WorldWideScience

Sample records for oligodendrocytes increases sensitivity

  1. Cyclooxygenase-2 expression in oligodendrocytes increases sensitivity to excitotoxic death

    Directory of Open Access Journals (Sweden)

    Rojas Monica A

    2010-04-01

    Full Text Available Abstract Background We previously found that cyclooxygenase 2 (COX-2 was expressed in dying oligodendrocytes at the onset of demyelination in the Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD model of multiple sclerosis (MS (Carlson et al. J.Neuroimmunology 2006, 149:40. This suggests that COX-2 may contribute to death of oligodendrocytes. Objective The goal of this study was to examine whether COX-2 contributes to excitotoxic death of oligodendrocytes and potentially contributes to demyelination. Methods The potential link between COX-2 and oligodendrocyte death was approached using histopathology of MS lesions to examine whether COX-2 was expressed in dying oligodendrocytes. COX-2 inhibitors were examined for their ability to limit demyelination in the TMEV-IDD model of MS and to limit excitotoxic death of oligodendrocytes in vitro. Genetic manipulation of COX-2 expression was used to determine whether COX-2 contributes to excitotoxic death of oligodendrocytes. A transgenic mouse line was generated that overexpressed COX-2 in oligodendrocytes. Oligodendrocyte cultures derived from these transgenic mice were used to examine whether increased expression of COX-2 enhanced the vulnerability of oligodendrocytes to excitotoxic death. Oligodendrocytes derived from COX-2 knockout mice were evaluated to determine if decreased COX-2 expression promotes a greater resistance to excitotoxic death. Results COX-2 was expressed in dying oligodendrocytes in MS lesions. COX-2 inhibitors limited demyelination in the TMEV-IDD model of MS and protected oligodendrocytes against excitotoxic death in vitro. COX-2 expression was increased in wild-type oligodendrocytes following treatment with Kainic acid (KA. Overexpression of COX-2 in oligodendrocytes increased the sensitivity of oligodendrocytes to KA-induced excitotoxic death eight-fold compared to wild-type. Conversely, oligodendrocytes prepared from COX-2 knockout mice showed a

  2. Human Traumatic Brain Injury Results in Oligodendrocyte Death and Increases the Number of Oligodendrocyte Progenitor Cells.

    Science.gov (United States)

    Flygt, Johanna; Gumucio, Astrid; Ingelsson, Martin; Skoglund, Karin; Holm, Jonatan; Alafuzoff, Irina; Marklund, Niklas

    2016-06-01

    Oligodendrocyte (OL) death may contribute to white matter pathology, a common cause of network dysfunction and persistent cognitive problems in patients with traumatic brain injury (TBI). Oligodendrocyte progenitor cells (OPCs) persist throughout the adult CNS and may replace dead OLs. OL death and OPCs were analyzed by immunohistochemistry of human brain tissue samples, surgically removed due to life-threatening contusions and/or focal brain swelling at 60.6 ± 75 hours (range 4-192 hours) postinjury in 10 severe TBI patients (age 51.7 ± 18.5 years). Control brain tissue was obtained postmortem from 5 age-matched patients without CNS disorders. TUNEL and CC1 co-labeling was used to analyze apoptotic OLs, which were increased in injured brain tissue (p The OPC markers Olig2, A2B5, NG2, and PDGFR-α were used. In contrast to the number of single-labeled Olig2, A2B5, NG2, and PDGFR-α-positive cells, numbers of Olig2 and A2B5 co-labeled cells were increased in TBI samples (p human TBI results in OL death and increases in OPCs postinjury, which may influence white matter function following TBI. © 2016 American Association of Neuropathologists, Inc. All rights reserved.

  3. Gemfibrozil, a lipid-lowering drug, increases myelin genes in human oligodendrocytes via peroxisome proliferator-activated receptor-β.

    Science.gov (United States)

    Jana, Malabendu; Mondal, Susanta; Gonzalez, Frank J; Pahan, Kalipada

    2012-10-05

    An increase in CNS remyelination and a decrease in CNS inflammation are important steps to halt the progression of multiple sclerosis. Earlier studies have shown that gemfibrozil, a lipid-lowering drug, has anti-inflammatory properties. The current study identified another novel property of gemfibrozil in stimulating the expression of myelin-specific genes (myelin basic protein, myelin oligodendrocyte glycoprotein, 2',3'-cyclic-nucleotide 3'-phosphodiesterase, and proteolipid protein (PLP)) in primary human oligodendrocytes, mixed glial cells, and spinal cord organotypic cultures. Although gemfibrozil is a known activator of peroxisome proliferator-activated receptor-α (PPAR-α), we were unable to detect PPAR-α in either gemfibrozil-treated or untreated human oligodendrocytes, and gemfibrozil increased the expression of myelin genes in oligodendrocytes isolated from both wild type and PPAR-α(-/-) mice. On the other hand, gemfibrozil markedly increased the expression of PPAR-β but not PPAR-γ. Consistently, antisense knockdown of PPAR-β, but not PPAR-γ, abrogated the stimulatory effect of gemfibrozil on myelin genes in human oligodendrocytes. Gemfibrozil also did not up-regulate myelin genes in oligodendroglia isolated from PPAR-β(-/-) mice. Chromatin immunoprecipitation analysis showed that gemfibrozil induced the recruitment of PPAR-β to the promoter of PLP and myelin oligodendrocyte glycoprotein genes in human oligodendrocytes. Furthermore, gemfibrozil treatment also led to the recruitment of PPAR-β to the PLP promoter in vivo in the spinal cord of experimental autoimmune encephalomyelitis mice and suppression of experimental autoimmune encephalomyelitis symptoms in PLP-T cell receptor transgenic mice. These results suggest that gemfibrozil stimulates the expression of myelin genes via PPAR-β and that gemfibrozil, a prescribed drug for humans, may find further therapeutic use in demyelinating diseases.

  4. Gemfibrozil, a Lipid-lowering Drug, Increases Myelin Genes in Human Oligodendrocytes via Peroxisome Proliferator-activated Receptor-β*

    Science.gov (United States)

    Jana, Malabendu; Mondal, Susanta; Gonzalez, Frank J.; Pahan, Kalipada

    2012-01-01

    An increase in CNS remyelination and a decrease in CNS inflammation are important steps to halt the progression of multiple sclerosis. Earlier studies have shown that gemfibrozil, a lipid-lowering drug, has anti-inflammatory properties. The current study identified another novel property of gemfibrozil in stimulating the expression of myelin-specific genes (myelin basic protein, myelin oligodendrocyte glycoprotein, 2′,3′-cyclic-nucleotide 3′-phosphodiesterase, and proteolipid protein (PLP)) in primary human oligodendrocytes, mixed glial cells, and spinal cord organotypic cultures. Although gemfibrozil is a known activator of peroxisome proliferator-activated receptor-α (PPAR-α), we were unable to detect PPAR-α in either gemfibrozil-treated or untreated human oligodendrocytes, and gemfibrozil increased the expression of myelin genes in oligodendrocytes isolated from both wild type and PPAR-α(−/−) mice. On the other hand, gemfibrozil markedly increased the expression of PPAR-β but not PPAR-γ. Consistently, antisense knockdown of PPAR-β, but not PPAR-γ, abrogated the stimulatory effect of gemfibrozil on myelin genes in human oligodendrocytes. Gemfibrozil also did not up-regulate myelin genes in oligodendroglia isolated from PPAR-β(−/−) mice. Chromatin immunoprecipitation analysis showed that gemfibrozil induced the recruitment of PPAR-β to the promoter of PLP and myelin oligodendrocyte glycoprotein genes in human oligodendrocytes. Furthermore, gemfibrozil treatment also led to the recruitment of PPAR-β to the PLP promoter in vivo in the spinal cord of experimental autoimmune encephalomyelitis mice and suppression of experimental autoimmune encephalomyelitis symptoms in PLP-T cell receptor transgenic mice. These results suggest that gemfibrozil stimulates the expression of myelin genes via PPAR-β and that gemfibrozil, a prescribed drug for humans, may find further therapeutic use in demyelinating diseases. PMID:22879602

  5. Astrocytes from the contused spinal cord inhibit oligodendrocyte differentiation of adult oligodendrocyte precursor cells by increasing the expression of bone morphogenetic proteins.

    Science.gov (United States)

    Wang, Yaping; Cheng, Xiaoxin; He, Qian; Zheng, Yiyan; Kim, Dong H; Whittemore, Scott R; Cao, Qilin L

    2011-04-20

    Promotion of remyelination is an important therapeutic strategy to facilitate functional recovery after traumatic spinal cord injury (SCI). Transplantation of neural stem cells (NSCs) or oligodendrocyte precursor cells (OPCs) has been used to enhance remyelination after SCI. However, the microenvironment in the injured spinal cord is inhibitory for oligodendrocyte (OL) differentiation of NSCs or OPCs. Identifying the signaling pathways that inhibit OL differentiation in the injured spinal cord could lead to new therapeutic strategies to enhance remyelination and functional recovery after SCI. In the present study, we show that reactive astrocytes from the injured rat spinal cord or their conditioned media inhibit OL differentiation of adult OPCs with concurrent promotion of astrocyte differentiation. The expression of bone morphogenetic proteins (BMP) is dramatically increased in the reactive astrocytes and their conditioned media. Importantly, blocking BMP activity by BMP receptor antagonist, noggin, reverse the effects of active astrocytes on OPC differentiation by increasing the differentiation of OL from OPCs while decreasing the generation of astrocytes. These data indicate that the upregulated bone morphogenetic proteins in the reactive astrocytes are major factors to inhibit OL differentiation of OPCs and to promote its astrocyte differentiation. These data suggest that manipulation of BMP signaling in the endogenous or grafted NSCs or OPCs may be a useful therapeutic strategy to increase their OL differentiation and remyelination and enhance functional recovery after SCI.

  6. Astrocytes from the Contused Spinal Cord Inhibit Oligodendrocyte Differentiation of Adult Oligodendrocyte Precursor Cells by Increasing the Expression of Bone Morphogenetic Proteins

    OpenAIRE

    Wang, Yaping; Cheng, Xiaoxin; He, Qian; Zheng, Yiyan; Kim, Dong H.; Whittemore, Scott R.; Cao, Qilin L.

    2011-01-01

    Promotion of remyelination is an important therapeutic strategy to facilitate functional recovery after traumatic spinal cord injury (SCI). Transplantation of neural stem cells (NSCs) or oligodendrocyte precursor cells (OPCs) has been used to enhance remyelination after SCI. However, the microenvironment in the injured spinal cord is inhibitory for oligodendrocyte (OL) differentiation of NSCs or OPCs. Identifying the signaling pathways that inhibit OL differentiation in the injured spinal cor...

  7. Increased Cx32 expression in spinal cord TrkB oligodendrocytes following peripheral axon injury.

    Science.gov (United States)

    Coulibaly, Aminata P; Isaacson, Lori G

    2016-08-03

    Following injury to motor axons in the periphery, retrograde influences from the injury site lead to glial cell plasticity in the vicinity of the injured neurons. Following the transection of peripherally located preganglionic axons of the cervical sympathetic trunk (CST), a population of oligodendrocyte (OL) lineage cells expressing full length TrkB, the cognate receptor for brain derived neurotrophic factor (BDNF), is significantly increased in number in the spinal cord. Such robust plasticity in OL lineage cells in the spinal cord following peripheral axon transection led to the hypothesis that the gap junction communication protein connexin 32 (Cx32), which is specific to OL lineage cells, was influenced by the injury. Following CST transection, Cx32 expression in the spinal cord intermediolateral cell column (IML), the location of the parent cell bodies, was significantly increased. The increased Cx32 expression was localized specifically to TrkB OLs in the IML, rather than other cell types in the OL cell lineage, with the population of Cx32/TrkB cells increased by 59%. Cx32 expression in association with OPCs was significantly decreased at one week following the injury. The results of this study provide evidence that peripheral axon injury can differentially affect the gap junction protein expression in OL lineage cells in the adult rat spinal cord. We conclude that the retrograde influences originating from the peripheral injury site elicit dramatic changes in the CNS expression of Cx32, which in turn may mediate the plasticity of OL lineage cells observed in the spinal cord following peripheral axon injury. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Cyclosporin A increases recovery after spinal cord injury but does not improve myelination by oligodendrocyte progenitor cell transplantation

    Directory of Open Access Journals (Sweden)

    Wang Feng-Chao

    2010-10-01

    Full Text Available Abstract Background Transplantation of oligodendrocyte precursor cells (OPCs is an attractive therapy for demyelinating diseases. Cyclosporin A (CsA is one of the foremost immunosuppressive agents and has widespread use in tissue and cell transplantation. However, whether CsA affects survival and differentiation of engrafted OPCs in vivo is unknown. In this study, the effect of CsA on morphological, functional and immunological aspects, as well as survival and differentiation of engrafted OPCs in injured spinal cord was explored. Results We transplanted green fluorescent protein (GFP expressed OPCs (GFP-OPCs into injured spinal cords of rats treated with or without CsA (10 mg/kg. Two weeks after cell transplantation, more GFP-positive cells were found in CsA-treated rats than that in vehicle-treated ones. However, the engrafted cells mostly differentiated into astrocytes, but not oligodendrocytes in both groups. In the CsA-treated group, a significant decrease in spinal cord lesion volume along with increase in spared myelin and neurons were found compared to the control group. Such histological improvement correlated well with an increase in behavioral recovery. Further study suggested that CsA treatment could inhibit infiltration of T cells and activation of resident microglia and/or macrophages derived from infiltrating monocytes in injured spinal cords, which contributes to the survival of engrafted OPCs and repair of spinal cord injury (SCI. Conclusions These results collectively indicate that CsA can promote the survival of engrafted OPCs in injured spinal cords, but has no effect on their differentiation. The engrafted cells mostly differentiated into astrocytes, but not oligodendrocytes. The beneficial effect of CsA on SCI and the survival of engrafted cells may be attributed to its neuroprotective effect.

  9. Increased nuclear Olig1-expression in the pregenual anterior cingulate white matter of patients with major depression: a regenerative attempt to compensate oligodendrocyte loss?

    Science.gov (United States)

    Mosebach, Jennifer; Keilhoff, Gerburg; Gos, Tomasz; Schiltz, Kolja; Schoeneck, Linda; Dobrowolny, Henrik; Mawrin, Christian; Müller, Susan; Schroeter, Matthias L; Bernstein, Hans-Gert; Bogerts, Bernhard; Steiner, Johann

    2013-08-01

    Structural and functional oligodendrocyte deficits as well as impaired myelin integrity have been described in affective disorders and schizophrenia, and may disturb the connectivity between disease-relevant brain regions. Olig1, an oligodendroglial transcription factor, might be important in this context, but has not been systematically studied so far. Nissl- and Olig1-stained oligodendrocytes were quantified in the pregenual anterior cingulate (pACC)/dorsolateral prefrontal cortex (DLPFC), and adjacent white matter of patients with major depressive disorder (MDD, n = 9), bipolar disorder (BD, n = 8), schizophrenia (SZ, n = 13), and matched controls (n = 16). Potential downstream effects of increased Olig1-expression were analyzed. Antidepressant drug effects on Olig1-expression were further explored in OLN-93 oligodendrocyte cultures. Nissl-stainings of both white matter regions showed a 19-27% reduction of total oligodendrocyte densities in MDD and BD, but not in SZ. In contrast, nuclear Olig1-immunoreactivity was elevated in MDD in the pACC-adjacent white matter (left: p = 0.008; right: p = 0.018); this effect tended to increase with antidepressant dosage (r = 0.631, p = 0.069). This reactive increase of Olig1 was confirmed by partly dose-dependent effects of imipramine and amitriptyline in oligodendrocyte cultures. Correspondingly, MBP expression in the pACC-adjacent white matter tended to increase with antidepressant dosage (r = 0.637, p = 0.065). Other tested brain regions showed no diagnosis-dependent differences regarding Olig1-immunoreactivity. Since nuclear Olig1-expression marks oligodendrocyte precursor cells, its increased expression along with reduced total oligodendrocyte densities (Nissl-stained) in the pACC-adjacent white matter of MDD patients might indicate a (putatively medication-boosted) regenerative attempt to compensate oligodendrocyte loss. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Creatine Enhances Mitochondrial-Mediated Oligodendrocyte Survival After Demyelinating Injury.

    Science.gov (United States)

    Chamberlain, Kelly A; Chapey, Kristen S; Nanescu, Sonia E; Huang, Jeffrey K

    2017-02-08

    Chronic oligodendrocyte loss, which occurs in the demyelinating disorder multiple sclerosis (MS), contributes to axonal dysfunction and neurodegeneration. Current therapies are able to reduce MS severity, but do not prevent transition into the progressive phase of the disease, which is characterized by chronic neurodegeneration. Therefore, pharmacological compounds that promote oligodendrocyte survival could be beneficial for neuroprotection in MS. Here, we investigated the role of creatine, an organic acid involved in adenosine triphosphate (ATP) buffering, in oligodendrocyte function. We found that creatine increased mitochondrial ATP production directly in oligodendrocyte lineage cell cultures and exerted robust protection on oligodendrocytes by preventing cell death in both naive and lipopolysaccharide-treated mixed glia. Moreover, lysolecithin-mediated demyelination in mice deficient in the creatine-synthesizing enzyme guanidinoacetate-methyltransferase ( Gamt ) did not affect oligodendrocyte precursor cell recruitment, but resulted in exacerbated apoptosis of regenerated oligodendrocytes in central nervous system (CNS) lesions. Remarkably, creatine administration into Gamt -deficient and wild-type mice with demyelinating injury reduced oligodendrocyte apoptosis, thereby increasing oligodendrocyte density and myelin basic protein staining in CNS lesions. We found that creatine did not affect the recruitment of macrophages/microglia into lesions, suggesting that creatine affects oligodendrocyte survival independently of inflammation. Together, our results demonstrate a novel function for creatine in promoting oligodendrocyte viability during CNS remyelination. SIGNIFICANCE STATEMENT We report that creatine enhances oligodendrocyte mitochondrial function and protects against caspase-dependent oligodendrocyte apoptosis during CNS remyelination. This work has important implications for the development of therapeutic targets for diseases characterized by

  11. Developmental stage of oligodendrocytes determines their response to activated microglia in vitro

    Directory of Open Access Journals (Sweden)

    Bresnahan Jacqueline C

    2007-11-01

    Full Text Available Abstract Background Oligodendrocyte progenitor cells (OPCs and mature oligodendrocytes are both lost in central nervous system injury and disease. Activated microglia may play a role in OPC and oligodendrocyte loss or replacement, but it is not clear how the responses of OPCs and oligodendrocytes to activated microglia differ. Methods OPCs and microglia were isolated from rat cortex. OPCs were induced to differentiate into oligodendrocytes with thyroid hormone in defined medium. For selected experiments, microglia were added to OPC or oligodendrocyte cultures. Lipopolysaccharide was used to activate microglia and microglial activation was confirmed by TNFα ELISA. Cell survival was assessed with immunocytochemistry and cell counts. OPC proliferation and oligodendrocyte apoptosis were also assessed. Results OPCs and oligodendrocytes displayed phenotypes representative of immature and mature oligodendrocytes, respectively. Activated microglia reduced OPC survival, but increased survival and reduced apoptosis of mature oligodendrocytes. Activated microglia also underwent cell death themselves. Conclusion Activated microglia may have divergent effects on OPCs and mature oligodendrocytes, reducing OPC survival and increasing mature oligodendrocyte survival. This may be of importance because activated microglia are present in several disease states where both OPCs and mature oligodendrocytes are also reacting to injury. Activated microglia may simultaneously have deleterious and helpful effects on different cells after central nervous system injury.

  12. How to make an oligodendrocyte.

    Science.gov (United States)

    Goldman, Steven A; Kuypers, Nicholas J

    2015-12-01

    Oligodendrocytes produce myelin, an insulating sheath required for the saltatory conduction of electrical impulses along axons. Oligodendrocyte loss results in demyelination, which leads to impaired neurological function in a broad array of diseases ranging from pediatric leukodystrophies and cerebral palsy, to multiple sclerosis and white matter stroke. Accordingly, replacing lost oligodendrocytes, whether by transplanting oligodendrocyte progenitor cells (OPCs) or by mobilizing endogenous progenitors, holds great promise as a therapeutic strategy for the diseases of central white matter. In this Primer, we describe the molecular events regulating oligodendrocyte development and how our understanding of this process has led to the establishment of methods for producing OPCs and oligodendrocytes from embryonic stem cells and induced pluripotent stem cells, as well as directly from somatic cells. In addition, we will discuss the safety of engrafted stem cell-derived OPCs, as well as approaches by which to modulate their differentiation and myelinogenesis in vivo following transplantation. © 2015. Published by The Company of Biologists Ltd.

  13. Distinct age and differentiation-state dependent metabolic profiles of oligodendrocytes under optimal and stress conditions.

    Directory of Open Access Journals (Sweden)

    Vijayaraghava T S Rao

    Full Text Available Within the microenvironment of multiple sclerosis lesions, oligodendrocytes are subject to metabolic stress reflecting effects of focal ischemia and inflammation. Previous studies have shown that under optimal conditions in vitro, the respiratory activity of human adult brain-derived oligodendrocytes is lower and more predominantly glycolytic compared to oligodendrocytes differentiated in vitro from post natal rat brain oligodendrocyte progenitor cells. In response to sub-lethal metabolic stress, adult human oligodendrocytes reduce overall energy production rate impacting the capacity to maintain myelination. Here, we directly compare the metabolic profiles of oligodendrocytes derived from adult rat brain with oligodendrocytes newly differentiated in vitro from oligodendrocyte progenitor cells obtained from the post natal rat brain, under both optimal culture and metabolic stress (low/no glucose conditions. Oxygen consumption and extracellular acidification rates were measured using a Seahorse extracellular flux analyzer. Our findings indicate that under optimal conditions, adult rat oligodendrocytes preferentially use glycolysis whereas newly differentiated post natal rat oligodendrocytes, and the oligodendrocyte progenitor cells from which they are derived, mainly utilize oxidative phosphorylation to produce ATP. Metabolic stress increases the rate of ATP production via oxidative phosphorylation and significantly reduces glycolysis in adult oligodendrocytes. The rate of ATP production was relatively unchanged in newly differentiated post natal oligodendrocytes under these stress conditions, while it was significantly reduced in oligodendrocyte progenitor cells. Our study indicates that both age and maturation influence the metabolic profile under optimal and stressed conditions, emphasizing the need to consider these variables for in vitro studies that aim to model adult human disease.

  14. Chlorpyrifos induces oxidative stress in oligodendrocyte progenitor cells

    International Nuclear Information System (INIS)

    Saulsbury, Marilyn D.; Heyliger, Simone O.; Wang, Kaiyu; Johnson, Deadre J.

    2009-01-01

    There are increasing concerns regarding the relative safety of chlorpyrifos (CPF) to various facets of the environment. Although published works suggest that CPF is relatively safe in adult animals, recent evidence indicates that juveniles, both animals and humans, may be more sensitive to CPF toxicity than adults. In young animals, CPF is neurotoxic and mechanistically interferes with cellular replication and cellular differentiation, which culminates in the alteration of synaptic neurotransmission in neurons. However, the effects of CPF on glial cells are not fully elucidated. Here we report that chlorpyrifos is toxic to oligodendrocyte progenitors. In addition, CPF produced dose-dependent increases in 2',7'-dichlorodihydrofluorescein diacetate (H 2 DCF-DA) and dihydroethidium (DHE) fluorescence intensities relative to the vehicle control. Moreover, CPF toxicity is associated with nuclear condensation and elevation of caspase 3/7 activity and Heme oxygenase-1 mRNA expression. Pan-caspase inhibitor QVDOPh and cholinergic receptor antagonists' atropine and mecamylamine failed to protect oligodendrocyte progenitors from CPF-induced injury. Finally, glutathione (GSH) depletion enhanced CPF-induced toxicity whereas nitric oxide synthetase inhibitor L-NAME partially protected progenitors and the non-specific antioxidant vitamin E (alpha-tocopherol) completely spared cells from injury. Collectively, this data suggests that CPF induced toxicity is independent of cholinergic stimulation and is most likely caused by the induction of oxidative stress.

  15. How to make an oligodendrocyte

    DEFF Research Database (Denmark)

    Goldman, Steven A.; Kuypers, Nicholas J.

    2015-01-01

    . In this Primer, we describe the molecular events regulating oligodendrocyte development and how our understanding of this process has led to the establishment of methods for producing OPCs and oligodendrocytes from embryonic stem cells and induced pluripotent stem cells, as well as directly from somatic cells....... In addition, we will discuss the safety of engrafted stem cell-derived OPCs, as well as approaches by which to modulate their differentiation and myelinogenesis in vivo following transplantation....... and cerebral palsy, to multiple sclerosis and white matter stroke. Accordingly, replacing lost oligodendrocytes, whether by transplanting oligodendrocyte progenitor cells (OPCs) or by mobilizing endogenous progenitors, holds great promise as a therapeutic strategy for the diseases of central white matter...

  16. Increased skeletal muscle capillarization enhances insulin sensitivity

    DEFF Research Database (Denmark)

    Åkerström, Thorbjörn; Laub, Lasse; Vedel, Kenneth

    2014-01-01

    Increased skeletal muscle capillarization is associated with improved glucose tolerance and insulin sensitivity. However, a possible causal relationship has not previously been identified. We therefore investigated whether increased skeletal muscle capillarization increases insulin sensitivity....... Skeletal muscle specific angiogenesis was induced by adding the α1-adrenergic receptor antagonist Prazosin to the drinking water of Sprague Dawley rats (n=33) while 34 rats served as controls. Insulin sensitivity was measured ≥40 h after termination of the 3-week Prazosin treatment, which ensured...... that Prazosin was cleared from the blood stream. Whole-body insulin sensitivity was measured in conscious, unrestrained rats by hyperinsulinemic euglycemic clamp. Tissue specific insulin sensitivity was assessed by administration of 2-deoxy-[(3)H]-Glucose during the plateau phase of the clamp. Whole...

  17. DISC1 (disrupted-in-schizophrenia-1 regulates differentiation of oligodendrocytes.

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Hattori

    Full Text Available Disrupted-in-schizophrenia 1 (DISC1 is a gene disrupted by a translocation, t(1;11 (q42.1;q14.3, that segregates with major psychiatric disorders, including schizophrenia, recurrent major depression and bipolar affective disorder, in a Scottish family. Here we report that mammalian DISC1 endogenously expressed in oligodendroglial lineage cells negatively regulates differentiation of oligodendrocyte precursor cells into oligodendrocytes. DISC1 expression was detected in oligodendrocytes of the mouse corpus callosum at P14 and P70. DISC1 mRNA was expressed in primary cultured rat cortical oligodendrocyte precursor cells and decreased when oligodendrocyte precursor cells were induced to differentiate by PDGF deprivation. Immunocytochemical analysis showed that overexpressed DISC1 was localized in the cell bodies and processes of oligodendrocyte precursor cells and oligodendrocytes. We show that expression of the myelin related markers, CNPase and MBP, as well as the number of cells with a matured oligodendrocyte morphology, were decreased following full length DISC1 overexpression. Conversely, both expression of CNPase and the number of oligodendrocytes with a mature morphology were increased following knockdown of endogenous DISC1 by RNA interference. Overexpression of a truncated form of DISC1 also resulted in an increase in expression of myelin related proteins and the number of mature oligodendrocytes, potentially acting via a dominant negative mechanism. We also identified involvement of Sox10 and Nkx2.2 in the DISC1 regulatory pathway of oligodendrocyte differentiation, both well-known transcription factors involved in the regulation of myelin genes.

  18. Insulin-like growth factor I/somatomedin C: a potent inducer of oligodendrocyte development

    International Nuclear Information System (INIS)

    McMorris, F.A.; Smith, T.M.; DeSalvo, S.; Furlanetto, R.W.

    1986-01-01

    Cell cultures established from cerebrum of 1-day-old rats were used to investigate hormonal regulation of the development of oligodendrocytes, which synthesize myelin in the central nervous system. The number of oligodendrocytes that developed was preferentially increased by insulin, or by insulin-like growth factor I (IGF-I), also known as somatomedin C. High concentrations of insulin were required for substantial induction of oligodendrocyte development, whereas only 3.3 ng of IGF-I per ml was needed for a 2-fold increase in oligodendrocyte numbers. At an IGF-I concentration of 100 ng/ml, oligodendrocyte numbers were increased 6-fold in cultures grown in the presence of 10% fetal bovine serum, or up to 60-fold in cultures maintained in serum-free medium. IGF-I produced less than a 2-fold increase in the number of nonoligodendroglial cells in the same cultures. Type I IGF receptors were identified on oligodendrocytes and on a putative oligodendrocyte precursor cell population identified by using mouse monoclonal antibody A2B5. Radioligand binding assays were done. These results indicate that IGF-I is a potent inducer of oligodendrocyte development and suggest a possible mechanism based on IGF deficiency for the hypomyelination that results from early postnatal malnutrition

  19. Transplanting oligodendrocyte progenitors into the adult CNS

    International Nuclear Information System (INIS)

    Franklin, R.J.M.; Blakemore, W.F.; Cambridge Univ.

    1997-01-01

    This review covers a number of aspects of the behaviour of oligodendrocyte progenitors following transplantation into the adult CNS. First, an account is given of the ability of transplanted oligodendrocyte progenitors, grown in tissue culture in the presence of PDGF and bFGF, to extensively remyelinate focal areas of persistent demyelination. Secondly, we describe how transplanted clonal cell lines of oligodendrocyte progenitors will differentiate in to astrocytes as will oligodendrocytes following transplantation into pathological environments in which both oligodendrocytes and astrocytes are absent, thereby manifesting the bipotentially demonstrable in vitro but not during development. Finally, a series of studies examining the migratory behaviour of transplanted oligodendrocyte progenitors (modelled using the oligodendrocyte progenitor cell line CG4) are described. (author)

  20. Prolonged Sox4 expression in oligodendrocytes interferes with normal myelination in the central nervous system.

    Science.gov (United States)

    Potzner, Michaela R; Griffel, Carola; Lütjen-Drecoll, Elke; Bösl, Michael R; Wegner, Michael; Sock, Elisabeth

    2007-08-01

    The highly related transcription factors Sox4 and Sox11 are both expressed in oligodendrocyte precursors. Yet whether they have a function in oligodendrocyte development is unknown. By overexpressing Sox4 under the control of 3.1 kb of 5' flanking sequences of the myelin basic protein gene in transgenic mice, we extended Sox4 expression in the oligodendrocyte lineage from oligodendrocyte precursors to cells undergoing terminal differentiation. As a consequence of transgene expression, mice develop the full spectrum of phenotypic traits associated with a severe hypomyelination during the first postnatal weeks. Myelin gene expression was severely reduced, and myelin dramatically thinned in several central nervous system (CNS) regions. Despite these disturbances in CNS myelination, the number of oligodendrocytic cells remained unaltered. Considering that apoptosis rates were normal and proliferation only slightly increased, oligodendrocytes likely persist in a premyelinating to early myelinating state. This shows that prolonged Sox4 expression in cells of the oligodendrocyte lineage is incompatible with the acquisition of a fully mature phenotype and argues that the presence of Sox4, and possibly Sox11, in oligodendrocyte precursors may normally prevent premature differentiation.

  1. Prolonged Sox4 Expression in Oligodendrocytes Interferes with Normal Myelination in the Central Nervous System▿ †

    Science.gov (United States)

    Potzner, Michaela R.; Griffel, Carola; Lütjen-Drecoll, Elke; Bösl, Michael R.; Wegner, Michael; Sock, Elisabeth

    2007-01-01

    The highly related transcription factors Sox4 and Sox11 are both expressed in oligodendrocyte precursors. Yet whether they have a function in oligodendrocyte development is unknown. By overexpressing Sox4 under the control of 3.1 kb of 5′ flanking sequences of the myelin basic protein gene in transgenic mice, we extended Sox4 expression in the oligodendrocyte lineage from oligodendrocyte precursors to cells undergoing terminal differentiation. As a consequence of transgene expression, mice develop the full spectrum of phenotypic traits associated with a severe hypomyelination during the first postnatal weeks. Myelin gene expression was severely reduced, and myelin dramatically thinned in several central nervous system (CNS) regions. Despite these disturbances in CNS myelination, the number of oligodendrocytic cells remained unaltered. Considering that apoptosis rates were normal and proliferation only slightly increased, oligodendrocytes likely persist in a premyelinating to early myelinating state. This shows that prolonged Sox4 expression in cells of the oligodendrocyte lineage is incompatible with the acquisition of a fully mature phenotype and argues that the presence of Sox4, and possibly Sox11, in oligodendrocyte precursors may normally prevent premature differentiation. PMID:17515609

  2. Protandim Protects Oligodendrocytes against an Oxidative Insult

    Directory of Open Access Journals (Sweden)

    Jamie L. Lim

    2016-09-01

    Full Text Available Oligodendrocyte damage and loss are key features of multiple sclerosis (MS pathology. Oligodendrocytes appear to be particularly vulnerable to reactive oxygen species (ROS and cytokines, such as tumor necrosis factor-α (TNF, which induce cell death and prevent the differentiation of oligodendrocyte progenitor cells (OPCs. Here, we investigated the efficacy of sulforaphane (SFN, monomethyl fumarate (MMF and Protandim to induce Nrf2-regulated antioxidant enzyme expression, and protect oligodendrocytes against ROS-induced cell death and ROS-and TNF-mediated inhibition of OPC differentiation. OLN-93 cells and primary rat oligodendrocytes were treated with SFN, MMF or Protandim resulting in significant induction of Nrf2-driven (antioxidant proteins heme oygenase-1, nicotinamide adenine dinucleotide phosphate (NADPH: quinone oxidoreductase-1 and p62/SQSTM1, as analysed by Western blotting. After incubation with the compounds, oligodendrocytes were exposed to hydrogen peroxide. Protandim most potently promoted oligodendrocyte cell survival as measured by live/death viability assay. Moreover, OPCs were treated with Protandim or vehicle control prior to exposing them to TNF or hydrogen peroxide for five days, which inhibited OPC differentiation. Protandim significantly promoted OPC differentiation under influence of ROS, but not TNF. Protandim, a combination of five herbal ingredients, potently induces antioxidants in oligodendrocytes and is able to protect oligodendrocytes against oxidative stress by preventing ROS-induced cell death and promoting OPC differentiation.

  3. Neurosteroids: oligodendrocyte mitochondria convert cholesterol to pregnenolone

    International Nuclear Information System (INIS)

    Hu, Z.Y.; Bourreau, E.; Jung-Testas, I.; Robel, P.; Baulieu, E.E.

    1987-01-01

    Oligodendrocyte mitochondria from 21-day-old Sprague-Dawley male rats were incubated with 100 nM [ 3 H]cholesterol. It yielded [ 3 H]pregnenolone at a rate of 2.5 +/- 0.7 and 5-[ 3 H]pregnene-3β,20α-diol at a rate of 2.5 +/- 1.1 pmol per mg of protein per hr. Cultures of glial cells from 19- to 21-day-old fetuses (a mixed population of astrocytes and oligodendrocytes) were incubated for 24 hr with [ 3 H]mevalonolactone. [ 3 H]Cholesterol, [ 3 H]pregnenolone, and 5-[ 3 H]pregnene-3β,20α-diol were characterized in cellular extracts. The formation of the 3 H-labeled steroids was increased by dibutyryl cAMP (0.2 mM) added to the culture medium. The active cholesterol side-chain cleavage mechanism, recently suggested immunohistochemically and already observed in cultures of C6 glioma cells, reinforces the concept of neurosteroids applied to Δ 5 -3β-hydroxysteroids previously isolated from brain

  4. FGF-2 signal promotes proliferation of cerebellar progenitor cells and their oligodendrocytic differentiation at early postnatal stage

    Energy Technology Data Exchange (ETDEWEB)

    Naruse, Masae; Shibasaki, Koji; Ishizaki, Yasuki, E-mail: yasukiishizaki@gunma-u.ac.jp

    2015-08-07

    The origins and developmental regulation of cerebellar oligodendrocytes are largely unknown, although some hypotheses of embryonic origins have been suggested. Neural stem cells exist in the white matter of postnatal cerebellum, but it is unclear whether these neural stem cells generate oligodendrocytes at postnatal stages. We previously showed that cerebellar progenitor cells, including neural stem cells, widely express CD44 at around postnatal day 3. In the present study, we showed that CD44-positive cells prepared from the postnatal day 3 cerebellum gave rise to neurospheres, while CD44-negative cells prepared from the same cerebellum did not. These neurospheres differentiated mainly into oligodendrocytes and astrocytes, suggesting that CD44-positive neural stem/progenitor cells might generate oligodendrocytes in postnatal cerebellum. We cultured CD44-positive cells from the postnatal day 3 cerebellum in the presence of signaling molecules known as mitogens or inductive differentiation factors for oligodendrocyte progenitor cells. Of these, only FGF-2 promoted survival and proliferation of CD44-positive cells, and these cells differentiated into O4+ oligodendrocytes. Furthermore, we examined the effect of FGF-2 on cerebellar oligodendrocyte development ex vivo. FGF-2 enhanced proliferation of oligodendrocyte progenitor cells and increased the number of O4+ and CC1+ oligodendrocytes in slice cultures. These results suggest that CD44-positive cells might be a source of cerebellar oligodendrocytes and that FGF-2 plays important roles in their development at an early postnatal stage. - Highlights: • CD44 is expressed in cerebellar neural stem/progenitor cells at postnatal day 3 (P3). • FGF-2 promoted proliferation of CD44-positive progenitor cells from P3 cerebellum. • FGF-2 promoted oligodendrocytic differentiation of CD44-positive progenitor cells. • FGF-2 increased the number of oligodendrocytes in P3 cerebellar slice culture.

  5. FGF-2 signal promotes proliferation of cerebellar progenitor cells and their oligodendrocytic differentiation at early postnatal stage

    International Nuclear Information System (INIS)

    Naruse, Masae; Shibasaki, Koji; Ishizaki, Yasuki

    2015-01-01

    The origins and developmental regulation of cerebellar oligodendrocytes are largely unknown, although some hypotheses of embryonic origins have been suggested. Neural stem cells exist in the white matter of postnatal cerebellum, but it is unclear whether these neural stem cells generate oligodendrocytes at postnatal stages. We previously showed that cerebellar progenitor cells, including neural stem cells, widely express CD44 at around postnatal day 3. In the present study, we showed that CD44-positive cells prepared from the postnatal day 3 cerebellum gave rise to neurospheres, while CD44-negative cells prepared from the same cerebellum did not. These neurospheres differentiated mainly into oligodendrocytes and astrocytes, suggesting that CD44-positive neural stem/progenitor cells might generate oligodendrocytes in postnatal cerebellum. We cultured CD44-positive cells from the postnatal day 3 cerebellum in the presence of signaling molecules known as mitogens or inductive differentiation factors for oligodendrocyte progenitor cells. Of these, only FGF-2 promoted survival and proliferation of CD44-positive cells, and these cells differentiated into O4+ oligodendrocytes. Furthermore, we examined the effect of FGF-2 on cerebellar oligodendrocyte development ex vivo. FGF-2 enhanced proliferation of oligodendrocyte progenitor cells and increased the number of O4+ and CC1+ oligodendrocytes in slice cultures. These results suggest that CD44-positive cells might be a source of cerebellar oligodendrocytes and that FGF-2 plays important roles in their development at an early postnatal stage. - Highlights: • CD44 is expressed in cerebellar neural stem/progenitor cells at postnatal day 3 (P3). • FGF-2 promoted proliferation of CD44-positive progenitor cells from P3 cerebellum. • FGF-2 promoted oligodendrocytic differentiation of CD44-positive progenitor cells. • FGF-2 increased the number of oligodendrocytes in P3 cerebellar slice culture

  6. Protandim Protects Oligodendrocytes against an Oxidative Insult

    NARCIS (Netherlands)

    Lim, Jamie L; van der Pol, Susanne M A; Baron, Wia; McCord, Joe M; de Vries, Helga E; van Horssen, Jack

    2016-01-01

    Oligodendrocyte damage and loss are key features of multiple sclerosis (MS) pathology. Oligodendrocytes appear to be particularly vulnerable to reactive oxygen species (ROS) and cytokines, such as tumor necrosis factor-α (TNF), which induce cell death and prevent the differentiation of

  7. Lamb waves increase sensitivity in nondestructive testing

    Science.gov (United States)

    Di Novi, R.

    1967-01-01

    Lamb waves improve sensitivity and resolution in the detection of small defects in thin plates and small diameter, thin-walled tubing. This improvement over shear waves applies to both longitudinal and transverse flaws in the specimens.

  8. [Ultrastructural pathology of oligodendrocytes in the white matter in continuous paranoid schizophrenia: a role for microglia].

    Science.gov (United States)

    Uranova, N A; Vikhreva, O V; Rakhmanova, V I; Orlovskaya, D D

    Previously the authors have reported the ultrastructural pathology and deficit of oligodendrocytes in gray and white matter of the prefrontal cortex in schizophrenia. The aim of the study was to determine of the effects of microglia on the ultrastructure of oligodendrocytes in the white matter underlying the prefrontal cortex in continuous schizophrenia. Postmortem morphometric electron microscopic study of oligodendrocytes in close apposition to microglia was performed in white matter underlying the prefrontal cortex (BA10). Eleven cases of chronic continuous schizophrenia and 11 normal controls were studied. Areas of oligodendrocytes, of their nuclei and cytoplasm, volume density (Vv) and the number of mitochondria, vacuoles of endoplasmic reticulum and lipofuscin granules were estimated. Group comparison was performed using ANCOVA. The schizophrenia group differed from the control group by paucity of ribosomes in the cytoplasm of oligodendrocytes, a significant decrease in Vv and the number of mitochondria and increase in the number of lipofuscin granules. Significant correlations between the parameters of lipofuscin granules, mitochondria and vacuoles were found only in the schizophrenia group. The number of lipofuscin granules were correlated positively with the illness duration. Dystrophic alterations of oligodendrocytes attached to microglial cells were found in the white matter of the prefrontal cortex in chronic paranoid schizophrenia as compared to controls. The data obtained suggest that microglia might contribute to abnormalities of energy, lipid and protein metabolism of oligodendrocytes in schizophrenia.

  9. Combinatorial actions of Tgfβ and Activin ligands promote oligodendrocyte development and CNS myelination.

    Science.gov (United States)

    Dutta, Dipankar J; Zameer, Andleeb; Mariani, John N; Zhang, Jingya; Asp, Linnea; Huynh, Jimmy; Mahase, Sean; Laitman, Benjamin M; Argaw, Azeb Tadesse; Mitiku, Nesanet; Urbanski, Mateusz; Melendez-Vasquez, Carmen V; Casaccia, Patrizia; Hayot, Fernand; Bottinger, Erwin P; Brown, Chester W; John, Gareth R

    2014-06-01

    In the embryonic CNS, development of myelin-forming oligodendrocytes is limited by bone morphogenetic proteins, which constitute one arm of the transforming growth factor-β (Tgfβ) family and signal canonically via Smads 1/5/8. Tgfβ ligands and Activins comprise the other arm and signal via Smads 2/3, but their roles in oligodendrocyte development are incompletely characterized. Here, we report that Tgfβ ligands and activin B (ActB) act in concert in the mammalian spinal cord to promote oligodendrocyte generation and myelination. In mouse neural tube, newly specified oligodendrocyte progenitors (OLPs) are first exposed to Tgfβ ligands in isolation, then later in combination with ActB during maturation. In primary OLP cultures, Tgfβ1 and ActB differentially activate canonical Smad3 and non-canonical MAP kinase signaling. Both ligands enhance viability, and Tgfβ1 promotes proliferation while ActB supports maturation. Importantly, co-treatment strongly activates both signaling pathways, producing an additive effect on viability and enhancing both proliferation and differentiation such that mature oligodendrocyte numbers are substantially increased. Co-treatment promotes myelination in OLP-neuron co-cultures, and maturing oligodendrocytes in spinal cord white matter display strong Smad3 and MAP kinase activation. In spinal cords of ActB-deficient Inhbb(-/-) embryos, apoptosis in the oligodendrocyte lineage is increased and OLP numbers transiently reduced, but numbers, maturation and myelination recover during the first postnatal week. Smad3(-/-) mice display a more severe phenotype, including diminished viability and proliferation, persistently reduced mature and immature cell numbers, and delayed myelination. Collectively, these findings suggest that, in mammalian spinal cord, Tgfβ ligands and ActB together support oligodendrocyte development and myelin formation. © 2014. Published by The Company of Biologists Ltd.

  10. Combinatorial actions of Tgfβ and Activin ligands promote oligodendrocyte development and CNS myelination

    Science.gov (United States)

    Dutta, Dipankar J.; Zameer, Andleeb; Mariani, John N.; Zhang, Jingya; Asp, Linnea; Huynh, Jimmy; Mahase, Sean; Laitman, Benjamin M.; Argaw, Azeb Tadesse; Mitiku, Nesanet; Urbanski, Mateusz; Melendez-Vasquez, Carmen V.; Casaccia, Patrizia; Hayot, Fernand; Bottinger, Erwin P.; Brown, Chester W.; John, Gareth R.

    2014-01-01

    In the embryonic CNS, development of myelin-forming oligodendrocytes is limited by bone morphogenetic proteins, which constitute one arm of the transforming growth factor-β (Tgfβ) family and signal canonically via Smads 1/5/8. Tgfβ ligands and Activins comprise the other arm and signal via Smads 2/3, but their roles in oligodendrocyte development are incompletely characterized. Here, we report that Tgfβ ligands and activin B (ActB) act in concert in the mammalian spinal cord to promote oligodendrocyte generation and myelination. In mouse neural tube, newly specified oligodendrocyte progenitors (OLPs) are first exposed to Tgfβ ligands in isolation, then later in combination with ActB during maturation. In primary OLP cultures, Tgfβ1 and ActB differentially activate canonical Smad3 and non-canonical MAP kinase signaling. Both ligands enhance viability, and Tgfβ1 promotes proliferation while ActB supports maturation. Importantly, co-treatment strongly activates both signaling pathways, producing an additive effect on viability and enhancing both proliferation and differentiation such that mature oligodendrocyte numbers are substantially increased. Co-treatment promotes myelination in OLP-neuron co-cultures, and maturing oligodendrocytes in spinal cord white matter display strong Smad3 and MAP kinase activation. In spinal cords of ActB-deficient Inhbb−/− embryos, apoptosis in the oligodendrocyte lineage is increased and OLP numbers transiently reduced, but numbers, maturation and myelination recover during the first postnatal week. Smad3−/− mice display a more severe phenotype, including diminished viability and proliferation, persistently reduced mature and immature cell numbers, and delayed myelination. Collectively, these findings suggest that, in mammalian spinal cord, Tgfβ ligands and ActB together support oligodendrocyte development and myelin formation. PMID:24917498

  11. Neurobehavioral and cytotoxic effects of vanadium during oligodendrocyte maturation: a protective role for erythropoietin.

    Science.gov (United States)

    Mustapha, Oluwaseun; Oke, Bankole; Offen, Nils; Sirén, Anna-Leena; Olopade, James

    2014-07-01

    Vanadium exposure has been known to lead to lipid peroxidation, demyelination and oligodendrocytes depletion. We investigated behaviour and glial reactions in juvenile mice after early neonatal exposure to vanadium, and examined the direct effects of vanadium in oligodendrocyte progenitor cultures from embryonic mice. Neonatal pups exposed to vanadium via lactation for 15 and 22 days all had lower body weights. Behavioural tests showed in most instances a reduction in locomotor activity and negative geotaxis. Brain analyses revealed astrocytic activation and demyelination in the vanadium exposed groups compared to the controls. In cell culture, exposure of oligodendrocytes to 300 μM sodium metavanadate significantly increased cell death. Expression of the oligodendrocyte specific proteins, 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) and oligodendrocyte specific protein (OSP/Claudin) were reduced upon vanadium treatment while simultaneous administration of erythropoietin (EPO; 4-12 U/ml) counteracted vanadium-toxicity. The data suggest that oligodendrocyte damage may explain the increased vulnerability of the juvenile brain to vanadium and support a potential for erythropoietin as a protective agent against vanadium-toxicity during perinatal brain development and maturation. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Pericytes Stimulate Oligodendrocyte Progenitor Cell Differentiation during CNS Remyelination

    Directory of Open Access Journals (Sweden)

    Alerie Guzman De La Fuente

    2017-08-01

    Full Text Available The role of the neurovascular niche in CNS myelin regeneration is incompletely understood. Here, we show that, upon demyelination, CNS-resident pericytes (PCs proliferate, and parenchymal non-vessel-associated PC-like cells (PLCs rapidly develop. During remyelination, mature oligodendrocytes were found in close proximity to PCs. In Pdgfbret/ret mice, which have reduced PC numbers, oligodendrocyte progenitor cell (OPC differentiation was delayed, although remyelination proceeded to completion. PC-conditioned medium accelerated and enhanced OPC differentiation in vitro and increased the rate of remyelination in an ex vivo cerebellar slice model of demyelination. We identified Lama2 as a PC-derived factor that promotes OPC differentiation. Thus, the functional role of PCs is not restricted to vascular homeostasis but includes the modulation of adult CNS progenitor cells involved in regeneration.

  13. Cannabidiol induces intracellular calcium elevation and cytotoxicity in oligodendrocytes.

    Science.gov (United States)

    Mato, Susana; Victoria Sánchez-Gómez, María; Matute, Carlos

    2010-11-01

    Heavy marijuana use has been linked to white matter histological alterations. However, the impact of cannabis constituents on oligodendroglial pathophysiology remains poorly understood. Here, we investigated the in vitro effects of cannabidiol, the main nonpsychoactive marijuana component, on oligodendrocytes. Exposure to cannabidiol induced an intracellular Ca(2+) rise in optic nerve oligodendrocytes that was not primarily mediated by entry from the extracellular space, nor by interactions with ryanodine or IP(3) receptors. Application of the mitochondrial protonophore carbonylcyanide-p-trifluoromethoxyphenylhydrazone (FCCP; 1 μM) completely prevented subsequent cannabidiol-induced Ca(2+) responses. Conversely, the increase in cytosolic Ca(2+) levels elicited by FCCP was reduced after previous exposure to cannabidiol, further suggesting that the mitochondria acts as the source of cannabidiol-evoked Ca(2+) rise in oligodendrocytes. n addition, brief exposure to cannabidiol (100 nM-10 μM) led to a concentration-dependent decrease of oligodendroglial viability that was not prevented by antagonists of CB(1), CB(2), vanilloid, A(2A) or PPARγ receptors, but was instead reduced in the absence of extracellular Ca(2+). The oligodendrotoxic effect of cannabidiol was partially blocked by inhibitors of caspase-3, -8 and -9, PARP-1 and calpains, suggesting the activation of caspase-dependent and -independent death pathways. Cannabidiol also elicited a concentration-dependent alteration of mitochondrial membrane potential, and an increase in reactive oxygen species (ROS) that was reduced in the absence of extracellular Ca(2+). Finally, cannabidiol-induced cytotoxicity was partially prevented by the ROS scavenger trolox. Together, these results suggest that cannabidiol causes intracellular Ca(2+) dysregulation which can lead to oligodendrocytes demise.

  14. Oligodendrocytes Do Not Export NAA-Derived Aspartate In Vitro.

    Science.gov (United States)

    I Amaral, Ana; Hadera, Mussie Ghezu; Kotter, Mark; Sonnewald, Ursula

    2017-03-01

    Oligodendroglial cells are known to de-acetylate the N-acetylaspartate (NAA) synthesized and released by neurons and use it for lipid synthesis. However, the role of NAA regarding their intermediary metabolism remains poorly understood. Two hypotheses were proposed regarding the fate of aspartate after being released by de-acetylation: (1) aspartate is metabolized in the mitochondria of oligodendrocyte lineage cells; (2) aspartate is released to the medium. We report here that aspartoacylase mRNA expression increases when primary rat oligodendrocyte progenitor cells (OPCs) differentiate into mature cells in culture. Moreover, characterising metabolic functions of acetyl coenzyme A and aspartate from NAA catabolism in mature oligodendrocyte cultures after 5 days using isotope-labelled glucose after 5-days of differentiation we found evidence of extensive NAA metabolism. Incubation with [1,6- 13 C]glucose followed by gas chromatography-mass spectrometry and high performance liquid chromatography analyses of cell extracts and media in the presence and absence of NAA established that the acetate moiety produced by hydrolysis of NAA does not enter mitochondrial metabolism in the form of acetyl coenzyme A. We also resolved the controversy concerning the possible release of aspartate to the medium: aspartate is not released to the medium by oligodendrocytes in amounts detectable by our methods. Therefore we propose that: aspartate released from NAA joins the cytosolic aspartate pool rapidly and takes part in the malate-aspartate shuttle, which transports reducing equivalents from glycolysis into the mitochondria for ATP production and enters the tricarboxylic acid cycle at a slow rate.

  15. Localisation of N-acetylaspartate in oligodendrocytes/myelin.

    Science.gov (United States)

    Nordengen, Kaja; Heuser, Christoph; Rinholm, Johanne Egge; Matalon, Reuben; Gundersen, Vidar

    2015-03-01

    The role of N-acetylaspartate in the brain is unclear. Here we used specific antibodies against N-acetylaspartate and immunocytochemistry of carbodiimide-fixed adult rodent brain to show that, besides staining of neuronal cell bodies in the grey matter, N-acetylaspartate labelling was present in oligodendrocytes/myelin in white matter tracts. Immunoelectron microscopy of the rat hippocampus showed that N-acetylaspartate was concentrated in the myelin. Also neuronal cell bodies and axons contained significant amounts of N-acetylaspartate, while synaptic elements and astrocytes were low in N-acetylaspartate. Mitochondria in axons and neuronal cell bodies contained higher levels of N-acetylaspartate compared to the cytosol, compatible with synthesis of N-acetylaspartate in mitochondria. In aspartoacylase knockout mice, in which catabolism of N-acetylaspartate is blocked, the levels of N-acetylaspartate were largely increased in oligodendrocytes/myelin. In these mice, the highest myelin concentration of N-acetylaspartate was found in the cerebellum, a region showing overt dysmyelination. In organotypic cortical slice cultures there was no evidence for N-acetylaspartate-induced myelin toxicity, supporting the notion that myelin damage is induced by the lack of N-acetylaspartate for lipid production. Our findings also implicate that N-acetylaspartate signals on magnetic resonance spectroscopy reflect not only vital neurons but also vital oligodendrocytes/myelin.

  16. Oligodendrocyte differentiation and implantation : new insights for remyelinating cell therapy

    NARCIS (Netherlands)

    Sher, Falak; Balasubramaniyan, Veerakumar; Boddeke, Erik; Copray, Sjef

    2008-01-01

    Purpose of review Recent research on oligodendrocyte development has yielded new insights on the involvement of morphogens and differentiation factors in oligodendrogenesis. This knowledge has improved strategies to control neural stem cell-derived oligodendrocyte differentiation and functional

  17. The neuronal metabolite NAA regulates histone H3 methylation in oligodendrocytes and myelin lipid composition.

    Science.gov (United States)

    Singhal, N K; Huang, H; Li, S; Clements, R; Gadd, J; Daniels, A; Kooijman, E E; Bannerman, P; Burns, T; Guo, F; Pleasure, D; Freeman, E; Shriver, L; McDonough, J

    2017-01-01

    The neuronal mitochondrial metabolite N-acetylaspartate (NAA) is decreased in the multiple sclerosis (MS) brain. NAA is synthesized in neurons by the enzyme N-acetyltransferase-8-like (NAT8L) and broken down in oligodendrocytes by aspartoacylase (ASPA) into acetate and aspartate. We have hypothesized that NAA links the metabolism of axons with oligodendrocytes to support myelination. To test this hypothesis, we performed lipidomic analyses using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and high-performance thin-layer chromatography (HPTLC) to identify changes in myelin lipid composition in postmortem MS brains and in NAT8L knockout (NAT8L -/- ) mice which do not synthesize NAA. We found reduced levels of sphingomyelin in MS normal appearing white matter that mirrored decreased levels of NAA. We also discovered decreases in the amounts of sphingomyelin and sulfatide lipids in the brains of NAT8L -/- mice compared to controls. Metabolomic analysis of primary cultures of oligodendrocytes treated with NAA revealed increased levels of α-ketoglutarate, which has been reported to regulate histone demethylase activity. Consistent with this, NAA treatment resulted in alterations in the levels of histone H3 methylation, including H3K4me3, H3K9me2, and H3K9me3. The H3K4me3 histone mark regulates cellular energetics, metabolism, and growth, while H3K9me3 has been linked to alterations in transcriptional repression in developing oligodendrocytes. We also noted the NAA treatment was associated with increases in the expression of genes involved in sulfatide and sphingomyelin synthesis in cultured oligodendrocytes. This is the first report demonstrating that neuronal-derived NAA can signal to the oligodendrocyte nucleus. These data suggest that neuronal-derived NAA signals through epigenetic mechanisms in oligodendrocytes to support or maintain myelination.

  18. Metabolic aspects of Neuronal – Oligodendrocytic - Astrocytic (NOA interactions

    Directory of Open Access Journals (Sweden)

    Ana I Amaral

    2013-05-01

    Full Text Available Whereas astrocytes have been in the limelight on the metabolic glucose interaction scene for a while, oligodendrocytes are still waiting for a place. We would like to call oligodendrocyte interaction with astrocytes and neurons: NOA (neuron – oligodendrocyte – astrocyte interactions. One of the reasons to find out more about oligodendrocyte interaction with neurons and astrocytes is to detect markers of healthy oligodendrocyte metabolism, to be used in diagnosis and treatment assessment in diseases such as Perinatal hypoxic-ischemic encephalopathy and multiple sclerosis in which oligodendrocyte function is impaired, possibly due to glutamate toxicity. Glutamate receptors are expressed in oligodendrocytes and also vesicular glutamate release in the white matter has received considerable attention. It is also important to establish if the glial precursor cells recruited to damaged areas are developing oligodendrocyte characteristics or those of astrocytes. Thus, it is important to study astrocytes and oligodendrocytes separately to be able to differentiate between them. This is of particular importance in the white matter where the number of oligodendrocytes is considerable. The present review summarizes the not very extensive information published on glucose metabolism in oligodendrocytes in an attempt to stimulate research into this important field.

  19. Possible Effects of Synaptic Imbalances on Oligodendrocyte-Axonic Interactions in Schizophrenia: a Hypothetical Model

    Directory of Open Access Journals (Sweden)

    Bernhard Joseph Mitterauer

    2011-04-01

    Full Text Available AbstractA model of glial-neuronal interactions is proposed that could be explanatory for the demyelination identified in brains with schizophrenia. According to this model, receptors on astrocytes in glial-neuronal synaptic units are not functional, loosing their modulatory influence on synaptic neurotransmission. Hence, an unconstrained neurotransmission flux occurs that hyperactivates the axon and floods the cognate receptors of neurotransmitters on oligodendrocytes. The excess of neurotransmitters may have a toxic effect on oligodendrocytes and myelin, causing demyelination. In parallel, an increasing impairment of axons may disconnect neuronal networks. It is formally shown how oligodendrocytes normally categorize axonic information processing via their processes. Demyelination decomposes the oligodendrocyte-axonic system making it incapable to generate categories of information. This incoherence may be responsible for symptoms of disorganization in schizophrenia, such as thought disorder, inappropriate affect and incommunicable motor behavior. In parallel, the loss of oligodendrocytes affects gap junctions in the panglial syncytium, presumably responsible for memory impairment in schizophrenia.

  20. DNA damage in the oligodendrocyte lineage and its role in brain aging.

    Science.gov (United States)

    Tse, Kai-Hei; Herrup, Karl

    2017-01-01

    Myelination is a recent evolutionary addition that significantly enhances the speed of transmission in the neural network. Even slight defects in myelin integrity impair performance and enhance the risk of neurological disorders. Indeed, myelin degeneration is an early and well-recognized neuropathology that is age associated, but appears before cognitive decline. Myelin is only formed by fully differentiated oligodendrocytes, but the entire oligodendrocyte lineage are clear targets of the altered chemistry of the aging brain. As in neurons, unrepaired DNA damage accumulates in the postmitotic oligodendrocyte genome during normal aging, and indeed may be one of the upstream causes of cellular aging - a fact well illustrated by myelin co-morbidity in premature aging syndromes arising from deficits in DNA repair enzymes. The clinical and experimental evidence from Alzheimer's disease, progeroid syndromes, ataxia-telangiectasia and other conditions strongly suggest that oligodendrocytes may in fact be uniquely vulnerable to oxidative DNA damage. If this damage remains unrepaired, as is increasingly true in the aging brain, myelin gene transcription and oligodendrocyte differentiation is impaired. Delineating the relationships between early myelin loss and DNA damage in brain aging will offer an additional dimension outside the neurocentric view of neurodegenerative disease. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Gamma irradiation increase the sensitivity of Salmonella to antibiotics

    International Nuclear Information System (INIS)

    Ben Miloud, Najla; Barkallah, Insaf

    2008-01-01

    In order to study the effect of ionizing radiation on the resistance of Salmonella to antibiotics, four strains of Salmonella were isolated from foods, The different strains used in the present study are (S. Hadar isolate 287, S. Hadar isolate 63, S. Cerro isolate 291, S. Zanzibar isolate 1103), antibiogram analyses were made to test the in vitro-sensitivity of irradiated Salmonella isolates to different antibiotics.The analyse of Control and exposed antibiograms showed that gamma radiation have increased the sensitivity of Salmonella isolates to Cefalotin, Chloramphenicol, Nalidixic acid, Spiramycin and Gentamycin excepted S. Hadar isolate 287 that was resistant to Cefalotin and became sensitive after irradiation. Statistical analyses showed that the effect of different irradiation dose treatment on the antibiotic sensitivity is increasingly significant. The irradiation didn't induce modifications of the sensitivity to other antibiotics,probably because of their nature, of their penetration mode inside the cell or their action way

  2. Systems for increasing the sensitivity of gamma-ray imagers

    Science.gov (United States)

    Mihailescu, Lucian; Vetter, Kai M.; Chivers, Daniel H.

    2012-12-11

    Systems that increase the position resolution and granularity of double sided segmented semiconductor detectors are provided. These systems increase the imaging resolution capability of such detectors, either used as Compton cameras, or as position sensitive radiation detectors in imagers such as SPECT, PET, coded apertures, multi-pinhole imagers, or other spatial or temporal modulated imagers.

  3. How to Determine the Increasing Returns Sensitivity of Your Industry?

    NARCIS (Netherlands)

    M.H. Klein (Martin); E. den Hartigh; H.R. Commandeur (Harry); F. Langerak (Fred)

    2004-01-01

    textabstractIncreasing returns means that self-reinforcing mechanisms are at work within firms and markets. These mechanisms come in four forms: scale effects, learning effects, network effects and social interaction effects. Some industries are more sensitive to increasing returns than others. It

  4. Restoration of oligodendrocyte pools in a mouse model of chronic cerebral hypoperfusion.

    Directory of Open Access Journals (Sweden)

    Jamie McQueen

    Full Text Available Chronic cerebral hypoperfusion, a sustained modest reduction in cerebral blood flow, is associated with damage to myelinated axons and cognitive decline with ageing. Oligodendrocytes (the myelin producing cells and their precursor cells (OPCs may be vulnerable to the effects of hypoperfusion and in some forms of injury OPCs have the potential to respond and repair damage by increased proliferation and differentiation. Using a mouse model of cerebral hypoperfusion we have characterised the acute and long term responses of oligodendrocytes and OPCs to hypoperfusion in the corpus callosum. Following 3 days of hypoperfusion, numbers of OPCs and mature oligodendrocytes were significantly decreased compared to controls. However following 1 month of hypoperfusion, the OPC pool was restored and increased numbers of oligodendrocytes were observed. Assessment of proliferation using PCNA showed no significant differences between groups at either time point but showed reduced numbers of proliferating oligodendroglia at 3 days consistent with the loss of OPCs. Cumulative BrdU labelling experiments revealed higher numbers of proliferating cells in hypoperfused animals compared to controls and showed a proportion of these newly generated cells had differentiated into oligodendrocytes in a subset of animals. Expression of GPR17, a receptor important for the regulation of OPC differentiation following injury, was decreased following short term hypoperfusion. Despite changes to oligodendrocyte numbers there were no changes to the myelin sheath as revealed by ultrastructural assessment and fluoromyelin however axon-glial integrity was disrupted after both 3 days and 1 month hypoperfusion. Taken together, our results demonstrate the initial vulnerability of oligodendroglial pools to modest reductions in blood flow and highlight the regenerative capacity of these cells.

  5. Parental overprotection increases interpersonal sensitivity in healthy subjects.

    Science.gov (United States)

    Otani, Koichi; Suzuki, Akihito; Matsumoto, Yoshihiko; Kamata, Mitsuhiro

    2009-01-01

    The effect of parental rearing on interpersonal sensitivity was studied in 469 Japanese volunteers. Perceived parental rearing was assessed by the Parental Bonding Instrument, which consists of the factors of care and protection, and interpersonal sensitivity was measured by the Interpersonal Sensitivity Measure (IPSM). In male subjects, higher IPSM scores were related to higher scores of paternal protection (P < .01) and maternal protection (P < .05). In female subjects, higher IPSM scores were related to higher scores of maternal protection (P < .001). The present study suggests that in both males and females, interpersonal sensitivity is increased by high protection of the same-sex parents and that in males there is an additional effect of high maternal protection.

  6. Increasing sensitivity of MOS dosemeters in cascade connection

    International Nuclear Information System (INIS)

    Vychytil, F.; Cechak, T.; Gerndt, J.; Petr, I.

    1978-01-01

    The possibilities of increasing the sensitivity of MOS transistors in their cascade connection were studied theoretically and experimentally. The measurements confirmed the presumption that the instability of cascade-connected MOS transistors increased with the square of the number of transistors in the system. This allows systems to be formed with different sensitivity to ionizing radiation by encasing 10 to 10 4 transistors connected in cascade, which is technologically feasible. The procedure is also acceptable from the point of view of cost. (Z.M.)

  7. Direct microculture enzyme-linked immunosorbent assay for studying neural cells: oligodendrocytes.

    Science.gov (United States)

    Gard, A L; Warrington, A E; Pfeiffer, S E

    1988-05-01

    Oligodendrocyte development has been studied in a standardized primary microculture system initiated from day 20-21 fetal rat brain using a solid-phase enzyme-linked immunosorbent assay (ELISA) carried out directly on fixed cells (direct microculture ELISA). A highly reproducible dissociation procedure is described that allows careful control of the number of cells seeded per culture. At a seeding density of 1 x 10(5) cells/culture, up to 250 oligodendrocyte-generating microcultures consisting of 10-12% oligodendrocytes can be prepared from a single fetal rat brain, thereby permitting the simultaneous assay of multiple developmental parameters in sibling cultures. The validity of this method for quantifying myelinogenesis was established by comparing the results obtained by direct microculture ELISA with immunocytochemical counting of cells in parallel cultures. As few as 200 oligodendrocytes could be detected using a biotinylated anti-Ig and an avidin-urease conjugate detection system; CNP immunoreactivity measured by ELISA was linearly proportional to the number of immunolabeled cells between 6 and 34 days in culture; the developmental time courses of 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP) and myelin basic protein (MBP) expression determined by the two methods were very similar. Finally, cell suspensions were seeded at increasing dilution to determine the number of cells required to generate cultures that tested positive for oligodendrocytes by ELISA. As few as 9,000 cells were sufficient, predicting a minimum of 8,000 oligoprogenitors per 20-21 day fetal rat brain. The application of direct microculture ELISA for studying oligodendrocyte population size and myelinogenesis is discussed.

  8. Noscapine protects OLN-93 oligodendrocytes from ischemia-reperfusion damage: Calcium and nitric oxide involvement.

    Science.gov (United States)

    Nadjafi, S; Ebrahimi, S-A; Rahbar-Roshandel, N

    2015-12-01

    This study was carried out to evaluate the effects of noscapine, a benzylisoquinoline alkaloid from opium poppy, on oligodendrocyte during ischemia/reperfusion-induced excitotoxic injury. Changes in intracellular calcium levels due to chemical ischemia and nitric oxide (NO) production during ischemia/reperfusion were evaluated as the hallmarks of ischemia-derived excitotoxic event. OLN-93 cell line (a permanent immature rat oligodendrocyte) was used as a model of oligodendrocyte. 30- or 60-minute-oxygen-glucose deprivation/24 hours reperfusion were used to induce excitotoxicity. MTT (3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide) assay was used to evaluate cell viability. Ratiometric fluorescence microscopy using Ca(2+)-sensitive indicator Fura-2/AM was utilized to assess intracellular calcium levels. NO production was evaluated by Griess method. Noscapine (4 μM) significantly attenuated intracellular Ca(2+) elevation (P < 0.001). Also, noscapine significantly decreased NO production during a 30-minute oxygen-glucose deprivation/reperfusion (P < 0.01). The inhibitory effect of noscapine (4 μM) on intracellular Ca(2+) was greater than ionotropic glutamate receptors antagonists. Noscapine is protective against ischemia/reperfusion-induced excitotoxic injury in OLN-93 oligodendrocyte. This protective effect seems to be related to attenuation of intracellular Ca(2+) overload and NO production.

  9. Deep time evidence for climate sensitivity increase with warming

    DEFF Research Database (Denmark)

    Shaffer, Gary; Huber, Matthew; Rondanelli, Roberto

    2016-01-01

    warming analogue. We obtain constrained estimates of CO2 and climate sensitivity before and during the PETM and of the PETM carbon input amount and nature. Sensitivity increased from 3.3-5.6 to 3.7-6.5K (Kelvin) into the PETM. When taken together with Last Glacial Maximum and modern estimates, this result...... world, but past warming events may provide insight. Here we employ paleoreconstructions and new climate-carbon model simulations in a novel framework to explore a wide scenario range for the Paleocene-Eocene Thermal Maximum (PETM) carbon release and global warming event 55.8Ma ago, a possible future...

  10. Legacies from extreme drought increase ecosystem sensitivity to future extremes

    Science.gov (United States)

    Smith, M. D.; Knapp, A.; Hoover, D. L.; Avolio, M. L.; Felton, A. J.; Wilcox, K. R.

    2016-12-01

    Climate extremes, such as drought, are increasing in frequency and intensity, and the ecological consequences of these extreme events can be substantial and widespread. Although there is still much to be learned about how ecosystems will respond to an intensification of drought, even less is known about the factors that determine post-drought recovery of ecosystem function. Such knowledge is particularly important because post-drought recovery periods can be protracted depending on the extent to which key plant populations, community structure and biogeochemical processes are affected. These drought legacies may alter ecosystem function for many years post-drought and may impact future sensitivity to climate extremes. We experimentally imposed two extreme growing season droughts in a central US grassland to assess the impacts of repeated droughts on ecosystem resistance (response) and resilience (recovery). We found that this grassland was not resistant to the first extreme drought due to reduced productivity and differential sensitivity of the co-dominant C4 grass (Andropogon gerardii) and C3 forb (Solidago canadensis) species. This differential sensitivity led to a reordering of species abundances within the plant community. Yet, despite this large shift in plant community composition, which persisted post-drought, the grassland was highly resilient post-drought, due to increased abundance of the dominant C4 grass. Because of this shift to increased C4 grass dominance, we expected that previously-droughted grassland would be more resistant to a second extreme drought. However, contrary to these expectations, previously droughted grassland was more sensitive to drought than grassland that had not experienced drought. Thus, our result suggest that legacies of drought (shift in community composition) may increase ecosystem sensitivity to future extreme events.

  11. Dysfunctional parenting styles increase interpersonal sensitivity in healthy subjects.

    Science.gov (United States)

    Otani, Koichi; Suzuki, Akihito; Shibuya, Naoshi; Matsumoto, Yoshihiko; Kamata, Mitsuhiro

    2009-12-01

    The effects of dysfunctional parenting styles on interpersonal sensitivity were studied in 640 Japanese volunteers. Interpersonal sensitivity was assessed by the Interpersonal Sensitivity Measure (IPSM), and perceived parental rearing was evaluated by the Parental Bonding Instrument (PBI), which is consisted of care and protection factors. Parental rearing was classified into 4 types, i.e., optimal parenting (high care/low protection), affectionate constraint (high care/high protection), neglectful parenting (low care/low protection), and affectionless control (low care/high protection). Males with paternal affectionless control showed higher total IPSM scores than those with paternal optimal parenting (p = 0.022). Females with maternal affectionate constraint (p = 0.001), neglectful parenting (p = 0.022), and affectionless control (p = 0.003) showed higher total IPSM scores than those with maternal optimal parenting. In males and females, dysfunctional parenting styles by the opposite-sex parents did not affected total IPSM scores. The present study suggests that in both males and females interpersonal sensitivity is increased by dysfunctional parenting styles by the same-sex parents.

  12. Exercise increases human skeletal muscle insulin sensitivity via coordinated increases in microvascular perfusion and molecular signaling

    DEFF Research Database (Denmark)

    Sjøberg, Kim Anker; Frøsig, Christian; Kjøbsted, Rasmus

    2017-01-01

    and increased similarly in both legs during the clamp and L-NMMA had no effect on these insulin-stimulated signaling pathways. Therefore, acute exercise increases insulin sensitivity of muscle by a coordinated increase in insulin-stimulated microvascular perfusion and molecular signaling at the level of TBC1D4...... and glycogen synthase in muscle. This secures improved glucose delivery on the one hand and increased ability to take up and dispose of the delivered glucose on the other hand....

  13. Orientation of llama antibodies strongly increases sensitivity of biosensors.

    Science.gov (United States)

    Trilling, Anke K; Hesselink, Thamara; van Houwelingen, Adèle; Cordewener, Jan H G; Jongsma, Maarten A; Schoffelen, Sanne; van Hest, Jan C M; Zuilhof, Han; Beekwilder, Jules

    2014-10-15

    Sensitivity of biosensors depends on the orientation of bio-receptors on the sensor surface. The objective of this study was to organize bio-receptors on surfaces in a way that their analyte binding site is exposed to the analyte solution. VHH proteins recognizing foot-and-mouth disease virus (FMDV) were used for making biosensors, and azides were introduced in the VHH to function as bioorthogonal reactive groups. The importance of the orientation of bio-receptors was addressed by comparing sensors with randomly oriented VHH (with multiple exposed azide groups) to sensors with uniformly oriented VHH (with only a single azide group). A surface plasmon resonance (SPR) chip exposing cyclooctyne was reacted to azide functionalized VHH domains, using click chemistry. Comparison between randomly and uniformly oriented bio-receptors showed up to 800-fold increase in biosensor sensitivity. This technique may increase the containment of infectious diseases such as FMDV as its strongly enhanced sensitivity may facilitate early diagnostics. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Exploration of protective strategies against oligodendrocyte cell death in Krabbe disease models

    Directory of Open Access Journals (Sweden)

    Gonzalo Arboleda

    2015-02-01

    Full Text Available Krabbe disease (KD patients accumulate psychosine (galactosylsphingosine, a cytotoxic metabolite for oligodendrocytes, inducing early demyelination. Apoptosis has been suggested that plays an important role in psychosine-induced oligodendrocytes cell death in culture and in brains of Krabbe patients and an animal model of the disease (twitcher mouse. However, the molecular mechanism that triggers the activation of the apoptotic pathway, and hence the development/progression of the disease, still is not well understood. Here we report that silencing GALC gene expression induces cell death of the human derived oligodendrocyte cell line MO3.13. The induction of cell death is associated with the activation of caspase 3 and increase in Bax expression, suggesting that mitochondria is compromise, and decrease in cell survival signaling pathways such as PI3K/AKT, MAPK/ERK and AMPK, as observed by western blot analysis, 2 days after silencing. The data suggests an important psychosine-induced deregulation in apoptotic and anti-apoptotic cellular pathways. Moreover, pre-treatment with insuline-like growth factor (IGF-1 and PPARalfa agonist (WY 14643, significantly provides protection against the psychosine-induced changes described. Our data indicates that oligodendrocytes have a marked susceptibility to endogenous accumulation of psychosine and identified potential compounds that may offer protection against psychosine-induced apoptosis in vivo.

  15. Interplay between H1 and HMGN epigenetically regulates OLIG1&2 expression and oligodendrocyte differentiation.

    Science.gov (United States)

    Deng, Tao; Postnikov, Yuri; Zhang, Shaofei; Garrett, Lillian; Becker, Lore; Rácz, Ildikó; Hölter, Sabine M; Wurst, Wolfgang; Fuchs, Helmut; Gailus-Durner, Valerie; de Angelis, Martin Hrabe; Bustin, Michael

    2017-04-07

    An interplay between the nucleosome binding proteins H1 and HMGN is known to affect chromatin dynamics, but the biological significance of this interplay is still not clear. We find that during embryonic stem cell differentiation loss of HMGNs leads to down regulation of genes involved in neural differentiation, and that the transcription factor OLIG2 is a central node in the affected pathway. Loss of HMGNs affects the expression of OLIG2 as well as that of OLIG1, two transcription factors that are crucial for oligodendrocyte lineage specification and nerve myelination. Loss of HMGNs increases the chromatin binding of histone H1, thereby recruiting the histone methyltransferase EZH2 and elevating H3K27me3 levels, thus conferring a repressive epigenetic signature at Olig1&2 sites. Embryonic stem cells lacking HMGNs show reduced ability to differentiate towards the oligodendrocyte lineage, and mice lacking HMGNs show reduced oligodendrocyte count and decreased spinal cord myelination, and display related neurological phenotypes. Thus, the presence of HMGN proteins is required for proper expression of neural differentiation genes during embryonic stem cell differentiation. Specifically, we demonstrate that the dynamic interplay between HMGNs and H1 in chromatin epigenetically regulates the expression of OLIG1&2, thereby affecting oligodendrocyte development and myelination, and mouse behavior. Published by Oxford University Press on behalf of Nucleic Acids Research 2016.

  16. Protective effects of edaravone on the radiation response of oligodendrocyte in rats following whole brain irradiation

    International Nuclear Information System (INIS)

    Chen Yingzhu; Tian Ye; Bao Shiyao; Bao Huan; Zhan Zhilin

    2007-01-01

    Objective: To investigate the changes of the oligodendrocyte lineage cells in the cortex following whole brain irradiation and the effects of the neotype free radical scavenger, edaravone on radiation response of oligodendrocyte in rats. Methods: 120 male Sprague Dawley rats were randomly divided into sham- irradiation group, irradiation group and edaravone group. The model of whole-brain irradiation was established with exposure of the whole brain of the rats to 4 MeV X-rays with a single-dose of 10 Gy. The rats were injected intraperitoneally with edaravone at 0.3, 1.0 and 3.0 mg/kg. Tissue microarray of irradiation-induced brain injury in rats was constructed. The expression of A2BS, oligodendrocyte market 4(O4) and 2', 3'-cyclic nucleotide 3'- phosphodiesterase (CNPase) in the cortex was examined by tissue microarray technology and immunohistochemistry. The positive cells were counted. Results: Compared with the sham-irradiation group, the number of A2BS-positive cells increased and the number of O4, CNPase-positive cells decreased significantly at certain time in the irradiation group(P<0.05). Compared with irradiation group, A2BS-positive cells decreased significantly after edaravone treatment, while O4-positive cells and CNPase-positive cells increased significantly (P<0.05, or P<0.01). Conclusions: The number of oligodendrocyte precursor cells in the cortex of rats increased reactively following whole brain irradiation and changed with time. Edaravone played a protective role in oligodendrocyte ischemic reaction in a dose-dependent manner. (authors)

  17. Protective effects of edaravone on the radiation response of oligodendrocyte in rats following whole brain irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yingzhu, Chen; Ye, Tian; Shiyao, Bao; Huan, Bao; Zhilin, Zhan [The Second Affiliated Hospital of Suzhou Univ., Suzhou (China)

    2007-08-15

    Objective: To investigate the changes of the oligodendrocyte lineage cells in the cortex following whole brain irradiation and the effects of the neotype free radical scavenger, edaravone on radiation response of oligodendrocyte in rats. Methods: 120 male Sprague Dawley rats were randomly divided into sham- irradiation group, irradiation group and edaravone group. The model of whole-brain irradiation was established with exposure of the whole brain of the rats to 4 MeV X-rays with a single-dose of 10 Gy. The rats were injected intraperitoneally with edaravone at 0.3, 1.0 and 3.0 mg/kg. Tissue microarray of irradiation-induced brain injury in rats was constructed. The expression of A2BS, oligodendrocyte market 4(O4) and 2', 3'-cyclic nucleotide 3'- phosphodiesterase (CNPase) in the cortex was examined by tissue microarray technology and immunohistochemistry. The positive cells were counted. Results: Compared with the sham-irradiation group, the number of A2BS-positive cells increased and the number of O4, CNPase-positive cells decreased significantly at certain time in the irradiation group(P<0.05). Compared with irradiation group, A2BS-positive cells decreased significantly after edaravone treatment, while O4-positive cells and CNPase-positive cells increased significantly (P<0.05, or P<0.01). Conclusions: The number of oligodendrocyte precursor cells in the cortex of rats increased reactively following whole brain irradiation and changed with time. Edaravone played a protective role in oligodendrocyte ischemic reaction in a dose-dependent manner. (authors)

  18. Sensitivity Increases for the TITAN Decay Spectroscopy Program

    Directory of Open Access Journals (Sweden)

    Leach K.G.

    2015-01-01

    Full Text Available The TITAN facility at TRIUMF has recently initiated a program of performing decay spectroscopy measurements in an electron-beam ion-trap (EBIT. The unique environment of the EBIT provides backingfree storage of the radioactive ions, while guiding charged decay particles from the trap centre via the strong magnetic field. This measurement technique is able to provide a significant increase in detection sensitivity for photons which result from radioactive decay. A brief overview of this device is presented, along with methods of improving the signal-to-background ratio for photon detection by reducing Compton scattered events, and eliminating vibrational noise.

  19. Ciliary derived neurotrophic factor protects oligodendrocytes against radiation induced damage in vitro by a mechanism independent of a proliferative effect

    International Nuclear Information System (INIS)

    Evans, Andrew J.; Mabie, Peter C.; Kessler, Jack A.; Vikram, Bhadrasain

    1997-01-01

    Purpose/Objective: Radiation-induced damage to the central nervous system in the from of myelopathy is a dose-limiting complication in the treatment of tumors situated in or close to the spinal cord. The target cell for this damage is not definitively identified, but demyelination due to oligodendrocyte damage is strongly implicated. Multiple neurotrophic factors have recently been identified which demonstrate a survival effect on oligodendrocytes. We investigated the effect of Ciliary Derived Neurotrophic Factor (CNTF), Neurotrophin-3 (NT-3) and Nerve Growth Factor (NGF) on the radiosensitivity of oligodendrocytes in vitro to determine if this may ameliorate radiation damage, as a model for reducing myelopathy in vivo. Materials and Methods: Mature oligodendrocytes were cultured from the cortex of newborn Sprague-Dawley white rats and maintained on poly-d-lysine plates. The experimental arm was exposed to CNTF (0.01-100ng/ml), NGF (100ng/ml) or NT-3 (20ng/ml) for 24 hours prior to radiation, and control and experimental arms radiated using a cobalt 60 irradiator at a dose rate of .87 Gy/min with doses from 2 Gy to 10 Gy. Oligodendrocytes were identified using an O4 antibody, assessed for viability at 5 days using an MTT assay and counted using a phase contrast microscope. Combination studies of CNTF and NT-3 were also performed. BrdU studies were performed to determine if the various neurotrophins induced proliferation, with BrdU added for the 24 hour period prior to radiation only, for the 5 day period following radiation only, or for both periods combined. Results: The proportion of mature oligodendrocytes surviving 5 days after irradiation was not significantly increased by NGF, and was only modestly increased by NT-3. However, CNTF significantly increased the surviving proportion at all doses The addition of NT-3 to CNTF did not further increase the proportion of oligodendrocytes surviving. CNTF dose escalation studies confirmed 20ng/ml as an optimal dose. Brd

  20. Increased flow sensitivity from gradient recalled echoes and short TRs

    International Nuclear Information System (INIS)

    Hearshen, D.O.; Froelich, J.W.; Wehrli, F.W.; Haggar, A.M.; Shimakawa, A.

    1986-01-01

    Time-of-flight effects from flow have been characterized in spin-echo images. ''Paradoxical'' enhancement and flow void are observed. Similar enhancement is seen on GRASS images. With no flow void and gradients existing throughout the volume, spins experiencing radio-frequency pulses will give rise to signals even for fast flow, providing a greater velocity sensitivity. GRASS images were obtained from a volunteer with a blood pressure cuff placed over the right thigh. With the cuff inflated, flow in the popliteal vein results in signal saturation. Increasing TR increases intensity in the popliteal vein relative to other vessels. This suggests a clinical role for the technique in assessment of slow flow

  1. Non-cell autonomous impairment of oligodendrocyte differentiation precedes CNS degeneration in the Zitter rat: Implications of macrophage/microglial activation in the pathogenesis

    Directory of Open Access Journals (Sweden)

    Ookawara Shigeo

    2008-04-01

    Full Text Available Abstract Background The zitter (zi/zi rat, a loss-of-function mutant of the glycosylated transmembrane protein attractin (atrn, exhibits widespread age-dependent spongiform degeneration, hypomyelination, and abnormal metabolism of reactive oxygen species (ROS in the brain. To date, the mechanisms underlying these phenotypes have remained unclear. Results Here, we show differentiation defects in zi/zi oligodendrocytes, accompanied by aberrant extension of cell-processes and hypomyelination. Axonal bundles were relatively preserved during postnatal development. With increasing in age, the injured oligodendrocytes in zi/zi rats become pathological, as evidenced by the accumulation of iron in their cell bodies. Immunohistochemical analysis revealed that atrn expression was absent from an oligodendrocyte lineage, including A2B5-positive progenitors and CNPase-positive differentiated cells. The number and distribution of Olig2-positive oligodendrocyte progenitors was unchanged in the zi/zi brain. Furthermore, an in vitro differentiation assay of cultured oligodendrocyte progenitors prepared from zi/zi brains revealed their normal competence for proliferation and differentiation into mature oligodendrocytes. Interestingly, we demonstrated the accelerated recruitment of ED1-positive macrophages/microglia to the developing zi/zi brain parenchyma prior to the onset of hypomyelination. Semiquantitative RT-PCR analysis revealed a significant up-regulation of CD26 and IL1-β in the zi/zi brain during this early postnatal stage. Conclusion We demonstrated that the onset of the impairment of oligodendrocyte differentiation occurs in a non-cell autonomous manner in zi/zi rats. Hypomyelination of oligodendrocytes was not due to a failure of the intrinsic program of oligodendrocytes, but rather, was caused by extrinsic factors that interrupt oligodendrocyte development. It is likely that macrophage/microglial activation in the zi/zi CNS leads to disturbances in

  2. Universal design pedagogy through a charrette to increase professional sensitivity

    Directory of Open Access Journals (Sweden)

    Doris C.C.K. Kowaltowski

    2015-05-01

    Full Text Available This paper describes a design Charrette conducted in a graduate course on Universal Design (UD in which students developed a design project for a public-service centre. The Charrette involved potential users with various disabilities, evaluating the design proposal, using tactile maps, as well as other communication media. Wayfinding issues relating to the design of a service centre were transformed into flowcharts, both as diagrams and tactile representations. The participation of disabled users was evaluated. The goal of the Charrette was to understand the effectiveness of this type of teaching method to increase designers’ sensitivity to UD issues and gain knowledge on participatory processes with users who have varied disabilities. The results showed that the Charrette as a teaching method was successful in making the student group focus on the questions of UD. However, students continued to be primarily concerned with the design’s formal aesthetic aspects, and the process differed little from traditional designerly ways of doing things. This demonstrates the need to improve design education, adopting multidisciplinary approaches, which strengthen design considerations for UD. An analysis of the participatory phase showed that potential users with visual disabilities had difficulties understanding the design and wheelchair users criticized various aspects of access and barrier-free wayfinding. Recommendations are presented. To increase the sensitivity of professional designers to UD issues, potential users with disabilities should participate from the start in the design process to give input as the proposal is developed. Introducing a multidisciplinary design team should also be tested to include a larger variety of viewpoints in the design process, which may strengthen the concern for elements of a building design that directly affect person-environment relationships.

  3. Increasing Pulsar Timing Array Sensitivity Through Addition of Millisecond Pulsars

    Science.gov (United States)

    DeCesar, Megan E.; Crawford, Fronefield; Ferrara, Elizabeth; Lynch, Ryan; Mingarelli, Chiara; Levin Preston, Lina; Ransom, Scott; Romano, Joseph; Simon, Joseph; Spiewak, Renee; Stovall, Kevin; Swiggum, Joe; Taylor, Stephen; Green Bank North Celestial Cap Pulsar Survey, Fermi LAT Collaboration, Fermi Pulsar Search Consortium

    2018-01-01

    Siemens et al. (2013) and Taylor et al. (2016) demonstrated the importance of increasing the number of millisecond pulsars (MSPs) in pulsar timing arrays (PTAs) in order to increase the sensitivity of the array and decrease the time-to-detection of a gravitational wave background (GWB). In particular, they predict that adding four MSPs per year to the NANOGrav and International PTAs will likely yield a GWB detection in less than a decade. A more even distribution of MSPs across the sky is also important for discriminating a GWB signal from a non-quadrupolar background (Sampson et al., in prep). Pulsar surveys and targeted searches have consistently led to additions of 4 or more MSPs per year to PTAs. I will describe these ongoing efforts, particularly in the context of the Green Bank North Celestial Cap pulsar survey and Fermi-guided searches at Green Bank and Arecibo that seek to find MSPs in low-pulsar-density regions of the sky.

  4. Napping reverses increased pain sensitivity due to sleep restriction.

    Science.gov (United States)

    Faraut, Brice; Léger, Damien; Medkour, Terkia; Dubois, Alexandre; Bayon, Virginie; Chennaoui, Mounir; Perrot, Serge

    2015-01-01

    To investigate pain sensitivity after sleep restriction and the restorative effect of napping. A strictly controlled randomized crossover study with continuous polysomnography monitoring was performed. Laboratory-based study. 11 healthy male volunteers. Volunteers attended two three-day sessions: "sleep restriction" alone and "sleep restriction and nap". Each session involved a baseline night of normal sleep, a night of sleep deprivation and a night of free recovery sleep. Participants were allowed to sleep only from 02:00 to 04:00 during the sleep deprivation night. During the "sleep restriction and nap" session, volunteers took two 30-minute naps, one in the morning and one in the afternoon. Quantitative sensory testing was performed with heat, cold and pressure, at 10:00 and 16:00, on three areas: the supraspinatus, lower back and thigh. After sleep restriction, quantitative sensory testing revealed differential changes in pain stimuli thresholds, but not in thermal threshold detection: lower back heat pain threshold decreased, pressure pain threshold increased in the supraspinatus area and no change was observed for the thigh. Napping restored responses to heat pain stimuli in the lower back and to pressure stimuli in the supraspinatus area. Sleep restriction induces different types of hypersensitivity to pain stimuli in different body areas, consistent with multilevel mechanisms, these changes being reversed by napping. The napping restorative effect on pain thresholds result principally from effects on pain mechanisms, since it was independent of vigilance status.

  5. Napping reverses increased pain sensitivity due to sleep restriction.

    Directory of Open Access Journals (Sweden)

    Brice Faraut

    Full Text Available To investigate pain sensitivity after sleep restriction and the restorative effect of napping.A strictly controlled randomized crossover study with continuous polysomnography monitoring was performed.Laboratory-based study.11 healthy male volunteers.Volunteers attended two three-day sessions: "sleep restriction" alone and "sleep restriction and nap". Each session involved a baseline night of normal sleep, a night of sleep deprivation and a night of free recovery sleep. Participants were allowed to sleep only from 02:00 to 04:00 during the sleep deprivation night. During the "sleep restriction and nap" session, volunteers took two 30-minute naps, one in the morning and one in the afternoon.Quantitative sensory testing was performed with heat, cold and pressure, at 10:00 and 16:00, on three areas: the supraspinatus, lower back and thigh. After sleep restriction, quantitative sensory testing revealed differential changes in pain stimuli thresholds, but not in thermal threshold detection: lower back heat pain threshold decreased, pressure pain threshold increased in the supraspinatus area and no change was observed for the thigh. Napping restored responses to heat pain stimuli in the lower back and to pressure stimuli in the supraspinatus area.Sleep restriction induces different types of hypersensitivity to pain stimuli in different body areas, consistent with multilevel mechanisms, these changes being reversed by napping. The napping restorative effect on pain thresholds result principally from effects on pain mechanisms, since it was independent of vigilance status.

  6. Decoding cell signalling and regulation of oligodendrocyte differentiation.

    Science.gov (United States)

    Santos, A K; Vieira, M S; Vasconcellos, R; Goulart, V A M; Kihara, A H; Resende, R R

    2018-05-22

    Oligodendrocytes are fundamental for the functioning of the nervous system; they participate in several cellular processes, including axonal myelination and metabolic maintenance for astrocytes and neurons. In the mammalian nervous system, they are produced through waves of proliferation and differentiation, which occur during embryogenesis. However, oligodendrocytes and their precursors continue to be generated during adulthood from specific niches of stem cells that were not recruited during development. Deficiencies in the formation and maturation of these cells can generate pathologies mainly related to myelination. Understanding the mechanisms involved in oligodendrocyte development, from the precursor to mature cell level, will allow inferring therapies and treatments for associated pathologies and disorders. Such mechanisms include cell signalling pathways that involve many growth factors, small metabolic molecules, non-coding RNAs, and transcription factors, as well as specific elements of the extracellular matrix, which act in a coordinated temporal and spatial manner according to a given stimulus. Deciphering those aspects will allow researchers to replicate them in vitro in a controlled environment and thus mimic oligodendrocyte maturation to understand the role of oligodendrocytes in myelination in pathologies and normal conditions. In this study, we review these aspects, based on the most recent in vivo and in vitro data on oligodendrocyte generation and differentiation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Clozapine promotes glycolysis and myelin lipid synthesis in cultured oligodendrocytes

    Directory of Open Access Journals (Sweden)

    Johann eSteiner

    2014-11-01

    Full Text Available Clozapine has stronger systemic metabolic side effects than haloperidol and it was hypothesized that therapeutic antipsychotic and adverse metabolic effects might be related. Considering that cerebral disconnectivity through oligodendrocyte dysfunction has been implicated in schizophrenia, it is important to determine the effect of these drugs on oligodendrocyte energy metabolism and myelin lipid production.Effects of clozapine and haloperidol on glucose and myelin lipid metabolism were evaluated and compared in cultured OLN-93 oligodendrocytes. First, glycolytic activity was assessed by measurement of extra- and intracellular glucose and lactate levels. Next, the expression of glucose (GLUT and monocarboxylate (MCT transporters was determined after 6h and 24h. And finally mitochondrial respiration, acetyl-CoA carboxylase, free fatty acids, and expression of the myelin lipid galactocerebroside were analyzed.Both drugs altered oligodendrocyte glucose metabolism, but in opposite directions. Clozapine improved the glucose uptake, production and release of lactate, without altering GLUT and MCT. In contrast, haloperidol led to higher extracellular levels of glucose and lower levels of lactate, suggesting reduced glycolysis. Antipsychotics did not alter significantly the number of functionally intact mitochondria, but clozapine enhanced the efficacy of oxidative phosphorylation and expression of galactocerebroside.Our findings support the superior impact of clozapine on white matter integrity in schizophrenia as previously observed, suggesting that this drug improves the energy supply and myelin lipid synthesis in oligodendrocytes. Characterizing the underlying signal transduction pathways may pave the way for novel oligodendrocyte-directed schizophrenia therapies.

  8. Current understanding of increased insulin sensitivity after exercise - emerging candidates

    DEFF Research Database (Denmark)

    Maarbjerg, Stine Just; Sylow, Lykke; Richter, Erik

    2011-01-01

    signaling component in the insulin signaling pathway such as aPKC, Rac1, TBC1D4 and TBC1D1 have been described. These are all affected by both insulin and exercise which means that they are likely converging points in promoting GLUT4 translocation and therefore possible candidates for regulating insulin...... sensitivity after exercise. Whereas TBC1D1 does not appear to regulate insulin sensitivity after exercise, correlative evidence in contrast suggests TBC1D4 to be a relevant candidate. Little is known about aPKC and Rac1 in relation to insulin sensitivity after exercise. Besides mechanisms involved...

  9. High Yield of Adult Oligodendrocyte Lineage Cells Obtained from Meningeal Biopsy

    Directory of Open Access Journals (Sweden)

    Sissi Dolci

    2017-10-01

    Full Text Available Oligodendrocyte loss can lead to cognitive and motor deficits. Current remyelinating therapeutic strategies imply either modulation of endogenous oligodendrocyte precursors or transplantation of in vitro expanded oligodendrocytes. Cell therapy, however, still lacks identification of an adequate source of oligodendrocyte present in adulthood and able to efficiently produce transplantable cells. Recently, a neural stem cell-like population has been identified in meninges. We developed a protocol to obtain high yield of oligodendrocyte lineage cells from one single biopsy of adult rat meningeal tissue. From 1 cm2 of adult rat spinal cord meninges, we efficiently expanded a homogenous culture of 10 millions of meningeal-derived oligodendrocyte lineage cells in a short period of time (approximately 4 weeks. Meningeal-derived oligodendrocyte lineage cells show typical mature oligodendrocyte morphology and express specific oligodendrocyte markers, such as galactosylceramidase and myelin basic protein. Moreover, when transplanted in a chemically demyelinated spinal cord model, meningeal-derived oligodendrocyte lineage cells display in vivo-remyelinating potential. This oligodendrocyte lineage cell population derives from an accessible and adult source, being therefore a promising candidate for autologous cell therapy of demyelinating diseases. In addition, the described method to differentiate meningeal-derived neural stem cells into oligodendrocyte lineage cells may represent a valid in vitro model to dissect oligodendrocyte differentiation and to screen for drugs capable to promote oligodendrocyte regeneration.

  10. A chimeric receptor of the insulin-like growth factor receptor type 1 (IGFR1) and a single chain antibody specific to myelin oligodendrocyte glycoprotein activates the IGF1R signalling cascade in CG4 oligodendrocyte progenitors

    NARCIS (Netherlands)

    Annenkov, A.; Rigby, A.; Amor, S.; Zhou, D.M.; Yousaf, N.; Hemmer, B.; Chernajovsky, Y.

    2011-01-01

    In order to generate neural stem cells with increased ability to survive after transplantation in brain parenchyma we developed a chimeric receptor (ChR) that binds to myelin oligodendrocyte glycoprotein (MOG) via its ectodomain and activates the insulin-like growth factor receptor type 1 (IGF1R)

  11. In vitro analysis of the oligodendrocyte lineage in mice during demyelination and remyelination

    International Nuclear Information System (INIS)

    Armstrong, R.; Friedrich, V.L. Jr.; Holmes, K.V.; Dubois-Dalcq, M.

    1990-01-01

    A demyelinating disease induced in C57B1/6N mice by intracranial injection of a coronavirus (murine hepatitis virus strain A59) is followed by functional recovery and efficient CNS myelin repair. To study the biological properties of the cells involved in this repair process, glial cells were isolated and cultured from spinal cords of these young adult mice during demyelination and remyelination. Using three-color immunofluorescence combined with [3H]thymidine autoradiography, we have analyzed the antigenic phenotype and mitotic potential of individual glial cells. We identified oligodendrocytes with an antibody to galactocerebroside, astrocytes with an antibody to glial fibrillary acidic protein, and oligodendrocyte-type 2 astrocyte (O-2A) progenitor cells with the O4 antibody. Cultures from demyelinated tissue differed in several ways from those of age-matched controls: first, the total number of O-2A lineage cells was strikingly increased; second, the O-2A population consisted of a higher proportion of O4-positive astrocytes and cells of mixed oligodendrocyte-astrocyte phenotype; and third, all the cell types within the O-2A lineage showed enhanced proliferation. This proliferation was not further enhanced by adding PDGF, basic fibroblast growth factor (bFGF), or insulin-like growth factor I (IGF-I) to the defined medium. However, bFGF and IGF-I seemed to influence the fate of O-2A lineage cells in cultures of demyelinated tissue. Basic FGF decreased the percentage of cells expressing galactocerebroside. In contrast, IGF-I increased the relative proportion of oligodendrocytes. Thus, O-2A lineage cells from adult mice display greater phenotypic plasticity and enhanced mitotic potential in response to an episode of demyelination. These properties may be linked to the efficient remyelination achieved in this demyelinating disease

  12. Orientation of llama antibodies strongly increases sensitivity of biosensors

    NARCIS (Netherlands)

    Trilling, A.K.; Hesselink, T.; Houwelingen, van A.; Cordewener, J.H.G.; Jongsma, M.A.; Schoffelen, S.; Hest, van J.C.M.; Zuilhof, J.T.; Beekwilder, J.

    2014-01-01

    Sensitivity of biosensors depends on theorientation of bio-receptors on the sensor surface.The objective of this study was to organize bio-receptors on surfaces in a way that their analyte binding site is exposed to the analyte solution. VHH proteins recognizing foot-and-mouth disease virus (FMDV)

  13. Mindful Music Listening Instruction Increases Listening Sensitivity and Enjoyment

    Science.gov (United States)

    Anderson, William Todd

    2016-01-01

    The purpose of this study was to examine the effect of mindful listening instruction on music listening sensitivity and music listening enjoyment. A pretest--posttest control group design was used. Participants, fourth-grade students (N = 42) from an elementary school in a large city in the Northeastern United States, were randomly assigned to two…

  14. Remarkable Stability of Myelinating Oligodendrocytes in Mice

    Directory of Open Access Journals (Sweden)

    Richa B. Tripathi

    2017-10-01

    Full Text Available New myelin-forming oligodendrocytes (OLs are generated in the mouse central nervous system during adulthood. These adult-born OLs might augment the existing population, contributing to neural plasticity, or else replace OLs that die in use (turnover. To distinguish between these alternatives, we induced genetic labeling of mature myelinating OLs in young adult mice and tracked their subsequent survival. OL survival rates were region dependent, being higher in corpus callosum (∼90% survival over 20 months and motor cortex (∼70% survival than in corticospinal tract or optic nerve (50%–60% survival. Survival rates over the first 8 months were 90%–100% in all regions except the optic nerve. In the corpus callosum, new OLs accumulate during young adulthood and are therefore likely to participate in adaptive myelination. We also found that the number of myelin internodes maintained by individual cortical OLs is stable for at least 8 months but declines ∼12% in the following year.

  15. NMDA modulates oligodendrocyte differentiation of subventricular zone cells through PKC activation

    Directory of Open Access Journals (Sweden)

    Fabio eCavaliere

    2013-12-01

    Full Text Available Multipotent cells from the juvenile subventricular zone (SVZ possess the ability to differentiate into new neural cells. Depending on local signals, SVZ can generate new neurons, astrocytes or oligodendrocytes. We previously demonstrated that activation of NMDA receptors in SVZ progenitors increases the rate of oligodendrocyte differentiation. Here we investigated the mechanisms involved in NMDA receptor-dependent differentiation. Using functional studies performed with the reporter gene luciferase we found that activation of NMDA receptor stimulates PKC. In turn, stimulation of PKC precedes the activation of NADPH oxidase (NOX as demonstrated by translocation of the p67phox subunit to the cellular membrane. We propose that NOX2 is involved in the transduction of the signal from NMDA receptors through PKC activation as the inhibitor gp91 reduced their pro-differentiation effect. In addition, our data and that from other groups suggest that signaling through the NMDA receptor/PKC/NOX2 cascade generates ROS that activate the PI3/mTOR pathway and finally leads to the generation of new oligodendrocytes.

  16. Increased sensitivity to climate change in disturbed ecosystems

    DEFF Research Database (Denmark)

    Kroël-Dulay, György; Ransijn, Johannes; Schmidt, Inger Kappel

    2015-01-01

    Human domination of the biosphere includes changes to disturbance regimes, which push many ecosystems towards early-successional states. Ecological theory predicts that early-successional ecosystems are more sensitive to perturbations than mature systems, but little evidence supports this relatio......Human domination of the biosphere includes changes to disturbance regimes, which push many ecosystems towards early-successional states. Ecological theory predicts that early-successional ecosystems are more sensitive to perturbations than mature systems, but little evidence supports...... this relationship for the perturbation of climate change. Here we show that vegetation (abundance, species richness and species composition) across seven European shrublands is quite resistant to moderate experimental warming and drought, and responsiveness is associated with the dynamic state of the ecosystem...

  17. Addiction: Decreased reward sensitivity and increased expectation sensitivity conspire to overwhelm the brain's control circuit

    OpenAIRE

    Volkow, Nora D.; Wang, Gene-Jack; Fowler, Joanna S.; Tomasi, Dardo; Telang, Frank; Baler, Ruben

    2010-01-01

    Based on brain imaging findings, we present a model according to which addiction emerges as an imbalance in the information processing and integration among various brain circuits and functions. The dysfunctions reflect (a) decreased sensitivity of reward circuits, (b) enhanced sensitivity of memory circuits to conditioned expectations to drugs and drug cues, stress reactivity, and (c) negative mood, and a weakened control circuit. Although initial experimentation with a drug of abuse is larg...

  18. Protein kinase C prevents oligodendrocyte differentiation : Modulation of actin cytoskeleton and cognate polarized membrane traffic

    NARCIS (Netherlands)

    Baron, W; de Vries, EJ; de Vries, H; Hoekstra, D

    1999-01-01

    In a previous study, we showed that activation of protein kinase C (PKC) prevents oligodendrocyte differentiation at the pro-oligodendrocyte stage. The present study was undertaken to identify downstream targets of PKC action in oligodendrocyte progenitor cells. Activation of PKC induced the

  19. Large diurnal temperature range increases bird sensitivity to climate change

    NARCIS (Netherlands)

    Briga, Michael; Verhulst, Simon

    2015-01-01

    Climate variability is changing on multiple temporal scales, and little is known of the consequences of increases in short-term variability, particularly in endotherms. Using mortality data with high temporal resolution of zebra finches living in large outdoor aviaries (5 years, 359.220 bird-days),

  20. Mice lacking neuropeptide Y show increased sensitivity to cocaine

    DEFF Research Database (Denmark)

    Sørensen, Gunnar; Woldbye, David Paul Drucker

    2012-01-01

    There is increasing data implicating neuropeptide Y (NPY) in the neurobiology of addiction. This study explored the possible role of NPY in cocaine-induced behavior using NPY knockout mice. The transgenic mice showed a hypersensitive response to cocaine in three animal models of cocaine addiction...

  1. Differentiation of oligodendrocyte progenitor cells from dissociated monolayer and feeder-free cultured pluripotent stem cells.

    Science.gov (United States)

    Yamashita, Tomoko; Miyamoto, Yuki; Bando, Yoshio; Ono, Takashi; Kobayashi, Sakurako; Doi, Ayano; Araki, Toshihiro; Kato, Yosuke; Shirakawa, Takayuki; Suzuki, Yutaka; Yamauchi, Junji; Yoshida, Shigetaka; Sato, Naoya

    2017-01-01

    Oligodendrocytes myelinate axons and form myelin sheaths in the central nervous system. The development of therapies for demyelinating diseases, including multiple sclerosis and leukodystrophies, is a challenge because the pathogenic mechanisms of disease remain poorly understood. Primate pluripotent stem cell-derived oligodendrocytes are expected to help elucidate the molecular pathogenesis of these diseases. Oligodendrocytes have been successfully differentiated from human pluripotent stem cells. However, it is challenging to prepare large amounts of oligodendrocytes over a short amount of time because of manipulation difficulties under conventional primate pluripotent stem cell culture methods. We developed a proprietary dissociated monolayer and feeder-free culture system to handle pluripotent stem cell cultures. Because the dissociated monolayer and feeder-free culture system improves the quality and growth of primate pluripotent stem cells, these cells could potentially be differentiated into any desired functional cells and consistently cultured in large-scale conditions. In the current study, oligodendrocyte progenitor cells and mature oligodendrocytes were generated within three months from monkey embryonic stem cells. The embryonic stem cell-derived oligodendrocytes exhibited in vitro myelinogenic potency with rat dorsal root ganglion neurons. Additionally, the transplanted oligodendrocyte progenitor cells differentiated into myelin basic protein-positive mature oligodendrocytes in the mouse corpus callosum. This preparative method was used for human induced pluripotent stem cells, which were also successfully differentiated into oligodendrocyte progenitor cells and mature oligodendrocytes that were capable of myelinating rat dorsal root ganglion neurons. Moreover, it was possible to freeze, thaw, and successfully re-culture the differentiating cells. These results showed that embryonic stem cells and human induced pluripotent stem cells maintained in a

  2. Quantifying the increasing sensitivity of power systems to climate variability

    Science.gov (United States)

    Bloomfield, H. C.; Brayshaw, D. J.; Shaffrey, L. C.; Coker, P. J.; Thornton, H. E.

    2016-12-01

    Large quantities of weather-dependent renewable energy generation are expected in power systems under climate change mitigation policies, yet little attention has been given to the impact of long term climate variability. By combining state-of-the-art multi-decadal meteorological records with a parsimonious representation of a power system, this study characterises the impact of year-to-year climate variability on multiple aspects of the power system of Great Britain (including coal, gas and nuclear generation), demonstrating why multi-decadal approaches are necessary. All aspects of the example system are impacted by inter-annual climate variability, with the impacts being most pronounced for baseload generation. The impacts of inter-annual climate variability increase in a 2025 wind-power scenario, with a 4-fold increase in the inter-annual range of operating hours for baseload such as nuclear. The impacts on peak load and peaking-plant are comparably small. Less than 10 years of power supply and demand data are shown to be insufficient for providing robust power system planning guidance. This suggests renewable integration studies—widely used in policy, investment and system design—should adopt a more robust approach to climate characterisation.

  3. A simple, xeno-free method for oligodendrocyte generation from human neural stem cells derived from umbilical cord: engagement of gelatinases in cell commitment and differentiation.

    Science.gov (United States)

    Sypecka, Joanna; Ziemka-Nalecz, Małgorzata; Dragun-Szymczak, Patrycja; Zalewska, Teresa

    2017-05-01

    Oligodendrocyte progenitors (OPCs) are ranked among the most likely candidates for cell-based strategies aimed at treating neurodegenerative diseases accompanied by dys/demyelination of the central nervous system (CNS). In this regard, different sources of stem cells are being tested to elaborate xeno-free protocols for efficient generation of OPCs for clinical applications. In the present study, neural stem cells of human umbilical cord blood (HUCB-NSCs) have been used to derive OPCs and subsequently to differentiate them into mature, GalC-expressing oligodendrocytes. Applied components of the extracellular matrix (ECM) and the analogues of physiological substances known to increase glial commitment of neural stem cells have been shown to significantly increase the yield of the resulting OPC fraction. The efficiency of ECM components in promoting oligodendrocyte commitment and differentiation prompted us to investigate the potential role of gelatinases in those processes. Subsequently, endogenous and ECM metalloproteinases (MMPs) activity has been compared with that detected in primary cultures of rat oligodendrocytes in vitro, as well as in rat brains in vivo. The data indicate that gelatinases are engaged in gliogenesis both in vitro and in vivo, although differently, which presumably results from distinct extracellular conditions. In conclusion, the study presents an efficient xeno-free method of deriving oligodendrocyte from HUCB-NSCs and analyses the engagement of MMP-2/MMP-9 in the processes of cell commitment and maturation. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Multiple Modes of Communication between Neurons and Oligodendrocyte Precursor Cells

    NARCIS (Netherlands)

    Maldonado, Paloma P; Angulo, María Cecilia

    The surprising discovery of bona fide synapses between neurons and oligodendrocytes precursor cells (OPCs) 15 years ago placed these progenitors as real partners of neurons in the CNS. The role of these synapses has not been established yet, but a main hypothesis is that neuron-OPC synaptic activity

  5. Addiction: decreased reward sensitivity and increased expectation sensitivity conspire to overwhelm the brain's control circuit.

    Science.gov (United States)

    Volkow, Nora D; Wang, Gene-Jack; Fowler, Joanna S; Tomasi, Dardo; Telang, Frank; Baler, Ruben

    2010-09-01

    Based on brain imaging findings, we present a model according to which addiction emerges as an imbalance in the information processing and integration among various brain circuits and functions. The dysfunctions reflect (a) decreased sensitivity of reward circuits, (b) enhanced sensitivity of memory circuits to conditioned expectations to drugs and drug cues, stress reactivity, and (c) negative mood, and a weakened control circuit. Although initial experimentation with a drug of abuse is largely a voluntary behavior, continued drug use can eventually impair neuronal circuits in the brain that are involved in free will, turning drug use into an automatic compulsive behavior. The ability of addictive drugs to co-opt neurotransmitter signals between neurons (including dopamine, glutamate, and GABA) modifies the function of different neuronal circuits, which begin to falter at different stages of an addiction trajectory. Upon exposure to the drug, drug cues or stress this results in unrestrained hyperactivation of the motivation/drive circuit that results in the compulsive drug intake that characterizes addiction.

  6. Child abuse associates with an imbalance of oligodendrocyte-lineage cells in ventromedial prefrontal white matter.

    Science.gov (United States)

    Tanti, A; Kim, J J; Wakid, M; Davoli, M-A; Turecki, G; Mechawar, N

    2017-11-21

    Child abuse (CA) is a major risk factor for depression, and strongly associates with suicidal behavior during adulthood. Neuroimaging studies have reported widespread changes in white matter integrity and brain connectivity in subjects with a history of CA. Although such observations could reflect changes in myelin and oligodendrocyte function, their cellular underpinnings have never been addressed. Using postmortem brain samples from depressed suicides with or without history of CA and matched controls (18 per group), we aimed to characterize the effects of CA on oligodendrocyte-lineage (OL) cells in the ventromedial prefrontal white matter. Using immunoblotting, double-labeling immunofluorescence and stereological estimates of stage-specific markers, we found that CA is associated with increased numbers of mature myelinating oligodendrocytes, accompanied by decreased numbers of more immature OL cells. This was paralleled by an increased expression of transcription factor MASH1, which is involved in the terminal differentiation of the OL, suggesting that CA may trigger an increased maturation, or bias the populations of OL cells toward a more mature phenotype. Some of these effects, which were absent in the brain of depressed suicides with no history of CA, were also found to recover with age, suggesting that changes in the balance of the OL may reflect a transient adaptive mechanism triggered by early-life adversity. In conclusion, our results indicate that CA in depressed suicides is associated with an imbalance of the OL in the ventromedial prefrontal white matter, an effect that could lead to myelin remodeling and long-term connectivity changes within the limbic network.Molecular Psychiatry advance online publication, 21 November 2017; doi:10.1038/mp.2017.231.

  7. Neuropathological changes following experimental stereotactic irradiation. Progressive injuries of oligodendrocytes

    International Nuclear Information System (INIS)

    Ohtsuka, Takashi; Seiki, Yoshikatsu; Nakano, Jiro; Shibata, Iekado; Terao, Hideo

    1997-01-01

    This report describes the results of neuropathological examinations in 14 rabbit brains after 100 Gy of linear stereotactic irradiation. The tissue around the area of radiation necrosis was subjected to special examination. Fourteen rabbits were given a single dose of 100 Gy by a linear accelerator with a use of the 10 mm collimator. Animals were sacrificed serially after irradiation. Brains were removed and formalin treated paraffin sections were made. All sections were stained by H and E, GFAP and TUNEL (TdT-mediated dUTP-biotin nick end labeling method) stain. Pathological changes of vessels and neural tissue around the area of necrosis were examined. Three months after irradiation, TUNEL-positive oligodendrocytes were seen scattered in the white matter or the radiated field, and after 6 months, these changes extended around the radiating field, but vessels and neurons appeared to be intact. Two years after irradiation, massive necrosis had occurred in the radiated area. Thickness and fibrinoid degeneration of the vessel walls were evident in the area around the necrosis. These vessel changes were recognized in the zone of the 40 Gy radiated region. TUNEL-positive oligodendrocytes were also observed around the necrosis, and were scattered in the white matter and corpus callosum over the region of vascular changes. These findings suggested the following: In the later period after irradiation, oligodendrocytes in the peripheral zone of necrosis are damaged by ischemia and edema, which are caused by vascular changes. TUNEL-positive oligodendrocytes which exsisted in the white matter and corpus callosum distal to the radiated area may exhibit development of serial damage of oligodendrocytes in those regions. (author)

  8. Lipopolysaccharide Associates with Amyloid Plaques, Neurons and Oligodendrocytes in Alzheimer’s Disease Brain: A Review

    Directory of Open Access Journals (Sweden)

    Xinhua Zhan

    2018-02-01

    Full Text Available This review proposes that lipopolysaccharide (LPS, found in the wall of all Gram-negative bacteria could play a role in causing sporadic Alzheimer’s disease (AD. This is based in part upon recent studies showing that: Gram-negative E. coli bacteria can form extracellular amyloid; bacterial-encoded 16S rRNA is present in all human brains with over 70% being Gram-negative bacteria; ultrastructural analyses have shown microbes in erythrocytes of AD patients; blood LPS levels in AD patients are 3-fold the levels in control; LPS combined with focal cerebral ischemia and hypoxia produced amyloid-like plaques and myelin injury in adult rat cortex. Moreover, Gram-negative bacterial LPS was found in aging control and AD brains, though LPS levels were much higher in AD brains. In addition, LPS co-localized with amyloid plaques, peri-vascular amyloid, neurons, and oligodendrocytes in AD brains. Based upon the postulate LPS caused oligodendrocyte injury, degraded Myelin Basic Protein (dMBP levels were found to be much higher in AD compared to control brains. Immunofluorescence showed that the dMBP co-localized with β amyloid (Aβ and LPS in amyloid plaques in AD brain, and dMBP and other myelin molecules were found in the walls of vesicles in periventricular White Matter (WM. These data led to the hypothesis that LPS acts on leukocyte and microglial TLR4-CD14/TLR2 receptors to produce NFkB mediated increases of cytokines which increase Aβ levels, damage oligodendrocytes and produce myelin injury found in AD brain. Since Aβ1–42 is also an agonist for TLR4 receptors, this could produce a vicious cycle that accounts for the relentless progression of AD. Thus, LPS, the TLR4 receptor complex, and Gram-negative bacteria might be treatment or prevention targets for sporadic AD.

  9. Molecular Neuropathology of Astrocytes and Oligodendrocytes in Alcohol Use Disorders

    Directory of Open Access Journals (Sweden)

    José J. Miguel-Hidalgo

    2018-03-01

    Full Text Available Postmortem studies reveal structural and molecular alterations of astrocytes and oligodendrocytes in both the gray and white matter (GM and WM of the prefrontal cortex (PFC in human subjects with chronic alcohol abuse or dependence. These glial cellular changes appear to parallel and may largely explain structural and functional alterations detected using neuroimaging techniques in subjects with alcohol use disorders (AUDs. Moreover, due to the crucial roles of astrocytes and oligodendrocytes in neurotransmission and signal conduction, these cells are very likely major players in the molecular mechanisms underpinning alcoholism-related connectivity disturbances between the PFC and relevant interconnecting brain regions. The glia-mediated etiology of alcohol-related brain damage is likely multifactorial since metabolic, hormonal, hepatic and hemodynamic factors as well as direct actions of ethanol or its metabolites have the potential to disrupt distinct aspects of glial neurobiology. Studies in animal models of alcoholism and postmortem human brains have identified astrocyte markers altered in response to significant exposures to ethanol or during alcohol withdrawal, such as gap-junction proteins, glutamate transporters or enzymes related to glutamate and gamma-aminobutyric acid (GABA metabolism. Changes in these proteins and their regulatory pathways would not only cause GM neuronal dysfunction, but also disturbances in the ability of WM axons to convey impulses. In addition, alcoholism alters the expression of astrocyte and myelin proteins and of oligodendrocyte transcription factors important for the maintenance and plasticity of myelin sheaths in WM and GM. These changes are concomitant with epigenetic DNA and histone modifications as well as alterations in regulatory microRNAs (miRNAs that likely cause profound disturbances of gene expression and protein translation. Knowledge is also available about interactions between astrocytes and

  10. Cytoskeletal Linker Protein Dystonin Is Not Critical to Terminal Oligodendrocyte Differentiation or CNS Myelination.

    Directory of Open Access Journals (Sweden)

    Samantha F Kornfeld

    Full Text Available Oligodendrocyte differentiation and central nervous system myelination require massive reorganization of the oligodendrocyte cytoskeleton. Loss of specific actin- and tubulin-organizing factors can lead to impaired morphological and/or molecular differentiation of oligodendrocytes, resulting in a subsequent loss of myelination. Dystonin is a cytoskeletal linker protein with both actin- and tubulin-binding domains. Loss of function of this protein results in a sensory neuropathy called Hereditary Sensory Autonomic Neuropathy VI in humans and dystonia musculorum in mice. This disease presents with severe ataxia, dystonic muscle and is ultimately fatal early in life. While loss of the neuronal isoforms of dystonin primarily leads to sensory neuron degeneration, it has also been shown that peripheral myelination is compromised due to intrinsic Schwann cell differentiation abnormalities. The role of this cytoskeletal linker in oligodendrocytes, however, remains unclear. We sought to determine the effects of the loss of neuronal dystonin on oligodendrocyte differentiation and central myelination. To address this, primary oligodendrocytes were isolated from a severe model of dystonia musculorum, Dstdt-27J, and assessed for morphological and molecular differentiation capacity. No defects could be discerned in the differentiation of Dstdt-27J oligodendrocytes relative to oligodendrocytes from wild-type littermates. Survival was also compared between Dstdt-27J and wild-type oligodendrocytes, revealing no significant difference. Using a recently developed migration assay, we further analysed the ability of primary oligodendrocyte progenitor cell motility, and found that Dstdt-27J oligodendrocyte progenitor cells were able to migrate normally. Finally, in vivo analysis of oligodendrocyte myelination was done in phenotype-stage optic nerve, cerebral cortex and spinal cord. The density of myelinated axons and g-ratios of Dstdt-27J optic nerves was normal, as

  11. A novel concept for increasing the peak sensitivity of LIGO by detuning the arm cavities

    International Nuclear Information System (INIS)

    Hild, S; Freise, A

    2007-01-01

    We introduce a concept that uses detuned arm cavities to increase the shot-noise-limited sensitivity of LIGO without increasing the light power inside the arm cavities. Numerical simulations show an increased sensitivity between 125 and 400 Hz, with a maximal improvement of about 80% around 225 Hz, while the sensitivity above 400 Hz is decreased. Furthermore, our concept is found to give a sensitivity similar to that of a conventional RSE configuration with a signal-recycling mirror of moderate reflectivity. In the near future detuned arm cavities might be a beneficial alternative to RSE, due to the potentially less hardware-intensive implementation of the proposed concept

  12. Increased mitochondrial substrate sensitivity in skeletal muscle of patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Larsen, S; Stride, N; Hey-Mogensen, Martin

    2011-01-01

    AIMS/HYPOTHESIS: Mitochondrial respiration has been linked to insulin resistance. We studied mitochondrial respiratory capacity and substrate sensitivity in patients with type 2 diabetes (patients), and obese and lean control participants. METHODS: Mitochondrial respiration was measured.......4). Substrate sensitivity for octanoyl-carnitine did not differ between groups. CONCLUSIONS/INTERPRETATION: Increased mitochondrial substrate sensitivity is seen in skeletal muscle from type 2 diabetic patients and is confined to non-lipid substrates. Respiratory capacity per mitochondrion is not decreased...... and maximal oxygen uptake (VO2) were also determined. Insulin sensitivity was determined with the isoglycaemic-hyperinsulinaemic clamp technique. RESULTS: Insulin sensitivity was different (p

  13. mTOR: A Link from the Extracellular Milieu to Transcriptional Regulation of Oligodendrocyte Development

    Directory of Open Access Journals (Sweden)

    Teresa L. Wood

    2013-02-01

    Full Text Available Oligodendrocyte development is controlled by numerous extracellular signals that regulate a series of transcription factors that promote the differentiation of oligodendrocyte progenitor cells to myelinating cells in the central nervous system. A major element of this regulatory system that has only recently been studied is the intracellular signalling from surface receptors to transcription factors to down-regulate inhibitors and up-regulate inducers of oligodendrocyte differentiation and myelination. The current review focuses on one such pathway: the mTOR (mammalian target of rapamycin pathway, which integrates signals in many cell systems and induces cell responses including cell proliferation and cell differentiation. This review describes the known functions of mTOR as they relate to oligodendrocyte development, and its recently discovered impact on oligodendrocyte differentiation and myelination. A potential model for its role in oligodendrocyte development is proposed.

  14. Oligodendrocyte Injury and Pathogenesis of HIV-1-Associated Neurocognitive Disorders

    Directory of Open Access Journals (Sweden)

    Han Liu

    2016-07-01

    Full Text Available Oligodendrocytes wrap neuronal axons to form myelin, an insulating sheath which is essential for nervous impulse conduction along axons. Axonal myelination is highly regulated by neuronal and astrocytic signals and the maintenance of myelin sheaths is a very complex process. Oligodendrocyte damage can cause axonal demyelination and neuronal injury, leading to neurological disorders. Demyelination in the cerebrum may produce cognitive impairment in a variety of neurological disorders, including human immunodeficiency virus type one (HIV-1-associated neurocognitive disorders (HAND. Although the combined antiretroviral therapy has markedly reduced the incidence of HIV-1-associated dementia, a severe form of HAND, milder forms of HAND remain prevalent even when the peripheral viral load is well controlled. HAND manifests as a subcortical dementia with damage in the brain white matter (e.g., corpus callosum, which consists of myelinated axonal fibers. How HIV-1 brain infection causes myelin injury and resultant white matter damage is an interesting area of current HIV research. In this review, we tentatively address recent progress on oligodendrocyte dysregulation and HAND pathogenesis.

  15. Sensitive silicon PIN-diode dosimeter for fast neutrons and method to control and increase its sensitivity

    International Nuclear Information System (INIS)

    Swinehart, P.R.; Swartz, J.M.

    1978-01-01

    With the personnel dosimeter, applicable e.g. in medicine, a dose of 0.1 rad for neutrons with an energy greater than 10 keV can be detected. In the range between 0.1 and 20 rad sensitivity is increased to 5 mV/rad. This sensitivity can be achieved by distributing the mass of the semiconductor material of the diode or equal to four times the reciprocal base width. Appropriate dimensions are 750 μm for the edge length of the end surface resp. diameter and 750 μm up to 5000 μm for the base width. (DG) [de

  16. Increased spontaneous mitotic segregation in MMS-sensitive mutants of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Prakash, S.; Prakash, L.

    1977-01-01

    Methyl methanesulfonate (MMS)-sensitive mutants of Saccharomyces cerevisiae belonging to four different complementation groups, when homozygous, increase the rate of spontaneous mitotic segregation to canavanine resistance from heterozygous sensitive (can/sup r//+) diploids by 13- to 170-fold. The mms8-1 mutant is MMS and x-ray sensitive and increases the rate of spontaneous mitotic segregation 170-fold. The mms9-1 and mms13-1 mutants are sensitive to x rays and uv, respectively, in addition to MMS, and increase the rate of spontaneous mitotic segregation by 13-fold and 85-fold, respectively. The mutant mms21-1 is sensitive to MMS, x rays and uv and increases the rate of spontaneous mitotic segregation 23-fold

  17. Oligodendrocyte Development in the Absence of Their Target Axons In Vivo.

    Directory of Open Access Journals (Sweden)

    Rafael Almeida

    Full Text Available Oligodendrocytes form myelin around axons of the central nervous system, enabling saltatory conduction. Recent work has established that axons can regulate certain aspects of oligodendrocyte development and myelination, yet remarkably oligodendrocytes in culture retain the ability to differentiate in the absence of axons and elaborate myelin sheaths around synthetic axon-like substrates. It remains unclear the extent to which the life-course of oligodendrocytes requires the presence of, or signals derived from axons in vivo. In particular, it is unclear whether the specific axons fated for myelination regulate the oligodendrocyte population in a living organism, and if so, which precise steps of oligodendrocyte-cell lineage progression are regulated by target axons. Here, we use live-imaging of zebrafish larvae carrying transgenic reporters that label oligodendrocyte-lineage cells to investigate which aspects of oligodendrocyte development, from specification to differentiation, are affected when we manipulate the target axonal environment. To drastically reduce the number of axons targeted for myelination, we use a previously identified kinesin-binding protein (kbp mutant, in which the first myelinated axons in the spinal cord, reticulospinal axons, do not fully grow in length, creating a region in the posterior spinal cord where most initial targets for myelination are absent. We find that a 73% reduction of reticulospinal axon surface in the posterior spinal cord of kbp mutants results in a 27% reduction in the number of oligodendrocytes. By time-lapse analysis of transgenic OPC reporters, we find that the reduction in oligodendrocyte number is explained by a reduction in OPC proliferation and survival. Interestingly, OPC specification and migration are unaltered in the near absence of normal axonal targets. Finally, we find that timely differentiation of OPCs into oligodendrocytes does not depend at all on the presence of target axons

  18. Increased light harvesting in dye-sensitized solar cells with energy relay dyes

    KAUST Repository

    Hardin, Brian E.

    2009-06-21

    Conventional dye-sensitized solar cells have excellent charge collection efficiencies, high open-circuit voltages and good fill factors. However, dye-sensitized solar cells do not completely absorb all of the photons from the visible and near-infrared domain and consequently have lower short-circuit photocurrent densities than inorganic photovoltaic devices. Here, we present a new design where high-energy photons are absorbed by highly photoluminescent chromophores unattached to the titania and undergo Förster resonant energy transfer to the sensitizing dye. This novel architecture allows for broader spectral absorption, an increase in dye loading, and relaxes the design requirements for the sensitizing dye. We demonstrate a 26% increase in power conversion efficiency when using an energy relay dye (PTCDI) with an organic sensitizing dye (TT1). We estimate the average excitation transfer efficiency in this system to be at least 47%. This system offers a viable pathway to develop more efficient dye-sensitized solar cells.

  19. Differential proliferation rhythm of neural progenitor and oligodendrocyte precursor cells in the young adult hippocampus.

    Directory of Open Access Journals (Sweden)

    Yoko Matsumoto

    Full Text Available Oligodendrocyte precursor cells (OPCs are a unique type of glial cells that function as oligodendrocyte progenitors while constantly proliferating in the normal condition from rodents to humans. However, the functional roles they play in the adult brain are largely unknown. In this study, we focus on the manner of OPC proliferation in the hippocampus of the young adult mice. Here we report that there are oscillatory dynamics in OPC proliferation that differ from neurogenesis in the subgranular zone (SGZ; the former showed S-phase and M-phase peaks in the resting and active periods, respectively, while the latter only exhibited M-phase peak in the active period. There is coincidence between different modes of proliferation and expression of cyclin proteins that are crucial for cell cycle; cyclin D1 is expressed in OPCs, while cyclin D2 is observed in neural stem cells. Similar to neurogenesis, the proliferation of hippocampal OPCs was enhanced by voluntary exercise that leads to an increase in neuronal activity in the hippocampus. These data suggest an intriguing control of OPC proliferation in the hippocampus.

  20. Differential local tissue permissiveness influences the final fate of GPR17-expressing oligodendrocyte precursors in two distinct models of demyelination.

    Science.gov (United States)

    Coppolino, Giusy T; Marangon, Davide; Negri, Camilla; Menichetti, Gianluca; Fumagalli, Marta; Gelosa, Paolo; Dimou, Leda; Furlan, Roberto; Lecca, Davide; Abbracchio, Maria P

    2018-05-01

    Promoting remyelination is recognized as a novel strategy to foster repair in neurodegenerative demyelinating diseases, such as multiple sclerosis. In this respect, the receptor GPR17, recently emerged as a new target for remyelination, is expressed by early oligodendrocyte precursors (OPCs) and after a certain differentiation stage it has to be downregulated to allow progression to mature myelinating oligodendrocytes. Here, we took advantage of the first inducible GPR17 reporter mouse line (GPR17-iCreER T2 xCAG-eGFP mice) allowing to follow the final fate of GPR17 + cells by tamoxifen-induced GFP-labeling to unveil the destiny of these cells in two demyelination models: experimental autoimmune encephalomyelitis (EAE), characterized by marked immune cell activation and inflammation, and cuprizone induced demyelination, where myelin dysfunction is achieved by a toxic insult. In both models, demyelination induced a strong increase of fluorescent GFP + cells at damaged areas. However, only in the cuprizone model reacting GFP + cells terminally differentiated to mature oligodendrocytes, thus contributing to remyelination. In EAE, GFP + cells were blocked at immature stages and never became myelinating oligodendrocytes. We suggest these strikingly distinct fates be due to different permissiveness of the local CNS environment. Based on previously reported GPR17 activation by emergency signals (e.g., Stromal Derived Factor-1), we propose that a marked inflammatory milieu, such as that reproduced in EAE, induces GPR17 overactivation resulting in impaired downregulation, untimely and prolonged permanence in OPCs, leading, in turn, to differentiation blockade. Combined treatments with remyelinating agents and anti-inflammatory drugs may represent new potential adequate strategies to halt neurodegeneration and foster recovery. © 2018 The Authors GLIA Published by Wiley Periodicals, Inc.

  1. Diosgenin promotes oligodendrocyte progenitor cell differentiation through estrogen receptor-mediated ERK1/2 activation to accelerate remyelination.

    Science.gov (United States)

    Xiao, Lin; Guo, Dazhi; Hu, Chun; Shen, Weiran; Shan, Lei; Li, Cui; Liu, Xiuyun; Yang, Wenjing; Zhang, Weidong; He, Cheng

    2012-07-01

    Differentiation of oligodendrocyte progenitor cells (OPCs) into mature oligodendrocytes is a prerequisite for remyelination after demyelination, and impairment of this process is suggested to be a major reason for remyelination failure. Diosgenin, a plant-derived steroid, has been implicated for therapeutic use in many diseases, but little is known about its effect on the central nervous system. In this study, using a purified rat OPC culture model, we show that diosgenin significantly and specifically promotes OPC differentiation without affecting the viability, proliferation, or migration of OPC. Interestingly, the effect of diosgenin can be blocked by estrogen receptor (ER) antagonist ICI 182780 but not by glucocorticoid and progesterone receptor antagonist RU38486, nor by mineralocorticoid receptor antagonist spirolactone. Moreover, it is revealed that both ER-alpha and ER-beta are expressed in OPC, and diosgenin can activate the extracellular signal-regulated kinase 1/2 (ERK1/2) in OPC via ER. The pro-differentiation effect of diosgenin can also be obstructed by the ERK inhibitor PD98059. Furthermore, in the cuprizone-induced demyelination model, it is demonstrated that diosgenin administration significantly accelerates/enhances remyelination as detected by Luxol fast blue stain, MBP immunohistochemistry and real time RT-PCR. Diosgenin also increases the number of mature oligodendrocytes in the corpus callosum while it does not affect the number of OPCs. Taking together, our results suggest that diosgenin promotes the differentiation of OPC into mature oligodendrocyte through an ER-mediated ERK1/2 activation pathway to accelerate remyelination, which implicates a novel therapeutic usage of this steroidal natural product in demyelinating diseases such as multiple sclerosis (MS). Copyright © 2012 Wiley Periodicals, Inc.

  2. High-content phenotypic screening and triaging strategy to identify small molecules driving oligodendrocyte progenitor cell differentiation.

    Science.gov (United States)

    Peppard, Jane V; Rugg, Catherine A; Smicker, Matthew A; Powers, Elaine; Harnish, Erica; Prisco, Joy; Cirovic, Dragan; Wright, Paul S; August, Paul R; Chandross, Karen J

    2015-03-01

    Multiple Sclerosis is a demyelinating disease of the CNS and the primary cause of neurological disability in young adults. Loss of myelinating oligodendrocytes leads to neuronal dysfunction and death and is an important contributing factor to this disease. Endogenous oligodendrocyte precursor cells (OPCs), which on differentiation are responsible for replacing myelin, are present in the adult CNS. As such, therapeutic agents that can stimulate OPCs to differentiate and remyelinate demyelinated axons under pathologic conditions may improve neuronal function and clinical outcome. We describe the details of an automated, cell-based, morphometric-based, high-content screen that is used to identify small molecules eliciting the differentiation of OPCs after 3 days. Primary screening was performed using rat CG-4 cells maintained in culture conditions that normally support a progenitor cell-like state. From a library of 73,000 diverse small molecules within the Sanofi collection, 342 compounds were identified that increased OPC morphological complexity as an indicator of oligodendrocyte maturation. Subsequent to the primary high-content screen, a suite of cellular assays was established that identified 22 nontoxic compounds that selectively stimulated primary rat OPCs but not C2C12 muscle cell differentiation. This rigorous triaging yielded several chemical series for further expansion and bio- or cheminformatics studies, and their compelling biological activity merits further investigation. © 2014 Society for Laboratory Automation and Screening.

  3. Ethosome formulations of known contact allergens can increase their sensitizing capacity

    DEFF Research Database (Denmark)

    Madsen, Jacob Torp; Vogel, Stefan; Karlberg, Ann-Therese

    2010-01-01

    a modified local lymph node assay (LLNA). The results were compared with those for the same allergens in similar concentrations and vehicles without ethosomes. Both allergens encapsulated in 200-300 nm ethosomes showed increased sensitizing potency in the murine assay compared with the allergens in solution...... without ethosomes. Empty ethosomes were non-sensitizing according to LLNA. The clinical implications are so far uncertain, but increased allergenicity from ethosome-encapsulated topical product ingredients cannot be excluded....

  4. Radioactivity measurements for determining bacterial increase and sensitivity to antibiotics. [/sup 14/C tracer

    Energy Technology Data Exchange (ETDEWEB)

    Jaszsagi-Nagy, E [Magyar Tudomanyos Akademia, Budapest; Lendvay, J [Orszagos Frederic Joliot-Curie Sugarbiologiai es Sugaregeszsegugyi Kutato Intezet, Budapest (Hungary)

    1976-01-01

    The authors elaborated a sensitive and objective measuring method for determining the bacteria increase in biological material and the sensitivity to antibiotics. When /sup 14/C glucose is added to the medium as the single source of sugar, the respiratory carbon dioxide formed by the bacteria reflects the rate of increase. The released /sup 14/C dioxide can be measured continuously without loss to the environment and the degree of bacterial infection and the antibiotic activity, respectively, can be determined.

  5. Involvement of ER Stress in Dysmyelination of Pelizaeus-Merzbacher Disease with PLP1 Missense Mutations Shown by iPSC-Derived Oligodendrocytes

    Directory of Open Access Journals (Sweden)

    Yuko Numasawa-Kuroiwa

    2014-05-01

    Full Text Available Pelizaeus-Merzbacher disease (PMD is a form of X-linked leukodystrophy caused by mutations in the proteolipid protein 1 (PLP1 gene. Although PLP1 proteins with missense mutations have been shown to accumulate in the rough endoplasmic reticulum (ER in disease model animals and cell lines transfected with mutant PLP1 genes, the exact pathogenetic mechanism of PMD has not previously been clarified. In this study, we established induced pluripotent stem cells (iPSCs from two PMD patients carrying missense mutation and differentiated them into oligodendrocytes in vitro. In the PMD iPSC-derived oligodendrocytes, mislocalization of mutant PLP1 proteins to the ER and an association between increased susceptibility to ER stress and increased numbers of apoptotic oligodendrocytes were observed. Moreover, electron microscopic analysis demonstrated drastically reduced myelin formation accompanied by abnormal ER morphology. Thus, this study demonstrates the involvement of ER stress in pathogenic dysmyelination in the oligodendrocytes of PMD patients with the PLP1 missense mutation.

  6. Cough reflex sensitivity is increased in the guinea pig model of allergic rhinitis.

    Science.gov (United States)

    Brozmanova, M; Plevkova, J; Tatar, M; Kollarik, M

    2008-12-01

    Increased cough reflex sensitivity is found in patients with allergic rhinitis and may contribute to cough caused by rhinitis. We have reported that cough to citric acid is enhanced in the guinea pig model of allergic rhinitis. Here we address the hypothesis that the cough reflex sensitivity is increased in this model. The data from our previous studies were analyzed for the cough reflex sensitivity. The allergic inflammation in the nose was induced by repeated intranasal instillations of ovalbumin in the ovalbumin-sensitized guinea pigs. Cough was induced by inhalation of doubling concentrations of citric acid (0.05-1.6 M). Cough threshold was defined as the lowest concentration of citric acid causing two coughs (C2, expressed as geometric mean [95% confidence interval]). We found that the cough threshold was reduced in animals with allergic rhinitis. C2 was 0.5 M [0.36-0.71 M] and 0.15 M [0.1-0.23 M] prior and after repeated intranasal instillations of ovalbumin, respectively, Preflex sensitivity. C2 was reduced in animals with allergic rhinitis treated orally with vehicle (0.57 M [0.28-1.1] vs. 0.09 M [0.04-0.2 M], Preflex sensitivity is increased in the guinea pig model of allergic rhinitis. Our results suggest that guinea pig is a suitable model for mechanistic studies of increased cough reflex sensitivity in rhinitis.

  7. Prior AICAR stimulation increases insulin sensitivity in mouse skeletal muscle in an AMPK-dependent manner

    DEFF Research Database (Denmark)

    Kjøbsted, Rasmus; Treebak, Jonas Thue; Fentz, Joachim

    2015-01-01

    Acute exercise increases glucose uptake in skeletal muscle by an insulin-independent mechanism. In the period after exercise insulin sensitivity to increase glucose uptake is enhanced. The molecular mechanisms underpinning this phenomenon are poorly understood, but appear to involve an increased ...

  8. On the biogenesis of the myelin sheath : Cognate polarized trafficking pathways in oligodendrocytes

    NARCIS (Netherlands)

    de Vries, H; Hoekstra, D

    2000-01-01

    Oligodendrocytes, the myelinating cells of the central nervous system, are capable of transporting vast quantities of proteins and of lipids, In particular galactosphingolipids, to the myelin sheath. The sheath is continuous with the plasma membrane of the oligodendrocyte, but the composition of

  9. Enrichment of rat oligodendrocyte progenitor cells by magnetic cell sorting

    Czech Academy of Sciences Publication Activity Database

    Čížková, D.; Čížek, M.; Nagyová, M.; Slovinská, L.; Novotná, I.; Jergová, S.; Radoňák, J.; Hlučilová, Jana; Vanický, I.

    2009-01-01

    Roč. 184, č. 1 (2009), s. 88-94 ISSN 0165-0270 R&D Projects: GA MŠk MEB0808108 Grant - others:Agentúra na podporu výskumu a vývoja(SK) APVV-51002105; Agentúra na podporu výskumu a vývoja(SK) APVV SK-CZ-0045-07 Institutional research plan: CEZ:AV0Z50450515 Keywords : Oligodendrocytes progenitors Lineage * Magnetic separation Subject RIV: FH - Neurology Impact factor: 2.295, year: 2009

  10. Androgens increase lws opsin expression and red sensitivity in male three-spined sticklebacks.

    Directory of Open Access Journals (Sweden)

    Yi Ta Shao

    Full Text Available Optomotor studies have shown that three-spined sticklebacks (Gasterosteus aculeatus are more sensitive to red during summer than winter, which may be related to the need to detect the red breeding colour of males. This study aimed to determine whether this change of red light sensitivity is specifically related to reproductive physiology. The mRNA levels of opsin genes were examined in the retinae of sexually mature and immature fish, as well as in sham-operated males, castrated control males, or castrated males implanted with androgen 11-ketoandrostenedione (11 KA, maintained under stimulatory (L16:D8 or inhibitory (L8:D16 photoperiods. In both sexes, red-sensitive opsin gene (lws mRNA levels were higher in sexually mature than in immature fish. Under L16:D8, lws mRNA levels were higher in intact than in castrated males, and were up-regulated by 11 KA treatment in castrated males. Moreover, electroretinogram data confirmed that sexual maturation resulted in higher relative red spectral sensitivity. Mature males under L16:D8 were more sensitive to red light than males under L8:D16. Red light sensitivity under L16:D8 was diminished by castration, but increased by 11 KA treatment. Thus, in sexually mature male sticklebacks, androgen is a key factor in enhancing sensitivity to red light via regulation of opsin gene expression. This is the first study to demonstrate that sex hormones can regulate spectral vision sensitivity.

  11. Niacin Skin Sensitivity Is Increased in Adolescents at Ultra-High Risk for Psychosis.

    Directory of Open Access Journals (Sweden)

    Gregor E Berger

    Full Text Available Most studies provide evidence that the skin flush response to nicotinic acid (niacin stimulation is impaired in schizophrenia. However, only little is known about niacin sensitivity in the ultra-high risk (UHR phase of psychotic disorders.We compared visual ratings of niacin sensitivity between adolescents at UHR for psychosis according to the one year transition outcome (UHR-T n = 11; UHR-NT n = 55 with healthy controls (HC n = 25 and first episode schizophrenia patients (FEP n = 25 treated with atypical antipsychotics.Contrary to our hypothesis niacin sensitivity of the entire UHR group was not attenuated, but significantly increased compared to the HC group, whereas no difference could be found between the UHR-T and UHR-NT groups. As expected, niacin sensitivity of FEP was attenuated compared to HC group. In UHR individuals niacin sensitivity was inversely correlated with omega-6 and -9 fatty acids (FA, but positively correlated with phospholipase A2 (inPLA2 activity, a marker of membrane lipid repair/remodelling.Increased niacin sensitivity in UHR states likely indicates an impaired balance of eicosanoids and omega-6/-9 FA at a membrane level. Our findings suggest that the emergence of psychosis is associated with an increased mobilisation of eicosanoids prior to the transition to psychosis possibly reflecting a "pro-inflammatory state", whereas thereafter eicosanoid mobilisation seems to be attenuated. Potential treatment implications for the UHR state should be further investigated.

  12. Omalizumab Increases the Intrinsic Sensitivity of Human Basophils to IgE-Mediated Stimulation

    Science.gov (United States)

    MacGlashan, Donald; Saini, Sarbjit S.

    2013-01-01

    Background Treatment of allergic patients with omalizumab results in a paradoxical increase in their basophil histamine release response, ex vivo, to crosslinking anti-IgE antibody. It is not known whether this change in response is associated with an increase in intrinsic cellular sensitivity, which would be a paradoxical response. Objective To determine if the increase in response to anti-IgE Ab is a reflection of an increased cellular sensitivity, expressed as molecules of antigen-specific IgE per basophil required to produce a 50% of maximal response. Methods Patients were treated with omalizumab or placebo agent for 12 weeks (NCT01003301 at ClinicalTrials.gov) and the metric of basophil sensitivity was assessed at 4 time points, baseline, 6–8 weeks, 12 weeks (after which treatment stopped) and 24 weeks (12 weeks after the end of treatment). Results As observed previously, treatment with omalizumab resulted in a marked increase in the maximal histamine release induced by crosslinking anti-IgE Ab. This change was accompanied by a marked shift in intrinsic basophil sensitivity, ranging from 2.5 to 125 fold, with an average of 6 fold at the midpoint of the treatment to 12 fold after 12 weeks. The magnitude of the increase in cellular sensitivity was inversely related to the starting sensitivity or the starting maximum histamine release. The increased cellular sensitivity also occurred when using LTC4 secretion as a metric of the basophil response. 12 weeks after the end of treatment, cellular sensitivity was found to shift towards the baseline level although the return to baseline was not yet complete at this time point. Conclusions Treatment with omalizumab results in a markedly increased sensitivity of basophils to IgE-mediated stimulation, in terms of the number of IgE molecules required to produce a given response. These results provide a better quantitative sense of the phenotypic change that occurs in basophils during omalizumab treatment which has

  13. Inhibition of Notch1 increases paclitaxel sensitivity to human breast cancer

    Institute of Scientific and Technical Information of China (English)

    Zhao Li; Ma Yongjie; Gu Feng; Fu Li

    2014-01-01

    Background Paclitaxel (PAC) is the first-line chemotherapy drug for most breast cancer patients,but clinical studies showed that some breast cancer patients were insensitive to PAC,which led to chemotherapy failure.It was reported that Notch1 signaling participated in drug resistance of breast cancer.Here,we show whether Notch1 expression is related to PAC sensitivity of breast cancer.Methods We employed Notch1 siRNA and Notch1 inhibitor,N-[N-(3,5-difluorophenacetyl)-1-alanyl]-S-phenylglycine t-butylester (DAPT),to down regulate Notch1 expression in human breast cancer cells MDA-MB-231,and detected the inhibition effect by Western blotting and reverse trans cription-polymerase chain reaction,respectively.After 24 hours exposure to different concentration of PAC (0,1,5,10,15,20,and 25 μg/ml),the viability of the control group and experimental group cells was tested by MTT.We also examined the expression of Notch1 in PAC sensitive and nonsensitive breast cancer patients,respectively by immunohistochemistry (IHC).The PAC sensitivity of breast cancer patients were identified by collagen gel droplet embedded culture-drug sensitivity test (CD-DST).Results Down regulation of Notch1 expression by Notch1siRNA interference or Notch1 inhibitor increased the PAC sensitivity in MDA-MB-231 cells (P <0.05).Also,the expression of Notch1 in PAC sensitive patients was much lower than that of PAC non-sensitive patients (P <0.01).Conclusion Notch1 expression has an effect on PAC sensitivity in breast cancer patients,and the inhibition of Notch1 increases paclitaxel sensitivity to human breast cancer.

  14. Increased Angiotensin II Sensitivity Contributes to Microvascular Dysfunction in Women Who Have Had Preeclampsia.

    Science.gov (United States)

    Stanhewicz, Anna E; Jandu, Sandeep; Santhanam, Lakshmi; Alexander, Lacy M

    2017-08-01

    Women who have had preeclampsia have increased cardiovascular disease risk; however, the mechanism(s) responsible for this association remain unclear. Microvascular damage sustained during a preeclamptic pregnancy may persist postpartum. The putative mechanisms mediating this dysfunction include a reduction in NO-dependent dilation and an increased sensitivity to angiotensin II. In this study, we evaluated endothelium-dependent dilation, angiotensin II sensitivity, and the therapeutic effect of angiotensin II receptor blockade (losartan) on endothelium-dependent dilation in vivo in the microvasculature of women with a history of preeclampsia (n=12) and control women who had a healthy pregnancy (n=12). We hypothesized that preeclampsia would have (1) reduced endothelium-dependent dilation, (2) reduced NO-mediated dilation, and (3) increased sensitivity to angiotensin II. We further hypothesized that localized losartan would increase endothelium-dependent vasodilation in preeclampsia. We assessed microvascular endothelium-dependent vasodilator function by measurement of cutaneous vascular conductance responses to graded infusion of acetylcholine (acetylcholine; 10 -7 -102 mmol/L) and a standardized local heating protocol in control sites and sites treated with 15 mmol/L L-NAME ( N G -nitro-l-arginine methyl ester; NO-synthase inhibitor) or 43 µmol/L losartan. Further, we assessed microvascular vasoconstrictor sensitivity to angiotensin II (10 -20 -10 -4 mol/L). Preeclampsia had significantly reduced endothelium-dependent dilation (-0.3±0.5 versus -1.0±0.4 log EC50 ; P Preeclampsia also had augmented vasoconstrictor sensitivity to angiotensin II (-10.2±1.3 versus -8.3±0.5; P =0.006). Angiotensin II type I receptor inhibition augmented endothelium-dependent vasodilation and NO-dependent dilation in preeclampsia but had no effect in healthy pregnancy. These data suggest that women who have had preeclampsia have persistent microvascular dysfunction postpartum

  15. Increase in pollen sensitization in Swedish adults and protective effect of keeping animals in childhood.

    Science.gov (United States)

    Bjerg, A; Ekerljung, L; Eriksson, J; Näslund, J; Sjölander, S; Rönmark, E; Dahl, Å; Holmberg, K; Wennergren, G; Torén, K; Borres, M P; Lötvall, J; Lundbäck, B

    2016-10-01

    To date, most studies of the 'allergy epidemic' have been based on self-reported data. There is still limited knowledge on time trends in allergic sensitization, especially among adults. To study allergic sensitization, its risk factors and time trends in prevalence. Within West Sweden Asthma Study (WSAS), a population-based sample of 788 adults (17-60 years) underwent skin prick tests (SPTs) for 11 aeroallergens 2009-2012. Specific IgE was analysed in 750 of the participants. Those aged 20-46 years (n = 379) were compared with the European Community Respiratory Health Survey sample aged 20-46 year from the same area (n = 591) in 1991-1992. Among those aged 20-46 years, the prevalence of positive SPT to pollen increased, timothy from 17.1% to 29.0% (P < 0.001) and birch from 15.6% to 23.7% (P = 0.002) between 1991-1992 and 2009-2012. Measurements of specific IgE confirmed these increases. Prevalence of sensitization to all other tested allergens was unchanged. In the full WSAS sample aged 17-60 years, any positive SPT was seen in 41.9%, and the dominating sensitizers were pollen (34.3%), animals (22.8%) and mites (12.6%). Pollen sensitization was strongly associated with rhinitis, whereas indoor allergens were more associated with asthma. Growing up with livestock or furred pets decreased the risk of sensitization, adjusted odds ratio 0.53 (0.28-0.995) and 0.68 (0.47-0.98), respectively. Pollen sensitization has increased in Swedish adults since the early 1990s, while the prevalence of sensitization to other allergens has remained unchanged. This is one plausible explanation for the increase in rhinitis 1990-2008 in Swedish adults, during which time the prevalence of asthma, which is more associated with perennial allergens, was stable. Contact with animals in childhood seems to reduce the risk of sensitization well into adulthood. One major factor contributing to the rise in pollen allergy is a significant increase in levels of birch and grass pollen over the past

  16. Dynamics of oligodendrocyte responses to anterograde axonal (Wallerian) and terminal degeneration in normal and TNF-transgenic mice

    DEFF Research Database (Denmark)

    Drøjdahl, Nina; Fenger, Christina; Nielsen, Helle H

    2004-01-01

    degeneration and lesion-induced axonal sprouting in the hippocampal dentate gyrus in TNF-transgenic mice with the response in genetically normal mice. Transectioning of the entorhino-dentate perforant path axonal projection increased hippocampal TNF mRNA expression in both types of mice, but to significantly...... larger levels in the TNF-transgenics. At 5 days after axonal transection, numbers of oligodendrocytes and myelin basic protein (MBP) mRNA expression in the denervated dentate gyrus in TNF-transgenic mice had increased to the same extent as in nontransgenic littermates. At this time, transgenics showed...

  17. Skew Projection of Echo-Detected EPR Spectra for Increased Sensitivity and Resolution

    Science.gov (United States)

    Bowman, Michael K.; Krzyaniak, Matthew D.; Cruce, Alex A.; Weber, Ralph T.

    2013-01-01

    The measurement of EPR spectra during pulsed EPR experiments is commonly accomplished by recording the integral of the electron spin echo as the applied magnetic field is stepped through the spectrum. This approach to echo-detected EPR spectral measurement (ED-EPR) limits sensitivity and spectral resolution and can cause gross distortions in the resulting spectra because some of the information present in the electron spin echo is discarded in such measurements. However, Fourier Transformation of echo shapes measured at a series of magnetic field values followed by skew projection onto either a magnetic field or resonance frequency axis can increase both spectral resolution and sensitivity without the need to trade one against the other. Examples of skew-projected spectra with single crystals, glasses and powders show resolution improvements as large as a factor of seven with sensitivity increases of as much as a factor of five. PMID:23644351

  18. How big is the myelinating orchestra? Cellular diversity within the oligodendrocyte lineage: facts and hypotheses.

    Science.gov (United States)

    Tomassy, Giulio Srubek; Fossati, Valentina

    2014-01-01

    Since monumental studies from scientists like His, Ramón y Cajal, Lorente de Nó and many others have put down roots for modern neuroscience, the scientific community has spent a considerable amount of time, and money, investigating any possible aspect of the evolution, development and function of neurons. Today, the complexity and diversity of myriads of neuronal populations, and their progenitors, is still focus of extensive studies in hundreds of laboratories around the world. However, our prevalent neuron-centric perspective has dampened the efforts in understanding glial cells, even though their active participation in the brain physiology and pathophysiology has been increasingly recognized over the years. Among all glial cells of the central nervous system (CNS), oligodendrocytes (OLs) are a particularly specialized type of cells that provide fundamental support to neuronal activity by producing the myelin sheath. Despite their functional relevance, the developmental mechanisms regulating the generation of OLs are still poorly understood. In particular, it is still not known whether these cells share the same degree of heterogeneity of their neuronal companions and whether multiple subtypes exist within the lineage. Here, we will review and discuss current knowledge about OL development and function in the brain and spinal cord. We will try to address some specific questions: do multiple OL subtypes exist in the CNS? What is the evidence for their existence and those against them? What are the functional features that define an oligodendrocyte? We will end our journey by reviewing recent advances in human pluripotent stem cell differentiation towards OLs. This exciting field is still at its earliest days, but it is quickly evolving with improved protocols to generate functional OLs from different spatial origins. As stem cells constitute now an unprecedented source of human OLs, we believe that they will become an increasingly valuable tool for deciphering

  19. How big is the myelinating orchestra? Cellular diversity within the oligodendrocyte lineage: facts and hypotheses.

    Directory of Open Access Journals (Sweden)

    Giulio eSrubek Tomassy

    2014-07-01

    Full Text Available Since monumental studies from scientists like His, Ramón y Cajal, Lorente de Nó and many others have put down roots for modern neuroscience, the scientific community has spent a considerable amount of time, and money, investigating any aspect of the evolution, development and function of neurons. Today, the complexity and diversity of myriads of neuronal populations is still focus of extensive studies in hundreds of laboratories around the world. However, our prevalent neuron-centric perspective has dampened the efforts in understanding glial cells, even though their active participation in the brain physiology and pathophysiology has been increasingly recognized over the years. Among all glial cells of the central nervous system (CNS, oligodendrocytes (OLs are a particularly specialized type of cells that provide fundamental support to neuronal activity by producing the myelin sheath. Despite their functional relevance, the developmental mechanisms regulating the generation of OLs are still poorly understood. In particular, it is still not known whether these cells share the same degree of heterogeneity of their neuronal companions and whether multiple subtypes exist within the lineage. Here, we will review and discuss current knowledge about OL development and function in the brain and spinal cord. We will try to address some specific questions: do multiple OL subtypes exist in the CNS? What is the evidence for their existence and those against them? What are the functional features that define an oligodendrocyte? We will end our journey by reviewing recent advances in human pluripotent stem cell differentiation towards OLs. This exciting field is still at its earliest days, but it is quickly evolving with improved protocols to generate functional OLs from different spatial origins. As stem cells constitute now an unprecedented source of human OLs, we believe that they will become an increasingly valuable tool for deciphering the complexity

  20. Video-feedback intervention increases sensitive parenting in ethnic minority mothers: a randomized control trial.

    Science.gov (United States)

    Yagmur, Sengul; Mesman, Judi; Malda, Maike; Bakermans-Kranenburg, Marian J; Ekmekci, Hatice

    2014-01-01

    Using a randomized control trial design we tested the effectiveness of a culturally sensitive adaptation of the Video-feedback Intervention to promote Positive Parenting and Sensitive Discipline (VIPP-SD) in a sample of 76 Turkish minority families in the Netherlands. The VIPP-SD was adapted based on a pilot with feedback of the target mothers, resulting in the VIPP-TM (VIPP-Turkish Minorities). The sample included families with 20-47-month-old children with high levels of externalizing problems. Maternal sensitivity, nonintrusiveness, and discipline strategies were observed during pretest and posttest home visits. The VIPP-TM was effective in increasing maternal sensitivity and nonintrusiveness, but not in enhancing discipline strategies. Applying newly learned sensitivity skills in discipline situations may take more time, especially in a cultural context that favors more authoritarian strategies. We conclude that the VIPP-SD program and its video-feedback approach can be successfully applied in immigrant families with a non-Western cultural background, with demonstrated effects on parenting sensitivity and nonintrusiveness.

  1. Main features of detectors and isotopes to investigate double beta decay with increased sensitivity

    Science.gov (United States)

    Barabash, A. S.

    2018-03-01

    The current situation in double beta decay experiments, the characteristics of modern detectors and the possibility of increasing the sensitivity to neutrino mass in future experiments are discussed. The issue of the production and use of enriched isotopes in double beta decay experiments is discussed in addition.

  2. Increasing Early Childhood Preservice Teachers' Intercultural Sensitivity through the ABCs

    Science.gov (United States)

    Monroe, Lisa; Ruan, Jiening

    2018-01-01

    While the early childhood student population has become increasingly diverse in the U.S., its teaching force remains primarily European American. The diverse student population demands that early childhood educators possess intercultural sensitivity in order to teach their culturally diverse learners effectively. This study examined the…

  3. Moderate alcohol consumption increases insulin sensitivity and ADIPOQ expression in postmenopausal women: A randomised, crossover trial

    NARCIS (Netherlands)

    Joosten, M.M.; Beulens, J.W.J.; Kersten, S.; Hendriks, H.F.J.

    2008-01-01

    Aims/hypothesis: To determine whether 6 weeks of daily, moderate alcohol consumption increases expression of the gene encoding adiponectin (ADIPOQ) and plasma levels of the protein, and improves insulin sensitivity in postmenopausal women. Methods: In a randomised, open-label, crossover trial

  4. Increased Sensitivity to Proactive and Retroactive Interference in Amnestic Mild Cognitive Impairment: New Insights

    Science.gov (United States)

    Hanseeuw, Bernard J.; Seron, Xavier; Ivanoiu, Adrian

    2012-01-01

    Background: Increased sensitivity to proactive (PI) and retroactive (RI) interference has been observed in amnestic mild cognitive impairment (aMCI). PI and RI are often explained as being the result of a response competition mechanism. However, patients with aMCI are supposed to suffer mostly from encoding deficits. We hypothesized that in aMCI…

  5. Increasing amperometric biosensor sensitivity by length fractionated single-walled carbon nanotubes

    DEFF Research Database (Denmark)

    Tasca, Federico; Gorton, Lo; Wagner, Jakob Birkedal

    2008-01-01

    In this work the sensitivity-increasing effect of single-walled carbon nanotubes (SWCNTs) in amperometric biosensors, depending on their average length distribution, was studied. For this purpose the SWCNTs were oxidatively shortened and subsequently length separated by size exclusion...

  6. Ageing increases the sensitivity of neem (Azadirachta indica) seeds to imbibitional stress

    NARCIS (Netherlands)

    Neya, O.; Golovina, E.A.; Nijsse, J.; Hoekstra, F.A.

    2004-01-01

    Imbibitional stress was imposed on neem (Azadirachta indica) seeds by letting them soak for 1 h in water at unfavourable, low temperatures before further incubation at 30degreesC. Sensitivity to low imbibition temperatures increased with a decrease in seed moisture content (MC). To investigate a

  7. Ethosome formulations of known contact allergens can increase their sensitizing capacity

    DEFF Research Database (Denmark)

    Madsen, Jakob Torp; Vogel, Stefan; Karlberg, Ann-Therese

    2010-01-01

    Vesicular systems, such as liposomes and ethosomes, are used in cosmetic and pharmaceutical products to encapsulate ingredients, to protect ingredients from degradation, to increase bioavailability, and to improve cosmetic performance. Some reports have suggested that formulation of cosmetic ingr...... without ethosomes. Empty ethosomes were non-sensitizing according to LLNA. The clinical implications are so far uncertain, but increased allergenicity from ethosome-encapsulated topical product ingredients cannot be excluded....

  8. Increased Sensitization to Mold Allergens Measured by Intradermal Skin Testing following Hurricanes.

    Science.gov (United States)

    Saporta, Diego; Hurst, David

    2017-01-01

    Objective . To report on changes in sensitivity to mold allergens determined by changes in intradermal skin testing reactivity, after exposure to two severe hurricanes. Methods . A random, retrospective allergy charts review divided into 2 groups of 100 patients each: Group A, patients tested between 2003 and 2010 prior to hurricanes, and Group B, patients tested in 2014 and 2015 following hurricanes. Reactivity to eighteen molds was determined by intradermal skin testing. Test results, age, and respiratory symptoms were recorded. Chi-square test determined reactivity/sensitivity differences between groups. Results . Posthurricane patients had 34.6 times more positive results ( p hurricanes ( p hurricanes ( p hurricanes. This supports climatologists' hypothesis that environmental changes resulting from hurricanes can be a health risk as reflected in increased allergic sensitivities and symptoms and has significant implications for physicians treating patients from affected areas.

  9. Acute stress decreases but chronic stress increases myocardial sensitivity to ischemic injury in rodents

    Directory of Open Access Journals (Sweden)

    Eric D Eisenmann

    2016-04-01

    Full Text Available Cardiovascular disease is the largest cause of mortality worldwide, and stress is a significant contributor to the development of cardiovascular disease. The relationship between acute and chronic stress and cardiovascular disease is well-evidenced. Acute stress can lead to arrhythmias and ischemic injury. However, recent evidence in rodent models suggests that acute stress can decrease sensitivity to myocardial ischemia-reperfusion injury. Conversely, chronic stress is arrythmogenic and increases sensitivity to myocardial ischemia-reperfusion injury. Few studies have examined the impact of validated animal models of stress-related psychological disorders on the ischemic heart. This review examines the work that has been completed using rat models to study the effects of stress on myocardial sensitivity to ischemic injury. Utilization of animal models of stress-related psychological disorders is critical in the prevention and treatment of cardiovascular disorders in patients experiencing stress-related psychiatric conditions.

  10. Acute Stress Decreases but Chronic Stress Increases Myocardial Sensitivity to Ischemic Injury in Rodents.

    Science.gov (United States)

    Eisenmann, Eric D; Rorabaugh, Boyd R; Zoladz, Phillip R

    2016-01-01

    Cardiovascular disease (CVD) is the largest cause of mortality worldwide, and stress is a significant contributor to the development of CVD. The relationship between acute and chronic stress and CVD is well evidenced. Acute stress can lead to arrhythmias and ischemic injury. However, recent evidence in rodent models suggests that acute stress can decrease sensitivity to myocardial ischemia-reperfusion injury (IRI). Conversely, chronic stress is arrhythmogenic and increases sensitivity to myocardial IRI. Few studies have examined the impact of validated animal models of stress-related psychological disorders on the ischemic heart. This review examines the work that has been completed using rat models to study the effects of stress on myocardial sensitivity to ischemic injury. Utilization of animal models of stress-related psychological disorders is critical in the prevention and treatment of cardiovascular disorders in patients experiencing stress-related psychiatric conditions.

  11. Acute Stress Decreases but Chronic Stress Increases Myocardial Sensitivity to Ischemic Injury in Rodents

    Science.gov (United States)

    Eisenmann, Eric D.; Rorabaugh, Boyd R.; Zoladz, Phillip R.

    2016-01-01

    Cardiovascular disease (CVD) is the largest cause of mortality worldwide, and stress is a significant contributor to the development of CVD. The relationship between acute and chronic stress and CVD is well evidenced. Acute stress can lead to arrhythmias and ischemic injury. However, recent evidence in rodent models suggests that acute stress can decrease sensitivity to myocardial ischemia–reperfusion injury (IRI). Conversely, chronic stress is arrhythmogenic and increases sensitivity to myocardial IRI. Few studies have examined the impact of validated animal models of stress-related psychological disorders on the ischemic heart. This review examines the work that has been completed using rat models to study the effects of stress on myocardial sensitivity to ischemic injury. Utilization of animal models of stress-related psychological disorders is critical in the prevention and treatment of cardiovascular disorders in patients experiencing stress-related psychiatric conditions. PMID:27199778

  12. Stochasticity in Ca2+ increase in spines enables robust and sensitive information coding.

    Directory of Open Access Journals (Sweden)

    Takuya Koumura

    Full Text Available A dendritic spine is a very small structure (∼0.1 µm3 of a neuron that processes input timing information. Why are spines so small? Here, we provide functional reasons; the size of spines is optimal for information coding. Spines code input timing information by the probability of Ca2+ increases, which makes robust and sensitive information coding possible. We created a stochastic simulation model of input timing-dependent Ca2+ increases in a cerebellar Purkinje cell's spine. Spines used probability coding of Ca2+ increases rather than amplitude coding for input timing detection via stochastic facilitation by utilizing the small number of molecules in a spine volume, where information per volume appeared optimal. Probability coding of Ca2+ increases in a spine volume was more robust against input fluctuation and more sensitive to input numbers than amplitude coding of Ca2+ increases in a cell volume. Thus, stochasticity is a strategy by which neurons robustly and sensitively code information.

  13. Increased Sensitivity to Angiotensin II is Present Postpartum in Women with History of Hypertensive Pregnancy

    Science.gov (United States)

    Saxena, Aditi R.; Karumanchi, S. Ananth; Brown, Nancy J.; Royle, Caroline M.; McElrath, Thomas F.; Seely, Ellen W.

    2010-01-01

    Pregnancies complicated by new onset hypertension are associated with increased sensitivity to angiotensin II, but it is unclear if this sensitivity persists postpartum. We studied pressor response to infused angiotensin II in 25 normotensive postpartum women in both high and low sodium balance. Ten women had history of hypertensive pregnancy (five with preeclampsia; five with transient hypertension of pregnancy) and 15 women had history of uncomplicated, normotensive pregnancy. Systolic and diastolic blood pressures, aldosterone and soluble fms-like tyrosine kinase 1 (sFlt-1) levels were measured before and after angiotensin II infusion in both dietary phases. In high sodium balance, women with history of hypertensive pregnancy were normotensive but had significantly higher systolic and diastolic blood pressures than controls (115 vs. 104 mmHg and 73 vs. 65 mmHg, respectively, ppregnancy had pressor response to salt loading, demonstrated by increase in systolic blood pressure on high salt diet. They also had greater systolic pressor response (10 vs. 2 mmHg, p=0.03), greater increase in aldosterone (56.8 vs. 30.8 ng/dL, p=0.03) and increase in sFlt-1 levels (11.0 vs. -18.9 pg/mL, p=0.02) after infusion of angiotensin II in low sodium balance, compared with controls. Thus, women with history of hypertensive pregnancy demonstrated salt sensitivity of blood pressure and had increased pressor, adrenal and sFlt-1 responses to infused angiotensin II in low sodium balance. Increased sensitivity to angiotensin II observed during pregnancy in women with hypertensive pregnancy is present postpartum; this feature may contribute to future cardiovascular risk in these women. PMID:20308605

  14. Increased sensitivity to angiotensin II is present postpartum in women with a history of hypertensive pregnancy.

    Science.gov (United States)

    Saxena, Aditi R; Karumanchi, S Ananth; Brown, Nancy J; Royle, Caroline M; McElrath, Thomas F; Seely, Ellen W

    2010-05-01

    Pregnancies complicated by new-onset hypertension are associated with increased sensitivity to angiotensin II, but it is unclear whether this sensitivity persists postpartum. We studied pressor response to infused angiotensin II in 25 normotensive postpartum women in both high- and low-sodium balance. Ten women had a history of hypertensive pregnancy (5 with preeclampsia; 5 with transient hypertension of pregnancy), and 15 women had a history of uncomplicated, normotensive pregnancy. Systolic and diastolic blood pressures, aldosterone, and soluble fms-like tyrosine kinase 1 levels were measured before and after angiotensin II infusion in both dietary phases. In high sodium balance, women with a history of hypertensive pregnancy were normotensive but had significantly higher systolic and diastolic blood pressures than controls (115 versus 104 mm Hg and 73 versus 65 mm Hg, respectively; Ppregnancy had a pressor response to salt loading, demonstrated by an increase in systolic blood pressure on a high-salt diet. They also had greater systolic pressor response (10 versus 2 mm Hg; P=0.03), greater increase in aldosterone (56.8 versus 30.8 ng/dL; P=0.03), and increase in soluble fms-like tyrosine kinase 1 levels (11.0 versus -18.9 pg/mL; P=0.02) after infusion of angiotensin II in low-sodium balance compared with controls. Thus, women with a history of hypertensive pregnancy demonstrated salt sensitivity of blood pressure and had increased pressor, adrenal, and soluble fms-like tyrosine kinase 1 responses to infused angiotensin II in low-sodium balance. Increased sensitivity to angiotensin II observed during pregnancy in women with hypertensive pregnancy is present postpartum; this feature may contribute to future cardiovascular risk in these women.

  15. Increased BOLD activation to predator stressor in subiculum and midbrain of amphetamine-sensitized maternal rats.

    Science.gov (United States)

    Febo, Marcelo; Pira, Ashley S

    2011-03-25

    Amphetamine, which is known to cause sensitization, potentiates the hormonal and neurobiological signatures of stress and may also increase sensitivity to stress-inducing stimuli in limbic areas. Trimethylthiazoline (5μL TMT) is a chemical constituent of fox feces that evokes innate fear and activates the neuronal and hormonal signatures of stress in rats. We used blood oxygen level dependent (BOLD) MRI to test whether amphetamine sensitization (1mg/kg, i.p. ×3days) in female rats has a lasting effect on the neural response to a stress-evoking stimulus, the scent of a predator, during the postpartum period. The subiculum and dopamine-enriched midbrain VTA/SN of amphetamine-sensitized but not control mothers showed a greater BOLD signal response to predator odor than a control putrid scent. The greater responsiveness of these two brain regions following stimulant sensitization might impact neural processing in response to stressors in the maternal brain. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Increased insulin sensitivity in intrauterine growth retarded newborns--do thyroid hormones play a role?

    Science.gov (United States)

    Setia, Sajita; Sridhar, M G; Koner, B C; Bobby, Zachariah; Bhat, Vishnu; Chaturvedula, Lata

    2007-02-01

    Thyroid hormones are necessary for normal brain development. We studied thyroid hormone profile and insulin sensitivity in intrauterine growth retarded (IUGR) newborns to find correlation between insulin sensitivity and thyroid status in IUGR newborns. Fifty IUGR and fifty healthy control infants were studied at birth. Cord blood was collected for determination of T(3), T(4), TSH, glucose and insulin levels. IUGR newborns had significantly lower insulin, mean+/-S.D., 5.25+/-2.81 vs. 11.02+/-1.85microU/ml, but significantly higher insulin sensitivity measured as glucose to insulin ratio (G/I), 9.80+/-2.91 vs. 6.93+/-1.08 compared to healthy newborns. TSH was also significantly higher 6.0+/-2.70 vs. 2.99+/-1.05microU/ml with significantly lower T(4), 8.65+/-1.95 vs. 9.77+/-2.18microg/dl, but similar T(3) levels, 100.8+/-24.36 vs. 101.45+/-23.45ng/dl. On stepwise linear regression analysis in IUGR infants, insulin sensitivity was found to have a significant negative association with T(4) and significant positive association with TSH. Thyroid hormones may play a role in increased insulin sensitivity at birth in IUGR.

  17. Multiple Modes of Communication between Neurons and Oligodendrocyte Precursor Cells.

    Science.gov (United States)

    Maldonado, Paloma P; Angulo, María Cecilia

    2015-06-01

    The surprising discovery of bona fide synapses between neurons and oligodendrocytes precursor cells (OPCs) 15 years ago placed these progenitors as real partners of neurons in the CNS. The role of these synapses has not been established yet, but a main hypothesis is that neuron-OPC synaptic activity is a signaling pathway controlling OPC proliferation/differentiation, influencing the myelination process. However, new evidences describing non-synaptic mechanisms of communication between neurons and OPCs have revealed that neuron-OPC interactions are more complex than expected. The activation of extrasynaptic receptors by ambient neurotransmitter or local spillover and the ability of OPCs to sense neuronal activity through a potassium channel suggest that distinct modes of communication mediate different functions of OPCs in the CNS. This review discusses different mechanisms used by OPCs to interact with neurons and their potential roles during postnatal development and in brain disorders. © The Author(s) 2014.

  18. Functional Characterization of DNA Methylation in the Oligodendrocyte Lineage

    Directory of Open Access Journals (Sweden)

    Sarah Moyon

    2016-04-01

    Full Text Available Oligodendrocytes derive from progenitors (OPCs through the interplay of epigenomic and transcriptional events. By integrating high-resolution methylomics, RNA-sequencing, and multiple transgenic lines, this study defines the role of DNMT1 in developmental myelination. We detected hypermethylation of genes related to cell cycle and neurogenesis during differentiation of OPCs, yet genetic ablation of Dnmt1 resulted in inefficient OPC expansion and severe hypomyelination associated with ataxia and tremors in mice. This phenotype was not caused by lineage switch or massive apoptosis but was characterized by a profound defect of differentiation associated with changes in exon-skipping and intron-retention splicing events and by the activation of an endoplasmic reticulum stress response. Therefore, loss of Dnmt1 in OPCs is not sufficient to induce a lineage switch but acts as an important determinant of the coordination between RNA splicing and protein synthesis necessary for myelin formation.

  19. Alteration of synaptic connectivity of oligodendrocyte precursor cells following demyelination

    Science.gov (United States)

    Sahel, Aurélia; Ortiz, Fernando C.; Kerninon, Christophe; Maldonado, Paloma P.; Angulo, María Cecilia; Nait-Oumesmar, Brahim

    2015-01-01

    Oligodendrocyte precursor cells (OPCs) are a major source of remyelinating oligodendrocytes in demyelinating diseases such as Multiple Sclerosis (MS). While OPCs are innervated by unmyelinated axons in the normal brain, the fate of such synaptic contacts after demyelination is still unclear. By combining electrophysiology and immunostainings in different transgenic mice expressing fluorescent reporters, we studied the synaptic innervation of OPCs in the model of lysolecithin (LPC)-induced demyelination of corpus callosum. Synaptic innervation of reactivated OPCs in the lesion was revealed by the presence of AMPA receptor-mediated synaptic currents, VGluT1+ axon-OPC contacts in 3D confocal reconstructions and synaptic junctions observed by electron microscopy. Moreover, 3D confocal reconstructions of VGluT1 and NG2 immunolabeling showed the existence of glutamatergic axon-OPC contacts in post-mortem MS lesions. Interestingly, patch-clamp recordings in LPC-induced lesions demonstrated a drastic decrease in spontaneous synaptic activity of OPCs early after demyelination that was not caused by an impaired conduction of compound action potentials. A reduction in synaptic connectivity was confirmed by the lack of VGluT1+ axon-OPC contacts in virtually all rapidly proliferating OPCs stained with EdU (50-ethynyl-20-deoxyuridine). At the end of the massive proliferation phase in lesions, the proportion of innervated OPCs rapidly recovers, although the frequency of spontaneous synaptic currents did not reach control levels. In conclusion, our results demonstrate that newly-generated OPCs do not receive synaptic inputs during their active proliferation after demyelination, but gain synapses during the remyelination process. Hence, glutamatergic synaptic inputs may contribute to inhibit OPC proliferation and might have a physiopathological relevance in demyelinating disorders. PMID:25852473

  20. PCM1 Depletion Inhibits Glioblastoma Cell Ciliogenesis and Increases Cell Death and Sensitivity to Temozolomide

    Directory of Open Access Journals (Sweden)

    Lan B. Hoang-Minh

    2016-10-01

    Full Text Available A better understanding of the molecules implicated in the growth and survival of glioblastoma (GBM cells and their response to temozolomide (TMZ, the standard-of-care chemotherapeutic agent, is necessary for the development of new therapies that would improve the outcome of current GBM treatments. In this study, we characterize the role of pericentriolar material 1 (PCM1, a component of centriolar satellites surrounding centrosomes, in GBM cell proliferation and sensitivity to genotoxic agents such as TMZ. We show that PCM1 is expressed around centrioles and ciliary basal bodies in patient GBM biopsies and derived cell lines and that its localization is dynamic throughout the cell cycle. To test whether PCM1 mediates GBM cell proliferation and/or response to TMZ, we used CRISPR/Cas9 genome editing to generate primary GBM cell lines depleted of PCM1. These PCM1-depleted cells displayed reduced AZI1 satellite protein localization and significantly decreased proliferation, which was attributable to increased apoptotic cell death. Furthermore, PCM1-depleted lines were more sensitive to TMZ toxicity than control lines. The increase in TMZ sensitivity may be partly due to the reduced ability of PCM1-depleted cells to form primary cilia, as depletion of KIF3A also ablated GBM cells' ciliogenesis and increased their sensitivity to TMZ while preserving PCM1 localization. In addition, the co-depletion of KIF3A and PCM1 did not have any additive effect on TMZ sensitivity. Together, our data suggest that PCM1 plays multiple roles in GBM pathogenesis and that associated pathways could be targeted to augment current or future anti-GBM therapies.

  1. Increased sensitivity to ET-1 in rat cerebral arteries following organ culture

    DEFF Research Database (Denmark)

    Hansen-Schwartz, J; Edvinsson, L

    2000-01-01

    Endothelin-1 (ET-1) is recognized as being involved in the pathophysiology of cerebrovascular diseases. Using organ culture as a model for possible pathological changes we studied changes in ET(A) and ETB receptor function using a sensitive in vitro method. We observed an up-regulation of the ET......(B) receptor and an amazingly increased sensitivity to ET-1 by 3 log units in pEC50; pEC50(fresh) was 8.7 +/- 0.1, and pEC50(cultured) was 11.7 +/- 0.3. pA2 for FR139317 in the fresh vessel was 7.0 +/- 0.2 whereas it could not be obtained for the cultured vessel, indicating a possible cross-talk between the ET......(A) and ET(B) receptors. The increased sensitivity to ET-1 could also take place during cerebrovascular disease such as stroke or haemorrhage rendering the vessels considerably more sensitive to ET-1....

  2. Competition increases sensitivity of wheat (Triticum aestivum) to biotic plant-soil feedback.

    Science.gov (United States)

    Hol, W H Gera; de Boer, Wietse; ten Hooven, Freddy; van der Putten, Wim H

    2013-01-01

    Plant-soil feedback (PSF) and plant competition play an important role in structuring vegetation composition, but their interaction remains unclear. Recent studies suggest that competing plants could dilute pathogenic effects, whereas the standing view is that competition may increase the sensitivity of the focal plant to PSF. In agro-ecosystems each of these two options would yield contrasting outcomes: reduced versus enhanced effects of weeds on crop biomass production. To test the effect of competition on sensitivity to PSF, we grew Triticum aestivum (Common wheat) with and without competition from a weed community composed of Vicia villosa, Chenopodium album and Myosotis arvensis. Plants were grown in sterilized soil, with or without living field inoculum from 4 farms in the UK. In the conditioning phase, field inocula had both positive and negative effects on T. aestivum shoot biomass, depending on farm. In the feedback phase the differences between shoot biomass in T. aestivum monoculture on non-inoculated and inoculated soils had mostly disappeared. However, T. aestivum plants growing in mixtures in the feedback phase were larger on non-inoculated soil than on inoculated soil. Hence, T. aestivum was more sensitive to competition when the field soil biota was present. This was supported by the statistically significant negative correlation between shoot biomass of weeds and T. aestivum, which was absent on sterilized soil. In conclusion, competition in cereal crop-weed systems appears to increase cereal crop sensitivity to soil biota.

  3. The Proton-Activated Receptor GPR4 Modulates Glucose Homeostasis by Increasing Insulin Sensitivity

    Directory of Open Access Journals (Sweden)

    Luca Giudici

    2013-11-01

    Full Text Available Background: The proton-activated G protein-coupled receptor GPR4 is expressed in many tissues including white adipose tissue. GPR4 is activated by extracellular protons in the physiological pH range (i.e. pH 7.7 - 6.8 and is coupled to the production of cAMP. Methods: We examined mice lacking GPR4 and examined glucose tolerance and insulin sensitivity in young and aged mice as well as in mice fed with a high fat diet. Expression profiles of pro- and anti-inflammatory cytokines in white adipose tissue, liver and skeletal muscle was assessed. Results: Here we show that mice lacking GPR4 have an improved intraperitoneal glucose tolerance test and increased insulin sensitivity. Insulin levels were comparable but leptin levels were increased in GPR4 KO mice. Gpr4-/- showed altered expression of PPARα, IL-6, IL-10, TNFα, and TGF-1β in skeletal muscle, white adipose tissue, and liver. High fat diet abolished the differences in glucose tolerance and insulin sensitivity between Gpr4+/+ and Gpr4-/- mice. In contrast, in aged mice (12 months old, the positive effect of GPR4 deficiency on glucose tolerance and insulin sensitivity was maintained. Liver and adipose tissue showed no major differences in the mRNA expression of pro- and anti-inflammatory factors between aged mice of both genotypes. Conclusion: Thus, GPR4 deficiency improves glucose tolerance and insulin sensitivity. The effect may involve an altered balance between pro- and anti-inflammatory factors in insulin target tissues.

  4. Increase of ozone concentrations, its temperature sensitivity and the precursor factor in South China

    Directory of Open Access Journals (Sweden)

    Y. C. Lee

    2014-08-01

    Full Text Available Concerns have been raised about the possible connections between the local and regional photochemical problem and global warming. The current study assesses the trend of ozone in Hong Kong and the Pearl River Delta (PRD in South China and investigates the interannual changes of sensitivity of ozone to air temperature, as well as the trends in regional precursors. Results reveal, at the three monitoring sites from the mid-1990s to 2010, an increase in the mean ozone concentrations from 1.0 to 1.6 µg m−3 per year. The increase occurred in all seasons, with the highest rate in autumn. This is consistent with trends and temperature anomalies in the region. The increase in the sensitivity of ozone to temperature is clearly evident from the correlation between ozone (OMI [Ozone Monitoring Instrument] column amount and surface air temperature (from the Atmospheric Infrared Sounder displayed in the correlation maps for the PRD during the prominently high ozone period of July–September. It is observed to have increased from 2005 to 2010, the latter being the hottest year on record globally. To verify this temporal change in sensitivity, the ground-level trends of correlation coefficients/regression slopes are analysed. As expected, results reveal a statistically significant upward trend over a 14-year period (1997–2010. While the correlation revealed in the correlation maps is in agreement with the corresponding OMI ozone maps when juxtaposed, temperature sensitivity of surface ozone also shows an association with ozone concentration, with R=0.5. These characteristics of ozone sensitivity are believed to have adverse implications for the region. As shown by ground measurements and/or satellite analyses, the decrease in nitrogen oxides (NO2 and NOx in Hong Kong is not statistically significant while NO2 of the PRD has only very slightly changed. However, carbon dioxide has remarkably declined in the whole region. While these observations concerning

  5. Envelope enhancement increases cortical sensitivity to interaural envelope delays with acoustic and electric hearing.

    Directory of Open Access Journals (Sweden)

    Douglas E H Hartley

    Full Text Available Evidence from human psychophysical and animal electrophysiological studies suggests that sensitivity to interaural time delay (ITD in the modulating envelope of a high-frequency carrier can be enhanced using half-wave rectified stimuli. Recent evidence has shown potential benefits of equivalent electrical stimuli to deaf individuals with bilateral cochlear implants (CIs. In the current study we assessed the effects of envelope shape on ITD sensitivity in the primary auditory cortex of normal-hearing ferrets, and profoundly-deaf animals with bilateral CIs. In normal-hearing animals, cortical sensitivity to ITDs (±1 ms in 0.1-ms steps was assessed in response to dichotically-presented i sinusoidal amplitude-modulated (SAM and ii half-wave rectified (HWR tones (100-ms duration; 70 dB SPL presented at the best-frequency of the unit over a range of modulation frequencies. In separate experiments, adult ferrets were deafened with neomycin administration and bilaterally-implanted with intra-cochlear electrode arrays. Electrically-evoked auditory brainstem responses (EABRs were recorded in response to bipolar electrical stimulation of the apical pair of electrodes with singe biphasic current pulses (40 µs per phase over a range of current levels to measure hearing thresholds. Subsequently, we recorded cortical sensitivity to ITDs (±800 µs in 80-µs steps within the envelope of SAM and HWR biphasic-pulse trains (40 µs per phase; 6000 pulses per second, 100-ms duration over a range of modulation frequencies. In normal-hearing animals, nearly a third of cortical neurons were sensitive to envelope-ITDs in response to SAM tones. In deaf animals with bilateral CI, the proportion of ITD-sensitive cortical neurons was approximately a fifth in response to SAM pulse trains. In normal-hearing and deaf animals with bilateral CI the proportion of ITD sensitive units and neural sensitivity to ITDs increased in response to HWR, compared with SAM stimuli

  6. Soil warming increases metabolic quotients of soil microorganisms without changes in temperature sensitivity of soil respiration

    Science.gov (United States)

    Marañón-Jiménez, Sara; Soong, Jenniffer L.; Leblans, Niki I. W.; Sigurdsson, Bjarni D.; Dauwe, Steven; Fransen, Erik; Janssens, Ivan A.

    2017-04-01

    Increasing temperatures can accelerate soil organic matter (SOM) decomposition and release large amounts of CO2 to the atmosphere, potentially inducing climate change feedbacks. Alterations to the temperature sensitivity and metabolic pathways of soil microorganisms in response to soil warming can play a key role in these soil carbon (C) losses. Here, we present results of an incubation experiment using soils from a geothermal gradient in Iceland that have been subjected to different intensities of soil warming (+0, +1, +3, +5, +10 and +20 °C above ambient) over seven years. We hypothesized that 7 years of soil warming would led to a depletion of labile organic substrates, with a subsequent decrease of the "apparent" temperature sensitivity of soil respiration. Associated to this C limitation and more sub-optimal conditions for microbial growth, we also hypothesized increased microbial metabolic quotients (soil respiration per unit of microbial biomass), which is associated with increases in the relative amount of C invested into catabolic pathways along the warming gradient. Soil respiration and basal respiration rates decreased with soil warming intensity, in parallel with a decline in soil C availability. Contrasting to our first hypothesis, we did not detect changes in the temperature sensitivity of soil respiration with soil warming or on the availability of nutrients and of labile C substrates at the time of incubation. However, in agreement to our second hypothesis, microbial metabolic quotients (soil respiration per unit of microbial biomass) increased at warmer temperatures, while the C retained in biomass decreased as substrate became limiting. Long-term (7 years) temperature increases thus triggered a change in the metabolic functioning of the soil microbial communities towards increasing energy costs for maintenance or resource acquisition, thereby lowering the capacity of C retention and stabilization of warmed soils. These results highlight the need

  7. High hunger state increases olfactory sensitivity to neutral but not food odors.

    Science.gov (United States)

    Stafford, Lorenzo D; Welbeck, Kimberley

    2011-01-01

    Understanding how hunger state relates to olfactory sensitivity has become more urgent due to their possible role in obesity. In 2 studies (within-subjects: n = 24, between-subjects: n = 40), participants were provided with lunch before (satiated state) or after (nonsatiated state) testing and completed a standardized olfactory threshold test to a neutral odor (Experiments 1 and 2) and discrimination test to a food odor (Experiment 2). Experiment 1 revealed that olfactory sensitivity was greater in the nonsatiated versus satiated state, with additionally increased sensitivity for the low body mass index (BMI) compared with high BMI group. Experiment 2 replicated this effect for neutral odors, but in the case of food odors, those in a satiated state had greater acuity. Additionally, whereas the high BMI group had higher acuity to food odors in the satiated versus nonsatiated state, no such differences were found for the low BMI group. The research here is the first to demonstrate how olfactory acuity changes as a function of hunger state and relatedness of odor to food and that BMI can predict differences in olfactory sensitivity.

  8. Reactions to merit pay increases: a longitudinal test of a signal sensitivity perspective.

    Science.gov (United States)

    Shaw, Jason D; Duffy, Michelle K; Mitra, Atul; Lockhart, Daniel E; Bowler, Matthew

    2003-06-01

    The relationships among merit pay raises, trait positive affectivity (PA), and reactions to merit pay increases (pay attitudes and behavioral intentions) were explored in a longitudinal study of hospital employees. Drawing on signal sensitivity theory, the authors expected that PA would moderate the relationship between merit pay raise size and reactions to the increase such that pay raise size would be more strongly related to pay attitudes and behavioral intentions among those low in PA. Results strongly supported the predictions in the case of reactions to the raise amount (happiness and effort intentions) but not for pay level satisfaction. Implications of the results and directions for future research are identified.

  9. Increased sensitivity to salt stress in tocopherol-deficient Arabidopsis mutants growing in a hydroponic system

    Science.gov (United States)

    Ellouzi, Hasna; Hamed, Karim Ben; Cela, Jana; Müller, Maren; Abdelly, Chedly; Munné-Bosch, Sergi

    2013-01-01

    Recent studies suggest that tocopherols could play physiological roles in salt tolerance but the mechanisms are still unknown. In this study, we analyzed changes in growth, mineral and oxidative status in vte1 and vte4 Arabidopsis thaliana mutants exposed to salt stress. vte1 and vte4 mutants lack α-tocopherol, but only the vte1 mutant is additionally deficient in γ-tocopherol. Results showed that a deficiency in vitamin E leads to reduced growth and increased oxidative stress in hydroponically-grown plants. This effect was observed at early stages, not only in rosettes but also in roots. The vte1 mutant was more sensitive to salt-induced oxidative stress than the wild type and the vte4 mutant. Salt sensitivity was associated with (i) high contents of Na+, (ii) reduced efficiency of PSII photochemistry (Fv/Fm ratio) and (iii) more pronounced oxidative stress as indicated by increased hydrogen peroxide and malondialdeyde levels. The vte 4 mutant, which accumulates γ- instead of α-tocopherol showed an intermediate sensitivity to salt stress between the wild type and the vte1 mutant. Contents of abscisic acid, jasmonic acid and the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid were higher in the vte1 mutant than the vte4 mutant and wild type. It is concluded that vitamin E-deficient plants show an increased sensitivity to salt stress both in rosettes and roots, therefore indicating the positive role of tocopherols in stress tolerance, not only by minimizing oxidative stress, but also controlling Na+/K+ homeostasis and hormonal balance. PMID:23299430

  10. On the origin of increased sensitivity and mass resolution using silicon masks in MALDI.

    Science.gov (United States)

    Diologent, Laurent; Franck, Julien; Wisztorski, Maxence; Treizebre, Anthony; Focsa, Cristian; Fournier, Isabelle; Ziskind, Michael

    2014-02-04

    Since its development, MALDI has proved its performance in the analysis of intact biomolecules up to high molecular weights, regardless of their polarity. Sensitivity of MALDI instruments is a key point for breaking the limits of observing biomolecules of lower abundances. Instrumentation is one way to improve sensitivity by increasing ion transmission and using more sensitive detection systems. On the other side, improving MALDI ion production yields would have important outcomes. MALDI ion production is still not well-controlled and, indeed, the amount of ions produced per laser shot with respect to the total volume of desorbed material is very low. This has particular implications for certain applications, such as MALDI MS imaging where laser beam focusing as fine as possible (5-10 μm) is searched in order to reach higher spatial resolution images. However, various studies point out an intrinsic decrease in signal intensity for strong focusing. We have therefore been interested in developing silicon mask systems to decrease an irradiated area by cutting rather than focusing the laser beam and to study the parameters affecting sensitivity using such systems. For this, we systematically examined variation with laser fluence of intensity and spectral resolution in MALDI of standard peptides when using silicon-etched masks of various aperture sizes. These studies demonstrate a simultaneous increase in spectral resolution and signal intensity. Origin of this effect is discussed in the frame of the two-step ionization model. Experimental data in the low fluence range are fitted with an increase of the primary ionization through matrix-silicon edge contact provided by the masks. On the other hand, behavior at higher fluence could be explained by an effect on the secondary ionization via changes in the plume dynamics.

  11. Developmental cuprizone exposure impairs oligodendrocyte lineages differentially in cortical and white matter tissues and suppresses glutamatergic neurogenesis signals and synaptic plasticity in the hippocampal dentate gyrus of rats

    International Nuclear Information System (INIS)

    Abe, Hajime; Saito, Fumiyo; Tanaka, Takeshi; Mizukami, Sayaka; Hasegawa-Baba, Yasuko; Imatanaka, Nobuya; Akahori, Yumi; Yoshida, Toshinori; Shibutani, Makoto

    2016-01-01

    Developmental cuprizone (CPZ) exposure impairs rat hippocampal neurogenesis. Here, we captured the developmental neurotoxicity profile of CPZ using a region-specific expression microarray analysis in the hippocampal dentate gyrus, corpus callosum, cerebral cortex and cerebellar vermis of rat offspring exposed to 0, 0.1, or 0.4% CPZ in the maternal diet from gestation day 6 to postnatal day (PND) 21. Transcripts of those genes identified as altered were subjected to immunohistochemical analysis on PNDs 21 and 77. Our results showed that transcripts for myelinogenesis-related genes, including Cnp, were selectively downregulated in the cerebral cortex by CPZ at ≥ 0.1% or 0.4% on PND 21. CPZ at 0.4% decreased immunostaining intensity for 2′,3′-cyclic-nucleotide 3′-phosphodiesterase (CNPase) and CNPase + and OLIG2 + oligodendrocyte densities in the cerebral cortex, whereas CNPase immunostaining intensity alone was decreased in the corpus callosum. By contrast, a striking transcript upregulation for Klotho gene and an increased density of Klotho + oligodendrocytes were detected in the corpus callosum at ≥ 0.1%. In the dentate gyrus, CPZ at ≥ 0.1% or 0.4% decreased the transcript levels for Gria1, Grin2a and Ptgs2, genes related to the synapse and synaptic transmission, and the number of GRIA1 + and GRIN2A + hilar γ-aminobutyric acid (GABA)-ergic interneurons and cyclooxygenase-2 + granule cells. All changes were reversed at PND 77. Thus, developmental CPZ exposure reversibly decreased mature oligodendrocytes in both cortical and white matter tissues, and Klotho protected white matter oligodendrocyte growth. CPZ also reversibly targeted glutamatergic signals of GABAergic interneuron to affect dentate gyrus neurogenesis and synaptic plasticity in granule cells. - Highlights: • We examined developmental cuprizone (CPZ) neurotoxicity in maternally exposed rats. • Multiple brain region-specific global gene expression profiling was performed. • CPZ decreased

  12. Developmental cuprizone exposure impairs oligodendrocyte lineages differentially in cortical and white matter tissues and suppresses glutamatergic neurogenesis signals and synaptic plasticity in the hippocampal dentate gyrus of rats

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Hajime [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Saito, Fumiyo [Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004 (Japan); Tanaka, Takeshi; Mizukami, Sayaka [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Hasegawa-Baba, Yasuko [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Imatanaka, Nobuya; Akahori, Yumi [Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004 (Japan); Yoshida, Toshinori [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Shibutani, Makoto, E-mail: mshibuta@cc.tuat.ac.jp [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan)

    2016-01-01

    Developmental cuprizone (CPZ) exposure impairs rat hippocampal neurogenesis. Here, we captured the developmental neurotoxicity profile of CPZ using a region-specific expression microarray analysis in the hippocampal dentate gyrus, corpus callosum, cerebral cortex and cerebellar vermis of rat offspring exposed to 0, 0.1, or 0.4% CPZ in the maternal diet from gestation day 6 to postnatal day (PND) 21. Transcripts of those genes identified as altered were subjected to immunohistochemical analysis on PNDs 21 and 77. Our results showed that transcripts for myelinogenesis-related genes, including Cnp, were selectively downregulated in the cerebral cortex by CPZ at ≥ 0.1% or 0.4% on PND 21. CPZ at 0.4% decreased immunostaining intensity for 2′,3′-cyclic-nucleotide 3′-phosphodiesterase (CNPase) and CNPase{sup +} and OLIG2{sup +} oligodendrocyte densities in the cerebral cortex, whereas CNPase immunostaining intensity alone was decreased in the corpus callosum. By contrast, a striking transcript upregulation for Klotho gene and an increased density of Klotho{sup +} oligodendrocytes were detected in the corpus callosum at ≥ 0.1%. In the dentate gyrus, CPZ at ≥ 0.1% or 0.4% decreased the transcript levels for Gria1, Grin2a and Ptgs2, genes related to the synapse and synaptic transmission, and the number of GRIA1{sup +} and GRIN2A{sup +} hilar γ-aminobutyric acid (GABA)-ergic interneurons and cyclooxygenase-2{sup +} granule cells. All changes were reversed at PND 77. Thus, developmental CPZ exposure reversibly decreased mature oligodendrocytes in both cortical and white matter tissues, and Klotho protected white matter oligodendrocyte growth. CPZ also reversibly targeted glutamatergic signals of GABAergic interneuron to affect dentate gyrus neurogenesis and synaptic plasticity in granule cells. - Highlights: • We examined developmental cuprizone (CPZ) neurotoxicity in maternally exposed rats. • Multiple brain region-specific global gene expression profiling

  13. Anticipatory stress restores decision-making deficits in heavy drinkers by increasing sensitivity to losses.

    Science.gov (United States)

    Gullo, Matthew J; Stieger, Adam A

    2011-09-01

    Substance abusers are characterized by hypersensitivity to reward. This leads to maladaptive decisions generally, as well as those on laboratory-based decision-making tasks, such as the Iowa Gambling Task (IGT). Negative affect has also been shown to disrupt the decision-making of healthy individuals, particularly decisions made under uncertainty. Neuropsychological theories of learning, including the Somatic Marker Hypothesis (SMH), argue this occurs by amplifying affective responses to punishment. In substance abusers, this might serve to rebalance their sensitivity to reward with punishment, and improve decision-making. Before completing the IGT, 45 heavy and 47 light drinkers were randomly assigned to a control condition, or led to believe they had to give a stressful public speech. IGT performance was analyzed with the Expectancy-Valence (EV) learning model. Working memory and IQ were also assessed. Heavy drinkers made more disadvantageous decisions than light drinkers, due to higher attention to gains (versus losses) on the IGT. Anticipatory stress increased participants' attention to losses, significantly improving heavy drinkers' decision-making. Anticipatory stress increased attention to losses, effectively restoring decision-making deficits in heavy drinkers by rebalancing their reward sensitivity with punishment sensitivity. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  14. Sensitivity to neurotoxic stress is not increased in progranulin-deficient mice.

    Science.gov (United States)

    Petkau, Terri L; Zhu, Shanshan; Lu, Ge; Fernando, Sarah; Cynader, Max; Leavitt, Blair R

    2013-11-01

    Loss-of-function mutations in the progranulin (GRN) gene are a common cause of autosomal dominant frontotemporal lobar degeneration, a fatal and progressive neurodegenerative disorder common in people less than 65 years of age. In the brain, progranulin is expressed in multiple regions at varying levels, and has been hypothesized to play a neuroprotective or neurotrophic role. Four neurotoxic agents were injected in vivo into constitutive progranulin knockout (Grn(-/-)) mice and their wild-type (Grn(+/+)) counterparts to assess neuronal sensitivity to toxic stress. Administration of 3-nitropropionic acid, quinolinic acid, kainic acid, and pilocarpine induced robust and measurable neuronal cell death in affected brain regions, but no differential cell death was observed between Grn(+/+) and Grn(-/-) mice. Thus, constitutive progranulin knockout mice do not have increased sensitivity to neuronal cell death induced by the acute chemical models of neuronal injury used in this study. Copyright © 2013. Published by Elsevier Inc.

  15. Stevioside from Stevia rebaudiana Bertoni Increases Insulin Sensitivity in 3T3-L1 Adipocytes

    Directory of Open Access Journals (Sweden)

    Nabilatul Hani Mohd-Radzman

    2013-01-01

    Full Text Available Stevioside from Stevia rebaudiana has been reported to exert antihyperglycemic effects in both rat and human subjects. There have been few studies on these effects in vitro. In this paper, radioactive glucose uptake assay was implemented in order to assess improvements in insulin sensitivity in 3T3-L1 cells by elevation of glucose uptake following treatment with stevioside. Oil Red-O staining and MTT assay were utilized to confirm adipocyte differentiation and cell viability, respectively. Findings from this research showed a significant increase in absorbance values in mature adipocytes following Oil Red-O staining, confirming the differentiation process. Stevioside was noncytotoxic to 3T3-L1 cells as cell viability was reduced by a maximum of 17%, making it impossible to determine its IC50. Stevioside increased glucose uptake activities by 2.1 times (p<0.001 in normal conditions and up to 4.4 times (p<0.001 in insulin-resistant states. At times, this increase was higher than that seen in positive control group treated with rosiglitazone maleate, an antidiabetic agent. Expressions of pY20 and p-IRS1 which were measured via Western blot were improved by stevioside treatment. In conclusion, stevioside has direct effects on 3T3-L1 insulin sensitivity via increase in glucose uptake and enhanced expression of proteins involved in insulin-signalling pathway.

  16. Chemotherapeutic treatment efficacy and sensitivity are increased by adjuvant alternating electric fields (TTFields)

    International Nuclear Information System (INIS)

    Kirson, Eilon D; Goldsher, Dorit; Wasserman, Yoram; Palti, Yoram; Schneiderman, Rosa S; Dbalý, Vladimír; Tovaryš, František; Vymazal, Josef; Itzhaki, Aviran; Mordechovich, Daniel; Gurvich, Zoya; Shmueli, Esther

    2009-01-01

    The present study explores the efficacy and toxicity of combining a new, non-toxic, cancer treatment modality, termed Tumor Treating Fields (TTFields), with chemotherapeutic treatment in-vitro, in-vivo and in a pilot clinical trial. Cell proliferation in culture was studied in human breast carcinoma (MDA-MB-231) and human glioma (U-118) cell lines, exposed to TTFields, paclitaxel, doxorubicin, cyclophosphamide and dacarbazine (DTIC) separately and in combinations. In addition, we studied the effects of combining chemotherapy with TTFields in an animal tumor model and in a pilot clinical trial in recurrent and newly diagnosed GBM patients. The efficacy of TTFields-chemotherapy combination in-vitro was found to be additive with a tendency towards synergism for all drugs and cell lines tested (combination index ≤ 1). The sensitivity to chemotherapeutic treatment was increased by 1–3 orders of magnitude by adjuvant TTFields therapy (dose reduction indexes 23 – 1316). Similar findings were seen in an animal tumor model. Finally, 20 GBM patients were treated with TTFields for a median duration of 1 year. No TTFields related systemic toxicity was observed in any of these patients, nor was an increase in Temozolomide toxicity seen in patients receiving combined treatment. In newly diagnosed GBM patients, combining TTFields with Temozolomide treatment led to a progression free survival of 155 weeks and overall survival of 39+ months. These results indicate that combining chemotherapeutic cancer treatment with TTFields may increase chemotherapeutic efficacy and sensitivity without increasing treatment related toxicity

  17. Increased sensitivity of p53-deficient cells to anticancer agents due to loss of Pms2

    Science.gov (United States)

    Fedier, A; Ruefenacht, U B; Schwarz, V A; Haller, U; Fink, D

    2002-01-01

    A large fraction of human tumours carries mutations in the p53 gene. p53 plays a central role in controlling cell cycle checkpoint regulation, DNA repair, transcription, and apoptosis upon genotoxic stress. Lack of p53 function impairs these cellular processes, and this may be the basis of resistance to chemotherapeutic regimens. By virtue of the involvement of DNA mismatch repair in modulating cytotoxic pathways in response to DNA damaging agents, we investigated the effects of loss of Pms2 on the sensitivity to a panel of widely used anticancer agents in E1A/Ha-Ras-transformed p53-null mouse fibroblasts either proficient or deficient in Pms2. We report that lack of the Pms2 gene is associated with an increased sensitivity, ranging from 2–6-fold, to some types of anticancer agents including the topoisomerase II poisons doxorubicin, etoposide and mitoxantrone, the platinum compounds cisplatin and oxaliplatin, the taxanes docetaxel and paclitaxel, and the antimetabolite gemcitabine. In contrast, no change in sensitivity was found after treatment with 5-fluorouracil. Cell cycle analysis revealed that both, Pms2-deficient and -proficient cells, retain the ability to arrest at the G2/M upon cisplatin treatment. The data indicate that the concomitant loss of Pms2 function chemosensitises p53-deficient cells to some types of anticancer agents, that Pms2 positively modulates cell survival by mechanisms independent of p53, and that increased cytotoxicity is paralleled by increased apoptosis. Tumour-targeted functional inhibition of Pms2 may be a valuable strategy for increasing the efficacy of anticancer agents in the treatment of p53-mutant cancers. British Journal of Cancer (2002) 87, 1027–1033. doi:10.1038/sj.bjc.6600599 www.bjcancer.com © 2002 Cancer Research UK PMID:12434296

  18. Expression of HIV gp120 protein increases sensitivity to the rewarding properties of methamphetamine in mice

    Science.gov (United States)

    Kesby, James P.; Hubbard, David T.; Markou, Athina; Semenova, Svetlana

    2012-01-01

    Methamphetamine abuse and human immunodeficiency virus (HIV) infection induce neuropathological changes in corticolimbic brain areas involved in reward and cognitive function. Little is known about the combined effects of methamphetamine and HIV infection on cognitive and reward processes. The HIV/gp120 protein induces neurodegeneration in mice, similar to HIV-induced pathology in humans. We investigated the effects of gp120 expression on associative learning, preference for methamphetamine and non-drug reinforcers, and sensitivity to the conditioned rewarding properties of methamphetamine in transgenic (tg) mice expressing HIV/gp120 protein (gp120-tg). gp120-tg mice learned the operant response for food at the same rate as non-tg mice. In the two-bottle choice procedure with restricted access to drugs, gp120-tg mice exhibited greater preference for methamphetamine and saccharin than non-tg mice, whereas preference for quinine was similar between genotypes. Under conditions of unrestricted access to methamphetamine, the mice exhibited a decreased preference for increasing methamphetamine concentrations. However, male gp120-tg mice showed a decreased preference for methamphetamine at lower concentrations than non-tg male mice. gp120-tg mice developed methamphetamine-induced conditioned place preference at lower methamphetamine doses compared with non-tg mice. No differences in methamphetamine pharmacokinetics were found between genotypes. These results indicate that gp120-tg mice exhibit no deficits in associative learning or reward/motivational function for a natural reinforcer. Interestingly, gp120 expression resulted in increased preference for methamphetamine and a highly palatable non-drug reinforcer (saccharin) and increased sensitivity to methamphetamine-induced conditioned reward. These data suggest that HIV-positive individuals may have increased sensitivity to methamphetamine, leading to high methamphetamine abuse potential in this population. PMID

  19. Determination of Autoantibody Isotypes Increases the Sensitivity of Serodiagnostics in Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Daniela Sieghart

    2018-04-01

    Full Text Available Anti-citrullinated protein antibodies (ACPA and rheumatoid factor (RF are the most commonly used diagnostic markers of rheumatoid arthritis (RA. These antibodies are predominantly of the immunoglobulin (Ig M (RF or IgG (ACPA isotype. Other subtypes of both antibodies—particularly IgA isotypes and other autoantibodies—such as RA33 antibodies—have been repeatedly reported but their diagnostic value has still not been fully elucidated. Here, we investigated the prevalence of IgA, IgG, and IgM subtypes of RF, ACPA, and RA33 antibodies in patients with RA. To determine the diagnostic specificity and sensitivity sera from 290 RA patients (165 early and 125 established disease, 261 disease controls and 100 healthy subjects were tested for the presence of IgA, IgG, and IgM isotypes of RF, ACPA, and RA33 by EliA™ platform (Phadia AB, Uppsala, Sweden. The most specific antibodies were IgG-ACPA, IgA-ACPA, and IgG-RF showing specificities >98%, closely followed by IgG- and IgA-RA33 while IgM subtypes were somewhat less specific, ranging from 95.8% (RA33 to 90% (RF. On the other hand, IgM-RF was the most sensitive subtype (65% followed by IgG-ACPA (59.5% and IgA-RF (50.7%. Other subtypes were less sensitive ranging from 35 (IgA-ACPA to 6% (IgA-RA33. RA33 antibodies as well as IgA-RF and IgA-ACPA were found to increase the diagnostic sensitivity of serological testing since they were detected also in seronegative patients reducing their number from 109 to 85. Moreover, analyzing IgM-RF by EliA™ proved more sensitive than measuring RF by nephelometry and further reduced the number of seronegative patients to 76 individuals. Importantly, among antibody positive individuals, RA patients were found having significantly more antibodies (≥3 than disease controls which generally showed one or two antibody species. Thus, increasing the number of autoantibodies in serological routine testing provides valuable additional information allowing to better

  20. Folic acid deficiency increases chromosomal instability, chromosome 21 aneuploidy and sensitivity to radiation-induced micronuclei

    International Nuclear Information System (INIS)

    Beetstra, Sasja; Thomas, Philip; Salisbury, Carolyn; Turner, Julie; Fenech, Michael

    2005-01-01

    Folic acid deficiency can lead to uracil incorporation into DNA, hypomethylation of DNA, inefficient DNA repair and increase chromosome malsegregation and breakage. Because ionising radiation increases demand for efficient DNA repair and also causes chromosome breaks we hypothesised that folic acid deficiency may increase sensitivity to radiation-induced chromosome breakage. We tested this hypothesis by using the cytokinesis-block micronucleus assay in 10 day WIL2-NS cell cultures at four different folic acid concentrations (0.2, 2, 20, and 200 nM) that span the 'normal' physiological range in humans. The study showed a significant dose-dependent increase in frequency of binucleated cells with micronuclei and/or nucleoplasmic bridges with decreasing folic acid concentration (P < 0.0001, P = 0.028, respectively). These biomarkers of chromosomal instability were also increased in cells irradiated (1.5 Gy γ-rays) on day 9 relative to un-irradiated controls (P < 0.05). Folic acid deficiency and γ-irradiation were shown to have a significant interactive effect on frequency of cells containing micronuclei (two-way ANOVA, interaction P 0.0039) such that the frequency of radiation-induced micronucleated cells (i.e. after subtracting base-line frequency of un-irradiated controls) increased with decreasing folic acid concentration (P-trend < 0.0001). Aneuploidy of chromosome 21, apoptosis and necrosis were increased by folic acid deficiency but not by ionising radiation. The results of this study show that folate status has an important impact on chromosomal stability and is an important modifying factor of cellular sensitivity to radiation-induced genome damage

  1. Endogenous visuospatial attention increases visual awareness independent of visual discrimination sensitivity.

    Science.gov (United States)

    Vernet, Marine; Japee, Shruti; Lokey, Savannah; Ahmed, Sara; Zachariou, Valentinos; Ungerleider, Leslie G

    2017-08-12

    Visuospatial attention often improves task performance by increasing signal gain at attended locations and decreasing noise at unattended locations. Attention is also believed to be the mechanism that allows information to enter awareness. In this experiment, we assessed whether orienting endogenous visuospatial attention with cues differentially affects visual discrimination sensitivity (an objective task performance) and visual awareness (the subjective feeling of perceiving) during the same discrimination task. Gabor patch targets were presented laterally, either at low contrast (contrast stimuli) or at high contrast embedded in noise (noise stimuli). Participants reported their orientation either in a 3-alternative choice task (clockwise, counterclockwise, unknown) that allowed for both objective and subjective reports, or in a 2-alternative choice task (clockwise, counterclockwise) that provided a control for objective reports. Signal detection theory models were fit to the experimental data: estimated perceptual sensitivity reflected objective performance; decision criteria, or subjective biases, were a proxy for visual awareness. Attention increased sensitivity (i.e., improved objective performance) for the contrast, but not for the noise stimuli. Indeed, with the latter, attention did not further enhance the already high target signal or reduce the already low uncertainty on its position. Interestingly, for both contrast and noise stimuli, attention resulted in more liberal criteria, i.e., awareness increased. The noise condition is thus an experimental configuration where people think they see the targets they attend to better, even if they do not. This could be explained by an internal representation of their attentional state, which influences awareness independent of objective visual signals. Copyright © 2017. Published by Elsevier Ltd.

  2. Radiation-induced increases in sensitivity of cataleptic behavior to haloperidol: possible involvement of prostaglandins

    International Nuclear Information System (INIS)

    Joseph, J.A.; Kandasamy, S.B.; Hunt, W.A.; Dalton, T.K.; Stevens, S.

    1988-01-01

    The effects of radiation exposure on haloperidol-induced catalepsy were examined in order to determine whether elevated prostaglandins, through an action on dopaminergic autoreceptors, could be involved in the radiation-induced increase in the potency of this neuroleptic. Cataleptic behavior was examined in animals irradiated with various doses of gamma photons (1-150 Gy) and pretreated with a subthreshold dose of haloperidol (0.1 mg/kg). This approach was chosen to maximize any synergistic effects of radiation and haloperidol. After irradiation with doses less than or equal to 30 Gy, the combined treatment of haloperidol and radiation produced catalepsy, whereas neither treatment alone had an effect. This observed catalepsy could be blocked with prior administration of indomethacin, a prostaglandin synthesis inhibitor. Animals exposed to doses of radiation less than or equal to 50 Gy and no haloperidol, however, displayed apparent catalepsy. This effect was also antagonized by indomethacin. Prostaglandins can induce catalepsy and when administered in subthreshold doses along with subthreshold doses of haloperidol, catalepsy was observed. In order to assess a possible action of prostaglandins and radiation on dopaminergic activity, the functioning of striatal dopaminergic autoreceptors was examined by determining the effects of varying concentrations of haloperidol on the K+-evoked release of dopamine from striatal slices obtained from parallel groups of animals treated as above. Results indicated that sensitivity to haloperidol increased (higher K+-evoked dopamine release) in slices from irradiated or prostaglandin-treated animals and that this increase in sensitivity was blocked by indomethacin

  3. Bilirubin Increases Insulin Sensitivity by Regulating Cholesterol Metabolism, Adipokines and PPARγ Levels

    Science.gov (United States)

    Liu, Jinfeng; Dong, Huansheng; Zhang, Yong; Cao, Mingjun; Song, Lili; Pan, Qingjie; Bulmer, Andrew; Adams, David B.; Dong, Xiao; Wang, Hongjun

    2015-01-01

    Obesity can cause insulin resistance and type 2 diabetes. Moderate elevations in bilirubin levels have anti-diabetic effects. This study is aimed at determining the mechanisms by which bilirubin treatment reduces obesity and insulin resistance in a diet-induced obesity (DIO) mouse model. DIO mice were treated with bilirubin or vehicle for 14 days. Body weights, plasma glucose, and insulin tolerance tests were performed prior to, immediately, and 7 weeks post-treatment. Serum lipid, leptin, adiponectin, insulin, total and direct bilirubin levels were measured. Expression of factors involved in adipose metabolism including sterol regulatory element-binding protein (SREBP-1), insulin receptor (IR), and PPARγ in liver were measured by RT-PCR and Western blot. Compared to controls, bilirubin-treated mice exhibited reductions in body weight, blood glucose levels, total cholesterol (TC), leptin, total and direct bilirubin, and increases in adiponectin and expression of SREBP-1, IR, and PPARγ mRNA. The improved metabolic control achieved by bilirubin-treated mice was persistent: at two months after treatment termination, bilirubin-treated DIO mice remained insulin sensitive with lower leptin and higher adiponectin levels, together with increased PPARγ expression. These results indicate that bilirubin regulates cholesterol metabolism, adipokines and PPARγ levels, which likely contribute to increased insulin sensitivity and glucose tolerance in DIO mice. PMID:26017184

  4. Increased retest reactivity by both patch and use test with methyldibromoglutaronitrile in sensitized individuals

    DEFF Research Database (Denmark)

    Jensen, Charlotte D; Johansen, Jeanne Duus; Menné, Torkil

    2006-01-01

    -exposure by both a patch test challenge and a use test with a liquid soap preserved with MDBGN. MDBGN dermatitis was elicited on the back and arms of sensitized individuals. One month later the previously eczematous areas were challenged with MDBGN. On the back, the test sites were patch-tested with a serial...... dilution of MDBGN and a use test was performed on the arms with an MDBGN-containing soap. A statistically significant increased response was seen on the areas with previous dermatitis on the back. Eight of the nine patients who developed dermatitis on the arms from the MDBGN-containing soap had...

  5. MicroRNA-21 Increases Proliferation and Cisplatin Sensitivity of Osteosarcoma-Derived Cells.

    Directory of Open Access Journals (Sweden)

    Vanita Vanas

    Full Text Available Osteosarcoma is the most common primary bone tumor and poor prognosis for osteosarcoma patients is mainly due to chemotherapy resistance. MicroRNAs are important to maintain pathophysiological mechanisms of cancer and influence cell sensitivity to chemotherapy. In this study, we tested the functions of microRNA-21 for malignant features as well as for drug resistance of osteosarcoma. We used Northern blot to measure microRNA-21 levels in osteosarcoma-derived cell lines. MicroRNA-21 activity was modulated by either expressing a sponge to decrease its activity in an osteosarcoma-derived cell line expressing high levels of microRNA-21 or by introducing pri-microRNA-21 in a cell line with low endogenous levels. Cell migration was determined in a scratch assay and cell proliferation was measured by performing growth curve analysis. Sensitivity of the cells towards chemotherapeutics was investigated by performing cell viability assays and calculating the IC50 values. While cell migration was unaffected by modulated microRNA-21 levels, microRNA-21 inhibition slowed proliferation and exogenously expressed microRNA-21 promoted this process. Modulated microRNA-21 activity failed to effect sensitivity of osteosarcoma-derived cell lines to doxorubicin or methotrexate. Contrarily, reduction of microRNA-21 activity resulted in enhanced resistance towards cisplatin while ectopic expression of microRNA-21 showed the opposite effect. Increased microRNA-21 levels repressed the expression of Sprouty2 and ectopic expression of Sprouty2 was able to largely rescue the observed effects of microRNA-21 in osteosarcoma. In summary, our data indicate that in osteosarcoma microRNA-21 expression is an important component for regulation of cell proliferation and for determining sensitivity to cisplatin.

  6. Cell-cell interactions of isolated and cultured oligodendrocytes: formation of linear occluding junctions and expression of peculiar intramembrane particles.

    Science.gov (United States)

    Massa, P T; Szuchet, S; Mugnaini, E

    1984-12-01

    Oligodendrocytes were isolated from lamb brain. Freshly isolated cells and cultured cells, either 1- to 4-day-old unattached or 1- to 5-week-old attached, were examined by thin section and freeze-fracture electron microscopy. Freeze-fracture of freshly isolated oligodendrocytes showed globular and elongated intramembrane particles similar to those previously described in oligodendrocytes in situ. Enrichment of these particles was seen at sites of inter-oligodendrocyte contact. Numerous gap junctions and scattered linear tight junctional arrays were apparent. Gap junctions were connected to blebs of astrocytic plasma membrane sheared off during isolation, whereas tight junctions were facing extracellular space or blebs of oligodendrocytic plasma membrane. Thin sections of cultured, unattached oligodendrocytes showed rounded cell bodies touching one another at points without forming specialized cell junctions. Cells plated on polylysine-coated aclar dishes attached, emanated numerous, pleomorphic processes, and expressed galactocerebroside and myelin basic protein, characteristic markers for oligodendrocytes. Thin sections showed typical oligodendrocyte ultrastructure but also intermediate filaments not present in unattached cultures. Freeze-fracture showed intramembrane particles similar to but more numerous, and with a different fracture face repartition, than those seen in oligodendrocytes, freshly isolated or in situ. Gap junctions were small and rare. Apposed oligodendrocyte plasma membrane formed linear tight junctions which became more numerous with time in culture. Thus, cultured oligodendrocytes isolated from ovine brains develop and maintain features characteristic of mature oligodendrocytes in situ and can be used to explore formation and maintenance of tight junctions and possibly other classes of cell-cell interactions important in the process of myelination.

  7. Do pain-associated contexts increase pain sensitivity? An investigation using virtual reality.

    Science.gov (United States)

    Harvie, Daniel S; Sterling, Michele; Smith, Ashley D

    2018-04-30

    Pain is not a linear result of nociception, but is dependent on multisensory inputs, psychological factors, and prior experience. Since nociceptive models appear insufficient to explain chronic pain, understanding non-nociceptive contributors is imperative. Several recent models propose that cues associatively linked to painful events might acquire the capacity to augment, or even cause, pain. This experiment aimed to determine whether contexts associated with pain, could modulate mechanical pain thresholds and pain intensity. Forty-eight healthy participants underwent a contextual conditioning procedure, where three neutral virtual reality contexts were paired with either unpredictable noxious stimulation, unpredictable vibrotactile stimulation, or no stimulation. Following the conditioning procedure, mechanical pain thresholds and pain evoked by a test stimulus were examined in each context. In the test phase, the effect of expectancy was equalised across conditions by informing participants when thresholds and painful stimuli would be presented. Contrary to our hypothesis, scenes that were associated with noxious stimulation did not increase mechanical sensitivity (p=0.08), or increase pain intensity (p=0.46). However, an interaction with sex highlighted the possibility that pain-associated contexts may alter pain sensitivity in females but not males (p=0.03). Overall, our data does not support the idea that pain-associated contexts can alter pain sensitivity in healthy asymptomatic individuals. That an effect was shown in females highlights the possibility that some subgroups may be susceptible to such an effect, although the magnitude of the effect may lack real-world significance. If pain-associated cues prove to have a relevant pain augmenting effect, in some subgroups, procedures aimed at extinguishing pain-related associations may have therapeutic potential.

  8. Astrocyte and Oligodendrocyte Connexins of the Glial Syncytium in Relation to Astrocyte Anatomical Domains and Spatial Buffering

    OpenAIRE

    NAGY, JAMES I.; RASH, JOHN E.

    2003-01-01

    Astroctyes express a set of three connexins (Cx26, Cx30, and Cx43) that are contained in astrocyte-to-astrocyte (A/A) gap junctions; oligodendrocytes express a different set of three connexins (Cx29, Cx32, and Cx47) that are contained in the oligodendrocyte side of necessarily heterotypic astrocyte-to-oligodendrocyte (A/O) gap junctions, and there is little ultrastructural evidence for gap junction formation between individual oligodendrocytes. In addition, primarily Cx29 and Cx32 are contain...

  9. Increasing Drought Sensitivity and Decline of Atlas Cedar (Cedrus atlantica in the Moroccan Middle Atlas Forests

    Directory of Open Access Journals (Sweden)

    Jesús Julio Camarero

    2011-09-01

    Full Text Available An understanding of the interactions between climate change and forest structure on tree growth are needed for decision making in forest conservation and management. In this paper, we investigated the relative contribution of tree features and stand structure on Atlas cedar (Cedrus atlantica radial growth in forests that have experienced heavy grazing and logging in the past. Dendrochronological methods were applied to quantify patterns in basal-area increment and drought sensitivity of Atlas cedar in the Middle Atlas, northern Morocco. We estimated the tree-to-tree competition intensity and quantified the structure in Atlas cedar stands with contrasting tree density, age, and decline symptoms. The relative contribution of tree age and size and stand structure to Atlas cedar growth decline was estimated by variance partitioning using partial-redundancy analyses. Recurrent drought events and temperature increases have been identified from local climate records since the 1970s. We detected consistent growth declines and increased drought sensitivity in Atlas cedar across all sites since the early 1980s. Specifically, we determined that previous growth rates and tree age were the strongest tree features, while Quercus rotundifolia basal area was the strongest stand structure measure related to Atlas cedar decline. As a result, we suggest that Atlas cedar forests that have experienced severe drought in combination with grazing and logging may be in the process of shifting dominance toward more drought-tolerant species such as Q. rotundifolia.

  10. Titanium dioxide nanoparticles increase sensitivity in the next generation of the water flea Daphnia magna.

    Directory of Open Access Journals (Sweden)

    Mirco Bundschuh

    Full Text Available The nanoparticle industry is expected to become a trillion dollar business in the near future. Therefore, the unintentional introduction of nanoparticles into the environment is increasingly likely. However, currently applied risk-assessment practices require further adaptation to accommodate the intrinsic nature of engineered nanoparticles. Combining a chronic flow-through exposure system with subsequent acute toxicity tests for the standard test organism Daphnia magna, we found that juvenile offspring of adults that were previously exposed to titanium dioxide nanoparticles exhibit a significantly increased sensitivity to titanium dioxide nanoparticles compared with the offspring of unexposed adults, as displayed by lower 96 h-EC(50 values. This observation is particularly remarkable because adults exhibited no differences among treatments in terms of typically assessed endpoints, such as sensitivity, number of offspring, or energy reserves. Hence, the present study suggests that ecotoxicological research requires further development to include the assessment of the environmental risks of nanoparticles for the next and hence not directly exposed generation, which is currently not included in standard test protocols.

  11. Regulation of Oligodendrocyte Progenitor Cell Maturation by PPARδ: Effects on Bone Morphogenetic Proteins

    Directory of Open Access Journals (Sweden)

    Maria Vittoria Simonini

    2009-12-01

    Full Text Available In EAE (experimental autoimmune encephalomyelitis, agonists of PPARs (peroxisome proliferator-activated receptors provide clinical benefit and reduce damage. In contrast with PPARγ, agonists of PPARδ are more effective when given at later stages of EAE and increase myelin gene expression, suggesting effects on OL (oligodendrocyte maturation. In the present study we examined effects of the PPARδ agonist GW0742 on OPCs (OL progenitor cells, and tested whether the effects involve modulation of BMPs (bone morphogenetic proteins. We show that effects of GW0742 are mediated through PPARδ since no amelioration of EAE clinical scores was observed in PPARδ-null mice. In OPCs derived from E13 mice (where E is embryonic day, GW0742, but not the PPARγ agonist pioglitazone, increased the number of myelin-producing OLs. This was due to activation of PPARδ since process formation was reduced in PPARδ-null compared with wild-type OPCs. In both OPCs and enriched astrocyte cultures, GW0742 increased noggin protein expression; however, noggin mRNA was only increased in astrocytes. In contrast, GW0742 reduced BMP2 and BMP4 mRNA levels in OPCs, with lesser effects in astrocytes. These findings demonstrate that PPARδ plays a role in OPC maturation, mediated, in part, by regulation of BMP and BMP antagonists.

  12. Differential local tissue permissiveness influences the final fate of GPR17‐expressing oligodendrocyte precursors in two distinct models of demyelination

    Science.gov (United States)

    Coppolino, Giusy T.; Marangon, Davide; Negri, Camilla; Menichetti, Gianluca; Fumagalli, Marta; Gelosa, Paolo; Dimou, Leda; Furlan, Roberto; Lecca, Davide

    2018-01-01

    Abstract Promoting remyelination is recognized as a novel strategy to foster repair in neurodegenerative demyelinating diseases, such as multiple sclerosis. In this respect, the receptor GPR17, recently emerged as a new target for remyelination, is expressed by early oligodendrocyte precursors (OPCs) and after a certain differentiation stage it has to be downregulated to allow progression to mature myelinating oligodendrocytes. Here, we took advantage of the first inducible GPR17 reporter mouse line (GPR17‐iCreERT2xCAG‐eGFP mice) allowing to follow the final fate of GPR17+ cells by tamoxifen‐induced GFP‐labeling to unveil the destiny of these cells in two demyelination models: experimental autoimmune encephalomyelitis (EAE), characterized by marked immune cell activation and inflammation, and cuprizone induced demyelination, where myelin dysfunction is achieved by a toxic insult. In both models, demyelination induced a strong increase of fluorescent GFP+ cells at damaged areas. However, only in the cuprizone model reacting GFP+ cells terminally differentiated to mature oligodendrocytes, thus contributing to remyelination. In EAE, GFP+ cells were blocked at immature stages and never became myelinating oligodendrocytes. We suggest these strikingly distinct fates be due to different permissiveness of the local CNS environment. Based on previously reported GPR17 activation by emergency signals (e.g., Stromal Derived Factor‐1), we propose that a marked inflammatory milieu, such as that reproduced in EAE, induces GPR17 overactivation resulting in impaired downregulation, untimely and prolonged permanence in OPCs, leading, in turn, to differentiation blockade. Combined treatments with remyelinating agents and anti‐inflammatory drugs may represent new potential adequate strategies to halt neurodegeneration and foster recovery. PMID:29424466

  13. Characterization of a subset of oligodendrocytes separated on the basis of selective adherence properties.

    Science.gov (United States)

    Szuchet, S; Yim, S H

    1984-01-01

    A subset of oligodendrocytes (B3,f) was isolated by taking advantage of selective cell-substratum interaction. B3,f cells were characterized morphologically, biochemically, and immunocytochemically. Oligodendrocytes were isolated from 4-to-6-month-old lamb brains by a modified version of our published procedure [Szuchet et al, J Neurosci Methods 3:7-19, 1980]. Freshly isolated cells from band III were plated on plastic culture plates at a concentration of 2 X 10(6) cells/ml. Approximately 40% of the cells attached to the plate under these conditions. The remaining cells formed small floating clusters. We refer to the latter as B3,f oligodendrocytes. After 4 to 5 days, the supernatant containing B3,f cells was removed and centrifuged, and the pellet was resuspended in culture medium and replated on polylysine-coated petri dishes. B3,f oligodendrocytes attached to this surface and extended an intricate network of processes. The purity of the cultures, judged by the number of cells staining with a monoclonal antibody against galactocerebroside was 98-99%. This high degree of cell homogeneity was maintained throughout the life of the cultures. B3,f cells appeared to be highly differentiated and remained so in vitro. This is surmised by the expression of oligodendrocytic characteristic functions such as high levels of CNPase activity typically, 5 microM/min/mgP; high incorporation of H2 35SO4 into sulfatides, an overall lipid metabolism that mimics events associated with myelinogenesis [Szuchet et al, PNAS 80:7019-7023, 1983]; the presence, detected immunocytochemically, of myelin-associated glycoprotein and myelin basic proteins. It is concluded that this culture system offers an opportunity for studying the biology of interfascicular oligodendrocytes and their interaction with neurons and/or astrocytes. It also should open up a way of examining the relevance of oligodendrocyte polymorphism.

  14. Characterization of glucose‐related metabolic pathways in differentiated rat oligodendrocyte lineage cells

    Science.gov (United States)

    Amaral, Ana I.; Hadera, Mussie G.; Tavares, Joana M.

    2015-01-01

    Although oligodendrocytes constitute a significant proportion of cells in the central nervous system (CNS), little is known about their intermediary metabolism. We have, therefore, characterized metabolic functions of primary oligodendrocyte precursor cell cultures at late stages of differentiation using isotope‐labelled metabolites. We report that differentiated oligodendrocyte lineage cells avidly metabolize glucose in the cytosol and pyruvate derived from glucose in the mitochondria. The labelling patterns of metabolites obtained after incubation with [1,2‐13C]glucose demonstrated that the pentose phosphate pathway (PPP) is highly active in oligodendrocytes (approximately 10% of glucose is metabolized via the PPP as indicated by labelling patterns in phosphoenolpyruvate). Mass spectrometry and magnetic resonance spectroscopy analyses of metabolites after incubation of cells with [1‐13C]lactate or [1,2‐13C]glucose, respectively, demonstrated that anaplerotic pyruvate carboxylation, which was thought to be exclusive to astrocytes, is also active in oligodendrocytes. Using [1,2‐13C]acetate, we show that oligodendrocytes convert acetate into acetyl CoA which is metabolized in the tricarboxylic acid cycle. Analysis of labelling patterns of alanine after incubation of cells with [1,2‐13C]acetate and [1,2‐13C]glucose showed catabolic oxidation of malate or oxaloacetate. In conclusion, we report that oligodendrocyte lineage cells at late differentiation stages are metabolically highly active cells that are likely to contribute considerably to the metabolic activity of the CNS. GLIA 2016;64:21–34 PMID:26352325

  15. Thyroid hormone participates in the regulation of neural stem cells and oligodendrocyte precursor cells in the central nervous system of adult rat.

    Science.gov (United States)

    Fernandez, M; Pirondi, S; Manservigi, M; Giardino, L; Calzà, L

    2004-10-01

    Oligodendrocyte development and myelination are under thyroid hormone control. In this study we analysed the effects of chronic manipulation of thyroid status on the expression of a wide spectrum of oligodendrocyte precursor cells (OPCs) markers and myelin basic protein (MBP) in the subventricular zone (SVZ), olfactory bulb and optic nerve, and on neural stem cell (NSC) lineage in adult rats. Hypo- and hyperthyroidism were induced in male rats, by propyl-thio-uracil (PTU) and L-thyroxin (T4) treatment, respectively. Hypothyroidism increased and hyperthyroidism downregulated proliferation in the SVZ and olfactory bulb (Ki67 immunohistochemistry and Western blotting, bromodeoxyuridine uptake). Platelet-derived growth factor receptor alpha (PDGFalpha-R) and MBP mRNA levels decreased in the optic nerve of hypothyroid rats; the same also occurred at the level of MBP protein. Hyperthyroidism slightly upregulates selected markers such as NG2 in the olfactory bulb. The lineage of cells derived from primary cultures of NSC prepared from the forebrain of adult hypo- and hyperthyroid also differs from those derived from control animals. Although no difference of in vitro proliferation of NSCs was observed in the presence of epidermal growth factor, maturation of oligodendrocytes (defined by process number and length) was enhanced in hyperthyroidism, suggesting a more mature state than in control animals. This difference was even greater when compared with the hypothyroid group, the morphology of which suggested a delay in differentiation. These results indicate that thyroid hormone affects NSC and OPC proliferation and maturation also in adulthood.

  16. BRCA1 deficiency increases the sensitivity of ovarian cancer cells to auranofin

    International Nuclear Information System (INIS)

    Oommen, Deepu; Yiannakis, Dennis; Jha, Awadhesh N.

    2016-01-01

    Highlights: • BRCA1 deficient cancer cells exhibit increased DNA damage upon auranofin treatment. • Auranofin induces apoptosis in BRCA1 deficient cancer cells despite the activation of Nrf2. • Antioxidant protects BRCA1 deficient cancer cells from auranofin. - Abstract: Auranofin, a thioredoxin reductase inhibitor and an anti-rheumatic drug is currently undergoing phase 2 clinical studies for repurposing to treat recurrent epithelial ovarian cancer. Previous studies have established that auranofin exerts its cytotoxic activity by increasing the production of reactive oxygen species (ROS). Breast cancer 1, early onset (BRCA1) is a DNA repair protein whose functional status is critical in the prognosis of ovarian cancer. Apart from its key role in DNA repair, BRCA1 is also known to modulate cellular redox homeostasis by regulating the stability of anti-oxidant transcription factor, nuclear factor erythroid 2—related factor 2 (Nrf2) via direct protein–protein interaction. However, it is currently unknown whether BRCA1 modulates the sensitivity of ovarian cancer cells to auranofin. Here we report that BRCA1-depleted cells exhibited increased DNA double strand breaks (DSBs) and decreased clonogenic cell survival upon auranofin treatment. Interestingly, auranofin induced the expression of Nrf2 in BRCA1-depleted cells suggesting its regulation independent of BRCA1. Furthermore, anti-oxidant agent, N-acetyl cysteine (NAC) protected BRCA1-depleted cells from DNA damage and apoptosis induced by auranofin. Our study suggests that accumulated lethal DSBs resulting from the oxidative damage render BRCA1 deficient cells more sensitive to auranofin despite the activation of Nrf2.

  17. BRCA1 deficiency increases the sensitivity of ovarian cancer cells to auranofin

    Energy Technology Data Exchange (ETDEWEB)

    Oommen, Deepu [School of Biological Sciences, Plymouth University, Plymouth PL4 8AA (United Kingdom); Yiannakis, Dennis [Plymouth Oncology Centre, Derriford Hospital, Plymouth Hospitals NHS Trust, Plymouth PL6 8DH (United Kingdom); Jha, Awadhesh N., E-mail: a.jha@plymouth.ac.uk [School of Biological Sciences, Plymouth University, Plymouth PL4 8AA (United Kingdom)

    2016-02-15

    Highlights: • BRCA1 deficient cancer cells exhibit increased DNA damage upon auranofin treatment. • Auranofin induces apoptosis in BRCA1 deficient cancer cells despite the activation of Nrf2. • Antioxidant protects BRCA1 deficient cancer cells from auranofin. - Abstract: Auranofin, a thioredoxin reductase inhibitor and an anti-rheumatic drug is currently undergoing phase 2 clinical studies for repurposing to treat recurrent epithelial ovarian cancer. Previous studies have established that auranofin exerts its cytotoxic activity by increasing the production of reactive oxygen species (ROS). Breast cancer 1, early onset (BRCA1) is a DNA repair protein whose functional status is critical in the prognosis of ovarian cancer. Apart from its key role in DNA repair, BRCA1 is also known to modulate cellular redox homeostasis by regulating the stability of anti-oxidant transcription factor, nuclear factor erythroid 2—related factor 2 (Nrf2) via direct protein–protein interaction. However, it is currently unknown whether BRCA1 modulates the sensitivity of ovarian cancer cells to auranofin. Here we report that BRCA1-depleted cells exhibited increased DNA double strand breaks (DSBs) and decreased clonogenic cell survival upon auranofin treatment. Interestingly, auranofin induced the expression of Nrf2 in BRCA1-depleted cells suggesting its regulation independent of BRCA1. Furthermore, anti-oxidant agent, N-acetyl cysteine (NAC) protected BRCA1-depleted cells from DNA damage and apoptosis induced by auranofin. Our study suggests that accumulated lethal DSBs resulting from the oxidative damage render BRCA1 deficient cells more sensitive to auranofin despite the activation of Nrf2.

  18. Hypoxia increases pulmonary arterial thromboxane receptor internalization independent of receptor sensitization.

    Science.gov (United States)

    Fediuk, J; Sikarwar, A S; Lizotte, P P; Hinton, M; Nolette, N; Dakshinamurti, S

    2015-02-01

    Persistent Pulmonary Hypertension of the Newborn (PPHN) is characterized by sustained vasospasm and an increased thromboxane:prostacyclin ratio. Thromboxane (TP) receptors signal via Gαq to mobilize IP3 and Ca(2+), causing pulmonary arterial constriction. We have previously reported increased TP internalization in hypoxic pulmonary arterial (PA) myocytes. Serum-deprived PA myocytes were grown in normoxia (NM) or hypoxia (HM) for 72 h. TP localization was visualized in agonist-naïve and -challenged NM and HM by immunocytochemistry. Pathways for agonist-induced TP receptor internalization were determined by inhibiting caveolin- or clathrin-mediated endocytosis, and caveolar fractionation. Roles of actin and tubulin in TP receptor internalization were assessed using inhibitors of tubulin, actin-stabilizing or -destabilizing agents. PKA, PKC or GRK activation and inhibition were used to determine the kinase responsible for post-agonist receptor internalization. Agonist-naïve HM had decreased cell surface TP, and greater TP internalization after agonist challenge. TP protein did not sort with caveolin-rich fractions. Inhibition of clathrin prevented TP internalization. Both actin-stabilizing and -destabilizing agents prevented TP endocytosis in NM, while normalizing TP internalization in HM. Velocity of TP internalization was unaffected by PKA activity, but PKC activation normalized TP receptor internalization in HM. GRK inhibition had no effect. We conclude that in hypoxic myocytes, TP is internalized faster and to a greater extent than in normoxic controls. Internalization of the agonist-challenged TP requires clathrin, dynamic actin and is sensitive to PKC activity. TP receptor trafficking and signaling in hypoxia are pivotal to understanding increased vasoconstrictor sensitivity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Resveratrol sensitization of DU145 prostate cancer cells to ionizing radiation is associated to ceramide increase.

    Science.gov (United States)

    Scarlatti, Francesca; Sala, Giusy; Ricci, Clara; Maioli, Claudio; Milani, Franco; Minella, Marco; Botturi, Marco; Ghidoni, Riccardo

    2007-08-08

    Radiotherapy is an established therapeutic modality for prostate cancer. Since it is well known that radiotherapy is limited due to its severe toxicity towards normal cells at high dose and minimal effect at low dose, the search for biological compounds that increase the sensitivity of tumors cells to radiation may improve the efficacy of therapy. Resveratrol, a natural antioxidant, was shown to inhibit carcinogenesis in animal models, and to block the process of tumor initiation and progression. The purpose of this study was to examine whether or not resveratrol can sensitize DU145, an androgen-independent human prostate cancer cell line, to ionizing radiation. We report here that DU145 cells are resistant to ionizing radiation-induced cell death, but pretreatment with resveratrol significantly enhances cell death. Resveratrol acts synergistically with ionizing radiation to inhibit cell survival in vitro. Resveratrol also potentiates ionizing radiation-induced ceramide accumulation, by promoting its de novo biosynthesis. This confirms ceramide as an effective mediator of the anticancer potential induced by resveratrol.

  20. Epithelial-mesenchymal transition increases tumor sensitivity to COX-2 inhibition by apricoxib.

    Science.gov (United States)

    Kirane, Amanda; Toombs, Jason E; Larsen, Jill E; Ostapoff, Katherine T; Meshaw, Kathryn R; Zaknoen, Sara; Brekken, Rolf A; Burrows, Francis J

    2012-09-01

    Although cyclooxygenase-2 (COX-2) inhibitors, such as the late stage development drug apricoxib, exhibit antitumor activity, their mechanisms of action have not been fully defined. In this study, we characterized the mechanisms of action of apricoxib in HT29 colorectal carcinoma. Apricoxib was weakly cytotoxic toward naive HT29 cells in vitro but inhibited tumor growth markedly in vivo. Pharmacokinetic analyses revealed that in vivo drug levels peaked at 2-4 µM and remained sufficient to completely inhibit prostaglandin E(2) production, but failed to reach concentrations cytotoxic for HT29 cells in monolayer culture. Despite this, apricoxib significantly inhibited tumor cell proliferation and induced apoptosis without affecting blood vessel density, although it did promote vascular normalization. Strikingly, apricoxib treatment induced a dose-dependent reversal of epithelial-mesenchymal transition (EMT), as shown by robust upregulation of E-cadherin and the virtual disappearance of vimentin and ZEB1 protein expression. In vitro, either anchorage-independent growth conditions or forced EMT sensitized HT29 and non-small cell lung cancer cells to apricoxib by 50-fold, suggesting that the occurrence of EMT may actually increase the dependence of colon and lung carcinoma cells on COX-2. Taken together, these data suggest that acquisition of mesenchymal characteristics sensitizes carcinoma cells to apricoxib resulting in significant single-agent antitumor activity.

  1. Addiction: Decreased reward sensitivity and increased expectation sensitivity conspire to overwhelm the brain’s control circuit

    Energy Technology Data Exchange (ETDEWEB)

    Volkow, N.D.; Wang, G.; Volkow, N.D.; Wang, G.-J.; Fowler, J.S.; Tomasi, D.; Telang, F.; Baler, R.

    2010-07-01

    Based on brain imaging findings, we present a model according to which addiction emerges as an imbalance in the information processing and integration among various brain circuits and functions. The dysfunctions reflect (a) decreased sensitivity of reward circuits, (b) enhanced sensitivity of memory circuits to conditioned expectations to drugs and drug cues, stress reactivity, and (c) negative mood, and a weakened control circuit. Although initial experimentation with a drug of abuse is largely a voluntary behavior, continued drug use can eventually impair neuronal circuits in the brain that are involved in free will, turning drug use into an automatic compulsive behavior. The ability of addictive drugs to co-opt neurotransmitter signals between neurons (including dopamine, glutamate, and GABA) modifies the function of different neuronal circuits, which begin to falter at different stages of an addiction trajectory. Upon exposure to the drug, drug cues or stress this results in unrestrained hyperactivation of the motivation/drive circuit that results in the compulsive drug intake that characterizes addiction.

  2. TIMP-1 gene deficiency increases tumour cell sensitivity to chemotherapy-induced apoptosis

    DEFF Research Database (Denmark)

    Davidsen, Marie Louise; Würts, S.Ø.; Rømer, Maria Unni Koefoed

    2006-01-01

    deficiency increases the response to chemotherapy considerably, confirming that TIMP-1 protects the cells from apoptosis. This is to our knowledge the first study investigating TIMP-1 and chemotherapy-induced apoptosis employing a powerful model system comprising TIMP-1 gene-deficient cells...... this hypothesis, we have established TIMP-1 gene-deficient and TIMP-1 wild-type fibrosarcoma cells from mouse lung tissue. We have characterised these cells with regard to TIMP-1 genotype, TIMP-1 expression, malignant transformation and sensitivity to chemotherapy-induced apoptosis. We show that TIMP-1 gene...... and their genetically identical wild-type controls. For future studies, this cell system can be used to uncover the mechanisms and signalling pathways involved in the TIMP-1-mediated inhibition of apoptosis as well as to investigate the possibility of using TIMP-1 inhibitors to optimise the effect of conventional...

  3. Dihydrocoumarin, an HDAC Inhibitor, Increases DNA Damage Sensitivity by Inhibiting Rad52

    Directory of Open Access Journals (Sweden)

    Chin-Chuan Chen

    2017-12-01

    Full Text Available Effective DNA repair enables cancer cells to survive DNA damage induced by chemotherapeutic or radiotherapeutic treatments. Therefore, inhibiting DNA repair pathways is a promising therapeutic strategy for increasing the efficacy of such treatments. In this study, we found that dihydrocoumarin (DHC, a flavoring agent, causes deficiencies in double-stand break (DSB repair and prolonged DNA damage checkpoint recovery in yeast. Following DNA damage, Rad52 recombinase was revealed to be inhibited by DHC, which results in deficiencies in DSB repair and prolonged DNA damage checkpoint recovery. The deletion of RPD3, a class I histone deacetylase (HDAC, was found to mimic DHC-induced suppression of Rad52 expression, suggesting that the HDAC inhibitor activity of DHC is critical to DSB repair and DNA damage sensitivity. Overall, our findings delineate the regulatory mechanisms of DHC in DSB repair and suggest that it might potentially be used as an inhibitor of the DNA repair pathway in human cells.

  4. Y-27632 Increases Sensitivity of PANC-1 Cells to EGCG in Regulating Cell Proliferation and Migration.

    Science.gov (United States)

    Liu, Xing; Bi, Yongyi

    2016-10-03

    BACKGROUND The study aimed to investigate the inhibitory effect of (1R,4r)-4-((R)-1-aminoethyl)-N-(pyridin-4-yl) cyclohexanecarboxamide (Y-27632) and (-)-epigallocatechin-3-gallate (EGCG) on the proliferation and migration of PANC-1 cells. EGCG, found in green tea, has been previously shown to be one of the most abundant and powerful catechins in cancer prevention and treatment. Y-27632, a selective inhibitor of rho-associated protein kinase 1, is widely used in treating cardiovascular disease, inflammation, and cancer. MATERIAL AND METHODS PANC-1 cells, maintained in Dulbecco's Modified Eagle's Medium, were treated with dimethyl sulfoxide (control) as well as different concentrations (20, 40, 60, and 80 μg/mL) of EGCG for 48 h. In addition, PANC-1 cells were treated separately with 60 μg/mL EGCG, 20 μM Y-27632, and EGCG combined with Y-27632 (60 μg/mL EGCG + 20 μM Y-27632) for 48 h. The effect of EGCG and Y-27632 on the proliferation and migration of PANC-1 cells was evaluated using Cell Counting Kit-8 and transwell migration assays. The expression of peroxisome proliferator-activated receptor alpha (PPARα) and Caspase-3 mRNA was determined by Quantitative real-time polymerase chain reaction (RT-qPCR). RESULTS EGCG (20-80 μg/mL) inhibited cell viability in a dose-dependent manner. Y-27632 enhanced the sensitivity of PANC-1 cells to EGCG (by increasing the expression of PPARa and Caspase-3 mRNA) and suppressed cell proliferation. PANC-1 cell migration was inhibited by treatment with a combination of EGCG and Y-27632. CONCLUSIONS Y-27632 increases the sensitivity of PANC-1 cells to EGCG in regulating cell proliferation and migration, which is likely to be related to the expression of PPARa mRNA and Caspase-3 mRNA.

  5. Increased light harvesting in dye-sensitized solar cells with energy relay dyes

    KAUST Repository

    Hardin, Brian E.; Hoke, Eric T.; Armstrong, Paul B.; Yum, Jun-Ho; Comte, Pascal; Torres, Tomá s; Fré chet, Jean M. J.; Nazeeruddin, Md Khaja; Grä tzel, Michael; McGehee, Michael D.

    2009-01-01

    Conventional dye-sensitized solar cells have excellent charge collection efficiencies, high open-circuit voltages and good fill factors. However, dye-sensitized solar cells do not completely absorb all of the photons from the visible and near

  6. Inhibition of phosphatidylinositol-3-kinase causes increased sensitivity to radiation through a PKB-dependent mechanism

    International Nuclear Information System (INIS)

    Gottschalk, Alexander R.; Doan, Albert; Nakamura, Jean L.; Stokoe, David; Haas-Kogan, Daphne A.

    2005-01-01

    Purpose: To identify whether inhibition of phosphatidylinositol-3-kinase (PI3K) causes increased radiosensitivity through inhibition of protein kinase B (PKB), implicating PKB as an important therapeutic target in prostate cancer. Methods and Materials: The prostate cancer cell line LNCaP was treated with the PI3K inhibitor LY294002, radiation, and combinations of the two therapies. Apoptosis and survival were measured by cell cycle analysis, Western blot analysis for cleaved poly (ADP-ribose) polymerase, and clonogenic survival. To test the hypothesis that inhibition of PKB is responsible for LY294002-induced radiosensitivity, LNCaP cells expressing a constitutively active form of PKB were used. Results: The combination of PI3K inhibition and radiation caused an increase in apoptosis and a decrease in clonogenic survival when compared to either modality alone. The expression of constitutively activated PKB blocked apoptosis induced by combination of PI3K inhibition and radiation and prevented radiosensitization by LY294002. Conclusion: These data indicate that PI3K inhibition increases sensitivity of prostate cancer cell lines to ionizing radiation through inactivation of PKB. Therefore, PTEN mutations, which lead to PKB activation, may play an important role in the resistance of prostate cancer to radiation therapy. Targeted therapy against PKB could be beneficial in the management of prostate cancer patients

  7. Effects of ocean acidification increase embryonic sensitivity to thermal extremes in Atlantic cod, Gadus morhua.

    Science.gov (United States)

    Dahlke, Flemming T; Leo, Elettra; Mark, Felix C; Pörtner, Hans-Otto; Bickmeyer, Ulf; Frickenhaus, Stephan; Storch, Daniela

    2017-04-01

    Thermal tolerance windows serve as a powerful tool for estimating the vulnerability of marine species and their life stages to increasing temperature means and extremes. However, it remains uncertain to which extent additional drivers, such as ocean acidification, modify organismal responses to temperature. This study investigated the effects of CO 2 -driven ocean acidification on embryonic thermal sensitivity and performance in Atlantic cod, Gadus morhua, from the Kattegat. Fertilized eggs were exposed to factorial combinations of two PCO 2 conditions (400 μatm vs. 1100 μatm) and five temperature treatments (0, 3, 6, 9 and 12 °C), which allow identifying both lower and upper thermal tolerance thresholds. We quantified hatching success, oxygen consumption (MO 2 ) and mitochondrial functioning of embryos as well as larval morphometrics at hatch and the abundance of acid-base-relevant ionocytes on the yolk sac epithelium of newly hatched larvae. Hatching success was high under ambient spawning conditions (3-6 °C), but decreased towards both cold and warm temperature extremes. Elevated PCO 2 caused a significant decrease in hatching success, particularly at cold (3 and 0 °C) and warm (12 °C) temperatures. Warming imposed limitations to MO 2 and mitochondrial capacities. Elevated PCO 2 stimulated MO 2 at cold and intermediate temperatures, but exacerbated warming-induced constraints on MO 2 , indicating a synergistic interaction with temperature. Mitochondrial functioning was not affected by PCO 2 . Increased MO 2 in response to elevated PCO 2 was paralleled by reduced larval size at hatch. Finally, ionocyte abundance decreased with increasing temperature, but did not differ between PCO 2 treatments. Our results demonstrate increased thermal sensitivity of cod embryos under future PCO 2 conditions and suggest that acclimation to elevated PCO 2 requires reallocation of limited resources at the expense of embryonic growth. We conclude that ocean acidification

  8. Ropivacaine and Bupivacaine prevent increased pain sensitivity without altering neuroimmune activation following repeated social defeat stress.

    Science.gov (United States)

    Sawicki, Caroline M; Kim, January K; Weber, Michael D; Jarrett, Brant L; Godbout, Jonathan P; Sheridan, John F; Humeidan, Michelle

    2018-03-01

    Mounting evidence indicates that stress influences the experience of pain. Exposure to psychosocial stress disrupts bi-directional communication pathways between the central nervous system and peripheral immune system, and can exacerbate the frequency and severity of pain experienced by stressed subjects. Repeated social defeat (RSD) is a murine model of psychosocial stress that recapitulates the immune and behavioral responses to stress observed in humans, including activation of stress-reactive neurocircuitry and increased pro-inflammatory cytokine production. It is unclear, however, how these stress-induced neuroimmune responses contribute to increased pain sensitivity in mice exposed to RSD. Here we used a technique of regional analgesia with local anesthetics in mice to block the development of mechanical allodynia during RSD. We next investigated the degree to which pain blockade altered stress-induced neuroimmune activation and depressive-like behavior. Following development of a mouse model of regional analgesia with discrete sensory blockade over the dorsal-caudal aspect of the spine, C57BL/6 mice were divided into experimental groups and treated with Ropivacaine (0.08%), Liposomal Bupivacaine (0.08%), or Vehicle (0.9% NaCl) prior to exposure to stress. This specific region was selected for analgesia because it is the most frequent location for aggression-associated pain due to biting during RSD. Mechanical allodynia was assessed 12 h after the first, third, and sixth day of RSD after resolution of the sensory blockade. In a separate experiment, social avoidance behavior was determined after the sixth day of RSD. Blood, bone marrow, brain, and spinal cord were collected for immunological analyses after the last day of RSD in both experiments following behavioral assessments. RSD increased mechanical allodynia in an exposure-dependent manner that persisted for at least one week following cessation of the stressor. Mice treated with either Ropivacaine or

  9. Salinomycin sensitizes antimitotic drugs-treated cancer cells by increasing apoptosis via the prevention of G2 arrest

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ju-Hwa; Yoo, Hye-In; Kang, Han Sung; Ro, Jungsil [Research Institute, National Cancer Center, Ilsan-gu, Goyang-si, Gyeonggi-do (Korea, Republic of); Yoon, Sungpil, E-mail: yoons@ncc.re.kr [Research Institute, National Cancer Center, Ilsan-gu, Goyang-si, Gyeonggi-do (Korea, Republic of)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer Sal sensitizes antimitotic drugs-treated cancer cells. Black-Right-Pointing-Pointer Sal sensitizes them by prevention of G2 arrest and reduced cyclin D1 levels. Black-Right-Pointing-Pointer Sal also sensitizes them by increasing DNA damage and reducing p21 level. Black-Right-Pointing-Pointer A low concentration of Sal effectively sensitized the cancer cells to antimitotic drugs. -- Abstract: Here, we investigated whether Sal could sensitize cancer cells to antimitotic drugs. We demonstrated that Sal sensitized paclitaxcel (PAC)-, docetaxcel (DOC)-, vinblastin (VIN)-, or colchicine (COL)-treated cancer cell lines, suggesting that Sal has the ability to sensitize the cells to any form of microtubule-targeting drugs. Sensitization to the antimitotic drugs could be achieved with very low concentrations of Sal, suggesting that there is a possibility to minimize Sal toxicity associated with human cancer patient treatments. Sensitization by Sal increased apoptosis, which was observed by C-PARP production. Sal sensitized the cancer cells to antimitotic drugs by preventing G2 arrest, suggesting that Sal contributes to the induction of mitotic catastrophe. Sal generally reduced cyclin D1 levels in PAC-, DOC-, and VIN-treated cells. In addition, Sal treatment increased pH2AX levels and reduced p21 levels in antimitotic drugs-treated cells. These observations suggest that the mechanisms underlying Sal sensitization to DNA-damaging compounds, radiation, and microtubule-targeting drugs are similar. Our data demonstrated that Sal sensitizes cancer cells to antimitotic drugs by increasing apoptosis through the prevention of G2 arrest via conserved Sal-sensitization mechanisms. These results may contribute to the development of Sal-based chemotherapy for cancer patients treated with antimitotic drugs.

  10. Salinomycin sensitizes antimitotic drugs-treated cancer cells by increasing apoptosis via the prevention of G2 arrest

    International Nuclear Information System (INIS)

    Kim, Ju-Hwa; Yoo, Hye-In; Kang, Han Sung; Ro, Jungsil; Yoon, Sungpil

    2012-01-01

    Highlights: ► Sal sensitizes antimitotic drugs-treated cancer cells. ► Sal sensitizes them by prevention of G2 arrest and reduced cyclin D1 levels. ► Sal also sensitizes them by increasing DNA damage and reducing p21 level. ► A low concentration of Sal effectively sensitized the cancer cells to antimitotic drugs. -- Abstract: Here, we investigated whether Sal could sensitize cancer cells to antimitotic drugs. We demonstrated that Sal sensitized paclitaxcel (PAC)-, docetaxcel (DOC)-, vinblastin (VIN)-, or colchicine (COL)-treated cancer cell lines, suggesting that Sal has the ability to sensitize the cells to any form of microtubule-targeting drugs. Sensitization to the antimitotic drugs could be achieved with very low concentrations of Sal, suggesting that there is a possibility to minimize Sal toxicity associated with human cancer patient treatments. Sensitization by Sal increased apoptosis, which was observed by C-PARP production. Sal sensitized the cancer cells to antimitotic drugs by preventing G2 arrest, suggesting that Sal contributes to the induction of mitotic catastrophe. Sal generally reduced cyclin D1 levels in PAC-, DOC-, and VIN-treated cells. In addition, Sal treatment increased pH2AX levels and reduced p21 levels in antimitotic drugs-treated cells. These observations suggest that the mechanisms underlying Sal sensitization to DNA-damaging compounds, radiation, and microtubule-targeting drugs are similar. Our data demonstrated that Sal sensitizes cancer cells to antimitotic drugs by increasing apoptosis through the prevention of G2 arrest via conserved Sal-sensitization mechanisms. These results may contribute to the development of Sal-based chemotherapy for cancer patients treated with antimitotic drugs.

  11. Stress-induced alterations in estradiol sensitivity increase risk for obesity in women.

    Science.gov (United States)

    Michopoulos, Vasiliki

    2016-11-01

    The prevalence of obesity in the United States continues to rise, increasing individual vulnerability to an array of adverse health outcomes. One factor that has been implicated causally in the increased accumulation of fat and excess food intake is the activity of the limbic-hypothalamic-pituitary-adrenal (LHPA) axis in the face of relentless stressor exposure. However, translational and clinical research continues to understudy the effects sex and gonadal hormones and LHPA axis dysfunction in the etiology of obesity even though women continue to be at greater risk than men for stress-induced disorders, including depression, emotional feeding and obesity. The current review will emphasize the need for sex-specific evaluation of the relationship between stress exposure and LHPA axis activity on individual risk for obesity by summarizing data generated by animal models currently being leveraged to determine the etiology of stress-induced alterations in feeding behavior and metabolism. There exists a clear lack of translational models that have been used to study female-specific risk. One translational model of psychosocial stress exposure that has proven fruitful in elucidating potential mechanisms by which females are at increased risk for stress-induced adverse health outcomes is that of social subordination in socially housed female macaque monkeys. Data from subordinate female monkeys suggest that increased risk for emotional eating and the development of obesity in females may be due to LHPA axis-induced changes in the behavioral and physiological sensitivity of estradiol. The lack in understanding of the mechanisms underlying these alterations necessitate the need to account for the effects of sex and gonadal hormones in the rationale, design, implementation, analysis and interpretation of results in our studies of stress axis function in obesity. Doing so may lead to the identification of novel therapeutic targets with which to combat stress-induced obesity

  12. Ultrasonographic detection of focal liver lesions: increased sensitivity and specificity with microbubble contrast agents

    International Nuclear Information System (INIS)

    Hohmann, J.; Albrecht, T.; Hoffmann, C.W.; Wolf, K.-J.

    2003-01-01

    Ultrasonography (US) is the first choice for screening patients with suspected liver lesions. However, due to a lack of contrast agents, US used to be less sensitive and specific compared with computed tomography (CT) and magnet resonance imaging (MRI). The advent of microbubble contrast agents increased both sensitivity and specificity dramatically. Rapid developments of the contrast agents as well as of special imaging techniques were made in recent years. Today numerous different US imaging methods exist which based either on Doppler or on harmonic imaging. They are using the particular behaviour of microbubbles in a sound field which varies depending on the energy of insonation (low/high mechanical index, MI) as well as on the properties of the agent themselves. Apart from just blood pool enhancement some agents have a hepatosplenic specific late phase. US imaging during this late phase using relatively high MI in phase inversion mode (harmonic imaging) or stimulated acoustic emission (SAE; Doppler method) markedly improves the detection of focal liver lesions and is also very helpful for lesion characterisation. With regards to detection, contrast enhanced US performs similarly to CT as shown by recent studies. Early results of studies using low MI imaging and the newer perfluor agents are also showing promising results for lesion detection. Low MI imaging with these agents has the advantage of real time imaging and is particularly helpful for characterisation of focal lesions based on their dynamic contrast behaviour. Apart from the techniques which based on the morphology of liver lesions there were some attempts for the detection of occult metastases or micrometastases by means of liver blood flow changes. Also in this field the use of US contrast agents appears to have advantages over formerly used non contrast-enhanced methods although no conclusive results are available yet

  13. Offspring of prenatal IV nicotine exposure exhibit increased sensitivity to the reinforcing effects of methamphetamine

    Directory of Open Access Journals (Sweden)

    Steven Brown Harrod

    2012-06-01

    Full Text Available Maternal smoking during pregnancy is associated with increased substance abuse in offspring. Preclinical research shows that in utero exposure to nicotine, the primary psychoactive compound in tobacco smoke, influences the neurodevelopment of reward systems and alters motivated behavior in offspring. The present study determined if prenatal nicotine (PN exposure altered the sensitivity to the reinforcing and aversive effects of methamphetamine (METH in offspring using a low dose, intravenous (IV exposure method. Pregnant dams were administered nicotine (0.05 mg/kg/injection or prenatal saline (PS 3×/day on gestational days 8-21, and adult offspring were tested using METH self-administration (experiment 1 or METH-induced conditioned taste aversion (CTA; experiment 2 procedures. For METH self-administration, animals were trained to respond for IV METH (0.05 mg/kg/injection; fixed-ratio 3 and they were tested on varying doses the reinforcer (0.0005-1.0 mg/kg/injection. For METH CTA, rats received three saccharin and METH pairings (0, 0.3, or 0.5 mg/kg, sc followed by fourteen daily extinction trials. Experiment 1: PN and PS animals exhibited inverted U-shaped dose-response curves; however, the PN animal’s curve was shifted to the left, suggesting PN animals were more sensitive to the reinforcing effects of METH. Experiment 2: METH CTA was acquired in a dose-dependent manner and the factor of PN exposure was not related to the acquisition or extinction of METH-induced CTA. There were no sex differences in either experiment. These results indicate that adult offspring of IV PN exposure exhibited altered motivation for the reinforcing effects of METH. This suggests that PN exposure, via maternal smoking, will alter the reinforcing effects of METH during later stages of development, and furthermore, will influence substance use vulnerability in adult human offspring.

  14. The new horizon in 2D electrophoresis: new technology to increase resolution and sensitivity.

    Science.gov (United States)

    Moche, Martin; Albrecht, Dirk; Maaß, Sandra; Hecker, Michael; Westermeier, Reiner; Büttner, Knut

    2013-06-01

    A principally new type of an electrophoresis setup for the second dimension of 2DE named HPE (high performance electrophoresis) has recently become available that provides excellent reproducibility much superior to traditional 2DE. It takes up ideas from early beginnings of 2DE which could not be satisfactory realized at that time. The new HPE system is in contrast to all other established systems a horizontal electrophoresis that employs a new type of precast polyacrylamide gels on film-backing and runs on a multilevel flatbed electrophoresis apparatus. In a systematic approach we compared its features to traditional 2DE for the cytosolic proteome of Bacillus subtilis. Not only the reproducibility is enhanced, but also nearly all qualitative parameters as resolution, sensitivity, the number of protein spots (25% more), and the number of different proteins (also additional 25%) are markedly increased. More than 200 proteins were exclusively found in HPE. This new electrophoresis system does not use buffer tanks. No glass plates are needed. Therefore handling of gels is greatly facilitated and very simple to use even for personnel with low technical skills. The new HPE system is technically at the beginnings and further development with increased performance can be expected. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. The potential sensitivity of tropical plants to increased ultraviolet-B radiation

    International Nuclear Information System (INIS)

    Ziska, L.H.

    1996-01-01

    Little is known concerning the impact of stratospheric ozone depletion and increasing ultraviolet (UV)-B radiation on the phenology and growth of tropical plants. This is because, ostensibly, tropical plants are already exposed to relatively high levels of UV-B radiation (relative to a temperate environment) and should, therefore, possess a greater degree of tolerance to increased UV-B radiation. In this brief review I hope to show that, potentially, direct and indirect effects on photosynthesis, assimilate partitioning, phenology and biomass could occur in both tropical crops (e.g. cassava, rice) and native species (e.g. Cecropia obtusifolia (Bertol. Fl)., Tetramolopium humile (Gray), Nana sandwicensis L.). However, it should be noted that differences in sensitivity to UV-B radiation can be related to experimental conditions, and care should be taken to ensure that the quantity and quality of background solar radiation remains at near ambient conditions. Nevertheless, by integrating current and past studies on the impact of UV-B radiation on tropical species, I hope to be able to demonstrate that photosynthesis, morphology and growth in tropical plants could be directly affected by UV-B radiation and that UV-B radiation may be a factor in species and community dynamics in natural plant populations in the tropics

  16. Anxiety Sensitivity Uniquely Predicts Exercise Behaviors in Young Adults Seeking to Increase Physical Activity.

    Science.gov (United States)

    Moshier, Samantha J; Szuhany, Kristin L; Hearon, Bridget A; Smits, Jasper A J; Otto, Michael W

    2016-01-01

    Individuals with elevated levels of anxiety sensitivity (AS) may be motivated to avoid aversive emotional or physical states, and therefore may have greater difficulty achieving healthy behavioral change. This may be particularly true for exercise, which produces many of the somatic sensations within the domain of AS concerns. Cross-sectional studies show a negative association between AS and exercise. However, little is known about how AS may prospectively affect attempts at behavior change in individuals who are motivated to increase their exercise. We recruited 145 young adults who self-identified as having a desire to increase their exercise behavior. Participants completed a web survey assessing AS and additional variables identified as important for behavior change-impulsivity, grit, perceived behavioral control, and action planning-and set a specific goal for exercising in the next week. One week later, a second survey assessed participants' success in meeting their exercise goals. We hypothesized that individuals with higher AS would choose lower exercise goals and would complete less exercise at the second survey. AS was not significantly associated with exercise goal level, but significantly and negatively predicted exercise at Time 2 and was the only variable to offer significant prediction beyond consideration of baseline exercise levels. These results underscore the importance of considering AS in relation to health behavior intentions. This is particularly apt given the absence of prediction offered by other traditional predictors of behavior change. © The Author(s) 2015.

  17. Disturbance of Oligodendrocyte Function Plays a Key Role in the Pathogenesis of Schizophrenia and Major Depressive Disorder

    Directory of Open Access Journals (Sweden)

    Shingo Miyata

    2015-01-01

    Full Text Available The major psychiatric disorders such as schizophrenia (SZ and major depressive disorder (MDD are thought to be multifactorial diseases related to both genetic and environmental factors. However, the genes responsible and the molecular mechanisms underlying the pathogenesis of SZ and MDD remain unclear. We previously reported that abnormalities of disrupted-in-Schizophrenia-1 (DISC1 and DISC1 binding zinc finger (DBZ might cause major psychiatric disorders such as SZ. Interestingly, both DISC and DBZ have been further detected in oligodendrocytes and implicated in regulating oligodendrocyte differentiation. DISC1 negatively regulates the differentiation of oligodendrocytes, whereas DBZ plays a positive regulatory role in oligodendrocyte differentiation. We have reported that repeated stressful events, one of the major risk factors of MDD, can induce sustained upregulation of plasma corticosterone levels and serum/glucocorticoid regulated kinase 1 (Sgk1 mRNA expression in oligodendrocytes. Repeated stressful events can also activate the SGK1 cascade and cause excess arborization of oligodendrocyte processes, which is thought to be related to depressive-like symptoms. In this review, we discuss the expression of DISC1, DBZ, and SGK1 in oligodendrocytes, their roles in the regulation of oligodendrocyte function, possible interactions of DISC1 and DBZ in relation to SZ, and the activation of the SGK1 signaling cascade in relation to MDD.

  18. Temperature modulates coccolithophorid sensitivity of growth, photosynthesis and calcification to increasing seawater pCO₂.

    Directory of Open Access Journals (Sweden)

    Scarlett Sett

    Full Text Available Increasing atmospheric CO₂ concentrations are expected to impact pelagic ecosystem functioning in the near future by driving ocean warming and acidification. While numerous studies have investigated impacts of rising temperature and seawater acidification on planktonic organisms separately, little is presently known on their combined effects. To test for possible synergistic effects we exposed two coccolithophore species, Emiliania huxleyi and Gephyrocapsa oceanica, to a CO₂ gradient ranging from ∼0.5-250 µmol kg⁻¹ (i.e. ∼20-6000 µatm pCO₂ at three different temperatures (i.e. 10, 15, 20°C for E. huxleyi and 15, 20, 25°C for G. oceanica. Both species showed CO₂-dependent optimum-curve responses for growth, photosynthesis and calcification rates at all temperatures. Increased temperature generally enhanced growth and production rates and modified sensitivities of metabolic processes to increasing CO₂. CO₂ optimum concentrations for growth, calcification, and organic carbon fixation rates were only marginally influenced from low to intermediate temperatures. However, there was a clear optimum shift towards higher CO₂ concentrations from intermediate to high temperatures in both species. Our results demonstrate that the CO₂ concentration where optimum growth, calcification and carbon fixation rates occur is modulated by temperature. Thus, the response of a coccolithophore strain to ocean acidification at a given temperature can be negative, neutral or positive depending on that strain's temperature optimum. This emphasizes that the cellular responses of coccolithophores to ocean acidification can only be judged accurately when interpreted in the proper eco-physiological context of a given strain or species. Addressing the synergistic effects of changing carbonate chemistry and temperature is an essential step when assessing the success of coccolithophores in the future ocean.

  19. Autophagy inhibitor chloroquine increases sensitivity to cisplatin in QBC939 cholangiocarcinoma cells by mitochondrial ROS.

    Directory of Open Access Journals (Sweden)

    Xianzhi Qu

    Full Text Available The tumor cells have some metabolic characteristics of the original tissues, and the metabolism of the tumor cells is closely related to autophagy. However, the mechanism of autophagy and metabolism in chemotherapeutic drug resistance is still poorly understood. In this study, we investigated the role and mechanism of autophagy and glucose metabolism in chemotherapeutic drug resistance by using cholangiocarcinoma QBC939 cells with primary cisplatin resistance and hepatocellular carcinoma HepG2 cells. We found that QBC939 cells with cisplatin resistance had a higher capacity for glucose uptake, consumption, and lactic acid generation, and higher activity of the pentose phosphate pathway compared with HepG2 cells, and the activity of PPP was further increased after cisplatin treatment in QBC939 cells. It is suggested that there are some differences in the metabolism of glucose in hepatocellular carcinoma and cholangiocarcinoma cells, and the activation of PPP pathway may be related to the drug resistance. Through the detection of autophagy substrates p62 and LC3, found that QBC939 cells have a higher flow of autophagy, autophagy inhibitor chloroquine can significantly increase the sensitivity of cisplatin in cholangiocarcinoma cells compared with hepatocellular carcinoma HepG2 cells. The mechanism may be related to the inhibition of QBC939 cells with higher activity of the PPP, the key enzyme G6PDH, which reduces the antioxidant capacity of cells and increases intracellular ROS, especially mitochondrial ROS. Therefore, we hypothesized that autophagy and the oxidative stress resistance mediated by glucose metabolism may be one of the causes of cisplatin resistance in cholangiocarcinoma cells. It is suggested that according to the metabolism characteristics of tumor cells, inhibition of autophagy lysosome pathway with chloroquine may be a new route for therapeutic agents against cholangiocarcinoma.

  20. Fluoxetine Prevents Oligodendrocyte Cell Death by Inhibiting Microglia Activation after Spinal Cord Injury

    Science.gov (United States)

    Lee, Jee Y.; Kang, So R.

    2015-01-01

    Abstract Oligodendrocyte cell death and axon demyelination after spinal cord injury (SCI) are known to be important secondary injuries contributing to permanent neurological disability. Thus, blocking oligodendrocyte cell death should be considered for therapeutic intervention after SCI. Here, we demonstrated that fluoxetine, an antidepressant drug, alleviates oligodendrocyte cell death by inhibiting microglia activation after SCI. After injury at the T9 level with a Precision Systems and Instrumentation (Lexington, KY) device, fluoxetine (10 mg/kg, intraperitoneal) was administered once a day for the indicated time points. Immunostaining with CD11b (OX-42) antibody and quantification analysis showed that microglia activation was significantly inhibited by fluoxetine at 5 days after injury. Fluoxetine also significantly inhibited activation of p38 mitogen-activated protein kinase (p38-MAPK) and expression of pro-nerve growth factor (pro-NGF), which is known to mediate oligodendrocyte cell death through the p75 neurotrophin receptor after SCI. In addition, fluoxetine attenuated activation of Ras homolog gene family member A and decreased the level of phosphorylated c-Jun and, ultimately, alleviated caspase-3 activation and significantly reduced cell death of oligodendrocytes at 5 days after SCI. Further, the decrease of myelin basic protein, myelin loss, and axon loss in white matter was also significantly blocked by fluoxetine, as compared to vehicle control. These results suggest that fluoxetine inhibits oligodendrocyte cell death by inhibiting microglia activation and p38-MAPK activation, followed by pro-NGF production after SCI, and provide a potential usage of fluoxetine for a therapeutic agent after acute SCI in humans. PMID:25366938

  1. How the degree of instrumental practice in music increases perceptual sensitivity.

    Science.gov (United States)

    Proverbio, Alice Mado; Bellini, Eleonora

    2018-04-20

    Literature has shown that playing a musical instrument is associated with the formation of multimodal audio visuomotor representations that are strongly instrument-specific. Here, we investigated the effect of increased motor practice on perceptual sensitivity in 32 professional musicians of comparable expertise but with different amounts of instrumental practice with piano (10,000 vs. 3,000 estimated hours). Stimuli consisted of images of pianists' hands and piano arpeggio sounds. In half of the cases, the piano fingering and piano sounds were congruent, while they were incongruent in the other cases. ERPs were recorded from 128 sites while musicians performed a congruent vs. incongruent discrimination task. A fronto-central error-related negativity (ERN), mainly generated within the anterior cingulate cortex, was observed in response to incongruent videos only in pianists. Non-pianist musicians were able to carry out the task (with a worse performance) but exhibited a smaller response-related N400 to incongruent stimuli. Source reconstruction applied to ERP responses to incongruent stimuli indicated a less automatic mechanism for detecting sensory-motor deviance and a greater emphasis on visual rather than on acoustic features in non-pianists. Overall the data suggest a profound difference between the two populations of musicians and advise against considering "expert" populations to include those that undertook only a few weeks/months of training in a new discipline. Copyright © 2018. Published by Elsevier B.V.

  2. Increased Sensitivity to Pathological Brain Changes Using Co-registration of Magnetic Resonance Imaging Scans

    Energy Technology Data Exchange (ETDEWEB)

    Burdett, J.; Stevens, J.; Flugel, D.; Williams, E.; Duncan, J.S.; Lemieux, L. [National Society for Epilepsy, Chalfont St Peter (United Kingdom). The MRI Unit

    2006-12-15

    Purpose: To compare automatic software-based co-registration of serial magnetic resonance imaging (MRI) scans with conventional visual comparison, by expert neuroradiologists.Material and Methods: Sixty-four patients who were referred to our epilepsy MRI unit for cerebral imaging were identified as having potentially, non- or slow-growing lesions or cerebral atrophy and followed with sequential scans over a period of up to 8 years, resulting in a total of 92 pairs of scans. Scans were categorized as showing either lesions or atrophy. Each pair of scans was reviewed twice for the presence of change, with and without co-registration, performed using automated software. Results: Co-registration and visual reporting without co-registration were discordant in the lesions group in nine out of 69 datasets (13%), and in 16 out of 23 pairs of scans in the atrophy group (69%). The most common cause of discordance was visual reporting not detecting changes apparent by co-registration. In three cases, changes detected visually were not detected following co-registration. Conclusion: In the group of patients studied, co-registration was more sensitive for detecting changes than visual comparison, particularly with respect to atrophic changes of the brain. With the increasing availability of sophisticated independent consoles attached to MRI scanners that may be used for image co-registration, we propose that serial T1-weighted volumetric MRI brain co-registration should be considered for integration into routine clinical practice to assess patients with suspected progressive disease.

  3. Increased Sensitivity to Pathological Brain Changes Using Co-registration of Magnetic Resonance Imaging Scans

    International Nuclear Information System (INIS)

    Burdett, J.; Stevens, J.; Flugel, D.; Williams, E.; Duncan, J.S.; Lemieux, L.

    2006-01-01

    Purpose: To compare automatic software-based co-registration of serial magnetic resonance imaging (MRI) scans with conventional visual comparison, by expert neuroradiologists.Material and Methods: Sixty-four patients who were referred to our epilepsy MRI unit for cerebral imaging were identified as having potentially, non- or slow-growing lesions or cerebral atrophy and followed with sequential scans over a period of up to 8 years, resulting in a total of 92 pairs of scans. Scans were categorized as showing either lesions or atrophy. Each pair of scans was reviewed twice for the presence of change, with and without co-registration, performed using automated software. Results: Co-registration and visual reporting without co-registration were discordant in the lesions group in nine out of 69 datasets (13%), and in 16 out of 23 pairs of scans in the atrophy group (69%). The most common cause of discordance was visual reporting not detecting changes apparent by co-registration. In three cases, changes detected visually were not detected following co-registration. Conclusion: In the group of patients studied, co-registration was more sensitive for detecting changes than visual comparison, particularly with respect to atrophic changes of the brain. With the increasing availability of sophisticated independent consoles attached to MRI scanners that may be used for image co-registration, we propose that serial T1-weighted volumetric MRI brain co-registration should be considered for integration into routine clinical practice to assess patients with suspected progressive disease

  4. Parkinson’s Disease: Low-Dose Haloperidol Increases Dopamine Receptor Sensitivity and Clinical Response

    Directory of Open Access Journals (Sweden)

    Craig J. Hudson

    2014-01-01

    Full Text Available Background. It is known that ultra-low doses of haloperidol can cause dopamine supersensitivity of dopamine D2 receptors and related behaviour in animals. Objective. The objective was to determine whether a daily ultra-low dose of 40 micrograms of haloperidol could enhance the clinical action of levodopa in Parkinson’s disease patients. Method. While continuing their daily treatment with levodopa, 16 patients with Parkinson’s disease were followed weekly for six weeks. They received an add-on daily dose of 40 micrograms of haloperidol for the first two weeks only. The SPES/SCOPA scale (short scale for assessment of motor impairments and disabilities in Parkinson’s disease was administered before treatment and weekly throughout the trial. Results. The results showed a mean decrease in SPES/SCOPA scores after one week of the add-on treatment. Conclusion. SCOPA scores decreased after the addition of low-dose haloperidol to the standard daily levodopa dose. This finding is consistent with an increase in sensitivity of dopamine D2 receptors induced by haloperidol. Such treatment for Parkinson’s disease may possibly permit the levodopa dose to be reduced and, thus, delay the onset of levodopa side effects.

  5. Increased pain sensitivity is not associated with electrodiagnostic findings in women with carpal tunnel syndrome.

    Science.gov (United States)

    de la Llave-Rincón, Ana Isabel; Fernández-de-las-Peñas, César; Laguarta-Val, Sofia; Alonso-Blanco, Cristina; Martínez-Perez, Almudena; Arendt-Nielsen, Lars; Pareja, Juan A

    2011-01-01

    To determine the differences in widespread pressure pain and thermal hypersensitivity in women with minimal, moderate, and severe carpal tunnel syndrome (CTS) and healthy controls. A total of 72 women with CTS (19 with minimal, 18 with moderate, and 35 with severe) and 19 healthy age-matched women participated. Pressure pain thresholds were bilaterally assessed over the median, ulnar, and radial nerves, the C5 to C6 zygapophyseal joint, the carpal tunnel, and the tibialis anterior muscle. In addition, warm and cold detection thresholds and heat and cold pain thresholds were bilaterally assessed over the carpal tunnel and the thenar eminence. All outcome parameters were assessed by an assessor blinded to the participant's condition. No significant differences in pain parameters among patients with minimal, moderate, and severe CTS were found. The results showed that PPT were significantly decreased bilaterally over the median, ulnar, and radial nerve trunks, the carpal tunnel, C5 to C6 zygapophyseal joint, and the tibialis anterior muscle in patients with minimal, moderate, or severe CTS as compared with healthy controls (all, P<0.001). In addition, patients with CTS also showed lower heat pain threshold and reduced cold pain threshold compared with controls (P<0.001). No significant sensory differences between minimal, moderate, or severe CTS were found. The similar widespread pressure and thermal hypersensitivity in patients with minimal, moderate, or severe CTS and pain intensity suggests that increased pain sensitivity is not related to electrodiagnostic findings.

  6. Transgenerational endpoints provide increased sensitivity and insight into multigenerational responses of Lymnaea stagnalis exposed to cadmium.

    Science.gov (United States)

    Reátegui-Zirena, Evelyn G; Fidder, Bridgette N; Olson, Adric D; Dawson, Daniel E; Bilbo, Thomas R; Salice, Christopher J

    2017-05-01

    Ecotoxicology provides data to inform environmental management. Many testing protocols do not consider offspring fitness and toxicant sensitivity. Cadmium (Cd) is a well-studied and ubiquitous toxicant but little is known about the effects on offspring of exposed parents (transgenerational effects). This study had three objectives: to identify endpoints related to offspring performance; to determine whether parental effects would manifest as a change in Cd tolerance in offspring and how parental exposure duration influenced the manifestation of parental effects. Adult snails were exposed to Cd 0, 25, 50, 100, 200 and 400 μg Cd/L for eight weeks. There were effects on adult endpoints (e.g., growth, reproduction) but only at the highest concentrations (>100 μg/L). Alternatively, we observed significant transgenerational effects at all Cd concentrations. Surprisingly, we found increased Cd tolerance in hatchlings from all parental Cd exposure concentrations even though eggs and hatchlings were in Cd-free conditions for 6 weeks. Explicit consideration of offspring performance adds value to current toxicity testing protocols. Parental exposure duration has important implications for offspring effects and that contaminant concentrations that are not directly toxic to parents can cause transgenerational changes in resistance that have significant implications for toxicity testing and adaptive responses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Approaches to a markedly increased sensitivity of the radioimmunoassay for thyrotropin-releasing hormone by derivatization

    Energy Technology Data Exchange (ETDEWEB)

    Visser, T J; Klootwijk, W [Erasmus Universiteit, Rotterdam (Netherlands). Dept. of Internal Medicine 3 and Clinical Endocrinology

    1981-04-03

    Studies on the specificity of the antisera obtained suggested that the sensitivity of the radioimmunoassay for TRH may be increased substantially by prior conversion of the hormone into dinitrophenylene derivatives. To test this possibility, several TRH-Dnp derivatives were prepared by reaction of TRH with equimolar amounts of 1,5-difluoro-2,4-dinitrobenzene yielding N/sup im/-(5-fluoro-2,4-dinitrophenyl)TRH. This intermediate was reacted with ammonia, histamine, tyramine or N/sup ..cap alpha../-acetyl-lysine methyl ester (N/sup ..cap alpha../Ac-LysOMe) to yield the respective unsubstituted and N-substituted N/sup im/-(5-amino-2,4-dinitrophenyl)TRH derivatives: TRH-Dnp-NH/sub 2/, TRH-Dnp-histamine, TRH-Dnp-tyramine and TRH-Dnp-N/sup ..cap alpha../Ac-Lys-OMe. N/sup im/-(2,4-Dinitrophenyl)TRH was prepared similarly by reaction of TRH with 1-fluoro-2,4-dinitrobenzene. The products were isolated by means of high-performance liquid chromatography (HPLC) and were found to be pure by HPLC and thin-layer chromatography using several solvent systems. TRH-Dnp-histamine and TRH-Dnp-tyramine were labelled with /sup 125/I using the chloramine-T method. The labelled products were purified to homogeneity by ion-exchange chromography on SP-Sephadex and adsorption chromatography on Sephadex LH-20, respectively, and were found by HPLC to be pure.

  8. A germline FANCA alteration that is associated with increased sensitivity to DNA damaging agents.

    Science.gov (United States)

    Wilkes, David C; Sailer, Verena; Xue, Hui; Cheng, Hongwei; Collins, Colin C; Gleave, Martin; Wang, Yuzhuo; Demichelis, Francesca; Beltran, Himisha; Rubin, Mark A; Rickman, David S

    2017-09-01

    Defects in genes involved in DNA damage repair (DDR) pathway are emerging as novel biomarkers and targets for new prostate cancer drug therapies. A previous report revealed an association between an exceptional response to cisplatin treatment and a somatic loss of heterozygosity (LOH) of FANCA in a patient with metastatic prostate cancer who also harbored a germline FANCA variant (S1088F). Although germline FANCA mutations are the most frequent alterations in patients with Fanconi anemia, germline alterations are less common in prostate cancer. We hypothesized that the germline S1088F FANCA variant in combination with FANCA LOH was deleterious for FANCA function and contributed to the patient's exceptional response to cisplatin. We show that although it properly localizes to the nucleus, the S1088F FANCA mutant protein disrupts the FANC protein complex resulting in increased sensitivity to DNA damaging agents. Because molecular stratification is emerging as a strategy for treating men with metastatic, castrate-resistant prostate cancer harboring specific DDR gene defects, our findings suggest that more biomarker studies are needed to better define clinically relevant germline and somatic alterations. © 2017 Wilkes et al.; Published by Cold Spring Harbor Laboratory Press.

  9. Increased bioassay sensitivity of bioactive molecule discovery using metal-enhanced bioluminescence

    International Nuclear Information System (INIS)

    Golberg, Karina; Elbaz, Amit; McNeil, Ronald; Kushmaro, Ariel; Geddes, Chris D.; Marks, Robert S.

    2014-01-01

    We report the use of bioluminescence signal enhancement via proximity to deposited silver nanoparticles for bioactive compound discovery. This approach employs a whole-cell bioreporter harboring a plasmid-borne fusion of a specific promoter incorporated with a bioluminescence reporter gene. The silver deposition process was first optimized to provide optimal nanoparticle size in the reaction time dependence with fluorescein. The use of silver deposition of 350 nm particles enabled the doubling of the bioluminescent signal amplitude by the bacterial bioreporter when compared to an untouched non-silver-deposited microtiter plate surface. This recording is carried out in the less optimal but necessary far-field distance. SEM micrographs provided a visualization of the proximity of the bioreporter to the silver nanoparticles. The electromagnetic field distributions around the nanoparticles were simulated using Finite Difference Time Domain, further suggesting a re-excitation of non-chemically excited bioluminescence in addition to metal-enhanced bioluminescence. The possibility of an antiseptic silver effect caused by such a close proximity was eliminated disregarded by the dynamic growth curves of the bioreporter strains as seen using viability staining. As a highly attractive biotechnology tool, this silver deposition technique, coupled with whole-cell sensing, enables increased bioluminescence sensitivity, making it especially useful for cases in which reporter luminescence signals are very weak

  10. Increased bioassay sensitivity of bioactive molecule discovery using metal-enhanced bioluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Golberg, Karina, E-mail: karingo@bgu.ac.il; Elbaz, Amit [Ben-Gurion University of the Negev, Avram and Stella Goldstein-Goren Department of Biotechnology Engineering (Israel); McNeil, Ronald [The Institute of Fluorescence, University of Maryland Baltimore County (United States); Kushmaro, Ariel [Ben-Gurion University of the Negev, Avram and Stella Goldstein-Goren Department of Biotechnology Engineering (Israel); Geddes, Chris D. [The Institute of Fluorescence, University of Maryland Baltimore County (United States); Marks, Robert S., E-mail: rsmarks@bgu.ac.il [Ben-Gurion University of the Negev, Avram and Stella Goldstein-Goren Department of Biotechnology Engineering (Israel)

    2014-12-15

    We report the use of bioluminescence signal enhancement via proximity to deposited silver nanoparticles for bioactive compound discovery. This approach employs a whole-cell bioreporter harboring a plasmid-borne fusion of a specific promoter incorporated with a bioluminescence reporter gene. The silver deposition process was first optimized to provide optimal nanoparticle size in the reaction time dependence with fluorescein. The use of silver deposition of 350 nm particles enabled the doubling of the bioluminescent signal amplitude by the bacterial bioreporter when compared to an untouched non-silver-deposited microtiter plate surface. This recording is carried out in the less optimal but necessary far-field distance. SEM micrographs provided a visualization of the proximity of the bioreporter to the silver nanoparticles. The electromagnetic field distributions around the nanoparticles were simulated using Finite Difference Time Domain, further suggesting a re-excitation of non-chemically excited bioluminescence in addition to metal-enhanced bioluminescence. The possibility of an antiseptic silver effect caused by such a close proximity was eliminated disregarded by the dynamic growth curves of the bioreporter strains as seen using viability staining. As a highly attractive biotechnology tool, this silver deposition technique, coupled with whole-cell sensing, enables increased bioluminescence sensitivity, making it especially useful for cases in which reporter luminescence signals are very weak.

  11. Radioresistant DNA synthesis in cells of patients showing increased chromosomal sensitivity to ionizing radiation

    International Nuclear Information System (INIS)

    Barenfeld, L.S.; Pleskach, N.M.; Bildin, V.N.; Prokofjeva, V.V.; Mikhelson, V.M.

    1986-01-01

    The rate of DNA synthesis after γ-irradiation was studied either by analysis of the steady-state distribution of daughter [ 3 H]DNA in alkaline sucrose gradients or by direct assay of the amount of [ 3 H]thymidine incorporated into DNA of fibroblasts derived from a normal donor (LCH882) and from Down's syndrome (LCH944), Werner's syndrome (WS1LE) and xeroderma pigmentosum (XP2LE) patients with chromosomal sensitivity to ionizing radiation. Doses of γ-irradiation that markedly inhibited the rate of DNA synthesis in normal human cells caused almost no inhibition of DNA synthesis in the cells from the affected individuals. The radioresistant DNA synthesis in Down's syndrome cells was mainly due to a much lower inhibition of replicon initiation than that in normal cells; these cells were also more resistant to damage that inhibited replicon elongation. Our data suggest that radioresistant DNA synthesis may be an intrinsic feature of all genetic disorders showing increased radiosensitivity in terms of chromosome aberrations. (orig.)

  12. Assessing the sensitivity of human skin hyperspectral responses to increasing anemia severity levels

    Science.gov (United States)

    Baranoski, Gladimir V. G.; Dey, Ankita; Chen, Tenn F.

    2015-09-01

    Anemia is a prevalent medical condition that seriously affects millions of people all over the world. In many regions, not only its initial detection but also its monitoring are hindered by limited access to laboratory facilities. This situation has motivated the development of a wide range of optical devices and procedures to assist physicians in these tasks. Although noticeable progress has been achieved in this area, the search for reliable, low-cost, and risk-free solutions still continues, and the strengthening of the knowledge base about this disorder and its effects is essential for the success of these initiatives. We contribute to these efforts by closely examining the sensitivity of human skin hyperspectral responses (within and outside the visible region of the light spectrum) to reduced hemoglobin concentrations associated with increasing anemia severity levels. This investigation, which involves skin specimens with distinct biophysical and morphological characteristics, is supported by controlled in silico experiments performed using a predictive light transport model and measured data reported in the biomedical literature. We also propose a noninvasive procedure to be employed in the monitoring of this condition at the point-of-care.

  13. Increased sensitivity to positive social stimuli in monozygotic twins at risk of bipolar vs. unipolar disorder.

    Science.gov (United States)

    Kærsgaard, S; Meluken, I; Kessing, L V; Vinberg, M; Miskowiak, K W

    2018-05-01

    Abnormalities in affective cognition are putative endophenotypes for bipolar and unipolar disorders but it is unclear whether some abnormalities are disorder-specific. We therefore investigated affective cognition in monozygotic twins at familial risk of bipolar disorder relative to those at risk of unipolar disorder and to low-risk twins. Seventy monozygotic twins with a co-twin history of bipolar disorder (n = 11), of unipolar disorder (n = 38) or without co-twin history of affective disorder (n = 21) were included. Variables of interest were recognition of and vigilance to emotional faces, emotional reactivity and -regulation in social scenarios and non-affective cognition. Twins at familial risk of bipolar disorder showed increased recognition of low to moderate intensity of happy facial expressions relative to both unipolar disorder high-risk twins and low-risk twins. Bipolar disorder high-risk twins also displayed supraliminal attentional avoidance of happy faces compared with unipolar disorder high-risk twins and greater emotional reactivity in positive and neutral social scenarios and less reactivity in negative social scenarios than low-risk twins. In contrast with our hypothesis, there was no negative bias in unipolar disorder high-risk twins. There were no differences between the groups in demographic characteristics or non-affective cognition. The modest sample size limited the statistical power of the study. Increased sensitivity and reactivity to positive social stimuli may be a neurocognitive endophenotype that is specific for bipolar disorder. If replicated in larger samples, this 'positive endophenotype' could potentially aid future diagnostic differentiation between unipolar and bipolar disorder. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Rock-dwelling lizards exhibit less sensitivity of sprint speed to increases in substrate rugosity.

    Science.gov (United States)

    Collins, Clint E; Self, Jessica D; Anderson, Roger A; McBrayer, Lance D

    2013-06-01

    Effectively moving across variable substrates is important to all terrestrial animals. The effects of substrates on lizard performance have ecological ramifications including the partitioning of habitat according to sprinting ability on different surfaces. This phenomenon is known as sprint sensitivity, or the decrease in sprint speed due to change in substrate. However, sprint sensitivity has been characterized only in arboreal Anolis lizards. Our study measured sensitivity to substrate rugosity among six lizard species that occupy rocky, sandy, and/or arboreal habitats. Lizards that use rocky habitats are less sensitive to changes in substrate rugosity, followed by arboreal lizards, and then by lizards that use sandy habitats. We infer from comparative phylogenetic analysis that forelimb, chest, and tail dimensions are important external morphological features related to sensitivity to changes in substrate rugosity. Copyright © 2013 Elsevier GmbH. All rights reserved.

  15. Increasing the selectivity and sensitivity of gas sensors for the detection of explosives

    Science.gov (United States)

    Mallin, Daniel

    Over the past decade, the use of improvised explosive devices (IEDs) has increased, domestically and internationally, highlighting a growing need for a method to quickly and reliably detect explosive devices in both military and civilian environments before the explosive can cause damage. Conventional techniques have been successful in explosive detection, however they typically suffer from enormous costs in capital equipment and maintenance, costs in energy consumption, sampling, operational related expenses, and lack of continuous and real-time monitoring. The goal was thus to produce an inexpensive, portable sensor that continuously monitors the environment, quickly detects the presence of explosive compounds and alerts the user. In 2012, here at URI, a sensor design was proposed for the detection of triacetone triperoxide (TATP). The design entailed a thermodynamic gas sensor that measures the heat of decomposition between trace TATP vapor and a metal oxide catalyst film. The sensor was able to detect TATP vapor at the part per million level (ppm) and showed great promise for eventual commercial use, however, the sensor lacked selectivity. Thus, the specific objective of this work was to take the original sensor design proposed in 2012 and to make several key improvements to advance the sensor towards commercialization. It was demonstrated that a sensor can be engineered to detect TATP and ignore the effects of interferent H2O2 molecules by doping SnO2 films with varying amounts of Pd. Compared with a pure SnO2 catalyst, a SnO2, film doped with 8 wt. % Pd had the highest selectivity between TATP and H2O2. Also, at 12 wt. % Pd, the response to TATP and H2O2 was enhanced, indicating that sensitivity, not only selectivity, can be increased by modifying the composition of the catalyst. An orthogonal detection system was demonstrated. The platform consists of two independent sensing mechanisms, one thermodynamic and one conductometric, which take measurements from

  16. Lower-energy neutron sources for increasing the sensitivity of nuclear gages for measuring the water content of bulk materials

    International Nuclear Information System (INIS)

    Bailey, S.M.

    1977-01-01

    The sensitivity of a gage using a nuclear source for measuring the water content of bulk materials, such as plastic concrete, is increased by use of a lithium or fluorine neutron nuclear source. 3 figures

  17. Antibodies to myelin oligodendrocyte glycoprotein in idiopathic optic neuritis.

    Science.gov (United States)

    Nakajima, Hideki; Motomura, Masakatsu; Tanaka, Keiko; Fujikawa, Azusa; Nakata, Ruka; Maeda, Yasuhiro; Shima, Tomoaki; Mukaino, Akihiro; Yoshimura, Shunsuke; Miyazaki, Teiichiro; Shiraishi, Hirokazu; Kawakami, Atsushi; Tsujino, Akira

    2015-04-02

    To investigate the differences of clinical features, cerebrospinal fluid (CSF), MRI findings and response to steroid therapies between patients with optic neuritis (ON) who have myelin oligodendrocyte glycoprotein (MOG) antibodies and those who have seronegative ON. We recruited participants in the department of neurology and ophthalmology in our hospital in Japan. We retrospectively evaluated the clinical features and response to steroid therapies of patients with ON. Sera from patients were tested for antibodies to MOG and aquaporin-4 (AQP4) with a cell-based assay. Between April 2009 and March 2014, we enrolled serial 57 patients with ON (27 males, 30 females; age range 16-84 years) who ophthalmologists had diagnosed as having or suspected to have ON with acute visual impairment and declined critical flicker frequency, abnormal findings of brain MRI, optical coherence tomography and fluorescein fundus angiography at their onset or recurrence. We excluded those patients who fulfilled the diagnostic criteria of neuromyelitis optica (NMO)/NMO spectrum disorders (NMOSD), MS McDonald's criteria, and so on. Finally we defined 29 patients with idiopathic ON (14 males, 15 females, age range 16-84 years). 27.6% (8/29) were positive for MOG antibodies and 3.4% (1/29) were positive for AQP4. Among the eight patients with MOG antibodies, five had optic pain (p=0.001) and three had prodromal infection (p=0.179). Three of the eight MOG-positive patients showed significantly high CSF levels of myelin basic protein (p=0.021) and none were positive for oligoclonal band in CSF. On MRIs, seven MOG-positive patients showed high signal intensity on optic nerve, three had a cerebral lesion and one had a spinal cord lesion. Seven of the eight MOG-positive patients had a good response to steroid therapy. Although not proving primary pathogenicity of anti-MOG antibodies, the present results indicate that the measurement of MOG antibodies is useful in diagnosing and treating ON

  18. A chimeric receptor of the insulin-like growth factor receptor type 1 (IGFR1) and a single chain antibody specific to myelin oligodendrocyte glycoprotein activates the IGF1R signalling cascade in CG4 oligodendrocyte progenitors.

    Science.gov (United States)

    Annenkov, Alexander; Rigby, Anne; Amor, Sandra; Zhou, Dun; Yousaf, Nasim; Hemmer, Bernhard; Chernajovsky, Yuti

    2011-08-01

    In order to generate neural stem cells with increased ability to survive after transplantation in brain parenchyma we developed a chimeric receptor (ChR) that binds to myelin oligodendrocyte glycoprotein (MOG) via its ectodomain and activates the insulin-like growth factor receptor type 1 ‎‎(IGF1R) signalling cascade. Activation of this pro-survival pathway in response to ligand broadly available in the brain might increase neuroregenerative potential of transplanted precursors. The ChR was produced by fusing a MOG-specific single ‎chain antibody with the extracellular boundary of the IGF1R transmembrane segment. The ChR is expressed on the cellular surface, predominantly as a monomer, and is not N-glycosylated. To show MOG-dependent functionality of the ChR, neuroblastoma cells B104 expressing this ChR were stimulated with monolayers of cells expressing recombinant MOG. The ChR undergoes MOG-dependent tyrosine phosphorylation and homodimerisation. It promotes insulin and IGF-independent growth of the oligodendrocyte progenitor cell line CG4. The proposed mode of the ChR activation is by MOG-induced dimerisation which promotes kinase domain transphosphorylation, by-passing the requirement of conformation changes known to be important for IGF1R activation. Another ChR, which contains a segment of the β-chain ectodomain, was produced in an attempt to recapitulate some of these conformational changes, but proved non-functional. 2011 Elsevier B.V. All rights reserved.

  19. Prox1 Inhibits Proliferation and Is Required for Differentiation of the Oligodendrocyte Cell Lineage in the Mouse.

    Directory of Open Access Journals (Sweden)

    Kentaro Kato

    Full Text Available Central nervous system injury induces a regenerative response in ensheathing glial cells comprising cell proliferation, spontaneous axonal remyelination, and limited functional recovery, but the molecular mechanisms are not fully understood. In Drosophila, this involves the genes prospero and Notch controlling the balance between glial proliferation and differentiation, and manipulating their levels in glia can switch the response to injury from prevention to promotion of repair. In the mouse, Notch1 maintains NG2 oligodendrocyte progenitor cells (OPCs in a progenitor state, but what factor may enable oligodendrocyte (OL differentiation and functional remyelination is not understood. Here, we asked whether the mammalian homologue of prospero, Prox1, is involved. Our data show that Prox1 is distributed in NG2+ OPCs and in OLs in primary cultured cells, and in the mouse spinal cord in vivo. siRNA prox1 knockdown in primary OPCs increased cell proliferation, increased NG2+ OPC cell number and decreased CC1+ OL number. Prox1 conditional knockout in the OL cell lineage in mice increased NG2+ OPC cell number, and decreased CC1+ OL number. Lysolecithin-induced demyelination injury caused a reduction in CC1+ OLs in homozygous Prox1-/- conditional knockout mice compared to controls. Remarkably, Prox1-/- conditional knockout mice had smaller lesions than controls. Altogether, these data show that Prox1 is required to inhibit OPC proliferation and for OL differentiation, and could be a relevant component of the regenerative glial response. Therapeutic uses of glia and stem cells to promote regeneration and repair after central nervous system injury would benefit from manipulating Prox1.

  20. Quercetin promotes proliferation and differentiation of oligodendrocyte precursor cells after oxygen/glucose deprivation-induced injury.

    Science.gov (United States)

    Wu, Xiuxiang; Qu, Xuebin; Zhang, Qiang; Dong, Fuxing; Yu, Hongli; Yan, Chen; Qi, Dashi; Wang, Meng; Liu, Xuan; Yao, Ruiqin

    2014-04-01

    The aim of this study was to investigate quercetin's (Qu) ability to promote proliferation and differentiation of oligodendrocyte precursor cells (OPCs) under oxygen/glucose deprivation (OGD)-induced injury in vitro. The results showed that after OGD, OPCs survival rate was significantly increased by Qu as measured by Cell Counting Kit-8. Furthermore, Qu treatment reduced apoptosis of OPCs surveyed by Hoechst 33258 nuclear staining. Qu at 9 and 27 μM promoted the proliferation of OPCs the most by Brdu and Olig2 immunocytochemical staining after OGD 3 days. Also, Qu treatment for 8 days after OGD, the differentiation of OPCs to oligodendrocyte was detected by immunofluorescence staining showing that O4, Olig2, and myelin basic protein (MBP) positive cells were significantly increased compared to control group. Additionally, the protein levels of Olig2 and MBP of OPCs were quantified using western blot and mRNA levels of Olig2 and Inhibitor of DNA binding 2 (Id2) were measured by RT-PCR. Western blot showed a significant increase in Olig2 and MBP expression levels compared with controls after OGD and Qu treatment with a linear does-response curve from 3 to 81 μM. After treatment with Qu compared to its control group, Olig2 mRNA level was significantly up-regulated, whereas Id2 mRNA level was down-regulated. In conclusion, Qu at 3-27 μM can promote the proliferation and differentiation of OPCs after OGD injury and may regulate the activity of Olig2 and Id2.

  1. Are lower income smokers more price sensitive?: the evidence from Korean cigarette tax increases.

    Science.gov (United States)

    Choi, Seng Eun

    2016-03-01

    The cigarette excise taxes and the price of a typical pack of cigarettes in Korea have not increased since 2005, and effective tax rate as a fraction of price and real price of cigarettes have both been falling. As smoking prevalence is higher among lower income people than among higher income people in Korea, the regressivity of cigarette excise taxes is often cited as a barrier to tobacco tax and price policy. While studies in several other high-income countries have shown that higher income individuals are less price sensitive, few studies have examined the differential impact of cigarette tax increases by income group in Korea. Most of the Korean literature has estimated the demand for cigarettes using time-series aggregate sales data or household level survey data, which record household cigarette expenditures rather than individual cigarette consumption. Studies using survey data often lack time-series variation and estimate cigarette demand using household expenditure data, while studies using time-series aggregate sales data lack cross-sectional variation. I examine differences in the effects of cigarette price on the cigarette consumption of various income groups using individual-level cigarette consumption records from the Korea National Health and Nutrition Examination Survey (KHNNES). I also analyse the implications of cigarette taxes and price increases on the relative tax burdens of different income groups. I use pooled data from the KNHNES for the 1998-2011 period to estimate the price elasticity of cigarette consumption of four income groups. Treating cigarette consumption as a latent variable, I employ an econometric procedure that corrects for non-random sample selection, or the fact that some non-smokers might have smoked at a low enough price, and estimate the price elasticity of cigarette consumption by income group. The estimated price elasticities include the responsiveness of potential smokers as well as current smokers. Lower income Korean

  2. Fractionation Spares Mice From Radiation-Induced Reductions in Weight Gain But Does Not Prevent Late Oligodendrocyte Lineage Side Effects

    International Nuclear Information System (INIS)

    Begolly, Sage; Shrager, Peter G.; Olschowka, John A.; Williams, Jacqueline P.; O'Banion, M. Kerry

    2016-01-01

    Purpose: To determine the late effects of fractionated versus single-dose cranial radiation on murine white matter. Methods and Materials: Mice were exposed to 0 Gy, 6 × 6 Gy, or 1 × 20 Gy cranial irradiation at 10 to 12 weeks of age. Endpoints were assessed through 18 months from exposure using immunohistochemistry, electron microscopy, and electrophysiology. Results: Weight gain was temporarily reduced after irradiation; greater loss was seen after single versus fractionated doses. Oligodendrocyte progenitor cells were reduced early and late after both single and fractionated irradiation. Both protocols also increased myelin g-ratio, reduced the number of nodes of Ranvier, and promoted a shift in the proportion of small, unmyelinated versus large, myelinated axon fibers. Conclusions: Fractionation does not adequately spare normal white matter from late radiation side effects.

  3. Fractionation Spares Mice From Radiation-Induced Reductions in Weight Gain But Does Not Prevent Late Oligodendrocyte Lineage Side Effects

    Energy Technology Data Exchange (ETDEWEB)

    Begolly, Sage [Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York (United States); Shrager, Peter G. [Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York (United States); Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York (United States); Olschowka, John A. [Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York (United States); Williams, Jacqueline P. [Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York (United States); Department of Radiation Oncology, University of Rochester School of Medicine and Dentistry, Rochester, New York (United States); O' Banion, M. Kerry, E-mail: Kerry_OBanion@URMC.Rochester.edu [Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York (United States); Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, New York (United States)

    2016-10-01

    Purpose: To determine the late effects of fractionated versus single-dose cranial radiation on murine white matter. Methods and Materials: Mice were exposed to 0 Gy, 6 × 6 Gy, or 1 × 20 Gy cranial irradiation at 10 to 12 weeks of age. Endpoints were assessed through 18 months from exposure using immunohistochemistry, electron microscopy, and electrophysiology. Results: Weight gain was temporarily reduced after irradiation; greater loss was seen after single versus fractionated doses. Oligodendrocyte progenitor cells were reduced early and late after both single and fractionated irradiation. Both protocols also increased myelin g-ratio, reduced the number of nodes of Ranvier, and promoted a shift in the proportion of small, unmyelinated versus large, myelinated axon fibers. Conclusions: Fractionation does not adequately spare normal white matter from late radiation side effects.

  4. Taste sensitivity for monosodium glutamate and an increased liking of dietary protein.

    Science.gov (United States)

    Luscombe-Marsh, Natalie D; Smeets, Astrid J P G; Westerterp-Plantenga, Margriet S

    2008-04-01

    The aim of the present study was to determine individuals' taste threshold for monosodium glutamate (MSG) alone and in combination with inosine 5'-monophosphate (IMP-5) and to examine if this threshold was related to an increase in sensory properties (including pleasantness of taste) and/or to one's preference for dietary protein over carbohydrate and fat. Using the triangle tasting method, the taste threshold was determined for thirty-six women and twenty-four men. Thresholds varied from zero to infinite as determined using a clear soup with added MSG in the concentration range of 0.1 to 0.8 % (w/w) MSG. Subjects rated fourteen sensory properties of the soup and also their 'liking', 'eating frequency' and 'preference' of twenty-two common high-protein, high-carbohydrate and high-fat food items. The taste threshold (and therefore sensitivity) of MSG was lowered from 0.33 (sem 0.24) to 0.26 (sem 0.22) % MSG when 0.25 % (w/w) IMP-5 was added. None of the sensory properties assessed was associated with the taste threshold of MSG +/- 0.25 % IMP-5 in the overall study population. However, the taste descriptor 'meatiness' was associated with the threshold data for individuals who could taste concentrations of

  5. Aerobic Exercise Increases Peripheral and Hepatic Insulin Sensitivity in Sedentary Adolescents

    NARCIS (Netherlands)

    van der Heijden, Gert-Jan; Toffolo, Gianna; Manesso, Erica; Sauer, Pieter J. J.; Sunehag, Agneta L.

    2009-01-01

    Context: Data are limited on the effects of controlled aerobic exercise programs (without weight loss) on insulin sensitivity and glucose metabolism in children and adolescents. Objective: To determine whether a controlled aerobic exercise program (without weight loss) improves peripheral and

  6. Trans-Cinnamaldehyde and Eugenol Increase Acinetobacter baumannii Sensitivity to Beta-Lactam Antibiotics

    Directory of Open Access Journals (Sweden)

    Deepti P. Karumathil

    2018-05-01

    Full Text Available Multi-drug resistant (MDR Acinetobacter baumannii is a major nosocomial pathogen causing a wide range of clinical conditions with significant mortality rates. A. baumannii strains are equipped with a multitude of antibiotic resistance mechanisms, rendering them resistant to most of the currently available antibiotics. Thus, there is a critical need to explore novel strategies for controlling antibiotic resistance in A. baumannii. This study investigated the efficacy of two food-grade, plant-derived antimicrobials (PDAs, namely trans-cinnamaldehyde (TC and eugenol (EG in decreasing A. baumannii’s resistance to seven β-lactam antibiotics, including ampicillin, methicillin, meropenem, penicillin, aztreonam, amoxicillin, and piperacillin. Two MDR A. baumannii isolates (ATCC 17978 and AB 251847 were separately cultured in tryptic soy broth (∼6 log CFU/ml containing the minimum inhibitory concentration (MIC of TC or EG with or without the MIC of each antibiotic at 37°C for 18 h. A. baumannii strains not exposed to the PDAs or antibiotics served as controls. Following incubation, A. baumannii counts were determined by broth dilution assay. In addition, the effect of PDAs on the permeability of outer membrane and efflux pumps in A. baumannii was measured. Further, the effect of TC and EG on the expression of A. baumannii genes encoding resistance to β-lactam antibiotics (blaP, efflux pumps (adeABC, and multi-drug resistant protein (mdrp was studied using real-time quantitative PCR (RT-qPCR. The experiment was replicated three times with duplicate samples of each treatment and control. The results from broth dilution assay indicated that both TC and EG in combination with antibiotics increased the sensitivity of A. baumannii to all the tested antibiotics (P < 0.05. The two PDAs inhibited the function of A. baumannii efflux pump, (AdeABC, but did not increase the permeability of its outer membrane. Moreover, RT-qPCR data revealed that TC and EG

  7. Trans-Cinnamaldehyde and Eugenol Increase Acinetobacter baumannii Sensitivity to Beta-Lactam Antibiotics.

    Science.gov (United States)

    Karumathil, Deepti P; Nair, Meera Surendran; Gaffney, James; Kollanoor-Johny, Anup; Venkitanarayanan, Kumar

    2018-01-01

    Multi-drug resistant (MDR) Acinetobacter baumannii is a major nosocomial pathogen causing a wide range of clinical conditions with significant mortality rates. A. baumannii strains are equipped with a multitude of antibiotic resistance mechanisms, rendering them resistant to most of the currently available antibiotics. Thus, there is a critical need to explore novel strategies for controlling antibiotic resistance in A. baumannii . This study investigated the efficacy of two food-grade, plant-derived antimicrobials (PDAs), namely trans -cinnamaldehyde (TC) and eugenol (EG) in decreasing A. baumannii 's resistance to seven β-lactam antibiotics, including ampicillin, methicillin, meropenem, penicillin, aztreonam, amoxicillin, and piperacillin. Two MDR A. baumannii isolates (ATCC 17978 and AB 251847) were separately cultured in tryptic soy broth (∼6 log CFU/ml) containing the minimum inhibitory concentration (MIC) of TC or EG with or without the MIC of each antibiotic at 37°C for 18 h. A. baumannii strains not exposed to the PDAs or antibiotics served as controls. Following incubation, A. baumannii counts were determined by broth dilution assay. In addition, the effect of PDAs on the permeability of outer membrane and efflux pumps in A. baumannii was measured. Further, the effect of TC and EG on the expression of A. baumannii genes encoding resistance to β-lactam antibiotics ( blaP ), efflux pumps ( adeABC ), and multi-drug resistant protein ( mdrp ) was studied using real-time quantitative PCR (RT-qPCR). The experiment was replicated three times with duplicate samples of each treatment and control. The results from broth dilution assay indicated that both TC and EG in combination with antibiotics increased the sensitivity of A. baumannii to all the tested antibiotics ( P increase the permeability of its outer membrane. Moreover, RT-qPCR data revealed that TC and EG down-regulated the expression of majority of the genes associated with β-lactam antibiotic

  8. Infectious Mononucleosis Triggers Generation of IgG Auto-Antibodies against Native Myelin Oligodendrocyte Glycoprotein.

    Science.gov (United States)

    Kakalacheva, Kristina; Regenass, Stephan; Wiesmayr, Silke; Azzi, Tarik; Berger, Christoph; Dale, Russell C; Brilot, Fabienne; Münz, Christian; Rostasy, Kevin; Nadal, David; Lünemann, Jan D

    2016-02-12

    A history of infectious mononucleosis (IM), symptomatic primary infection with the Epstein Barr virus, is associated with the development of autoimmune diseases and increases the risk to develop multiple sclerosis. Here, we hypothesized that immune activation during IM triggers autoreactive immune responses. Antibody responses towards cellular antigens using a HEp-2 based indirect immunofluorescence assay and native myelin oligodendrocyte glycoprotein (MOG) using a flow cytometry-based assay were determined in 35 patients with IM and in 23 control subjects. We detected frequent immunoglobulin M (IgM) reactivity to vimentin, a major constituent of the intermediate filament family of proteins, in IM patients (27/35; 77%) but rarely in control subjects (2/23; 9%). IgG autoantibodies binding to HEp-2 cells were absent in both groups. In contrast, IgG responses to native MOG, present in up to 40% of children with inflammatory demyelinating diseases of the central nervous system (CNS), were detectable in 7/35 (20%) patients with IM but not in control subjects. Normalization of anti-vimentin IgM levels to increased total IgM concentrations during IM resulted in loss of significant differences for anti-vimentin IgM titers. Anti-MOG specific IgG responses were still detectable in a subset of three out of 35 patients with IM (9%), even after normalization to increased total IgG levels. Vimentin-specific IgM and MOG-specific IgG responses decreased following clinical resolution of acute IM symptoms. We conclude from our data that MOG-specific memory B cells are activated in subset of patients with IM.

  9. FGF8 activates proliferation and migration in mouse post-natal oligodendrocyte progenitor cells.

    Directory of Open Access Journals (Sweden)

    Pablo Cruz-Martinez

    Full Text Available Fibroblast growth factor 8 (FGF8 is a key molecular signal that is necessary for early embryonic development of the central nervous system, quickly disappearing past this point. It is known to be one of the primary morphogenetic signals required for cell fate and survival processes in structures such as the cerebellum, telencephalic and isthmic organizers, while its absence causes severe abnormalities in the nervous system and the embryo usually dies in early stages of development. In this work, we have observed a new possible therapeutic role for this factor in demyelinating disorders, such as leukodystrophy or multiple sclerosis. In vitro, oligodendrocyte progenitor cells were cultured with differentiating medium and in the presence of FGF8. Differentiation and proliferation studies were performed by immunocytochemistry and PCR. Also, migration studies were performed in matrigel cultures, where oligodendrocyte progenitor cells were placed at a certain distance of a FGF8-soaked heparin bead. The results showed that both migration and proliferation was induced by FGF8. Furthermore, a similar effect was observed in an in vivo demyelinating mouse model, where oligodendrocyte progenitor cells were observed migrating towards the FGF8-soaked heparin beads where they were grafted. In conclusion, the results shown here demonstrate that FGF8 is a novel factor to induce oligodendrocyte progenitor cell activation, migration and proliferation in vitro, which can be extrapolated in vivo in demyelinated animal models.

  10. IGF binding protein alterations on periplaque oligodendrocytes in multiple sclerosis : Implications for remyelination

    NARCIS (Netherlands)

    Wilczak, Nadine; Chesik, Daniel; Hoekstra, Dick; De Keyser, Jacques

    Why myelin repair greatly fails in multiple sclerosis (MS) is unclear. The insulin-like growth factor (IGF) system plays vital roles in oligodendrocyte development, survival, and myelin synthesis. We used immunohistochemistry to study IGF-I, IGF-I receptors and IGF binding proteins (IGFBPs) 1-6 on

  11. Origin and dynamics of oligodendrocytes in the developing brain : Implications for perinatal white matter injury

    NARCIS (Netherlands)

    van Tilborg, Erik; de Theije, Caroline G.M.; van Hal, Maurik; Wagenaar, Nienke; de Vries, Linda S.; Benders, Manon J.; Rowitch, David H; Nijboer, Cora H.

    2018-01-01

    Infants born prematurely are at high risk to develop white matter injury (WMI), due to exposure to hypoxic and/or inflammatory insults. Such perinatal insults negatively impact the maturation of oligodendrocytes (OLs), thereby causing deficits in myelination. To elucidate the precise pathophysiology

  12. Effect of MK-801 and Clozapine on the Proteome of Cultured Human Oligodendrocytes

    Science.gov (United States)

    Cassoli, Juliana S.; Iwata, Keiko; Steiner, Johann; Guest, Paul C.; Turck, Christoph W.; Nascimento, Juliana M.; Martins-de-Souza, Daniel

    2016-01-01

    Separate lines of evidence have demonstrated the involvement of N-methyl-D-aspartate (NMDA) receptor and oligodendrocyte dysfunctions in schizophrenia. Here, we have carried out shotgun mass spectrometry proteome analysis of oligodendrocytes treated with the NMDA receptor antagonist MK-801 to gain potential insights into these effects at the molecular level. The MK-801 treatment led to alterations in the levels of 68 proteins, which are associated with seven distinct biological processes. Most of these proteins are involved in energy metabolism and many have been found to be dysregulated in previous proteomic studies of post-mortem brain tissues from schizophrenia patients. Finally, addition of the antipsychotic clozapine to MK-801-treated oligodendrocyte cultures resulted in changes in the levels of 45 proteins and treatment with clozapine alone altered 122 proteins and many of these showed opposite changes to the MK-801 effects. Therefore, these proteins and the associated energy metabolism pathways should be explored as potential biomarkers of antipsychotic efficacy. In conclusion, MK-801 treatment of oligodendrocytes may provide a useful model for testing the efficacy of novel treatment approaches. PMID:26973466

  13. Anxiety sensitivity predicts increased perceived exertion during a 1-mile walk test among treatment-seeking smokers.

    Science.gov (United States)

    Farris, Samantha G; Uebelacker, Lisa A; Brown, Richard A; Price, Lawrence H; Desaulniers, Julie; Abrantes, Ana M

    2017-12-01

    Smoking increases risk of early morbidity and mortality, and risk is compounded by physical inactivity. Anxiety sensitivity (fear of anxiety-relevant somatic sensations) is a cognitive factor that may amplify the subjective experience of exertion (effort) during exercise, subsequently resulting in lower engagement in physical activity. We examined the effect of anxiety sensitivity on ratings of perceived exertion (RPE) and physiological arousal (heart rate) during a bout of exercise among low-active treatment-seeking smokers. Adult daily smokers (n = 157; M age  = 44.9, SD = 11.13; 69.4% female) completed the Rockport 1.0 mile submaximal treadmill walk test. RPE and heart rate were assessed during the walk test. Multi-level modeling was used to examine the interactive effect of anxiety sensitivity × time on RPE and on heart rate at five time points during the walk test. There were significant linear and cubic time × anxiety sensitivity effects for RPE. High anxiety sensitivity was associated with greater initial increases in RPE during the walk test, with stabilized ratings towards the last 5 min, whereas low anxiety sensitivity was associated with lower initial increase in RPE which stabilized more quickly. The linear time × anxiety sensitivity effect for heart rate was not significant. Anxiety sensitivity is associated with increasing RPE during moderate-intensity exercise. Persistently rising RPE observed for smokers with high anxiety sensitivity may contribute to the negative experience of exercise, resulting in early termination of bouts of prolonged activity and/or decreased likelihood of future engagement in physical activity.

  14. Comparison of increased venous contrast in ischemic stroke using phase-sensitive MR imaging with perfusion changes on flow-sensitive alternating inversion recovery at 3 Tesla

    International Nuclear Information System (INIS)

    Yamashita, Eijiro; Kanasaki, Yoshiko; Fujii, Shinya; Ogawa, Toshihide; Tanaka, Takuro; Hirata, Yoshiharu

    2011-01-01

    Background Increased venous contrast in ischemic stroke using susceptibility-weighted imaging has been widely reported, although few reports have compared increased venous contrast areas with perfusion change areas. Purpose To compare venous contrast on phase-sensitive MR images (PSI) with perfusion change on flow-sensitive alternating inversion recovery (FAIR) images, and to discuss the clinical use of PSI in ischemic stroke. Material and Methods Thirty patients with clinically suspected acute infarction of the middle cerebral artery (MCA) territory within 7 days of onset were evaluated. Phase-sensitive imaging (PSI), flow-sensitive alternating inversion recovery (FAIR), diffusion-weighted imaging (DWI) and magnetic resonance angiography (MRA) were obtained using 3 Tesla scanner. Two neuroradiologists independently reviewed the MR images, as well as the PSI, DWI, and FAIR images. They were blinded to the clinical data and to each other's findings. The abnormal area of each image was ultimately identified after both neuroradiologists reached consensus. We analyzed areas of increased venous contrast on PSI, perfusion changes on FAIR images and signal changes on DWI for each case. Results Venous contrast increased on PSI and hypoperfusion was evident on FAIR images from 22 of the 30 patients (73%). The distribution of the increased venous contrast was the same as that of the hypoperfused areas on FAIR images in 16 of these 22. The extent of these lesions was larger than that of lesions visualized by on DWI in 18 of the 22 patients. Hypointense signals reflecting hemorrhage and no increased venous contrast on PSI and hyperperfusion on FAIR images were found in six of the remaining eight patients (20%). Findings on PSI were normal and hypoperfusion areas were absent on FAIR images of two patients (7%). Conclusion Increased venous contrast on PSI might serve as an index of misery perfusion and provide useful information

  15. Human induced pluripotent stem cells differentiation into oligodendrocyte progenitors and transplantation in a rat model of optic chiasm demyelination.

    Directory of Open Access Journals (Sweden)

    Alireza Pouya

    Full Text Available BACKGROUND: This study aims to differentiate human induced pluripotent stem cells (hiPSCs into oligodendrocyte precursors and assess their recovery potential in a demyelinated optic chiasm model in rats. METHODOLOGY/PRINCIPAL FINDINGS: We generated a cell population of oligodendrocyte progenitors from hiPSCs by using embryoid body formation in a defined medium supplemented with a combination of factors, positive selection and mechanical enrichment. Real-time polymerase chain reaction and immunofluorescence analyses showed that stage-specific markers, Olig2, Sox10, NG2, PDGFRα, O4, A2B5, GalC, and MBP were expressed following the differentiation procedure, and enrichment of the oligodendrocyte lineage. These results are comparable with the expression of stage-specific markers in human embryonic stem cell-derived oligodendrocyte lineage cells. Transplantation of hiPSC-derived oligodendrocyte progenitors into the lysolecithin-induced demyelinated optic chiasm of the rat model resulted in recovery from symptoms, and integration and differentiation into oligodendrocytes were detected by immunohistofluorescence staining against PLP and MBP, and measurements of the visual evoked potentials. CONCLUSIONS/SIGNIFICANCE: These results showed that oligodendrocyte progenitors generated efficiently from hiPSCs can be used in future biomedical studies once safety issues have been overcome.

  16. Pío del Río Hortega and the discovery of the oligodendrocytes

    Directory of Open Access Journals (Sweden)

    Fernando ePérez-Cerdá

    2015-07-01

    Full Text Available Pío del Río Hortega (1882-1945 discovered microglia and oligodendrocytes and was after Ramón y Cajal, the most prominent figure of the Spanish school of neurology. He began his scientific career with Nicolás Achúcarro with whom he learned the use of metallic impregnation techniques suitable to study non neuronal cells. Later on, he joined Cajal´s laboratory, and afterwards he created his own group where he continued developing other innovative modifications of the silver staining methods that revolutionised the study of glial cells a century ago. He was at that time also interested in neuropathology and became a leading authority in Central Nervous System (CNS tumours. In parallel to this clinical activity, del Río Hortega rendered the first systematic description of the great polymorphism present in a subtype of macroglial cells that he named himself as oligodendroglia and later oligodendrocytes. He established their ectodermic origin and suggested that they build the myelin sheath of CNS axons, just as Schwann cells do in the periphery. Notably, he also suggested the trophic role of oligodendrocytes for neuronal functionality, an idea that it has been substantiated in the last few years. Del Río Hortega became internationally recognized and established an important neurohistological school with outstanding pupils from Spain and abroad, which nearly disappeared after his exile due to the Spanish civil war. Yet, the difficulty of metal impregnation methods and their variability in results, delayed for some decades the confirmation of his great insights into oligodendrocyte biology until the development of electron microscopy and immunohistochemistry. This review aims at summarizing the pioneer and essential contributions of del Río Hortega to the current knowledge of oligodendrocyte structure and function, and to provide a hint of the scientific personality of this extraordinary and insufficiently recognized man.

  17. Nudging oligodendrocyte intrinsic signaling to remyelinate and repair: Estrogen receptor ligand effects.

    Science.gov (United States)

    Khalaj, Anna J; Hasselmann, Jonathan; Augello, Catherine; Moore, Spencer; Tiwari-Woodruff, Seema K

    2016-06-01

    Demyelination in multiple sclerosis (MS) leads to significant, progressive axonal and neuronal degeneration. Currently existing immunosuppressive and immunomodulatory therapies alleviate MS symptoms and slow, but fail to prevent or reverse, disease progression. Restoration of damaged myelin sheath by replenishment of mature oligodendrocytes (OLs) should not only restore saltatory axon conduction, but also provide a major boost to axon survival. Our previous work has shown that therapeutic treatment with the modestly selective generic estrogen receptor (ER) β agonist diarylpropionitrile (DPN) confers functional neuroprotection in a chronic experimental autoimmune encephalomyelitis (EAE) mouse model of MS by stimulating endogenous remyelination. Recently, we found that the more potent, selective ERβ agonist indazole-chloride (Ind-Cl) improves clinical disease and motor performance. Importantly, electrophysiological measures revealed improved corpus callosal conduction and reduced axon refractoriness. This Ind-Cl treatment-induced functional remyelination was attributable to increased OL progenitor cell (OPC) and mature OL numbers. At the intracellular signaling level, transition of early to late OPCs requires ERK1/2 signaling, and transition of immature to mature OLs requires mTOR signaling; thus, the PI3K/Akt/mTOR pathway plays a major role in the late stages of OL differentiation and myelination. Indeed, therapeutic treatment of EAE mice with various ERβ agonists results in increased brain-derived neurotrophic factor (BDNF) and phosphorylated (p) Akt and p-mTOR levels. It is notable that while DPN's neuroprotective effects occur in the presence of peripheral and central inflammation, Ind-Cl is directly neuroprotective, as demonstrated by remyelination effects in the cuprizone-induced demyelination model, as well as immunomodulatory. Elucidating the mechanisms by which ER agonists and other directly remyelinating agents modulate endogenous OPC and OL regulatory

  18. Eating high fat chow increases the sensitivity of rats to 8-OH-DPAT-induced lower lip retraction.

    Science.gov (United States)

    Li, Jun-Xu; Ju, Shutian; Baladi, Michelle G; Koek, Wouter; France, Charles P

    2011-12-01

    Eating high fat food can alter sensitivity to drugs acting on dopamine systems; this study examined whether eating high fat food alters sensitivity to a drug acting on serotonin (5-HT) systems. Sensitivity to (+)-8-hydroxy-2-(dipropylamino) tetralin hydrobromide (8-OH-DPAT; 5-HT1A receptor agonist)-induced lower lip retraction was examined in separate groups (n=8-9) of rats with free access to standard (5.7% fat) or high fat (34.3% fat) chow; sensitivity to quinpirole (dopamine D3/D2 receptor agonist)-induced yawning was also examined. Rats eating high fat chow gained more body weight than rats eating standard chow and, after 6 weeks of eating high fat chow, they were more sensitive to 8-OH-DPAT (0.01-0.1 mg/kg)-induced lower lip retraction and quinpirole (0.0032-0.32 mg/kg)-induced yawning. These changes were not reversed when rats that previously ate high fat chow were switched to eating standard chow and sensitivity to 8-OH-DPAT and quinpirole increased when rats that previously ate standard chow ate high fat chow. These data extend previous results showing changes in sensitivity to drugs acting on dopamine systems in animals eating high fat chow to a drug acting at 5-HT1A receptors and they provide support for the notion that eating certain foods impacts sensitivity to drugs acting on monoamine systems.

  19. 20(s)-Protopanaxadiol (PPD) increases the radiotherapy sensitivity of laryngeal carcinoma.

    Science.gov (United States)

    Teng, Bo; Zhao, Lijing; Gao, Jing; He, Peng; Li, Hejie; Chen, Junyu; Feng, Qingjie; Yi, Chunhui

    2017-12-13

    Laryngeal carcinoma (LC) is one of the most prevalent malignant tumors in the head and neck area. Due to its high morbidity and mortality, LC poses a serious threat to human life and health. Even with surgical removal, some patients were not sensitive to radiotherapy or experienced transfer or recurrence. 20(s)-Protopanaxadiol (PPD), a natural product from Panax ginseng, has been reported to have cytotoxic effects against several cancer cell lines. However, whether it can improve the radiation sensitivity and the underlying mechanism of PPD's sensitization effect is still unknown. Herein, from in vitro and in vivo experiments, we found that the combination of PPD and radiation not only significantly inhibited proliferation and induced apoptosis, but also suppressed the tumor growth in mouse models. These findings confirmed the role of PPD in enhancing the sensitivity of radiotherapy. Moreover, our work showed that the expression levels of mTOR and its downstream effectors decreased remarkably after PPD addition when compared to radiation only. This result suggested that PPD's excellent synergistic effects with radiation might be associated with the down-regulation of the mTOR signaling pathway in Hep-2 cells.

  20. Active drumming experience increases infants' sensitivity to audiovisual synchrony during observed drumming actions

    NARCIS (Netherlands)

    Gerson, S.A.; Schiavio, A.A.R.; Timmers, R.; Hunnius, S.

    2015-01-01

    In the current study, we examined the role of active experience on sensitivity to multisensory synchrony in six-month-old infants in a musical context. In the first of two experiments, we trained infants to produce a novel multimodal effect (i.e., a drum beat) and assessed the effects of this

  1. Infection with Soil-Transmitted Helminths Is Associated with Increased Insulin Sensitivity

    NARCIS (Netherlands)

    Wiria, A.E.; Hamid, F.; Wammes, L.J.; Prasetyani, M.A.; Dekkers, O.M.; May, L.; Kaisar, M.M.; Verweij, J.J.; Guigas, B.; Partono, F.; Sartono, E.; Supali, T.; Yazdanbakhsh, M.; Smit, J.W.A.

    2015-01-01

    OBJECTIVE: Given that helminth infections have been shown to improve insulin sensitivity in animal studies, which may be explained by beneficial effects on energy balance or by a shift in the immune system to an anti-inflammatory profile, we investigated whether soil-transmitted helminth

  2. Re-scan confocal microscopy (RCM) improves the resolution of confocal microscopy and increases the sensitivity

    NARCIS (Netherlands)

    de Luca, Giulia; Breedijk, Ronald; Hoebe, Ron; Stallinga, Sjoerd; Manders, Erik

    2017-01-01

    Re-scan confocal microscopy (RCM) is a new super-resolution technique based on a standard confocal microscope extended with a re-scan unit in the detection path that projects the emitted light onto a sensitive camera. In this paper the fundamental properties of RCM, lateral resolution, axial

  3. Re-scan confocal microscopy (RCM) improves the resolution of confocal microscopy and increases the sensitivity

    NARCIS (Netherlands)

    De Luca, G.; Breedijk, R.; Hoebe, R.; Stallinga, S.; Manders, E.

    Re-scan confocal microscopy (RCM) is a new super-resolution technique based on a standard confocal microscope extended with a re-scan unit in the detection path that projects the emitted light onto a sensitive camera. In this paper the fundamental properties of RCM, lateral resolution, axial

  4. Anxiety sensitivity uniquely predicts exercise behaviors in young adults seeking to increase physical activity

    NARCIS (Netherlands)

    Moshier, S.J.; Szuhany, K.L.; Hearon, B.A.; Smits, J.A.J.; Otto, M.W.

    2016-01-01

    Individuals with elevated levels of anxiety sensitivity (AS) may be motivated to avoid aversive emotional or physical states, and therefore may have greater difficulty achieving healthy behavioral change. This may be particularly true for exercise, which produces many of the somatic sensations

  5. Partial disruption of lipolysis increases postexercise insulin sensitivity in skeletal muscle despite accumulation of DAG

    DEFF Research Database (Denmark)

    Serup, Annette Karen Lundbeck; Alsted, Thomas Junker; Jordy, Andreas Børsting

    2016-01-01

    reactivity in vitro, we investigated if the described function of DAGs as mediators of lipid-induced insulin resistance was depending on the different DAG-isomers. We measured insulin stimulated glucose uptake in hormone sensitive lipase (HSL) knock out (KO) mice after treadmill exercise to stimulate...

  6. Voltage-Sensitive Load Controllers for Voltage Regulation and Increased Load Factor in Distribution Systems

    DEFF Research Database (Denmark)

    Douglass, Philip James; Garcia-Valle, Rodrigo; Østergaard, Jacob

    2014-01-01

    This paper presents a novel controller design for controlling appliances based on local measurements of voltage. The controller finds the normalized voltage deviation accounting for the sensitivity of voltage measurements to appliance state. The controller produces a signal indicating desired pow...

  7. Overexpression of BLM promotes DNA damage and increased sensitivity to platinum salts in triple negative breast and serous ovarian cancers

    DEFF Research Database (Denmark)

    Birkbak, N. J.; Li, Y.; Pathania, S

    2018-01-01

    inhibitor treatment. We identified two genes, the Bloom helicase (BLM) and Fanconi anemia complementation group I (FANCI), that have both increased DNA copy number and gene expression in the platinum sensitive cases. Increased level of expression of these two genes was also associated with platinum...

  8. Increasing LIGO sensitivity by feedforward subtraction of auxiliary length control noise

    International Nuclear Information System (INIS)

    Meadors, Grant David; Riles, Keith; Kawabe, Keita

    2014-01-01

    LIGO, the Laser Interferometer Gravitational-wave Observatory, has been designed and constructed to measure gravitational wave strain via differential arm length. The LIGO 4 km Michelson arms with Fabry–Perot cavities have auxiliary length control servos for suppressing Michelson motion of the beam-splitter and arm cavity input mirrors, which degrades interferometer sensitivity. We demonstrate how a post facto pipeline improves a data sample from LIGO Science Run 6 with feedforward subtraction. Dividing data into 1024 s windows, we numerically fit filter functions representing the frequency-domain transfer functions from Michelson length channels into the gravitational-wave strain data channel for each window, then subtract the filtered Michelson channel noise (witness) from the strain channel (target). In this paper we describe the algorithm, assess achievable improvements in sensitivity to astrophysical sources, and consider relevance to future interferometry. (paper)

  9. Active Drumming Experience Increases Infants' Sensitivity to Audiovisual Synchrony during Observed Drumming Actions.

    Science.gov (United States)

    Gerson, Sarah A; Schiavio, Andrea; Timmers, Renee; Hunnius, Sabine

    2015-01-01

    In the current study, we examined the role of active experience on sensitivity to multisensory synchrony in six-month-old infants in a musical context. In the first of two experiments, we trained infants to produce a novel multimodal effect (i.e., a drum beat) and assessed the effects of this training, relative to no training, on their later perception of the synchrony between audio and visual presentation of the drumming action. In a second experiment, we then contrasted this active experience with the observation of drumming in order to test whether observation of the audiovisual effect was as effective for sensitivity to multimodal synchrony as active experience. Our results indicated that active experience provided a unique benefit above and beyond observational experience, providing insights on the embodied roots of (early) music perception and cognition.

  10. Active Drumming Experience Increases Infants' Sensitivity to Audiovisual Synchrony during Observed Drumming Actions.

    Directory of Open Access Journals (Sweden)

    Sarah A Gerson

    Full Text Available In the current study, we examined the role of active experience on sensitivity to multisensory synchrony in six-month-old infants in a musical context. In the first of two experiments, we trained infants to produce a novel multimodal effect (i.e., a drum beat and assessed the effects of this training, relative to no training, on their later perception of the synchrony between audio and visual presentation of the drumming action. In a second experiment, we then contrasted this active experience with the observation of drumming in order to test whether observation of the audiovisual effect was as effective for sensitivity to multimodal synchrony as active experience. Our results indicated that active experience provided a unique benefit above and beyond observational experience, providing insights on the embodied roots of (early music perception and cognition.

  11. Active Drumming Experience Increases Infants’ Sensitivity to Audiovisual Synchrony during Observed Drumming Actions

    Science.gov (United States)

    Timmers, Renee; Hunnius, Sabine

    2015-01-01

    In the current study, we examined the role of active experience on sensitivity to multisensory synchrony in six-month-old infants in a musical context. In the first of two experiments, we trained infants to produce a novel multimodal effect (i.e., a drum beat) and assessed the effects of this training, relative to no training, on their later perception of the synchrony between audio and visual presentation of the drumming action. In a second experiment, we then contrasted this active experience with the observation of drumming in order to test whether observation of the audiovisual effect was as effective for sensitivity to multimodal synchrony as active experience. Our results indicated that active experience provided a unique benefit above and beyond observational experience, providing insights on the embodied roots of (early) music perception and cognition. PMID:26111226

  12. Simplifying the construction of dye-sensitized solar cells to increase their accessibility for community education

    Energy Technology Data Exchange (ETDEWEB)

    Appleyard, Steve [Department of Environment and Conservation, PO Box K822, Perth, WA 6842 (Australia)

    2010-01-15

    Simple dye-sensitized solar cells were developed using blackboard chalk as a substrate for mixed ZnO and SnO{sub 2} films that were sensitized with Mercurochrome (Merbromine) dye. Graphite pencil 'leads' were used as counter electrodes for the cells and the electrolyte consisted of an aqueous solution of iodine and potassium iodide that was gelled with a disinfectant containing quaternary ammonium compounds and cyanoacrylate adhesive (Superglue {sup registered}). The open circuit potential of constructed cells was typically 0.50-0.64 V and the short circuit current varied between 0.5 and 2.0 mA cm{sup -2}. The cells were developed as an educational resource that could be simply and safely constructed in a home or school environment with readily accessible materials. (author)

  13. Acute Stress Decreases but Chronic Stress Increases Myocardial Sensitivity to Ischemic Injury in Rodents

    OpenAIRE

    Eisenmann, Eric D.; Rorabaugh, Boyd R.; Zoladz, Phillip R.

    2016-01-01

    Cardiovascular disease is the largest cause of mortality worldwide, and stress is a significant contributor to the development of cardiovascular disease. The relationship between acute and chronic stress and cardiovascular disease is well-evidenced. Acute stress can lead to arrhythmias and ischemic injury. However, recent evidence in rodent models suggests that acute stress can decrease sensitivity to myocardial ischemia-reperfusion injury. Conversely, chronic stress is arrythmogenic and incr...

  14. Infection with Soil-Transmitted Helminths Is Associated with Increased Insulin Sensitivity.

    Directory of Open Access Journals (Sweden)

    Aprilianto E Wiria

    Full Text Available Given that helminth infections have been shown to improve insulin sensitivity in animal studies, which may be explained by beneficial effects on energy balance or by a shift in the immune system to an anti-inflammatory profile, we investigated whether soil-transmitted helminth (STH-infected subjects are more insulin sensitive than STH-uninfected subjects.We performed a cross-sectional study on Flores island, Indonesia, an area with high prevalence of STH infections.From 646 adults, stool samples were screened for Trichuris trichiura by microscopy and for Ascaris lumbricoides, Necator americanus, Ancylostoma duodenale, and Strongyloides stercoralis by qPCR. No other helminth was found. We collected data on body mass index (BMI, kg/m2, waist-to-hip ratio (WHR, fasting blood glucose (FBG, mmol/L, insulin (pmol/L, high sensitive C-reactive protein (ng/ml and Immunoglobulin E (IU/ml. The homeostatic model assessment for insulin resistance (HOMAIR was calculated and regression models were used to assess the association between STH infection status and insulin resistance.424 (66% participants had at least one STH infection. STH infected participants had lower BMI (23.2 vs 22.5 kg/m2, p value = 0.03 and lower HOMAIR (0.97 vs 0.81, p value = 0.05. In an age-, sex- and BMI-adjusted model a significant association was seen between the number of infections and HOMAIR: for every additional infection with STH species, the HOMAIR decreased by 0.10 (p for linear trend 0.01. This effect was mainly accounted for by a decrease in insulin of 4.9 pmol/L for every infection (p for trend = 0.07.STH infections are associated with a modest improvement of insulin sensitivity, which is not accounted for by STH effects on BMI alone.

  15. Increasing Drought Sensitivity and Decline of Atlas Cedar (Cedrus atlantica) in the Moroccan Middle Atlas Forests

    OpenAIRE

    Linares, Juan C.; Taïqui, Lahcen; Camarero, Jesús Julio

    2011-01-01

    An understanding of the interactions between climate change and forest structure on tree growth are needed for decision making in forest conservation and management. In this paper, we investigated the relative contribution of tree features and stand structure on Atlas cedar (Cedrus atlantica) radial growth in forests that have experienced heavy grazing and logging in the past. Dendrochronological methods were applied to quantify patterns in basal-area increment and drought sensitivity of Atla...

  16. Increase in sensitivity of sensor units of environment refraction index change based on superficial plasmon resonance

    Directory of Open Access Journals (Sweden)

    Ushenin Yu. V.

    2011-04-01

    Full Text Available Results of computer modeling of an angular spectrum superficial plasmon resonance in metal films measurements with device PLAZMON-5 with infra-red radiator are analysed. It is shown that use of an infra-red source of radiation allows to improve sensitivity of sensor device in comparison with source of visible light. On an example of dielectric refraction indexes measurement with PLAZMON-5 device experimental check of theoretical calculations has been carried out.

  17. Increased sensitivity of OSHA method analysis of diacetyl and 2,3-pentanedione in air.

    Science.gov (United States)

    LeBouf, Ryan; Simmons, Michael

    2017-05-01

    Gas chromatography/mass spectrometry (GC/MS) operated in selected ion monitoring mode was used to enhance the sensitivity of OSHA Methods 1013/1016 for measuring diacetyl and 2,3-pentanedione in air samples. The original methods use flame ionization detection which cannot achieve the required sensitivity to quantify samples at or below the NIOSH recommended exposure limits (REL: 5 ppb for diacetyl and 9.3 ppb for 2,3-pentanedione) when sampling for both diacetyl and 2,3-pentanedione. OSHA Method 1012 was developed to measure diacetyl at lower levels but requires an electron capture detector, and a sample preparation time of 36 hours. Using GC/MS allows detection of these two alpha-diketones at lower levels than OSHA Method 1012 for diacetyl and OSHA Method 1016 for 2,3-pentanedione. Acetoin and 2,3-hexanedione may also be measured using this technique. Method quantification limits were 1.1 ppb for diacetyl (22% of the REL), 1.1 ppb for 2,3-pentanedione (12% of the REL), 1.1 ppb for 2,3-hexanedione, and 2.1 ppb for acetoin. Average extraction efficiencies above the limit of quantitation were 100% for diacetyl, 92% for 2,3-pentanedione, 89% for 2,3-hexanedione, and 87% for acetoin. Mass spectrometry with OSHA Methods 1013/1016 could be used by analytical laboratories to provide more sensitive and accurate measures of exposure to diacetyl and 2,3-pentanedione.

  18. mei-9/sup a/ mutant of Drosophila melanogaster increases mutagen sensitivity and decreases excision repair

    International Nuclear Information System (INIS)

    Boyd, J.B.; Golino, M.D.; Setlow, R.B.

    1976-01-01

    The mei-9/sup a/ mutant of Drosophila melanogaster, which reduces meiotic recombination in females, is deficient in the excision of uv-induced pyrimidine dimers in both sexes. Assays were performed in primary cultures and established cell lines derived from embryos. An endonuclease preparation from M. luteus, which is specific for pyrimidine dimers, was employed to monitor uv-induced dimers in cellular DNA. The rate of disappearance of endonuclease-sensitive sites from DNA of control cells is 10-20 times faster than that from mei-9/sup a/ cells. The mutant mei-218, which is also deficient in meiotic recombination, removes nuclease-sensitive sites at control rates. The mei-9/sup a/ cells exhibit control levels of photorepair, postreplication repair and repair of single strand breaks. In mei-9 cells DNA synthesis and possibly postreplication repair are weakly sensitive to caffeine. Larvae which are hemizygous for either of the two mutants that define the mei-9 locus are hypersensitive to killing by the mutagens methyl methanesulfonate, nitrogen mustard and 2-acetylaminofluorene. Larvae hemizygous for the mei-218 mutant are insensitive to each of these reagents. These data demonstrate that the mei-9 locus is active in DNA repair of somatic cells. Thus functions involved in meiotic recombination are also active in DNA repair in this higher eukaryote. The results are consistent with the earlier suggestions that the mei-9 locus functions in the exchange events of meiosis. The mei-218 mutation behaves differently in genetic tests and our data suggest its function may be restricted to meiosis. These studies demonstrate that currently recognized modes of DNA repair can be efficiently detected in primary cell cultures derived from Drosophila embryos

  19. Coplanar Electrode Layout Optimized for Increased Sensitivity for Electrical Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Clausen, Casper Hyttel; Skands, Gustav Erik; Bertelsen, Christian Vinther

    2015-01-01

    This work describes an improvement in the layout of coplanar electrodes for electrical impedance spectroscopy. We have developed, fabricated, and tested an improved electrode layout, which improves the sensitivity of an impedance flow cytometry chip. The improved chip was experimentally tested...... and compared to a chip with a conventional electrode layout. The improved chip was able to discriminate 0.5 mu m beads from 1 mu m as opposed to the conventional chip. Furthermore, finite element modeling was used to simulate the improvements in electrical field density and uniformity between the electrodes...... of the new electrode layout. Good agreement was observed between the model and the obtained experimental results....

  20. X-ray-induced chromosome aberrations in Down lymphocytes: an explanation of their increased sensitivity

    International Nuclear Information System (INIS)

    Preston, R.J.

    1981-01-01

    Unstimulated lymphocytes from individuals with Down Syndrome (trisomy 21) are more sensitive to the induction of dicentric and ring aberrations by X rays than normal lymphocytes. Several explanations involving the more rapid rejoining of X-ray--induced lesions in Down cells have been offered. It is shown here that the repair of the DNA damage converted into chromosome aberrations is more rapid in Down cells than normal cells. This more rapid repair results in a higher probability of producing chromosomes aberrations, and hence higher aberration frequencies in Down than normal cells

  1. X-ray-induced chromosome aberrations in Down lymphocytes: an explanation of their increased sensitivity

    International Nuclear Information System (INIS)

    Preston, R.J.

    1981-01-01

    Unstimulated lymphocytes from individuals with Down Syndrome (trisomy 21) are more sensitive to the induction of dicentric and ring aberrations by X rays than normal lymphocytes. Several explanations involving the more rapid rejoining of X-ray-induced lesions in Down cells have been offered. It is shown here that the repair of the DNA damage converted into chromosome aberrations is more rapid in Down cells than normal cells. This more rapid repair results in a higher probability of producing chromosome aberrations, and hence higher aberration frequencies in Down than normal cells

  2. Survival and Functionality of Human Induced Pluripotent Stem Cell-Derived Oligodendrocytes in a Nonhuman Primate Model for Multiple Sclerosis

    NARCIS (Netherlands)

    Thiruvalluvan, Arun; Czepiel, Marcin; Kap, Yolanda A.; Mantingh-Otter, Ietje; Vainchtein, Ilia; Kuipers, Jeroen; Bijlard, Marjolein; Baron, Wia; Giepmans, Ben; Brueck, Wolfgang; 'T Hart, Bert A.; Boddeke, Erik; Copray, Sjef

    2016-01-01

    : Fast remyelination by endogenous oligodendrocyte precursor cells (OPCs) is essential to prevent axonal and subsequent retrograde neuronal degeneration in demyelinating lesions in multiple sclerosis (MS). In chronic lesions, however, the remyelination capacity of OPCs becomes insufficient. Cell

  3. Deletion of HAPS_2096 Increases Sensitivity to Cecropin B in Haemophilus parasuis.

    Science.gov (United States)

    Chen, Fanjie; Hu, Han; Li, Zhonghua; Huang, Jiacheng; Cai, Xuwang; Wang, Chunmei; He, Qigai; Cao, Jiyue

    2015-01-01

    Cecropin B (CB) is a very effective natural antimicrobial peptide that has shown great potential for future antimicrobial drug development. HAPS_2096 is a Haemophilus parasuis gene that encodes the periplasmic substrate-binding protein of an ATP-binding cassette-type amino acid transporter. In this research, we constructed and verified an HAPS_2096 deletion mutant and a complementary HAPS_2096 mutant of H. parasuis JS0135. A bactericidal assay revealed that the HAPS_2096 deletion mutant was significantly more sensitive than the wild-type strain to 0.25-0.5 µg/ml CB. However, the gene complementation alleviated the CB sensitivity of the mutant. Immunoelectron microscopy observation following a 30-min treatment with a sublethal concentration of CB (0.25 μg/ml) revealed more extensive morphological damage in the mutant strain than in the wild-type strain. Hence, our results suggest that the HAPS_2096 gene contributes to H. parasuis resistance to CB. © 2015 S. Karger AG, Basel.

  4. Supplementation of Diet With Galacto-oligosaccharides Increases Bifidobacteria, but Not Insulin Sensitivity, in Obese Prediabetic Individuals

    DEFF Research Database (Denmark)

    Canfora, Emanuel E; van der Beek, Christina M; Hermes, Gerben D A

    2017-01-01

    on peripheral insulin sensitivity, measured by the hyperinsulinemic-euglycemic clamp method. RESULTS: Supplementation of diets with GOS, but not placebo, increased the abundance of Bifidobacterium species in feces by 5-fold (P = .009; q = 0.144). Microbial richness or diversity in fecal samples were...

  5. A cloned prokaryotic Cd2+ P-type ATPase increases yeast sensitivity to Cd2+

    International Nuclear Information System (INIS)

    Wu, C.-C.; Bal, Nathalie; Perard, Julien; Lowe, Jennifer; Boscheron, Cecile; Mintz, Elisabeth; Catty, Patrice

    2004-01-01

    CadA, the P1-type ATPase involved in Listeria monocytogenes resistance to Cd 2+ , was expressed in Saccharomyces cerevisiae and did just the opposite to what was expected, as it strikingly decreased the Cd 2+ tolerance of these cells. Yeast cells expressing the non-functional mutant Asp 398 Ala could grow on selective medium containing up to 100 μM Cd 2+ , whereas those expressing the functional protein could not grow in the presence of 1 μM Cd 2+ . The CadA-GFP fusion protein was localized in the endoplasmic reticulum membrane, suggesting that yeast hyper-sensitivity was due to Cd 2+ accumulation in the reticulum lumen. CadA is also known to transport Zn 2+ , but Zn 2+ did not protect the cells against Cd 2+ poisoning. In the presence of 10 μM Cd 2+ , transformed yeasts survived by rapid loss of their expression vector

  6. Coplanar Electrode Layout Optimized for Increased Sensitivity for Electrical Impedance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Casper Hyttel Clausen

    2014-12-01

    Full Text Available This work describes an improvement in the layout of coplanar electrodes for electrical impedance spectroscopy. We have developed, fabricated, and tested an improved electrode layout, which improves the sensitivity of an impedance flow cytometry chip. The improved chip was experimentally tested and compared to a chip with a conventional electrode layout. The improved chip was able to discriminate 0.5 μm beads from 1 μm as opposed to the conventional chip. Furthermore, finite element modeling was used to simulate the improvements in electrical field density and uniformity between the electrodes of the new electrode layout. Good agreement was observed between the model and the obtained experimental results.

  7. Analysis of a Segmented Annular Coplanar Capacitive Tilt Sensor with Increased Sensitivity

    Directory of Open Access Journals (Sweden)

    Jiahao Guo

    2016-01-01

    Full Text Available An investigation of a segmented annular coplanar capacitor is presented. We focus on its theoretical model, and a mathematical expression of the capacitance value is derived by solving a Laplace equation with Hankel transform. The finite element method is employed to verify the analytical result. Different control parameters are discussed, and each contribution to the capacitance value of the capacitor is obtained. On this basis, we analyze and optimize the structure parameters of a segmented coplanar capacitive tilt sensor, and three models with different positions of the electrode gap are fabricated and tested. The experimental result shows that the model (whose electrode-gap position is 10 mm from the electrode center realizes a high sensitivity: 0.129 pF/° with a non-linearity of <0.4% FS (full scale of ±40°. This finding offers plenty of opportunities for various measurement requirements in addition to achieving an optimized structure in practical design.

  8. Analysis of a Segmented Annular Coplanar Capacitive Tilt Sensor with Increased Sensitivity.

    Science.gov (United States)

    Guo, Jiahao; Hu, Pengcheng; Tan, Jiubin

    2016-01-21

    An investigation of a segmented annular coplanar capacitor is presented. We focus on its theoretical model, and a mathematical expression of the capacitance value is derived by solving a Laplace equation with Hankel transform. The finite element method is employed to verify the analytical result. Different control parameters are discussed, and each contribution to the capacitance value of the capacitor is obtained. On this basis, we analyze and optimize the structure parameters of a segmented coplanar capacitive tilt sensor, and three models with different positions of the electrode gap are fabricated and tested. The experimental result shows that the model (whose electrode-gap position is 10 mm from the electrode center) realizes a high sensitivity: 0.129 pF/° with a non-linearity of design.

  9. Increasing the sensitivity for stem cell monitoring in system-function based magnetic particle imaging

    International Nuclear Information System (INIS)

    Them, Kolja; Szwargulski, P; Knopp, Tobias; Salamon, J; Kaul, M G; Ittrich, H; Sequeira, S; Lange, C

    2016-01-01

    The use of superparamagnetic iron oxide nanoparticles (SPIONs) has provided new possibilities in biophysics and biomedical imaging technologies. The magnetization dynamics of SPIONs, which can be influenced by the environment, are of central interest. In this work, different biological SPION environments are used to investigate three different calibration methods for stem cell monitoring in magnetic particle imaging. It is shown that calibrating using SPIONs immobilized via agarose gel or intracellular uptake results in superior stem cell image quality compared to mobile SPIONs in saline. This superior image quality enables more sensitive localization and identification of a significantly smaller number of magnetically labeled stem cells. The results are important for cell tracking and monitoring of future SPION based therapies such as hyperthermia based cancer therapies, targeted drug delivery, or tissue regeneration approaches where it is crucial to image a sufficiently small number of SPIONs interacting with biological matter. (paper)

  10. Increased Prepulse Inhibition and Sensitization of the Startle Reflex in Autistic Children

    DEFF Research Database (Denmark)

    Madsen, Gitte Falcher; Bilenberg, Niels; Cantio, Cathriona

    2014-01-01

    The relation between autism spectrum disorders (ASD) and schizophrenia is a subject of intense debate and research due to evidence of common neurobiological pathways in the two disorders. The objective of this study was to explore whether deficits in prepulse inhibition (PPI) of the startle reflex......, as usually seen in schizophrenic patients, can be replicated in a group of children with ASD in comparison with a group of matched neuro-typically developed (NTD) controls. An additional aim was to explore possible psychophysiological subgroups within our ASD sample. In a case-control design, 35 ASD patients...... and 40 matched NTD controls were tested in a psychophysiological test battery. The PPI of the acoustic startle reflex was analyzed in 18 ASD subjects and 34 NTD controls. Habituation and sensitization were analyzed in 23 ASD subjects and 39 NTD controls. In trials with less intense prestimuli (76 d...

  11. Inhibition of Src by microRNA-23b increases the cisplatin sensitivity of chondrosarcoma cells.

    Science.gov (United States)

    Huang, Kai; Chen, Jun; Yang, Mo-Song; Tang, Yu-Jun; Pan, Feng

    2017-01-01

    Chondrosarcomas are malignant cartilage-forming tumors from low-grade to high-grade aggressive tumors characterized by metastasis. Cisplatin is an effective DNA-damaging anti-tumor agent for the treatment against a wide variety of solid tumors. However, chondrosarcomas are notorious for their resistance to conventional chemo- and radio- therapies. In this study, we report miR-23b acts as a tumor suppressor in chondrosarcoma. The expressions of miR-23b are down-regulated in chondrosarcoma patient samples and cell lines compared with adjacent normal tissues and human primary chondrocytes. In addition, overexpression of miR-23b suppresses chondrosarcoma cell proliferation. By comparison of the cisplatin resistant chondrosarcoma cells and parental cells, we observed miR-23b was significantly down regulated in cisplatin resistant cells. Moreover, we demonstrate here Src kinase is a direct target of miR-23b in chondrosarcoma cells. Overexpression of miR-23b suppresses Src-Akt pathway, leading to the sensitization of cisplatin resistant chondrosarcoma cells to cisplatin. This chemo-sensitivity effect by the miR-23b-mediated inhibition of Src-Akt pathway is verified with the restoration of Src kinase in miR-23b-overespressing chondrosarcoma cells, resulting in the acquirement of resistance to cisplatin. In summary, our study reveals a novel role of miR-23b in cisplatin resistance in chondrosarcoma and will contribute to the development of the microRNA-targeted anti-cancer therapeutics.

  12. Serum Is Not Necessary for Prior Pharmacological Activation of AMPK to Increase Insulin Sensitivity of Mouse Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Nicolas O. Jørgensen

    2018-04-01

    Full Text Available Exercise, contraction, and pharmacological activation of AMP-activated protein kinase (AMPK by 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR have all been shown to increase muscle insulin sensitivity for glucose uptake. Intriguingly, improvements in insulin sensitivity following contraction of isolated rat and mouse skeletal muscle and prior AICAR stimulation of isolated rat skeletal muscle seem to depend on an unknown factor present in serum. One study recently questioned this requirement of a serum factor by showing serum-independency with muscle from old rats. Whether a serum factor is necessary for prior AICAR stimulation to increase insulin sensitivity of mouse skeletal muscle is not known. Therefore, we investigated the necessity of serum for this effect of AICAR in mouse skeletal muscle. We found that the ability of prior AICAR stimulation to improve insulin sensitivity of mouse skeletal muscle did not depend on the presence of serum during AICAR stimulation. Although prior AICAR stimulation did not enhance proximal insulin signaling, insulin-stimulated phosphorylation of Tre-2/BUB2/CDC16- domain family member 4 (TBC1D4 Ser711 was greater in prior AICAR-stimulated muscle compared to all other groups. These results imply that the presence of a serum factor is not necessary for prior AMPK activation by AICAR to enhance insulin sensitivity of mouse skeletal muscle.

  13. Increase of carbon cycle feedback with climate sensitivity: results from a coupled climate and carbon cycle model

    International Nuclear Information System (INIS)

    Govindasamy, B.; Thompson, S.; Mirin, A.; Wickett, M.; Caldeira, K.; Delire, C.

    2005-01-01

    Coupled climate and carbon cycle modelling studies have shown that the feedback between global warming and the carbon cycle, in particular the terrestrial carbon cycle, could accelerate climate change and result in greater warming. In this paper we investigate the sensitivity of this feedback for year 2100 global warming in the range of 0 to 8 K. Differing climate sensitivities to increased CO 2 content are imposed on the carbon cycle models for the same emissions. Emissions from the SRES A2 scenario are used. We use a fully coupled climate and carbon cycle model, the INtegrated Climate and CArbon model (INCCA), the NCAR/DOE Parallel Climate Model coupled to the IBIS terrestrial biosphere model and a modified OCMIP ocean biogeochemistry model. In our integrated model, for scenarios with year 2100 global warming increasing from 0 to 8 K, land uptake decreases from 47% to 29% of total CO 2 emissions. Due to competing effects, ocean uptake (16%) shows almost no change at all. Atmospheric CO 2 concentration increases are 48% higher in the run with 8 K global climate warming than in the case with no warming. Our results indicate that carbon cycle amplification of climate warming will be greater if there is higher climate sensitivity to increased atmospheric CO 2 content; the carbon cycle feedback factor increases from 1.13 to 1.48 when global warming increases from 3.2 to 8 K

  14. Effects of neurotrophin-3 on the differentiation of neural stem cells into neurons and oligodendrocytes

    Science.gov (United States)

    Zhu, Guowei; Sun, Chongran; Liu, Weiguo

    2012-01-01

    In this study, cells from the cerebral cortex of fetal rats at pregnant 16 days were harvested and cultured with 20 μg/L neurotrophin-3. After 7 days of culture, immunocytochemical staining showed that, 22.4% of cells were positive for nestin, 10.5% were positive for β-III tubulin (neuronal marker), and 60.6% were positive for glial fibrillary acidic protein, but no cells were positive for O4 (oligodendrocytic marker). At 14 days, there were 5.6% nestin-, 9.6% β-III tubulin-, 81.1% glial fibrillary acidic protein-, and 2.2% O4-positive cells. In cells not treated with neurotrophin-3, some were nestin-positive, while the majority showed positive staining for glial fibrillary acidic protein. Our experimental findings indicate that neurotrophin-3 is a crucial factor for inducing neural stem cells differentiation into neurons and oligodendrocytes. PMID:25657683

  15. Is glycyrrhizin sensitivity increased in anorexia nervosa and should licorice be avoided? Case report and review of the literature

    DEFF Research Database (Denmark)

    Støving, René K; Lingqvist, Linnéa E; Bonde, Rasmus K

    2011-01-01

    OBJECTIVE: Hypokalemia is a potentially life-threatening electrolyte disturbance in anorexia nervosa and is most frequently caused by purging behavior. We report a case of severe hypokalemia in anorexia nervosa induced by daily ingestion of approximately 20 g of licorice. METHODS: To confirm...... low daily dose of licorice suggests high glycyrrhizin sensitivity. CONCLUSION: Patients with anorexia nervosa not only have decreased food intake but also selective and sometimes bizarre eating habits that, in association with increased sensitivity to glycyrrhizin, may cause severe hypokalemia....

  16. Association between Alzheimer’s disease pathogenesis and early demyelination and oligodendrocyte dysfunction

    Directory of Open Access Journals (Sweden)

    Yu-Xia Dong

    2018-01-01

    Full Text Available The APPSwe/PSEN1dE9 (APP/PS1 transgenic mouse model is an Alzheimer’s disease mouse model exhibiting symptoms of dementia, and is commonly used to explore pathological changes in the development of Alzheimer’s disease. Previous clinical autopsy and imaging studies suggest that Alzheimer’s disease patients have white matter and oligodendrocyte damage, but the underlying mechanisms of these have not been revealed. Therefore, the present study used APP/PS1 mice to assess cognitive change, myelin loss, and corresponding changes in oligodendrocytes, and to explore the underlying mechanisms. Morris water maze tests were performed to evaluate cognitive change in APP/PS1 mice and normal C57BL/6 mice aged 3 and 6 months. Luxol fast blue staining of the corpus callosum and quantitative reverse transcription-polymerase chain reaction (qRT-PCR for myelin basic protein (MBP mRNA were carried out to quantify myelin damage. Immunohistochemistry staining for NG2 and qRT-PCR for monocarboxylic acid transporter 1 (MCT1 mRNA were conducted to assess corresponding changes in oligodendrocytes. Our results demonstrate that compared with C57BL/6 mice, there was a downregulation of MBP mRNA in APP/PS1 mice aged 3 months. This became more obvious in APP/PS1 mice aged 6 months accompanied by other abnormalities such as prolonged escape latency in the Morris water maze test, shrinkage of the corpus callosum, upregulation of NG2-immunoreactive cells, and downregulation of MCT1 mRNA. These findings indicate that the involvement of early demyelination at 3 months and the oligodendrocyte dysfunction at 6 months in APP/PS1 mice are in association with Alzheimer’s disease pathogenesis.

  17. Gallium imaging of esophageal carcinoma: Increased sensitivity with lateral views of the thorax

    International Nuclear Information System (INIS)

    Sostre, S.; Romero, I.; Rivera, J.V.; Baez, L.; Cintron, E.

    1990-01-01

    Ga-67 imaging has not been very successful in the detection of esophageal carcinoma. In most reports, sensitivity for the primary tumor ranged from 25-61%, but imaging had been done only in anterior and posterior (A-P) projections. We performed gallium scans in 30 patients with esophageal carcinoma, adding lateral views to the routine A-P projections, to study the effect of lateral views on tumor detection. The A-P views detected only 57% of the tumors while the right lateral visualized 89%, and the left lateral detected 100%. Some lesions may be hidden by the sternum and the spine in the routine A-P views. Previous disappointments with Ga-67 imaging of esophageal carcinoma were probably due to this technical factor. Being gallium-avid, esophageal tumors deserve further studies with this agent to determine the role of Ga-67 imaging in this condition. These studies should be performed with multiple views of the thorax or, better yet, with SPECT imaging of the chest, to circumvent the problem of sternum and spine interference

  18. Increased chemerin concentrations in fetuses of obese mothers and correlation with maternal insulin sensitivity.

    Science.gov (United States)

    Barker, Gillian; Lim, Ratana; Rice, Gregory E; Lappas, Martha

    2012-11-01

    The aim of this study was to determine the effect of maternal obesity and gestational diabetes mellitus (GDM) on (i) the circulating concentrations of chemerin in cord and maternal plasma, and (ii) gene expression and release of chemerin from human placenta and adipose tissue. Chemerin concentrations were measured in maternal and cord plasma from 62 normal glucose tolerant women (NGT) and 69 women with GDM at the time of term elective Caesarean section. Placenta and adipose tissue expression and release of chemerin was measured from 22 NGT and 22 GDM women. There was no effect of maternal obesity or GDM on maternal chemerin concentrations. Chemerin concentrations were significantly higher in cord plasma from women with maternal obesity. Cord chemerin concentrations in NGT women negatively correlated with the concentrations of maternal insulin sensitivity. There was no effect of GDM on maternal and cord chemerin concentrations, and on the release of chemerin from placenta and adipose tissue. At the time of term Caesarean section, preexisting maternal obesity, and its associated insulin resistance, is associated with higher cord plasma chemerin concentrations.

  19. Leptin rapidly improves glucose homeostasis in obese mice by increasing hypothalamic insulin sensitivity.

    Science.gov (United States)

    Koch, Christiane; Augustine, Rachael A; Steger, Juliane; Ganjam, Goutham K; Benzler, Jonas; Pracht, Corinna; Lowe, Chrishanthi; Schwartz, Michael W; Shepherd, Peter R; Anderson, Greg M; Grattan, David R; Tups, Alexander

    2010-12-01

    Obesity is associated with resistance to the actions of both leptin and insulin via mechanisms that remain incompletely understood. To investigate whether leptin resistance per se contributes to insulin resistance and impaired glucose homeostasis, we investigated the effect of acute leptin administration on glucose homeostasis in normal as well as leptin- or leptin receptor-deficient mice. In hyperglycemic, leptin-deficient Lep(ob/ob) mice, leptin acutely and potently improved glucose metabolism, before any change of body fat mass, via a mechanism involving the p110α and β isoforms of phosphatidylinositol-3-kinase (PI3K). Unlike insulin, however, the anti-diabetic effect of leptin occurred independently of phospho-AKT, a major downstream target of PI3K, and instead involved enhanced sensitivity of the hypothalamus to insulin action upstream of PI3K, through modulation of IRS1 (insulin receptor substrate 1) phosphorylation. These data suggest that leptin resistance, as occurs in obesity, reduces the hypothalamic response to insulin and thereby impairs peripheral glucose homeostasis, contributing to the development of type 2 diabetes.

  20. Coral population trajectories, increased disturbance and management intervention: A sensitivity analysis

    KAUST Repository

    Riegl, Bernhard; Berumen, Michael L.; Bruckner, Andrew

    2013-01-01

    Coral reefs distant from human population were sampled in the Red Sea and one-third showed degradation by predator outbreaks (crown-of-thorns-starfish=COTS observed in all regions in all years) or bleaching (1998, 2010). Models were built to assess future trajectories. They assumed variable coral types (slow/fast growing), disturbance frequencies (5,10,20years), mortality (equal or not), and connectivity (un/connected to un/disturbed community). Known disturbances were used to parameterize models. Present and future disturbances were estimated from remote-sensing chlorophyll and temperature data. Simulations and sensitivity analysis suggest community resilience at >20-year disturbance frequency, but degradation at higher frequency. Trajectories move from fast-grower to slow-grower dominance at intermediate disturbance frequency, then again to fast-grower dominance. A similar succession was observed in the field: Acropora to Porites to Stylophora/Pocillopora dominance on shallow reefs, and a transition from large poritids to small faviids on deep reefs. Synthesis and application: Even distant reefs are impacted by global changes. COTS impacts and bleaching were key driver of coral degradation, coral population decline could be reduced if these outbreaks and bleaching susceptibility were managed by maintaining water quality and by other interventions. Just leaving reefs alone, seems no longer a satisfactory option. 2013 The Authors. Ecology and Evolution.

  1. Coral population trajectories, increased disturbance and management intervention: A sensitivity analysis

    KAUST Repository

    Riegl, Bernhard

    2013-03-07

    Coral reefs distant from human population were sampled in the Red Sea and one-third showed degradation by predator outbreaks (crown-of-thorns-starfish=COTS observed in all regions in all years) or bleaching (1998, 2010). Models were built to assess future trajectories. They assumed variable coral types (slow/fast growing), disturbance frequencies (5,10,20years), mortality (equal or not), and connectivity (un/connected to un/disturbed community). Known disturbances were used to parameterize models. Present and future disturbances were estimated from remote-sensing chlorophyll and temperature data. Simulations and sensitivity analysis suggest community resilience at >20-year disturbance frequency, but degradation at higher frequency. Trajectories move from fast-grower to slow-grower dominance at intermediate disturbance frequency, then again to fast-grower dominance. A similar succession was observed in the field: Acropora to Porites to Stylophora/Pocillopora dominance on shallow reefs, and a transition from large poritids to small faviids on deep reefs. Synthesis and application: Even distant reefs are impacted by global changes. COTS impacts and bleaching were key driver of coral degradation, coral population decline could be reduced if these outbreaks and bleaching susceptibility were managed by maintaining water quality and by other interventions. Just leaving reefs alone, seems no longer a satisfactory option. 2013 The Authors. Ecology and Evolution.

  2. An Extract of Chinpi, the Dried Peel of the Citrus Fruit Unshiu, Enhances Axonal Remyelination via Promoting the Proliferation of Oligodendrocyte Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Hideaki Tokunaga

    2016-01-01

    Full Text Available The aging-induced decrease in axonal myelination/remyelination is due to impaired recruitment and differentiation of oligodendrocyte progenitor cells (OPCs. Our previous studies have shown that a monoclonal antibody to DEAD (Asp-Glu-Ala-Asp box polypeptide 54 (Ddx54, a member of the DEAD box family of RNA helicases, (1 specifically labels oligodendrocyte lineages, (2 binds to mRNA and protein isoforms of myelin basic proteins (MBP, and (3 regulates migration of OPCs from ventricular zone to corpus callosum in mice. It has also been demonstrated that specific loss of a 21.5 kDa MBP isoform (MBP21.5 reflects demyelination status, and oral administration of an extract of Chinpi, citrus unshiu peel, reversed the aging-induced demyelination. Here, we report that Chinpi treatment induced a specific increase in the MBP21.5, led to the reappearance of Ddx54-expressing cells in ventricular-subventricular zone and corpus callosum of aged mice, and promoted remyelination. Treatment of in vitro OPC cultures with Chinpi constituents, hesperidin plus narirutin, led to an increase in 5-bromo-2′-deoxyuridine incorporation in Ddx54-expressing OPCs, but not in NG2- or Olig2-expressing cell populations. The present study suggests that Ddx54 plays crucial role in remyelination. Furthermore, Chinpi and Chinpi-containing herbal medicines may be a therapeutic option for the aging-induced demyelination diseases.

  3. Anti-myostatin antibody increases muscle mass and strength and improves insulin sensitivity in old mice.

    Science.gov (United States)

    Camporez, João-Paulo G; Petersen, Max C; Abudukadier, Abulizi; Moreira, Gabriela V; Jurczak, Michael J; Friedman, Glenn; Haqq, Christopher M; Petersen, Kitt Falk; Shulman, Gerald I

    2016-02-23

    Sarcopenia, or skeletal muscle atrophy, is a debilitating comorbidity of many physiological and pathophysiological processes, including normal aging. There are no approved therapies for sarcopenia, but the antihypertrophic myokine myostatin is a potential therapeutic target. Here, we show that treatment of young and old mice with an anti-myostatin antibody (ATA 842) for 4 wk increased muscle mass and muscle strength in both groups. Furthermore, ATA 842 treatment also increased insulin-stimulated whole body glucose metabolism in old mice, which could be attributed to increased insulin-stimulated skeletal muscle glucose uptake as measured by a hyperinsulinemic-euglycemic clamp. Taken together, these studies provide support for pharmacological inhibition of myostatin as a potential therapeutic approach for age-related sarcopenia and metabolic disease.

  4. Increased sensitivity of anodic stripping voltammetry at the hanging mercury drop electrode by ultracathodic deposition.

    Science.gov (United States)

    Rodrigues, José A; Rodrigues, Carlos M; Almeida, Paulo J; Valente, Inês M; Gonçalves, Luís M; Compton, Richard G; Barros, Aquiles A

    2011-09-09

    An improved approach to the anodic stripping voltammetric (ASV) determination of heavy metals, using the hanging mercury drop electrode (HMDE), is reported. It was discovered that using very cathodic accumulation potentials, at which the solvent reduction occurs (overpotential deposition), the voltammetric signals of zinc(II), cadmium(II), lead(II) and copper(II) increase. When compared with the classical methodology a 5 to 10-fold signal increase is obtained. This effect is likely due to both mercury drop oscillation at such cathodic potentials and added local convection at the mercury drop surface caused by the evolution of hydrogen bubbles. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication.

    Science.gov (United States)

    Frühbeis, Carsten; Fröhlich, Dominik; Kuo, Wen Ping; Amphornrat, Jesa; Thilemann, Sebastian; Saab, Aiman S; Kirchhoff, Frank; Möbius, Wiebke; Goebbels, Sandra; Nave, Klaus-Armin; Schneider, Anja; Simons, Mikael; Klugmann, Matthias; Trotter, Jacqueline; Krämer-Albers, Eva-Maria

    2013-07-01

    Reciprocal interactions between neurons and oligodendrocytes are not only crucial for myelination, but also for long-term survival of axons. Degeneration of axons occurs in several human myelin diseases, however the molecular mechanisms of axon-glia communication maintaining axon integrity are poorly understood. Here, we describe the signal-mediated transfer of exosomes from oligodendrocytes to neurons. These endosome-derived vesicles are secreted by oligodendrocytes and carry specific protein and RNA cargo. We show that activity-dependent release of the neurotransmitter glutamate triggers oligodendroglial exosome secretion mediated by Ca²⁺ entry through oligodendroglial NMDA and AMPA receptors. In turn, neurons internalize the released exosomes by endocytosis. Injection of oligodendroglia-derived exosomes into the mouse brain results in functional retrieval of exosome cargo in neurons. Supply of cultured neurons with oligodendroglial exosomes improves neuronal viability under conditions of cell stress. These findings indicate that oligodendroglial exosomes participate in a novel mode of bidirectional neuron-glia communication contributing to neuronal integrity.

  6. Stochastic modeling of oligodendrocyte generation in cell culture: model validation with time-lapse data

    Directory of Open Access Journals (Sweden)

    Noble Mark

    2006-05-01

    Full Text Available Abstract Background The purpose of this paper is two-fold. The first objective is to validate the assumptions behind a stochastic model developed earlier by these authors to describe oligodendrocyte generation in cell culture. The second is to generate time-lapse data that may help biomathematicians to build stochastic models of cell proliferation and differentiation under other experimental scenarios. Results Using time-lapse video recording it is possible to follow the individual evolutions of different cells within each clone. This experimental technique is very laborious and cannot replace model-based quantitative inference from clonal data. However, it is unrivalled in validating the structure of a stochastic model intended to describe cell proliferation and differentiation at the clonal level. In this paper, such data are reported and analyzed for oligodendrocyte precursor cells cultured in vitro. Conclusion The results strongly support the validity of the most basic assumptions underpinning the previously proposed model of oligodendrocyte development in cell culture. However, there are some discrepancies; the most important is that the contribution of progenitor cell death to cell kinetics in this experimental system has been underestimated.

  7. Live-imaging in the CNS: New insights on oligodendrocytes, myelination, and their responses to inflammation.

    Science.gov (United States)

    Rassul, Sayed Muhammed; Neely, Robert K; Fulton, Daniel

    2016-11-01

    The formation and repair of myelin involves alterations in the molecular and physical properties of oligodendrocytes, and highly coordinated interactions with their target axons. Characterising the nature and timing of these events at the molecular and cellular levels illuminates the fundamental events underlying myelin formation, and provides opportunities for the development of therapies to replace myelin lost through traumatic injury and inflammation. The dynamic nature of these events requires that live-imaging methods be used to capture this information accurately and completely. Developments in imaging technologies, and model systems suitable for their application to myelination, have advanced the study of myelin formation, injury and repair. Similarly, new techniques for single molecule imaging, and novel imaging probes, are providing opportunities to resolve the dynamics of myelin proteins during myelination. Here, we explore these developments in the context of myelin formation and injury, identify unmet needs within the field where progress can be advanced through live-imaging approaches, identify technical challenges that are limiting this progress, and highlight practical applications for these approaches that could lead to therapies for the protection of oligodendrocytes and myelin from injury, and restore myelin lost through injury and disease. This article is part of the Special Issue entitled 'Oligodendrocytes in Health and Disease'. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Increase of ATP-sensitive potassium (KATP channels in the heart of type-1 diabetic rats

    Directory of Open Access Journals (Sweden)

    Chen Zhih-Cherng

    2012-01-01

    Full Text Available Abstract Background An impairment of cardiovascular function in streptozotocin (STZ-diabetic rats has been mentioned within 5 days-to-3 months of induction. ATP-sensitive potassium (KATP channels are expressed on cardiac sarcolemmal membranes. It is highly responsive to metabolic fluctuations and can have effects on cardiac contractility. The present study attempted to clarify the changes of cardiac KATP channels in diabetic disorders. Methods Streptozotocin-induced diabetic rats and neonatal rat cardiomyocytes treated with a high concentration of glucose (a D-glucose concentration of 30 mM was used and cells were cultured for 24 hr were used to examine the effect of hyperglycemia on cardiac function and the expression of KATP channels. KATP channels expression was found to be linked to cardiac tonic dysfunction, and we evaluated the expression levels of KATP channels by Western blot and Northern blot analysis. Results The result shows diazoxide produced a marked reduction of heart rate in control group. Furthermore, the methods of Northern blotting and Western blotting were employed to identify the gene expression of KATP channel. Two subunits of cardiac KATP channel (SUR2A and kir 6.2 were purchased as indicators and showed significantly decreased in both diabetic rats and high glucose treated rat cardiac myocytes. Correction of hyperglycemia by insulin or phlorizin restored the gene expression of cardiac KATP in these diabetic rats. Conclusions Both mRNA and protein expression of cardiac KATP channels are decreased in diabetic rats induced by STZ for 8 weeks. This phenomenon leads to result in desensitization of some KATP channel drugs.

  9. Short-term cardiovascular measures for driver support: Increasing sensitivity for detecting changes in mental workload.

    Science.gov (United States)

    Stuiver, Arjan; Brookhuis, Karel A; de Waard, Dick; Mulder, Ben

    2014-02-05

    With on-going increases in traffic density and the availability of more and more in-vehicle technology, driver overload is a growing concern. To reduce the burden of workload on the driver, it is essential that support systems that become available are able to use estimations of drivers' workload. In this paper a short-term cardiovascular approach to assess drivers' mental workload is described using data collected in a driving simulator study. The effects of short lasting increases in task demand (40s) on heart rate and blood pressure and derived variability measures are applied as indicators of mental effort. Fifteen drivers participated in 6 sessions of 1.5h in a driving simulator study. Two traffic density levels (7.5minute segments) were compared in which short-segments (40s) of fog were used to induce additional workload demands. Higher traffic density was reflected in increased systolic blood pressure and decreased blood pressure variability. Heart rate variability and blood pressure variability measures decreased during driving in fog in the low traffic condition, indicating increased effort investment during fog in this condition. The results show that the described short-term measures can be applied to give an indication of cardiovascular reactivity as a function workload. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Increased sensitivity of anodic stripping voltammetry at the hanging mercury drop electrode by ultracathodic deposition

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Jose A.; Rodrigues, Carlos M.; Almeida, Paulo J.; Valente, Ines M.; Goncalves, Luis M. [Requimte - Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre, no. 687, 4169-007 Porto (Portugal); Compton, Richard G. [Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ (United Kingdom); Barros, Aquiles A., E-mail: ajbarros@fc.up.pt [Requimte - Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre, no. 687, 4169-007 Porto (Portugal)

    2011-09-09

    Highlights: {yields} At very cathodic accumulation potentials (overpotential deposition) the voltammetric signals of Zn{sup 2+}, Cd{sup 2+}, Pb{sup 2+} and Cu{sup 2+} increase. {yields} 5 to 10-fold signal increase is obtained. {yields} This effect is likely due to mercury drop oscillation at such cathodic potentials. {yields} This effect is also likely due to added local convection at the mercury drop surface caused by the evolution of hydrogen bubbles. - Abstract: An improved approach to the anodic stripping voltammetric (ASV) determination of heavy metals, using the hanging mercury drop electrode (HMDE), is reported. It was discovered that using very cathodic accumulation potentials, at which the solvent reduction occurs (overpotential deposition), the voltammetric signals of zinc(II), cadmium(II), lead(II) and copper(II) increase. When compared with the classical methodology a 5 to 10-fold signal increase is obtained. This effect is likely due to both mercury drop oscillation at such cathodic potentials and added local convection at the mercury drop surface caused by the evolution of hydrogen bubbles.

  11. Inferior Frontal Sensitivity to Common Speech Sounds Is Amplified by Increasing Word Intelligibility

    Science.gov (United States)

    Vaden, Kenneth I., Jr.; Kuchinsky, Stefanie E.; Keren, Noam I.; Harris, Kelly C.; Ahlstrom, Jayne B.; Dubno, Judy R.; Eckert, Mark A.

    2011-01-01

    The left inferior frontal gyrus (LIFG) exhibits increased responsiveness when people listen to words composed of speech sounds that frequently co-occur in the English language (Vaden, Piquado, & Hickok, 2011), termed high phonotactic frequency (Vitevitch & Luce, 1998). The current experiment aimed to further characterize the relation of…

  12. Using matrix peaks to map topography: Increased mass resolution and enhanced sensitivity in chemical imaging

    NARCIS (Netherlands)

    McDonnell, Liam A.; Mize, Todd H.; Luxembourg, Stefan L.; Koster, Sander; Eijkel, Gert B.; Verpoorte, Elisabeth; De Rooij, Nico F.; Heeren, Ron M. A.

    2003-01-01

    It is well known in secondary ion mass spectrometry (SIMS) that sample topography leads to decreased mass resolution. Specifically, the ion's time of flight is dependent on where it was generated. Here, using matrix-enhanced SIMS, it is demonstrated that, in addition to increasing the yield of

  13. Targeted disruption of the CREB coactivator Crtc2 increases insulin sensitivity

    DEFF Research Database (Denmark)

    Wang, Yiguo; Inoue, Hiroshi; Ravnskjær, Kim

    2010-01-01

    Under fasting conditions, increases in circulating concentrations of pancreatic glucagon maintain glucose homeostasis through induction of gluconeogenic genes by the CREB coactivator CRTC2. Hepatic CRTC2 activity is elevated in obesity, although the extent to which this cofactor contributes to at...

  14. Overexpression of BID in thyroids of transgenic mice increases sensitivity to iodine-induced autoimmune thyroiditis

    Science.gov (United States)

    2014-01-01

    Background BID functions as a bridge molecule between death-receptor and mitochondrial related apoptotic pathways to amplify apoptotic signaling. Our previous studies have demonstrated a substantial increase in BID expression in primary normal thyroid epithelia cells treated with inflammatory cytokines, including the combination of IFNγ and IL-1β or IFNγ and TNFα. The aim of this study was to determine whether an increase in BID expression in thyroid can induce autoimmune thyroiditis. Methods A transgenic mouse line that expresses human BID in thyroid cells was established by fusing a mouse thyroglobulin (Tg) promoter upstream of human BID (Tg-BID). We tested whether the increased expression of pro-apoptotic BID in thyroid would induce autoimmune thyroiditis, both in the presence and absence of 0.3% iodine water. Results Our data show that Tg-BID mice in a CBA/J (H-2 k) background do not spontaneously develop autoimmune thyroiditis for over a year. However, upon ingestion of iodine in the drinking water, autoimmune thyroiditis does develop in Tg-BID transgenic mice, as shown by a significant increase in anti-Tg antibody and mononuclear cell infiltration in the thyroid glands in 30% of mice tested. Serum T4 levels, however, were similar between iodine-treated Tg-BID transgenic mice and the wild type mice. Conclusions Our data demonstrate that increased thyroid expression of BID facilitates the development of autoimmune thyroiditis induced by iodine uptake. However, the overexpression of BID itself is not sufficient to initiate thyroiditis in CBA/J (H-2 k) mice. PMID:24957380

  15. Expression of hypoxia-inducible factor 1 alpha and oligodendrocyte lineage gene-1 in cultured brain slices after oxygen-glucose deprivation☆

    OpenAIRE

    Cui, Hong; Han, Weijuan; Yang, Lijun; Chang, Yanzhong

    2013-01-01

    Oligodendrocyte lineage gene-1 expressed in oligodendrocytes may trigger the repair of neuronal myelin impairment, and play a crucial role in myelin repair. Hypoxia-inducible factor 1α, a transcription factor, is of great significance in premature infants with hypoxic-ischemic brain damage. There is little evidence of direct regulatory effects of hypoxia-inducible factor 1α on oligodendrocyte lineage gene-1. In this study, brain slices of Sprague-Dawley rats were cultured and subjected to oxy...

  16. Eating high-fat chow increases the sensitivity of rats to quinpirole-induced discriminative stimulus effects and yawning.

    Science.gov (United States)

    Baladi, Michelle G; France, Charles P

    2010-10-01

    Discriminative stimulus effects of direct acting dopamine receptor agonists (e.g. quinpirole) appear to be mediated by D3 receptors in free-feeding rats. Free access to high-fat chow increases sensitivity to quinpirole-induced yawning, and this study examined whether eating high-fat chow increases sensitivity to the discriminative stimulus effects of quinpirole. Five rats discriminated between 0.032 mg/kg quinpirole and vehicle while responding under a continuous reinforcement schedule of stimulus shock termination. When rats had free access to high-fat chow (discrimination training was suspended), the quinpirole discrimination dose-response curve shifted leftward, possibly indicating enhanced sensitivity at D3 receptors. In the same rats, both the ascending (mediated by D3 receptors) and descending (mediated by D2 receptors) limbs of the dose-response curve for quinpirole-induced yawning shifted leftward. When rats had free access to a standard chow (discrimination training was suspended), the quinpirole discrimination and yawning dose-response curves did not change. Together with published data showing that the discriminative stimulus effects of quinpirole in free-feeding rats are mediated by D3 receptors and the insensitivity of this effect of quinpirole to food restriction (shown to increase sensitivity to D2 but not D3-mediated effects), these results suggest that the leftward shift of the discrimination dose-response curve when rats eat high-fat chow is likely because of enhanced sensitivity at D3 receptors. Thus, eating high-fat food enhances drug effects in a manner that might impact clinical effects of drugs or vulnerability to drug abuse.

  17. Eating high fat chow increases the sensitivity of rats to quinpirole-induced discriminative stimulus effects and yawning

    Science.gov (United States)

    Baladi, Michelle G; France, Charles P

    2010-01-01

    Discriminative stimulus effects of directly-acting dopamine receptor agonists (e.g. quinpirole) appear to be mediated by D3 receptors in free-feeding rats. Free access to high fat chow increases sensitivity to quinpirole-induced yawning and the current study examined whether eating high fat chow increases sensitivity to the discriminative stimulus effects of quinpirole. Five rats discriminated between 0.032 mg/kg quinpirole and vehicle while responding under a continuous reinforcement schedule of stimulus shock termination. When rats had free access to high fat chow (discrimination training was suspended), the quinpirole discrimination dose-response curve shifted leftward, possibly indicating enhanced sensitivity at D3 receptors. In the same rats, both the ascending (mediated by D3 receptors) and descending (mediated by D2 receptors) limbs of the dose- response curve for quinpirole-induced yawning shifted leftward. When rats had free access to a standard chow (discrimination training was suspended), the quinpirole discrimination and yawning dose-response curves did not change. Together with published data showing that the discriminative stimulus effects of quinpirole in free- feeding rats are mediated by D3 receptors and the insensitivity of this effect of quinpirole to food restriction (shown to increase sensitivity to D2 but not D3-mediated effects), these results suggest that the leftward shift of the discrimination dose-response curve when rats eat high fat chow is likely due to enhanced sensitivity at D3 receptors. Thus, eating high fat food enhances drug effects in a manner that might impact clinical effects of drugs or vulnerability to drug abuse. PMID:20729718

  18. Increased sensitivity to ionizing radiation by targeting the homologous recombination pathway in glioma initiating cells.

    Science.gov (United States)

    Lim, Yi Chieh; Roberts, Tara L; Day, Bryan W; Stringer, Brett W; Kozlov, Sergei; Fazry, Shazrul; Bruce, Zara C; Ensbey, Kathleen S; Walker, David G; Boyd, Andrew W; Lavin, Martin F

    2014-12-01

    Glioblastoma is deemed the most malignant form of brain tumour, particularly due to its resistance to conventional treatments. A small surviving group of aberrant stem cells termed glioma initiation cells (GICs) that escape surgical debulking are suggested to be the cause of this resistance. Relatively quiescent in nature, GICs are capable of driving tumour recurrence and undergo lineage differentiation. Most importantly, these GICs are resistant to radiotherapy, suggesting that radioresistance contribute to their survival. In a previous study, we demonstrated that GICs had a restricted double strand break (DSB) repair pathway involving predominantly homologous recombination (HR) associated with a lack of functional G1/S checkpoint arrest. This unusual behaviour led to less efficient non-homologous end joining (NHEJ) repair and overall slower DNA DSB repair kinetics. To determine whether specific targeting of the HR pathway with small molecule inhibitors could increase GIC radiosensitivity, we used the Ataxia-telangiectasia mutated inhibitor (ATMi) to ablate HR and the DNA-dependent protein kinase inhibitor (DNA-PKi) to inhibit NHEJ. Pre-treatment with ATMi prior to ionizing radiation (IR) exposure prevented HR-mediated DNA DSB repair as measured by Rad51 foci accumulation. Increased cell death in vitro and improved in vivo animal survival could be observed with combined ATMi and IR treatment. Conversely, DNA-PKi treatment had minimal impact on GICs ability to resolve DNA DSB after IR with only partial reduction in cell survival, confirming the major role of HR. These results provide a mechanistic insight into the predominant form of DNA DSB repair in GICs, which when targeted may be a potential translational approach to increase patient survival. Copyright © 2014. Published by Elsevier B.V.

  19. Starvation increases insulin sensitivity and reduces juvenile hormone synthesis in mosquitoes.

    Directory of Open Access Journals (Sweden)

    Meritxell Perez-Hedo

    Full Text Available The interactions between the insulin signaling pathway (ISP and juvenile hormone (JH controlling reproductive trade-offs are well documented in insects. JH and insulin regulate reproductive output in mosquitoes; both hormones are involved in a complex regulatory network, in which they influence each other and in which the mosquito's nutritional status is a crucial determinant of the network's output. Previous studies reported that the insulin-TOR (target of rapamacyn signaling pathway is involved in the nutritional regulation of JH synthesis in female mosquitoes. The present studies further investigate the regulatory circuitry that controls both JH synthesis and reproductive output in response to nutrient availability.We used a combination of diet restriction, RNA interference (RNAi and insulin treatments to modify insulin signaling and study the cross-talk between insulin and JH in response to starvation. JH synthesis was analyzed using a newly developed assay utilizing fluorescent tags.Our results reveal that starvation decreased JH synthesis via a decrease in insulin signaling in the corpora allata (CA. Paradoxically, starvation-induced up regulation of insulin receptor transcripts and therefore "primed" the gland to respond rapidly to increases in insulin levels. During this response to starvation the synthetic potential of the CA remained unaffected, and the gland rapidly and efficiently responded to insulin stimulation by increasing JH synthesis to rates similar to those of CA from non-starved females.

  20. Characterization of image heterogeneity using 2D Minkowski functionals increases the sensitivity of detection of a targeted MRI contrast agent.

    Science.gov (United States)

    Canuto, Holly C; McLachlan, Charles; Kettunen, Mikko I; Velic, Marko; Krishnan, Anant S; Neves, Andre' A; de Backer, Maaike; Hu, D-E; Hobson, Michael P; Brindle, Kevin M

    2009-05-01

    A targeted Gd(3+)-based contrast agent has been developed that detects tumor cell death by binding to the phosphatidylserine (PS) exposed on the plasma membrane of dying cells. Although this agent has been used to detect tumor cell death in vivo, the differences in signal intensity between treated and untreated tumors was relatively small. As cell death is often spatially heterogeneous within tumors, we investigated whether an image analysis technique that parameterizes heterogeneity could be used to increase the sensitivity of detection of this targeted contrast agent. Two-dimensional (2D) Minkowski functionals (MFs) provided an automated and reliable method for parameterization of image heterogeneity, which does not require prior assumptions about the number of regions or features in the image, and were shown to increase the sensitivity of detection of the contrast agent as compared to simple signal intensity analysis. (c) 2009 Wiley-Liss, Inc.

  1. The novel BTB/POZ and zinc finger factor Zbtb45 is essential for proper glial differentiation of neural and oligodendrocyte progenitor cells

    DEFF Research Database (Denmark)

    Södersten, Erik; Lilja, Tobias; Hermanson, Ola

    2010-01-01

    Understanding the regulatory mechanisms controlling the fate decisions of neural stem cells (NSCs) is a crucial issue to shed new light on mammalian central nervous system (CNS) development in health and disease. We have investigated a possible role for the previously uncharacterized BTB/POZ-doma......Understanding the regulatory mechanisms controlling the fate decisions of neural stem cells (NSCs) is a crucial issue to shed new light on mammalian central nervous system (CNS) development in health and disease. We have investigated a possible role for the previously uncharacterized BTB....../POZ-domain containing zinc finger factor Zbtb45 in the differentiation of NSCs and postnatal oligodendrocyte precursors. In situ hybridization histochemistry and RT-qPCR analysis revealed that Zbtb45 mRNA was ubiquitously expressed in the developing CNS in mouse embryos at embryonic day (E) 12.5 and 14.5. Zbtb45 m......RNA knockdown in embryonic forebrain NSCs by siRNA resulted in a rapid decrease in the expression of oligodendrocyte-characteristic genes after mitogen (FGF2) withdrawal, whereas the expression of astrocyte-associated genes such as CD44 and GFAP increased compared to control. Accordingly, the number...

  2. Enhanced electrochemical sensitivity of enzyme precipitate coating (EPC)-based glucose oxidase biosensors with increased free CNT loadings.

    Science.gov (United States)

    Kim, Jae Hyun; Jun, Sun-Ae; Kwon, Yongchai; Ha, Su; Sang, Byong-In; Kim, Jungbae

    2015-02-01

    Enzymatic electrodes were fabricated by using three different immobilizations of glucose oxidase (GOx): covalent enzyme attachment (CA), enzyme coating (EC), and enzyme precipitate coating (EPC), here referred to as CA-E, EC-E, and EPC-E, respectively. When additional carbon nanotubes (CNTs) were introduced from 0 to 75wt% for the EPC-E design, its initial biosensor sensitivity was improved from 2.40×10(-3) to 16.26×10(-3) A∙M(-1)∙cm(-2), while its electron charge transfer rate constant was increased from 0.33 to 1.47s(-1). When a fixed ratio of CNTs was added for three different electrode systems, EPC-E showed the best glucose sensitivity and long-term thermal stability. For example, when 75wt% of additional CNTs was added, the initial sensitivity of EPC-E was 16.26×10(-3) A∙M(-1)∙cm(-2), while those of EC-E and CA-E were only 6.42×10(-3) and 1.18×10(-3) A∙M(-1)∙cm(-2), respectively. Furthermore, EPC-E retained 63% of its initial sensitivity after thermal treatment at 40°C over 41days, while EC-E and CA-E showed only 12% and 1% of initial sensitivities, respectively. Consequently, the EPC approach with additional CNTs achieved both high sensitivity and long-term stability, which are required for continuous and accurate glucose monitoring. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Vitamin B6 deficient plants display increased sensitivity to high light and photo-oxidative stress

    Directory of Open Access Journals (Sweden)

    Rumeau Dominique

    2009-11-01

    Full Text Available Abstract Background Vitamin B6 is a collective term for a group of six interconvertible compounds: pyridoxine, pyridoxal, pyridoxamine and their phosphorylated derivatives. Vitamin B6 plays essential roles as a cofactor in a range of biochemical reactions. In addition, vitamin B6 is able to quench reactive oxygen species in vitro, and exogenously applied vitamin B6 protects plant cells against cell death induced by singlet oxygen (1O2. These results raise the important question as to whether plants employ vitamin B6 as an antioxidant to protect themselves against reactive oxygen species. Results The pdx1.3 mutation affects the vitamin B6 biosynthesis enzyme, pyridoxal synthase (PDX1, and leads to a reduction of the vitamin B6 concentration in Arabidopsis thaliana leaves. Although leaves of the pdx1.3 Arabidopsis mutant contained less chlorophyll than wild-type leaves, we found that vitamin B6 deficiency did not significantly impact photosynthetic performance or shoot and root growth. Chlorophyll loss was associated with an increase in the chlorophyll a/b ratio and a selective decrease in the abundance of several PSII antenna proteins (Lhcb1/2, Lhcb6. These changes were strongly dependent on light intensity, with high light amplifying the difference between pdx1.3 and the wild type. When leaf discs were exposed to exogenous 1O2, lipid peroxidation in pdx1.3 was increased relative to the wild type; this effect was not observed with superoxide or hydrogen peroxide. When leaf discs or whole plants were exposed to excess light energy, 1O2-mediated lipid peroxidation was enhanced in leaves of the pdx1.3 mutant relative to the wild type. High light also caused an increased level of 1O2 in vitamin B6-deficient leaves. Combining the pdx1.3 mutation with mutations affecting the level of 'classical' quenchers of 1O2 (zeaxanthin, tocopherols resulted in a highly photosensitive phenotype. Conclusion This study demonstrates that vitamin B6 has a function in

  4. Increased sensitivity to positive social stimuli in monozygotic twins at risk of bipolar vs. unipolar disorder

    DEFF Research Database (Denmark)

    Kærsgaard, S; Meluken, I; Kessing, L V

    2018-01-01

    BACKGROUND: Abnormalities in affective cognition are putative endophenotypes for bipolar and unipolar disorders but it is unclear whether some abnormalities are disorder-specific. We therefore investigated affective cognition in monozygotic twins at familial risk of bipolar disorder relative...... to those at risk of unipolar disorder and to low-risk twins. METHODS: Seventy monozygotic twins with a co-twin history of bipolar disorder (n = 11), of unipolar disorder (n = 38) or without co-twin history of affective disorder (n = 21) were included. Variables of interest were recognition of and vigilance...... to emotional faces, emotional reactivity and -regulation in social scenarios and non-affective cognition. RESULTS: Twins at familial risk of bipolar disorder showed increased recognition of low to moderate intensity of happy facial expressions relative to both unipolar disorder high-risk twins and low...

  5. Increased sensitivity of thyroid hormone-mediated signaling despite prolonged fasting.

    Science.gov (United States)

    Martinez, Bridget; Scheibner, Michael; Soñanez-Organis, José G; Jaques, John T; Crocker, Daniel E; Ortiz, Rudy M

    2017-10-01

    Thyroid hormones (TH) can increase cellular metabolism. Food deprivation in mammals is typically associated with reduced thyroid gland responsiveness, in an effort to suppress cellular metabolism and abate starvation. However, in prolonged-fasted, elephant seal pups, cellular TH-mediated proteins are up-regulated and TH levels are maintained with fasting duration. The function and contribution of the thyroid gland to this apparent paradox is unknown and physiologically perplexing. Here we show that the thyroid gland remains responsive during prolonged food deprivation, and that its function and production of TH increase with fasting duration in elephant seals. We discovered that our modeled plasma TH data in response to exogenous thyroid stimulating hormone predicted cellular signaling, which was corroborated independently by the enzyme expression data. The data suggest that the regulation and function of the thyroid gland in the northern elephant seal is atypical for a fasted animal, and can be better described as, "adaptive fasting". Furthermore, the modeling data help substantiate the in vivo responses measured, providing unique insight on hormone clearance, production rates, and thyroid gland responsiveness. Because these unique endocrine responses occur simultaneously with a nearly strict reliance on the oxidation of lipid, these findings provide an intriguing model to better understand the TH-mediated reliance on lipid metabolism that is not otherwise present in morbidly obese humans. When coupled with cellular, tissue-specific responses, these data provide a more integrated assessment of thyroidal status that can be extrapolated for many fasting/food deprived mammals. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Adaptive smoothing based on Gaussian processes regression increases the sensitivity and specificity of fMRI data.

    Science.gov (United States)

    Strappini, Francesca; Gilboa, Elad; Pitzalis, Sabrina; Kay, Kendrick; McAvoy, Mark; Nehorai, Arye; Snyder, Abraham Z

    2017-03-01

    Temporal and spatial filtering of fMRI data is often used to improve statistical power. However, conventional methods, such as smoothing with fixed-width Gaussian filters, remove fine-scale structure in the data, necessitating a tradeoff between sensitivity and specificity. Specifically, smoothing may increase sensitivity (reduce noise and increase statistical power) but at the cost loss of specificity in that fine-scale structure in neural activity patterns is lost. Here, we propose an alternative smoothing method based on Gaussian processes (GP) regression for single subjects fMRI experiments. This method adapts the level of smoothing on a voxel by voxel basis according to the characteristics of the local neural activity patterns. GP-based fMRI analysis has been heretofore impractical owing to computational demands. Here, we demonstrate a new implementation of GP that makes it possible to handle the massive data dimensionality of the typical fMRI experiment. We demonstrate how GP can be used as a drop-in replacement to conventional preprocessing steps for temporal and spatial smoothing in a standard fMRI pipeline. We present simulated and experimental results that show the increased sensitivity and specificity compared to conventional smoothing strategies. Hum Brain Mapp 38:1438-1459, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Consumption of NADPH for 2-HG Synthesis Increases Pentose Phosphate Pathway Flux and Sensitizes Cells to Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Susan J. Gelman

    2018-01-01

    Full Text Available Summary: Gain-of-function mutations in isocitrate dehydrogenase 1 (IDH1 occur in multiple types of human cancer. Here, we show that these mutations significantly disrupt NADPH homeostasis by consuming NADPH for 2-hydroxyglutarate (2-HG synthesis. Cells respond to 2-HG synthesis, but not exogenous administration of 2-HG, by increasing pentose phosphate pathway (PPP flux. We show that 2-HG production competes with reductive biosynthesis and the buffering of oxidative stress, processes that also require NADPH. IDH1 mutants have a decreased capacity to synthesize palmitate and an increased sensitivity to oxidative stress. Our results demonstrate that, even when NADPH is limiting, IDH1 mutants continue to synthesize 2-HG at the expense of other NADPH-requiring pathways that are essential for cell viability. Thus, rather than attempting to decrease 2-HG synthesis in the clinic, the consumption of NADPH by mutant IDH1 may be exploited as a metabolic weakness that sensitizes tumor cells to ionizing radiation, a commonly used anti-cancer therapy. : Using liquid chromatography/mass spectrometry (LC/MS and stable isotope tracing, Gelman et al. find that 2-HG production in cells with IDH1 mutations leads to increased pentose phosphate pathway activity to generate NADPH. Production of 2-HG competes with other NADPH-dependent pathways and sensitizes cells to redox stress. Keywords: 2-hydroxyglutarate, cancer metabolism, LC/MS, metabolomcis, pentose phosphate pathway, redox regulation

  8. Tocopherol-deficient rice plants display increased sensitivity to photooxidative stress.

    Science.gov (United States)

    Chen, Defu; Chen, Haiwei; Zhang, Luhua; Shi, Xiaoli; Chen, Xiwen

    2014-06-01

    Tocopherols are lipophilic antioxidants that are synthesized exclusively in photosynthetic organisms. Despite extensive in vivo characterization of tocopherol functions in plants, their functions in the monocot model plant, rice, remain to be determined. In this study, transgenic rice plants constitutively silenced for homogentisate phytyltransferase (HPT) and tocopherol cyclase (TC) activity were generated. Silencing of HPT and TC resulted in up to a 98 % reduction in foliar tocopherol content relative to the control plants, which was also confirmed by transcript level analysis. When grown under normal conditions, HPT and TC transgenics showed no distinctive phenotype relative to the control plants, except a slight reduction in plant height and a slight decrease in the first leaf length. However, when exposed to high light at low temperatures, HPT and TC transgenics had a significantly higher leaf yellowing index than the control plants. The tocopherol-deficient plants decreased their total individual chlorophyll levels, their chlorophyll a/b ratio, and the maximum photochemical efficiency of photosystem II, whereas increased lipid peroxidation levels relative to the control plants. Tocopherol deficiency had no effect on ascorbate biosynthesis, but induced glutathione, antheraxanthin, and particularly zeaxanthin biosynthesis for compensation under stressful conditions. However, despite these compensation mechanisms, HPT and TC transgenics still exhibited altered phenotypes under high light at low temperatures. Therefore, it is suggested that tocopherols cannot be replaced and play an indispensable role in photoprotection in rice.

  9. Prowashonupana barley dietary fibre reduces body fat and increases insulin sensitivity in Caenorhabditis elegans model

    Science.gov (United States)

    Gao, Chenfei; King, Michael L.; Fitzpatrick, Zachary L.; Wei, Wenqian; King, Jason F.; Wang, Mingming; Greenway, Frank L.; Finley, John W.; Burton, Jeffrey H.; Johnson, William D.; Keenan, Michael J.; Enright, Frederick M.; Martin, Roy J.; Zheng, Jolene

    2016-01-01

    Prowashonupana barley (PWB) is high in β-glucan with moderate content of resistant starch. PWB reduced intestinal fat deposition (IFD) in wild type Caenorhabditis elegans (C. elegans, N2), and in sir-2.1 or daf-16 null mutants, and sustained a surrogate marker of lifespan, pharyngeal pumping rate (PPR), in N2, sir-2.1, daf-16, or daf-16/daf-2 mutants. Hyperglycaemia (2% glucose) reversed or reduced the PWB effect on IFD in N2 or daf-16/daf-2 mutants with a sustained PPR. mRNA expression of cpt-1, cpt-2, ckr-1, and gcy-8 were dose-dependently reduced in N2 or daf-16 mutants, elevated in daf-16/daf-2 mutants with reduction in cpt-1, and unchanged in sir-2.1 mutants. mRNA expressions were increased by hyperglycaemia in N2 or daf-16/daf-2 mutants, while reduced in sir-2.1 or daf-16 mutants. The effects of PWB in the C. elegans model appeared to be primarily mediated via sir-2.1, daf-16, and daf-16/daf-2. These data suggest that PWB and β-glucans may benefit hyperglycaemia-impaired lipid metabolism. PMID:27721901

  10. Improved Intratumoral Oxygenation Through Vascular Normalization Increases Glioma Sensitivity to Ionizing Radiation

    International Nuclear Information System (INIS)

    McGee, Mackenzie C.; Hamner, J. Blair; Williams, Regan F.; Rosati, Shannon F.; Sims, Thomas L.; Ng, Catherine Y.; Gaber, M. Waleed; Calabrese, Christopher; Wu Jianrong; Nathwani, Amit C.; Duntsch, Christopher; Merchant, Thomas E.; Davidoff, Andrew M.

    2010-01-01

    Purpose: Ionizing radiation, an important component of glioma therapy, is critically dependent on tumor oxygenation. However, gliomas are notable for areas of necrosis and hypoxia, which foster radioresistance. We hypothesized that pharmacologic manipulation of the typically dysfunctional tumor vasculature would improve intratumoral oxygenation and, thus, the antiglioma efficacy of ionizing radiation. Methods and Materials: Orthotopic U87 xenografts were treated with either continuous interferon-β (IFN-β) or bevacizumab, alone, or combined with cranial irradiation (RT). Tumor growth was assessed by quantitative bioluminescence imaging; the tumor vasculature using immunohistochemical staining, and tumor oxygenation using hypoxyprobe staining. Results: Both IFN-β and bevaziumab profoundly affected the tumor vasculature, albeit with different cellular phenotypes. IFN-β caused a doubling in the percentage of area of perivascular cell staining, and bevacizumab caused a rapid decrease in the percentage of area of endothelial cell staining. However, both agents increased intratumoral oxygenation, although with bevacizumab, the effect was transient, being lost by 5 days. Administration of IFN-β or bevacizumab before RT was significantly more effective than any of the three modalities as monotherapy or when RT was administered concomitantly with IFN-β or bevacizumab or 5 days after bevacizumab. Conclusion: Bevacizumab and continuous delivery of IFN-β each induced significant changes in glioma vascular physiology, improving intratumoral oxygenation and enhancing the antitumor activity of ionizing radiation. Additional investigation into the use and timing of these and other agents that modify the vascular phenotype, combined with RT, is warranted to optimize cytotoxic activity.

  11. Increased sensitivity of apolipoprotein E knockout mice to copper-induced oxidative injury to the liver.

    Science.gov (United States)

    Chen, Yuan; Li, Bin; Zhao, Ran-ran; Zhang, Hui-feng; Zhen, Chao; Guo, Li

    2015-04-10

    Apolipoprotein E (ApoE) genotypes are related to clinical presentations in patients with Wilson's disease, indicating that ApoE may play an important role in the disease. However, our understanding of the role of ApoE in Wilson's disease is limited. High copper concentration in Wilson's disease induces excessive generation of free oxygen radicals. Meanwhile, ApoE proteins possess antioxidant effects. We therefore determined whether copper-induced oxidative damage differ in the liver of wild-type and ApoE knockout (ApoE(-/-)) mice. Both wild-type and ApoE(-/-) mice were intragastrically administered with 0.2 mL of copper sulfate pentahydrate (200 mg/kg; a total dose of 4 mg/d) or the same volume of saline daily for 12 weeks, respectively. Copper and oxidative stress markers in the liver tissue and in the serum were assessed. Our results showed that, compared with the wild-type mice administered with copper, TBARS as a marker of lipid peroxidation, the expression of oxygenase-1 (HO-1), NAD(P)H dehydrogenase, and quinone 1 (NQO1) significantly increased in the ApoE(-/-) mice administered with copper, meanwhile superoxide dismutase (SOD) activity significantly decreased. Thus, it is concluded that ApoE may protect the liver from copper-induced oxidative damage in Wilson's disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Adrenaline release evokes hyperpnoea and an increase in ventilatory CO2 sensitivity during hypoglycaemia: a role for the carotid body.

    Science.gov (United States)

    Thompson, Emma L; Ray, Clare J; Holmes, Andrew P; Pye, Richard L; Wyatt, Christopher N; Coney, Andrew M; Kumar, Prem

    2016-08-01

    Hypoglycaemia is counteracted by release of hormones and an increase in ventilation and CO2 sensitivity to restore blood glucose levels and prevent a fall in blood pH. The full counter-regulatory response and an appropriate increase in ventilation is dependent on carotid body stimulation. We show that the hypoglycaemia-induced increase in ventilation and CO2 sensitivity is abolished by preventing adrenaline release or blocking its receptors. Physiological levels of adrenaline mimicked the effect of hypoglycaemia on ventilation and CO2 sensitivity. These results suggest that adrenaline, rather than low glucose, is an adequate stimulus for the carotid body-mediated changes in ventilation and CO2 sensitivity during hypoglycaemia to prevent a serious acidosis in poorly controlled diabetes. Hypoglycaemia in vivo induces a counter-regulatory response that involves the release of hormones to restore blood glucose levels. Concomitantly, hypoglycaemia evokes a carotid body-mediated hyperpnoea that maintains arterial CO2 levels and prevents respiratory acidosis in the face of increased metabolism. It is unclear whether the carotid body is directly stimulated by low glucose or by a counter-regulatory hormone such as adrenaline. Minute ventilation was recorded during infusion of insulin-induced hypoglycaemia (8-17 mIU kg(-1)  min(-1) ) in Alfaxan-anaesthetised male Wistar rats. Hypoglycaemia significantly augmented minute ventilation (123 ± 4 to 143 ± 7 ml min(-1) ) and CO2 sensitivity (3.3 ± 0.3 to 4.4 ± 0.4 ml min(-1)  mmHg(-1) ). These effects were abolished by either β-adrenoreceptor blockade with propranolol or adrenalectomy. In this hypermetabolic, hypoglycaemic state, propranolol stimulated a rise in P aC O2, suggestive of a ventilation-metabolism mismatch. Infusion of adrenaline (1 μg kg(-1)  min(-1) ) increased minute ventilation (145 ± 4 to 173 ± 5 ml min(-1) ) without altering P aC O2 or pH and enhanced ventilatory CO2 sensitivity (3

  13. Estradiol increases the sensitivity of ventral tegmental area dopamine neurons to dopamine and ethanol.

    Directory of Open Access Journals (Sweden)

    Bertha J Vandegrift

    Full Text Available Gender differences in psychiatric disorders such as addiction may be modulated by the steroid hormone estrogen. For instance, 17β-estradiol (E2, the predominant form of circulating estrogen in pre-menopausal females, increases ethanol consumption, suggesting that E2 may affect the rewarding properties of ethanol and thus the development of alcohol use disorder in females. The ventral tegmental area (VTA is critically involved in the rewarding and reinforcing effects of ethanol. In order to determine the role of E2 in VTA physiology, gonadally intact female mice were sacrificed during diestrus II (high E2 or estrus (low E2 for electrophysiology recordings. We measured the excitation by ethanol and inhibition by dopamine (DA of VTA DA neurons and found that both excitation by ethanol and inhibition by dopamine were greater in diestrus II compared with estrus. Treatment of VTA slices from mice in diestrus II with an estrogen receptor antagonist (ICI 182,780 reduced ethanol-stimulated neuronal firing, but had no effect on ethanol-stimulated firing of neurons in slices from mice in estrus. Surprisingly, ICI 182,780 did not affect the inhibition by DA, indicating different mechanisms of action of estrogen receptors in altering ethanol and DA responses. We also examined the responses of VTA DA neurons to ethanol and DA in ovariectomized mice treated with E2 and found that E2 treatment enhanced the responses to ethanol and DA in a manner similar to what we observed in mice in diestrus II. Our data indicate that E2 modulates VTA neuron physiology, which may contribute to both the enhanced reinforcing and rewarding effects of alcohol and the development of other psychiatric disorders in females that involve alterations in DA neurotransmission.

  14. Mothers' depressive symptoms predict both increased and reduced negative reactivity: aversion sensitivity and the regulation of emotion.

    Science.gov (United States)

    Dix, Theodore; Moed, Anat; Anderson, Edward R

    2014-07-01

    This study examined whether, as mothers' depressive symptoms increase, their expressions of negative emotion to children increasingly reflect aversion sensitivity and motivation to minimize ongoing stress or discomfort. In multiple interactions over 2 years, negative affect expressed by 319 mothers and their children was observed across variations in mothers' depressive symptoms, the aversiveness of children's immediate behavior, and observed differences in children's general negative reactivity. As expected, depressive symptoms predicted reduced maternal negative reactivity when child behavior was low in aversiveness, particularly with children who were high in negative reactivity. Depressive symptoms predicted high negative reactivity and steep increases in negative reactivity as the aversiveness of child behavior increased, particularly when high and continued aversiveness from the child was expected (i.e., children were high in negative reactivity). The findings are consistent with the proposal that deficits in parenting competence as depressive symptoms increase reflect aversion sensitivity and motivation to avoid conflict and suppress children's aversive behavior. © The Author(s) 2014.

  15. Gas Plasma Pre-treatment Increases Antibiotic Sensitivity and Persister Eradication in Methicillin-Resistant Staphylococcus aureus

    Science.gov (United States)

    Guo, Li; Xu, Ruobing; Zhao, Yiming; Liu, Dingxin; Liu, Zhijie; Wang, Xiaohua; Chen, Hailan; Kong, Michael G.

    2018-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of serious nosocomial infections, and recurrent MRSA infections primarily result from the survival of persister cells after antibiotic treatment. Gas plasma, a novel source of ROS (reactive oxygen species) and RNS (reactive nitrogen species) generation, not only inactivates pathogenic microbes but also restore the sensitivity of MRSA to antibiotics. This study further found that sublethal treatment of MRSA with both plasma and plasma-activated saline increased the antibiotic sensitivity and promoted the eradication of persister cells by tetracycline, gentamycin, clindamycin, chloramphenicol, ciprofloxacin, rifampicin, and vancomycin. The short-lived ROS and RNS generated by plasma played a primary role in the process and induced the increase of many species of ROS and RNS in MRSA cells. Thus, our data indicated that the plasma treatment could promote the effects of many different classes of antibiotics and act as an antibiotic sensitizer for the treatment of antibiotic-resistant bacteria involved in infectious diseases. PMID:29628915

  16. Loss-of-function myostatin mutation increases insulin sensitivity and browning of white fat in Meishan pigs.

    Science.gov (United States)

    Cai, Chunbo; Qian, Lili; Jiang, Shengwang; Sun, Youde; Wang, Qingqing; Ma, Dezun; Xiao, Gaojun; Li, Biao; Xie, Shanshan; Gao, Ting; Chen, Yaoxing; Liu, Jie; An, Xiaorong; Cui, Wentao; Li, Kui

    2017-05-23

    Myostatin-deficient mice showed a remarkable hypertrophy of skeletal muscle, with a decreased fat mass and enhanced insulin sensitivity. Currently, it is unclear if the inhibition of myostatin could be used as an approach to treat human obesity and insulin resistance. In this study, we investigated if the inhibition of porcine myostatin has any effect on fat deposition and insulin sensitivity using genetically engineered Meishan pigs containing a myostatin loss-of-function mutation (Mstn -/- ). Our results indicated that, when compared with wild-type pigs, the amount of subcutaneous fat and leaf fat of Mstn -/- pigs were significantly decreased mainly due to the browning of subcutaneous adipose tissue. Additionally, the serum insulin level decreased and the insulin sensitivity increased significantly in Mstn -/- pigs. Moreover, we found a significant increase in levels of insulin receptor and insulin receptor substrate proteins in skeletal muscle of Mstn -/- pigs, which then activating the insulin signaling pathway. Irisin-mediated regulation is not the only pathway for the activation of insulin signal in Mstn -/- skeletal muscle. This study provides valuable insight for the treatment of human obesity and diabetes mellitus.

  17. Increased sensitivity of Hep G2 cells toward the cytotoxicity of cisplatin by the treatment of piper betel leaf extract.

    Science.gov (United States)

    Young, Shun-Chieh; Wang, Chau-Jong; Hsu, Jeng-Dong; Hsu, Jui-Ling; Chou, Fen-Pi

    2006-06-01

    Piper betel leaves (PBL) are used in Chinese folk medicine for the treatment of various disorders. PBL has the biological capabilities of de-toxication, anti-oxidation and anti-mutation. In this study we first examined the effect of PBL extract on the activity of Glutathione S-transferase (GST) isoforms, and found that it inhibited total GST and the alpha class of GST (GSTA), but not the pi class of GST (GSTP), and the mu class of GST (GSTM), activity in Hep G2 cells. RT-PCR results verified a reduction in the expression of GSTA1. Next, we examined whether PBL extract could increase the sensitivity of Hep G2 cells to anti-cancer drugs. The data showed that the cytotoxicity of cisplatin was significantly enhanced by the presence of PBL extract, accompanied by a reduction in the expression of multidrug resistance protein 2 (MRP2). These effects of PBL extract were compared to its major constitute, eugenol. Although eugenol decreased MRP2 level more effectively than PBL extract, it exhibited less sensitizing effect. In conclusion, we demonstrated that PBL extract was able to increase the sensitivity of Hep G2 cells to cisplatin via at least two mechanisms, reducing the expression of MRP2 and inhibiting the activity of total GST and the expression of GSTA. The data of this study support an application of PBL as an additive to reduce drug resistance.

  18. Pretreatment with mixed-function oxidase inducers increases the sensitivity of the hepatocyte/DNA repair assay

    International Nuclear Information System (INIS)

    Shaddock, J.G.; Heflich, R.H.; McMillan, D.C.; Hinson, J.A.; Casciano, D.A.

    1989-01-01

    A recent National Toxicology Program evaluation indicates that the rat hepatocyte/DNA repair assay has a high false-negative rate and that it is insensitive to some genotoxic hepatocarcinogens as well as other species and organ-specific carcinogens. In this study, the authors examined whether the sensitivity of the hepatocyte/DNA repair assay might be increased through animal pretreatment with various hepatic mixed-function oxidase inducers, i.e., Aroclor 1254, phenobarbital, and 3,3',4,4'-tetrachloroazobenzene (TCAB). The effects on unscheduled DNA synthesis (UDS), a measured of DNA damage and repair, were studied in cultures exposed to known and/or potential carcinogens that had been evaluated as negative or questionable or that produced conflicting results with hepatocytes isolated from uninduced animals. 4,4'-Oxydianiline, 1-nitropy-rene, and TCAB produced concentration-dependent increases in UDS in hepatocytes from rats pretreated with Aroclor 1254. 4,4'-Oxydianiline and TCAB also induced a dose-dependent increase in DNA repair in hepatocytes from rats pretreated with phenobarbital, whereas 1-nitropyrene was negative. These data indicate that the limited sensitivity to chemical carcinogens displayed by the hepatocyte/DNA repair assay may be increased by using hepatocytes isolated from animals exposed to hepatic mixed-function oxidase inducers

  19. Pretreatment with mixed-function oxidase inducers increases the sensitivity of the hepatocyte/DNA repair assay

    Energy Technology Data Exchange (ETDEWEB)

    Shaddock, J.G.; Heflich, R.H.; McMillan, D.C.; Hinson, J.A.; Casciano, D.A. (National Center for Toxicological Research, Jefferson, AK (USA) Univ. of Arkansas for Medical Sciences, Little Rock (USA))

    1989-01-01

    A recent National Toxicology Program evaluation indicates that the rat hepatocyte/DNA repair assay has a high false-negative rate and that it is insensitive to some genotoxic hepatocarcinogens as well as other species and organ-specific carcinogens. In this study, the authors examined whether the sensitivity of the hepatocyte/DNA repair assay might be increased through animal pretreatment with various hepatic mixed-function oxidase inducers, i.e., Aroclor 1254, phenobarbital, and 3,3{prime},4,4{prime}-tetrachloroazobenzene (TCAB). The effects on unscheduled DNA synthesis (UDS), a measured of DNA damage and repair, were studied in cultures exposed to known and/or potential carcinogens that had been evaluated as negative or questionable or that produced conflicting results with hepatocytes isolated from uninduced animals. 4,4{prime}-Oxydianiline, 1-nitropy-rene, and TCAB produced concentration-dependent increases in UDS in hepatocytes from rats pretreated with Aroclor 1254. 4,4{prime}-Oxydianiline and TCAB also induced a dose-dependent increase in DNA repair in hepatocytes from rats pretreated with phenobarbital, whereas 1-nitropyrene was negative. These data indicate that the limited sensitivity to chemical carcinogens displayed by the hepatocyte/DNA repair assay may be increased by using hepatocytes isolated from animals exposed to hepatic mixed-function oxidase inducers.

  20. Replacing Alpha-Fetoprotein With Alpha-Fetoprotein-L3 Increases the Sensitivity of Prenatal Screening for Trisomy 21.

    Science.gov (United States)

    Huai, Lei; Leng, Jianhang; Ma, Shenglin; Huang, Fang; Shen, Junya; Ding, Yu

    This study aimed to investigate the serum concentration of alpha-fetoprotein (AFP)-L3 in midterm pregnancies and its potential application in prenatal trisomy screening. The serum samples from 27 women with trisomy 21 fetuses and 800 women with normal fetuses were examined to measure the concentrations of AFP, AFP-L3, human chorionic gonadotropin (hCG), unconjugated estriol (uE3), and inhibin-A. The screening results of various tests consisting of these markers were analyzed. In normal pregnancies within 15-20 weeks of gestation, the medians of serum AFP-L3 were 4.63, 5.70, 5.78, 6.58, 7.03, and 7.25 pg/mL. The median of AFP-L3 MoM in the trisomy 21 group was 0.46, which was significantly lower than the value of 1 in the normal group (P < 0.05). When using a cutoff value of 1/270, the sensitivity of the triple marker test (AFP, hCG, uE3) was improved from 74% to 81% by replacing AFP with AFP-L3, with the false-positive rate slightly increased from 5.4% to 6.8%. Similarly, the sensitivity of the quad marker test (AFP, hCG, uE3, inhibin-A) was improved from 81% to 89% by replacing AFP with AFP-L3, with the false-positive rate slightly increased from 4.6% to 5.6%. Serum AFP-L3 concentration increases along with more weeks of gestation in the midterm pregnancies. Trisomy 21 screening tests with AFP replaced by AFP-L3 have higher sensitivities at the expense of slightly increased false-positive rates. This improvement in screening may help to better prepare the parents and caregivers for the special needs of newborns with trisomy 21.

  1. The contribution of oligodendrocytes and oligodendrocyte progenitor cells to central nervous system repair in multiple sclerosis: perspectives for remyelination therapeutic strategies

    Directory of Open Access Journals (Sweden)

    Adriana Octaviana Dulamea

    2017-01-01

    Full Text Available Oligodencrocytes (OLs are the main glial cells of the central nervous system involved in myelination of axons. In multiple sclerosis (MS, there is an imbalance between demyelination and remyelination processes, the last one performed by oligodendrocyte progenitor cells (OPCs and OLs, resulting into a permanent demyelination, axonal damage and neuronal loss. In MS lesions, astrocytes and microglias play an important part in permeabilization of blood-brain barrier and initiation of OPCs proliferation. Migration and differentiation of OPCs are influenced by various factors and the process is finalized by insufficient acummulation of OLs into the MS lesion. In relation to all these processes, the author will discuss the potential targets for remyelination strategies.

  2. Increasing the analytical sensitivity by oligonucleotides modified with para- and ortho-twisted intercalating nucleic acids--TINA.

    Directory of Open Access Journals (Sweden)

    Uffe V Schneider

    Full Text Available The sensitivity and specificity of clinical diagnostic assays using DNA hybridization techniques are limited by the dissociation of double-stranded DNA (dsDNA antiparallel duplex helices. This situation can be improved by addition of DNA stabilizing molecules such as nucleic acid intercalators. Here, we report the synthesis of a novel ortho-Twisted Intercalating Nucleic Acid (TINA amidite utilizing the phosphoramidite approach, and examine the stabilizing effect of ortho- and para-TINA molecules in antiparallel DNA duplex formation. In a thermal stability assay, ortho- and para-TINA molecules increased the melting point (Tm of Watson-Crick based antiparallel DNA duplexes. The increase in Tm was greatest when the intercalators were placed at the 5' and 3' termini (preferable or, if placed internally, for each half or whole helix turn. Terminally positioned TINA molecules improved analytical sensitivity in a DNA hybridization capture assay targeting the Escherichia coli rrs gene. The corresponding sequence from the Pseudomonas aeruginosa rrs gene was used as cross-reactivity control. At 150 mM ionic strength, analytical sensitivity was improved 27-fold by addition of ortho-TINA molecules and 7-fold by addition of para-TINA molecules (versus the unmodified DNA oligonucleotide, with a 4-fold increase retained at 1 M ionic strength. Both intercalators sustained the discrimination of mismatches in the dsDNA (indicated by ΔTm, unless placed directly adjacent to the mismatch--in which case they partly concealed ΔTm (most pronounced for para-TINA molecules. We anticipate that the presented rules for placement of TINA molecules will be broadly applicable in hybridization capture assays and target amplification systems.

  3. Patients with chronic tension-type headache demonstrate increased mechano-sensitivity of the supra-orbital nerve.

    Science.gov (United States)

    Fernández-de-Las-Peñas, César; Coppieters, Michel W; Cuadrado, María Luz; Pareja, Juan A

    2008-04-01

    This study aimed to establish whether increased sensitivity to mechanical stimuli is present in neural tissues in chronic tension-type headache (CTTH). Muscle hyperalgesia is a common finding in CTTH. No previous studies have investigated the sensitivity of peripheral nerves in patients with CTTH. A blinded controlled study. Pressure pain thresholds (PPT) and pain intensity following palpation of the supra-orbital nerve (V1) were compared between 20 patients with CTTH and 20 healthy matched subjects. A pressure algometer and numerical pain rate scale were used to quantify PPT and pain to palpation. A headache diary was kept for 4 weeks to substantiate the diagnosis and record the pain history. The analysis of variance demonstrated significantly lower PPT for patients (0.86+/-0.13 kg/cm2) than controls (1.50+/-0.19 kg/cm2) (Por=0.72; P<.001). These findings reveal that mechanical hypersensitivity is not limited to muscles but also occurs in cranial nerves, and that the level of sensitization, either due to peripheral or central processes, is related to the severity of the primary headache.

  4. Development of a second generation monoclonal immunoradiometric assay. Increased sensitivity leads to enhanced detection of hepatitis B viral infection

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, H; Wands, J R; Kameda, H

    1988-09-13

    The authors have developed and employed a second generation monoclonal immunoradiometric assay (M2-IRMA) using antibodies of high affinity for epitopes that reside on hepatitis B surface antigen (HBsAg). This assay is capable of detecting as little as 15 pg/ml of HBsAg in serum. Improvements in sensitivity over a first generation immunoradiometric assay (MI-IRMA) was achieved by increasing the sample volume and time of incubation, and subjecting the reaction to a mechanical rotary device. 164 subjects with chronic hepatitis, 105 with cirrhosis, 67 with hepatocellular carcinoma, six with acute hepatitis A, seven with acute hepatitis B, 167 chronic carriers of hepatitis B virus (HBV) and 235 healthy individuals from Japan were studied and the results of the M2-IRMA were compared to a conventional polyclonal radioimmunoassay (P-RIA). By using a more sensitive assay design (M2-IRMA), a significant number of additional cases of HBV infection heretofore unsuspected in the etiology of chronic liver disease were identified. It is concluded that improvement in assay sensitivity for HBsAg is important in the serologic diagnosis of HBV in patients with chronic hepatitis, cirrhosis and hepatocellular carcinoma. 14 refs.; 6 figs.; 6 tabs.

  5. Increasing sensitivity of arc-induced long-period gratings—pushing the fabrication technique toward its limits

    International Nuclear Information System (INIS)

    Smietana, M; Bock, W J; Mikulic, P; Chen, J

    2011-01-01

    This paper presents an investigation of the sensing properties of long-period gratings (LPGs) written with the electric-arc technique in commonly used standard germanium-doped Corning SMF28 and boron co-doped Fibercore PS1250/1500 fibers. In order to increase the sensitivity of the LPGs, we studied and established for each fiber the writing parameters allowing for the coupling of the highest possible order of cladding modes at a resonance wavelength around λ = 1550 nm. The sensitivity of the LPGs to refractive index, to temperature and to hydrostatic pressure was investigated. The experimental results were supported by extensive numerical simulations. Thanks to the well-established and precisely controlled arc-writing process, we were able to reduce the minimum period of the gratings down to 345 and 221 µm, respectively, for LPGs based on the SMF28 and PS1250/1500 fibers. To the best of our knowledge, these are the shortest periods ever achieved for these fibers using the arc-manufacturing technique. The pressure sensitivities of 13 and 220 pm bar −1 are the highest ever measured for LPGs written in the SMF28 and PS1250/1500 fibers, respectively. Moreover, a reduction in the diameters of the SMF28 fiber induced by the arc was found, which significantly affected the distribution of resonances generated by the coupled cladding modes

  6. Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought

    Science.gov (United States)

    Adams, Henry D.; Guardiola-Claramonte, Maite; Barron-Gafford, Greg A.; Villegas, Juan Camilo; Breshears, David D.; Zou, Chris B.; Troch, Peter A.; Huxman, Travis E.

    2009-01-01

    Large-scale biogeographical shifts in vegetation are predicted in response to the altered precipitation and temperature regimes associated with global climate change. Vegetation shifts have profound ecological impacts and are an important climate-ecosystem feedback through their alteration of carbon, water, and energy exchanges of the land surface. Of particular concern is the potential for warmer temperatures to compound the effects of increasingly severe droughts by triggering widespread vegetation shifts via woody plant mortality. The sensitivity of tree mortality to temperature is dependent on which of 2 non-mutually-exclusive mechanisms predominates—temperature-sensitive carbon starvation in response to a period of protracted water stress or temperature-insensitive sudden hydraulic failure under extreme water stress (cavitation). Here we show that experimentally induced warmer temperatures (≈4 °C) shortened the time to drought-induced mortality in Pinus edulis (piñon shortened pine) trees by nearly a third, with temperature-dependent differences in cumulative respiration costs implicating carbon starvation as the primary mechanism of mortality. Extrapolating this temperature effect to the historic frequency of water deficit in the southwestern United States predicts a 5-fold increase in the frequency of regional-scale tree die-off events for this species due to temperature alone. Projected increases in drought frequency due to changes in precipitation and increases in stress from biotic agents (e.g., bark beetles) would further exacerbate mortality. Our results demonstrate the mechanism by which warmer temperatures have exacerbated recent regional die-off events and background mortality rates. Because of pervasive projected increases in temperature, our results portend widespread increases in the extent and frequency of vegetation die-off. PMID:19365070

  7. Increased androgenic sensitivity in the hind limb muscular system marks the evolution of a derived gestural display.

    Science.gov (United States)

    Mangiamele, Lisa A; Fuxjager, Matthew J; Schuppe, Eric R; Taylor, Rebecca S; Hödl, Walter; Preininger, Doris

    2016-05-17

    Physical gestures are prominent features of many species' multimodal displays, yet how evolution incorporates body and leg movements into animal signaling repertoires is unclear. Androgenic hormones modulate the production of reproductive signals and sexual motor skills in many vertebrates; therefore, one possibility is that selection for physical signals drives the evolution of androgenic sensitivity in select neuromotor pathways. We examined this issue in the Bornean rock frog (Staurois parvus, family: Ranidae). Males court females and compete with rivals by performing both vocalizations and hind limb gestural signals, called "foot flags." Foot flagging is a derived display that emerged in the ranids after vocal signaling. Here, we show that administration of testosterone (T) increases foot flagging behavior under seminatural conditions. Moreover, using quantitative PCR, we also find that adult male S. parvus maintain a unique androgenic phenotype, in which androgen receptor (AR) in the hind limb musculature is expressed at levels ∼10× greater than in two other anuran species, which do not produce foot flags (Rana pipiens and Xenopus laevis). Finally, because males of all three of these species solicit mates with calls, we accordingly detect no differences in AR expression in the vocal apparatus (larynx) among taxa. The results show that foot flagging is an androgen-dependent gestural signal, and its emergence is associated with increased androgenic sensitivity within the hind limb musculature. Selection for this novel gestural signal may therefore drive the evolution of increased AR expression in key muscles that control signal production to support adaptive motor performance.

  8. Activation of SF1 Neurons in the Ventromedial Hypothalamus by DREADD Technology Increases Insulin Sensitivity in Peripheral Tissues.

    Science.gov (United States)

    Coutinho, Eulalia A; Okamoto, Shiki; Ishikawa, Ayako Wendy; Yokota, Shigefumi; Wada, Nobuhiro; Hirabayashi, Takahiro; Saito, Kumiko; Sato, Tatsuya; Takagi, Kazuyo; Wang, Chen-Chi; Kobayashi, Kenta; Ogawa, Yoshihiro; Shioda, Seiji; Yoshimura, Yumiko; Minokoshi, Yasuhiko

    2017-09-01

    The ventromedial hypothalamus (VMH) regulates glucose and energy metabolism in mammals. Optogenetic stimulation of VMH neurons that express steroidogenic factor 1 (SF1) induces hyperglycemia. However, leptin acting via the VMH stimulates whole-body glucose utilization and insulin sensitivity in some peripheral tissues, and this effect of leptin appears to be mediated by SF1 neurons. We examined the effects of activation of SF1 neurons with DREADD (designer receptors exclusively activated by designer drugs) technology. Activation of SF1 neurons by an intraperitoneal injection of clozapine- N -oxide (CNO), a specific hM3Dq ligand, reduced food intake and increased energy expenditure in mice expressing hM3Dq in SF1 neurons. It also increased whole-body glucose utilization and glucose uptake in red-type skeletal muscle, heart, and interscapular brown adipose tissue, as well as glucose production and glycogen phosphorylase a activity in the liver, thereby maintaining blood glucose levels. During hyperinsulinemic-euglycemic clamp, such activation of SF1 neurons increased insulin-induced glucose uptake in the same peripheral tissues and tended to enhance insulin-induced suppression of glucose production by suppressing gluconeogenic gene expression and glycogen phosphorylase a activity in the liver. DREADD technology is thus an important tool for studies of the role of the brain in the regulation of insulin sensitivity in peripheral tissues. © 2017 by the American Diabetes Association.

  9. Modeling the Mutational and Phenotypic Landscapes of Pelizaeus-Merzbacher Disease with Human iPSC-Derived Oligodendrocytes

    DEFF Research Database (Denmark)

    Nevin, Zachary S.; Factor, Daniel C.; Karl, Robert T.

    2017-01-01

    in humans. Attempts to identify a common pathogenic process underlying PMD have been complicated by an incomplete understanding of PLP1 dysfunction and limited access to primary human oligodendrocytes. To address this, we generated panels of human induced pluripotent stem cells (hiPSCs) and hi...... individual and shared defects in PLP1 mRNA expression and splicing, oligodendrocyte progenitor development, and oligodendrocyte morphology and capacity for myelination. These observations enabled classification of PMD subgroups by cell-intrinsic phenotypes and identified a subset of mutations for targeted...... treatment approaches for subsets of individuals. More broadly, this study demonstrates the versatility of a hiPSC-based panel spanning the mutational heterogeneity within a single disease and establishes a widely applicable platform for genotype-phenotype correlation and drug screening in any human myelin...

  10. Antibodies against oligodendrocytes in serum and CSF in multiple sclerosis and other neurological diseases: 125I-protein A studies

    International Nuclear Information System (INIS)

    Steck, A.J.; Link, H.

    1984-01-01

    Antibodies against oligodendrocytes were determined in pairs of unconcentrated CSF serum from 12 patients with multiple sclerosis (MS) and 25 control patients including 10 with aseptic meningoencephalitis (AM), using a 125 I-protein A microassay. Antibody levels in serum and in CSF did not differ between MS and controls. Calculating the antibody index equal to (CSF/serum antibodies against oligodendrocytes):(CSF/serum albumin) in analogy to the CSF IgG index, thereby compensating for influence of serum antibody concentration as well as altered blood-brain barrier, no evidence was obtained for intrathecal antibody production in the patients with MS. Those with AM had higher antibody index values, probably reflecting intrathecal synthesis. Antibodies against oligodendrocytes seem to be regular component of CSF and serum in neurological diseases; intrathecal antibody production is less frequent in MS than in AM. (author)

  11. Long-term obestatin treatment of mice type 2 diabetes increases insulin sensitivity and improves liver function.

    Science.gov (United States)

    Kołodziejski, Paweł A; Pruszyńska-Oszmałek, Ewa; Strowski, Mathias Z; Nowak, Krzysztof W

    2017-06-01

    Obestatin and ghrelin are peptides encoded by the preproghrelin gene. Obestatin inhibits food intake, in addition to regulation of glucose and lipid metabolism. Here, we test the ability of obestatin at improving metabolic control and liver function in type 2 diabetic animals (type 2 diabetes mellitus). The effects of chronic obestatin treatment of mice with experimentally induced type 2 diabetes mellitus on serum levels of glucose and lipids, and insulin sensitivity are characterized. In addition, alterations of hepatic lipid and glycogen contents are evaluated. Obestatin reduced body weight and decreased serum glucose, fructosamine, and β-hydroxybutyrate levels, as well as total and low-density lipoprotein fractions of cholesterol. In addition, obestatin increased high-density lipoproteins cholesterol levels and enhanced insulin sensitivity in mice with type 2 diabetes mellitus. Moreover, obestatin diminished liver mass, hepatic triglycerides and cholesterol contents, while glycogen content was higher in livers of healthy and mice with type 2 diabetes mellitus treated with obestatin. These changes were accompanied by reduction of increased alanine aminotransferase, aspartate aminotransferase, and gamma glutamyl transpeptidase in T2DM mice with type 2 diabetes mellitus. Obestatin increased adiponectin levels and reduced leptin concentration. Obestatin influenced the expression of genes involved in lipid and carbohydrate metabolism by increasing Fabp5 and decreasing G6pc, Pepck, Fgf21 mRNA in the liver. Obestatin increased both, AKT and AMPK phosphorylation, and sirtuin 1 (SIRT1) protein levels as well as mRNA expression in the liver. Obestatin improves metabolic abnormalities in type 2 diabetes mellitus, restores hepatic lipid contents and decreases hepatic enzymes. Therefore, obestatin could potentially have a therapeutic relevance in treating of insulin resistance and metabolic dysfunctions in type 2 diabetes mellitus.

  12. Axonal degeneration stimulates the formation of NG2+ cells and oligodendrocytes in the mouse

    DEFF Research Database (Denmark)

    Nielsen, Helle Hvilsted; Ladeby, Rune; Drøjdahl, Nina

    2006-01-01

    the response of the NG2+ cells to the different components of demyelinating pathology, we investigated the response of adult NG2+ cells to axonal degeneration in the absence of primary myelin or oligodendrocyte pathology. Axonal degeneration was induced in the hippocampal dentate gyrus of adult mice...... by transection of the entorhino-dentate perforant path projection. The acutely induced degeneration of axons and terminals resulted in a prompt response of NG2+ cells, consisting of morphological transformation, cellular proliferation, and upregulation of NG2 expression days 2-3 after surgery. This was followed...

  13. Pathogen Inactivating Properties and Increased Sensitivity in Molecular Diagnostics by PAXgene, a Novel Non-Crosslinking Tissue Fixative.

    Directory of Open Access Journals (Sweden)

    Martina Loibner

    Full Text Available Requirements on tissue fixatives are getting more demanding as molecular analysis becomes increasingly relevant for routine diagnostics. Buffered formaldehyde in pathology laboratories for tissue fixation is known to cause chemical modifications of biomolecules which affect molecular testing. A novel non-crosslinking tissue preservation technology, PAXgene Tissue (PAXgene, was developed to preserve the integrity of nucleic acids in a comparable way to cryopreservation and also to preserve morphological features comparable to those of formalin fixed samples.Because of the excellent preservation of biomolecules by PAXgene we investigated its pathogen inactivation ability and biosafety in comparison to formalin by in-vitro testing of bacteria, human relevant fungi and human cytomegalovirus (CMV. Guidelines for testing disinfectants served as reference for inactivation assays. Furthermore, we tested the properties of PAXgene for detection of pathogens by PCR based assays.All microorganisms tested were similarly inactivated by PAXgene and formalin except Clostridium sporogenes, which remained viable in seven out of ten assays after PAXgene treatment and in three out of ten assays after formalin fixation. The findings suggest that similar biosafety measures can be applied for PAXgene and formalin fixed samples. Detection of pathogens in PCR-based diagnostics using two CMV assays resulted in a reduction of four to ten quantification cycles of PAXgene treated samples which is a remarkable increase of sensitivity.PAXgene fixation might be superior to formalin fixation when molecular diagnostics and highly sensitive detection of pathogens is required in parallel to morphology assessment.

  14. Dioxin-induced acute cardiac mitochondrial oxidative damage and increased activity of ATP-sensitive potassium channels in Wistar rats

    International Nuclear Information System (INIS)

    Pereira, Susana P.; Pereira, Gonçalo C.; Pereira, Cláudia V.; Carvalho, Filipa S.; Cordeiro, Marília H.; Mota, Paula C.; Ramalho-Santos, João; Moreno, António J.; Oliveira, Paulo J.

    2013-01-01

    The environmental dioxin 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is classified as a Group 1 human carcinogen and teratogenic agent. We hypothesize that TCDD-induced oxidative stress may also interfere with mitochondrial ATP-sensitive potassium channels (mitoKATP), which are known to regulate and to be regulated by mitochondrial redox state. We investigated the effects of an acute treatment of male Wistar rats with TCDD (50 μg/kg i.p.) and measured the regulation of cardiac mitoKATP. While the function of cardiac mitochondria was slightly depressed, mitoKATP activity was 52% higher in animals treated with TCDD. The same effects were not observed in liver mitochondria isolated from the same animals. Our data also shows that regulation of mitochondrial ROS production by mitoKATP activity is different in both groups. To our knowledge, this is the first report to show that TCDD increases mitoKATP activity in the heart, which may counteract the increased oxidative stress caused by the dioxin during acute exposure. -- Highlights: •Acute TCDD treatment of Wistar rats causes cardiac oxidative stress. •Acute TCDD treatment causes cardiac mitochondrial alterations. •Mitochondrial liver vs. heart alterations are distinct. •TCDD treatment resulted in altered activity of cardiac mitochondrial K-ATP channels. -- Dioxin alters the regulation of cardiac mitochondrial ATP-sensitive potassium channels and disturbs mitochondrial physiology

  15. Pathogen Inactivating Properties and Increased Sensitivity in Molecular Diagnostics by PAXgene, a Novel Non-Crosslinking Tissue Fixative.

    Science.gov (United States)

    Loibner, Martina; Buzina, Walter; Viertler, Christian; Groelz, Daniel; Hausleitner, Anja; Siaulyte, Gintare; Kufferath, Iris; Kölli, Bettina; Zatloukal, Kurt

    2016-01-01

    Requirements on tissue fixatives are getting more demanding as molecular analysis becomes increasingly relevant for routine diagnostics. Buffered formaldehyde in pathology laboratories for tissue fixation is known to cause chemical modifications of biomolecules which affect molecular testing. A novel non-crosslinking tissue preservation technology, PAXgene Tissue (PAXgene), was developed to preserve the integrity of nucleic acids in a comparable way to cryopreservation and also to preserve morphological features comparable to those of formalin fixed samples. Because of the excellent preservation of biomolecules by PAXgene we investigated its pathogen inactivation ability and biosafety in comparison to formalin by in-vitro testing of bacteria, human relevant fungi and human cytomegalovirus (CMV). Guidelines for testing disinfectants served as reference for inactivation assays. Furthermore, we tested the properties of PAXgene for detection of pathogens by PCR based assays. All microorganisms tested were similarly inactivated by PAXgene and formalin except Clostridium sporogenes, which remained viable in seven out of ten assays after PAXgene treatment and in three out of ten assays after formalin fixation. The findings suggest that similar biosafety measures can be applied for PAXgene and formalin fixed samples. Detection of pathogens in PCR-based diagnostics using two CMV assays resulted in a reduction of four to ten quantification cycles of PAXgene treated samples which is a remarkable increase of sensitivity. PAXgene fixation might be superior to formalin fixation when molecular diagnostics and highly sensitive detection of pathogens is required in parallel to morphology assessment.

  16. Improved Insulin Sensitivity despite Increased Visceral Adiposity in Mice Deficient for the Immune Cell Transcription Factor T-bet

    Science.gov (United States)

    Stolarczyk, Emilie; Vong, Chi Teng; Perucha, Esperanza; Jackson, Ian; Cawthorne, Michael A.; Wargent, Edward T.; Powell, Nick; Canavan, James B.; Lord, Graham M.; Howard, Jane K.

    2013-01-01

    Summary Low-grade inflammation in fat is associated with insulin resistance, although the mechanisms are unclear. We report that mice deficient in the immune cell transcription factor T-bet have lower energy expenditure and increased visceral fat compared with wild-type mice, yet paradoxically are more insulin sensitive. This striking phenotype, present in young T-bet−/− mice, persisted with high-fat diet and increasing host age and was associated with altered immune cell numbers and cytokine secretion specifically in visceral adipose tissue. However, the favorable metabolic phenotype observed in T-bet-deficient hosts was lost in T-bet−/− mice also lacking adaptive immunity (T-bet−/−xRag2−/−), demonstrating that T-bet expression in the adaptive rather than the innate immune system impacts host glucose homeostasis. Indeed, adoptive transfer of T-bet-deficient, but not wild-type, CD4+ T cells to Rag2−/− mice improved insulin sensitivity. Our results reveal a role for T-bet in metabolic physiology and obesity-associated insulin resistance. PMID:23562076

  17. [Astragalus polysaccharide may increase sensitivity of cervical cancer HeLa cells to cisplatin by regulating cell autophagy].

    Science.gov (United States)

    Zhai, Qiu-Li; Hu, Xiang-Dan; Xiao, Jing; Yu, Dong-Qing

    2018-02-01

    This study aimed to investigate the possible sensitivity of Astragalus polysaccharides, in order to improve the chemosensitivity of cervical cancer HeLa cells to cisplatin by regulating the cell autophagy, and explore its possible mechanism. In this study, HeLa cells were divided into control group, cisplatin group, Astragalus polysaccharide group, and Astragalus polysaccharide combined with cisplatin group. MTT assay was used to detect the proliferation of cervical cancer HeLa cells. Flow cytometry was used to detect the apoptosis and cycle of HeLa cells in each experimental group. RT-PCR was used to detect the mRNA expression of autophagy-related proteins beclin1, LC3Ⅱ and p62. The expression levels of autophagy-related proteins beclin1, LC3Ⅱ, LC3Ⅰ and p62 were detected by WB method. MTT results showed that compared with the control group, the proliferation of HeLa cells was significantly inhibited in each administration group( P HeLa cells was significantly increased( P HeLa cells to cisplatin by regulating the cell autophagy. Its possible mechanism of action is correlated with the up-regulation of autophagy-related proteins beclin1, the promote the conversion from LC3Ⅰ to LC3Ⅱ, the down-regulation of labeled protein p62, and the enhancement of HeLa cell autophagic activity, thereby increasing the sensitivity of HeLa cells to cisplatin chemotherapy. Copyright© by the Chinese Pharmaceutical Association.

  18. Design and introduction of a disulfide bridge in firefly luciferase: increase of thermostability and decrease of pH sensitivity.

    Science.gov (United States)

    Imani, Mehdi; Hosseinkhani, Saman; Ahmadian, Shahin; Nazari, Mahboobeh

    2010-08-01

    The thermal sensitivity and pH-sensitive spectral properties of firefly luciferase have hampered its application in a variety of fields. It is proposed that the stability of a protein can be increased by introduction of disulfide bridge that decreases the configurational entropy of unfolding. A disulfide bridge is introduced into Photinus pyralis firefly luciferase to make two separate mutant enzymes with a single bridge. Even though the A103C/S121C mutant showed remarkable thermal stability, its specific activity decreased, whereas the A296C/A326C mutant showed tremendous thermal stability, relative pH insensitivity and 7.3-fold increase of specific activity. Moreover, the bioluminescence emission spectrum of A296C/A326C was resistant against higher temperatures (37 degrees C). Far-UV CD analysis showed slight secondary structure changes for both mutants. Thermal denaturation analysis showed that conformational stabilities of A103C/S121C and A296C/A326C are more than native firefly luciferase. It is proposed that since A296 and A326 are situated in the vicinity of the enzyme active site microenvironment in comparison with A103 and S121, the formation of a disulfide bridge in this region has more impact on enzyme kinetic characteristics.

  19. Increasing the Analytical Sensitivity by Oligonucleotides Modified with Para- and Ortho-Twisted Intercalating Nucleic Acids - TINA

    DEFF Research Database (Denmark)

    Schneider, Uffe V; Géci, Imrich; Jøhnk, Nina

    2011-01-01

    -TINA molecules increased the melting point (Tm) of Watson-Crick based antiparallel DNA duplexes. The increase in Tm was greatest when the intercalators were placed at the 5' and 3' termini (preferable) or, if placed internally, for each half or whole helix turn. Terminally positioned TINA molecules improved......The sensitivity and specificity of clinical diagnostic assays using DNA hybridization techniques are limited by the dissociation of double-stranded DNA (dsDNA) antiparallel duplex helices. This situation can be improved by addition of DNA stabilizing molecules such as nucleic acid intercalators....... Here, we report the synthesis of a novel ortho-Twisted Intercalating Nucleic Acid (TINA) amidite utilizing the phosphoramidite approach, and examine the stabilizing effect of ortho- and para-TINA molecules in antiparallel DNA duplex formation. In a thermal stability assay, ortho- and para...

  20. Combination of the mutation process with the sensitization and repair processes leading to increased frequencies of mutations in algal populations

    International Nuclear Information System (INIS)

    Necas, J.

    1977-01-01

    The possibility of combining the mutation process with the induction of the repair processes was studied to increase the mutation frequencies in algal populations after UV treatment. The repair process induced by visible light was found to be much more effective than the dark repair processes in the chlorococcal algae used. In these algae, visible light possibly does not induce only those repair processes which affect their DNA, but probably also certain recovery processes which affect their damaged structures and physiological functions. A suitable combination of the sensitization of algae cells by a DNA-base analogue before UV treatment and the induction of the light repair and recovery processes resulted in a rather high increase of viable mutations in chlorococcal algae. These findings may be useful in breeding chlorococcal algae, which have no possibility of hybridization other than somatic. (author)

  1. Allergic contact dermatitis from ophthalmic products: can pre-treatment with sodium lauryl sulfate increase patch test sensitivity?

    Science.gov (United States)

    Corazza, Monica; Virgili, Annarosa

    2005-05-01

    In patients suspected of allergic contact dermatitis because of topical ophthalmic medicaments, patch tests performed with patients' own products are often negative. The irritant anionic surfactant sodium lauryl sulfate (SLS) may alter the stratum corneum and increase antigen penetration. Pre-treatment of the skin with SLS 0.5% for 24 h was performed in the sites of patch tests with patients' own products in 15 selected patients. In patients previously negative to their own products tested with conventional patch tests, SLS pre-treatment showed 6 new relevant positive reactions and induced a stronger positive reaction in 1 patient. SLS pre-treatment could be proposed as an alternative promising method, which may increase sensitivity of patch tests with patients' own products.

  2. Liraglutide increases FGF-21 activity and insulin sensitivity in high fat diet and adiponectin knockdown induced insulin resistance.

    Directory of Open Access Journals (Sweden)

    Mengliu Yang

    Full Text Available BACKGROUND: Liraglutide is a glucagon-like peptide-1 analogue that stimulates insulin secretion and improves β-cell function. However, it is not clear whether liraglutide achieves its glucose lowering effect only by its known effects or whether other as yet unknown mechanisms are involved. The aim of this study was to examine the effects of liraglutide on Fibroblast growth factor-21 (FGF-21 activity in High-fat diet (HFD fed ApoE(-/- mice with adiponectin (Acrp30 knockdown. METHOD: HFD-fed ApoE(-/- mice were treated with adenovirus vectors expressing shAcrp30 to produce insulin resistance. Hyperinsulinemic-euglycemic clamp studies were performed to evaluate insulin sensitivity of the mouse model. QRT-PCR and Western blot were used to measure the mRNA and protein expression of the target genes. RESULTS: The combination of HFD, ApoE deficiency, and hypoadiponectinemia resulted in an additive effect on insulin resistance. FGF-21 mRNA expressions in both liver and adipose tissues were significantly increased while FGF-21 receptor 1 (FGFR-1 and β-Klotho mRNA levels in adipose tissue, as well as FGFR-1-3 and β-Klotho mRNA levels in liver were significantly decreased in this model. Liraglutide treatment markedly improved insulin resistance and increased FGF-21 expression in liver and FGFR-3 in adipose tissue, restored β-Klotho mRNA expression in adipose tissue as well as FGFR-1-3, β-Klotho levels and phosphorylation of FGFR1 up to the levels observed in control mice in liver. Liraglutide treatment also further increased FGF-21 proteins in liver and plasma. In addition, as shown by hyperinsulinemic-euglycemic clamp, liraglutide treatment also markedly improved glucose metabolism and insulin sensitivity in these animals. CONCLUSION: These findings demonstrate an additive effect of HFD, ApoE deficiency, and adiponectin knockdown on insulin resistance and unveil that the regulation of glucose metabolism and insulin sensitivity by liraglutide may be

  3. LyGDI expression in HeLa cells increased its sensitivity to radiation-induced apoptosis

    International Nuclear Information System (INIS)

    Zhou Xinwen; Xu Yaxiang

    2006-01-01

    Objective: In order to confirm whether LyGDI has apoptotic signal transduction function and can increase the apoptotic rate of radiation-induced cell death, the lyGDI and mutant D19lyGDI gene, which constructed with the pCDNA3. 1 His A, were transfected into no-endogenous lyGDI HeLa cells. Methods Transient expressions of lyGDI and D19lyGDI in HeLa cells were analyzed by Western blot using anti-mono antibody of LyGDI and Xpress tag. Cell apoptosis was assayed with Annexin V-FITC apoptosis kit. To select stable clone, the transferred HeLa cells had been maintained in G418 medium for 3 weeks, then a cell line, which stably expressed LyGDI and mutant D19lyGDI, was selected. The selected cell line was irradiated with 12 Gy 60 Co y-rays. Caspase-3 activity of the cells was determined by Western blot and cell viability by clone-forming assay after 48 hours post-irradiation culture. Results: Western blot and Annexin V-FITC apoptotic analysis revealed that lyGDI and D19lyGDI transient expressions in HeLa cells induced apoptosis; Caspase-3 activity measurement and clone-forming assay showed that lyGDI increased sensitivity to radiation-induced cell apoptosis. Conclusions: lyGDI performs function in apoptosis signal transduction, its expression in HeLa cells can increase the sensitivity to radiation-induced cell apoptosis. (authors)

  4. Effect of simvastatin in the autonomic system is dependent on the increased gain/sensitivity of the baroreceptors

    Science.gov (United States)

    Moreira, Edson D; Mostarda, Cristiano T; Moraes-Silva, Ivana C; Ferreira, Janaina B; dos Santos, Fernando; Lacchini, Silvia; De Angelis, Kátia; Rodrigues, Bruno; Irigoyen, Maria Cláudia

    2013-01-01

    A number of mechanisms have been proposed to explain the pleiotropic effect of statin therapy to reduce sympathetic outflow in cardiovascular disease. We tested the hypothesis that statin treatment could improve baroreflex gain-sensitivity triggered by morphological adaptations in the mechanoreceptor site, thus reducing sympathetic activity, regardless of arterial pressure (AP) level reduction. Male spontaneously hypertensive rats (SHR) were divided into control (SHR, n = 8) and SHR-simvastatin (5 mg/kg/day, for 7 days) (SHR-S, n = 8). After treatment, AP, baroreflex sensitivity (BRS) in response to AP-induced changes, aortic depressor nerve activity, and spectral analyses of pulse interval (PI) and AP variabilities were performed. Internal and external carotids were prepared for morphoquantitative evaluation. Although AP was similar between groups, sympathetic modulation, represented by the low frequency band of PI (SHR: 6.84 ± 3.19 vs. SHR-S: 2.41 ± 0.96 msec2) and from systolic AP variability (SHR: 3.95 ± 0.36 vs. SHR-S: 2.86 ± 0.18 mmHg2), were reduced in treated animals. In parallel, simvastatin induced an increase of 26% and 21% in the number of elastic lamellae as well as a decrease of 9% and 25% in the carotid thickness in both, external and internal carotid, respectively. Moreover, improved baroreceptor function (SHR: 0.78 ± 0.03 vs. SHR-S: 1.06 ± 0.04% mv/mmHg) was observed in addition to a 115% increase in aortic depressor nerve activity in SHR-S rats. Therefore, our data suggest that the reduction of sympathetic outflow in hypertension by simvastatin treatment may be triggered by structural changes in the carotid arteries and increased BRS in response to an improvement of the baroreceptors discharge and consequently of the afferent pathway of the baroreflex arch. PMID:24303130

  5. Moderate (20%) fructose-enriched diet stimulates salt-sensitive hypertension with increased salt retention and decreased renal nitric oxide.

    Science.gov (United States)

    Gordish, Kevin L; Kassem, Kamal M; Ortiz, Pablo A; Beierwaltes, William H

    2017-04-01

    Previously, we reported that 20% fructose diet causes salt-sensitive hypertension. In this study, we hypothesized that a high salt diet supplemented with 20% fructose (in drinking water) stimulates salt-sensitive hypertension by increasing salt retention through decreasing renal nitric oxide. Rats in metabolic cages consumed normal rat chow for 5 days (baseline), then either: (1) normal salt for 2 weeks, (2) 20% fructose in drinking water for 2 weeks, (3) 20% fructose for 1 week, then fructose + high salt (4% NaCl) for 1 week, (4) normal chow for 1 week, then high salt for 1 week, (5) 20% glucose for 1 week, then glucose + high salt for 1 week. Blood pressure, sodium excretion, and cumulative sodium balance were measured. Systolic blood pressure was unchanged by 20% fructose or high salt diet. 20% fructose + high salt increased systolic blood pressure from 125 ± 1 to 140 ± 2 mmHg ( P  fructose + high salt than either high salt, or glucose + high salt (114.2 ± 4.4 vs. 103.6 ± 2.2 and 98.6 ± 5.6 mEq/Day19; P  fructose + high salt group compared to high salt only: 5.33 ± 0.21 versus 7.67 ± 0.31 mmol/24 h; P  fructose + high salt group (2139 ± 178  μ mol /24 hrs P  fructose predisposes rats to salt-sensitivity and, combined with a high salt diet, leads to sodium retention, increased blood pressure, and impaired renal nitric oxide availability. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  6. A novel approach for amplification and purification of mouse oligodendrocyte progenitor cells

    Directory of Open Access Journals (Sweden)

    Junlin Yang

    2016-08-01

    Full Text Available Although transgenic and knockout mice are widely used to study the specification and differentiation of oligodendrocyte precursor cells (OPCs, mouse primary OPCs are difficult to be purified and maintained, and many in vitro studies have to resort to rat OPCs as substitutes. In this study, we reported that mouse O4 negative early-stage OPCs can be obtained by culturing cortical tissue blocks, and the simultaneous treatment of OPCs with PDGFaa, bFGF and EGF is the key for the propagation of mouse OPCs in culture. Epidermal growth factor (EGF was found to be a potent mitogen for OPCs and cooperate with Platelet Derived Growth Factor-AA (PDGFaa to extend cell division and inhibit their differentiation. EGF also collaborates with PDGFaa and basic fibroblast growth factor (bFGF to convert bipolar or tripolar OPCs to more vital fibroblast-like OPCs without compromising their oligodendrocyte differentiation potential. In addition, EGF promoted the survival and proliferation of glial progenitor cells (GPCs derived from primary OPC cultures, and a mixture of GPCs and OPCs can be obtained and propagated in the presence of EGF, bFGF and PDGFaa. Once EGF is withdrawn, GPC population decreased sharply and fibroblast-like OPCs changed into typical OPCs morphology, then homogeneous OPCs were obtained subsequently.

  7. High purity of human oligodendrocyte progenitor cells obtained from neural stem cells: suitable for clinical application.

    Science.gov (United States)

    Wang, Caiying; Luan, Zuo; Yang, Yinxiang; Wang, Zhaoyan; Wang, Qian; Lu, Yabin; Du, Qingan

    2015-01-30

    Recent studies have suggested that the transplantation of oligodendrocyte progenitor cells (OPCs) may be a promising potential therapeutic strategy for a broad range of diseases affecting myelin, such as multiple sclerosis, periventricular leukomalacia, and spinal cord injury. Clinical interest arose from the potential of human stem cells to be directed to OPCs for the clinical application of treating these diseases since large quantities of high quality OPCs are needed. However, to date, there have been precious few studies about OPC induction from human neural stem cells (NSCs). Here we successfully directed human fetal NSCs into highly pure OPCs using a cocktail of basic fibroblast growth factor, platelet-derived growth factor, and neurotrophic factor-3. These cells had typical morphology of OPCs, and 80-90% of them expressed specific OPC markers such as A2B5, O4, Sox10 and PDGF-αR. When exposed to differentiation medium, 90% of the cells differentiated into oligodendrocytes. The OPCs could be amplified in our culture medium and passaged at least 10 times. Compared to a recent published method, this protocol had much higher stability and repeatability, and OPCs could be obtained from NSCs from passage 5 to 38. It also obtained more highly pure OPCs (80-90%) via simpler and more convenient manipulation. This study provided an easy and efficient method to obtain large quantities of high-quality human OPCs to meet clinical demand. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Ocean acidification increases the sensitivity of and variability in physiological responses of an intertidal limpet to thermal stress

    Science.gov (United States)

    Wang, Jie; Russell, Bayden D.; Ding, Meng-Wen; Dong, Yun-Wei

    2018-05-01

    Understanding physiological responses of organisms to warming and ocean acidification is the first step towards predicting the potential population- and community-level ecological impacts of these stressors. Increasingly, physiological plasticity is being recognized as important for organisms to adapt to the changing microclimates. Here, we evaluate the importance of physiological plasticity for coping with ocean acidification and elevated temperature, and its variability among individuals, of the intertidal limpet Cellana toreuma from the same population in Xiamen. Limpets were collected from shaded mid-intertidal rock surfaces. They were acclimated under combinations of different pCO2 concentrations (400 and 1000 ppm, corresponding to a pH of 8.1 and 7.8) and temperatures (20 and 24 °C) in a short-term period (7 days), with the control conditions (20 °C and 400 ppm) representing the average annual temperature and present-day pCO2 level at the collection site. Heart rates (as a proxy for metabolic performance) and expression of genes encoding inducible and constitutive heat-shock proteins (hsp70 and hsc70) at different heat-shock temperatures (26, 30, 34, and 38 °C) were measured. Hsp70 and Hsc70 play important roles in protecting cells from heat stresses, but have different expression patterns, with Hsp70 significantly increased in expression during stress and Hsc70 constitutively expressed and only mildly induced during stress. Analysis of heart rate showed significantly higher temperature coefficients (Q10 rates) for limpets at 20 °C than at 24 °C and post-acclimation thermal sensitivity of limpets at 400 ppm was lower than at 1000 ppm. Expression of hsp70 linearly increased with the increasing heat-shock temperatures, with the largest slope occurring in limpets acclimated under a future scenario (24 °C and 1000 ppm pCO2). These results suggested that limpets showed increased sensitivity and stress response under future conditions. Furthermore, the

  9. Exercise Increases Insulin Sensitivity and Skeletal Muscle AMPK Expression in Systemic Lupus Erythematosus: A Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Fabiana B. Benatti

    2018-04-01

    Full Text Available Systemic lupus erythematosus (SLE patients may show increased insulin resistance (IR when compared with their healthy peers. Exercise training has been shown to improve insulin sensitivity in other insulin-resistant populations, but it has never been tested in SLE. Therefore, the aim of the present study was to assess the efficacy of a moderate-intensity exercise training program on insulin sensitivity and potential underlying mechanisms in SLE patients with mild/inactive disease. A 12-week, randomized controlled trial was conducted. Nineteen SLE patients were randomly assigned into two groups: trained (SLE-TR, n = 9 and non-trained (SLE-NT, n = 10. Before and after 12 weeks of the exercise training program, patients underwent a meal test (MT, from which surrogates of insulin sensitivity and beta-cell function were determined. Muscle biopsies were performed after the MT for the assessment of total and membrane GLUT4 and proteins related to insulin signaling [Akt and AMP-activated protein kinase (AMPK]. SLE-TR showed, when compared with SLE-NT, significant decreases in fasting insulin [−39 vs. +14%, p = 0.009, effect size (ES = −1.0] and in the insulin response to MT (−23 vs. +21%, p = 0.007, ES = −1.1, homeostasis model assessment IR (−30 vs. +15%, p = 0.005, ES = −1.1, a tendency toward decreased proinsulin response to MT (−19 vs. +6%, p = 0.07, ES = −0.9 and increased glucagon response to MT (+3 vs. −3%, p = 0.09, ES = 0.6, and significant increases in the Matsuda index (+66 vs. −31%, p = 0.004, ES = 0.9 and fasting glucagon (+4 vs. −8%, p = 0.03, ES = 0.7. No significant differences between SLT-TR and SLT-NT were observed in fasting glucose, glucose response to MT, and insulinogenic index (all p > 0.05. SLE-TR showed a significant increase in AMPK Thr 172 phosphorylation when compared to SLE-NT (+73 vs. −12%, p = 0.014, ES = 1.3, whereas no

  10. Recovery of Corneal Sensitivity and Increase in Nerve Density and Wound Healing in Diabetic Mice After PEDF Plus DHA Treatment.

    Science.gov (United States)

    He, Jiucheng; Pham, Thang Luong; Kakazu, Azucena; Bazan, Haydee E P

    2017-09-01

    Diabetic keratopathy decreases corneal sensation and tear secretion and delays wound healing after injury. In the current study, we tested the effect of treatment with pigment epithelium-derived factor (PEDF) in combination with docosahexaenoic acid (DHA) on corneal nerve regeneration in a mouse model of diabetes with or without corneal injury. The study was performed in streptozotocin-induced diabetic mice (C57BL/6). Ten weeks after streptozotocin injection, diabetic mice showed significant decreases of corneal sensitivity, tear production, and epithelial subbasal nerve density when compared with age-matched normal mice. After diabetic mice were wounded in the right eye and treated in both eyes with PEDF+DHA for 2 weeks, there was a significant increase in corneal epithelial nerve regeneration and substance P-positive nerve density in both wounded and unwounded eyes compared with vehicle-treated corneas. There also was elevated corneal sensitivity and tear production in the treated corneas compared with vehicle. In addition, PEDF+DHA accelerated corneal wound healing, selectively recruited type 2 macrophages, and prevented neutrophil infiltration in diabetic wounded corneas. These results suggest that topical treatment with PEDF+DHA promotes corneal nerve regeneration and wound healing in diabetic mice and could potentially be exploited as a therapeutic option for the treatment of diabetic keratopathy. © 2017 by the American Diabetes Association.

  11. Increasing of sensitivity of fluorescent immunoassay analysis of alpha-fetoprotein by means of plasmonical silver nanoparticles

    International Nuclear Information System (INIS)

    Vashchenko, S.V.; Min'ko, A.A.; Romanenko, A.A.; Gaponenko, S.V.; Kulakovich, O.S.

    2014-01-01

    A test system is proposed based on metal enhanced fluorescence to analyze low concentrations of alpha-fetoprotein (AFP), a tumor marker. Antigen-antibody reaction was performed on polystyrene plates coated with silver nanoparticles to increase sensitivity of fluorescent immunoassay and signal-to-noise ratio as compared to silver-free system. As compared to widely used ELISA technique and other immunoassay techniques the proposed approach is characterized by smaller probe volume, fast analysis and simplicity. The proposed test system uses layer-by-layer assembly approach, LED excitation and nanowatt photodetection set-up. The proposed test system offers AFP detection at concentrations used in clinical practice. Fluorescence enhancement for labeled AFP antibodies on a silver substrate was found to depend on antibodies concentration and was up to 6 times. (authors)

  12. A cGMP kinase mutant with increased sensitivity to the protein kinase inhibitor peptide PKI(5-24).

    Science.gov (United States)

    Ruth, P; Kamm, S; Nau, U; Pfeifer, A; Hofmann, F

    1996-01-01

    Synthetic peptides corresponding to the active domain of the heat-stable inhibitor protein PKI are very potent inhibitors of cAMP-dependent protein kinase, but are extremely weak inhibitors of cGMP-dependent protein kinase. In this study, we tried to confer PKI sensitivity to cGMP kinase by site-directed mutagenesis. The molecular requirements for high affinity inhibition by PKI were deduced from the crystal structure of the cAMP kinase/PKI complex. A prominent site of interaction are residues Tyr235 and Phe239 in the catalytic subunit, which from a sandwich-like structure with Phe10 of the PKI(5-24) peptide. To increase the sensitivity for PKI, the cGMP kinase codons at the corresponding sites, Ser555 and Ser559, were changed to Tyr and Phe. The mutant cGMP kinase was stimulated half maximally by cGMP at 3-fold higher concentrations (240 nM) than the wild type (77 nM). Wild type and mutant cGMP kinase did not differ significantly in their Km and Vmax for three different substrate peptides. The PKI(5-24) peptide inhibited phosphotransferase activity of the mutant cGMP kinase with higher potency than that of wild type, with Ki values of 42 +/- .3 microM and 160 +/- .7 microM, respectively. The increased affinity of the mutant cGMP kinase was specific for the PKI(5-24) peptide. Mutation of the essential Phe10 in the PKI(5-24) sequence to an Ala yielded a peptide that inhibited mutant and wild type cGMP kinase with similar potency, with Ki values of 160 +/- 11 and 169 +/- 27 microM, respectively. These results suggest that the mutations Ser555Tyr and Ser559Phe are required, but not sufficient, for high affinity inhibition of cGMP kinase by PKI.

  13. Y-27632 Increases Sensitivity of PANC-1 Cells to Epigallocatechin Gallate (EGCG) in Regulating Cell Proliferation and Migration

    Science.gov (United States)

    Liu, Xing; Bi, Yongyi

    2016-01-01

    Background The study aimed to investigate the inhibitory effect of (1R,4r)-4-((R)-1-aminoethyl)-N-(pyridin-4-yl) cyclohexanecarboxamide (Y-27632) and (−)-epigallocatechin-3-gallate (EGCG) on the proliferation and migration of PANC-1 cells. EGCG, found in green tea, has been previously shown to be one of the most abundant and powerful catechins in cancer prevention and treatment. Y-27632, a selective inhibitor of rho-associated protein kinase 1, is widely used in treating cardiovascular disease, inflammation, and cancer. Material/Methods PANC-1 cells, maintained in Dulbecco’s Modified Eagle’s Medium, were treated with dimethyl sulfoxide (control) as well as different concentrations (20, 40, 60, and 80 μg/mL) of EGCG for 48 h. In addition, PANC-1 cells were treated separately with 60 μg/mL EGCG, 20 μM Y-27632, and EGCG combined with Y-27632 (60 μg/mL EGCG + 20 μM Y-27632) for 48 h. The effect of EGCG and Y-27632 on the proliferation and migration of PANC-1 cells was evaluated using Cell Counting Kit-8 and transwell migration assays. The expression of peroxisome proliferator–activated receptor alpha (PPARα) and Caspase-3 mRNA was determined by Quantitative real-time polymerase chain reaction (RT-qPCR). Results EGCG (20–80 μg/mL) inhibited cell viability in a dose-dependent manner. Y-27632 enhanced the sensitivity of PANC-1 cells to EGCG (by increasing the expression of PPARα and Caspase-3 mRNA) and suppressed cell proliferation. PANC-1 cell migration was inhibited by treatment with a combination of EGCG and Y-27632. Conclusions Y-27632 increases the sensitivity of PANC-1 cells to EGCG in regulating cell proliferation and migration, which is likely to be related to the expression of PPARα mRNA and Caspase-3 mRNA. PMID:27694793

  14. The Efforts to Increase Artistic Sensitivity of Unesa’s Art Education Students by Painting with Watercolor and Wax Media

    Directory of Open Access Journals (Sweden)

    Winarno Winarno

    2016-04-01

    Full Text Available Artistic abilities of students who had been enrolled in Arts Educations Department of UNESA, in general, were a lack in realizing artistic aspect. It created the problems in learning and teaching of art. The purpose of this research was to increase the students’ sensitivity in creating their work. One way to solve this problem was by doing the work as much as possible, but the results were not fully obtained. So far, there were no standardized guidelines to help the improvement of the work quality in term artistic achievement level. While it became a problem in learning, there was an effort to find a simple and effective way by mixed media watercolor paint and wax. The method in this research was the design of class action research, where the research was conducted in the learning process of each cycle. Every cycle consists of planning, implementation, observation, and reflection. The result of this research shows an increasing of artistic quality regarding practical grades of art. However, there are other alternatives must be sought to increase students’ ability to create, view, appreciate something that is artistic. 

  15. MET18 Deficiency Increases the Sensitivity of Yeast to Oxidative Stress and Shortens Replicative Lifespan by Inhibiting Catalase Activity.

    Science.gov (United States)

    Chen, Ya-Qin; Liu, Xin-Guang; Zhao, Wei; Cui, Hongjing; Ruan, Jie; Yuan, Yuan; Tu, Zhiguang

    2017-01-01

    Yeast MET18 , a subunit of the cytosolic iron-sulfur (Fe/S) protein assembly (CIA) machinery which is responsible for the maturation of Fe/S proteins, has been reported to participate in the oxidative stress response. However, the underlying molecular mechanisms remain unclear. In this study, we constructed a MET18/met18Δ heterozygous mutant yeast strain and found that MET18 deficiency in yeast cells impaired oxidative stress resistance as evidenced by increased sensitivity to hydrogen peroxide (H 2 O 2 ) and cumene hydroperoxide (CHP). Mechanistically, the mRNA levels of catalase A (CTA1) and catalase T (CTT1) as well as the total catalase activity were significantly reduced in MET18 -deficient cells. In contrast, overexpression of CTT1 or CTA1 in MET18 -deficient cells significantly increased the intracellular catalase activity and enhanced the resistance ability against H 2 O 2 and CHP. In addition, MET18 deficiency diminished the replicative capacity of yeast cells as evidenced by the shortened replicative lifespan, which can be restored by CTT1 overexpression, but not by CTA1 , in the MET18 -deficient cells. These results suggest that MET18 , in a catalase-dependent manner, plays an essential role in enhancing the resistance of yeast cells to oxidative stress and increasing the replicative capacity of yeast cells.

  16. Are sweet snacks more sensitive to price increases than sugar-sweetened beverages: analysis of British food purchase data

    Science.gov (United States)

    Smith, Richard D; Quirmbach, Diana; Jebb, Susan A

    2018-01-01

    Objectives Taxing sugar-sweetened beverages (SSBs) is now advocated, and implemented, in many countries as a measure to reduce the purchase and consumption of sugar to tackle obesity. To date, there has been little consideration of the potential impact that such a measure could have if extended to other sweet foods, such as confectionery, cakes and biscuits that contribute more sugar to the diet than SSBs. The objective of this study is to compare changes in the demand for sweet snacks and SSBs arising from potential price increases. Setting Secondary data on household itemised purchases of all foods and beverages from 2012 to 2013. Participants Representative sample of 32 249 households in Great Britain. Primary and secondary outcome measures Change in food and beverage purchases due to changes in their own price and the price of other foods or beverages measured as price elasticity of demand for the full sample and by income groups. Results Chocolate and confectionery, cakes and biscuits have similar price sensitivity as SSBs, across all income groups. Unlike the case of SSBs, price increases in these categories are also likely to prompt reductions in the purchase of other sweet snacks and SSBs, which magnify the overall impact. The effects of price increases are greatest in the low-income group. Conclusions Policies that lead to increases in the price of chocolate and confectionery, cakes and biscuits may lead to additional and greater health gains than similar increases in the price of SSBs through direct reductions in the purchases of these foods and possible positive multiplier effects that reduce demand for other products. Although some uncertainty remains, the associations found in this analysis are sufficiently robust to suggest that policies—and research—concerning the use of fiscal measures should consider a broader range of products than is currently the case. PMID:29700100

  17. Are sweet snacks more sensitive to price increases than sugar-sweetened beverages: analysis of British food purchase data.

    Science.gov (United States)

    Smith, Richard D; Cornelsen, Laura; Quirmbach, Diana; Jebb, Susan A; Marteau, Theresa M

    2018-04-26

    Taxing sugar-sweetened beverages (SSBs) is now advocated, and implemented, in many countries as a measure to reduce the purchase and consumption of sugar to tackle obesity. To date, there has been little consideration of the potential impact that such a measure could have if extended to other sweet foods, such as confectionery, cakes and biscuits that contribute more sugar to the diet than SSBs. The objective of this study is to compare changes in the demand for sweet snacks and SSBs arising from potential price increases. Secondary data on household itemised purchases of all foods and beverages from 2012 to 2013. Representative sample of 32 249 households in Great Britain. Change in food and beverage purchases due to changes in their own price and the price of other foods or beverages measured as price elasticity of demand for the full sample and by income groups. Chocolate and confectionery, cakes and biscuits have similar price sensitivity as SSBs, across all income groups. Unlike the case of SSBs, price increases in these categories are also likely to prompt reductions in the purchase of other sweet snacks and SSBs, which magnify the overall impact. The effects of price increases are greatest in the low-income group. Policies that lead to increases in the price of chocolate and confectionery, cakes and biscuits may lead to additional and greater health gains than similar increases in the price of SSBs through direct reductions in the purchases of these foods and possible positive multiplier effects that reduce demand for other products. Although some uncertainty remains, the associations found in this analysis are sufficiently robust to suggest that policies-and research-concerning the use of fiscal measures should consider a broader range of products than is currently the case. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly

  18. Modifying TiO{sub 2} surface architecture by oxygen plasma to increase dye sensitized solar cell efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Rajmohan, Gayathri Devi [Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds, Victoria 3216 (Australia); Dai, Xiujuan J., E-mail: jane.dai@deakin.edu.au [Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds, Victoria 3216 (Australia); Tsuzuki, Takuya; Lamb, Peter R. [Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds, Victoria 3216 (Australia); Plessis, Johan du [School of Applied Sciences, RMIT University, GPO Box 2476 V, Melbourne, Victoria 3001 (Australia); Huang, Fuzhi; Cheng, Yi-Bing [Department of Materials Engineering, Monash University, Melbourne, Victoria 3800 (Australia)

    2013-10-31

    Oxygen plasma treatment of TiO{sub 2} films has been used to improve the efficiency of dye sensitized solar cells. Both a commercial TiO{sub 2} sample and a TiO{sub 2} thin film synthesized by a sol-gel technique were treated using a custom built inductively coupled plasma apparatus. X-ray photoelectron spectroscopy revealed that oxygen-plasma treatment increased the number of oxygen functional groups (hydroxyl groups) and introduced some Ti{sup 3+} species on the surface of TiO{sub 2}. A sample solar cell with plasma treated TiO{sub 2} showed an overall solar-to-electricity conversion efficiency of 4.3%, about a 13% increase over untreated TiO{sub 2}. The photon conversion efficiency for the plasma treated TiO{sub 2} was 34% higher than untreated TiO{sub 2}. This enhanced cell-performance is partly due to increased dye adsorption from an increase in surface oxygen functional groups and also may be partly due to Ti{sup 3+} states on the surface of TiO{sub 2}. - Highlights: • Oxygen plasma is used to generate hydroxyl groups on the surface of TiO{sub 2} • Parallel study was conducted using a spin coated TiO{sub 2} and a Commercial TiO{sub 2} film. • The plasma functionalization caused increased dye uptake. • Some species in Ti{sup 3+} state are also generated after oxygen plasma. • Dye sensitised solar cell with functionalised electrode showed improved efficiency.

  19. Deletion of the Wolfram syndrome-related gene Wfs1 results in increased sensitivity to ethanol in female mice.

    Science.gov (United States)

    Raud, Sirli; Reimets, Riin; Loomets, Maarja; Sütt, Silva; Altpere, Alina; Visnapuu, Tanel; Innos, Jürgen; Luuk, Hendrik; Plaas, Mario; Volke, Vallo; Vasar, Eero

    2015-08-01

    Wolfram syndrome, induced by mutation in WFS1 gene, increases risk of developing mood disorders in humans. In mice, Wfs1 deficiency cause higher anxiety-like behaviour and increased response to anxiolytic-like effect of diazepam, a GABAA receptor agonist. As GABAergic system is also target for ethanol, we analysed its anxiolytic-like and sedative properties in Wfs1-deficient mice using elevated plus-maze test and tests measuring locomotor activity and coordination, respectively. Additionally loss of righting reflex test was conducted to study sedative/hypnotic properties of ethanol, ketamine and pentobarbital. To evaluate pharmacokinetics of ethanol in mice enzymatic colour test was used. Finally, gene expression of alpha subunits of GABAA receptors following ethanol treatment was studied by real-time-PCR. Compared to wild-types, Wfs1-deficient mice were more sensitive to ethanol-induced anxiolytic-like effect, but less responsive to impairment of motor coordination. Ethanol and pentobarbital, but not ketamine, caused longer duration of hypnosis in Wfs1-deficient mice. The expression of Gabra2 subunit at 30 minutes after ethanol injection was significantly increased in the frontal cortex of Wfs1-deficient mice as compared to respective vehicle-treated mice. For the temporal lobe, similar change in Gabra2 mRNA occurred at 60 minutes after ethanol treatment in Wfs1-deficient mice. No changes were detected in Gabra1 and Gabra3 mRNA following ethanol treatment. Taken together, increased anxiolytic-like effect of ethanol in Wfs1-deficient mice is probably related to altered Gabra2 gene expression. Increased anti-anxiety effect of GABAA receptor agonists in the present work and earlier studies (Luuk et al., 2009) further suggests importance of Wfs1 gene in the regulation of emotional behaviour. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Transport of proteolipid protein to the plasma membrane does not depend on glycosphingolipid cotransport in oligodendrocyte cultures

    NARCIS (Netherlands)

    van der Haar, ME; Visser, HW; de Vries, H; Hoekstra, D

    1998-01-01

    The possibility that transport of proteolipid protein (PLP) from its site of synthesis to the plasma membrane is dependent on cotransport with (sulfo)galactocerebrosides was investigated in primary cultured oligodendrocytes and Chinese hamster ovary (CHO) cells expressing PLP. Sulfation was

  1. Oligodendrocyte- and Neuron-Specific Nogo-A Restrict Dendritic Branching and Spine Density in the Adult Mouse Motor Cortex.

    Science.gov (United States)

    Zemmar, Ajmal; Chen, Chia-Chien; Weinmann, Oliver; Kast, Brigitt; Vajda, Flora; Bozeman, James; Isaad, Noel; Zuo, Yi; Schwab, Martin E

    2018-06-01

    Nogo-A has been well described as a myelin-associated inhibitor of neurite outgrowth and functional neuroregeneration after central nervous system (CNS) injury. Recently, a new role of Nogo-A has been identified as a negative regulator of synaptic plasticity in the uninjured adult CNS. Nogo-A is present in neurons and oligodendrocytes. However, it is yet unclear which of these two pools regulate synaptic plasticity. To address this question we used newly generated mouse lines in which Nogo-A is specifically knocked out in (1) oligodendrocytes (oligoNogo-A KO) or (2) neurons (neuroNogo-A KO). We show that both oligodendrocyte- and neuron-specific Nogo-A KO mice have enhanced dendritic branching and spine densities in layer 2/3 cortical pyramidal neurons. These effects are compartmentalized: neuronal Nogo-A affects proximal dendrites whereas oligodendrocytic Nogo-A affects distal regions. Finally, we used two-photon laser scanning microscopy to measure the spine turnover rate of adult mouse motor cortex layer 5 cells and find that both Nogo-A KO mouse lines show enhanced spine remodeling after 4 days. Our results suggest relevant control functions of glial as well as neuronal Nogo-A for synaptic plasticity and open new possibilities for more selective and targeted plasticity enhancing strategies.

  2. MicroRNA-22 inhibits the proliferation and migration, and increases the cisplatin sensitivity, of osteosarcoma cells

    Science.gov (United States)

    Zhou, Xiang; Natino, Dimple; Zhai, Xu; Gao, Zhongyang; He, Xijing

    2018-01-01

    Osteosarcoma (OS) is the major type of primary bone tumor and is associated with a poor prognosis due to chemotherapy resistance. Accumulating evidence indicates that microRNAs (miRNAs/miRs) may influence the tumor progression of OS and cell sensitivity to chemotherapy. In the present study, a total of 7 patients with OS and 7 healthy volunteers were recruited. Reverse transcription-quantitative polymerase chain reaction and ELISA were performed to determine the expression of miRNAs and mRNAs in the serum of participants. Furthermore, the biological function of miR-22 and S100A11 was examined in MG-63 cells using Cell Counting Kit-8 assays, Transwell migration assays and western blot analysis to determine the effects on cell proliferation, migration and protein expression, respectively, while MG-63 cell sensitivity to cisplatin was assessed by measuring cell viability following cisplatin treatment and calculating the half maximal inhibitory concentration (IC50). Additionally, the association between miR-22 and S100 calcium-binding protein A11 (S100A11) was validated using a luciferase reporter assay. The results demonstrated that miR-22 expression was significantly reduced in patients with OS and the MG-63 OS cell line, compared with healthy volunteers and the normal osteoblast hFOB 1.19 cell line, respectively, while the expression of S100A11 was negatively associated with miR-22 levels in the MG-63 cell line. Furthermore, overexpression of miR-22 inhibited the proliferation and migratory ability of MG-63 cells, and increased the sensitivity of MG-63 cells to cisplatin treatment; however, overexpression of S100A11 partially attenuated the alterations in proliferation, migratory ability and chemosensitivity that were induced by miR-22 overexpression. In addition, it was confirmed that S100A11 is a direct target gene of miR-22 in MG-63 cells. In conclusion, to the best of our knowledge, the present study is the first to demonstrate that miR-22 may be a promising

  3. Coordinated balancing of muscle oxidative metabolism through PGC-1{alpha} increases metabolic flexibility and preserves insulin sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Summermatter, Serge [Biozentrum, Division of Pharmacology/Neurobiology, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel (Switzerland); Troxler, Heinz [Division of Clinical Chemistry and Biochemistry, Department of Pediatrics, University Children' s Hospital, University of Zurich, Steinwiesstrasse 75, CH-8032 Zurich (Switzerland); Santos, Gesa [Biozentrum, Division of Pharmacology/Neurobiology, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel (Switzerland); Handschin, Christoph, E-mail: christoph.handschin@unibas.ch [Biozentrum, Division of Pharmacology/Neurobiology, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel (Switzerland)

    2011-04-29

    Highlights: {yields} PGC-1{alpha} enhances muscle oxidative capacity. {yields} PGC-1{alpha} promotes concomitantly positive and negative regulators of lipid oxidation. {yields} Regulator abundance enhances metabolic flexibility and balances oxidative metabolism. {yields} Balanced oxidation prevents detrimental acylcarnitine and ROS generation. {yields} Absence of detrimental metabolites preserves insulin sensitivity -- Abstract: The peroxisome proliferator-activated receptor {gamma} coactivator 1{alpha} (PGC-1{alpha}) enhances oxidative metabolism in skeletal muscle. Excessive lipid oxidation and electron transport chain activity can, however, lead to the accumulation of harmful metabolites and impair glucose homeostasis. Here, we investigated the effect of over-expression of PGC-1{alpha} on metabolic control and generation of insulin desensitizing agents in extensor digitorum longus (EDL), a muscle that exhibits low levels of PGC-1{alpha} in the untrained state and minimally relies on oxidative metabolism. We demonstrate that PGC-1{alpha} induces a strictly balanced substrate oxidation in EDL by concomitantly promoting the transcription of activators and inhibitors of lipid oxidation. Moreover, we show that PGC-1{alpha} enhances the potential to uncouple oxidative phosphorylation. Thereby, PGC-1{alpha} boosts elevated, yet tightly regulated oxidative metabolism devoid of side products that are detrimental for glucose homeostasis. Accordingly, PI3K activity, an early phase marker for insulin resistance, is preserved in EDL muscle. Our findings suggest that PGC-1{alpha} coordinately coactivates the simultaneous transcription of gene clusters implicated in the positive and negative regulation of oxidative metabolism and thereby increases metabolic flexibility. Thus, in mice fed a normal chow diet, over-expression of PGC-1{alpha} does not alter insulin sensitivity and the metabolic adaptations elicited by PGC-1{alpha} mimic the beneficial effects of endurance training

  4. Coordinated balancing of muscle oxidative metabolism through PGC-1α increases metabolic flexibility and preserves insulin sensitivity

    International Nuclear Information System (INIS)

    Summermatter, Serge; Troxler, Heinz; Santos, Gesa; Handschin, Christoph

    2011-01-01

    Highlights: → PGC-1α enhances muscle oxidative capacity. → PGC-1α promotes concomitantly positive and negative regulators of lipid oxidation. → Regulator abundance enhances metabolic flexibility and balances oxidative metabolism. → Balanced oxidation prevents detrimental acylcarnitine and ROS generation. → Absence of detrimental metabolites preserves insulin sensitivity -- Abstract: The peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) enhances oxidative metabolism in skeletal muscle. Excessive lipid oxidation and electron transport chain activity can, however, lead to the accumulation of harmful metabolites and impair glucose homeostasis. Here, we investigated the effect of over-expression of PGC-1α on metabolic control and generation of insulin desensitizing agents in extensor digitorum longus (EDL), a muscle that exhibits low levels of PGC-1α in the untrained state and minimally relies on oxidative metabolism. We demonstrate that PGC-1α induces a strictly balanced substrate oxidation in EDL by concomitantly promoting the transcription of activators and inhibitors of lipid oxidation. Moreover, we show that PGC-1α enhances the potential to uncouple oxidative phosphorylation. Thereby, PGC-1α boosts elevated, yet tightly regulated oxidative metabolism devoid of side products that are detrimental for glucose homeostasis. Accordingly, PI3K activity, an early phase marker for insulin resistance, is preserved in EDL muscle. Our findings suggest that PGC-1α coordinately coactivates the simultaneous transcription of gene clusters implicated in the positive and negative regulation of oxidative metabolism and thereby increases metabolic flexibility. Thus, in mice fed a normal chow diet, over-expression of PGC-1α does not alter insulin sensitivity and the metabolic adaptations elicited by PGC-1α mimic the beneficial effects of endurance training on muscle metabolism in this context.

  5. Electromagnetic fields (UHF) increase voltage sensitivity of membrane ion channels; possible indication of cell phone effect on living cells.

    Science.gov (United States)

    Ketabi, N; Mobasheri, H; Faraji-Dana, R

    2015-03-01

    The effects of ultra high frequency (UHF) nonionizing electromagnetic fields (EMF) on the channel activities of nanopore forming protein, OmpF porin, were investigated. The voltage clamp technique was used to study the single channel activity of the pore in an artificial bilayer in the presence and absence of the electromagnetic fields at 910 to 990 MHz in real time. Channel activity patterns were used to address the effect of EMF on the dynamic, arrangement and dielectric properties of water molecules, as well as on the hydration state and arrangements of side chains lining the channel barrel. Based on the varied voltage sensitivity of the channel at different temperatures in the presence and absence of EMF, the amount of energy transferred to nano-environments of accessible groups was estimated to address the possible thermal effects of EMF. Our results show that the effects of EMF on channel activities are frequency dependent, with a maximum effect at 930 MHz. The frequency of channel gating and the voltage sensitivity is increased when the channel is exposed to EMF, while its conductance remains unchanged at all frequencies applied. We have not identified any changes in the capacitance and permeability of membrane in the presence of EMF. The effect of the EMF irradiated by cell phones is measured by Specific Absorption Rate (SAR) in artificial model of human head, Phantom. Thus, current approach applied to biological molecules and electrolytes might be considered as complement to evaluate safety of irradiating sources on biological matter at molecular level.

  6. Multi-Shaped Ag Nanoparticles in the Plasmonic Layer of Dye-Sensitized Solar Cells for Increased Power Conversion Efficiency

    Directory of Open Access Journals (Sweden)

    Da Hyun Song

    2017-06-01

    Full Text Available The use of dye-sensitized solar cells (DSSCs is widespread owing to their high power conversion efficiency (PCE and low cost of manufacturing. We prepared multi-shaped Ag nanoparticles (NPs and introduced them into DSSCs to further enhance their PCE. The maximum absorption wavelength of the multi-shaped Ag NPs is 420 nm, including the shoulder with a full width at half maximum (FWHM of 121 nm. This is a broad absorption wavelength compared to spherical Ag NPs, which have a maximum absorption wavelength of 400 nm without the shoulder of 61 nm FWHM. Therefore, when multi-shaped Ag NPs with a broader plasmon-enhanced absorption were coated on a mesoporous TiO2 layer on a layer-by-layer structure in DSSCs, the PCE increased from 8.44% to 10.22%, equivalent to an improvement of 21.09% compared to DSSCs without a plasmonic layer. To confirm the plasmon-enhanced effect on the composite film structure in DSSCs, the PCE of DSSCs based on the composite film structure with multi-shaped Ag NPs increased from 8.58% to 10.34%, equivalent to an improvement of 20.51% compared to DSSCs without a plasmonic layer. This concept can be applied to perovskite solar cells, hybrid solar cells, and other solar cells devices.

  7. Primary Spinal OPC Culture System from Adult Zebrafish to Study Oligodendrocyte Differentiation In Vitro

    Directory of Open Access Journals (Sweden)

    Volker Kroehne

    2017-09-01

    Full Text Available Endogenous oligodendrocyte progenitor cells (OPCs are a promising target to improve functional recovery after spinal cord injury (SCI by remyelinating denuded, and therefore vulnerable, axons. Demyelination is the result of a primary insult and secondary injury, leading to conduction blocks and long-term degeneration of the axons, which subsequently can lead to the loss of their neurons. In response to SCI, dormant OPCs can be activated and subsequently start to proliferate and differentiate into mature myelinating oligodendrocytes (OLs. Therefore, researchers strive to control OPC responses, and utilize small molecule screening approaches in order to identify mechanisms of OPC activation, proliferation, migration and differentiation. In zebrafish, OPCs remyelinate axons of the optic tract after lysophosphatidylcholine (LPC-induced demyelination back to full thickness myelin sheaths. In contrast to zebrafish, mammalian OPCs are highly vulnerable to excitotoxic stress, a cause of secondary injury, and remyelination remains insufficient. Generally, injury induced remyelination leads to shorter internodes and thinner myelin sheaths in mammals. In this study, we show that myelin sheaths are lost early after a complete spinal transection injury, but are re-established within 14 days after lesion. We introduce a novel, easy-to-use, inexpensive and highly reproducible OPC culture system based on dormant spinal OPCs from adult zebrafish that enables in vitro analysis. Zebrafish OPCs are robust, can easily be purified with high viability and taken into cell culture. This method enables to examine why zebrafish OPCs remyelinate better than their mammalian counterparts, identify cell intrinsic responses, which could lead to pro-proliferating or pro-differentiating strategies, and to test small molecule approaches. In this methodology paper, we show efficient isolation of OPCs from adult zebrafish spinal cord and describe culture conditions that enable

  8. Bone morphogenetic protein signaling and olig1/2 interact to regulate the differentiation and maturation of adult oligodendrocyte precursor cells.

    Science.gov (United States)

    Cheng, Xiaoxin; Wang, Yaping; He, Qian; Qiu, Mengsheng; Whittemore, Scott R; Cao, Qilin

    2007-12-01

    Promotion of remyelination is an important therapeutic strategy for the treatment of the demyelinating neurological disorders. Adult oligodendrocyte precursor cells (OPCs), which normally reside quiescently in the adult central nervous system (CNS), become activated and proliferative after demyelinating lesions. However, the extent of endogenous remyelination is limited because of the failure of adult OPCs to mature into myelinating oligodendrocytes (OLs) in the demyelinated CNS. Understanding the molecular mechanisms that regulate the differentiation of adult OPCs could lead to new therapeutic strategies to treat these disorders. In this study, we established a stable culture of adult spinal cord OPCs and developed a reliable in vitro protocol to induce their sequential differentiation. Adult OPCs expressed bone morphogenetic protein (BMP) type Ia, Ib, and II receptor subunits, which are required for BMP signal transduction. BMP2 and 4 promoted dose-dependent astrocyte differentiation of adult OPCs with concurrent suppression of OL differentiation. Treatment of OPCs with BMP2 and 4 increased ID4 expression and decreased the expression of olig1 and olig2. Overexpression of olig1 or olig2 blocked the astrocyte differentiation of adult OPCs induced by BMP2 and 4. Furthermore, overexpression of both olig1 and olig2, but not olig1 or olig2 alone, rescued OL differentiation from inhibition by BMP2 and 4. Our results demonstrated that downregulation of olig1 and olig2 is an important mechanism by which BMP2 and 4 inhibit OL differentiation of adult OPCs. These data suggest that blocking BMP signaling combined with olig1/2 overexpression could be a useful therapeutic strategy to enhance endogenous remyelination and facilitate functional recovery in CNS demyelinated disorders. Disclosure of potential conflicts of interest is found at the end of this article.

  9. Transplantation of human embryonic stem cell-derived oligodendrocyte progenitors into rat spinal cord injuries does not cause harm.

    Science.gov (United States)

    Cloutier, Frank; Siegenthaler, Monica M; Nistor, Gabriel; Keirstead, Hans S

    2006-07-01

    Demyelination contributes to loss of function following spinal cord injury. We have shown previously that transplantation of human embryonic stem cell-derived oligodendrocyte progenitors into adult rat 200 kD contusive spinal cord injury sites enhances remyelination and promotes recovery of motor function. Previous studies using oligodendrocyte lineage cells have noted a correlation between the presence of demyelinating pathology and the survival and migration rate of the transplanted cells. The present study compared the survival and migration of human embryonic stem cell-derived oligodendrocyte progenitors injected 7 days after a 200 or 50 kD contusive spinal cord injury, as well as the locomotor outcome of transplantation. Our findings indicate that a 200 kD spinal cord injury induces extensive demyelination, whereas a 50 kD spinal cord injury induces no detectable demyelination. Cells transplanted into the 200 kD injury group survived, migrated, and resulted in robust remyelination, replicating our previous studies. In contrast, cells transplanted into the 50 kD injury group survived, exhibited limited migration, and failed to induce remyelination as demyelination in this injury group was absent. Animals that received a 50 kD injury displayed only a transient decline in locomotor function as a result of the injury. Importantly, human embryonic stem cell-derived oligodendrocyte progenitor transplants into the 50 kD injury group did not cause a further decline in locomotion. Our studies highlight the importance of a demyelinating pathology as a prerequisite for the function of transplanted myelinogenic cells. In addition, our results indicate that transplantation of human embryonic stem cell-derived oligodendrocyte progenitor cells into the injured spinal cord is not associated with a decline in locomotor function.

  10. Cross-talk between oxysterols and glucocorticoids: differential regulation of secreted phopholipase A2 and impact on oligodendrocyte death.

    Directory of Open Access Journals (Sweden)

    Amalia Trousson

    Full Text Available BACKGROUND: Oxysterols are oxidized forms of cholesterol. They have been shown to be implicated in cholesterol turnover, inflammation and in neurodegenerative diseases such as Alzheimer's disease and multiple sclerosis. Glial cells are targets of oxysterols: they inhibit astrocyte proliferation after brain injury, and we have previously shown that 25-hydroxycholesterol (25OH provokes oligodendrocyte apoptosis and stimulates the expression of sPLA2 type IIA (sPLA2-IIA, which has a protective effect. METHODOLOGY/PRINCIPAL FINDINGS: As glucocorticoids are well-known for their anti-inflammatory effects, our aim was to understand their direct effects on oxysterol-induced responses in oligodendrocytes (sPLA2-IIA stimulation and apoptosis. We demonstrate that the synthetic glucocorticoid dexamethasone (Dex abolishes the stimulation of sPLA2-IIA by 25-hydroxycholesterol (25-OH. This inhibition is mediated by the glucocorticoid receptor (GR, which decreases the expression of the oxysterol receptor Pregnane X Receptor (PXR and interferes with oxysterol signaling by recruiting a common limiting coactivator PGC1alpha. Consistent with the finding that sPLA2-IIA can partially protect oligodendrocytes against oxysterol-triggered apoptosis, we demonstrate here that the inhibition of sPLA2-IIA by Dex accelerates the apoptotic phenomenon, leading to a shift towards necrosis. We have shown by atomic force microscopy and electron microscopy that 25-OH and Dex alters oligodendrocyte shape and disorganizes the cytoplasm. CONCLUSIONS/SIGNIFICANCE: Our results provide a new understanding of the cross-talk between oxysterol and glucocorticoid signaling pathways and their respective roles in apoptosis and oligodendrocyte functions.

  11. Overfeeding reduces insulin sensitivity and increases oxidative stress, without altering markers of mitochondrial content and function in humans.

    Directory of Open Access Journals (Sweden)

    Dorit Samocha-Bonet

    Full Text Available Mitochondrial dysfunction and increased oxidative stress are associated with obesity and type 2 diabetes. High fat feeding induces insulin resistance and increases skeletal muscle oxidative stress in rodents, but there is controversy as to whether skeletal muscle mitochondrial biogenesis and function is altered.Forty (37 ± 2 y non-obese (25.6 ± 0.6 kg/m(2 sedentary men (n = 20 and women (n = 20 were overfed (+1040 ± 100 kcal/day, 46 ± 1% of energy from fat for 28 days. Hyperinsulinemic-euglycemic clamps were performed at baseline and day 28 of overfeeding and skeletal muscle biopsies taken at baseline, day 3 and day 28 of overfeeding in a sub cohort of 26 individuals (13 men and 13 women that consented to having all 3 biopsies performed. Weight increased on average in the whole cohort by 0.6 ± 0.1 and 2.7 ± 0.3 kg at days 3 and 28, respectively (P<0.0001, without a significant difference in the response between men and women (P = 0.4. Glucose infusion rate during the hyperinsulinemic-euglycemic clamp decreased from 54.8 ± 2.8 at baseline to 50.3 ± 2.5 µmol/min/kg FFM at day 28 of overfeeding (P = 0.03 without a significant difference between men and women (P = 0.4. Skeletal muscle protein carbonyls and urinary F2-isoprostanes increased with overfeeding (P<0.05. Protein levels of muscle peroxisome proliferator-activated receptor gamma coactivator-1α (PGC1α and subunits from complex I, II and V of the electron transport chain were increased at day 3 (all P<0.05 and returned to basal levels at day 28. No changes were detected in muscle citrate synthase activity or ex vivo CO(2 production at either time point.Peripheral insulin resistance was induced by overfeeding, without reducing any of the markers of mitochondrial content that were examined. Oxidative stress was however increased, and may have contributed to the reduction in insulin sensitivity observed.

  12. A flavonoid mutant of barley (Hordeum vulgare L.) exhibits increased sensitivity to UV-B radiation in the primary leaf

    International Nuclear Information System (INIS)

    Reuber, S.; Bornman, J.F.; Weissenböck, G.

    1996-01-01

    The aim of the present investigation was to define the role of soluble flavonoids as UV-B protectants in the primary leaf of barley (Hordeum vulgare L.). For this purpose we used a mutant line (Ant 287) from the Carlsberg collection of proanthocyanidin-free barley containing only 7% of total extractable flavonoids in the primary leaf as compared to the mother variety (Hiege 550/75). Seven-day-old leaves from plants grown under high visible light with or without supplementary UV-B radiation were used for the determination of UV-B sensitivity. UV-B-induced changes were assessed from parameters of chlorophyll fluorescence of photosystem II, including initial and maximum fluorescence, apparent quantum yield, and photochemical and non-photochemical quenching. A quartz fibre-optic microprobe was used to evaluate the amount of potentially harmful UV-B (310 nm radiation) penetrating into the leaf as a direct consequence of flavonoid deficiency. Our data indicate an essential role of flavonoids in UV-B protection of barley primary leaves. In leaves of the mutant line grown under supplementary UV-B, an increase in 310nm radiation in the mesophyll and a strong decrease in the quantum yield of photosynthesis were observed as compared to the corresponding mother variety. Primary leaves of liege responded to supplementary UV-B radiation with a 30% increase in the major flavonoid saponarin and a 500% increase in the minor compound lutonarin. This is assumed to be an efficient protective response since no changes in variable chlorophyll fluorescence were apparent. In addition, a further reduction in UV-B penetration into the mesophyll was recorded in these leaves

  13. Increased platelet expression of glycoprotein IIIa following aspirin treatment in aspirin-resistant but not aspirin-sensitive subjects

    Science.gov (United States)

    Floyd, Christopher N; Goodman, Timothy; Becker, Silke; Chen, Nan; Mustafa, Agnesa; Schofield, Emma; Campbell, James; Ward, Malcolm; Sharma, Pankaj; Ferro, Albert

    2014-01-01

    Aims Aspirin is widely used as an anti-platelet agent for cardiovascular prophylaxis. Despite aspirin treatment, many patients experience recurrent thrombotic events, and aspirin resistance may contribute to this. We examined the prevalence of aspirin resistance in a healthy population, and investigated whether the platelet proteome differed in aspirin-resistant subjects. Methods Ninety-three healthy subjects received aspirin 300 mg daily for 28 days. Before and at the end of treatment, urine was taken to determine 11-dehydrothromboxane B2, and blood was taken to measure arachidonic acid (AA)-induced aggregation of platelet-rich plasma and to interrogate the platelet proteome by mass spectrometric analysis with further confirmation of findings using Western blotting. Results In two of the 93 subjects, neither AA-induced aggregation nor urinary 11-dehydrothromboxane B2 was effectively suppressed by aspirin, despite measurable plasma salicylate concentrations, suggesting the presence of true aspirin resistance. Despite no detectable differences in the platelet proteome at baseline, following aspirin a marked increase was seen in platelet glycoprotein IIIa expression in the aspirin-resistant but not aspirin-sensitive subjects. An increase in platelet glycoprotein IIIa expression with aspirin resistance was confirmed in a separate cohort of 17 patients with stable coronary artery disease on long term aspirin treatment, four of whom exhibited aspirin resistance. Conclusions In a healthy population, true aspirin resistance is uncommon but exists. Resistance is associated with an increase in platelet glycoprotein IIIa expression in response to aspirin. These data shed new light on the mechanism of aspirin resistance, and provide the potential to identify aspirin-resistant subjects using a novel biomarker. PMID:25099258

  14. Increased amphetamine-induced locomotor activity, sensitization, and accumbal dopamine release in M5 muscarinic receptor knockout mice

    DEFF Research Database (Denmark)

    Schmidt, Lene S; Miller, Anthony D; Lester, Deranda B

    2010-01-01

    showed that M(5) receptor knockout (M (5) (-/-) ) mice are less sensitive to the reinforcing properties of addictive drugs. MATERIALS AND METHODS: Here, we investigate the role of M(5) receptors in the effects of amphetamine and cocaine on locomotor activity, locomotor sensitization, and dopamine release......-induced hyperactivity and dopamine release as well as amphetamine sensitization are enhanced in mice lacking the M(5) receptor. These results support the concept that the M(5) receptor modulates effects of addictive drugs....

  15. Enhancement of Rayleigh scatter in optical fiber by simple UV treatment: an order of magnitude increase in distributed sensing sensitivity

    Science.gov (United States)

    Loranger, Sébastien; Parent, François; Lambin-Iezzi, Victor; Kashyap, Raman

    2016-02-01

    Rayleigh scatter in optical fiber communication systems has long been considered a nuisance as a loss mechanism, although applications have used such scatter to probe the fiber for faults and propagation loss using time domain reflectometry (OTDR). It is however only with the development of Frequency domain reflectometry (OFDR) and coherent-phase OTDR that Rayleigh scatter has been probed to its deepest and can now be used to measure strain and temperature along a fiber, leading to the first distributed sensing applications. However, Rayleigh scatter remains very weak giving rise to very small signals which limits the technique for sensing. We show here a new technique to significantly enhance the Rayleigh scatter signal by at least two orders of magnitude, in a standard optical fiber with simple UV exposure of the core. A study of various exposures with different types of fibers has been conducted and a phenomenological description developed. We demonstrate that such an increase in signal can enhance the temperature and strain sensitivity by an order of magnitude for distributed sensing with an OFDR technique. Such improved performance can lead to temperature/strain RMS noise levels of 6 mK and 50 nɛ for 1 cm spatial resolution in UV exposed SMF-28, compared to the typical noise level of 100 mK for the same spatial resolution in the similar unexposed fiber.

  16. Phosphorylation of hormone-sensitive lipase by protein kinase A in vitro promotes an increase in its hydrophobic surface area

    DEFF Research Database (Denmark)

    Krintel, Christian; Mörgelin, Matthias; Logan, Derek T

    2009-01-01

    Hormone-sensitive lipase (EC 3.1.1.79; HSL) is a key enzyme in the mobilization of fatty acids from stored triacylglycerols. HSL activity is controlled by phosphorylation of at least four serines. In rat HSL, Ser563, Ser659 and Ser660 are phosphorylated by protein kinase A (PKA) in vitro as well......, the hydrophobic fluorescent probe 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid (bis-ANS) was found to inhibit the hydrolysis of triolein by purified recombinant rat adipocyte HSL, with a decrease in the effect of bis-ANS upon PKA phosphorylation of HSL. The interaction of HSL with bis-ANS was found to have...... a Kd of 1 microM in binding assays. Upon PKA phosphorylation, the interactions of HSL with both bis-ANS and the alternative probe SYPRO Orange were increased. By negative stain transmission electron microscopy, phosphorylated HSL was found to have a closer interaction with phospholipid vesicles than...

  17. Electric Signals Regulate the Directional Migration of Oligodendrocyte Progenitor Cells (OPCs via β1 Integrin

    Directory of Open Access Journals (Sweden)

    Bangfu Zhu

    2016-11-01

    Full Text Available The guided migration of neural cells is essential for repair in the central nervous system (CNS. Oligodendrocyte progenitor cells (OPCs will normally migrate towards an injury site to re-sheath demyelinated axons; however the mechanisms underlying this process are not well understood. Endogenous electric fields (EFs are known to influence cell migration in vivo, and have been utilised in this study to direct the migration of OPCs isolated from neonatal Sprague-Dawley rats. The OPCs were exposed to physiological levels of electrical stimulation, and displayed a marked electrotactic response that was dependent on β1 integrin, one of the key subunits of integrin receptors. We also observed that F-actin, an important component of the cytoskeleton, was re-distributed towards the leading edge of the migrating cells, and that this asymmetric rearrangement was associated with β1 integrin function.

  18. Oligodendrocyte ablation affects the coordinated interaction between granule and Purkinje neurons during cerebellum development

    International Nuclear Information System (INIS)

    Collin, Ludovic; Doretto, Sandrine; Malerba, Monica; Ruat, Martial; Borrelli, Emiliana

    2007-01-01

    Oligodendrocytes (OLs) are the glial cells of the central nervous system (CNS) classically known to be devoted to the formation of myelin sheaths around most axons of the vertebrate brain. We have addressed the role of these cells during cerebellar development, by ablating OLs in vivo. Previous analyses had indicated that OL ablation during the first six postnatal days results into a striking cerebellar phenotype, whose major features are a strong reduction of granule neurons and aberrant Purkinje cells development. These two cell types are highly interconnected during cerebellar development through the production of molecules that help their proliferation, differentiation and maintenance. In this article, we present data showing that OL ablation has major effects on the physiology of Purkinje (PC) and granule cells (GC). In particular, OL ablation results into a reduction of sonic hedgehog (Shh), Brain Derived Neurotrophic Factor (BDNF), and Reelin (Rln) expression. These results indicate that absence of OLs profoundly alters the normal cerebellar developmental program

  19. Vitamin D receptor–retinoid X receptor heterodimer signaling regulates oligodendrocyte progenitor cell differentiation

    Science.gov (United States)

    de la Fuente, Alerie Guzman; Errea, Oihana; van Wijngaarden, Peter; Gonzalez, Ginez A.; Kerninon, Christophe; Jarjour, Andrew A.; Lewis, Hilary J.; Jones, Clare A.; Nait-Oumesmar, Brahim; Zhao, Chao; Huang, Jeffrey K.; ffrench-Constant, Charles

    2015-01-01

    The mechanisms regulating differentiation of oligodendrocyte (OLG) progenitor cells (OPCs) into mature OLGs are key to understanding myelination and remyelination. Signaling via the retinoid X receptor γ (RXR-γ) has been shown to be a positive regulator of OPC differentiation. However, the nuclear receptor (NR) binding partner of RXR-γ has not been established. In this study we show that RXR-γ binds to several NRs in OPCs and OLGs, one of which is vitamin D receptor (VDR). Using pharmacological and knockdown approaches we show that RXR–VDR signaling induces OPC differentiation and that VDR agonist vitamin D enhances OPC differentiation. We also show expression of VDR in OLG lineage cells in multiple sclerosis. Our data reveal a role for vitamin D in the regenerative component of demyelinating disease and identify a new target for remyelination medicines. PMID:26644513

  20. Evaluation of a fluorescence polarographic immunoassay with increased sensitivity for measurement of low concentrations of tobramycin in serum

    NARCIS (Netherlands)

    Touw, D J; de Graaf, A I; de Goede, P

    The limits of quantitation of the assay of tobramycin in serum by the fluorescence polarization immunoassay system marketed by Abbott Laboratories (TDxFLx system) are 0.1 and 10.0 mg/L. For some pharmacokinetic studies, however, a more sensitive analysis is needed. The sensitivity of the TDxFLx

  1. Polyunsaturated fatty acids acutely affect triacylglycerol-derived skeletal muscle fatty acid uptake and increases postprandial insulin sensitivity

    NARCIS (Netherlands)

    Jans, Anneke; Konings, Ellen; Goossens, Gijs H.; Bouwman, Freek G.; Moors, Chantalle C.; Boekschoten, Mark; Afman, Lydia; Muller, Michael; Mariman, Edwin C.; Blaak, Ellen E.

    2012-01-01

    Dietary fat quality may influence skeletal muscle lipid handling and fat accumulation, thereby modulating insulin sensitivity. Objective: To examine acute effects of meals with various fatty acid (FA) compositions on skeletal muscle FA handling and postprandial insulin sensitivity in obese insulin

  2. The Microbiome-Gut-Behavior Axis: Crosstalk Between the Gut Microbiome and Oligodendrocytes Modulates Behavioral Responses.

    Science.gov (United States)

    Ntranos, Achilles; Casaccia, Patrizia

    2018-01-01

    Environmental and dietary stimuli have always been implicated in brain development and behavioral responses. The gut, being the major portal of communication with the external environment, has recently been brought to the forefront of this interaction with the establishment of a gut-brain axis in health and disease. Moreover, recent breakthroughs in germ-free and antibiotic-treated mice have demonstrated the significant impact of the microbiome in modulating behavioral responses in mice and have established a more specific microbiome-gut-behavior axis. One of the mechanisms by which this axis affects social behavior is by regulating myelination at the prefrontal cortex, an important site for complex cognitive behavior planning and decision-making. The prefrontal cortex exhibits late myelination of its axonal projections that could extend into the third decade of life in humans, which make it susceptible to external influences, such as microbial metabolites. Changes in the gut microbiome were shown to alter the composition of the microbial metabolome affecting highly permeable bioactive compounds, such as p-cresol, which could impair oligodendrocyte differentiation. Dysregulated myelination in the prefrontal cortex is then able to affect behavioral responses in mice, shifting them towards social isolation. The reduced social interactions could then limit microbial exchange, which could otherwise pose a threat to the survival of the existing microbial community in the host and, thus, provide an evolutionary advantage to the specific microbial community. In this review, we will analyze the microbiome-gut-behavior axis, describe the interactions between the gut microbiome and oligodendrocytes and highlight their role in the modulation of social behavior.

  3. 'Leukodystrophy-like' phenotype in children with myelin oligodendrocyte glycoprotein antibody-associated disease.

    Science.gov (United States)

    Hacohen, Yael; Rossor, Thomas; Mankad, Kshitij; Chong, Wk 'Kling'; Lux, Andrew; Wassmer, Evangeline; Lim, Ming; Barkhof, Frederik; Ciccarelli, Olga; Hemingway, Cheryl

    2018-04-01

    To review the demographics and clinical and paraclinical parameters of children with myelin oligodendrocyte glycoprotein (MOG) antibody-associated relapsing disease. In this UK-based, multicentre study, 31 children with MOG antibody-associated relapsing disease were studied retrospectively. Of the 31 children studied, 14 presented with acute disseminated encephalomyelitis (ADEM); they were younger (mean 4.1y) than the remainder (mean 8.5y) who presented with optic neuritis and/or transverse myelitis (p<0.001). Similarly, children who had an abnormal brain magnetic resonance imaging (MRI) at onset (n=20) were younger than patients with normal MRI at onset (p=0.001) or at follow-up (p<0.001). 'Leukodystrophy-like' MRI patterns of confluent largely symmetrical lesions was seen during the course of the disease in 7 out of 14 children with a diagnosis of ADEM, and was only seen in children younger than 7 years of age. Their disability after a 3-year follow-up was mild to moderate, and most patients continued to relapse, despite disease-modifying treatments. MOG antibody should be tested in children presenting with relapsing neurological disorders associated with confluent, bilateral white matter changes, and distinct enhancement pattern. Children with MOG antibody-associated disease present with age-related differences in phenotypes, with a severe leukoencephalopathy phenotype in the very young and normal intracranial MRI in the older children. This finding suggests a susceptibility of the very young and myelinating brain to MOG antibody-mediated mechanisms of damage. Myelin oligodendrocyte glycoprotein (MOG) antibody-associated demyelination manifest with an age-related phenotype. Children with MOG antibody and 'leukodystrophy-like' imaging patterns tend to have poor response to second-line immunotherapy. © 2017 Mac Keith Press.

  4. Restoration of Muscle Mitochondrial Function and Metabolic Flexibility in Type 2 Diabetes by Exercise Training Is Paralleled by Increased Myocellular Fat Storage and Improved Insulin Sensitivity

    NARCIS (Netherlands)

    Meex, R.C.R.; Schrauwen-Hinderling, V.B.; Moonen-Kornips, E.; Schaart, G.; Mensink, M.R.; Phielix, E.; Weijer, van de T.; Sels, J.P.; Schrauwen, P.; Hesselink, M.K.C.

    2010-01-01

    OBJECTIVE-Mitochondrial dysfunction and fat accumulation in skeletal muscle (increased intramyocellular lipid [IMCL]) have been linked to development of type 2 diabetes. We examined whether exercise training could restore mitochondrial function and insulin sensitivity in patients with type 2

  5. Increased Sensitivity to Binge Alcohol-Induced Gut Leakiness and Inflammatory Liver Disease in HIV Transgenic Rats.

    Directory of Open Access Journals (Sweden)

    Atrayee Banerjee

    Full Text Available The mechanisms of alcohol-mediated advanced liver injury in HIV-infected individuals are poorly understood. Thus, this study was aimed to investigate the effect of binge alcohol on the inflammatory liver disease in HIV transgenic rats as a model for simulating human conditions. Female wild-type (WT or HIV transgenic rats were treated with three consecutive doses of binge ethanol (EtOH (3.5 g/kg/dose oral gavages at 12-h intervals or dextrose (Control. Blood and liver tissues were collected at 1 or 6-h following the last dose of ethanol or dextrose for the measurements of serum endotoxin and liver pathology, respectively. Compared to the WT, the HIV rats showed increased sensitivity to alcohol-mediated gut leakiness, hepatic steatosis and inflammation, as evidenced with the significantly elevated levels of serum endotoxin, hepatic triglycerides, histological fat accumulation and F4/80 staining. Real-time PCR analysis revealed that hepatic levels of toll-like receptor-4 (TLR4, leptin and the downstream target monocyte chemoattractant protein-1 (MCP-1 were significantly up-regulated in the HIV-EtOH rats, compared to all other groups. Subsequent experiments with primary cultured cells showed that both hepatocytes and hepatic Kupffer cells were the sources of the elevated MCP-1 in HIV-EtOH rats. Further, TLR4 and MCP-1 were found to be upregulated by leptin. Collectively, these results show that HIV rats, similar to HIV-infected people being treated with the highly active anti-retroviral therapy (HAART, are more susceptible to binge alcohol-induced gut leakiness and inflammatory liver disease than the corresponding WT, possibly due to additive or synergistic interaction between binge alcohol exposure and HIV infection. Based on these results, HIV transgenic rats can be used as a surrogate model to study the molecular mechanisms of many disease states caused by heavy alcohol intake in HIV-infected people on HAART.

  6. Thymidine kinase deficient human cells have increased UV sensitivity in their capacity to support herpes simplex virus but normal UV sensitivity for colony formation

    International Nuclear Information System (INIS)

    Rainbow, A.J.

    1989-01-01

    A thymidine kinase deficient (tk - ) and two thymidine kinase proficient (tk + ) human cell lines were compared for UV sensitivity using colony-forming ability as well as their capacity to support the plaque formation of herpes simplex type 1 (HSV-1).The tk - line (143 cells) was a derivative of one of the tk + lines (R970-5), whereas the other tk + line (AC4 cells) was a derivative of the 143 cells obtained by transfection with purified sheared HSV-2 DNA encoding the viral tk gene. 143, R970-5 and AC4 cells showed a similar UV sensitivity for colony-forming ability. In contrast, the capacity to support HSV-1 plaque formation immediately (within 1 h) afte UV-irradiation was reduced to a greater extent in the 143 cells compared to the R970-5 and AC4 cells. Capacity curves for plaque formation of the HSV-1: KOS wild-type (tk + ) strain were similar to those for the HSV-1: PTK3B mutant (tk - ) strain were similar to those for the HSV-1: PTK3B mutant (tk - ) strain in the 3 cell strains, indicating that the viral tk gene does not influence the ability of HSV-1 to form plaques in UV-irradiated compared to unirradiated human cells. Cellular capacity for HSV-1 plaque formation was found to recover in both tk - and tk + cells for cultures infected 24 h after UV-irradiation. These results suggest that repair of UV-damaged DNA takes place to a similar extent in both tk - and tk + human cells, but the kinetics of repair are initially slower in tk - compared to tk + human cells. (author). 33 refs.; 3 figs.; 1 tab

  7. Bone Morphogenetic Protein Signaling and Olig1/2 Interact to Regulate the Differentiation and Maturation of Adult Oligodendrocyte Precursor Cells

    OpenAIRE

    Cheng, Xiaoxin; Wang, Yaping; He, Qian; Qiu, Mengsheng; Whittemore, Scott R.; Cao, Qilin

    2007-01-01

    Promotion of remyelination is an important therapeutic strategy for the treatment of the demyelinating neurological disorders. Adult oligodendrocyte precursor cells (OPCs), which normally reside quiescently in the adult central nervous system (CNS), become activated and proliferative after demyelinating lesions. However, the extent of endogenous remyelination is limited because of the failure of adult OPCs to mature into myelinating oligodendrocytes (OLs) in the demyelinated CNS. Understandin...

  8. Palmitate-induced ER stress increases trastuzumab sensitivity in HER2/neu-positive breast cancer cells

    International Nuclear Information System (INIS)

    Baumann, Jan; Wong, Jason; Sun, Yan; Conklin, Douglas S.

    2016-01-01

    HER2/neu-positive breast cancer cells have recently been shown to use a unique Warburg-like metabolism for survival and aggressive behavior. These cells exhibit increased fatty acid synthesis and storage compared to normal breast cells or other tumor cells. Disruption of this synthetic process results in apoptosis. Since the addition of physiological doses of exogenous palmitate induces cell death in HER2/neu-positive breast cancer cells, the pathway is likely operating at its limits in these cells. We have studied the response of HER2/neu-positive breast cancer cells to physiological concentrations of exogenous palmitate to identify lipotoxicity-associated consequences of this physiology. Since epidemiological data show that a diet rich in saturated fatty acids is negatively associated with the development of HER2/neu-positive cancer, this cellular physiology may be relevant to the etiology and treatment of the disease. We sought to identify signaling pathways that are regulated by physiological concentrations of exogenous palmitate specifically in HER2/neu-positive breast cancer cells and gain insights into the molecular mechanism and its relevance to disease prevention and treatment. Transcriptional profiling was performed to assess programs that are regulated in HER2-normal MCF7 and HER2/neu-positive SKBR3 breast cancer cells in response to exogenous palmitate. Computational analyses were used to define and predict functional relationships and identify networks that are differentially regulated in the two cell lines. These predictions were tested using reporter assays, fluorescence-based high content microscopy, flow cytometry and immunoblotting. Physiological effects were confirmed in HER2/neu-positive BT474 and HCC1569 breast cancer cell lines. Exogenous palmitate induces functionally distinct transcriptional programs in HER2/neu-positive breast cancer cells. In the lipogenic HER2/neu-positive SKBR3 cell line, palmitate induces a G2 phase cell cycle delay and

  9. Attentional Avoidance is Associated with Increased Pain Sensitivity in Patients with Chronic Posttraumatic Pain and Comorbid Posttraumatic Stress

    DEFF Research Database (Denmark)

    Harvold, Mathea; MacLeod, Colin; Vaegter, Henrik Bjarke

    2018-01-01

    posttraumatic pain patients is unknown. This study investigated AB for linguistic pain- and trauma-related stimuli, and clinical and thermal sensitivity in patients with chronic posttraumatic pain with and without PTSD. METHODS: Thirty-four patients with chronic posttraumatic cervical pain performed the visual......OBJECTIVES: Posttraumatic stress disorder (PTSD) is common in chronic posttraumatic pain. Theoretical models suggest that attentional biases (AB) contribute to the development and maintenance of chronic pain and PTSD, however, the influence of AB on clinical and heat pain sensitivity in chronic...... attentional probe task assessing patterns of selective attentional responding to trauma cues and to pain cues. The task used short (500 ms) and long (1250 ms) stimulus exposure durations to ensure sensitivity to both the orienting and maintenance of attention. Heat pain threshold (HPT) was assessed at the non-painful...

  10. Withanolide E sensitizes renal carcinoma cells to TRAIL-induced apoptosis by increasing cFLIP degradation.

    Science.gov (United States)

    Henrich, C J; Brooks, A D; Erickson, K L; Thomas, C L; Bokesch, H R; Tewary, P; Thompson, C R; Pompei, R J; Gustafson, K R; McMahon, J B; Sayers, T J

    2015-02-26

    Withanolide E, a steroidal lactone from Physalis peruviana, was found to be highly active for sensitizing renal carcinoma cells and a number of other human cancer cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis. Withanolide E, the most potent and least toxic of five TRAIL-sensitizing withanolides identified, enhanced death receptor-mediated apoptotic signaling by a rapid decline in the levels of cFLIP proteins. Other mechanisms by which TRAIL sensitizers have been reported to work: generation of reactive oxygen species (ROS), changes in pro-and antiapoptotic protein expression, death receptor upregulation, activation of intrinsic (mitochondrial) apoptotic pathways, ER stress, and proteasomal inhibition proved to be irrelevant to withanolide E activity. Loss of cFLIP proteins was not due to changes in expression, but rather destabilization and/or aggregation, suggesting impairment of chaperone proteins leading to degradation. Indeed, withanolide E treatment altered the stability of a number of HSP90 client proteins, but with greater apparent specificity than the well-known HSP90 inhibitor geldanamycin. As cFLIP has been reported to be an HSP90 client, this provides a potentially novel mechanism for sensitizing cells to TRAIL. Sensitization of human renal carcinoma cells to TRAIL-induced apoptosis by withanolide E and its lack of toxicity were confirmed in animal studies. Owing to its novel activity, withanolide E is a promising reagent for the analysis of mechanisms of TRAIL resistance, for understanding HSP90 function, and for further therapeutic development. In marked contrast to bortezomib, among the best currently available TRAIL sensitizers, withanolide E's more specific mechanism of action suggests minimal toxic side effects.

  11. Suppression of gastric acid increases the risk of developing immunoglobulin E-mediated drug hypersensitivity: human diclofenac sensitization and a murine sensitization model.

    Science.gov (United States)

    Riemer, A B; Gruber, S; Pali-Schöll, I; Kinaciyan, T; Untersmayr, E; Jensen-Jarolim, E

    2010-03-01

    Hypersensitivity reactions towards non-steroidal anti-inflammatory drugs (NSAID) are common, although true allergies are detectable only in a subgroup of patients. The current study was prompted by a case observation, where a patient experienced generalized urticaria following his second course of diclofenac and proton pump inhibitor medication, and was found to have diclofenac-specific IgE. During recent years, our group has been investigating the importance of gastric digestion in the development of food allergies, demonstrating anti-acid medication as a risk factor for sensitization against food proteins. Here, we aimed to investigate whether the mechanism of food allergy induction described can also be causative in NSAID allergy, using diclofenac as a paradigm. We subjected BALB/c mice to several oral immunization regimens modelled after the patient's medication intake. Diclofenac was applied with or without gastric acid suppression, in various doses, alone or covalently coupled to albumin, a protein abundant in gastric juices. Immune responses were assessed on the antibody level, and functionally examined by in vitro and in vivo crosslinking assays. Only mice receiving albumin-coupled diclofenac under gastric acid suppression developed anti-diclofenac IgG1 and IgE, whereas no immune responses were induced by the drug alone or without gastric acid suppression. Antibody induction was dose dependent with the group receiving the higher dose of the drug showing sustained anti-diclofenac titres. The antibodies induced triggered basophil degranulation in vitro and positive skin tests in vivo. Gastric acid suppression was found to be a causative mechanism in the induction of IgE-mediated diclofenac allergy.

  12. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury.

    Science.gov (United States)

    Keirstead, Hans S; Nistor, Gabriel; Bernal, Giovanna; Totoiu, Minodora; Cloutier, Frank; Sharp, Kelly; Steward, Oswald

    2005-05-11

    Demyelination contributes to loss of function after spinal cord injury, and thus a potential therapeutic strategy involves replacing myelin-forming cells. Here, we show that transplantation of human embryonic stem cell (hESC)-derived oligodendrocyte progenitor cells (OPCs) into adult rat spinal cord injuries enhances remyelination and promotes improvement of motor function. OPCs were injected 7 d or 10 months after injury. In both cases, transplanted cells survived, redistributed over short distances, and differentiated into oligodendrocytes. Animals that received OPCs 7 d after injury exhibited enhanced remyelination and substantially improved locomotor ability. In contrast, when OPCs were transplanted 10 months after injury, there was no enhanced remyelination or locomotor recovery. These studies document the feasibility of predifferentiating hESCs into functional OPCs and demonstrate their therapeutic potential at early time points after spinal cord injury.

  13. Adenosine A₂A receptors inhibit delayed rectifier potassium currents and cell differentiation in primary purified oligodendrocyte cultures.

    Science.gov (United States)

    Coppi, Elisabetta; Cellai, Lucrezia; Maraula, Giovanna; Pugliese, Anna Maria; Pedata, Felicita

    2013-10-01

    Oligodendrocyte progenitor cells (OPCs) are a population of cycling cells which persist in the adult central nervous system (CNS) where, under opportune stimuli, they differentiate into mature myelinating oligodendrocytes. Adenosine A(2A) receptors are Gs-coupled P1 purinergic receptors which are widely distributed throughout the CNS. It has been demonstrated that OPCs express A(2A) receptors, but their functional role in these cells remains elusive. Oligodendrocytes express distinct voltage-gated ion channels depending on their maturation. Here, by electrophysiological recordings coupled with immunocytochemical labeling, we studied the effects of adenosine A(2A) receptors on membrane currents and differentiation of purified primary OPCs isolated from the rat cortex. We found that the selective A(2A) agonist, CGS21680, inhibits sustained, delayed rectifier, K(+) currents (I(K)) without modifying transient (I(A)) conductances. The effect was observed in all cells tested, independently from time in culture. CGS21680 inhibition of I(K) current was concentration-dependent (10-200 nM) and blocked in the presence of the selective A(2A) antagonist SCH58261 (100 nM). It is known that I(K) currents play an important role during OPC development since their block decreases cell proliferation and differentiation. In light of these data, our further aim was to investigate whether A(2A) receptors modulate these processes. CGS21680, applied at 100 nM in the culture medium of oligodendrocyte cultures, inhibits OPC differentiation (an effect prevented by SCH58261) without affecting cell proliferation. Data demonstrate that cultured OPCs express functional A(2A) receptors whose activation negatively modulate I(K) currents. We propose that, by this mechanism, A(2A) adenosine receptors inhibit OPC differentiation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Controlling the electrochemical deposition of silver onto gold nanoparticles: reducing interferences and increasing the sensitivity of magnetoimmuno assays.

    Science.gov (United States)

    de la Escosura-Muñiz, Alfredo; Maltez-da Costa, Marisa; Merkoçi, Arben

    2009-04-15

    An electrocatalytical method induced by gold nanoparticles in order to improve the sensitivity of the magnetoimmunosensing technology is reported. Microparamagnetic beads as primary antibodies immobilization platforms and gold nanoparticles modified with secondary antibodies as high sensitive electrocatalytical labels are used. A built-in magnet carbon electrode allows the collection/immobilization on its surface of the microparamagnetic beads with the immunological sandwich and gold nanoparticle catalysts attached onto. The developed magnetoimmunosensing technology allows the antigen detection with an enhanced sensitivity due to the catalytic effect of gold nanoparticles on the electroreduction of silver ions. The main parameters that affect the different steps of the developed assay are optimized so as to reach a high sensitive electrochemical detection of the protein. The low levels of gold nanoparticles detected with this method allow the obtaining of a novel immunosensor with low protein detection limits (up to 23 fg/mL), with special interest for further applications in clinical analysis, food quality and safety as well as other industrial applications.

  15. Estratégias para aumento de sensibilidade em espectrofotometria UV-VIS Strategies to increase sensitivity in UV-VIS spectrophotometry

    Directory of Open Access Journals (Sweden)

    Fábio R. P. Rocha

    2004-10-01

    Full Text Available Spectrophotometry is one of the most widespread analytical techniques due to its simplicity, reliability, and low-cost instrumentation for both direct measurements and coupled to other techniques or processes such as chromatography, electrophoresis and flow analysis. However, the application is often limited by sensitivity. This article describes some advances that greatly improve the performance of spectrophotometric measurements, especially in order to increase sensitivity, including the employment of liquid-core waveguides and solid-phase spectrophotometry.

  16. A complex between contactin-1 and the protein tyrosine phosphatase PTPRZ controls the development of oligodendrocyte precursor cells

    Energy Technology Data Exchange (ETDEWEB)

    Lamprianou, Smaragda; Chatzopoulou, Elli; Thomas, Jean-Léon; Bouyain, Samuel; Harroch, Sheila (IP-Korea); (UPMC); (UMKC)

    2013-09-23

    The six members of the contactin (CNTN) family of neural cell adhesion molecules are involved in the formation and maintenance of the central nervous system (CNS) and have been linked to mental retardation and neuropsychiatric disorders such as autism. Five of the six CNTNs bind to the homologous receptor protein tyrosine phosphatases gamma (PTPRG) and zeta (PTPRZ), but the biological roles of these interactions remain unclear. We report here the cocrystal structure of the carbonic anhydrase-like domain of PTPRZ bound to tandem Ig repeats of CNTN1 and combine these structural data with binding assays to show that PTPRZ binds specifically to CNTN1 expressed at the surface of oligodendrocyte precursor cells. Furthermore, analyses of glial cell populations in wild-type and PTPRZ-deficient mice show that the binding of PTPRZ to CNTN1 expressed at the surface of oligodendrocyte precursor cells inhibits their proliferation and promotes their development into mature oligodendrocytes. Overall, these results implicate the PTPRZ/CNTN1 complex as a previously unknown modulator of oligodendrogenesis.

  17. Nf1 Loss and Ras Hyperactivation in Oligodendrocytes Induce NOS-Driven Defects in Myelin and Vasculature

    Directory of Open Access Journals (Sweden)

    Debra A. Mayes

    2013-09-01

    Full Text Available Patients with neurofibromatosis type 1 (NF1 and Costello syndrome Rasopathy have behavioral deficits. In NF1 patients, these may correlate with white matter enlargement and aberrant myelin. To model these features, we induced Nf1 loss or HRas hyperactivation in mouse oligodendrocytes. Enlarged brain white matter tracts correlated with myelin decompaction, downregulation of claudin-11, and mislocalization of connexin-32. Surprisingly, non-cell-autonomous defects in perivascular astrocytes and the blood-brain barrier (BBB developed, implicating a soluble mediator. Nitric oxide (NO can disrupt tight junctions and gap junctions, and NO and NO synthases (NOS1–NOS3 were upregulated in mutant white matter. Treating mice with the NOS inhibitor NG-nitro-L-arginine methyl ester or the antioxidant N-acetyl cysteine corrected cellular phenotypes. CNP-HRasG12V mice also displayed locomotor hyperactivity, which could be rescued by antioxidant treatment. We conclude that Nf1/Ras regulates oligodendrocyte NOS and that dysregulated NO signaling in oligodendrocytes can alter the surrounding vasculature. The data suggest that antioxidants may improve some behavioral deficits in Rasopathy patients.

  18. Recombinant EPF/chaperonin 10 promotes the survival of O4-positive pro-oligodendrocytes prepared from neonatal rat brain.

    Science.gov (United States)

    McCombe, P A

    2008-12-01

    Chaperonin 10 (cpn 10) is a small heat-shock protein that is usually intracellular. Early pregnancy factor (EPF), a biologically active protein that was first described in the serum of pregnant mammals, is homologous to cpn 10. EPF/cpn 10 has been reported to have effects on immunomodulation and cell survival and to inhibit activation of toll-like receptors by lipopolysaccharide. We found that recombinant EPF/cpn 10 was able to suppress experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, which is a disease causing inflammation and demyelination of the brain and spinal cord. This beneficial effect could be due to anti-inflammatory and/or cell survival properties of EPF/cpn 10. We aimed to assess the effects of cpn 10 on cells of the oligodendrocyte lineage because oligodendrocytes are the brain cells that produce myelin and that are depleted in multiple sclerosis. Two forms of recombinant EPF/cpn 10 were prepared in the pGEX expression system and in the baculovirus expression system. Purified O4(+) pro-oligodendrocytes were prepared from the brains of day-old Wistar rats and isolated by cell sorting with flow cytometry. Single cells were dispensed into micro-well plates and tested for survival in the presence of a range of concentrations of the two forms of cpn 10. We also studied the effects of bFGF, PDGF, IGF-1 and insulin as controls. With cpn 10 present, there was enhanced survival of O4(+) cells.

  19. Increasing sensitivity and angle-of-view of mid-wave infrared detectors by integration with dielectric microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Kenneth W., E-mail: kenneth.allen@gtri.gatech.edu; Astratov, Vasily N., E-mail: astratov@uncc.edu [Department of Physics and Optical Science, Center for Optoelectronics and Optical Communications, University of North Carolina at Charlotte, Charlotte, North Carolina 28223-0001 (United States); Air Force Research Laboratory, Sensors Directorate, Wright Patterson AFB, Ohio 45433 (United States); UES, Dayton, Ohio 45433 (United States); Abolmaali, Farzaneh [Department of Physics and Optical Science, Center for Optoelectronics and Optical Communications, University of North Carolina at Charlotte, Charlotte, North Carolina 28223-0001 (United States); Duran, Joshua M.; Ariyawansa, Gamini; Limberopoulos, Nicholaos I. [Air Force Research Laboratory, Sensors Directorate, Wright Patterson AFB, Ohio 45433 (United States); Urbas, Augustine M. [Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Ohio 45433 (United States)

    2016-06-13

    We observed up to 100 times enhancement of sensitivity of mid-wave infrared photodetectors in the 2–5 μm range by using photonic jets produced by sapphire, polystyrene, and soda-lime glass microspheres with diameters in the 90–300 μm range. By finite-difference time-domain (FDTD) method for modeling, we gain insight into the role of the microspheres refractive index, size, and alignment with respect to the detector mesa. A combination of enhanced sensitivity with angle-of-view (AOV) up to 20° is demonstrated for individual photodetectors. It is proposed that integration with microspheres can be scaled up for large focal plane arrays, which should provide maximal light collection efficiencies with wide AOVs, a combination of properties highly attractive for imaging applications.

  20. Replacing Fish Oil with Vegetable Oils in Salmon Feed Increases Hepatic Lipid Accumulation and Reduces Insulin Sensitivity in Mice

    DEFF Research Database (Denmark)

    Midtbø, Lisa Kolden

    Background: Due to a growing global aquaculture production, fish oil (FO) and fish meal (FM) are partly replaced with vegetable ingredients in aqua feed for Atlantic salmon. These replacements in the feed lead to an altered fatty acid composition in the salmon fillet. We aimed to investigate how...... these changes affects obesity development and insulin sensitivity in mice eating the salmon. In addition, we wanted to investigate how the background diet affects the antiobesity effect of FO. Results: Western diets (WDs) were produced containing salmon fed either FO (WD-FO), or with partly replacement (80......%) of FO with different vegetable oils (VOs); rape seed oil (WDRO), olive oil (WD-OO) or soybean oil (WD-SO). These diets were given to C57BL/6J mice, and mice had higher hepatic lipid accumulation and lower insulin sensitivity when given WD-SO compared with WD-FO. Mice given WD-SO had higher hepatic...

  1. Adipose tissue inflammation and reduced insulin sensitivity in ovariectomized mice occurs in the absence of increased adiposity.

    Science.gov (United States)

    Vieira Potter, Victoria J; Strissel, Katherine J; Xie, Chen; Chang, Eugene; Bennett, Grace; Defuria, Jason; Obin, Martin S; Greenberg, Andrew S

    2012-09-01

    Menopause promotes central obesity, adipose tissue (AT) inflammation, and insulin resistance (IR). Both obesity and the loss of estrogen can activate innate and adaptive immune cells (macrophages, T cells). The respective impacts of weight gain and loss of ovarian hormones on AT inflammation and IR are poorly understood. Here we determined the temporal kinetics of fat accretion, AT inflammation, and IR over a 26-wk time course in ovariectomized (OVX) mice, a model of menopause. OVX and sham-operated (SHM) C57BL6 mice were fed a normal chow diet. Weight, body composition (magnetic resonance imaging), total and regional adiposity, activity, food intake, AT crown-like structures, biohumoral measures, and insulin sensitivity (insulin tolerance testing and homeostatic model assessment) were determined at wk 12, 20, and 26. Macrophages and T cells from perigonadal AT were immunophenotyped by fluorescence-associated cell sorting, and perigonadal adipose tissue (PGAT) gene expression was quantified by quantitative PCR. OVX mice (≈ 31 g) became fatter than SHM mice (≈ 26 g) by wk 12, but mice were equally insulin sensitive. PGAT of OVX mice contained more T cells but expressed higher levels of M2-MΦ (arginase-1) and T cell-regulatory (cytotoxic T-lymphocyte antigen 4) genes. At wk 20, both OVX and SHM mice weighed approximately 35 g and were equally insulin sensitive with comparable amounts of PGAT and total body fat. OVX mice became less insulin sensitive than SHM mice by wk 26, coincident with the down-regulation of PGAT arginase-1 (-20-fold) and cytotoxic T-lymphocyte antigen 4 (2-fold) and up-regulation of M1/Th1 genes CD11c (+2-fold), IL12p40 (+2-fold), and interferon-γ (+78-fold). Ovarian hormone loss in mice induces PGAT inflammation and IR by mechanisms that can be uncoupled from OVX-induced obesity.

  2. Increasing the sensitivity of NMR diffusion measurements by paramagnetic longitudinal relaxation enhancement, with application to ribosome–nascent chain complexes

    International Nuclear Information System (INIS)

    Chan, Sammy H. S.; Waudby, Christopher A.; Cassaignau, Anaïs M. E.; Cabrita, Lisa D.; Christodoulou, John

    2015-01-01

    The translational diffusion of macromolecules can be examined non-invasively by stimulated echo (STE) NMR experiments to accurately determine their molecular sizes. These measurements can be important probes of intermolecular interactions and protein folding and unfolding, and are crucial in monitoring the integrity of large macromolecular assemblies such as ribosome–nascent chain complexes (RNCs). However, NMR studies of these complexes can be severely constrained by their slow tumbling, low solubility (with maximum concentrations of up to 10 μM), and short lifetimes resulting in weak signal, and therefore continuing improvements in experimental sensitivity are essential. Here we explore the use of the paramagnetic longitudinal relaxation enhancement (PLRE) agent NiDO2A on the sensitivity of 15 N XSTE and SORDID heteronuclear STE experiments, which can be used to monitor the integrity of these unstable complexes. We exploit the dependence of the PLRE effect on the gyromagnetic ratio and electronic relaxation time to accelerate recovery of 1 H magnetization without adversely affecting storage on N z during diffusion delays or introducing significant transverse relaxation line broadening. By applying the longitudinal relaxation-optimized SORDID pulse sequence together with NiDO2A to 70S Escherichia coli ribosomes and RNCs, NMR diffusion sensitivity enhancements of up to 4.5-fold relative to XSTE are achieved, alongside ∼1.9-fold improvements in two-dimensional NMR sensitivity, without compromising the sample integrity. We anticipate these results will significantly advance the use of NMR to probe dynamic regions of ribosomes and other large, unstable macromolecular assemblies.Graphical Abstract

  3. miR-34 increases in vitro PANC-1 cell sensitivity to gemcitabine via targeting Slug/PUMA.

    Science.gov (United States)

    Zhang, Qing-An; Yang, Xu-Hai; Chen, Dong; Yan, Xiang; Jing, Fu-Chun; Liu, Hong-Qian; Zhang, Ronghua

    2018-01-01

    miR-34 was deregulated in tumor tissues compared with corresponding noncancerous tissue samples. Furthermore, miR-34 may contribute to cancer-stromal interaction associated with cancer progression. However, whether miR-34 could decrease chemoresistance of cancer cells to chemotherapeutic agent remains unclear. In our study, we examined whether overexpression of miR-34 could sensitize gemcitabine -mediated apoptosis in human pancreatic cancer PANC-1 cells. We found that miR-34 markedly induced gemcitabine -mediated apoptosis in PANC-1 cells. miR-34 induced down-regulation of Slug expression and upregulation of p53 up-regulated modulator of apoptosis (PUMA) expression. The over-expression of Slug or downregulation of PUMA by Slug cDNA or PUMA siRNA transfection markedly blocked miR-34-induced gemcitabine sensitization. Furthermore, miR-34 induced PUMA expression by downregulation of Slug. Taken together, our study demonstrates that miR-34 enhances sensitization against gemcitabine-mediated apoptosis through the down-regulation of Slug expression, and up-regulation of Slug-dependent PUMA expression.

  4. Maternal separation increases later immobility during forced swim in guinea pig pups: evidence for sensitization of a depressive-like state.

    Science.gov (United States)

    Hennessy, Michael B; Schreibeis, Amanda D; Schiml, Patricia A; Deak, Terrence

    2017-01-01

    Early-life stress is thought to increase later vulnerability for developing depressive illness by sensitizing underlying stress-responsive systems. Guinea pig pups separated from their mother and isolated in a novel cage for 3 hr exhibit a sensitized depressive-like behavioral response when separated again the following day as well as weeks later. The behavioral response and its sensitization appear to be mediated by inflammatory factors. To determine if this sensitization is specific to the separation response or if it reflects a broader underlying depressive-like state, guinea pig pups that had either been separated for 3 hr or remained with their mothers were observed in the forced swim test the following 3 days. Earlier separation was found to increase the duration of immobility, a measure sensitive to antidepressant treatment. These results support the use of the guinea pig as a model for examining mechanisms of inflammatory-mediated sensitization of depression following stress in early life. © 2016 Wiley Periodicals, Inc.

  5. Increasing biopsy number and sampling from gastric body improve the sensitivity of rapid urease test in patients with peptic ulcer bleeding.

    Science.gov (United States)

    Lee, Tzong-Hsi; Lin, Chien-Chu; Chung, Chen-Shuan; Lin, Cheng-Kuan; Liang, Cheng-Chao; Tsai, Kuang-Chau

    2015-02-01

    Previous studies demonstrated that the sensitivity of rapid urease test (RUT) for diagnosis of Helicobacter pylori infection decreased during peptic ulcer bleeding. We designed this study and tried to find a better method to improve the detection rate of H. pylori infection at the same session of endoscopic diagnosis of peptic ulcer bleeding. We prospectively enrolled 116 patients with peptic ulcer bleeding. These patients received intravenous proton pump inhibitor and then received upper gastrointestinal endoscopy within 24 h after arrival. We took one piece of biopsy from gastric antrum (Group 1), four pieces from gastric antrum (Group 2), and one piece from the gastric body (Group 3) for three separate RUTs, respectively. (13)C-urease breath test was used as gold standard for diagnosis of H. pylori infection. There were 74 patients (64 %) with positive (13)C-urease breath test. Among these 74 patients, 45 patients had positive RUT (sensitivity: 61 %) in Group 1; 55 patients had positive RUT (sensitivity: 74 %) in Group 2; 54 patients had positive RUT (sensitivity: 73 %) in Group 3. There were significant differences between Group 1 and Group 2 (p = 0.02) and between Group 1 and Group 3 (p = 0.022). The sensitivity of RUT was 61 % during peptic ulcer bleeding. The sensitivity of RUT can be increased significantly by increased biopsy number from gastric antrum or biopsy from gastric body.

  6. Perfluorooctane sulfonate induces neuronal and oligodendrocytic differentiation in neural stem cells and alters the expression of PPARγ in vitro and in vivo

    International Nuclear Information System (INIS)

    Wan Ibrahim, Wan Norhamidah; Tofighi, Roshan; Onishchenko, Natalia; Rebellato, Paola; Bose, Raj; Uhlén, Per; Ceccatelli, Sandra

    2013-01-01

    Perfluorinated compounds are ubiquitous chemicals of major concern for their potential adverse effects on the human population. We have used primary rat embryonic neural stem cells (NSCs) to study the effects of perfluorooctane sulfonate (PFOS) on the process of NSC spontaneous differentiation. Upon removal of basic fibroblast growth factor, NSCs were exposed to nanomolar concentrations of PFOS for 48 h, and then allowed to differentiate for additional 5 days. Exposure to 25 or 50 nM concentration resulted in a lower number of proliferating cells and a higher number of neurite-bearing TuJ1-positive cells, indicating an increase in neuronal differentiation. Exposure to 50 nM also significantly increased the number of CNPase-positive cells, pointing to facilitation of oligodendrocytic differentiation. PPAR genes have been shown to be involved in PFOS toxicity. By q-PCR we detected an upregulation of PPARγ with no changes in PPARα or PPARδ genes. One of the downstream targets of PPARs, the mitochondrial uncoupling protein 2 (UCP2) was also upregulated. The number of TuJ1- and CNPase-positive cells increased after exposure to PPARγ agonist rosiglitazone (RGZ, 3 μM) and decreased after pre-incubation with the PPARγ antagonist GW9662 (5 μM). RGZ also upregulated the expression of PPARγ and UCP2 genes. Meanwhile GW9662 abolished the UCP2 upregulation and decreased Ca 2+ activity induced by PFOS. Interestingly, a significantly higher expression of PPARγ and UCP3 genes was also detected in mouse neonatal brain after prenatal exposure to PFOS. These data suggest that PPARγ plays a role in the alteration of spontaneous differentiation of NSCs induced by nanomolar concentrations of PFOS. - Highlights: • PFOS decreases proliferation of neural stem cells (NSCs). • PFOS induces neuronal and oligodendrocytic differentiation in NSCs. • PFOS alters expression of PPARγ and UCP2 in vitro. • PFOS alters expression of PPARγ and UCP3 in vivo. • Block of PPARγ by

  7. Perfluorooctane sulfonate induces neuronal and oligodendrocytic differentiation in neural stem cells and alters the expression of PPARγ in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Wan Ibrahim, Wan Norhamidah, E-mail: hamidah@science.upm.edu.my [Department of Neuroscience, Karolinska Institutet, S-17177 Stockholm (Sweden); Tofighi, Roshan, E-mail: Roshan.Tofighi@ki.se [Department of Neuroscience, Karolinska Institutet, S-17177 Stockholm (Sweden); Onishchenko, Natalia, E-mail: Natalia.Onishchenko@ki.se [Department of Neuroscience, Karolinska Institutet, S-17177 Stockholm (Sweden); Rebellato, Paola, E-mail: Paola.Rebellato@ki.se [Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17177 Stockholm (Sweden); Bose, Raj, E-mail: Raj.Bose@ki.se [Department of Neuroscience, Karolinska Institutet, S-17177 Stockholm (Sweden); Uhlén, Per, E-mail: Per.Uhlen@ki.se [Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17177 Stockholm (Sweden); Ceccatelli, Sandra, E-mail: Sandra.Ceccatelli@ki.se [Department of Neuroscience, Karolinska Institutet, S-17177 Stockholm (Sweden)

    2013-05-15

    Perfluorinated compounds are ubiquitous chemicals of major concern for their potential adverse effects on the human population. We have used primary rat embryonic neural stem cells (NSCs) to study the effects of perfluorooctane sulfonate (PFOS) on the process of NSC spontaneous differentiation. Upon removal of basic fibroblast growth factor, NSCs were exposed to nanomolar concentrations of PFOS for 48 h, and then allowed to differentiate for additional 5 days. Exposure to 25 or 50 nM concentration resulted in a lower number of proliferating cells and a higher number of neurite-bearing TuJ1-positive cells, indicating an increase in neuronal differentiation. Exposure to 50 nM also significantly increased the number of CNPase-positive cells, pointing to facilitation of oligodendrocytic differentiation. PPAR genes have been shown to be involved in PFOS toxicity. By q-PCR we detected an upregulation of PPARγ with no changes in PPARα or PPARδ genes. One of the downstream targets of PPARs, the mitochondrial uncoupling protein 2 (UCP2) was also upregulated. The number of TuJ1- and CNPase-positive cells increased after exposure to PPARγ agonist rosiglitazone (RGZ, 3 μM) and decreased after pre-incubation with the PPARγ antagonist GW9662 (5 μM). RGZ also upregulated the expression of PPARγ and UCP2 genes. Meanwhile GW9662 abolished the UCP2 upregulation and decreased Ca{sup 2+} activity induced by PFOS. Interestingly, a significantly higher expression of PPARγ and UCP3 genes was also detected in mouse neonatal brain after prenatal exposure to PFOS. These data suggest that PPARγ plays a role in the alteration of spontaneous differentiation of NSCs induced by nanomolar concentrations of PFOS. - Highlights: • PFOS decreases proliferation of neural stem cells (NSCs). • PFOS induces neuronal and oligodendrocytic differentiation in NSCs. • PFOS alters expression of PPARγ and UCP2 in vitro. • PFOS alters expression of PPARγ and UCP3 in vivo. • Block of PPAR

  8. A method of increasing the sensitivity of protection from single-phase short-circuits to ground in the 6 – 10 kV network

    International Nuclear Information System (INIS)

    Manilov, A. M.; Mel’nik, D. A.

    2012-01-01

    A method of increasing the sensitivity of protection from single-phase short-circuits to ground by acting on the signal with brief dummy grounding of the neutral is described. After determining the damage, the neutral is again grounded through a high resistance and an arc-quenching reactor. An increase in the protection sensitivity is thereby obtained, the damage detection time is shortened, and the probability of the single-phase short-circuit to ground converting into double and multipoint earth faults is reduced.

  9. What is the potential of oligodendrocyte progenitor cells to successfully treat human spinal cord injury?

    Directory of Open Access Journals (Sweden)

    Yeung Trevor M

    2011-09-01

    Full Text Available Abstract Background Spinal cord injury is a serious and debilitating condition, affecting millions of people worldwide. Long seen as a permanent injury, recent advances in stem cell research have brought closer the possibility of repairing the spinal cord. One such approach involves injecting oligodendrocyte progenitor cells, derived from human embryonic stem cells, into the injured spinal cord in the hope that they will initiate repair. A phase I clinical trial of this therapy was started in mid 2010 and is currently underway. Discussion The theory underlying this approach is that these myelinating progenitors will phenotypically replace myelin lost during injury whilst helping to promote a repair environment in the lesion. However, the importance of demyelination in the pathogenesis of human spinal cord injury is a contentious issue and a body of literature suggests that it is only a minor factor in the overall injury process. Summary This review examines the validity of the theory underpinning the on-going clinical trial as well as analysing published data from animal models and finally discussing issues surrounding safety and purity in order to assess the potential of this approach to successfully treat acute human spinal cord injury.

  10. Identification and two-photon imaging of oligodendrocyte in CA1 region of hippocampal slices

    International Nuclear Information System (INIS)

    Zhou Wei; Ge Wooping; Zeng Shaoqun; Duan Shumin; Luo Qingming

    2007-01-01

    Oligodendrocyte (OL) plays a critical role in myelination and axon maintenance in central nervous system. Recent studies show that OL can also express NMDA receptors in development and pathological situations in white matter. There is still lack of studies about OL properties and function in gray matter of brain. Here we reported that some glial cells in CA1 region of rat hippocampal slices (P15-23) had distinct electrophysiological characteristics from the other glia cells in this region, while they displayed uniform properties with OL from white matter in previous report; therefore, they were considered as OL in hippocampus. By loading dye in recording pipette and imaging with two-photon laser scanning microscopy, we acquired the high spatial resolution, three-dimension images of these special cells in live slices. The OL in hippocampus shows a complex process-bearing shape and the distribution of several processes is parallel to Schaffer fiber in CA1 region. When stimulating Schaffer fiber, OL displays a long duration depolarization mediated by inward rectifier potassium channel. This suggested that the OL in CA1 region could sense the neuronal activity and contribute to potassium clearance

  11. The Orphan G Protein-coupled Receptor GPR17 Negatively Regulates Oligodendrocyte Differentiation via Gαi/o and Its Downstream Effector Molecules.

    Science.gov (United States)

    Simon, Katharina; Hennen, Stephanie; Merten, Nicole; Blättermann, Stefanie; Gillard, Michel; Kostenis, Evi; Gomeza, Jesus

    2016-01-08

    Recent studies have recognized G protein-coupled receptors as important regulators of oligodendrocyte development. GPR17, in particular, is an orphan G protein-coupled receptor that has been identified as oligodendroglial maturation inhibitor because its stimulation arrests primary mouse oligodendrocytes at a less differentiated stage. However, the intracellular signaling effectors transducing its activation remain poorly understood. Here, we use Oli-neu cells, an immortalized cell line derived from primary murine oligodendrocytes, and primary rat oligodendrocyte cultures as model systems to identify molecular targets that link cell surface GPR17 to oligodendrocyte maturation blockade. We demonstrate that stimulation of GPR17 by the small molecule agonist MDL29,951 (2-carboxy-4,6-dichloro-1H-indole-3-propionic acid) decreases myelin basic protein expression levels mainly by triggering the Gαi/o signaling pathway, which in turn leads to reduced activity of the downstream cascade adenylyl cyclase-cAMP-PKA-cAMP response element-binding protein (CREB). In addition, we show that GPR17 activation also diminishes myelin basic protein abundance by lessening stimulation of the exchange protein directly activated by cAMP (EPAC), thus uncovering a previously unrecognized role for EPAC to regulate oligodendrocyte differentiation. Together, our data establish PKA and EPAC as key downstream effectors of GPR17 that inhibit oligodendrocyte maturation. We envisage that treatments augmenting PKA and/or EPAC activity represent a beneficial approach for therapeutic enhancement of remyelination in those demyelinating diseases where GPR17 is highly expressed, such as multiple sclerosis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Argan Oil-Mediated Attenuation of Organelle Dysfunction, Oxidative Stress and Cell Death Induced by 7-Ketocholesterol in Murine Oligodendrocytes 158N

    Directory of Open Access Journals (Sweden)

    Asmaa Badreddine

    2017-10-01

    Full Text Available Argan oil is widely used in Morocco in traditional medicine. Its ability to treat cardiovascular diseases is well-established. However, nothing is known about its effects on neurodegenerative diseases, which are often associated with increased oxidative stress leading to lipid peroxidation and the formation of 7-ketocholesterol (7KC resulting from cholesterol auto-oxidation. As 7KC induces oxidative stress, inflammation and cell death, it is important to identify compounds able to impair its harmful effects. These compounds may be either natural or synthetic molecules or mixtures of molecules such as oils. In this context: (i the lipid profiles of dietary argan oils from Berkane and Agadir (Morocco in fatty acids, phytosterols, tocopherols and polyphenols were determined by different chromatographic techniques; and (ii their anti-oxidant and cytoprotective effects in 158N murine oligodendrocytes cultured with 7KC (25–50 µM; 24 h without and with argan oil (0.1% v/v or α-tocopherol (400 µM, positive control were evaluated with complementary techniques of cellular and molecular biology. Among the unsaturated fatty acids present in argan oils, oleate (C18:1 n-9 and linoleate (C18:1 n-6 were the most abundant; the highest quantities of saturated fatty acids were palmitate (C16:0 and stearate (C18:0. Several phytosterols were found, mainly schottenol and spinasterol (specific to argan oil, cycloartenol, β-amyrin and citrostadienol. α- and γ-tocopherols were also present. Tyrosol and protocatechic acid were the only polyphenols detected. Argan and extra virgin olive oils have many compounds in common, principally oleate and linoleate, and tocopherols. Kit Radicaux Libres (KRL and ferric reducing antioxidant power (FRAP tests showed that argan and extra virgin olive oils have anti-oxidant properties. Argan oils were able to attenuate the cytotoxic effects of 7KC on 158N cells: loss of cell adhesion, cell growth inhibition, increased plasma

  13. An improved primer set and amplification protocol with increased specificity and sensitivity targeting the Symbiodinium ITS2 region

    KAUST Repository

    Hume, Benjamin C.C.; Ziegler, Maren; Poulain, Julie; Pochon, Xavier; Romac, Sarah; Boissin, Emilie; de Vargas, Colomban; Planes, Serge; Wincker, Patrick; Voolstra, Christian R.

    2018-01-01

    The Internal Transcribed Spacer 2 (ITS2) rRNA gene is a commonly targeted genetic marker to assess diversity of Symbiodinium, a dinoflagellate genus of algal endosymbionts that is pervasively associated with marine invertebrates, and notably reef-building corals. Here we tested three commonly used ITS2 primer pairs (SYM_VAR_5.8S2/SYM_VAR_REV, ITSintfor2/ITSReverse, and ITS-DINO/ITS2Rev2) with regard to amplification specificity and sensitivity towards Symbiodinium, as well as sub-genera taxonomic bias. We tested these primers over a range of sample types including three coral species, coral surrounding water, reef surface water, and open ocean water to assess their suitability for use in large-scale next generation sequencing projects and to develop a standardised PCR protocol. We found the SYM_VAR_5.8S2/SYM_VAR_REV primers to perform superior to the other tested ITS2 primers. We therefore used this primer pair to develop a standardised PCR protocol. To do this, we tested the effect of PCR-to-PCR variation, annealing temperature, cycle number, and different polymerase systems on the PCR efficacy. The Symbiodinium ITS2 PCR protocol developed here delivers improved specificity and sensitivity towards Symbiodinium with apparent minimal sub-genera taxonomic bias across all sample types. In particular, the protocol’s ability to amplify Symbiodinium from a range of environmental sources will facilitate the study of Symbiodinium populations across biomes.

  14. An improved primer set and amplification protocol with increased specificity and sensitivity targeting the Symbiodinium ITS2 region

    KAUST Repository

    Hume, Benjamin C.C.

    2018-05-23

    The Internal Transcribed Spacer 2 (ITS2) rRNA gene is a commonly targeted genetic marker to assess diversity of Symbiodinium, a dinoflagellate genus of algal endosymbionts that is pervasively associated with marine invertebrates, and notably reef-building corals. Here we tested three commonly used ITS2 primer pairs (SYM_VAR_5.8S2/SYM_VAR_REV, ITSintfor2/ITSReverse, and ITS-DINO/ITS2Rev2) with regard to amplification specificity and sensitivity towards Symbiodinium, as well as sub-genera taxonomic bias. We tested these primers over a range of sample types including three coral species, coral surrounding water, reef surface water, and open ocean water to assess their suitability for use in large-scale next generation sequencing projects and to develop a standardised PCR protocol. We found the SYM_VAR_5.8S2/SYM_VAR_REV primers to perform superior to the other tested ITS2 primers. We therefore used this primer pair to develop a standardised PCR protocol. To do this, we tested the effect of PCR-to-PCR variation, annealing temperature, cycle number, and different polymerase systems on the PCR efficacy. The Symbiodinium ITS2 PCR protocol developed here delivers improved specificity and sensitivity towards Symbiodinium with apparent minimal sub-genera taxonomic bias across all sample types. In particular, the protocol’s ability to amplify Symbiodinium from a range of environmental sources will facilitate the study of Symbiodinium populations across biomes.

  15. A quantitative analysis of 2-D gels identifies proteins in which labeling is increased following long-term sensitization in Aplysia

    International Nuclear Information System (INIS)

    Castellucci, V.F.; Kennedy, T.E.; Kandel, E.R.; Goelet, P.

    1988-01-01

    Long-term memory for sensitization of the gill- and siphon-withdrawal reflex in Aplysia, produced by 4 days of training, is associated with increased synaptic efficacy of the connection between the sensory and motor neurons. This training is also accompanied by neuronal growth; there is an increase in the number of synaptic varicosities per sensory neuron and in the number of active zones. Such structural changes may be due to changes in the rates of synthesis of certain proteins. We have searched for proteins in which the rates of [ 35 S]methionine labeling are altered during the maintenance phase of long-term memory for sensitization by using computer-assisted quantitative 2-D gel analysis. This method has allowed us to detect 4 proteins in which labeling is altered after 4 days of sensitization training

  16. The retrograde delivery of adenovirus vector carrying the gene for brain-derived neurotrophic factor protects neurons and oligodendrocytes from apoptosis in the chronically compressed spinal cord of twy/twy mice.

    Science.gov (United States)

    Uchida, Kenzo; Nakajima, Hideaki; Hirai, Takayuki; Yayama, Takafumi; Chen, Kebing; Guerrero, Alexander Rodriguez; Johnson, William Eustace; Baba, Hisatoshi

    2012-12-15

    .: Four weeks after injection, the retrograde delivery of the LacZ marker gene was identified in cervical spinal neurons and some glial cells, including oligodendrocytes in the white matter of the spinal cord, in both the twy/twy mouse and the heterozygous Institute of Cancer Research mouse (+/twy). In the compressed spinal cord of twy/twy mouse, AdV-BDNF gene transfection resulted in a significant decrease in the number of terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling-positive cells present in the spinal cord and a downregulation in the caspase apoptotic pathway compared with AdV-LacZ (control) gene transfection. There was a marked and significant increase in the areas of the spinal cord of AdV-BDNF-injected mice that were NF- and NG2-immunopositive compared with AdV-LacZ-injected mice, indicating the increased presence of neurons and oligodendrocytes in response to BDNF transfection. Our results demonstrate that targeted retrograde BDNF gene delivery suppresses apoptosis in neurons and oligodendrocytes in the chronically compressed spinal cord of twy/twy mouse. Further work is required to establish whether this method of gene delivery may provide neuroprotective effects in other situations of compressive spinal cord injury.

  17. Ultra-high field NMR and MRI - the role of magnet technology to increase sensitivity and specificity

    Science.gov (United States)

    Moser, Ewald; Laistler, Elmar; Schmitt, Franz; Kontaxis, Georg

    2017-08-01

    "History, of course, is difficult to write, if for no other reason, than that it has so many players and so many authors." - P. J. Keating (former Australian Prime Minister) Starting with post-war developments in nuclear magnetic resonance (NMR) a race for stronger and stronger magnetic fields has begun in the 1950s to overcome the inherently low sensitivity of this promising method. Further challenges were larger magnet bores to accommodate small animals and eventually humans. Initially, resistive electromagnets with small pole distances, or sample volumes, and field strengths up to 2.35 T (or 100 MHz 1H frequency) were used in applications in physics, chemistry, and material science. This was followed by stronger and more stable (NbTi based) superconducting magnet technology typically implemented first for small-bore systems in analytical chemistry, biochemistry and structural biology, and eventually allowing larger horizontal-bore magnets with diameters large enough to fit small laboratory animals. By the end of the 1970s, first low-field resistive magnets big enough to accommodate humans were developed and superconducting whole-body systems followed. Currently, cutting-edge analytical NMR systems are available at proton frequencies up to 1 GHz (23.5 T) based on Nb3Sn at 1.9 K. A new 1.2 GHz system (28 T) at 1.9 K, operating in persistent mode but using a combination of low and high temperature multi-filament superconductors is to be released. Preclinical instruments range from small-bore animal systems with typically 600 - 800 MHz (14.1 - 18.8 T) up to 900 MHz (21 T) at 1.9 K. Human whole-body MRI systems currently operate up to 10.5 T. Hybrid combined superconducting and resistive electromagnets with even higher field strength of 45 T dc and 100 T pulsed, are available for material research, of course with smaller free bore diameters. This rather costly development towards higher and higher field strength is a consequence of the inherently low and, thus

  18. Ultra-High Field NMR and MRI—The Role of Magnet Technology to Increase Sensitivity and Specificity

    Directory of Open Access Journals (Sweden)

    Ewald Moser

    2017-08-01

    Full Text Available “History, of course, is difficult to write, if for no other reason, than that it has so many players and so many authors.” – P. J. Keating (former Australian Prime MinisterStarting with post-war developments in nuclear magnetic resonance (NMR a race for stronger and stronger magnetic fields has begun in the 1950s to overcome the inherently low sensitivity of this promising method. Further challenges were larger magnet bores to accommodate small animals and eventually humans. Initially, resistive electromagnets with small pole distances, or sample volumes, and field strengths up to 2.35 T (or 100 MHz 1H frequency were used in applications in physics, chemistry, and material science. This was followed by stronger and more stable (Nb-Ti based superconducting magnet technology typically implemented first for small-bore systems in analytical chemistry, biochemistry and structural biology, and eventually allowing larger horizontal-bore magnets with diameters large enough to fit small laboratory animals. By the end of the 1970s, first low-field resistive magnets big enough to accommodate humans were developed and superconducting whole-body systems followed. Currently, cutting-edge analytical NMR systems are available at proton frequencies up to 1 GHz (23.5 T based on Nb3Sn at 1.9 K. A new 1.2 GHz system (28 T at 1.9 K, operating in persistent mode but using a combination of low and high temperature multi-filament superconductors is to be released. Preclinical instruments range from small-bore animal systems with typically 600–800 MHz (14.1–18.8 T up to 900 MHz (21 T at 1.9 K. Human whole-body MRI systems currently operate up to 10.5 T. Hybrid combined superconducting and resistive electromagnets with even higher field strength of 45 T dc and 100 T pulsed, are available for material research, of course with smaller free bore diameters. This rather costly development toward higher and higher field strength is a consequence of the inherently low

  19. Increased sensitivity in thick-target particle induced X-ray emission analyses using dry ashing for preconcentration

    International Nuclear Information System (INIS)

    Lill, J.-O.; Harju, L.; Saarela, K.-E.; Lindroos, A.; Heselius, S.-J.

    1999-01-01

    The sensitivity in thick-target particle induced X-ray emission (PIXE) analyses of biological materials can be enhanced by dry ashing. The gain depends mainly on the mass reduction factor and the composition of the residual ash. The enhancement factor was 7 for the certified reference material Pine Needles and the limits of detection (LODs) were below 0.2 μg/g for Zn, Cu, Rb and Sr. When ashing biological materials with low ash contents such as wood of pine or spruce (0.3% of dry weight) and honey (0.1% of wet weight) the gain was far greater. The LODs for these materials were 30 ng/g for wood and below 10 ng/g for honey. In addition, the ashed samples were more homogenous and more resistant to changes during the irradiation than the original biological samples. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  20. S-glutathionylation of troponin I (fast) increases contractile apparatus Ca2+ sensitivity in fast-twitch muscle fibres of rats and humans.

    Science.gov (United States)

    Mollica, J P; Dutka, T L; Merry, T L; Lamboley, C R; McConell, G K; McKenna, M J; Murphy, R M; Lamb, G D

    2012-03-15

    Oxidation can decrease or increase the Ca2+ sensitivity of the contractile apparatus in rodent fast-twitch (type II) skeletal muscle fibres, but the reactions and molecular targets involved are unknown. This study examined whether increased Ca2+ sensitivity is due to S-glutathionylation of particular cysteine residues. Skinned muscle fibres were directly activated in heavily buffered Ca2+ solutions to assess contractile apparatus Ca2+ sensitivity. Rat type II fibres were subjected to S-glutathionylation by successive treatments with 2,2′-dithiodipyridine (DTDP) and glutathione (GSH), and displayed a maximal increase in pCa50 (−log10 [Ca2+] at half-maximal force) of ∼0.24 pCa units, with little or no effect on maximum force or Hill coefficient. Partial similar effect was produced by exposure to oxidized gluthathione (GSSG, 10 mM) for 10 min at pH 7.1, and near-maximal effect by GSSG treatment at pH 8.5. None of these treatments significantly altered Ca2+ sensitivity in rat type I fibres. Western blotting showed that both the DTDP–GSH and GSSG–pH 8.5 treatments caused marked S-glutathionylation of the fast troponin I isoform (TnI(f)) present in type II fibres, but not of troponin C (TnC) or myosin light chain 2. Both the increased Ca2+ sensitivity and glutathionylation of TnI(f) were blocked by N-ethylmaleimide (NEM). S-nitrosoglutathione (GSNO) also increased Ca2+ sensitivity, but only in conditions where it caused S-glutathionylation of TnI(f). In human type II fibres from vastus lateralis muscle, DTDP–GSH treatment also caused similar increased Ca2+ sensitivity and S-glutathionylation of TnI(f). When the slow isoform of TnI in type I fibres of rat was partially substituted (∼30%) with TnI(f), DTDP–GSH treatment caused a significant increase in Ca2+ sensitivity (∼0.08 pCa units). TnIf in type II fibres from toad and chicken muscle lack Cys133 present in mammalian TnIf, and such fibres showed no change in Ca2+ sensitivity with DTDP–GSH nor any S

  1. Optimizing culture medium composition to improve oligodendrocyte progenitor cell yields in vitro from subventricular zone-derived neural progenitor cell neurospheres.

    Directory of Open Access Journals (Sweden)

    Paula G Franco

    Full Text Available Neural Stem and Progenitor Cells (NSC/NPC are gathering tangible recognition for their uses in cell therapy and cell replacement therapies for human disease, as well as a model system to continue research on overall neural developmental processes in vitro. The Subventricular Zone is one of the largest NSC/NPC niches in the developing mammalian Central Nervous System, and persists through to adulthood. Oligodendrocyte progenitor cell (OPC enriched cultures are usefull tools for in vitro studies as well as for cell replacement therapies for treating demyelination diseases. We used Subventricular Zone-derived NSC/NPC primary cultures from newborn mice and compared the effects of different growth factor combinations on cell proliferation and OPC yield. The Platelet Derived Growth Factor-AA and BB homodimers had a positive and significant impact on OPC generation. Furthermore, heparin addition to the culture media contributed to further increase overall culture yields. The OPC generated by this protocol were able to mature into Myelin Basic Protein-expressing cells and to interact with neurons in an in vitro co-culture system. As a whole, we describe an optimized in vitro method for increasing OPC.

  2. The effect of triiodothyronine on maturation and differentiation of oligodendrocyte progenitor cells during remyelination following induced demyelination in male albino rat.

    Science.gov (United States)

    El-Tahry, H; Marei, H; Shams, A; El-Shahat, M; Abdelaziz, H; Abd El-Kader, M

    2016-06-01

    Demyelination was induced by two weeks cuprizone treatment. Rats of +ve control and triiodothyronine (T3) then received three subcutaneous injections of either saline or T3 day after day and sacrificed at the end of the third and fifth weeks. Animals in -ve control group received only standard rodent chow. After one week of cuprizone withdrawal the corpus callosum in +ve control and T3 treated rats was still demyelinated as revealed by MBP immunohistochemistry. The assay of PLP gene showed significant increase of T3 treated group compared to both the -ve control and +ve control groups. After three weeks, significant improvement in myelination was detected in T3-treated group compared to +ve control as detected by both MBP immunohistochemistry and electron microscopy. After one week of cuprizone withdrawal, PDGFRα positive cells and gene expression showed significant increase in +ve control and T3-treated groups as compared to -ve control with insignificant difference in between the former two groups. After three weeks of cuprizone withdrawal, PDGFRα positive cells in T3-treated and +ve control groups decreased to the control levels. These results suggest that T3 was effective in improving remyelination when administered during acute phase and might direct progenitor lineage toward oligodendrocytes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Increase of placental sensitivity to melatonin and the alteration to its local synthesis in hypertensive syndromes in pregnancy.

    Science.gov (United States)

    Yamamoto, Douglas de Resende; Yamamoto, Leandro de Resende; Rocha, Laura Penna; Machado, Juliana Reis; Guimarães, Camila Souza de Oliveira; Reis, Marlene Antônia Dos; Corrêa, Rosana Rosa Miranda

    2013-05-01

    To evaluate the relation between hypertensive syndromes and melatonin, and its possible protective role against lesions due to hypertension. Placentas were classified into gestational hypertension (GH), chronic hypertension (CH), pre-eclampsia (PE) and pre-eclampsia superimposed on chronic hypertension, and morphologically examined by hematoxylin-eosin and periodic acid Schiff methods. Immunohistochemistry was performed to detect tryptophan hydroxylase (TH) and melatonin receptor 1A (MR-1A). MR-1A expression was higher in all types of hypertensive syndromes in pregnancy (HSP), mainly in cases with GH, in Caesarean section delivery, preterm placentas and in the cases with alterations in the placental morphology, particularly those presenting inflammation. The expression of TH was higher in cases with CH when compared with the control. This expression was lower in primigestas, in the cases of inflammation and with PE. HSP therapies should be considered and studied, especially in the cases of HSP associated with PE, in which the placenta is more sensitive as it has more receptors, but its synthesis ability is reduced. As for GH and CH, the possible benefits should be evaluated, since the local placental ability to produce melatonin still exists.

  4. Disruption of growth hormone receptor gene causes diminished pancreatic islet size and increased insulin sensitivity in mice.

    Science.gov (United States)

    Liu, Jun-Li; Coschigano, Karen T; Robertson, Katie; Lipsett, Mark; Guo, Yubin; Kopchick, John J; Kumar, Ujendra; Liu, Ye Lauren

    2004-09-01

    Growth hormone, acting through its receptor (GHR), plays an important role in carbohydrate metabolism and in promoting postnatal growth. GHR gene-deficient (GHR(-/-)) mice exhibit severe growth retardation and proportionate dwarfism. To assess the physiological relevance of growth hormone actions, GHR(-/-) mice were used to investigate their phenotype in glucose metabolism and pancreatic islet function. Adult GHR(-/-) mice exhibited significant reductions in the levels of blood glucose and insulin, as well as insulin mRNA accumulation. Immunohistochemical analysis of pancreatic sections revealed normal distribution of the islets despite a significantly smaller size. The average size of the islets found in GHR(-/-) mice was only one-third of that in wild-type littermates. Total beta-cell mass was reduced 4.5-fold in GHR(-/-) mice, significantly more than their body size reduction. This reduction in pancreatic islet mass appears to be related to decreases in proliferation and cell growth. GHR(-/-) mice were different from the human Laron syndrome in serum insulin level, insulin responsiveness, and obesity. We conclude that growth hormone signaling is essential for maintaining pancreatic islet size, stimulating islet hormone production, and maintaining normal insulin sensitivity and glucose homeostasis.

  5. PKCζ and PKMζ are overexpressed in TCF3-rearranged paediatric acute lymphoblastic leukaemia and are associated with increased thiopurine sensitivity

    Science.gov (United States)

    Hartsink-Segers, S A; Beaudoin, J J; Luijendijk, M W J; Exalto, C; Pieters, R; Den Boer, M L

    2015-01-01

    Both tumour suppressor and oncogenic functions have been ascribed to the atypical zeta isoform of protein kinase C (PKCζ), whereas its constitutively active form PKMζ is almost exclusively expressed in the brain where it has a role in long-term memory. Using primers unique for either isoform, we found that both PKCζ and PKMζ were expressed in a subset of paediatric acute lymphoblastic leukaemia (ALL) cases carrying a TCF3 (E2A) chromosomal rearrangement. Combined PKCζ and PKMζ (PKC/Mζ) protein as well as phosphorylation levels were elevated in ALL cases, especially TCF3-rearranged precursor B-ALL cases, compared with normal bone marrow (Pmercaptopurine (Pstabilize mismatch-repair protein MSH2, facilitating thiopurine responsiveness in T-ALL. However, PKC/Mζ knockdown in a TCF3-rearranged cell line model decreased MSH2 expression but did not induce thiopurine resistance, indicative that the link between high PKC/Mζ levels and thiopurine sensitivity in paediatric precursor B-ALL is not directly causal. Collectively, our data indicate that thiopurine treatment may be effective, especially in paediatric TCF3-rearranged ALL and other patients with a high expression of PKC/Mζ. PMID:24990612

  6. Increased pain sensitivity but normal function of exercise induced analgesia in hip and knee osteoarthritis--treatment effects of neuromuscular exercise and total joint replacement.

    Science.gov (United States)

    Kosek, E; Roos, E M; Ageberg, E; Nilsdotter, A

    2013-09-01

    To assess exercise induced analgesia (EIA) and pain sensitivity in hip and knee osteoarthritis (OA) and to study the effects of neuromuscular exercise and surgery on these parameters. The dataset consisted of knee (n = 66) and hip (n = 47) OA patients assigned for total joint replacement at Lund University Hospital undergoing pre-operative neuromuscular exercise and 43 matched controls. Sensitivity to pressure pain was assessed by pressure algometry at 10 sites. Subjects were then instructed to perform a standardized static knee extension. Pressure pain thresholds (PPTs) were assessed at the contracting quadriceps muscle (Q) and at the resting deltoid muscle (D) before and during contraction. The relative increase in PPTs during contraction was taken as a measure of localized (Q) or generalized (D) EIA. Patients were assessed at baseline, following on average 12 weeks of neuromuscular exercise and 3 months following surgery. We found a normal function of EIA in OA patients at baseline. Previous studies have reported beneficial effects of physical exercise on pain modulation in healthy subjects. However, no treatment effects on EIA were seen in OA patients despite the increase in muscle strength following neuromuscular exercise and reduced pain following surgery. Compared to controls, OA patients had increased pain sensitivity and no beneficial effects on pain sensitivity were seen following treatment. To our knowledge, this is the first study of EIA in OA patients. Despite increased pain sensitivity, OA patients had a normal function of EIA. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  7. Restoration of muscle mitochondrial function and metabolic flexibility in type 2 diabetes by exercise training is paralleled by increased myocellular fat storage and improved insulin sensitivity.

    Science.gov (United States)

    Meex, Ruth C R; Schrauwen-Hinderling, Vera B; Moonen-Kornips, Esther; Schaart, Gert; Mensink, Marco; Phielix, Esther; van de Weijer, Tineke; Sels, Jean-Pierre; Schrauwen, Patrick; Hesselink, Matthijs K C

    2010-03-01

    Mitochondrial dysfunction and fat accumulation in skeletal muscle (increased intramyocellular lipid [IMCL]) have been linked to development of type 2 diabetes. We examined whether exercise training could restore mitochondrial function and insulin sensitivity in patients with type 2 diabetes. Eighteen male type 2 diabetic and 20 healthy male control subjects of comparable body weight, BMI, age, and VO2max participated in a 12-week combined progressive training program (three times per week and 45 min per session). In vivo mitochondrial function (assessed via magnetic resonance spectroscopy), insulin sensitivity (clamp), metabolic flexibility (indirect calorimetry), and IMCL content (histochemically) were measured before and after training. Mitochondrial function was lower in type 2 diabetic compared with control subjects (P = 0.03), improved by training in control subjects (28% increase; P = 0.02), and restored to control values in type 2 diabetic subjects (48% increase; P type 2 diabetic subjects (delta Rd 63% increase; P type 2 diabetic subjects was restored (delta respiratory exchange ratio 63% increase; P = 0.01) but was unchanged in control subjects (delta respiratory exchange ratio 7% increase; P = 0.22). Starting with comparable pretraining IMCL levels, training tended to increase IMCL content in type 2 diabetic subjects (27% increase; P = 0.10), especially in type 2 muscle fibers. Exercise training restored in vivo mitochondrial function in type 2 diabetic subjects. Insulin-mediated glucose disposal and metabolic flexibility improved in type 2 diabetic subjects in the face of near-significantly increased IMCL content. This indicates that increased capacity to store IMCL and restoration of improved mitochondrial function contribute to improved muscle insulin sensitivity.

  8. Does short-term exposure to mobile phone base station signals increase symptoms in individuals who report sensitivity to electromagnetic fields? A double-blind randomized provocation study.

    Science.gov (United States)

    Eltiti, Stacy; Wallace, Denise; Ridgewell, Anna; Zougkou, Konstantina; Russo, Riccardo; Sepulveda, Francisco; Mirshekar-Syahkal, Dariush; Rasor, Paul; Deeble, Roger; Fox, Elaine

    2007-11-01

    Individuals with idiopathic environmental illness with attribution to electromagnetic fields (IEI-EMF) believe they suffer negative health effects when exposed to electromagnetic fields from everyday objects such as mobile phone base stations. This study used both open provocation and double-blind tests to determine if sensitive and control individuals experience more negative health effects when exposed to base station-like signals compared with sham. Fifty-six self-reported sensitive and 120 control participants were tested in an open provocation test. Of these, 12 sensitive and 6 controls withdrew after the first session. The remainder completed a series of double-blind tests. Subjective measures of well-being and symptoms as well as physiological measures of blood volume pulse, heart rate, and skin conductance were obtained. During the open provocation, sensitive individuals reported lower levels of well-being in both the global system for mobile communication (GSM) and universal mobile telecommunications system (UMTS) compared with sham exposure, whereas controls reported more symptoms during the UMTS exposure. During double-blind tests the GSM signal did not have any effect on either group. Sensitive participants did report elevated levels of arousal during the UMTS condition, whereas the number or severity of symptoms experienced did not increase. Physiological measures did not differ across the three exposure conditions for either group. Short-term exposure to a typical GSM base station-like signal did not affect well-being or physiological functions in sensitive or control individuals. Sensitive individuals reported elevated levels of arousal when exposed to a UMTS signal. Further analysis, however, indicated that this difference was likely to be due to the effect of order of exposure rather than the exposure itself.

  9. Free-swimming northern elephant seals have low field metabolic rates that are sensitive to an increased cost of transport

    DEFF Research Database (Denmark)

    Maresh, Jennifer L; Simmons, Samantha E; Crocker, Daniel E

    2014-01-01

    locomotion, elephant seals had low energy requirements (106.5±28.2 kJ kg−1 day−1), approaching or even falling below predictions of basal requirements. Seals responded to a small increase in locomotion costs by spending more time resting between dives (149±44 s) compared with matched control treatments (102......Widely ranging marine predators often adopt stereotyped, energy-saving behaviours to minimize the energetic cost of transport while maximizing energy gain. Environmental and anthropogenic disturbances can disrupt energy balance by prompting avoidance behaviours that increase transport costs...

  10. Channel-mediated and carrier-mediated uptake of K+ into cultured ovine oligodendrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Hertz, L.; Soliven, B.; Hertz, E.; Szuchet, S.; Nelson, D.J. (Univ. of Saskatchewan, Saskatoon (Canada))

    1990-01-01

    Uptake of radioactive K+ by mature ovine oligodendrocytes (OLGs) maintained in primary culture was measured under steady-state conditions, i.e., in cells maintained in a normal tissue culture medium (5.4 mM K+), and in cells after depletion of intracellular K+ to less than 15% of its normal value by pre-incubation in K(+)-free medium. The latter value is dominated by an active, carrier-mediated uptake (although it may include some diffusional uptake), whereas the former, in addition to active uptake, also reflects passive K+ diffusion through ion selective channels and possible self-exchange between extracellular and intracellular K+, which may be carrier-mediated. The total uptake rate was 144 +/- 10 nmol/min/mg protein, and the uptake after K+ depletion was 60 +/- 2 nmol/min/mg protein, much lower rates than previously observed in astrocytes. The uptake into K(+)-depleted cells was inhibited by about 80% in the presence of ouabain (1 mM) and about 30% in the presence of furosemide (2 mM). Activators of protein kinase C (phorbol esters) and cAMP-dependent protein kinase (forskolin) have been shown to alter the myelinogenic metabolism as well as outward K+ current in cultured OLGs. The present study demonstrates that K+ homeostasis in OLGs is modulated through similar second messenger pathways. Active uptake was inhibited by about 60% in the presence of active phorbol esters (100 nM) but was not affected by forskolin (100 nM). Forskolin likewise had no effect on total uptake, whereas phorbol esters caused a much larger inhibition than expected from their effect on carrier-mediated uptake alone, suggesting that channel-mediated uptake was also reduced.

  11. Low dose influenza virus challenge in the ferret leads to increased virus shedding and greater sensitivity to oseltamivir.

    Science.gov (United States)

    Marriott, Anthony C; Dove, Brian K; Whittaker, Catherine J; Bruce, Christine; Ryan, Kathryn A; Bean, Thomas J; Rayner, Emma; Pearson, Geoff; Taylor, Irene; Dowall, Stuart; Plank, Jenna; Newman, Edmund; Barclay, Wendy S; Dimmock, Nigel J; Easton, Andrew J; Hallis, Bassam; Silman, Nigel J; Carroll, Miles W

    2014-01-01

    Ferrets are widely used to study human influenza virus infection. Their airway physiology and cell receptor distribution makes them ideal for the analysis of pathogenesis and virus transmission, and for testing the efficacy of anti-influenza interventions and vaccines. The 2009 pandemic influenza virus (H1N1pdm09) induces mild to moderate respiratory disease in infected ferrets, following inoculation with 106 plaque-forming units (pfu) of virus. We have demonstrated that reducing the challenge dose to 102 pfu delays the onset of clinical signs by 1 day, and results in a modest reduction in clinical signs, and a less rapid nasal cavity innate immune response. There was also a delay in virus production in the upper respiratory tract, this was up to 9-fold greater and virus shedding was prolonged. Progression of infection to the lower respiratory tract was not noticeably delayed by the reduction in virus challenge. A dose of 104 pfu gave an infection that was intermediate between those of the 106 pfu and 102 pfu doses. To address the hypothesis that using a more authentic low challenge dose would facilitate a more sensitive model for antiviral efficacy, we used the well-known neuraminidase inhibitor, oseltamivir. Oseltamivir-treated and untreated ferrets were challenged with high (106 pfu) and low (102 pfu) doses of influenza H1N1pdm09 virus. The low dose treated ferrets showed significant delays in innate immune response and virus shedding, delayed onset of pathological changes in the nasal cavity, and reduced pathological changes and viral RNA load in the lung, relative to untreated ferrets. Importantly, these observations were not seen in treated animals when the high dose challenge was used. In summary, low dose challenge gives a disease that more closely parallels the disease parameters of human influenza infection, and provides an improved pre-clinical model for the assessment of influenza therapeutics, and potentially, influenza vaccines.

  12. Low dose influenza virus challenge in the ferret leads to increased virus shedding and greater sensitivity to oseltamivir.

    Directory of Open Access Journals (Sweden)

    Anthony C Marriott

    Full Text Available Ferrets are widely used to study human influenza virus infection. Their airway physiology and cell receptor distribution makes them ideal for the analysis of pathogenesis and virus transmission, and for testing the efficacy of anti-influenza interventions and vaccines. The 2009 pandemic influenza virus (H1N1pdm09 induces mild to moderate respiratory disease in infected ferrets, following inoculation with 106 plaque-forming units (pfu of virus. We have demonstrated that reducing the challenge dose to 102 pfu delays the onset of clinical signs by 1 day, and results in a modest reduction in clinical signs, and a less rapid nasal cavity innate immune response. There was also a delay in virus production in the upper respiratory tract, this was up to 9-fold greater and virus shedding was prolonged. Progression of infection to the lower respiratory tract was not noticeably delayed by the reduction in virus challenge. A dose of 104 pfu gave an infection that was intermediate between those of the 106 pfu and 102 pfu doses. To address the hypothesis that using a more authentic low challenge dose would facilitate a more sensitive model for antiviral efficacy, we used the well-known neuraminidase inhibitor, oseltamivir. Oseltamivir-treated and untreated ferrets were challenged with high (106 pfu and low (102 pfu doses of influenza H1N1pdm09 virus. The low dose treated ferrets showed significant delays in innate immune response and virus shedding, delayed onset of pathological changes in the nasal cavity, and reduced pathological changes and viral RNA load in the lung, relative to untreated ferrets. Importantly, these observations were not seen in treated animals when the high dose challenge was used. In summary, low dose challenge gives a disease that more closely parallels the disease parameters of human influenza infection, and provides an improved pre-clinical model for the assessment of influenza therapeutics, and potentially, influenza vaccines.

  13. Automatization Aspects of Dyslexia: Speed Limitations in Word Identification, Sensitivity to Increasing Task Demands, and Orthographic Compensation.

    Science.gov (United States)

    van der Leij, Aryan; van Daal, Victor H. P.

    1999-01-01

    Ten students (age 10) with dyslexia were compared to 10 chronological-age controls and 20 reading-age controls. Response latencies of the students with dyslexia were slower when familiar words, letter clusters, and nonwords had to be named. A larger word-frequency effect and larger word-length effect indicate difficulty with increasing task…

  14. CD36 deficiency increases insulin sensitivity in muscle, but induces insulin resistance in the liver in mice

    NARCIS (Netherlands)

    Goudriaan, J.R.; Dahlmans, V.E.H.; Teusink, B.; Ouwens, D.M.; Febbraio, M.; Maassen, J.A.; Romijn, J.A.; Havekes, L.M.; Voshol, P.J.

    2003-01-01

    CD36 (fatty acid translocase) is involved in high-affinity peripheral fatty acid uptake. Mice lacking CD36 exhibit increased plasma free fatty acid and triglyceride (TG) levels and decreased glucose levels. Studies in spontaneous hypertensive rats lacking functional CD36 link CD36 to the

  15. Brassinosteroid-induced CO{sub 2} assimilation is associated with increased stability of redox-sensitive photosynthetic enzymes in the chloroplasts in cucumber plants

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yu Ping; Cheng, Fei; Zhou, Yan Hong; Xia, Xiao Jian; Mao, Wei Hua; Shi, Kai [Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058 (China); Chen, Zhi Xiang [Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058 (China); Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907-2054 (United States); Yu, Jing Quan, E-mail: jqyu@zju.edu.cn [Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058 (China); Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture of China, Yuhangtang Road 866, Hangzhou 310058 (China)

    2012-09-28

    Highlights: Black-Right-Pointing-Pointer Activity of certain Calvin cycle enzymes and CO{sub 2} assimilation are induced by BRs. Black-Right-Pointing-Pointer BRs upregulate the activity of the ascorbate-glutathione cycle in the chloroplasts. Black-Right-Pointing-Pointer BRs increase the chloroplast thiol reduction state. Black-Right-Pointing-Pointer A BR-induced reducing environment increases the stability of photosynthetic enzymes. -- Abstract: Brassinosteroids (BRs) play important roles in plant growth, development, photosynthesis and stress tolerance; however, the mechanism underlying BR-enhanced photosynthesis is currently unclear. Here, we provide evidence that an increase in the BR level increased the quantum yield of PSII, activities of Rubisco activase (RCA) and fructose-1,6-bisphosphatase (FBPase), and CO{sub 2} assimilation. BRs upregulated the transcript levels of genes and activity of enzymes involved in the ascorbate-glutathione cycle in the chloroplasts, leading to an increased ratio of reduced (GSH) to oxidized (GSSG) glutathione in the chloroplasts. An increased GSH/GSSG ratio protected RCA from proteolytic digestion and increased the stability of redox-sensitive enzymes in the chloroplasts. These results strongly suggest that BRs are capable of regulating the glutathione redox state in the chloroplasts through the activation of the ascorbate-glutathione cycle. The resulting increase in the chloroplast thiol reduction state promotes CO{sub 2} assimilation, at least in part, by enhancing the stability and activity of redox-sensitive photosynthetic enzymes through post-translational modifications.

  16. Brassinosteroid-induced CO2 assimilation is associated with increased stability of redox-sensitive photosynthetic enzymes in the chloroplasts in cucumber plants

    International Nuclear Information System (INIS)

    Jiang, Yu Ping; Cheng, Fei; Zhou, Yan Hong; Xia, Xiao Jian; Mao, Wei Hua; Shi, Kai; Chen, Zhi Xiang; Yu, Jing Quan

    2012-01-01

    Highlights: ► Activity of certain Calvin cycle enzymes and CO 2 assimilation are induced by BRs. ► BRs upregulate the activity of the ascorbate–glutathione cycle in the chloroplasts. ► BRs increase the chloroplast thiol reduction state. ► A BR-induced reducing environment increases the stability of photosynthetic enzymes. -- Abstract: Brassinosteroids (BRs) play important roles in plant growth, development, photosynthesis and stress tolerance; however, the mechanism underlying BR-enhanced photosynthesis is currently unclear. Here, we provide evidence that an increase in the BR level increased the quantum yield of PSII, activities of Rubisco activase (RCA) and fructose-1,6-bisphosphatase (FBPase), and CO 2 assimilation. BRs upregulated the transcript levels of genes and activity of enzymes involved in the ascorbate–glutathione cycle in the chloroplasts, leading to an increased ratio of reduced (GSH) to oxidized (GSSG) glutathione in the chloroplasts. An increased GSH/GSSG ratio protected RCA from proteolytic digestion and increased the stability of redox-sensitive enzymes in the chloroplasts. These results strongly suggest that BRs are capable of regulating the glutathione redox state in the chloroplasts through the activation of the ascorbate–glutathione cycle. The resulting increase in the chloroplast thiol reduction state promotes CO 2 assimilation, at least in part, by enhancing the stability and activity of redox-sensitive photosynthetic enzymes through post-translational modifications.

  17. Pim kinase inhibition sensitizes FLT3-ITD acute myeloid leukemia cells to topoisomerase 2 inhibitors through increased DNA damage and oxidative stress

    Science.gov (United States)

    Doshi, Kshama A.; Trotta, Rossana; Natarajan, Karthika; Rassool, Feyruz V.; Tron, Adriana E.; Huszar, Dennis; Perrotti, Danilo; Baer, Maria R.

    2016-01-01

    Internal tandem duplication of fms-like tyrosine kinase-3 (FLT3-ITD) is frequent (30 percent) in acute myeloid leukemia (AML), and is associated with short disease-free survival following chemotherapy. The serine threonine kinase Pim-1 is a pro-survival oncogene transcriptionally upregulated by FLT3-ITD that also promotes its signaling in a positive feedback loop. Thus inhibiting Pim-1 represents an attractive approach in targeting FLT3-ITD cells. Indeed, co-treatment with the pan-Pim kinase inhibitor AZD1208 or expression of a kinase-dead Pim-1 mutant sensitized FLT3-ITD cell lines to apoptosis triggered by chemotherapy drugs including the topoisomerase 2 inhibitors daunorubicin, etoposide and mitoxantrone, but not the nucleoside analog cytarabine. AZD1208 sensitized primary AML cells with FLT3-ITD to topoisomerase 2 inhibitors, but did not sensitize AML cells with wild-type FLT3 or remission bone marrow cells, supporting a favorable therapeutic index. Mechanistically, the enhanced apoptosis observed with AZD1208 and topoisomerase 2 inhibitor combination treatment was associated with increased DNA double-strand breaks and increased levels of reactive oxygen species (ROS), and co-treatment with the ROS scavenger N-acetyl cysteine rescued FLT3-ITD cells from AZD1208 sensitization to topoisomerase 2 inhibitors. Our data support testing of Pim kinase inhibitors with topoisomerase 2 inhibitors, but not with cytarabine, to improve treatment outcomes in AML with FLT3-ITD. PMID:27374090

  18. Plant-expressed cocaine hydrolase variants of butyrylcholinesterase exhibit altered allosteric effects of cholinesterase activity and increased inhibitor sensitivity

    OpenAIRE

    Larrimore, Katherine E.; Kazan, I. Can; Kannan, Latha; Kendle, R. Player; Jamal, Tameem; Barcus, Matthew; Bolia, Ashini; Brimijoin, Stephen; Zhan, Chang-Guo; Ozkan, S. Banu; Mor, Tsafrir S.

    2017-01-01

    Butyrylcholinesterase (BChE) is an enzyme with broad substrate and ligand specificities and may function as a generalized bioscavenger by binding and/or hydrolyzing various xenobiotic agents and toxicants, many of which target the central and peripheral nervous systems. Variants of BChE were rationally designed to increase the enzyme?s ability to hydrolyze the psychoactive enantiomer of cocaine. These variants were cloned, and then expressed using the magnICON transient expression system in p...

  19. Hydroxy-Al and cell-surface negativity are responsible for the enhanced sensitivity of Rhodotorula taiwanensis to aluminum by increased medium pH.

    Science.gov (United States)

    Zhao, Xue Qiang; Bao, Xue Min; Wang, Chao; Xiao, Zuo Yi; Hu, Zhen Min; Zheng, Chun Li; Shen, Ren Fang

    2017-10-01

    Aluminum (Al) is ubiquitous and toxic to microbes. High Al 3+ concentration and low pH are two key factors responsible for Al toxicity, but our present results contradict this idea. Here, an Al-tolerant yeast strain Rhodotorula taiwanensis RS1 was incubated in glucose media containing Al with a continuous pH gradient from pH 3.1-4.2. The cells became more sensitive to Al and accumulated more Al when pH increased. Calculations using an electrostatic model Speciation Gouy Chapman Stern indicated that, the increased Al sensitivity of cells was associated with AlOH 2+ and Al(OH) 2 + rather than Al 3+ . The alcian blue (a positively charged dye) adsorption and zeta potential determination of cell surface indicated that, higher pH than 3.1 increased the negative charge and Al adsorption at the cell surface. Taken together, the enhanced sensitivity of R. taiwanensis RS1 to Al from pH 3.1-4.2 was associated with increased hydroxy-Al and cell-surface negativity.

  20. Bilirubin Increases Insulin Sensitivity in Leptin-Receptor Deficient and Diet-Induced Obese Mice Through Suppression of ER Stress and Chronic Inflammation

    Science.gov (United States)

    Dong, Huansheng; Huang, Hu; Yun, Xinxu; Kim, Do-sung; Yue, Yinan; Wu, Hongju; Sutter, Alton; Chavin, Kenneth D.; Otterbein, Leo E.; Adams, David B.; Kim, Young-Bum

    2014-01-01

    Obesity-induced endoplasmic reticulum (ER) stress causes chronic inflammation in adipose tissue and steatosis in the liver, and eventually leads to insulin resistance and type 2 diabetes (T2D). The goal of this study was to understand the mechanisms by which administration of bilirubin, a powerful antioxidant, reduces hyperglycemia and ameliorates obesity in leptin-receptor-deficient (db/db) and diet-induced obese (DIO) mouse models. db/db or DIO mice were injected with bilirubin or vehicle ip. Blood glucose and body weight were measured. Activation of insulin-signaling pathways, expression of inflammatory cytokines, and ER stress markers were measured in skeletal muscle, adipose tissue, and liver of mice. Bilirubin administration significantly reduced hyperglycemia and increased insulin sensitivity in db/db mice. Bilirubin treatment increased protein kinase B (PKB/Akt) phosphorylation in skeletal muscle and suppressed expression of ER stress markers, including the 78-kDa glucose-regulated protein (GRP78), CCAAT/enhancer-binding protein (C/EBP) homologous protein, X box binding protein (XBP-1), and activating transcription factor 4 in db/db mice. In DIO mice, bilirubin treatment significantly reduced body weight and increased insulin sensitivity. Moreover, bilirubin suppressed macrophage infiltration and proinflammatory cytokine expression, including TNF-α, IL-1β, and monocyte chemoattractant protein-1, in adipose tissue. In liver and adipose tissue of DIO mice, bilirubin ameliorated hepatic steatosis and reduced expression of GRP78 and C/EBP homologous protein. These results demonstrate that bilirubin administration improves hyperglycemia and obesity by increasing insulin sensitivity in both genetically engineered and DIO mice models. Bilirubin or bilirubin-increasing drugs might be useful as an insulin sensitizer for the treatment of obesity-induced insulin resistance and type 2 diabetes based on its profound anti-ER stress and antiinflammatory properties. PMID

  1. MK-801 treatment affects glycolysis in oligodendrocytes more than in astrocytes and neuronal cells: insights for schizophrenia

    Science.gov (United States)

    Guest, Paul C.; Iwata, Keiko; Kato, Takahiro A.; Steiner, Johann; Schmitt, Andrea; Turck, Christoph W.; Martins-de-Souza, Daniel

    2015-01-01

    Schizophrenia is a debilitating mental disorder, affecting more than 30 million people worldwide. As a multifactorial disease, the underlying causes of schizophrenia require analysis by multiplex methods such as proteomics to allow identification of whole protein networks. Previous post-mortem proteomic studies on brain tissues from schizophrenia patients have demonstrated changes in activation of glycolytic and energy metabolism pathways. However, it is not known whether these changes occur in neurons or in glial cells. To address this question, we treated neuronal, astrocyte, and oligodendrocyte cell lines with the NMDA receptor antagonist MK-801 and measured the levels of six glycolytic enzymes by Western blot analysis. MK-801 acts on the glutamatergic system and has been proposed as a pharmacological means of modeling schizophrenia. Treatment with MK-801 resulted in significant changes in the levels of glycolytic enzymes in all cell types. Most of the differences were found in oligodendrocytes, which had altered levels of hexokinase 1 (HK1), enolase 2 (ENO2), phosphoglycerate kinase (PGK), and phosphoglycerate mutase 1 after acute MK-801 treatment (8 h), and HK1, ENO2, PGK, and triosephosphate isomerase (TPI) following long term treatment (72 h). Addition of the antipsychotic clozapine to the cultures resulted in counter-regulatory effects to the MK-801 treatment by normalizing the levels of ENO2 and PGK in both the acute and long term cultures. In astrocytes, MK-801 affected only aldolase C (ALDOC) under both acute conditions and HK1 and ALDOC following long term treatment, and TPI was the only enzyme affected under long term conditions in the neuronal cells. In conclusion, MK-801 affects glycolysis in oligodendrocytes to a larger extent than neuronal cells and this may be modulated by antipsychotic treatment. Although cell culture studies do not necessarily reflect the in vivo pathophysiology and drug effects within the brain, these results suggest that

  2. Blood pressure is reduced and insulin sensitivity increased in glucose-intolerant, hypertensive subjects after 15 days of consuming high-polyphenol dark chocolate.

    Science.gov (United States)

    Grassi, Davide; Desideri, Giovambattista; Necozione, Stefano; Lippi, Cristina; Casale, Raffaele; Properzi, Giuliana; Blumberg, Jeffrey B; Ferri, Claudio

    2008-09-01

    Flavanols from chocolate appear to increase nitric oxide bioavailability, protect vascular endothelium, and decrease cardiovascular disease (CVD) risk factors. We sought to test the effect of flavanol-rich dark chocolate (FRDC) on endothelial function, insulin sensitivity, beta-cell function, and blood pressure (BP) in hypertensive patients with impaired glucose tolerance (IGT). After a run-in phase, 19 hypertensives with IGT (11 males, 8 females; 44.8 +/- 8.0 y) were randomized to receive isocalorically either FRDC or flavanol-free white chocolate (FFWC) at 100 g/d for 15 d. After a wash-out period, patients were switched to the other treatment. Clinical and 24-h ambulatory BP was determined by sphygmometry and oscillometry, respectively, flow-mediated dilation (FMD), oral glucose tolerance test, serum cholesterol and C-reactive protein, and plasma homocysteine were evaluated after each treatment phase. FRDC but not FFWC ingestion decreased insulin resistance (homeostasis model assessment of insulin resistance; P < 0.0001) and increased insulin sensitivity (quantitative insulin sensitivity check index, insulin sensitivity index (ISI), ISI(0); P < 0.05) and beta-cell function (corrected insulin response CIR(120); P = 0.035). Systolic (S) and diastolic (D) BP decreased (P < 0.0001) after FRDC (SBP, -3.82 +/- 2.40 mm Hg; DBP, -3.92 +/- 1.98 mm Hg; 24-h SBP, -4.52 +/- 3.94 mm Hg; 24-h DBP, -4.17 +/- 3.29 mm Hg) but not after FFWC. Further, FRDC increased FMD (P < 0.0001) and decreased total cholesterol (-6.5%; P < 0.0001), and LDL cholesterol (-7.5%; P < 0.0001). Changes in insulin sensitivity (Delta ISI - Delta FMD: r = 0.510, P = 0.001; Delta QUICKI - Delta FMD: r = 0.502, P = 0.001) and beta-cell function (Delta CIR(120) - Delta FMD: r = 0.400, P = 0.012) were directly correlated with increases in FMD and inversely correlated with decreases in BP (Delta ISI - Delta 24-h SBP: r = -0.368, P = 0.022; Delta ISI - Delta 24-h DBP r = -0.384, P = 0.017). Thus, FRDC

  3. Synthetic Galectin-3 Inhibitor Increases Metastatic Cancer Cell Sensitivity to Taxol-Induced Apoptosis In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Vladislav V. Glinsky

    2009-09-01

    Full Text Available At present, there is no efficient curative therapy for cancer patients with advanced metastatic disease. Targeting of antiapoptotic molecules acting on the mitochondrial apoptosis pathway could potentially augment antimetastatic effect of cytotoxic drugs. Similarly to Bcl-2 family members, β-galactoside-binding lectin galectin-3 protects cancer cells from apoptosis induced by cytotoxic drugs through the mitochondrial pathway. In this study, we tested the hypothesis that inhibiting galectin-3 antiapoptotic function using a synthetic low-molecular weight carbohydrate-based compound lactulosyl-L-leucine (Lac-L-Leu will augment apoptosis induced in human cancer cells by paclitaxel and increase its efficacy against established metastases. Treatment with synthetic glycoamine Lac-L-Leu alone reduced the number of established MDA-MB-435Lung2 pulmonary metastases 5.5-fold (P = .032 but did not significantly affect the incidence of metastasis. Treatment with paclitaxel alone (10 mg/kg three times with 3-day intervals had no significant effect on the incidence or on the number of MDA-MB-435Lung2 metastases. Treatment with Lac-L-Leu/paclitaxel combination decreased both the number (P = .02 and the incidence (P = .001 of pulmonary metastases, causing a five-fold increase in the number of metastasis-free animals from 14% in the control group to 70% in the combination therapy group. The median number of lung metastases dropped to 0 in the combination therapy group compared with 11 in the control (P = .02. Synergistic inhibition of clonogenic survival and induction of apoptosis in metastatic cells by Lac-L-Leu/paclitaxel combination was functionally linked with an increase in mitochondrial damage and was sufficient for the antimetastatic activity that caused a reversal and eradication of advanced metastatic disease in 56% of experimental animals.

  4. CTT1 overexpression increases the replicative lifespan of MMS-sensitive Saccharomyces cerevisiae deficient in KSP1.

    Science.gov (United States)

    Zhao, Wei; Zheng, Hua-Zhen; Zhou, Tao; Hong, Xiao-Shan; Cui, Hong-Jing; Jiang, Zhi-Wen; Chen, Hui-Ji; Zhou, Zhong-Jun; Liu, Xin-Guang

    2017-06-01

    Ksplp is a nuclear-localized Ser/Thr kinase that is not essential for the vegetative growth of yeast. A global gene function analysis in yeast suggested that Ksplp was involved in the oxidative stress response; however, the underlying mechanism remains unclear. Here, we showed that KSP1-deficient yeast cells exhibit hypersensitivity to the DNA alkylating agent methyl methanesulphonate (MMS), and treatment of the KSP1-deficient strain with MMS could trigger abnormal mitochondrial membrane potential and up-regulate reactive oxygen species (ROS) production. In addition, the mRNA expression level of the catalase gene CTT1 (which encodes cytosolic catalase) and total catalase activity were strongly down-regulated in the KSP1-deleted strain compared with those in wild-type cells. Moreover, the KSP1 deficiency also leads to a shortened replicative lifespan, which could be restored by the increased expression of CTT1. On the other hand, KSP1-overexpressed (KSP1OX) yeast cells exhibited increased resistance towards MMS, an effect that was, at least in part, CTT1 independent. Collectively, these findings highlight the involvement of Ksplp in the DNA damage response and implicate Ksplp as a modulator of the replicative lifespan. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Simultaneous targeting of ATM and Mcl-1 increases cisplatin sensitivity of cisplatin-resistant non-small cell lung cancer.

    Science.gov (United States)

    Zhang, Fuquan; Shen, Mingjing; Yang, Li; Yang, Xiaodong; Tsai, Ying; Keng, Peter C; Chen, Yongbing; Lee, Soo Ok; Chen, Yuhchyau

    2017-08-03

    Development of cisplatin-resistance is an obstacle in non-small cell lung cancer (NSCLC) therapeutics. To investigate which molecules are associated with cisplatin-resistance, we analyzed expression profiles of several DNA repair and anti-apoptosis associated molecules in parental (A549P and H157P) and cisplatin-resistant (A549CisR and H157CisR) NSCLC cells. We detected constitutively upregulated nuclear ATM and cytosolic Mcl-1 molcules in cisplatin-resistant cells compared with parental cells. Increased levels of phosphorylated ATM (p-ATM) and its downstream molecules, CHK2, p-CHK2, p-53, and p-p53 were also detected in cisplatin-resistant cells, suggesting an activation of ATM signaling in these cells. Upon inhibition of ATM and Mcl-1 expression/activity using specific inhibitors of ATM and/or Mcl-1, we found significantly enhanced cisplatin-cytotoxicity and increased apoptosis of A549CisR cells after cisplatin treatment. Several A549CisR-derived cell lines, including ATM knocked down (A549CisR-siATM), Mcl-1 knocked down (A549CisR-shMcl1), ATM/Mcl-1 double knocked down (A549CisR-siATM/shMcl1) as well as scramble control (A549CisR-sc), were then developed. Higher cisplatin-cytotoxicity and increased apoptosis were observed in A549CisR-siATM, A549CisR-shMcl1, and A549CisR-siATM/shMcl1 cells compared with A549CisR-sc cells, and the most significant effect was shown in A549CisR-siATM/shMcl1 cells. In in vivo mice studies using subcutaneous xenograft mouse models developed with A549CisR-sc and A549CisR-siATM/shMcl1 cells, significant tumor regression in A549CisR-siATM/shMcl1 cells-derived xenografts was observed after cisplatin injection, but not in A549CisR-sc cells-derived xenografts. Finally, inhibitor studies revealed activation of Erk signaling pathway was most important in upregulation of ATM and Mcl-1 molcules in cisplatin-resistant cells. These studies suggest that simultaneous blocking of ATM/Mcl-1 molcules or downstream Erk signaling may recover the

  6. Experimental evolution of defense against a competitive mold confers reduced sensitivity to fungal toxins but no increased resistance in Drosophila larvae

    Directory of Open Access Journals (Sweden)

    Trienens Monika

    2011-07-01

    Full Text Available Abstract Background Fungal secondary metabolites have been suggested to function as chemical defenses against insect antagonists, i.e. predators and competitors. Because insects and fungi often compete for dead organic material, insects may achieve protection against fungi by reducing sensitivity to fungal chemicals. This, in turn, may lead to increased resistance allowing insects better to suppress the spread of antagonistic but non-pathogenic microbes in their habitat. However, it remains controversial whether fungal toxins serve as a chemical shield that selects for insects that are less sensitive to toxins, and hence favors the evolution of insect resistance against microbial competitors. Results To examine the relationship between the ability to survive competition with toxic fungi, sensitivity to fungal toxins and resistance, we created fungal-selected (FS replicated insect lines by exposing Drosophila melanogaster larvae to the fungal competitor Aspergillus nidulans over 26 insect generations. Compared to unselected control lines (UC, larvae from the FS lines had higher survival rates in the presence of A. nidulans indicating selection for increased protection against the fungal antagonist. In line with our expectation, FS lines were less susceptible to the A. nidulans mycotoxin Sterigmatocystin. Of particular interest is that evolved protection against A. nidulans and Sterigmatocytin was not correlated with increased insect survival in the presence of other fungi and mycotoxins. We found no evidence that FS lines were better at suppressing the expansion of fungal colonies but observed a trend towards a less detrimental effect of FS larvae on fungal growth. Conclusion Antagonistic but non-pathogenic fungi favor insect variants better protected against the fungal chemical arsenal. This highlights the often proposed but experimentally underexplored importance of secondary metabolites in driving animal-fungus interactions. Instead of

  7. Gene expression profiling of a Zn-tolerant and a Zn-sensitive Suillus luteus isolate exposed to increased external zinc concentrations

    OpenAIRE

    MULLER, Ludo; Craciun, A. R.; RUYTINX, Joske; LAMBAERTS, Marc; Verbruggen, N.; VANGRONSVELD, Jaco; COLPAERT, Jan

    2007-01-01

    Complementary DNA (cDNA)-amplified fragment-length polymorphism (AFLP) was applied to analyze transcript profiles of a Zn-tolerant and a Zn-sensitive isolate of the ectomycorrhizal basidiomycete Suillus luteus, both cultured with and without increased external zinc concentrations. From the obtained transcript profiles that covered approximately 2% of the total expected complement of genes in S. luteus, 144 nonredundant, differentially expressed transcript-derived fragments (TDFs), falling in ...

  8. Increasing sensitivity of methane emission measurements in rice through deployment of ‘closed chambers’ at nighttime

    Science.gov (United States)

    Wassmann, Reiner; Alberto, Ma. Carmelita; Tirol-Padre, Agnes; Hoang, Nghia Trong; Romasanta, Ryan; Centeno, Caesar Arloo; Sander, Bjoern Ole

    2018-01-01

    This study comprises field experiments on methane emissions from rice fields conducted with an Eddy-Covariance (EC) system as well as test runs for a modified closed chamber approach based on measurements at nighttime. The EC data set covers 4 cropping seasons with highly resolved emission rates (raw data in 10 Hz frequency have been aggregated to 30-min records). The diel patterns were very pronounced in the two dry seasons with peak emissions at early afternoon and low emissions at nighttime. These diel patterns were observed at all growing stages of the dry seasons. In the two wet seasons, the diel patterns were only visible during the vegetative stages while emission rates during reproductive and ripening stages remained within a fairly steady range and did not show any diel patterns. In totality, however, the data set revealed a very strong linear relationship between nocturnal emissions (12-h periods) and the full 24-h periods resulting in an R2-value of 0.8419 for all data points. In the second experiment, we conducted test runs for chamber measurements at nighttime with much longer deployment times (6 h) as compared to measurements at daylight (typically for 30 min). Conducting chamber measurements at nighttime excluded drastic changes of temperatures and CO2 concentrations. The data also shows that increases in CH4 concentrations remained on linear trajectory over a 6h period at night. While end CH4 concentrations were consistently >3.5 ppm, this long-term enclosure represents a very robust approach to quantify emissions as compared to assessing short-term concentration increases over time near the analytical detection limit. Finally, we have discussed the potential applications of this new approach that would allow emission measurements even when conventional (daytime) measurements will not be suitable. Nighttime chamber measurements offer an alternative to conventional (daytime) measurements if either (i) baseline emissions are at a very low level, (ii

  9. Treatment with metallothionein prevents demyelination and axonal damage and increases oligodendrocyte precursors and tissue repair during experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Penkowa, Milena; Hidalgo, Juan

    2003-01-01

    Experimental autoimmune encephalomyelitis (EAE) is an animal model for the human demyelinating disease multiple sclerosis (MS). EAE and MS are characterized by significant inflammation, demyelination, neuroglial damage, and cell death. Metallothionein-I and -II (MT-I + II) are antiinflammatory an......)beta, neurotrophin-3 (NT-3), NT-4/5, and nerve growth factor (NGF). These beneficial effects of Zn-MT-II treatment could not be attributable to its zinc content per se. The present results support further the use of Zn-MT-II as a safe and successful therapy for multiple sclerosis....

  10. New Variants of Tomato Thymidine Kinase 1 Selected for Increased Sensitivity of E. coli KY895 towards Azidothymidine

    International Nuclear Information System (INIS)

    Slot Christiansen, Louise; Egeblad, Louise; Munch-Petersen, Birgitte; Piškur, Jure; Knecht, Wolfgang

    2015-01-01

    Nucleoside analogues (NA) are prodrugs that are phosphorylated by deoxyribonucleoside kinases (dNKs) as the first step towards a compound toxic to the cell. During the last 20 years, research around dNKs has gone into new organisms other than mammals and viruses. Newly discovered dNKs have been tested as enzymes for suicide gene therapy. The tomato thymidine kinase 1 (ToTK1) is a dNK that has been selected for its in vitro kinetic properties and then successfully been tested in vivo for the treatment of malignant glioma. We present the selection of two improved variants of ToTK1 generated by random protein engineering for suicide gene therapy with the NA azidothymidine (AZT). We describe their selection, recombinant production and a subsequent kinetic and biochemical characterization. Their improved performance in killing of E. coli KY895 is accompanied by an increase in specificity for the NA AZT over the natural substrate thymidine as well as a decrease in inhibition by dTTP, the end product of the nucleoside salvage pathway for thymidine. The understanding of the enzymatic properties improving the variants efficacy is instrumental to further develop dNKs for use in suicide gene therapy

  11. New Variants of Tomato Thymidine Kinase 1 Selected for Increased Sensitivity of E. coli KY895 towards Azidothymidine

    Energy Technology Data Exchange (ETDEWEB)

    Slot Christiansen, Louise [Department of Biology, Lund University, Lund 22362 (Sweden); Lund Protein Production Platform, Lund University, Lund 22362 (Sweden); Egeblad, Louise [Lund Protein Production Platform, Lund University, Lund 22362 (Sweden); Munch-Petersen, Birgitte [Department of Science, Systems and Models, Roskilde University, Roskilde 4000 (Denmark); Piškur, Jure [Department of Biology, Lund University, Lund 22362 (Sweden); Knecht, Wolfgang, E-mail: Louise.Slot_Christiansen@biol.lu.se [Department of Biology, Lund University, Lund 22362 (Sweden); Lund Protein Production Platform, Lund University, Lund 22362 (Sweden)

    2015-06-08

    Nucleoside analogues (NA) are prodrugs that are phosphorylated by deoxyribonucleoside kinases (dNKs) as the first step towards a compound toxic to the cell. During the last 20 years, research around dNKs has gone into new organisms other than mammals and viruses. Newly discovered dNKs have been tested as enzymes for suicide gene therapy. The tomato thymidine kinase 1 (ToTK1) is a dNK that has been selected for its in vitro kinetic properties and then successfully been tested in vivo for the treatment of malignant glioma. We present the selection of two improved variants of ToTK1 generated by random protein engineering for suicide gene therapy with the NA azidothymidine (AZT). We describe their selection, recombinant production and a subsequent kinetic and biochemical characterization. Their improved performance in killing of E. coli KY895 is accompanied by an increase in specificity for the NA AZT over the natural substrate thymidine as well as a decrease in inhibition by dTTP, the end product of the nucleoside salvage pathway for thymidine. The understanding of the enzymatic properties improving the variants efficacy is instrumental to further develop dNKs for use in suicide gene therapy.

  12. Lower dipeptidyl peptidase-4 following exercise training plus weight loss is related to increased insulin sensitivity in adults with metabolic syndrome.

    Science.gov (United States)

    Malin, Steven K; Huang, Hazel; Mulya, Anny; Kashyap, Sangeeta R; Kirwan, John P

    2013-09-01

    Dipeptidyl peptidase-4 (DPP-4) is a circulating glycoprotein that impairs insulin-stimulated glucose uptake and is linked to obesity and metabolic syndrome. However, the effect of exercise on plasma DPP-4 in adults with metabolic syndrome is unknown. Therefore, we determined the effect of exercise on DPP-4 and its role in explaining exercise-induced improvements in insulin sensitivity. Fourteen obese adults (67.9±1.2 years, BMI: 34.2±1.1kg/m(2)) with metabolic syndrome (ATP III criteria) underwent a 12-week supervised exercise intervention (60min/day for 5 days/week at ∼85% HRmax). Plasma DPP-4 was analyzed using an enzyme-linked immunosorbent assay. Insulin sensitivity was measured using the euglycemic-hyperinsulinemic clamp (40mU/m(2)/min) and estimated by HOMA-IR. Visceral fat (computerized tomography), 2-h glucose levels (75g oral glucose tolerance), and basal fat oxidation as well as aerobic fitness (indirect calorimetry) were also determined before and after exercise. The intervention reduced visceral fat, lowered blood pressure, glucose and lipids, and increased aerobic fitness (PExercise improved clamp-derived insulin sensitivity by 75% (PExercise training reduces plasma DPP-4, which may be linked to elevated insulin sensitivity and fat oxidation. Maintaining low plasma DPP-4 concentrations is a potential mechanism whereby exercise plus weight loss prevents/delays the onset of type 2 diabetes in adults with metabolic syndrome. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Order of magnitude sensitivity increase in X-ray Fluorescence Computed Tomography (XFCT) imaging with an optimized spectro-spatial detector configuration: theory and simulation.

    Science.gov (United States)

    Ahmad, Moiz; Bazalova, Magdalena; Xiang, Liangzhong; Xing, Lei

    2014-05-01

    The purpose of this study was to increase the sensitivity of XFCT imaging by optimizing the data acquisition geometry for reduced scatter X-rays. The placement of detectors and detector energy window were chosen to minimize scatter X-rays. We performed both theoretical calculations and Monte Carlo simulations of this optimized detector configuration on a mouse-sized phantom containing various gold concentrations. The sensitivity limits were determined for three different X-ray spectra: a monoenergetic source, a Gaussian source, and a conventional X-ray tube source. Scatter X-rays were minimized using a backscatter detector orientation (scatter direction > 110(°) to the primary X-ray beam). The optimized configuration simultaneously reduced the number of detectors and improved the image signal-to-noise ratio. The sensitivity of the optimized configuration was 10 μg/mL (10 pM) at 2 mGy dose with the mono-energetic source, which is an order of magnitude improvement over the unoptimized configuration (102 pM without the optimization). Similar improvements were seen with the Gaussian spectrum source and conventional X-ray tube source. The optimization improvements were predicted in the theoretical model and also demonstrated in simulations. The sensitivity of XFCT imaging can be enhanced by an order of magnitude with the data acquisition optimization, greatly enhancing the potential of this modality for future use in clinical molecular imaging.

  14. Early enhancements of hepatic and later of peripheral insulin sensitivity combined with increased postprandial insulin secretion contribute to improved glycemic control after Roux-en-Y gastric bypass

    DEFF Research Database (Denmark)

    Bojsen-Møller, Kirstine N; Dirksen, Carsten; Jørgensen, Nils Bruun

    2014-01-01

    after RYGB. Participants were included after a preoperative diet induced total weight loss of -9.2±1.2%. Hepatic and peripheral insulin sensitivity were assessed using the hyperinsulinemic euglycemic clamp combined with glucose tracer technique and beta-cell function evaluated in response...... after surgery. Insulin mediated glucose disposal and suppression of fatty acids did not improve immediately after surgery but increased at 3 months and 1 year likely related to the reduction in body weight. Insulin secretion increased after RYGB, but only in patients with type 2 diabetes and only...

  15. Comparative Effects of Human Neural Stem Cells and Oligodendrocyte Progenitor Cells on the Neurobehavioral Disorders of Experimental Autoimmune Encephalomyelitis Mice

    Directory of Open Access Journals (Sweden)

    Dae-Kwon Bae

    2016-01-01

    Full Text Available Since multiple sclerosis (MS is featured with widespread demyelination caused by autoimmune response, we investigated the recovery effects of F3.olig2 progenitors, established by transducing human neural stem cells (F3 NSCs with Olig2 transcription factor, in myelin oligodendrocyte glycoprotein- (MOG- induced experimental autoimmune encephalomyelitis (EAE model mice. Six days after EAE induction, F3 or F3.olig2 cells (1 × 106/mouse were intravenously transplanted. MOG-injected mice displayed severe neurobehavioral deficits which were remarkably attenuated and restored by cell transplantation, in which F3.olig2 cells were superior to its parental F3 cells. Transplanted cells migrated to the injured spinal cord, matured to oligodendrocytes, and produced myelin basic proteins (MBP. The F3.olig2 cells expressed growth and neurotrophic factors including brain-derived neurotrophic factor (BDNF, nerve growth factor (NGF, ciliary neurotrophic factor (CNTF, and leukemia inhibitory factor (LIF. In addition, the transplanted cells markedly attenuated inflammatory cell infiltration, reduced cytokine levels in the spinal cord and lymph nodes, and protected host myelins. The results indicate that F3.olig2 cells restore neurobehavioral symptoms of EAE mice by regulating autoimmune inflammatory responses as well as by stimulating remyelination and that F3.olig2 progenitors could be a candidate for the cell therapy of demyelinating diseases including MS.

  16. Exon-skipping strategy by ratio modulation between cytoprotective versus pro-apoptotic clusterin forms increased sensitivity of LNCaP to cell death.

    Directory of Open Access Journals (Sweden)

    Abdellatif Essabbani

    Full Text Available BACKGROUND: In prostate cancer the secreted form of clusterin (sCLU has been described as an anti-apoptotic protein whose expression is increased after therapeutic intervention, whereas, the nuclear protein form nCLU was reported to have pro-apoptotic properties. METHODOLOGY: In order to provide new therapeutic approaches targeting CLU, we developed a strategy based on exon skipping by using a lentiviral construct to preferentially induce the nuclear spliced form of the protein. The molecular construct was transduced in LNCaP cells for testing the modulation of sensitivity of the transduced cells to pro-apoptotic stress. RESULTS AND CONCLUSIONS: We showed an increase of nCLU/sCLU expression ratio in the prostate cancer cell line "LNCaP" after lentiviral vector-U7 nCLU transduction. Moreover, we showed a significant inhibition of cell proliferation in nCLU-U7 LNCaP cells after treatment with cisplatin and after exposure to ionizing radiation compared to control cells. Finally, we showed that nCLU-U7 LNCaP cells exposure to UV-C significantly reduced an increase of cell death compared to control. Finally, we showed that modulating nCLU expression had profound impact on Ku70/Bax interaction as well as Rad17 expression which could be a key mechanism in sensitizing cells to cell death. In conclusion, this is the first report showing that increasing of nCLU/sCLU expression ratio by using an "on demand alternative splicing" strategy successfully increased sensitivity to radiotherapy and chemotherapy of prostate cancer cells.

  17. Curcumin increases the sensitivity of Paclitaxel-resistant NSCLC cells to Paclitaxel through microRNA-30c-mediated MTA1 reduction.

    Science.gov (United States)

    Lu, Yimin; Wang, Jun; Liu, Lei; Yu, Lequn; Zhao, Nian; Zhou, Xingju; Lu, Xudong

    2017-04-01

    Non-small-cell lung cancer is one of the most lethal cancers in the worldwide. Although Paclitaxel-based combinational therapies have long been used as a standard treatment in aggressive non-small-cell lung cancers, Paclitaxel resistance emerges as a major clinical problem. It has been demonstrated that Curcumin from Curcuma longa as a traditional Chinese medicine can inhibit cancer cell proliferation. However, the role of Curcumin in Paclitaxel-resistant non-small-cell lung cancer cells is not clear. In this study, we investigated the effect of Curcumin on the Paclitaxel-resistant non-small-cell lung cancer cells and found that Curcumin treatment markedly increased the sensitivity of Paclitaxel-resistant non-small-cell lung cancer cells to Paclitaxel. Mechanically, the study revealed that Curcumin could reduce the expression of metastasis-associated gene 1 (MTA1) gene through upregulation of microRNA-30c in Paclitaxel-resistant non-small-cell lung cancer cells. During the course, MTA1 reduction sensitized Paclitaxel-resistant non-small-cell lung cancer cells and enhanced the effect of Paclitaxel. Taken together, our studies indicate that Curcumin increases the sensitivity of Paclitaxel-resistant non-small-cell lung cancer cells to Paclitaxel through microRNA-30c-mediated MTA1 reduction. Curcumin might be a potential adjuvant for non-small-cell lung cancer patients during Paclitaxel treatment.

  18. Higher Levels of c-Met Expression and Phosphorylation Identify Cell Lines With Increased Sensitivity to AMG-458, a Novel Selective c-Met Inhibitor With Radiosensitizing Effects

    International Nuclear Information System (INIS)

    Li Bo; Torossian, Artour; Sun, Yunguang; Du, Ruihong; Dicker, Adam P.; Lu Bo

    2012-01-01

    Purpose: c-Met is overexpressed in some non-small cell lung cancer (NSCLC) cell lines and tissues. Cell lines with higher levels of c-Met expression and phosphorylation depend on this receptor for survival. We studied the effects of AMG-458 on 2 NSCLC cell lines. Methods and Materials: 3-(4,5-Dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl) -2H-tetrazolium assays assessed the sensitivities of the cells to AMG-458. Clonogenic survival assays illustrated the radiosensitizing effects of AMG-458. Western blot for cleaved caspase 3 measured apoptosis. Immunoblotting for c-Met, phospho-Met (p-Met), Akt/p-Akt, and Erk/p-Erk was performed to observe downstream signaling. Results: AMG-458 enhanced radiosensitivity in H441 but not in A549. H441 showed constitutive phosphorylation of c-Met. A549 expressed low levels of c-Met, which were phosphorylated only in the presence of exogenous hepatocyte growth factor. The combination of radiation therapy and AMG-458 treatment was found to synergistically increase apoptosis in the H441 cell line but not in A549. Radiation therapy, AMG-458, and combination treatment were found to reduce p-Akt and p-Erk levels in H441 but not in A549. H441 became less sensitive to AMG-458 after small interfering RNA knockdown of c-Met; there was no change in A549. After overexpression of c-Met, A549 became more sensitive, while H441 became less sensitive to AMG-458. Conclusions: AMG-458 was more effective in cells that expressed higher levels of c-Met/p-Met, suggesting that higher levels of c-Met and p-Met in NSCLC tissue may classify a subset of tumors that are more sensitive to molecular therapies against this receptor.

  19. Substantial replacement of lactose with fat in a high-lactose milk replacer diet increases liver fat accumulation but does not affect insulin sensitivity in veal calves.

    Science.gov (United States)

    Pantophlet, A J; Gerrits, W J J; Vonk, R J; van den Borne, J J G C

    2016-12-01

    In veal calves, the major portion of digestible energy intake originates from milk replacer (MR), wi