amounts of water in PEO produces a relatively small increase in Henrys constant. Dependence of the calculated Henrys constant on the weight percentage of water falls on a temperature-dependent master curve, irrespective of PEO chain length. © 2013 Taylor & Francis.

  10. Enhanced Solubilization of Fluoranthene by Hydroxypropyl β-Cyclodextrin Oligomer for Bioremediation

    Directory of Open Access Journals (Sweden)

    Kyeong Hui Park

    2018-01-01

    Full Text Available Fluoranthene (FT is a polycyclic aromatic hydrocarbon (PAH, consisting of naphthalene and benzene rings connected by a five-member ring. It is widespread in the environment. The hydrophobicity of FT limits its availability for biological uptake and degradation. In this study, hydroxypropyl β-cyclodextrin oligomers (HP-β-CD-ol were synthesized with epichlorohydrin (EP, while the solubility enhancement of FT by HP-β-CD-ol was investigated in water. The synthesized HP-β-CD-ol was characterized by MALDI-TOF mass spectrometry (MS, 1H NMR, and 13C NMR spectroscopy. The solubility of FT increased 178-fold due to the complex formation with HP-β-CD oligomers. The inclusion complexes of FT/HP-β-CD-ol were analyzed using Fourier-Transform Infrared (FT-IR, Differential Scanning Calorimetry (DSC, Scanning Electron Microscope (SEM, and Nuclear Overhauser Effect Spectroscopy Nuclear magnetic resonance (NOESY NMR spectroscopy. On the basis of these results, HP-β-CD-ol is recommended as a potential solubilizer for the development of PAH removal systems.

  11. QIAD assay for quantitating a compound’s efficacy in elimination of toxic Aβ oligomers

    Science.gov (United States)

    Brener, Oleksandr; Dunkelmann, Tina; Gremer, Lothar; van Groen, Thomas; Mirecka, Ewa A.; Kadish, Inga; Willuweit, Antje; Kutzsche, Janine; Jürgens, Dagmar; Rudolph, Stephan; Tusche, Markus; Bongen, Patrick; Pietruszka, Jörg; Oesterhelt, Filipp; Langen, Karl-Josef; Demuth, Hans-Ulrich; Janssen, Arnold; Hoyer, Wolfgang; Funke, Susanne A.; Nagel-Steger, Luitgard; Willbold, Dieter

    2015-01-01

    Strong evidence exists for a central role of amyloid β-protein (Aβ) oligomers in the pathogenesis of Alzheimer’s disease. We have developed a fast, reliable and robust in vitro assay, termed QIAD, to quantify the effect of any compound on the Aβ aggregate size distribution. Applying QIAD, we studied the effect of homotaurine, scyllo-inositol, EGCG, the benzofuran derivative KMS88009, ZAβ3W, the D-enantiomeric peptide D3 and its tandem version D3D3 on Aβ aggregation. The predictive power of the assay for in vivo efficacy is demonstrated by comparing the oligomer elimination efficiency of D3 and D3D3 with their treatment effects in animal models of Alzheimer´s disease. PMID:26394756

  12. Β-amyloid 1-42 oligomers impair function of human embryonic stem cell-derived forebrain cholinergic neurons.

    Directory of Open Access Journals (Sweden)

    Linn Wicklund

    Full Text Available Cognitive impairment in Alzheimer's disease (AD patients is associated with a decline in the levels of growth factors, impairment of axonal transport and marked degeneration of basal forebrain cholinergic neurons (BFCNs. Neurogenesis persists in the adult human brain, and the stimulation of regenerative processes in the CNS is an attractive prospect for neuroreplacement therapy in neurodegenerative diseases such as AD. Currently, it is still not clear how the pathophysiological environment in the AD brain affects stem cell biology. Previous studies investigating the effects of the β-amyloid (Aβ peptide on neurogenesis have been inconclusive, since both neurogenic and neurotoxic effects on progenitor cell populations have been reported. In this study, we treated pluripotent human embryonic stem (hES cells with nerve growth factor (NGF as well as with fibrillar and oligomeric Aβ1-40 and Aβ1-42 (nM-µM concentrations and thereafter studied the differentiation in vitro during 28-35 days. The process applied real time quantitative PCR, immunocytochemistry as well as functional studies of intracellular calcium signaling. Treatment with NGF promoted the differentiation into functionally mature BFCNs. In comparison to untreated cells, oligomeric Aβ1-40 increased the number of functional neurons, whereas oligomeric Aβ1-42 suppressed the number of functional neurons. Interestingly, oligomeric Aβ exposure did not influence the number of hES cell-derived neurons compared with untreated cells, while in contrast fibrillar Aβ1-40 and Aβ1-42 induced gliogenesis. These findings indicate that Aβ1-42 oligomers may impair the function of stem cell-derived neurons. We propose that it may be possible for future AD therapies to promote the maturation of functional stem cell-derived neurons by altering the brain microenvironment with trophic support and by targeting different aggregation forms of Aβ.

  13. Modulation of α-synuclein fibrillization by ring-fused 2-pyridones: templation and inhibition involve oligomers with different structure.

    Science.gov (United States)

    Horvath, Istvan; Sellstedt, Magnus; Weise, Christoph; Nordvall, Lina-Maria; Krishna Prasad, G; Olofsson, Anders; Larsson, Göran; Almqvist, Fredrik; Wittung-Stafshede, Pernilla

    2013-04-15

    In a recent study we discovered that a ring-fused 2-pyridone compound triggered fibrillization of a key protein in Parkinson's disease, α-synuclein. To reveal how variations in compound structure affect protein aggregation, we now prepared a number of strategic analogs and tested their effects on α-synuclein amyloid fiber formation in vitro. We find that, in contrast to the earlier templating effect, some analogs inhibit α-synuclein fibrillization. For both templating and inhibiting compounds, the key species formed in the reactions are α-synuclein oligomers that contain compound. Despite similar macroscopic appearance, the templating and inhibiting oligomers are distinctly different in secondary structure content. When the inhibitory oligomers are added in seed amounts, they inhibit fresh α-synuclein aggregation reactions. Our study demonstrates that small chemical changes to the same central fragment can result in opposite effects on protein aggregation. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Lead neurotoxicity: In vitro and in vivo effects

    International Nuclear Information System (INIS)

    Rowles, T.K.

    1989-01-01

    Neuroglial cells, in particular astroglia, are thought to play a role in the neurotoxicity of lead. Two hypotheses have been proposed as possible cellular mechanism of this neurotoxicity: (1) lead affects intracellular levels of metals which mediate the toxic effects noted, and (2) lead affects intracellular heme biosynthesis which is then toxic to the cells. Zinc was found to have a profound effect on both intracellular lead levels and on cell numbers in lead-treated rat astroglia. A comparison of bovine and rat astroglia in culture indicated that the bovine cell cultures were not more sensitive to lead, even though calves are more sensitive. Lead was also shown to affect intracellular heme biosynthesis by a decrease in 14 C aminolevulinic acid incorporation into extractable heme in lead-treated rat astroglia. Finally, low levels of lead in immature guinea pigs caused changes in tissue levels of lead, iron, copper, and zinc with no change in weight gain or body:brain weight ratios

  15. Cnidarian Neurotoxic Peptides Affecting Central Nervous System Targets.

    Science.gov (United States)

    Lazcano-Pérez, Fernando; Hernández-Guzmán, Ulises; Sánchez-Rodríguez, Judith; Arreguín-Espinosa, Roberto

    2016-01-01

    Natural products from animal venoms have been used widely in the discovery of novel molecules with particular biological activities that enable their use as potential drug candidates. The phylum Cnidaria (jellyfish, sea anemones, corals zoanthids, hydrozoans, etc.) is the most ancient venomous phylum on earth. Its venoms are composed of a complex mixture of peptidic compounds with neurotoxic and cytolitic properties that have shown activity on mammalian systems despite the fact that they are naturally targeted against fish and invertebrate preys, mainly crustaceans. For this reason, cnidarian venoms are an interesting and vast source of molecules with a remarkable activity on central nervous system, targeting mainly voltage-gated ion channels, ASIC channels, and TRPV1 receptors. In this brief review, we list the amino acid sequences of most cnidarian neurotoxic peptides reported to date. Additionally, we propose the inclusion of a new type of voltage-gated sea anemone sodium channel toxins based on the most recent reports.

  16. Neurotoxicity of dental amalgam is mediated by zinc.

    Science.gov (United States)

    Lobner, D; Asrari, M

    2003-03-01

    The use of dental amalgam is controversial largely because it contains mercury. We tested whether amalgam caused toxicity in neuronal cultures and whether that toxicity was caused by mercury. In this study, we used cortical cell cultures to show for the first time that amalgam causes nerve cell toxicity in culture. However, the toxicity was not blocked by the mercury chelator, 2,3-dimercaptopropane-1-sulphonate (DMPS), but was blocked by the metal chelator, calcium disodium ethylenediaminetetraacetate (CaEDTA). DMPS was an effective mercury chelator in this system, since it blocked mercury toxicity. Of the components that comprise amalgam (mercury, zinc, tin, copper, and silver), only zinc neurotoxicity was blocked by CaEDTA. These results indicate that amalgam is toxic to nerve cells in culture by releasing zinc. While zinc is known to be neurotoxic, ingestion of zinc is not a major concern because zinc levels in the body are tightly regulated.

  17. In vitro acute and developmental neurotoxicity screening: an overview of cellular platforms and high-throughput technical possibilities.

    Science.gov (United States)

    Schmidt, Béla Z; Lehmann, Martin; Gutbier, Simon; Nembo, Erastus; Noel, Sabrina; Smirnova, Lena; Forsby, Anna; Hescheler, Jürgen; Avci, Hasan X; Hartung, Thomas; Leist, Marcel; Kobolák, Julianna; Dinnyés, András

    2017-01-01

    Neurotoxicity and developmental neurotoxicity are important issues of chemical hazard assessment. Since the interpretation of animal data and their extrapolation to man is challenging, and the amount of substances with information gaps exceeds present animal testing capacities, there is a big demand for in vitro tests to provide initial information and to prioritize for further evaluation. During the last decade, many in vitro tests emerged. These are based on animal cells, human tumour cell lines, primary cells, immortalized cell lines, embryonic stem cells, or induced pluripotent stem cells. They differ in their read-outs and range from simple viability assays to complex functional endpoints such as neural crest cell migration. Monitoring of toxicological effects on differentiation often requires multiomics approaches, while the acute disturbance of neuronal functions may be analysed by assessing electrophysiological features. Extrapolation from in vitro data to humans requires a deep understanding of the test system biology, of the endpoints used, and of the applicability domains of the tests. Moreover, it is important that these be combined in the right way to assess toxicity. Therefore, knowledge on the advantages and disadvantages of all cellular platforms, endpoints, and analytical methods is essential when establishing in vitro test systems for different aspects of neurotoxicity. The elements of a test, and their evaluation, are discussed here in the context of comprehensive prediction of potential hazardous effects of a compound. We summarize the main cellular characteristics underlying neurotoxicity, present an overview of cellular platforms and read-out combinations assessing distinct parts of acute and developmental neurotoxicology, and highlight especially the use of stem cell-based test systems to close gaps in the available battery of tests.

  18. What is microglia neurotoxicity (Not)?

    DEFF Research Database (Denmark)

    Biber, Knut; Owens, Trevor; Boddeke, Erik

    2014-01-01

    and vulnerable organ like the brain should host numerous potential killers, we here review the concept of microglia neurotoxicity. On one hand it is discussed that most of our understanding about how microglia kill neurons is based on in vitro experiments or correlative staining studies that suffer from...... the difficulty to discriminate microglia and peripheral myeloid cells in the diseased brain. On the other hand it is described that a more functional approach by mutating, inactivating or deleting microglia is seldom associated with a beneficial outcome in an acute injury situation, suggesting that microglia...

  19. Exocytosis: using amperometry to study presynaptic mechanisms of neurotoxicity

    NARCIS (Netherlands)

    Westerink, R.H.S.

    2004-01-01

    The development of carbon fiber microelectrode amperometry enabled detailed investigation of the presynaptic response at the single cell level with single vesicle resolution. Consequently, amperometry allowed for detailed studies into the presynaptic mechanisms underlying neurotoxicity. This review

  20. p73 gene in dopaminergic neurons is highly susceptible to manganese neurotoxicity.

    Science.gov (United States)

    Kim, Dong-Suk; Jin, Huajun; Anantharam, Vellareddy; Gordon, Richard; Kanthasamy, Arthi; Kanthasamy, Anumantha G

    2017-03-01

    Chronic exposure to elevated levels of manganese (Mn) has been linked to a Parkinsonian-like movement disorder, resulting from dysfunction of the extrapyramidal motor system within the basal ganglia. However, the exact cellular and molecular mechanisms of Mn-induced neurotoxicity remain elusive. In this study, we treated C57BL/6J mice with 30mg/kg Mn via oral gavage for 30 days. Interestingly, in nigral tissues of Mn-exposed mice, we found a significant downregulation of the truncated isoform of p73 protein at the N-terminus (ΔNp73). To further determine the functional role of Mn-induced p73 downregulation in Mn neurotoxicity, we examined the interrelationship between the effect of Mn on p73 gene expression and apoptotic cell death in an N27 dopaminergic neuronal model. Consistent with our animal study, 300μM Mn treatment significantly suppressed p73 mRNA expression in N27 dopaminergic cells. We further determined that protein levels of the ΔNp73 isoform was also reduced in Mn-treated N27 cells and primary striatal cultures. Furthermore, overexpression of ΔNp73 conferred modest cellular protection against Mn-induced neurotoxicity. Taken together, our results demonstrate that Mn exposure downregulates p73 gene expression resulting in enhanced susceptibility to apoptotic cell death. Thus, further characterization of the cellular mechanism underlying p73 gene downregulation will improve our understanding of the molecular underpinnings of Mn neurotoxicity. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Steady State and Time-Resolved Fluorescence Dynamics of Triphenylamine Based Oligomers with Phenylene/Thiophene/Furan in Solvents

    International Nuclear Information System (INIS)

    Qi, Zeng; Ying-Liang, Liu; Kang, Meng; Xiang-Jie, Zhao; Shu-Feng, Wang; Qi-Huang, Gong

    2009-01-01

    We investigate the photo-physical properties of a series of triphenylamine-based oligomers by steady-state and picosecond transient fluorescence measurements in solvents. The oligomers are composed alternatively with triphenylamine and phenylene/thiophene/furan group, bridged by vinyl group (PNB/PNT/PNF). Their fluorescence spectra show bathochromic phenomenon with solvent polarity and viscosity increasing. The fluorescence decays are bi-exponential for PNB and PNT, and tri-exponential for PNF in THF and aniline. The strong viscosity dependence suggests conformational relaxation along the PNF chain after photo excitation. (condensed matter: electronicstructure, electrical, magnetic, and opticalproperties)

  2. Rationally designed turn promoting mutation in the amyloid-β peptide sequence stabilizes oligomers in solution.

    Directory of Open Access Journals (Sweden)

    Jayakumar Rajadas

    Full Text Available Enhanced production of a 42-residue beta amyloid peptide (Aβ(42 in affected parts of the brain has been suggested to be the main causative factor for the development of Alzheimer's Disease (AD. The severity of the disease depends not only on the amount of the peptide but also its conformational transition leading to the formation of oligomeric amyloid-derived diffusible ligands (ADDLs in the brain of AD patients. Despite being significant to the understanding of AD mechanism, no atomic-resolution structures are available for these species due to the evanescent nature of ADDLs that hinders most structural biophysical investigations. Based on our molecular modeling and computational studies, we have designed Met35Nle and G37p mutations in the Aβ(42 peptide (Aβ(42Nle35p37 that appear to organize Aβ(42 into stable oligomers. 2D NMR on the Aβ(42Nle35p37 peptide revealed the occurrence of two β-turns in the V24-N27 and V36-V39 stretches that could be the possible cause for the oligomer stability. We did not observe corresponding NOEs for the V24-N27 turn in the Aβ(21-43Nle35p37 fragment suggesting the need for the longer length amyloid peptide to form the stable oligomer promoting conformation. Because of the presence of two turns in the mutant peptide which were absent in solid state NMR structures for the fibrils, we propose, fibril formation might be hindered. The biophysical information obtained in this work could aid in the development of structural models for toxic oligomer formation that could facilitate the development of therapeutic approaches to AD.

  3. L-Ascorbate attenuates methamphetamine neurotoxicity through enhancing the induction of endogenous heme oxygenase-1

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ya-Ni [Department of Nursing, Hsin Sheng College of Medical Care and Management, Taoyuan, Taiwan (China); Wang, Jiz-Yuh [Department of Neurology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Lee, Ching-Tien [Department of Nursing, Hsin Sheng College of Medical Care and Management, Taoyuan, Taiwan (China); Lin, Chih-Hung [Graduate Institute of Medical Sciences and Department of Physiology, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Lai, Chien-Cheng [Far Eastern Memorial Hospital, Department of Surgery, Taipei, Taiwan (China); Wang, Jia-Yi, E-mail: jywang2010@tmu.edu.tw [Graduate Institute of Medical Sciences and Department of Physiology, College of Medicine, Taipei Medical University, Taipei, Taiwan (China)

    2012-12-01

    Methamphetamine (METH) is a drug of abuse which causes neurotoxicity and increased risk of developing neurodegenerative diseases. We previously found that METH induces heme oxygenase (HO)-1 expression in neurons and glial cells, and this offers partial protection against METH toxicity. In this study, we investigated the effects of L-ascorbate (vitamin C, Vit. C) on METH toxicity and HO-1 expression in neuronal/glial cocultures. Cell viability and damage were evaluated by 3-(4,5-dimethylthianol-2-yl)-2,5 diphenyl tetrazolium bromide (MTT) reduction and lactate dehydrogenase (LDH) release, respectively. Neuronal and glial localization of HO-1 were identified by double immunofluorescence staining. Reactive oxygen species (ROS) production was measured using the fluorochrome 2′,7′-dichlorofluorescin diacetate. HO-1 mRNA and protein expression were examined by RT-qPCR and Western blotting, respectively. Results show that Vit. C induced HO-1 mRNA and protein expressions in time- and concentration-dependent manners. Inhibition of p38 mitogen-activated protein kinase (MAPK) but not extracellular signal-regulated kinase (ERK) significantly blocked induction of HO-1 by Vit. C. HO-1 mRNA and protein expressions were significantly elevated by a combination of Vit. C and METH, compared to either Vit. C or METH alone. Pretreatment with Vit. C enhanced METH-induced HO-1 expression and attenuated METH-induced ROS production and neurotoxicity. Pharmacological inhibition of HO activity abolished suppressive effects of Vit. C on METH-induced ROS production and attenuated neurotoxicity. We conclude that induction of HO-1 expression contributes to the attenuation of METH-induced ROS production and neurotoxicity by Vit. C. We suggest that HO-1 induction by Vit. C may serve as a strategy to alleviate METH neurotoxicity. -- Highlights: ► Besides the anti-oxidant effect, Vit. C also induces HO-1 expression in brain cells. ► Vit. C reduces METH neurotoxicity and ROS production by

  4. L-Ascorbate attenuates methamphetamine neurotoxicity through enhancing the induction of endogenous heme oxygenase-1

    International Nuclear Information System (INIS)

    Huang, Ya-Ni; Wang, Jiz-Yuh; Lee, Ching-Tien; Lin, Chih-Hung; Lai, Chien-Cheng; Wang, Jia-Yi

    2012-01-01

    Methamphetamine (METH) is a drug of abuse which causes neurotoxicity and increased risk of developing neurodegenerative diseases. We previously found that METH induces heme oxygenase (HO)-1 expression in neurons and glial cells, and this offers partial protection against METH toxicity. In this study, we investigated the effects of L-ascorbate (vitamin C, Vit. C) on METH toxicity and HO-1 expression in neuronal/glial cocultures. Cell viability and damage were evaluated by 3-(4,5-dimethylthianol-2-yl)-2,5 diphenyl tetrazolium bromide (MTT) reduction and lactate dehydrogenase (LDH) release, respectively. Neuronal and glial localization of HO-1 were identified by double immunofluorescence staining. Reactive oxygen species (ROS) production was measured using the fluorochrome 2′,7′-dichlorofluorescin diacetate. HO-1 mRNA and protein expression were examined by RT-qPCR and Western blotting, respectively. Results show that Vit. C induced HO-1 mRNA and protein expressions in time- and concentration-dependent manners. Inhibition of p38 mitogen-activated protein kinase (MAPK) but not extracellular signal-regulated kinase (ERK) significantly blocked induction of HO-1 by Vit. C. HO-1 mRNA and protein expressions were significantly elevated by a combination of Vit. C and METH, compared to either Vit. C or METH alone. Pretreatment with Vit. C enhanced METH-induced HO-1 expression and attenuated METH-induced ROS production and neurotoxicity. Pharmacological inhibition of HO activity abolished suppressive effects of Vit. C on METH-induced ROS production and attenuated neurotoxicity. We conclude that induction of HO-1 expression contributes to the attenuation of METH-induced ROS production and neurotoxicity by Vit. C. We suggest that HO-1 induction by Vit. C may serve as a strategy to alleviate METH neurotoxicity. -- Highlights: ► Besides the anti-oxidant effect, Vit. C also induces HO-1 expression in brain cells. ► Vit. C reduces METH neurotoxicity and ROS production by

  5. Comparative developmental neurotoxicity of flame-retardants, polybrominated flame-retardants and organophosphorous compounds, in mice

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, P.; Johansson, N.; Viberg, H.; Fischer, C.; Fredriksson, A. [Dept. of Environmental Toxicology, Uppsala Univ. (Sweden)

    2004-09-15

    Recently we have reported that certain PBDEs, such as 2,2',4,4'-tetrabromodiphenyl ether (PBDE 47), 2,2',4,4',5- pentabromodiphenyl ether (PBDE 99), 2,2',4,4',5,5'-hexabromodiphenyl ether (PBDE153) and 2,2',3,3',4,4',5,5',6,6'-decabromodiphenyl ether (PBDE 209) can cause developmental neurotoxic effects when given to neonatal mice. The developmental neurotoxic effects after neonatal exposure to PBDE 209 are suggested to be caused by a metabolite (possible de-brominated one). Neonatal exposure HBCDD has also been shown to cause developmental neurotoxic effects. Neonatal exposure to PBDE 99, PBDE 153 and HBCDD was also found to affect learning and memory in the adult animal. The induction of permanent aberration in spontaneous behaviour was induced during limited period of the neonatal brain development. The altered spontaneous behaviour was also seen to worsen with age. In these studies we have also found that the cholinergic system is one target that is affected, observed as changes in the response of the cholinergic system and a decrease in cholinergic receptors, and is one of the mechanisms underlying the observed behavioural changes. BFRs so far studied TBBPA appears not to cause developmental neurotoxic effects when administered at the same dose levels to neonatal mice. In the present studies we have investigated whether neonatal exposure to three highly brominated dipehenyl ethers, 2,2',3,4,4',5',6'-heptabromodiphenyl ether (PBDE183), 2,2',3'4'4',5,5',6- octabromodiphenyl ether (PBDE 203) and 2,2',3,3',4,4',5',6'-nonabromodiphenyl ether (PBDE 206) can induce developmental neurotoxic effects, such as aberrations in spontaneous behaviour and in learning and memory. Furthermore, neonatal developmental neurotoxicity effects were also studied for two OPs used as FR, triphenyl phosphate and tris(2-chloro-ethyl)phosphate.

  6. Dopaminergic Neuron-Specific Deletion of p53 Gene Attenuates Methamphetamine Neurotoxicity.

    Science.gov (United States)

    Lu, Tao; Kim, Paul P; Greig, Nigel H; Luo, Yu

    2017-08-01

    p53 plays an essential role in the regulation of cell death in dopaminergic (DA) neurons and its activation has been implicated in the neurotoxic effects of methamphetamine (MA). However, how p53 mediates MA neurotoxicity remains largely unknown. In this study, we examined the effect of DA-specific p53 gene deletion in DAT-p53KO mice. Whereas in vivo MA binge exposure reduced locomotor activity in wild-type (WT) mice, this was significantly attenuated in DAT-p53KO mice and associated with significant differences in the levels of the p53 target genes BAX and p21 between WT and DAT-p53KO. Notably, DA-specific deletion of p53 provided protection of substantia nigra pars reticulata (SNpr) tyrosine hydroxylase (TH) positive fibers following binge MA, with DAT-p53KO mice having less decline of TH protein levels in striatum versus WT mice. Whereas DAT-p53KO mice demonstrated a consistently higher density of TH fibers in striatum compared to WT mice at 10 days after MA exposure, DA neuron counts within the substantia nigra pars compacta (SNpc) were similar. Finally, supportive of these results, administration of a p53-specific inhibitor (PFT-α) provided a similarly protective effect on MA binge-induced behavioral deficits. Neither DA specific p53 deletion nor p53 pharmacological inhibition affected hyperthermia induced by MA binge. These findings demonstrate a specific contribution of p53 activation in behavioral deficits and DA neuronal terminal loss by MA binge exposure.

  7. Neurotoxicity profile of supermethrin, a new pyrethroid insecticide.

    Science.gov (United States)

    Hornychova, M; Frantik, E; Kubat, J; Formanek, J

    1995-11-01

    The use of a standard two-tier neurotoxicity screening procedure in the context of risk assessment is exemplified. Testing of a new pyrethroid in rats addressed the following sequence of questions: Does the substance evoke neurotoxic symptoms in sublethal doses? Do these symptoms reflect a primary neurotropic action? What are the dynamic characteristics of injury, the clinical profile of effect, and the relative potency of the tested substance compared to similar compounds? - The testing protocol is an animal analogue of a systematic neurological and psychological examination in man. First tier tests (structured observation, motor activity measurement, simple neurological examination) were applied after the first dose, during repeated dosing phase and in the restitution phase. Facultative tests for the second-tier examination (motor activity pattern, learning/retention test, evoked potentials, dynamic motor performance) were selected on the basis of effects revealed by the first-tier testing. Supermethrin evoked acute neurotoxicity in sublethal doses, ranging from 1/30 to 1/15 of LD50. The clinical pattern was similar to other cyano-substituted pyrethroids. Behavioural inhibition was transient and complete tolerance to it developed after 4-week repeated dosing. No indications of long-lasting changes in neuronal excitability or in learning and memory processes were found. Ataxia and excitomotoric phenomena dominated both the acute and the subchronic picture. Marked and persistent motor disturbances, including symptoms of lower motoneuron injury, were limited to individual animals of the highest, near-lethal dose group (27 mg-kg-1). Compared to lambda-cyhalothrin, the effects of supermethrin were 2 to 3 times weaker, disappeared more rapidly, cumulated less, and had higher tendency to tolerance.

  8. Neurotoxicity of developmental hypothyroxinemia and hypothyroidism in rats: Impairments of long-term potentiation are mediated by phosphatidylinositol 3-kinase signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi; Wei, Wei; Wang, Yuan; Dong, Jing; Song, Binbin; Min, Hui [Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang (China); Teng, Weiping, E-mail: twpendocrine@yahoo.com.cn [Liaoning Provincial Key Laboratory of Endocrine Diseases, the First Hospital of China Medical University, Shenyang (China); Chen, Jie, E-mail: chenjie@mail.cmu.edu.cn [Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang (China)

    2013-09-01

    Neurotoxicity of iodine deficiency-induced hypothyroidism during developmental period results in serious impairments of brain function, such as learning and memory. These impairments are largely irreversible, and the underlying mechanisms remain unclear. In addition to hypothyroidism, iodine deficiency may cause hypothyroxinemia, a relatively subtle form of thyroid hormone deficiency. Neurotoxicity of developmental hypothyroxinemia also potentially impairs learning and memory. However, more direct evidence of the associations between developmental hypothyroxinemia and impairments of learning and memory should be provided, and the underlying mechanisms remain to be elucidated. Thus, in the present study, we investigated the effects of developmental hypothyroxinemia and hypothyroidism on long-term potentiation (LTP), a widely accepted cellular model of learning and memory, in the hippocampal CA1 region. The activation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway – a pathway closely associated with synaptic plasticity and learning and memory – was also investigated. Wistar rats were treated with iodine deficient diet or methimazole (MMZ) to induce developmental hypothyroxinemia or hypothyroidism. The results showed that developmental hypothyroxinemia caused by mild iodine deficiency and developmental hypothyroidism caused by severe iodine deficiency or MMZ significantly reduced the field-excitatory postsynaptic potential (f-EPSP) slope and the population spike (PS) amplitude. Decreased activation of the PI3K signaling pathway was also observed in rats subjected to developmental hypothyroxinemia or hypothyroidism. Our results may support the hypothesis that neurotoxicity of both developmental hypothyroxinemia and hypothyroidism causes damages to learning and memory. Our results also suggest that decreased activation of the PI3K signaling pathway may contribute to impairments of LTP caused by neurotoxicity of both developmental hypothyroxinemia and

  9. Neurotoxicity of developmental hypothyroxinemia and hypothyroidism in rats: Impairments of long-term potentiation are mediated by phosphatidylinositol 3-kinase signaling pathway

    International Nuclear Information System (INIS)

    Wang, Yi; Wei, Wei; Wang, Yuan; Dong, Jing; Song, Binbin; Min, Hui; Teng, Weiping; Chen, Jie

    2013-01-01

    Neurotoxicity of iodine deficiency-induced hypothyroidism during developmental period results in serious impairments of brain function, such as learning and memory. These impairments are largely irreversible, and the underlying mechanisms remain unclear. In addition to hypothyroidism, iodine deficiency may cause hypothyroxinemia, a relatively subtle form of thyroid hormone deficiency. Neurotoxicity of developmental hypothyroxinemia also potentially impairs learning and memory. However, more direct evidence of the associations between developmental hypothyroxinemia and impairments of learning and memory should be provided, and the underlying mechanisms remain to be elucidated. Thus, in the present study, we investigated the effects of developmental hypothyroxinemia and hypothyroidism on long-term potentiation (LTP), a widely accepted cellular model of learning and memory, in the hippocampal CA1 region. The activation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway – a pathway closely associated with synaptic plasticity and learning and memory – was also investigated. Wistar rats were treated with iodine deficient diet or methimazole (MMZ) to induce developmental hypothyroxinemia or hypothyroidism. The results showed that developmental hypothyroxinemia caused by mild iodine deficiency and developmental hypothyroidism caused by severe iodine deficiency or MMZ significantly reduced the field-excitatory postsynaptic potential (f-EPSP) slope and the population spike (PS) amplitude. Decreased activation of the PI3K signaling pathway was also observed in rats subjected to developmental hypothyroxinemia or hypothyroidism. Our results may support the hypothesis that neurotoxicity of both developmental hypothyroxinemia and hypothyroidism causes damages to learning and memory. Our results also suggest that decreased activation of the PI3K signaling pathway may contribute to impairments of LTP caused by neurotoxicity of both developmental hypothyroxinemia and

  10. Prion infections and anti-PrP antibodies trigger converging neurotoxic pathways.

    Directory of Open Access Journals (Sweden)

    Uli S Herrmann

    2015-02-01

    Full Text Available Prions induce lethal neurodegeneration and consist of PrPSc, an aggregated conformer of the cellular prion protein PrPC. Antibody-derived ligands to the globular domain of PrPC (collectively termed GDL are also neurotoxic. Here we show that GDL and prion infections activate the same pathways. Firstly, both GDL and prion infection of cerebellar organotypic cultured slices (COCS induced the production of reactive oxygen species (ROS. Accordingly, ROS scavenging, which counteracts GDL toxicity in vitro and in vivo, prolonged the lifespan of prion-infected mice and protected prion-infected COCS from neurodegeneration. Instead, neither glutamate receptor antagonists nor inhibitors of endoplasmic reticulum calcium channels abolished neurotoxicity in either model. Secondly, antibodies against the flexible tail (FT of PrPC reduced neurotoxicity in both GDL-exposed and prion-infected COCS, suggesting that the FT executes toxicity in both paradigms. Thirdly, the PERK pathway of the unfolded protein response was activated in both models. Finally, 80% of transcriptionally downregulated genes overlapped between prion-infected and GDL-treated COCS. We conclude that GDL mimic the interaction of PrPSc with PrPC, thereby triggering the downstream events characteristic of prion infection.

  11. Advanced Pre-clinical Research Approaches and Models to Studying Pediatric Anesthetic Neurotoxicity

    Directory of Open Access Journals (Sweden)

    Cheng eWang

    2012-10-01

    Full Text Available Advances in pediatric and obstetric surgery have resulted in an increase in the duration and complexity of anesthetic procedures. A great deal of concern has recently arisen regarding the safety of anesthesia in infants and children. Because of obvious limitations, it is not possible to thoroughly explore the effects of anesthetic agents on neurons in vivo in human infants or children. However, the availability of some advanced pre-clinical research approaches and models, such as imaging technology both in vitro and in vivo, stem cell and nonhuman primate experimental models, have provided potentially invaluable tools for examining the developmental effects of anesthetic agents. This review discusses the potential application of some sophisticaled research approaches, e.g., calcium imaging, in stem cell-derived in vitro models, especially human embryonic neural stem cells, along with their capacity for proliferation and their potential for differentiation, to dissect relevant mechanisms underlying the etiology of the neurotoxicity associated with developmental exposures to anesthetic agents. Also, this review attempts to discuss several advantages for using the developing rhesus monkey models (in vivo, when combined with dynamic molecular imaging approaches, in addressing critical issues related to the topic of pediatric sedation/anesthesia. These include the relationships between anesthetic-induced neurotoxicity, dose response, time-course and developmental stage at time of exposure (in vivo studies, serving to provide the most expeditious platform toward decreasing the uncertainty in extrapolating pre-clinical data to the human condition.

  12. Synthesis, optical properties and supramolecular order of π-conjugated 2,5-di(alcoxy)phenyleneethynylene oligomers

    Science.gov (United States)

    Castruita, Griselda; Arias, Eduardo; Moggio, Ivana; Pérez, Fátima; Medellín, Diana; Torres, Román; Ziolo, Ronald; Olivas, Amelia; Giorgetti, Emilia; Muniz-Miranda, Maurizio

    2009-11-01

    Two series of 2,5-di(alkoxy)phenyleneethynylene oligomers were synthesized by Sonogashira-Heck coupling reaction. The chemical structure was corroborated by 1H, 13C, APT, DEPT-135 NMR, Raman, FTIR and MALDI-TOF mass spectrometry. The chemical structure of the molecules has been varied in order to study the effect on the physicochemical and optoelectronic properties of the different chain lengths of the lateral substituents (dodecanoxy and butoxy), of different terminal groups (H, Br and I), of different chain length (3, 5 and 7 repeat units in the main conjugated backbone). The thermal properties were analyzed by DSC, TGA and by temperature-dependent X-ray diffraction. The diffraction studies of the oligomers revealed a crystalline behavior for the butoxy series, while for the dodecanoxy series the X-ray patterns are consistent with a supramolecular organization formed of randomly distributed crystalline domains that exhibit a periodic structure at small angles, indicating the presence of a lamellar order. The optical properties can be modulated within a series by increasing the length of the conjugated oligomer chain. On the contrary, neither the length of the alkoxy substituents nor the terminal groups have effect on the shape of the absorption and emission spectra.

  13. [Toxicodynamic properties of liquids used for the cooling of high-power turbines. III. Neurotoxic effects].

    Science.gov (United States)

    Florek, E; Malendowicz, L; Seńczuk, W

    1984-01-01

    Results of neurotoxicity studies indicate that preparations IWiOL -3-n, IWiOL -3-e and OMTI administered intragastrically or intraperitoneally induce neurotoxic effects in hens. Those effects are, however, weaker than those of the standard substance, i.e. triorthocresyl . Yet, they get increased in result of IWiOL -3-e, as compared to IWiOL -3-n administration.

  14. Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders.

    Science.gov (United States)

    Caughey, Byron; Lansbury, Peter T

    2003-01-01

    Many neurodegenerative diseases, including Alzheimer's and Parkinson's and the transmissible spongiform encephalopathies (prion diseases), are characterized at autopsy by neuronal loss and protein aggregates that are typically fibrillar. A convergence of evidence strongly suggests that protein aggregation is neurotoxic and not a product of cell death. However, the identity of the neurotoxic aggregate and the mechanism by which it disables and eventually kills a neuron are unknown. Both biophysical studies aimed at elucidating the precise mechanism of in vitro aggregation and animal modeling studies support the emerging notion that an ordered prefibrillar oligomer, or protofibril, may be responsible for cell death and that the fibrillar form that is typically observed at autopsy may actually be neuroprotective. A subpopulation of protofibrils may function as pathogenic amyloid pores. An analogous mechanism may explain the neurotoxicity of the prion protein; recent data demonstrates that the disease-associated, infectious form of the prion protein differs from the neurotoxic species. This review focuses on recent experimental studies aimed at identification and characterization of the neurotoxic protein aggregates.

  15. 3-nitropropionic acid neurotoxicity in hippocampal slice cultures

    DEFF Research Database (Denmark)

    Noer, Helle; Kristensen, Bjarne W; Noraberg, Jens

    2002-01-01

    : CA1 > CA3 > fascia dentata. In low glucose much lower concentrations of 3-NP (25 microM) triggered neurotoxicity. One-week-old cultures were less susceptible to 3-NP toxicity than 3-week-old cultures, but the dentate granule cells were relatively more affected in the immature cultures. We found...

  16. Detection of aniline oligomers on polyaniline-gold interface using resonance Raman scattering

    Czech Academy of Sciences Publication Activity Database

    Trchová, Miroslava; Morávková, Zuzana; Dybal, Jiří; Stejskal, Jaroslav

    2014-01-01

    Roč. 6, č. 2 (2014), s. 942-950 ISSN 1944-8244 R&D Projects: GA ČR GAP205/12/0911; GA ČR(CZ) GA13-00270S Institutional support: RVO:61389013 Keywords : polyaniline * aniline oligomers * Raman spectroscopy Subject RIV: CD - Macromolecular Chemistry Impact factor: 6.723, year: 2014

  17. Radiation-chemical hardening of phenol-formaldehyde oligomers

    International Nuclear Information System (INIS)

    Shlapatskaya, V.V.; Omel'chenko, S.I.

    1978-01-01

    Radiation-chemical hardening of phenol formaldehyde oligomers of the resol type has been studied in the presence of furfural and diallylphthalate diluents. The samples have been hardened on an electron accelerator at an electron energy of 1.0-1.1 MeV and a dose rate of 2-3 Mrad/s. The kinetics of hardening has been studied on the yield of gel fraction within the range of absorbed doses from 7 to 400 Mrad. Radiation-chemical hardening of the studied compositions is activated with sensitizers, namely, amines, metal chlorides, and heterocyclic derivatives of metals. Furfural and diallylphthalate compositions are suitable for forming glass-fibre plastic items by the wet method and coatings under the action of ionizing radiations

  18. Structural Transitions of Solvent-Free Oligomer-Grafted Nanoparticles

    KAUST Repository

    Chremos, Alexandros

    2011-09-01

    Novel structural transitions of solvent-free oligomer-grafted nanoparticles are investigated by using molecular dynamics simulations of a coarse-grained bead-spring model. Variations in core size and grafting density lead to self-assembly of the nanoparticles into a variety of distinct structures. At the boundaries between different structures, the nanoparticle systems undergo thermoreversible transitions. This structural behavior, which has not been previously reported, deviates significantly from that of simple liquids. The reversible nature of these transitions in solvent-free conditions offers new ways to control self-assembly of nanoparticles at experimentally accessible conditions. © 2011 American Physical Society.

  19. Spirulina maxima Extract Prevents Neurotoxicity via Promoting Activation of BDNF/CREB Signaling Pathways in Neuronal Cells and Mice.

    Science.gov (United States)

    Koh, Eun-Jeong; Seo, Young-Jin; Choi, Jia; Lee, Hyeon Yong; Kang, Do-Hyung; Kim, Kui-Jin; Lee, Boo-Yong

    2017-08-17

    Spirulina maxima is a microalgae which contains flavonoids and other polyphenols. Although Spirulina maxima 70% ethanol extract (SM70EE) has diverse beneficial effects, its effects on neurotoxicity have not been fully understood. In this study, we investigated the neuroprotective effects of SM70EE against trimethyltin (TMT)-induced neurotoxicity in HT-22 cells. SM70EE inhibited the cleavage of poly-ADP ribose polymerase (PARP). Besides, ROS production was decreased by down-regulating oxidative stress-associated enzymes. SM70EE increased the factors of brain-derived neurotrophic factor (BDNF)/cyclic AMPresponsive elementbinding protein (CREB) signalling pathways. Additionally, acetylcholinesterase (AChE) was suppressed by SM70EE. Furthermore, we investigated whether SM70EE prevents cognitive deficits against scopolamine-induced neurotoxicity in mice by applying behavioral tests. SM70EE increased step-through latency time and decreased the escape latency time. Therefore, our data suggest that SM70EE may prevent TMT neurotoxicity through promoting activation of BDNF/CREB neuroprotective signaling pathways in neuronal cells. In vivo study, SM70EE would prevent cognitive deficits against scopolamine-induced neurotoxicity in mice.

  20. The Potential Neurotoxic Effects of Low-Dose Sarin Exposure in a Guinea Pig Model

    Science.gov (United States)

    2002-01-01

    1 THE POTENTIAL NEUROTOXIC EFFECTS OF LOW-DOSE SARIN EXPOSURE IN A GUINEA PIG MODEL Melinda R. Roberson, PhD, Michelle B. Schmidt...Proving Ground, MD 21010 USA ABSTRACT This study is assessing the effects in guinea pigs of repeated low-dose exposure to the nerve...COVERED - 4. TITLE AND SUBTITLE The Potential Neurotoxic Effects Of Low-Dose Sarin Exposure In A Guinea Pig Model 5a. CONTRACT NUMBER 5b

  1. Buyang Huanwu Decoction Vigorously Rescues PC12 Cells Against 6-OHDA-Induced Neurotoxicity via Akt/GSK3β Pathway Based on Serum Pharmacology Methodology.

    Science.gov (United States)

    Li, Zeyan; Wang, Hui; Wang, Qian; Sun, Jinhao

    2016-12-01

    Buyang Huanwu decoction (BYHWD), as a popular traditional Chinese medicine formula, was widely used for treating ischemic diseases. However, in the area of neurodegenerative diseases, the researches focused on BYHWD are rare but promising, and molecular mechanisms underlying are largely elusive. 6-Hydroxydopamine (6-OHDA), a dopaminergic-specific neurotoxin, is extensively used to establish neurotoxic model in vivo and in vitro. In our present study, we prepared drug-containing serum of BYHWD (Buyang Huanwu drug-containing serum [BYHWS]) based on serum pharmacology methodology. Neurotoxic model in vitro was established in PC12 cells, and innovative experimental grouping method was adopted to investigate neuroprotective effects of BYHWS on neurotoxicity induced by 6-OHDA exposure. Remarkably, BYHWS vigorously rescued PC12 cells from 6-OHDA-induced neurotoxicity even to surpass 100% in cell viability. Moreover, Hoechst/propidium iodide (PI) staining revealed that cell apoptotic rate was reduced significantly after incubation of BYHWS. Besides, BYHWS effectively restored the disruption of mitochondrial membrane potential and attenuated the elevation of intracellular reactive oxygen species level caused by 6-OHDA insult. Furthermore, BYHWS remarkably reversed the dephosphorylation of Akt (protein kinase B) and glycogen synthase kinase-3β (GSK3β) evoked by 6-OHDA. The above protective effects were attenuated by coculturing with Akt inhibitor LY294002. In summary, we concluded that the BYHWS vigorously blocked 6-OHDA-induced neurotoxicity via Akt/GSK3β pathway and provided a novel insight into roles of BYHWD in the clinical practices on neurodegenerative diseases.

  2. Scoping review: Awareness of neurotoxicity from anesthesia in children in otolaryngology literature.

    Science.gov (United States)

    Earley, Marisa A; Pham, Liem T; April, Max M

    2017-08-01

    Review otolaryngology literature for awareness of neurotoxicity from general anesthesia in children. Recently, there has been increasing focus in anesthesia literature on the long-term effects of general anesthesia on neurodevelopment. Multiple animal models have demonstrated evidence of neurotoxicity from both inhalational and intravenous anesthetics. Cohort studies also have revealed modestly increased risk of adverse neurodevelopmental outcomes in children exposed to a single episode of general anesthesia prior to 3 to 4 years of age, with stronger evidence for multiple exposures in this age range. Otolaryngologists may subject children to general anesthesia via procedures or tests, including computed tomography, magnetic resonance imaging, and auditory brainstem response. PubMed, Embase, Scopus, and Web of Science Review. A scoping review using the above databases was performed limited to January 2005 through December 2015. Articles were screened and reviewed based on predefined inclusion and exclusion criteria. Initial search generated 3,909 articles. After 72 full text articles were reviewed, only seven articles mentioned neurotoxicity as a risk of general anesthesia in pediatric patients. Despite the high volume of pediatric otolaryngologic procedures performed annually, there remains limited awareness in our literature discussing neurotoxicity as an outcome. Prospective data from anesthesia literature is still pending; therefore, specific recommendations cannot be made at this time. Otolaryngologists should be aware of the concerns and work toward defining elective procedures, combining surgical procedures with other procedures or imaging, and reassessing the timing and frequency of various interventions under general anesthesia in young children. Laryngoscope, 127:1930-1937, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  3. Lithium-mediated protection against ethanol neurotoxicity

    Directory of Open Access Journals (Sweden)

    Jia Luo

    2010-06-01

    Full Text Available Lithium has long been used as a mood stabilizer in the treatment of manic-depressive (bipolar disorder. Recent studies suggest that lithium has neuroprotective properties and may be useful in the treatment of acute brain injuries such as ischemia and chronic neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and amyotrophic lateral sclerosis. One of the most important neuroprotective properties of lithium is its anti-apoptotic action. Ethanol is a neuroteratogen and fetal alcohol spectrum disorders (FASD are caused by maternal ethanol exposure during pregnancy. FASD is the leading cause of mental retardation. Ethanol exposure causes neuroapoptosis in the developing brain. Ethanol-induced loss of neurons in the central nervous system underlies many of the behavioral deficits observed in FASD. Excessive alcohol consumption is also associated with Wernicke–Korsakoff syndrome and neurodegeneration in the adult brain. Recent in vivo and in vitro studies indicate that lithium is able to ameliorate ethanol-induced neuroapoptosis. Lithium is an inhibitor of glycogen synthase kinase 3 (GSK3 which has recently been identified as a mediator of ethanol neurotoxicity. Lithium’s neuroprotection may be mediated by its inhibition of GSK3. In addition, lithium also affects many other signaling proteins and pathways that regulate neuronal survival and differentiation. This review discusses the recent evidence of lithium-mediated protection against ethanol neurotoxicity and potential underlying mechanisms.

  4. Hirsutine, an indole alkaloid of Uncaria rhynchophylla, inhibits inflammation-mediated neurotoxicity and microglial activation.

    Science.gov (United States)

    Jung, Hwan Yong; Nam, Kyong Nyon; Woo, Byung-Choel; Kim, Kyoo-Pil; Kim, Sung-Ok; Lee, Eunjoo H

    2013-01-01

    Chronic microglial activation endangers neuronal survival through the release of various pro-inflammatory and neurotoxic factors. As such, negative regulators of microglial activation have been considered as potential therapeutic candidates to reduce the risk of neurodegeneration associated with inflammation. Uncaria rhynchophylla (U. rhynchophylla) is a traditional oriental herb that has been used for treatment of disorders of the cardiovascular and central nervous systems. Hirsutine (HS), one of the major indole alkaloids of U. rhynchophylla, has demonstrated neuroprotective potential. The aim of the present study was to examine the efficacy of HS in the repression of inflammation-induced neurotoxicity and microglial cell activation. In organotypic hippocampal slice cultures, HS blocked lipopolysaccharide (LPS)-related hippocampal cell death and production of nitric oxide (NO), prostaglandin (PG) E2 and interleukin-1β. HS was demonstrated to effectively inhibit LPS-induced NO release from cultured rat brain microglia. The compound reduced the LPS-stimulated production of PGE2 and intracellular reactive oxygen species. HS significantly decreased LPS-induced phosphorylation of the mitogen-activated protein kinases and Akt signaling proteins. In conclusion, HS reduces the production of various neurotoxic factors in activated microglial cells and possesses neuroprotective activity in a model of inflammation-induced neurotoxicity.

  5. Design and validation of an ontology-driven animal-free testing strategy for developmental neurotoxicity testing.

    Science.gov (United States)

    Hessel, Ellen V S; Staal, Yvonne C M; Piersma, Aldert H

    2018-03-13

    Developmental neurotoxicity entails one of the most complex areas in toxicology. Animal studies provide only limited information as to human relevance. A multitude of alternative models have been developed over the years, providing insights into mechanisms of action. We give an overview of fundamental processes in neural tube formation, brain development and neural specification, aiming at illustrating complexity rather than comprehensiveness. We also give a flavor of the wealth of alternative methods in this area. Given the impressive progress in mechanistic knowledge of human biology and toxicology, the time is right for a conceptual approach for designing testing strategies that cover the integral mechanistic landscape of developmental neurotoxicity. The ontology approach provides a framework for defining this landscape, upon which an integral in silico model for predicting toxicity can be built. It subsequently directs the selection of in vitro assays for rate-limiting events in the biological network, to feed parameter tuning in the model, leading to prediction of the toxicological outcome. Validation of such models requires primary attention to coverage of the biological domain, rather than classical predictive value of individual tests. Proofs of concept for such an approach are already available. The challenge is in mining modern biology, toxicology and chemical information to feed intelligent designs, which will define testing strategies for neurodevelopmental toxicity testing. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Maneb and Paraquat-Mediated Neurotoxicity: Involvement of Peroxiredoxin/Thioredoxin System

    Science.gov (United States)

    Roede, James R.; Hansen, Jason M.; Go, Young-Mi; Jones, Dean P.

    2011-01-01

    Epidemiological and in vivo studies have demonstrated that exposure to the pesticides paraquat (PQ) and maneb (MB) increase the risk of developing Parkinson’s disease (PD) and cause dopaminergic cell loss, respectively. PQ is a well-recognized cause of oxidative toxicity; therefore, the purpose of this study was to determine if MB potentiates oxidative stress caused by PQ, thus providing a mechanism for enhanced neurotoxicity by the combination. The results show that PQ alone at a moderately toxic dose (20–30% cell death in 24 h) caused increased reactive oxygen species (ROS) generation, oxidation of mitochondrial thioredoxin-2 and peroxiredoxin-3, lesser oxidation of cytoplasmic thioredoxin-1 and peroxiredoxin-1, and no oxidation of cellular GSH/GSSG. In contrast, MB alone at a similar toxic dose resulted in no ROS generation, no oxidation of thioredoxin and peroxiredoxin, and an increase in cellular GSH after 24 h. Together, MB increased GSH and inhibited ROS production and thioredoxin/peroxiredoxin oxidation observed with PQ alone, yet resulted in more extensive (> 50%) cell death. MB treatment resulted in increased abundance of nuclear Nrf2 and mRNA for phase II enzymes under the control of Nrf2, indicating activation of cell protective responses. The results show that MB potentiation of PQ neurotoxicity does not occur by enhancing oxidative stress and suggests that increased toxicity occurs by a combination of divergent mechanisms, perhaps involving alkylation by MB and oxidation by PQ. PMID:21402726

  7. Soybean-derived Bowman-Birk inhibitor inhibits neurotoxicity of LPS-activated macrophages

    Directory of Open Access Journals (Sweden)

    Persidsky Yuri

    2011-02-01

    Full Text Available Abstract Background Lipopolysaccharide (LPS, the major component of the outer membrane of gram-negative bacteria, can activate immune cells including macrophages. Activation of macrophages in the central nervous system (CNS contributes to neuronal injury. Bowman-Birk inhibitor (BBI, a soybean-derived protease inhibitor, has anti-inflammatory properties. In this study, we examined whether BBI has the ability to inhibit LPS-mediated macrophage activation, reducing the release of pro-inflammatory cytokines and subsequent neurotoxicity in primary cortical neural cultures. Methods Mixed cortical neural cultures from rat were used as target cells for testing neurotoxicity induced by LPS-treated macrophage supernatant. Neuronal survival was measured using a cell-based ELISA method for expression of the neuronal marker MAP-2. Intracellular reactive oxygen species (ROS production in macrophages was measured via 2', 7'-dichlorofluorescin diacetate (DCFH2DA oxidation. Cytokine expression was determined by quantitative real-time PCR. Results LPS treatment of macrophages induced expression of proinflammatory cytokines (IL-1β, IL-6 and TNF-α and of ROS. In contrast, BBI pretreatment (1-100 μg/ml of macrophages significantly inhibited LPS-mediated induction of these cytokines and ROS. Further, supernatant from BBI-pretreated and LPS-activated macrophage cultures was found to be less cytotoxic to neurons than that from non-BBI-pretreated and LPS-activated macrophage cultures. BBI, when directly added to the neuronal cultures (1-100 μg/ml, had no protective effect on neurons with or without LPS-activated macrophage supernatant treatment. In addition, BBI (100 μg/ml had no effect on N-methyl-D-aspartic acid (NMDA-mediated neurotoxicity. Conclusions These findings demonstrate that BBI, through its anti-inflammatory properties, protects neurons from neurotoxicity mediated by activated macrophages.

  8. Functional, Structural, and Neurotoxicity Biomarkers in Integrative Assessment of Concussions

    Directory of Open Access Journals (Sweden)

    Svetlana A Dambinova

    2016-10-01

    Full Text Available Concussion is a complex, heterogenous process affecting the brain. Accurate assessment and diagnosis and appropriate management of concussion are essential to ensure athletes do not prematurely return to play or others to work or active military duty, risking re-injury. To date, clinical diagnosis relies primarily on evaluating subjects for functional impairment using instruments that include neurocognitive testing, subjective symptom report, and neurobehavioral assessments, such as balance and vestibular-ocular reflex testing. Structural biomarkers, defined as advanced neuroimaging techniques and biomarkers assessing neurotoxicity and immunoexcitotoxicity may complement the use of functional biomarkers. We hypothesize that neurotoxicity AMPA, NMDA, and kainite receptor biomarkers might be utilized as a part of comprehensive approach to concussion evaluations, with the goal of increasing diagnostic accuracy and facilitating treatment planning and prognostic assessment.

  9. Detection of aniline oligomers on polyaniline-gold interface using resonance Raman scattering.

    Science.gov (United States)

    Trchová, Miroslava; Morávková, Zuzana; Dybal, Jiří; Stejskal, Jaroslav

    2014-01-22

    In situ deposited conducting polyaniline films prepared by the oxidation of aniline with ammonium peroxydisulfate in aqueous media of various acidities on gold and silicon supports were characterized by Raman spectroscopy. Enhanced Raman bands were found in the spectra of polyaniline films produced in the solutions of weak acids or in water on gold surface. These bands were weak for the films prepared in solutions of a strong acid on a gold support. The same bands are present in the Raman spectra of the reaction intermediates deposited during aniline oxidation in water or aqueous solutions of weak or strong acids on silicon removed from the reaction mixture at the beginning of the reaction. Such films are formed by aniline oligomers adsorbed on the surface. They were detected on the polyaniline-gold interface using resonance Raman scattering on the final films deposited on gold. The surface resonance Raman spectroscopy of the monolayer of oligomers found in the bulk polyaniline film makes this method advantageous in surface science, with many applications in electrochemistry, catalysis, and biophysical, polymer, or analytical chemistry.

  10. In vitro synthesis and purification of PhIP-deoxyguanosine and PhIP-DNA oligomer covalent complexes

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, J.

    1994-12-01

    2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is a heterocyclic amine compound formed when meats are cooked at high temperatures. PhIP damages DNA by forming covalent complexes with DNA carcinogen. In an effort to understand how the binding of PhIP to DNA may cause cancer, it is important to characterize the structures of PhIP-damaged DNA molecules. Our HPLC data support fluorescence and {sup 32}P Post-labeling studies which indicate the formation of several species of 2{prime}deoxyguanosine-(dG) or oligodeoxynucleotide-PhIP adducts. The reaction of PhIP with dG resulted in a reddish precipitate that was likely the major adduct, N-(deoxyguanosin-8-yl)-PhIP (dG-C8-PhIP) adduct, with a more polar adduct fraction remaining in the supernatant. Reversed-phase HPLC analysis of the adducts in the supernatant revealed the existence of species of much shorter retention times than the dG-C8-PhIP adduct, confirming that these species are more polar than dG-C8-PhIP. At least four adducts were formed in the reaction of PhIP with DNA oligomer. HPLC analysis of the PhIP-DNA oligomer supernatant after butanol extractions revealed four unresolved peaks which spectra had maximum wavelengths between 340 and 360 nm. Though adduct peaks were not completely resolved, there was {approximately}3 minutes interval between the DNA oligomer peak and the adduct peaks. Furthermore, fluorescence emission data of the DNA oligomer-PhIP adduct solution show heterogeneous binding. The more polar PhIP adducts were fraction-collected and their structures will be solved by nuclear magnetic resonance or x-ray crystallography.

  11. A sensitive and selective electrochemical biosensor for the determination of beta-amyloid oligomer by inhibiting the peptide-triggered in situ assembly of silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Xing Y

    2017-04-01

    Full Text Available Yun Xing,1,2 Xiao-Zhen Feng,2 Lipeng Zhang,1 Jiating Hou,2 Guo-Cheng Han,2 Zhencheng Chen2 1Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 2School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, People’s Republic of China Abstract: Soluble beta-amyloid (Aβ oligomer is believed to be the most important toxic species in the brain of Alzheimer’s disease (AD patients. Thus, it is critical to develop a simple method for the selective detection of Aβ oligomer with low cost and high sensitivity. In this paper, we report an electrochemical method for the detection of Aβ oligomer with a peptide as the bioreceptor and silver nanoparticle (AgNP aggregates as the redox reporters. This strategy is based on the conversion of AgNP-based colorimetric assay into electrochemical analysis. Specifically, the peptide immobilized on the electrode surface and presented in solution triggered together the in situ formation of AgNP aggregates, which produced a well-defined electrochemical signal. However, the specific binding of Aβ oligomer to the immobilized peptide prevented the in situ assembly of AgNPs. As a result, a poor electrochemical signal was observed. The detection limit of the method was found to be 6 pM. Furthermore, the amenability of this method for the analysis of Aβ oligomer in serum and artificial cerebrospinal fluid (aCSF samples was demonstrated. Keywords: electrochemical biosensors, Alzheimer’s disease, beta-amyloid oligomer, peptide, silver nanoparticles

  12. Severe neurotoxicity following ingestion of tetraethyl lead.

    Science.gov (United States)

    Wills, Brandon K; Christensen, Jason; Mazzoncini, Joe; Miller, Michael

    2010-03-01

    Organic lead compounds are potent neurotoxins which can result in death even from small exposures. Traditionally, these compounds are found in fuel stabilizers, anti-knock agents, and leaded gasoline. Cases of acute organic lead intoxication have not been reported for several decades. We report a case of a 13-year-old Iraqi male who unintentionally ingested a fuel stabilizer containing 80-90% tetraethyl lead, managed at our combat support hospital. The patient developed severe neurologic symptoms including agitation, hallucinations, weakness, and tremor. These symptoms were refractory to escalating doses of benzodiazepines and ultimately required endotracheal intubation and a propofol infusion. Adjunctive therapies included chelation, baclofen, and nutrition provided through a gastrostomy tube. The patient slowly recovered and was discharged in a wheelchair 20 days after ingestion, still requiring tube feeding. Follow-up at 62 days post-ingestion revealed near-resolution of symptoms with residual slurred speech and slight limp. This case highlights the profound neurotoxic manifestations of acute organic lead compounds.

  13. Delocalization of Coherent Triplet Excitons in Linear Rigid Rod Conjugated Oligomers.

    Science.gov (United States)

    Hintze, Christian; Korf, Patrick; Degen, Frank; Schütze, Friederike; Mecking, Stefan; Steiner, Ulrich E; Drescher, Malte

    2017-02-02

    In this work, the triplet state delocalization in a series of monodisperse oligo(p-phenyleneethynylene)s (OPEs) is studied by pulsed electron paramagnetic resonance (EPR) and pulsed electron nuclear double resonance (ENDOR) determining zero-field splitting, optical spin polarization, and proton hyperfine couplings. Neither the zero-field splitting parameters nor the optical spin polarization change significantly with OPE chain length, in contrast to the hyperfine coupling constants, which showed a systematic decrease with chain length n according to a 2/(1 + n) decay law. The results provide striking evidence for the Frenkel-type nature of the triplet excitons exhibiting full coherent delocalization in the OPEs under investigation with up to five OPE repeat units and with a spin density distribution described by a nodeless particle in the box wave function. The same model is successfully applied to recently published data on π-conjugated porphyrin oligomers.

  14. Striatal dopamine release in vivo following neurotoxic doses of methamphetamine and effect of the neuroprotective drugs, chlormethiazole and dizocilpine.

    Science.gov (United States)

    Baldwin, H A; Colado, M I; Murray, T K; De Souza, R J; Green, A R

    1993-03-01

    1. Administration to rats of methamphetamine (15 mg kg-1, i.p.) every 2 h to a total of 4 doses resulted in a neurotoxic loss of striatal dopamine of 36% and of 5-hydroxytryptamine (5-HT) in the cortex (43%) and hippocampus (47%) 3 days later. 2. Administration of chlormethiazole (50 mg kg-1, i.p.) 15 min before each dose of methamphetamine provided complete protection against the neurotoxic loss of monoamines while administration of dizocilpine (1 mg kg-1, i.p.) using the same dose schedule provided substantial protection. 3. Measurement of dopamine release in the striatum by in vivo microdialysis revealed that methamphetamine produced an approximate 7000% increase in dopamine release after the first injection. The enhanced release response was somewhat diminished after the third injection but still around 4000% above baseline. Dizocilpine (1 mg kg-1, i.p.) did not alter this response but chlormethiazole (50 mg kg-1, i.p.) attenuated the methamphetamine-induced release by approximately 40%. 4. Dizocilpine pretreatment did not influence the decrease in the dialysate concentration of the dopamine metabolites dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) produced by administration of methamphetamine while chlormethiazole pretreatment decreased the dialysate concentration of these metabolites still further. 5. The concentration of dopamine in the dialysate during basal conditions increased modestly during the course of the experiment. This increase did not occur in chlormethiazole-treated rats. HVA concentrations were unaltered by chlormethiazole administration. 6. Chlormethiazole (100-1000 microM) did not alter methamphetamine (100 microM) or K+ (35 mM)-evoked release of endogenous dopamine from striatal prisms in vitro. 7. Several NMDA antagonists prevent methamphetamine-induced neurotoxicity; however chlormethiazole is not an NMDA antagonist. Inhibition of striatal dopamine function prevents methamphetamine-induced toxicity of both dopamine and 5

  15. KARAKTERISASI ENZIM KITOSANASE DAR] ISOLAT BAKTERI KPU 2123 DAN APLIKASINYA UNTUK PRODUKS1 OLIGOMER KITOSAN

    Directory of Open Access Journals (Sweden)

    Yusro Nuri Fawzya

    2009-06-01

    Full Text Available Penelitian ini merupakan sebagian dari rangkaian penelitian mengenai eksplorasi enzim kitinolitik dari mikroba lingkungan laut, khususnya dari limbah udang. Tujuan penelitian ini adalah untuk mengidentifikasi isolat bakteri KPU 2123 dari limbah udang, mengkarakterisasi dan mengaplikasikan enzim kitosanase yang dihasilkan oleh bakteri tersebut untuk produksi oligomer kitosan dan menguji bioaktivitas oligomer kitosan tersebut sebagai antitumor dan antibakteri. Karakterisasi enzim dilakukan dengan menguji aktivitas enzim pada berbagai suhu dan pH. Selain itu juga ditentukan besarnya aktivitas yang tersisa setelah enzim diinkubasi pada suhu dan lama waktu tertentu. Pengaruh ion logam terhadap aktivitas enzim juga dilihat dengan mereaksikan enzim dengan 1 mM ion logam dalam bentuk larutan khlorida. Hasil penelitian menunjukkan bahwa berdasarkan analisis gen 16S-rRNA, isolat bakteri KPU 2123 memiliki kemiripan 95% dengan Stanotrophomonas maltophilia. Enzim kitosanase dari isolat ini bekerja optimal pada suhu 50 ºC dan pH 6. Enzim ini cukup stabil pada suhu 37 ºC selama 120 menit. Penambahan ion logam berpengaruh terhadap aktivitas enzim. Ion logam Zn²+ (sebagai garam klorida 1 mM menghambat 100% aktivitas enzim tersebut. Penggunaan enzim kitosanase dalam menghidrolisis substrat kitosan, menghasilkan oligomer kitosan yang mengandung tetramer, pentamer dan heksamer Oligor kitosan tersebut mampu menghambat pertumbuhan bakteri Staphylococcus aureus sebesar 10,06% dan dapat menyebabkan kematian sel HeLa dengan LC50 pada dosis 120 ppm.

  16. L-ascorbate attenuates methamphetamine neurotoxicity through enhancing the induction of endogenous heme oxygenase-1.

    Science.gov (United States)

    Huang, Ya-Ni; Wang, Jiz-Yuh; Lee, Ching-Tien; Lin, Chih-Hung; Lai, Chien-Cheng; Wang, Jia-Yi

    2012-12-01

    Methamphetamine (METH) is a drug of abuse which causes neurotoxicity and increased risk of developing neurodegenerative diseases. We previously found that METH induces heme oxygenase (HO)-1 expression in neurons and glial cells, and this offers partial protection against METH toxicity. In this study, we investigated the effects of l-ascorbate (vitamin C, Vit. C) on METH toxicity and HO-1 expression in neuronal/glial cocultures. Cell viability and damage were evaluated by 3-(4,5-dimethylthianol-2-yl)-2,5 diphenyl tetrazolium bromide (MTT) reduction and lactate dehydrogenase (LDH) release, respectively. Neuronal and glial localization of HO-1 were identified by double immunofluorescence staining. Reactive oxygen species (ROS) production was measured using the fluorochrome 2',7'-dichlorofluorescin diacetate. HO-1 mRNA and protein expression were examined by RT-qPCR and Western blotting, respectively. Results show that Vit. C induced HO-1 mRNA and protein expressions in time- and concentration-dependent manners. Inhibition of p38 mitogen-activated protein kinase (MAPK) but not extracellular signal-regulated kinase (ERK) significantly blocked induction of HO-1 by Vit. C. HO-1 mRNA and protein expressions were significantly elevated by a combination of Vit. C and METH, compared to either Vit. C or METH alone. Pretreatment with Vit. C enhanced METH-induced HO-1 expression and attenuated METH-induced ROS production and neurotoxicity. Pharmacological inhibition of HO activity abolished suppressive effects of Vit. C on METH-induced ROS production and attenuated neurotoxicity. We conclude that induction of HO-1 expression contributes to the attenuation of METH-induced ROS production and neurotoxicity by Vit. C. We suggest that HO-1 induction by Vit. C may serve as a strategy to alleviate METH neurotoxicity. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Modifying welding process parameters can reduce the neurotoxic potential of manganese-containing welding fumes.

    Science.gov (United States)

    Sriram, Krishnan; Lin, Gary X; Jefferson, Amy M; Stone, Samuel; Afshari, Aliakbar; Keane, Michael J; McKinney, Walter; Jackson, Mark; Chen, Bean T; Schwegler-Berry, Diane; Cumpston, Amy; Cumpston, Jared L; Roberts, Jenny R; Frazer, David G; Antonini, James M

    2015-02-03

    Welding fumes (WF) are a complex mixture of toxic metals and gases, inhalation of which can lead to adverse health effects among welders. The presence of manganese (Mn) in welding electrodes is cause for concern about the potential development of Parkinson's disease (PD)-like neurological disorder. Consequently, from an occupational safety perspective, there is a critical need to prevent adverse exposures to WF. As the fume generation rate and physicochemical characteristics of welding aerosols are influenced by welding process parameters like voltage, current or shielding gas, we sought to determine if changing such parameters can alter the fume profile and consequently its neurotoxic potential. Specifically, we evaluated the influence of voltage on fume composition and neurotoxic outcome. Rats were exposed by whole-body inhalation (40 mg/m(3); 3h/day × 5 d/week × 2 weeks) to fumes generated by gas-metal arc welding using stainless steel electrodes (GMA-SS) at standard/regular voltage (25 V; RVSS) or high voltage (30 V; HVSS). Fumes generated under these conditions exhibited similar particulate morphology, appearing as chain-like aggregates; however, HVSS fumes comprised of a larger fraction of ultrafine particulates that are generally considered to be more toxic than their fine counterparts. Paradoxically, exposure to HVSS fumes did not elicit dopaminergic neurotoxicity, as monitored by the expression of dopaminergic and PD-related markers. We show that the lack of neurotoxicity is due to reduced solubility of Mn in HVSS fumes. Our findings show promise for process control procedures in developing prevention strategies for Mn-related neurotoxicity during welding; however, it warrants additional investigations to determine if such modifications can be suitably adapted at the workplace to avert or reduce adverse neurological risks. Published by Elsevier Ireland Ltd.

  18. Minocycline attenuates colistin-induced neurotoxicity via suppression of apoptosis, mitochondrial dysfunction and oxidative stress.

    Science.gov (United States)

    Dai, Chongshan; Ciccotosto, Giuseppe D; Cappai, Roberto; Wang, Yang; Tang, Shusheng; Xiao, Xilong; Velkov, Tony

    2017-06-01

    Neurotoxicity is an adverse effect patients experience during colistin therapy. The development of effective neuroprotective agents that can be co-administered during polymyxin therapy remains a priority area in antimicrobial chemotherapy. The present study investigates the neuroprotective effect of the synergistic tetracycline antibiotic minocycline against colistin-induced neurotoxicity. The impact of minocycline pretreatment on colistin-induced apoptosis, caspase activation, oxidative stress and mitochondrial dysfunction were investigated using cultured mouse neuroblastoma-2a (N2a) and primary cortical neuronal cells. Colistin-induced neurotoxicity in mouse N2a and primary cortical cells gives rise to the generation of reactive oxygen species (ROS) and subsequent cell death via apoptosis. Pretreatment of the neuronal cells with minocycline at 5, 10 and 20 μM for 2 h prior to colistin (200 μM) exposure (24 h), had an neuroprotective effect by significantly decreasing intracellular ROS production and by upregulating the activities of the anti-ROS enzymes superoxide dismutase and catalase. Minocycline pretreatment also protected the cells from colistin-induced mitochondrial dysfunction, caspase activation and subsequent apoptosis. Immunohistochemical imaging studies revealed colistin accumulates within the dendrite projections and cell body of primary cortical neuronal cells. To our knowledge, this is first study demonstrating the protective effect of minocycline on colistin-induced neurotoxicity by scavenging of ROS and suppression of apoptosis. Our study highlights that co-administration of minocycline kills two birds with one stone: in addition to its synergistic antimicrobial activity, minocycline could potentially ameliorate unwanted neurotoxicity in patients undergoing polymyxin therapy. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions

  19. Modifying welding process parameters can reduce the neurotoxic potential of manganese-containing welding fumes

    International Nuclear Information System (INIS)

    Sriram, Krishnan; Lin, Gary X.; Jefferson, Amy M.; Stone, Samuel; Afshari, Aliakbar; Keane, Michael J.; McKinney, Walter; Jackson, Mark; Chen, Bean T.; Schwegler-Berry, Diane; Cumpston, Amy; Cumpston, Jared L.; Roberts, Jenny R.; Frazer, David G.; Antonini, James M.

    2015-01-01

    Welding fumes (WF) are a complex mixture of toxic metals and gases, inhalation of which can lead to adverse health effects among welders. The presence of manganese (Mn) in welding electrodes is cause for concern about the potential development of Parkinson’s disease (PD)-like neurological disorder. Consequently, from an occupational safety perspective, there is a critical need to prevent adverse exposures to WF. As the fume generation rate and physicochemical characteristics of welding aerosols are influenced by welding process parameters like voltage, current or shielding gas, we sought to determine if changing such parameters can alter the fume profile and consequently its neurotoxic potential. Specifically, we evaluated the influence of voltage on fume composition and neurotoxic outcome. Rats were exposed by whole-body inhalation (40 mg/m 3 ; 3 h/day × 5 d/week × 2 weeks) to fumes generated by gas–metal arc welding using stainless steel electrodes (GMA-SS) at standard/regular voltage (25 V; RVSS) or high voltage (30 V; HVSS). Fumes generated under these conditions exhibited similar particulate morphology, appearing as chain-like aggregates; however, HVSS fumes comprised of a larger fraction of ultrafine particulates that are generally considered to be more toxic than their fine counterparts. Paradoxically, exposure to HVSS fumes did not elicit dopaminergic neurotoxicity, as monitored by the expression of dopaminergic and PD-related markers. We show that the lack of neurotoxicity is due to reduced solubility of Mn in HVSS fumes. Our findings show promise for process control procedures in developing prevention strategies for Mn-related neurotoxicity during welding; however, it warrants additional investigations to determine if such modifications can be suitably adapted at the workplace to avert or reduce adverse neurological risks

  20. Simulations of absorption spectra of conjugated oligomers: role of planar conformation and aggregation in condensed phase

    Science.gov (United States)

    Yuan, Xiang-Ai; Wen, Jin; Zheng, Dong; Ma, Jing

    2018-04-01

    This Review highlights the structure/property relationship underlying the morphology modulation through various factors towards the exploration of light-absorbing materials for efficient utilisation of solar power. Theoretical study using a combination of molecular dynamics imulations and the time-dependent density functional theory demonstrated that the planarity plays an important role in tuning spectral properties of oligomer aggregates. The aggregation-induced blue-shift in absorption spectra of oligothiophenes and the red-shift for oligofluorenols were rationalised in a unified way from the reduced (and increased) content of planar conformations in molecular aggregates. The planarity versus non-planarity of oligomers can be modulated by introduction of alkyl side chain or steric bulky substituents. The substitution with various groups in the ortho-position of azobenzene leads to the distorted backbone, breaking symmetry, and hence the red-shift in spectra, expanding the application in biological systems with visible light absorption. The donor-acceptor substituent groups in conjugated oligomers can increase the degree of planarity, electron delocalisation and polarisation, and charge separation, giving rise to the red-shift in spectra and enhancement in polarisability and charge mobility for device applications. The solvent dependent and pH-sensitive properties and intramolecular hydrogen bonds also caused the shift of absorption spectra with the appearance of planar conformers.

  1. 17β-estradiol and tamoxifen protect mice from manganese-induced dopaminergic neurotoxicity.

    Science.gov (United States)

    Pajarillo, Edward; Johnson, James; Kim, Judong; Karki, Pratap; Son, Deok-Soo; Aschner, Michael; Lee, Eunsook

    2018-03-01

    Chronic exposure to manganese (Mn) causes neurotoxicity, referred to as manganism, with common clinical features of parkinsonism. 17β-estradiol (E2) and tamoxifen (TX), a selective estrogen receptor modulator (SERM), afford neuroprotection in several neurological disorders, including Parkinson's disease (PD). In the present study, we tested if E2 and TX attenuate Mn-induced neurotoxicity in mice, assessing motor deficit and dopaminergic neurodegeneration. We implanted E2 and TX pellets in the back of the neck of ovariectomized C57BL/6 mice two weeks prior to a single injection of Mn into the striatum. One week later, we assessed locomotor activity and molecular mechanisms by immunohistochemistry, real-time quantitative PCR, western blot and enzymatic biochemical analyses. The results showed that both E2 and TX attenuated Mn-induced motor deficits and reversed the Mn-induced loss of dopaminergic neurons in the substantia nigra. At the molecular level, E2 and TX reversed the Mn-induced decrease of (1) glutamate aspartate transporter (GLAST) and glutamate transporter 1 (GLT-1) mRNA and protein levels; (2) transforming growth factor-α (TGF-α) and estrogen receptor-α (ER-α) protein levels; and (3) catalase (CAT) activity and glutathione (GSH) levels, and Mn-increased (1) malondialdehyde (MDA) levels and (2) the Bax/Bcl-2 ratio. These results indicate that E2 and TX afford protection against Mn-induced neurotoxicity by reversing Mn-reduced GLT1/GLAST as well as Mn-induced oxidative stress. Our findings may offer estrogenic agents as potential candidates for the development of therapeutics to treat Mn-induced neurotoxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Adiponectin is protective against oxidative stress induced cytotoxicity in amyloid-beta neurotoxicity.

    Directory of Open Access Journals (Sweden)

    Koon-Ho Chan

    Full Text Available Beta-amyloid (Aβ neurotoxicity is important in Alzheimer's disease (AD pathogenesis. Aβ neurotoxicity causes oxidative stress, inflammation and mitochondrial damage resulting in neuronal degeneration and death. Oxidative stress, inflammation and mitochondrial failure are also pathophysiological mechanisms of type 2 diabetes (T(2DM which is characterized by insulin resistance. Interestingly, T(2DM increases risk to develop AD which is associated with reduced neuronal insulin sensitivity (central insulin resistance. We studied the potential protective effect of adiponectin (an adipokine with insulin-sensitizing, anti-inflammatory and anti-oxidant properties against Aβ neurotoxicity in human neuroblastoma cells (SH-SY5Y transfected with the Swedish amyloid precursor protein (Sw-APP mutant, which overproduced Aβ with abnormal intracellular Aβ accumulation. Cytotoxicity was measured by assay for lactate dehydrogenase (LDH released upon cell death and lysis. Our results revealed that Sw-APP transfected SH-SY5Y cells expressed both adiponectin receptor 1 and 2, and had increased AMP-activated protein kinase (AMPK activation and enhanced nuclear factor-kappa B (NF-κB activation compared to control empty-vector transfected SH-SY5Y cells. Importantly, adiponectin at physiological concentration of 10 µg/ml protected Sw-APP transfected SH-SY5Y cells against cytotoxicity under oxidative stress induced by hydrogen peroxide. This neuroprotective action of adiponectin against Aβ neurotoxicity-induced cytotoxicity under oxidative stress involved 1 AMPK activation mediated via the endosomal adaptor protein APPL1 (adaptor protein with phosphotyrosine binding, pleckstrin homology domains and leucine zipper motif and possibly 2 suppression of NF-κB activation. This raises the possibility of novel therapies for AD such as adiponectin receptor agonists.

  3. Paclitaxel-induced epithelial damage and ectopic MMP-13 expression promotes neurotoxicity in zebrafish.

    Science.gov (United States)

    Lisse, Thomas S; Middleton, Leah J; Pellegrini, Adriana D; Martin, Paige B; Spaulding, Emily L; Lopes, Olivia; Brochu, Elizabeth A; Carter, Erin V; Waldron, Ashley; Rieger, Sandra

    2016-04-12

    Paclitaxel is a microtubule-stabilizing chemotherapeutic agent that is widely used in cancer treatment and in a number of curative and palliative regimens. Despite its beneficial effects on cancer, paclitaxel also damages healthy tissues, most prominently the peripheral sensory nervous system. The mechanisms leading to paclitaxel-induced peripheral neuropathy remain elusive, and therapies that prevent or alleviate this condition are not available. We established a zebrafish in vivo model to study the underlying mechanisms and to identify pharmacological agents that may be developed into therapeutics. Both adult and larval zebrafish displayed signs of paclitaxel neurotoxicity, including sensory axon degeneration and the loss of touch response in the distal caudal fin. Intriguingly, studies in zebrafish larvae showed that paclitaxel rapidly promotes epithelial damage and decreased mechanical stress resistance of the skin before induction of axon degeneration. Moreover, injured paclitaxel-treated zebrafish skin and scratch-wounded human keratinocytes (HEK001) display reduced healing capacity. Epithelial damage correlated with rapid accumulation of fluorescein-conjugated paclitaxel in epidermal basal keratinocytes, but not axons, and up-regulation of matrix-metalloproteinase 13 (MMP-13, collagenase 3) in the skin. Pharmacological inhibition of MMP-13, in contrast, largely rescued paclitaxel-induced epithelial damage and neurotoxicity, whereas MMP-13 overexpression in zebrafish embryos rendered the skin vulnerable to injury under mechanical stress conditions. Thus, our studies provide evidence that the epidermis plays a critical role in this condition, and we provide a previously unidentified candidate for therapeutic interventions.

  4. Neuroprotective effect of curcumin-loaded lactoferrin nano particles against rotenone induced neurotoxicity.

    Science.gov (United States)

    Bollimpelli, V Satish; Kumar, Prashant; Kumari, Sonali; Kondapi, Anand K

    2016-05-01

    Curcumin is known to have neuroprotective role and possess antioxidant, anti-inflammatory activities. Rotenone, a flavonoid induced neurotoxicity in dopaminergic cells is being widely studied in Parkinson's Disease (PD) research. In the present study, curcumin loaded lactoferrin nano particles prepared by sol-oil chemistry were used to protect dopaminergic cell line SK-N-SH against rotenone induced neurotoxicity. These curcumin loaded nano particles were of 43-60 nm diameter size and around 100 nm hydrodynamic size as assessed by transmission electron microscopy, atomic force microscopy and dynamic light scattering analysis respectively. The encapsulation efficiency was 61.3% ± 2.4%. Cellular uptake of curcumin through these nano particles was confirmed by confocal imaging and spectrofluorimetric analysis. The curcumin loaded lactoferrin nanoparticles showed greater intracellular drug uptake, sustained retention and greater neuroprotection than soluble counterpart. Neuroprotective activity was characterized through viability assays and by estimating ROS levels. Furthermore rotenone induced PD like features were characterized by decrease in tyrosine hydroxylase expression and increase in α-synuclein expression. Taken together curcumin loaded lactoferrin nanoparticles could be a promising drug delivery strategy against neurotoxicity in dopaminergic neurons. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Corneal neurotoxicity due to topical benzalkonium chloride.

    Science.gov (United States)

    Sarkar, Joy; Chaudhary, Shweta; Namavari, Abed; Ozturk, Okan; Chang, Jin-Hong; Yco, Lisette; Sonawane, Snehal; Khanolkar, Vishakha; Hallak, Joelle; Jain, Sandeep

    2012-04-06

    The aim of this study was to determine and characterize the effect of topical application of benzalkonium chloride (BAK) on corneal nerves in vivo and in vitro. Thy1-YFP+ neurofluorescent mouse eyes were treated topically with vehicle or BAK (0.01% or 0.1%). Wide-field stereofluorescence microscopy was performed to sequentially image the treated corneas in vivo every week for 4 weeks, and changes in stromal nerve fiber density (NFD) and aqueous tear production were determined. Whole-mount immunofluorescence staining of corneas was performed with antibodies to axonopathy marker SMI-32. Western immunoblot analyses were performed on trigeminal ganglion and corneal lysates to determine abundance of proteins associated with neurotoxicity and regeneration. Compartmental culture of trigeminal ganglion neurons was performed in Campenot devices to determine whether BAK affects neurite outgrowth. BAK-treated corneas exhibited significantly reduced NFD and aqueous tear production, and increased inflammatory cell infiltration and fluorescein staining at 1 week (P reduction in neurites occurred after BAK addition to compartmental cultures of dissociated trigeminal ganglion cells. Although both BAK doses (0.0001% and 0.001%) reduced nerve fiber length, the reduction was significantly more with the higher dose (P < 0.001). Topical application of BAK to the eye causes corneal neurotoxicity, inflammation, and reduced aqueous tear production.

  6. Biochemical Factors Modulating Cellular Neurotoxicity of Methylmercury

    Directory of Open Access Journals (Sweden)

    Parvinder Kaur

    2011-01-01

    Full Text Available Methylmercury (MeHg, an environmental toxicant primarily found in fish and seafood, poses a dilemma to both consumers and regulatory authorities, given the nutritional benefits of fish consumption versus the possible adverse neurological damage. Several studies have shown that MeHg toxicity is influenced by a number of biochemical factors, such as glutathione (GSH, fatty acids, vitamins, and essential elements, but the cellular mechanisms underlying these complex interactions have not yet been fully elucidated. The objective of this paper is to outline the cellular response to dietary nutrients, as well as to describe the neurotoxic exposures to MeHg. In order to determine the cellular mechanism(s of toxicity, the effect of pretreatment with biochemical factors (e.g., N-acetyl cysteine, (NAC; diethyl maleate, (DEM; docosahexaenoic acid, (DHA; selenomethionine, SeM; Trolox and MeHg treatment on intercellular antioxidant status, MeHg content, and other endpoints was evaluated. This paper emphasizes that the protection against oxidative stress offered by these biochemical factors is among one of the major mechanisms responsible for conferring neuroprotection. It is therefore critical to ascertain the cellular mechanisms associated with various dietary nutrients as well as to determine the potential effects of neurotoxic exposures for accurately assessing the risks and benefits associated with fish consumption.

  7. Synthetic oligomer analysis using atmospheric pressure photoionization mass spectrometry at different photon energies

    International Nuclear Information System (INIS)

    Desmazières, Bernard; Legros, Véronique; Giuliani, Alexandre; Buchmann, William

    2014-01-01

    Graphical abstract: Atmospheric pressure photoIonization mass spectra of synthetic oligomers were recorded in the negative mode by varying the photon energy using synchrotron radiation. Photon energy required for an efficient ionization of the polymer was correlated to ionization potential of the solvent (for example 9.4 eV for tetrahydrofuran). -- Highlights: •Atmospheric pressure photoionization was performed using synchrotron radiation. •Photoionization of oligomers in THF with 10% CH 2 Cl 2 produces intact [M + Cl] − ions. •The photon energy required corresponds to ionization potential of the solvent. •Polymer distributions depend on source parameters such T °C and applied voltages. •Liquid chromatography was coupled to MS using an APPI interface for polymer analysis. -- Abstract: Atmospheric pressure photoionization (APPI) followed by mass spectrometric detection was used to ionize a variety of polymers: polyethylene glycol, polymethyl methacrylate, polystyrene, and polysiloxane. In most cases, whatever the polymer or the solvent used (dichloromethane, tetrahydrofuran, hexane, acetone or toluene), only negative ion mode produced intact ions such as chlorinated adducts, with no or few fragmentations, in contrast to the positive ion mode that frequently led to important in-source fragmentations. In addition, it was shown that optimal detection of polymer distributions require a fine tuning of other source parameters such as temperature and ion transfer voltage. Series of mass spectra were recorded in the negative mode, in various solvents (dichloromethane, tetrahydrofuran, hexane, toluene, and acetone), by varying the photon energy from 8 eV up to 10.6 eV using synchrotron radiation. To these solvents, addition of a classical APPI dopant (toluene or acetone) was not necessary. Courtesy of the synchrotron radiation, it was demonstrated that the photon energy required for an efficient ionization of the polymer was correlated to the ionization energy

  8. Synthetic oligomer analysis using atmospheric pressure photoionization mass spectrometry at different photon energies

    Energy Technology Data Exchange (ETDEWEB)

    Desmazières, Bernard [Global Bioenergies, 5 rue Henri Desbruyeres, 91030 Evry (France); Legros, Véronique [CNRS, UMR8587, Université d’Evry-Val-d’Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, F-91025 Evry (France); Giuliani, Alexandre [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, 91192 Gif-sur-Yvette (France); UAR1008, CEPIA, INRA, Rue de la Geraudiere, F-44316 Nantes (France); Buchmann, William, E-mail: william.buchmann@univ-evry.fr [CNRS, UMR8587, Université d’Evry-Val-d’Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, F-91025 Evry (France)

    2014-01-15

    Graphical abstract: Atmospheric pressure photoIonization mass spectra of synthetic oligomers were recorded in the negative mode by varying the photon energy using synchrotron radiation. Photon energy required for an efficient ionization of the polymer was correlated to ionization potential of the solvent (for example 9.4 eV for tetrahydrofuran). -- Highlights: •Atmospheric pressure photoionization was performed using synchrotron radiation. •Photoionization of oligomers in THF with 10% CH{sub 2}Cl{sub 2} produces intact [M + Cl]{sup −} ions. •The photon energy required corresponds to ionization potential of the solvent. •Polymer distributions depend on source parameters such T °C and applied voltages. •Liquid chromatography was coupled to MS using an APPI interface for polymer analysis. -- Abstract: Atmospheric pressure photoionization (APPI) followed by mass spectrometric detection was used to ionize a variety of polymers: polyethylene glycol, polymethyl methacrylate, polystyrene, and polysiloxane. In most cases, whatever the polymer or the solvent used (dichloromethane, tetrahydrofuran, hexane, acetone or toluene), only negative ion mode produced intact ions such as chlorinated adducts, with no or few fragmentations, in contrast to the positive ion mode that frequently led to important in-source fragmentations. In addition, it was shown that optimal detection of polymer distributions require a fine tuning of other source parameters such as temperature and ion transfer voltage. Series of mass spectra were recorded in the negative mode, in various solvents (dichloromethane, tetrahydrofuran, hexane, toluene, and acetone), by varying the photon energy from 8 eV up to 10.6 eV using synchrotron radiation. To these solvents, addition of a classical APPI dopant (toluene or acetone) was not necessary. Courtesy of the synchrotron radiation, it was demonstrated that the photon energy required for an efficient ionization of the polymer was correlated to the

  9. TRANSFORMATION OF DEVELOPMENTAL NEUROTOXICITY DATA INTO STRUCTURE-SEARCHABLE TOXML DATABASE IN SUPPORT OF STRUCTURE-ACTIVITY RELATIONSHIP (SAR) WORKFLOW.

    Science.gov (United States)

    Early hazard identification of new chemicals is often difficult due to lack of data on the novel material for toxicity endpoints, including neurotoxicity. At present, there are no structure searchable neurotoxicity databases. A working group was formed to construct a database to...

  10. Intracystic interferon-α treatment leads to neurotoxicity in craniopharyngioma: case report.

    Science.gov (United States)

    Sharma, Julia; Bonfield, Christopher M; Singhal, Ash; Hukin, Juliette; Steinbok, Paul

    2015-09-01

    Craniopharyngioma is a benign, cystic suprasellar tumor that can be treated with intracystic chemotherapy. Interferon-α (IFN-α) has been gaining popularity as an intracystic treatment for craniopharyngioma because of its efficacy and supposed benign neurotoxicity profile. In this case report the authors describe a patient who, while receiving intracystic IFN-α, suffered a neurological event, which was believed to be related to drug leakage outside the cyst. This is the first report of a focal neurological deficit potentially attributable to intracystic IFN-α therapy, highlighting the fact that IFN-α may have neurotoxic effects on the central nervous system. Given this case and the results of a literature review, the authors suggest that a positive leak test is a relative contraindication to intracystic IFN-α treatment.

  11. Insights into Parkinson's disease models and neurotoxicity using non-invasive imaging

    International Nuclear Information System (INIS)

    Sanchez-Pernaute, Rosario; Brownell, Anna-Liisa; Jenkins, Bruce G.; Isacson, Ole

    2005-01-01

    Loss of dopamine in the nigrostriatal system causes a severe impairment in motor function in patients with Parkinson's disease and in experimental neurotoxic models of the disease. We have used non-invasive imaging techniques such as positron emission tomography (PET) and functional magnetic resonance imaging (MRI) to investigate in vivo the changes in the dopamine system in neurotoxic models of Parkinson's disease. In addition to classic neurotransmitter studies, in these models, it is also possible to characterize associated and perhaps pathogenic factors, such as the contribution of microglia activation and inflammatory responses to neuronal damage. Functional imaging techniques are instrumental to our understanding and modeling of disease mechanisms, which should in turn lead to development of new therapies for Parkinson's disease and other neurodegenerative disorders

  12. Carbonization of aniline oligomers to electrically polarizable particles and their use in electrorheology

    Czech Academy of Sciences Publication Activity Database

    Plachý, T.; Sedlačík, M.; Pavlínek, V.; Trchová, Miroslava; Morávková, Zuzana; Stejskal, Jaroslav

    2014-01-01

    Roč. 256, 15 November (2014), s. 398-406 ISSN 1385-8947 R&D Projects: GA ČR GAP205/12/0911; GA ČR(CZ) GA13-08944S Institutional support: RVO:61389013 Keywords : aniline * aniline oligomers * carbonization Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.321, year: 2014

  13. The Protective Effects of IGF-1 on Different Subpopulations of DRG Neurons with Neurotoxicity Induced by gp120 and Dideoxycytidine In Vitro.

    Science.gov (United States)

    Lu, Lin; Dong, Haixia; Liu, Guixiang; Yuan, Bin; Li, Yizhao; Liu, Huaxiang

    2014-11-01

    Peripheral neuropathy induced by human immunodeficiency virus (HIV) infection and antiretroviral therapy is not only difficult to distinguish in clinical practice, but also difficult to relieve the pain symptoms by analgesics because of the severity of the disease at the later stage. Hence, to explore the mechanisms of HIV-related neuropathy and find new therapeutic options are particularly important for relieving neuropathic pain symptoms of the patients. In the present study, primary cultured embryonic rat dorsal root ganglion (DRG) neurons were used to determine the neurotoxic effects of HIV-gp120 protein and/or antiretroviral drug dideoxycytidine (ddC) and the therapeutic actions of insulin-like growth factor-1 (IGF-1) on gp120- or ddC-induced neurotoxicity. DRG neurons were exposed to gp120 (500 pmol/L), ddC (50 μmol/L), gp120 (500 pmol/L) plus ddC (50 μmol/L), gp120 (500 pmol/L) plus IGF-1 (20 nmol/L), ddC (50 μmol/L) plus IGF-1 (20 nmol/L), gp120 (500 pmol/L) plus ddC (50 μmol/L) plus IGF-1 (20 nmol/L), respectively, for 72 hours. The results showed that gp120 and/or ddC caused neurotoxicity of primary cultured DRG neurons. Interestingly, the severity of neurotoxicity induced by gp120 and ddC was different in different subpopulation of DRG neurons. gp120 mainly affected large diameter DRG neurons (>25 μm), whereas ddC mainly affected small diameter DRG neurons (≤25 μm). IGF-1 could reverse the neurotoxicity induced by gp120 and/or ddC on small, but not large, DRG neurons. These data provide new insights in elucidating the pathogenesis of HIV infection- or antiretroviral therapy-related peripheral neuropathy and facilitating the development of novel treatment strategies.

  14. Autophagy activation is involved in 3,4-methylenedioxymethamphetamine ('ecstasy'--induced neurotoxicity in cultured cortical neurons.

    Directory of Open Access Journals (Sweden)

    I-Hsun Li

    Full Text Available Autophagic (type II cell death, characterized by the massive accumulation of autophagic vacuoles in the cytoplasm of cells, has been suggested to play pathogenetic roles in cerebral ischemia, brain trauma, and neurodegenerative disorders. 3,4-Methylenedioxymethamphetamine (MDMA or ecstasy is an illicit drug causing long-term neurotoxicity in the brain. Apoptotic (type I and necrotic (type III cell death have been implicated in MDMA-induced neurotoxicity, while the role of autophagy in MDMA-elicited neurotoxicity has not been investigated. The present study aimed to evaluate the occurrence and contribution of autophagy to neurotoxicity in cultured rat cortical neurons challenged with MDMA. Autophagy activation was monitored by expression of microtubule-associated protein 1 light chain 3 (LC3; an autophagic marker using immunofluorescence and western blot analysis. Here, we demonstrate that MDMA exposure induced monodansylcadaverine (MDC- and LC3B-densely stained autophagosome formation and increased conversion of LC3B-I to LC3B-II, coinciding with the neurodegenerative phase of MDMA challenge. Autophagy inhibitor 3-methyladenine (3-MA pretreatment significantly attenuated MDMA-induced autophagosome accumulation, LC3B-II expression, and ameliorated MDMA-triggered neurite damage and neuronal death. In contrast, enhanced autophagy flux by rapamycin or impaired autophagosome clearance by bafilomycin A1 led to more autophagosome accumulation in neurons and aggravated neurite degeneration, indicating that excessive autophagosome accumulation contributes to MDMA-induced neurotoxicity. Furthermore, MDMA induced phosphorylation of AMP-activated protein kinase (AMPK and its downstream unc-51-like kinase 1 (ULK1, suggesting the AMPK/ULK1 signaling pathway might be involved in MDMA-induced autophagy activation.

  15. Involvement of Programmed Cell Death in Neurotoxicity of Metallic Nanoparticles: Recent Advances and Future Perspectives

    Science.gov (United States)

    Song, Bin; Zhou, Ting; Liu, Jia; Shao, LongQuan

    2016-11-01

    The widespread application of metallic nanoparticles (NPs) or NP-based products has increased the risk of exposure to NPs in humans. The brain is an important organ that is more susceptible to exogenous stimuli. Moreover, any impairment to the brain is irreversible. Recently, several in vivo studies have found that metallic NPs can be absorbed into the animal body and then translocated into the brain, mainly through the blood-brain barrier and olfactory pathway after systemic administration. Furthermore, metallic NPs can cross the placental barrier to accumulate in the fetal brain, causing developmental neurotoxicity on exposure during pregnancy. Therefore, metallic NPs become a big threat to the brain. However, the mechanisms underlying the neurotoxicity of metallic NPs remain unclear. Programmed cell death (PCD), which is different from necrosis, is defined as active cell death and is regulated by certain genes. PCD can be mainly classified into apoptosis, autophagy, necroptosis, and pyroptosis. It is involved in brain development, neurodegenerative disorders, psychiatric disorders, and brain injury. Given the pivotal role of PCD in neurological functions, we reviewed relevant articles and tried to summarize the recent advances and future perspectives of PCD involvement in the neurotoxicity of metallic NPs, with the purpose of comprehensively understanding the neurotoxic mechanisms of NPs.

  16. Intracerebroventricular Administration of Amyloid β-protein Oligomers Selectively Increases Dorsal Hippocampal Dialysate Glutamate Levels in the Awake Rat

    Directory of Open Access Journals (Sweden)

    Sean D. O’Shea

    2008-11-01

    Full Text Available Extensive evidence supports an important role for soluble oligomers of the amyloid β-protein (Aβ in Alzheimer’s Disease pathogenesis. In the present study we combined intracerebroventricular (icv injections with brain microdialysis technology in the fully conscious rat to assess the effects of icv administered SDS-stable low-n Aβ oligomers (principally dimers and trimers on excitatory and inhibitory amino acid transmission in the ipsilateral dorsal hippocampus. Microdialysis was employed to assess the effect of icv administration of Aβ monomers and Aβ oligomers on dialysate glutamate, aspartate and GABA levels in the dorsal hippocampus. Administration of Aβ oligomers was associated with a +183% increase (p<0.0001 vs. Aβ monomer-injected control in dorsal hippocampal glutamate levels which was still increasing at the end of the experiment (260 min, whereas aspartate and GABA levels were unaffected throughout. These findings demonstrate that icv administration and microdialysis technology can be successfully combined in the awake rat and suggests that altered dorsal hippocampal glutamate transmission may be a useful target for pharmacological intervention in Alzheimer’s Disease.

  17. Design, synthesis, and characterization of biomimetic oligomers

    DEFF Research Database (Denmark)

    Laursen, Jonas Striegler

    a helical arrangement found by DFT calculations. The designed oligomer indeed proved the existence of a ß-peptoid helical conformation by X-ray. Further studies of these compounds indicated a structured display in solution. These helices thus definitively show that the ß-peptoids should be considered......Peptides and proteins made from the 20 canonical amino acids are responsible for many processes necessary for organisms to function. Beside their composition, proteins obtain their activity and unique selectivity through an ability to display functionalities accurately in the three......, for their ability to mimic the structural elements seen in proteins. Two prominent peptidomimetics are ß-peptides and a-peptoids (N-alkylglycines), which have been shown to fold into helical and sheet-like arrangements. To expand the chemical space available for mimicking protein structure their features have been...

  18. Δ9-tetrahydrocannabinol prevents methamphetamine-induced neurotoxicity.

    Directory of Open Access Journals (Sweden)

    M Paola Castelli

    Full Text Available Methamphetamine (METH is a potent psychostimulant with neurotoxic properties. Heavy use increases the activation of neuronal nitric oxide synthase (nNOS, production of peroxynitrites, microglia stimulation, and induces hyperthermia and anorectic effects. Most METH recreational users also consume cannabis. Preclinical studies have shown that natural (Δ9-tetrahydrocannabinol, Δ9-THC and synthetic cannabinoid CB1 and CB2 receptor agonists exert neuroprotective effects on different models of cerebral damage. Here, we investigated the neuroprotective effect of Δ9-THC on METH-induced neurotoxicity by examining its ability to reduce astrocyte activation and nNOS overexpression in selected brain areas. Rats exposed to a METH neurotoxic regimen (4 × 10 mg/kg, 2 hours apart were pre- or post-treated with Δ9-THC (1 or 3 mg/kg and sacrificed 3 days after the last METH administration. Semi-quantitative immunohistochemistry was performed using antibodies against nNOS and Glial Fibrillary Acidic Protein (GFAP. Results showed that, as compared to corresponding controls (i METH-induced nNOS overexpression in the caudate-putamen (CPu was significantly attenuated by pre- and post-treatment with both doses of Δ9-THC (-19% and -28% for 1 mg/kg pre- and post-treated animals; -25% and -21% for 3 mg/kg pre- and post-treated animals; (ii METH-induced GFAP-immunoreactivity (IR was significantly reduced in the CPu by post-treatment with 1 mg/kg Δ9-THC1 (-50% and by pre-treatment with 3 mg/kg Δ9-THC (-53%; (iii METH-induced GFAP-IR was significantly decreased in the prefrontal cortex (PFC by pre- and post-treatment with both doses of Δ9-THC (-34% and -47% for 1 mg/kg pre- and post-treated animals; -37% and -29% for 3 mg/kg pre- and post-treated animals. The cannabinoid CB1 receptor antagonist SR141716A attenuated METH-induced nNOS overexpression in the CPu, but failed to counteract the Δ9-THC-mediated reduction of METH-induced GFAP-IR both in the PFC and CPu. Our

  19. Investigating the potential neurotoxicity of Ecstasy (MDMA): an imaging approach

    NARCIS (Netherlands)

    Reneman, Liesbeth; Booij, Jan; Majoie, Charles B. L. M.; van den Brink, Wim; den Heeten, Gerard J.

    2001-01-01

    Human users of 3,4-methylenedioxymethamphetamine (MDMA, 'Ecstasy') users may be at risk of developing MDMA-induced neuronal injury. Previously, no methods were available for directly evaluating the neurotoxic effects of MDMA in the living human brain. However, development of in vivo neuroimaging

  20. Naringenin protects against 6-OHDA-induced neurotoxicity via activation of the Nrf2/ARE signaling pathway.

    Science.gov (United States)

    Lou, Haiyan; Jing, Xu; Wei, Xinbing; Shi, Huanying; Ren, Dongmei; Zhang, Xiumei

    2014-04-01

    There is increasing evidence that oxidative stress is critically involved in the pathogenesis of Parkinson's disease (PD), suggesting that pharmacological targeting of the antioxidant machinery may have therapeutic value. Naringenin, a natural flavonoid compound, has been reported to possess neuroprotective effect against PD related pathology; however the mechanisms underlying its beneficial effects are poorly defined. Thus, the purpose of the present study was to investigate the potential neuroprotective role of naringenin and to delineate its mechanism of action against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in models of PD both in vitro and in vivo. Naringenin treatment resulted in an increase in nuclear factor E2-related factor 2 (Nrf2) protein levels and subsequent activation of antioxidant response element (ARE) pathway genes in SH-SY5Y cells and in mice. Exposure of SH-SY5Y cells to naringenin provided protection against 6-OHDA-induced oxidative insults that was dependent on Nrf2, since treatment with Nrf2 siRNA failed to block against 6-OHDA neurotoxicity or induce Nrf2-dependent cytoprotective genes in SH-SY5Y cells. In mice, oral administration of naringenin resulted in significant protection against 6-OHDA-induced nigrostriatal dopaminergic neurodegeneration and oxidative damage. Our results indicate that activation of Nrf2/ARE signaling by naringenin is strongly associated with its neuroprotective effects against 6-OHDA neurotoxicity and suggest that targeting the Nrf2/ARE pathway may be a promising approach for therapeutic intervention in PD. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Fragment C Domain of Tetanus Toxin Mitigates Methamphetamine Neurotoxicity and Its Motor Consequences in Mice.

    Science.gov (United States)

    Mendieta, Liliana; Granado, Noelia; Aguilera, José; Tizabi, Yousef; Moratalla, Rosario

    2016-08-01

    The C-terminal domain of the heavy chain of tetanus toxin (Hc-TeTx) is a nontoxic peptide with demonstrated in vitro and in vivo neuroprotective effects against striatal dopaminergic damage induced by 1-methyl-4-phenylpyridinium and 6-hydoxydopamine, suggesting its possible therapeutic potential in Parkinson's disease. Methamphetamine, a widely abused psychostimulant, has selective dopaminergic neurotoxicity in rodents, monkeys, and humans. This study was undertaken to determine whether Hc-TeTx might also protect against methamphetamine-induced dopaminergic neurotoxicity and the consequent motor impairment. For this purpose, we treated mice with a toxic regimen of methamphetamine (4mg/kg, 3 consecutive i.p. injections, 3 hours apart) followed by 3 injections of 40 ug/kg of Hc-TeTx into grastrocnemius muscle at 1, 24, and 48 hours post methamphetamine treatment. We found that Hc-TeTx significantly reduced the loss of dopaminergic markers tyrosine hydroxylase and dopamine transporter and the increases in silver staining (a well stablished degeneration marker) induced by methamphetamine in the striatum. Moreover, Hc-TeTx prevented the increase of neuronal nitric oxide synthase but did not affect microglia activation induced by methamphetamine. Stereological neuronal count in the substantia nigra indicated loss of tyrosine hydroxylase-positive neurons after methamphetamine that was partially prevented by Hc-TeTx. Importantly, impairment in motor behaviors post methamphetamine treatment were significantly reduced by Hc-TeTx. Here we demonstrate that Hc-TeTx can provide significant protection against acute methamphetamine-induced neurotoxicity and motor impairment, suggesting its therapeutic potential in methamphetamine abusers. © The Author 2016. Published by Oxford University Press on behalf of CINP.

  2. ENVIRONMENTAL ENRICHMENT STRENGTHENS CORTICOCORTICAL INTERACTIONS AND REDUCES AMYLOID-β OLIGOMERS IN AGED MICE

    Directory of Open Access Journals (Sweden)

    Marco eMainardi

    2014-01-01

    Full Text Available Brain aging is characterized by global changes which are thought to underlie age-related cognitive decline. These include variations in brain activity and the progressive increase in the concentration of soluble amyloid-β (Aβ oligomers, directly impairing synaptic function and plasticity even in the absence of any neurodegenerative disorder. Considering the high social impact of the decline in brain performance associated to aging, there is an urgent need to better understand how it can be prevented or contrasted. Lifestyle components, such as social interaction, motor exercise and cognitive activity, are thought to modulate brain physiology and its susceptibility to age-related pathologies. However, the precise functional and molecular factors that respond to environmental stimuli and might mediate their protective action again pathological aging still need to be clearly identified. To address this issue, we exploited environmental enrichment (EE, a reliable model for studying the effect of experience on the brain based on the enhancement of cognitive, social and motor experience, in aged wild-type mice. We analyzed the functional consequences of EE on aged brain physiology by performing in vivo local field potential (LFP recordings with chronic implants. In addition, we also investigated changes induced by EE on molecular markers of neural plasticity and on the levels of soluble Aβ oligomers. We report that EE induced profound changes in the activity of the primary visual and auditory cortices and in their functional interaction. At the molecular level, EE enhanced plasticity by an upward shift of the cortical excitation/inhibition balance. In addition, EE reduced brain Aβ oligomers and increased synthesis of the Aβ-degrading enzyme neprilysin. Our findings strengthen the potential of EE procedures as a non-invasive paradigm for counteracting brain aging processes.

  3. In Zucker Diabetic Fatty Rats, Subclinical Diabetic Neuropathy Increases In Vivo Lidocaine Block Duration But Not In Vitro Neurotoxicity

    NARCIS (Netherlands)

    Lirk, Philipp; Flatz, Magdalena; Haller, Ingrid; Hausott, Barbara; Blumenthal, Stephan; Stevens, Markus F.; Suzuki, Suzuko; Klimaschewski, Lars; Gerner, Peter

    2012-01-01

    Background and Objectives: Application of local anesthetics may lead to nerve damage. Increasing evidence suggests that risk of neurotoxicity is higher in patients with diabetic peripheral neuropathy. In addition, block duration may be prolonged in neuropathy. We sought to investigate neurotoxicity

  4. Interpenetrating polymer networks based on cyanate ester and fluorinated ethynyl-terminated imide oligomers

    Directory of Open Access Journals (Sweden)

    Y. Wen

    2017-12-01

    Full Text Available Highly soluble fluorinated ethynyl-terminated imide (FETI oligomers were prepared via a conventional one-step method in m-cresol, using 4, 4′-(hexafluoroisopropylidene diphthalic anhydride and 2, 2′-bis(trifluoromethyl benzidine as the monomers, and ethynylphthalic anhydride as the end-capper; then interpenetrating polymer networks (IPN were formulated from FETI oligomers and bisphenol A dicyanate ester (BADCy through a solvent-free procedure, and their thermal, mechanical, and dielectric properties were fully characterized. The curing mechanism was studied by model reactions using nitrogen nuclear magnetic resonance. As evidenced by differential scanning calorimetry analysis and rheological measurements, the FETI/BADCy blends exhibited lower curing temperature and shorter gelation time in comparison with pure BADCy due to the catalytic effects of ethynyl and residue amic acid groups. The properties of IPNs were fully compared with those of polycyanurate, and the results revealed that the incorporation of FETI into cyanate ester resins could significantly improve the toughness, glass transition temperatures, mechanical and dielectric properties of the resultant IPNs.

  5. Neurotoxicity induced by alkyl nitrites: Impairment in learning/memory and motor coordination.

    Science.gov (United States)

    Cha, Hye Jin; Kim, Yun Ji; Jeon, Seo Young; Kim, Young-Hoon; Shin, Jisoon; Yun, Jaesuk; Han, Kyoungmoon; Park, Hye-Kyung; Kim, Hyung Soo

    2016-04-21

    Although alkyl nitrites are used as recreational drugs, there is only little research data regarding their effects on the central nervous system including their neurotoxicity. This study investigated the neurotoxicity of three representative alkyl nitrites (isobutyl nitrite, isoamyl nitrite, and butyl nitrite), and whether it affected learning/memory function and motor coordination in rodents. Morris water maze test was performed in mice after administrating the mice with varying doses of the substances in two different injection schedules of memory acquisition and memory retention. A rota-rod test was then performed in rats. All tested alkyl nitrites lowered the rodents' capacity for learning and memory, as assessed by both the acquisition and retention tests. The results of the rota-rod test showed that isobutyl nitrite in particular impaired motor coordination in chronically treated rats. The mice chronically injected with isoamyl nitrite also showed impaired function, while butyl nitrite had no significant effect. The results of the water maze test suggest that alkyl nitrites may impair learning and memory. Additionally, isoamyl nitrite affected the rodents' motor coordination ability. Collectively, our findings suggest that alkyl nitrites may induce neurotoxicity, especially on the aspect of learning and memory function. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Botanical Polyphenols Mitigate Microglial Activation and Microglia-Induced Neurotoxicity: Role of Cytosolic Phospholipase A2.

    Science.gov (United States)

    Chuang, Dennis Y; Simonyi, Agnes; Cui, Jiankun; Lubahn, Dennis B; Gu, Zezong; Sun, Grace Y

    2016-09-01

    Microglia play a significant role in the generation and propagation of oxidative/nitrosative stress, and are the basis of neuroinflammatory responses in the central nervous system. Upon stimulation by endotoxins such as lipopolysaccharides (LPS), these cells release pro-inflammatory factors which can exert harmful effects on surrounding neurons, leading to secondary neuronal damage and cell death. Our previous studies demonstrated the effects of botanical polyphenols to mitigate inflammatory responses induced by LPS, and highlighted an important role for cytosolic phospholipase A2 (cPLA2) upstream of the pro-inflammatory pathways (Chuang et al. in J Neuroinflammation 12(1):199, 2015. doi: 10.1186/s12974-015-0419-0 ). In this study, we investigate the action of botanical compounds and assess whether suppression of cPLA2 in microglia is involved in the neurotoxic effects on neurons. Differentiated SH-SY5Y neuroblastoma cells were used to test the neurotoxicity of conditioned medium from stimulated microglial cells, and WST-1 assay was used to assess for the cell viability of SH-SY5Y cells. Botanicals such as quercetin and honokiol (but not cyanidin-3-O-glucoside, 3CG) were effective in inhibiting LPS-induced nitric oxide (NO) production and phosphorylation of cPLA2. Conditioned medium from BV-2 cells stimulated with LPS or IFNγ caused neurotoxicity to SH-SY5Y cells. Decrease in cell viability could be ameliorated by pharmacological inhibitors for cPLA2 as well as by down-regulating cPLA2 with siRNA. Botanicals effective in inhibition of LPS-induced NO and cPLA2 phosphorylation were also effective in ameliorating microglial-induced neurotoxicity. Results demonstrated cytotoxic factors from activated microglial cells to cause damaging effects to neurons and potential use of botanical polyphenols to ameliorate the neurotoxic effects.

  7. Age dependence of organophosphate and carbamate neurotoxicity in the postnatal rat: extrapolation to the human

    International Nuclear Information System (INIS)

    Vidair, Charles A.

    2004-01-01

    One important aspect of risk assessment for the organophosphate and carbamate pesticides is to determine whether their neurotoxicity occurs at lower dose levels in human infants compared to adults. Because these compounds probably exert their neurotoxic effects through the inhibition of acetylcholinesterase (AChE), the above question can be narrowed to whether the cholinesterase inhibition and neurotoxicity they produce is age-dependent, both in terms of the effects produced and potency. The rat is the animal model system most commonly used to address these issues. This paper first discusses the adequacy of the postnatal rat to serve as a model for neurodevelopment in the postnatal human, concluding that the two species share numerous pathways of postnatal neurodevelopment, and that the rat in the third postnatal week is the neurodevelopmental equivalent of the newborn human. Then, studies are discussed in which young and adult rats were dosed by identical routes with organophosphates or carbamates. Four pesticides were tested in rat pups in their third postnatal week: aldicarb, chlorpyrifos, malathion, and methamidophos. The first three, but not methamidophos, caused neurotoxicity at dose levels that ranged from 1.8- to 5.1-fold lower (mean 2.6-fold lower) in the 2- to 3-week-old rat compared to the adult. This estimate in the rat, based on a limited data set of three organophosphates and a single carbamate, probably represents the minimum difference in the neurotoxicity of an untested cholinesterase-inhibiting pesticide that should be expected between the human neonate and adult. For the organophosphates, the greater sensitivity of postnatal rats, and, by analogy, that expected for human neonates, is correlated with generally lower levels of the enzymes involved in organophosphate deactivation

  8. iTRAQ proteomics analysis reveals that PI3K is highly associated with bupivacaine-induced neurotoxicity pathways.

    Science.gov (United States)

    Zhao, Wei; Liu, Zhongjie; Yu, Xujiao; Lai, Luying; Li, Haobo; Liu, Zipeng; Li, Le; Jiang, Shan; Xia, Zhengyuan; Xu, Shi-yuan

    2016-02-01

    Bupivacaine, a commonly used local anesthetic, has potential neurotoxicity through diverse signaling pathways. However, the key mechanism of bupivacaine-induced neurotoxicity remains unclear. Cultured human SH-SY5Y neuroblastoma cells were treated (bupivacaine) or untreated (control) with bupivacaine for 24 h. Compared to the control group, bupivacaine significantly increased cyto-inhibition, cellular reactive oxygen species, DNA damage, mitochondrial injury, apoptosis (increased TUNEL-positive cells, cleaved caspase 3, and Bcl-2/Bax), and activated autophagy (enhanced LC3II/LC3I ratio). To explore changes in protein expression and intercommunication among the pathways involved in bupivacaine-induced neurotoxicity, an 8-plex iTRAQ proteomic technique and bioinformatics analysis were performed. Compared to the control group, 241 differentially expressed proteins were identified, of which, 145 were up-regulated and 96 were down-regulated. Bioinformatics analysis of the cross-talk between the significant proteins with altered expression in bupivacaine-induced neurotoxicity indicated that phosphatidyl-3-kinase (PI3K) was the most frequently targeted protein in each of the interactions. We further confirmed these results by determining the downstream targets of the identified signaling pathways (PI3K, Akt, FoxO1, Erk, and JNK). In conclusion, our study demonstrated that PI3K may play a central role in contacting and regulating the signaling pathways that contribute to bupivacaine-induced neurotoxicity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Inactivation of lipoprotein lipase occurs on the surface of THP-1 macrophages where oligomers of angiopoietin-like protein 4 are formed

    International Nuclear Information System (INIS)

    Makoveichuk, Elena; Sukonina, Valentina; Kroupa, Olessia; Thulin, Petra; Ehrenborg, Ewa; Olivecrona, Thomas; Olivecrona, Gunilla

    2012-01-01

    Highlights: ► Lipoprotein lipase (LPL) activity is controlled by ANGPTL4 in THP-1 macrophages. ► Both LPL and ANGPTL4 bind to THP-1 macrophages in a heparin-releasable fashion. ► Only monomers of ANGPTL4 are present within THP-1 macrophages. ► Covalent oligomers of ANGPTL4 appear on cell surface and in medium. ► Inactivation of LPL coincide with ANGPTL4 oligomer formation on cell surfaces. -- Abstract: Lipoprotein lipase (LPL) hydrolyzes triglycerides in plasma lipoproteins causing release of fatty acids for metabolic purposes in muscles and adipose tissue. LPL in macrophages in the artery wall may, however, promote foam cell formation and atherosclerosis. Angiopoietin-like protein (ANGPTL) 4 inactivates LPL and ANGPTL4 expression is controlled by peroxisome proliferator-activated receptors (PPAR). The mechanisms for inactivation of LPL by ANGPTL4 was studied in THP-1 macrophages where active LPL is associated with cell surfaces in a heparin-releasable form, while LPL in the culture medium is mostly inactive. The PPARδ agonist GW501516 had no effect on LPL mRNA, but increased ANGPTL4 mRNA and caused a marked reduction of the heparin-releasable LPL activity concomitantly with accumulation of inactive, monomeric LPL in the medium. Intracellular ANGPTL4 was monomeric, while dimers and tetramers of ANGPTL4 were present in the heparin-releasable fraction and medium. GW501516 caused an increase in the amount of ANGPTL4 oligomers on the cell surface that paralleled the decrease in LPL activity. Actinomycin D blocked the effects of GW501516 on ANGPTL4 oligomer formation and prevented the inactivation of LPL. Antibodies against ANGPTL4 interfered with the inactivation of LPL. We conclude that inactivation of LPL in THP-1 macrophages primarily occurs on the cell surface where oligomers of ANGPTL4 are formed.

  10. Neurobehavioural and Neurotoxic Effects of L-ascorbic Acid and L ...

    African Journals Online (AJOL)

    Background: Lead is an environmental toxicant, occupational and environmental exposures remain a serious problem in developing and industrializing countries. Objective: This study is designed to investigate the effects of L-ascorbic acid and L-tryptophan on the neurotoxicity and neurobehavioural alterations in lead ...

  11. Enhancement of endocannabinoid signaling protects against cocaine-induced neurotoxicity

    International Nuclear Information System (INIS)

    Vilela, Luciano R.; Gobira, Pedro H.; Viana, Thercia G.; Medeiros, Daniel C.; Ferreira-Vieira, Talita H.; Doria, Juliana G.; Rodrigues, Flávia; Aguiar, Daniele C.; Pereira, Grace S.; Massessini, André R.; Ribeiro, Fabíola M.; Oliveira, Antonio Carlos P. de; Moraes, Marcio F.D.; Moreira, Fabricio A.

    2015-01-01

    Cocaine is an addictive substance with a potential to cause deleterious effects in the brain. The strategies for treating its neurotoxicity, however, are limited. Evidence suggests that the endocannabinoid system exerts neuroprotective functions against various stimuli. Thus, we hypothesized that inhibition of fatty acid amide hydrolase (FAAH), the main enzyme responsible for terminating the actions of the endocannabinoid anandamide, reduces seizures and cell death in the hippocampus in a model of cocaine intoxication. Male Swiss mice received injections of endocannabinoid-related compounds followed by the lowest dose of cocaine that induces seizures, electroencephalographic activity and cell death in the hippocampus. The molecular mechanisms were studied in primary cell culture of this structure. The FAAH inhibitor, URB597, reduced cocaine-induced seizures and epileptiform electroencephalographic activity. The cannabinoid CB 1 receptor selective agonist, ACEA, mimicked these effects, whereas the antagonist, AM251, prevented them. URB597 also inhibited cocaine-induced activation and death of hippocampal neurons, both in animals and in primary cell culture. Finally, we investigated if the PI3K/Akt/ERK intracellular pathway, a cell surviving mechanism coupled to CB 1 receptor, mediated these neuroprotective effects. Accordingly, URB597 injection increased ERK and Akt phosphorylation in the hippocampus. Moreover, the neuroprotective effect of this compound was reversed by the PI3K inhibitor, LY294002. In conclusion, the pharmacological facilitation of the anandamide/CB1/PI3K signaling protects the brain against cocaine intoxication in experimental models. This strategy may be further explored in the development of treatments for drug-induced neurotoxicity. - Highlights: • Cocaine toxicity is characterized by seizures and hippocampal cell death. • The endocannabinoid anandamide acts as a brain protective mechanism. • Inhibition of anandamide hydrolysis attenuates

  12. Enhancement of endocannabinoid signaling protects against cocaine-induced neurotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Vilela, Luciano R. [Graduate Program in Neuroscience, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Gobira, Pedro H.; Viana, Thercia G. [Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Medeiros, Daniel C.; Ferreira-Vieira, Talita H. [Department of Physiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Doria, Juliana G. [Graduate Program in Neuroscience, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Rodrigues, Flávia [Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Aguiar, Daniele C. [Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Pereira, Grace S.; Massessini, André R. [Department of Physiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Ribeiro, Fabíola M. [Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Oliveira, Antonio Carlos P. de [Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Moraes, Marcio F.D., E-mail: mfdm@icb.ufmg.br [Department of Physiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Moreira, Fabricio A., E-mail: fabriciomoreira@icb.ufmg.br [Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil)

    2015-08-01

    Cocaine is an addictive substance with a potential to cause deleterious effects in the brain. The strategies for treating its neurotoxicity, however, are limited. Evidence suggests that the endocannabinoid system exerts neuroprotective functions against various stimuli. Thus, we hypothesized that inhibition of fatty acid amide hydrolase (FAAH), the main enzyme responsible for terminating the actions of the endocannabinoid anandamide, reduces seizures and cell death in the hippocampus in a model of cocaine intoxication. Male Swiss mice received injections of endocannabinoid-related compounds followed by the lowest dose of cocaine that induces seizures, electroencephalographic activity and cell death in the hippocampus. The molecular mechanisms were studied in primary cell culture of this structure. The FAAH inhibitor, URB597, reduced cocaine-induced seizures and epileptiform electroencephalographic activity. The cannabinoid CB{sub 1} receptor selective agonist, ACEA, mimicked these effects, whereas the antagonist, AM251, prevented them. URB597 also inhibited cocaine-induced activation and death of hippocampal neurons, both in animals and in primary cell culture. Finally, we investigated if the PI3K/Akt/ERK intracellular pathway, a cell surviving mechanism coupled to CB{sub 1} receptor, mediated these neuroprotective effects. Accordingly, URB597 injection increased ERK and Akt phosphorylation in the hippocampus. Moreover, the neuroprotective effect of this compound was reversed by the PI3K inhibitor, LY294002. In conclusion, the pharmacological facilitation of the anandamide/CB1/PI3K signaling protects the brain against cocaine intoxication in experimental models. This strategy may be further explored in the development of treatments for drug-induced neurotoxicity. - Highlights: • Cocaine toxicity is characterized by seizures and hippocampal cell death. • The endocannabinoid anandamide acts as a brain protective mechanism. • Inhibition of anandamide hydrolysis

  13. Atropa belladonna neurotoxicity: Implications to neurological disorders.

    Science.gov (United States)

    Kwakye, Gunnar F; Jiménez, Jennifer; Jiménez, Jessica A; Aschner, Michael

    2018-06-01

    Atropa belladonna, commonly known as belladonna or deadly nightshade, ranks among one of the most poisonous plants in Europe and other parts of the world. The plant contains tropane alkaloids including atropine, scopolamine, and hyoscyamine, which are used as anticholinergics in Food and Drug Administration (FDA) approved drugs and homeopathic remedies. These alkaloids can be very toxic at high dose. The FDA has recently reported that Hyland's baby teething tablets contain inconsistent amounts of Atropa belladonna that may have adverse effects on the nervous system and cause death in children, thus recalled the product in 2017. A greater understanding of the neurotoxicity of Atropa belladonna and its modification of genetic polymorphisms in the nervous system is critical in order to develop better treatment strategies, therapies, regulations, education of at-risk populations, and a more cohesive paradigm for future research. This review offers an integrated view of the homeopathy and neurotoxicity of Atropa belladonna in children, adults, and animal models as well as its implications to neurological disorders. Particular attention is dedicated to the pharmaco/toxicodynamics, pharmaco/toxicokinetics, pathophysiology, epidemiological cases, and animal studies associated with the effects of Atropa belladonna on the nervous system. Additionally, we discuss the influence of active tropane alkaloids in Atropa belladonna and other similar plants on FDA-approved therapeutic drugs for treatment of neurological disorders. Copyright © 2018. Published by Elsevier Ltd.

  14. A nontoxic polypeptide oligomer with a fungicide potency under agricultural conditions which is equal or greater than that of their chemical counterparts.

    Directory of Open Access Journals (Sweden)

    Sara Monteiro

    Full Text Available There are literally hundreds of polypeptides described in the literature which exhibit fungicide activity. Tens of them have had attempted protection by patent applications but none, as far as we are aware, have found application under real agricultural conditions. The reasons behind may be multiple where the sensitivity to the Sun UV radiation can come in first place. Here we describe a multifunctional glyco-oligomer with 210 kDa which is mainly composed by a 20 kDa polypeptide termed Blad that has been previously shown to be a stable intermediary product of β-conglutin catabolism. This oligomer accumulates exclusively in the cotyledons of Lupinus species, between days 4 and 12 after the onset of germination. Blad-oligomer reveals a plethora of biochemical properties, like lectin and catalytic activities, which are not unusual per si, but are remarkable when found to coexist in the same protein molecule. With this vast range of chemical characteristics, antifungal activity arises almost as a natural consequence. The biological significance and potential technological applications of Blad-oligomer as a plant fungicide to agriculture, its uniqueness stems from being of polypeptidic in nature, and with efficacies which are either equal or greater than the top fungicides currently in the market are addressed.

  15. In-vitro Neurotoxicity of Two Malaysian Krait Species (Bungarus candidus and Bungarus fasciatus Venoms: Neutralization by Monovalent and Polyvalent Antivenoms from Thailand

    Directory of Open Access Journals (Sweden)

    Muhamad Rusdi Ahmad Rusmili

    2014-03-01

    Full Text Available Bungarus candidus and Bungarus fasciatus are two species of krait found in Southeast Asia. Envenoming by these snakes is often characterized by neurotoxicity and, without treatment, causes considerable morbidity and mortality. In this study, the in vitro neurotoxicity of each species, and the effectiveness of two monovalent antivenoms and a polyvalent antivenom, against the neurotoxic effects of the venoms, were examined in a skeletal muscle preparation. Both venoms caused concentration-dependent inhibition of indirect twitches, and attenuated responses to exogenous nicotinic receptor agonists, in the chick biventer preparation, with B. candidus venom being more potent than B. fasciatus venom. SDS-PAGE and western blot analysis indicated different profiles between the venoms. Despite these differences, most proteins bands were recognized by all three antivenoms. Antivenom, added prior to the venoms, attenuated the neurotoxic effect of the venoms. Interestingly, the respective monovalent antivenoms did not neutralize the effects of the venom from the other Bungarus species indicating a relative absence of cross-neutralization. Addition of a high concentration of polyvalent antivenom, at the t90 time point after addition of venom, partially reversed the neurotoxicity of B. fasciatus venom but not B. candidus venom. The monovalent antivenoms had no significant effect when added at the t90 time point. This study showed that B. candidus and B. fasciatus venoms display marked in vitro neurotoxicity in the chick biventer preparation and administration of antivenoms at high dose is necessary to prevent or reverse neurotoxicity.

  16. Protection by GDNF and other trophic factors against the dopamine-depleting effects of neurotoxic doses of methamphetamine.

    Science.gov (United States)

    Cass, Wayne A; Peters, Laura E; Harned, Michael E; Seroogy, Kim B

    2006-08-01

    Repeated methamphetamine (METH) administration to animals can result in long-lasting decreases in striatal dopamine (DA) content. It has previously been shown that glial cell line-derived neurotrophic factor (GDNF) can reduce the DA-depleting effects of neurotoxic doses of METH. However, there are several other trophic factors that are protective against dopaminergic toxins. Thus, the present experiments further investigated the protective effect of GDNF as well as the protective effects of several other trophic factors. Male Fischer-344 rats were given an intracerebral injection of trophic factor (2-10 microg) 1 day before METH (5 mg/kg, s.c., 4 injections at 2-h intervals). Seven days later DA levels in the striatum were measured using high-performance liquid chromatography (HPLC). Initial experiments indicated that only intrastriatal GDNF, and not intranigral GDNF, was protective. Thereafter, all other trophic factors were administered into the striatum. Members of the GDNF family (GDNF, neurturin, and artemin) all provided significant protection against the DA-depleting effects of METH, with GDNF providing the greatest protection. Brain-derived neurotrophic factor, neurotrophin-3, acidic fibroblast growth factor, basic fibroblast growth factor, ciliary neurotrophic factor, transforming growth factor-alpha (TGF-alpha), heregulin beta1 (HRG-beta1), and amphiregulin (AR) provided no significant protection at the doses examined. These results suggest that the GDNF family of trophic factors can provide significant protection against the DA-depleting effects of neurotoxic doses of METH.

  17. Correlation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity with blood-brain barrier monoamine oxidase activity

    International Nuclear Information System (INIS)

    Kalaria, R.N.; Mitchell, M.J.; Harik, S.I.

    1987-01-01

    Systemic administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) causes parkinsonism in humans and subhuman primates, but not in rats and many other laboratory animals; mice are intermediate in their susceptibility. Since MPTP causes selective dopaminergic neurotoxicity when infused directly into rat substantia nigra, the authors hypothesized that systemic MPTP may be metabolized by monoamine oxidase and/or other enzymes in rat brain capillaries and possibly other peripheral organs and thus prevented from reaching its neuronal sites of toxicity. They tested this hypothesis by assessing monoamine oxidase in isolated cerebral microvessels of humans, rats, and mice by measuring the specific binding of [ 3 H]pargyline, an irreversible monoamine oxidase inhibitor, and by estimating the rates of MPTP and benzylamine oxidation. [ 3 H]Pargyline binding to rat cerebral microvessels was about 10-fold higher than to human or mouse microvessels. Also, MPTP oxidation by rat brain microvessels was about 30-fold greater than by human microvessels; mouse microvessels yielded intermediate values. These results may explain, at least in part, the marked species differences in susceptibility to systemic MPTP. They also suggest the potential importance of enzyme barriers at the blood-brain interface that can metabolize toxins not excluded by structural barriers, and may provide biological bases for developing therapeutic strategies for the prevention of MPTP-induced neurotoxicity and other neurotoxic conditions including, possibly, Parkinson's disease

  18. Delayed neurotoxicity - do trichlorphon and/or dichlorvos cause delayed neuropathy in man or in test animals?

    Science.gov (United States)

    Johnson, M K

    1981-01-01

    Many, but not all, reports of delayed neuropathy associated with acute poisoning by trichlorphon refer to cases in U.S.S.R. Adulteration of technical trichlorphon with the ethyl analogue would greatly increase the neurotoxic hazard but analysis of a few samples has not revealed such impurities. Simultaneous ingestion of alcohol does not appear to increase neuropathic hazard. In hens double doses of trichlorphon each exceeding unprotected LD50 can produce moderate neuropathy associated with appropriately high inhibitions of neurotoxic esterase. Similar results are obtained with 2 doses of 10 x LD50 of dichlorvos. In vitro the inhibitory power of dichlorvos against neurotoxic esterase of hen brain is 0.02 x the power against acetylcholinesterase. This ratio correlates reasonably with the ratio of LD50/neuropathic dose. The factor for human brain enzymes is 0.06 suggesting that man is more susceptible to neuropathic effects of near-lethal doses of circulating dichlorvos. It is concluded that the only neuropathic hazard to man from good quality trichlorphon arises from rapid ingestion of massive doses. To obtain critical levels of inhibition of neurotoxic esterase and to cause neuropathy in man by repeated doses would require each dose to be severely toxic. Dichlorvos ingested in large doses is likely to kill rather than to cause neuropathy.

  19. Liu Jun Zi Tang—A Potential, Multi-Herbal Complementary Therapy for Chemotherapy-Induced Neurotoxicity

    Directory of Open Access Journals (Sweden)

    Chun-Tang Chiou

    2018-04-01

    Full Text Available Liu Jun Zi Tang (LJZT has been used to treat functional dyspepsia and depression, suggesting its effects on gastrointestinal and neurological functions. LJZT is currently used as a complementary therapy to attenuate cisplatin-induced side effects, such as dyspepsia. However, its effect on chemotherapy-induced neuropathic pain or neurotoxicity has rarely been studied. Thus, we explored potential mechanisms underlying LJZT protection against cisplatin-induced neurotoxicity. We observed that LJZT attenuated cisplatin-induced thermal hyperalgesia in mice and apoptosis in human neuroblastoma SH-SY5Y cells. Furthermore, it also attenuated cisplatin-induced cytosolic and mitochondrial free radical formation, reversed the cisplatin-induced decrease in mitochondrial membrane potential, and increased the release of mitochondrial pro-apoptotic factors. LJZT not only activated the peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α promoter region, but also attenuated the cisplatin-induced reduction of PGC-1α expression. Silencing of the PGC-1α gene counteracted the protection of LJZT. Taken together, LJZT mediated, through anti-oxidative effect and mitochondrial function regulation, to prevent cisplatin-induced neurotoxicity.

  20. The neurotoxic effects of methamphetamine on 5-hydroxytryptamine and dopamine in brain: evidence for the protective effect of chlormethiazole.

    Science.gov (United States)

    Green, A R; De Souza, R J; Williams, J L; Murray, T K; Cross, A J

    1992-04-01

    Studies were undertaken in mice and rats on the neurotoxic effects of methamphetamine on dopaminergic and 5-hydroxytryptaminergic neurones in the brain and the neuroprotective action of chlormethiazole. In initial studies, mice were injected with methamphetamine (5 mg/kg, i.p.) at 2 hr intervals, to a total of 4 times. This procedure produced a 66% loss of striatal dopamine and a 50% loss of tyrosine hydroxylase activity 3 days later. Chlormethiazole (50 mg/kg, i.p.), given 15 min before each dose of methamphetamine, totally prevented the methamphetamine-induced loss of tyrosine hydroxylase activity and partly prevented the loss of dopamine. Phencyclidine (20 mg/kg, i.p.), given in place of chlormethiazole, also prevented the loss of tyrosine hydroxylase. Administration to rats of 4 doses of methamphetamine (15 mg/kg, i.p.) at 3 hr intervals resulted in a 75% loss of striatal dopamine 3 days later and a similar loss of 5-HT and 5-HIAA in cortex and hippocampus. Chlormethiazole (50 mg/kg, i.p.), given 15 min before each injection of methamphetamine, protected against the loss of dopamine and indoleamine content, in the respective regions. Pentobarbital (25 mg/kg, i.p.) also provided substantial protection but diazepam (2.5 mg/kg, i.p.) was without effect. Confirming earlier studies, dizocilpine (1 mg/kg) also provided substantial protection against the methamphetamine-induced neurotoxicity. Preliminary data indicated that chlormethiazole was not neuroprotective because of a hypothermic action. These data therefore demonstrate that chlormethiazole is an effective neuroprotective agent against methamphetamine-induced neurotoxicity and extend the evidence for the possible value of this drug in preventing neurodegeneration.

  1. Mutual enhancement of central neurotoxicity induced by ketamine followed by methamphetamine

    International Nuclear Information System (INIS)

    Ke, J.-J.; Chen, H.-I.; Jen, C.J.; Kuo, Y.-M.; Cherng, C.G.; Tsai, Y.-P.N.; Ho, M.-C.; Tsai, C.-W.; Lung Yu

    2008-01-01

    We hereby report that repeated administration of ketamine (350 mg/kg in total) and methamphetamine (30 mg/kg in total) causes specific glutamatergic and dopaminergic neuron deficits, respectively, in adult mouse brain. Acute ketamine did not affect basal body temperature or the later methamphetamine-induced hyperthermia. However, pretreatment with repeated doses of ketamine aggravated methamphetamine-induced dopaminergic terminal loss as evidenced by a drastic decrease in the levels of dopamine, 3,4-dihydroxyphenylacetic acid, and dopamine transporter density as well as poor gait balance performance. In contrast, methamphetamine-induced serotonergic depletion was not altered by ketamine pretreatment. Likewise, the subsequent treatment with methamphetamine exacerbated the ketamine-induced glutamatergic damage as indicated by reduced levels of the vesicular glutamate transporter in hippocampus and striatum and poor memory performance in the Morris water maze. Finally, since activation of the D1 and AMPA/kainate receptors has been known to be involved in the release of glutamate and dopamine, we examined the effects of co-administration of SCH23390, a D1 antagonist, and CNQX, an AMPA/kainate antagonist. Intraventricular CNQX infusion abolished ketamine's potentiation of methamphetamine-induced dopamine neurotoxicity, while systemic SCH23390 mitigated methamphetamine's potentiation of ketamine-induced glutamatergic toxicity. We conclude that repeated doses of ketamine potentiate methamphetamine-induced dopamine neurotoxicity via AMPA/kainate activation and that conjunctive use of methamphetamine aggravates ketamine-induced glutamatergic neurotoxicity possibly via D1 receptor activation

  2. Neuro-protective effect of rutin against Cisplatin-induced neurotoxic rat model.

    Science.gov (United States)

    Almutairi, Mashal M; Alanazi, Wael A; Alshammari, Musaad A; Alotaibi, Moureq Rashed; Alhoshani, Ali R; Al-Rejaie, Salim Salah; Hafez, Mohamed M; Al-Shabanah, Othman A

    2017-09-29

    Cisplatin is widely used chemotherapeutic agent for cancer treatment with limited uses due to its neurotoxic side effect. The aim of this study was to determine the potential preventive effects of rutin on the brain of cisplatin- neurotoxic rat model. Forty rats were divided into four groups. Group-1 (control group) was intra-peritoneal (IP) injected with 2.5 ml/kg saline. Group-2 (rutin group) was orally administrated 30 mg/kg rutin dissolved in water for 14 days. Group-3 (cisplatin group) was IP received 5 mg/kg cisplatin single dose. Group-4 (rutin and cisplatin group) was orally administrated 30 mg/kg rutin dissolved in water for 14 days with a single dose of 5 mg/kg cisplatin IP on day ten. Brain tissues from frontal cortex was used to extract RNA, the gene expression levels of paraoxonase-1 (PON-1), PON-2, PON-3, peroxisome proliferator-activated receptor delta (PPAR-δ), and glutathione peroxidase (GPx) was investigated by Real-time PCR. Cisplatin significantly decreased the expression levels of PON-1, PON-3, PPAR-δ and GPX whereas significantly increased PON-2 expression levels. Co-administration of Rutin prevented the cisplatin-induced toxicity by restoring the alteration in the studied genes to normal values as in the control group. This study showed that Rutin has neuroprotective effect and reduces cisplatin- neurotoxicity with possible mechanism via the antioxidant pathway.

  3. Asiatic acid attenuates methamphetamine-induced neuroinflammation and neurotoxicity through blocking of NF-kB/STAT3/ERK and mitochondria-mediated apoptosis pathway

    OpenAIRE

    Park, Ji-Hyun; Seo, Young Ho; Jang, Jung-Hee; Jeong, Chul-Ho; Lee, Sooyeun; Park, Byoungduck

    2017-01-01

    Background Methamphetamine (METH) is a commonly abused drug that may result in neurotoxic effects. Recent studies have suggested that involvement of neuroinflammatory processes in brain dysfunction is induced by misuse of this drug. However, the mechanism underlying METH-induced inflammation and neurotoxicity in neurons is still unclear. In this study, we investigated whether asiatic acid (AA) effected METH-mediated neuroinflammation and neurotoxicity in dopaminergic neuronal cells. And we fu...

  4. The pilus usher controls protein interactions via domain masking and is functional as an oligomer.

    Science.gov (United States)

    Werneburg, Glenn T; Henderson, Nadine S; Portnoy, Erica B; Sarowar, Samema; Hultgren, Scott J; Li, Huilin; Thanassi, David G

    2015-07-01

    The chaperone-usher (CU) pathway assembles organelles termed pili or fimbriae in Gram-negative bacteria. Type 1 pili expressed by uropathogenic Escherichia coli are prototypical structures assembled by the CU pathway. Biogenesis of pili by the CU pathway requires a periplasmic chaperone and an outer-membrane protein termed the usher (FimD). We show that the FimD C-terminal domains provide the high-affinity substrate-binding site but that these domains are masked in the resting usher. Domain masking requires the FimD plug domain, which serves as a switch controlling usher activation. We demonstrate that usher molecules can act in trans for pilus biogenesis, providing conclusive evidence for a functional usher oligomer. These results reveal mechanisms by which molecular machines such as the usher regulate and harness protein-protein interactions and suggest that ushers may interact in a cooperative manner during pilus assembly in bacteria.

  5. A dopamine receptor contributes to paraquat-induced neurotoxicity in Drosophila

    Science.gov (United States)

    Cassar, Marlène; Issa, Abdul-Raouf; Riemensperger, Thomas; Petitgas, Céline; Rival, Thomas; Coulom, Hélène; Iché-Torres, Magali; Han, Kyung-An; Birman, Serge

    2015-01-01

    Long-term exposure to environmental oxidative stressors, like the herbicide paraquat (PQ), has been linked to the development of Parkinson's disease (PD), the most frequent neurodegenerative movement disorder. Paraquat is thus frequently used in the fruit fly Drosophila melanogaster and other animal models to study PD and the degeneration of dopaminergic neurons (DNs) that characterizes this disease. Here, we show that a D1-like dopamine (DA) receptor, DAMB, actively contributes to the fast central nervous system (CNS) failure induced by PQ in the fly. First, we found that a long-term increase in neuronal DA synthesis reduced DAMB expression and protected against PQ neurotoxicity. Secondly, a striking age-related decrease in PQ resistance in young adult flies correlated with an augmentation of DAMB expression. This aging-associated increase in oxidative stress vulnerability was not observed in a DAMB-deficient mutant. Thirdly, targeted inactivation of this receptor in glutamatergic neurons (GNs) markedly enhanced the survival of Drosophila exposed to either PQ or neurotoxic levels of DA, whereas, conversely, DAMB overexpression in these cells made the flies more vulnerable to both compounds. Fourthly, a mutation in the Drosophila ryanodine receptor (RyR), which inhibits activity-induced increase in cytosolic Ca2+, also strongly enhanced PQ resistance. Finally, we found that DAMB overexpression in specific neuronal populations arrested development of the fly and that in vivo stimulation of either DNs or GNs increased PQ susceptibility. This suggests a model for DA receptor-mediated potentiation of PQ-induced neurotoxicity. Further studies of DAMB signaling in Drosophila could have implications for better understanding DA-related neurodegenerative disorders in humans. PMID:25158689

  6. A neurotoxicity assessment of high flash aromatic naphtha.

    Science.gov (United States)

    Douglas, J F; McKee, R H; Cagen, S Z; Schmitt, S L; Beatty, P W; Swanson, M S; Schreiner, C A; Ulrich, C E; Cockrell, B Y

    1993-01-01

    Catalytic reforming is a refining process that converts naphthenes to aromatics by dehydrogenation to make higher octane gasoline blending components. A portion of this wide-boiling range hydrocarbon stream can be separated by distillation and used for other purposes. One such application is a mixture of predominantly 9-carbon aromatic molecules (C9 Aromatics, primarily isomers of ethyltoluene and trimethylbenzene), which is removed and used as a solvent also known as High Flash Aromatic Naphtha (HFAN). A program was initiated to assess the toxicological properties of HFAN since there may be human exposure, especially in the workplace. The current study was conducted to assess the potential for neurotoxicity in the rat. Adult male Sprague-Dawley rats of approximately 300 grams body weight, in groups of twenty, were exposed by inhalation to HFAN for 90 days at concentrations of 0, 100, 500, and 1500 ppm. During this period the animals were tested monthly for motor activity and in a functional observation battery. After three months of exposure, for 6 hours/day, 5 days/week, 10 animals/group/sex were sacrificed and selected nervous system tissue was examined histopathologically. No signs of neurotoxicity were seen in any of the evaluated parameters, nor was there evidence of pathologic changes in any of the examined tissues.

  7. Nanoparticle for delivery of antisense γPNA oligomers targeting CCR5

    OpenAIRE

    Bahal, Raman; McNeer, Nicole Ali; Ly, Danith H.; Saltzman, W. Mark; Glazer, Peter M.

    2013-01-01

    The development of a new class of peptide nucleic acids (PNAs), i.e., gamma PNAs (γPNAs), creates the need for a general and effective method for its delivery into cells for regulating gene expression in mammalian cells. Here we report the antisense activity of a recently developed hydrophilic and biocompatible diethylene glycol (miniPEG)-based gamma peptide nucleic acid called MPγPNAs via its delivery by poly(lactide-co-glycolide) (PLGA)-based nanoparticle system. We show that MPγPNA oligome...

  8. Detergent-Resistant Membrane Microdomains Facilitate Ib Oligomer Formation and Biological Activity of Clostridium perfringens Iota-Toxin

    National Research Council Canada - National Science Library

    Hale, Martha

    2004-01-01

    ...) were extracted with cold Triton X-100. Western blotting revealed that Ib oligomers localized in DRMs extracted from Vero, but not MRC-5, cells while monomeric Ib was detected in the detergent-soluble fractions of both cell types...

  9. Methamphetamine-induced neurotoxicity is attenuated in transgenic mice with a null mutation for interleukin-6.

    Science.gov (United States)

    Ladenheim, B; Krasnova, I N; Deng, X; Oyler, J M; Polettini, A; Moran, T H; Huestis, M A; Cadet, J L

    2000-12-01

    Increasing evidence implicates apoptosis as a major mechanism of cell death in methamphetamine (METH) neurotoxicity. The involvement of a neuroimmune component in apoptotic cell death after injury or chemical damage suggests that cytokines may play a role in METH effects. In the present study, we examined if the absence of IL-6 in knockout (IL-6-/-) mice could provide protection against METH-induced neurotoxicity. Administration of METH resulted in a significant reduction of [(125)I]RTI-121-labeled dopamine transporters in the caudate-putamen (CPu) and cortex as well as depletion of dopamine in the CPu and frontal cortex of wild-type mice. However, these METH-induced effects were significantly attenuated in IL-6-/- animals. METH also caused a decrease in serotonin levels in the CPu and hippocampus of wild-type mice, but no reduction was observed in IL-6-/- animals. Moreover, METH induced decreases in [(125)I]RTI-55-labeled serotonin transporters in the hippocampal CA3 region and in the substantia nigra-reticulata but increases in serotonin transporters in the CPu and cingulate cortex in wild-type animals, all of which were attenuated in IL-6-/- mice. Additionally, METH caused increased gliosis in the CPu and cortices of wild-type mice as measured by [(3)H]PK-11195 binding; this gliotic response was almost completely inhibited in IL-6-/- animals. There was also significant protection against METH-induced DNA fragmentation, measured by the number of terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeled (TUNEL) cells in the cortices. The protective effects against METH toxicity observed in the IL-6-/- mice were not caused by differences in temperature elevation or in METH accumulation in wild-type and mutant animals. Therefore, these observations support the proposition that IL-6 may play an important role in the neurotoxicity of METH.

  10. Feasibility assessment of Micro electrode chip assay (MEA as a method of detecting neurotoxicity in vitro

    Directory of Open Access Journals (Sweden)

    Enrico eDefranchi

    2011-04-01

    Full Text Available Detection and characterization of chemically-induced toxic effects in the nervous system represent a challenge for the hazard assessment of chemicals. In vivo, neurotoxicological assessments exploit the fact that the activity of neurons in the central and peripheral nervous system has functional consequences. And so far, no in vitro method for evaluating the neurotoxic hazard has yet been validated and accepted for regulatory purpose.The microelectrode array (MEA assay consists of a culture chamber into which an integrated array of microelectrodes is capable of measuring extracellular electrophysiology (spikes and bursts from electro-active tissues. A wide variety of electrically excitable biological tissues may be placed onto the chips including primary cultures of nervous system tissue. Recordings from this type of in vitro cultured system are non invasive, give label free evaluations and provide a higher throughput than conventional electrophysiological techniques. In this paper, twenty substances were tested in a blinded study for their toxicity and dose-response curves were obtained from foetal rat cortical neuronal networks coupled to MEAs. The experimental procedure consisted of evaluating the firing activity (spiking rate and modification/reduction in response to chemical administration. Native/reference activity, 30 minutes of activity recording per dilution, plus the recovery points (after 24 hours were recorded. The preliminary data, using a set of chemicals with different mode-of-actions (13 known to be neurotoxic, 2 non-neuroactive and not toxic and 5 non-neuroactive but toxic show good predictivity (sensitivity: 0.77; specificity: 0.86; accuracy: 0.85. Thus, the MEA with a neuronal network has the potency to become an effective tool to evaluate the neurotoxicity of substances in vitro.

  11. 3-Nitropropionic acid neurotoxicity in organotypic striatal and corticostriatal slice cultures is dependent on glucose and glutamate

    DEFF Research Database (Denmark)

    Storgaard, J; Kornblit, B T; Zimmer, J

    2000-01-01

    of lactate dehydrogenase in the medium and glutamic acid decarboxylase in tissue homogenates. 3-NPA toxicity (25-100 microM in 5 mM glucose, 24-48 h) appeared to be highly dependent on culture medium glucose levels. 3-NPA treatment caused also a dose-dependent lactate increase, reaching a maximum......Mitochondrial inhibition by 3-nitropropionic acid (3-NPA) causes striatal degeneration reminiscent of Huntington's disease. We studied 3-NPA neurotoxicity and possible indirect excitotoxicity in organotypic striatal and corticostriatal slice cultures. Neurotoxicity was quantified by assay...... of threefold increase above control at 100 microM. Both a high dose of glutamate (5 mM) and glutamate uptake blockade by dl-threo-beta-hydroxyaspartate potentiated 3-NPA neurotoxicity in corticostriatal slice cultures. Furthermore, striatum from corticostriatal cocultures was more sensitive to 3-NPA than...

  12. Neurophysiological evidence of methylmercury neurotoxicity

    DEFF Research Database (Denmark)

    Murata, Katsuyuki; Grandjean, Philippe; Dakeishi, Miwako

    2007-01-01

    neurotoxicity and to examine the usefulness of those measures. METHODS: The reports addressing both neurophysiological measures and methylmercury exposure in humans were identified and evaluated. RESULTS: The neurological signs and symptoms of MD included paresthesias, constriction of visual fields, impairment...... disease (MD; methylmercury poisoning). In recent years, some of these methods have been used for the risk assessment of low-level methylmercury exposure in asymptomatic children. The objectives of this article were to present an overview of neurophysiological findings involved in methylmercury...... of hearing and speech, mental disturbances, excessive sweating, and hypersalivation. Neuropathological lesions involved visual, auditory, and post- and pre-central cortex areas. Neurophysiological changes involved in methylmercury, as assessed by EPs and HRV, were found to be in accordance with both clinical...

  13. Neurotoxicity Induced by Bupivacaine via T-Type Calcium Channels in SH-SY5Y Cells

    Science.gov (United States)

    Wen, Xianjie; Xu, Shiyuan; Liu, Hongzhen; Zhang, Quinguo; Liang, Hua; Yang, Chenxiang; Wang, Hanbing

    2013-01-01

    There is concern regarding neurotoxicity induced by the use of local anesthetics. A previous study showed that an overload of intracellular calcium is involved in the neurotoxic effect of some anesthetics. T-type calcium channels, which lower the threshold of action potentials, can regulate the influx of calcium ions. We hypothesized that T-type calcium channels are involved in bupivacaine-induced neurotoxicity. In this study, we first investigated the effects of different concentrations of bupivacaine on SH-SY5Y cell viability, and established a cell injury model with 1 mM bupivacaine. The cell viability of SH-SY5Y cells was measured following treatment with 1 mM bupivacaine and/or different dosages (10, 50, or 100 µM) of NNC 55-0396 dihydrochloride, an antagonist of T-type calcium channels for 24 h. In addition, we monitored the release of lactate dehydrogenase, cytosolic Ca2+ ([Ca2+]i), cell apoptosis and caspase-3 expression. SH-SY5Y cells pretreated with different dosages (10, 50, or 100 µM) of NNC 55-0396 dihydrochloride improved cell viability, reduced lactate dehydrogenase release, inhibited apoptosis, and reduced caspase-3 expression following bupivacaine exposure. However, the protective effect of NNC 55-0396 dihydrochloride plateaued. Overall, our results suggest that T-type calcium channels may be involved in bupivacaine neurotoxicity. However, identification of the specific subtype of T calcium channels involved requires further investigation. PMID:23658789

  14. Neurotoxicity induced by bupivacaine via T-type calcium channels in SH-SY5Y cells.

    Directory of Open Access Journals (Sweden)

    Xianjie Wen

    Full Text Available There is concern regarding neurotoxicity induced by the use of local anesthetics. A previous study showed that an overload of intracellular calcium is involved in the neurotoxic effect of some anesthetics. T-type calcium channels, which lower the threshold of action potentials, can regulate the influx of calcium ions. We hypothesized that T-type calcium channels are involved in bupivacaine-induced neurotoxicity. In this study, we first investigated the effects of different concentrations of bupivacaine on SH-SY5Y cell viability, and established a cell injury model with 1 mM bupivacaine. The cell viability of SH-SY5Y cells was measured following treatment with 1 mM bupivacaine and/or different dosages (10, 50, or 100 µM of NNC 55-0396 dihydrochloride, an antagonist of T-type calcium channels for 24 h. In addition, we monitored the release of lactate dehydrogenase, cytosolic Ca(2+ ([Ca2+]i, cell apoptosis and caspase-3 expression. SH-SY5Y cells pretreated with different dosages (10, 50, or 100 µM of NNC 55-0396 dihydrochloride improved cell viability, reduced lactate dehydrogenase release, inhibited apoptosis, and reduced caspase-3 expression following bupivacaine exposure. However, the protective effect of NNC 55-0396 dihydrochloride plateaued. Overall, our results suggest that T-type calcium channels may be involved in bupivacaine neurotoxicity. However, identification of the specific subtype of T calcium channels involved requires further investigation.

  15. Dizocilpine and reduced body temperature do not prevent methamphetamine-induced neurotoxicity in the vervet monkey: [11C]WIN 35,428 - positron emission tomography studies.

    Science.gov (United States)

    Melega, W P; Lacan, G; Harvey, D C; Huang, S C; Phelps, M E

    1998-12-11

    [11C]WIN 35,428 (WIN), a cocaine analog that binds to the dopamine transporter (DAT), and positron emission tomography (PET) were used to evaluate the potential neuroprotective effects of dizocilpine (MK-801) on methamphetamine (MeAmp) induced neurotoxicity in the striatal dopamine system of the vervet monkey. MK-801 (1 mg/kg, i.m.) was administered 30 min prior to a neurotoxic MeAmp dosage for this species (2 x 2 mg/kg, 4 h apart); control subjects received MeAmp. MK-801 treated subjects were anesthetized by the drug for 6-8 h; throughout that period, a 2-3 degrees C decrease in body temperature was measured. At 1-2 weeks post-MeAmp, decreases of approximately 75% in striatal WIN binding were observed for both MK-801/MeAmp and MeAmp subjects. Thus, in this non-human primate species, the combination of MK-801 pretreatment and reduced body temperature did not provide protection from the MeAmp-induced loss of DAT. Further, the absence of an elevated body temperature during the acute MeAmp exposure period indicated that hyperthermia, per se, was not a necessary concomitant of the MeAmp neurotoxicity profile as has been previously demonstrated in rodents. These results provide evidence that different regulatory factors maintain the integrity of the rodent and primate striatal dopamine systems.

  16. Parkinson's disease in the spotlight: unraveling nanoscale α-Synuclein oligomers using ultrasensitive single-molecule spectroscopy

    NARCIS (Netherlands)

    Zijlstra, Niels

    2014-01-01

    During the last 15 years, we have witnessed a major shift in the research focus to understand the cause of amyloid diseases. The attention has shifted from the fully matured amyloid fibrils to the nanometer sized aggregation intermediates called oligomers as the potentially cytotoxic species that

  17. The protective effect of Physalis peruviana L. against cadmium-induced neurotoxicity in rats.

    Science.gov (United States)

    Abdel Moneim, Ahmed E; Bauomy, Amira A; Diab, Marwa M S; Shata, Mohamed Tarek M; Al-Olayan, Ebtesam M; El-Khadragy, Manal F

    2014-09-01

    The present study was carried out to investigate the protective effect of Physalis peruviana L. (family Solanaceae) against cadmium-induced neurotoxicity in rats. Adult male Wistar rats were randomly divided into four groups. Group 1 was used as control. Group 2 was intraperitoneally injected with 6.5 mg/kg bwt of cadmium chloride for 5 days. Group 3 was treated with 200 mg/kg bwt of methanolic extract of Physalis (MEPh). Group 4 was pretreated with MEPh 1 h before cadmium for 5 days. Cadmium treatment induced marked disturbances in neurochemical parameters as indicating by significant (p Physalis has a beneficial effect in ameliorating the cadmium-induced oxidative neurotoxicity in the brain of rats.

  18. Studies of (±)-3,4-methylenedioxymethamphetamine (MDMA) metabolism and disposition in rats and mice: relationship to neuroprotection and neurotoxicity profile.

    Science.gov (United States)

    Mueller, Melanie; Maldonado-Adrian, Concepcion; Yuan, Jie; McCann, Una D; Ricaurte, George A

    2013-02-01

    The neurotoxicity of (±)-3,4-methylenedioxymethamphetamine (MDMA; "Ecstasy") is influenced by temperature and varies according to species. The mechanisms underlying these two features of MDMA neurotoxicity are unknown, but differences in MDMA metabolism have recently been implicated in both. The present study was designed to 1) assess the effect of hypothermia on MDMA metabolism, 2) determine whether the neuroprotective effect of hypothermia is related to inhibition of MDMA metabolism, and 3) determine if different neurotoxicity profiles in mice and rats are related to differences in MDMA metabolism and/or disposition in the two species. Rats and mice received single neurotoxic oral doses of MDMA at 25°C and 4°C, and body temperature, pharmacokinetic parameters, and serotonergic and dopaminergic neuronal markers were measured. Hypothermia did not alter MDMA metabolism in rats and only modestly inhibited MDMA metabolism in mice; however, it afforded complete neuroprotection in both species. Rats and mice metabolized MDMA in a similar pattern, with 3,4-methylenedioxyamphetamine being the major metabolite, followed by 4-hydroxy-3-methoxymethamphetamine and 3,4-dihydroxymethamphetamine, respectively. Differences between MDMA pharmacokinetics in rats and mice, including faster elimination in mice, did not account for the different profile of MDMA neurotoxicity in the two species. Taken together, the results of these studies indicate that inhibition of MDMA metabolism is not responsible for the neuroprotective effect of hypothermia in rodents, and that different neurotoxicity profiles in rats and mice are not readily explained by differences in MDMA metabolism or disposition.

  19. Acetylcholinesterase activities in marine snail (Cronia contracta) as a biomarker of neurotoxic contaminants along the Goa coast, West coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Gaitonde, D.; Sarkar, A.; Kaisary, S.; DeSilva, C.; Dias, C.F.M.; Rao, P.V.S.S.D.P.; Ray; Nagarajan, R.; DeSousa, S.N.; Sarkar, S.; Patill, D.

    can be attributed to neurotoxic substances prevalent in those regions. The high concentration of different neurotoxic metals (lead, cadmium, copper, manganese and iron) and petroleum hydrocarbons in the tissues of the marine snails at Dona Paula, Vasco...

  20. Chemical evolution. XXI - The amino acids released on hydrolysis of HCN oligomers

    Science.gov (United States)

    Ferris, J. P.; Wos, J. D.; Nooner, D. W.; Oro, J.

    1974-01-01

    Major amino acids released by hydrolysis of acidic and basic HCN oligomers are identified by chromatography as Gly, Asp, and diaminosuccinic acid. Smaller amounts of Ala, Ile and alpha-aminoisobutyric acid are also detected. The amino acids released did not change appreciably when the hydrolysis medium was changed from neutral to acidic or basic. The presence of both meso and d, l-diaminosuccinic acids was established by paper chromatography and on an amino acid analyzer.

  1. Self-Healable and Reprocessable Polysulfide Sealants Prepared from Liquid Polysulfide Oligomer and Epoxy Resin.

    Science.gov (United States)

    Gao, Wentong; Bie, Mengyao; Liu, Fu; Chang, Pengshan; Quan, Yiwu

    2017-05-10

    Polysulfide sealants have been commercially applied in many industrial fields. In this article, we study the self-healing property of the epoxy resin-cured polysulfide sealants for the first time. The obtained sealants showed a flexible range of ultimate elongation of 157-478% and a tensile strength of 1.02-0.75 MPa corresponding to different polysulfide oligomers. By taking advantage of the dynamic reversible exchange of disulfide bonds, polysulfide sealants exhibited good self-healing ability under a moderate thermal stimulus. A higher molecular weight and a lower degree of cross-linking of polysulfide oligomer were helpful in improving the ultimate elongation and healing efficiency of the polysulfide sealants. After subjecting to a temperature of 75 °C for 60 min, both the tensile strength and ultimate elongation of a fully cut sample, LP55-F, were restored to 91% of the original values, without affecting the sealing property. Furthermore, the sample exhibited excellent reshaping and reprocessing abilities. These outcomes offer a paradigm toward sustainable industrial applications of the polysulfide-based sealants.

  2. The Neurotoxicity of Nitrous Oxide: The Facts and “Putative” Mechanisms

    Science.gov (United States)

    Savage, Sinead; Ma, Daqing

    2014-01-01

    Nitrous oxide is a widely used analgesic agent, used also in combination with anaesthetics during surgery. Recent research has raised concerns about possible neurotoxicity of nitrous oxide, particularly in the developing brain. Nitrous oxide is an N-methyl-d-aspartate (NMDA)-antagonist drug, similar in nature to ketamine, another anaesthetic agent. It has been linked to post-operative cardiovascular problems in clinical studies. It is also widely known that exposure to nitrous oxide during surgery results in elevated homocysteine levels in many patients, but very little work has investigated the long term effect of these increased homocysteine levels. Now research in rodent models has found that homocysteine can be linked to neuronal death and possibly even cognitive deficits. This review aims to examine the current knowledge of mechanisms of action of nitrous oxide, and to describe some pathways by which it may have neurotoxic effects. PMID:24961701

  3. Protection against methamphetamine-induced neurotoxicity to neostriatal dopaminergic neurons by adenosine receptor activation.

    Science.gov (United States)

    Delle Donne, K T; Sonsalla, P K

    1994-12-01

    Methamphetamine (METH)-induced neurotoxicity to nigrostriatal dopaminergic neurons in experimental animals appears to have a glutamatergic component because blockade of N-methyl-D-aspartate receptors prevents the neuropathologic consequences. Because adenosine affords neuroprotection against various forms of glutamate-mediated neuronal damage, the present studies were performed to investigate whether adenosine plays a protective role in METH-induced toxicity. METH-induced decrements in neostriatal dopamine content and tyrosine hydroxylase activity in mice were potentiated by concurrent treatment with caffeine, a nonselective adenosine antagonist that blocks both A1 and A2 adenosine receptors. In contrast, chronic treatment of mice with caffeine through their drinking water for 4 weeks, which increased the number of adenosine A1 receptors in the neostriatum and frontal cortex, followed by drug washout, prevented the neurochemical changes produced by the treatment of mice with METH treatment. In contrast, this treatment did not prevent 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine-induced dopaminergic neurotoxicity. Furthermore, concurrent administration of cyclopentyladenosine, an adenosine A1 receptor agonist, attenuated the METH-induced neurochemical changes. This protection by cyclopentyladenosine was blocked by cyclopentyltheophylline, an A1 receptor antagonist. These results indicate that activation of A1 receptors can protect against METH-induced neurotoxicity in mice.

  4. 7, 8, 3′-Trihydroxyflavone Promotes Neurite Outgrowth and Protects Against Bupivacaine-Induced Neurotoxicity in Mouse Dorsal Root Ganglion Neurons

    Science.gov (United States)

    Shi, Haohong; Luo, Xingjing

    2016-01-01

    Background 7, 8, 3′-trihydroxyflavone (THF) is a novel pro-neuronal small molecule that acts as a TrkB agonist. In this study, we examined the effect of THF on promoting neuronal growth and protecting anesthetics-induced neurotoxicity in dorsal root ganglion (DRG) neurons in vitro. Material/Methods Neonatal mouse DRG neurons were cultured in vitro and treated with various concentrations of THF. The effect of THF on neuronal growth was investigated by neurite outgrowth assay and Western blot. In addition, the protective effects of THF on bupivacaine-induced neurotoxicity were investigated by apoptosis TUNEL assay, neurite outgrowth assay, and Western blot, respectively. Results THF promoted neurite outgrowth of DRG neurons in dose-dependent manner, with an EC50 concentration of 67.4 nM. Western blot analysis showed THF activated TrkB signaling pathway by inducing TrkB phosphorylation. THF also rescued bupivacaine-induced neurotoxicity by reducing apoptosis and protecting neurite retraction in DRG neurons. Furthermore, the protection of THF in bupivacaine-injured neurotoxicity was directly associated with TrkB phosphorylation in a concentration-dependent manner in DRG neurons. Conclusions THF has pro-neuronal effect on DRG neurons by promoting neurite growth and protecting against bupivacaine-induced neurotoxicity, likely through TrkB activation. PMID:27371503

  5. Co-exposure to an ortho-substituted PCB (PCB 153) and methylmercury enhances developmental neurotoxic effects

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, C.; Fredriksson, A.; Eriksson, P. [Dept. Environment. Toxicol., Uppsala Univ. (Sweden)

    2004-09-15

    In our environment there are innumerable hazardous contaminants. Many of these compounds are the well-known persistent organic pollutants (POPs) like PCB and DDT. Another persistent agent in our environment is methylmercury (MeHg). These agents are known to be neurotoxic in laboratory animals and humans. Fetuses and neonates are known to be high-risk groups for exposure to these agents. A naturally occurring circumstance is the exposure to a combination of different persistent compounds. The knowledge of interaction between different toxic agents during development is sparse. In several studies we have shown that low-dose exposure of environmental toxic agents such as PCBs, DDT, BFRs (brominated flame retardants) as well as well-known neurotoxic agents such as nicotine, organophosphorous compounds and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), during the ''BGS'', in neonatal mice can lead to disruption of the adult brain function, and to an increased susceptibility to toxic agents as adults. Our studies concerning developmental neurotoxic effects after neonatal exposure to single PCB congeners have shown that some orthosubstituted PCBs (such as PCB 28, PCB 52, PCB 153) and some co-planar PCBs (such as PCB 77, PCB 126, PCB 169) cause derangement of adult behaviour that can worsen with age. Furthermore, the cholinergic receptors in the brain were also found to be affected8. Just recently we have seen that neonatal co-exposure to an ortho-substituted PCB, 2,2',5,5'-tetrachlorobiphenyl (PCB 52), together with a brominated flame retardant, 2,2',4,4',5-pentabromodiphenylether (PBDE 99), can enhance developmental neurotoxic effects when the exposure occurs during a critical stage of neonatal brain development. The present study was carried out in order to see whether PCB and MeHg could interact to cause enhanced developmental neurotoxic effects on spontaneous behaviour and habituation capability when given to neonatal mice.

  6. Influence of CYP3A5 and ABCB1 gene polymorphisms on calcineurin inhibitor-related neurotoxicity after hematopoietic stem cell transplantation.

    Science.gov (United States)

    Yanagimachi, Masakatsu; Naruto, Takuya; Tanoshima, Reo; Kato, Hiromi; Yokosuka, Tomoko; Kajiwara, Ryosuke; Fujii, Hisaki; Tanaka, Fumiko; Goto, Hiroaki; Yagihashi, Tatsuhiko; Kosaki, Kenjiro; Yokota, Shumpei

    2010-01-01

    One severe side effect of calcineurin inhibitors (CNIs: such as cyclosporine [CsA] and tacrolimus [FK506]) is neurotoxicity. CNIs are substrates for CYP3A5 and P-glycoprotein (P-gp), encoded by ABCB1 gene. In the present study, we hypothesized that genetic variability in CYP3A5 and ABCB1 genes may be associated with CNI-related neurotoxicity. The effects of the polymorphisms, such as CYP3A5 A6986G, ABCB1 C1236T, G2677T/A, and C3435T, associated with CNI-related neurotoxicity were evaluated in 63 patients with hematopoietic stem cell transplantation.   Of the 63 cases, 15 cases developed CNI-related neurotoxicity. In the CsA patient group (n = 30), age (p = 0.008), hypertension (p = 0.017), renal dysfunction (p < 0.001), ABCB1 C1236T (p < 0.001), and G2677T/A (p = 0.014) were associated with neurotoxicities. The CC genotype at ABCB1 C1236T was associated with it, but not significantly so (p = 0.07), adjusted for age, hypertension, and renal dysfunction. In the FK506 patient group (n = 33), CYP3A5 A6986G (p < 0.001), and ABCB1 C1236T (p = 0.002) were associated with neurotoxicity. At least one A allele at CYP3A5 A6986G (expressor genotype) was strongly associated with it according to logistic regression analysis (p = 0.01; OR, 8.5; 95% CI, 1.4-51.4).   The polymorphisms in CYP3A5 and ABCB1 genes were associated with CNI-related neurotoxicity. This outcome is probably because of CYP3A5 or P-gp functions or metabolites of CNIs. © 2009 John Wiley & Sons A/S.

  7. From the Cover: Harmane-Induced Selective Dopaminergic Neurotoxicity in Caenorhabditis elegans.

    Science.gov (United States)

    Sammi, Shreesh Raj; Agim, Zeynep Sena; Cannon, Jason R

    2018-02-01

    Parkinson's disease (PD) is a debilitating neurodegenerative disease. Although numerous exposures have been linked to PD etiology, causative factors for most cases remain largely unknown. Emerging data on the neurotoxicity of heterocyclic amines suggest that this class of compounds should be examined for relevance to PD. Here, using Caenorhabditis elegans as a model system, we tested whether harmane exposure produced selective toxicity to dopamine neurons that is potentially relevant to PD. Harmane is a known tremorigenic β-carboline (a type of heterocyclic amine) found in cooked meat, roasted coffee beans, and tobacco. Thus, this compound represents a potentially important exposure. In the nematode model, we observed dopaminergic neurons to be selectively vulnerable, showing significant loss in terms of structure and function at lower doses than other neuronal populations. In examining mechanisms of toxicity, we observed significant harmane-induced decreases in mitochondrial viability and increased reactive oxygen species levels. Blocking transport through the dopamine transporter (DAT) was not neuroprotective, suggesting that harmane is unlikely to enter the cell through DAT. However, a mitochondrial complex I activator did partially ameliorate neurodegeneration. Further, mitochondrial complex I activator treatment reduced harmane-induced dopamine depletion, measured by the 1-nonanol assay. In summary, we have shown that harmane exposure in C. elegans produces selective dopaminergic neurotoxicity that may bear relevance to PD, and that neurotoxicity may be mediated through mitochondrial mechanisms. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Inactivation of lipoprotein lipase occurs on the surface of THP-1 macrophages where oligomers of angiopoietin-like protein 4 are formed

    Energy Technology Data Exchange (ETDEWEB)

    Makoveichuk, Elena; Sukonina, Valentina; Kroupa, Olessia [Department of Medical Biosciences, Physiological Chemistry Umea University, SE-901 87 Umea (Sweden); Thulin, Petra; Ehrenborg, Ewa [Atherosclerosis Research Unit, Department of Medicine, Karolinska Institutet, SE-171 76 Stockholm (Sweden); Olivecrona, Thomas [Department of Medical Biosciences, Physiological Chemistry Umea University, SE-901 87 Umea (Sweden); Olivecrona, Gunilla, E-mail: Gunilla.Olivecrona@medbio.umu.se [Department of Medical Biosciences, Physiological Chemistry Umea University, SE-901 87 Umea (Sweden)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Lipoprotein lipase (LPL) activity is controlled by ANGPTL4 in THP-1 macrophages. Black-Right-Pointing-Pointer Both LPL and ANGPTL4 bind to THP-1 macrophages in a heparin-releasable fashion. Black-Right-Pointing-Pointer Only monomers of ANGPTL4 are present within THP-1 macrophages. Black-Right-Pointing-Pointer Covalent oligomers of ANGPTL4 appear on cell surface and in medium. Black-Right-Pointing-Pointer Inactivation of LPL coincide with ANGPTL4 oligomer formation on cell surfaces. -- Abstract: Lipoprotein lipase (LPL) hydrolyzes triglycerides in plasma lipoproteins causing release of fatty acids for metabolic purposes in muscles and adipose tissue. LPL in macrophages in the artery wall may, however, promote foam cell formation and atherosclerosis. Angiopoietin-like protein (ANGPTL) 4 inactivates LPL and ANGPTL4 expression is controlled by peroxisome proliferator-activated receptors (PPAR). The mechanisms for inactivation of LPL by ANGPTL4 was studied in THP-1 macrophages where active LPL is associated with cell surfaces in a heparin-releasable form, while LPL in the culture medium is mostly inactive. The PPAR{delta} agonist GW501516 had no effect on LPL mRNA, but increased ANGPTL4 mRNA and caused a marked reduction of the heparin-releasable LPL activity concomitantly with accumulation of inactive, monomeric LPL in the medium. Intracellular ANGPTL4 was monomeric, while dimers and tetramers of ANGPTL4 were present in the heparin-releasable fraction and medium. GW501516 caused an increase in the amount of ANGPTL4 oligomers on the cell surface that paralleled the decrease in LPL activity. Actinomycin D blocked the effects of GW501516 on ANGPTL4 oligomer formation and prevented the inactivation of LPL. Antibodies against ANGPTL4 interfered with the inactivation of LPL. We conclude that inactivation of LPL in THP-1 macrophages primarily occurs on the cell surface where oligomers of ANGPTL4 are formed.

  9. Neurotoxic exposures and effects: gender and sex matter! Hänninen Lecture 2011.

    Science.gov (United States)

    Mergler, Donna

    2012-08-01

    Although males and females differ both biologically and in their social and power relations throughout their life span, research in environmental and occupational neurotoxicology often ignore sex and/or gender as a characteristic that requires in-depth consideration. The neurotoxicology literature continues to confuse the terms sex (biological attributes) and gender (socially constructed roles and behavior) and the words are still used interchangeably. Throughout the lifespan, sex and gender are in interaction and both may play a role in influencing exposure and effect. Studies that have examined both males and females, provide evidence for sex differences in toxicokinetics and responses to neurotoxic assault as well as gender differences in exposure patterns, biomarkers of exposure, neurobehavioral performance and social consequences. Integrating sex and gender considerations into research in neurotoxicology would not only provide us with a better understanding of the mechanisms and pathways that lead to toxic assault, but also provide a means to improve preventive intervention strategies. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. P1-11: Visual Function and Neurotoxic Symptoms Related to Exposure to Organic Solvents

    Directory of Open Access Journals (Sweden)

    Ingrid Jimenez Barbosa

    2012-10-01

    Full Text Available Aim: Exposure to Perchloroethylene (PERC, a solvent used in dry-cleaning, is associated with neurotoxicity and changes in colour vision (CV and contrast sensitivity (CS. However, PERCs' impact on other aspects of visual function (VF such as chromatic contrast sensitivity (CCS, glass pattern detection (GPP, visual search (VS, and global motion sensitivity (GMS remains unclear. This study compared VF and neurotoxicity in two populations at risk, dry-cleaners (cases from Colombia and Australia. Control groups of people with community levels of exposure to PERC were also assessed. Methods: A case-control study of VF in people who are working in the dry-cleaning industry for at least 1 year (n = 40 Colombia; n= 34 Australia with controls (n = 35 each site. VF measures assessed were CSF, CCS, the FM Hue 100 test, VS, GPP, and GMS. Neurotoxic symptoms were assessed using the Q16 modified version questionnaire. Results: Cases had poorer CCS, hue discrimination, GPP, GMS, and higher Q16 scores than controls (p < .05. There was no effect of country. CS function was poorer than controls (p < .05 for spatial frequencies≥0.50 cpd for Australian cases but for ≥1.0 cpd for Colombian cases. There were no significant differences between cases and controls for serial and parallel VS. Conclusion: Our CSF and CV findings indicate that the CS deficit extends to lower spatial frequencies. Furthermore we report a reduction in the detection of form, motion, and CCS. These deficits were associated with neurotoxic symptoms. Because VS was unaffected, it suggests that PERC affects lower order visual functions more severely than higher level cognition.

  11. Neurotoxicity of drugs of abuse - the case of methylenedioxy amphetamines (MDMA, ecstasy ), and amphetamines

    Science.gov (United States)

    Gouzoulis-Mayfrank, Euphrosyne; Daumann, Joerg

    2009-01-01

    Ecstasy (MDMA, 3,4-methylendioxymethamphetamine) and the stimulants methamphetamine (METH, speed) and amphetamine are popular drugs among young people, particularly in the dance scene. When given in high doses both MDMA and the stimulant amphetamines are clearly neurotoxic in laboratory animals. MDMA causes selective and persistent lesions of central serotonergic nerve terminals, whereas amphetamines damage both the serotonergic and dopaminergic systems. In recent years, the question of ecstasy-induced neurotoxicity and possible functional sequelae has been addressed in several studies in drug users. Despite large methodological problems, the bulk of evidence suggests residual alterations of serotonergic transmission in MDMA users, although at least partial recovery may occur after long-term abstinence. However, functional sequelae may persist even after longer periods of abstinence. To date, the most consistent findings associate subtle cognitive impairments with ecstasy use, particularly with memory. In contrast, studies on possible long-term neurotoxic effects of stimulant use have been relatively scarce. Preliminary evidence suggests that alterations of the dopaminergic system may persist even after years of abstinence from METH, and may be associated with deficits in motor and cognitive performance. In this paper, we will review the literature focusing on human studies. PMID:19877498

  12. Effects of Personal Protective Equipment Use and Good Workplace Hygiene on Symptoms of Neurotoxicity in Solvent-Exposed Vehicle Spray Painters.

    Science.gov (United States)

    Keer, Sam; McLean, Dave; Glass, Bill; Douwes, Jeroen

    2018-03-12

    To assess the association between the use of personal protective equipment (PPE) and good workplace hygiene and symptoms of neurotoxicity in solvent-exposed vehicle spray painters. Exposure control measures including PPE-use and workplace hygiene practices and symptoms of neurotoxicity were assessed in 267 vehicle repair spray painters. Symptoms were assessed using an adapted version of the EUROQUEST Questionnaire. Frequent respirator and glove use was inversely and significantly associated with symptoms of neurotoxicity in a dose-dependent manner (P 80%. Poor hygiene workplace practices, such as solvent exposure to multiple body parts (OR 3.4, P = 0.11 for reporting ≥10 symptoms), were associated with an increased risk of symptoms. When using a general workplace hygiene score derived from a combination of PPE-use and (good) workplace practice factors an inverse and significant dose-response trend was observed for reporting ≥5 (P hygiene are associated with a strongly reduced risk of symptoms of neurotoxicity in solvent-exposed vehicle spray painters.

  13. Evaluation of potential neurotoxic effects of occupational exposure to (L)-Lactates

    NARCIS (Netherlands)

    Clary, J.J.; Feron, V.J.; Velthuijsen, J.A. van

    2001-01-01

    Organo psycho syndrome (OPS) or chronic toxic encephalopathy (CTE) is a neurotoxic condition reported following long-term exposure to paints containing organic solvent and to other solvents. Lactate esters are finding wider use as solvents. Lactate esters have been well studied in standard toxicity

  14. The dopamine transporter: role in neurotoxicity and human disease

    International Nuclear Information System (INIS)

    Bannon, Michael J.

    2005-01-01

    The dopamine transporter (DAT) is a plasma membrane transport protein expressed exclusively within a small subset of CNS neurons. It plays a crucial role in controlling dopamine-mediated neurotransmission and a number of associated behaviors. This review focuses on recent data elucidating the role of the dopamine transporter in neurotoxicity and a number of CNS disorders, including Parkinson disease, drug abuse, and attention deficit hyperactivity disorder (ADHD)

  15. The dopamine transporter: role in neurotoxicity and human disease

    Energy Technology Data Exchange (ETDEWEB)

    Bannon, Michael J [Department of Psychiatry and Behavioral Neuroscience, Pharmacology, and Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201 (United States)

    2005-05-01

    The dopamine transporter (DAT) is a plasma membrane transport protein expressed exclusively within a small subset of CNS neurons. It plays a crucial role in controlling dopamine-mediated neurotransmission and a number of associated behaviors. This review focuses on recent data elucidating the role of the dopamine transporter in neurotoxicity and a number of CNS disorders, including Parkinson disease, drug abuse, and attention deficit hyperactivity disorder (ADHD)

  16. Solvent neurotoxicity in vehicle collision repair workers in New Zealand.

    Science.gov (United States)

    Keer, Samuel; Glass, Bill; Prezant, Bradley; McLean, David; Pearce, Neil; Harding, Elizabeth; Echeverria, Diana; McGlothlin, James; Babbage, Duncan R; Douwes, Jeroen

    2016-12-01

    To assess whether solvent use and workplace practices in the vehicle collision repair industry are associated with symptoms of neurotoxicity in spray painters and panel beaters (auto body repair workers). Neurobehavioural symptoms were assessed using a cross-sectional study design in 370 vehicle collision repair and 211 reference workers using the EUROQUEST questionnaire. Full-shift airborne solvent levels were measured in a subset (n=92) of collision repair workers. Solvent exposures were higher in spray painters than in panel beaters, but levels were below current international exposure standards. Collision repair workers were more likely to report symptoms of neurotoxicity than reference workers with ORs of 2.0, 2.4 and 6.4 (all p<0.05) for reporting ≥5, ≥10 and ≥15 symptoms respectively. This trend was generally strongest for panel beaters (ORs of 2.1, 3.3 and 8.2 for ≥5, ≥10 and ≥15 symptoms respectively). Associations with specific symptom domains showed increased risks for neurological (OR 4.2), psychosomatic (OR 3.2), mood (OR 2.1), memory (OR 2.9) and memory and concentration symptoms combined (OR 2.4; all p<0.05). Workers who had worked for 10-19 years or 20+ years in the collision repair industry reported consistently more symptoms than those who had only worked less than 10 years even after adjusting for age. However, those who worked more than 20 years generally reported fewer symptoms than those who worked 10-19 years, suggesting a possible healthy worker survivor bias. Despite low airborne solvent exposures, vehicle collision repair spray painters and panel beaters continue to be at risk of symptoms of neurotoxicity. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Evidence for hydroxyl radical scavenging action of nitric oxide donors in the protection against 1-methyl-4-phenylpyridinium-induced neurotoxicity in rats.

    Science.gov (United States)

    Banerjee, Rebecca; Saravanan, Karuppagounder S; Thomas, Bobby; Sindhu, Kizhake M; Mohanakumar, Kochupurackal P

    2008-06-01

    In the present study we provide evidence for hydroxyl radical (*OH) scavenging action of nitric oxide (NO*), and subsequent dopaminergic neuroprotection in a hemiparkinsonian rat model. Reactive oxygen species are strongly implicated in the nigrostriatal dopaminergic neurotoxicity caused by the parkinsonian neurotoxin, 1-methyl-4-phenylpyridinium (MPP+). Since the role of this free radical as a neurotoxicant or neuroprotectant is debatable, we investigated the effects of some of the NO* donors such as S-nitroso-N-acetylpenicillamine (SNAP), 3-morpholinosydnonimine hydrochloride (SIN-1), sodium nitroprusside (SNP) and nitroglycerin (NG) on in vitro *OH generation in a Fenton-like reaction involving ferrous citrate, as well as in MPP+-induced *OH production in the mitochondria. We also tested whether co-administration of NO* donor and MPP+ could protect against MPP+-induced dopaminergic neurotoxicity in rats. While NG, SNAP and SIN-1 attenuated MPP+-induced *OH generation in the mitochondria, and in a Fenton-like reaction, SNP caused up to 18-fold increase in *OH production in the latter reaction. Striatal dopaminergic depletion following intranigral infusion of MPP+ in rats was significantly attenuated by NG, SNAP and SIN-1, but not by SNP. Solutions of NG, SNAP and SIN-1, exposed to air for 48 h to remove NO*, when administered similarly failed to attenuate MPP+-induced neurotoxicity in vivo. Conversely, long-time air-exposed SNP solution when administered in rats intranigrally, caused a dose-dependent depletion of the striatal dopamine. These results confirm the involvement of *OH in the nigrostriatal degeneration caused by MPP+, indicate the *OH scavenging ability of NO*, and demonstrate protection by NO* donors against MPP+-induced dopaminergic neurotoxicity in rats.

  18. Characterization of radiation modified κ-carrageenan oligomers for bio-based materials development

    International Nuclear Information System (INIS)

    Abad, Lucille V.; Relleve, Lorna S.; Aranilla, Charito T.; Racadio, Darwin T.; Dela Rosa, Alumanda M.

    2011-01-01

    κ-carrageenan oligomers are known to have several biological activities such as anti-HIV, anti-herpes, antitumor and antioxidant properties. Recent progress in the development of radiation modified κ-carrageenan has resulted in new applications such as plant growth promoter, radiation dose indicator and hydrogels for wound dressing. This presentation would touch on the changes in chemical structure, gelation and conformational transition behavior and molecular size of κ-carrageenan at doses from 0 to 200 kGy and would be correlated to these functions for the development of bio-based materials. Chemical and spectral analyses were carried out using UV-Vis spectroscopy, FT-IR spectroscopy, NMR spectroscopy, reducing sugar analysis, free sulfate and carboxylic acid analysis. The chemical and spectral analyses of the radiolytic products indicated increasing reducing sugars, carbonyl, carboxylic acids, and sulfates with increasing doses which reached a maximum level at a certain dose depending on the irradiation condition. Values were very much lower in solid irradiation (in vacuum and in air) as compared to aqueous irradiation. NMR data also revealed an intact structure of the oligomer irradiated at 100 kGy in the specific fraction that contains an Mw = (3-10) kDa. κ-carrageenan oligomers exhibited antioxidant properties as determined by hydroxyl radical scavenging activity, reducing power and DPPH radical scavenging capacity assay. The degree of oxidative inhibition increased with increasing dose which can be attributed to higher reducing sugar. Dynamic light scattering (DLS) experiments showed that a dose of up to 50 kGy, sol-gelation transition was still observed. Beyond 50 kGy, no gelation took place, instead appearance of fast relax-carrageenan mode in characteristic decay time function was observed at doses of (75-150) kGy. Optimum peak intensity was found at 100 kGy (mol wt. 5-10 kDa) which coincides with the optimum plant growth promoter effect in κ

  19. Protective effect of arctigenin against MPP+ and MPTP-induced neurotoxicity.

    Science.gov (United States)

    Li, Dongwei; Liu, Qingping; Jia, Dong; Dou, Deqiang; Wang, Xiaofei; Kang, Tingguo

    2014-01-01

    The potential protective effects of arctigenin on 1-methyl-4-phenylpyridinium ion and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyride-induced neurotoxicity were examined, and the results indicated that arctigenin could improve the movement behaviors and upregulate dopamine and γ-aminobutyric acid levels in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyride-induced neurotoxicity mouse model. A further in vitro experiment showed that the pretreatment with arctigenin on cultured human neuroblastoma SH-SY5Y cells could obviously attenuate the decrease of cell survival rates caused by treatment with 1-methyl-4-phenylpyridinium ion by way of acting against cell apoptosis through the decrease of Bax/Bcl-2 and caspase-3, and by antioxidative action through reduction of the surplus reactive oxygen species production and downregulation of mitochondrial membrane potential. It is for the first time that a neuroprotective activity of arctigenin in both in vitro and in vivo experiments was reported, enlightening that arctigenin could be useful as a potential therapeutic agent for Parkinson's disease. Georg Thieme Verlag KG Stuttgart · New York.

  20. Time-resolved studies define the nature of toxic IAPP intermediates, providing insight for anti-amyloidosis therapeutics

    Science.gov (United States)

    Abedini, Andisheh; Plesner, Annette; Cao, Ping; Ridgway, Zachary; Zhang, Jinghua; Tu, Ling-Hsien; Middleton, Chris T; Chao, Brian; Sartori, Daniel J; Meng, Fanling; Wang, Hui; Wong, Amy G; Zanni, Martin T; Verchere, C Bruce; Raleigh, Daniel P; Schmidt, Ann Marie

    2016-01-01

    Islet amyloidosis by IAPP contributes to pancreatic β-cell death in diabetes, but the nature of toxic IAPP species remains elusive. Using concurrent time-resolved biophysical and biological measurements, we define the toxic species produced during IAPP amyloid formation and link their properties to induction of rat INS-1 β-cell and murine islet toxicity. These globally flexible, low order oligomers upregulate pro-inflammatory markers and induce reactive oxygen species. They do not bind 1-anilnonaphthalene-8-sulphonic acid and lack extensive β-sheet structure. Aromatic interactions modulate, but are not required for toxicity. Not all IAPP oligomers are toxic; toxicity depends on their partially structured conformational states. Some anti-amyloid agents paradoxically prolong cytotoxicity by prolonging the lifetime of the toxic species. The data highlight the distinguishing properties of toxic IAPP oligomers and the common features that they share with toxic species reported for other amyloidogenic polypeptides, providing information for rational drug design to treat IAPP induced β-cell death. DOI: http://dx.doi.org/10.7554/eLife.12977.001 PMID:27213520

  1. Delayed Neurotoxicity Associated with Therapy for Children with Acute Lymphoblastic Leukemia

    Science.gov (United States)

    Cole, Peter D.; Kamen, Barton A.

    2006-01-01

    Most children diagnosed today with acute lymphoblastic leukemia (ALL) will be cured. However, treatment entails risk of neurotoxicity, causing deficits in neurocognitive function that can persist in the years after treatment is completed. Many of the components of leukemia therapy can contribute to adverse neurologic sequelae, including…

  2. Dynamic conformations of nucleophosmin (NPM1 at a key monomer-monomer interface affect oligomer stability and interactions with granzyme B.

    Directory of Open Access Journals (Sweden)

    Wei D Duan-Porter

    Full Text Available Nucleophosmin (NPM1 is an abundant, nucleolar tumor antigen with important roles in cell proliferation and putative contributions to oncogenesis. Wild-type NPM1 forms pentameric oligomers through interactions at the amino-terminal core domain. A truncated form of NPM1 found in some hepatocellular carcinoma tissue formed an unusually stable oligomer and showed increased susceptibility to cleavage by granzyme B. Initiation of translation at the seventh methionine generated a protein (M7-NPM that shared all these properties. We used deuterium exchange mass spectrometry (DXMS to perform a detailed structural analysis of wild-type NPM1 and M7-NPM, and found dynamic conformational shifts or local "unfolding" at a specific monomer-monomer interface which included the β-hairpin "latch." We tested the importance of interactions at the β-hairpin "latch" by replacing a conserved tyrosine in the middle of the β-hairpin loop with glutamic acid, generating Y67E-NPM. Y67E-NPM did not form stable oligomers and further, prevented wild-type NPM1 oligomerization in a dominant-negative fashion, supporting the critical role of the β-hairpin "latch" in monomer-monomer interactions. Also, we show preferential cleavage by granzyme B at one of two available aspartates (either D161 or D122 in M7-NPM and Y67E-NPM, whereas wild-type NPM1 was cleaved at both sites. Thus, we observed a correlation between the propensity to form oligomers and granzyme B cleavage site selection in nucleophosmin proteins, suggesting that a small change at an important monomer-monomer interface can affect conformational shifts and impact protein-protein interactions.

  3. Involvement of autophagy upregulation in 3,4-methylenedioxymethamphetamine ('ecstasy')-induced serotonergic neurotoxicity.

    Science.gov (United States)

    Li, I-Hsun; Ma, Kuo-Hsing; Kao, Tzu-Jen; Lin, Yang-Yi; Weng, Shao-Ju; Yen, Ting-Yin; Chen, Lih-Chi; Huang, Yuahn-Sieh

    2016-01-01

    It has been suggested that autophagy plays pathogenetic roles in cerebral ischemia, brain trauma, and neurodegenerative disorders. 3,4-Methylenedioxymethamphetamine (MDMA or ecstasy) is an illicit drug that causes long-term serotonergic neurotoxicity in the brain. Apoptosis and necrosis have been implicated in MDMA-induced neurotoxicity, but the role of autophagy in MDMA-elicited serotonergic toxicity has not been investigated. The present study aimed to examine the contribution of autophagy to neurotoxicity in serotonergic neurons in in vitro and in vivo animal models challenged with MDMA. Here, we demonstrated that in cultured rat serotonergic neurons, MDMA exposure induced LC3B-densely stained autophagosome formation, accompanying by a decrease in neurite outgrowth. Autophagy inhibitor 3-methyladenine (3-MA) significantly attenuated MDMA-induced autophagosome accumulation, and ameliorated MDMA-triggered serotonergic neurite damage and neuron death. In contrast, enhanced autophagy flux by rapamycin or impaired autophagosome clearance by bafilomycin A1 led to more autophagosome accumulation in serotonergic neurons and aggravated neurite degeneration. In addition, MDMA-induced autophagy activation in cultured serotonergic neurons might be mediated by serotonin transporter (SERT). In an in vivo animal model administered MDMA, neuroimaging showed that 3-MA protected the serotonin system against MDMA-induced downregulation of SERT evaluated by animal-PET with 4-[(18)F]-ADAM, a SERT radioligand. Taken together, our results demonstrated that MDMA triggers upregulation of autophagy in serotonergic neurons, which appears to be detrimental to neuronal growth. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Neurotoxic 1-deoxysphingolipids and paclitaxel-induced peripheral neuropathy

    Science.gov (United States)

    Kramer, Rita; Bielawski, Jacek; Kistner-Griffin, Emily; Othman, Alaa; Alecu, Irina; Ernst, Daniela; Kornhauser, Drew; Hornemann, Thorsten; Spassieva, Stefka

    2015-01-01

    Peripheral neuropathy is a major dose-limiting side effect of paclitaxel and cisplatin chemotherapy. In the current study, we tested the involvement of a novel class of neurotoxic sphingolipids, the 1-deoxysphingolipids. 1-Deoxysphingolipids are produced when the enzyme serine palmitoyltransferase uses l-alanine instead of l-serine as its amino acid substrate. We tested whether treatment of cells with paclitaxel (250 nM, 1 µM) and cisplatin (250 nM, 1 µM) would result in elevated cellular levels of 1-deoxysphingolipids. Our results revealed that paclitaxel, but not cisplatin treatment, caused a dose-dependent elevation of 1-deoxysphingolipids levels and an increase in the message and activity of serine palmitoyltransferase (P peripheral neuropathy symptoms [evaluated by the European Organization for Research and Treatment of Cancer (EORTC) QLQ-chemotherapy-induced peripheral neuropathy-20 (CIPN20) instrument] and the 1-deoxysphingolipid plasma levels (measured by mass spectrometry) in 27 patients with breast cancer who were treated with paclitaxel chemotherapy. Our results showed that there was an association between the incidence and severity of neuropathy and the levels of very-long-chain 1-deoxyceramides such as C24 (P neuropathy (P peripheral neuropathy.—Kramer, R., Bielawski, J., Kistner-Griffin, E., Othman, A., Alecu, I., Ernst, D., Kornhauser, D., Hornemann, T., Spassieva, S. Neurotoxic 1-deoxysphingolipids and paclitaxel-induced peripheral neuropathy. PMID:26198449

  5. The downfall of TBA-354 - a possible explanation for its neurotoxicity via mass spectrometric imaging.

    Science.gov (United States)

    Ntshangase, Sphamandla; Shobo, Adeola; Kruger, Hendrik G; Asperger, Arndt; Niemeyer, Dagmar; Arvidsson, Per I; Govender, Thavendran; Baijnath, Sooraj

    2017-10-13

    1. TBA-354 was a promising antitubercular compound with activity against both replicating and static Mycobacterium tuberculosis (M.tb), making it the focal point of many clinical trials conducted by the TB Alliance. However, findings from these trials have shown that TBA-354 results in mild signs of reversible neurotoxicity; this left the TB Alliance with no other choice but to stop the research. 2. In this study, mass spectrometric methods were used to evaluate the pharmacokinetics and spatial distribution of TBA-354 in the brain using a validated liquid chromatography tandem-mass spectrometry (LCMS/MS) and mass spectrometric imaging (MSI), respectively. Healthy female Sprague-Dawley rats received intraperitoneal (i.p.) doses of TBA-354 (20 mg/kg bw). 3. The concentrationtime profiles showed a gradual absorption and tissue penetration of TBA-354 reaching the C max at 6 h post dose, followed by a rapid elimination. MSI analysis showed a time-dependent drug distribution, with highest drug concentration mainly in the neocortical regions of the brain. 4. The distribution of TBA-354 provides a possible explanation for the motor dysfunction observed in clinical trials. These results prove the importance of MSI as a potential tool in preclinical evaluations of suspected neurotoxic compounds.

  6. Overall and specific migration from multilayer high barrier food contact materials - kinetic study of cyclic polyester oligomers migration.

    Science.gov (United States)

    Úbeda, Sara; Aznar, Margarita; Vera, Paula; Nerín, Cristina; Henríquez, Luis; Taborda, Laura; Restrepo, Claudia

    2017-10-01

    Most multilayer high barrier materials used in food packaging have a polyurethane adhesive layer in their structures. In order to assess the safety of these materials, it is important to determine the compounds intentionally added to the adhesives (IAS) as well as those non-intentionally added substances (NIAS). During the manufacture of polyurethane adhesives, some by-products can be formed, such as cyclic polyester oligomers coming from the reaction between dicarboxylic acids and glycols. Since these compounds are not listed in the Regulation 10/2011/EU, they should not be found in migration above 0.01 mg/kg of simulant. In this study two flexible multilayer packaging materials were used and migration was evaluated in simulant A (ethanol 10% v/v), simulant B (acetic acid 3% w/v) and simulant ethanol 95% v/v during 10 days at 60ºC. Identification and quantification of non-volatile compounds was carried out by UPLC-MS-QTOF. Most of migrants were oligomers such as cyclic polyesters and caprolactam oligomers. Overall migration and specific migration of adipic acid-diethylene glycol and phthalic acid-diethylene glycol were monitored over time and analysed by UPLC-MS-TQ. In most cases, ethanol 95% v/v was the simulant with the highest concentration values. Overall migration kinetics followed a similar pattern than specific migration kinetics.

  7. Peptide nucleic acid (PNA) cell penetrating peptide (CPP) conjugates as carriers for cellular delivery of antisense oligomers

    DEFF Research Database (Denmark)

    Shiraishi, Takehiko; Nielsen, Peter E

    2012-01-01

    We have explored the merits of a novel delivery strategy for the antisense oligomers based on cell penetrating peptide (CPP) conjugated to a carrier PNA with sequence complementary to part of the antisense oligomer. The effect of these carrier CPP-PNAs was evaluated by using antisense PNA targeting......-PNA (cPNA1(7)-(D-Arg)8) and hexamer carrier decanoyl-CPP-PNA (Deca-cPNA1(6)-(D-Arg)8), respectively, without showing significant additional cellular toxicity. Most interestingly, the activity reached the same level obtained by enhancement with endosomolytic chloroquine (CQ) treatment, suggesting...... that the carrier might facilitate endosomal escape. Furthermore, 50% downregulation of luciferase expression at 60 nM siRNA was obtained using this carrier CPP-PNA delivery strategy (with CQ co-treatment) for a single stranded antisense RNA targeting normal luciferase mRNA. These results indicated that CPP...

  8. Carcinogenic and neurotoxic risks of acrylamide consumed through caffeinated beverages among the lebanese population.

    Science.gov (United States)

    El-Zakhem Naous, Ghada; Merhi, Areej; Abboud, Martine I; Mroueh, Mohamad; Taleb, Robin I

    2018-06-06

    The present study aims to quantify acrylamide in caffeinated beverages including American coffee, Lebanese coffee, espresso, instant coffee and hot chocolate, and to determine their carcinogenic and neurotoxic risks. A survey was carried for this purpose whereby 78% of the Lebanese population was found to consume at least one type of caffeinated beverages. Gas Chromatography Mass Spectrometry analysis revealed that the average acrylamide level in caffeinated beverages is 29,176 μg/kg sample. The daily consumption of acrylamide from Lebanese coffee (10.9 μg/kg-bw/day), hot chocolate (1.2 μg/kg-bw/day) and Espresso (7.4 μg/kg-bw/day) was found to be higher than the risk intake for carcinogenicity and neurotoxicity as set by World Health Organization (WHO; 0.3-2 μg/kg-bw/day) at both the mean (average consumers) and high (high consumers) dietary exposures. On the other hand, American coffee (0.37 μg/kg-bw/day) was shown to pose no carcinogenic or neurotoxic risks among the Lebanese community for consumers with a mean dietary exposure. The study shows alarming results that call for regulating the caffeinated product industry by setting legislations and standard protocols for product preparation in order to limit the acrylamide content and protect consumers. In order to avoid carcinogenic and neurotoxic risks, we propose that WHO/FAO set acrylamide levels in caffeinated beverages to 7000 μg acrylamide/kg sample, a value which is 4-folds lower than the average acrylamide levels of 29,176 μg/kg sample found in caffeinated beverages sold in the Lebanese market. Alternatively, consumers of caffeinated products, especially Lebanese coffee and espresso, would have to lower their daily consumption to 0.3-0.4 cups/day. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. An autophagic mechanism is involved in the 6-hydroxydopamine-induced neurotoxicity in vivo.

    Science.gov (United States)

    He, Xin; Yuan, Wei; Li, Zijian; Feng, Juan

    2017-10-05

    6-hydroxydopamine (6-OHDA) is one of the most common agents for modeling dopaminergic neuron degeneration in Parkinson's disease (PD). So far, the role of autophagy in 6-OHDA-induced neurotoxicity remains controversial and most evidence is collected from in vitro studies. In this study, we determined the role of autophagy activation in 6-OHDA-induced neurotoxicity in a rat model of PD. Following 6-OHDA treatment, we observed a concomitant activation of autophagy and apoptosis. To further explore the interaction between autophagy and apoptosis induced by 6-OHDA, autophagy inhibitor 3-methylademine (3-MA) or cysteine protease inhibitor Z-FA-fmk was applied. We found that both 3-MA and Z-FA-fmk could not only exert immediate protection against 6-OHDA-induced neuronal apoptosis, but also prevent dopaminergic neuron loss in the long-term, which was related to reduced autophagosome formation. Furthermore, by monitoring the sequential changes of mTOR-related signaling pathways, we found that reactive oxygen species (ROS)-mediated AKT/AMPK-mTOR signaling pathway participated in but was not the initial cause of autophagy activation by 6-OHDA. Collectively, our data suggest that 6-OHDA-induced autophagy activation contributes to its neurotoxicity and targeting autophagy activation or cysteine proteases could be promising for developing neuroprotective agents for PD. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Bilirubin-Induced Neurotoxicity in the Preterm Neonate.

    Science.gov (United States)

    Watchko, Jon F

    2016-06-01

    Bilirubin-induced neurotoxicity in preterm neonates remains a clinical concern. Multiple cellular and molecular cascades likely underlie bilirubin-induced neuronal injury, including plasma membrane perturbations, excitotoxicity, neuroinflammation, oxidative stress, and cell cycle arrest. Preterm newborns are particularly vulnerable secondary to central nervous system immaturity and concurrent adverse clinical conditions that may potentiate bilirubin toxicity. Acute bilirubin encephalopathy in preterm neonates may be subtle and manifest primarily as recurrent symptomatic apneic events. Low-bilirubin kernicterus continues to be reported in preterm neonates, and although multifactorial in nature, is often associated with marked hypoalbuminemia. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Combined HILIC-ELSD/ESI-MSn enables the separation, identification and quantification of sugar beet pectin derived oligomers

    NARCIS (Netherlands)

    Remoroza, C.A.; Cord-Landwehr, S.; Leijdekkers, A.G.M.; Moerschbacher, B.M.; Schols, H.A.; Gruppen, H.

    2012-01-01

    The combined action of endo-polygalacturonase (endo-PGII), pectin lyase (PL), pectin methyl esterase (fungal PME) and RG-I degrading enzymes enabled the extended degradation of methylesterified and acetylated sugar beet pectins (SBPs). The released oligomers were separated, identified and quantified

  12. Caffeine Augments Anesthesia Neurotoxicity in the Fetal Macaque Brain.

    Science.gov (United States)

    Noguchi, Kevin K; Johnson, Stephen A; Manzella, Francesca M; Masuoka, Kobe L; Williams, Sasha L; Martin, Lauren D; Dissen, Gregory A; Ikonomidou, Chrysanthy; Schenning, Katie J; Olney, John W; Brambrink, Ansgar M

    2018-03-28

    Caffeine is the most frequently used medication in premature infants. It is the respiratory stimulant of choice for apnea associated with prematurity and has been called the silver bullet in neonatology because of many proven benefits and few known risks. Research has revealed that sedative/anesthetic drugs trigger apoptotic death of neurons and oligodendrocytes in developing mammalian brains. Here we evaluated the influence of caffeine on the neurotoxicity of anesthesia in developing nonhuman primate brains. Fetal macaques (n = 7-8/group), at a neurodevelopmental age comparable to premature human infants, were exposed in utero for 5 hours to no drug (control), isoflurane, or isoflurane + caffeine and examined for evidence of apoptosis. Isoflurane exposure increased apoptosis 3.3 fold for neurons and 3.4 fold for oligodendrocytes compared to control brains. Isoflurane + caffeine caused neuronal apoptosis to increase 8.0 fold compared to control levels but did not augment oligoapoptosis. Neuronal death was particularly pronounced in the basal ganglia and cerebellum. Higher blood levels of caffeine within the range considered therapeutic and safe for human infants correlated with increased neuroapoptosis. Caffeine markedly augments neurotoxicity of isoflurane in the fetal macaque brain and challenges the assumption that caffeine is safe for premature infants.

  13. Recombinant AAV8-mediated intrastriatal gene delivery of CDNF protects rats against methamphetamine neurotoxicity

    Science.gov (United States)

    Wang, Lizheng; Wang, Zixuan; Xu, Xiaoyu; Zhu, Rui; Bi, Jinpeng; Liu, Wenmo; Feng, Xinyao; Wu, Hui; Zhang, Haihong; Wu, Jiaxin; Kong, Wei; Yu, Bin; Yu, Xianghui

    2017-01-01

    Methamphetamine (METH) exerts significant neurotoxicity in experimental animals and humans when taken at high doses or abused chronically. Long-term abusers have decreased dopamine levels, and they are more likely to develop Parkinson's disease (PD). To date, few medications are available to treat the METH-induced damage of neurons. Glial cell line-derived neurotrophic factor (GDNF) has been previously shown to reduce the dopamine-depleting effects of neurotoxic doses of METH. However, the effect of cerebral dopamine neurotrophic factor (CDNF), which has been reported to be more specific and efficient than GDNF in protecting dopaminergic neurons against 6-OHDA toxicity, in attenuating METH neurotoxicity has not been determined. Thus, the present study aimed to evaluate the neuroprotective effect of CDNF against METH-induced damage to the dopaminergic system in vitro and in vivo. In vitro, CDNF protein increased the survival rate and reduced the tyrosine hydroxylase (TH) loss of METH-treated PC12 cells. In vivo, METH was administered to rats following human CDNF overexpression mediated by the recombinant adeno-associated virus. Results demonstrated that CDNF overexpression in the brain could attenuate the METH-induced dopamine and TH loss in the striatum but could not lower METH-induced hyperthermia. PMID:28553166

  14. Neurotoxicity from prenatal and postnatal exposure to methylmercury

    DEFF Research Database (Denmark)

    Grandjean, Philippe; Weihe, Pal; Debes, Frodi

    2014-01-01

    exposure appeared to contribute to neurotoxic effects, in particular in regard to visuospatial processing and memory. Thus, addition in the regression analysis of exposure information obtained at a different point in time was not informative and should be avoided. Further studies with better information......, but visuospatial memory revealed a significant negative association. Mutual adjustment caused decreases of the apparent effect of the prenatal exposure. However, such adjustment may lead to underestimations due to the presence of correlated, error-prone exposure variables. In structural equation models, all...

  15. Manganese: Recent advances in understanding its transport and neurotoxicity

    International Nuclear Information System (INIS)

    Aschner, Michael; Guilarte, Tomas R.; Schneider, Jay S.; Zheng Wei

    2007-01-01

    The present review is based on presentations from the meeting of the Society of Toxicology in San Diego, CA (March 2006). It addresses recent developments in the understanding of the transport of manganese (Mn) into the central nervous system (CNS), as well as brain imaging and neurocognitive studies in non-human primates aimed at improving our understanding of the mechanisms of Mn neurotoxicity. Finally, we discuss potential therapeutic modalities for treating Mn intoxication in humans

  16. Methylmercury and brain development: imprecision and underestimation of developmental neurotoxicity in humans

    DEFF Research Database (Denmark)

    Grandjean, Philippe; Herz, Katherine T

    2011-01-01

    Methylmercury is now recognized as an important developmental neurotoxicant, though this insight developed slowly over many decades. Developmental neurotoxicity was first reported in a Swedish case report in 1952, and from a serious outbreak in Minamata, Japan, a few years later. Whereas the infant...

  17. Neurotoxicity in Preclinical Models of Occupational Exposure to Organophosphorus Compounds

    Science.gov (United States)

    Voorhees, Jaymie R.; Rohlman, Diane S.; Lein, Pamela J.; Pieper, Andrew A.

    2017-01-01

    Organophosphorus (OPs) compounds are widely used as insecticides, plasticizers, and fuel additives. These compounds potently inhibit acetylcholinesterase (AChE), the enzyme that inactivates acetylcholine at neuronal synapses, and acute exposure to high OP levels can cause cholinergic crisis in humans and animals. Evidence further suggests that repeated exposure to lower OP levels insufficient to cause cholinergic crisis, frequently encountered in the occupational setting, also pose serious risks to people. For example, multiple epidemiological studies have identified associations between occupational OP exposure and neurodegenerative disease, psychiatric illness, and sensorimotor deficits. Rigorous scientific investigation of the basic science mechanisms underlying these epidemiological findings requires valid preclinical models in which tightly-regulated exposure paradigms can be correlated with neurotoxicity. Here, we review the experimental models of occupational OP exposure currently used in the field. We found that animal studies simulating occupational OP exposures do indeed show evidence of neurotoxicity, and that utilization of these models is helping illuminate the mechanisms underlying OP-induced neurological sequelae. Still, further work is necessary to evaluate exposure levels, protection methods, and treatment strategies, which taken together could serve to modify guidelines for improving workplace conditions globally. PMID:28149268

  18. Neurotoxicity of iodinated radiological contrast media

    International Nuclear Information System (INIS)

    Araujo Pinheiro, R.S. de

    1988-01-01

    We studied during the last ten years the neurotoxicity of artificial iodinated contrast media, with prospective clinical and experimental protocols. The experimental investigation in animals aimed to understand the relationship between the intracarotid injection, the subarachnoid application and the integrity of the blood-brain barrier function. The electro physiologic disturbances and the morphologic observation of pial circulation support the evidence that iodinated artificial contrast media induces significant alterations in brain metabolism and in the autoregulation of the blood flow of the encephalon. Even if many of such phenomena may not be apparent at the clinical level, we supposed that they are always present and that their clinical exteriorization is prevented by the immediate and effective action of homeostatic mechanisms. (author)

  19. Vanadium induces dopaminergic neurotoxicity via protein kinase Cdelta dependent oxidative signaling mechanisms: Relevance to etiopathogenesis of Parkinson's disease

    International Nuclear Information System (INIS)

    Afeseh Ngwa, Hilary; Kanthasamy, Arthi; Anantharam, Vellareddy; Song, Chunjuan; Witte, Travis; Houk, Robert; Kanthasamy, Anumantha G.

    2009-01-01

    Environmental exposure to neurotoxic metals through various sources including exposure to welding fumes has been linked to an increased incidence of Parkinson's disease (PD). Welding fumes contain many different metals including vanadium typically present as particulates containing vanadium pentoxide (V 2 O 5 ). However, possible neurotoxic effects of this metal oxide on dopaminergic neuronal cells are not well studied. In the present study, we characterized vanadium-induced oxidative stress-dependent cellular events in cell culture models of PD. V 2 O 5 was neurotoxic to dopaminergic neuronal cells including primary nigral dopaminergic neurons and the EC 50 was determined to be 37 μM in N27 dopaminergic neuronal cell model. The neurotoxic effect was accompanied by a time-dependent uptake of vanadium and upregulation of metal transporter proteins Tf and DMT1 in N27 cells. Additionally, vanadium resulted in a threefold increase in reactive oxygen species generation, followed by release of mitochondrial cytochrome c into cytoplasm and subsequent activation of caspase-9 (> fourfold) and caspase-3 (> ninefold). Interestingly, vanadium exposure induced proteolytic cleavage of native protein kinase Cdelta (PKCδ, 72-74 kDa) to yield a 41 kDa catalytically active fragment resulting in a persistent increase in PKCδ kinase activity. Co-treatment with pan-caspase inhibitor Z-VAD-FMK significantly blocked vanadium-induced PKCδ proteolytic activation, indicating that caspases mediate PKCδ cleavage. Also, co-treatment with Z-VAD-FMK almost completely inhibited V 2 O 5 -induced DNA fragmentation. Furthermore, PKCδ knockdown using siRNA protected N27 cells from V 2 O 5 -induced apoptotic cell death. Collectively, these results demonstrate that vanadium can exert neurotoxic effects in dopaminergic neuronal cells via caspase-3-dependent PKCδ cleavage, suggesting that metal exposure may promote nigral dopaminergic degeneration.

  20. Data set in support of neurotoxicity of trimethyltin chloride by morphological and protein analysis

    Directory of Open Access Journals (Sweden)

    C-Yoon Kim

    2016-03-01

    Full Text Available Trimethyltin chloride (TMT is a neurotoxicant widely present in the aquatic environment. Chronic exposure of embryos to TMT for 4 days post-fertilization (dpf elicited a concentration-related decrease in head & eye size and increase in axial malformation. In addition, Rohon-Beard sensory neurons and motor neurons showed decreased patterns of protein expression. These data coincide with previous research about the neurotoxicity of TMT on mRNA expression (Kim et al., 2016 [1]. These data demonstrates that TMT inhibits specific neurodevelopmental stages in zebrafish embryos and suggests a possible mechanism for the toxicity of TMT in vertebrate neurodevelopment. This paper contains data related to research concurrently published in Kim et al. (2016 [1]. Keywords: Trimethyltin chloride, Neurotoxicity, Zebrafish

  1. Neurotoxic effects of perfluoroalkylated compounds: mechanisms of action and environmental relevance.

    Science.gov (United States)

    Mariussen, Espen

    2012-09-01

    Perfluoroalkylated compounds (PFCs) are used in fire-fighting foams, treatment of clothes, carpets and leather products, and as lubricants, pesticides, in paints and medicine. Recent developments in chemical analysis have revealed that fluorinated compounds have become ubiquitously spread and are regarded as a potential threats to the environment. Due to the carbon-fluorine bond, which has a very high bond strength, these chemicals are extremely persistent towards degradation and some PFCs have a potential for bioaccumulation in organisms. Of particular concern has been the developmental toxicity of PFOS and PFOA, which has been manifested in rodent studies as high mortality of prenatally exposed newborn rats and mice within 24 h after delivery. The nervous system appears to be one of the most sensitive targets of environmental contaminants. The serious developmental effects of PFCs have lead to the upcoming of studies that have investigated neurotoxic effects of these substances. In this review the major findings of the neurotoxicity of the main PFCs and their suggested mechanisms of action are presented. The neurotoxic effects are discussed in light of other toxic effects of PFCs to indicate the significance of PFCs as neurotoxicants. The main findings are that PFCs may induce neurobehavioral effects, particularly in developmentally exposed animals. The effects are, however, subtle and inconclusive and are often induced at concentrations where other toxic effects also are expected. Mechanistic studies have shown that PFCs may affect the thyroid system, influence the calcium homeostasis, protein kinase C, synaptic plasticity and cellular differentiation. Compared to other environmental toxicants the human blood levels of PFCs are high and of particular concern is that susceptible groups may be exposed to a cocktail of substances that in combination reach harmful concentrations.

  2. Synthesis and Self-Assembly of Chiral Cylindrical Molecular Complexes: Functional Heterogeneous Liquid-Solid Materials Formed by Helicene Oligomers

    Directory of Open Access Journals (Sweden)

    Nozomi Saito

    2018-01-01

    Full Text Available Chiral cylindrical molecular complexes of homo- and hetero-double-helices derived from helicene oligomers self-assemble in solution, providing functional heterogeneous liquid-solid materials. Gels and liotropic liquid crystals are formed by fibril self-assembly in solution; molecular monolayers and fibril films are formed by self-assembly on solid surfaces; gels containing gold nanoparticles emit light; silica nanoparticles aggregate and adsorb double-helices. Notable dynamics appears during self-assembly, including multistep self-assembly, solid surface catalyzed double-helix formation, sigmoidal and stairwise kinetics, molecular recognition of nanoparticles, discontinuous self-assembly, materials clocking, chiral symmetry breaking and homogeneous-heterogeneous transitions. These phenomena are derived from strong intercomplex interactions of chiral cylindrical molecular complexes.

  3. Neuronal Nicotinic Receptors as New Targets for Amphetamine-Induced Oxidative Damage and Neurotoxicity

    Directory of Open Access Journals (Sweden)

    Elena Escubedo

    2011-06-01

    Full Text Available Amphetamine derivatives such as methamphetamine (METH and 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy” are widely abused drugs in a recreational context. This has led to concern because of the evidence that they are neurotoxic in animal models and cognitive impairments have been described in heavy abusers. The main targets of these drugs are plasmalemmal and vesicular monoamine transporters, leading to reverse transport and increased monoamine efflux to the synapse. As far as neurotoxicity is concerned, increased reactive oxygen species (ROS production seems to be one of the main causes. Recent research has demonstrated that blockade of a7 nicotinic acetylcholine receptors (nAChR inhibits METH- and MDMA-induced ROS production in striatal synaptosomes which is dependent on calcium and on NO-synthase activation. Moreover, a7 nAChR antagonists (methyllycaconitine and memantine attenuated in vivo the neurotoxicity induced by METH and MDMA, and memantine prevented the cognitive impairment induced by these drugs. Radioligand binding experiments demonstrated that both drugs have affinity to a7 and heteromeric nAChR, with MDMA showing lower Ki values, while fluorescence calcium experiments indicated that MDMA behaves as a partial agonist on a7 and as an antagonist on heteromeric nAChR. Sustained Ca increase led to calpain and caspase-3 activation. In addition, modulatory effects of MDMA on a7 and heteromeric nAChR populations have been found.

  4. Neuroprotection of Grape Seed Extract and Pyridoxine against Triton-Induced Neurotoxicity

    Directory of Open Access Journals (Sweden)

    Heba M. Abdou

    2016-01-01

    Full Text Available Triton WR-1339 administration causes neurotoxicity. Natural products and herbal extracts can attenuate cerebral injury. In the present study, we investigated the neuroprotective role of grape seed extract and/or vitamin B6 against triton-induced neurotoxicity. Thirty-five adult male albino rats of the Sprague-Dawley strain, weighing 140–145 g, were divided into five groups: control, triton, grape seed extract + triton, grape seed extract + triton + vitamin B6, and vitamin B6 + triton. The hematological and biochemical analyses were carried out. Alteration in iNOS mRNA gene expression was determined using reverse-transcriptase PCR analysis. In addition, qualitative DNA fragmentation was examined using agarose gel electrophoresis. Triton-treatment caused significant disturbances in the hematological parameters, the neurological functions, and the antioxidant profile. Also, triton significantly increased the iNOS mRNA expression and DNA damage. Our results showed that grape seed extract and/or vitamin B6 could attenuate all the examined parameters. These natural substances could exhibit protective effects against triton-induced neurological damage because of their antioxidative and antiapoptotic capacities.

  5. Assessment of Styrene Oxide Neurotoxicity Using In Vitro Auditory Cortex Networks

    Science.gov (United States)

    Gopal, Kamakshi V.; Wu, Calvin; Moore, Ernest J.; Gross, Guenter W.

    2011-01-01

    Styrene oxide (SO) (C8H8O), the major metabolite of styrene (C6H5CH=CH2), is widely used in industrial applications. Styrene and SO are neurotoxic and cause damaging effects on the auditory system. However, little is known about their concentration-dependent electrophysiological and morphological effects. We used spontaneously active auditory cortex networks (ACNs) growing on microelectrode arrays (MEA) to characterize neurotoxic effects of SO. Acute application of 0.1 to 3.0 mM SO showed concentration-dependent inhibition of spike activity with no noticeable morphological changes. The spike rate IC50 (concentration inducing 50% inhibition) was 511 ± 60 μM (n = 10). Subchronic (5 hr) single applications of 0.5 mM SO also showed 50% activity reduction with no overt changes in morphology. The results imply that electrophysiological toxicity precedes cytotoxicity. Five-hour exposures to 2 mM SO revealed neuronal death, irreversible activity loss, and pronounced glial swelling. Paradoxical “protection” by 40 μM bicuculline suggests binding of SO to GABA receptors. PMID:23724250

  6. Correlation of tissue concentrations of the pyrethroid bifenthrin with neurotoxicity in the rat

    Science.gov (United States)

    Pyrethroids are neurotoxic insecticides used in a variety of agricultural and household products. Due to the phase-out oforganophosphate pesticides, the use of pyrethroids has increased. The potential for human exposure to pyrethroids has prompted pharmacodynamic and pharmacokine...

  7. Kinetic properties of two Rhizopus exo-polygalacturonase enzymes hydrolyzing galacturonic acid oligomers using isothermal titration calorimetry

    Science.gov (United States)

    The kinetic characteristics of two Rhizopus oryzae exo-polygalacturonases acting on galacturonic acid oligomers (GalpA) were determined using isothermal titration calorimetry (ITC). RPG15 hydrolyzing (GalpA)2 demonstrated a Km of 55 uM and kcat of 10.3 s^-1^ while RPG16 was shown to have greater af...

  8. Mechanisms underlying the neurotoxicity induced by glyphosate-based herbicide in immature rat hippocampus: Involvement of glutamate excitotoxicity

    International Nuclear Information System (INIS)

    Cattani, Daiane; Oliveira Cavalli, Liz Vera Lúcia de; Heinz Rieg, Carla Elise; Domingues, Juliana Tonietto; Dal-Cim, Tharine; Tasca, Carla Inês; Mena Barreto Silva, Fátima Regina; Zamoner, Ariane

    2014-01-01

    Graphical abstract: - Highlights: • Roundup ® induces Ca 2+ influx through L-VDCC and NMDA receptor activation. • The mechanisms underlying Roundup ® neurotoxicity involve glutamatergic excitotoxicity. • Kinase pathways participate in Roundup ® -induced neural toxicity. • Roundup ® alters glutamate uptake, release and metabolism in hippocampal cells. - Abstract: Previous studies demonstrate that glyphosate exposure is associated with oxidative damage and neurotoxicity. Therefore, the mechanism of glyphosate-induced neurotoxic effects needs to be determined. The aim of this study was to investigate whether Roundup ® (a glyphosate-based herbicide) leads to neurotoxicity in hippocampus of immature rats following acute (30 min) and chronic (pregnancy and lactation) pesticide exposure. Maternal exposure to pesticide was undertaken by treating dams orally with 1% Roundup ® (0.38% glyphosate) during pregnancy and lactation (till 15-day-old). Hippocampal slices from 15 day old rats were acutely exposed to Roundup ® (0.00005–0.1%) during 30 min and experiments were carried out to determine whether glyphosate affects 45 Ca 2+ influx and cell viability. Moreover, we investigated the pesticide effects on oxidative stress parameters, 14 C-α-methyl-amino-isobutyric acid ( 14 C-MeAIB) accumulation, as well as glutamate uptake, release and metabolism. Results showed that acute exposure to Roundup ® (30 min) increases 45 Ca 2+ influx by activating NMDA receptors and voltage-dependent Ca 2+ channels, leading to oxidative stress and neural cell death. The mechanisms underlying Roundup ® -induced neurotoxicity also involve the activation of CaMKII and ERK. Moreover, acute exposure to Roundup ® increased 3 H-glutamate released into the synaptic cleft, decreased GSH content and increased the lipoperoxidation, characterizing excitotoxicity and oxidative damage. We also observed that both acute and chronic exposure to Roundup ® decreased 3 H-glutamate uptake and

  9. Theoretical studies of optics and charge transport in organic conducting oligomers and polymers: Rational design of improved transparent and conducting polymers

    Science.gov (United States)

    Hutchison, Geoffrey Rogers

    Theoretical studies on a variety of oligo- and polyheterocycles elucidate their optical and charge transport properties, suggesting new, improved transparent conductive polymers. First-principles calculations provide accurate methodologies for predicting both optical band gaps of neutral and cationic oligomers and intrinsic charge transfer rates. Multidimensional analysis reveals important motifs in chemical tailorability of oligoheterocycle optical and charge transport properties. The results suggest new directions for design of novel materials. Using both finite oligomer and infinite polymer calculations, the optical band gaps in polyheterocycles follow a modified particle-in-a-box formalism, scaling approximately as 1/N (where N is the number of monomer units) in short chains, saturating for long chains. Calculations demonstrate that band structure changes upon heteroatom substitution, (e.g., from polythiophene to polypyrrole) derive from heteroatom electron affinity. Further investigation of chemical variability in substituted oligoheterocycles using multidimensional statistics reveals the interplay between heteroatom and substituent in correlations between structure and redox/optical properties of neutral and cationic species. A linear correlation between band gaps of neutral and cationic species upon oxidation of conjugated oligomers, shows redshifts of optical absorption for most species and blueshifts for small band gap species. Interstrand charge-transport studies focus on two contributors to hopping-style charge transfer rates: internal reorganization energy and the electronic coupling matrix element. Statistical analysis of chemical variability of reorganization energies in oligoheterocycles proves the importance of reorganization energy in determining intrinsic charge transfer rates (e.g., charge mobility in unsubstituted oligothiophenes). Computed bandwidths across several oligothiophene crystal packing motifs show similar electron and hole bandwidths

  10. Na, K-ATPase α3 is a death target of Alzheimer patient amyloid-β assembly.

    Science.gov (United States)

    Ohnishi, Takayuki; Yanazawa, Masako; Sasahara, Tomoya; Kitamura, Yasuki; Hiroaki, Hidekazu; Fukazawa, Yugo; Kii, Isao; Nishiyama, Takashi; Kakita, Akiyoshi; Takeda, Hiroyuki; Takeuchi, Akihide; Arai, Yoshie; Ito, Akane; Komura, Hitomi; Hirao, Hajime; Satomura, Kaori; Inoue, Masafumi; Muramatsu, Shin-ichi; Matsui, Ko; Tada, Mari; Sato, Michio; Saijo, Eri; Shigemitsu, Yoshiki; Sakai, Satoko; Umetsu, Yoshitaka; Goda, Natsuko; Takino, Naomi; Takahashi, Hitoshi; Hagiwara, Masatoshi; Sawasaki, Tatsuya; Iwasaki, Genji; Nakamura, Yu; Nabeshima, Yo-ichi; Teplow, David B; Hoshi, Minako

    2015-08-11

    Neurodegeneration correlates with Alzheimer's disease (AD) symptoms, but the molecular identities of pathogenic amyloid β-protein (Aβ) oligomers and their targets, leading to neurodegeneration, remain unclear. Amylospheroids (ASPD) are AD patient-derived 10- to 15-nm spherical Aβ oligomers that cause selective degeneration of mature neurons. Here, we show that the ASPD target is neuron-specific Na(+)/K(+)-ATPase α3 subunit (NAKα3). ASPD-binding to NAKα3 impaired NAKα3-specific activity, activated N-type voltage-gated calcium channels, and caused mitochondrial calcium dyshomeostasis, tau abnormalities, and neurodegeneration. NMR and molecular modeling studies suggested that spherical ASPD contain N-terminal-Aβ-derived "thorns" responsible for target binding, which are distinct from low molecular-weight oligomers and dodecamers. The fourth extracellular loop (Ex4) region of NAKα3 encompassing Asn(879) and Trp(880) is essential for ASPD-NAKα3 interaction, because tetrapeptides mimicking this Ex4 region bound to the ASPD surface and blocked ASPD neurotoxicity. Our findings open up new possibilities for knowledge-based design of peptidomimetics that inhibit neurodegeneration in AD by blocking aberrant ASPD-NAKα3 interaction.

  11. CYP3A4*22 genotype and systemic exposure affect paclitaxel-induced neurotoxicity

    NARCIS (Netherlands)

    A.J.M. de Graan (Anne-Joy); L. Elens (Laure); J.A. Sprowl (Jason); A. Sparreboom (Alex); L.E. Friberg (Lena); B. van der Holt (Bronno); P.J. de Raaf (Pleun); P. de Bruijn (Peter); F.K. Engels (Frederike); F.A.L.M. Eskens (Ferry); E.A.C. Wiemer (Erik); J. Verweij (Jaap); A.H.J. Mathijssen (Ron); R.H.N. van Schaik (Ron)

    2013-01-01

    textabstractPurpose: Paclitaxel is used for the treatment of several solid tumors and displays a high interindividual variation in exposure and toxicity. Neurotoxicity is one of the most prominent side effects of paclitaxel. This study explores potential predictive pharmacokinetic and

  12. Development of gold-immobilized P450 platform for exploring the effect of oligomer formation on P450-mediated metabolism for in vitro to in vivo drug metabolism predictions

    Science.gov (United States)

    Kabulski, Jarod L.

    The cytochrome P450 (P450) enzyme family is responsible for the biotransformation of a wide range of endogenous and xenobiotic compounds, as well as being the major metabolic enzyme in first pass drug metabolism. In vivo drug metabolism for P450 enzymes is predicted using in vitro data obtained from a reconstituted expressed P450 system, but these systems have not always been proven to accurately represent in vivo enzyme kinetics, due to interactions caused by oligomer formation. These in vitro systems use soluble P450 enzymes prone to oligomer formation and studies have shown that increased states of protein aggregation directly affect the P450 enzyme kinetics. We have developed an immobilized enzyme system that isolates the enzyme and can be used to elucidate the effect of P450 aggregation on metabolism kinetics. The long term goal of my research is to develop a tool that will help improve the assessment of pharmaceuticals by better predicting in vivo kinetics in an in vitro system. The central hypothesis of this research is that P450-mediated kinetics measured in vitro is dependent on oligomer formation and that the accurate prediction of in vivo P450-mediated kinetics requires elucidation of the effect of oligomer formation. The rationale is that the development of a P450 bound to a Au platform can be used to control the aggregation of enzymes and bonding to Au may also permit replacement of the natural redox partners with an electrode capable of supplying a constant flow of electrons. This dissertation explains the details of the enzyme attachment, monitoring substrate binding, and metabolism using physiological and electrochemical methods, determination of enzyme kinetics, and the development of an immobilized-P450 enzyme bioreactor. This work provides alternative approaches to studying P450-mediated kinetics, a platform for controlling enzyme aggregation, electrochemically-driven P450 metabolism, and for investigating the effect of protein

  13. Curcumin Protects β-Lactoglobulin Fibril Formation and Fibril-Induced Neurotoxicity in PC12 Cells.

    Directory of Open Access Journals (Sweden)

    Mansooreh Mazaheri

    Full Text Available In this study the β-lactoglobulin fibrillation, in the presence or absence of lead ions, aflatoxin M1 and curcumin, was evaluated using ThT fluorescence, Circular dichroism spectroscopy and atomic force microscopy. To investigate the toxicity of the different form of β-Lg fibrils, in the presence or absence of above toxins and curcumin, we monitored changes in the level of reactive oxygen species and morphology of the differentiated neuron-like PC12 cells. The cell viability, cell body area, average neurite length, neurite width, number of primary neurites, percent of bipolar cells and node/primary neurite ratios were used to assess the growth and complexity of PC12 cells exposed to different form of β-Lg fibrils. Incubation of β-Lg with curcumin resulted in a significant decrease in ROS levels even in the presence of lead ions and aflatoxin M1. The β-Lg fibrils formed in the presence of lead ions and aflatoxin M1 attenuated the growth and complexity of PC12 cells compared with other form of β-Lg fibrils. However, the adverse effects of these toxins and protein fibrils were negated in the presence of curcumin. Furthermore, the antioxidant and inhibitory effects of curcumin protected PC12 cells against fibril neurotoxicity and enhanced their survival. Thus, curcumin may provide a protective effect toward β-Lg, and perhaps other protein, fibrils mediated neurotoxicity.

  14. Effect of side chain length and degree of polymerization on the decomposition and crystallization behaviour of chlorinated poly(vinyl ester) oligomers

    International Nuclear Information System (INIS)

    Heinze, D.; Mang, Th.; Popescu, C.; Weichold, O.

    2016-01-01

    Highlights: • Thermal behaviour of telomerized polyvinyl esters is investigated. • Thermal stability relies mainly on the contribution of side chains. • At equal molecular weights thermal stability is dictated by length of side chain. • Increasing the length of side chains improves also the packing degree of polymer. - Abstract: Four members of a homologous series of chlorinated poly(vinyl ester) oligomers CCl_3–(CH_2CH (OCO(CH_2)_mCH_3))_n–Cl with degrees of polymerization of 10 and 20 were prepared by telomerisation using carbon tetrachloride. The number of side chain carbon atoms ranges from 2 (poly(vinyl acetate) to 18 (poly(vinyl stearate)). The effect of the n-alkyl side chain length and of the degree of polymerization on the thermal stability and crystallization behaviour of the synthesized compounds was investigated. All oligomers degrade in two major steps by first losing HCl and side chains with subsequent breakdown of the backbone. The members with short side chains, up to poly(vinyl octanoate), are amorphous and show internal plasticization, whereas those with high number of side chain carbon atoms are semi-crystalline due to side-chain crystallization. A better packing for poly(vinyl stearate) is also noticeable. The glass transition and melting temperatures as well as the onset temperature of decomposition are influenced to a larger extent by the side chain length than by the degree of polymerization. Thermal stability is improved if both the size and number of side chains increase, but only a long side chain causes a significant increase of the resistance to degradation. This results in a stabilization of PVAc so that oligomers from poly(vinyl octanoate) on are stable under atmospheric conditions. Thus, the way to design stable, chlorinated PVEs oligomers is to use a long n-alkyl side chain.

  15. Effect of side chain length and degree of polymerization on the decomposition and crystallization behaviour of chlorinated poly(vinyl ester) oligomers

    Energy Technology Data Exchange (ETDEWEB)

    Heinze, D.; Mang, Th. [Aachen University of Applied Sciences, Heinrich-Mussmann-Str. 1, 52428 Jülich (Germany); Popescu, C., E-mail: crisan.popescu@kao.com [KAO Germany GmbH, Pfungstädterstr. 98-100, 64297 Darmstadt (Germany); Weichold, O., E-mail: weichold@ibac.rwth-aachen.de [Institute of Building Materials Research, Schinkelstr. 3, 52062 Aachen (Germany)

    2016-08-10

    Highlights: • Thermal behaviour of telomerized polyvinyl esters is investigated. • Thermal stability relies mainly on the contribution of side chains. • At equal molecular weights thermal stability is dictated by length of side chain. • Increasing the length of side chains improves also the packing degree of polymer. - Abstract: Four members of a homologous series of chlorinated poly(vinyl ester) oligomers CCl{sub 3}–(CH{sub 2}CH (OCO(CH{sub 2}){sub m}CH{sub 3})){sub n}–Cl with degrees of polymerization of 10 and 20 were prepared by telomerisation using carbon tetrachloride. The number of side chain carbon atoms ranges from 2 (poly(vinyl acetate) to 18 (poly(vinyl stearate)). The effect of the n-alkyl side chain length and of the degree of polymerization on the thermal stability and crystallization behaviour of the synthesized compounds was investigated. All oligomers degrade in two major steps by first losing HCl and side chains with subsequent breakdown of the backbone. The members with short side chains, up to poly(vinyl octanoate), are amorphous and show internal plasticization, whereas those with high number of side chain carbon atoms are semi-crystalline due to side-chain crystallization. A better packing for poly(vinyl stearate) is also noticeable. The glass transition and melting temperatures as well as the onset temperature of decomposition are influenced to a larger extent by the side chain length than by the degree of polymerization. Thermal stability is improved if both the size and number of side chains increase, but only a long side chain causes a significant increase of the resistance to degradation. This results in a stabilization of PVAc so that oligomers from poly(vinyl octanoate) on are stable under atmospheric conditions. Thus, the way to design stable, chlorinated PVEs oligomers is to use a long n-alkyl side chain.

  16. Non-Serotonergic Neurotoxicity by MDMA (Ecstasy in Neurons Derived from Mouse P19 Embryonal Carcinoma Cells.

    Directory of Open Access Journals (Sweden)

    Dina Popova

    Full Text Available 3,4-methylenedioxymethamphetamine (MDMA; ecstasy is a commonly abused recreational drug that causes neurotoxic effects in both humans and animals. The mechanism behind MDMA-induced neurotoxicity is suggested to be species-dependent and needs to be further investigated on the cellular level. In this study, the effects of MDMA in neuronally differentiated P19 mouse embryonal carcinoma cells have been examined. MDMA produces a concentration-, time- and temperature-dependent toxicity in differentiated P19 neurons, as measured by intracellular MTT reduction and extracellular LDH activity assays. The P19-derived neurons express both the serotonin reuptake transporter (SERT, that is functionally active, and the serotonin metabolizing enzyme monoamine oxidase A (MAO-A. The involvement of these proteins in the MDMA-induced toxicity was investigated by a pharmacological approach. The MAO inhibitors clorgyline and deprenyl, and the SERT inhibitor fluoxetine, per se or in combination, were not able to mimic the toxic effects of MDMA in the P19-derived neurons or block the MDMA-induced cell toxicity. Oxidative stress has been implicated in MDMA-induced neurotoxicity, but pre-treatment with the antioxidants α-tocopherol or N-acetylcysteine did not reveal any protective effects in the P19 neurons. Involvement of mitochondria in the MDMA-induced cytotoxicity was also examined, but MDMA did not alter the mitochondrial membrane potential (ΔΨm in the P19 neurons. We conclude that MDMA produce a concentration-, time- and temperature-dependent neurotoxicity and our results suggest that the mechanism behind MDMA-induced toxicity in mouse-derived neurons do not involve the serotonergic system, oxidative stress or mitochondrial dysfunction.

  17. Non-Serotonergic Neurotoxicity by MDMA (Ecstasy) in Neurons Derived from Mouse P19 Embryonal Carcinoma Cells.

    Science.gov (United States)

    Popova, Dina; Forsblad, Andréas; Hashemian, Sanaz; Jacobsson, Stig O P

    2016-01-01

    3,4-methylenedioxymethamphetamine (MDMA; ecstasy) is a commonly abused recreational drug that causes neurotoxic effects in both humans and animals. The mechanism behind MDMA-induced neurotoxicity is suggested to be species-dependent and needs to be further investigated on the cellular level. In this study, the effects of MDMA in neuronally differentiated P19 mouse embryonal carcinoma cells have been examined. MDMA produces a concentration-, time- and temperature-dependent toxicity in differentiated P19 neurons, as measured by intracellular MTT reduction and extracellular LDH activity assays. The P19-derived neurons express both the serotonin reuptake transporter (SERT), that is functionally active, and the serotonin metabolizing enzyme monoamine oxidase A (MAO-A). The involvement of these proteins in the MDMA-induced toxicity was investigated by a pharmacological approach. The MAO inhibitors clorgyline and deprenyl, and the SERT inhibitor fluoxetine, per se or in combination, were not able to mimic the toxic effects of MDMA in the P19-derived neurons or block the MDMA-induced cell toxicity. Oxidative stress has been implicated in MDMA-induced neurotoxicity, but pre-treatment with the antioxidants α-tocopherol or N-acetylcysteine did not reveal any protective effects in the P19 neurons. Involvement of mitochondria in the MDMA-induced cytotoxicity was also examined, but MDMA did not alter the mitochondrial membrane potential (ΔΨm) in the P19 neurons. We conclude that MDMA produce a concentration-, time- and temperature-dependent neurotoxicity and our results suggest that the mechanism behind MDMA-induced toxicity in mouse-derived neurons do not involve the serotonergic system, oxidative stress or mitochondrial dysfunction.

  18. Anaesthetic neurotoxicity and neuroplasticity: an expert group report and statement based on the BJA Salzburg Seminar

    Science.gov (United States)

    Jevtovic-Todorovic, V.; Absalom, A. R.; Blomgren, K.; Brambrink, A.; Crosby, G.; Culley, D. J.; Fiskum, G.; Giffard, R. G.; Herold, K. F.; Loepke, A. W.; Ma, D.; Orser, B. A.; Planel, E.; Slikker, W.; Soriano, S. G.; Stratmann, G.; Vutskits, L.; Xie, Z.; Hemmings, H. C.

    2013-01-01

    Although previously considered entirely reversible, general anaesthesia is now being viewed as a potentially significant risk to cognitive performance at both extremes of age. A large body of preclinical as well as some retrospective clinical evidence suggest that exposure to general anaesthesia could be detrimental to cognitive development in young subjects, and might also contribute to accelerated cognitive decline in the elderly. A group of experts in anaesthetic neuropharmacology and neurotoxicity convened in Salzburg, Austria for the BJA Salzburg Seminar on Anaesthetic Neurotoxicity and Neuroplasticity. This focused workshop was sponsored by the British Journal of Anaesthesia to review and critically assess currently available evidence from animal and human studies, and to consider the direction of future research. It was concluded that mounting evidence from preclinical studies reveals general anaesthetics to be powerful modulators of neuronal development and function, which could contribute to detrimental behavioural outcomes. However, definitive clinical data remain elusive. Since general anaesthesia often cannot be avoided regardless of patient age, it is important to understand the complex mechanisms and effects involved in anaesthesia-induced neurotoxicity, and to develop strategies for avoiding or limiting potential brain injury through evidence-based approaches. PMID:23722106

  19. Transfer-Free Fabrication of Graphene Scaffolds on High-k Dielectrics from Metal-Organic Oligomers.

    Science.gov (United States)

    Pang, Qingqing; Wang, Deyan; Wang, Xiuyan; Feng, Shaoguang; Clark, Michael B; Li, Qiaowei

    2016-09-28

    In situ fabrication of graphene scaffold-ZrO2 nanofilms is achieved by thermal annealing of Zr-based metal-organic oligomers on SiO2 substrates. The structural similarities of the aromatic moieties in the ligand (phenyl-, naphthyl-, anthryl-, and pyrenyl-) compared to graphene play a major role in the ordering of the graphene scaffolds obtained. The depth profiling analysis reveals ultrathin carbon-pure or carbon-rich surfaces of the graphene scaffold-ZrO2 nanofilms. The graphene scaffolds with ∼96.0% transmittance in the visible region and 4.8 nm in thickness can be grown with this non-chemical vapor deposition method. Furthermore, the heterogeneous graphene scaffold-ZrO2 nanofilms show a low sheet resistance of 17.0 kΩ per square, corresponding to electrical conductivity of 3197 S m(-1). The strategy provides a facile method to fabricate graphene scaffolds directly on high-k dielectrics without transferring process, paving the way for its application in fabricating electronic devices.

  20. Identification of chlorinated oligomers formed during anodic oxidation of phenol in the presence of chloride

    International Nuclear Information System (INIS)

    Chen, Linxi; Campo, Pablo; Kupferle, Margaret J.

    2015-01-01

    Graphical abstract: - Highlights: • By-products from anodic oxidation of phenol in the presence of chloride are investigated. • Chlorinated oligomer formation is demonstrated by LC-QTOF-MS. • They have structures similar to triclosan and polychlorinated dibenzo-p-dioxins. - Abstract: Chlorinated oligomer intermediates formed during the anodic electrochemical oxidation of phenol with a boron-doped diamond electrode were studied at two different concentrations of chloride (5 mM and 50 mM). Under the same ionic strength, with sodium sulfate being the make-up ion, a 10-fold increase in Cl − led to removal rates 10.8, 1.5, and 1.4 times higher for phenol, TOC, and COD, respectively. Mono-, di- and trichlorophenols resulting from electrophilic substitution were the identified by-products. Nevertheless, discrepancies between theoretical and measured TOC values along with gaps in the mass balance of chlorine-containing species indicated the formation of unaccounted-for chlorinated by-products. Accurate mass measurements by liquid chromatography quadrupole time-of-flight mass spectrometry and MS-MS fragmentation spectra showed that additional compounds formed were dimers and trimers of phenol with structures similar to triclosan and polychlorinated dibenzo-p-dioxins

  1. Morpholino oligomer-mediated exon skipping averts the onset of dystrophic pathology in the mdx mouse.

    Science.gov (United States)

    Fletcher, Sue; Honeyman, Kaite; Fall, Abbie M; Harding, Penny L; Johnsen, Russell D; Steinhaus, Joshua P; Moulton, Hong M; Iversen, Patrick L; Wilton, Stephen D

    2007-09-01

    Duchenne and Becker muscular dystrophies are allelic disorders arising from mutations in the dystrophin gene. Duchenne muscular dystrophy is characterized by an absence of functional protein, whereas Becker muscular dystrophy, commonly caused by in-frame deletions, shows synthesis of partially functional protein. Anti-sense oligonucleotides can induce specific exon removal during processing of the dystrophin primary transcript, while maintaining or restoring the reading frame, and thereby overcome protein-truncating mutations. The mdx mouse has a non-sense mutation in exon 23 of the dystrophin gene that precludes functional dystrophin production, and this model has been used in the development of treatment strategies for dystrophinopathies. A phosphorodiamidate morpholino oligomer (PMO) has previously been shown to exclude exon 23 from the dystrophin gene transcript and induce dystrophin expression in the mdxmouse, in vivo and in vitro. In this report, a cell-penetrating peptide (CPP)-conjugated oligomer targeted to the mouse dystrophin exon 23 donor splice site was administered to mdxmice by intraperitoneal injection. We demonstrate dystrophin expression and near-normal muscle architecture in all muscles examined, except for cardiac muscle. The CPP greatly enhanced uptake of the PMO, resulting in widespread dystrophin expression.

  2. Identification of chlorinated oligomers formed during anodic oxidation of phenol in the presence of chloride

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Linxi; Campo, Pablo; Kupferle, Margaret J., E-mail: margaret.kupferle@uc.edu

    2015-02-11

    Graphical abstract: - Highlights: • By-products from anodic oxidation of phenol in the presence of chloride are investigated. • Chlorinated oligomer formation is demonstrated by LC-QTOF-MS. • They have structures similar to triclosan and polychlorinated dibenzo-p-dioxins. - Abstract: Chlorinated oligomer intermediates formed during the anodic electrochemical oxidation of phenol with a boron-doped diamond electrode were studied at two different concentrations of chloride (5 mM and 50 mM). Under the same ionic strength, with sodium sulfate being the make-up ion, a 10-fold increase in Cl{sup −} led to removal rates 10.8, 1.5, and 1.4 times higher for phenol, TOC, and COD, respectively. Mono-, di- and trichlorophenols resulting from electrophilic substitution were the identified by-products. Nevertheless, discrepancies between theoretical and measured TOC values along with gaps in the mass balance of chlorine-containing species indicated the formation of unaccounted-for chlorinated by-products. Accurate mass measurements by liquid chromatography quadrupole time-of-flight mass spectrometry and MS-MS fragmentation spectra showed that additional compounds formed were dimers and trimers of phenol with structures similar to triclosan and polychlorinated dibenzo-p-dioxins.

  3. An in vivo mechanism for the reduced peripheral neurotoxicity of NK105: a paclitaxel-incorporating polymeric micellar nanoparticle formulation

    Directory of Open Access Journals (Sweden)

    Nakamura I

    2017-02-01

    Full Text Available Iwao Nakamura, Eiji Ichimura, Rika Goda, Hitomi Hayashi, Hiroko Mashiba, Daichi Nagai, Hirofumi Yokoyama, Takeshi Onda, Akira Masuda Nanomedicine Group, Pharmaceutical Research Laboratories, Nippon Kayaku Co., Ltd., Tokyo, Japan Abstract: In our previous rodent studies, the paclitaxel (PTX-incorporating polymeric micellar nanoparticle formulation NK105 had showed significantly stronger antitumor effects and reduced peripheral neurotoxicity than PTX dissolved in Cremophor® EL and ethanol (PTX/CRE. Thus, to elucidate the mechanisms underlying reduced peripheral neurotoxicity due to NK105, we performed pharmacokinetic analyses of NK105 and PTX/CRE in rats. Among neural tissues, the highest PTX concentrations were found in the dorsal root ganglion (DRG. Moreover, exposure of DRG to PTX (Cmax_PTX and AUC0-inf._PTX in the NK105 group was almost half that in the PTX/CRE group, whereas exposure of sciatic and sural nerves was greater in the NK105 group than in the PTX/CRE group. In histopathological analyses, damage to DRG and both peripheral nerves was less in the NK105 group than in the PTX/CRE group. The consistency of these pharmacokinetic and histopathological data suggests that high levels of PTX in the DRG play an important role in the induction of peripheral neurotoxicity, and reduced distribution of PTX to the DRG of NK105-treated rats limits the ensuing peripheral neurotoxicity. In further analyses of PTX distribution to the DRG, Evans blue (Eb was injected with BODIPY®-labeled NK105 into rats, and Eb fluorescence was observed only in the DRG. Following injection, most Eb dye bound to albumin particles of ~8 nm and had penetrated the DRG. In contrast, BODIPY®–NK105 particles of ~90 nm were not found in the DRG, suggesting differential penetration based on particle size. Because PTX also circulates as PTX–albumin particles of ~8 nm following injection of PTX/CRE, reduced peripheral neurotoxicity of NK105 may reflect exclusion from the

  4. Advancing the Science of Developmental Neurotoxicity (DNT) Testing for Better Safety Evaluation

    DEFF Research Database (Denmark)

    Bal-Price, Anna; Coecke, Sandra; Costa, Lucio

    2012-01-01

    Bal-Price AK, Coecke S, Costa L, Crofton KM, Fritsche E, Goldberg A, Grandjean P, Lein PJ, Li A, Lucchini R, Mundy WR, Padilla S, Persico A, Seiler AEM, Kreysa J. Conference Report: Advancing the Science of Developmental Neurotoxicity (DNT) Testing for Better Safety Evaluation. Altex 2012: 29: 202-15....

  5. Differentiating human NT2/D1 neurospheres as a versatile in vitro 3D model system for developmental neurotoxicity testing

    International Nuclear Information System (INIS)

    Hill, E.J.; Woehrling, E.K.; Prince, M.; Coleman, M.D.

    2008-01-01

    Developmental neurotoxicity is a major issue in human health and may have lasting neurological implications. In this preliminary study we exposed differentiating Ntera2/clone D1 (NT2/D1) cell neurospheres to known human teratogens classed as non-embryotoxic (acrylamide), weakly embryotoxic (lithium, valproic acid) and strongly embryotoxic (hydroxyurea) as listed by European Centre for the Validation of Alternative Methods (ECVAM) and examined endpoints of cell viability and neuronal protein marker expression specific to the central nervous system, to identify developmental neurotoxins. Following induction of neuronal differentiation, valproic acid had the most significant effect on neurogenesis, in terms of reduced viability and decreased neuronal markers. Lithium had least effect on viability and did not significantly alter the expression of neuronal markers. Hydroxyurea significantly reduced cell viability but did not affect neuronal protein marker expression. Acrylamide reduced neurosphere viability but did not affect neuronal protein marker expression. Overall, this NT2/D1-based neurosphere model of neurogenesis, may provide the basis for a model of developmental neurotoxicity in vitro

  6. Oxidative stress in MeHg-induced neurotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Farina, Marcelo, E-mail: farina@ccb.ufsc.br [Departamento de Bioquimica, Centro de Ciencias Biologicas, Universidade Federal de Santa Catarina, Florianopolis, SC (Brazil); Aschner, Michael [Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN (United States); Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN (United States); Rocha, Joao B.T., E-mail: jbtrocha@yahoo.com.br [Departamento de Quimica, Centro de Ciencias Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil)

    2011-11-15

    Methylmercury (MeHg) is an environmental toxicant that leads to long-lasting neurological and developmental deficits in animals and humans. Although the molecular mechanisms mediating MeHg-induced neurotoxicity are not completely understood, several lines of evidence indicate that oxidative stress represents a critical event related to the neurotoxic effects elicited by this toxicant. The objective of this review is to summarize and discuss data from experimental and epidemiological studies that have been important in clarifying the molecular events which mediate MeHg-induced oxidative damage and, consequently, toxicity. Although unanswered questions remain, the electrophilic properties of MeHg and its ability to oxidize thiols have been reported to play decisive roles to the oxidative consequences observed after MeHg exposure. However, a close examination of the relationship between low levels of MeHg necessary to induce oxidative stress and the high amounts of sulfhydryl-containing antioxidants in mammalian cells (e.g., glutathione) have led to the hypothesis that nucleophilic groups with extremely high affinities for MeHg (e.g., selenols) might represent primary targets in MeHg-induced oxidative stress. Indeed, the inhibition of antioxidant selenoproteins during MeHg poisoning in experimental animals has corroborated this hypothesis. The levels of different reactive species (superoxide anion, hydrogen peroxide and nitric oxide) have been reported to be increased in MeHg-exposed systems, and the mechanisms concerning these increments seem to involve a complex sequence of cascading molecular events, such as mitochondrial dysfunction, excitotoxicity, intracellular calcium dyshomeostasis and decreased antioxidant capacity. This review also discusses potential therapeutic strategies to counteract MeHg-induced toxicity and oxidative stress, emphasizing the use of organic selenocompounds, which generally present higher affinity for MeHg when compared to the classically

  7. Effects of 7-nitroindazole, an NOS inhibitor on methamphetamine-induced dopaminergic and serotonergic neurotoxicity in mice.

    Science.gov (United States)

    Ali, S F; Itzhak, Y

    1998-05-30

    Methamphetamine (METH) is one of the major drugs of abuse that is postulated to cause neurotoxicity by depleting dopamine (DA) and its metabolites, high-affinity DA uptake sites, and the activity of tyrosine hydroxylase. The present study was undertaken to investigate whether the relatively selective, neuronal nitric oxide synthase (NOS) inhibitor, 7-nitroindazole (7-NI), protects against METH-induced neurotoxicity. Male Swiss Webster mice received the following injections intraperitoneally (i.p.) 3 times (every 3 hr): (i) vehicle/saline, (ii) 7-NI (25 mg/kg)/saline, (iii) vehicle/METH (5 mg/kg), and (iv) 7-NI (25 mg/kg)/METH (5 mg/kg). On the second day, groups (i) and (iii) received two vehicle injections and groups (ii) and (iv) received two 7-NI injections (25 mg/kg each). The administration of vehicle/METH resulted in 68, 44 and 55% decreases in the concentration of DA, dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA), respectively, and a 48% decrease in the number of [3H]mazindol binding sites in the striatum compared to control values. The treatment with 7-NI (group iv) provided a full protection against the depletion of DA and its metabolites, and the loss of dopamine transporter binding sites. Multiple injection of METH caused a significant decrease in the concentration of serotonin (5-HT) and its metabolite 5-hydroxyindole acetic acid (5-HIAA). Treatment with 7-NI partially blocked the depletion of 5-HT and completely blocked the reduction in 5-HIAA levels. The administration of 7-NI/saline (group ii) affected neither the tissue concentration of DA, 5-HT and their metabolites (DOPAC, HVA and 5-HIAA) nor the binding parameters of [3H]-mazindol compared to control (vehicle/saline) values. 7-NI had no significant effect on the animals' body temperature, and it did not affect METH-induced hyperthermia. These findings indicate a role for nitric oxide in METH-induced neurotoxicity and also suggest that blockage of NOS may be beneficial for the

  8. Effects of 7-Nitroindazole, an NOS Inhibitor on Methamphetamine-Induced Dopaminergic and Serotonergic Neurotoxicity in Micea.

    Science.gov (United States)

    Ali, Syed F; Itzhak, Yossef

    1998-05-01

    Methamphetamine (METH) is one of the major drugs of abuse that is postulated to cause neurotoxicity by depleting dopamine (DA) and its metabolites, high-affinity DA uptake sites, and the activity of tyrosine hydroxylase. The present study was undertaken to investigate whether the relatively selective, neuronal nitric oxide synthase (NOS) inhibitor, 7-nitroindazole (7-NI), protects against METH-induced neurotoxicity. Male Swiss Webster mice received the following injections intraperitoneally (i.p.) 3 times (every 3 hr): (i) vehicle/saline, (ii) 7-NI (25 mg/kg)/saline, (iii) vehicle/METH (5 mg/kg), and (iv) 7-NI (25 mg/kg)/METH (5 mg/kg). On the second day, groups (i) and (iii) received two vehicle injections and groups (ii) and (iv) received two 7-NI injections (25 mg/kg each). The administration of vehicle/METH resulted in 68, 44 and 55% decreases in the concentration of DA, dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA), respectively, and a 48% decrease in the number of [ 3 H]mazindol binding sites in the striatum compared to control values. The treatment with 7-NI (group iv) provided a full protection against the depletion of DA and its metabolites, and the loss of dopamine transporter binding sites. Multiple injection of METH caused a significant decrease in the concentration of serotonin (5-HT) and its metabolite 5-hydroxyindole acetic acid (5-HIAA). Treatment with 7-NI partially blocked the depletion of 5-HT and completely blocked the reduction in 5-HIAA levels. The administration of 7-NI/saline (group ii) affected neither the tissue concentration of DA, 5-HT and their metabolites (DOPAC, HVA and 5-HIAA) nor the binding parameters of [ 3 H]-mazindol compared to control (vehicle/saline) values. 7-NI had no significant effect on the animals' body temperature, and it did not affect METH-induced hyperthermia. These findings indicate a role for nitric oxide in METH-induced neurotoxicity and also suggest that blockage of NOS may be beneficial for

  9. Developmental Neurotoxicity of Traffic-Related Air Pollution: Focus on Autism.

    Science.gov (United States)

    Costa, Lucio G; Chang, Yu-Chi; Cole, Toby B

    2017-06-01

    Epidemiological and animal studies suggest that air pollution may negatively affect the central nervous system (CNS) and contribute to CNS diseases. Traffic-related air pollution is a major contributor to global air pollution, and diesel exhaust (DE) is its most important component. Several studies suggest that young individuals may be particularly susceptible to air pollution-induced neurotoxicity and that perinatal exposure may cause or contribute to developmental disabilities and behavioral abnormalities. In particular, a number of recent studies have found associations between exposures to traffic-related air pollution and autism spectrum disorders (ASD), which are characterized by impairment in socialization and in communication and by the presence of repetitive and unusual behaviors. The cause(s) of ASD are unknown, and while it may have a hereditary component, environmental factors are increasingly suspected as playing a pivotal role in its etiology, particularly in genetically susceptible individuals. Autistic children present higher levels of neuroinflammation and systemic inflammation, which are also hallmarks of exposure to traffic-related air pollution. Gene-environment interactions may play a relevant role in determining individual susceptibility to air pollution developmental neurotoxicity. Given the worldwide presence of elevated air pollution, studies on its effects and mechanisms on the developing brain, genetic susceptibility, role in neurodevelopmental disorders, and possible therapeutic interventions are certainly warranted.

  10. Neurotoxicity of cerebro-spinal fluid from patients with Parkinson's disease on mesencephalic primary cultures as an in vitro model of dopaminergic neurons.

    Science.gov (United States)

    Kong, Ping; Zhang, Ben-Shu; Lei, Ping; Kong, Xiao-Dong; Zhang, Shi-Shuang; Li, Dai; Zhang, Yun

    2015-08-01

    Parkinson's disease is a degenerative disorder of the central nervous system. In spite of extensive research, neither the cause nor the mechanisms have been firmly established thus far. One assumption is that certain toxic substances may exist in the cerebro-spinal fluid (CSF) of Parkinson's disease patients. To confirm the neurotoxicity of CSF and study the potential correlation between neurotoxicity and the severity of Parkinson's disease, CSF was added to cultured cells. By observation of cell morphology, changes in the levels of lactate dehydrogenase, the ratio of tyrosine hydroxylase-positive cells, and the expression of tyrosine hydroxylase mRNA and protein, the differences between the two groups were shown. The created in vitro model of dopaminergic neurons using primary culture of mouse embryonic mesencephalic tissue is suitable for the study of neurotoxicity. The observations of the present study indicated that CSF from Parkinson's disease patients contains factors that can cause specific injury to cultured dopaminergic neurons. However, no obvious correlation was found between the neurotoxicity of CSF and the severity of Parkinson's disease.

  11. Sedimentation equilibrium of a small oligomer-forming membrane protein: effect of histidine protonation on pentameric stability.

    Science.gov (United States)

    Surya, Wahyu; Torres, Jaume

    2015-04-02

    Analytical ultracentrifugation (AUC) can be used to study reversible interactions between macromolecules over a wide range of interaction strengths and under physiological conditions. This makes AUC a method of choice to quantitatively assess stoichiometry and thermodynamics of homo- and hetero-association that are transient and reversible in biochemical processes. In the modality of sedimentation equilibrium (SE), a balance between diffusion and sedimentation provides a profile as a function of radial distance that depends on a specific association model. Herein, a detailed SE protocol is described to determine the size and monomer-monomer association energy of a small membrane protein oligomer using an analytical ultracentrifuge. AUC-ES is label-free, only based on physical principles, and can be used on both water soluble and membrane proteins. An example is shown of the latter, the small hydrophobic (SH) protein in the human respiratory syncytial virus (hRSV), a 65-amino acid polypeptide with a single α-helical transmembrane (TM) domain that forms pentameric ion channels. NMR-based structural data shows that SH protein has two protonatable His residues in its transmembrane domain that are oriented facing the lumen of the channel. SE experiments have been designed to determine how pH affects association constant and the oligomeric size of SH protein. While the pentameric form was preserved in all cases, its association constant was reduced at low pH. These data are in agreement with a similar pH dependency observed for SH channel activity, consistent with a lumenal orientation of the two His residues in SH protein. The latter may experience electrostatic repulsion and reduced oligomer stability at low pH. In summary, this method is applicable whenever quantitative information on subtle protein-protein association changes in physiological conditions have to be measured.

  12. Charge Delocalization in Oligomers of Poly(2,5-bis(3-alkylthiophene-2-yl)thieno[3,2-b]thiophene), PBTTT

    KAUST Repository

    Zhang, Yuexing

    2016-04-25

    We investigate theoretically charge delocalization in radical-cations, i.e., positive polarons, formed on oligomer chains of poly(2,5-bis(3-alkylthiophene-2-yl)thieno[3,2-b]thiophene), PBTTT. We use non-empirically tuned range-separated density functionals (TRS-DFT), including LC-ωPBE, LC-BLYP, and ωB97XD. We consider the evolution with oligomer length of the molecular geometric and electronic structures, optical absorption features, and spin densities. The TRS-DFT results indicate that a positive polaron can delocalize ideally over some 10 thiophene rings when the backbone is non-planar and up to 14 rings for a backbone forced to be completely planar. Interestingly, up to six polarons can co-exist side-by-side in a hexamer (which contains 24 thiophene rings), which is consistent with the highest degrees of doping (oxidation) experimentally achievable in polythiophene derivatives.

  13. Charge Delocalization in Oligomers of Poly(2,5-bis(3-alkylthiophene-2-yl)thieno[3,2-b]thiophene), PBTTT

    KAUST Repository

    Zhang, Yuexing; Steyrleuthner, Robert; Bredas, Jean-Luc

    2016-01-01

    We investigate theoretically charge delocalization in radical-cations, i.e., positive polarons, formed on oligomer chains of poly(2,5-bis(3-alkylthiophene-2-yl)thieno[3,2-b]thiophene), PBTTT. We use non-empirically tuned range-separated density functionals (TRS-DFT), including LC-ωPBE, LC-BLYP, and ωB97XD. We consider the evolution with oligomer length of the molecular geometric and electronic structures, optical absorption features, and spin densities. The TRS-DFT results indicate that a positive polaron can delocalize ideally over some 10 thiophene rings when the backbone is non-planar and up to 14 rings for a backbone forced to be completely planar. Interestingly, up to six polarons can co-exist side-by-side in a hexamer (which contains 24 thiophene rings), which is consistent with the highest degrees of doping (oxidation) experimentally achievable in polythiophene derivatives.

  14. The neurotoxicity of pyridinium metabolites of haloperidol

    Directory of Open Access Journals (Sweden)

    Agnieszka Górska

    2015-10-01

    Full Text Available Haloperydol is a butyrophenone, typical neuroleptic agent characterized as a high antipsychotics effects in the treatment of schizophrenia and in palliative care to alleviation many syndromes, such as naursea, vomiting and delirium. Clinical problems occurs during and after administration of the drug are side effects, particularly extrapyrramidal symptoms (EPS. The neurotoxicity of haloperydol may be initiated by the cationic metabolites of haloperydol, HPP+, RHPP+, formed by oxidation and reduction pathways. These metabolites are transported by human organic cation transporters (hOCT to several brain structures for exapmle, in substantia nigra, striatum, caudate nucleus, hippocampus. After reaching the dopaminergic neurons inhibits mitochondrial complex I, evidence for free radical involvement, thus leading to neurodegeneration.

  15. In Vivo Evidence of Increased nNOS Activity in Acute MPTP Neurotoxicity: A Functional Pharmacological MRI Study

    Directory of Open Access Journals (Sweden)

    Tiing Yee Siow

    2013-01-01

    Full Text Available 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP is a neurotoxin commonly used to produce an animal model of Parkinson’s disease. Previous studies have suggested a critical role for neuronal nitric oxide (NO synthase- (nNOS- derived NO in the pathogenesis of MPTP. However, NO activity is difficult to assess in vivo due to its extremely short biological half-life, and so in vivo evidence of NO involvement in MPTP neurotoxicity remains scarce. In the present study, we utilized flow-sensitive alternating inversion recovery sequences, in vivo localized proton magnetic resonance spectroscopy, and diffusion-weighted imaging to, respectively, assess the hemodynamics, metabolism, and cytotoxicity induced by MPTP. The role of NO in MPTP toxicity was clarified further by administering a selective nNOS inhibitor, 7-nitroindazole (7-NI, intraperitoneally to some of the experimental animals prior to MPTP challenge. The transient increase in cerebral blood flow (CBF in the cortex and striatum induced by systemic injection of MPTP was completely prevented by pretreatment with 7-NI. We provide the first in vivo evidence of increased nNOS activity in acute MPTP-induced neurotoxicity. Although the observed CBF change may be independent of the toxicogenesis of MPTP, this transient hyperperfusion state may serve as an early indicator of neuroinflammation.

  16. Antibodies against alpha-synuclein reduce oligomerization in living cells.

    Directory of Open Access Journals (Sweden)

    Thomas Näsström

    Full Text Available Recent research implicates soluble aggregated forms of α-synuclein as neurotoxic species with a central role in the pathogenesis of Parkinson's disease and related disorders. The pathway by which α-synuclein aggregates is believed to follow a step-wise pattern, in which dimers and smaller oligomers are initially formed. Here, we used H4 neuroglioma cells expressing α-synuclein fused to hemi:GFP constructs to study the effects of α-synuclein monoclonal antibodies on the early stages of aggregation, as quantified by Bimolecular Fluorescence Complementation assay. Widefield and confocal microscopy revealed that cells treated for 48 h with monoclonal antibodies internalized antibodies to various degrees. C-terminal and oligomer-selective α-synuclein antibodies reduced the extent of α-synuclein dimerization/oligomerization, as indicated by decreased GFP fluorescence signal. Furthermore, ELISA measurements on lysates and conditioned media from antibody treated cells displayed lower α-synuclein levels compared to untreated cells, suggesting increased protein turnover. Taken together, our results propose that extracellular administration of monoclonal antibodies can modify or inhibit early steps in the aggregation process of α-synuclein, thus providing further support for passive immunization against diseases with α-synuclein pathology.

  17. Intracellular formation of α-synuclein oligomers and the effect of heat shock protein 70 characterized by confocal single particle spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Levin, Johannes [Department of Neurology, Ludwig-Maximilians-University, Marchioninistr. 15, 81377 Munich (Germany); German Center for Neurodegenerative Diseases – DZNE, Site Munich, Feodor-Lynen-Str. 17, 81377 Munich (Germany); Hillmer, Andreas S. [Center for Neuropathology and Prion Research, Ludwig-Maximilians-University, Feodor-Lynen-Str. 23, 81377 Munich (Germany); Högen, Tobias [Department of Neurology, Ludwig-Maximilians-University, Marchioninistr. 15, 81377 Munich (Germany); McLean, Pamela J. [Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 (United States); Giese, Armin, E-mail: armin.giese@med.uni-muenchen.de [Center for Neuropathology and Prion Research, Ludwig-Maximilians-University, Feodor-Lynen-Str. 23, 81377 Munich (Germany)

    2016-08-12

    Synucleinopathies such as dementia with Lewy bodies or Parkinson’s disease are characterized by intracellular deposition of pathologically aggregated α-synuclein. The details of the molecular pathogenesis of PD and especially the conditions that lead to intracellular aggregation of α-synuclein and the role of these aggregates in cell death remain unknown. In cell free in vitro systems considerable knowledge about the aggregation processes has been gathered. In comparison, the knowledge about these aggregation processes in cells is far behind. In cells α-synuclein aggregates can be toxic. However, the crucial particle species responsible for decisive steps in pathogenesis such as seeding a continuing aggregation process and triggering cell death remain to be identified. In order to understand the complex nature of intracellular α-synuclein aggregate formation, we analyzed fluorescent particles formed by venus and α-synuclein-venus fusion proteins and α-synuclein-hemi-venus fusion proteins derived from gently lyzed cells. With these techniques we were able to identify and characterize α-synuclein oligomers formed in cells. Especially the use of α-synuclein-hemi-venus fusion proteins enabled us to identify very small α-synuclein oligomers with high sensitivity. Furthermore, we were able to study the molecular effect of heat shock protein 70, which is known to inhibit α-synuclein aggregation in cells. Heat shock protein 70 does not only influence the size of α-synuclein oligomers, but also their quantity. In summary, this approach based on fluorescence single particle spectroscopy, that is suited for high throughput measurements, can be used to detect and characterize intracellularly formed α-synuclein aggregates and characterize the effect of molecules that interfere with α-synuclein aggregate formation. - Highlights: • Single particle spectroscopy detects intracellular formed α-synuclein aggregates. • Fusion proteins allow detection of protein

  18. Human embryonic stem cell-derived test systems for developmental neurotoxicity: A transcriptomics approach

    NARCIS (Netherlands)

    Krug, A.K.; Kolde, R.; Gaspar, J.A.; Rempel, E.; Balmer, N.V.; Meganathan, K.; Vojnits, K.; Baquié, M.; Waldmann, T.; Ensenat-Waser, R.; Jagtap, S.; Evans, R.M.; Julien, S.; Peterson, H.; Zagoura, D.; Kadereit, S.; Gerhard, D.; Sotiriadou, I.; Heke, M.; Natarajan, K.; Henry, M.; Winkler, J.; Marchan, R.; Stoppini, L.; Bosgra, S.; Westerhout, J.; Verwei, M.; Vilo, J.; Kortenkamp, A.; Hescheler, J.; Hothorn, L.; Bremer, S.; Thriel, C. van; Krause, K.-H.; Hengstler, J.G.; Rahnenführer, J.; Leist, M.; Sachinidis, A.

    2013-01-01

    Developmental neurotoxicity (DNT) and many forms of reproductive toxicity (RT) often manifest themselves in functional deficits that are not necessarily based on cell death, but rather on minor changes relating to cell differentiation or communication. The fields of DNT/RT would greatly benefit from

  19. Neurotoxic effect of maneb in rats as studied by neurochemical and immunohistochemical parameters

    DEFF Research Database (Denmark)

    Nielsen, Brian Svend; Larsen, Erik Huusfeldt; Ladefoged, Ole

    2006-01-01

    ) increased in a dose-related manner, as did the 5-HT concentrations in the rest of the brain indicating early sign of neurotoxicity. Striatal acetylcholinesterase activity was not affected. The concentrations of noradrenaline, dopamine, neurotransmitter amino acids and the levels of the proteins alpha...

  20. Involvement of direct inhibition of NMDA receptors in the effects of sigma-receptor ligands on glutamate neurotoxicity in vitro.

    Science.gov (United States)

    Nishikawa, H; Hashino, A; Kume, T; Katsuki, H; Kaneko, S; Akaike, A

    2000-09-15

    This study was performed to examine the roles of the N-methyl-D-aspartate (NMDA) receptor/phencyclidine (PCP) channel complex in the protective effects of sigma-receptor ligands against glutamate neurotoxicity in cultured cortical neurons derived from fetal rats. A 1-h exposure of cultures to glutamate caused a marked loss of viability, as determined by Trypan blue exclusion. This acute neurotoxicity of glutamate was prevented by NMDA receptor antagonists. Expression of sigma(1) receptor mRNA in cortical cultures was confirmed by reverse transcription polymerase chain reaction (RT-PCR). sigma Receptor ligands with affinity for NMDA receptor channels including the PCP site, such as (+)-N-allylnormetazocine ((+)-SKF10,047), haloperidol, and R(-)-N-(3-phenyl-1-propyl)-1-phenyl-2-aminopropane ((-)-PPAP), prevented glutamate neurotoxicity in a concentration-dependent manner. In contrast, other sigma-receptor ligands without affinity for NMDA receptors, such as carbetapentane and R(+)-3-(3-hydroxyphenyl)-N-propylpiperidine ((+)-3-PPP), did not show neuroprotective effects. Putative endogenous sigma receptor ligands such as pregnenolone, progesterone, and dehydroepiandrosterone did not affect glutamate neurotoxicity. The protective effects of (+)-SKF10,047, haloperidol, and (-)-PPAP were not affected by the sigma(1) receptor antagonist rimcazole. These results suggested that a direct interaction with NMDA receptors but not with sigma receptors plays a crucial role in the neuroprotective effects of sigma receptor ligands with affinity for NMDA receptors.