WorldWideScience

Sample records for olfactory long-term memory

  1. Long-term olfactory memories are stabilised via protein synthesis in Camponotus fellah ants

    DEFF Research Database (Denmark)

    Guerrieri, Fernando Javier; D'Ettorre, Patrizia; Deveaud, J-M.;

    2011-01-01

    of molecular bases of learning and memory. An open question is whether the memories formed upon olfactory learning that are retrievable several days after training are indeed based on de novo protein synthesis. Here, we addressed this question in the ant Camponotus fellah using a conditioning protocol in which......-chain hydrocarbons, one paired with sucrose and the other with quinine solution. Differential conditioning leads to the formation of a long-term memory retrievable at least 72¿h after training. Long-term memory consolidation was impaired by the ingestion of cycloheximide, a protein synthesis blocker, prior...... synthesis, long-term memories are stabilised via protein synthesis. Our behavioural protocol opens interesting research avenues to explore the cellular and molecular bases of olfactory learning and memory in ants....

  2. Long-term olfactory memories are stabilised via protein synthesis in Camponotus fellah ants.

    Science.gov (United States)

    Guerrieri, Fernando J; d'Ettorre, Patrizia; Devaud, Jean-Marc; Giurfa, Martin

    2011-10-01

    Ants exhibit impressive olfactory learning abilities. Operant protocols in which ants freely choose between rewarded and non-rewarded odours have been used to characterise associative olfactory learning and memory. Yet, this approach precludes the use of invasive methods allowing the dissection of molecular bases of learning and memory. An open question is whether the memories formed upon olfactory learning that are retrievable several days after training are indeed based on de novo protein synthesis. Here, we addressed this question in the ant Camponotus fellah using a conditioning protocol in which individually harnessed ants learn an association between odour and reward. When the antennae of an ant are stimulated with sucrose solution, the insect extends its maxilla-labium to absorb the solution (maxilla-labium extension response). We differentially conditioned ants to discriminate between two long-chain hydrocarbons, one paired with sucrose and the other with quinine solution. Differential conditioning leads to the formation of a long-term memory retrievable at least 72 h after training. Long-term memory consolidation was impaired by the ingestion of cycloheximide, a protein synthesis blocker, prior to conditioning. Cycloheximide did not impair acquisition of either short-term memory (10 min) or early and late mid-term memories (1 or 12 h). These results show that, upon olfactory learning, ants form different memories with variable molecular bases. While short- and mid-term memories do not require protein synthesis, long-term memories are stabilised via protein synthesis. Our behavioural protocol opens interesting research avenues to explore the cellular and molecular bases of olfactory learning and memory in ants.

  3. Early calcium increase triggers the formation of olfactory long-term memory in honeybees

    Directory of Open Access Journals (Sweden)

    Matsumoto Yukihisa

    2009-06-01

    Full Text Available Abstract Background Synaptic plasticity associated with an important wave of gene transcription and protein synthesis underlies long-term memory processes. Calcium (Ca2+ plays an important role in a variety of neuronal functions and indirect evidence suggests that it may be involved in synaptic plasticity and in the regulation of gene expression correlated to long-term memory formation. The aim of this study was to determine whether Ca2+ is necessary and sufficient for inducing long-term memory formation. A suitable model to address this question is the Pavlovian appetitive conditioning of the proboscis extension reflex in the honeybee Apis mellifera, in which animals learn to associate an odor with a sucrose reward. Results By modulating the intracellular Ca2+ concentration ([Ca2+]i in the brain, we show that: (i blocking [Ca2+]i increase during multiple-trial conditioning selectively impairs long-term memory performance; (ii conversely, increasing [Ca2+]i during single-trial conditioning triggers long-term memory formation; and finally, (iii as was the case for long-term memory produced by multiple-trial conditioning, enhancement of long-term memory performance induced by a [Ca2+]i increase depends on de novo protein synthesis. Conclusion Altogether our data suggest that during olfactory conditioning Ca2+ is both a necessary and a sufficient signal for the formation of protein-dependent long-term memory. Ca2+ therefore appears to act as a switch between short- and long-term storage of learned information.

  4. Appetitive Olfactory Learning and Long-Term Associative Memory in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Ichiro N. Maruyama

    2017-05-01

    Full Text Available Because of the relative simplicity of its nervous system, Caenorhabditis elegans is a useful model organism to study learning and memory at cellular and molecular levels. For appetitive conditioning in C. elegans, food has exclusively been used as an unconditioned stimulus (US. It may be difficult to analyze neuronal circuits for associative memory since food is a multimodal combination of olfactory, gustatory, and mechanical stimuli. Here, we report classical appetitive conditioning and associative memory in C. elegans, using 1-nonanol as a conditioned stimulus (CS, and potassium chloride (KCl as a US. Before conditioning, C. elegans innately avoided 1-nonanol, an aversive olfactory stimulus, and was attracted by KCl, an appetitive gustatory stimulus, on assay agar plates. Both massed training without an intertrial interval (ITI and spaced training with a 10-min ITI induced significant levels of memory of association regarding the two chemicals. Memory induced by massed training decayed within 6 h, while that induced by spaced training was retained for more than 6 h. Animals treated with inhibitors of transcription or translation formed the memory induced by spaced training less efficiently than untreated animals, whereas the memory induced by massed training was not significantly affected by such treatments. By definition, therefore, memories induced by massed training and spaced training are classified as short-term memory (STM and long-term memory (LTM, respectively. When animals conditioned by spaced training were exposed to 1-nonanol alone, their learning index was lower than that of untreated animals, suggesting that extinction learning occurs in C. elegans. In support of these results, C. elegans mutants defective in nmr-1, encoding an NMDA receptor subunit, formed both STM and LTM less efficiently than wild-type animals, while mutations in crh-1, encoding a ubiquitous transcription factor CREB required for memory consolidation, affected

  5. Long-term olfactory memories are stabilised via protein synthesis in Camponotus fellah ants

    DEFF Research Database (Denmark)

    Guerrieri, Fernando Javier; D'Ettorre, Patrizia; Deveaud, J-M.

    2011-01-01

    Ants exhibit impressive olfactory learning abilities. Operant protocols in which ants freely choose between rewarded and nonrewarded odours have been used to characterise associative olfactory learning and memory. Yet, this approach precludes the use of invasive methods allowing the dissection......-chain hydrocarbons, one paired with sucrose and the other with quinine solution. Differential conditioning leads to the formation of a long-term memory retrievable at least 72¿h after training. Long-term memory consolidation was impaired by the ingestion of cycloheximide, a protein synthesis blocker, prior...

  6. CaMKII knockdown affects both early and late phases of olfactory long-term memory in the honeybee.

    Science.gov (United States)

    Scholl, Christina; Kübert, Natalie; Muenz, Thomas S; Rössler, Wolfgang

    2015-12-01

    Honeybees are able to solve complex learning tasks and memorize learned information for long time periods. The molecular mechanisms mediating long-term memory (LTM) in the honeybee Apis mellifera are, to a large part, still unknown. We approached this question by investigating the potential function of the calcium/calmodulin-dependent protein kinase II (CaMKII), an enzyme known as a 'molecular memory switch' in vertebrates. CaMKII is able to switch to a calcium-independent constitutively active state, providing a mechanism for a molecular memory and has further been shown to play an essential role in structural synaptic plasticity. Using a combination of knockdown by RNA interference and pharmacological manipulation, we disrupted the function of CaMKII during olfactory learning and memory formation. We found that learning, memory acquisition and mid-term memory were not affected, but all manipulations consistently resulted in an impaired LTM. Both early LTM (24 h after learning) and late LTM (72 h after learning) were significantly disrupted, indicating the necessity of CaMKII in two successive stages of LTM formation in the honeybee. © 2015. Published by The Company of Biologists Ltd.

  7. Long-term olfactory memories are stabilised via protein synthesis in Camponotus fellah ants

    OpenAIRE

    Guerrieri, Fernando Javier; D'Ettorre, Patrizia; Deveaud, J-M.; Giurfa, M.

    2011-01-01

    Ants exhibit impressive olfactory learning abilities. Operant protocols in which ants freely choose between rewarded and nonrewarded odours have been used to characterise associative olfactory learning and memory. Yet, this approach precludes the use of invasive methods allowing the dissection of molecular bases of learning and memory. An open question is whether the memories formed upon olfactory learning that are retrievable several days after training are indeed based on de novo protein sy...

  8. Long-Term Memory Shapes the Primary Olfactory Center of an Insect Brain

    Science.gov (United States)

    Hourcade, Benoit; Perisse, Emmanuel; Devaud, Jean-Marc; Sandoz, Jean-Christophe

    2009-01-01

    The storage of stable memories is generally considered to rely on changes in the functional properties and/or the synaptic connectivity of neural networks. However, these changes are not easily tractable given the complexity of the learning procedures and brain circuits studied. Such a search can be narrowed down by studying memories of specific…

  9. Aversive Olfactory Learning and Associative Long-Term Memory in "Caenorhabditis elegans"

    Science.gov (United States)

    Amano, Hisayuki; Maruyama, Ichiro N.

    2011-01-01

    The nematode "Caenorhabditis elegans" ("C. elegans") adult hermaphrodite has 302 invariant neurons and is suited for cellular and molecular studies on complex behaviors including learning and memory. Here, we have developed protocols for classical conditioning of worms with 1-propanol, as a conditioned stimulus (CS), and hydrochloride (HCl) (pH…

  10. Aversive Olfactory Learning and Associative Long-Term Memory in "Caenorhabditis elegans"

    Science.gov (United States)

    Amano, Hisayuki; Maruyama, Ichiro N.

    2011-01-01

    The nematode "Caenorhabditis elegans" ("C. elegans") adult hermaphrodite has 302 invariant neurons and is suited for cellular and molecular studies on complex behaviors including learning and memory. Here, we have developed protocols for classical conditioning of worms with 1-propanol, as a conditioned stimulus (CS), and hydrochloride (HCl) (pH…

  11. Fus1 KO mouse as a model of oxidative stress-mediated sporadic Alzheimer’s disease: circadian disruption and long-term spatial and olfactory memory impairments.

    Directory of Open Access Journals (Sweden)

    Guillermo Coronas-Samano

    2016-11-01

    Full Text Available Insufficient advances in the development of effective therapeutic treatments of sporadic Alzheimer's Disease (sAD to date are largely due to the lack of sAD-relevant animal models. While the vast majority of models do recapitulate AD's hallmarks of plaques and tangles by virtue of tau and/or beta amyloid overexpression, these models do not reflect the fact that in sAD (unlike familial AD these genes are not risk factors per se and that other mechanisms like oxidative stress, metabolic dysregulation and inflammation play key roles in AD etiology. Here we characterize and propose the Fus1 KO mice that lack a mitochondrial protein Fus1/Tusc2 as a new sAD model. To establish sAD relevance, we assessed sAD related deficits in Fus1 KO and WT adult mice of 4-5 months old, the equivalent human age when the earliest cognitive and olfactory sAD symptoms arise. Fus1 KO mice showed oxidative stress (increased levels of ROS, decreased levels of PRDX1, disruption of metabolic homeostasis (decreased levels of ACC2, increased phosphorylation of AMPK, autophagy (decreased levels of LC3-II, PKC (decreased levels of RACK1 and calcium signaling (decreased levels of Calb2 in the olfactory bulb and/or hippocampus. Mice were behaviorally tested using objective and accurate video tracking (Noldus, in which Fus1 KO mice showed clear deficits in olfactory memory (decreased habituation/cross-habituation in the short and long term, olfactory guided navigation memory (inability to reduce their latency to find the hidden cookie, spatial memory (learning impairments on finding the platform in the Morris water maze and showed more sleep time during the diurnal cycle. Fus1 KO mice did not show clear deficits in olfactory perception (cross-habituation, association memory (passive avoidance or in species-typical behavior (nest building and no increased anxiety (open field, light-dark box or depression/anhedonia (sucrose preference at this relatively young age. These

  12. Different importance of the volatile and non-volatile fractions of an olfactory signature for individual social recognition in rats versus mice and short-term versus long-term memory.

    Science.gov (United States)

    Noack, Julia; Richter, Karin; Laube, Gregor; Haghgoo, Hojjat Allah; Veh, Rüdiger W; Engelmann, Mario

    2010-11-01

    When tested in the olfactory cued social recognition/discrimination test, rats and mice differ in their retention of a recognition memory for a previously encountered conspecific juvenile: Rats are able to recognize a given juvenile for approximately 45 min only whereas mice show not only short-term, but also long-term recognition memory (≥ 24 h). Here we modified the social recognition/social discrimination procedure to investigate the neurobiological mechanism(s) underlying the species differences. We presented a conspecific juvenile repeatedly to the experimental subjects and monitored the investigation duration as a measure for recognition. Presentation of only the volatile fraction of the juvenile olfactory signature was sufficient for both short- and long-term recognition in mice but not rats. Applying additional volatile, mono-molecular odours to the "to be recognized" juveniles failed to affect short-term memory in both species, but interfered with long-term recognition in mice. Finally immunocytochemical analysis of c-Fos as a marker for cellular activation, revealed that juvenile exposure stimulated areas involved in the processing of olfactory signals in both the main and the accessory olfactory bulb in mice. In rats, we measured an increased c-Fos synthesis almost exclusively in cells of the accessory olfactory bulb. Our data suggest that the species difference in the retention of social recognition memory is based on differences in the processing of the volatile versus non-volatile fraction of the individuals' olfactory signature. The non-volatile fraction is sufficient for retaining a short-term social memory only. Long-term social memory - as observed in mice - requires a processing of both the volatile and non-volatile fractions of the olfactory signature. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Neuronal Nitric-Oxide Synthase Deficiency Impairs the Long-Term Memory of Olfactory Fear Learning and Increases Odor Generalization

    Science.gov (United States)

    Pavesi, Eloisa; Heldt, Scott A.; Fletcher, Max L.

    2013-01-01

    Experience-induced changes associated with odor learning are mediated by a number of signaling molecules, including nitric oxide (NO), which is predominantly synthesized by neuronal nitric oxide synthase (nNOS) in the brain. In the current study, we investigated the role of nNOS in the acquisition and retention of conditioned olfactory fear. Mice…

  14. Long-Term Memory for Odors: Influences of Familiarity and Identification Across 64 Days

    National Research Council Canada - National Science Library

    Cornell Kärnekull, Stina; Jönsson, Fredrik U; Willander, Johan; Sikström, Sverker; Larsson, Maria

    2015-01-01

    Few studies have investigated long-term odor recognition memory, although some early observations suggested that the forgetting rate of olfactory representations is slower than for other sensory modalities...

  15. Long-Term Memory and Learning

    Science.gov (United States)

    Crossland, John

    2011-01-01

    The English National Curriculum Programmes of Study emphasise the importance of knowledge, understanding and skills, and teachers are well versed in structuring learning in those terms. Research outcomes into how long-term memory is stored and retrieved provide support for structuring learning in this way. Four further messages are added to the…

  16. PKA Increases in the Olfactory Bulb Act as Unconditioned Stimuli and Provide Evidence for Parallel Memory Systems: Pairing Odor with Increased PKA Creates Intermediate- and Long-Term, but Not Short-Term, Memories

    Science.gov (United States)

    Grimes, Matthew T.; Harley, Carolyn W.; Darby-King, Andrea; McLean, John H.

    2012-01-01

    Neonatal odor-preference memory in rat pups is a well-defined associative mammalian memory model dependent on cAMP. Previous work from this laboratory demonstrates three phases of neonatal odor-preference memory: short-term (translation-independent), intermediate-term (translation-dependent), and long-term (transcription- and…

  17. PKA Increases in the Olfactory Bulb Act as Unconditioned Stimuli and Provide Evidence for Parallel Memory Systems: Pairing Odor with Increased PKA Creates Intermediate- and Long-Term, but Not Short-Term, Memories

    Science.gov (United States)

    Grimes, Matthew T.; Harley, Carolyn W.; Darby-King, Andrea; McLean, John H.

    2012-01-01

    Neonatal odor-preference memory in rat pups is a well-defined associative mammalian memory model dependent on cAMP. Previous work from this laboratory demonstrates three phases of neonatal odor-preference memory: short-term (translation-independent), intermediate-term (translation-dependent), and long-term (transcription- and…

  18. Wnt Signaling Is Required for Long-Term Memory Formation

    Directory of Open Access Journals (Sweden)

    Ying Tan

    2013-09-01

    Full Text Available Wnt signaling regulates synaptic plasticity and neurogenesis in the adult nervous system, suggesting a potential role in behavioral processes. Here, we probed the requirement for Wnt signaling during olfactory memory formation in Drosophila using an inducible RNAi approach. Interfering with β-catenin expression in adult mushroom body neurons specifically impaired long-term memory (LTM without altering short-term memory. The impairment was reversible, being rescued by expression of a wild-type β-catenin transgene, and correlated with disruption of a cellular LTM trace. Inhibition of wingless, a Wnt ligand, and arrow, a Wnt coreceptor, also impaired LTM. Wingless expression in wild-type flies was transiently elevated in the brain after LTM conditioning. Thus, inhibiting three key components of the Wnt signaling pathway in adult mushroom bodies impairs LTM, indicating that this pathway mechanistically underlies this specific form of memory.

  19. A cost of long-term memory in Drosophila

    OpenAIRE

    Mery, Frederic; Kawecki, Tadeusz J.

    2005-01-01

    Two distinct forms of consolidated associative memory are known in Drosophila: long-term memory and so-called anesthesia-resistant memory. Long-term memory is more stable, but unlike anesthesia-resistant memory, its formation requires protein synthesis. We show that flies induced to form long-term memory become more susceptible to extreme stress (such as desiccation). In contrast, induction of anesthesia-resistant memory had no detectable effect on desiccation resistance. This finding may hel...

  20. Memory Vocabulary Learning Strategies and Long-Term Retention ...

    African Journals Online (AJOL)

    Memory Vocabulary Learning Strategies and Long-Term Retention. ... AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING ... The results were reflected in the students' short-term and long-term memory retention.

  1. Climate Predictability and Long Term Memory

    Science.gov (United States)

    Zhu, X.; Blender, R.; Fraedrich, K.; Liu, Z.

    2010-09-01

    The benefit of climate Long Term Memory (LTM) for long term prediction is assessed using data from a millennium control simulation with the atmosphere ocean general circulation model ECHAM5/MPIOM. The forecast skills are evaluated for surface temperature time series at individual grid points. LTM is characterised by the Hurst exponent in the power-law scaling of the fluctuation function which is determined by detrended fluctuation analysis (DFA). LTM with a Hurst exponent close to 0.9 occurs mainly in high latitude oceans, which are also characterized by high potential predictability. Climate predictability is diagnosed in terms of potentially predictable variance fractions. Explicit prediction experiments for various time steps are conducted on a grid point basis using an auto-correlation (AR1) predictor: in regions with LTM, prediction skills are beyond that expected from red noise persistence; exceptions occur in some areas in the southern oceans and over the northern hemisphere continents. Extending the predictability analysis to the fully forced simulation shows large improvement in prediction skills.

  2. Distinct dopamine neurons mediate reward signals for short- and long-term memories.

    Science.gov (United States)

    Yamagata, Nobuhiro; Ichinose, Toshiharu; Aso, Yoshinori; Plaçais, Pierre-Yves; Friedrich, Anja B; Sima, Richard J; Preat, Thomas; Rubin, Gerald M; Tanimoto, Hiromu

    2015-01-13

    Drosophila melanogaster can acquire a stable appetitive olfactory memory when the presentation of a sugar reward and an odor are paired. However, the neuronal mechanisms by which a single training induces long-term memory are poorly understood. Here we show that two distinct subsets of dopamine neurons in the fly brain signal reward for short-term (STM) and long-term memories (LTM). One subset induces memory that decays within several hours, whereas the other induces memory that gradually develops after training. They convey reward signals to spatially segregated synaptic domains of the mushroom body (MB), a potential site for convergence. Furthermore, we identified a single type of dopamine neuron that conveys the reward signal to restricted subdomains of the mushroom body lobes and induces long-term memory. Constant appetitive memory retention after a single training session thus comprises two memory components triggered by distinct dopamine neurons.

  3. Developmental Dyslexia and Explicit Long-Term Memory

    Science.gov (United States)

    Menghini, Deny; Carlesimo, Giovanni Augusto; Marotta, Luigi; Finzi, Alessandra; Vicari, Stefano

    2010-01-01

    The reduced verbal long-term memory capacities often reported in dyslexics are generally interpreted as a consequence of their deficit in phonological coding. The present study was aimed at evaluating whether the learning deficit exhibited by dyslexics was restricted only to the verbal component of the long-term memory abilities or also involved…

  4. Debra, a protein mediating lysosomal degradation, is required for long-term memory in Drosophila.

    Science.gov (United States)

    Kottler, Benjamin; Lampin-Saint-Amaux, Aurélie; Comas, Daniel; Preat, Thomas; Goguel, Valérie

    2011-01-01

    A central goal of neuroscience is to understand how neural circuits encode memory and guide behavior changes. Many of the molecular mechanisms underlying memory are conserved from flies to mammals, and Drosophila has been used extensively to study memory processes. To identify new genes involved in long-term memory, we screened Drosophila enhancer-trap P(Gal4) lines showing Gal4 expression in the mushroom bodies, a specialized brain structure involved in olfactory memory. This screening led to the isolation of a memory mutant that carries a P-element insertion in the debra locus. debra encodes a protein involved in the Hedgehog signaling pathway as a mediator of protein degradation by the lysosome. To study debra's role in memory, we achieved debra overexpression, as well as debra silencing mediated by RNA interference. Experiments conducted with a conditional driver that allowed us to specifically restrict transgene expression in the adult mushroom bodies led to a long-term memory defect. Several conclusions can be drawn from these results: i) debra levels must be precisely regulated to support normal long-term memory, ii) the role of debra in this process is physiological rather than developmental, and iii) debra is specifically required for long-term memory, as it is dispensable for earlier memory phases. Drosophila long-term memory is the only long-lasting memory phase whose formation requires de novo protein synthesis, a process underlying synaptic plasticity. It has been shown in several organisms that regulation of proteins at synapses occurs not only at translation level of but also via protein degradation, acting in remodeling synapses. Our work gives further support to a role of protein degradation in long-term memory, and suggests that the lysosome plays a role in this process.

  5. Debra, a protein mediating lysosomal degradation, is required for long-term memory in Drosophila.

    Directory of Open Access Journals (Sweden)

    Benjamin Kottler

    Full Text Available A central goal of neuroscience is to understand how neural circuits encode memory and guide behavior changes. Many of the molecular mechanisms underlying memory are conserved from flies to mammals, and Drosophila has been used extensively to study memory processes. To identify new genes involved in long-term memory, we screened Drosophila enhancer-trap P(Gal4 lines showing Gal4 expression in the mushroom bodies, a specialized brain structure involved in olfactory memory. This screening led to the isolation of a memory mutant that carries a P-element insertion in the debra locus. debra encodes a protein involved in the Hedgehog signaling pathway as a mediator of protein degradation by the lysosome. To study debra's role in memory, we achieved debra overexpression, as well as debra silencing mediated by RNA interference. Experiments conducted with a conditional driver that allowed us to specifically restrict transgene expression in the adult mushroom bodies led to a long-term memory defect. Several conclusions can be drawn from these results: i debra levels must be precisely regulated to support normal long-term memory, ii the role of debra in this process is physiological rather than developmental, and iii debra is specifically required for long-term memory, as it is dispensable for earlier memory phases. Drosophila long-term memory is the only long-lasting memory phase whose formation requires de novo protein synthesis, a process underlying synaptic plasticity. It has been shown in several organisms that regulation of proteins at synapses occurs not only at translation level of but also via protein degradation, acting in remodeling synapses. Our work gives further support to a role of protein degradation in long-term memory, and suggests that the lysosome plays a role in this process.

  6. Insulin signaling is acutely required for long-term memory in Drosophila.

    Science.gov (United States)

    Chambers, Daniel B; Androschuk, Alaura; Rosenfelt, Cory; Langer, Steven; Harding, Mark; Bolduc, Francois V

    2015-01-01

    Memory formation has been shown recently to be dependent on energy status in Drosophila. A well-established energy sensor is the insulin signaling (InS) pathway. Previous studies in various animal models including human have revealed the role of insulin levels in short-term memory but its role in long-term memory remains less clear. We therefore investigated genetically the spatial and temporal role of InS using the olfactory learning and long-term memory model in Drosophila. We found that InS is involved in both learning and memory. InS in the mushroom body is required for learning and long-term memory whereas long-term memory specifically is impaired after InS signaling disruption in the ellipsoid body, where it regulates the level of p70s6k, a downstream target of InS and a marker of protein synthesis. Finally, we show also that InS is acutely required for long-term memory formation in adult flies.

  7. The Effect of Modality on Long-Term Recognition Memory.

    Science.gov (United States)

    Dean, Raymond S.; And Others

    1988-01-01

    The effects of visual and auditory modes of input on long-term memory were examined in two experiments, each with 40 and 80 undergraduates, respectively. In both experiments, visual stimulus attributes were a more salient dimension than were auditory features in the long-term encoding and retrieval process. (SLD)

  8. Effects of Acute Exercise on Long-Term Memory

    Science.gov (United States)

    Labban, Jeffrey D.; Etnier, Jennifer L.

    2011-01-01

    In this study, we tested the effect of acute exercise on long-term memory, specifically the timing of exercise relative to the memory challenge. We assessed memory via paragraph recall, in which participants listened to two paragraphs (exposure) and recounted them following a 35-min delay. Participants (n = 48) were randomly assigned to one of…

  9. Effects of Acute Exercise on Long-Term Memory

    Science.gov (United States)

    Labban, Jeffrey D.; Etnier, Jennifer L.

    2011-01-01

    In this study, we tested the effect of acute exercise on long-term memory, specifically the timing of exercise relative to the memory challenge. We assessed memory via paragraph recall, in which participants listened to two paragraphs (exposure) and recounted them following a 35-min delay. Participants (n = 48) were randomly assigned to one of…

  10. Long-term memory, sleep, and the spacing effect.

    Science.gov (United States)

    Bell, Matthew C; Kawadri, Nader; Simone, Patricia M; Wiseheart, Melody

    2014-01-01

    Many studies have shown that memory is enhanced when study sessions are spaced apart rather than massed. This spacing effect has been shown to have a lasting benefit to long-term memory when the study phase session follows the encoding session by 24 hours. Using a spacing paradigm we examined the impact of sleep and spacing gaps on long-term declarative memory for Swahili-English word pairs by including four spacing delay gaps (massed, 12 hours same-day, 12 hours overnight, and 24 hours). Results showed that a 12-hour spacing gap that includes sleep promotes long-term memory retention similar to the 24-hour gap. The findings support the importance of sleep to the long-term benefit of the spacing effect.

  11. Modeling Maintenance of Long-Term Potentiation in Clustered Synapses: Long-Term Memory without Bistability

    Directory of Open Access Journals (Sweden)

    Paul Smolen

    2015-01-01

    Full Text Available Memories are stored, at least partly, as patterns of strong synapses. Given molecular turnover, how can synapses maintain strong for the years that memories can persist? Some models postulate that biochemical bistability maintains strong synapses. However, bistability should give a bimodal distribution of synaptic strength or weight, whereas current data show unimodal distributions for weights and for a correlated variable, dendritic spine volume. Thus it is important for models to simulate both unimodal distributions and long-term memory persistence. Here a model is developed that connects ongoing, competing processes of synaptic growth and weakening to stochastic processes of receptor insertion and removal in dendritic spines. The model simulates long-term (>1 yr persistence of groups of strong synapses. A unimodal weight distribution results. For stability of this distribution it proved essential to incorporate resource competition between synapses organized into small clusters. With competition, these clusters are stable for years. These simulations concur with recent data to support the “clustered plasticity hypothesis” which suggests clusters, rather than single synaptic contacts, may be a fundamental unit for storage of long-term memory. The model makes empirical predictions and may provide a framework to investigate mechanisms maintaining the balance between synaptic plasticity and stability of memory.

  12. On the relationship between short- and long-term memory

    DEFF Research Database (Denmark)

    Sørensen, Thomas Alrik

    James (1890) divided memory into separate stores; primary and secondary – or short-term and long-term memory. The interaction between the two stores often assumes that information initially is represented in volatile short-term store before entering and consolidating in the more durable long-term......, accepted). Counter to popular beliefs this suggest that long-term memory precedes short-term memory and not vice versa....... memory system (e.g. Atkinson & Shiffrin, 1968). Short-term memory seems to provide a surprising processing bottleneck where only a very limited amount of information can be represented at any given moment (Miller, 1956; Cowan, 2001). A number of studies have investigated the nature of this processing...

  13. Incidental Biasing of Attention from Visual Long-Term Memory

    Science.gov (United States)

    Fan, Judith E.; Turk-Browne, Nicholas B.

    2016-01-01

    Holding recently experienced information in mind can help us achieve our current goals. However, such immediate and direct forms of guidance from working memory are less helpful over extended delays or when other related information in long-term memory is useful for reaching these goals. Here we show that information that was encoded in the past…

  14. Incidental Biasing of Attention from Visual Long-Term Memory

    Science.gov (United States)

    Fan, Judith E.; Turk-Browne, Nicholas B.

    2016-01-01

    Holding recently experienced information in mind can help us achieve our current goals. However, such immediate and direct forms of guidance from working memory are less helpful over extended delays or when other related information in long-term memory is useful for reaching these goals. Here we show that information that was encoded in the past…

  15. Marijuana effects on long-term memory assessment and retrieval.

    Science.gov (United States)

    Darley, C F; Tinklenberg, J R; Roth, W T; Vernon, S; Kopell, B S

    1977-05-01

    The ability of 16 college-educated male subjects to recall from long-term memory a series of common facts was tested during intoxication with marijuana extract calibrated to 0.3 mg/kg delta-9-tetrahydrocannabinol and during placebo conditions. The subjects' ability to assess their memory capabilities was then determined by measuring how certain they were about the accuracy of their recall performance and by having them predict their performance on a subsequent recognition test involving the same recall items. Marijuana had no effect on recall or recognition performance. These results do not support the view that marijuana provides access to facts in long-term storage which are inaccessible during non-intoxication. During both marijuana and placebo conditions, subjects could accurately predict their recognition memory performance. Hence, marijuana did not alter the subjects' ability to accurately assess what information resides in long-term memory even though they did not have complete access to that information.

  16. Long term serious olfactory loss in colds and/or flu.

    Science.gov (United States)

    de Haro-Licer, Josep; Roura-Moreno, Jordi; Vizitiu, Anabella; González-Fernández, Adela; González-Ares, Josep Antón

    2013-01-01

    In the general population, we can find 2-3% of lifelong olfactory disorders (from hyposmia to anosmia). Two of the most frequent aetiologies are the common cold and flu. The aim of this study was to show the degree of long-term olfactory dysfunction caused by a cold or flu. This study was based on 240 patients, with olfactory loss caused only by flu or a cold. We excluded all patients with concomitant illness (66 patients), the rest of patients (n=174) consisted of 51 men (29.3%) and 123 women (70.7%). They all underwent olfactometry study (i and v cranial nerve) and a nasal sinus computed tomography scan, as well as magnetic resonance imaging of the brain. Results were compared with a control group (n=120). Very significant differences in levels of olfactory impairment for the olfactory nerve (P<.00001) and trigeminal nerve (P<.0001) were confirmed. People that suffer olfactory dysfunction for more than 6 months, from flu or a cold, present serious impairment of olfactory abilities. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  17. Long-term memory deficits in temporal lobe epilepsy.

    Science.gov (United States)

    Tramoni-Negre, E; Lambert, I; Bartolomei, F; Felician, O

    Memory complaints and deficits are common in patients with epilepsy, especially temporal lobe epilepsy (TLE), where memory-related brain structures are directly involved in the epileptic process. In recent years, substantial progress has been made in delineating memory impairment in TLE, challenging the traditional neuropsychological approach of the disorder. In particular, several lines of evidence have suggested that, beyond the apparent deficit demonstrable by standardized neuropsychological evaluations, TLE may also negatively interact with long-term memory, producing considerable loss of information of the patient's autobiographical history and an inability to maintain newly acquired information over a period of time. These observations have led to the development of innovative assessment techniques, and prompted a new domain of investigation focused on the relationships between interictal epileptiform activities and the integrity of anatomo-functional systems. The present paper reviews the available evidence for long-term memory deficits in TLE with respect to remote and very long-term memory, and discusses their putative pathophysiological mechanisms and the developing potential strategies to improve memory functioning. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Requirement for nuclear calcium signaling in Drosophila long-term memory.

    Science.gov (United States)

    Weislogel, Jan-Marek; Bengtson, C Peter; Müller, Michaela K; Hörtzsch, Jan N; Bujard, Martina; Schuster, Christoph M; Bading, Hilmar

    2013-05-07

    Calcium is used throughout evolution as an intracellular signal transducer. In the mammalian central nervous system, calcium mediates the dialogue between the synapse and the nucleus that is required for transcription-dependent persistent neuronal adaptations. A role for nuclear calcium signaling in similar processes in the invertebrate brain has yet to be investigated. Here, we show by in vivo calcium imaging of adult brain neurons of the fruit fly Drosophila melanogaster, that electrical foot shocks used in olfactory avoidance conditioning evoked transient increases in cytosolic and nuclear calcium concentrations in neurons. These calcium signals were detected in Kenyon cells of the flies' mushroom bodies, which are sites of learning and memory related to smell. Acute blockade of nuclear calcium signaling during conditioning selectively and reversibly abolished the formation of long-term olfactory avoidance memory, whereas short-term, middle-term, or anesthesia-resistant olfactory memory remained unaffected. Thus, nuclear calcium signaling is required in flies for the progression of memories from labile to transcription-dependent long-lasting forms. These results identify nuclear calcium as an evolutionarily conserved signal needed in both invertebrate and vertebrate brains for transcription-dependent memory consolidation.

  19. A quantitative proteomic analysis of long-term memory

    Directory of Open Access Journals (Sweden)

    Rosenegger David

    2010-03-01

    Full Text Available Abstract Background Memory is the ability to store, retain, and later retrieve learned information. Long-term memory (LTM formation requires: DNA transcription, RNA translation, and the trafficking of newly synthesized proteins. Several components of these processes have already been identified. However, due to the complexity of the memory formation process, there likely remain many yet to be identified proteins involved in memory formation and persistence. Results Here we use a quantitative proteomic method to identify novel memory-associated proteins in neural tissue taken from animals that were trained in vivo to form a long-term memory. We identified 8 proteins that were significantly up-regulated, and 13 that were significantly down-regulated in the LTM trained animals as compared to two different control groups. In addition we found 19 proteins unique to the trained animals, and 12 unique proteins found only in the control animals. Conclusions These results both confirm the involvement of previously identified memory proteins such as: protein kinase C (PKC, adenylate cyclase (AC, and proteins in the mitogen-activated protein kinase (MAPK pathway. In addition these results provide novel protein candidates (e.g. UHRF1 binding protein on which to base future studies.

  20. Infants long-term memory for complex music

    Science.gov (United States)

    Ilari, Beatriz; Polka, Linda; Costa-Giomi, Eugenia

    2002-05-01

    In this study we examined infants' long-term memory for two complex pieces of music. A group of thirty 7.5 month-old infants was exposed daily to one short piano piece (i.e., either the Prelude or the Forlane by Maurice Ravel) for ten consecutive days. Following the 10-day exposure period there was a two-week retention period in which no exposure to the piece occurred. After the retention period, infants were tested on the Headturn Preference Procedure. At test, 8 different excerpts of the familiar piece were mixed with 8 different foil excerpts of the unfamiliar one. Infants showed a significant preference for the familiar piece of music. A control group of fifteen nonexposed infants was also tested and showed no preferences for either piece of music. These results suggest that infants in the exposure group retained the familiar music in their long-term memory. This was demonstrated by their ability to discriminate between the different excerpts of both the familiar and the unfamiliar pieces of music, and by their preference for the familiar piece. Confirming previous findings (Jusczyk and Hohne, 1993; Saffran et al., 2000), in this study we suggest that infants can retain complex pieces of music in their long-term memory for two weeks.

  1. Long-term avoidance memory formation is associated with a transient increase in mushroom body synaptic complexes in leaf-cutting ants

    Directory of Open Access Journals (Sweden)

    Agustina eFalibene

    2015-04-01

    Full Text Available Long-term behavioral changes related to learning and experience have been shown to be associated with structural remodeling in the brain. Leaf-cutting ants learn to avoid previously preferred plants after they have proved harmful for their symbiotic fungus, a process that involves long-term olfactory memory. We studied the dynamics of brain microarchitectural changes after long-term olfactory memory formation following avoidance learning in Acromyrmex ambiguus. After performing experiments to control for possible neuronal changes related to age and body size, we quantified synaptic complexes (microglomeruli, MG in olfactory regions of the mushroom bodies (MB at different times after learning. Long-term avoidance memory formation was associated with a transient change in MG densities. Two days after learning, MG density was higher than before learning. At days 4 and 15 after learning — when ants still showed plant avoidance — MG densities had decreased to the initial state. The structural reorganization of MG triggered by long-term avoidance memory formation clearly differed from changes promoted by pure exposure to and collection of novel plants with distinct odors. Sensory exposure by the simultaneous collection of several, instead of one, non-harmful plant species resulted in a decrease in MG densities in the olfactory lip. We hypothesize that while sensory exposure leads to MG pruning in the MB olfactory lip, the formation of long-term avoidance memory involves an initial growth of new MG followed by subsequent pruning.

  2. Long-term visual object recognition memory in aged rats.

    Science.gov (United States)

    Platano, Daniela; Fattoretti, Patrizia; Balietti, Marta; Bertoni-Freddari, Carlo; Aicardi, Giorgio

    2008-04-01

    Aging is associated with memory impairments, but the neural bases of this process need to be clarified. To this end, behavioral protocols for memory testing may be applied to aged animals to compare memory performances with functional and structural characteristics of specific brain regions. Visual object recognition memory can be investigated in the rat using a behavioral task based on its spontaneous preference for exploring novel rather than familiar objects. We found that a behavioral task able to elicit long-term visual object recognition memory in adult Long-Evans rats failed in aged (25-27 months old) Wistar rats. Since no tasks effective in aged rats are reported in the literature, we changed the experimental conditions to improve consolidation processes to assess whether this form of memory can still be maintained for long term at this age: the learning trials were performed in a smaller box, identical to the home cage, and the inter-trial delays were shortened. We observed a reduction in anxiety in this box (as indicated by the lower number of fecal boli produced during habituation), and we developed a learning protocol able to elicit a visual object recognition memory that was maintained after 24 h in these aged rats. When we applied the same protocol to adult rats, we obtained similar results. This experimental approach can be useful to study functional and structural changes associated with age-related memory impairments, and may help to identify new behavioral strategies and molecular targets that can be addressed to ameliorate memory performances during aging.

  3. Notch is required for long-term memory in Drosophila.

    Science.gov (United States)

    Presente, Asaf; Boyles, Randy S; Serway, Christine N; de Belle, J Steven; Andres, Andrew J

    2004-02-10

    A role for Notch in the elaboration of existing neural processes is emerging that is distinct from the increasingly well understood function of this gene in binary cell-fate decisions. Several research groups, by using a variety of organisms, have shown that Notch is important in the development of neural ultrastructure. Simultaneously, Presenilin (Psn) was identified both as a key mediator of Notch signaling and as a site of genetic lesions that cause early-onset Alzheimer's disease. Here we demonstrate that Notch loss of function produces memory deficits in Drosophila melanogaster. The effects are specific to long-term memory, which is thought to depend on ultrastructural remodeling. We propose that Notch plays an important role in the neural plasticity underlying consolidated memory.

  4. Visual long-term memory has the same limit on fidelity as visual working memory.

    Science.gov (United States)

    Brady, Timothy F; Konkle, Talia; Gill, Jonathan; Oliva, Aude; Alvarez, George A

    2013-06-01

    Visual long-term memory can store thousands of objects with surprising visual detail, but just how detailed are these representations, and how can one quantify this fidelity? Using the property of color as a case study, we estimated the precision of visual information in long-term memory, and compared this with the precision of the same information in working memory. Observers were shown real-world objects in random colors and were asked to recall the colors after a delay. We quantified two parameters of performance: the variability of internal representations of color (fidelity) and the probability of forgetting an object's color altogether. Surprisingly, the fidelity of color information in long-term memory was comparable to the asymptotic precision of working memory. These results suggest that long-term memory and working memory may be constrained by a common limit, such as a bound on the fidelity required to retrieve a memory representation.

  5. Possibility of "superfast" consolidation of long-term memory.

    Science.gov (United States)

    Podolski IYa

    1998-01-01

    Two new behavioural tests in rats are described which demonstrate the fast consolidation of the long-term memory (LTM) in a dangerous natural situation (water escape). It is shown that after one-trial learning of the motor skill (jumping out of the water), long-term memory traces are retained without forgetting and are resistant to the blockade of M-cholinoreceptors by scopolamine (2 mg/kg) and of D1/D2 dopamine receptors by haloperidol (10 mg/kg) as well as electroconvulsive shock applied tank wall, learning of necessary motor skills, automatization and minimization of the skilled movements in 1.5-3.0 min, after 5 to 7 trials at two-second intervals (superfast learning) is demonstrated. It is suggested that the superfast consolidation of LTM (several minutes) is possible in life-threatening situations, the necessary time being 1-2 orders of magnitude less than it is generally accepted in the modern theories of memory. The proposed behavioural models may be helpful in investigation of some fundamental physiological and molecular mechanisms of stable neuronal interactions, as a basis for LTM consolidation.

  6. Hippocampal Focal Knockout of CBP Affects Specific Histone Modifications, Long-Term Potentiation, and Long-Term Memory

    Science.gov (United States)

    Barrett, Ruth M; Malvaez, Melissa; Kramar, Eniko; Matheos, Dina P; Arrizon, Abraham; Cabrera, Sara M; Lynch, Gary; Greene, Robert W; Wood, Marcelo A

    2011-01-01

    To identify the role of the histone acetyltransferase (HAT) CREB-binding protein (CBP) in neurons of the CA1 region of the hippocampus during memory formation, we examine the effects of a focal homozygous knockout of CBP on histone modifications, gene expression, synaptic plasticity, and long-term memory. We show that CBP is critical for the in vivo acetylation of lysines on histones H2B, H3, and H4. CBP's homolog p300 was unable to compensate for the loss of CBP. Neurons lacking CBP maintained phosphorylation of the transcription factor CREB, yet failed to activate CREB:CBP-mediated gene expression. Loss of CBP in dorsal CA1 of the hippocampus resulted in selective impairments to long-term potentiation and long-term memory for contextual fear and object recognition. Together, these results suggest a necessary role for specific chromatin modifications, selectively mediated by CBP in the consolidation of memories. PMID:21508930

  7. Hippocampal focal knockout of CBP affects specific histone modifications, long-term potentiation, and long-term memory.

    Science.gov (United States)

    Barrett, Ruth M; Malvaez, Melissa; Kramar, Eniko; Matheos, Dina P; Arrizon, Abraham; Cabrera, Sara M; Lynch, Gary; Greene, Robert W; Wood, Marcelo A

    2011-07-01

    To identify the role of the histone acetyltransferase (HAT) CREB-binding protein (CBP) in neurons of the CA1 region of the hippocampus during memory formation, we examine the effects of a focal homozygous knockout of CBP on histone modifications, gene expression, synaptic plasticity, and long-term memory. We show that CBP is critical for the in vivo acetylation of lysines on histones H2B, H3, and H4. CBP's homolog p300 was unable to compensate for the loss of CBP. Neurons lacking CBP maintained phosphorylation of the transcription factor CREB, yet failed to activate CREB:CBP-mediated gene expression. Loss of CBP in dorsal CA1 of the hippocampus resulted in selective impairments to long-term potentiation and long-term memory for contextual fear and object recognition. Together, these results suggest a necessary role for specific chromatin modifications, selectively mediated by CBP in the consolidation of memories.

  8. Long-term working memory in text production.

    Science.gov (United States)

    Kellogg, R T

    2001-01-01

    In reading and other high-level cognitive tasks, Ericsson and Kintsch (1995) proposed that the limited capacity of short-term working memory (STWM) is supplemented by long- term working memory (LTWM) for individuals with a high degree of domain-specific knowledge. In Experiment 1, college students (N = 80) wrote persuasive and narrative texts concerning baseball; domain-specific knowledge about baseball and verbal ability was assessed. The results showed that verbal ability and domain-specific knowledge independently affected writing skill, supporting the view that literacy depends on both knowledge sources and refuting one argument raised in support of the LTWM hypothesis. Experiment 2 (N = 42) replicated this outcome and tested the prediction that a high degree of domain-specific knowledge would lessen interference on a secondary task. The data supported the interference prediction, offering evidence that LTWM plays a role in the production of text.

  9. Long-term social recognition memory is mediated by oxytocin-dependent synaptic plasticity in the medial amygdala.

    Science.gov (United States)

    Gur, Rotem; Tendler, Alex; Wagner, Shlomo

    2014-09-01

    Recognition of specific individuals is fundamental to mammalian social behavior and is mediated in most mammals by the main and accessory olfactory systems. Both these systems innervate the medial amygdala (MeA), where activity of the neuropeptide oxytocin is thought to mediate social recognition memory (SRM). The specific contribution of the MeA to SRM formation and the specific actions of oxytocin in the MeA are unknown. We used the social discrimination test to evaluate short-term and long-term SRM in adult Sprague-Dawley male rats (n = 38). The role of protein synthesis in the MeA was investigated by local application of the protein synthesis blocker anisomycin (n = 11). Synaptic plasticity was assessed in vivo by recording the MeA evoked field potential responses to stimulation of the main (n = 21) and accessory (n = 56) olfactory bulbs before and after theta burst stimulation. Intracerebroventricular administration of saline, oxytocin, or oxytocin receptor antagonist was used to measure the effect of oxytocin on synaptic plasticity. Anisomycin application to the MeA prevented the formation of long-term SRM. In addition, the responses of MeA neurons underwent long-term depression (LTD) after theta burst stimulation of the accessory olfactory bulb, but not the main accessory bulb, in an oxytocin-dependent manner. No LTD was found in socially isolated rats, which are known to lack long-term SRM. Finally, accessory olfactory bulb stimulation before SRM acquisition blocked long-term SRM, supporting the involvement of LTD in the MeA in formation of long-term SRM. Our results indicate that long-term SRM in rats involves protein synthesis and oxytocin-dependent LTD in the MeA. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  10. Examining the long-term stability of overgeneral autobiographical memory.

    Science.gov (United States)

    Sumner, Jennifer A; Mineka, Susan; Zinbarg, Richard E; Craske, Michelle G; Vrshek-Schallhorn, Suzanne; Epstein, Alyssa

    2014-01-01

    Overgeneral autobiographical memory (OGM) is a proposed trait-marker for vulnerability to depression, but relatively little work has examined its long-term stability. This study investigated the stability of OGM over several years in 271 late adolescents and young adults participating in a larger longitudinal study of risk for emotional disorders. The Autobiographical Memory Test (AMT) was administered twice, with test-retest intervals ranging from approximately 3 to 6 years. There was evidence of significant but modest stability in OGM over several years. Specifically, Spearman rank correlations (ρs) between the proportions of specific and categoric memories generated on the two AMTs were .31 and .32, respectively. We did not find evidence that the stability of OGM was moderated by the length of the test-retest interval. Furthermore, the stability coefficients for OGM for individuals with and without a lifetime history of major depressive disorder (MDD) were relatively similar in magnitude and not significantly different from one another (ρs=.34 and .42 for the proportions of specific and categoric memories for those with a history of MDD; ρs=.31 for both the proportions of specific and categoric memories for those without a history of MDD). Implications for the conceptualisation of OGM are discussed.

  11. Modulation of Long-Term Memory for Object Recognition via HDAC Inhibition

    National Research Council Canada - National Science Library

    Daniel P. Stefanko; Ruth M. Barrett; Alexandra R. Ly; Gustavo K. Reolon; Marcelo A. Wood; James L. McGaugh

    2009-01-01

    ...), a histone acetyltransferase, in long-term memory for novel object recognition (NOR). In fact, every genetically modifiedCbp mutant mouse characterized thus far exhibits impaired long-term memory for NOR...

  12. Visual working memory buffers information retrieved from visual long-term memory.

    Science.gov (United States)

    Fukuda, Keisuke; Woodman, Geoffrey F

    2017-05-16

    Human memory is thought to consist of long-term storage and short-term storage mechanisms, the latter known as working memory. Although it has long been assumed that information retrieved from long-term memory is represented in working memory, we lack neural evidence for this and need neural measures that allow us to watch this retrieval into working memory unfold with high temporal resolution. Here, we show that human electrophysiology can be used to track information as it is brought back into working memory during retrieval from long-term memory. Specifically, we found that the retrieval of information from long-term memory was limited to just a few simple objects' worth of information at once, and elicited a pattern of neurophysiological activity similar to that observed when people encode new information into working memory. Our findings suggest that working memory is where information is buffered when being retrieved from long-term memory and reconcile current theories of memory retrieval with classic notions about the memory mechanisms involved.

  13. Working Memory, Long-Term Memory, and Medial Temporal Lobe Function

    Science.gov (United States)

    Jeneson, Annette; Squire, Larry R.

    2012-01-01

    Early studies of memory-impaired patients with medial temporal lobe (MTL) damage led to the view that the hippocampus and related MTL structures are involved in the formation of long-term memory and that immediate memory and working memory are independent of these structures. This traditional idea has recently been revisited. Impaired performance…

  14. Massive Memory Revisited: Limitations on Storage Capacity for Object Details in Visual Long-Term Memory

    Science.gov (United States)

    Cunningham, Corbin A.; Yassa, Michael A.; Egeth, Howard E.

    2015-01-01

    Previous work suggests that visual long-term memory (VLTM) is highly detailed and has a massive capacity. However, memory performance is subject to the effects of the type of testing procedure used. The current study examines detail memory performance by probing the same memories within the same subjects, but using divergent probing methods. The…

  15. Working Memory, Long-Term Memory, and Medial Temporal Lobe Function

    Science.gov (United States)

    Jeneson, Annette; Squire, Larry R.

    2012-01-01

    Early studies of memory-impaired patients with medial temporal lobe (MTL) damage led to the view that the hippocampus and related MTL structures are involved in the formation of long-term memory and that immediate memory and working memory are independent of these structures. This traditional idea has recently been revisited. Impaired performance…

  16. C. elegans positive butanone learning, short-term, and long-term associative memory assays.

    Science.gov (United States)

    Kauffman, Amanda; Parsons, Lance; Stein, Geneva; Wills, Airon; Kaletsky, Rachel; Murphy, Coleen

    2011-03-11

    The memory of experiences and learned information is critical for organisms to make choices that aid their survival. C. elegans navigates its environment through neuron-specific detection of food and chemical odors, and can associate nutritive states with chemical odors, temperature, and the pathogenicity of a food source. Here, we describe assays of C. elegans associative learning and short- and long-term associative memory. We modified an aversive olfactory learning paradigm to instead produce a positive response; the assay involves starving ~400 worms, then feeding the worms in the presence of the AWC neuron-sensed volatile chemoattractant butanone at a concentration that elicits a low chemotactic index (similar to Toroyama et al.). A standard population chemotaxis assay1 tests the worms' attraction to the odorant immediately or minutes to hours after conditioning. After conditioning, wild-type animals' chemotaxis to butanone increases ~0.6 Chemotaxis Index units, its "Learning Index". Associative learning is dependent on the presence of both food and butanone during training. Pairing food and butanone for a single conditioning period ("massed training") produces short-term associative memory that lasts ~2 hours. Multiple conditioning periods with rest periods between ("spaced training") yields long-term associative memory (long-term memory across species. Our protocol also includes image analysis methods for quick and accurate determination of chemotaxis indices. High-contrast images of animals on chemotaxis assay plates are captured and analyzed by worm counting software in MatLab. The software corrects for uneven background using a morphological tophat transformation. Otsu's method is then used to determine a threshold to separate worms from the background. Very small particles are removed automatically and larger non-worm regions (plate edges or agar punches) are removed by manual selection. The software then estimates the size of single worm by ignoring

  17. Drosophila Neprilysins Are Involved in Middle-Term and Long-Term Memory.

    Science.gov (United States)

    Turrel, Oriane; Lampin-Saint-Amaux, Aurélie; Préat, Thomas; Goguel, Valérie

    2016-09-14

    Neprilysins are type II metalloproteinases known to degrade and inactivate a number of small peptides. Neprilysins in particular are the major amyloid-β peptide-degrading enzymes. In mouse models of Alzheimer's disease, neprilysin overexpression improves learning and memory deficits, whereas neprilysin deficiency aggravates the behavioral phenotypes. However, whether these enzymes are involved in memory in nonpathological conditions is an open question. Drosophila melanogaster is a well suited model system with which to address this issue. Several memory phases have been characterized in this organism and the neuronal circuits involved are well described. The fly genome contains five neprilysin-encoding genes, four of which are expressed in the adult. Using conditional RNA interference, we show here that all four neprilysins are involved in middle-term and long-term memory. Strikingly, all four are required in a single pair of neurons, the dorsal paired medial (DPM) neurons that broadly innervate the mushroom bodies (MBs), the center of olfactory memory. Neprilysins are also required in the MB, reflecting the functional relationship between the DPM neurons and the MB, a circuit believed to stabilize memories. Together, our data establish a role for neprilysins in two specific memory phases and further show that DPM neurons play a critical role in the proper targeting of neuropeptides involved in these processes. Neprilysins are endopeptidases known to degrade a number of small peptides. Neprilysin research has essentially focused on their role in Alzheimer's disease and heart failure. Here, we use Drosophila melanogaster to study whether neprilysins are involved in memory. Drosophila can form several types of olfactory memory and the neuronal structures involved are well described. Four neprilysin genes are expressed in adult Drosophila Using conditional RNA interference, we show that all four are specifically involved in middle-term memory (MTM) and long-term

  18. Drosophila amyloid precursor protein-like is required for long-term memory.

    Science.gov (United States)

    Goguel, Valérie; Belair, Anne-Laure; Ayaz, Derya; Lampin-Saint-Amaux, Aurélie; Scaplehorn, Niki; Hassan, Bassem A; Preat, Thomas

    2011-01-19

    The amyloid precursor protein (APP) plays an important role in Alzheimer's disease (AD), a progressive neurodegenerative pathology that first manifests as a decline of memory. While the main hypothesis for AD pathology centers on the proteolytic processing of APP, very little is known about the physiological function of the APP protein in the adult brain. Likewise, whether APP loss of function contributes to AD remains unclear. Drosophila has been used extensively as a model organism to study neuronal function and pathology. In addition, many of the molecular mechanisms underlying memory are thought to be conserved from flies to mammals, prompting us to study the function of APPL, the fly APP ortholog, during associative memory. It was previously shown that APPL expression is highly enriched in the mushroom bodies (MBs), a specialized brain structure involved in olfactory memory. We analyzed memory in flies in which APPL expression has been silenced specifically and transiently in the adult MBs. Our results show that in adult flies, APPL is not required for learning but is specifically involved in long-term memory, a long lasting memory whose formation requires de novo protein synthesis and is thought to require synaptic structural plasticity. These data support the hypothesis that disruption of normal APP function may contribute to early AD cognitive impairment.

  19. Tc1 mouse model of trisomy-21 dissociates properties of short- and long-term recognition memory.

    Science.gov (United States)

    Hall, Jessica H; Wiseman, Frances K; Fisher, Elizabeth M C; Tybulewicz, Victor L J; Harwood, John L; Good, Mark A

    2016-04-01

    The present study examined memory function in Tc1 mice, a transchromosomic model of Down syndrome (DS). Tc1 mice demonstrated an unusual delay-dependent deficit in recognition memory. More specifically, Tc1 mice showed intact immediate (30sec), impaired short-term (10-min) and intact long-term (24-h) memory for objects. A similar pattern was observed for olfactory stimuli, confirming the generality of the pattern across sensory modalities. The specificity of the behavioural deficits in Tc1 mice was confirmed using APP overexpressing mice that showed the opposite pattern of object memory deficits. In contrast to object memory, Tc1 mice showed no deficit in either immediate or long-term memory for object-in-place information. Similarly, Tc1 mice showed no deficit in short-term memory for object-location information. The latter result indicates that Tc1 mice were able to detect and react to spatial novelty at the same delay interval that was sensitive to an object novelty recognition impairment. These results demonstrate (1) that novelty detection per se and (2) the encoding of visuo-spatial information was not disrupted in adult Tc1 mice. The authors conclude that the task specific nature of the short-term recognition memory deficit suggests that the trisomy of genes on human chromosome 21 in Tc1 mice impacts on (perirhinal) cortical systems supporting short-term object and olfactory recognition memory.

  20. Fragile Associations Coexist with Robust Memories for Precise Details in Long-Term Memory

    Science.gov (United States)

    Lew, Timothy F.; Pashler, Harold E.; Vul, Edward

    2016-01-01

    What happens to memories as we forget? They might gradually lose fidelity, lose their associations (and thus be retrieved in response to the incorrect cues), or be completely lost. Typical long-term memory studies assess memory as a binary outcome (correct/incorrect), and cannot distinguish these different kinds of forgetting. Here we assess…

  1. Interactions with musical long-term memory are a critical component of musical working memory

    OpenAIRE

    Gorin, Simon; Majerus, Steve

    2013-01-01

    The nature and mechanisms of working memory (WM) for musical information remain poorly understood. The aim of this study is to show that musical WM strongly depends upon long-term memory (LTM) mechanisms and requires access to the long-term musical knowledge base. Two groups of participants (musicians and non-musicians) participated first in an implicit learning task during which they heard for about 30 minutes a continuous sequence of tones governed by a new musical grammar. Then, they perfo...

  2. Modulation of working memory updating: Does long-term memory lexical association matter?

    Science.gov (United States)

    Artuso, Caterina; Palladino, Paola

    2016-02-01

    The aim of the present study was to investigate how working memory updating for verbal material is modulated by enduring properties of long-term memory. Two coexisting perspectives that account for the relation between long-term representation and short-term performance were addressed. First, evidence suggests that performance is more closely linked to lexical properties, that is, co-occurrences within the language. Conversely, other evidence suggests that performance is linked more to long-term representations which do not entail lexical/linguistic representations. Our aim was to investigate how these two kinds of long-term memory associations (i.e., lexical or nonlexical) modulate ongoing working memory activity. Therefore, we manipulated (between participants) the strength of the association in letters based on either frequency of co-occurrences (lexical) or contiguity along the sequence of the alphabet (nonlexical). Results showed a cost in working memory updating for strongly lexically associated stimuli only. Our findings advance knowledge of how lexical long-term memory associations between consonants affect working memory updating and, in turn, contribute to the study of factors which impact the updating process across memory systems.

  3. Observation of long term potentiation in papain-based memory devices

    KAUST Repository

    Bag, A.

    2014-06-01

    Biological synaptic behavior in terms of long term potentiation has been observed in papain-based (plant protein) memory devices (memristors) for the first time. Improvement in long term potentiation depends on pulse amplitude and width (duration). Continuous/repetitive dc voltage sweep leads to an increase in memristor conductivity leading to a long term memory in the \\'learning\\' processes.

  4. Two Pairs of Mushroom Body Efferent Neurons Are Required for Appetitive Long-Term Memory Retrieval in Drosophila

    Directory of Open Access Journals (Sweden)

    Pierre-Yves Plaçais

    2013-11-01

    Full Text Available One of the challenges facing memory research is to combine network- and cellular-level descriptions of memory encoding. In this context, Drosophila offers the opportunity to decipher, down to single-cell resolution, memory-relevant circuits in connection with the mushroom bodies (MBs, prominent structures for olfactory learning and memory. Although the MB-afferent circuits involved in appetitive learning were recently described, the circuits underlying appetitive memory retrieval remain unknown. We identified two pairs of cholinergic neurons efferent from the MB α vertical lobes, named MB-V3, that are necessary for the retrieval of appetitive long-term memory (LTM. Furthermore, LTM retrieval was correlated to an enhanced response to the rewarded odor in these neurons. Strikingly, though, silencing the MB-V3 neurons did not affect short-term memory (STM retrieval. This finding supports a scheme of parallel appetitive STM and LTM processing.

  5. Parametric and genetic analysis of Drosophila appetitive long-term memory and sugar motivation.

    Science.gov (United States)

    Colomb, J; Kaiser, L; Chabaud, M-A; Preat, T

    2009-06-01

    Distinct forms of memory can be highlighted using different training protocols. In Drosophila olfactory aversive learning, one conditioning session triggers memory formation independently of protein synthesis, while five spaced conditioning sessions lead to the formation of long-term memory (LTM), a long-lasting memory dependent on de novo protein synthesis. In contrast, one session of odour-sugar association appeared sufficient for the fly to form LTM. We designed and tuned an apparatus that facilitates repeated discriminative conditioning by alternate presentations of two odours, one being associated with sugar, as well as a new paradigm to test sugar responsiveness (SR). Our results show that both SR and short-term memory (STM) scores increase with starvation length before conditioning. The protein dependency of appetitive LTM is independent of the repetition and the spacing of training sessions, on the starvation duration and on the strength of the unconditioned stimulus. In contrast to a recent report, our test measures an abnormal SR of radish mutant flies, which might initiate their STM and LTM phenotypes. In addition, our work shows that crammer and tequila mutants, which are deficient for aversive LTM, present both an SR and an appetitive STM defect. Using the MB247-P[switch] system, we further show that tequila is required in the adult mushroom bodies for normal sugar motivation.

  6. Genome-Wide Temporal Expression Profiling in Caenorhabditis elegans Identifies a Core Gene Set Related to Long-Term Memory.

    Science.gov (United States)

    Freytag, Virginie; Probst, Sabine; Hadziselimovic, Nils; Boglari, Csaba; Hauser, Yannick; Peter, Fabian; Gabor Fenyves, Bank; Milnik, Annette; Demougin, Philippe; Vukojevic, Vanja; de Quervain, Dominique J-F; Papassotiropoulos, Andreas; Stetak, Attila

    2017-07-12

    The identification of genes related to encoding, storage, and retrieval of memories is a major interest in neuroscience. In the current study, we analyzed the temporal gene expression changes in a neuronal mRNA pool during an olfactory long-term associative memory (LTAM) in Caenorhabditis elegans hermaphrodites. Here, we identified a core set of 712 (538 upregulated and 174 downregulated) genes that follows three distinct temporal peaks demonstrating multiple gene regulation waves in LTAM. Compared with the previously published positive LTAM gene set (Lakhina et al., 2015), 50% of the identified upregulated genes here overlap with the previous dataset, possibly representing stimulus-independent memory-related genes. On the other hand, the remaining genes were not previously identified in positive associative memory and may specifically regulate aversive LTAM. Our results suggest a multistep gene activation process during the formation and retrieval of long-term memory and define general memory-implicated genes as well as conditioning-type-dependent gene sets.SIGNIFICANCE STATEMENT The identification of genes regulating different steps of memory is of major interest in neuroscience. Identification of common memory genes across different learning paradigms and the temporal activation of the genes are poorly studied. Here, we investigated the temporal aspects of Caenorhabditis elegans gene expression changes using aversive olfactory associative long-term memory (LTAM) and identified three major gene activation waves. Like in previous studies, aversive LTAM is also CREB dependent, and CREB activity is necessary immediately after training. Finally, we define a list of memory paradigm-independent core gene sets as well as conditioning-dependent genes. Copyright © 2017 the authors 0270-6474/17/376661-12$15.00/0.

  7. Sniff-Like Patterned Input Results in Long-Term Plasticity at the Rat Olfactory Bulb Mitral and Tufted Cell to Granule Cell Synapse

    Directory of Open Access Journals (Sweden)

    Mahua Chatterjee

    2016-01-01

    Full Text Available During odor sensing the activity of principal neurons of the mammalian olfactory bulb, the mitral and tufted cells (MTCs, occurs in repetitive bursts that are synchronized to respiration, reminiscent of hippocampal theta-gamma coupling. Axonless granule cells (GCs mediate self- and lateral inhibitory interactions between the excitatory MTCs via reciprocal dendrodendritic synapses. We have explored long-term plasticity at this synapse by using a theta burst stimulation (TBS protocol and variations thereof. GCs were excited via glomerular stimulation in acute brain slices. We find that TBS induces exclusively long-term depression in the majority of experiments, whereas single bursts (“single-sniff paradigm” can elicit both long-term potentiation and depression. Statistical analysis predicts that the mechanism underlying this bidirectional plasticity involves the proportional addition or removal of presynaptic release sites. Gamma stimulation with the same number of APs as in TBS was less efficient in inducing plasticity. Both TBS- and “single-sniff paradigm”-induced plasticity depend on NMDA receptor activation. Since the onset of plasticity is very rapid and requires little extra activity, we propose that these forms of plasticity might play a role already during an ongoing search for odor sources. Our results imply that components of both short-term and long-term olfactory memory may be encoded at this synapse.

  8. Sniff-Like Patterned Input Results in Long-Term Plasticity at the Rat Olfactory Bulb Mitral and Tufted Cell to Granule Cell Synapse

    Science.gov (United States)

    Perez de los Cobos Pallares, Fernando; Loebel, Alex; Lukas, Michael

    2016-01-01

    During odor sensing the activity of principal neurons of the mammalian olfactory bulb, the mitral and tufted cells (MTCs), occurs in repetitive bursts that are synchronized to respiration, reminiscent of hippocampal theta-gamma coupling. Axonless granule cells (GCs) mediate self- and lateral inhibitory interactions between the excitatory MTCs via reciprocal dendrodendritic synapses. We have explored long-term plasticity at this synapse by using a theta burst stimulation (TBS) protocol and variations thereof. GCs were excited via glomerular stimulation in acute brain slices. We find that TBS induces exclusively long-term depression in the majority of experiments, whereas single bursts (“single-sniff paradigm”) can elicit both long-term potentiation and depression. Statistical analysis predicts that the mechanism underlying this bidirectional plasticity involves the proportional addition or removal of presynaptic release sites. Gamma stimulation with the same number of APs as in TBS was less efficient in inducing plasticity. Both TBS- and “single-sniff paradigm”-induced plasticity depend on NMDA receptor activation. Since the onset of plasticity is very rapid and requires little extra activity, we propose that these forms of plasticity might play a role already during an ongoing search for odor sources. Our results imply that components of both short-term and long-term olfactory memory may be encoded at this synapse. PMID:27747107

  9. Accessing forgotten memory traces from long-term memory via visual movements

    Science.gov (United States)

    Càmara, Estela; Fuentemilla, Lluís

    2014-01-01

    Because memory retrieval often requires overt responses, it is difficult to determine to what extend forgetting occurs as a problem in explicit accessing of long-term memory traces. In this study, we used eye-tracking measures in combination with a behavioral task that favored high forgetting rates to investigate the existence of memory traces from long-term memory in spite of failure in accessing them consciously. In two experiments, participants were encouraged to encode a large set of sound-picture-location associations. In a later test, sounds were presented and participants were instructed to visually scan, before a verbal memory report, for the correct location of the associated pictures in an empty screen. We found the reactivation of associated memories by sound cues at test biased oculomotor behavior towards locations congruent with memory representations, even when participants failed to consciously provide a memory report of it. These findings reveal the emergence of a memory-guided behavior that can be used to map internal representations of forgotten memories from long-term memory. PMID:25477804

  10. Accessing forgotten memory traces from long-term memory via visual movements

    Directory of Open Access Journals (Sweden)

    Estela eCamara

    2014-11-01

    Full Text Available Because memory retrieval often requires overt responses, it is difficult to determine to what extend forgetting occurs as a problem in explicit accessing of long-term memory traces. In this study, we used eye-tracking measures in combination with a behavioural task that favoured high forgetting rates to investigate the existence of memory traces from long-term memory in spite of failure in accessing them consciously. In 2 experiments, participants were encouraged to encode a large set of sound-picture-location associations. In a later test, sounds were presented and participants were instructed to visually scan, before a verbal memory report, for the correct location of the associated pictures in an empty screen. We found the reactivation of associated memories by sound cues at test biased oculomotor behaviour towards locations congruent with memory representations, even when participants failed to consciously provide a memory report of it. These findings reveal the emergence of a memory-guided behaviour that can be used to map internal representations of forgotten memories from long-term memory.

  11. The properties and mechanism of long-term memory in nonparametric volatility

    Science.gov (United States)

    Li, Handong; Cao, Shi-Nan; Wang, Yan

    2010-08-01

    Recent empirical literature documents the presence of long-term memory in return volatility. But the mechanism of the existence of long-term memory is still unclear. In this paper, we investigate the origin and properties of long-term memory with nonparametric volatility, using high-frequency time series data of the Chinese Shanghai Composite Stock Price Index. We perform Detrended Fluctuation Analysis (DFA) on three different nonparametric volatility estimators with different sampling frequencies. For the same volatility series, the Hurst exponents reduce as the sampling time interval increases, but they are still larger than 1/2, which means that no matter how the interval changes, it still cannot change the existence of long memory. RRV presents a relatively stable property on long-term memory and is less influenced by sampling frequency. RV and RBV have some evolutionary trends depending on time intervals, which indicating that the jump component has no significant impact on the long-term memory property. This suggests that the presence of long-term memory in nonparametric volatility can be contributed to the integrated variance component. Considering the impact of microstructure noise, RBV and RRV still present long-term memory under various time intervals. We can infer that the presence of long-term memory in realized volatility is not affected by market microstructure noise. Our findings imply that the long-term memory phenomenon is an inherent characteristic of the data generating process, not a result of microstructure noise or volatility clustering.

  12. Musical and Verbal Memory in Alzheimer's Disease: A Study of Long-Term and Short-Term Memory

    Science.gov (United States)

    Menard, Marie-Claude; Belleville, Sylvie

    2009-01-01

    Musical memory was tested in Alzheimer patients and in healthy older adults using long-term and short-term memory tasks. Long-term memory (LTM) was tested with a recognition procedure using unfamiliar melodies. Short-term memory (STM) was evaluated with same/different judgment tasks on short series of notes. Musical memory was compared to verbal…

  13. Musical and Verbal Memory in Alzheimer's Disease: A Study of Long-Term and Short-Term Memory

    Science.gov (United States)

    Menard, Marie-Claude; Belleville, Sylvie

    2009-01-01

    Musical memory was tested in Alzheimer patients and in healthy older adults using long-term and short-term memory tasks. Long-term memory (LTM) was tested with a recognition procedure using unfamiliar melodies. Short-term memory (STM) was evaluated with same/different judgment tasks on short series of notes. Musical memory was compared to verbal…

  14. Long-term pitch memory for music recordings is related to auditory working memory precision.

    Science.gov (United States)

    Van Hedger, Stephen C; Heald, Shannon L M; Nusbaum, Howard C

    2017-08-31

    Most individuals have reliable long-term memories for the pitch of familiar music recordings. This pitch memory (1) appears to be normally distributed in the population, (2) does not depend on explicit musical training, and (3) only seems to be weakly related to differences in listening frequency estimates. The present experiment was designed to assess whether individual differences in auditory working memory could explain variance in long-term pitch memory for music recordings. In Experiment 1, participants first completed a musical note adjustment task that has been previously used to assess working memory of musical pitch. Afterwards, participants were asked to judge the pitch of well-known music recordings, which either had or had not been shifted in pitch. We found that performance on the pitch working memory task was significantly related to performance in the pitch memory task using well-known recordings, even when controlling for overall musical experience and familiarity with each recording. In Experiment 2, we replicated these findings in a separate group of participants while additionally controlling for fluid intelligence and non-pitch based components of auditory working memory. In Experiment 3, we demonstrated that participants could not accurately judge the pitch of unfamiliar recordings, suggesting that our method of pitch shifting did not result in unwanted acoustic cues that could have aided participants in Experiments 1 and 2. These results, taken together, suggest that the ability to maintain pitch information in working memory might lead to more accurate long-term pitch memory.

  15. Subregion-specific p300 conditional knock-out mice exhibit long-term memory impairments

    OpenAIRE

    Oliveira, Ana M. M.; Estévez, Marcel A.; Hawk, Joshua D.; Grimes, Shannon; Brindle, Paul K.; Abel, Ted

    2011-01-01

    Histone acetylation plays a critical role during long-term memory formation. Several studies have demonstrated that the histone acetyltransferase (HAT) CBP is required during long-term memory formation, but the involvement of other HAT proteins has not been extensively investigated. The HATs CBP and p300 have at least 400 described interacting proteins including transcription factors known to play a role in long-term memory formation. Thus, CBP and p300 constitute likely candidates for transc...

  16. Odor-enriched environment rescues long-term social memory, but does not improve olfaction in social isolated adult mice.

    Science.gov (United States)

    Gusmão, Isabela D; Monteiro, Brisa M M; Cornélio, Guilherme O S; Fonseca, Cristina S; Moraes, Márcio F D; Pereira, Grace S

    2012-03-17

    Prolonged permanence of animals under social isolation (SI) arouses a variety of psychological symptoms like aggression, stress, anxiety and depression. However, short-term SI is commonly used to evaluate social memory. Interestingly, the social memory cannot be accessed with delays higher than 30min in SI mice. Our hypothesis is that SI with intermediate duration, like one week (1w), impairs the long-term storage of new social information (S-LTM), without affecting anxiety or other types of memories, because the SI compromises the olfactory function of the animal. Our results demonstrated that SI impaired S-LTM, without affecting other kinds of memory or anxiety. In addition, the SI increased the latency in the buried-food finding task, but did not affect the habituation or the discrimination of odors. Next, we postulated that if continuous input to the olfactory system is fundamental for the maintenance of the olfactory function and social memory persistence, isolated mice under odor-enriched environment (OEE) should behave like group-housed (GH) animals. In fact, the OEE prevented the S-LTM deficit imposed by the SI. However, OEE did not restore the SI mice olfaction to the GH mice level. Our results suggest that SI modulates olfaction and social memory persistence, probably, by independent mechanisms. We also showed for the first time that OEE rescued S-LTM in SI mice through a mechanism not necessarily involved with olfaction.

  17. Neural bases of orthographic long-term memory and working memory in dysgraphia.

    Science.gov (United States)

    Rapp, Brenda; Purcell, Jeremy; Hillis, Argye E; Capasso, Rita; Miceli, Gabriele

    2016-02-01

    Spelling a word involves the retrieval of information about the word's letters and their order from long-term memory as well as the maintenance and processing of this information by working memory in preparation for serial production by the motor system. While it is known that brain lesions may selectively affect orthographic long-term memory and working memory processes, relatively little is known about the neurotopographic distribution of the substrates that support these cognitive processes, or the lesions that give rise to the distinct forms of dysgraphia that affect these cognitive processes. To examine these issues, this study uses a voxel-based mapping approach to analyse the lesion distribution of 27 individuals with dysgraphia subsequent to stroke, who were identified on the basis of their behavioural profiles alone, as suffering from deficits only affecting either orthographic long-term or working memory, as well as six other individuals with deficits affecting both sets of processes. The findings provide, for the first time, clear evidence of substrates that selectively support orthographic long-term and working memory processes, with orthographic long-term memory deficits centred in either the left posterior inferior frontal region or left ventral temporal cortex, and orthographic working memory deficits primarily arising from lesions of the left parietal cortex centred on the intraparietal sulcus. These findings also contribute to our understanding of the relationship between the neural instantiation of written language processes and spoken language, working memory and other cognitive skills. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Cyclic Nucleotide-Gated Channels, Calmodulin, Adenylyl Cyclase, and Calcium/Calmodulin-Dependent Protein Kinase II Are Required for Late, but Not Early, Long-Term Memory Formation in the Honeybee

    Science.gov (United States)

    Matsumoto, Yukihisa; Sandoz, Jean-Christophe; Devaud, Jean-Marc; Lormant, Flore; Mizunami, Makoto; Giurfa, Martin

    2014-01-01

    Memory is a dynamic process that allows encoding, storage, and retrieval of information acquired through individual experience. In the honeybee "Apis mellifera," olfactory conditioning of the proboscis extension response (PER) has shown that besides short-term memory (STM) and mid-term memory (MTM), two phases of long-term memory (LTM)…

  19. Cyclic Nucleotide-Gated Channels, Calmodulin, Adenylyl Cyclase, and Calcium/Calmodulin-Dependent Protein Kinase II Are Required for Late, but Not Early, Long-Term Memory Formation in the Honeybee

    Science.gov (United States)

    Matsumoto, Yukihisa; Sandoz, Jean-Christophe; Devaud, Jean-Marc; Lormant, Flore; Mizunami, Makoto; Giurfa, Martin

    2014-01-01

    Memory is a dynamic process that allows encoding, storage, and retrieval of information acquired through individual experience. In the honeybee "Apis mellifera," olfactory conditioning of the proboscis extension response (PER) has shown that besides short-term memory (STM) and mid-term memory (MTM), two phases of long-term memory (LTM)…

  20. Reward signal in a recurrent circuit drives appetitive long-term memory formation.

    Science.gov (United States)

    Ichinose, Toshiharu; Aso, Yoshinori; Yamagata, Nobuhiro; Abe, Ayako; Rubin, Gerald M; Tanimoto, Hiromu

    2015-11-17

    Dopamine signals reward in animal brains. A single presentation of a sugar reward to Drosophila activates distinct subsets of dopamine neurons that independently induce short- and long-term olfactory memories (STM and LTM, respectively). In this study, we show that a recurrent reward circuit underlies the formation and consolidation of LTM. This feedback circuit is composed of a single class of reward-signaling dopamine neurons (PAM-α1) projecting to a restricted region of the mushroom body (MB), and a specific MB output cell type, MBON-α1, whose dendrites arborize that same MB compartment. Both MBON-α1 and PAM-α1 neurons are required during the acquisition and consolidation of appetitive LTM. MBON-α1 additionally mediates the retrieval of LTM, which is dependent on the dopamine receptor signaling in the MB α/β neurons. Our results suggest that a reward signal transforms a nascent memory trace into a stable LTM using a feedback circuit at the cost of memory specificity.

  1. Short- and long-term memory: differential involvement of neurotransmitter systems and signal transduction cascades

    Directory of Open Access Journals (Sweden)

    MÔNICA R.M. VIANNA

    2000-09-01

    Full Text Available Since William James (1890 first distinguished primary from secondary memory, equivalent to short- and long-term memory, respectively, it has been assumed that short-term memory processes are in charge of cognition while long-term memory is being consolidated. From those days a major question has been whether short-term memory is merely a initial phase of long-term memory, or a separate phenomena. Recent experiments have shown that many treatments with specific molecular actions given into the hippocampus and related brain areas after one-trial avoidance learning can effectively cancel short-term memory without affecting long-term memory formation. This shows that short-term memory and long-term memory involve separate mechanisms and are independently processed. Other treatments, however, influence both memory types similarly, suggesting links between both at the receptor and at the post-receptor level, which should not be surprising as they both deal with nearly the same sensorimotor representations. This review examines recent advances in short- and long-term memory mechanisms based on the effect of intra-hippocampal infusion of drugs acting upon neurotransmitter and signal transduction systems on both memory types.

  2. A Long-Term Memory Competitive Process Model of a Common Procedural Error. Part II: Working Memory Load and Capacity

    Science.gov (United States)

    2013-07-01

    A Long-Term Memory Competitive Process Model of a Common Procedural Error, Part II: Working Memory Load and Capacity Franklin P. Tamborello, II...00-00-2013 4. TITLE AND SUBTITLE A Long-Term Memory Competitive Process Model of a Common Procedural Error, Part II: Working Memory Load and...07370024.2011.601692 Tamborello, F. P., & Trafton, J. G. (2013). A long-term competitive process model of a common procedural error. In Proceedings of the 35th

  3. Spatio-temporal memories for machine learning: a long-term memory organization.

    Science.gov (United States)

    Starzyk, Janusz A; He, Haibo

    2009-05-01

    Design of artificial neural structures capable of reliable and flexible long-term spatio-temporal memory is of paramount importance in machine intelligence. To this end, we propose a novel, biologically inspired, long-term memory (LTM) architecture. We intend to use it as a building block of a neuron-level architecture that is able to mimic natural intelligence through learning, anticipation, and goal-driven behavior. A mutual input enhancement and blocking structure is proposed, and its operation is discussed in detail. The paper focuses on a hierarchical memory organization, storage, recognition, and recall mechanisms. Simulation results of the proposed memory show its effectiveness, adaptability, and robustness. Accuracy of the proposed method is compared to other methods including Levenshtein distance method and a Markov chain.

  4. Subregion-Specific p300 Conditional Knock-Out Mice Exhibit Long-Term Memory Impairments

    Science.gov (United States)

    Oliveira, Ana M. M.; Estevez, Marcel A.; Hawk, Joshua D.; Grimes, Shannon; Brindle, Paul K.; Abel, Ted

    2011-01-01

    Histone acetylation plays a critical role during long-term memory formation. Several studies have demonstrated that the histone acetyltransferase (HAT) CBP is required during long-term memory formation, but the involvement of other HAT proteins has not been extensively investigated. The HATs CBP and p300 have at least 400 described interacting…

  5. Conceptual Distinctiveness Supports Detailed Visual Long-Term Memory for Real-World Objects

    Science.gov (United States)

    Konkle, Talia; Brady, Timothy F.; Alvarez, George A.; Oliva, Aude

    2010-01-01

    Humans have a massive capacity to store detailed information in visual long-term memory. The present studies explored the fidelity of these visual long-term memory representations and examined how conceptual and perceptual features of object categories support this capacity. Observers viewed 2,800 object images with a different number of exemplars…

  6. They Saw a Movie: Long-Term Memory for an Extended Audiovisual Narrative

    Science.gov (United States)

    Furman, Orit; Dorfman, Nimrod; Hasson, Uri; Davachi, Lila; Dudai, Yadin

    2007-01-01

    We measured long-term memory for a narrative film. During the study session, participants watched a 27-min movie episode, without instructions to remember it. During the test session, administered at a delay ranging from 3 h to 9 mo after the study session, long-term memory for the movie was probed using a computerized questionnaire that assessed…

  7. Evidence for long-term memory in sea level

    Science.gov (United States)

    Dangendorf, Sönke; Rybski, Diego; Mudersbach, Christoph; Müller, Alfred; Kaufmann, Edgar; Zorita, Eduardo; Jensen, Jürgen

    2014-08-01

    Detection and attribution of anthropogenic climate change signals in sea level rise (SLR) has experienced considerable attention during the last decades. Here we provide evidence that superimposed on any possible anthropogenic trend there is a significant amount of natural decadal and multidecadal variability. Using a set of 60 centennial tide gauge records and an ocean reanalysis, we find that sea levels exhibit long-term correlations on time scales up to several decades that are independent of any systematic rise. A large fraction of this long-term variability is related to the steric component of sea level, but we also find long-term correlations in current estimates of mass loss from glaciers and ice caps. These findings suggest that (i) recent attempts to detect a significant acceleration in regional SLR might underestimate the impact of natural variability and (ii) any future regional SLR threshold might be exceeded earlier/later than from anthropogenic change alone.

  8. The histone deacetylase HDAC4 regulates long-term memory in Drosophila.

    Science.gov (United States)

    Fitzsimons, Helen L; Schwartz, Silvia; Given, Fiona M; Scott, Maxwell J

    2013-01-01

    A growing body of research indicates that pharmacological inhibition of histone deacetylases (HDACs) correlates with enhancement of long-term memory and current research is concentrated on determining the roles that individual HDACs play in cognitive function. Here, we investigate the role of HDAC4 in long-term memory formation in Drosophila. We show that overexpression of HDAC4 in the adult mushroom body, an important structure for memory formation, resulted in a specific impairment in long-term courtship memory, but had no affect on short-term memory. Overexpression of an HDAC4 catalytic mutant also abolished LTM, suggesting a mode of action independent of catalytic activity. We found that overexpression of HDAC4 resulted in a redistribution of the transcription factor MEF2 from a relatively uniform distribution through the nucleus into punctate nuclear bodies, where it colocalized with HDAC4. As MEF2 has also been implicated in regulation of long-term memory, these data suggest that the repressive effects of HDAC4 on long-term memory may be through interaction with MEF2. In the same genetic background, we also found that RNAi-mediated knockdown of HDAC4 impairs long-term memory, therefore we demonstrate that HDAC4 is not only a repressor of long-term memory, but also modulates normal memory formation.

  9. Short-term memory and long-term memory are still different.

    Science.gov (United States)

    Norris, Dennis

    2017-09-01

    A commonly expressed view is that short-term memory (STM) is nothing more than activated long-term memory. If true, this would overturn a central tenet of cognitive psychology-the idea that there are functionally and neurobiologically distinct short- and long-term stores. Here I present an updated case for a separation between short- and long-term stores, focusing on the computational demands placed on any STM system. STM must support memory for previously unencountered information, the storage of multiple tokens of the same type, and variable binding. None of these can be achieved simply by activating long-term memory. For example, even a simple sequence of digits such as "1, 3, 1" where there are 2 tokens of the digit "1" cannot be stored in the correct order simply by activating the representations of the digits "1" and "3" in LTM. I also review recent neuroimaging data that has been presented as evidence that STM is activated LTM and show that these data are exactly what one would expect to see based on a conventional 2-store view. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  10. Short-Term Memory and Long-Term Memory are Still Different

    Science.gov (United States)

    2017-01-01

    A commonly expressed view is that short-term memory (STM) is nothing more than activated long-term memory. If true, this would overturn a central tenet of cognitive psychology—the idea that there are functionally and neurobiologically distinct short- and long-term stores. Here I present an updated case for a separation between short- and long-term stores, focusing on the computational demands placed on any STM system. STM must support memory for previously unencountered information, the storage of multiple tokens of the same type, and variable binding. None of these can be achieved simply by activating long-term memory. For example, even a simple sequence of digits such as “1, 3, 1” where there are 2 tokens of the digit “1” cannot be stored in the correct order simply by activating the representations of the digits “1” and “3” in LTM. I also review recent neuroimaging data that has been presented as evidence that STM is activated LTM and show that these data are exactly what one would expect to see based on a conventional 2-store view. PMID:28530428

  11. Effects of treadmill exercise intensity on spatial working memory and long-term memory in rats.

    Science.gov (United States)

    Wang, Xiao-Qin; Wang, Gong-Wu

    2016-03-15

    Moderate exercise promotes learning and memory. Most studies mainly focused on memory exercise effects of in the ageing and patients. There is lack of quantitative research about effect of regular exercise intensity on different memory types in normal subjects. Present study investigated the effects of different intensities of treadmill exercise on working memory and long-term memory. Fifty female Wistar rats were trained by T-maze delayed spatial alternation (DSA) task with 3 delays (10s, 60s and 300s). Then they got a 30min treadmill exercise for 30days in 4 intensities (control, 0m/min; lower, 15m/min; middle, 20m/min, and higher, 30m/min). Then animals were tested in DSA, passive avoidance and Morris water maze tasks. 1. Exercise increased the neuronal density of hippocampal subregions (CA1, CA3 and dentate gyrus) vs. naïve/control. 2. In DSA task, all groups have similar baseline, lower intensity improved 10s delay accuracy vs. baseline/control; middle and higher intensities improved 300s delay accuracy vs. baseline/control. 3. In water maze learning, all groups successfully found the platform, but middle intensity improved platform field crossing times vs. control in test phase. Present results suggested that treadmill exercise can improve long-term spatial memory and working memory; lower intensity benefits to short-term delayed working memory, and middle or higher intensity benefits to long-term delayed working memory. There was an inverted U dose-effect relationship between exercise intensity and memory performance, but exercise -working memory effect was impacted by delay duration. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. A novel whole-cell mechanism for long-term memory enhancement.

    Directory of Open Access Journals (Sweden)

    Iris Reuveni

    Full Text Available Olfactory-discrimination learning was shown to induce a profound long-lasting enhancement in the strength of excitatory and inhibitory synapses of pyramidal neurons in the piriform cortex. Notably, such enhancement was mostly pronounced in a sub-group of neurons, entailing about a quarter of the cell population. Here we first show that the prominent enhancement in the subset of cells is due to a process in which all excitatory synapses doubled their strength and that this increase was mediated by a single process in which the AMPA channel conductance was doubled. Moreover, using a neuronal-network model, we show how such a multiplicative whole-cell synaptic strengthening in a sub-group of cells that form a memory pattern, sub-serves a profound selective enhancement of this memory. Network modeling further predicts that synaptic inhibition should be modified by complex learning in a manner that much resembles synaptic excitation. Indeed, in a subset of neurons all GABAA-receptors mediated inhibitory synapses also doubled their strength after learning. Like synaptic excitation, Synaptic inhibition is also enhanced by two-fold increase of the single channel conductance. These findings suggest that crucial learning induces a multiplicative increase in strength of all excitatory and inhibitory synapses in a subset of cells, and that such an increase can serve as a long-term whole-cell mechanism to profoundly enhance an existing Hebbian-type memory. This mechanism does not act as synaptic plasticity mechanism that underlies memory formation but rather enhances the response of already existing memory. This mechanism is cell-specific rather than synapse-specific; it modifies the channel conductance rather than the number of channels and thus has the potential to be readily induced and un-induced by whole-cell transduction mechanisms.

  13. Molecular bases of long-term memories: a question of persistence.

    Science.gov (United States)

    Dudai, Yadin

    2002-04-01

    The most distinctive attribute of long-term memory is persistence over time. New studies have uncovered many aspects of the molecular and cellular biology of synaptic plasticity, and the acquisition and consolidation of memory, which are thought to depend on synaptic plasticity. Much less, however, is known about the molecular and cellular biology of long-term memory persistence. Recent findings in the field are construed within the conceptual framework that proposes that consolidation and persistence of long-term memories require modulation of gene expression, which can culminate in synaptic remodeling. Whether modulation of gene expression, and particularly the ensuing morphological plasticity of the synapse, is permissive, causal or sufficient for the materialization and persistence of the long-term trace is, as yet, undetermined. How persistent is persistence? Renewed interest is focused on the possibility that some long-term memories consolidate anew with retrieval, and could, under certain conditions, become transiently shaky in this period of reconsolidation.

  14. Olfactory training induces changes in regional functional connectivity in patients with long-term smell loss

    Directory of Open Access Journals (Sweden)

    K. Kollndorfer

    2015-01-01

    The results of this study indicate that an olfactory training program can reorganize functional networks, although, initially, no differences in the spatial distribution of neural activation were observed.

  15. The role of the hippocampus in long-term memory: is it memory store or comparator?

    Science.gov (United States)

    Kryukov, V I

    2008-03-01

    Several attempts have been made to reconcile a number of rival theories on the role of the hippocampus in long-term memory. Those attempts fail to explain the basic effects of the theories from the same point of view. We are reviewing the four major theories, and shall demonstrate, with the use of mathematical models of attention and memory, that only one theory is capable of reconciling all of them by explaining the basic effects of each theory in a unified fashion, without altogether sacrificing their individual contributions. The key issue here is whether or not a memory trace is ever stored in the hippocampus itself, and there is no reconciliation unless the answer to that question is that there is not. As a result of the reconciliation that we are proposing, there is a simple solution to several outstanding problems concerning the neurobiology of memory such as: consolidation and reconsolidation, persistency of long term memory, novelty detection, habituation, long-term potentiation, and the multifrequency oscillatory self-organization of the brain.

  16. Long-term outcomes of memory retrieval under stress

    NARCIS (Netherlands)

    Tollenaar, M.S.; Elzinga, B.M.; Spinhoven, P.; Everaerd, W.T.A.M.

    2008-01-01

    Previous studies have found impairing effects of stress hormones on memory retrieval. So far, it is unknown whether these impairments are temporary, persistent throughout time, or whether the strength of the memory trace changes after retrieval because of the effects of stress hormones on memory pro

  17. The Role of Long-Term Memory in a Test of Visual Working Memory: Proactive Facilitation but No Proactive Interference

    Science.gov (United States)

    Oberauer, Klaus; Awh, Edward; Sutterer, David W.

    2017-01-01

    We report 4 experiments examining whether associations in visual working memory are subject to proactive interference from long-term memory (LTM). Following a long-term learning phase in which participants learned the colors of 120 unique objects, a working memory (WM) test was administered in which participants recalled the precise colors of 3…

  18. The Role of Long-Term Memory in a Test of Visual Working Memory: Proactive Facilitation but No Proactive Interference

    Science.gov (United States)

    Oberauer, Klaus; Awh, Edward; Sutterer, David W.

    2017-01-01

    We report 4 experiments examining whether associations in visual working memory are subject to proactive interference from long-term memory (LTM). Following a long-term learning phase in which participants learned the colors of 120 unique objects, a working memory (WM) test was administered in which participants recalled the precise colors of 3…

  19. Role of Atypical Protein Kinases in Maintenance of Long-Term Memory and Synaptic Plasticity.

    Science.gov (United States)

    Borodinova, A A; Zuzina, A B; Balaban, P M

    2017-03-01

    Investigation of biochemical mechanisms underlying the long-term storage of information in nervous system is one of main problems of modern neurobiology. As a molecular basis of long-term memory, long-term changes in kinase activities, increase in the level and changes in the subunit composition of receptors in synaptic membranes, local activity of prion-like proteins, and epigenetic modifications of chromatin have been proposed. Perhaps a combination of all or of some of these factors underlies the storage of long-term memory in the brain. Many recent studies have shown an exclusively important role of atypical protein kinases (PKCζ, PKMζ, and PKCι/λ) in processes of learning, consolidation and maintenance of memory. The present review is devoted to consideration of mechanisms of transcriptional and translational control of atypical protein kinases and their roles in induction and maintenance of long-term synaptic plasticity and memory in vertebrates and invertebrates.

  20. Awake, long-term intranasal insulin treatment does not affect object memory, odor discrimination, or reversal learning in mice.

    Science.gov (United States)

    Bell, Genevieve A; Fadool, Debra Ann

    2017-05-15

    Intranasal insulin delivery is currently being used in clinical trials to test for improvement in human memory and cognition, and in particular, for lessening memory loss attributed to neurodegenerative diseases. Studies have reported the effects of short-term intranasal insulin treatment on various behaviors, but less have examined long-term effects. The olfactory bulb contains the highest density of insulin receptors in conjunction with the highest level of insulin transport within the brain. Previous research from our laboratory has demonstrated that acute insulin intranasal delivery (IND) enhanced both short- and long-term memory as well as increased two-odor discrimination in a two-choice paradigm. Herein, we investigated the behavioral and physiological effects of chronic insulin IND. Adult, male C57BL6/J mice were intranasally treated with 5μg/μl of insulin twice daily for 30 and 60days. Metabolic assessment indicated no change in body weight, caloric intake, or energy expenditure following chronic insulin IND, but an increase in the frequency of meal bouts selectively in the dark cycle. Unlike acute insulin IND, which has been shown to cause enhanced performance in odor habituation/dishabituation and two-odor discrimination tasks in mice, chronic insulin IND did not enhance olfactometry-based odorant discrimination or olfactory reversal learning. In an object memory recognition task, insulin IND-treated mice did not perform differently than controls, regardless of task duration. Biochemical analyses of the olfactory bulb revealed a modest 1.3 fold increase in IR kinase phosphorylation but no significant increase in Kv1.3 phosphorylation. Substrate phosphorylation of IR kinase downstream effectors (MAPK/ERK and Akt signaling) proved to be highly variable. These data indicate that chronic administration of insulin IND in mice fails to enhance olfactory ability, object memory recognition, or a majority of systems physiology metabolic factors - as reported to

  1. How does long-term odor deprivation affect the olfactory capacity of adult mice?

    Directory of Open Access Journals (Sweden)

    Coppola David M

    2010-05-01

    Full Text Available Abstract Background Unilateral naris occlusion (UNO has been the most common method of effecting stimulus deprivation in studies of olfactory plasticity. However, despite the large corpus on the effects of this manipulation, dating back to the 19th century, little is known about its behavioral sequela. Here we report the results of standard olfactory habituation and discrimination studies on adult mice that had undergone perinatal UNO followed by adult contralateral olfactory bulbectomy (bulb-x. Methods The olfactory performance of UNO mice was compared to matched controls that had unilateral bulb-x but open nares. Both habituation and discrimination (operant experiments employed a protocol in which after successful dishabituation or discrimination to dilute individual odors (A = 0.01% isoamyl acetate; B = 0.01% ethyl butyrate; each v/v in mineral oil, mice were challenged with a single odor versus a mixture comparison (A vs. A + B. In a series of tests the volume portion of Odor B in the mixture was systematically decreased until dishabituation or discrimination thresholds were reached. Results For the habituation experiment, UNOs (n = 10 and controls (n = 9 dishabituated to a 10% mixture of Odor B in Odor A after being habituated to A alone, while both groups failed to show differential responding to a 2% mixture of B in A. However, the UNO group's increased investigation durations for the 2% mixture approached significance (p Conclusions Adult mice relying on an olfactory system deprived of odor by naris occlusion from near the time of birth display enhanced olfactory capacity compared to control mice. This counterintuitive result suggests that UNO is neither an absolute method of deprivation nor does it diminish olfactory capabilities. Enhanced olfactory capacity, as observed in the current study, that is a consequence of deprivation, is consistent with recent molecular and physiological evidence that stimulus deprivation triggers

  2. Short-term memory to long-term memory transition in a nanoscale memristor.

    Science.gov (United States)

    Chang, Ting; Jo, Sung-Hyun; Lu, Wei

    2011-09-27

    "Memory" is an essential building block in learning and decision-making in biological systems. Unlike modern semiconductor memory devices, needless to say, human memory is by no means eternal. Yet, forgetfulness is not always a disadvantage since it releases memory storage for more important or more frequently accessed pieces of information and is thought to be necessary for individuals to adapt to new environments. Eventually, only memories that are of significance are transformed from short-term memory into long-term memory through repeated stimulation. In this study, we show experimentally that the retention loss in a nanoscale memristor device bears striking resemblance to memory loss in biological systems. By stimulating the memristor with repeated voltage pulses, we observe an effect analogous to memory transition in biological systems with much improved retention time accompanied by additional structural changes in the memristor. We verify that not only the shape or the total number of stimuli is influential, but also the time interval between stimulation pulses (i.e., the stimulation rate) plays a crucial role in determining the effectiveness of the transition. The memory enhancement and transition of the memristor device was explained from the microscopic picture of impurity redistribution and can be qualitatively described by the same equations governing biological memories. © 2011 American Chemical Society

  3. Word Length Effects in Long-Term Memory

    Science.gov (United States)

    Tehan, Gerald; Tolan, Georgina Anne

    2007-01-01

    The word length effect has been a central feature of theorising about immediate memory. The notion that short-term memory traces rapidly decay unless refreshed by rehearsal is based primarily upon the finding that serial recall for short words is better than that for long words. The decay account of the word length effect has come under pressure…

  4. Word Length Effects in Long-Term Memory

    Science.gov (United States)

    Tehan, Gerald; Tolan, Georgina Anne

    2007-01-01

    The word length effect has been a central feature of theorising about immediate memory. The notion that short-term memory traces rapidly decay unless refreshed by rehearsal is based primarily upon the finding that serial recall for short words is better than that for long words. The decay account of the word length effect has come under pressure…

  5. Lateral Habenula determines long-term storage of aversive memories.

    Directory of Open Access Journals (Sweden)

    Micol eTomaiuolo

    2014-05-01

    Full Text Available The Lateral Habenula (LHb is a small brain structure that codifies negative motivational value and has been related to major depression. It has been shown recently that LHb activation is sufficient to induce aversive associative learning; however the key question about whether LHb activation is required for an aversive memory to be formed has not been addressed. In this article we studied the function of the LHb in memory formation using the Inhibitory Avoidance task (IA. We found that LHb inactivation during IA training does not disrupt memory when assessed 24 hours after, but abolishes it 7 days later, indicating that LHb activity during memory acquisition is not necessary for memory formation, but regulates its temporal stability. These effects suggest that LHb inactivation modifies subjective perception of the training experience.

  6. Lateral Habenula determines long-term storage of aversive memories

    Science.gov (United States)

    Tomaiuolo, Micol; Gonzalez, Carolina; Medina, Jorge H.; Piriz, Joaquin

    2014-01-01

    The Lateral Habenula (LHb) is a small brain structure that codifies negative motivational value and has been related to major depression. It has been shown recently that LHb activation is sufficient to induce aversive associative learning; however the key question about whether LHb activation is required for an aversive memory to be formed has not been addressed. In this article we studied the function of the LHb in memory formation using the Inhibitory Avoidance task (IA). We found that LHb inactivation during IA training does not disrupt memory when assessed 24 h after, but abolishes it 7 days later, indicating that LHb activity during memory acquisition is not necessary for memory formation, but regulates its temporal stability. These effects suggest that LHb inactivation modifies subjective perception of the training experience. PMID:24860453

  7. Long-term Memory and Volatility Clustering in Daily and High-frequency Price Changes

    CERN Document Server

    Oh, G J; Um, C J; Kim, Seunghwann; Oh, GabJin; Um, Cheol-Jun

    2006-01-01

    We study the long-term memory in diverse stock market indices and foreign exchange rates using the Detrended Fluctuation Analysis(DFA). For all daily and high-frequency market data studied, no significant long-term memory property is detected in the return series, while a strong long-term memory property is found in the volatility time series. The possible causes of the long-term memory property are investigated using the return data filtered by the AR(1) model, reflecting the short-term memory property, and the GARCH(1,1) model, reflecting the volatility clustering property, respectively. Notably, we found that the memory effect in the AR(1) filtered return and volatility time series remains unchanged, while the long-term memory property either disappeared or diminished significantly in the volatility series of the GARCH(1,1) filtered data. We also found that in the high-frequency data the long-term memory property may be generated by the volatility clustering as well as higher autocorrelation. Our results i...

  8. DNA methylation mediates the discriminatory power of associative long-term memory in honeybees.

    Directory of Open Access Journals (Sweden)

    Stephanie D Biergans

    Full Text Available Memory is created by several interlinked processes in the brain, some of which require long-term gene regulation. Epigenetic mechanisms are likely candidates for regulating memory-related genes. Among these, DNA methylation is known to be a long lasting genomic mark and may be involved in the establishment of long-term memory. Here we demonstrate that DNA methyltransferases, which induce and maintain DNA methylation, are involved in a particular aspect of associative long-term memory formation in honeybees, but are not required for short-term memory formation. While long-term memory strength itself was not affected by blocking DNA methyltransferases, odor specificity of the memory (memory discriminatory power was. Conversely, perceptual discriminatory power was normal. These results suggest that different genetic pathways are involved in mediating the strength and discriminatory power of associative odor memories and provide, to our knowledge, the first indication that DNA methyltransferases are involved in stimulus-specific associative long-term memory formation.

  9. The short- and long-term consequences of directed forgetting in a working memory task.

    Science.gov (United States)

    Festini, Sara B; Reuter-Lorenz, Patricia A

    2013-01-01

    Directed forgetting requires the voluntary control of memory. Whereas many studies have examined directed forgetting in long-term memory (LTM), the mechanisms and effects of directed forgetting within working memory (WM) are less well understood. The current study tests how directed forgetting instructions delivered in a WM task influence veridical memory, as well as false memory, over the short and long term. In a modified item recognition task Experiment 1 tested WM only and demonstrated that directed forgetting reduces false recognition errors and semantic interference. Experiment 2 replicated these WM effects and used a surprise LTM recognition test to assess the long-term effects of directed forgetting in WM. Long-term veridical memory for to-be-remembered lists was better than memory for to-be-forgotten lists-the directed forgetting effect. Moreover, fewer false memories emerged for to-be-forgotten information than for to-be-remembered information in LTM as well. These results indicate that directed forgetting during WM reduces semantic processing of to-be-forgotten lists over the short and long term. Implications for theories of false memory and the mechanisms of directed forgetting within working memory are discussed.

  10. Short- and long-term memory in Drosophila require cAMP signaling in distinct neuron types.

    Science.gov (United States)

    Blum, Allison L; Li, Wanhe; Cressy, Mike; Dubnau, Josh

    2009-08-25

    A common feature of memory and its underlying synaptic plasticity is that each can be dissected into short-lived forms involving modification or trafficking of existing proteins and long-term forms that require new gene expression. An underlying assumption of this cellular view of memory consolidation is that these different mechanisms occur within a single neuron. At the neuroanatomical level, however, different temporal stages of memory can engage distinct neural circuits, a notion that has not been conceptually integrated with the cellular view. Here, we investigated this issue in the context of aversive Pavlovian olfactory memory in Drosophila. Previous studies have demonstrated a central role for cAMP signaling in the mushroom body (MB). The Ca(2+)-responsive adenylyl cyclase RUTABAGA is believed to be a coincidence detector in gamma neurons, one of the three principle classes of MB Kenyon cells. We were able to separately restore short-term or long-term memory to a rutabaga mutant with expression of rutabaga in different subsets of MB neurons. Our findings suggest a model in which the learning experience initiates two parallel associations: a short-lived trace in MB gamma neurons, and a long-lived trace in alpha/beta neurons.

  11. GABA-Mediated Presynaptic Inhibition Is Required for Precision of Long-Term Memory

    Science.gov (United States)

    Cullen, Patrick K.; Dulka, Brooke N.; Ortiz, Samantha; Riccio, David C.; Jasnow, Aaron M.

    2014-01-01

    Though much attention has been given to the neural structures that underlie the long-term consolidation of contextual memories, little is known about the mechanisms responsible for the maintenance of memory precision. Here, we demonstrate a rapid time-dependent decline in memory precision in GABA [subscript B(1a)] receptor knockout mice. First, we…

  12. GABA-Mediated Presynaptic Inhibition Is Required for Precision of Long-Term Memory

    Science.gov (United States)

    Cullen, Patrick K.; Dulka, Brooke N.; Ortiz, Samantha; Riccio, David C.; Jasnow, Aaron M.

    2014-01-01

    Though much attention has been given to the neural structures that underlie the long-term consolidation of contextual memories, little is known about the mechanisms responsible for the maintenance of memory precision. Here, we demonstrate a rapid time-dependent decline in memory precision in GABA [subscript B(1a)] receptor knockout mice. First, we…

  13. The Neural Substrates of Recognition Memory for Verbal Information: Spanning the Divide between Short- and Long-Term Memory

    Science.gov (United States)

    Buchsbaum, Bradley R.; Padmanabhan, Aarthi; Berman, Karen Faith

    2011-01-01

    One of the classic categorical divisions in the history of memory research is that between short-term and long-term memory. Indeed, because memory for the immediate past (a few seconds) and memory for the relatively more remote past (several seconds and beyond) are assumed to rely on distinct neural systems, more often than not, memory research…

  14. The Neural Substrates of Recognition Memory for Verbal Information: Spanning the Divide between Short- and Long-Term Memory

    Science.gov (United States)

    Buchsbaum, Bradley R.; Padmanabhan, Aarthi; Berman, Karen Faith

    2011-01-01

    One of the classic categorical divisions in the history of memory research is that between short-term and long-term memory. Indeed, because memory for the immediate past (a few seconds) and memory for the relatively more remote past (several seconds and beyond) are assumed to rely on distinct neural systems, more often than not, memory research…

  15. Effects of age on long term memory for degraded speech

    Directory of Open Access Journals (Sweden)

    Christiane Thiel

    2016-09-01

    Full Text Available Prior research suggests that acoustical degradation impacts encoding of items into memory, especially in elderly subjects. We here aimed to investigate whether acoustically degraded items, that are initially encoded into memory, are more prone to forgetting as a function of age. Young and old participants were tested with a vocoded and unvocoded serial list learning task involving immediate and delayed free recall. We found that degraded auditory input increased forgetting of previously encoded items, especially in older participants. We further found that working memory capacity predicted forgetting of degraded information in young participants. In old participants, verbal IQ was the most important predictor for forgetting acoustically degraded information. Our data provide evidence that acoustically degraded information, even if encoded, is especially vulnerable to forgetting in old age.

  16. Evaluation of long-term occupational exposure to styrene vapor on olfactory function.

    Science.gov (United States)

    Dalton, Pamela; Lees, Peter S J; Gould, Michele; Dilks, Daniel; Stefaniak, Aleksandr; Bader, Michael; Ihrig, Andreas; Triebig, Gerhard

    2007-10-01

    The primary sensory neurons of the olfactory system are chronically exposed to the ambient environment and may therefore be susceptible to damage from occupational exposure to many volatile chemicals. To investigate whether occupational exposure to styrene was associated with olfactory impairment, we examined olfactory function in 2 groups: workers in a German reinforced-plastics boat-manufacturing facility having a minimum of 2 years of styrene exposure (15-25 ppm as calculated from urinary metabolite concentrations, with historical exposures up to 85 ppm) and a group of age-matched workers from the same facility with lower styrene exposures. The results were also compared with normative data previously collected from healthy, unexposed individuals. Multiple measures of olfactory function were evaluated using a standardized battery of clinical assessments from the Monell-Jefferson Chemosensory Clinical Research Center that included tests of threshold sensitivity for phenylethyl alcohol (PEA) and odor identification ability. Thresholds for styrene were also obtained as a measure of occupational olfactory adaptation. Styrene exposure history was calculated through the use of past biological monitoring results for urinary metabolites of styrene (mandelic acid [MA], phenylglyoxylic acid [PGA]); current exposure was determined for each individual using passive air sampling for styrene and biological monitoring for styrene urinary metabolites. Current mean effective styrene exposure during the day of olfactory testing for the group of workers who worked directly with styrene resins was 18 ppm styrene (standard deviation [SD] = 14), 371 g/g creatinine MA + PGA (SD = 289) and that of the group of workers with lower exposures was 4.8 ppm (SD = 5.2), 93 g/g creatinine MA+PGA (SD = 100). Historic annual average exposures for all workers were greater by a factor of up to 6x. No differences unequivocally attributable to exposure status were observed between the Exposed and

  17. Natural variation in long-term memory formation among Nasonia parasitic wasp species.

    Science.gov (United States)

    Hoedjes, Katja M; Smid, Hans M

    2014-06-01

    Closely related species of parasitic wasps can differ substantially in memory dynamics. In this study we demonstrate differences in the number of conditioning trials required to form long-term memory between the closely related parasitic wasp species Nasonia vitripennis and Nasonia giraulti (Hymenoptera: Pteromalidae). A single conditioning trial, in which a female wasp associates an odour with the reward of finding a host, results in the formation of transcription-dependent long-term memory in N. vitripennis, whereas N. giraulti requires spaced training to do so. Memory formation does not depend on the type of reward: oviposition, which was hypothesized to be a 'larger' reward results in similar memory retention as host feeding in both Nasonia species. There are several genetic and genomic tools available for Nasonia species to identify genetic mechanisms that underlie the observed variation in the number of trials required to form long-term memory. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Fieldwork in Geography and Long Term Memory Structures.

    Science.gov (United States)

    Mackenzie, Andrew A.; White, Richard T.

    This paper discusses a study of learning retention among junior high school students involved in a field trip in a geography course. The study was based on a model of memory proposed by Robert Gagne and R.T. White. This model of cognitive processes, postulated on the belief that recall of any element is a function of its degree of interlinking in…

  19. Anticipatory eye movements and long-term memory in early infancy.

    Science.gov (United States)

    Wong-Kee-You, Audrey M B; Adler, Scott A

    2016-11-01

    Advances in our understanding of long-term memory in early infancy have been made possible by studies that have used the Rovee-Collier's mobile conjugate reinforcement paradigm and its variants. One function that has been attributed to long-term memory is the formation of expectations (Rovee-Collier & Hayne, 1987); consequently, a long-term memory representation should be established during expectation formation. To examine this prediction and potentially open the door on a new paradigm for exploring infants' long-term memory, using the Visual Expectation Paradigm (Haith, Hazan, & Goodman, 1988), 3-month-old infants were trained to form an expectation for predictable color and spatial information of picture events and emit anticipatory eye movements to those events. One day later, infants' anticipatory eye movements decreased in number relative to the end of training when the predictable colors were changed but not when the spatial location of the predictable color events was changed. These findings confirm that information encoded during expectation formation are stored in long-term memory, as hypothesized by Rovee-Collier and colleagues. Further, this research suggests that eye movements are potentially viable measures of long-term memory in infancy, providing confirmatory evidence for early mnemonic processes. © 2016 Wiley Periodicals, Inc.

  20. BDNF Variants May Modulate Long-Term Visual Memory Performance in a Healthy Cohort

    Directory of Open Access Journals (Sweden)

    Nesli Avgan

    2017-03-01

    Full Text Available Brain-derived neurotrophic factor (BDNF is involved in numerous cognitive functions including learning and memory. BDNF plays an important role in synaptic plasticity in humans and rats with BDNF shown to be essential for the formation of long-term memories. We previously identified a significant association between the BDNF Val66Met polymorphism (rs6265 and long-term visual memory (p-value = 0.003 in a small cohort (n = 181 comprised of healthy individuals who had been phenotyped for various aspects of memory function. In this study, we have extended the cohort to 597 individuals and examined multiple genetic variants across both the BDNF and BDNF-AS genes for association with visual memory performance as assessed by the Wechsler Memory Scale—Fourth Edition subtests Visual Reproduction I and II (VR I and II. VR I assesses immediate visual memory, whereas VR II assesses long-term visual memory. Genetic association analyses were performed for 34 single nucleotide polymorphisms genotyped on Illumina OmniExpress BeadChip arrays with the immediate and long-term visual memory phenotypes. While none of the BDNF and BDNF-AS variants were shown to be significant for immediate visual memory, we found 10 variants (including the Val66Met polymorphism (p-value = 0.006 that were nominally associated, and three variants (two variants in BDNF and one variant in the BDNF-AS locus that were significantly associated with long-term visual memory. Our data therefore suggests a potential role for BDNF, and its anti-sense transcript BDNF-AS, in long-term visual memory performance.

  1. BDNF Variants May Modulate Long-Term Visual Memory Performance in a Healthy Cohort

    Science.gov (United States)

    Avgan, Nesli; Sutherland, Heidi G.; Spriggens, Lauren K.; Yu, Chieh; Ibrahim, Omar; Bellis, Claire; Haupt, Larisa M.; Shum, David H. K.; Griffiths, Lyn R.

    2017-01-01

    Brain-derived neurotrophic factor (BDNF) is involved in numerous cognitive functions including learning and memory. BDNF plays an important role in synaptic plasticity in humans and rats with BDNF shown to be essential for the formation of long-term memories. We previously identified a significant association between the BDNF Val66Met polymorphism (rs6265) and long-term visual memory (p-value = 0.003) in a small cohort (n = 181) comprised of healthy individuals who had been phenotyped for various aspects of memory function. In this study, we have extended the cohort to 597 individuals and examined multiple genetic variants across both the BDNF and BDNF-AS genes for association with visual memory performance as assessed by the Wechsler Memory Scale—Fourth Edition subtests Visual Reproduction I and II (VR I and II). VR I assesses immediate visual memory, whereas VR II assesses long-term visual memory. Genetic association analyses were performed for 34 single nucleotide polymorphisms genotyped on Illumina OmniExpress BeadChip arrays with the immediate and long-term visual memory phenotypes. While none of the BDNF and BDNF-AS variants were shown to be significant for immediate visual memory, we found 10 variants (including the Val66Met polymorphism (p-value = 0.006)) that were nominally associated, and three variants (two variants in BDNF and one variant in the BDNF-AS locus) that were significantly associated with long-term visual memory. Our data therefore suggests a potential role for BDNF, and its anti-sense transcript BDNF-AS, in long-term visual memory performance. PMID:28304362

  2. BDNF Variants May Modulate Long-Term Visual Memory Performance in a Healthy Cohort.

    Science.gov (United States)

    Avgan, Nesli; Sutherland, Heidi G; Spriggens, Lauren K; Yu, Chieh; Ibrahim, Omar; Bellis, Claire; Haupt, Larisa M; Shum, David H K; Griffiths, Lyn R

    2017-03-17

    Brain-derived neurotrophic factor (BDNF) is involved in numerous cognitive functions including learning and memory. BDNF plays an important role in synaptic plasticity in humans and rats with BDNF shown to be essential for the formation of long-term memories. We previously identified a significant association between the BDNF Val66Met polymorphism (rs6265) and long-term visual memory (p-value = 0.003) in a small cohort (n = 181) comprised of healthy individuals who had been phenotyped for various aspects of memory function. In this study, we have extended the cohort to 597 individuals and examined multiple genetic variants across both the BDNF and BDNF-AS genes for association with visual memory performance as assessed by the Wechsler Memory Scale-Fourth Edition subtests Visual Reproduction I and II (VR I and II). VR I assesses immediate visual memory, whereas VR II assesses long-term visual memory. Genetic association analyses were performed for 34 single nucleotide polymorphisms genotyped on Illumina OmniExpress BeadChip arrays with the immediate and long-term visual memory phenotypes. While none of the BDNF and BDNF-AS variants were shown to be significant for immediate visual memory, we found 10 variants (including the Val66Met polymorphism (p-value = 0.006)) that were nominally associated, and three variants (two variants in BDNF and one variant in the BDNF-AS locus) that were significantly associated with long-term visual memory. Our data therefore suggests a potential role for BDNF, and its anti-sense transcript BDNF-AS, in long-term visual memory performance.

  3. Retrieval under stress decreases the long-term expression of a human declarative memory via reconsolidation.

    Science.gov (United States)

    Larrosa, Pablo Nicolás Fernández; Ojea, Alejandro; Ojea, Ignacio; Molina, Victor Alejandro; Zorrilla-Zubilete, María Aurelia; Delorenzi, Alejandro

    2017-07-01

    Acute stress impairs memory retrieval of several types of memories. An increase in glucocorticoids, several minutes after stressful events, is described as essential to the impairing retrieval-effects of stressors. Moreover, memory retrieval under stress can have long-term consequences. Through what process does the reactivated memory under stress, despite the disrupting retrieval effects, modify long-term memories? The reconsolidation hypothesis proposes that a previously consolidated memory reactivated by a reminder enters a vulnerability phase (labilization) during which it is transiently sensitive to modulation, followed by a re-stabilization phase. However, previous studies show that the expression of memories during reminder sessions is not a condition to trigger the reconsolidation process since unexpressed memories can be reactivated and labilized. Here we evaluate whether it is possible to reactivate-labilize a memory under the impairing-effects of a mild stressor. We used a paradigm of human declarative memory whose reminder structure allows us to differentiate between a reactivated-labile memory state and a reactivated but non-labile state. Subjects memorized a list of five cue-syllables associated with their respective response-syllables. Seventy-two hours later, results showed that the retrieval of the paired-associate memory was impaired when tested 20min after a mild stressor (cold pressor stress (CPS)) administration, coincident with cortisol levels increase. Then, we investigated the long-term effects of CPS administration prior to the reminder session. Under conditions where the reminder initiates the reconsolidation process, CPS impaired the long-term memory expression tested 24h later. In contrast, CPS did not show effects when administered before a reminder session that does not trigger reconsolidation. Results showed that memory reactivation-labilization occurs even when retrieval was impaired. Memory reactivation under stress could hinder

  4. Persistent increased PKMζ in long-term and remote spatial memory.

    Science.gov (United States)

    Hsieh, Changchi; Tsokas, Panayiotis; Serrano, Peter; Hernández, A Iván; Tian, Dezhi; Cottrell, James E; Shouval, Harel Z; Fenton, André Antonio; Sacktor, Todd Charlton

    2017-02-01

    PKMζ is an autonomously active PKC isoform that is thought to maintain both LTP and long-term memory. Whereas persistent increases in PKMζ protein sustain the kinase's action in LTP, the molecular mechanism for the persistent action of PKMζ during long-term memory has not been characterized. PKMζ inhibitors disrupt spatial memory when introduced into the dorsal hippocampus from 1day to 1month after training. Therefore, if the mechanisms of PKMζ's persistent action in LTP maintenance and long-term memory were similar, persistent increases in PKMζ would last for the duration of the memory, far longer than most other learning-induced gene products. Here we find that spatial conditioning by aversive active place avoidance or appetitive radial arm maze induces PKMζ increases in dorsal hippocampus that persist from 1day to 1month, coinciding with the strength and duration of memory retention. Suppressing the increase by intrahippocampal injections of PKMζ-antisense oligodeoxynucleotides prevents the formation of long-term memory. Thus, similar to LTP maintenance, the persistent increase in the amount of autonomously active PKMζ sustains the kinase's action during long-term and remote spatial memory maintenance. Copyright © 2016. Published by Elsevier Inc.

  5. Attention and available long-term memory in an activation-based model

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The influence of attention on memorizing related items and on available long-term memory (ALTM) was explored,showing that N400 of no-memory items was more negative than that of the memory item.The results of the category comparison task indicated that information processing under attention-driven in WM determined the availability of related long-term memory,i.e.,specific content,which was formerly concerned or ignored,yielding different indirect semantic priming effects.These indicate that the orientation of conceptual attention leads the related representations of LTM to diverse activation patterns,supporting the activation-based model.

  6. Post-Training Intrahippocampal Inhibition of Class I Histone Deacetylases Enhances Long-Term Object-Location Memory

    Science.gov (United States)

    Hawk, Joshua D.; Florian, Cedrick; Abel, Ted

    2011-01-01

    Long-term memory formation involves covalent modification of the histone proteins that package DNA. Reducing histone acetylation by mutating histone acetyltransferases impairs long-term memory, and enhancing histone acetylation by inhibiting histone deacetylases (HDACs) improves long-term memory. Previous studies using HDAC inhibitors to enhance…

  7. Post-Training Intrahippocampal Inhibition of Class I Histone Deacetylases Enhances Long-Term Object-Location Memory

    Science.gov (United States)

    Hawk, Joshua D.; Florian, Cedrick; Abel, Ted

    2011-01-01

    Long-term memory formation involves covalent modification of the histone proteins that package DNA. Reducing histone acetylation by mutating histone acetyltransferases impairs long-term memory, and enhancing histone acetylation by inhibiting histone deacetylases (HDACs) improves long-term memory. Previous studies using HDAC inhibitors to enhance…

  8. Synaptic scaling enables dynamically distinct short- and long-term memory formation.

    Directory of Open Access Journals (Sweden)

    Christian Tetzlaff

    2013-10-01

    Full Text Available Memory storage in the brain relies on mechanisms acting on time scales from minutes, for long-term synaptic potentiation, to days, for memory consolidation. During such processes, neural circuits distinguish synapses relevant for forming a long-term storage, which are consolidated, from synapses of short-term storage, which fade. How time scale integration and synaptic differentiation is simultaneously achieved remains unclear. Here we show that synaptic scaling - a slow process usually associated with the maintenance of activity homeostasis - combined with synaptic plasticity may simultaneously achieve both, thereby providing a natural separation of short- from long-term storage. The interaction between plasticity and scaling provides also an explanation for an established paradox where memory consolidation critically depends on the exact order of learning and recall. These results indicate that scaling may be fundamental for stabilizing memories, providing a dynamic link between early and late memory formation processes.

  9. Synaptic scaling enables dynamically distinct short- and long-term memory formation.

    Science.gov (United States)

    Tetzlaff, Christian; Kolodziejski, Christoph; Timme, Marc; Tsodyks, Misha; Wörgötter, Florentin

    2013-10-01

    Memory storage in the brain relies on mechanisms acting on time scales from minutes, for long-term synaptic potentiation, to days, for memory consolidation. During such processes, neural circuits distinguish synapses relevant for forming a long-term storage, which are consolidated, from synapses of short-term storage, which fade. How time scale integration and synaptic differentiation is simultaneously achieved remains unclear. Here we show that synaptic scaling - a slow process usually associated with the maintenance of activity homeostasis - combined with synaptic plasticity may simultaneously achieve both, thereby providing a natural separation of short- from long-term storage. The interaction between plasticity and scaling provides also an explanation for an established paradox where memory consolidation critically depends on the exact order of learning and recall. These results indicate that scaling may be fundamental for stabilizing memories, providing a dynamic link between early and late memory formation processes.

  10. Subjective Memory Ability and Long-Term Forgetting in Patients Referred for Neuropsychological Assessment.

    Science.gov (United States)

    van der Werf, Sieberen P; Geurts, Sofie; de Werd, Maartje M E

    2016-01-01

    It has been suggested that the memory complaints of patients who are not impaired on formal memory tests may reflect accelerated forgetting. We examined this hypothesis by comparing the 1-week delayed recall and recognition test performance of outpatients who were referred for neuropsychological assessment and who had normal memory performance during standard memory assessment with that of a non-patient control group. Both groups performed equally in verbal learning and delayed recall. However, after 1 week, the patients performed worse than controls on both recall and recognition tests. Although subjective memory ability predicted short-term memory function in patients, it did not predict long-term delayed forgetting rates in either the patients or controls. Thus, long-term delayed recall and recognition intervals provided no additional value to explain poor subjective memory ability in the absence of objective memory deficits.

  11. Mushroom body neuronal remodelling is necessary for short-term but not for long-term courtship memory in Drosophila.

    Science.gov (United States)

    Redt-Clouet, Christelle; Trannoy, Séverine; Boulanger, Ana; Tokmatcheva, Elena; Savvateeva-Popova, Elena; Parmentier, Marie-Laure; Preat, Thomas; Dura, Jean-Maurice

    2012-06-01

    The remodelling of neurons during their development is considered necessary for their normal function. One fundamental mechanism involved in this remodelling process in both vertebrates and invertebrates is axon pruning. A well-documented case of such neuronal remodelling is the developmental axon pruning of mushroom body γ neurons that occurs during metamorphosis in Drosophila. The γ neurons undergo pruning of larval-specific dendrites and axons at metamorphosis, followed by their regrowth as adult-specific dendrites and axons. We recently revealed a molecular cascade required for this pruning. The nuclear receptor ftz-f1 activates the expression of the steroid hormone receptor EcR-B1, a key component for γ remodelling, and represses expression of Hr39, an ftz-f1 homologous gene. If ectopically expressed in the γ neurons, HR39 inhibits normal pruning, probably by competing with endogenous FTZ-F1, which results in decreased EcR-B1 expression. The mushroom bodies are a bilaterally symmetric structure in the larval and adult brain and are involved in the processing of different types of olfactory memory. How memory is affected in pruning-deficient adult flies that possess larval-stage neuronal circuitry will help to explain the functional role of neuron remodelling. Flies overexpressing Hr39 are viable as adults and make it possible to assess the requirement for wild-type mushroom body pruning in memory. While blocking mushroom body neuron remodelling impaired memory after short-term courtship conditioning, long-term memory was normal. These results show that larval pruning is necessary for adult memory and that expression of courtship short-term memory and long-term memory may be parallel and independent. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  12. Olfaction, Emtion & the Amygdala: arousal-dependent modulation of long-term autobiographical memory and its association with olfaction

    Directory of Open Access Journals (Sweden)

    Mark Hughes

    2004-01-01

    Full Text Available The sense of smell is set apart from other sensory modalities. Odours possess the capacity to trigger immediately strong emotional memories. Moreover, odorous stimuli provide a higher degree of memory retention than other sensory stimuli. Odour perception, even in its most elemental form - olfaction - already involves limbic structures. This early involvement is not paralleled in other sensory modalities. Bearing in mind the considerable connectivity with limbic structures, and the fact that an activation of the amygdala is capable of instantaneously evoking emotions and facilitating the encoding of memories, it is unsurprising that the sense of smell has its characteristic nature. The aim of this review is to analyse current understanding of higher olfactory information processing as it relates to the ability of odours to spontaneously cue highly vivid, affectively toned, and often very old autobiographical memories (episodes known anecdotally as Proust phenomena. Particular emphasis is placed on the diversity of functions attributed to the amygdala. Its role in modulating the encoding and retrieval of long-term memory is investigated with reference to lesion, electrophysiological, immediate early gene, and functional imaging studies in both rodents and humans. Additionally, the influence of hormonal modulation and the adrenergic system on emotional memory storage is outlined. I finish by proposing a schematic of some of the critical neural pathways that underlie the odour-associated encoding and retrieval of emotionally toned autobiographical memories.

  13. Long-Term Episodic Memory in Children with Attention-Deficit/Hyperactivity Disorder

    Science.gov (United States)

    Skowronek, Jeffrey S.; Leichtman, Michelle D.; Pillemer, David B.

    2008-01-01

    Twenty-nine grade-matched 4th-8th-grade males, 12 with attention-deficit/hyperactivity disorder (ADHD) (age M = 12.2 years, SD = 1.48), and 17 without (age M = 11.5, SD = 1.59), completed two working memory tasks (digit span and the Simon game) and three long-term episodic memory tasks (a personal event memory task, story memory task, and picture…

  14. Conversion of short-term to long-term memory in the novel object recognition paradigm.

    Science.gov (United States)

    Moore, Shannon J; Deshpande, Kaivalya; Stinnett, Gwen S; Seasholtz, Audrey F; Murphy, Geoffrey G

    2013-10-01

    It is well-known that stress can significantly impact learning; however, whether this effect facilitates or impairs the resultant memory depends on the characteristics of the stressor. Investigation of these dynamics can be confounded by the role of the stressor in motivating performance in a task. Positing a cohesive model of the effect of stress on learning and memory necessitates elucidating the consequences of stressful stimuli independently from task-specific functions. Therefore, the goal of this study was to examine the effect of manipulating a task-independent stressor (elevated light level) on short-term and long-term memory in the novel object recognition paradigm. Short-term memory was elicited in both low light and high light conditions, but long-term memory specifically required high light conditions during the acquisition phase (familiarization trial) and was independent of the light level during retrieval (test trial). Additionally, long-term memory appeared to be independent of stress-mediated glucocorticoid release, as both low and high light produced similar levels of plasma corticosterone, which further did not correlate with subsequent memory performance. Finally, both short-term and long-term memory showed no savings between repeated experiments suggesting that this novel object recognition paradigm may be useful for longitudinal studies, particularly when investigating treatments to stabilize or enhance weak memories in neurodegenerative diseases or during age-related cognitive decline.

  15. Does stress remove the HDAC brakes for the formation and persistence of long-term memory?

    Science.gov (United States)

    White, André O; Wood, Marcelo A

    2014-07-01

    It has been known for numerous decades that gene expression is required for long-lasting forms of memory. In the past decade, the study of epigenetic mechanisms in memory processes has revealed yet another layer of complexity in the regulation of gene expression. Epigenetic mechanisms do not only provide complexity in the protein regulatory complexes that control coordinate transcription for specific cell function, but the epigenome encodes critical information that integrates experience and cellular history for specific cell functions as well. Thus, epigenetic mechanisms provide a unique mechanism of gene expression regulation for memory processes. This may be why critical negative regulators of gene expression, such as histone deacetylases (HDACs), have powerful effects on the formation and persistence of memory. For example, HDAC inhibition has been shown to transform a subthreshold learning event into robust long-term memory and also generate a form of long-term memory that persists beyond the point at which normal long-term memory fails. A key question that is explored in this review, from a learning and memory perspective, is whether stress-dependent signaling drives the formation and persistence of long-term memory via HDAC-dependent mechanisms. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Does stress remove the HDAC brakes for the formation and persistence of long-term memory?

    Science.gov (United States)

    White, André O.; Wood, Marcelo A.

    2013-01-01

    It has been known for numerous decades that gene expression is required for long-lasting forms of memory. In the past decade, the study of epigenetic mechanisms in memory processes has revealed yet another layer of complexity in the regulation of gene expression. Epigenetic mechanisms do not only provide complexity in the protein regulatory complexes that control coordinate transcription for specific cell function, but the epigenome encodes critical information that integrates experience and cellular history for specific cell functions as well. Thus, epigenetic mechanisms provide a unique mechanism of gene expression regulation for memory processes. This may be why critical negative regulators of gene expression, such as histone deacetylases (HDACs), have powerful effects on the formation and persistence of memory. For example, HDAC inhibition has been shown to transform a subthreshold learning event into robust long-term memory and also generate a form of long-term memory that persists beyond the point at which normal long-term memory fails. A key question that is explored in this review, from a learning and memory perspective, is whether stress-dependent signaling drives the formation and persistence of long-term memory via HDAC-dependent mechanisms. PMID:24149059

  17. An Account of Performance in Accessing Information Stored in Long-Term Memory. A Fixed-Links Model Approach

    Science.gov (United States)

    Altmeyer, Michael; Schweizer, Karl; Reiss, Siegbert; Ren, Xuezhu; Schreiner, Michael

    2013-01-01

    Performance in working memory and short-term memory tasks was employed for predicting performance in a long-term memory task in order to find out about the underlying processes. The types of memory were represented by versions of the Posner Task, the Backward Counting Task and the Sternberg Task serving as measures of long-term memory, working…

  18. An Account of Performance in Accessing Information Stored in Long-Term Memory. A Fixed-Links Model Approach

    Science.gov (United States)

    Altmeyer, Michael; Schweizer, Karl; Reiss, Siegbert; Ren, Xuezhu; Schreiner, Michael

    2013-01-01

    Performance in working memory and short-term memory tasks was employed for predicting performance in a long-term memory task in order to find out about the underlying processes. The types of memory were represented by versions of the Posner Task, the Backward Counting Task and the Sternberg Task serving as measures of long-term memory, working…

  19. Combining stressors that individually impede long-term memory blocks all memory processes.

    Directory of Open Access Journals (Sweden)

    Sarah Dalesman

    Full Text Available The effects of stress on memory are typically assessed individually; however, in reality different stressors are often experienced simultaneously. Here we determined the effect that two environmentally relevant stressors, crowding and low calcium availability, have on memory and neural activity following operant conditioning of aerial respiration in the pond snail, Lymnaea stagnalis. We measured aerial breathing behaviour and activity of a neuron necessary for memory formation, right pedal dorsal 1 (RPeD1, in the central pattern generator (CPG that drives aerial respiration in untrained animals, and assessed how these traits changed following training. In naïve animals both crowding and combined stressors significantly depressed burst activity in RPeD1 which correlated with a depression in aerial breathing behaviour, whereas low calcium availability had no effect on RPeD1 activity. Following training, changes in burst activity in RPeD1 correlated with behavioural changes, decreasing relative to their naïve state at 3 h and 24 h in control conditions when both intermediate-term memory (ITM: 3 h and long-term memory (LTM: 24 h are formed, at 3 h but not 24 h when exposed to individual stressors when only ITM is formed, and did not change in combined stressors (i.e. when no memory is formed. Additionally, we also found that Lymnaea formed short-term memory (STM: 10 min in the presence of individual stressors or under control conditions, but failed to do so in the presence of combined stressors. Our data demonstrate that by combining stressors that individually block LTM only we can block all memory processes. Therefore the effects of two stressors with similar individual affects on memory phenotype may be additive when experienced in combination.

  20. Endogenous BDNF Is Required for Long-Term Memory Formation in the Rat Parietal Cortex

    Science.gov (United States)

    Alonso, Mariana; Bekinschtein, Pedro, Cammarota, Martin; Vianna, Monica R. M.; Izquierdo, Ivan; Medina, Jorge H.

    2005-01-01

    Information storage in the brain is a temporally graded process involving different memory phases as well as different structures in the mammalian brain. Cortical plasticity seems to be essential to store stable long-term memories, although little information is available at the moment regarding molecular and cellular events supporting memory…

  1. Individual Differences in the Effects of Retrieval from Long-Term Memory

    Science.gov (United States)

    Brewer, Gene A.; Unsworth, Nash

    2012-01-01

    The current study examined individual differences in the effects of retrieval from long-term memory (i.e., the testing effect). The effects of retrieving from memory make tested information more accessible for future retrieval attempts. Despite the broad applied ramifications of such a potent memorization technique there is a paucity of research…

  2. Two Waves of Transcription Are Required for Long-Term Memory in the Honeybee

    Science.gov (United States)

    Lefer, Damien; Perisse, Emmanuel; Hourcade, Benoit; Sandoz, JeanChristophe; Devaud, Jean-Marc

    2013-01-01

    Storage of information into long-term memory (LTM) usually requires at least two waves of transcription in many species. However, there is no clear evidence of this phenomenon in insects, which are influential models for memory studies. We measured retention in honeybees after injecting a transcription inhibitor at different times before and after…

  3. Hormonal and Monoamine Signaling during Reinforcement of Hippocampal Long-Term Potentiation and Memory Retrieval

    Science.gov (United States)

    Korz, Volker; Frey, Julietta U.

    2007-01-01

    Recently it was shown that holeboard training can reinforce, i.e., transform early-LTP into late-LTP in the dentate gyrus during the initial formation of a long-term spatial reference memory in rats. The consolidation of LTP as well as of the reference memory was dependent on protein synthesis. We have now investigated the transmitter systems…

  4. Individual Differences in the Effects of Retrieval from Long-Term Memory

    Science.gov (United States)

    Brewer, Gene A.; Unsworth, Nash

    2012-01-01

    The current study examined individual differences in the effects of retrieval from long-term memory (i.e., the testing effect). The effects of retrieving from memory make tested information more accessible for future retrieval attempts. Despite the broad applied ramifications of such a potent memorization technique there is a paucity of research…

  5. Natural variation in long-term memory formation among Nasonia parasitic wasp species

    NARCIS (Netherlands)

    Hoedjes, K.M.; Smid, H.M.

    2014-01-01

    Closely related species of parasitic wasps can differ substantially in memory dynamics. In this study we demonstrate differences in the number of conditioning trials required to form long-term memory between the closely related parasitic wasp species Nasonia vitripennis and Nasonia giraulti

  6. Long-term memory deficits in schizophrenia : Primary or secondary dysfunction?

    NARCIS (Netherlands)

    Holthausen, EAE; Wiersma, D; Sitskoorn, MM; Dingemans, PM; Schene, AH; van den Bosch, RJ

    2003-01-01

    Long-term memory impairment is often found in schizophrenia. The question remains whether this is caused by other cognitive deficits. One hundred eighteen first-episode patients were compared with 45 control participants on several memory tasks. The role of processing speed and central executive

  7. Two Waves of Transcription Are Required for Long-Term Memory in the Honeybee

    Science.gov (United States)

    Lefer, Damien; Perisse, Emmanuel; Hourcade, Benoit; Sandoz, JeanChristophe; Devaud, Jean-Marc

    2013-01-01

    Storage of information into long-term memory (LTM) usually requires at least two waves of transcription in many species. However, there is no clear evidence of this phenomenon in insects, which are influential models for memory studies. We measured retention in honeybees after injecting a transcription inhibitor at different times before and after…

  8. PKG-Mediated MAPK Signaling Is Necessary for Long-Term Operant Memory in "Aplysia"

    Science.gov (United States)

    Michel, Maximilian; Green, Charity L.; Eskin, Arnold; Lyons, Lisa C.

    2011-01-01

    Signaling pathways necessary for memory formation, such as the mitogen-activated protein kinase (MAPK) pathway, appear highly conserved across species and paradigms. Learning that food is inedible (LFI) represents a robust form of associative, operant learning that induces short- (STM) and long-term memory (LTM) in "Aplysia." We investigated the…

  9. Using electrophysiology to demonstrate that cuing affects long-term memory storage over the short term

    Science.gov (United States)

    Maxcey, Ashleigh M.; Fukuda, Keisuke; Song, Won S.; Woodman, Geoffrey F.

    2015-01-01

    As researchers who study working memory, we often assume that participants keep a representation of an object in working memory when we present a cue that indicates that object will be tested in a couple of seconds. This intuitively accounts for how well people can remember a cued object relative to their memory for that same object presented without a cue. However, it is possible that this superior memory does not purely reflect storage of the cued object in working memory. We tested the hypothesis that cued presented during a stream of objects, followed by a short retention interval and immediate memory test, change how information is handled by long-term memory. We tested this hypothesis using a family of frontal event-related potentials (ERPs) believed to reflect long-term memory storage. We found that these frontal indices of long-term memory were sensitive to the task relevance of objects signaled by auditory cues, even when objects repeat frequently such that proactive interference was high. Our findings indicate the problematic nature of assuming process purity in the study of working memory, and demonstrate how frequent stimulus repetitions fail to isolate the role of working memory mechanisms. PMID:25604772

  10. Using electrophysiology to demonstrate that cueing affects long-term memory storage over the short term.

    Science.gov (United States)

    Maxcey, Ashleigh M; Fukuda, Keisuke; Song, Won S; Woodman, Geoffrey F

    2015-10-01

    As researchers who study working memory, we often assume that participants keep a representation of an object in working memory when we present a cue that indicates that the object will be tested in a couple of seconds. This intuitively accounts for how well people can remember a cued object, relative to their memory for that same object presented without a cue. However, it is possible that this superior memory does not purely reflect storage of the cued object in working memory. We tested the hypothesis that cues presented during a stream of objects, followed by a short retention interval and immediate memory test, can change how information is handled by long-term memory. We tested this hypothesis by using a family of frontal event-related potentials believed to reflect long-term memory storage. We found that these frontal indices of long-term memory were sensitive to the task relevance of objects signaled by auditory cues, even when the objects repeated frequently, such that proactive interference was high. Our findings indicate the problematic nature of assuming process purity in the study of working memory, and demonstrate that frequent stimulus repetitions fail to isolate the role of working memory mechanisms.

  11. What are the differences between long-term, short-term, and working memory?

    OpenAIRE

    Cowan, Nelson

    2008-01-01

    In the recent literature there has been considerable confusion about the three types of memory: long-term, short-term, and working memory. This chapter strives to reduce that confusion and makes up-to-date assessments of these types of memory. Long- and short-term memory could differ in two fundamental ways, with only short-term memory demonstrating (1) temporal decay and (2) chunk capacity limits. Both properties of short-term memory are still controversial but the current literature is rath...

  12. Hunger and memory; CRTC coordinates long-term memory with the physiological state, hunger.

    Science.gov (United States)

    Hirano, Yukinori; Saitoe, Minoru

    2013-09-01

    Animals form and store memory, which advantageously adjusts their behavior later on. Although the growing body of evidences suggests the basic mechanisms of memory, it is not clear whether and in which physiological state memory functions can be altered. Here we discuss our recent study that mild fasting facilitates long-term memory (LTM) formation in Drosophila.(1) Canonical LTM in flies is induced by multiple training with rest intervals, and is mediated by a transcription factor, CREB and its binding protein, CBP. However, fasting allows LTM formation (fLTM) only by single-cycle training, in a manner dependent on another CREB binding protein, CRTC. Although it has been controversial, we are convinced that gene expression in a specific neural structure, called mushroom body (MB), is required for LTMs. We also showed data suggesting that reduced insulin signaling during fasting activates CRTC, thereby inducing fLTM formation. These data provides the conceptual advance that flies adapt their mechanisms for LTM formation according to their internal condition, hunger state. Due to limited food resources in the wild, fLTM could be one of the major form of LTM in natural environment. Furthermore, our data also indicate a novel conception that improvement of memory deficit might be achieved by activation of CRTC.

  13. Dynamics of Hippocampal Protein Expression During Long-term Spatial Memory Formation.

    Science.gov (United States)

    Borovok, Natalia; Nesher, Elimelech; Levin, Yishai; Reichenstein, Michal; Pinhasov, Albert; Michaelevski, Izhak

    2016-02-01

    Spatial memory depends on the hippocampus, which is particularly vulnerable to aging. This vulnerability has implications for the impairment of navigation capacities in older people, who may show a marked drop in performance of spatial tasks with advancing age. Contemporary understanding of long-term memory formation relies on molecular mechanisms underlying long-term synaptic plasticity. With memory acquisition, activity-dependent changes occurring in synapses initiate multiple signal transduction pathways enhancing protein turnover. This enhancement facilitates de novo synthesis of plasticity related proteins, crucial factors for establishing persistent long-term synaptic plasticity and forming memory engrams. Extensive studies have been performed to elucidate molecular mechanisms of memory traces formation; however, the identity of plasticity related proteins is still evasive. In this study, we investigated protein turnover in mouse hippocampus during long-term spatial memory formation using the reference memory version of radial arm maze (RAM) paradigm. We identified 1592 proteins, which exhibited a complex picture of expression changes during spatial memory formation. Variable linear decomposition reduced significantly data dimensionality and enriched three principal factors responsible for variance of memory-related protein levels at (1) the initial phase of memory acquisition (165 proteins), (2) during the steep learning improvement (148 proteins), and (3) the final phase of the learning curve (123 proteins). Gene ontology and signaling pathways analysis revealed a clear correlation between memory improvement and learning phase-curbed expression profiles of proteins belonging to specific functional categories. We found differential enrichment of (1) neurotrophic factors signaling pathways, proteins regulating synaptic transmission, and actin microfilament during the first day of the learning curve; (2) transcription and translation machinery, protein

  14. Altered neural network supporting declarative long-term memory in mild cognitive impairment.

    Science.gov (United States)

    Poettrich, Katrin; Weiss, Peter H; Werner, Annett; Lux, Silke; Donix, Markus; Gerber, Johannes; von Kummer, Rüdiger; Fink, Gereon R; Holthoff, Vjera A

    2009-02-01

    Autobiographical episodic memory represents a subsystem of declarative long-term memory and largely depends on combining information from multiple sources. The purpose of this study was to assess neural correlates of declarative long-term memory in patients with amnestic mild cognitive impairment (MCI) and controls using fMRI and a task requiring autobiographical and semantic memory retrieval. Comparison of the network supporting episodic autobiographical and semantic memory irrespective of remoteness (recent and remote) revealed significant activations in right parietal cortex and precuneus bilaterally in the patients. Autobiographical episodic versus semantic memory retrieval in the controls led to significant bilateral activations of the parietal-temporal junction, left temporal pole, anterior cingulate, retrosplenial cortex and cerebellum. In contrast, MCI patients activated left supplementary motor area, left premotor and superior temporal cortex. In MCI patients compared to controls a dysfunction of the retrosplenial cortex during memory retrieval was revealed by a lack of differential activation in relation to recency of memories and memory type. Our data suggest that MCI leads to a loss of specificity in the neural network supporting declarative long-term memory.

  15. Phosphodiesterase 10A inhibition attenuates sleep deprivation-induced deficits in long-term fear memory.

    Science.gov (United States)

    Guo, Lengqiu; Guo, Zhuangli; Luo, Xiaoqing; Liang, Rui; Yang, Shui; Ren, Haigang; Wang, Guanghui; Zhen, Xuechu

    2016-12-02

    Sleep, particularly rapid eye movement (REM) sleep, is implicated in the consolidation of emotional memories. In the present study, we investigated the protective effects of a phosphodiesterase 10A (PDE10A) inhibitor MP-10 on deficits in long-term fear memory induced by REM sleep deprivation (REM-SD). REM-SD caused deficits in long-term fear memory, however, MP-10 administration ameliorated the deleterious effects of REM-SD on long term fear memory. Brain-derived neurotropic factor (BDNF) and phosphorylated cAMP response element-binding protein (pCREB) were altered in specific brain regions associated with learning and memory in REM-SD rats. Accordingly, REM-SD caused a significant decrease of pCREB in hippocampus and striatum and a significant decrease of BDNF in the hippocampus, striatum and amygdala, however, MP-10 reversed the effects of REM-SD in a dose-dependent manner. Our findings suggest that REM-SD disrupts the consolidation of long-term fear memory and that administration of MP-10 protects the REM-SD-induced deficits in fear memory, which may be due to the MP-10-induced expression of BDNF in the hippocampus, striatum and amygdala, and phosphorylation of CREB in the hippocampus and striatum. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Long-term memory contribution as applied to the motion of discrete dynamical systems

    Science.gov (United States)

    Stanislavsky, A. A.

    2006-12-01

    We consider the evolution of logistic maps under long-term memory. The memory effects are characterized by one parameter, α. If it equals to zero, any memory is absent. This leads to the ordinary discrete dynamical systems. For α =1 the memory becomes full, and each subsequent state of the corresponding discrete system accumulates all past states with the same weight just as the ordinary integral of first order does in the continuous space. The case with 0fractional integral depending on time, and the parameter α is equivalent to the order index of the fractional integral. We study the evolution of the bifurcation diagram among α =0 and α =0.15. The main result of this work is that the long-term memory effects make difficulties for developing the chaos motion in such logistic maps. The parameter α resembles a governing parameter for the bifurcation diagram. For α >0.15 the memory effects win over chaos.

  17. Long-term consolidation of declarative memory: insight from temporal lobe epilepsy.

    Science.gov (United States)

    Tramoni, Eve; Felician, Olivier; Barbeau, Emmanuel J; Guedj, Eric; Guye, Maxime; Bartolomei, Fabrice; Ceccaldi, Mathieu

    2011-03-01

    Several experiments carried out with a subset of patients with temporal lobe epilepsy have demonstrated normal memory performance at standard delays of recall (i.e. minutes to hours) but impaired performance over longer delays (i.e. days or weeks), suggesting altered long-term consolidation mechanisms. These mechanisms were specifically investigated in a group of five adult-onset pharmaco-sensitive patients with temporal lobe epilepsy, exhibiting severe episodic memory complaints despite normal performance at standardized memory assessment. In a first experiment, the magnitude of autobiographical memory loss was evaluated using retrograde personal memory tasks based on verbal and visual cues. In both conditions, results showed an unusual U-shaped pattern of personal memory impairment, encompassing most of the patients' life, sparing however, periods of the childhood, early adulthood and past several weeks. This profile was suggestive of a long-term consolidation impairment of personal episodes, adequately consolidated over 'short-term' delays but gradually forgotten thereafter. Therefore, in a subsequent experiment, patients were submitted to a protocol specifically devised to investigate short and long-term consolidation of contextually-bound experiences (episodic memory) and context-free information (semantic knowledge and single-items). In the short term (1 h), performance at both contextually-free and contextually-bound memory tasks was intact. After a 6-week delay, however, contextually-bound memory performance was impaired while contextually-free memory performance remained preserved. This effect was independent of task difficulty and the modality of retrieval (recall and recognition). Neuroimaging studies revealed the presence of mild metabolic changes within medial temporal lobe structures. Taken together, these results show the existence of different consolidation systems within declarative memory. They suggest that mild medial temporal lobe dysfunction

  18. [The molecular scenarios of the consolidation of long-term memory].

    Science.gov (United States)

    Anokhin, K V

    1997-01-01

    Long-term memory consolidation is a critical event in the transition of short-lasting experiences into durable modifications of behaviour. Present article focuses on the problem of molecular bases of this process. It starts with a brief review of biochemical and pharmacological data demonstrating a universal dependence of long-term memory on gene expression in the brain. Some of the experimental studies of immediate early gene expression in the brain during learning are described in the second part of the article. A hypothesis is discussed according to which consolidation of long-term memory employ the same biphasic molecular cascade of gene expression that is used for cell growth and differentiation during development.

  19. The prion gene is associated with human long-term memory.

    Science.gov (United States)

    Papassotiropoulos, Andreas; Wollmer, M Axel; Aguzzi, Adriano; Hock, Christoph; Nitsch, Roger M; de Quervain, Dominique J-F

    2005-08-01

    Human cognitive processes are highly variable across individuals and are influenced by both genetic and environmental factors. Although genetic variations affect short-term memory in humans, it is unknown whether genetic variability has also an impact on long-term memory. Because prion-like conformational changes may be involved in the induction of long-lasting synaptic plasticity, we examined the impact of single-nucleotide polymorphisms (SNPs) of the prion protein gene (PRNP) on long-term memory in healthy young humans. SNPs in the genomic region of PRNP were associated with better long-term memory performance in two independent populations with different educational background. Among the examined PRNP SNPs, the common Met129Val polymorphism yielded the highest effect size. Twenty-four hours after a word list-learning task, carriers of either the 129MM or the 129MV genotype recalled 17% more information than 129VV carriers, but short-term memory was unaffected. These results suggest a role for the prion protein in the formation of long-term memory in humans.

  20. Learning, memory and long-term potentiation are altered in Nedd4 heterozygous mice.

    Science.gov (United States)

    Camera, Daria; Coleman, Harold A; Parkington, Helena C; Jenkins, Trisha A; Pow, David V; Boase, Natasha; Kumar, Sharad; Poronnik, Philip

    2016-04-15

    The consolidation of short-term memory into long-term memory involves changing protein level and activity for the synaptic plasticity required for long-term potentiation (LTP). AMPA receptor trafficking is a key determinant of LTP and recently ubiquitination by Nedd4 has been shown to play an important role via direct action on the GluA1 subunit, although the physiological relevance of these findings are yet to be determined. We therefore investigated learning and memory in Nedd4(+/-) mice that have a 50% reduction in levels of Nedd4. These mice showed decreased long-term spatial memory as evidenced by significant increases in the time taken to learn the location of and subsequently find a platform in the Morris water maze. In contrast, there were no significant differences between Nedd4(+/+) and Nedd4(+/-) mice in terms of short-term spatial memory in a Y-maze test. Nedd4(+/-) mice also displayed a significant reduction in post-synaptic LTP measured in hippocampal brain slices. Immunofluorescence of Nedd4 in the hippocampus confirmed its expression in hippocampal neurons of the CA1 region. These findings indicate that reducing Nedd4 protein by 50% significantly impairs LTP and long-term memory thereby demonstrating an important role for Nedd4 in these processes.

  1. Post-learning REM sleep deprivation impairs long-term memory: reversal by acute nicotine treatment.

    Science.gov (United States)

    Aleisa, A M; Alzoubi, K H; Alkadhi, K A

    2011-07-15

    Rapid eye movement sleep deprivation (REM-SD) is associated with spatial learning and memory impairment. During REM-SD, an increase in nicotine consumption among habitual smokers and initiation of tobacco use by non-smokers have been reported. We have shown recently that nicotine treatment prevented learning and memory impairments associated with REM-SD. We now report the interactive effects of post-learning REM-SD and/or nicotine. The animals were first trained on the radial arm water maze (RAWM) task, then they were REM-sleep deprived using the modified multiple platform paradigm for 24h. During REM-SD period, the rats were injected with saline or nicotine (1mg/kg s.c. every 12h: a total of 3 injections). The animals were tested for long-term memory in the RAWM at the end of the REM-SD period. The 24h post-learning REM-SD significantly impaired long-term memory. However, nicotine treatment reversed the post-learning REM-SD-induced impairment of long-term memory. On the other hand, post-learning treatment of normal rats with nicotine for 24h enhanced long-term memory. These results indicate that post-learning acute nicotine treatment prevented the deleterious effect of REM-SD on cognitive abilities.

  2. Complex network structure influences processing in long-term and short-term memory

    Science.gov (United States)

    Vitevitch, Michael S.; Chan, Kit Ying; Roodenrys, Steven

    2012-01-01

    Complex networks describe how entities in systems interact; the structure of such networks is argued to influence processing. One measure of network structure, clustering coefficient, C, measures the extent to which neighbors of a node are also neighbors of each other. Previous psycholinguistic experiments found that the C of phonological word-forms influenced retrieval from the mental lexicon (that portion of long-term memory dedicated to language) during the on-line recognition and production of spoken words. In the present study we examined how network structure influences other retrieval processes in long- and short-term memory. In a false-memory task—examining long-term memory—participants falsely recognized more words with low- than high-C. In a recognition memory task—examining veridical memories in long-term memory—participants correctly recognized more words with low- than high-C. However, participants in a serial recall task—examining redintegration in short-term memory—recalled lists comprised of high-C words more accurately than lists comprised of low-C words. These results demonstrate that network structure influences cognitive processes associated with several forms of memory including lexical, long-term, and short-term. PMID:22745522

  3. Long-term semantic representations moderate the effect of attentional refreshing on episodic memory.

    Science.gov (United States)

    Loaiza, Vanessa M; Duperreault, Kayla A; Rhodes, Matthew G; McCabe, David P

    2015-02-01

    The McCabe effect (McCabe, Journal of Memory and Language 58:480-494, 2008) refers to an advantage in episodic memory (EM) retrieval for memoranda studied in complex span versus simple span tasks, particularly for memoranda presented in earlier serial positions. This finding has been attributed to the necessity to refresh memoranda during complex span tasks that, in turn, promotes content-context binding in working memory (WM). Several frameworks have conceptualized WM as being embedded in long-term memory. Thus, refreshing may be less efficient when memoranda are not well-established in long-term semantic memory (SM). To investigate this, we presented words and nonwords in simple and complex span trials in order to manipulate the long-term semantic representations of the memoranda with the requirement to refresh the memoranda during WM. A recognition test was administered that required participants to make a remember-know decision for each memorandum recognized as old. The results replicated the McCabe effect, but only for words, and the beneficial effect of refreshing opportunities was exclusive to recollection. These results extend previous research by indicating that the predictive relationship between WM refreshing and long-term EM is specific to recollection and, furthermore, moderated by representations in long-term SM. This supports the predictions of WM frameworks that espouse the importance of refreshing in content-context binding, but also those that view WM as being an activated subset of and, therefore, constrained by the contents of long-term memory.

  4. Increased NR2A:NR2B ratio compresses long-term depression range and constrains long-term memory.

    Science.gov (United States)

    Cui, Zhenzhong; Feng, Ruiben; Jacobs, Stephanie; Duan, Yanhong; Wang, Huimin; Cao, Xiaohua; Tsien, Joe Z

    2013-01-01

    The NR2A:NR2B subunit ratio of the NMDA receptors is widely known to increase in the brain from postnatal development to sexual maturity and to aging, yet its impact on memory function remains speculative. We have generated forebrain-specific NR2A overexpression transgenic mice and show that these mice had normal basic behaviors and short-term memory, but exhibited broad long-term memory deficits as revealed by several behavioral paradigms. Surprisingly, increased NR2A expression did not affect 1-Hz-induced long-term depression (LTD) or 100 Hz-induced long-term potentiation (LTP) in the CA1 region of the hippocampus, but selectively abolished LTD responses in the 3-5 Hz frequency range. Our results demonstrate that the increased NR2A:NR2B ratio is a critical genetic factor in constraining long-term memory in the adult brain. We postulate that LTD-like process underlies post-learning information sculpting, a novel and essential consolidation step in transforming new information into long-term memory.

  5. HDAC3 Is a Critical Negative Regulator of Long-Term Memory Formation

    Science.gov (United States)

    McQuown, Susan C.; Barrett, Ruth M.; Matheos, Dina P.; Post, Rebecca J.; Rogge, George A.; Alenghat, Theresa; Mullican, Shannon E.; Jones, Steven; Rusche, James R.; Lazar, Mitchell A.; Wood, Marcelo A.

    2011-01-01

    Gene expression is dynamically regulated by chromatin modifications on histone tails, such as acetylation. In general, histone acetylation promotes transcription, whereas histone deacetylation negatively regulates transcription. The interplay between histone acetyl-transerases and histone deacetylases (HDACs) is pivotal for the regulation of gene expression required for long-term memory processes. Currently, very little is known about the role of individual HDACs in learning and memory. We examined the role of HDAC3 in long-term memory using a combined genetic and pharmacologic approach. We used HDAC3–FLOX genetically modified mice in combination with adeno-associated virus-expressing Cre recombinase to generate focal homozygous deletions of Hdac3 in area CA1 of the dorsal hippocampus. To complement this approach, we also used a selective inhibitor of HDAC3, RGFP136 [N-(6-(2-amino-4-fluorophenylamino)-6-oxohexyl)-4-methylbenzamide]. Immunohistochemistry showed that focal deletion or intrahippocampal delivery of RGFP136 resulted in increased histone acetylation. Both the focal deletion of HDAC3 as well as HDAC3 inhibition via RGFP136 significantly enhanced long-term memory in a persistent manner. Next we examined expression of genes implicated in long-term memory from dorsal hippocampal punches using quantitative reverse transcription-PCR. Expression of nuclear receptor subfamily 4 group A, member 2 (Nr4a2) and c-fos was significantly increased in the hippocampus of HDAC3–FLOX mice compared with wild-type controls. Memory enhancements observed in HDAC3–FLOX mice were abolished by intrahippocampal delivery of Nr4a2 small interfering RNA, suggesting a mechanism by which HDAC3 negatively regulates memory formation. Together, these findings demonstrate a critical role for HDAC3 in the molecular mechanisms underlying long-term memory formation. PMID:21228185

  6. Reinstatement of long-term memory following erasure of its behavioral and synaptic expression in Aplysia

    OpenAIRE

    Chen, Shanping; Cai, Diancai; Pearce, Kaycey; Sun, Philip Y-W; Roberts, Adam C.; Glanzman, David L.

    2014-01-01

    eLife digest Cells called neurons allow information to travel quickly around the body so that we can rapidly respond to any changes that we sense in our environment. This includes non-conscious reactions, such as the knee-jerk reflex in humans. Reflexes and other behaviors can be influenced by long-term memory, and it is thought that long-term memory is stored by changes in the synapses that connect neurons to each other. The reflexes of a sea slug known as Aplysia are often used to study mem...

  7. Can we throw information out of visual working memory and does this leave informational residue in long-term memory?

    Directory of Open Access Journals (Sweden)

    Ashleigh Monette Maxcey

    2014-04-01

    Full Text Available Can we entirely erase a temporary memory representation from mind? This question has been addressed in several recent studies that tested the specific hypothesis that a representation can be erased from visual working memory based on a cue that indicated that the representation was no longer necessary for the task. In addition to behavioral results that are consistent with the idea that we can throw information out of visual working memory, recent neurophysiological recordings support this proposal. However, given the infinite capacity of long-term memory, it is unclear whether throwing a representation out of visual working memory really removes its effects on memory entirely. In this paper we advocate for an approach that examines our ability to erase memory representations from working memory, as well as possible traces that those erased representations leave in long-term memory.

  8. Long-term associative learning predicts verbal short-term memory performance.

    Science.gov (United States)

    Jones, Gary; Macken, Bill

    2017-10-02

    Studies using tests such as digit span and nonword repetition have implicated short-term memory across a range of developmental domains. Such tests ostensibly assess specialized processes for the short-term manipulation and maintenance of information that are often argued to enable long-term learning. However, there is considerable evidence for an influence of long-term linguistic learning on performance in short-term memory tasks that brings into question the role of a specialized short-term memory system separate from long-term knowledge. Using natural language corpora, we show experimentally and computationally that performance on three widely used measures of short-term memory (digit span, nonword repetition, and sentence recall) can be predicted from simple associative learning operating on the linguistic environment to which a typical child may have been exposed. The findings support the broad view that short-term verbal memory performance reflects the application of long-term language knowledge to the experimental setting.

  9. Long Term Memory for Noise: Evidence of Robust Encoding of Very Short Temporal Acoustic Patterns.

    Science.gov (United States)

    Viswanathan, Jayalakshmi; Rémy, Florence; Bacon-Macé, Nadège; Thorpe, Simon J

    2016-01-01

    Recent research has demonstrated that humans are able to implicitly encode and retain repeating patterns in meaningless auditory noise. Our study aimed at testing the robustness of long-term implicit recognition memory for these learned patterns. Participants performed a cyclic/non-cyclic discrimination task, during which they were presented with either 1-s cyclic noises (CNs) (the two halves of the noise were identical) or 1-s plain random noises (Ns). Among CNs and Ns presented once, target CNs were implicitly presented multiple times within a block, and implicit recognition of these target CNs was tested 4 weeks later using a similar cyclic/non-cyclic discrimination task. Furthermore, robustness of implicit recognition memory was tested by presenting participants with looped (shifting the origin) and scrambled (chopping sounds into 10- and 20-ms bits before shuffling) versions of the target CNs. We found that participants had robust implicit recognition memory for learned noise patterns after 4 weeks, right from the first presentation. Additionally, this memory was remarkably resistant to acoustic transformations, such as looping and scrambling of the sounds. Finally, implicit recognition of sounds was dependent on participant's discrimination performance during learning. Our findings suggest that meaningless temporal features as short as 10 ms can be implicitly stored in long-term auditory memory. Moreover, successful encoding and storage of such fine features may vary between participants, possibly depending on individual attention and auditory discrimination abilities. Significance Statement Meaningless auditory patterns could be implicitly encoded and stored in long-term memory.Acoustic transformations of learned meaningless patterns could be implicitly recognized after 4 weeks.Implicit long-term memories can be formed for meaningless auditory features as short as 10 ms.Successful encoding and long-term implicit recognition of meaningless patterns may

  10. The short- and long-term fates of memory items retained outside the focus of attention.

    Science.gov (United States)

    LaRocque, Joshua J; Eichenbaum, Adam S; Starrett, Michael J; Rose, Nathan S; Emrich, Stephen M; Postle, Bradley R

    2015-04-01

    When a test of working memory (WM) requires the retention of multiple items, a subset of them can be prioritized. Recent studies have shown that, although prioritized (i.e., attended) items are associated with active neural representations, unprioritized (i.e., unattended) memory items can be retained in WM despite the absence of such active representations, and with no decrement in their recognition if they are cued later in the trial. These findings raise two intriguing questions about the nature of the short-term retention of information outside the focus of attention. First, when the focus of attention shifts from items in WM, is there a loss of fidelity for those unattended memory items? Second, could the retention of unattended memory items be accomplished by long-term memory mechanisms? We addressed the first question by comparing the precision of recall of attended versus unattended memory items, and found a significant decrease in precision for unattended memory items, reflecting a degradation in the quality of those representations. We addressed the second question by asking subjects to perform a WM task, followed by a surprise memory test for the items that they had seen in the WM task. Long-term memory for unattended memory items from the WM task was not better than memory for items that had remained selected by the focus of attention in the WM task. These results show that unattended WM representations are degraded in quality and are not preferentially represented in long-term memory, as compared to attended memory items.

  11. Metamemory ratings predict long-term changes in reactivated episodic memories

    Directory of Open Access Journals (Sweden)

    Amnon eYacoby

    2015-02-01

    Full Text Available Reactivation of long-term memory can render the memory item temporarily labile, offering an opportunity to modify it via behavioral or pharmacological intervention. Declarative memory reactivation is accompanied by a metamemory ability to subjectively assess the knowledge available concerning the target item (Feeling of knowing, FOK. We set out to examine whether FOK can predict the extent of change of long-term episodic memories by post-retrieval manipulations. To this end, participants watched a short movie and immediately thereafter tested on their memory for it. A day later, they were reminded of that movie, and either immediately or one day later, were presented with a second movie. The reminder phase consisted of memory cues to which participants were asked to judge their FOK regarding the original movie. The memory performance of participants to whom new information was presented immediately after reactivating the original episode corresponded to the degree of FOK ratings upon reactivation such that the lower their FOK, the less their memory declined. In contrast, no relation was found between FOK and memory strength for those who learned new information one day after the reminder phase. Our findings suggest that the subjective accessibility of reactivated memories may determine the extent to which new information might modify those memories.

  12. Acute Sleep Deprivation Blocks Short- and Long-Term Operant Memory in Aplysia.

    Science.gov (United States)

    Krishnan, Harini C; Gandour, Catherine E; Ramos, Joshua L; Wrinkle, Mariah C; Sanchez-Pacheco, Joseph J; Lyons, Lisa C

    2016-12-01

    Insufficient sleep in individuals appears increasingly common due to the demands of modern work schedules and technology use. Consequently, there is a growing need to understand the interactions between sleep deprivation and memory. The current study determined the effects of acute sleep deprivation on short and long-term associative memory using the marine mollusk Aplysia californica, a relatively simple model system well known for studies of learning and memory. Aplysia were sleep deprived for 9 hours using context changes and tactile stimulation either prior to or after training for the operant learning paradigm, learning that food is inedible (LFI). The effects of sleep deprivation on short-term (STM) and long-term memory (LTM) were assessed. Acute sleep deprivation prior to LFI training impaired the induction of STM and LTM with persistent effects lasting at least 24 h. Sleep deprivation immediately after training blocked the consolidation of LTM. However, sleep deprivation following the period of molecular consolidation did not affect memory recall. Memory impairments were independent of handling-induced stress, as daytime handled control animals demonstrated no memory deficits. Additional training immediately after sleep deprivation failed to rescue the induction of memory, but additional training alleviated the persistent impairment in memory induction when training occurred 24 h following sleep deprivation. Acute sleep deprivation inhibited the induction and consolidation, but not the recall of memory. These behavioral studies establish Aplysia as an effective model system for studying the interactions between sleep and memory formation.

  13. Memory for relations in the short term and the long term after medial temporal lobe damage.

    Science.gov (United States)

    Squire, Larry R

    2017-05-01

    A central idea about the organization of declarative memory and the function of the hippocampus is that the hippocampus provides for the coding of relationships between items. A question arises whether this idea refers to the process of forming long-term memory or whether, as some studies have suggested, memory for relations might depend on the hippocampus even at short retention intervals and even when the task falls within the province of short-term (working) memory. The latter formulation appears to place the operation of relational memory into conflict with the idea that working memory is independent of medial temporal lobe (MTL) structures. In this report, the concepts of relational memory and working memory are discussed in the light of a simple demonstration experiment. Patients with MTL lesions successfully learned and recalled two word pairs when tested directly after learning but failed altogether when tested after a delay. The results do not contradict the idea that the hippocampus has a fundamental role in relational memory. However, there is a need for further elaboration and specification of the idea in order to explain why patients with MTL lesions can establish relational memory in the short term but not in long-term memory. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. CREB binding protein is required for both short-term and long-term memory formation.

    Science.gov (United States)

    Chen, Guiquan; Zou, Xiaoyan; Watanabe, Hirotaka; van Deursen, Jan M; Shen, Jie

    2010-09-29

    CREB binding protein (CBP) is a transcriptional coactivator with histone acetyltransferase activity. Our prior study suggested that CBP might be a key target of presenilins in the regulation of memory formation and neuronal survival. To elucidate the role of CBP in the adult brain, we generated conditional knock-out (cKO) mice in which CBP is completely inactivated in excitatory neurons of the postnatal forebrain. Histological analysis revealed normal neuronal morphology and absence of age-dependent neuronal degeneration in the CBP cKO cerebral cortex. CBP cKO mice exhibited robust impairment in the formation of spatial, associative, and object-recognition memory. In addition to impaired long-term memory, CBP cKO mice also displayed deficits in short-term associative and object-recognition memory. Administration of a histone deacetylase inhibitor, trichostatin A, rescued the reduction of acetylated histones in the CBP cKO cortex but failed to rescue either short- or long-term memory deficits, suggesting that the memory impairment may not be caused by general reduction of histone acetyltransferase activity in CBP cKO mice. Further microarray and Western analysis showed decreased expression of calcium-calmodulin-dependent kinase isoforms and NMDA and AMPA receptor subunits in the cerebral cortex of CBP cKO mice. Collectively, these findings suggest a crucial role for CBP in the formation of both short- and long-term memory.

  15. Functional Neuroanatomy of "Drosophila" Olfactory Memory Formation

    Science.gov (United States)

    Guven-Ozkan, Tugba; Davis, Ronald L.

    2014-01-01

    New approaches, techniques and tools invented over the last decade and a half have revolutionized the functional dissection of neural circuitry underlying "Drosophila" learning. The new methodologies have been used aggressively by researchers attempting to answer three critical questions about olfactory memories formed with appetitive…

  16. Mind the gap: delayed manifestation of long-term object memory improvement by phosphodiesterase inhibitors.

    Science.gov (United States)

    Akkerman, S; Blokland, A; Prickaerts, J

    2014-03-01

    We examined the temporal profile of pharmacologically enhanced episodic memory, using the object recognition task. Male Wistar rats were tested at different retention intervals ranging from 1 h to 24 h. The object discrimination performance of all groups (untreated, placebo, drug treatment) gradually decreased up to an interval (8 h). Interestingly, only after this 8 h interval the memory improving effects of vardenafil and rolipram started to emerge. This time-dependent memory performance shows similarities with the Kamin effect. The delayed manifestation of drug-enhanced memory suggests that two separate memory mechanisms are at play, a quick transient form of memory and a more stable memory form that requires several hours to develop. It is important to take this into account when testing treatments intended for long-term memory enhancement.

  17. Deficits in long-term recognition memory reveal dissociated subtypes in congenital prosopagnosia.

    Science.gov (United States)

    Stollhoff, Rainer; Jost, Jürgen; Elze, Tobias; Kennerknecht, Ingo

    2011-01-25

    The study investigates long-term recognition memory in congenital prosopagnosia (CP), a lifelong impairment in face identification that is present from birth. Previous investigations of processing deficits in CP have mostly relied on short-term recognition tests to estimate the scope and severity of individual deficits. We firstly report on a controlled test of long-term (one year) recognition memory for faces and objects conducted with a large group of participants with CP. Long-term recognition memory is significantly impaired in eight CP participants (CPs). In all but one case, this deficit was selective to faces and didn't extend to intra-class recognition of object stimuli. In a test of famous face recognition, long-term recognition deficits were less pronounced, even after accounting for differences in media consumption between controls and CPs. Secondly, we combined test results on long-term and short-term recognition of faces and objects, and found a large heterogeneity in severity and scope of individual deficits. Analysis of the observed heterogeneity revealed a dissociation of CP into subtypes with a homogeneous phenotypical profile. Thirdly, we found that among CPs self-assessment of real-life difficulties, based on a standardized questionnaire, and experimentally assessed face recognition deficits are strongly correlated. Our results demonstrate that controlled tests of long-term recognition memory are needed to fully assess face recognition deficits in CP. Based on controlled and comprehensive experimental testing, CP can be dissociated into subtypes with a homogeneous phenotypical profile. The CP subtypes identified align with those found in prosopagnosia caused by cortical lesions; they can be interpreted with respect to a hierarchical neural system for face perception.

  18. Deficits in long-term recognition memory reveal dissociated subtypes in congenital prosopagnosia.

    Directory of Open Access Journals (Sweden)

    Rainer Stollhoff

    Full Text Available The study investigates long-term recognition memory in congenital prosopagnosia (CP, a lifelong impairment in face identification that is present from birth. Previous investigations of processing deficits in CP have mostly relied on short-term recognition tests to estimate the scope and severity of individual deficits. We firstly report on a controlled test of long-term (one year recognition memory for faces and objects conducted with a large group of participants with CP. Long-term recognition memory is significantly impaired in eight CP participants (CPs. In all but one case, this deficit was selective to faces and didn't extend to intra-class recognition of object stimuli. In a test of famous face recognition, long-term recognition deficits were less pronounced, even after accounting for differences in media consumption between controls and CPs. Secondly, we combined test results on long-term and short-term recognition of faces and objects, and found a large heterogeneity in severity and scope of individual deficits. Analysis of the observed heterogeneity revealed a dissociation of CP into subtypes with a homogeneous phenotypical profile. Thirdly, we found that among CPs self-assessment of real-life difficulties, based on a standardized questionnaire, and experimentally assessed face recognition deficits are strongly correlated. Our results demonstrate that controlled tests of long-term recognition memory are needed to fully assess face recognition deficits in CP. Based on controlled and comprehensive experimental testing, CP can be dissociated into subtypes with a homogeneous phenotypical profile. The CP subtypes identified align with those found in prosopagnosia caused by cortical lesions; they can be interpreted with respect to a hierarchical neural system for face perception.

  19. Transcriptional regulation of long-term memory in the marine snail Aplysia

    Directory of Open Access Journals (Sweden)

    Lee Yong-Seok

    2008-06-01

    Full Text Available Abstract Whereas the induction of short-term memory involves only covalent modifications of constitutively expressed preexisting proteins, the formation of long-term memory requires gene expression, new RNA, and new protein synthesis. On the cellular level, transcriptional regulation is thought to be the starting point for a series of molecular steps necessary for both the initiation and maintenance of long-term synaptic facilitation (LTF. The core molecular features of transcriptional regulation involved in the long-term process are evolutionally conserved in Aplysia, Drosophila, and mouse, and indicate that gene regulation by the cyclic AMP response element binding protein (CREB acting in conjunction with different combinations of transcriptional factors is critical for the expression of many forms of long-term memory. In the marine snail Aplysia, the molecular mechanisms that underlie the storage of long-term memory have been extensively studied in the monosynaptic connections between identified sensory neuron and motor neurons of the gill-withdrawal reflex. One tail shock or one pulse of serotonin (5-HT, a modulatory transmitter released by tail shocks, produces a transient facilitation mediated by the cAMP-dependent protein kinase leading to covalent modifications in the sensory neurons that results in an enhancement of transmitter release and a strengthening of synaptic connections lasting minutes. By contrast, repeated pulses of 5-hydroxytryptamine (5-HT induce a transcription- and translation-dependent long-term facilitation (LTF lasting more than 24 h and trigger the activation of a family of transcription factors in the presynaptic sensory neurons including ApCREB1, ApCREB2 and ApC/EBP. In addition, we have recently identified novel transcription factors that modulate the expression of ApC/EBP and also are critically involved in LTF. In this review, we examine the roles of these transcription factors during consolidation of LTF induced

  20. Long-term memory of hierarchical relationships in free-living greylag geese

    NARCIS (Netherlands)

    Weiss, Brigitte M.; Scheiber, Isabella B. R.

    2013-01-01

    Animals may memorise spatial and social information for many months and even years. Here, we investigated long-term memory of hierarchically ordered relationships, where the position of a reward depended on the relationship of a stimulus relative to other stimuli in the hierarchy. Seventeen greylag

  1. The long-term memory analysis of industrial indices of the Chinese stock market

    Energy Technology Data Exchange (ETDEWEB)

    Yong, L [Renmin University of China, Information School (China); Department of Mathematics, Beijing 100872 (China)], E-mail: linyong01@ruc.edu.cn

    2008-02-15

    The main work of this paper is to apply the fractional market theory and time series analysis for analyzing various industrial indices of the Chinese stock market by rescaling range analysis. Hurst index and the long-term memory of price change in Chinese stock market are studied.

  2. Nicotine uses neuron-glia communication to enhance hippocampal synaptic transmission and long-term memory.

    Science.gov (United States)

    López-Hidalgo, Mónica; Salgado-Puga, Karla; Alvarado-Martínez, Reynaldo; Medina, Andrea Cristina; Prado-Alcalá, Roberto A; García-Colunga, Jesús

    2012-01-01

    Nicotine enhances synaptic transmission and facilitates long-term memory. Now it is known that bi-directional glia-neuron interactions play important roles in the physiology of the brain. However, the involvement of glial cells in the effects of nicotine has not been considered until now. In particular, the gliotransmitter D-serine, an endogenous co-agonist of NMDA receptors, enables different types of synaptic plasticity and memory in the hippocampus. Here, we report that hippocampal long-term synaptic plasticity induced by nicotine was annulled by an enzyme that degrades endogenous D-serine, or by an NMDA receptor antagonist that acts at the D-serine binding site. Accordingly, both effects of nicotine: the enhancement of synaptic transmission and facilitation of long-term memory were eliminated by impairing glial cells with fluoroacetate, and were restored with exogenous D-serine. Together, these results show that glial D-serine is essential for the long-term effects of nicotine on synaptic plasticity and memory, and they highlight the roles of glial cells as key participants in brain functions.

  3. How long-term memory and accentuation interact during spoken language comprehension.

    Science.gov (United States)

    Li, Xiaoqing; Yang, Yufang

    2013-04-01

    Spoken language comprehension requires immediate integration of different information types, such as semantics, syntax, and prosody. Meanwhile, both the information derived from speech signals and the information retrieved from long-term memory exert their influence on language comprehension immediately. Using EEG (electroencephalogram), the present study investigated how the information retrieved from long-term memory interacts with accentuation during spoken language comprehension. Mini Chinese discourses were used as stimuli, with an interrogative or assertive context sentence preceding the target sentence. The target sentence included one critical word conveying new information. The critical word was either highly expected or lowly expected given the information retrieved from long-term memory. Moreover, the critical word was either consistently accented or inconsistently de-accented. The results revealed that for lowly expected new information, inconsistently de-accented words elicited a larger N400 and larger theta power increases (4-6 Hz) than consistently accented words. In contrast, for the highly expected new information, consistently accented words elicited a larger N400 and larger alpha power decreases (8-14 Hz) than inconsistently de-accented words. The results suggest that, during spoken language comprehension, the effect of accentuation interacted with the information retrieved from long-term memory immediately. Moreover, our results also have important consequences for our understanding of the processing nature of the N400. The N400 amplitude is not only enhanced for incorrect information (new and de-accented word) but also enhanced for correct information (new and accented words).

  4. Role of Proteasome-Dependent Protein Degradation in Long-Term Operant Memory in "Aplysia"

    Science.gov (United States)

    Lyons, Lisa C.; Gardner, Jacob S.; Gandour, Catherine E.; Krishnan, Harini C.

    2017-01-01

    We investigated the in vivo role of protein degradation during intermediate (ITM) and long-term memory (LTM) in "Aplysia" using an operant learning paradigm. The proteasome inhibitor MG-132 inhibited the induction and molecular consolidation of LTM with no effect on ITM. Remarkably, maintenance of steady-state protein levels through…

  5. The long-term memory analysis of industrial indices of the Chinese stock market

    Science.gov (United States)

    Yong, L.

    2008-02-01

    The main work of this paper is to apply the fractional market theory and time series analysis for analyzing various industrial indices of the Chinese stock market by rescaling range analysis. Hurst index and the long-term memory of price change in Chinese stock market are studied.

  6. Competitive short-term and long-term memory processes in spatial habituation.

    Science.gov (United States)

    Sanderson, David J; Bannerman, David M

    2011-04-01

    Exposure to a spatial location leads to habituation of exploration such that, in a novelty preference test, rodents subsequently prefer exploring a novel location to the familiar location. According to Wagner's (1981) theory of memory, short-term and long-term habituation are caused by separate and sometimes opponent processes. In the present study, this dual-process account of memory was tested. Mice received a series of exposure training trials to a location before receiving a novelty preference test. The novelty preference was greater when tested after a short, rather than a long, interval. In contrast, the novelty preference was weaker when exposure training trials were separated by a short, rather than a long interval. Furthermore, it was found that long-term habituation was determined by the independent effects of the amount of exposure training and the number of exposure training trials when factors such as the intertrial interval and the cumulative intertrial interval were controlled. A final experiment demonstrated that a long-term reduction of exploration could be caused by a negative priming effect due to associations formed during exploration. These results provide evidence against a single-process account of habituation and suggest that spatial habituation is determined by both short-term, recency-based memory and long-term, incrementally strengthened memory.

  7. Interteaching and Lecture: A Comparison of Long-Term Recognition Memory

    Science.gov (United States)

    Saville, Bryan K.; Bureau, Alex; Eckenrode, Claire; Fullerton, Alison; Herbert, Reanna; Maley, Michelle; Porter, Allen; Zombakis, Julie

    2014-01-01

    Although a number of studies suggest that interteaching is an effective alternative to traditional teaching methods, no studies have systematically examined whether interteaching improves long-term memory. In this study, we assigned students to different teaching conditions--interteaching, lecture, or control--and then gave them a multiple-choice…

  8. Nicotine uses neuron-glia communication to enhance hippocampal synaptic transmission and long-term memory.

    Directory of Open Access Journals (Sweden)

    Mónica López-Hidalgo

    Full Text Available Nicotine enhances synaptic transmission and facilitates long-term memory. Now it is known that bi-directional glia-neuron interactions play important roles in the physiology of the brain. However, the involvement of glial cells in the effects of nicotine has not been considered until now. In particular, the gliotransmitter D-serine, an endogenous co-agonist of NMDA receptors, enables different types of synaptic plasticity and memory in the hippocampus. Here, we report that hippocampal long-term synaptic plasticity induced by nicotine was annulled by an enzyme that degrades endogenous D-serine, or by an NMDA receptor antagonist that acts at the D-serine binding site. Accordingly, both effects of nicotine: the enhancement of synaptic transmission and facilitation of long-term memory were eliminated by impairing glial cells with fluoroacetate, and were restored with exogenous D-serine. Together, these results show that glial D-serine is essential for the long-term effects of nicotine on synaptic plasticity and memory, and they highlight the roles of glial cells as key participants in brain functions.

  9. Intrahippocampal Glutamine Administration Inhibits mTORC1 Signaling and Impairs Long-Term Memory

    Science.gov (United States)

    Rozas, Natalia S.; Redell, John B.; Pita-Almenar, Juan D.; McKenna, James, III.; Moore, Anthony N.; Gambello, Michael J.; Dash, Pramod K.

    2015-01-01

    The mechanistic Target of Rapamycin Complex 1 (mTORC1), a key regulator of protein synthesis and cellular growth, is also required for long-term memory formation. Stimulation of mTORC1 signaling is known to be dependent on the availability of energy and growth factors, as well as the presence of amino acids. In vitro studies using serum- and amino…

  10. Protein Phosphatase 1-Dependent Transcriptional Programs for Long-Term Memory and Plasticity

    Science.gov (United States)

    Graff, Johannes; Koshibu, Kyoko; Jouvenceau, Anne; Dutar, Patrick; Mansuy, Isabelle M.

    2010-01-01

    Gene transcription is essential for the establishment and the maintenance of long-term memory (LTM) and for long-lasting forms of synaptic plasticity. The molecular mechanisms that control gene transcription in neuronal cells are complex and recruit multiple signaling pathways in the cytoplasm and the nucleus. Protein kinases (PKs) and…

  11. Modality-specific alpha modulations facilitate long-term memory encoding in the presence of distracters

    NARCIS (Netherlands)

    Jiang, H.; Gerven, M.A.J. van; Jensen, O.

    2014-01-01

    It has been proposed that long-term memory encoding is not only dependent on engaging task-relevant regions but also on disengaging task-irrelevant regions. In particular, oscillatory alpha activity has been shown to be involved in shaping the functional architecture of the working brain because it

  12. Behavioral Specifications of Reward-Associated Long-Term Memory Enhancement in Humans

    Science.gov (United States)

    Wittmann, Bianca C.; Dolan, Raymond J.; Duzel, Emrah

    2011-01-01

    Recent functional imaging studies link reward-related activation of the midbrain substantia nigra-ventral tegmental area (SN/VTA), the site of origin of ascending dopaminergic projections, with improved long-term episodic memory. Here, we investigated in two behavioral experiments how (1) the contingency between item properties and reward, (2) the…

  13. Interteaching and Lecture: A Comparison of Long-Term Recognition Memory

    Science.gov (United States)

    Saville, Bryan K.; Bureau, Alex; Eckenrode, Claire; Fullerton, Alison; Herbert, Reanna; Maley, Michelle; Porter, Allen; Zombakis, Julie

    2014-01-01

    Although a number of studies suggest that interteaching is an effective alternative to traditional teaching methods, no studies have systematically examined whether interteaching improves long-term memory. In this study, we assigned students to different teaching conditions--interteaching, lecture, or control--and then gave them a multiple-choice…

  14. Transgenic Mice Expressing an Inhibitory Truncated Form of p300 Exhibit Long-Term Memory Deficits

    Science.gov (United States)

    Oliveira, Ana M. M.; Wood, Marcelo A.; McDonough, Conor B.; Abel, Ted

    2007-01-01

    The formation of many forms of long-term memory requires several molecular mechanisms including regulation of gene expression. The mechanisms directing transcription require not only activation of individual transcription factors but also recruitment of transcriptional coactivators. CBP and p300 are transcriptional coactivators that interact with…

  15. Long-Term Autobiographical Memory for Legal Involvement: Individual and Sociocontextual Predictors

    Science.gov (United States)

    Quas, Jodi A.; Alexander, Kristen Weede; Goodman, Gail S.; Ghetti, Simona; Edelstein, Robin S.; Redlich, Allison

    2010-01-01

    We examined adults' long-term autobiographical memory for a dramatic life event-participating as a child victim in a criminal prosecution because of alleged sexual abuse. The study is unique in several ways, including that we had extensive documentation concerning the sexual abuse allegations, the children's involvement in their legal case, and…

  16. Modality-specific Alpha Modulations Facilitate Long-term Memory Encoding in the Presence of Distracters

    NARCIS (Netherlands)

    Jiang, H.; Gerven, M.A.J. van; Jensen, O.

    2015-01-01

    It has been proposed that long-term memory encoding is not only dependent on engaging task-relevant regions but also on disengaging task-irrelevant regions. In particular, oscillatory alpha activity has been shown to be involved in shaping the functional architecture of the working brain because it

  17. The Drosophila lingerer protein cooperates with Orb2 in long-term memory formation.

    Science.gov (United States)

    Kimura, Shingo; Sakakibara, Yasufumi; Sato, Kosei; Ote, Manabu; Ito, Hiroki; Koganezawa, Masayuki; Yamamoto, Daisuke

    2015-03-01

    Recently mated Drosophila females were shown to be reluctant to copulate and to exhibit rejecting behavior when courted by a male. Males that experience mate refusal by a mated female subsequently attenuate their courtship effort toward not only mated females but also virgin females. This courtship suppression persists for more than a day, and thus represents long-term memory. The courtship long-term memory has been shown to be impaired in heterozygotes as well as homozygotes of mutants in orb2, a locus encoding a set of CPEB RNA-binding proteins. We show that the impaired courtship long-term memory in orb2-mutant heterozygotes is restored by reducing the activity of lig, another putative RNA-binding protein gene, yet on its own the loss-of-function lig mutation is without effect. We further show that Lig forms a complex with Orb2. We infer that a reduction in the Lig levels compensates the Orb2 deficiency by mitigating the negative feedback for Orb2 expression and thereby alleviating defects in long-term memory.

  18. Demonstration of long-term memory in the parasitic wasp Nasonia vitripennis

    NARCIS (Netherlands)

    Schurmann, D.; Sommer, C.; Schinko, A.P.B.; Greschista, M.; Smid, H.M.; Steidle, J.L.M.

    2012-01-01

    We studied the formation of protein synthesis-dependent long-term memory (LTM) in the parasitic wasp Nasonia vitripennis Walker (Hymenoptera: Pteromalidae), a parasitoid of fly pupae. Female wasps were trained in one of five different training procedures in the presence of hosts and the odour cinnam

  19. Role of Proteasome-Dependent Protein Degradation in Long-Term Operant Memory in "Aplysia"

    Science.gov (United States)

    Lyons, Lisa C.; Gardner, Jacob S.; Gandour, Catherine E.; Krishnan, Harini C.

    2017-01-01

    We investigated the in vivo role of protein degradation during intermediate (ITM) and long-term memory (LTM) in "Aplysia" using an operant learning paradigm. The proteasome inhibitor MG-132 inhibited the induction and molecular consolidation of LTM with no effect on ITM. Remarkably, maintenance of steady-state protein levels through…

  20. Devil in the Details? Developmental Dyslexia and Visual Long-Term Memory for Details

    Directory of Open Access Journals (Sweden)

    Lynn eHuestegge

    2014-07-01

    Full Text Available Cognitive theories on causes of developmental dyslexia can be divided into language-specific and general accounts. While the former assume that words are special in that associated processing problems are rooted in language-related cognition (e.g., phonology deficits, the latter propose that dyslexia is rather rooted in a general impairment of cognitive (e.g., visual and/or auditory processing streams. In the present study, we examined to what extent dyslexia (typically characterized by poor orthographic representations may be associated with a general deficit in visual long-term memory for details. We compared object- and detail-related visual long-term memory performance (and phonological skills between dyslexic primary school children and IQ-, age- and gender-matched controls. The results revealed that while the overall amount of long-term memory errors was comparable between groups, dyslexic children exhibited a greater portion of detail-related errors. The results suggest that not only phonological, but also general visual resolution deficits in long-term memory may play an important role in developmental dyslexia.

  1. Long-Term Memory for Music: Infants Remember Tempo and Timbre

    Science.gov (United States)

    Trainor, Laurel J.; Wu, Luann; Tsang, Christine D.

    2004-01-01

    We show that infants' long-term memory representations for melodies are not just reduced to the structural features of relative pitches and durations, but contain surface or performance tempo- and timbre-specific information. Using a head turn preference procedure, we found that after a one week exposure to an old English folk song, infants…

  2. Late protein synthesis-dependent phases in CTA long-term memory: BDNF requirement

    Directory of Open Access Journals (Sweden)

    Araceli eMartínez-Moreno

    2011-09-01

    Full Text Available It has been proposed that long-term memory persistence requires a late protein synthesis-dependent phase, even many hours after memory acquisition. Brain-derived neurotrophic factor (BDNF is an essential protein synthesis product that has emerged as one of the most potent molecular mediators for long-term synaptic plasticity. Studies in the rat hippocampus have been shown that BDNF is capable to rescue the late-phase of long-term potentiation as well as the hippocampus-related long-term memory when protein synthesis was inhibited. Our previous studies on the insular cortex (IC, a region of the temporal cortex implicated in the acquisition and storage of conditioned taste aversion (CTA, have demonstrated that intracortical delivery of BDNF reverses the deficit in CTA memory caused by the inhibition of IC protein synthesis due to anisomycin administration during early acquisition. In this work, we first analyze whether CTA memory storage is protein synthesis dependent in different time-windows. We observed that CTA memory become sensible to protein synthesis inhibition 5 and 7 hours after acquisition. Then, we explore the effect of BDNF delivery (2 μg/2 μl per side in the IC during those late protein synthesis-dependent phases. Our results show that BDNF reverses the CTA memory deficit produced by protein synthesis inhibition in both phases. These findings support the notion that recurrent rounds of consolidation-like events take place in the neocortex for maintenance of CTA memory trace and that BDNF is an essential component of these processes.

  3. Long-Term Behaviors of Stochastic Interest Rate Models with Jumps and Memory

    CERN Document Server

    Bao, Jianhai

    2011-01-01

    In this paper we show the convergence of the long-term return $t^{-\\mu}\\int_0^tX(s)\\d s$ for some $\\mu\\geq1$, where $X$ is the short-term interest rate which follows an extension of Cox-Ingersoll-Ross type model with jumps and memory, and, as an application, we also investigate the corresponding behavior of two-factor Cox-Ingersoll-Ross model with jumps and memory

  4. Implicit short- and long-term memory direct our gaze in visual search.

    Science.gov (United States)

    Kruijne, Wouter; Meeter, Martijn

    2016-04-01

    Visual attention is strongly affected by the past: both by recent experience and by long-term regularities in the environment that are encoded in and retrieved from memory. In visual search, intertrial repetition of targets causes speeded response times (short-term priming). Similarly, targets that are presented more often than others may facilitate search, even long after it is no longer present (long-term priming). In this study, we investigate whether such short-term priming and long-term priming depend on dissociable mechanisms. By recording eye movements while participants searched for one of two conjunction targets, we explored at what stages of visual search different forms of priming manifest. We found both long- and short- term priming effects. Long-term priming persisted long after the bias was present, and was again found even in participants who were unaware of a color bias. Short- and long-term priming affected the same stage of the task; both biased eye movements towards targets with the primed color, already starting with the first eye movement. Neither form of priming affected the response phase of a trial, but response repetition did. The results strongly suggest that both long- and short-term memory can implicitly modulate feedforward visual processing.

  5. Distinct neural correlates of associative working memory and long-term memory encoding in the medial temporal lobe

    NARCIS (Netherlands)

    Bergmann, H.C.; Rijpkema, M.J.P.; Fernandez, G.S.E.; Kessels, R.P.C.

    2012-01-01

    Increasing evidence suggests a role for the hippocampus not only in long-term memory (LTM) but also in relational working memory (WM) processes, challenging the view of the hippocampus as being solely involved in episodic LTM. However, hippocampal involvement reported in some neuroimaging studies

  6. Similarities and Differences between Working Memory and Long-Term Memory: Evidence from the Levels-of-Processing Span Task

    Science.gov (United States)

    Rose, Nathan S.; Myerson, Joel; Roediger, Henry L., III; Hale, Sandra

    2010-01-01

    Two experiments compared the effects of depth of processing on working memory (WM) and long-term memory (LTM) using a levels-of-processing (LOP) span task, a newly developed WM span procedure that involves processing to-be-remembered words based on their visual, phonological, or semantic characteristics. Depth of processing had minimal effect on…

  7. Distinct neural correlates of associative working memory and long-term memory encoding in the medial temporal lobe

    NARCIS (Netherlands)

    Bergmann, H.C.; Rijpkema, M.J.P.; Fernandez, G.S.E.; Kessels, R.P.C.

    2012-01-01

    Increasing evidence suggests a role for the hippocampus not only in long-term memory (LTM) but also in relational working memory (WM) processes, challenging the view of the hippocampus as being solely involved in episodic LTM. However, hippocampal involvement reported in some neuroimaging studies us

  8. Early and late stages of working-memory maintenance contribute differentially to long-term memory formation

    NARCIS (Netherlands)

    Bergmann, H.C.; Kiemeneij, A.; Fernandez, G.S.E.; Kessels, R.P.C.

    2013-01-01

    The present paper investigated the role of early and late stages of working-memory maintenance, which have been suggested to differentially contribute to long-term memory formation. In experiment 1, we administered a delayed-match-to-sample task, requiring participants to remember line drawings of n

  9. Greater emotional arousal predicts poorer long-term memory of communication skills in couples.

    Science.gov (United States)

    Baucom, Brian R; Weusthoff, Sarah; Atkins, David C; Hahlweg, Kurt

    2012-06-01

    Many studies have examined the importance of learning skills in behaviorally based couple interventions but none have examined predictors of long-term memory for skills. Associations between emotional arousal and long-term recall of communication skills delivered to couples during a behaviorally based relationship distress prevention program were examined in a sample of 49 German couples. Fundamental frequency (f(0)), a vocal measure of encoded emotional arousal, was measured during pre-treatment couple conflict. Higher levels of f(0) were linked to fewer skills remembered 11 years after completing the program, and women remembered more skills than men. Implications of results for behaviorally based couple interventions are discussed.

  10. Swimming exercise during pregnancy alleviates pregnancy-associated long-term memory impairment.

    Science.gov (United States)

    Kim, Kijeong; Chung, Eunhee; Kim, Chang-Ju; Lee, Sukho

    2012-08-20

    Regular exercise has been shown to be beneficial to the brain functions, but little is known about the effects of exercise during pregnancy on the long-term memory function of the mothers. The objective of this study was to determine the effects of swimming during pregnancy on long-term memory function in rats on postpartum day 8. We examined the impact of swimming exercise during pregnancy on cell proliferation and apoptotic neuronal cell death in the hippocampus of peripartum rats. The rats were divided into three groups: the control group, the pregnant non-swimming group, and the pregnant swimming group. We found that pregnancy impaired the long-term memory while swimming during pregnancy alleviated the memory impairment. Pregnancy decreased cell proliferation in the dentate gyrus of the hippocampus, but swimming exercise during pregnancy reversed pregnancy-associated decreased cell proliferation back to control level. There was no difference in apoptotic neuronal cell death in the hippocampus among groups. Our results suggest that swimming during pregnancy alleviates pregnancy-associated decrease in memory function of mothers through an increase in cell proliferation in the hippocampus. Published by Elsevier Inc.

  11. Making Memories: The Development of Long-Term Visual Knowledge in Children with Visual Agnosia

    Directory of Open Access Journals (Sweden)

    Tiziana Metitieri

    2013-01-01

    Full Text Available There are few reports about the effects of perinatal acquired brain lesions on the development of visual perception. These studies demonstrate nonseverely impaired visual-spatial abilities and preserved visual memory. Longitudinal data analyzing the effects of compromised perceptions on long-term visual knowledge in agnosics are limited to lesions having occurred in adulthood. The study of children with focal lesions of the visual pathways provides a unique opportunity to assess the development of visual memory when perceptual input is degraded. We assessed visual recognition and visual memory in three children with lesions to the visual cortex having occurred in early infancy. We then explored the time course of visual memory impairment in two of them at 2 years and 3.7 years from the initial assessment. All children exhibited apperceptive visual agnosia and visual memory impairment. We observed a longitudinal improvement of visual memory modulated by the structural properties of objects. Our findings indicate that processing of degraded perceptions from birth results in impoverished memories. The dynamic interaction between perception and memory during development might modulate the long-term construction of visual representations, resulting in less severe impairment.

  12. Making memories: the development of long-term visual knowledge in children with visual agnosia.

    Science.gov (United States)

    Metitieri, Tiziana; Barba, Carmen; Pellacani, Simona; Viggiano, Maria Pia; Guerrini, Renzo

    2013-01-01

    There are few reports about the effects of perinatal acquired brain lesions on the development of visual perception. These studies demonstrate nonseverely impaired visual-spatial abilities and preserved visual memory. Longitudinal data analyzing the effects of compromised perceptions on long-term visual knowledge in agnosics are limited to lesions having occurred in adulthood. The study of children with focal lesions of the visual pathways provides a unique opportunity to assess the development of visual memory when perceptual input is degraded. We assessed visual recognition and visual memory in three children with lesions to the visual cortex having occurred in early infancy. We then explored the time course of visual memory impairment in two of them at 2  years and 3.7  years from the initial assessment. All children exhibited apperceptive visual agnosia and visual memory impairment. We observed a longitudinal improvement of visual memory modulated by the structural properties of objects. Our findings indicate that processing of degraded perceptions from birth results in impoverished memories. The dynamic interaction between perception and memory during development might modulate the long-term construction of visual representations, resulting in less severe impairment.

  13. Deuterium-depleted water has stimulating effects on long-term memory in rats.

    Science.gov (United States)

    Mladin, Cristian; Ciobica, Alin; Lefter, Radu; Popescu, Alexandru; Bild, Walther

    2014-11-07

    Deuterium-depleted water (DDW) is a water which has a 6-7-fold less concentration of the naturally occurring deuterium (20-25ppm vs. 150ppm). While administrated for a longer period, it may reduce the concentration of deuterium throughout the body, thus activating cellular mechanisms which are depending on protons (channels, pumps, enzyme proteins). The aim of the present work was to study, for the first time in our knowledge, the possible influence of deuterium-depleted water (DDW) chronic administration in normal Wistar rats, as compared to a control group which received distilled water, on spatial working memory and the locomotor activity (as studied through Y-maze) or both short-term and long-term spatial memory (assed in radial 8 arms-maze task). Our results presented here showed no significant modifications in terms of spatial working memory (assessed through spontaneous alternation percentage) and locomotor activity (expressed through the number of arm entries) in Y-maze, as a result of DDW ingestion. Also, no significant differences between the DDW and control group were found in terms of the number of working memory errors in the eight-arm radial maze, as a parameter of short-term memory. Still, we observed a significant decrease for the number of reference memory errors in the DDW rats. In this way, we could speculate that the administration of DDW may generate an improvement of the reference memory, as an index of long-term memory. Thus, we can reach the conclusion that the change between the deuterium/hydrogen balance may have important consequences for the mechanisms that govern long-term memory, as showed here especially in the behavioral parameters from the eight-arm radial maze task. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Temporal information processing in short- and long-term memory of patients with schizophrenia.

    Science.gov (United States)

    Landgraf, Steffen; Steingen, Joerg; Eppert, Yvonne; Niedermeyer, Ulrich; van der Meer, Elke; Krueger, Frank

    2011-01-01

    Cognitive deficits of patients with schizophrenia have been largely recognized as core symptoms of the disorder. One neglected factor that contributes to these deficits is the comprehension of time. In the present study, we assessed temporal information processing and manipulation from short- and long-term memory in 34 patients with chronic schizophrenia and 34 matched healthy controls. On the short-term memory temporal-order reconstruction task, an incidental or intentional learning strategy was deployed. Patients showed worse overall performance than healthy controls. The intentional learning strategy led to dissociable performance improvement in both groups. Whereas healthy controls improved on a performance measure (serial organization), patients improved on an error measure (inappropriate semantic clustering) when using the intentional instead of the incidental learning strategy. On the long-term memory script-generation task, routine and non-routine events of everyday activities (e.g., buying groceries) had to be generated in either chronological or inverted temporal order. Patients were slower than controls at generating events in the chronological routine condition only. They also committed more sequencing and boundary errors in the inverted conditions. The number of irrelevant events was higher in patients in the chronological, non-routine condition. These results suggest that patients with schizophrenia imprecisely access temporal information from short- and long-term memory. In short-term memory, processing of temporal information led to a reduction in errors rather than, as was the case in healthy controls, to an improvement in temporal-order recall. When accessing temporal information from long-term memory, patients were slower and committed more sequencing, boundary, and intrusion errors. Together, these results suggest that time information can be accessed and processed only imprecisely by patients who provide evidence for impaired time comprehension

  15. Temporal information processing in short- and long-term memory of patients with schizophrenia.

    Directory of Open Access Journals (Sweden)

    Steffen Landgraf

    Full Text Available Cognitive deficits of patients with schizophrenia have been largely recognized as core symptoms of the disorder. One neglected factor that contributes to these deficits is the comprehension of time. In the present study, we assessed temporal information processing and manipulation from short- and long-term memory in 34 patients with chronic schizophrenia and 34 matched healthy controls. On the short-term memory temporal-order reconstruction task, an incidental or intentional learning strategy was deployed. Patients showed worse overall performance than healthy controls. The intentional learning strategy led to dissociable performance improvement in both groups. Whereas healthy controls improved on a performance measure (serial organization, patients improved on an error measure (inappropriate semantic clustering when using the intentional instead of the incidental learning strategy. On the long-term memory script-generation task, routine and non-routine events of everyday activities (e.g., buying groceries had to be generated in either chronological or inverted temporal order. Patients were slower than controls at generating events in the chronological routine condition only. They also committed more sequencing and boundary errors in the inverted conditions. The number of irrelevant events was higher in patients in the chronological, non-routine condition. These results suggest that patients with schizophrenia imprecisely access temporal information from short- and long-term memory. In short-term memory, processing of temporal information led to a reduction in errors rather than, as was the case in healthy controls, to an improvement in temporal-order recall. When accessing temporal information from long-term memory, patients were slower and committed more sequencing, boundary, and intrusion errors. Together, these results suggest that time information can be accessed and processed only imprecisely by patients who provide evidence for impaired

  16. Acute exposure to selenium disrupts associative conditioning and long-term memory recall in honey bees (Apis mellifera).

    Science.gov (United States)

    Burden, Christina M; Elmore, Christopher; Hladun, Kristen R; Trumble, John T; Smith, Brian H

    2016-05-01

    A plethora of toxic compounds - including pesticides, heavy metals, and metalloids - have been detected in honey bees (Apis mellifera) and their colonies. One such compound is selenium, which bees are exposed to by consuming nectar and pollen from flowers grown in contaminated areas. Though selenium is lethal at high concentrations, sublethal exposure may also impair honey bees' ability to function normally. Examining the effect of selenium exposure on learning and memory provides a sensitive assay with which to identify sublethal effects on honey bee health and behavior. To determine whether sublethal selenium exposure causes learning and memory deficits, we used proboscis extension reflex conditioning coupled with recall tests 30min and 24h post-conditioning. We exposed forager honey bees to a single sublethal dose of selenium, and 3h later we used an olfactory conditioning assay to train the bees to discriminate between one odor associated with sucrose-reinforcement and a second unreinforced odor. Following conditioning we tested short- and long-term recall of the task. Acute exposure to as little as 1.8ng of an inorganic form of selenium (sodium selenate) before conditioning caused a reduction in behavioral performance during conditioning. And, exposure to 18ng of either an inorganic form (sodium selenate) or an organic form (methylseleno-l-cysteine) of selenium caused a reduction in the bees' performance during the long-term recall test. These concentrations of selenium are lower than those found in the nectar of plants grown in selenium-contaminated soil, indicating that even low-grade selenium toxicity produces significant learning and memory impairments. This may reduce foragers' ability to effectively gather resources for the colony or nurse bees' ability to care for and maintain a healthy colony.

  17. Caffeine and diphenyl diselenide improve long-term memory impaired in middle-aged rats.

    Science.gov (United States)

    Leite, Marlon R; Marcondes Sari, Marcel Henrique; de Freitas, Mayara L; Oliveira, Lia P; Dalmolin, Laíza; Brandão, Ricardo; Zeni, Gilson

    2014-05-01

    The aim of the present study was to evaluate the effects of diphenyl diselenide (PhSe)2 supplemented diet (10ppm) associated to the administration of caffeine (15mg/kg; i.g.) for 30days on the novel object recognition memory in middle-aged rats. The present findings showed that (PhSe)2-supplemented diet enhanced short-term memory, but not long-term memory, of middle-aged rats in the novel object recognition task. The (PhSe)2 supplemented diet associated with caffeine administration improved long-term memory, but did not alter short-term memory, impaired in middle-aged rats. Daily caffeine administration to middle-aged rats had no effect on the memory tasks. Diet supplemented with (PhSe)2 plus caffeine administration increased the number of crossings and rearings reduced in middle-aged rats. Caffeine administration plus (PhSe)2 diets were effective in increasing the number of rearings and crossings, respectively, in middle-aged rats, [(3)H] glutamate uptake was reduced in hippocampal slices of rats from (PhSe)2 and caffeine plus (PhSe)2 groups. In addition, animals supplemented with (PhSe)2 showed an increase in the pCREB/CREB ratio whereas pAkt/Akt ratio was not modified. These results suggest that the effects of (PhSe)2 on the short-term memory may be related to its ability to decrease the uptake of glutamate, influencing the increase of CREB phosphorylation. (PhSe)2-supplemented diet associated to the administration of caffeine improved long-term memory impaired in middle-aged rats, an effect independent of CREB and Akt phosphorylation. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. What are the differences between long-term, short-term, and working memory?

    Science.gov (United States)

    Cowan, Nelson

    2008-01-01

    In the recent literature there has been considerable confusion about the three types of memory: long-term, short-term, and working memory. This chapter strives to reduce that confusion and makes up-to-date assessments of these types of memory. Long- and short-term memory could differ in two fundamental ways, with only short-term memory demonstrating (1) temporal decay and (2) chunk capacity limits. Both properties of short-term memory are still controversial but the current literature is rather encouraging regarding the existence of both decay and capacity limits. Working memory has been conceived and defined in three different, slightly discrepant ways: as short-term memory applied to cognitive tasks, as a multi-component system that holds and manipulates information in short-term memory, and as the use of attention to manage short-term memory. Regardless of the definition, there are some measures of memory in the short term that seem routine and do not correlate well with cognitive aptitudes and other measures (those usually identified with the term "working memory") that seem more attention demanding and do correlate well with these aptitudes. The evidence is evaluated and placed within a theoretical framework depicted in Fig. 1.

  19. Long-term effects of interference on short-term memory performance in the rat.

    Science.gov (United States)

    Missaire, Mégane; Fraize, Nicolas; Joseph, Mickaël Antoine; Hamieh, Al Mahdy; Parmentier, Régis; Marighetto, Aline; Salin, Paul Antoine; Malleret, Gaël

    2017-01-01

    A distinction has always been made between long-term and short-term memory (also now called working memory, WM). The obvious difference between these two kinds of memory concerns the duration of information storage: information is supposedly transiently stored in WM while it is considered durably consolidated into long-term memory. It is well acknowledged that the content of WM is erased and reset after a short time, to prevent irrelevant information from proactively interfering with newly stored information. In the present study, we used typical WM radial maze tasks to question the brief lifespan of spatial WM content in rodents. Groups of rats were submitted to one of two different WM tasks in a radial maze: a WM task involving the repetitive presentation of a same pair of arms expected to induce a high level of proactive interference (PI) (HIWM task), or a task using a different pair in each trial expected to induce a low level of PI (LIWM task). Performance was effectively lower in the HIWM group than in LIWM in the final trial of each training session, indicative of a "within-session/short-term" PI effect. However, we also observed a different "between-session/long-term" PI effect between the two groups: while performance of LIWM trained rats remained stable over days, the performance of HIWM rats dropped after 10 days of training, and this impairment was visible from the very first trial of the day, hence not attributable to within-session PI. We also showed that a 24 hour-gap across training sessions known to allow consolidation processes to unfold, was a necessary and sufficient condition for the long-term PI effect to occur. These findings suggest that in the HIWM task, WM content was not entirely reset between training sessions and that, in specific conditions, WM content can outlast its purpose by being stored more permanently, generating a long-term deleterious effect of PI. The alternative explanation is that WM content could be transferred and stored

  20. The effect of the social regulation of emotion on emotional long-term memory.

    Science.gov (United States)

    Flores, Luis E; Berenbaum, Howard

    2017-04-01

    Memories for emotional events tend to be stronger than for neutral events, and weakening negative memories can be helpful to promote well-being. The present study examined whether the social regulation of emotion (in the form of handholding) altered the strength of emotional long-term memory. A sample of 219 undergraduate students viewed sets of negative, neutral, and positive images. Each participant held a stress ball while viewing half of the images and held someone's hand while viewing the other half. Participants returned 1 week later to complete a recognition task. Performance on the recognition task demonstrated that participants had lower memory accuracy for negative but not for positive pictures that were shown while they were holding someone's hand compared with when they were holding a stress ball. Although handholding altered the strength of negative emotional long-term memory, it did not down-regulate negative affective response as measured by self-report or facial expressivity. The present findings provide evidence that the social regulation of emotion can help weaken memory for negative information. Given the role of strong negative memories in different forms of psychopathology (e.g., depression, posttraumatic stress disorder), these findings may help better understand how close relationships protect against psychopathology. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  1. Long-term memory of hierarchical relationships in free-living greylag geese.

    Science.gov (United States)

    Weiss, Brigitte M; Scheiber, Isabella B R

    2013-01-01

    Animals may memorise spatial and social information for many months and even years. Here, we investigated long-term memory of hierarchically ordered relationships, where the position of a reward depended on the relationship of a stimulus relative to other stimuli in the hierarchy. Seventeen greylag geese (Anser anser) had been trained on discriminations between successive pairs of five or seven implicitly ordered colours, where the higher ranking colour in each pair was rewarded. Geese were re-tested on the task 2, 6 and 12 months after learning the dyadic colour relationships. They chose the correct colour above chance at all three points in time, whereby performance was better in colour pairs at the beginning or end of the colour series. Nonetheless, they also performed above chance on internal colour pairs, which is indicative of long-term memory for quantitative differences in associative strength and/or for relational information. There were no indications for a decline in performance over time, indicating that geese may remember dyadic relationships for at least 6 months and probably well over 1 year. Furthermore, performance in the memory task was unrelated to the individuals' sex and their performance while initially learning the dyadic colour relationships. We discuss possible functions of this long-term memory in the social domain.

  2. Cues, context, and long-term memory: the role of the retrosplenial cortex in spatial cognition

    Directory of Open Access Journals (Sweden)

    Adam M P Miller

    2014-08-01

    Full Text Available Spatial navigation requires representations of landmarks and other navigation cues. The retrosplenial cortex (RSC is anatomically positioned between limbic areas important for memory formation, such as the hippocampus and the anterior thalamus, and cortical regions along the dorsal stream known to contribute importantly to long-term spatial representation, such as the posterior parietal cortex. Damage to the RSC severely impairs allocentric representations of the environment, including the ability to derive navigational information from landmarks. The specific deficits seen in tests of human and rodent navigation suggest that the RSC supports allocentric representation by processing the stable features of the environment and the spatial relationships among them. In addition to spatial cognition, the RSC plays a key role in contextual and episodic memory. The RSC also contributes importantly to the acquisition and consolidation of long-term spatial and contextual memory through its interactions with the hippocampus. Within this framework, the RSC plays a dual role as part of the feedforward network providing sensory and mnemonic input to the hippocampus and as a target of the hippocampal-dependent systems consolidation of long-term memory.

  3. Reward improves long-term retention of a motor memory through induction of offline memory gains.

    Science.gov (United States)

    Abe, Mitsunari; Schambra, Heidi; Wassermann, Eric M; Luckenbaugh, Dave; Schweighofer, Nicolas; Cohen, Leonardo G

    2011-04-12

    In humans, training in which good performance is rewarded or bad performance punished results in transient behavioral improvements. The relative effects of reward and punishment on consolidation and long-term retention, critical behavioral stages for successful learning, are not known. Here, we investigated the effects of reward and punishment on these different stages of human motor skill learning. We studied healthy subjects who trained on a motor task under rewarded, punished, or neutral control conditions. Performance was tested before and immediately, 6 hr, 24 hr, and 30 days after training in the absence of reward or punishment. Performance improvements immediately after training were comparable in the three groups. At 6 hr, the rewarded group maintained performance gains, whereas the other two groups experienced significant forgetting. At 24 hr, the reward group showed significant offline (posttraining) improvements, whereas the other two groups did not. At 30 days, the rewarded group retained the gains identified at 24 hr, whereas the other two groups experienced significant forgetting. We conclude that training under rewarded conditions is more effective than training under punished or neutral conditions in eliciting lasting motor learning, an advantage driven by offline memory gains that persist over time.

  4. Reinstatement of long-term memory following erasure of its behavioral and synaptic expression in Aplysia.

    Science.gov (United States)

    Chen, Shanping; Cai, Diancai; Pearce, Kaycey; Sun, Philip Y-W; Roberts, Adam C; Glanzman, David L

    2014-11-17

    Long-term memory (LTM) is believed to be stored in the brain as changes in synaptic connections. Here, we show that LTM storage and synaptic change can be dissociated. Cocultures of Aplysia sensory and motor neurons were trained with spaced pulses of serotonin, which induces long-term facilitation. Serotonin (5HT) triggered growth of new presynaptic varicosities, a synaptic mechanism of long-term sensitization. Following 5HT training, two antimnemonic treatments-reconsolidation blockade and inhibition of PKM--caused the number of presynaptic varicosities to revert to the original, pretraining value. Surprisingly, the final synaptic structure was not achieved by targeted retraction of the 5HT-induced varicosities but, rather, by an apparently arbitrary retraction of both 5HT-induced and original synapses. In addition, we find evidence that the LTM for sensitization persists covertly after its apparent elimination by the same antimnemonic treatments that erase learning-related synaptic growth. These results challenge the idea that stable synapses store long-term memories.

  5. Hippocampal long term memory: effect of the cholinergic system on local protein synthesis.

    Science.gov (United States)

    Lana, Daniele; Cerbai, Francesca; Di Russo, Jacopo; Boscaro, Francesca; Giannetti, Ambra; Petkova-Kirova, Polina; Pugliese, Anna Maria; Giovannini, Maria Grazia

    2013-11-01

    The present study was aimed at establishing a link between the cholinergic system and the pathway of mTOR and its downstream effector p70S6K, likely actors in long term memory encoding. We performed in vivo behavioral experiments using the step down inhibitory avoidance test (IA) in adult Wistar rats to evaluate memory formation under different conditions, and immunohistochemistry on hippocampal slices to evaluate the level and the time-course of mTOR and p70S6K activation. We also examined the effect of RAPA, inhibitor of mTORC1 formation, and of the acetylcholine (ACh) muscarinic receptor antagonist scopolamine (SCOP) or ACh nicotinic receptor antagonist mecamylamine (MECA) on short and long term memory formation and on the functionality of the mTOR pathway. Acquisition test was performed 30 min after i.c.v. injection of RAPA, a time sufficient for the drug to diffuse to CA1 pyramidal neurons, as demonstrated by MALDI-TOF-TOF imaging. Recall test was performed 1 h, 4 h or 24 h after acquisition. To confirm our results we performed in vitro experiments on live hippocampal slices: we evaluated whether stimulation of the cholinergic system with the cholinergic receptor agonist carbachol (CCh) activated the mTOR pathway and whether the administration of the above-mentioned antagonists together with CCh could revert this activation. We found that (1) mTOR and p70S6K activation in the hippocampus were involved in long term memory formation; (2) RAPA administration caused inhibition of mTOR activation at 1 h and 4 h and of p70S6K activation at 4 h, and long term memory impairment at 24 h after acquisition; (3) scopolamine treatment caused short but not long term memory impairment with an early increase of mTOR/p70S6K activation at 1 h followed by stabilization at longer times; (4) mecamylamine plus scopolamine treatment caused short term memory impairment at 1 h and 4 h and reduced the scopolamine-induced increase of mTOR/p70S6K activation at 1 h and 4 h; (5

  6. NMDA receptors in mouse anterior piriform cortex initialize early odor preference learning and L-type calcium channels engage for long-term memory.

    Science.gov (United States)

    Mukherjee, Bandhan; Yuan, Qi

    2016-10-14

    The interactions of L-type calcium channels (LTCCs) and NMDA receptors (NMDARs) in memories are poorly understood. Here we investigated the specific roles of anterior piriform cortex (aPC) LTCCs and NMDARs in early odor preference memory in mice. Using calcium imaging in aPC slices, LTCC activation was shown to be dependent on NMDAR activation. Either D-APV (NMDAR antagonist) or nifedipine (LTCC antagonist) reduced somatic calcium transients in pyramidal cells evoked by lateral olfactory tract stimulation. However, nifedipine did not further reduce calcium in the presence of D-APV. In mice that underwent early odor preference training, blocking NMDARs in the aPC prevented short-term (3 hr) and long-term (24 hr) odor preference memory, and both memories were rescued when BayK-8644 (LTCC agonist) was co-infused. However, activating LTCCs in the absence of NMDARs resulted in loss of discrimination between the conditioned odor and a similar odor mixture at 3 hr. Elevated synaptic AMPAR expression at 3 hr was prevented by D-APV infusion but restored when LTCCs were directly activated, mirroring the behavioral outcomes. Blocking LTCCs prevented 24 hr memory and spared 3 hr memory. These results suggest that NMDARs mediate stimulus-specific encoding of odor memory while LTCCs mediate intracellular signaling leading to long-term memory.

  7. Late Protein Synthesis-Dependent Phases in CTA Long-Term Memory: BDNF Requirement

    Science.gov (United States)

    Martínez-Moreno, Araceli; Rodríguez-Durán, Luis F.; Escobar, Martha L.

    2011-01-01

    It has been proposed that long-term memory (LTM) persistence requires a late protein synthesis-dependent phase, even many hours after memory acquisition. Brain-derived neurotrophic factor (BDNF) is an essential protein synthesis product that has emerged as one of the most potent molecular mediators for long-term synaptic plasticity. Studies in the rat hippocampus have been shown that BDNF is capable to rescue the late-phase of long-term potentiation as well as the hippocampus-related LTM when protein synthesis was inhibited. Our previous studies on the insular cortex (IC), a region of the temporal cortex implicated in the acquisition and storage of conditioned taste aversion (CTA), have demonstrated that intracortical delivery of BDNF reverses the deficit in CTA memory caused by the inhibition of IC protein synthesis due to anisomycin administration during early acquisition. In this work, we first analyze whether CTA memory storage is protein synthesis-dependent in different time windows. We observed that CTA memory become sensible to protein synthesis inhibition 5 and 7 h after acquisition. Then, we explore the effect of BDNF delivery (2 μg/2 μl per side) in the IC during those late protein synthesis-dependent phases. Our results show that BDNF reverses the CTA memory deficit produced by protein synthesis inhibition in both phases. These findings support the notion that recurrent rounds of consolidation-like events take place in the neocortex for maintenance of CTA memory trace and that BDNF is an essential component of these processes. PMID:21960964

  8. What Three-Year-Olds Remember from Their Past: Long-Term Memory for Persons, Objects, and Actions

    Science.gov (United States)

    Hirte, Monika; Graf, Frauke; Kim, Ziyon; Knopf, Monika

    2017-01-01

    From birth on, infants show long-term recognition memory for persons. Furthermore, infants from six months onwards are able to store and retrieve demonstrated actions over long-term intervals in deferred imitation tasks. Thus, information about the model demonstrating the object-related actions is stored and recognition memory for the objects as…

  9. Cholestasis progression effects on long-term memory in bile duct ligation rats

    Directory of Open Access Journals (Sweden)

    Nasrin Hosseini

    2014-01-01

    Full Text Available Background : There is evidence that cognitive functions are affected by some liver diseases such as cholestasis. Bile duct ligation induces cholestasis as a result of impaired liver function and cognition. This research investigates the effect of cholestasis progression on memory function in bile duct ligation rats. Materials and Methods: Male Wistar rats were randomly divided into five groups, which include: control group for BDL-7, control group for BDL-21, sham group (underwent laparotomy without bile duct ligation, BDL-7 group (7 days after bile duct ligation, and BDL-21 group (21 days after bile duct ligation. Step-through passive avoidance test was employed to examine memory function. In all groups, short-term (7 days after foot shock and long-term memories (21 days after foot shock were assessed. Results: Our results showed that liver function significantly decreased with cholestasis progression (P < 0.01. Also our findings indicated BDL-21 significantly impaired acquisition time (P < 0.05. Memory retrieval impaired 7 (P < 0.05 and 21 days (P < 0.001 after foot shock in BDL-7 and BDL-21 groups, respectively. Conclusion: Based on these findings, liver function altered in cholestasis and memory (short-term and long-term memory impaired with cholestasis progression in bile duct ligation rats. Further studies are needed to better insight the nature of progression of brain damage in cholestatic disease.

  10. Short- and long-term memory contributions to immediate serial recognition: evidence from serial position effects.

    Science.gov (United States)

    Purser, Harry; Jarrold, Christopher

    2010-04-01

    A long-standing body of research supports the existence of separable short- and long-term memory systems, relying on phonological and semantic codes, respectively. The aim of the current study was to measure the contribution of long-term knowledge to short-term memory performance by looking for evidence of phonologically and semantically coded storage within a short-term recognition task, among developmental samples. Each experimental trial presented 4-item lists. In Experiment 1 typically developing children aged 5 to 6 years old showed evidence of phonologically coded storage across all 4 serial positions, but evidence of semantically coded storage at Serial Positions 1 and 2. In a further experiment, a group of individuals with Down syndrome was investigated as a test case that might be expected to use semantic coding to support short-term storage, but these participants showed no evidence of semantically coded storage and evidenced phonologically coded storage only at Serial Position 4, suggesting that individuals with Down syndrome have a verbal short-term memory capacity of 1 item. Our results suggest that previous evidence of semantic effects on "short-term memory performance" does not reflect semantic coding in short-term memory itself, and provide an experimental method for researchers wishing to take a relatively pure measure of verbal short-term memory capacity, in cases where rehearsal is unlikely.

  11. Enhancing long-term memory with stimulation tunes visual attention in one trial.

    Science.gov (United States)

    Reinhart, Robert M G; Woodman, Geoffrey F

    2015-01-13

    Scientists have long proposed that memory representations control the mechanisms of attention that focus processing on the task-relevant objects in our visual field. Modern theories specifically propose that we rely on working memory to store the object representations that provide top-down control over attentional selection. Here, we show that the tuning of perceptual attention can be sharply accelerated after 20 min of noninvasive brain stimulation over medial-frontal cortex. Contrary to prevailing theories of attention, these improvements did not appear to be caused by changes in the nature of the working memory representations of the search targets. Instead, improvements in attentional tuning were accompanied by changes in an electrophysiological signal hypothesized to index long-term memory. We found that this pattern of effects was reliably observed when we stimulated medial-frontal cortex, but when we stimulated posterior parietal cortex, we found that stimulation directly affected the perceptual processing of the search array elements, not the memory representations providing top-down control. Our findings appear to challenge dominant theories of attention by demonstrating that changes in the storage of target representations in long-term memory may underlie rapid changes in the efficiency with which humans can find targets in arrays of objects.

  12. Making synapses strong: metaplasticity prolongs associativity of long-term memory by switching synaptic tag mechanisms.

    Science.gov (United States)

    Li, Qin; Rothkegel, Martin; Xiao, Zhi Cheng; Abraham, Wickliffe C; Korte, Martin; Sajikumar, Sreedharan

    2014-02-01

    One conceptual mechanism for the induction of associative long-term memory is that a synaptic tag, set by a weak event, can capture plasticity-related proteins from a nearby strong input, thus enabling associativity between the 2 (synaptic tagging and capture, STC). So far, STC has been observed for only a limited time of 60 min. Nevertheless, association of weak memory forms can occur beyond this period and its mechanism is not well understood. Here we report that metaplasticity induced by ryanodine receptor activation or synaptic activation of metabotropic glutamate receptors prolongs the durability of the synaptic tag, thus extending the time window for associative interactions mediating storage of long-term memory. We provide evidence that such metaplasticity alters the mechanisms of STC from a CaMKII-mediated (in non-primed STC) to a protein kinase Mzeta (PKMζ)-mediated process (in primed STC). Thus the association of weak synapses with strong synapses in the "late" stage of associative memory formation occurs only through metaplasticity. The results also reveal that the short-lived, CaMKII-mediated tag may contribute to a mechanism for a fragile form of memory while metaplasticity enables a PKMζ-mediated synaptic tag capable of prolonged interactions that induce a more stable form of memory that is resistant to reversal.

  13. Do as I … Did! Long-term memory of imitative actions in dogs (Canis familiaris).

    Science.gov (United States)

    Fugazza, Claudia; Pogány, Ákos; Miklósi, Ádám

    2016-03-01

    This study demonstrates long-term declarative memory of imitative actions in a non-human animal species. We tested 12 pet dogs for their ability to imitate human actions after retention intervals ranging from 1 to 24 h. For comparison, another 12 dogs were tested for the same actions without delay between demonstration and recall. Our test consisted of a modified version of the Do as I Do paradigm, combined with the two-action procedure to control for non-imitative processes. Imitative performance of dogs remained consistently high independent of increasing retention intervals, supporting the idea that dogs are able to retain mental representations of human actions for an extended period of time. The ability to imitate after such delays supports the use of long-term declarative memory.

  14. Place memory and dementia: Findings from participatory film-making in long-term social care.

    Science.gov (United States)

    Capstick, Andrea; Ludwin, Katherine

    2015-07-01

    A participatory film-making study carried out in long-term social care with 10 people with Alzheimer-type dementia found that places the participants had known early in life were spontaneously foregrounded. Participants' memories of such places were well-preserved, particularly when photo-elicitation techniques, using visual images as prompts, were employed. Consistent with previous work on the 'reminiscence bump' in dementia, the foregrounded memories belonged in all cases to the period of life between approximately 5 and 30 years. Frequently the remembered places were connected with major life events which continued to have a strong emotional component. The continuing significance of place in the context of long-term dementia care is considered from a psychogeographical perspective. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. NEREC, an effective brain mapping protocol for combined language and long-term memory functions.

    Science.gov (United States)

    Perrone-Bertolotti, Marcela; Girard, Cléa; Cousin, Emilie; Vidal, Juan Ricardo; Pichat, Cédric; Kahane, Philippe; Baciu, Monica

    2015-12-01

    Temporal lobe epilepsy can induce functional plasticity in temporoparietal networks involved in language and long-term memory processing. Previous studies in healthy subjects have revealed the relative difficulty for this network to respond effectively across different experimental designs, as compared to more reactive regions such as frontal lobes. For a protocol to be optimal for clinical use, it has to first show robust effects in a healthy cohort. In this study, we developed a novel experimental paradigm entitled NEREC, which is able to reveal the robust participation of temporoparietal networks in a uniquely combined language and memory task, validated in an fMRI study with healthy subjects. Concretely, NEREC is composed of two runs: (a) an intermixed language-memory task (confrontation naming associated with encoding in nonverbal items, NE) to map language (i.e., word retrieval and lexico-semantic processes) combined with simultaneous long-term verbal memory encoding (NE items named but also explicitly memorized) and (b) a memory retrieval task of items encoded during NE (word recognition, REC) intermixed with new items. Word recognition is based on both perceptual-semantic familiarity (feeling of 'know') and accessing stored memory representations (remembering). In order to maximize the remembering and recruitment of medial temporal lobe structures, we increased REC difficulty by changing the modality of stimulus presentation (from nonverbal during NE to verbal during REC). We report that (a) temporoparietal activation during NE was attributable to both lexico-semantic (language) and memory (episodic encoding and semantic retrieval) processes; that (b) encoding activated the left hippocampus, bilateral fusiform, and bilateral inferior temporal gyri; and that (c) task recognition (recollection) activated the right hippocampus and bilateral but predominant left fusiform gyrus. The novelty of this protocol consists of (a) combining two tasks in one (language

  16. Lesser Neural Pattern Similarity across Repeated Tests Is Associated with Better Long-Term Memory Retention.

    Science.gov (United States)

    Karlsson Wirebring, Linnea; Wiklund-Hörnqvist, Carola; Eriksson, Johan; Andersson, Micael; Jonsson, Bert; Nyberg, Lars

    2015-07-01

    Encoding and retrieval processes enhance long-term memory performance. The efficiency of encoding processes has recently been linked to representational consistency: the reactivation of a representation that gets more specific each time an item is further studied. Here we examined the complementary hypothesis of whether the efficiency of retrieval processes also is linked to representational consistency. Alternatively, recurrent retrieval might foster representational variability--the altering or adding of underlying memory representations. Human participants studied 60 Swahili-Swedish word pairs before being scanned with fMRI the same day and 1 week later. On Day 1, participants were tested three times on each word pair, and on Day 7 each pair was tested once. A BOLD signal change in right superior parietal cortex was associated with subsequent memory on Day 1 and with successful long-term retention on Day 7. A representational similarity analysis in this parietal region revealed that beneficial recurrent retrieval was associated with representational variability, such that the pattern similarity on Day 1 was lower for retrieved words subsequently remembered compared with those subsequently forgotten. This was mirrored by a monotonically decreased BOLD signal change in dorsolateral prefrontal cortex on Day 1 as a function of repeated successful retrieval for words subsequently remembered, but not for words subsequently forgotten. This reduction in prefrontal response could reflect reduced demands on cognitive control. Collectively, the results offer novel insights into why memory retention benefits from repeated retrieval, and they suggest fundamental differences between repeated study and repeated testing. Repeated testing is known to produce superior long-term retention of the to-be-learned material compared with repeated encoding and other learning techniques, much because it fosters repeated memory retrieval. This study demonstrates that repeated memory

  17. Adult neurogenesis in the olfactory system shapes odor memory and perception.

    Science.gov (United States)

    Gheusi, Gilles; Lledo, Pierre-Marie

    2014-01-01

    The olfactory system is a dynamic place. In mammals, not only are sensory neurons located in the sensory organ renewed through adult life, but also its first central relay is reconstructed by continuous neuronal recruitment. Despite these numerous morphological and physiological changes, olfaction is a unique sensory modality endowed with a privileged link to memory. This raises a clear conundrum; how does the olfactory system balance its neuronal turnover with its participation in long-term memory? This review concentrates on the functional aspects of adult neurogenesis, addressing how the integration of late-born neurons participates in olfactory perception and memory. After outlining the properties of adult neurogenesis in the olfactory system, and after describing their regulation by internal and environmental factors, we ask how the process of odorant perception can be influenced by constant neuronal turnover. We then explore the possible functional roles that newborn neurons might have for olfactory memory. Throughout this review, and as we concentrate almost exclusively on mammalian models, we stress the idea that adult neurogenesis is yet another form of plasticity used by the brain to copes with a constantly changing olfactory world.

  18. PKMzeta maintains spatial, instrumental, and classically conditioned long-term memories.

    Directory of Open Access Journals (Sweden)

    Peter Serrano

    2008-12-01

    Full Text Available How long-term memories are stored is a fundamental question in neuroscience. The first molecular mechanism for long-term memory storage in the brain was recently identified as the persistent action of protein kinase Mzeta (PKMzeta, an autonomously active atypical protein kinase C (PKC isoform critical for the maintenance of long-term potentiation (LTP. PKMzeta maintains aversively conditioned associations, but what general form of information the kinase encodes in the brain is unknown. We first confirmed the specificity of the action of zeta inhibitory peptide (ZIP by disrupting long-term memory for active place avoidance with chelerythrine, a second inhibitor of PKMzeta activity. We then examined, using ZIP, the effect of PKMzeta inhibition in dorsal hippocampus (DH and basolateral amygdala (BLA on retention of 1-d-old information acquired in the radial arm maze, water maze, inhibitory avoidance, and contextual and cued fear conditioning paradigms. In the DH, PKMzeta inhibition selectively disrupted retention of information for spatial reference, but not spatial working memory in the radial arm maze, and precise, but not coarse spatial information in the water maze. Thus retention of accurate spatial, but not procedural and contextual information required PKMzeta activity. Similarly, PKMzeta inhibition in the hippocampus did not affect contextual information after fear conditioning. In contrast, PKMzeta inhibition in the BLA impaired retention of classical conditioned stimulus-unconditioned stimulus (CS-US associations for both contextual and auditory fear, as well as instrumentally conditioned inhibitory avoidance. PKMzeta inhibition had no effect on postshock freezing, indicating fear expression mediated by the BLA remained intact. Thus, persistent PKMzeta activity is a general mechanism for both appetitively and aversively motivated retention of specific, accurate learned information, but is not required for processing contextual, imprecise

  19. Providing Extrinsic Reward for Test Performance Undermines Long-Term Memory Acquisition

    Directory of Open Access Journals (Sweden)

    Christof eKuhbandner

    2016-02-01

    Full Text Available Based on numerous studies showing that testing studied material can improve long-term retention more than restudying the same material, it is often suggested that the number of tests in education should be increased to enhance knowledge acquisition. However, testing in real-life educational settings often entails a high degree of extrinsic motivation of learners due to the common practice of placing important consequences on the outcome of a test. Such an effect on the motivation of learners may undermine the beneficial effects of testing on long-term memory because it has been shown that extrinsic motivation can reduce the quality of learning. To examine this issue, participants learned foreign language vocabulary words, followed by an immediate test in which one third of the words were tested and one third restudied. To manipulate extrinsic motivation during immediate testing, participants received either monetary reward contingent on test performance or no reward. After one week, memory for all words was tested. In the immediate test, reward reduced correct recall and increased commission errors, indicating that reward reduced the number of items that can benefit from successful retrieval. The results in the delayed test revealed that reward additionally reduced the gain received from successful retrieval because memory for initially successfully retrieved words was lower in the reward condition. However, testing was still more effective than restudying under reward conditions because reward undermined long-term memory for concurrently restudied material as well. These findings indicate that providing performance-contingent reward in a test can undermine long-term knowledge acquisition.

  20. Providing Extrinsic Reward for Test Performance Undermines Long-Term Memory Acquisition.

    Science.gov (United States)

    Kuhbandner, Christof; Aslan, Alp; Emmerdinger, Kathrin; Murayama, Kou

    2016-01-01

    Based on numerous studies showing that testing studied material can improve long-term retention more than restudying the same material, it is often suggested that the number of tests in education should be increased to enhance knowledge acquisition. However, testing in real-life educational settings often entails a high degree of extrinsic motivation of learners due to the common practice of placing important consequences on the outcome of a test. Such an effect on the motivation of learners may undermine the beneficial effects of testing on long-term memory because it has been shown that extrinsic motivation can reduce the quality of learning. To examine this issue, participants learned foreign language vocabulary words, followed by an immediate test in which one-third of the words were tested and one-third restudied. To manipulate extrinsic motivation during immediate testing, participants received either monetary reward contingent on test performance or no reward. After 1 week, memory for all words was tested. In the immediate test, reward reduced correct recall and increased commission errors, indicating that reward reduced the number of items that can benefit from successful retrieval. The results in the delayed test revealed that reward additionally reduced the gain received from successful retrieval because memory for initially successfully retrieved words was lower in the reward condition. However, testing was still more effective than restudying under reward conditions because reward undermined long-term memory for concurrently restudied material as well. These findings indicate that providing performance-contingent reward in a test can undermine long-term knowledge acquisition.

  1. Statistical traces of long-term memories stored in strengths and patterns of synaptic connections

    OpenAIRE

    2011-01-01

    Learning and long-term memory rely on plasticity of neural circuits. In adult cerebral cortex plasticity can result from potentiation and depression of synaptic strengths and structural reorganization of circuits through growth and retraction of dendritic spines. By analyzing 166 distributions of spine head volumes and spine lengths from mouse, rat, monkey, and human brains, we determine the “generalized cost” of dendritic spines. This cost universally depends on spine shape, i.e. the depende...

  2. Providing Extrinsic Reward for Test Performance Undermines Long-Term Memory Acquisition

    Science.gov (United States)

    Kuhbandner, Christof; Aslan, Alp; Emmerdinger, Kathrin; Murayama, Kou

    2016-01-01

    Based on numerous studies showing that testing studied material can improve long-term retention more than restudying the same material, it is often suggested that the number of tests in education should be increased to enhance knowledge acquisition. However, testing in real-life educational settings often entails a high degree of extrinsic motivation of learners due to the common practice of placing important consequences on the outcome of a test. Such an effect on the motivation of learners may undermine the beneficial effects of testing on long-term memory because it has been shown that extrinsic motivation can reduce the quality of learning. To examine this issue, participants learned foreign language vocabulary words, followed by an immediate test in which one-third of the words were tested and one-third restudied. To manipulate extrinsic motivation during immediate testing, participants received either monetary reward contingent on test performance or no reward. After 1 week, memory for all words was tested. In the immediate test, reward reduced correct recall and increased commission errors, indicating that reward reduced the number of items that can benefit from successful retrieval. The results in the delayed test revealed that reward additionally reduced the gain received from successful retrieval because memory for initially successfully retrieved words was lower in the reward condition. However, testing was still more effective than restudying under reward conditions because reward undermined long-term memory for concurrently restudied material as well. These findings indicate that providing performance–contingent reward in a test can undermine long-term knowledge acquisition. PMID:26869978

  3. Measuring capital market efficiency: Long-term memory, fractal dimension and approximate entropy

    OpenAIRE

    Kristoufek, Ladislav; Vosvrda, Miloslav

    2014-01-01

    We utilize long-term memory, fractal dimension and approximate entropy as input variables for the Efficiency Index [Kristoufek & Vosvrda (2013), Physica A 392]. This way, we are able to comment on stock market efficiency after controlling for different types of inefficiencies. Applying the methodology on 38 stock market indices across the world, we find that the most efficient markets are situated in the Eurozone (the Netherlands, France and Germany) and the least efficient ones in the Latin ...

  4. CNTRICS Imaging Biomarkers Final Task Selection: Long-Term Memory and Reinforcement Learning

    OpenAIRE

    Ragland, John D.; Neal J Cohen; Cools, Roshan; Frank, Michael J.; Deborah E Hannula; Ranganath, Charan

    2011-01-01

    Functional imaging paradigms hold great promise as biomarkers for schizophrenia research as they can detect altered neural activity associated with the cognitive and emotional processing deficits that are so disabling to this patient population. In an attempt to identify the most promising functional imaging biomarkers for research on long-term memory (LTM), the Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS) initiative selected “item encoding and ret...

  5. Making Memories: The Development of Long-Term Visual Knowledge in Children with Visual Agnosia

    OpenAIRE

    Tiziana Metitieri; Carmen Barba; Simona Pellacani; Maria Pia Viggiano; Renzo Guerrini

    2013-01-01

    There are few reports about the effects of perinatal acquired brain lesions on the development of visual perception. These studies demonstrate nonseverely impaired visual-spatial abilities and preserved visual memory. Longitudinal data analyzing the effects of compromised perceptions on long-term visual knowledge in agnosics are limited to lesions having occurred in adulthood. The study of children with focal lesions of the visual pathways provides a unique opportunity to assess the developme...

  6. Comment on "Tequila, a neurotrypsin ortholog, regulates long-term memory formation in Drosophila".

    Science.gov (United States)

    Sonderegger, Peter; Patthy, Laszlo

    2007-06-22

    Didelot et al. (Reports, 11 August 2006, p. 851) claimed that Drosophila Tequila (Teq) and human neurotrypsin are orthologs and concluded that deficient long-term memory after Teq inactivation indicates that neurotrypsin plays its essential role for human cognitive functions through a similar mechanism. Our analyses suggest that Teq and neurotrypsin are not orthologous, leading us to question their equivalent roles in higher brain function.

  7. mTORC2 controls actin polymerization required for consolidation of long-term memory

    Science.gov (United States)

    Huang, Wei; Zhu, Ping Jun; Zhang, Shixing; Zhou, Hongyi; Stoica, Loredana; Galiano, Mauricio; Krnjević, Krešimir; Roman, Gregg; Costa-Mattioli, Mauro

    2013-01-01

    A major goal of biomedical research has been the identification of molecular mechanisms that can enhance memory. Here we report a novel signaling pathway that regulates the conversion from short- to long-term memory. The mTOR complex 2 (mTORC2), which contains the key regulatory protein Rictor (Rapamycin-Insensitive Companion of mTOR), was discovered only recently, and little is known about its physiological role. We show that conditional deletion of rictor in the postnatal murine forebrain greatly reduces mTORC2 activity and selectively impairs both long-term memory (LTM) and the late (but not the early) phase of hippocampal long-term potentiation (LTP). Actin polymerization is reduced in the hippocampus of mTORC2-deficient mice and its restoration rescues both L-LTP and LTM. More importantly, a compound that selectively promotes mTORC2 activity converts early-LTP into late-LTP and enhances LTM. These findings indicate that mTORC2 could be a novel therapeutic target for the treatment of cognitive dysfunction. PMID:23455608

  8. mTORC2 controls actin polymerization required for consolidation of long-term memory.

    Science.gov (United States)

    Huang, Wei; Zhu, Ping Jun; Zhang, Shixing; Zhou, Hongyi; Stoica, Loredana; Galiano, Mauricio; Krnjević, Krešimir; Roman, Gregg; Costa-Mattioli, Mauro

    2013-04-01

    A major goal of biomedical research is the identification of molecular and cellular mechanisms that underlie memory storage. Here we report a previously unknown signaling pathway that is necessary for the conversion from short- to long-term memory. The mammalian target of rapamycin (mTOR) complex 2 (mTORC2), which contains the regulatory protein Rictor (rapamycin-insensitive companion of mTOR), was discovered only recently and little is known about its function. We found that conditional deletion of Rictor in the postnatal murine forebrain greatly reduced mTORC2 activity and selectively impaired both long-term memory (LTM) and the late phase of hippocampal long-term potentiation (L-LTP). We also found a comparable impairment of LTM in dTORC2-deficient flies, highlighting the evolutionary conservation of this pathway. Actin polymerization was reduced in the hippocampus of mTORC2-deficient mice and its restoration rescued both L-LTP and LTM. Moreover, a compound that promoted mTORC2 activity converted early LTP into late LTP and enhanced LTM. Thus, mTORC2 could be a therapeutic target for the treatment of cognitive dysfunction.

  9. Long-term effects of interference on short-term memory performance in the rat

    Science.gov (United States)

    Missaire, Mégane; Fraize, Nicolas; Joseph, Mickaël Antoine; Hamieh, Al Mahdy; Parmentier, Régis; Marighetto, Aline; Salin, Paul Antoine; Malleret, Gaël

    2017-01-01

    A distinction has always been made between long-term and short-term memory (also now called working memory, WM). The obvious difference between these two kinds of memory concerns the duration of information storage: information is supposedly transiently stored in WM while it is considered durably consolidated into long-term memory. It is well acknowledged that the content of WM is erased and reset after a short time, to prevent irrelevant information from proactively interfering with newly stored information. In the present study, we used typical WM radial maze tasks to question the brief lifespan of spatial WM content in rodents. Groups of rats were submitted to one of two different WM tasks in a radial maze: a WM task involving the repetitive presentation of a same pair of arms expected to induce a high level of proactive interference (PI) (HIWM task), or a task using a different pair in each trial expected to induce a low level of PI (LIWM task). Performance was effectively lower in the HIWM group than in LIWM in the final trial of each training session, indicative of a “within-session/short-term” PI effect. However, we also observed a different “between-session/long-term” PI effect between the two groups: while performance of LIWM trained rats remained stable over days, the performance of HIWM rats dropped after 10 days of training, and this impairment was visible from the very first trial of the day, hence not attributable to within-session PI. We also showed that a 24 hour-gap across training sessions known to allow consolidation processes to unfold, was a necessary and sufficient condition for the long-term PI effect to occur. These findings suggest that in the HIWM task, WM content was not entirely reset between training sessions and that, in specific conditions, WM content can outlast its purpose by being stored more permanently, generating a long-term deleterious effect of PI. The alternative explanation is that WM content could be transferred and

  10. Role of delayed nonsynaptic neuronal plasticity in long-term associative memory.

    Science.gov (United States)

    Kemenes, Ildikó; Straub, Volko A; Nikitin, Eugeny S; Staras, Kevin; O'Shea, Michael; Kemenes, György; Benjamin, Paul R

    2006-07-11

    It is now well established that persistent nonsynaptic neuronal plasticity occurs after learning and, like synaptic plasticity, it can be the substrate for long-term memory. What still remains unclear, though, is how nonsynaptic plasticity contributes to the altered neural network properties on which memory depends. Understanding how nonsynaptic plasticity is translated into modified network and behavioral output therefore represents an important objective of current learning and memory research. By using behavioral single-trial classical conditioning together with electrophysiological analysis and calcium imaging, we have explored the cellular mechanisms by which experience-induced nonsynaptic electrical changes in a neuronal soma remote from the synaptic region are translated into synaptic and circuit level effects. We show that after single-trial food-reward conditioning in the snail Lymnaea stagnalis, identified modulatory neurons that are extrinsic to the feeding network become persistently depolarized between 16 and 24 hr after training. This is delayed with respect to early memory formation but concomitant with the establishment and duration of long-term memory. The persistent nonsynaptic change is extrinsic to and maintained independently of synaptic effects occurring within the network directly responsible for the generation of feeding. Artificial membrane potential manipulation and calcium-imaging experiments suggest a novel mechanism whereby the somal depolarization of an extrinsic neuron recruits command-like intrinsic neurons of the circuit underlying the learned behavior. We show that nonsynaptic plasticity in an extrinsic modulatory neuron encodes information that enables the expression of long-term associative memory, and we describe how this information can be translated into modified network and behavioral output.

  11. Depletion of Serotonin Selectively Impairs Short-Term Memory without Affecting Long-Term Memory in Odor Learning in the Terrestrial Slug "Limax Valentianus"

    Science.gov (United States)

    Santa, Tomofumi; Kirino, Yutaka; Watanabe, Satoshi; Shirahata, Takaaki; Tsunoda, Makoto

    2006-01-01

    The terrestrial slug "Limax" is able to acquire short-term and long-term memories during aversive odor-taste associative learning. We investigated the effect of the selective serotonergic neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) on memory. Behavioral studies indicated that 5,7-DHT impaired short-term memory but not long-term memory. HPLC…

  12. Depletion of Serotonin Selectively Impairs Short-Term Memory without Affecting Long-Term Memory in Odor Learning in the Terrestrial Slug "Limax Valentianus"

    Science.gov (United States)

    Santa, Tomofumi; Kirino, Yutaka; Watanabe, Satoshi; Shirahata, Takaaki; Tsunoda, Makoto

    2006-01-01

    The terrestrial slug "Limax" is able to acquire short-term and long-term memories during aversive odor-taste associative learning. We investigated the effect of the selective serotonergic neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) on memory. Behavioral studies indicated that 5,7-DHT impaired short-term memory but not long-term memory. HPLC…

  13. Tequila, a neurotrypsin ortholog, regulates long-term memory formation in Drosophila.

    Science.gov (United States)

    Didelot, Gérard; Molinari, Florence; Tchénio, Paul; Comas, Daniel; Milhiet, Elodie; Munnich, Arnold; Colleaux, Laurence; Preat, Thomas

    2006-08-11

    Mutations in the human neurotrypsin gene are associated with autosomal recessive mental retardation. To further understand the pathophysiological consequences of the lack of this serine protease, we studied Tequila (Teq), the Drosophila neurotrypsin ortholog, using associative memory as a behavioral readout. We found that teq inactivation resulted in a long-term memory (LTM)-specific defect. After LTM conditioning of wild-type flies, teq expression transiently increased in the mushroom bodies. Moreover, specific inhibition of teq expression in adult mushroom bodies resulted in a reversible LTM defect. Hence, the Teq pathway is essential for information processing in Drosophila.

  14. Loganin enhances long-term potentiation and recovers scopolamine-induced learning and memory impairments.

    Science.gov (United States)

    Hwang, Eun-Sang; Kim, Hyun-Bum; Lee, Seok; Kim, Min-Ji; Lee, Sung-Ok; Han, Seung-Moo; Maeng, Sungho; Park, Ji-Ho

    2017-03-15

    Although the incidence rate of dementia is rapidly growing in the aged population, therapeutic and preventive reagents are still suboptimal. Various model systems are used for the development of such reagents in which scopolamine is one of the favorable pharmacological tools widely applied. Loganin is a major iridoid glycoside obtained from Corni fructus (Cornusofficinalis et Zucc) and demonstrated to have anti-inflammatory, anti-tumor and osteoporosis prevention effects. It has also been found to attenuate Aβ-induced inflammatory reactions and ameliorate memory deficits induced by scopolamine. However, there has been limited information available on how loganin affects learning and memory both electrophysiologically and behaviorally. To assess its effect on learning and memory, we investigated the influence of acute loganin administration on long-term potentiation (LTP) using organotypic cultured hippocampal tissues. In addition, we measured the effects of loganin on the behavior performance related to avoidance memory, short-term spatial navigation memory and long-term spatial learning and memory in the passive avoidance, Y-maze, and Morris water maze learning paradigms, respectively. Loganin dose-dependently increased the total activity of fEPSP after high frequency stimulation and attenuated scopolamine-induced blockade of fEPSP in the hippocampal CA1 area. In accordance with these findings, loganin behaviorally attenuated scopolamine-induced shortening of step-through latency in the passive avoidance test, reduced the percent alternation in the Y-maze, and increased memory retention in the Morris water maze test. These results indicate that loganin can effectively block cholinergic muscarinic receptor blockade -induced deterioration of LTP and memory related behavioral performance. Based on these findings, loganin may aid in the prevention and treatment of Alzheimer's disease and learning and memory-deficit disorders in the future.

  15. Effects of Long-Term Ayahuasca Administration on Memory and Anxiety in Rats.

    Directory of Open Access Journals (Sweden)

    Vanessa Manchim Favaro

    Full Text Available Ayahuasca is a hallucinogenic beverage that combines the action of the 5-HT2A/2C agonist N,N-dimethyltryptamine (DMT from Psychotria viridis with the monoamine oxidase inhibitors (MAOIs induced by beta-carbonyls from Banisteriopsis caapi. Previous investigations have highlighted the involvement of ayahuasca with the activation of brain regions known to be involved with episodic memory, contextual associations and emotional processing after ayahuasca ingestion. Moreover long term users show better performance in neuropsychological tests when tested in off-drug condition. This study evaluated the effects of long-term administration of ayahuasca on Morris water maze (MWM, fear conditioning and elevated plus maze (EPM performance in rats. Behavior tests started 48h after the end of treatment. Freeze-dried ayahuasca doses of 120, 240 and 480 mg/kg were used, with water as the control. Long-term administration consisted of a daily oral dose for 30 days by gavage. The behavioral data indicated that long-term ayahuasca administration did not affect the performance of animals in MWM and EPM tasks. However the dose of 120 mg/kg increased the contextual conditioned fear response for both background and foreground fear conditioning. The tone conditioned response was not affected after long-term administration. In addition, the increase in the contextual fear response was maintained during the repeated sessions several weeks after training. Taken together, these data showed that long-term ayahuasca administration in rats can interfere with the contextual association of emotional events, which is in agreement with the fact that the beverage activates brain areas related to these processes.

  16. Effects of Long-Term Ayahuasca Administration on Memory and Anxiety in Rats

    Science.gov (United States)

    Favaro, Vanessa Manchim; Yonamine, Maurício; Soares, Juliana Carlota Kramer; Oliveira, Maria Gabriela Menezes

    2015-01-01

    Ayahuasca is a hallucinogenic beverage that combines the action of the 5-HT2A/2C agonist N,N-dimethyltryptamine (DMT) from Psychotria viridis with the monoamine oxidase inhibitors (MAOIs) induced by beta-carbonyls from Banisteriopsis caapi. Previous investigations have highlighted the involvement of ayahuasca with the activation of brain regions known to be involved with episodic memory, contextual associations and emotional processing after ayahuasca ingestion. Moreover long term users show better performance in neuropsychological tests when tested in off-drug condition. This study evaluated the effects of long-term administration of ayahuasca on Morris water maze (MWM), fear conditioning and elevated plus maze (EPM) performance in rats. Behavior tests started 48h after the end of treatment. Freeze-dried ayahuasca doses of 120, 240 and 480 mg/kg were used, with water as the control. Long-term administration consisted of a daily oral dose for 30 days by gavage. The behavioral data indicated that long-term ayahuasca administration did not affect the performance of animals in MWM and EPM tasks. However the dose of 120 mg/kg increased the contextual conditioned fear response for both background and foreground fear conditioning. The tone conditioned response was not affected after long-term administration. In addition, the increase in the contextual fear response was maintained during the repeated sessions several weeks after training. Taken together, these data showed that long-term ayahuasca administration in rats can interfere with the contextual association of emotional events, which is in agreement with the fact that the beverage activates brain areas related to these processes. PMID:26716991

  17. Effects of Long-Term Ayahuasca Administration on Memory and Anxiety in Rats.

    Science.gov (United States)

    Favaro, Vanessa Manchim; Yonamine, Maurício; Soares, Juliana Carlota Kramer; Oliveira, Maria Gabriela Menezes

    2015-01-01

    Ayahuasca is a hallucinogenic beverage that combines the action of the 5-HT2A/2C agonist N,N-dimethyltryptamine (DMT) from Psychotria viridis with the monoamine oxidase inhibitors (MAOIs) induced by beta-carbonyls from Banisteriopsis caapi. Previous investigations have highlighted the involvement of ayahuasca with the activation of brain regions known to be involved with episodic memory, contextual associations and emotional processing after ayahuasca ingestion. Moreover long term users show better performance in neuropsychological tests when tested in off-drug condition. This study evaluated the effects of long-term administration of ayahuasca on Morris water maze (MWM), fear conditioning and elevated plus maze (EPM) performance in rats. Behavior tests started 48h after the end of treatment. Freeze-dried ayahuasca doses of 120, 240 and 480 mg/kg were used, with water as the control. Long-term administration consisted of a daily oral dose for 30 days by gavage. The behavioral data indicated that long-term ayahuasca administration did not affect the performance of animals in MWM and EPM tasks. However the dose of 120 mg/kg increased the contextual conditioned fear response for both background and foreground fear conditioning. The tone conditioned response was not affected after long-term administration. In addition, the increase in the contextual fear response was maintained during the repeated sessions several weeks after training. Taken together, these data showed that long-term ayahuasca administration in rats can interfere with the contextual association of emotional events, which is in agreement with the fact that the beverage activates brain areas related to these processes.

  18. Neuronal correlate of visual associative long-term memory in the primate temporal cortex

    Science.gov (United States)

    Miyashita, Yasushi

    1988-10-01

    In human long-term memory, ideas and concepts become associated in the learning process1. No neuronal correlate for this cognitive function has so far been described, except that memory traces are thought to be localized in the cerebral cortex; the temporal lobe has been assigned as the site for visual experience because electric stimulation of this area results in imagery recall,2 and lesions produce deficits in visual recognition of objects3-9. We previously reported that in the anterior ventral temporal cortex of monkeys, individual neurons have a sustained activity that is highly selective for a few of the 100 coloured fractal patterns used in a visual working-memory task10. Here I report the development of this selectivity through repeated trials involving the working memory. The few patterns for which a neuron was conjointly selective were frequently related to each other through stimulus-stimulus association imposed during training. The results indicate that the selectivity acquired by these cells represents a neuronal correlate of the associative long-term memory of pictures.

  19. Neurotrophins play differential roles in short and long-term recognition memory.

    Science.gov (United States)

    Callaghan, Charlotte K; Kelly, Aine M

    2013-09-01

    The neurotrophin family of proteins are believed to mediate various forms of synaptic plasticity in the adult brain. Here we have assessed the roles of these proteins in object recognition memory in the rat, using icv infusions of function-blocking antibodies or the tyrosine kinase antagonist, tyrphostin AG879, to block Trk receptors. We report that tyrphostin AG879 impairs both short-term and long-term recognition memory, indicating a requirement for Trk receptor activation in both processes. The effect of inhibition of each of the neurotrophins with activity-blocking neutralising antibodies was also tested. Treatment with anti-BDNF, anti-NGF or anti-NT4 had no effect on short-term memory, but blocked long-term recognition memory. Treatment with anti-NT3 had no effect on either process. We also assessed changes in expression of neurotrophins and their respective receptors in the hippocampus, dentate gyrus and perirhinal cortex over a 24 h period following training in the object recognition task. We observed time-dependent changes in expression of the Trk receptors and their ligands in the dentate gyrus and perirhinal cortex. The data are consistent with a pivotal role for neurotrophic factors in the expression of recognition memory.

  20. Long term memory for noise: evidence of robust encoding of very short temporal acoustic patterns.

    Directory of Open Access Journals (Sweden)

    Jayalakshmi Viswanathan

    2016-11-01

    Full Text Available Recent research has demonstrated that humans are able to implicitly encode and retain repeating patterns in meaningless auditory noise. Our study aimed at testing the robustness of long-term implicit recognition memory for these learned patterns. Participants performed a cyclic/non-cyclic discrimination task, during which they were presented with either 1-s cyclic noises (CNs (the two halves of the noise were identical or 1-s plain random noises (Ns. Among CNs and Ns presented once, target CNs were implicitly presented multiple times within a block, and implicit recognition of these target CNs was tested 4 weeks later using a similar cyclic/non-cyclic discrimination task. Furthermore, robustness of implicit recognition memory was tested by presenting participants with looped (shifting the origin and scrambled (chopping sounds into 10- and 20-ms bits before shuffling versions of the target CNs. We found that participants had robust implicit recognition memory for learned noise patterns after 4 weeks, right from the first presentation. Additionally, this memory was remarkably resistant to acoustic transformations, such as looping and scrambling of the sounds. Finally, implicit recognition of sounds was dependent on participant’s discrimination performance during learning. Our findings suggest that meaningless temporal features as short as 10 ms can be implicitly stored in long-term auditory memory. Moreover, successful encoding and storage of such fine features may vary between participants, possibly depending on individual attention and auditory discrimination abilities.

  1. D-cycloserine prevents relational memory deficits and suppression of long-term potentiation induced by scopolamine in the hippocampus.

    Science.gov (United States)

    Portero-Tresserra, Marta; Del Olmo, Nuria; Martí-Nicolovius, Margarita; Guillazo-Blanch, Gemma; Vale-Martínez, Anna

    2014-11-01

    Previous research has demonstrated that systemic D-cycloserine (DCS), a partial agonist of the N-methyl-D-aspartate receptor (NMDAR), enhances memory processes in different learning paradigms and attenuates mnemonic deficits produced by diverse pharmacological manipulations. In the present study two experiments were conducted in rats to investigate whether DCS administered in the hippocampus may rescue relational memory deficits and improve deficient synaptic plasticity, both induced by an intracerebral injection of the muscarinic receptor antagonist scopolamine (SCOP). In experiment 1, we assessed whether DCS would prevent SCOP-induced amnesia in an olfactory learning paradigm requiring the integrity of the cholinergic system, the social transmission of food preference (STFP). The results showed that DCS (10 μg/site) injected into the ventral hippocampus (vHPC) before STFP acquisition compensated the 24-h retention deficit elicited by post-training intra-vHPC SCOP (40 μg/site), although it did not affect memory expression in non-SCOP treated rats. In experiment 2, we evaluated whether the perfusion of DCS in hippocampal slices may potentiate synaptic plasticity in CA1 synapses and thus recover SCOP-induced deficits in long-term potentiation (LTP). We found that DCS (50 µM and 100 µM) was able to rescue SCOP (100 µM)-induced LTP maintenance impairment, in agreement with the behavioral findings. Additionally, DCS alone (50 µM and 100 µM) enhanced field excitatory postsynaptic potentials prior to high frequency stimulation, although it did not significantly potentiate LTP. Our results suggest that positive modulation of the NMDAR, by activation of the glycine-binding site, may compensate relational memory impairments due to hippocampal muscarinic neurotransmission dysfunction possibly through enhancements in LTP maintenance.

  2. Fatty-acid binding proteins modulate sleep and enhance long-term memory consolidation in Drosophila.

    Directory of Open Access Journals (Sweden)

    Jason R Gerstner

    Full Text Available Sleep is thought to be important for memory consolidation, since sleep deprivation has been shown to interfere with memory processing. However, the effects of augmenting sleep on memory formation are not well known, and testing the role of sleep in memory enhancement has been limited to pharmacological and behavioral approaches. Here we test the effect of overexpressing the brain-type fatty acid binding protein (Fabp7 on sleep and long-term memory (LTM formation in Drosophila melanogaster. Transgenic flies carrying the murine Fabp7 or the Drosophila homologue dFabp had reduced baseline sleep but normal LTM, while Fabp induction produced increases in both net sleep and LTM. We also define a post-training consolidation "window" that is sufficient for the observed Fabp-mediated memory enhancement. Since Fabp overexpression increases consolidated daytime sleep bouts, these data support a role for longer naps in improving memory and provide a novel role for lipid-binding proteins in regulating memory consolidation concurrently with changes in behavioral state.

  3. Computerized working memory training has positive long-term effect in very low birthweight preschool children.

    Science.gov (United States)

    Grunewaldt, Kristine Hermansen; Skranes, Jon; Brubakk, Ann-Mari; Lähaugen, Gro C C

    2016-02-01

    Working memory deficits are frequently found in children born preterm and have been linked to learning disabilities, and cognitive and behavioural problems. Our aim was to evaluate if a computerized working memory training program has long-term positive effects on memory, learning, and behaviour in very-low-birthweight (VLBW) children at age 5 to 6 years. This prospective, intervention study included 20 VLBW preschool children in the intervention group and 17 age-matched, non-training VLBW children in the comparison group. The intervention group trained with the Cogmed JM working memory training program daily for 5 weeks (25 training sessions). Extensive neuropsychological assessment and parental questionnaires were performed 4 weeks after intervention and at follow-up 7 months later. For most of the statistical analyses, general linear models were applied. At follow-up, higher scores and increased or equal performance gain were found in the intervention group than the comparison group on memory for faces (p=0.012), narrative memory (p=0.002), and spatial span (p=0.003). No group differences in performance gain were found for attention and behaviour. Computerized working memory training seems to have positive and persisting effects on working memory, and visual and verbal learning, at 7-month follow-up in VLBW preschool children. We speculate that such training is beneficial by improving the ability to learn from the teaching at school and for further cognitive development. © 2015 Mac Keith Press.

  4. Neurabin contributes to hippocampal long-term potentiation and contextual fear memory.

    Directory of Open Access Journals (Sweden)

    Long-Jun Wu

    Full Text Available Neurabin is a scaffolding protein that interacts with actin and protein phosphatase-1. Highly enriched in the dendritic spine, neurabin is important for spine morphogenesis and synaptic formation. However, less is known about the role of neurabin in hippocampal plasticity and its possible effect on behavioral functions. Using neurabin knockout (KO mice, here we studied the function of neurabin in hippocampal synaptic transmission, plasticity and behavioral memory. We demonstrated that neurabin KO mice showed a deficit in contextual fear memory but not auditory fear memory. Whole-cell patch clamp recordings in the hippocampal CA1 neurons showed that long-term potentiation (LTP was significantly reduced, whereas long-term depression (LTD was unaltered in neurabin KO mice. Moreover, increased AMPA receptor but not NMDA receptor-mediated synaptic transmission was found in neurabin KO mice, and is accompanied by decreased phosphorylation of GluR1 at the PKA site (Ser845 but no change at the CaMKII/PKC site (Ser831. Pre-conditioning with LTD induction rescued the following LTP in neurabin KO mice, suggesting the loss of LTP may be due to the saturated synaptic transmission. Our results indicate that neurabin regulates contextual fear memory and LTP in hippocampal CA1 pyramidal neurons.

  5. Neurabin contributes to hippocampal long-term potentiation and contextual fear memory.

    Science.gov (United States)

    Wu, Long-Jun; Ren, Ming; Wang, Hansen; Kim, Susan S; Cao, Xiaoyan; Zhuo, Min

    2008-01-09

    Neurabin is a scaffolding protein that interacts with actin and protein phosphatase-1. Highly enriched in the dendritic spine, neurabin is important for spine morphogenesis and synaptic formation. However, less is known about the role of neurabin in hippocampal plasticity and its possible effect on behavioral functions. Using neurabin knockout (KO) mice, here we studied the function of neurabin in hippocampal synaptic transmission, plasticity and behavioral memory. We demonstrated that neurabin KO mice showed a deficit in contextual fear memory but not auditory fear memory. Whole-cell patch clamp recordings in the hippocampal CA1 neurons showed that long-term potentiation (LTP) was significantly reduced, whereas long-term depression (LTD) was unaltered in neurabin KO mice. Moreover, increased AMPA receptor but not NMDA receptor-mediated synaptic transmission was found in neurabin KO mice, and is accompanied by decreased phosphorylation of GluR1 at the PKA site (Ser845) but no change at the CaMKII/PKC site (Ser831). Pre-conditioning with LTD induction rescued the following LTP in neurabin KO mice, suggesting the loss of LTP may be due to the saturated synaptic transmission. Our results indicate that neurabin regulates contextual fear memory and LTP in hippocampal CA1 pyramidal neurons.

  6. Long-term memory of color stimuli in the jungle crow (Corvus macrorhynchos).

    Science.gov (United States)

    Bogale, Bezawork Afework; Sugawara, Satoshi; Sakano, Katsuhisa; Tsuda, Sonoko; Sugita, Shoei

    2012-03-01

    Wild-caught jungle crows (n = 20) were trained to discriminate between color stimuli in a two-alternative discrimination task. Next, crows were tested for long-term memory after 1-, 2-, 3-, 6-, and 10-month retention intervals. This preliminary study showed that jungle crows learn the task and reach a discrimination criterion (80% or more correct choices in two consecutive sessions of ten trials) in a few trials, and some even in a single session. Most, if not all, crows successfully remembered the constantly reinforced visual stimulus during training after all retention intervals. These results suggest that jungle crows have a high retention capacity for learned information, at least after a 10-month retention interval and make no or very few errors. This study is the first to show long-term memory capacity of color stimuli in corvids following a brief training that memory rather than rehearsal was apparent. Memory of visual color information is vital for exploitation of biological resources in crows. We suspect that jungle crows could remember the learned color discrimination task even after a much longer retention interval.

  7. Elimination of dendritic spines with long-term memory is specific to active circuits.

    Science.gov (United States)

    Sanders, Jeff; Cowansage, Kiriana; Baumgärtel, Karsten; Mayford, Mark

    2012-09-05

    Structural changes in brain circuits active during learning are thought to be important for long-term memory storage. If these changes support long-term information storage, they might be expected to be present at distant time points after learning, as well as to be specific to the circuit activated with learning, and sensitive to the contingencies of the behavioral paradigm. Here, we show such changes in the hippocampus as a result of contextual fear conditioning. There were significantly fewer spines specifically on active neurons of fear-conditioned mice. This spine loss did not occur in homecage mice or in mice exposed to the training context alone. Mice exposed to unpaired shocks showed a generalized reduction in spines. These learning-related changes in spine density could reflect a direct mechanism of encoding or alternately could reflect a compensatory adaptation to previously described enhancement in transmission due to glutamate receptor insertion.

  8. Extreme event return times in long-term memory processes near 1/f

    Science.gov (United States)

    Blender, R.; Fraedrich, K.; Sienz, F.

    2008-07-01

    The distribution of extreme event return times and their correlations are analyzed in observed and simulated long-term memory (LTM) time series with 1/f power spectra. The analysis is based on tropical temperature and mixing ratio (specific humidity) time series from TOGA COARE with 1 min resolution and an approximate 1/f power spectrum. Extreme events are determined by Peak-Over-Threshold (POT) crossing. The Weibull distribution represents a reasonable fit to the return time distributions while the power-law predicted by the stretched exponential for 1/f deviates considerably. For a comparison and an analysis of the return time predictability, a very long simulated time series with an approximate 1/f spectrum is produced by a fractionally differenced (FD) process. This simulated data confirms the Weibull distribution (a power law can be excluded). The return time sequences show distinctly weaker long-term correlations than the original time series (correlation exponent γ≍0.56).

  9. Neural substrates of successful working memory and long-term memory formation in a relational spatial memory task.

    Science.gov (United States)

    Bergmann, Heiko C; Daselaar, Sander M; Fernández, Guillén; Kessels, Roy P C

    2016-11-01

    Working memory (WM) tasks may involve brain activation actually implicated in long-term memory (LTM). In order to disentangle these two memory systems, we employed a combined WM/LTM task, using a spatial relational (object-location) memory paradigm and analyzed which brain areas were associated with successful performance for either task using fMRI. Critically, we corrected for the performance on the respective memory task when analyzing subsequent memory effects. The WM task consisted of a delayed-match-to-sample task assessed in an MRI scanner. Each trial consisted of an indoor or outdoor scene in which the exact configuration of four objects had to be remembered. After a short delay (7-13 s), the scene was presented from a different angle and spatial recognition for two objects was tested. After scanning, participants received an unexpected subsequent recognition memory (LTM) task, where the two previously unprobed objects were tested. Brain activity during encoding, delay phase and probe phase was analyzed based on WM and LTM performance. Results showed that successful WM performance, when corrected for LTM performance, was associated with greater activation in the inferior frontal gyrus and left fusiform gyrus during the early stage of the maintenance phase. A correct decision during the WM probe was accompanied by greater activation in a wide network, including bilateral hippocampus, right superior parietal gyrus and bilateral insula. No voxels exhibited supra-threshold activity during the encoding phase, and we did not find any differential activity for correct versus incorrect trials in the WM task when comparing LTM correct versus LTM incorrect trials.

  10. A phenomenological memristor model for short-term/long-term memory

    Science.gov (United States)

    Chen, Ling; Li, Chuandong; Huang, Tingwen; Ahmad, Hafiz Gulfam; Chen, Yiran

    2014-08-01

    Memristor is considered to be a natural electrical synapse because of its distinct memory property and nanoscale. In recent years, more and more similar behaviors are observed between memristors and biological synapse, e.g., short-term memory (STM) and long-term memory (LTM). The traditional mathematical models are unable to capture the new emerging behaviors. In this article, an updated phenomenological model based on the model of the Hewlett-Packard (HP) Labs has been proposed to capture such new behaviors. The new dynamical memristor model with an improved ion diffusion term can emulate the synapse behavior with forgetting effect, and exhibit the transformation between the STM and the LTM. Further, this model can be used in building new type of neural networks with forgetting ability like biological systems, and it is verified by our experiment with Hopfield neural network.

  11. Narrative organisation at encoding facilitated children's long-term episodic memory.

    Science.gov (United States)

    Wang, Qi; Bui, Van-Kim; Song, Qingfang

    2015-01-01

    This study examined the effect of narrative organisation at encoding on long-term episodic memory in a sample of five- to seven-year-old children (N = 113). At an initial interview, children were asked to narrate a story from a picture book. Six months later, they were interviewed again and asked to recall the story and answer a series of direct questions about the story. Children who initially encoded more information in narrative and produced more complete, complex, cohesive and coherent narratives remembered the story in greater detail and accuracy following the six-month interval, independent of age and verbal skills. The relation between narrative organisation and memory was consistent across culture and gender. These findings provide new insight into the critical role of narrative in episodic memory.

  12. Stress within a restricted time window selectively affects the persistence of long-term memory.

    Directory of Open Access Journals (Sweden)

    Chang Yang

    Full Text Available The effects of stress on emotional memory are distinct and depend on the stages of memory. Memory undergoes consolidation and reconsolidation after acquisition and retrieval, respectively. Stress facilitates the consolidation but disrupts the reconsolidation of emotional memory. Previous research on the effects of stress on memory have focused on long-term memory (LTM formation (tested 24 h later, but the effects of stress on the persistence of LTM (tested at least 1 week later are unclear. Recent findings indicated that the persistence of LTM requires late-phase protein synthesis in the dorsal hippocampus. The present study investigated the effect of stress (i.e., cold water stress during the late phase after the acquisition and retrieval of contextual fear memory in rats. We found that stress and corticosterone administration during the late phase (12 h after acquisition, referred to as late consolidation, selectively enhanced the persistence of LTM, whereas stress during the late phase (12 h after retrieval, referred to as late reconsolidation, selectively disrupted the restabilized persistence of LTM. Moreover, the effects of stress on the persistence of LTM were blocked by the corticosterone synthesis inhibitor metyrapone, which was administered before stress, suggesting that the glucocorticoid system is involved in the effects of stress on the persistence of LTM. We conclude that stress within a restricted time window after acquisition or retrieval selectively affects the persistence of LTM and depends on the glucocorticoid system.

  13. Stress within a Restricted Time Window Selectively Affects the Persistence of Long-Term Memory

    Science.gov (United States)

    Fang, Qin; Chai, Ning; Zhao, Li-Yan; Xue, Yan-Xue; Luo, Yi-Xiao; Jian, Min; Han, Ying; Shi, Hai-Shui; Lu, Lin; Wu, Ping; Wang, Ji-Shi

    2013-01-01

    The effects of stress on emotional memory are distinct and depend on the stages of memory. Memory undergoes consolidation and reconsolidation after acquisition and retrieval, respectively. Stress facilitates the consolidation but disrupts the reconsolidation of emotional memory. Previous research on the effects of stress on memory have focused on long-term memory (LTM) formation (tested 24 h later), but the effects of stress on the persistence of LTM (tested at least 1 week later) are unclear. Recent findings indicated that the persistence of LTM requires late-phase protein synthesis in the dorsal hippocampus. The present study investigated the effect of stress (i.e., cold water stress) during the late phase after the acquisition and retrieval of contextual fear memory in rats. We found that stress and corticosterone administration during the late phase (12 h) after acquisition, referred to as late consolidation, selectively enhanced the persistence of LTM, whereas stress during the late phase (12 h) after retrieval, referred to as late reconsolidation, selectively disrupted the restabilized persistence of LTM. Moreover, the effects of stress on the persistence of LTM were blocked by the corticosterone synthesis inhibitor metyrapone, which was administered before stress, suggesting that the glucocorticoid system is involved in the effects of stress on the persistence of LTM. We conclude that stress within a restricted time window after acquisition or retrieval selectively affects the persistence of LTM and depends on the glucocorticoid system. PMID:23544051

  14. Upregulation of CREB-mediated transcription enhances both short- and long-term memory.

    Science.gov (United States)

    Suzuki, Akinobu; Fukushima, Hotaka; Mukawa, Takuya; Toyoda, Hiroki; Wu, Long-Jun; Zhao, Ming-Gao; Xu, Hui; Shang, Yuze; Endoh, Kengo; Iwamoto, Taku; Mamiya, Nori; Okano, Emiko; Hasegawa, Shunsuke; Mercaldo, Valentina; Zhang, Yue; Maeda, Ryouta; Ohta, Miho; Josselyn, Sheena A; Zhuo, Min; Kida, Satoshi

    2011-06-15

    Unraveling the mechanisms by which the molecular manipulation of genes of interest enhances cognitive function is important to establish genetic therapies for cognitive disorders. Although CREB is thought to positively regulate formation of long-term memory (LTM), gain-of-function effects of CREB remain poorly understood, especially at the behavioral level. To address this, we generated four lines of transgenic mice expressing dominant active CREB mutants (CREB-Y134F or CREB-DIEDML) in the forebrain that exhibited moderate upregulation of CREB activity. These transgenic lines improved not only LTM but also long-lasting long-term potentiation in the CA1 area in the hippocampus. However, we also observed enhanced short-term memory (STM) in contextual fear-conditioning and social recognition tasks. Enhanced LTM and STM could be dissociated behaviorally in these four lines of transgenic mice, suggesting that the underlying mechanism for enhanced STM and LTM are distinct. LTM enhancement seems to be attributable to the improvement of memory consolidation by the upregulation of CREB transcriptional activity, whereas higher basal levels of BDNF, a CREB target gene, predicted enhanced shorter-term memory. The importance of BDNF in STM was verified by microinfusing BDNF or BDNF inhibitors into the hippocampus of wild-type or transgenic mice. Additionally, increasing BDNF further enhanced LTM in one of the lines of transgenic mice that displayed a normal BDNF level but enhanced LTM, suggesting that upregulation of BDNF and CREB activity cooperatively enhances LTM formation. Our findings suggest that CREB positively regulates memory consolidation and affects memory performance by regulating BDNF expression.

  15. A novel role for extracellular signal-regulated kinase in maintaining long-term memory-relevant excitability changes.

    Science.gov (United States)

    Cohen-Matsliah, Sivan Ida; Brosh, Inbar; Rosenblum, Kobi; Barkai, Edi

    2007-11-14

    Pyramidal neurons in the piriform cortex from olfactory-discrimination-trained rats show enhanced intrinsic neuronal excitability that lasts for several days after learning. Such enhanced intrinsic excitability is mediated by long-term reduction in the postburst afterhyperpolarization (AHP), which is generated by repetitive spike firing. AHP reduction is attributable to decreased conductance of a calcium-dependent potassium current, the sI(AHP). We have previously shown that such learning-induced AHP reduction is maintained by PKC activation. However, the molecular machinery underlying such long-lasting modulation of intrinsic excitability is yet to be fully described. Here we examine whether the extracellular signal-regulated kinase I/II (ERKI/II) pathway, which is known to be crucial in learning, memory, and synaptic plasticity processes, is instrumental for the long-term maintenance of learning-induced AHP reduction. PD98059 or UO126, which selectively block MEK, the upstream kinase of ERK, increased the AHP in neurons from trained rats but not in neurons from naive and pseudo-trained rats. Consequently, the differences in AHP amplitude and neuronal adaptation between neurons from trained rats and controls were abolished. This effect was not mediated by modulation of basic membrane properties. In accordance with its effect on neuronal excitability, the level of activated ERK in the membranal fraction was significantly higher in piriform cortex samples taken from trained rats. In addition, the PKC activator OAG (1-oleoyl-20acety-sn-glycerol), which was shown to reduce the AHP in neurons from control rats, had no effect on these neurons in the presence of PD98059. Our data show that ERK has a key role in maintaining long-lasting learning-induced enhancement of neuronal excitability.

  16. Strategic search from long-term memory: an examination of semantic and autobiographical recall.

    Science.gov (United States)

    Unsworth, Nash; Brewer, Gene A; Spillers, Gregory J

    2014-01-01

    Searching long-term memory is theoretically driven by both directed (search strategies) and random components. In the current study we conducted four experiments evaluating strategic search in semantic and autobiographical memory. Participants were required to generate either exemplars from the category of animals or the names of their friends for several minutes. Self-reported strategies suggested that participants typically relied on visualization strategies for both tasks and were less likely to rely on ordered strategies (e.g., alphabetic search). When participants were instructed to use particular strategies, the visualization strategy resulted in the highest levels of performance and the most efficient search, whereas ordered strategies resulted in the lowest levels of performance and fairly inefficient search. These results are consistent with the notion that retrieval from long-term memory is driven, in part, by search strategies employed by the individual, and that one particularly efficient strategy is to visualize various situational contexts that one has experienced in the past in order to constrain the search and generate the desired information.

  17. Spatial coding of ordinal information in short- and long-term memory

    Directory of Open Access Journals (Sweden)

    Veronique eGinsburg

    2015-01-01

    Full Text Available The processing of numerical information induces a spatial response bias: Faster responses to small numbers with the left hand and faster responses to large numbers with the right hand. Most theories agree that long-term representations underlie this so called SNARC effect (Spatial Numerical Association of Response Codes; Dehaene, Bossini, & Giraux, 1993. However, a spatial response bias was also observed with the activation of temporary position-space associations in working memory (ordinal position effect; van Dijck & Fias, 2011. Items belonging to the beginning of a memorized sequence are responded to faster with the left hand side while items at the end of the sequence are responded to faster with the right hand side. The theoretical possibility was put forward that the SNARC effect is an instance of the ordinal position effect, with the empirical consequence that the SNARC effect and the ordinal position effect cannot be observed simultaneously. In two experiments we falsify this claim by demonstrating that the SNARC effect and the ordinal position effect are not mutually exclusive. Consequently, this suggests that the SNARC effect and the ordinal position effect result from the activation of different representations. We conclude that spatial response biases can result from the activation of both pre-existing positions in long-term memory and from temporary space associations in working memory at the same time.

  18. Spatial coding of ordinal information in short- and long-term memory.

    Science.gov (United States)

    Ginsburg, Véronique; Gevers, Wim

    2015-01-01

    The processing of numerical information induces a spatial response bias: Faster responses to small numbers with the left hand and faster responses to large numbers with the right hand. Most theories agree that long-term representations underlie this so called SNARC effect (Spatial Numerical Association of Response Codes; Dehaene et al., 1993). However, a spatial response bias was also observed with the activation of temporary position-space associations in working memory (ordinal position effect; van Dijck and Fias, 2011). Items belonging to the beginning of a memorized sequence are responded to faster with the left hand side while items at the end of the sequence are responded to faster with the right hand side. The theoretical possibility was put forward that the SNARC effect is an instance of the ordinal position effect, with the empirical consequence that the SNARC effect and the ordinal position effect cannot be observed simultaneously. In two experiments we falsify this claim by demonstrating that the SNARC effect and the ordinal position effect are not mutually exclusive. Consequently, this suggests that the SNARC effect and the ordinal position effect result from the activation of different representations. We conclude that spatial response biases can result from the activation of both pre-existing positions in long-term memory and from temporary space associations in working memory at the same time.

  19. Prediction analysis of long-term memory effect for calamity gray series

    Institute of Scientific and Technical Information of China (English)

    CHEN; Zhaonan(CHEN; Chaonan); LI; Zongyang(LEE; Tzongye

    2004-01-01

    It is adequate to use the gray theory for modeling and forecasting short-term calamity series. The forecast of calamity gray series is equivalent to predicting an extraordinary event in nature. In order to look for the regularity, the calamity date series, created from the threshold for a fixed time-interval series, are studied. In this paper, the Hurst exponent is applied to defining the long-term memory effect of the simulated calamity series, and is tested for the feasibility of using it as pre-requisite information before the gray modeling and forecasting. Based on the fractional Brownian motion (fBm) model, the time series with a definite length or quantity of data are derived assuming that various kinds of memory effect exist. Different threshold values are defined to yield or to analogize the calamity date series that are required in the prediction of the gray calamity events. After case study, both of the simulated and real seismic data show that the Hurst exponents are greater than 0.5 and, therefore, indicate that the long-term memory effect exists. The correlation between the Hurst exponent and the gray modeling parameter, a, provides criteria for the classification of the forecast.

  20. Impaired fear memory specificity associated with deficient endocannabinoid-dependent long-term plasticity.

    Science.gov (United States)

    Lovelace, Jonathan W; Vieira, Philip A; Corches, Alex; Mackie, Ken; Korzus, Edward

    2014-06-01

    In addition to its central role in learning and memory, N-methyl D-aspartate receptor (NMDAR)-dependent signaling regulates central glutamatergic synapse maturation and has been implicated in schizophrenia. We have transiently induced NMDAR hypofunction in infant mice during postnatal days 7-11, followed by testing fear memory specificity and presynaptic plasticity in the prefrontal cortex (PFC) in adult mice. We show that transient NMDAR hypofunction during early brain development, coinciding with the maturation of cortical plasticity results in a loss of an endocannabinoid (eCB)-mediated form of long-term depression (eCB-LTD) at adult central glutamatergic synapses, while another form of presynaptic long-term depression mediated by the metabotropic glutamate receptor 2/3 (mGluR2/3-LTD) remains intact. Mice with this selective impairment of presynaptic plasticity also showed deficits in fear memory specificity. The observed deficit in cortical presynaptic plasticity may represent a neural maladaptation contributing to network instability and abnormal cognitive functioning.

  1. Dopaminergic neurotransmission dysfunction induced by amyloid-β transforms cortical long-term potentiation into long-term depression and produces memory impairment.

    Science.gov (United States)

    Moreno-Castilla, Perla; Rodriguez-Duran, Luis F; Guzman-Ramos, Kioko; Barcenas-Femat, Alejandro; Escobar, Martha L; Bermudez-Rattoni, Federico

    2016-05-01

    Alzheimer's disease (AD) is a neurodegenerative condition manifested by synaptic dysfunction and memory loss, but the mechanisms underlying synaptic failure are not entirely understood. Although dopamine is a key modulator of synaptic plasticity, dopaminergic neurotransmission dysfunction in AD has mostly been associated to noncognitive symptoms. Thus, we aimed to study the relationship between dopaminergic neurotransmission and synaptic plasticity in AD models. We used a transgenic model of AD (triple-transgenic mouse model of AD) and the administration of exogenous amyloid-β (Aβ) oligomers into wild type mice. We found that Aβ decreased cortical dopamine levels and converted in vivo long-term potentiation (LTP) into long-term depression (LTD) after high-frequency stimulation delivered at basolateral amygdaloid nucleus-insular cortex projection, which led to impaired recognition memory. Remarkably, increasing cortical dopamine and norepinephrine levels rescued both high-frequency stimulation -induced LTP and memory, whereas depletion of catecholaminergic levels mimicked the Aβ-induced shift from LTP to LTD. Our results suggest that Aβ-induced dopamine depletion is a core mechanism underlying the early synaptopathy and memory alterations observed in AD models and acts by modifying the threshold for the induction of cortical LTP and/or LTD. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Chronic dietary chlorpyrifos causes long-term spatial memory impairment and thigmotaxic behavior.

    Science.gov (United States)

    López-Granero, Caridad; Ruiz-Muñoz, Ana M; Nieto-Escámez, Francisco A; Colomina, María T; Aschner, Michael; Sánchez-Santed, Fernando

    2016-03-01

    Little is known about the long-term effects of chronic exposure to low-level organophosphate (OP) pesticides, and the role of neurotransmitter systems, other than the cholinergic system, in mediating OP neurotoxicity. In this study, rats were administered 5mg/kg/day of chlorpyrifos (CPF) for 6 months commencing at 3-months-of-age. The animals were examined 7 months later (at 16-months-of-age) for spatial learning and memory in the Morris water maze (MWM) and locomotor activity. In addition, we assessed the chronic effects of CPF on glutamatergic and gamma-aminobutyric acid (GABAergic) function using pharmacological challenges with dizocilpine (MK801) and diazepam. Impaired performance related to altered search patterns, including thigmotaxis and long-term spatial memory was noted in the MWM in animals exposed to CPF, pointing to dietary CPF-induced behavioral disturbances, such as anxiety. Twenty-four hours after the 31st session of repeated acquisition task, 0.1mg/kg MK801, an N-methyl-d-aspartate (NMDA) antagonist was intraperitoneally (i.p.) injected for 4 consecutive days. Decreased latencies in the MWM in the control group were noted after two sessions with MK801 treatment. Once the MWM assessment was completed, animals were administered 0.1 or 0.2mg/kg of MK801 and 1 or 3mg/kg of diazepam i.p., and tested for locomotor activity. Both groups, the CPF dietary and control, displayed analogous performance in motor activity. In conclusion, our data point to a connection between the long-term spatial memory, thigmotaxic response and CPF long after the exposure ended. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Chronic sleep deprivation differentially affects short and long-term operant memory in Aplysia.

    Science.gov (United States)

    Krishnan, Harini C; Noakes, Eric J; Lyons, Lisa C

    2016-10-01

    The induction, formation and maintenance of memory represent dynamic processes modulated by multiple factors including the circadian clock and sleep. Chronic sleep restriction has become common in modern society due to occupational and social demands. Given the impact of cognitive impairments associated with sleep deprivation, there is a vital need for a simple animal model in which to study the interactions between chronic sleep deprivation and memory. We used the marine mollusk Aplysia californica, with its simple nervous system, nocturnal sleep pattern and well-characterized learning paradigms, to assess the effects of two chronic sleep restriction paradigms on short-term (STM) and long-term (LTM) associative memory. The effects of sleep deprivation on memory were evaluated using the operant learning paradigm, learning that food is inedible, in which the animal associates a specific netted seaweed with failed swallowing attempts. We found that two nights of 6h sleep deprivation occurring during the first or last half of the night inhibited both STM and LTM. Moreover, the impairment in STM persisted for more than 24h. A milder, prolonged sleep deprivation paradigm consisting of 3 consecutive nights of 4h sleep deprivation also blocked STM, but had no effect on LTM. These experiments highlight differences in the sensitivity of STM and LTM to chronic sleep deprivation. Moreover, these results establish Aplysia as a valid model for studying the interactions between chronic sleep deprivation and associative memory paving the way for future studies delineating the mechanisms through which sleep restriction affects memory formation.

  4. Acute stress does not impair long-term memory retrieval in older people.

    Science.gov (United States)

    Pulopulos, Matias M; Almela, Mercedes; Hidalgo, Vanesa; Villada, Carolina; Puig-Perez, Sara; Salvador, Alicia

    2013-09-01

    Previous studies have shown that stress-induced cortisol increases impair memory retrieval in young people. This effect has not been studied in older people; however, some findings suggest that age-related changes in the brain can affect the relationships between acute stress, cortisol and memory in older people. Our aim was to investigate the effects of acute stress on long-term memory retrieval in healthy older people. To this end, 76 participants from 56 to 76 years old (38 men and 38 women) were exposed to an acute psychosocial stressor or a control task. After the stress/control task, the recall of pictures, words and stories learned the previous day was assessed. There were no differences in memory retrieval between the stress and control groups on any of the memory tasks. In addition, stress-induced cortisol response was not associated with memory retrieval. An age-related decrease in cortisol receptors and functional changes in the amygdala and hippocampus could underlie the differences observed between the results from this study and those found in studies performed with young people.

  5. Long-term potentiation decay and memory loss are mediated by AMPAR endocytosis.

    Science.gov (United States)

    Dong, Zhifang; Han, Huili; Li, Hongjie; Bai, Yanrui; Wang, Wei; Tu, Man; Peng, Yan; Zhou, Limin; He, Wenting; Wu, Xiaobin; Tan, Tao; Liu, Mingjing; Wu, Xiaoyan; Zhou, Weihui; Jin, Wuyang; Zhang, Shu; Sacktor, Todd Charlton; Li, Tingyu; Song, Weihong; Wang, Yu Tian

    2015-01-01

    Long-term potentiation (LTP) of synaptic strength between hippocampal neurons is associated with learning and memory, and LTP dysfunction is thought to underlie memory loss. LTP can be temporally and mechanistically classified into decaying (early-phase) LTP and nondecaying (late-phase) LTP. While the nondecaying nature of LTP is thought to depend on protein synthesis and contribute to memory maintenance, little is known about the mechanisms and roles of decaying LTP. Here, we demonstrated that inhibiting endocytosis of postsynaptic α-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid receptors (AMPARs) prevents LTP decay, thereby converting it into nondecaying LTP. Conversely, restoration of AMPAR endocytosis by inhibiting protein kinase Mζ (PKMζ) converted nondecaying LTP into decaying LTP. Similarly, inhibition of AMPAR endocytosis prolonged memory retention in normal animals and reduced memory loss in a murine model of Alzheimer's disease. These results strongly suggest that an active process that involves AMPAR endocytosis mediates the decay of LTP and that inhibition of this process can prolong the longevity of LTP as well as memory under both physiological and pathological conditions.

  6. Binding neutral information to emotional contexts: Brain dynamics of long-term recognition memory.

    Science.gov (United States)

    Ventura-Bort, Carlos; Löw, Andreas; Wendt, Julia; Moltó, Javier; Poy, Rosario; Dolcos, Florin; Hamm, Alfons O; Weymar, Mathias

    2016-04-01

    There is abundant evidence in memory research that emotional stimuli are better remembered than neutral stimuli. However, effects of an emotionally charged context on memory for associated neutral elements is also important, particularly in trauma and stress-related disorders, where strong memories are often activated by neutral cues due to their emotional associations. In the present study, we used event-related potentials (ERPs) to investigate long-term recognition memory (1-week delay) for neutral objects that had been paired with emotionally arousing or neutral scenes during encoding. Context effects were clearly evident in the ERPs: An early frontal ERP old/new difference (300-500 ms) was enhanced for objects encoded in unpleasant compared to pleasant and neutral contexts; and a late central-parietal old/new difference (400-700 ms) was observed for objects paired with both pleasant and unpleasant contexts but not for items paired with neutral backgrounds. Interestingly, objects encoded in emotional contexts (and novel objects) also prompted an enhanced frontal early (180-220 ms) positivity compared to objects paired with neutral scenes indicating early perceptual significance. The present data suggest that emotional--particularly unpleasant--backgrounds strengthen memory for items encountered within these contexts and engage automatic and explicit recognition processes. These results could help in understanding binding mechanisms involved in the activation of trauma-related memories by neutral cues.

  7. Spatial, contextual and working memory are not affected by the absence of mossy fiber long-term potentiation and depression

    NARCIS (Netherlands)

    Hensbroek, R.A.; Kamal, A.; Baars, A.M.; Verhage, M.; Spruijt, B.M.

    2003-01-01

    The mossy fibers of the hippocampus display NMDA-receptor independent long-term plasticity. A number of studies addressed the role of mossy fiber long-term plasticity in memory, but have provided contrasting results. Here, we have exploited a genetic model, the rab3A null-mutant, which is

  8. Spatial, contextual and working memory are not affected by the absence of mossy fiber long-term potentiation and depression

    NARCIS (Netherlands)

    Hensbroek, R.A.; Kamal, A.; Baars, A.M.; Verhage, M.; Spruijt, B.M.

    2003-01-01

    The mossy fibers of the hippocampus display NMDA-receptor independent long-term plasticity. A number of studies addressed the role of mossy fiber long-term plasticity in memory, but have provided contrasting results. Here, we have exploited a genetic model, the rab3A null-mutant, which is characteri

  9. Boosting long-term memory via wakeful rest: intentional rehearsal is not necessary, consolidation is sufficient.

    Science.gov (United States)

    Dewar, Michaela; Alber, Jessica; Cowan, Nelson; Della Sala, Sergio

    2014-01-01

    People perform better on tests of delayed free recall if learning is followed immediately by a short wakeful rest than by a short period of sensory stimulation. Animal and human work suggests that wakeful resting provides optimal conditions for the consolidation of recently acquired memories. However, an alternative account cannot be ruled out, namely that wakeful resting provides optimal conditions for intentional rehearsal of recently acquired memories, thus driving superior memory. Here we utilised non-recallable words to examine whether wakeful rest boosts long-term memory, even when new memories could not be rehearsed intentionally during the wakeful rest delay. The probing of non-recallable words requires a recognition paradigm. Therefore, we first established, via Experiment 1, that the rest-induced boost in memory observed via free recall can be replicated in a recognition paradigm, using concrete nouns. In Experiment 2, participants heard 30 non-recallable non-words, presented as 'foreign names in a bridge club abroad' and then either rested wakefully or played a visual spot-the-difference game for 10 minutes. Retention was probed via recognition at two time points, 15 minutes and 7 days after presentation. As in Experiment 1, wakeful rest boosted recognition significantly, and this boost was maintained for at least 7 days. Our results indicate that the enhancement of memory via wakeful rest is not dependent upon intentional rehearsal of learned material during the rest period. We thus conclude that consolidation is sufficient for this rest-induced memory boost to emerge. We propose that wakeful resting allows for superior memory consolidation, resulting in stronger and/or more veridical representations of experienced events which can be detected via tests of free recall and recognition.

  10. Boosting long-term memory via wakeful rest: intentional rehearsal is not necessary, consolidation is sufficient.

    Directory of Open Access Journals (Sweden)

    Michaela Dewar

    Full Text Available People perform better on tests of delayed free recall if learning is followed immediately by a short wakeful rest than by a short period of sensory stimulation. Animal and human work suggests that wakeful resting provides optimal conditions for the consolidation of recently acquired memories. However, an alternative account cannot be ruled out, namely that wakeful resting provides optimal conditions for intentional rehearsal of recently acquired memories, thus driving superior memory. Here we utilised non-recallable words to examine whether wakeful rest boosts long-term memory, even when new memories could not be rehearsed intentionally during the wakeful rest delay. The probing of non-recallable words requires a recognition paradigm. Therefore, we first established, via Experiment 1, that the rest-induced boost in memory observed via free recall can be replicated in a recognition paradigm, using concrete nouns. In Experiment 2, participants heard 30 non-recallable non-words, presented as 'foreign names in a bridge club abroad' and then either rested wakefully or played a visual spot-the-difference game for 10 minutes. Retention was probed via recognition at two time points, 15 minutes and 7 days after presentation. As in Experiment 1, wakeful rest boosted recognition significantly, and this boost was maintained for at least 7 days. Our results indicate that the enhancement of memory via wakeful rest is not dependent upon intentional rehearsal of learned material during the rest period. We thus conclude that consolidation is sufficient for this rest-induced memory boost to emerge. We propose that wakeful resting allows for superior memory consolidation, resulting in stronger and/or more veridical representations of experienced events which can be detected via tests of free recall and recognition.

  11. Attention, Working Memory, and Long-Term Memory in Multimedia Learning: An Integrated Perspective Based on Process Models of Working Memory

    Science.gov (United States)

    Schweppe, Judith; Rummer, Ralf

    2014-01-01

    Cognitive models of multimedia learning such as the Cognitive Theory of Multimedia Learning (Mayer 2009) or the Cognitive Load Theory (Sweller 1999) are based on different cognitive models of working memory (e.g., Baddeley 1986) and long-term memory. The current paper describes a working memory model that has recently gained popularity in basic…

  12. Attention, Working Memory, and Long-Term Memory in Multimedia Learning: An Integrated Perspective Based on Process Models of Working Memory

    Science.gov (United States)

    Schweppe, Judith; Rummer, Ralf

    2014-01-01

    Cognitive models of multimedia learning such as the Cognitive Theory of Multimedia Learning (Mayer 2009) or the Cognitive Load Theory (Sweller 1999) are based on different cognitive models of working memory (e.g., Baddeley 1986) and long-term memory. The current paper describes a working memory model that has recently gained popularity in basic…

  13. Bound feature combinations in visual short-term memory are fragile but influence long-term learning

    NARCIS (Netherlands)

    R.H. Logie; J.R. Brockmole; A.R.E. Vandenbroucke

    2009-01-01

    We explored whether individual features and bindings between those features in VSTM tasks are completely lost from trial to trial or whether residual memory traces for these features and bindings are retained in long-term memory. Memory for arrays of coloured shapes was assessed using change detecti

  14. Bound feature combinations in visual short-term memory are fragile but influence long-term learning

    NARCIS (Netherlands)

    Logie, R.H.; Brockmole, J.R.; Vandenbroucke, A.R.E.

    2009-01-01

    We explored whether individual features and bindings between those features in VSTM tasks are completely lost from trial to trial or whether residual memory traces for these features and bindings are retained in long-term memory. Memory for arrays of coloured shapes was assessed using change

  15. When music and long-term memory interact: effects of musical expertise on functional and structural plasticity in the hippocampus

    National Research Council Canada - National Science Library

    Groussard, Mathilde; La Joie, Renaud; Rauchs, Géraldine; Landeau, Brigitte; Chételat, Gaël; Viader, Fausto; Desgranges, Béatrice; Eustache, Francis; Platel, Hervé

    2010-01-01

    .... Surprisingly, no functional magnetic resonance imaging (fMRI) study has investigated the impact of musical training on brain function during long-term memory retrieval, a faculty particularly important in music...

  16. From Drosophila development to adult: clues to Notch function in long-term memory

    Directory of Open Access Journals (Sweden)

    Jiabin eZhang

    2013-11-01

    Full Text Available Notch is a cell surface receptor that is well known to mediate inter-cellular communication during animal development. Data in the field indicate that it is also involved in the formation of long-term memory (LTM in the fully developed adults and in memory loss upon neurodegeneration. Our studies in the model organism Drosophila reveal that a non-canonical Notch-Protein Kinase C (PKC activity that plays critical roles in embryonic development also regulates Cyclic-AMP Response Element Binding protein (CREB during LTM formation in adults. Here we present a perspective on how the various known features of Notch function relate to LTM formation and how they might interface with elements of Wingless/Wnt signaling in this process.

  17. Fornix deep brain stimulation induced long-term spatial memory independent of hippocampal neurogenesis.

    Science.gov (United States)

    Hescham, Sarah; Temel, Yasin; Schipper, Sandra; Lagiere, Mélanie; Schönfeld, Lisa-Maria; Blokland, Arjan; Jahanshahi, Ali

    2017-03-01

    Deep brain stimulation (DBS) is an established symptomatic treatment modality for movement disorders and constitutes an emerging therapeutic approach for the treatment of memory impairment. In line with this, fornix DBS has shown to ameliorate cognitive decline associated with dementia. Nonetheless, mechanisms mediating clinical effects in demented patients or patients with other neurological disorders are largely unknown. There is evidence that DBS is able to modulate neurophysiological activity in targeted brain regions. We therefore hypothesized that DBS might be able to influence cognitive function via activity-dependent regulation of hippocampal neurogenesis. Using stimulation parameters, which were validated to restore memory loss in a previous behavioral study, we here assessed long-term effects of fornix DBS. To do so, we injected the thymidine analog, 5-bromo-2'-deoxyuridine (BrdU), after DBS and perfused the animals 6.5 weeks later. A week prior to perfusion, memory performance was assessed in the water maze. We found that acute stimulation of the fornix improved spatial memory performance in the water maze when the probe trial was performed 1 h after the last training session. However, no evidence for stimulation-induced neurogenesis was found in fornix DBS rats when compared to sham. Our results suggest that fornix DBS improves memory functions independent of hippocampal neurogenesis, possibly through other mechanisms such as synaptic plasticity and acute neurotransmitter release.

  18. Early exposure to volatile anesthetics impairs long-term associative learning and recognition memory.

    Directory of Open Access Journals (Sweden)

    Bradley H Lee

    Full Text Available BACKGROUND: Anesthetic exposure early in life affects neural development and long-term cognitive function, but our understanding of the types of memory that are altered is incomplete. Specific cognitive tests in rodents that isolate different memory processes provide a useful approach for gaining insight into this issue. METHODS: Postnatal day 7 (P7 rats were exposed to either desflurane or isoflurane at 1 Minimum Alveolar Concentration for 4 h. Acute neuronal death was assessed 12 h later in the thalamus, CA1-3 regions of hippocampus, and dentate gyrus. In separate behavioral experiments, beginning at P48, subjects were evaluated in a series of object recognition tests relying on associative learning, as well as social recognition. RESULTS: Exposure to either anesthetic led to a significant increase in neuroapoptosis in each brain region. The extent of neuronal death did not differ between groups. Subjects were unaffected in simple tasks of novel object and object-location recognition. However, anesthetized animals from both groups were impaired in allocentric object-location memory and a more complex task requiring subjects to associate an object with its location and contextual setting. Isoflurane exposure led to additional impairment in object-context association and social memory. CONCLUSION: Isoflurane and desflurane exposure during development result in deficits in tasks relying on associative learning and recognition memory. Isoflurane may potentially cause worse impairment than desflurane.

  19. Astrocytic β2-adrenergic receptors mediate hippocampal long-term memory consolidation

    KAUST Repository

    Gao, Virginia

    2016-07-12

    Emotionally relevant experiences form strong and long-lasting memories by critically engaging the stress hormone/neurotransmitter noradrenaline, which mediates and modulates the consolidation of these memories. Noradrenaline acts through adrenergic receptors (ARs), of which β2- Adrenergic receptors (βARs) are of particular importance. The differential anatomical and cellular distribution of βAR subtypes in the brain suggests that they play distinct roles in memory processing, although much about their specific contributions and mechanisms of action remains to be understood. Here we show that astrocytic rather than neuronal β2ARs in the hippocampus play a key role in the consolidation of a fear-based contextual memory. These hippocampal β2ARs, but not β1ARs, are coupled to the training-dependent release of lactate from astrocytes, which is necessary for long- Term memory formation and for underlying molecular changes. This key metabolic role of astrocytic β2ARs may represent a novel target mechanism for stress-related psychopathologies and neurodegeneration.

  20. Early and late stages of working-memory maintenance contribute differentially to long-term memory formation.

    Science.gov (United States)

    Bergmann, Heiko C; Kiemeneij, Anne; Fernández, Guillén; Kessels, Roy P C

    2013-06-01

    The present paper investigated the role of early and late stages of working-memory maintenance, which have been suggested to differentially contribute to long-term memory formation. In experiment 1, we administered a delayed-match-to-sample task, requiring participants to remember line drawings of non-sense three-dimensional stimuli. In the delay phase, participants were either presented with a fixation cross (for 2 or 9s) or with one of two different interference tasks, varying in visual overlap with the target. The interference task was presented 1.5, 4.5 or 7.5s after target offset. Early interfering and early probing disproportionately affected performance on an unexpected subsequent recognition-memory task compared to later interference or probing. This was not modulated by the type of interference task. In Experiment 2, we examined whether the formation of a holistic internal code of the target may be a gradual process. An analogous delayed-match-to-sample task was administered, with interference after 0.5, 2.5 or 4.5s after target offset. The early and middle interference condition similarly disproportionately affected performance compared to later interference. Hence, the present results support the view of a functional dissociation between early and late stages of working-memory maintenance and that early working-memory processes contribute particularly to long-term memory formation.

  1. Exchange Protein Activated by cAMP Enhances Long-Term Memory Formation Independent of Protein Kinase A

    Science.gov (United States)

    Ma, Nan; Abel, Ted; Hernandez, Pepe J.

    2009-01-01

    It is well established that cAMP signaling within neurons plays a major role in the formation of long-term memories--signaling thought to proceed through protein kinase A (PKA). However, here we show that exchange protein activated by cAMP (Epac) is able to enhance the formation of long-term memory in the hippocampus and appears to do so…

  2. Helping students succeed by helping them improve their long-term memory

    Science.gov (United States)

    Zettili, Nouredine; Boukahil, A.

    2005-04-01

    In this work, we focus on one of the most useful techniques of efficient study habits: How to improve long-term memory. We show that if a student carries a number of recalling sessions of the material studied and if he/she carries them at specific times, the student will be able to retain this material for a long time and hence be prepared for the exams. We argue that a student who conscientiously uses the proper techniques of efficient study habits will be able to achieve higher results than the student who does not. Moreover, a student equipped with the proper study skills will spend much less time to learn a subject than a student who has no effective study habits. After providing a summary of the most essential personal skills needed to be a successful student--concentration skills, how to take notes in class, how to prepare for and take exams---we give an extensive presentation on the techniques of improving long-term memory.

  3. Long-term memory in the Irish market (ISEQ): evidence from wavelet analysis

    CERN Document Server

    Sharkasi, A; Crane, M; Sharkasi, Adel; Ruskin, Heather J.; Crane, Martin

    2006-01-01

    Researchers have used many different methods to detect the possibility of long-term dependence (long memory) in stock market returns, but evidence is in general mixed. In this paper, three different tests, (namely Rescaled Range (R/S), its modified form, and the semi-parametric method (GPH)), in addition to a new approach using the discrete wavelet transform, (DWT), have been applied to the daily returns of five Irish Stock Exchange (ISEQ) indices. These methods have also been applied to the volatility measures (namely absolute and squared returns). The aim is to investigate the existence of long-term memory properties. The indices are Overall, Financial, General, Small Cap and ITEQ and the results of these approaches show that there is no evidence of long-range dependence in the returns themselves, while there is strong evidence for such dependence in the squared and absolute returns. Moreover, the discrete wavelet transform (DWT) provides additional insight on the series breakdown. In particular, in compari...

  4. Overexpression of Protein Kinase Mζ in the Hippocampus Enhances Long-Term Potentiation and Long-Term Contextual But Not Cued Fear Memory in Rats.

    Science.gov (United States)

    Schuette, Sven R M; Fernández-Fernández, Diego; Lamla, Thorsten; Rosenbrock, Holger; Hobson, Scott

    2016-04-13

    The persistently active protein kinase Mζ (PKMζ) has been found to be involved in the formation and maintenance of long-term memory. Most of the studies investigating PKMζ, however, have used either putatively unselective inhibitors or conventional knock-out animal models in which compensatory mechanisms may occur. Here, we overexpressed an active form of PKMζ in rat hippocampus, a structure highly involved in memory formation, and embedded in several neural networks. We investigated PKMζ's influence on synaptic plasticity using electrophysiological recordings of basal transmission, paired pulse facilitation, and LTP and combined this with behavioral cognitive experiments addressing formation and retention of both contextual memory during aversive conditioning and spatial memory during spontaneous exploration. We demonstrate that hippocampal slices overexpressing PKMζ show enhanced basal transmission, suggesting a potential role of PKMζ in postsynaptic AMPAR trafficking. Moreover, the PKMζ-overexpressing slices augmented LTP and this effect was not abolished by protein-synthesis blockers, indicating that PKMζ induces enhanced LTP formation in a protein-synthesis-independent manner. In addition, we found selectively enhanced long-term memory for contextual but not cued fear memory, underlining the theory of the hippocampus' involvement in the contextual aspect of aversive reinforced tasks. Memory for spatial orientation during spontaneous exploration remained unaltered, suggesting that PKMζ may not affect the neural circuits underlying spontaneous tasks that are different from aversive tasks. In this study, using an overexpression strategy as opposed to an inhibitor-based approach, we demonstrate an important modulatory role of PKMζ in synaptic plasticity and selective memory processing. Most of the literature investigating protein kinase Mζ (PKMζ) used inhibitors with selectivity that has been called into question or conventional knock-out animal

  5. Correlating learning and memory improvements to long-term potentiation in patients with brain injury

    Institute of Scientific and Technical Information of China (English)

    Xingfu Peng; Qian Yu

    2008-01-01

    BACKGROUND:Brain injury patients often exhibit learning and memory functional deficits.Long-term potentiation(LTP)is a representative index for studying learning and memory cellular models; the LTP index correlates to neural plasticity. OBJECTIVE:This study was designed to investigate correlations of learning and memory functions to LTP in brain injury patients,and to summarize the research advancements in mechanisms underlying brain functional improvements after rehabilitation intervention. RETRIEVAL STRATEGY:Using the terms "brain injuries,rehabilitation,learning and memory,long-term potentiation",manuscripts that were published from 2000-2007 were retrieved from the PubMed database.At the same time,manuscripts published from 2000-2007 were also retrieved from the Database of Chinese Scientific and Technical Periodicals with the same terms in the Chinese language.A total of 64 manuscripts were obtained and primarily screened.Inclusion criteria:studies on learning and memory,as well as LTP in brain injury patients,and studies focused on the effects of rehabilitation intervention on the two indices; studies that were recently published or in high-impact journals.Exclusion criteria:repetitive studies.LITERATURE EVALUATION:The included manuscripts primarily focused on correlations between learning and memory and LTP,the effects of brain injury on learning and memory,as well as LTP,and the effects of rehabilitation intervention on learning and memory after brain injury.The included 39 manuscripts were clinical,basic experimental,or review studies. DATA SYNTHESIS:Learning and memory closely correlates to LTP.The neurobiological basis of learning and memory is central nervous system plasticity,which involves neural networks,neural circuits,and synaptic connections,in particular,synaptic plasticity.LTP is considered to be an ideal model for studying synaptic plasticity,and it is also a classic model for studying neural plasticity of learning and memory.Brain injury

  6. Animal model of methylphenidate's long-term memory-enhancing effects.

    Science.gov (United States)

    Carmack, Stephanie A; Howell, Kristin K; Rasaei, Kleou; Reas, Emilie T; Anagnostaras, Stephan G

    2014-01-16

    Methylphenidate (MPH), introduced more than 60 years ago, accounts for two-thirds of current prescriptions for attention deficit hyperactivity disorder (ADHD). Although many studies have modeled MPH's effect on executive function, almost none have directly modeled its effect on long-term memory (LTM), even though improvement in LTM is a critical target of therapeutic intervention in ADHD. We examined the effects of a wide range of doses of MPH (0.01-10 mg/kg, i.p.) on Pavlovian fear learning, a leading model of memory. MPH's effects were then compared to those of atomoxetine (0.1-10 mg/kg, i.p.), bupropion (0.5-20 mg/kg, i.p.), and citalopram (0.01-10 mg/kg, i.p.). At low, clinically relevant doses, MPH enhanced fear memory; at high doses it impaired memory. MPH's memory-enhancing effects were not confounded by its effects on locomotion or anxiety. Further, MPH-induced memory enhancement seemed to require both dopamine and norepinephrine transporter inhibition. Finally, the addictive potential of MPH (1 mg/kg and 10 mg/kg) was compared to those of two other psychostimulants, amphetamine (0.005 mg/kg and 1.5 mg/kg) and cocaine (0.15 mg/kg and 15 mg/kg), using a conditioned place preference and behavioral sensitization paradigm. We found that memory-enhancing effects of psychostimulants observed at low doses are readily dissociable from their reinforcing and locomotor activating effects at high doses. Together, our data suggest that fear conditioning will be an especially fruitful platform for modeling the effects of psychostimulants on LTM in drug development.

  7. The limitations of our knowledge about social influences on memories of sexual abuse over the long-term

    DEFF Research Database (Denmark)

    Koppel, Jonathan Mark; Berntsen, Dorthe

    2015-01-01

    Fagin, Cyr, and Hirst provide an informed and insightful application of the social memory literature to the important question of how memories of sexual abuse may be re-shaped, both over the short term and long term, by communication with others, as well as with oneself. In the following commentary......, we outline several respects in which we believe that the application of this literature to memories of sexual abuse, particularly over the long term, is still open to debate. In particular, we focus on induced forgetting and social contagion for such memories, as well as the application of the social...

  8. Unforgettable film music: The role of emotion in episodic long-term memory for music

    Science.gov (United States)

    Eschrich, Susann; Münte, Thomas F; Altenmüller, Eckart O

    2008-01-01

    Background Specific pieces of music can elicit strong emotions in listeners and, possibly in connection with these emotions, can be remembered even years later. However, episodic memory for emotional music compared with less emotional music has not yet been examined. We investigated whether emotional music is remembered better than less emotional music. Also, we examined the influence of musical structure on memory performance. Results Recognition of 40 musical excerpts was investigated as a function of arousal, valence, and emotional intensity ratings of the music. In the first session the participants judged valence and arousal of the musical pieces. One week later, participants listened to the 40 old and 40 new musical excerpts randomly interspersed and were asked to make an old/new decision as well as to indicate arousal and valence of the pieces. Musical pieces that were rated as very positive were recognized significantly better. Conclusion Musical excerpts rated as very positive are remembered better. Valence seems to be an important modulator of episodic long-term memory for music. Evidently, strong emotions related to the musical experience facilitate memory formation and retrieval. PMID:18505596

  9. Unforgettable film music: The role of emotion in episodic long-term memory for music

    Directory of Open Access Journals (Sweden)

    Altenmüller Eckart O

    2008-05-01

    Full Text Available Abstract Background Specific pieces of music can elicit strong emotions in listeners and, possibly in connection with these emotions, can be remembered even years later. However, episodic memory for emotional music compared with less emotional music has not yet been examined. We investigated whether emotional music is remembered better than less emotional music. Also, we examined the influence of musical structure on memory performance. Results Recognition of 40 musical excerpts was investigated as a function of arousal, valence, and emotional intensity ratings of the music. In the first session the participants judged valence and arousal of the musical pieces. One week later, participants listened to the 40 old and 40 new musical excerpts randomly interspersed and were asked to make an old/new decision as well as to indicate arousal and valence of the pieces. Musical pieces that were rated as very positive were recognized significantly better. Conclusion Musical excerpts rated as very positive are remembered better. Valence seems to be an important modulator of episodic long-term memory for music. Evidently, strong emotions related to the musical experience facilitate memory formation and retrieval.

  10. Unforgettable film music: the role of emotion in episodic long-term memory for music.

    Science.gov (United States)

    Eschrich, Susann; Münte, Thomas F; Altenmüller, Eckart O

    2008-05-28

    Specific pieces of music can elicit strong emotions in listeners and, possibly in connection with these emotions, can be remembered even years later. However, episodic memory for emotional music compared with less emotional music has not yet been examined. We investigated whether emotional music is remembered better than less emotional music. Also, we examined the influence of musical structure on memory performance. Recognition of 40 musical excerpts was investigated as a function of arousal, valence, and emotional intensity ratings of the music. In the first session the participants judged valence and arousal of the musical pieces. One week later, participants listened to the 40 old and 40 new musical excerpts randomly interspersed and were asked to make an old/new decision as well as to indicate arousal and valence of the pieces. Musical pieces that were rated as very positive were recognized significantly better. Musical excerpts rated as very positive are remembered better. Valence seems to be an important modulator of episodic long-term memory for music. Evidently, strong emotions related to the musical experience facilitate memory formation and retrieval.

  11. Differential role of entorhinal and hippocampal nerve growth factor in short- and long-term memory modulation.

    Science.gov (United States)

    Walz, R; Roesler, R; Reinke, A; Martins, M R; Quevedo, J; Izquierdo, I

    2005-01-01

    We studied the effects of infusion of nerve growth factor (NGF) into the hippocampus and entorhinal cortex of male Wistar rats (250-300 g, N = 11-13 per group) on inhibitory avoidance retention. In order to evaluate the modulation of entorhinal and hippocampal NGF in short- and long-term memory, animals were implanted with cannulae in the CA1 area of the dorsal hippocampus or entorhinal cortex and trained in one-trial step-down inhibitory avoidance (foot shock, 0.4 mA). Retention tests were carried out 1.5 h or 24 h after training to measure short- and long-term memory, respectively. Immediately after training, rats received 5 microl NGF (0.05, 0.5 or 5.0 ng) or saline per side into the CA1 area and entorhinal cortex. The correct position of the cannulae was confirmed by histological analysis. The highest dose of NGF (5.0 ng) into the hippocampus blocked short-term memory (P long-term memory. NGF administration into the entorhinal cortex improved long-term memory at the dose of 5.0 ng (P short-term memory. Taken as a whole, our results suggest a differential modulation by entorhinal and hippocampal NGF of short- and long-term memory.

  12. Studying frequency processing of the brain to enhance long-term memory and develop a human brain protocol.

    Science.gov (United States)

    Friedrich, Wernher; Du, Shengzhi; Balt, Karlien

    2015-01-01

    The temporal lobe in conjunction with the hippocampus is responsible for memory processing. The gamma wave is involved with this process. To develop a human brain protocol, a better understanding of the relationship between gamma and long-term memory is vital. A more comprehensive understanding of the human brain and specific analogue waves it uses will support the development of a human brain protocol. Fifty-eight participants aged between 6 and 60 years participated in long-term memory experiments. It is envisaged that the brain could be stimulated through binaural beats (sound frequency) at 40 Hz (gamma) to enhance long-term memory capacity. EEG recordings have been transformed to sound and then to an information standard, namely ASCII. Statistical analysis showed a proportional relationship between long-term memory and gamma activity. Results from EEG recordings indicate a pattern. The pattern was obtained through the de-codification of an EEG recording to sound and then to ASCII. Stimulation of gamma should enhance long term memory capacity. More research is required to unlock the human brains' protocol key. This key will enable the processing of information directly to and from human memory via gamma, the hippocampus and the temporal lobe.

  13. Errors in nonword repetition: bridging short- and long-term memory

    Directory of Open Access Journals (Sweden)

    F.H. Santos

    2006-03-01

    Full Text Available According to the working memory model, the phonological loop is the component of working memory specialized in processing and manipulating limited amounts of speech-based information. The Children's Test of Nonword Repetition (CNRep is a suitable measure of phonological short-term memory for English-speaking children, which was validated by the Brazilian Children's Test of Pseudoword Repetition (BCPR as a Portuguese-language version. The objectives of the present study were: i to investigate developmental aspects of the phonological memory processing by error analysis in the nonword repetition task, and ii to examine phoneme (substitution, omission and addition and order (migration errors made in the BCPR by 180 normal Brazilian children of both sexes aged 4-10, from preschool to 4th grade. The dominant error was substitution [F(3,525 = 180.47; P < 0.0001]. The performance was age-related [F(4,175 = 14.53; P < 0.0001]. The length effect, i.e., more errors in long than in short items, was observed [F(3,519 = 108.36; P < 0.0001]. In 5-syllable pseudowords, errors occurred mainly in the middle of the stimuli, before the syllabic stress [F(4,16 = 6.03; P = 0.003]; substitutions appeared more at the end of the stimuli, after the stress [F(12,48 = 2.27; P = 0.02]. In conclusion, the BCPR error analysis supports the idea that phonological loop capacity is relatively constant during development, although school learning increases the efficiency of this system. Moreover, there are indications that long-term memory contributes to holding memory trace. The findings were discussed in terms of distinctiveness, clustering and redintegration hypotheses.

  14. Protein degradation and protein synthesis in long-term memory formation

    Directory of Open Access Journals (Sweden)

    Timothy J Jarome

    2014-06-01

    Full Text Available Long-term memory (LTM formation requires transient changes in the activity of intracellular signaling cascades that are thought to regulate new gene transcription and de novo protein synthesis in the brain. Consistent with this, protein synthesis inhibitors impair LTM for a variety of behavioral tasks when infused into the brain around the time of training or following memory retrieval, suggesting that protein synthesis is a critical step in LTM storage in the brain. However, evidence suggests that protein degradation mediated by the ubiquitin-proteasome system may also be a critical regulator of LTM formation and stability following retrieval. This requirement for increased protein degradation has been shown in the same brain regions in which protein synthesis is required for LTM storage. Additionally, increases in the phosphorylation of proteins involved in translational control parallel increases in protein polyubiquitination and the increased demand for protein degradation is regulated by intracellular signaling molecules thought to regulate protein synthesis during LTM formation. In some cases inhibiting proteasome activity can rescue memory impairments that result from pharmacological blockade of protein synthesis, suggesting that protein degradation may control the requirement for protein synthesis during the memory storage process. Results such as these suggest that protein degradation and synthesis are both critical for LTM formation and may interact to properly consolidate and store memories in the brain. Here, we review the evidence implicating protein synthesis and degradation in LTM storage and highlight the areas of overlap between these two opposing processes. We also discuss evidence suggesting these two processes may interact to properly form and store memories. LTM storage likely requires a coordinated regulation between protein degradation and synthesis at multiple sites in the mammalian brain.

  15. Compartmentalized PDE4A5 Signaling Impairs Hippocampal Synaptic Plasticity and Long-Term Memory.

    Science.gov (United States)

    Havekes, Robbert; Park, Alan J; Tolentino, Rosa E; Bruinenberg, Vibeke M; Tudor, Jennifer C; Lee, Yool; Hansen, Rolf T; Guercio, Leonardo A; Linton, Edward; Neves-Zaph, Susana R; Meerlo, Peter; Baillie, George S; Houslay, Miles D; Abel, Ted

    2016-08-24

    Alterations in cAMP signaling are thought to contribute to neurocognitive and neuropsychiatric disorders. Members of the cAMP-specific phosphodiesterase 4 (PDE4) family, which contains >25 different isoforms, play a key role in determining spatial cAMP degradation so as to orchestrate compartmentalized cAMP signaling in cells. Each isoform binds to a different set of protein complexes through its unique N-terminal domain, thereby leading to targeted degradation of cAMP in specific intracellular compartments. However, the functional role of specific compartmentalized PDE4 isoforms has not been examined in vivo Here, we show that increasing protein levels of the PDE4A5 isoform in mouse hippocampal excitatory neurons impairs a long-lasting form of hippocampal synaptic plasticity and attenuates hippocampus-dependent long-term memories without affecting anxiety. In contrast, viral expression of a truncated version of PDE4A5, which lacks the unique N-terminal targeting domain, does not affect long-term memory. Further, overexpression of the PDE4A1 isoform, which targets a different subset of signalosomes, leaves memory undisturbed. Fluorescence resonance energy transfer sensor-based cAMP measurements reveal that the full-length PDE4A5, in contrast to the truncated form, hampers forskolin-mediated increases in neuronal cAMP levels. Our study indicates that the unique N-terminal localization domain of PDE4A5 is essential for the targeting of specific cAMP-dependent signaling underlying synaptic plasticity and memory. The development of compounds to disrupt the compartmentalization of individual PDE4 isoforms by targeting their unique N-terminal domains may provide a fruitful approach to prevent cognitive deficits in neuropsychiatric and neurocognitive disorders that are associated with alterations in cAMP signaling. Neurons exhibit localized signaling processes that enable biochemical cascades to be activated selectively in specific subcellular compartments. The

  16. Olfaction, Emotion, and the Amygdala: arousal-dependent modulation of long-term autobiographical memory and its association with olfaction: beginning to unravel the Proust phenomenon?

    Directory of Open Access Journals (Sweden)

    Mark Hughes

    2004-06-01

    Full Text Available The sense of smell is set apart from other sensory modalities. Odours possess the capacity to trigger immediately strong emotional memories. Moreover, odorous stimuli provide a higher degree of memory retention than other sensory stimuli. Odour perception, even in its most elemental form - olfaction - already involves limbic structures. This early involvement is not paralleled in other sensory modalities. Bearing in mind the considerable connectivity with limbic structures, and the fact that an activation of the amygdala is capable of instantaneously evoking emotions and facilitating the encoding of memories, it is unsurprising that the sense of smell has its characteristic nature. The aim of this review is to analyse current understanding of higher olfactory information processing as it relates to the ability of odours to spontaneously cue highly vivid, affectively toned, and often very old autobiographical memories (episodes known anecdotally as Proust phenomena. Particular emphasis is placed on the diversity of functions attributed to the amygdala. Its role in modulating the encoding and retrieval of long-term memory is investigated with reference to lesion, electrophysiological, immediate early gene, and functional imaging studies in both rodents and humans. Additionally, the influence of hormonal modulation and the adrenergic system on emotional memory storage is outlined. I finish by proposing a schematic of some of the critical neural pathways that underlie the odour-associated encoding and retrieval of emotionally toned autobiographical memories.

  17. Genetic enhancement of memory and long-term potentiation but not CA1 long-term depression in NR2B transgenic rats.

    Directory of Open Access Journals (Sweden)

    Deheng Wang

    Full Text Available One major theory in learning and memory posits that the NR2B gene is a universal genetic factor that acts as rate-limiting molecule in controlling the optimal NMDA receptor's coincidence-detection property and subsequent learning and memory function across multiple animal species. If so, can memory function be enhanced via transgenic overexpression of NR2B in another species other than the previously reported mouse species? To examine these crucial issues, we generated transgenic rats in which NR2B is overexpressed in the cortex and hippocampus and investigated the role of NR2B gene in NMDA receptor-mediated synaptic plasticity and memory functions by combining electrophysiological technique with behavioral measurements. We found that overexpression of the NR2B subunit had no effect on CA1-LTD, but rather resulted in enhanced CA1-LTP and improved memory performances in novel object recognition test, spatial water maze, and delayed-to-nonmatch working memory test. Our slices recordings using NR2A- and NR2B-selective antagonists further demonstrate that the larger LTP in transgenic hippocampal slices was due to contribution from the increased NR2B-containing NMDARs. Therefore, our genetic experiments suggest that NR2B at CA1 synapses is not designated as a rate-limiting factor for the induction of long-term synaptic depression, but rather plays a crucial role in initiating the synaptic potentiation. Moreover, our studies provide strong evidence that the NR2B subunit represents a universal rate-limiting molecule for gating NMDA receptor's optimal coincidence-detection property and for enhancing memory function in adulthood across multiple mammalian species.

  18. Delayed emergence of effects of memory-enhancing drugs: implications for the dynamics of long-term memory.

    Science.gov (United States)

    Mondadori, C; Hengerer, B; Ducret, T; Borkowski, J

    1994-01-01

    Many theories of memory postulate that processing of information outlasts the learning situation and involves several different physiological substrates. If such physiologically distinct mechanisms or stages of memory do in fact exist, they should be differentially affected by particular experimental manipulations. Accordingly, a selective improvement of the processes underlying short-term memory should be detectable only while the information is encoded in the short-term mode, and a selective influence on long-term memory should be detectable only from the moment when memory is based on the long-term trace. Our comparative study of the time course of the effects of the cholinergic agonist arecoline, the gamma-aminobutyric acid type B receptor antagonist CGP 36742, the angiotensin-converting enzyme inhibitor captopril, and the nootropic oxiracetam, four substances with completely different primary sites of action, show that the memory-enhancing effects consistently come into evidence no sooner than 16-24 h after the learning trial. On the one hand, this finding suggests that all these substances act by way of the same type of mechanism; on the other hand, it demonstrates that the substrate modulated by the compounds forms the basis of memory only after 16-24 h. From the observation that animals also show clear signs of retention during the first 16 h--i.e., before the effects of the substances are measurable--it can be inferred that retention during this time is mediated by other mechanisms that are not influenced by any of the substances. Images PMID:8134347

  19. Prevention of long-term memory loss after retrieval by an endogenous CaMKII inhibitor.

    Science.gov (United States)

    Vigil, Fabio Antonio; Mizuno, Keiko; Lucchesi, Walter; Valls-Comamala, Victoria; Giese, Karl Peter

    2017-06-22

    CaMK2N1 and CaMK2N2 are endogenous inhibitors of calcium/calmodulin-dependent protein kinase II (CaMKII), a key synaptic signaling molecule for learning and memory. Here, we investigated the learning and memory function of CaMK2N1 by knocking-down its expression in dorsal hippocampus of mice. We found that reduced CaMK2N1 expression does not affect contextual fear long-term memory (LTM) formation. However, we show that it impairs maintenance of established LTM, but only if retrieval occurs. CaMK2N1 knockdown prevents a decrease of threonine-286 (T286) autophosphorylation of αCaMKII and increases GluA1 levels in hippocampal synapses after retrieval of contextual fear LTM. CaMK2N1 knockdown can also increase CaMK2N2 expression, but we show that such increased expression does not affect LTM after retrieval. We also found that substantial overexpression of CaMK2N2 in dorsal hippocampus impairs LTM formation, but not LTM maintenance, suggesting that CaMKII activity is not required for LTM storage. Taken together, we propose a specific function for CaMK2N1; enabling LTM maintenance after retrieval by inhibiting T286 autophosphorylation of αCaMKII.

  20. Notch Intracellular Domain (NICD) Suppresses Long-Term Memory Formation in Adult Drosophila Flies.

    Science.gov (United States)

    Zhang, Jiabin; Yin, Jerry C P; Wesley, Cedric S

    2015-08-01

    Notch receptor signaling is evolutionarily conserved and well known for its roles in animal development. Many studies in Drosophila have shown that Notch also performs important functions in memory formation in adult flies. An intriguing observation is that increased expression of the full-length Notch receptor (Nfull) triggers long-term memory (LTM) formation even after very weak training (single training). Canonical Notch signaling is mediated by Notch intracellular domain (NICD), but it is not known whether increased expression of NICD recapitulates the LTM enhancement induced by increased Nfull expression. Here, we report that increased NICD expression either has no impact on LTM formation or suppresses it. Furthermore, it either has no impact or decreases both the levels and activity of cAMP response element binding protein, a key factor supporting LTM. These results indicate that NICD signaling is not sufficient to explain Nfull-induced LTM enhancement. Our findings may also shed light on the molecular mechanisms of memory loss in neurological diseases associated with increased NICD expression and canonical Notch signaling.

  1. Fasting launches CRTC to facilitate long-term memory formation in Drosophila.

    Science.gov (United States)

    Hirano, Yukinori; Masuda, Tomoko; Naganos, Shintaro; Matsuno, Motomi; Ueno, Kohei; Miyashita, Tomoyuki; Horiuchi, Junjiro; Saitoe, Minoru

    2013-01-25

    Canonical aversive long-term memory (LTM) formation in Drosophila requires multiple spaced trainings, whereas appetitive LTM can be formed after a single training. Appetitive LTM requires fasting prior to training, which increases motivation for food intake. However, we found that fasting facilitated LTM formation in general; aversive LTM formation also occurred after single-cycle training when mild fasting was applied before training. Both fasting-dependent LTM (fLTM) and spaced training-dependent LTM (spLTM) required protein synthesis and cyclic adenosine monophosphate response element-binding protein (CREB) activity. However, spLTM required CREB activity in two neural populations--mushroom body and DAL neurons--whereas fLTM required CREB activity only in mushroom body neurons. fLTM uses the CREB coactivator CRTC, whereas spLTM uses the coactivator CBP. Thus, flies use distinct LTM machinery depending on their hunger state.

  2. The involvement of long-term serial-order memory in reading development: A longitudinal study.

    Science.gov (United States)

    Bogaerts, Louisa; Szmalec, Arnaud; De Maeyer, Marjolijn; Page, Mike P A; Duyck, Wouter

    2016-05-01

    Recent findings suggest that Hebb repetition learning-a paradigmatic example of long-term serial-order learning-is impaired in adults with dyslexia. The current study further investigated the link between serial-order learning and reading using a longitudinal developmental design. With this aim, verbal and visual Hebb repetition learning performance and reading skills were assessed in 96 Dutch-speaking children who we followed from first through second grade of primary school. We observed a positive association between order learning capacities and reading ability as well as weaker Hebb learning performance in early readers with poor reading skills even at the onset of reading instruction. Hebb learning further predicted individual differences in later (nonword) reading skills. Finally, Hebb learning was shown to explain a significant part of the variance in reading performance above and beyond phonological awareness. These findings highlight the role of serial-order memory in reading ability.

  3. Long-term memory in experiments and numerical simulations of hydrodynamic and magnetohydrodynamic turbulence.

    Science.gov (United States)

    Mininni, P; Dmitruk, P; Odier, P; Pinton, J-F; Plihon, N; Verhille, G; Volk, R; Bourgoin, M

    2014-05-01

    We analyze time series stemming from experiments and direct numerical simulations of hydrodynamic and magnetohydrodynamic turbulence. Simulations are done in periodic boxes, but with a volumetric forcing chosen to mimic the geometry of the flow in the experiments, the von Kármán swirling flow between two counterrotating impellers. Parameters in the simulations are chosen to (within computational limitations) allow comparisons between the experiments and the numerical results. Conducting fluids are considered in all cases. Two different configurations are considered: a case with a weak externally imposed magnetic field and a case with self-sustained magnetic fields. Evidence of long-term memory and 1/f noise is observed in experiments and simulations, in the case with weak magnetic field associated with the hydrodynamic behavior of the shear layer in the von Kármán flow, and in the dynamo case associated with slow magnetohydrodynamic behavior of the large-scale magnetic field.

  4. Interdisciplinary Approach to the Mental Lexicon: Neural Network and Text Extraction From Long-term Memory

    Directory of Open Access Journals (Sweden)

    Vardan G. Arutyunyan

    2013-01-01

    Full Text Available The paper touches upon the principles of mental lexicon organization in the light of recent research in psycho- and neurolinguistics. As a focal point of discussion two main approaches to mental lexicon functioning are considered: modular or dual-system approach, developed within generativism and opposite single-system approach, representatives of which are the connectionists and supporters of network models. The paper is an endeavor towards advocating the viewpoint that mental lexicon is complex psychological organization based upon specific composition of neural network. In this regard, the paper further elaborates on the matter of storing text in human mental space and introduces a model of text extraction from long-term memory. Based upon data available, the author develops a methodology of modeling structures of knowledge representation in the systems of artificial intelligence.

  5. Long-term memory in experiments and numerical simulations of hydrodynamic and magnetohydrodynamic turbulence

    CERN Document Server

    Mininni, Pablo; Odier, Philippe; Pinton, Jean-François; Plihon, Nicolas; Verhille, Gautier; Volk, Romain; Bourgoin, Mickael

    2014-01-01

    We analyze time series stemming from experiments and direct numerical simulations of hydrodynamic and magnetohydrodynamic turbulence. Simulations are done in periodic boxes, but with a volumetric forcing chosen to mimic the geometry of the flow in the experiments, the von K\\'arm\\'an swirling flow between two counter-rotating impellers. Parameters in the simulations are chosen to (within computational limitations) allow comparisons between the experiments and the numerical results. Conducting fluids are considered in all cases. Two different configurations are considered: a case with a weak externally imposed magnetic field, and a case with self-sustained magnetic fields. Evidence of long-term memory and $1/f$ noise is observed in experiments and simulations, in the case with weak magnetic field associated with the hydrodynamic behavior of the shear layer in the von K\\'arm\\'an flow, and in the dynamo case associated with slow magnetohydrodynamic behavior of the large scale magnetic field.

  6. Four-month-old infants' long-term memory for a stressful social event.

    Science.gov (United States)

    Montirosso, Rosario; Tronick, Ed; Morandi, Francesco; Ciceri, Francesca; Borgatti, Renato

    2013-01-01

    Infants clearly show an early capacity for memory for inanimate emotionally neutral events. However, their memory for social stress events has received far less attention. The aim of the study was to investigate infants' memory for a stressful social event (i.e., maternal unresponsiveness during the Still-Face paradigm) after a 15-day recall interval using changes in behavioral responses and salivary post-stress cortisol reactivity as measures of memory. Thirty-seven infants were exposed to social stress two times (experimental condition); the first time when they were 4 months of age and second exposure after a 2 week interval. Infants in the control condition (N = 37) were exposed to social stress just one time, at the age corresponding to the second exposure for infants in the experimental condition (4 months plus 2 weeks). Given individual differences in infants' reactivity to social stress events, we categorized infants as increasers or decreasers based on their cortisol reactivity after their initial exposure to the stress of the maternal still-face. Infants in the experimental condition, both increasers and decreasers, showed a significant change in cortisol response after the second exposure to the maternal still-face, though change was different for each reactivity group. In contrast, age-matched infants with no prior exposure to the maternal still-face showed similar post-stress cortisol reactivity to the reactivity of the experimental infants at their first exposure. There were no behavioral differences between increasers and decreasers during the Still-Face paradigm and exposures to the social stress. Thus differences between the experimental and control groups' post-stress cortisol reactivity was associated with the experimental group having previous experience with the social stress. These findings indicate long-term memory for social stress in infants as young as 4 months of age.

  7. Four-month-old infants' long-term memory for a stressful social event.

    Directory of Open Access Journals (Sweden)

    Rosario Montirosso

    Full Text Available Infants clearly show an early capacity for memory for inanimate emotionally neutral events. However, their memory for social stress events has received far less attention. The aim of the study was to investigate infants' memory for a stressful social event (i.e., maternal unresponsiveness during the Still-Face paradigm after a 15-day recall interval using changes in behavioral responses and salivary post-stress cortisol reactivity as measures of memory. Thirty-seven infants were exposed to social stress two times (experimental condition; the first time when they were 4 months of age and second exposure after a 2 week interval. Infants in the control condition (N = 37 were exposed to social stress just one time, at the age corresponding to the second exposure for infants in the experimental condition (4 months plus 2 weeks. Given individual differences in infants' reactivity to social stress events, we categorized infants as increasers or decreasers based on their cortisol reactivity after their initial exposure to the stress of the maternal still-face. Infants in the experimental condition, both increasers and decreasers, showed a significant change in cortisol response after the second exposure to the maternal still-face, though change was different for each reactivity group. In contrast, age-matched infants with no prior exposure to the maternal still-face showed similar post-stress cortisol reactivity to the reactivity of the experimental infants at their first exposure. There were no behavioral differences between increasers and decreasers during the Still-Face paradigm and exposures to the social stress. Thus differences between the experimental and control groups' post-stress cortisol reactivity was associated with the experimental group having previous experience with the social stress. These findings indicate long-term memory for social stress in infants as young as 4 months of age.

  8. Four-Month-Old Infants’ Long-Term Memory for a Stressful Social Event

    Science.gov (United States)

    Montirosso, Rosario; Tronick, Ed; Morandi, Francesco; Ciceri, Francesca; Borgatti, Renato

    2013-01-01

    Infants clearly show an early capacity for memory for inanimate emotionally neutral events. However, their memory for social stress events has received far less attention. The aim of the study was to investigate infants’ memory for a stressful social event (i.e., maternal unresponsiveness during the Still-Face paradigm) after a 15-day recall interval using changes in behavioral responses and salivary post-stress cortisol reactivity as measures of memory. Thirty-seven infants were exposed to social stress two times (experimental condition); the first time when they were 4 months of age and second exposure after a 2 week interval. Infants in the control condition (N = 37) were exposed to social stress just one time, at the age corresponding to the second exposure for infants in the experimental condition (4 months plus 2 weeks). Given individual differences in infants’ reactivity to social stress events, we categorized infants as increasers or decreasers based on their cortisol reactivity after their initial exposure to the stress of the maternal still-face. Infants in the experimental condition, both increasers and decreasers, showed a significant change in cortisol response after the second exposure to the maternal still-face, though change was different for each reactivity group. In contrast, age-matched infants with no prior exposure to the maternal still-face showed similar post-stress cortisol reactivity to the reactivity of the experimental infants at their first exposure. There were no behavioral differences between increasers and decreasers during the Still-Face paradigm and exposures to the social stress. Thus differences between the experimental and control groups’ post-stress cortisol reactivity was associated with the experimental group having previous experience with the social stress. These findings indicate long-term memory for social stress in infants as young as 4 months of age. PMID:24349244

  9. Recognition of music in long-term memory: are melodic and temporal patterns equal partners?

    Science.gov (United States)

    Hébert, S; Peretz, I

    1997-07-01

    The notion that the melody (i.e., pitch structure) of familiar music is more recognizable than its accompanying rhythm (i.e., temporal structure) was examined with the same set of nameable musical excerpts in three experiments. In Experiment 1, the excerpts were modified so as to keep either their original pitch variations, whereas durations were set to isochrony (melodic condition) or their original temporal pattern while played on a single constant pitch (rhythmic condition). The subjects, who were selected without regard to musical training, were found to name more tunes and to rate their feeling of knowing the musical excerpts far higher in the melodic condition than in the rhythmic condition. These results were replicated in Experiment 2, wherein the melodic and rhythmic patterns of the musical excerpts were interchanged to create chimeric mismatched tunes. The difference in saliency of the melodic pattern and the rhythmic pattern also emerged with a music-title-verification task in Experiment 3, hence discarding response selection as the main source of the discrepancy. The lesser effectiveness of rhythmic structure appears to be related to its lesser encoding distinctiveness relative to melodic structure. In general, rhythm was found to be a poor cue for the musical representations that are stored in long-term memory. Nevertheless, in all three experiments, the most effective cue for music identification involved the proper combination of pitches and durations. Therefore, the optimal code of access to long-term memory for music resides in a combination of rhythm and melody, of which the latter would be the most informative.

  10. Consolidation of visual associative long-term memory in the temporal cortex of primates.

    Science.gov (United States)

    Miyashita, Y; Kameyama, M; Hasegawa, I; Fukushima, T

    1998-01-01

    Neuropsychological theories have proposed a critical role for the interaction between the medial temporal lobe and the neocortex in the formation of long-term memory for facts and events, which has often been tested by learning of a series of paired words or figures in humans. We have examined neural mechanisms underlying the memory "consolidation" process by single-unit recording and molecular biological methods in an animal model of a visual pair-association task in monkeys. In our previous studies, we found that long-term associative representations of visual objects are acquired through learning in the neural network of the anterior inferior temporal (IT) cortex. In this article, we propose the hypothesis that limbic neurons undergo rapid modification of synaptic connectivity and provide backward signals that guide the reorganization of neocortical neural circuits. Two experiments tested this hypothesis: (1) we examined the role of the backward connections from the medial temporal lobe to the IT cortex by injecting ibotenic acid into the entorhinal and perirhinal cortices, which provided massive backward projections ipsilaterally to the IT cortex. We found that the limbic lesion disrupted the associative code of the IT neurons between the paired associates, without impairing the visual response to each stimulus. (2) We then tested the first half of this hypothesis by detecting the expression of immediate-early genes in the monkey temporal cortex. We found specific expression of zif268 during the learning of a new set of paired associates in the pair-association task, most intensively in area 36 of the perirhinal cortex. All these results with the visual pair-association task support our hypothesis and demonstrate that the consolidation process, which was first proposed on the basis of clinico-psychological evidence, can now be examined in primates using neurophysiolocical and molecular biological approaches.

  11. Different Phases of Long-Term Memory Require Distinct Temporal Patterns of PKA Activity after Single-Trial Classical Conditioning

    Science.gov (United States)

    Michel, Maximilian; Kemenes, Ildiko; Muller, Uli; Kemenes, Gyorgy

    2008-01-01

    The cAMP-dependent protein kinase (PKA) is known to play a critical role in both transcription-independent short-term or intermediate-term memory and transcription-dependent long-term memory (LTM). Although distinct phases of LTM already have been demonstrated in some systems, it is not known whether these phases require distinct temporal patterns…

  12. Long-term impairment of social memory in the rat after social defeat is not restored by desglycinamide-vasopressin

    NARCIS (Netherlands)

    Reijmers, L.G.J.E.; Hoekstra, K.; Burbach, J.P.H.; Ree, van J.M.; Spruijt, B.M.

    2001-01-01

    Repeated social defeat followed by individual housing caused a long-term impairment of social memory in male rats. Social memory, as assessed in the social discrimination test using an intertrial interval of 3 min, was impaired for at least 8 weeks after the social defeat experience. Since social

  13. Membrane-Associated Glucocorticoid Activity Is Necessary for Modulation of Long-Term Memory via Chromatin Modification

    NARCIS (Netherlands)

    Roozendaal, Benno; Hernandez, Angelina; Cabrera, Sara M.; Hagewoud, Roelina; Malvaez, Melissa; Stefanko, Daniel P.; Haettig, Jakob; Wood, Marcelo A.

    2010-01-01

    Glucocorticoid hormones enhance the consolidation of long-term memory of emotionally arousing training experiences. This memory enhancement requires activation of the cAMP-dependent kinase pathway and the subsequent phosphorylation of cAMP response-element binding (CREB) protein. Here, we demonstrat

  14. CB2 Cannabinoid Receptor Knockout in Mice Impairs Contextual Long-Term Memory and Enhances Spatial Working Memory

    Directory of Open Access Journals (Sweden)

    Yong Li

    2016-01-01

    Full Text Available Neurocognitive effects of cannabinoids have been extensively studied with a focus on CB1 cannabinoid receptors because CB1 receptors have been considered the major cannabinoid receptor in the nervous system. However, recent discoveries of CB2 cannabinoid receptors in the brain demand accurate determination of whether and how CB2 receptors are involved in the cognitive effects of cannabinoids. CB2 cannabinoid receptors are primarily involved in immune functions, but also implicated in psychiatric disorders such as schizophrenia and depression. Here, we examined the effects of CB2 receptor knockout in mice on memory to determine the roles of CB2 receptors in modulating cognitive function. Behavioral assays revealed that hippocampus-dependent, long-term contextual fear memory was impaired whereas hippocampus-independent, cued fear memory was normal in CB2 receptor knockout mice. These mice also displayed enhanced spatial working memory when tested in a Y-maze. Motor activity and anxiety of CB2 receptor knockout mice were intact when assessed in an open field arena and an elevated zero maze. In contrast to the knockout of CB2 receptors, acute blockade of CB2 receptors by AM603 in C57BL/6J mice had no effect on memory, motor activity, or anxiety. Our results suggest that CB2 cannabinoid receptors play diverse roles in regulating memory depending on memory types and/or brain areas.

  15. Post-learning stress enhances long-term memory and differentially influences memory in females depending on menstrual stage.

    Science.gov (United States)

    Zoladz, Phillip R; Peters, David M; Cadle, Chelsea E; Kalchik, Andrea E; Aufdenkampe, Rachael L; Dailey, Alison M; Brown, Callie M; Scharf, Amanda R; Earley, McKenna B; Knippen, Courtney L; Rorabaugh, Boyd R

    2015-09-01

    Most work has shown that post-learning stress enhances long-term memory; however, there have been recent inconsistencies in this literature. The purpose of the present study was to examine further the effects of post-learning stress on long-term memory and to explore any sex differences that may exist. Male and female participants learned a list of 42 words that varied in emotional valence and arousal level. Following encoding, participants completed a free recall assessment and then submerged their hand into a bath of ice cold (stress) or lukewarm (no stress) water for 3 min. The next day, participants were given free recall and recognition tests. Stressed participants recalled more words than non-stressed participants 24h after learning. Stress also enhanced female participants' recall of arousing words when they were in the follicular, but not luteal, phase. These findings replicate previous work examining post-learning stress effects on memory and implicate the involvement of sex-related hormones in such effects.

  16. Enhanced hippocampal long-term potentiation and fear memory in Btbd9 mutant mice.

    Directory of Open Access Journals (Sweden)

    Mark P DeAndrade

    Full Text Available Polymorphisms in BTBD9 have recently been associated with higher risk of restless legs syndrome (RLS, a neurological disorder characterized by uncomfortable sensations in the legs at rest that are relieved by movement. The BTBD9 protein contains a BTB/POZ domain and a BACK domain, but its function is unknown. To elucidate its function and potential role in the pathophysiology of RLS, we generated a line of mutant Btbd9 mice derived from a commercial gene-trap embryonic stem cell clone. Btbd9 is the mouse homolog of the human BTBD9. Proteins that contain a BTB/POZ domain have been reported to be associated with synaptic transmission and plasticity. We found that Btbd9 is naturally expressed in the hippocampus of our mutant mice, a region critical for learning and memory. As electrophysiological characteristics of CA3-CA1 synapses of the hippocampus are well characterized, we performed electrophysiological recordings in this region. The mutant mice showed normal input-output relationship, a significant impairment in pre-synaptic activity, and an enhanced long-term potentiation. We further performed an analysis of fear memory and found the mutant mice had an enhanced cued and contextual fear memory. To elucidate a possible molecular basis for these enhancements, we analyzed proteins that have been associated with synaptic plasticity. We found an elevated level of dynamin 1, an enzyme associated with endocytosis, in the mutant mice. These results suggest the first identified function of Btbd9 as being involved in regulating synaptic plasticity and memory. Recent studies have suggested that enhanced synaptic plasticity, analogous to what we have observed, in other regions of the brain could enhance sensory perception similar to what is seen in RLS patients. Further analyses of the mutant mice will help shine light on the function of BTBD9 and its role in RLS.

  17. Autobiographical Memory Deficits in Alcohol-Dependent Patients with Short- and Long-Term Abstinence.

    Science.gov (United States)

    Nandrino, Jean-Louis; El Haj, Mohamad; Torre, Julie; Naye, Delphine; Douchet, Helyette; Danel, Thierry; Cottençin, Oliver

    2016-04-01

    Autobiographical memory (AM) enables the storage and retrieval of life experiences that allow individuals to build their sense of identity. Several AM impairments have been described in patients with alcohol abuse disorders without assessing whether such deficits can be recovered. This cross-sectional study aimed to identify whether the semantic (SAM) and episodic (EAM) dimensions of AM are affected in individuals with alcohol dependence after short-term abstinence (STA) or long-term abstinence (LTA). A second aim of this study was to examine the factors that could disrupt the efficiency of semantic and episodic AM (the impact of depression severity, cognitive functions, recent or early traumatic events, and drinking history variables). After clinical and cognitive evaluations (alcohol consumption, depression, anxiety, IQ, memory performance), AM was assessed with the Autobiographical Memory Interview in patients with recent (between 4 and 6 weeks) and longer (at least 6 months) abstinence. Participants were asked to retrieve the number and nature of traumatic or painful life experiences in recent or early life periods (using the Childhood Traumatic Events Scale). The 2 abstinent groups had lower global EAM and SAM scores than the control group. These scores were comparable for both abstinent groups. For childhood events, no significant differences were observed in SAM for both groups compared with control participants. For early adulthood and recent events, both STA and LTA groups had lower scores on both SAM and EAM. Moreover, there was a negative correlation between the length of substance consumption and SAM scores. This study highlighted a specific AM disorder in both episodic and semantic dimensions. These deficits remained after 6 months of abstinence. This AM impairment may be explained by compromised encoding and consolidation of memories during bouts of drinking. Copyright © 2016 by the Research Society on Alcoholism.

  18. Notch-inducible hyperphosphorylated CREB and its ultradian oscillation in long-term memory formation.

    Science.gov (United States)

    Zhang, Jiabin; Little, Christopher J; Tremmel, Daniel M; Yin, Jerry C P; Wesley, Cedric S

    2013-07-31

    Notch is a cell surface receptor that is known to regulate developmental processes by establishing physical contact between neighboring cells. Many recent studies show that it also plays an important role in the formation of long-term memory (LTM) in adults, implying that memory formation requires regulation at the level of cell-cell contacts among brain cells. Neither the target of Notch activity in LTM formation nor the underlying mechanism of regulation is known. We report here results of our studies in adult Drosophila melanogaster showing that Notch regulates dCrebB-17A, the CREB protein. CREB is a transcriptional factor that is pivotal for intrinsic and synaptic plasticity involved in LTM formation. Notch in conjunction with PKC activity upregulates the level of a hyperphosphorylated form of CREB (hyper-PO4 CREB) and triggers its ultradian oscillation, both of which are linked to LTM formation. One of the sites that is phosphorylated in hyper-PO4 CREB is serine 231, which is the functional equivalent of mammalian CREB serine 133, the phosphorylation of which is an important regulator of CREB functions. Our data suggest the model that Notch and PKC activities generate a cyclical accumulation of cytoplasmic hyper-PO4 CREB that is a precursor for generating the nuclear CREB isoforms. Cyclical accumulation of CREB might be important for repetitive aspects of LTM formation, such as memory consolidation. Because Notch, PKC, and CREB have been implicated in many neurodegenerative diseases (e.g., Alzheimer's disease), our data might also shed some light on memory loss and dementia.

  19. Mechanisms of translation control underlying long-lasting synaptic plasticity and the consolidation of long-term memory.

    Science.gov (United States)

    Santini, Emanuela; Huynh, Thu N; Klann, Eric

    2014-01-01

    The complexity of memory formation and its persistence is a phenomenon that has been studied intensely for centuries. Memory exists in many forms and is stored in various brain regions. Generally speaking, memories are reorganized into broadly distributed cortical networks over time through systems level consolidation. At the cellular level, storage of information is believed to initially occur via altered synaptic strength by processes such as long-term potentiation. New protein synthesis is required for long-lasting synaptic plasticity as well as for the formation of long-term memory. The mammalian target of rapamycin complex 1 (mTORC1) is a critical regulator of cap-dependent protein synthesis and is required for numerous forms of long-lasting synaptic plasticity and long-term memory. As such, the study of mTORC1 and protein factors that control translation initiation and elongation has enhanced our understanding of how the process of protein synthesis is regulated during memory formation. Herein we discuss the molecular mechanisms that regulate protein synthesis as well as pharmacological and genetic manipulations that demonstrate the requirement for proper translational control in long-lasting synaptic plasticity and long-term memory formation. © 2014 Elsevier Inc. All rights reserved.

  20. Encyclopedic Memory: Long-Term Memory Capacity for Knowledge Vocabulary in Middle School

    Science.gov (United States)

    Lieury, Alain; Lorant, Sonia

    2013-01-01

    This article is a synthesis of unpublished and published experiments showing that elementary memory scores (words and pictures immediate recall; delayed recall, recognition), which are very sensitive to aging and in pharmacological protocols, have little or no correlation with school achievement. The alternative assumption developed is that school…

  1. The limitations of our knowledge about social influences on memories of sexual abuse over the long-term

    DEFF Research Database (Denmark)

    Koppel, Jonathan Mark; Berntsen, Dorthe

    2015-01-01

    Fagin, Cyr, and Hirst provide an informed and insightful application of the social memory literature to the important question of how memories of sexual abuse may be re-shaped, both over the short term and long term, by communication with others, as well as with oneself. In the following commentary......, we outline several respects in which we believe that the application of this literature to memories of sexual abuse, particularly over the long term, is still open to debate. In particular, we focus on induced forgetting and social contagion for such memories, as well as the application of the social...... memory literature to intrusive involuntary memories of trauma. Where applicable, we offer suggestions for future research that may contribute towards addressing the limitations of the existing literature....

  2. Semantic congruency but not temporal synchrony enhances long-term memory performance for audio-visual scenes.

    Science.gov (United States)

    Meyerhoff, Hauke S; Huff, Markus

    2016-04-01

    Human long-term memory for visual objects and scenes is tremendous. Here, we test how auditory information contributes to long-term memory performance for realistic scenes. In a total of six experiments, we manipulated the presentation modality (auditory, visual, audio-visual) as well as semantic congruency and temporal synchrony between auditory and visual information of brief filmic clips. Our results show that audio-visual clips generally elicit more accurate memory performance than unimodal clips. This advantage even increases with congruent visual and auditory information. However, violations of audio-visual synchrony hardly have any influence on memory performance. Memory performance remained intact even with a sequential presentation of auditory and visual information, but finally declined when the matching tracks of one scene were presented separately with intervening tracks during learning. With respect to memory performance, our results therefore show that audio-visual integration is sensitive to semantic congruency but remarkably robust against asymmetries between different modalities.

  3. Randomized controlled trial evaluating the temporal effects of high-intensity exercise on learning, short-term and long-term memory, and prospective memory.

    Science.gov (United States)

    Frith, Emily; Sng, Eveleen; Loprinzi, Paul D

    2017-09-18

    The broader purpose of this study was to examine the temporal effects of high-intensity exercise on learning, short-term and long-term retrospective memory and prospective memory. Among a sample of 88 young adult participants, 22 were randomized into one of four different groups: exercise before learning, control group, exercise during learning, and exercise after learning. The retrospective assessments (learning, short-term and long-term memory) were assessed using the Rey Auditory Verbal Learning Test. Long-term memory including a 20-min and 24-hr follow-up assessment. Prospective memory was assessed using a time-based procedure by having participants contact (via phone) the researchers at a follow-up time period. The exercise stimulus included a 15-min bout of progressive maximal exertion treadmill exercise. High-intensity exercise prior to memory encoding (vs. exercise during memory encoding or consolidation) was effective in enhancing long-term memory (for both 20-min and 24-h follow-up assessments). We did not observe a differential temporal effect of high-intensity exercise on short-term memory (immediate post-memory encoding), learning or prospective memory. The timing of high-intensity exercise may play an important role in facilitating long-term memory. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  4. Relative salience of spectral and temporal features in auditory long-term memory.

    Science.gov (United States)

    Yin, Pingbo; Shamma, Shihab A; Fritz, Jonathan B

    2016-12-01

    In order to explore the representation of sound features in auditory long-term memory, two groups of ferrets were trained on Go vs Nogo, 3-zone classification tasks. The sound stimuli differed primarily along the spectral and temporal dimensions. In Group 1, two ferrets were trained to (i) classify tones based on their frequency (Tone-task), and subsequently learned to (ii) classify white noise based on its amplitude modulation rate (AM-task). In Group 2, two ferrets were trained to classify tones based on correlated combinations of their frequency and AM rate (AM-Tone task). Both groups of ferrets learned their tasks and were able to generalize performance along the trained spectral (tone frequency) or temporal (AM rate) dimensions. Insights into stimulus representations in memory were gained when the animals were tested with a diverse set of untrained probes that mixed features from the two dimensions. Animals exhibited a complex pattern of responses to the probes reflecting primarily the probes' spectral similarity with the training stimuli, and secondarily the temporal features of the stimuli. These diverse behavioral decisions could be well accounted for by a nearest-neighbor classifier model that relied on a multiscale spectrotemporal cortical representation of the training and probe sounds.

  5. Just in time for late-LTP: A mechanism for the role of PKMzeta in long-term memory.

    Science.gov (United States)

    Vlachos, Andreas; Maggio, Nicola; Jedlicka, Peter

    2008-01-01

    It is a fundamental question in neuroscience how long-term memory formation is regulated at the molecular level. Although widely considered a highly complex process requiring numerous molecular players, it also has been speculated that a single protein could play a pivotal role. This "astonishing hypothesis" has made a significant impact on memory research and has led to a reevaluation of concepts regarding memory formation.1,2.

  6. [Short-and long-term effects of cannabinoids on memory, cognition and mental illness].

    Science.gov (United States)

    Sagie, Shira; Eliasi, Yehuda; Livneh, Ido; Bart, Yosi; Monovich, Einat

    2013-12-01

    Marijuana is considered the most commonly used drug in the world, with estimated millions of users. There is dissent in the medical world about the positive and negative effects of marijuana, and recently, a large research effort has been directed to that domain. The main influencing drug ingredient is THC, which acts on the cannabinoid system and binds to the CB1 receptor. The discovery of the receptor led to the finding of an endogenous ligand, anandamide, and another receptor-CB2. The researchers also discovered that cannabinoids have extensive biological activity, and its short and long-term effects may cause cognitive and emotional deficiencies. Findings show that the short-term effects, such as shortterm memory and verbal Learning, are reversible. However, despite the accumulation of evidence about long-term cognitive damage due to cannabis use, it is difficult to find unequivocal results, arising from the existence of many variables such as large differences between cannabis users, frequency of use, dosage and endogenous brain compensation. Apart from cognitive damage, current studies investigate how marijuana affects mental illness: a high correlation between cannabis use and schizophrenia was found and a high risk to undergo a psychotic attack. Furthermore, patients with schizophrenia who used cannabis showed a selective neuro-psychological disruption, and similar cognitive deficiencies and brain morphological changes were found among healthy cannabis users and schizophrenia patients. In contrast to the negative effects of marijuana including addiction, there are the medical uses: reducing pain, anxiety and nausea, increasing appetite and an anti-inflammatory activity. Medicalization of marijuana encourages frequent use, which may elevate depression.

  7. Overexpression of Protein Kinase Mζ in the Prelimbic Cortex Enhances the Formation of Long-Term Fear Memory.

    Science.gov (United States)

    Xue, Yan-Xue; Zhu, Zhen-Zhen; Han, Hai-Bin; Liu, Jian-Feng; Meng, Shi-Qiu; Chen, Chen; Yang, Jian-Li; Wu, Ping; Lu, Lin

    2015-08-01

    Neuroplasticity in the prefrontal cortex (PFC) after fear conditioning has been suggested to regulate the formation and expression of fear memory. Protein kinase Mζ (PKMζ), an isoform of protein kinase C with persistent activity, is involved in the formation and maintenance of memory. However, less is known about the role of PKMζ in the PFC in the formation of fear memory. We investigated whether the overexpression of PKMζ enhances the formation of auditory fear memory in rats. We found that microinfusion of lentiviral vector-expressing PKMζ into the prelimbic cortex (PrL) selectively enhanced the expression of PKMζ without influencing the expression of other isoforms of PKC. The overexpression of PKMζ in the PrL enhanced the formation of long-term fear memory without affecting short-term fear memory, whereas the overexpression of PKMζ in the infralimbic cortex had no effect on either short-term or long-term fear memory. The overexpression of PKMζ in the PrL had no effect on anxiety-like behavior or locomotor activity. We also found that PKMζ overexpression potentiated the fear conditioning-induced increase in the membrane levels of glutamate subunit 2 of AMPA receptors in the PrL. These results demonstrate that the overexpression of PKMζ in the PrL but not infralimbic cortex selectively enhanced the formation of long-term fear memory, and PKMζ in the PrL may be involved in the formation of fear memory.

  8. Independence of long-term contextual memory and short-term perceptual hypotheses: Evidence from contextual cueing of interrupted search.

    Science.gov (United States)

    Schlagbauer, Bernhard; Mink, Maurice; Müller, Hermann J; Geyer, Thomas

    2017-02-01

    Observers are able to resume an interrupted search trial faster relative to responding to a new, unseen display. This finding of rapid resumption is attributed to short-term perceptual hypotheses generated on the current look and confirmed upon subsequent looks at the same display. It has been suggested that the contents of perceptual hypotheses are similar to those of other forms of memory acquired long-term through repeated exposure to the same search displays over the course of several trials, that is, the memory supporting "contextual cueing." In three experiments, we investigated the relationship between short-term perceptual hypotheses and long-term contextual memory. The results indicated that long-term, contextual memory of repeated displays neither affected the generation nor the confirmation of short-term perceptual hypotheses for these displays. Furthermore, the analysis of eye movements suggests that long-term memory provides an initial benefit in guiding attention to the target, whereas in subsequent looks guidance is entirely based on short-term perceptual hypotheses. Overall, the results reveal a picture of both long- and short-term memory contributing to reliable performance gains in interrupted search, while exerting their effects in an independent manner.

  9. Expertise in cognitive psychology: testing the hypothesis of long-term working memory in a study of soccer players.

    Science.gov (United States)

    Postal, Virginie

    2004-10-01

    This experiment compared several theories of expertise and exceptional performances in cognitive psychology. One current conception assumes that experts in a specific domain have developed a long-term working memory, which accounts for the difference in memory performance between experts and novices. The principal characteristics of this memory are the speed with which processes of storage and retrieval function and the existence of retrieval structures that allow a temporary activation of the knowledge store in long-term memory. Other authors such as Vicente and Wang argue this notion does not account for memory performance that is not intrinsic to the domain of expertise. We attempt to clarify the two viewpoints and to focus on this debate by testing the hypothesis of long-term working memory using soccer as the domain of expertise and by comparing the cognitive performance of participants who have different expertise (novices, supporters, players, and coaches). 35 male participants were administered a new version of the Reading Span test to assess their long-term working memory according to two conditions. In the first condition (structured condition), the last word of each sentence was related to the soccer domain, and these words were related to each other in such a manner that they represented a part of the game. In the second condition (unstructured condition), the last word of each sentence was related to soccer but these words did not represent part of the game. Analysis showed that the sentence span increased as a function of expertise for the structured condition but not for the unstructured condition. The results were interpreted in the framework of the constraint attunement hypothesis proposed by Vicente in 1992 and the long-term working memory hypothesis proposed by Ericsson and Kintsch in 1995.

  10. Memory signals from the thalamus: early thalamocortical phase synchronization entrains gamma oscillations during long-term memory retrieval.

    Science.gov (United States)

    Staudigl, Tobias; Zaehle, Tino; Voges, Jürgen; Hanslmayr, Simon; Esslinger, Christine; Hinrichs, Hermann; Schmitt, Friedhelm C; Heinze, Hans-Jochen; Richardson-Klavehn, Alan

    2012-12-01

    The thalamus is believed to be a key node in human memory networks, however, very little is known about its real-time functional role. Here we examined the dynamics of thalamocortical communication during long-term episodic memory retrieval in two experiments. In experiment 1, intrathalamic and surface EEG was recorded in an epileptic patient implanted with depth electrodes for brain stimulation therapy. In a recognition memory test, early (300-500 ms) stimulus-linked oscillatory synchrony between mediodorsal thalamic and frontal surface electrodes at beta frequency (20 Hz) was enhanced for correctly remembered old compared to correctly rejected new items. Directionality measures (Granger causality) indicated that the thalamus was the sender, and the neocortex the receiver, of this beta signal, which also modulated the power of neocortical gamma (55-80 Hz) oscillations (cross-frequency coupling). Experiment 2 validated the cross-frequency coupling effects in a healthy participant sample. Confirming the findings from experiment 1, significantly increased cross-frequency coupling was found over frontal scalp electrodes during successful recognition. Extending anatomical knowledge on thalamic connectivity with frontal neocortex, these results suggest that the thalamus sends an early memory signal to frontal regions, triggering further memory search processes.

  11. Rapamycin restores BDNF-LTP and the persistence of long-term memory in a model of Down's syndrome.

    Science.gov (United States)

    Andrade-Talavera, Yuniesky; Benito, Itziar; Casañas, Juan José; Rodríguez-Moreno, Antonio; Montesinos, María Luz

    2015-10-01

    Down's syndrome (DS) is the most prevalent genetic intellectual disability. Memory deficits significantly contribute to the cognitive dysfunction in DS. Previously, we discovered that mTOR-dependent local translation, a pivotal process for some forms of synaptic plasticity, is deregulated in a DS mouse model. Here, we report that these mice exhibit deficits in both synaptic plasticity (i.e., BDNF-long term potentiation) and the persistence of spatial long-term memory. Interestingly, these deficits were fully reversible using rapamycin, a Food and Drug Administration-approved specific mTOR inhibitor; therefore, rapamycin may be a novel pharmacotherapy to improve cognition in DS.

  12. Large-Scale Fluorescence Calcium-Imaging Methods for Studies of Long-Term Memory in Behaving Mammals.

    Science.gov (United States)

    Jercog, Pablo; Rogerson, Thomas; Schnitzer, Mark J

    2016-05-02

    During long-term memory formation, cellular and molecular processes reshape how individual neurons respond to specific patterns of synaptic input. It remains poorly understood how such changes impact information processing across networks of mammalian neurons. To observe how networks encode, store, and retrieve information, neuroscientists must track the dynamics of large ensembles of individual cells in behaving animals, over timescales commensurate with long-term memory. Fluorescence Ca(2+)-imaging techniques can monitor hundreds of neurons in behaving mice, opening exciting avenues for studies of learning and memory at the network level. Genetically encoded Ca(2+) indicators allow neurons to be targeted by genetic type or connectivity. Chronic animal preparations permit repeated imaging of neural Ca(2+) dynamics over multiple weeks. Together, these capabilities should enable unprecedented analyses of how ensemble neural codes evolve throughout memory processing and provide new insights into how memories are organized in the brain. Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved.

  13. What does the brain do while playing scrabble?: ERPs associated with a short-long-term memory task.

    Science.gov (United States)

    Cansino, S; Ruiz, A; López-Alonso, V

    1999-03-01

    Event-related brain potentials (ERPs) were recorded while subjects performed the scrabble paradigm, a cued recall task that demands retrieving semantic memory information from long-term memory since subjects are not exposed to a previous study phase. The task combines short- and long-term memory processes and consists of forming words from a set of letters presented in random order. Short-term memory was manipulated by varying the number of letters (three, four and five) presented to the subject, while semantic memory was examined by comparing correct trials with no response trials. Behavioral results reveal that the subjects performed the task serially, as denoted by a linear reaction time increment as the number of random letters in the set increased. Short-term memory procedures were reflected by an amplitude increase of the N200 and by an amplitude decrease of the P300 increasing the number of letters. Successfully retrieving semantic information from long-term memory was indexed by a negative slow wave recorded at left frontal and left central sites, and by a positive slow wave predominant over right hemisphere sites. These findings provide evidence that semantic retrieval memory involves activity from both left and right hemispheres.

  14. Social investigation and long-term recognition memory performance in 129S1/SvImJ and C57BL/6JOlaHsd mice and their hybrids.

    Directory of Open Access Journals (Sweden)

    Jana Hädicke

    Full Text Available When tested for their behavioural performance, the mixed genetic background of transgenic mice is a critical, but often ignored, issue. Such issues can arise because of the significant differences in defined behavioural parameters between embryonic stem cell donor and recipient strains. In this context, the commonly used stem cell donor strain '129' shows 'deficits' in different paradigms for learning and long-term memory. We investigated the long-term social recognition memory performance and the investigative behaviour in commercially available 129S1/SvImJ and C57BL/6JOlaHsd mice and two F1-hybrids (129S1/SvImJ×C57BL/6JOlaHsd by using the social discrimination procedure and its modification, the volatile fraction cage (VFC. Our data revealed an unimpaired olfactory long-term recognition memory not only in female and male 129S1/SvImJ and C57BL/6JOlaHsd mice but also in the two hybrid lines (129S1/SvImJxC57BL/6JOlaHsd when the full 'olfactory signature' of the 'to-be-recognized' conspecific was presented. Under these conditions we also failed to detect differences in the long-term recognition memory between male and female mice of the tested strains and revealed that the oestrus cycle did not affect the performance in this memory task. The performance in the VFC, based only on the volatile components of the 'olfactory signature' of the 'to-be-recognized' conspecific, was similar to that observed under direct exposure except that females of one F1 hybrid group failed to show an intact long-term memory. Thus, the social discrimination procedure allowing direct access between the experimental subject and the stimulus animal(s is highly suitable to investigate the impact of genetic manipulations on long-term memory in male and female mice of the strain 129S1/SvImJ, C57BL/6JOlaHsd and 129S1/SvImJxC57BL/6JOlaHsd hybrids.

  15. Stress and glucocorticoid receptor-dependent mechanisms in long-term memory: from adaptive responses to psychopathologies.

    Science.gov (United States)

    Finsterwald, Charles; Alberini, Cristina M

    2014-07-01

    A proper response against stressors is critical for survival. In mammals, the stress response is primarily mediated by secretion of glucocorticoids via the hypothalamic-pituitary-adrenocortical (HPA) axis and release of catecholamines through adrenergic neurotransmission. Activation of these pathways results in a quick physical response to the stress and, in adaptive conditions, mediates long-term changes in the brain that lead to the formation of long-term memories of the experience. These long-term memories are an essential adaptive mechanism that allows an animal to effectively face similar demands again. Indeed, a moderate stress level has a strong positive effect on memory and cognition, as a single arousing or moderately stressful event can be remembered for up to a lifetime. Conversely, exposure to extreme, traumatic, or chronic stress can have the opposite effect and cause memory loss, cognitive impairments, and stress-related psychopathologies such as anxiety disorders, depression and post-traumatic stress disorder (PTSD). While more effort has been devoted to the understanding of the negative effects of chronic stress, much less has been done thus far on the identification of the mechanisms engaged in the brain when stress promotes long-term memory formation. Understanding these mechanisms will provide critical information for use in ameliorating memory processes in both normal and pathological conditions. Here, we will review the role of glucocorticoids and glucocorticoid receptors (GRs) in memory formation and modulation. Furthermore, we will discuss recent findings on the molecular cascade of events underlying the effect of GR activation in adaptive levels of stress that leads to strong, long-lasting memories. Our recent data indicate that the positive effects of GR activation on memory consolidation critically engage the brain-derived neurotrophic factor (BDNF) pathway. We propose and will discuss the hypothesis that stress promotes the formation of

  16. Stress and glucocorticoid receptor-dependent mechanisms in long-term memory: from adaptive responses to psychopathologies

    Science.gov (United States)

    Finsterwald, Charles; Alberini, Cristina M.

    2013-01-01

    A proper response against stressors is critical for survival. In mammals, the stress response is primarily mediated by secretion of glucocorticoids via the hypothalamic-pituitaryadrenocortical (HPA) axis and release of catecholamines through adrenergic neurotransmission. Activation of these pathways results in a quick physical response to the stress and, in adaptive conditions, mediates long-term changes in the brain that lead to the formation of long-term memories of the experience. These long-term memories are an essential adaptive mechanism that allows an animal to effectively face similar demands again. Indeed, a moderate stress level has a strong positive effect on memory and cognition, as a single arousing or moderately stressful event can be remembered for up to a lifetime. Conversely, exposure to extreme, traumatic, or chronic stress can have the opposite effect and cause memory loss, cognitive impairments, and stress-related psychopathologies such as anxiety disorders, depression and post-traumatic stress disorder (PTSD). While more effort has been devoted to the understanding of the effects of the negative effects of chronic stress, much less has been done thus far on the identification of the mechanisms engaged in the brain when stress promotes long-term memory formation. Understanding these mechanisms will provide critical information for use in ameliorating memory processes in both normal and pathological conditions. Here, we will review the role of glucocorticoids and glucocorticoid receptors (GRs) in memory formation and modulation. Furthermore, we will discuss recent findings on the molecular cascade of events underlying the effect of GR activation in adaptive levels of stress that leads to strong, long-lasting memories. Our recent data indicate that the positive effects of GR activation on memory consolidation critically engage the brain-derived neurotrophic factor (BDNF) pathway. We propose and will discuss the hypothesis that stress promotes the

  17. Properties and mechanisms of olfactory learning and memory.

    Science.gov (United States)

    Tong, Michelle T; Peace, Shane T; Cleland, Thomas A

    2014-01-01

    Memories are dynamic physical phenomena with psychometric forms as well as characteristic timescales. Most of our understanding of the cellular mechanisms underlying the neurophysiology of memory, however, derives from one-trial learning paradigms that, while powerful, do not fully embody the gradual, representational, and statistical aspects of cumulative learning. The early olfactory system-particularly olfactory bulb-comprises a reasonably well-understood and experimentally accessible neuronal network with intrinsic plasticity that underlies both one-trial (adult aversive, neonatal) and cumulative (adult appetitive) odor learning. These olfactory circuits employ many of the same molecular and structural mechanisms of memory as, for example, hippocampal circuits following inhibitory avoidance conditioning, but the temporal sequences of post-conditioning molecular events are likely to differ owing to the need to incorporate new information from ongoing learning events into the evolving memory trace. Moreover, the shapes of acquired odor representations, and their gradual transformation over the course of cumulative learning, also can be directly measured, adding an additional representational dimension to the traditional metrics of memory strength and persistence. In this review, we describe some established molecular and structural mechanisms of memory with a focus on the timecourses of post-conditioning molecular processes. We describe the properties of odor learning intrinsic to the olfactory bulb and review the utility of the olfactory system of adult rodents as a memory system in which to study the cellular mechanisms of cumulative learning.

  18. Properties and mechanisms of olfactory learning and memory

    Directory of Open Access Journals (Sweden)

    Michelle T Tong

    2014-07-01

    Full Text Available Memories are dynamic physical phenomena with psychometric forms as well as characteristic timescales. Most of our understanding of the cellular mechanisms underlying the neurophysiology of memory, however, derives from one-trial learning paradigms that, while powerful, do not fully embody the gradual, representational, and statistical aspects of cumulative learning. The early olfactory system -- particularly olfactory bulb -- comprises a reasonably well-understood and experimentally accessible neuronal network with intrinsic plasticity that underlies both one-trial (adult aversive, neonatal and cumulative (adult appetitive odor learning. These olfactory circuits employ many of the same molecular and structural mechanisms of memory as, for example, hippocampal circuits following inhibitory avoidance conditioning, but the temporal sequences of post-conditioning molecular events are likely to differ owing to the need to incorporate new information from ongoing learning events into the evolving memory trace. Moreover, the shapes of acquired odor representations, and their gradual transformation over the course of cumulative learning, also can be directly measured, adding an additional representational dimension to the traditional metrics of memory strength and persistence. In this review, we describe some established molecular and structural mechanisms of memory with a focus on the timecourses of post-conditioning molecular processes. We describe the properties of odor learning intrinsic to the olfactory bulb and review the utility of the olfactory system of adult rodents as a memory system in which to study the cellular mechanisms of cumulative learning.

  19. Effect of Alcohol and Tobacco Smoke on Long-Term Memory and Cell Proliferation in the Hippocampus of Rats.

    Science.gov (United States)

    Gomez, Rosane; Schneider, Ricardo; Quinteros, Dayane; Santos, Carolina Ferreira; Bandiera, Solange; Thiesen, Flavia Valadão; Coitinho, Adriana Simon; Fernandes, Marilda da Cruz; Wieczorek, Marina Godinho

    2015-12-01

    Alcohol is frequently used in combination with tobacco and few studies explore interactions between these two drugs of abuse. Here, we evaluated the effect of chronic alcohol administration and concomitant exposure to tobacco smoke on long-term memory and on cell proliferation in the hippocampus of rats. Forty male Wistar rats were assigned to four groups and treated with alcohol (2g/kg by gavage) and/or exposed to tobacco smoke (from six cigarettes, by inhalation) twice a day (at 9:00 AM and 2:00 PM) for 30 days. Long-term memory was evaluated in the inhibitory avoidance test and hippocampal cell proliferation was analyzed for bromodeoxyuridine immunohistochemistry. Our results showed that alcohol, tobacco smoke, or their combination improved the long-term memory evaluated by the memory index in rats. Moreover, alcohol and tobacco coadministration decreased bromodeoxyuridine-labeled cells by 60% when compared to the control group, while alcohol treatment decreased labeled cells by 40%. The tobacco group showed a nonsignificant 26% decrease in labeled cells compared to the control group. Chronic alcohol and tobacco coadministration improves the long-term memory in rats in the inhibitory avoidance test. However, coadministration decreases the cell proliferation in the hippocampus of rats, suggesting a deleterious effect by the combined use of these drugs of abuse. © The Author 2015. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Sevoflurane Inhalation Accelerates the Long-Term Memory Consolidation via Small GTPase Overexpression in the Hippocampus of Mice in Adolescence.

    Science.gov (United States)

    Nakamura, Emi; Kinoshita, Hiroyuki; Feng, Guo-Gang; Hayashi, Hisaki; Satomoto, Maiko; Sato, Motohiko; Fujiwara, Yoshihiro

    2016-01-01

    Sevoflurane exposure impairs the long-term memory in neonates. Whether the exposure to animals in adolescence affects the memory, however, has been unclear. A small hydrolase enzyme of guanosine triphosphate (GTPase) rac1 plays a role in the F-actin dynamics related to the synaptic plasticity, as well as superoxide production via reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation. The current study was designed to examine whether sevoflurane exposure to mice in early adolescence modifies the long-term learning ability concomitantly with the changes in F-actin constitution as well as superoxide production in the hippocampus according to the levels of rac1 protein expression. Four-week-old mice were subjected to the evaluation of long-term learning ability for three days. On day one, each mouse was allowed to enter a dark chamber for five min to acclimatization. On day two, the procedure was repeated with the addition of an electric shock as soon as a mouse entered the dark chamber. All mice subsequently inhaled 2 L/min air with (Sevoflurane group) and without (Control group) 2.5% sevoflurane for three hours. On day three, each mouse was placed on the platform and retention time, which is the latency to enter the dark chamber, was examined. The brain removed after the behavior test, was used for analyses of immunofluorescence, Western immunoblotting and intracellular levels of superoxide. Sevoflurane exposure significantly prolonged retention time, indicating the enhanced long-term memory. Sevoflurane inhalation augmented F-actin constitution coexisting with the rac1 protein overexpression in the hippocampus whereas it did not alter the levels of superoxide. Sevoflurane exposure to 4-week-old mice accelerates the long-term memory concomitantly with the enhanced F-actin constitution coexisting with the small GTPase rac1 overexpression in the hippocampus. These results suggest that sevoflurane inhalation may amplify long-term memory

  1. Differential role of entorhinal and hippocampal nerve growth factor in short- and long-term memory modulation

    Directory of Open Access Journals (Sweden)

    Walz R.

    2005-01-01

    Full Text Available We studied the effects of infusion of nerve growth factor (NGF into the hippocampus and entorhinal cortex of male Wistar rats (250-300 g, N = 11-13 per group on inhibitory avoidance retention. In order to evaluate the modulation of entorhinal and hippocampal NGF in short- and long-term memory, animals were implanted with cannulae in the CA1 area of the dorsal hippocampus or entorhinal cortex and trained in one-trial step-down inhibitory avoidance (foot shock, 0.4 mA. Retention tests were carried out 1.5 h or 24 h after training to measure short- and long-term memory, respectively. Immediately after training, rats received 5 µl NGF (0.05, 0.5 or 5.0 ng or saline per side into the CA1 area and entorhinal cortex. The correct position of the cannulae was confirmed by histological analysis. The highest dose of NGF (5.0 ng into the hippocampus blocked short-term memory (P < 0.05, whereas the doses of 0.5 (P < 0.05 and 5.0 ng (P < 0.01 NGF enhanced long-term memory. NGF administration into the entorhinal cortex improved long-term memory at the dose of 5.0 ng (P < 0.05 and did not alter short-term memory. Taken as a whole, our results suggest a differential modulation by entorhinal and hippocampal NGF of short- and long-term memory.

  2. Genome-wide Functional Analysis of CREB/Long-Term Memory-Dependent Transcription Reveals Distinct Basal and Memory Gene Expression Programs

    Science.gov (United States)

    Lakhina, Vanisha; Arey, Rachel N.; Kaletsky, Rachel; Kauffman, Amanda; Stein, Geneva; Keyes, William; Xu, Daniel; Murphy, Coleen T.

    2014-01-01

    SUMMARY Induced CREB activity is a hallmark of long-term memory, but the full repertoire of CREB transcriptional targets required specifically for memory is not known in any system. To obtain a more complete picture of the mechanisms involved in memory, we combined memory training with genome-wide transcriptional analysis of C. elegans CREB mutants. This approach identified 757 significant CREB/memory-induced targets and confirmed the involvement of known memory genes from other organisms, but also suggested new mechanisms and novel components that may be conserved through mammals. CREB mediates distinct basal and memory transcriptional programs at least partially through spatial restriction of CREB activity: basal targets are regulated primarily in nonneuronal tissues, while memory targets are enriched for neuronal expression, emanating from CREB activity in AIM neurons. This suite of novel memory-associated genes will provide a platform for the discovery of orthologous mammalian long-term memory components. PMID:25611510

  3. Genome-wide functional analysis of CREB/long-term memory-dependent transcription reveals distinct basal and memory gene expression programs.

    Science.gov (United States)

    Lakhina, Vanisha; Arey, Rachel N; Kaletsky, Rachel; Kauffman, Amanda; Stein, Geneva; Keyes, William; Xu, Daniel; Murphy, Coleen T

    2015-01-21

    Induced CREB activity is a hallmark of long-term memory, but the full repertoire of CREB transcriptional targets required specifically for memory is not known in any system. To obtain a more complete picture of the mechanisms involved in memory, we combined memory training with genome-wide transcriptional analysis of C. elegans CREB mutants. This approach identified 757 significant CREB/memory-induced targets and confirmed the involvement of known memory genes from other organisms, but also suggested new mechanisms and novel components that may be conserved through mammals. CREB mediates distinct basal and memory transcriptional programs at least partially through spatial restriction of CREB activity: basal targets are regulated primarily in nonneuronal tissues, while memory targets are enriched for neuronal expression, emanating from CREB activity in AIM neurons. This suite of novel memory-associated genes will provide a platform for the discovery of orthologous mammalian long-term memory components.

  4. Effects of long-term electromagnetic field exposure on spatial learning and memory in rats.

    Science.gov (United States)

    Hao, Dongmei; Yang, Lei; Chen, Su; Tong, Jun; Tian, Yonghao; Su, Benhang; Wu, Shuicai; Zeng, Yanjun

    2013-02-01

    With the development of communications industry, mobile phone plays an important role in daily life. Whether or not the electromagnetic radiation emitted by mobile phone causes any adverse effects on brain function has become of a great concern. This paper investigated the effect of electromagnetic field on spatial learning and memory in rats. 32 trained Wistar rats were divided into two groups: exposure group and control group. The exposure group was exposed to 916 MHz, 10w/m2 mobile phone electromagnetic field (EMF) 6 h a day, 5 days a week, 10 weeks. The completion time, number of total errors and the neuron discharge signals were recorded while the rats were searching for food in an eight-arm radial maze at every weekend. The neuron signals of one exposed rat and one control rat in the maze were obtained by the implanted microelectrode arrays in their hippocampal regions. It can be seen that during the weeks 4-5 of the experiment, the average completion time and error rate of the exposure group were longer and larger than that of control group (p exposure, and the rats can adapt to long-term EMF exposure.

  5. Neural mechanisms underlying the impact of visual distraction on retrieval of long-term memory.

    Science.gov (United States)

    Wais, Peter E; Rubens, Michael T; Boccanfuso, Jacqueline; Gazzaley, Adam

    2010-06-23

    Filtering information on the basis of what is relevant to accomplish our goals is a critical process supporting optimal cognitive performance. However, it is not known whether exposure to irrelevant environmental stimuli impairs our ability to accurately retrieve long-term memories. We hypothesized that visual processing of irrelevant visual information would interfere with mental visualization engaged during recall of the details of a prior experience, despite goals to direct full attention to the retrieval task. In the current study, we compared performance on a cued-recall test of previously studied visual items when participants' eyes were closed to performance when their eyes were open and irrelevant visual stimuli were presented. A behavioral experiment revealed that recollection of episodic details was diminished in the presence of the irrelevant information. A functional magnetic resonance imaging experiment using the same paradigm replicated the behavioral results and found that diminished recollection was associated with the disruption of functional connectivity in a network involving the left inferior frontal gyrus, hippocampus and visual association cortex. Network connectivity supported recollection of contextual details based on visual imagery when eyes were closed, but declined in the presence of irrelevant visual information. We conclude that bottom-up influences from irrelevant visual information interfere with top-down selection of episodic details mediated by a capacity-limited frontal control region, resulting in impaired recollection.

  6. Genetic influences on free and cued recall in long-term memory tasks.

    Science.gov (United States)

    Volk, Heather E; McDermott, Kathleen B; Roediger, Henry L; Todd, Richard D

    2006-10-01

    Long-term memory (LTM) problems are associated with many psychiatric and neurological illnesses and are commonly measured using free and cued recall tasks. Although LTM has been linked with biologic mechanisms, the etiology of distinct LTM tasks is unknown. We studied LTM in 95 healthy female twin pairs identified through birth records in the state of Missouri. Performance on tasks of free recall of unrelated words, free and cued recall of categorized words, and the vocabulary section of the Wechsler Adult Intelligence Scale (WAIS-R) were examined using structural equation modeling. Additive genetic and unique environmental factors influenced LTM and intelligence. Free recall of unrelated and categorized words, and cued recall of categorized words, were moderately heritable (55%, 38%, and 37%). WAIS-R vocabulary score was highly heritable (77%). Controlling for verbal intelligence in multivariate analyses of recall, two components of genetic influence on LTM were found; one for all three recall scores and one for free and cued categorized word recall. Recall of unrelated and categorized words is influenced by different genetic and environmental factors indicating heterogeneity in LTM. Verbal intelligence is etiologically different from LTM indicating that these two abilities utilize different brain functions.

  7. CNTRICS imaging biomarkers final task selection: Long-term memory and reinforcement learning.

    Science.gov (United States)

    Ragland, John D; Cohen, Neal J; Cools, Roshan; Frank, Michael J; Hannula, Deborah E; Ranganath, Charan

    2012-01-01

    Functional imaging paradigms hold great promise as biomarkers for schizophrenia research as they can detect altered neural activity associated with the cognitive and emotional processing deficits that are so disabling to this patient population. In an attempt to identify the most promising functional imaging biomarkers for research on long-term memory (LTM), the Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS) initiative selected "item encoding and retrieval," "relational encoding and retrieval," and "reinforcement learning" as key LTM constructs to guide the nomination process. This manuscript reports on the outcome of the third CNTRICS biomarkers meeting in which nominated paradigms in each of these domains were discussed by a review panel to arrive at a consensus on which of the nominated paradigms could be recommended for immediate translational development. After briefly describing this decision process, information is presented from the nominating authors describing the 4 functional imaging paradigms that were selected for immediate development. In addition to describing the tasks, information is provided on cognitive and neural construct validity, sensitivity to behavioral or pharmacological manipulations, availability of animal models, psychometric characteristics, effects of schizophrenia, and avenues for future development.

  8. Multiple interpretations of long-term working memory theory: Reply to Delaney and Ericsson (2016).

    Science.gov (United States)

    Foroughi, Cyrus K; Werner, Nicole E; Barragán, Daniela; Boehm-Davis, Deborah A

    2016-10-01

    This reply is in response to Delaney and Ericsson (2016), who argue that the results of our recent research (Foroughi, Werner, Barragán, & Boehm-Davis, 2015) can be explained by Ericsson and Kintsch's (1995) long-term working memory (LTWM) theory. Our original work was designed to test the prediction made by LTWM theory that interruptions of up to 30 s in duration would not disrupt reading performance. We conducted the work following the method and outcome measures recommended by Ericsson and Kintsch (1995). Our data were clear: interruptions disrupted reading comprehension. We believe that these data do not support predictions made by LTWM theory. Although we appreciate Delaney and Ericsson's (2016) comments, we are unsure how best to move forward because it appears that some of their comments are not consistent with the published work on LTWM theory. Because of the inconsistent and contradictory claims surrounding LTWM theory, the theory does not appear to be falsifiable, or is in danger of becoming unfalsifiable. Creating and testing theory is vital for the advancement of psychological science, but it appears that testing predictions made by LTWM would be very difficult, if not impossible, given the fluid state of the theory. (PsycINFO Database Record

  9. Long-Term Memory: A Review and Meta-Analysis of Studies of Declarative and Procedural Memory in Specific Language Impairment

    Science.gov (United States)

    Lum, Jarrad A. G.; Conti-Ramsden, Gina

    2013-01-01

    This review examined the status of long-term memory systems in specific language impairment (SLI)--declarative memory and aspects of procedural memory in particular. Studies included in the review were identified following a systematic search of the literature and findings combined using meta-analysis. This review showed that individuals with SLI…

  10. Long-Term Memory: A Review and Meta-Analysis of Studies of Declarative and Procedural Memory in Specific Language Impairment

    Science.gov (United States)

    Lum, Jarrad A. G.; Conti-Ramsden, Gina

    2013-01-01

    This review examined the status of long-term memory systems in specific language impairment (SLI)--declarative memory and aspects of procedural memory in particular. Studies included in the review were identified following a systematic search of the literature and findings combined using meta-analysis. This review showed that individuals with SLI…

  11. Genetic activation of ERK5 MAP kinase enhances adult neurogenesis and extends hippocampus-dependent long-term memory.

    Science.gov (United States)

    Wang, Wenbin; Pan, Yung-Wei; Zou, Junhui; Li, Tan; Abel, Glen M; Palmiter, Richard D; Storm, Daniel R; Xia, Zhengui

    2014-02-05

    Recent studies have shown that inhibition of adult neurogenesis impairs the formation of hippocampus-dependent memory. However, it is not known whether increasing adult neurogenesis affects the persistence of hippocampus-dependent long-term memory. Furthermore, signaling mechanisms that regulate adult neurogenesis are not fully defined. We recently reported that the conditional and targeted knock-out of ERK5 MAP kinase in adult neurogenic regions of the mouse brain attenuates adult neurogenesis in the hippocampus and disrupts several forms of hippocampus-dependent memory. Here, we developed a gain-of-function knock-in mouse model to specifically activate endogenous ERK5 in the neurogenic regions of the adult brain. We report that the selective and targeted activation of ERK5 increases adult neurogenesis in the dentate gyrus by enhancing cell survival, neuronal differentiation, and dendritic complexity. Conditional ERK5 activation also improves the performance of challenging forms of spatial learning and memory and extends hippocampus-dependent long-term memory. We conclude that enhancing signal transduction of a single signaling pathway within adult neural stem/progenitor cells is sufficient to increase adult neurogenesis and improve the persistence of hippocampus-dependent memory. Furthermore, activation of ERK5 may provide a novel therapeutic target to improve long-term memory.

  12. Zif268/Egr1 gain of function facilitates hippocampal synaptic plasticity and long-term spatial recognition memory.

    Science.gov (United States)

    Penke, Zsuzsa; Morice, Elise; Veyrac, Alexandra; Gros, Alexandra; Chagneau, Carine; LeBlanc, Pascale; Samson, Nathalie; Baumgärtel, Karsten; Mansuy, Isabelle M; Davis, Sabrina; Laroche, Serge

    2014-01-05

    It is well established that Zif268/Egr1, a member of the Egr family of transcription factors, is critical for the consolidation of several forms of memory; however, it is as yet uncertain whether increasing expression of Zif268 in neurons can facilitate memory formation. Here, we used an inducible transgenic mouse model to specifically induce Zif268 overexpression in forebrain neurons and examined the effect on recognition memory and hippocampal synaptic transmission and plasticity. We found that Zif268 overexpression during the establishment of memory for objects did not change the ability to form a long-term memory of objects, but enhanced the capacity to form a long-term memory of the spatial location of objects. This enhancement was paralleled by increased long-term potentiation in the dentate gyrus of the hippocampus and by increased activity-dependent expression of Zif268 and selected Zif268 target genes. These results provide novel evidence that transcriptional mechanisms engaging Zif268 contribute to determining the strength of newly encoded memories.

  13. The Drosophila cell adhesion molecule klingon is required for long-term memory formation and is regulated by Notch.

    Science.gov (United States)

    Matsuno, Motomi; Horiuchi, Junjiro; Tully, Tim; Saitoe, Minoru

    2009-01-06

    The ruslan (rus) mutant was previously identified in a behavioral screen for mutants defective in long-lasting memory, which consists of two consolidated memory types, anesthesia-resistant memory, and protein synthesis-dependent long-term memory (LTM). We demonstrate here that rus is a new allele of klingon (klg), which encodes a homophilic cell adhesion molecule. Klg is acutely required for LTM but not anesthesia-resistant memory formation, and Klg expression increases upon LTM induction. LTM formation also requires activity of the Notch cell-surface receptor. Although defects in Notch have been implicated in memory loss because of Alzheimer's disease, downstream signaling linking Notch to memory have not been determined. Strikingly, we found that Notch activity increases upon LTM induction and regulates Klg expression. Furthermore, Notch-induced enhancement of LTM is disrupted by a klg mutation. We propose that Klg is a downstream effector of Notch signaling that links Notch activity to memory.

  14. On the simple random-walk models of ion-channel gate dynamics reflecting long-term memory.

    Science.gov (United States)

    Wawrzkiewicz, Agata; Pawelek, Krzysztof; Borys, Przemyslaw; Dworakowska, Beata; Grzywna, Zbigniew J

    2012-06-01

    Several approaches to ion-channel gating modelling have been proposed. Although many models describe the dwell-time distributions correctly, they are incapable of predicting and explaining the long-term correlations between the lengths of adjacent openings and closings of a channel. In this paper we propose two simple random-walk models of the gating dynamics of voltage and Ca(2+)-activated potassium channels which qualitatively reproduce the dwell-time distributions, and describe the experimentally observed long-term memory quite well. Biological interpretation of both models is presented. In particular, the origin of the correlations is associated with fluctuations of channel mass density. The long-term memory effect, as measured by Hurst R/S analysis of experimental single-channel patch-clamp recordings, is close to the behaviour predicted by our models. The flexibility of the models enables their use as templates for other types of ion channel.

  15. Aluminium chloride impairs long-term memory and downregulates cAMP-PKA-CREB signalling in rats.

    Science.gov (United States)

    Zhang, Lifeng; Jin, Cuihong; Lu, Xiaobo; Yang, Jinghua; Wu, Shengwen; Liu, Qiufang; Chen, Rong; Bai, Chunyu; Zhang, Di; Zheng, Linlin; Du, Yanqiu; Cai, Yuan

    2014-09-02

    Epidemiological investigations have indicated that aluminium (Al) is an important environmental neurotoxicant that may be involved in the aetiology of the cognitive dysfunction associated with neurodegenerative diseases. Additionally, exposure to Al is known to cause neurobehavioural abnormalities in animals. Previous studies demonstrated that Al impaired early-phase long-term potentiation (E-LTP) in vivo and in vitro. Our previous research revealed that Al could impair long-term memory via the impairment of late-phase long-term potentiation (L-LTP) in vivo. However, the exact mechanism by which Al impairs long-term memory has been poorly studied thus far. This study was designed not only to observe the effects of subchronic Al treatment on long-term memory and hippocampal ultrastructure but also to explore a possible underlying mechanism (involving the cAMP-PKA-CREB signalling pathway) in the hippocampus of rats.. Pregnant Wistar rats were assigned to four groups. Neonatal rats were exposed to Al by parental lactation for 3 weeks and then fed with distilled water containing 0, 0.2%, 0.4% or 0.6% Al chloride (AlCl3) for 3 postnatal months. The levels of Al in the blood and hippocampus were quantified by atomic absorption spectrophotometry. The shuttle-box test was performed to detect long-term memory. The hippocampus was collected for ultrastructure observation, and the level of cAMP-PKA-CREB signalling was examined. The results showed that the Al concentrations in the blood and hippocampus of Al-treated rats were higher than those of the control rats. Al may impair the long-term memory of rats. Hippocampal cAMP, cPKA, pCREB, BDNF and c-jun expression decreased significantly, and the neuronal and synaptic ultrastructure exhibited pathological changes after Al treatment. These results indicated that Al may induce long-term memory damage in rats by inhibiting cAMP-PKA-CREB signalling and altering the synaptic and neuronal ultrastructure in the hippocampus. Copyright

  16. When music and long-term memory interact: effects of musical expertise on functional and structural plasticity in the hippocampus.

    Directory of Open Access Journals (Sweden)

    Mathilde Groussard

    Full Text Available The development of musical skills by musicians results in specific structural and functional modifications in the brain. Surprisingly, no functional magnetic resonance imaging (fMRI study has investigated the impact of musical training on brain function during long-term memory retrieval, a faculty particularly important in music. Thus, using fMRI, we examined for the first time this process during a musical familiarity task (i.e., semantic memory for music. Musical expertise induced supplementary activations in the hippocampus, medial frontal gyrus, and superior temporal areas on both sides, suggesting a constant interaction between episodic and semantic memory during this task in musicians. In addition, a voxel-based morphometry (VBM investigation was performed within these areas and revealed that gray matter density of the hippocampus was higher in musicians than in nonmusicians. Our data indicate that musical expertise critically modifies long-term memory processes and induces structural and functional plasticity in the hippocampus.

  17. When music and long-term memory interact: effects of musical expertise on functional and structural plasticity in the hippocampus.

    Science.gov (United States)

    Groussard, Mathilde; La Joie, Renaud; Rauchs, Géraldine; Landeau, Brigitte; Chételat, Gaël; Viader, Fausto; Desgranges, Béatrice; Eustache, Francis; Platel, Hervé

    2010-10-05

    The development of musical skills by musicians results in specific structural and functional modifications in the brain. Surprisingly, no functional magnetic resonance imaging (fMRI) study has investigated the impact of musical training on brain function during long-term memory retrieval, a faculty particularly important in music. Thus, using fMRI, we examined for the first time this process during a musical familiarity task (i.e., semantic memory for music). Musical expertise induced supplementary activations in the hippocampus, medial frontal gyrus, and superior temporal areas on both sides, suggesting a constant interaction between episodic and semantic memory during this task in musicians. In addition, a voxel-based morphometry (VBM) investigation was performed within these areas and revealed that gray matter density of the hippocampus was higher in musicians than in nonmusicians. Our data indicate that musical expertise critically modifies long-term memory processes and induces structural and functional plasticity in the hippocampus.

  18. Long-Term Memory for the Terrorist Attack of September 11: Flashbulb Memories, Event Memories, and the Factors that Influence Their Retention

    Science.gov (United States)

    Hirst, William; Phelps, Elizabeth A.; Buckner, Randy L.; Budson, Andrew E.; Cuc, Alexandru; Gabrieli, John D. E.; Johnson, Marcia K.; Lustig, Cindy; Lyle, Keith B.; Mather, Mara; Meksin, Robert; Mitchell, Karen J.; Ochsner, Kevin N.; Schacter, Daniel L.; Simons, Jon S.; Vaidya, Chandan J.

    2009-01-01

    More than 3,000 individuals from 7 U.S. cities reported on their memories of learning of the terrorist attacks of September 11, as well as details about the attack, 1 week, 11 months, and/or 35 months after the assault. Some studies of flashbulb memories examining long-term retention show slowing in the rate of forgetting after a year, whereas…

  19. Long-Term Memory for the Terrorist Attack of September 11: Flashbulb Memories, Event Memories, and the Factors that Influence Their Retention

    Science.gov (United States)

    Hirst, William; Phelps, Elizabeth A.; Buckner, Randy L.; Budson, Andrew E.; Cuc, Alexandru; Gabrieli, John D. E.; Johnson, Marcia K.; Lustig, Cindy; Lyle, Keith B.; Mather, Mara; Meksin, Robert; Mitchell, Karen J.; Ochsner, Kevin N.; Schacter, Daniel L.; Simons, Jon S.; Vaidya, Chandan J.

    2009-01-01

    More than 3,000 individuals from 7 U.S. cities reported on their memories of learning of the terrorist attacks of September 11, as well as details about the attack, 1 week, 11 months, and/or 35 months after the assault. Some studies of flashbulb memories examining long-term retention show slowing in the rate of forgetting after a year, whereas…

  20. Long-term plasticity in the regulation of olfactory bulb activity by centrifugal fibers from piriform cortex.

    Science.gov (United States)

    Cauthron, Joy L; Stripling, Jeffrey S

    2014-07-16

    Olfactory bulb granule cells are activated synaptically via two main pathways. Mitral/tufted (M/T) cells form dendrodendritic synapses on granule cells that can be activated by antidromic stimulation of the lateral olfactory tract (LOT). Centrifugal fibers originating from the association fiber (AF) system in piriform cortex (PC) make axodendritic synapses on granule cells within the granule cell layer (GCL) that can be activated by orthodromic stimulation of AF axons in the PC. We explored functional plasticity in the AF pathway by recording extracellularly from individual M/T cells and presumed granule cells in male Long-Evans rats under urethane anesthesia while testing their response to LOT and AF stimulation. Presumed granule cells driven synaptically by LOT stimulation (type L cells) were concentrated in the superficial half of the GCL and were activated at short latencies, whereas those driven synaptically by AF stimulation (type A cells) were concentrated in the deep half of the GCL and were activated at longer latencies. Type A cells were readily detected only in animals in which the AF input to the GCL had been previously potentiated by repeated high-frequency stimulation. An additional bout of high-frequency stimulation administered under urethane caused an immediate increase in the number of action potentials evoked in type A cells by AF test stimulation and a concomitant increase in inhibition of M/T cells. These results underscore the importance of the role played in olfactory processing by PC regulation of OB activity and document the long-lasting potentiation of that regulation by repeated high-frequency AF activation.

  1. Brief predator sound exposure elicits behavioral and neuronal long-term sensitization in the olfactory system of an insect

    DEFF Research Database (Denmark)

    Anton, S.; Evengaard, K.; Barrozo, R. B.

    2011-01-01

    these processes have been described. However, the influence of sensory signals on the sensitivity of a different modality is largely unknown. In males of the noctuid moth, Spodoptera littoralis, the sensitivity to the female-produced sex pheromone increases 24 h after a brief preexposure with pheromone...... at the behavioral and central nervous level. Here we show that this effect is not confined to the same sensory modality: the sensitivity of olfactory neurons can also be modulated by exposure to a different sensory stimulus, i.e., a pulsed stimulus mimicking echolocating sounds from attacking insectivorous bats. We......, but also on the central nervous level, in an insect....

  2. The effects of cortisol increase on long-term memory retrieval during and after acute psychosocial stress

    NARCIS (Netherlands)

    Tollenaar, M.S.; Elzinga, B.M.; Spinhoven, P.; Everaerd, W.A.M.

    2008-01-01

    In this study the effects of stress-induced cortisol increases on long-term memory retrieval during and after acute psychosocial stress were examined. Seventy male students were exposed to either a psychosocial stress task or to a non-stressful control task. During and after this task, retrieval was

  3. The Calmodulin-Binding Transcription Activator CAMTA1 Is Required for Long-Term Memory Formation in Mice

    Science.gov (United States)

    Bas-Orth, Carlos; Tan, Yan-Wei; Oliveira, Ana M. M.; Bengtson, C. Peter; Bading, Hilmar

    2016-01-01

    The formation of long-term memory requires signaling from the synapse to the nucleus to mediate neuronal activity-dependent gene transcription. Synapse-to-nucleus communication is initiated by influx of calcium ions through synaptic NMDA receptors and/or L-type voltage-gated calcium channels and involves the activation of transcription factors by…

  4. Transitions between Short-Term and Long-Term Memory in Learning Meaningful Unrelated Paired Associates Using Computer Based Drills.

    Science.gov (United States)

    Goldenberg, Tzvika Y.; Turnure, James E.

    1989-01-01

    Discussion of short-term and long-term memory in learning paired associates focuses on two microcomputer-based instructional design experiments with eleventh and twelfth graders that were modeled after traditional drill and practice routines. Research questions are presented, treatment conditions are explained, and additional research is…

  5. PV plasticity sustained through D1/5 dopamine signaling required for long-term memory consolidation.

    Science.gov (United States)

    Karunakaran, Smitha; Chowdhury, Ananya; Donato, Flavio; Quairiaux, Charles; Michel, Christoph M; Caroni, Pico

    2016-03-01

    Long-term consolidation of memories depends on processes occurring many hours after acquisition. Whether this involves plasticity that is specifically required for long-term consolidation remains unclear. We found that learning-induced plasticity of local parvalbumin (PV) basket cells was specifically required for long-term, but not short/intermediate-term, memory consolidation in mice. PV plasticity, which involves changes in PV and GAD67 expression and connectivity onto PV neurons, was regulated by cAMP signaling in PV neurons. Following induction, PV plasticity depended on local D1/5 dopamine receptor signaling at 0-5 h to regulate its magnitude, and at 12-14 h for its continuance, ensuring memory consolidation. D1/5 dopamine receptor activation selectively induced DARPP-32 and ERK phosphorylation in PV neurons. At 12-14 h, PV plasticity was required for enhanced sharp-wave ripple densities and c-Fos expression in pyramidal neurons. Our results reveal general network mechanisms of long-term memory consolidation that requires plasticity of PV basket cells induced after acquisition and sustained subsequently through D1/5 receptor signaling.

  6. PKA and PKC Are Required for Long-Term but Not Short-Term in Vivo Operant Memory in "Aplysia"

    Science.gov (United States)

    Michel, Maximilian; Green, Charity L.; Lyons, Lisa C.

    2011-01-01

    We investigated the involvement of PKA and PKC signaling in a negatively reinforced operant learning paradigm in "Aplysia", learning that food is inedible (LFI). In vivo injection of PKA or PKC inhibitors blocked long-term LFI memory formation. Moreover, a persistent phase of PKA activity, although not PKC activity, was necessary for long-term…

  7. Long-term effects of frequent cannabis use on working memory and attention : an fMRI study

    NARCIS (Netherlands)

    Jager, G; Kahn, RS; Van den Brink, W; Van Ree, JM; Ramsey, NF

    2006-01-01

    Rationale: Excessive use of cannabis may have long-term effects on cognitive abilities. Mild impairments have been found in several cognitive domains, particularly in memory and attention. It is not clear, however, whether these effects also occur with moderate, recreational use of cannabis. Further

  8. Long-term effects of frequent cannabis use on working memory and attention : an fMRI study

    NARCIS (Netherlands)

    Jager, G; Kahn, RS; Van den Brink, W; Van Ree, JM; Ramsey, NF

    2006-01-01

    Rationale: Excessive use of cannabis may have long-term effects on cognitive abilities. Mild impairments have been found in several cognitive domains, particularly in memory and attention. It is not clear, however, whether these effects also occur with moderate, recreational use of cannabis. Further

  9. Transitions between Short-Term and Long-Term Memory in Learning Meaningful Unrelated Paired Associates Using Computer Based Drills.

    Science.gov (United States)

    Goldenberg, Tzvika Y.; Turnure, James E.

    1989-01-01

    Discussion of short-term and long-term memory in learning paired associates focuses on two microcomputer-based instructional design experiments with eleventh and twelfth graders that were modeled after traditional drill and practice routines. Research questions are presented, treatment conditions are explained, and additional research is…

  10. Fan-Shaped Body Neurons Are Involved in "Period"-Dependent Regulation of Long-Term Courtship Memory in "Drosophila"

    Science.gov (United States)

    Sakai, Takaomi; Inami, Show; Sato, Shoma; Kitamoto, Toshihiro

    2012-01-01

    In addition to its established function in the regulation of circadian rhythms, the "Drosophila" gene "period" ("per") also plays an important role in processing long-term memory (LTM). Here, we used courtship conditioning as a learning paradigm and revealed that (1) overexpression and knocking down of "per" in subsets of brain neurons enhance and…

  11. Fan-Shaped Body Neurons Are Involved in "Period"-Dependent Regulation of Long-Term Courtship Memory in "Drosophila"

    Science.gov (United States)

    Sakai, Takaomi; Inami, Show; Sato, Shoma; Kitamoto, Toshihiro

    2012-01-01

    In addition to its established function in the regulation of circadian rhythms, the "Drosophila" gene "period" ("per") also plays an important role in processing long-term memory (LTM). Here, we used courtship conditioning as a learning paradigm and revealed that (1) overexpression and knocking down of "per" in subsets of brain neurons enhance and…

  12. Effects of postnatal malnutrition and senescence on learning, long-term memory, and extinction in the rat.

    Science.gov (United States)

    Martínez, Yvonne; Díaz-Cintra, Sofía; León-Jacinto, Uriel; Aguilar-Vázquez, Azucena; Medina, Andrea C; Quirarte, Gina L; Prado-Alcalá, Roberto A

    2009-10-12

    There is a wealth of information indicating that the hippocampal formation is important for learning and memory consolidation. The hippocampus is very sensitive to ageing and developmentally stressful factors such as prenatal malnutrition, which produces anatomical alterations of hippocampal pyramidal cells as well as impaired spatial learning. On the other hand, there are no reports about differential effects of postnatal malnutrition, installed at birth and maintained all through life in young and aged rats, on learning and memory of active avoidance, a task with an important procedural component. We now report that learning and long-term retention of this task were impaired in young malnourished animals, but not in young control, senile control, and senile malnourished Sprague-Dawley rats; young and senile rats were 90 and 660 days of age, respectively. Extinction tests showed, however, that long-term memory of the malnourished groups and senile control animals is impaired as compared with the young control animals. These data strongly suggest that the learning and long-term retention impairments seen in the young animals were due to postnatal malnutrition; in the senile groups, this cognitive alteration did not occur, probably because ageing itself is an important factor that enables the brain to engage in compensatory mechanisms that reduce the effects of malnutrition. Nonetheless, ageing and malnutrition, conditions known to produce anatomic and functional hippocampal alterations, impede the maintenance of long-term memory, as seen during the extinction test.

  13. Transforming Growth Factor ß Recruits Persistent MAPK Signaling to Regulate Long-Term Memory Consolidation in "Aplysia Californica"

    Science.gov (United States)

    Shobe, Justin; Philips, Gary T.; Carew, Thomas J.

    2016-01-01

    In this study, we explore the mechanistic relationship between growth factor signaling and kinase activity that supports the protein synthesis-dependent phase of long-term memory (LTM) consolidation for sensitization of "Aplysia." Specifically, we examine LTM for tail shock-induced sensitization of the tail-elicited siphon withdrawal…

  14. PKA and PKC Are Required for Long-Term but Not Short-Term in Vivo Operant Memory in "Aplysia"

    Science.gov (United States)

    Michel, Maximilian; Green, Charity L.; Lyons, Lisa C.

    2011-01-01

    We investigated the involvement of PKA and PKC signaling in a negatively reinforced operant learning paradigm in "Aplysia", learning that food is inedible (LFI). In vivo injection of PKA or PKC inhibitors blocked long-term LFI memory formation. Moreover, a persistent phase of PKA activity, although not PKC activity, was necessary for long-term…

  15. The Calmodulin-Binding Transcription Activator CAMTA1 Is Required for Long-Term Memory Formation in Mice

    Science.gov (United States)

    Bas-Orth, Carlos; Tan, Yan-Wei; Oliveira, Ana M. M.; Bengtson, C. Peter; Bading, Hilmar

    2016-01-01

    The formation of long-term memory requires signaling from the synapse to the nucleus to mediate neuronal activity-dependent gene transcription. Synapse-to-nucleus communication is initiated by influx of calcium ions through synaptic NMDA receptors and/or L-type voltage-gated calcium channels and involves the activation of transcription factors by…

  16. HDAC Inhibition Modulates Hippocampus-Dependent Long-Term Memory for Object Location in a CBP-Dependent Manner

    Science.gov (United States)

    Haettig, Jakob; Stefanko, Daniel P.; Multani, Monica L.; Figueroa, Dario X.; McQuown, Susan C.; Wood, Marcelo A.

    2011-01-01

    Transcription of genes required for long-term memory not only involves transcription factors, but also enzymatic protein complexes that modify chromatin structure. Chromatin-modifying enzymes, such as the histone acetyltransferase (HAT) CREB (cyclic-AMP response element binding) binding protein (CBP), are pivotal for the transcriptional regulation…

  17. Naringin Enhances CaMKII Activity and Improves Long-Term Memory in a Mouse Model of Alzheimer's Disease.

    Science.gov (United States)

    Wang, Dong-Mei; Yang, Ya-Jun; Zhang, Li; Zhang, Xu; Guan, Fei-Fei; Zhang, Lian-Feng

    2013-03-11

    The Amyloid-β (Aβ)-induced impairment of hippocampal synaptic plasticity is an underlying mechanism of memory loss in the early stages of Alzheimer's disease (AD) in human and mouse models. The inhibition of the calcium/calmodulin-dependent protein kinase II (CaMKII) autophosphorylation plays an important role in long-term memory. In this study, we isolated naringin from Pomelo peel (a Citrus species) and studied its effect on long-term memory in the APPswe/PS1dE9 transgenic mouse model of AD. Three-month-old APPswe/PS1dE9 transgenic mice were randomly assigned to a vehicle group, two naringin (either 50 or 100 mg/kg body weight/day) groups, or an Aricept (2 mg/kg body weight/day) group. After 16 weeks of treatment, we observed that treatment with naringin (100 mg/kg body weight/day) enhanced the autophosphorylation of CaMKII, increased the phosphorylation of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic (AMPA) receptor at a CaMKII-dependent site and improved long-term learning and memory ability. These findings suggest that the increase in CaMKII activity may be one of the mechanisms by which naringin improves long-term cognitive function in the APPswe/PS1dE9 transgenic mouse model of AD.

  18. Effects of Different Types of True-False Questions on Memory Awareness and Long-Term Retention

    Science.gov (United States)

    Schaap, Lydia; Verkoeijen, Peter; Schmidt, Henk

    2014-01-01

    This study investigated the effects of two different true-false questions on memory awareness and long-term retention of knowledge. Participants took four subsequent knowledge tests on curriculum learning material that they studied at different retention intervals prior to the start of this study (i.e. prior to the first test). At the first and…

  19. On the interplay between short and long term memory in the power-law cross-correlations setting

    CERN Document Server

    Kristoufek, Ladislav

    2014-01-01

    We focus on emergence of the power-law cross-correlations from processes with both short and long term memory properties. In the case of correlated error-terms, the power-law decay of the cross-correlation function comes automatically with the characteristics of the separate processes. The bivariate Hurst exponent is then equal to an average of the separate Hurst exponents of the analysed processes. Strength of the short term memory has no effect on these asymptotic properties.

  20. Spacing Effect: SHP2 Phosphatase Regulates Resting Intervals Between Learning Trials in Long-Term Memory Induction

    OpenAIRE

    Pagani, Mario R.; Oishi, Kimihiko; Gelb, Bruce D.; Zhong, Yi

    2009-01-01

    A common property of long-term memory (LTM) induction is the requirement for repeated training sessions spaced over time. The phenomena of better memory being formed with resting intervals between training sessions is called the spacing effect, for which the underlying molecular and neural bases are largely unknown. Our study reveals that the duration of resting intervals required for inducing LTM can be regulated by activity levels of the protein tyrosine phosphatase corkscrew (CSW) in Droso...

  1. Hippocampal CA1 Kindling but Not Long-Term Potentiation Disrupts Spatial Memory Performance

    Science.gov (United States)

    Leung, L. Stan; Shen, Bixia

    2006-01-01

    Long-term synaptic enhancement in the hippocampus has been suggested to cause deficits in spatial performance. Synaptic enhancement has been reported after hippocampal kindling that induced repeated electrographic seizures or afterdischarges (ADs) and after long-term potentiation (LTP) defined as synaptic enhancement without ADs. We studied…

  2. Long-term memory for the terrorist attack of September 11: Flashbulb memories, event memories, and the factors that influence their retention

    Science.gov (United States)

    Hirst, William; Phelps, Elizabeth A.; Buckner, Randy L.; Budson, Andrew E.; Cuc, Alexandru; Gabrieli, John D. E.; Johnson, Marcia K.; Lyle, Keith B.; Lustig, Cindy; Mather, Mara; Meksin, Robert; Mitchell, Karen J.; Ochsner, Kevin N.; Schacter, Daniel L.; Simons, Jon S.; Vaidya, Chandan J.

    2010-01-01

    More than 3,000 individuals from seven US cities reported on their memories of learning of the terrorist attacks of September 11, as well as details about the attack, one week, 11 months, and/or 35 months after the assault. Some studies of flashbulb memories examining long-term retention show slowing in the rate of forgetting after a year, whereas others demonstrate accelerated forgetting. The present paper indicates that (1) the rate of forgetting for flashbulb memories and event memory (memory for details about the event itself) slows after a year, (2) the strong emotional reactions elicited by flashbulb events are remembered poorly, worse than non-emotional features such as where and from whom one learned of the attack, and (3) the content of flashbulb and event memories stabilizes after a year. The results are discussed in terms of community memory practices. PMID:19397377

  3. Selective CD28 Antagonist Blunts Memory Immune Responses and Promotes Long-Term Control of Skin Inflammation in Nonhuman Primates.

    Science.gov (United States)

    Poirier, Nicolas; Chevalier, Melanie; Mary, Caroline; Hervouet, Jeremy; Minault, David; Baker, Paul; Ville, Simon; Le Bas-Bernardet, Stephanie; Dilek, Nahzli; Belarif, Lyssia; Cassagnau, Elisabeth; Scobie, Linda; Blancho, Gilles; Vanhove, Bernard

    2016-01-01

    Novel therapies that specifically target activation and expansion of pathogenic immune cell subsets responsible for autoimmune attacks are needed to confer long-term remission. Pathogenic cells in autoimmunity include memory T lymphocytes that are long-lived and present rapid recall effector functions with reduced activation requirements. Whereas the CD28 costimulation pathway predominantly controls priming of naive T cells and hence generation of adaptive memory cells, the roles of CD28 costimulation on established memory T lymphocytes and the recall of memory responses remain controversial. In contrast to CD80/86 antagonists (CTLA4-Ig), selective CD28 antagonists blunt T cell costimulation while sparing CTLA-4 and PD-L1-dependent coinhibitory signals. Using a new selective CD28 antagonist, we showed that Ag-specific reactivation of human memory T lymphocytes was prevented. Selective CD28 blockade controlled both cellular and humoral memory recall in nonhuman primates and induced long-term Ag-specific unresponsiveness in a memory T cell-mediated inflammatory skin model. No modification of memory T lymphocytes subsets or numbers was observed in the periphery, and importantly no significant reactivation of quiescent viruses was noticed. These findings indicate that pathogenic memory T cell responses are controlled by both CD28 and CTLA-4/PD-L1 cosignals in vivo and that selectively targeting CD28 would help to promote remission of autoimmune diseases and control chronic inflammation. Copyright © 2015 by The American Association of Immunologists, Inc.

  4. Age-related differences in the phenomenal characteristics of long-term memories of March 11, 2004 terrorist attack

    Directory of Open Access Journals (Sweden)

    Rocío Vallet

    2017-01-01

    Full Text Available The objective of this study was to explore age-related differences in the phenomenal characteristics of long-term memories of the terrorist attacks that took place in Madrid (Spain on March 11, 2004. One hundred and ninety-six individuals participated in this experiment: 92 were 9.60 years old on average and 104 were 39.41 years old on average at the time of the event. To evaluate their real memories of the event twelve years later, the Phenomenological Questionnaire on Autobiographical Memory was used. Differences were shown between the two groups in terms of memory quality, emotions associated with the event, and accessibility of the information remembered. Results were also represented using high-dimensional visualization (HDV graphs, supporting the assertion that long-term event memories have different characteristics depending on the age of the individual at the time the event took place. Memories in adult people meet the criteria to be considered flashbulb memories, while in the case of the younger people this kind of memory does not seem to emerge. Young people are probably less capable of evaluating the consequences of an event which results in reduced emotional arousal and a different elaboration of the event memory in comparison to older adults.

  5. Presynaptic D2 dopamine receptors control long-term depression expression and memory processes in the temporal hippocampus.

    Science.gov (United States)

    Rocchetti, Jill; Isingrini, Elsa; Dal Bo, Gregory; Sagheby, Sara; Menegaux, Aurore; Tronche, François; Levesque, Daniel; Moquin, Luc; Gratton, Alain; Wong, Tak Pan; Rubinstein, Marcelo; Giros, Bruno

    2015-03-15

    Dysfunctional mesocorticolimbic dopamine signaling has been linked to alterations in motor and reward-based functions associated with psychiatric disorders. Converging evidence from patients with psychiatric disorders and use of antipsychotics suggests that imbalance of dopamine signaling deeply alters hippocampal functions. However, given the lack of full characterization of a functional mesohippocampal pathway, the precise role of dopamine transmission in memory deficits associated with these disorders and their dedicated therapies is unknown. In particular, the positive outcome of antipsychotic treatments, commonly antagonizing D2 dopamine receptors (D2Rs), on cognitive deficits and memory impairments remains questionable. Following pharmacologic and genetic manipulation of dopamine transmission, we performed anatomic, neurochemical, electrophysiologic, and behavioral investigations to uncover the role of D2Rs in hippocampal-dependent plasticity and learning. Naïve mice (n = 4-21) were used in the different procedures. Dopamine modulated both long-term potentiation and long-term depression in the temporal hippocampus as well as spatial and recognition learning and memory in mice through D2Rs. Although genetic deletion or pharmacologic blockade of D2Rs led to the loss of long-term potentiation expression, the specific genetic removal of presynaptic D2Rs impaired long-term depression and performances on spatial memory tasks. Presynaptic D2Rs in dopamine fibers of the temporal hippocampus tightly modulate long-term depression expression and play a major role in the regulation of hippocampal learning and memory. This direct role of mesohippocampal dopamine input as uncovered here adds a new dimension to dopamine involvement in the physiology underlying deficits associated with neuropsychiatric disorders. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  6. Do serotonin(1-7) receptors modulate short and long-term memory?

    Science.gov (United States)

    Meneses, A

    2007-05-01

    Evidence from invertebrates to human studies indicates that serotonin (5-hydroxytryptamine; 5-HT) system modulates short- (STM) and long-term memory (LTM). This work is primarily focused on analyzing the contribution of 5-HT, cholinergic and glutamatergic receptors as well as protein synthesis to STM and LTM of an autoshaping learning task. It was observed that the inhibition of hippocampal protein synthesis or new mRNA did not produce a significant effect on autoshaping STM performance but it did impair LTM. Both non-contingent protein inhibition and 5-HT depletion showed no effects. It was basically the non-selective 5-HT receptor antagonist cyproheptadine, which facilitated STM. However, the blockade of glutamatergic and cholinergic transmission impaired STM. In contrast, the selective 5-HT(1B) receptor antagonist SB-224289 facilitated both STM and LTM. Selective receptor antagonists for the 5-HT(1A) (WAY100635), 5-HT(1D) (GR127935), 5-HT(2A) (MDL100907), 5-HT(2C/2B) (SB-200646), 5-HT(3) (ondansetron) or 5-HT(4) (GR125487), 5-HT(6) (Ro 04-6790, SB-399885 and SB-35713) or 5-HT(7) (SB-269970) did not impact STM. Nevertheless, WAY100635, MDL100907, SB-200646, GR125487, Ro 04-6790, SB-399885 or SB-357134 facilitated LTM. Notably, some of these changes shown to be independent of food-intake. Concomitantly, these data indicate that '5-HT tone via 5-HT(1B) receptors' might function in a serial manner from STM to LTM, whereas working in parallel using 5-HT(1A), 5-HT(2A), 5-HT(2B/2C), 5-HT(4), or 5-HT(6) receptors.

  7. Failure of delayed nonsynaptic neuronal plasticity underlies age-associated long-term associative memory impairment

    Directory of Open Access Journals (Sweden)

    Watson Shawn N

    2012-08-01

    Full Text Available Abstract Background Cognitive impairment associated with subtle changes in neuron and neuronal network function rather than widespread neuron death is a feature of the normal aging process in humans and animals. Despite its broad evolutionary conservation, the etiology of this aging process is not well understood. However, recent evidence suggests the existence of a link between oxidative stress in the form of progressive membrane lipid peroxidation, declining neuronal electrical excitability and functional decline of the normal aging brain. The current study applies a combination of behavioural and electrophysiological techniques and pharmacological interventions to explore this hypothesis in a gastropod model (Lymnaea stagnalis feeding system that allows pinpointing the molecular and neurobiological foundations of age-associated long-term memory (LTM failure at the level of individual identified neurons and synapses. Results Classical appetitive reward-conditioning induced robust LTM in mature animals in the first quartile of their lifespan but failed to do so in animals in the last quartile of their lifespan. LTM failure correlated with reduced electrical excitability of two identified serotonergic modulatory interneurons (CGCs critical in chemosensory integration by the neural network controlling feeding behaviour. Moreover, while behavioural conditioning induced delayed-onset persistent depolarization of the CGCs known to underlie appetitive LTM formation in this model in the younger animals, it failed to do so in LTM-deficient senescent animals. Dietary supplementation of the lipophilic anti-oxidant α-tocopherol reversed the effect of age on CGCs electrophysiological characteristics but failed to restore appetitive LTM function. Treatment with the SSRI fluoxetine reversed both the neurophysiological and behavioural effects of age in senior animals. Conclusions The results identify the CGCs as cellular loci of age-associated appetitive

  8. Differences in the verbal fluency, working memory and executive functions in alcoholics: Short-term vs. long-term abstainers.

    Science.gov (United States)

    Nowakowska-Domagała, Katarzyna; Jabłkowska-Górecka, Karolina; Mokros, Łukasz; Koprowicz, Jacek; Pietras, Tadeusz

    2017-03-01

    The aim of the study was to assess differences in verbal fluency, working memory and executive functions in two subgroups of alcohol-dependent patients, those undergoing short-term abstinence (STA) and those undergoing long-term abstinence (LTA), and to compare the level of cognitive functions in patients after long-term abstinence with healthy subjects. The study group consisted of 106 alcohol-dependent patients (53 immediately after drinking at least 3 days and 53 after at least one-year abstinence). The control group comprised 53 subjects, whose age, sex and education levels matched those of the patients in the experimental group. The dependence intensity was assessed using SADD and MAST scales. The neuropsychological assessment was based on the FAS Test, Stroop Test and TMT A&B Test. The results obtained for alcohol-dependent patients revealed significant disturbances of cognitive functions. Such results indicate the presence of severe frontal cerebral cortex dysfunctions. Frontal cortex dysfunctions affecting the verbal fluency and working memory subsystems and the executive functions also persisted during long-term abstinence periods. No significant correlations between the duration of dependence, quantity of alcohol consumed and efficiency of the working memory and executive functions were observed in alcohol-dependent subjects after short-term or long-term abstinence. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  9. The roles of long-term phonotactic and lexical prosodic knowledge in phonological short-term memory.

    Science.gov (United States)

    Tanida, Yuki; Ueno, Taiji; Lambon Ralph, Matthew A; Saito, Satoru

    2015-04-01

    Many previous studies have explored and confirmed the influence of long-term phonological representations on phonological short-term memory. In most investigations, phonological effects have been explored with respect to phonotactic constraints or frequency. If interaction between long-term memory and phonological short-term memory is a generalized principle, then other phonological characteristics-that is, suprasegmental aspects of phonology-should also exert similar effects on phonological short-term memory. We explored this hypothesis through three immediate serial-recall experiments that manipulated Japanese nonwords with respect to lexical prosody (pitch-accent type, reflecting suprasegmental characteristics) as well as phonotactic frequency (reflecting segmental characteristics). The results showed that phonotactic frequency affected the retention not only of the phonemic sequences, but also of pitch-accent patterns, when participants were instructed to recall both the phoneme sequence and accent pattern of nonwords. In addition, accent pattern typicality influenced the retention of the accent pattern: Typical accent patterns were recalled more accurately than atypical ones. These results indicate that both long-term phonotactic and lexical prosodic knowledge contribute to phonological short-term memory performance.

  10. Assessing the associative deficit of older adults in long-term and short-term/working memory.

    Science.gov (United States)

    Chen, Tina; Naveh-Benjamin, Moshe

    2012-09-01

    Older adults exhibit a deficit in associative long-term memory relative to younger adults. However, the literature is inconclusive regarding whether this deficit is attenuated in short-term/working memory. To elucidate the issue, three experiments assessed younger and older adults' item and interitem associative memory and the effects of several variables that might potentially contribute to the inconsistent pattern of results in previous studies. In Experiment 1, participants were tested on item and associative recognition memory with both long-term and short-term retention intervals in a single, continuous recognition paradigm. There was an associative deficit for older adults in the short-term and long-term intervals. Using only short-term intervals, Experiment 2 utilized mixed and blocked test designs to examine the effect of test event salience. Blocking the test did not attenuate the age-related associative deficit seen in the mixed test blocks. Finally, an age-related associative deficit was found in Experiment 3, under both sequential and simultaneous presentation conditions. Even while accounting for some methodological issues, the associative deficit of older adults is evident in short-term/working memory.

  11. Hyperfunction of muscarinic receptor maintains long-term memory in 5-HT4 receptor knock-out mice.

    Directory of Open Access Journals (Sweden)

    Luis Segu

    Full Text Available Patients suffering from dementia of Alzheimer's type express less serotonin 4 receptors (5-HTR(4, but whether an absence of these receptors modifies learning and memory is unexplored. In the spatial version of the Morris water maze, we show that 5-HTR(4 knock-out (KO and wild-type (WT mice performed similarly for spatial learning, short- and long-term retention. Since 5-HTR(4 control mnesic abilities, we tested whether cholinergic system had circumvented the absence of 5-HTR(4. Inactivating muscarinic receptor with scopolamine, at an ineffective dose (0.8 mg/kg to alter memory in WT mice, decreased long-term but not short-term memory of 5-HTR(4 KO mice. Other changes included decreases in the activity of choline acetyltransferase (ChAT, the required enzyme for acetylcholine synthesis, in the septum and the dorsal hippocampus in 5-HTR(4 KO under baseline conditions. Training- and scopolamine-induced increase and decrease, respectively in ChAT activity in the septum in WT mice were not detected in the 5-HTR(4 KO animals. Findings suggest that adaptive changes in cholinergic systems may circumvent the absence of 5-HTR(4 to maintain long-term memory under baseline conditions. In contrast, despite adaptive mechanisms, the absence of 5-HTR(4 aggravates scopolamine-induced memory impairments. The mechanisms whereby 5-HTR(4 mediate a tonic influence on ChAT activity and muscarinic receptors remain to be determined.

  12. Docosahexaenoic Acid Rescues Synaptogenesis Impairment and Long-Term Memory Deficits Caused by Postnatal Multiple Sevoflurane Exposures

    Directory of Open Access Journals (Sweden)

    Guorong Tao

    2016-01-01

    Full Text Available Sevoflurane exposures were demonstrated to induce neurotoxicity in the developing brain in both human and animal studies. However, there is no effective approach to reverse it. The present study aimed to evaluate the feasibility of utilizing docosahexaenoic acid (DHA to prevent sevoflurane-induced neurotoxicity. P6 (postnatal 6 days mice were administrated DHA after exposure to 3% sevoflurane for two hours daily in three consecutive days. Molecular expressions of synaptic makers (PSD95, synaptophysin and synaptic morphological changes were investigated by Western blot analysis and transmission electron microscopy, respectively. Meanwhile, Morris water maze test was used to assess spatial memory of mice at P31 (postnatal 31 days. DHA restored sevoflurane-induced decreased level of PSD95 and synaptophysin expressions and increased PSD areas and also improved long-term spatial memory. These results suggest that DHA could rescue synaptogenesis impairment and long-term memory deficits in postnatal caused by multiple sevoflurane exposures.

  13. Nicotine blocks stress-induced impairment of spatial memory and long-term potentiation of the hippocampal CA1 region.

    Science.gov (United States)

    Aleisa, Abdulaziz M; Alzoubi, Karem H; Gerges, Nashaat Z; Alkadhi, Karim A

    2006-08-01

    The effect of chronic nicotine treatment on chronic psychosocial stress-induced impairment of short-term memory and long-term potentiation (LTP) was determined. An "intruder" stress model was used to induce psychosocial stress for 4-6 wk, during which rats were injected with saline or nicotine (1 mg/kg s.c.) twice a day. The radial arm water maze memory task was used to test hippocampus-dependent spatial memory. Chronic psychosocial stress impaired short-term memory without affecting the learning phase or long-term memory. Concurrent chronic nicotine treatment prevented stress-induced short-term memory impairment. In normal rats chronic nicotine treatment had no effect on learning and memory. Extracellular recordings from the CA1 region of anaesthetized rats showed severe reduction of LTP magnitude in stressed rats, which was normalized in nicotine-treated stressed rats. Nicotine had no effect on LTP in control animals. These results showed that chronic nicotine treatment improved hippocampus-dependent spatial memory and LTP only when impaired by stress.

  14. Effects of social instability stress in adolescence on long-term, not short-term, spatial memory performance.

    Science.gov (United States)

    Green, Matthew R; McCormick, Cheryl M

    2013-11-01

    There is evidence that exposure to stressors in adolescence leads to lasting deficits on hippocampal-dependent tasks, but whether medial prefrontal cortical function is also impaired is unknown. We previously found that rats exposed to social instability stress in adolescence (SS; daily 1h isolation and subsequent change of cage partner between postnatal days 30 and 45) had impaired memory performance on a Spatial Object Location test and in memory for fear conditioning context, tasks that depend on the integrity of the hippocampus. Here we investigated whether impaired performance would be evident after adolescent SS in male rats on a different test of hippocampal function, spatial learning and memory in the Morris water maze (MWM) and on a working memory task for which performance depends on the integrity of the medial prefrontal cortex, the Delayed Alternation task (DAT). During MWM testing, SS rats showed greater improvements in performance across trials within days compared to control (CTL) rats, but showed less retention of learning between days (48 h) compared to CTL rats. Similarly, SS rats had impaired long-term memory in the Spatial Object Location test after a long delay (240 min), but not after shorter delays (15 or 60 min) compared to CTL rats. No group differences were observed on the DAT, which assessed working memory across brief delays (5-90 s). Thus, deficits in memory performance after chronic social stress in adolescence may be limited to long-term memory. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Spatial memory and long-term object recognition are impaired by circadian arrhythmia and restored by the GABAAAntagonist pentylenetetrazole.

    Science.gov (United States)

    Ruby, Norman F; Fernandez, Fabian; Garrett, Alex; Klima, Jessy; Zhang, Pei; Sapolsky, Robert; Heller, H Craig

    2013-01-01

    Performance on many memory tests varies across the day and is severely impaired by disruptions in circadian timing. We developed a noninvasive method to permanently eliminate circadian rhythms in Siberian hamsters (Phodopus sungorus) [corrected] so that we could investigate the contribution of the circadian system to learning and memory in animals that are neurologically and genetically intact. Male and female adult hamsters were rendered arrhythmic by a disruptive phase shift protocol that eliminates cycling of clock genes within the suprachiasmatic nucleus (SCN), but preserves sleep architecture. These arrhythmic animals have deficits in spatial working memory and in long-term object recognition memory. In a T-maze, rhythmic control hamsters exhibited spontaneous alternation behavior late in the day and at night, but made random arm choices early in the day. By contrast, arrhythmic animals made only random arm choices at all time points. Control animals readily discriminated novel objects from familiar ones, whereas arrhythmic hamsters could not. Since the SCN is primarily a GABAergic nucleus, we hypothesized that an arrhythmic SCN could interfere with memory by increasing inhibition in hippocampal circuits. To evaluate this possibility, we administered the GABAA antagonist pentylenetetrazole (PTZ; 0.3 or 1.0 mg/kg/day) to arrhythmic hamsters for 10 days, which is a regimen previously shown to produce long-term improvements in hippocampal physiology and behavior in Ts65Dn (Down syndrome) mice. PTZ restored long-term object recognition and spatial working memory for at least 30 days after drug treatment without restoring circadian rhythms. PTZ did not augment memory in control (entrained) animals, but did increase their activity during the memory tests. Our findings support the hypothesis that circadian arrhythmia impairs declarative memory by increasing the relative influence of GABAergic inhibition in the hippocampus.

  16. NF-κB p50 subunit knockout impairs late LTP and alters long term memory in the mouse hippocampus

    Directory of Open Access Journals (Sweden)

    Oikawa Kensuke

    2012-07-01

    Full Text Available Abstract Background Nuclear factor kappa B (NF-κB is a transcription factor typically expressed with two specific subunits (p50, p65. Investigators have reported that NF-κB is activated during the induction of in vitro long term potentiation (LTP, a paradigm of synaptic plasticity and correlate of memory, suggesting that NF-κB may be necessary for some aspects of memory encoding. Furthermore, NF-κB has been implicated as a potential requirement in behavioral tests of memory. Unfortunately, very little work has been done to explore the effects of deleting specific NF-κB subunits on memory. Studies have shown that NF-κB p50 subunit deletion (p50−/− leads to memory deficits, however some recent studies suggest the contrary where p50−/− mice show enhanced memory in the Morris water maze (MWM. To more critically explore the role of the NF-κB p50 subunit in synaptic plasticity and memory, we assessed long term spatial memory in vivo using the MWM, and synaptic plasticity in vitro utilizing high frequency stimuli capable of eliciting LTP in slices from the hippocampus of NF-κB p50−/− versus their controls (p50+/+. Results We found that the lack of the NF-κB p50 subunit led to significant decreases in late LTP and in selective but significant alterations in MWM tests (i.e., some improvements during acquisition, but deficits during retention. Conclusions These results support the hypothesis that the NF-κ p50 subunit is required in long term spatial memory in the hippocampus.

  17. Accelerated forgetting? An evaluation on the use of long-term forgetting rates in patients with memory problems

    Directory of Open Access Journals (Sweden)

    Sofie eGeurts

    2015-06-01

    Full Text Available The main focus of this review was to evaluate whether long-term forgetting rates (delayed tests days to weeks after initial learning are a more sensitive measure to detect memory problems in various patient groups than standard delayed recall measures. It has been suggested that accelerated forgetting might be characteristic for epilepsy patients, but little research has been performed within other populations. Here, we identified ten studies in a wide range of brain injured patient groups, whose long-term forgetting patterns were compared to that of healthy controls. Signs of accelerated forgetting were found within two studies. The results of seven studies showed normal forgetting over time for the patient groups. However, most of the studies used only a recognition procedure, after optimizing initial learning. Based on the results, we discuss recommendations for assessing long-term forgetting and the need for future research to truly evaluate the usefulness for clinical practice.

  18. Forebrain NR2B overexpression facilitating the prefrontal cortex long-term potentiation and enhancing working memory function in mice.

    Science.gov (United States)

    Cui, Yihui; Jin, Jing; Zhang, Xuliang; Xu, Hao; Yang, Liguo; Du, Dan; Zeng, Qingwen; Tsien, Joe Z; Yu, Huiting; Cao, Xiaohua

    2011-01-01

    Prefrontal cortex plays an important role in working memory, attention regulation and behavioral inhibition. Its functions are associated with NMDA receptors. However, there is little information regarding the roles of NMDA receptor NR2B subunit in prefrontal cortical synaptic plasticity and prefrontal cortex-related working memory. Whether the up-regulation of NR2B subunit influences prefrontal cortical synaptic plasticity and working memory is not yet clear. In the present study, we measured prefrontal cortical synaptic plasticity and working memory function in NR2B overexpressing transgenic mice. In vitro electrophysiological data showed that overexpression of NR2B specifically in the forebrain region resulted in enhancement of prefrontal cortical long-term potentiation (LTP) but did not alter long-term depression (LTD). The enhanced LTP was completely abolished by a NR2B subunit selective antagonist, Ro25-6981, indicating that overexpression of NR2B subunit is responsible for enhanced LTP. In addition, NR2B transgenic mice exhibited better performance in a set of working memory paradigms including delay no-match-to-place T-maze, working memory version of water maze and odor span task. Our study provides evidence that NR2B subunit of NMDA receptor in prefrontal cortex is critical for prefrontal cortex LTP and prefrontal cortex-related working memory.

  19. Chronic treatment with ginsenoside Rg1 promotes memory and hippocampal long-term potentiation in middle-aged mice.

    Science.gov (United States)

    Zhu, G; Wang, Y; Li, J; Wang, J

    2015-04-30

    Ginseng serves as a potential candidate for the treatment of aging-related memory decline or memory loss. However, the related mechanism is not fully understood. In this study, we applied an intraperitoneal injection of ginsenoside Rg1, an active compound from ginseng in middle-aged mice and detected memory improvement and the underlying mechanisms. Our results showed that a period of 30-day administration of ginsenoside Rg1 enhanced long-term memory in the middle-aged animals. Consistent with the memory improvement, ginsenoside Rg1 administration facilitated weak theta-burst stimulation (TBS)-induced long-term potentiation (LTP) in acute hippocampal slices from middle-aged animals. Ginsenoside Rg1 administration increased the dendritic apical spine numbers and area in the CA1 region. In addition, ginsenoside Rg1 administration up-regulated the expression of hippocampal p-AKT, brain-derived neurotrophic factor (BDNF), proBDNF and glutamate receptor 1 (GluR1), but not p-ERK. Interestingly, the phosphatase and tensin homolog deleted on chromosome ten (PTEN) inhibitor (bpV) mimicked the ginsenoside Rg1 effects, including increasing p-AKT expression, promoting hippocampal basal synaptic transmission, LTP and memory. Taken together, our data suggest that ginsenoside Rg1 treatment improves memory in middle-aged mice possibly through regulating the PI3K/AKT pathway, altering apical spines and facilitating hippocampal LTP. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Pre-learning stress that is temporally removed from acquisition exerts sex-specific effects on long-term memory.

    Science.gov (United States)

    Zoladz, Phillip R; Warnecke, Ashlee J; Woelke, Sarah A; Burke, Hanna M; Frigo, Rachael M; Pisansky, Julia M; Lyle, Sarah M; Talbot, Jeffery N

    2013-02-01

    We have examined the influence of sex and the perceived emotional nature of learned information on pre-learning stress-induced alterations of long-term memory. Participants submerged their dominant hand in ice cold (stress) or warm (no stress) water for 3 min. Thirty minutes later, they studied 30 words, rated the words for their levels of emotional valence and arousal and were then given an immediate free recall test. Twenty-four hours later, participants' memory for the word list was assessed via delayed free recall and recognition assessments. The resulting memory data were analyzed after categorizing the studied words (i.e., distributing them to "positive-arousing", "positive-non-arousing", "negative-arousing", etc. categories) according to participants' valence and arousal ratings of the words. The results revealed that participants exhibiting a robust cortisol response to stress exhibited significantly impaired recognition memory for neutral words. More interestingly, however, males displaying a robust cortisol response to stress demonstrated significantly impaired recall, overall, and a marginally significant impairment of overall recognition memory, while females exhibiting a blunted cortisol response to stress demonstrated a marginally significant impairment of overall recognition memory. These findings support the notion that a brief stressor that is temporally separated from learning can exert deleterious effects on long-term memory. However, they also suggest that such effects depend on the sex of the organism, the emotional salience of the learned information and the degree to which stress increases corticosteroid levels.

  1. Forebrain NR2B overexpression facilitating the prefrontal cortex long-term potentiation and enhancing working memory function in mice.

    Directory of Open Access Journals (Sweden)

    Yihui Cui

    Full Text Available Prefrontal cortex plays an important role in working memory, attention regulation and behavioral inhibition. Its functions are associated with NMDA receptors. However, there is little information regarding the roles of NMDA receptor NR2B subunit in prefrontal cortical synaptic plasticity and prefrontal cortex-related working memory. Whether the up-regulation of NR2B subunit influences prefrontal cortical synaptic plasticity and working memory is not yet clear. In the present study, we measured prefrontal cortical synaptic plasticity and working memory function in NR2B overexpressing transgenic mice. In vitro electrophysiological data showed that overexpression of NR2B specifically in the forebrain region resulted in enhancement of prefrontal cortical long-term potentiation (LTP but did not alter long-term depression (LTD. The enhanced LTP was completely abolished by a NR2B subunit selective antagonist, Ro25-6981, indicating that overexpression of NR2B subunit is responsible for enhanced LTP. In addition, NR2B transgenic mice exhibited better performance in a set of working memory paradigms including delay no-match-to-place T-maze, working memory version of water maze and odor span task. Our study provides evidence that NR2B subunit of NMDA receptor in prefrontal cortex is critical for prefrontal cortex LTP and prefrontal cortex-related working memory.

  2. A Processing Approach to the Working Memory/Long-Term Memory Distinction: Evidence from the Levels-of-Processing Span Task

    Science.gov (United States)

    Rose, Nathan S.; Craik, Fergus I. M.

    2012-01-01

    Recent theories suggest that performance on working memory (WM) tasks involves retrieval from long-term memory (LTM). To examine whether WM and LTM tests have common principles, Craik and Tulving's (1975) levels-of-processing paradigm, which is known to affect LTM, was administered as a WM task: Participants made uppercase, rhyme, or…

  3. Working Memory Capacity and Recall from Long-Term Memory: Examining the Influences of Encoding Strategies, Study Time Allocation, Search Efficiency, and Monitoring Abilities

    Science.gov (United States)

    Unsworth, Nash

    2016-01-01

    The relation between working memory capacity (WMC) and recall from long-term memory (LTM) was examined in the current study. Participants performed multiple measures of delayed free recall varying in presentation duration and self-reported their strategy usage after each task. Participants also performed multiple measures of WMC. The results…

  4. Long-term maintenance of smartphone and PDA use in individuals with moderate to severe memory impairment.

    Science.gov (United States)

    Svoboda, Eva; Richards, Brian; Yao, Christie; Leach, Larry

    2015-01-01

    In an earlier paper we described a structured, theory-driven training programme which was administered to 10 individuals with moderate-to-severe memory impairment. All individuals received an errorless-fading-of-cues protocol in the use of personal digital assistants (PDAs) or smartphones (Svoboda, Richards, Leach, & Mertens, 2012) and demonstrated generalisation of acquired skills to day-to-day memory challenges. Maintenance of intervention gains over the long-term is another indicator of successful generalisation. Here we present the maintenance of device use in the same group of individuals 12 to 19 months after programme completion. A within-subject, ABABB multi-case experimental design was used to evaluate the impact of PDA or smartphone use on day-to-day memory functioning at baseline, immediately post-intervention, at return to baseline, and at short-term and long-term follow-up. Results presented here focus predominantly on long-term follow-up. All 10 individuals showed maintenance of gains in day-to-day functioning as quantified across several ecologically valid questionnaire and task-based measures. This was corroborated by family members with whom six of the participants resided. This study further demonstrates the programme's clinical effectiveness in enabling individuals with moderate-to-severe memory impairment to function more independently and with greater confidence up to 19 months following programme completion.

  5. The compensatory effect of regular exercise on long-term memory impairment in sleep deprived female rats.

    Science.gov (United States)

    Salari, Maryam; Sheibani, Vahid; Saadati, Hakimeh; Pourrahimi, Alimohammad; khaksarihadad, Mohammad; Esmaeelpour, Khadijeh; Khodamoradi, Mehdi

    2015-10-01

    Previous studies have been shown that exercise can improve short-term spatial learning, memory and synaptic plasticity impairments in sleep deprived female rats. The aim of the present study was to investigate the effects of treadmill exercise on sleep deprivation (SD) induced impairment in hippocampal dependent long-term memory in female rats. Intact and ovariectomized female rats were used in the current study. Exercise protocol was 4 weeks treadmill running. Twenty four hour SD was induced by using multiple platform apparatus after learning phase. Spatial learning and long-term memory was examined by using the Morris Water Maze (MWM) test. Our results indicated that sleep deprivation impaired long term memory in the intact and ovariectomized female rats, regardless of reproductive status (p<0.05) and treadmill exercise compensated this impairment (p<0.05). In conclusion the results of the current study confirmed the negative effect of SD on cognitive functions and regular exercise seems to protect rats from these factors, however more investigations need to be done. Copyright © 2015. Published by Elsevier B.V.

  6. Sevoflurane exposure during the neonatal period induces long-term memory impairment but not autism-like behaviors.

    Science.gov (United States)

    Chung, Woosuk; Park, Saegeun; Hong, Jiso; Park, Sangil; Lee, Soomin; Heo, Junyoung; Kim, Daesoo; Ko, Youngkwon

    2015-10-01

    To examine whether neonatal exposure to sevoflurane induces autism-like behaviors in mice. There are continuing reports regarding the potential negative effects of anesthesia on the developing brain. Recently, several studies suggest that neurotoxicity caused by anesthesia may lead to neurodevelopmental impairments. However, unlike reports focusing on learning and memory, there are only a few animal studies focusing on neurodevelopmental disorders after general anesthesia. Therefore, we have focused on autism, a representative neurodevelopmental disorder. Neonatal mice (P6-7) were exposed to a titrated dose of sevoflurane for 6 h. Apoptosis was evaluated by assessing the expression level of cleaved (activated) caspase-3. Autism-like behaviors, general activity, anxiety level, and long-term memory were evaluated with multiple behavioral assays. Western blotting confirmed that neonatal exposure to sevoflurane increased the expression level of activated caspase-3, indicative of apoptosis. Mice exposed to sevoflurane also showed impaired long-term memory in fear tests. However, sevoflurane-exposed mice did not exhibit autism-like features in all of the following assays: social interaction (three-chamber test, caged social interaction), social communication (ultrasonic vocalization test), or repetitive behavior (self-grooming test, digging). There were also no differences in general activity (open field test, home cage activity) and anxiety (open field test, light-dark box) after sevoflurane exposure. Our results confirm previous studies that neonatal sevoflurane exposure causes neurodegeneration and long-term memory impairment in mice. However, sevoflurane did not induce autism-like features. Our study suggests that mice are more vulnerable to long-term memory deficits than autism-like behaviors after exposure to sevoflurane. © 2015 John Wiley & Sons Ltd.

  7. Short-term retention of a single word relies on retrieval from long-term memory when both rehearsal and refreshing are disrupted

    National Research Council Canada - National Science Library

    Rose, Nathan S; Buchsbaum, Bradley R; Craik, Fergus I. M

    2014-01-01

    Many working memory (WM) models propose that the focus of attention (or primary memory) has a capacity limit of one to four items, and therefore, that performance on WM tasks involves retrieving some items from long-term...

  8. Long-term memory consolidation: The role of RNA-binding proteins with prion-like domains.

    Science.gov (United States)

    Sudhakaran, Indulekha P; Ramaswami, Mani

    2016-10-11

    Long-term and short-term memories differ primarily in the duration of their retention. At a molecular level, long-term memory (LTM) is distinguished from short-term memory (STM) by its requirement for new gene expression. In addition to transcription (nuclear gene expression) the translation of stored mRNAs is necessary for LTM formation. The mechanisms and functions for temporal and spatial regulation of mRNAs required for LTM is a major contemporary problem, of interest from molecular, cell biological, neurobiological and clinical perspectives. This review discusses primary evidence in support for translational regulatory events involved in LTM and a model in which different phases of translation underlie distinct phases of consolidation of memories. However, it focuses largely on mechanisms of memory persistence and the role of prion-like domains in this defining aspect of long-term memory. We consider primary evidence for the concept that Cytoplasmic Polyadenylation Element Binding (CPEB) protein enables the persistence of formed memories by transforming in prion-like manner from a soluble monomeric state to a self-perpetuating and persistent polymeric translationally active state required for maintaining persistent synaptic plasticity. We further discuss prion-like domains prevalent on several other RNA-binding proteins involved in neuronal translational control underlying LTM. Growing evidence indicates that such RNA regulatory proteins are components of mRNP (RiboNucleoProtein) granules. In these proteins, prion-like domains, being intrinsically disordered, could mediate weak transient interactions that allow the assembly of RNP granules, a source of silenced mRNAs whose translation is necessary for LTM. We consider the structural bases for RNA granules formation as well as functions of disordered domains and discuss how these complicate the interpretation of existing experimental data relevant to general mechanisms by which prion-domain containing RBPs

  9. A Transcription Factor-Binding Domain of the Coactivator CBP Is Essential for Long-Term Memory and the Expression of Specific Target Genes

    Science.gov (United States)

    Oliveira, Ana M. M.; Brindle, Paul K.; Abel, Ted; Wood, Marcelo A.; Attner, Michelle A.

    2006-01-01

    Transcriptional activation is a key process required for long-term memory formation. Recently, the transcriptional coactivator CREB-binding protein (CBP) was shown to be critical for hippocampus-dependent long-term memory and hippocampal synaptic plasticity. As a coactivator with intrinsic histone acetyltransferase activity, CBP interacts with…

  10. A Transcription Factor-Binding Domain of the Coactivator CBP Is Essential for Long-Term Memory and the Expression of Specific Target Genes

    Science.gov (United States)

    Oliveira, Ana M. M.; Brindle, Paul K.; Abel, Ted; Wood, Marcelo A.; Attner, Michelle A.

    2006-01-01

    Transcriptional activation is a key process required for long-term memory formation. Recently, the transcriptional coactivator CREB-binding protein (CBP) was shown to be critical for hippocampus-dependent long-term memory and hippocampal synaptic plasticity. As a coactivator with intrinsic histone acetyltransferase activity, CBP interacts with…

  11. Superior Long-Term Synaptic Memory Induced by Combining Dual Pharmacological Activation of PKA and ERK with an Enhanced Training Protocol

    Science.gov (United States)

    Liu, Rong-Yu; Neveu, Curtis; Smolen, Paul; Cleary, Leonard J.; Byrne, John H.

    2017-01-01

    Developing treatment strategies to enhance memory is an important goal of neuroscience research. Activation of multiple biochemical signaling cascades, such as the protein kinase A (PKA) and extracellular signal-regulated kinase (ERK) pathways, is necessary to induce long-term synaptic facilitation (LTF), a correlate of long-term memory (LTM).…

  12. Effects of Joint Attention on Long-Term Memory in 9-Month-Old Infants: An Event-Related Potentials Study

    Science.gov (United States)

    Kopp, Franziska; Lindenberger, Ulman

    2011-01-01

    Joint attention develops during the first year of life but little is known about its effects on long-term memory. We investigated whether joint attention modulates long-term memory in 9-month-old infants. Infants were familiarized with visually presented objects in either of two conditions that differed in the degree of joint attention (high…

  13. D-Serine rescues the deficits of hippocampal long-term potentiation and learning and memory induced by sodium fluoroacetate.

    Science.gov (United States)

    Han, Huili; Peng, Yan; Dong, Zhifang

    2015-06-01

    It is well known that bidirectional glia-neuron interactions play important roles in the neurophysiological and neuropathological processes. It is reported that impairing glial functions with sodium fluoroacetate (FAC) impaired hippocampal long-term depression (LTD) and spatial memory retrieval. However, it remains unknown whether FAC impairs hippocampal long-term potentiation (LTP) and learning and/or memory, and if so, whether pharmacological treatment with exogenous d-serine can recuse the impairment. Here, we reported that systemic administration of FAC (3mg/kg, i.p.) before training resulted in dramatic impairments of spatial learning and memory in water maze and fear memory in contextual fear conditioning. Furthermore, the behavioral deficits were accompanied by impaired LTP induction in the hippocampal CA1 area of brain slices. More importantly, exogenous d-serine treatment succeeded in recusing the deficits of hippocampal LTP and learning and memory induced by FAC. Together, these results suggest that astrocytic d-serine may be essential for hippocampal synaptic plasticity and memory, and that alteration of its levels may be relevant to the induction and potentially treatment of psychiatric and neurological disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. ADRA2B deletion variant selectively predicts stress-induced enhancement of long-term memory in females.

    Science.gov (United States)

    Zoladz, Phillip R; Kalchik, Andrea E; Hoffman, Mackenzie M; Aufdenkampe, Rachael L; Lyle, Sarah M; Peters, David M; Brown, Callie M; Cadle, Chelsea E; Scharf, Amanda R; Dailey, Alison M; Wolters, Nicholas E; Talbot, Jeffery N; Rorabaugh, Boyd R

    2014-10-01

    Clarifying the mechanisms that underlie stress-induced alterations of learning and memory may lend important insight into susceptibility factors governing the development of stress-related psychological disorders, such as post-traumatic stress disorder (PTSD). Previous work has shown that carriers of the ADRA2B Glu(301)-Glu(303) deletion variant exhibit enhanced emotional memory, greater amygdala responses to emotional stimuli and greater intrusiveness of traumatic memories. We speculated that carriers of this deletion variant might also be more vulnerable to stress-induced enhancements of long-term memory, which would implicate the variant as a possible susceptibility factor for traumatic memory formation. One hundred and twenty participants (72 males, 48 females) submerged their hand in ice cold (stress) or warm (no stress) water for 3min. Immediately afterwards, they studied a list of 42 words varying in emotional valence and arousal and then completed an immediate free recall test. Twenty-four hours later, participants' memory for the word list was examined via free recall and recognition assessments. Stressed participants exhibiting greater heart rate responses to the stressor had enhanced recall on the 24-h assessment. Importantly, this enhancement was independent of the emotional nature of the learned information. In contrast to previous work, we did not observe a general enhancement of memory for emotional information in ADRA2B deletion carriers. However, stressed female ADRA2B deletion carriers, particularly those exhibiting greater heart rate responses to the stressor, did demonstrate greater recognition memory than all other groups. Collectively, these findings implicate autonomic mechanisms in the pre-learning stress-induced enhancement of long-term memory and suggest that the ADRA2B deletion variant may selectively predict stress effects on memory in females. Such findings lend important insight into the physiological mechanisms underlying stress

  15. Effects of Sleep Deprivation and Aging on Long-Term and Remote Memory in Mice

    Science.gov (United States)

    Vecsey, Christopher G.; Park, Alan J.; Khatib, Nora; Abel, Ted

    2015-01-01

    Sleep deprivation (SD) following hippocampus-dependent learning in young mice impairs memory when tested the following day. Here, we examined the effects of SD on remote memory in both young and aged mice. In young mice, we found that memory is still impaired 1 mo after training. SD also impaired memory in aged mice 1 d after training, but, by a…

  16. Effects of Sleep Deprivation and Aging on Long-Term and Remote Memory in Mice

    Science.gov (United States)

    Vecsey, Christopher G.; Park, Alan J.; Khatib, Nora; Abel, Ted

    2015-01-01

    Sleep deprivation (SD) following hippocampus-dependent learning in young mice impairs memory when tested the following day. Here, we examined the effects of SD on remote memory in both young and aged mice. In young mice, we found that memory is still impaired 1 mo after training. SD also impaired memory in aged mice 1 d after training, but, by a…

  17. Long-term effects of an acute and systemic administration of LPS on adult neurogenesis and spatial memory

    Directory of Open Access Journals (Sweden)

    Jorge eValero

    2014-04-01

    Full Text Available The cognitive reserve is the capacity of the brain to maintain normal performance while exposed to insults or ageing. Increasing evidences point to a role for the interaction between inflammatory conditions and cognitive reserve status during Alzheimer's disease (AD progression. The production of new neurons along adult life can be considered as one of the components of the cognitive reserve. Interestingly, adult neurogenesis is decreased in mouse models of AD and following inflammatory processes. The aim of this work is to reveal the long-term impact of a systemic inflammatory event on memory and adult neurogenesis in wild type (WT and triple transgenic mouse model of AD (3xTg-AD.4 month-old mice were intraperitoneally injected once with saline or lipopolysaccharide (LPS and their performance on spatial memory analyzed with the Morris water maze (MWM test 7 weeks later. Our data showed that a single intraperitoneal injection with LPS has a long-term impact in the production of hippocampal neurons. Consistently, LPS-treated WT mice showed less doublecortin-positive neurons, less synaptic contacts in newborn neurons, and decreased dendritic volume and complexity. These surprising observations were accompanied with memory deficits. 3xTg-AD mice showed a decrease in new neurons in the dentate gyrus compatible with, although exacerbated, the pattern observed in WT LPS-treated mice. In 3xTg-AD mice, LPS injection did not significantly affected the production of new neurons but reduced their number of synaptic puncta and impaired memory performance, when compared to the observations made in saline-treated 3xTg-AD mice. These data indicate that LPS treatment induces a long-term impairment on hippocampal neurogenesis and memory. Our results show that acute neuroinflammatory events influence the production of new hippocampal neurons, affecting the cognitive reserve and leading to the development of memory deficits associated to Alzheimer's disease

  18. On the interplay between short and long term memory in the power-law cross-correlations setting

    Science.gov (United States)

    Kristoufek, Ladislav

    2015-03-01

    We focus on emergence of the power-law cross-correlations from processes with both short and long term memory properties. In the case of correlated error-terms, the power-law decay of the cross-correlation function comes automatically with the characteristics of separate processes. Bivariate Hurst exponent is then equal to an average of separate Hurst exponents of the analyzed processes. Strength of short term memory has no effect on these asymptotic properties. Implications of these findings for the power-law cross-correlations concept are further discussed.

  19. Translational control by eIF2α kinases in long-lasting synaptic plasticity and long-term memory.

    Science.gov (United States)

    Trinh, Mimi A; Klann, Eric

    2013-10-01

    Although the requirement for new protein synthesis in synaptic plasticity and memory has been well established, recent genetic, molecular, electrophysiological, and pharmacological studies have broadened our understanding of the translational control mechanisms that are involved in these processes. One of the critical translational control points mediating general and gene-specific translation depends on the phosphorylation of eukaryotic initiation factor 2 alpha (eIF2α) by four regulatory kinases. Here, we review the literature highlighting the important role for proper translational control via regulation of eIF2α phosphorylation by its kinases in long-lasting synaptic plasticity and long-term memory.

  20. Improved long-term memory via enhancing cGMP-PKG signaling requires cAMP-PKA signaling.

    Science.gov (United States)

    Bollen, Eva; Puzzo, Daniela; Rutten, Kris; Privitera, Lucia; De Vry, Jochen; Vanmierlo, Tim; Kenis, Gunter; Palmeri, Agostino; D'Hooge, Rudi; Balschun, Detlef; Steinbusch, Harry M W; Blokland, Arjan; Prickaerts, Jos

    2014-10-01

    Memory consolidation is defined by the stabilization of a memory trace after acquisition, and consists of numerous molecular cascades that mediate synaptic plasticity. Commonly, a distinction is made between an early and a late consolidation phase, in which early refers to the first hours in which labile synaptic changes occur, whereas late consolidation relates to stable and long-lasting synaptic changes induced by de novo protein synthesis. How these phases are linked at a molecular level is not yet clear. Here we studied the interaction of the cyclic nucleotide-mediated pathways during the different phases of memory consolidation in rodents. In addition, the same pathways were studied in a model of neuronal plasticity, long-term potentiation (LTP). We demonstrated that cGMP/protein kinase G (PKG) signaling mediates early memory consolidation as well as early-phase LTP, whereas cAMP/protein kinase A (PKA) signaling mediates late consolidation and late-phase-like LTP. In addition, we show for the first time that early-phase cGMP/PKG signaling requires late-phase cAMP/PKA-signaling in both LTP and long-term memory formation.

  1. Effects of pre-encoding stress on brain correlates associated with the long-term memory for emotional scenes.

    Directory of Open Access Journals (Sweden)

    Janine Wirkner

    Full Text Available Recent animal and human research indicates that stress around the time of encoding enhances long-term memory for emotionally arousing events but neural evidence remains unclear. In the present study we used the ERP old/new effect to investigate brain dynamics underlying the long-term effects of acute pre-encoding stress on memory for emotional and neutral scenes. Participants were exposed either to the Socially Evaluated Cold Pressure Test (SECPT or a warm water control procedure before viewing 30 unpleasant, 30 neutral and 30 pleasant pictures. Two weeks after encoding, recognition memory was tested using 90 old and 90 new pictures. Emotional pictures were better recognized than neutral pictures in both groups and related to an enhanced centro-parietal ERP old/new difference (400-800 ms during recognition, which suggests better recollection. Most interestingly, pre-encoding stress exposure specifically increased the ERP old/new-effect for emotional (unpleasant pictures, but not for neutral pictures. These enhanced ERP/old new differences for emotional (unpleasant scenes were particularly pronounced for those participants who reported high levels of stress during the SECPT. The results suggest that acute pre-encoding stress specifically strengthens brain signals of emotional memories, substantiating a facilitating role of stress on memory for emotional scenes.

  2. Effects of pre-encoding stress on brain correlates associated with the long-term memory for emotional scenes.

    Science.gov (United States)

    Wirkner, Janine; Weymar, Mathias; Löw, Andreas; Hamm, Alfons O

    2013-01-01

    Recent animal and human research indicates that stress around the time of encoding enhances long-term memory for emotionally arousing events but neural evidence remains unclear. In the present study we used the ERP old/new effect to investigate brain dynamics underlying the long-term effects of acute pre-encoding stress on memory for emotional and neutral scenes. Participants were exposed either to the Socially Evaluated Cold Pressure Test (SECPT) or a warm water control procedure before viewing 30 unpleasant, 30 neutral and 30 pleasant pictures. Two weeks after encoding, recognition memory was tested using 90 old and 90 new pictures. Emotional pictures were better recognized than neutral pictures in both groups and related to an enhanced centro-parietal ERP old/new difference (400-800 ms) during recognition, which suggests better recollection. Most interestingly, pre-encoding stress exposure specifically increased the ERP old/new-effect for emotional (unpleasant) pictures, but not for neutral pictures. These enhanced ERP/old new differences for emotional (unpleasant) scenes were particularly pronounced for those participants who reported high levels of stress during the SECPT. The results suggest that acute pre-encoding stress specifically strengthens brain signals of emotional memories, substantiating a facilitating role of stress on memory for emotional scenes.

  3. Get the gist? The effects of processing depth on false recognition in short-term and long-term memory.

    Science.gov (United States)

    Flegal, Kristin E; Reuter-Lorenz, Patricia A

    2014-07-01

    Gist-based processing has been proposed to account for robust false memories in the converging-associates task. The deep-encoding processes known to enhance verbatim memory also strengthen gist memory and increase distortions of long-term memory (LTM). Recent research has demonstrated that compelling false memory illusions are relatively delay-invariant, also occurring under canonical short-term memory (STM) conditions. To investigate the contributions of gist to false memory at short and long delays, processing depth was manipulated as participants encoded lists of four semantically related words and were probed immediately, following a filled 3- to 4-s retention interval, or approximately 20 min later, in a surprise recognition test. In two experiments, the encoding manipulation dissociated STM and LTM on the frequency, but not the phenomenology, of false memory. Deep encoding at STM increases false recognition rates at LTM, but confidence ratings and remember/know judgments are similar across delays and do not differ as a function of processing depth. These results suggest that some shared and some unique processes underlie false memory illusions at short and long delays.

  4. Intermediate and long-term memories of associative learning are differentially affected by transcription versus translation blockers in Lymnaea.

    Science.gov (United States)

    Sangha, Susan; Scheibenstock, Andi; McComb, Chloe; Lukowiak, Ken

    2003-05-01

    Aerial respiratory behaviour in the pond snail, Lymnaea stagnalis, can be operantly conditioned. This associative learning then undergoes consolidation into a long-lasting memory which, depending on the training procedure used, causes intermediate-term memory (ITM; lasting 3 h) or long-term memory (LTM; lasting >6 h) to be formed. We determined the differential susceptibility of these two forms of memory to translation and transcription blockers. The injection of a translation blocker, Anisomycin, 2.5 h before training prevents the establishment of both ITM and LTM. On the other hand, injection of the transcription blocker Actinomycin D, 2.5 h before training, did not prevent the establishment of ITM, but did, however, prevent LTM formation. Thus in Lymnaea, following associative learning, both ITM and LTM are dependent on new protein synthesis. ITM appears to be dependent on protein synthesis from preexisting transcription factors, whilst LTM is dependent on protein synthesis from new transcription messages.

  5. The role of reconsolidation and the dynamic process of long-term memory formation and storage

    Directory of Open Access Journals (Sweden)

    Cristina M Alberini

    2011-03-01

    Full Text Available It is becoming increasingly clear that the processes of memory formation and storage are exquisitely dynamic. Elucidating the nature and temporal evolution of the biological changes that accompany encoding, storage and retrieval is key to understand memory formation. For explicit or medial temporal lobe-dependent memories that form after a discrete event and are stored for a long time, the physical changes underlying the encoding and processing of the information (memory trace or engram remain in a fragile state for some time. However, over time, the new memory becomes increasingly resistant to disruption until it is consolidated. Retrieval or reactivation of an apparently consolidated memory can render the memory labile again, and reconsolidation is the process that occurs to mediate its restabilization. Reconsolidation also evolves with the age of the memory: Young memories are sensitive to postreactivation disruption, but older memories are more resistant. Why does a memory become labile again if it is retrieved or reactivated? Here I suggest that the main function of reconsolidation is to contribute to the lingering consolidation process and mediate memory strengthening. I also discuss the literature and results regarding the influence of the passage of time on the reconsolidation of memory. These points have important implications for the use of reconsolidation in therapeutic settings.

  6. Memory T and memory B cells share a transcriptional program of self-renewal with long-term hematopoietic stem cells

    OpenAIRE

    Luckey, Chance John; Bhattacharya, Deepta; Goldrath, Ananda W; Weissman, Irving L; Benoist, Christophe; Mathis, Diane

    2006-01-01

    The only cells of the hematopoietic system that undergo self-renewal for the lifetime of the organism are long-term hematopoietic stem cells and memory T and B cells. To determine whether there is a shared transcriptional program among these self-renewing populations, we first compared the gene-expression profiles of naïve, effector and memory CD8+ T cells with those of long-term hematopoietic stem cells, short-term hematopoietic stem cells, and lineage-committed progenitors. Transcripts augm...

  7. Homologue of Protein Kinase Mζ Maintains Context Aversive Memory and Underlying Long-Term Facilitation in Terrestrial Snail Helix.

    Directory of Open Access Journals (Sweden)

    Pavel M. Balaban

    2015-06-01

    Full Text Available It has been shown that a variety of long-term memories in different regions of the brain and in different species are quickly erased by local inhibition of PKMζ. Using antibodies to mammalian PKMζ, we describe in the present study the localization of immunoreactive molecules in the nervous system of the terrestrial snail Helix lucorum. Presence of a homologue of PKMζ was confirmed with transcriptomics. We have demonstrated in behavioral experiments that contextual fear memory disappeared under a blockade of PKMζ with a selective peptide blocker of PKMζ (ZIP, but not with scrambled ZIP. If ZIP was combined with a reminder (20 min in noxious context, no impairment of the long-term contextual memory was observed. In electrophysiological experiments we investigated whether PKMζ takes part in the maintenance of long-term facilitation (LTF in the neural circuit mediating tentacle withdrawal. LTF of excitatory synaptic inputs to premotor interneurons was induced by high-frequency nerve stimulation combined with serotonin bath applications and lasted at least four hours. We found that bath application of 2x10-6 M ZIP at the 90th min after the tetanization reduced the EPSP amplitude to the non-tetanized EPSP values. Applications of the scrambled ZIP peptide at a similar time and concentration didn't affect the EPSP amplitudes. In order to test whether effects of ZIP are specific to the synapses, we performed experiments with LTF of somatic membrane responses to local glutamate applications. It was shown earlier that serotonin application in such an artificial synapse condition elicits LTF of responses to glutamate. It was found that ZIP had no effect on LTF in these conditions, which may be explained by the very low concentration of PKMζ molecules in somata of these identified neurons, as evidenced by immunochemistry. Obtained results suggest that the Helix homologue of PKMζ might be involved in post-induction maintenance of long-term changes in

  8. Using electrophysiology to demonstrate that cueing affects long-term memory storage over the short term

    National Research Council Canada - National Science Library

    Maxcey, Ashleigh M; Fukuda, Keisuke; Song, Won S; Woodman, Geoffrey F

    2015-01-01

    As researchers who study working memory, we often assume that participants keep a representation of an object in working memory when we present a cue that indicates that the object will be tested in a couple of seconds...

  9. The Sleep Elaboration-Awake Pruning (SEAP) theory of memory: long term memories grow in complexity during sleep and undergo selection while awake. Clinical, psychopharmacological and creative implications.

    Science.gov (United States)

    Charlton, Bruce G; Andras, Peter

    2009-07-01

    Long term memory (LTM) systems need to be adaptive such that they enhance an organism's reproductive fitness and self-reproducing in order to maintain their complexity of communications over time in the face of entropic loss of information. Traditional 'representation-consolidation' accounts conceptualize memory adaptiveness as due to memories being 'representations' of the environment, and the longevity of memories as due to 'consolidation' processes. The assumption is that memory representations are formed while an animal is awake and interacting with the environment, and these memories are consolidated mainly while the animal is asleep. So the traditional view of memory is 'instructionist' and assumes that information is transferred from the environment into the brain. By contrast, we see memories as arising endogenously within the brain's LTM system mainly during sleep, to create complex but probably maladaptive memories which are then simplified ('pruned') and selected during the awake period. When awake the LTM system is brought into a more intense interaction with past and present experience. Ours is therefore a 'selectionist' account of memory, and could be termed the Sleep Elaboration-Awake Pruning (or SEAP) theory. The SEAP theory explains the longevity of memories in the face of entropy by the tendency for memories to grow in complexity during sleep; and explains the adaptiveness of memory by selection for consistency with perceptions and previous memories during the awake state. Sleep is therefore that behavioural state during which most of the internal processing of the system of LTM occurs; and the reason sleep remains poorly understood is that its primary activity is the expansion of long term memories. By re-conceptualizing the relationship between memory, sleep and the environment; SEAP provides a radically new framework for memory research, with implications for the measurement of memory and the design of empirical investigations in clinical

  10. Mind racing: The influence of exercise on long-term memory consolidation.

    Science.gov (United States)

    McNerney, M Windy; Radvansky, Gabriel A

    2015-01-01

    Over time, regular exercise can lower the risk for age-related decline in cognition. However, the immediate effects of exercise on memory consolidation in younger adults have not been fully investigated. In two experiments, the effects of exercise were assessed on three different memory tasks. These included paired-associate learning, procedural learning and text memory. Results indicate that performance on procedural learning and situation model memory was increased with exercise, regardless of if participants exercised before or after encoding. No benefit of exercise was found for paired-associate learning. These findings suggest that intense exercise may benefit certain types of memory consolidation.

  11. Amyloid-β Peptide Is Needed for cGMP-Induced Long-Term Potentiation and Memory.

    Science.gov (United States)

    Palmeri, Agostino; Ricciarelli, Roberta; Gulisano, Walter; Rivera, Daniela; Rebosio, Claudia; Calcagno, Elisa; Tropea, Maria Rosaria; Conti, Silvia; Das, Utpal; Roy, Subhojit; Pronzato, Maria Adelaide; Arancio, Ottavio; Fedele, Ernesto; Puzzo, Daniela

    2017-07-19

    High levels of amyloid-β peptide (Aβ) have been related to Alzheimer's disease pathogenesis. However, in the healthy brain, low physiologically relevant concentrations of Aβ are necessary for long-term potentiation (LTP) and memory. Because cGMP plays a key role in these processes, here we investigated whether the cyclic nucleotide cGMP influences Aβ levels and function during LTP and memory. We demonstrate that the increase of cGMP levels by the phosphodiesterase-5 inhibitors sildenafil and vardenafil induces a parallel release of Aβ due to a change in the approximation of amyloid precursor protein (APP) and the β-site APP cleaving enzyme 1. Moreover, electrophysiological and behavioral studies performed on animals of both sexes showed that blocking Aβ function, by using anti-murine Aβ antibodies or APP knock-out mice, prevents the cGMP-dependent enhancement of LTP and memory. Our data suggest that cGMP positively regulates Aβ levels in the healthy brain which, in turn, boosts synaptic plasticity and memory.SIGNIFICANCE STATEMENT Amyloid-β (Aβ) is a key pathogenetic factor in Alzheimer's disease. However, low concentrations of endogenous Aβ, mimicking levels of the peptide in the healthy brain, enhance hippocampal long-term potentiation (LTP) and memory. Because the second messenger cGMP exerts a central role in LTP mechanisms, here we studied whether cGMP affects Aβ levels and function during LTP. We show that cGMP enhances Aβ production by increasing the APP/BACE-1 convergence in endolysosomal compartments. Moreover, the cGMP-induced enhancement of LTP and memory was disrupted by blockade of Aβ, suggesting that the physiological effect of the cyclic nucleotide on LTP and memory is dependent upon Aβ. Copyright © 2017 the authors 0270-6474/17/376926-12$15.00/0.

  12. Hippocampal size is related to short-term true and false memory, and right fusiform size is related to long-term true and false memory.

    Science.gov (United States)

    Zhu, Bi; Chen, Chuansheng; Loftus, Elizabeth F; He, Qinghua; Lei, Xuemei; Dong, Qi; Lin, Chongde

    2016-11-01

    There is a keen interest in identifying specific brain regions that are related to individual differences in true and false memories. Previous functional neuroimaging studies showed that activities in the hippocampus, right fusiform gyrus, and parahippocampal gyrus were associated with true and false memories, but no study thus far has examined whether the structures of these brain regions are associated with short-term and long-term true and false memories. To address that question, the current study analyzed data from 205 healthy young adults, who had valid data from both structural brain imaging and a misinformation task. In the misinformation task, subjects saw the crime scenarios, received misinformation, and took memory tests about the crimes an hour later and again after 1.5 years. Results showed that bilateral hippocampal volume was associated with short-term true and false memories, whereas right fusiform gyrus volume and surface area were associated with long-term true and false memories. This study provides the first evidence for the structural neural bases of individual differences in short-term and long-term true and false memories.

  13. Accelerated forgetting? An evaluation on the use of long-term forgetting rates in patients with memory problems

    Science.gov (United States)

    Geurts, Sofie; van der Werf, Sieberen P.; Kessels, Roy P. C.

    2015-01-01

    The main focus of this review was to evaluate whether long-term forgetting rates (delayed tests, days, to weeks, after initial learning) are more sensitive measures than standard delayed recall measures to detect memory problems in various patient groups. It has been suggested that accelerated forgetting might be characteristic for epilepsy patients, but little research has been performed in other populations. Here, we identified eleven studies in a wide range of brain injured patient groups, whose long-term forgetting patterns were compared to those of healthy controls. Signs of accelerated forgetting were found in three studies. The results of eight studies showed normal forgetting over time for the patient groups. However, most of the studies used only a recognition procedure, after optimizing initial learning. Based on these results, we recommend the use of a combined recall and recognition procedure to examine accelerated forgetting and we discuss the relevance of standard and optimized learning procedures in clinical practice. PMID:26106343

  14. Long-term memory: a natural mechanism for the clustering of extreme events and anomalous residual times in climate records.

    Science.gov (United States)

    Bunde, Armin; Eichner, Jan F; Kantelhardt, Jan W; Havlin, Shlomo

    2005-02-04

    We study the statistics of the return intervals between extreme events above a certain threshold in long-term persistent records. We find that the long-term memory leads (i) to a stretched exponential distribution of the return intervals, (ii) to a pronounced clustering of extreme events, and (iii) to an anomalous behavior of the mean residual time to the next event that depends on the history and increases with the elapsed time in a counterintuitive way. We present an analytical scaling approach and demonstrate that all these features can be seen in long climate records. The phenomena should also occur in heartbeat records, Internet traffic, and stock market volatility and have to be taken into account for an efficient risk evaluation.

  15. Physical exercise prevents short and long-term deficits on aversive and recognition memory and attenuates brain oxidative damage induced by maternal deprivation.

    Science.gov (United States)

    Neves, Ben-Hur; Menezes, Jefferson; Souza, Mauren Assis; Mello-Carpes, Pâmela B

    2015-12-01

    It is known from previous research that physical exercise prevents long-term memory deficits induced by maternal deprivation in rats. But we could not assume similar effects of physical exercise on short-term memory, as short- and long-term memories are known to result from some different memory consolidation processes. Here we demonstrated that, in addition to long-term memory deficit, the short-term memory deficit resultant from maternal deprivation in object recognition and aversive memory tasks is also prevented by physical exercise. Additionally, one of the mechanisms by which the physical exercise influences the memory processes involves its effects attenuating the oxidative damage in the maternal deprived rats' hippocampus and prefrontal cortex.

  16. Membrane-associated glucocorticoid activity is necessary for modulation of long-term memory via chromatin modification

    Science.gov (United States)

    Roozendaal, Benno; Hernandez, Angelina; Cabrera, Sara M.; Hagewoud, Roelina; Malvaez, Melissa; Stefanko, Daniel P.; Haettig, Jakob; Wood, Marcelo A.

    2010-01-01

    Glucocorticoid hormones enhance the consolidation of long-term memory of emotionally arousing training experiences. This memory enhancement requires activation of the cAMP-dependent kinase pathway and the subsequent phosphorylation of cAMP response-element binding (CREB) protein. Here, we demonstrate that glucocorticoids enhance the consolidation of hippocampus-dependent and hippocampus-independent aspects of object recognition memory via chromatin modification. More specifically, systemic corticosterone increases histone acetylation, a form of chromatin modification, in both the hippocampus and insular cortex following training on an object recognition task. This led us to examine whether increasing histone acetylation via histone deacetylase (HDAC) inhibition enhances memory in a similar manner as corticosterone. We found a double dissociation between posttraining HDAC inhibitor infusion into the insular cortex and hippocampus on the enhancement of object recognition and object location memory, respectively. In determining the molecular pathway upstream of glucocorticoids’ effects on chromatin modification, we found that activation of membrane-associated glucocorticoid receptors (GRs) and the subsequent interaction between phospho-CREB and CREB-binding protein (CBP) appear to be necessary for glucocorticoids to enhance memory consolidation via chromatin modification. In contrast, mineralocorticoid receptors (MRs) do not appear to be involved. The findings also indicate that glucocorticoid activity has differential influences on hippocampus-dependent and hippocampus-independent components of memory for objects. PMID:20371824

  17. Long-term benefits of the Memory-Link programme in a case of amnesia.

    Science.gov (United States)

    Savage, Kimberley R; Svoboda, Eva

    2013-06-01

    To systematically evaluate the maintenance of clinical gains from a structured memory intervention programme. Efficacy of the programme was initially demonstrated in RR, a woman with moderate-to-severe memory impairment following colloid cyst removal. In the current study (Svoboda and Richards, 2009), we examined RR's day-to-day memory functioning 18 months after completion of the intervention programme. Within-subject A(1)B(1)A(2)B(2)B(3) single-case experimental design. Outpatient memory rehabilitation clinic. A theory-driven training programme in the use of commercially available smartphones for individuals with moderate-to-severe memory impairment. A phone call task was used as an objective measure of prospective memory function. Self-report, ecologically valid questionnaires were also completed to further assess generalization of smartphone use to day-to-day memory function. Eighteen months after intervention, RR completed 80% of scheduled calls using the smartphone, a rate significantly higher than at baseline (40%) and comparable to her success rate immediately following intervention (90%) and at the four-month follow-up (90%). Responses to questionnaires indicated that RR felt more confident in her ability to handle memory-demanding situations and was making fewer memory mistakes. This favourable outcome was not found with the use of another smartphone brand for which training was not received. Results from ecologically valid measures of memory functioning demonstrated robust maintenance of independent commercial smartphone use over an 18-month period, with increases observed in independence, confidence and real-life memory functioning. The findings further suggest poor cross-device generalizability.

  18. Adaptation of postural control to perturbations--a process that initiates long-term motor memory.

    Science.gov (United States)

    Tjernström, F; Fransson, P-A; Hafström, A; Magnusson, M

    2002-02-01

    The objective was to investigate postural control adaptation during daily repeated posturography with vibratory calf stimulation. The posturography was performed with eyes open and closed daily for 5 days and after 90 days on 12 healthy subjects. The postural control adaptation could be described as two separate processes, a rapid adaptation during the test progress and a long-term habituation between consecutive test days. The adaptive improvements gained during the 5 days consecutive testing, largely remained 90 days later but seemed restricted to the same test situation. The findings suggest that balance rehabilitation should include a variety of repeated exercises, which are sufficiently long to induce habituation.

  19. Attention Problems, Phonological Short-Term Memory, and Visuospatial Short-Term Memory: Differential Effects on Near- and Long-Term Scholastic Achievement

    Science.gov (United States)

    Sarver, Dustin E.; Rapport, Mark D.; Kofler, Michael J.; Scanlan, Sean W.; Raiker, Joseph S.; Altro, Thomas A.; Bolden, Jennifer

    2012-01-01

    The current study examined individual differences in children's phonological and visuospatial short-term memory as potential mediators of the relationship among attention problems and near- and long-term scholastic achievement. Nested structural equation models revealed that teacher-reported attention problems were associated negatively with…

  20. Attention Problems, Phonological Short-Term Memory, and Visuospatial Short-Term Memory: Differential Effects on Near- and Long-Term Scholastic Achievement

    Science.gov (United States)

    Sarver, Dustin E.; Rapport, Mark D.; Kofler, Michael J.; Scanlan, Sean W.; Raiker, Joseph S.; Altro, Thomas A.; Bolden, Jennifer

    2012-01-01

    The current study examined individual differences in children's phonological and visuospatial short-term memory as potential mediators of the relationship among attention problems and near- and long-term scholastic achievement. Nested structural equation models revealed that teacher-reported attention problems were associated negatively with…

  1. The representational consequences of intentional forgetting: Impairments to both the probability and fidelity of long-term memory.

    Science.gov (United States)

    Fawcett, Jonathan M; Lawrence, Michael A; Taylor, Tracy L

    2016-01-01

    We investigated whether intentional forgetting impacts only the likelihood of later retrieval from long-term memory or whether it also impacts the fidelity of those representations that are successfully retrieved. We accomplished this by combining an item-method directed forgetting task with a testing procedure and modeling approach inspired by the delayed-estimation paradigm used in the study of visual short-term memory (STM). Abstract or concrete colored images were each followed by a remember (R) or forget (F) instruction and sometimes by a visual probe requiring a speeded detection response (E1-E3). Memory was tested using an old-new (E1-E2) or remember-know-no (E3) recognition task followed by a continuous color judgment task (E2-E3); a final experiment included only the color judgment task (E4). Replicating the existing literature, more "old" or "remember" responses were made to R than F items and RTs to postinstruction visual probes were longer following F than R instructions. Color judgments were more accurate for successfully recognized or recollected R than F items (E2-E3); a mixture model confirmed a decrease to both the probability of retrieving the F items as well as the fidelity of the representation of those F items that were retrieved (E4). We conclude that intentional forgetting is an effortful process that not only reduces the likelihood of successfully encoding an item for later retrieval, but also produces an impoverished memory trace even when those items are retrieved; these findings draw a parallel between the control of memory representations within working and long-term memory.

  2. False memories and lexical decision: even twelve primes do not cause long-term semantic priming

    NARCIS (Netherlands)

    R. Zeelenberg (René); D. Pecher (Diane)

    2002-01-01

    textabstractSemantic priming effects are usually obtained only if the prime is presented shortly before the target stimulus. Recent evidence obtained with the so-called false memory paradigm suggests, however, that in both explicit and implicit memory tasks semantic relations between words can resul

  3. Subjective memory ability and long-term forgetting in patients referred for neuropsychological assessment

    NARCIS (Netherlands)

    Werf, S.P. van der; Geurts, S.; Werd, M.M.E. de

    2016-01-01

    It has been suggested that the memory complaints of patients who are not impaired on formal memory tests may reflect accelerated forgetting. We examined this hypothesis by comparing the 1-week delayed recall and recognition test performance of outpatients who were referred for neuropsychological ass

  4. False memories and lexical decision: even twelve primes do not cause long-term semantic priming

    NARCIS (Netherlands)

    R. Zeelenberg (René); D. Pecher (Diane)

    2002-01-01

    textabstractSemantic priming effects are usually obtained only if the prime is presented shortly before the target stimulus. Recent evidence obtained with the so-called false memory paradigm suggests, however, that in both explicit and implicit memory tasks semantic relations between words

  5. Subjective memory ability and long-term forgetting in patients referred for neuropsychological assessment

    NARCIS (Netherlands)

    Werf, S.P. van der; Geurts, S.; Werd, M.M.E. de

    2016-01-01

    It has been suggested that the memory complaints of patients who are not impaired on formal memory tests may reflect accelerated forgetting. We examined this hypothesis by comparing the 1-week delayed recall and recognition test performance of outpatients who were referred for neuropsychological

  6. Subjective Memory Ability and Long-Term Forgetting in Patients Referred for Neuropsychological Assessment

    NARCIS (Netherlands)

    Werf, S.P. van der; Geurts, S.; Werd, M.M. de

    2016-01-01

    It has been suggested that the memory complaints of patients who are not impaired on formal memory tests may reflect accelerated forgetting. We examined this hypothesis by comparing the 1-week delayed recall and recognition test performance of outpatients who were referred for neuropsychological

  7. NF-kappaB in long-term memory and structural plasticity in the adult mammalian brain

    Directory of Open Access Journals (Sweden)

    Barbara eKaltschmidt

    2015-11-01

    Full Text Available The transcription factor nuclear factor kappaB (NF-κB is a well known regulator of inflammation, stress and immune responses as well as cell survival. In the nervous system NF-κB is one of the crucial components in the molecular switch, that converts short- to long-term memory, a process requiring de novo gene expression. Here, we will review published research on NF-κB and downstream target genes in mammals, which are necessary for structural plasticity and long-term memory, both under normal and pathological conditions in the brain. Genetic evidence has revealed that NF-κB does regulate neuroprotection, neuronal transmission and long-term memory. Additionally, after genetic ablation of all NF-κB subunits, a severe defect in hippocampal adult neurogenesis was observed during aging. Proliferation of neural precursors is increased, however axon outgrowth, synaptogenesis and tissue homeostasis of the dentate gyrus is hampered. In this process, the NF-κB target gene PKAcat and other downstream target genes such as Igf2 are critically involved. Thus, NF-κB activity seems to be crucial in regulating structural plasticity and replenishment of granule cells within the hippocampus throughout life. In addition to the function of NF-κB in neurons we will discuss data on a neuro-inflammatory role of the transcription factor in glia. Finally a model for NF-κB homeostasis on the molecular level is presented, in order to explain seemingly contradictory the friend or foe role of NF-κB in the nervous system.

  8. [Musical long-term memory throughout the progression of Alzheimer disease].

    Science.gov (United States)

    Groussard, Mathilde; Mauger, Caroline; Platel, Hervé

    2013-03-01

    In Alzheimer patients with a solid musical background, isolated case-reports have reported the maintenance of remarkable musical abilities despite clear difficulties in their verbal memory and linguistic functions. These reports have encouraged a number of scientists to undertake more systematic studies which would allow a rigorous approach to the analysis of musical memory in Alzheimer patients with no formal musical background. Although restricted in number, the latest data are controversial regarding preserved musical capacities in Alzheimer patients. Our current review of the literature addresses this topic and advances the hypothesis that the processes of musical memory are function of illness progression. In the earlier stages, the majority of evaluations concerned musical episodic memory and suggested a dysfunction of this memory whereas in the moderate and severe stages, musical semantic memory and implicit learning are the majority of investigations and seemed more resistant to Alzheimer disease. In summary, our current review bring to understand the memory circuits involved and highlight the necessity to adapted the investigational tools employed to conform with the severity of the signs and symptoms of progressive Alzheimer disease in order to demonstrate the preserved musical capacities.

  9. Long-term heavy ketamine use is associated with spatial memory impairment and altered hippocampal activation

    Directory of Open Access Journals (Sweden)

    Celia J A Morgan

    2014-12-01

    Full Text Available Ketamine, a non-competitive N-methyl-D-aspartate receptor antagonist, is rising in popularity as a drug of abuse. Preliminary evidence suggests that chronic, heavy ketamine use may have profound effects on spatial memory but the mechanism of these deficits is as yet unclear. This study aimed to examine the neural mechanism by which heavy ketamine use impairs spatial memory processing. In a sample of 11 frequent ketamine users and 15 polydrug controls, matched for IQ, age and years in education. We used fMRI utilising an ROI approach to examine the neural activity of three regions known to support successful navigation; the hippocampus, parahippocampal gyrus and the caudate nucleus during a virtual reality task of spatial memory. Frequent ketamine users displayed spatial memory deficits, accompanied by and related to, reduced activation in both the right hippocampus and left parahippocampal gyrus during navigation from memory, and in the left caudate during memory updating, compared to controls. Ketamine users also exhibited schizotypal and dissociative symptoms that were related to hippocampal activation. Impairments in spatial memory observed in ketamine users are related to changes in medial temporal lobe activation. Disrupted medial temporal lobe function may be a consequence of chronic ketamine abuse and may relate to schizophrenia-like symptomatology observed in ketamine users.

  10. Subliminally and Supraliminally Acquired Long-Term Memories Jointly Bias Delayed Decisions

    Directory of Open Access Journals (Sweden)

    Simon Ruch

    2017-09-01

    Full Text Available Common wisdom and scientific evidence suggest that good decisions require conscious deliberation. But growing evidence demonstrates that not only conscious but also unconscious thoughts influence decision-making. Here, we hypothesize that both consciously and unconsciously acquired memories guide decisions. Our experiment measured the influence of subliminally and supraliminally presented information on delayed (30–40 min decision-making. Participants were presented with subliminal pairs of faces and written occupations for unconscious encoding. Following a delay of 20 min, participants consciously (re-encoded the same faces now presented supraliminally along with either the same written occupations, occupations congruous to the subliminally presented occupations (same wage-category, or incongruous occupations (opposite wage-category. To measure decision-making, participants viewed the same faces again (with occupations absent and decided on the putative income of each person: low, low-average, high-average, or high. Participants were encouraged to decide spontaneously and intuitively. Hence, the decision task was an implicit or indirect test of relational memory. If conscious thought alone guided decisions (= H0, supraliminal information should determine decision outcomes independently of the encoded subliminal information. This was, however, not the case. Instead, both unconsciously and consciously encoded memories influenced decisions: identical unconscious and conscious memories exerted the strongest bias on income decisions, while both incongruous and congruous (i.e., non-identical subliminally and supraliminally formed memories canceled each other out leaving no bias on decisions. Importantly, the increased decision bias following the formation of identical unconscious and conscious memories and the reduced decision bias following to the formation of non-identical memories were determined relative to a control condition, where conscious

  11. Multiple memory traces for olfactory reward learning in Drosophila.

    Science.gov (United States)

    Thum, Andreas S; Jenett, Arnim; Ito, Kei; Heisenberg, Martin; Tanimoto, Hiromu

    2007-10-10

    Physical traces underlying simple memories can be confined to a single group of cells in the brain. In the fly Drosophila melanogaster, the Kenyon cells of the mushroom bodies house traces for both appetitive and aversive odor memories. The adenylate cyclase protein, Rutabaga, has been shown to mediate both traces. Here, we show that, for appetitive learning, another group of cells can additionally accommodate a Rutabaga-dependent memory trace. Localized expression of rutabaga in either projection neurons, the first-order olfactory interneurons, or in Kenyon cells, the second-order interneurons, is sufficient for rescuing the mutant defect in appetitive short-term memory. Thus, appetitive learning may induce multiple memory traces in the first- and second-order olfactory interneurons using the same plasticity mechanism. In contrast, aversive odor memory of rutabaga is rescued selectively in the Kenyon cells, but not in the projection neurons. This difference in the organization of memory traces is consistent with the internal representation of reward and punishment.

  12. Long-term effect of early-life stress from earthquake exposure on working memory in adulthood

    OpenAIRE

    Li, Na; Wang, Yumei; Zhao, Xiaochuan; Gao, Yuanyuan; Song, Mei; Yu, Lulu; Wang, Lan; Li, Ning; Chen, Qianqian; Li, Yunpeng; Cai,Jiajia; Wang, Xueyi

    2015-01-01

    Objective The present study aimed to investigate the long-term effect of 1976 Tangshan earthquake exposure in early life on performance of working memory in adulthood. Methods A total of 907 study subjects born and raised in Tangshan were enrolled in this study. They were divided into three groups according to the dates of birth: infant exposure (3–12 months, n=274), prenatal exposure (n=269), and no exposure (born at least 1 year after the earthquake, n=364). The prenatal group was further d...

  13. The effect of frequency and duration of training sessions on acquisition and long-term memory in dogs

    DEFF Research Database (Denmark)

    Demant, Helle; Ladewig, Jan; Balsby, Thorsten Johannes Skovbjerg

    2011-01-01

    dogs such as guide dogs and police dogs, also the training of family dogs can benefit from this knowledge. We studied the effect of frequency and duration of training sessions on acquisition and on long-term memory. Forty-four laboratory Beagles were divided into 4 groups and trained by means...... of the learned task; all groups had a high level of retention after 4 weeks. The results of the study can be used to optimize training in dogs, which is important since the number of training sessions often is a limiting factor in practical dog training. The results also suggest that, once a task is learned...

  14. Questioning short-term memory and its measurement: Why digit span measures long-term associative learning.

    Science.gov (United States)

    Jones, Gary; Macken, Bill

    2015-11-01

    Traditional accounts of verbal short-term memory explain differences in performance for different types of verbal material by reference to inherent characteristics of the verbal items making up memory sequences. The role of previous experience with sequences of different types is ostensibly controlled for either by deliberate exclusion or by presenting multiple trials constructed from different random permutations. We cast doubt on this general approach in a detailed analysis of the basis for the robust finding that short-term memory for digit sequences is superior to that for other sequences of verbal material. Specifically, we show across four experiments that this advantage is not due to inherent characteristics of digits as verbal items, nor are individual digits within sequences better remembered than other types of individual verbal items. Rather, the advantage for digit sequences stems from the increased frequency, compared to other verbal material, with which digits appear in random sequences in natural language, and furthermore, relatively frequent digit sequences support better short-term serial recall than less frequent ones. We also provide corpus-based computational support for the argument that performance in a short-term memory setting is a function of basic associative learning processes operating on the linguistic experience of the rememberer. The experimental and computational results raise questions not only about the role played by measurement of digit span in cognition generally, but also about the way in which long-term memory processes impact on short-term memory functioning.

  15. Following the Crowd: Brain Substrates of Long-Term Memory Conformity

    National Research Council Canada - National Science Library

    Micah Edelson; Tali Sharot; Raymond J. Dolan; Yadin Dudai

    2011-01-01

    .... Participants exhibited a strong tendency to conform to erroneous recollections of the group, producing both long-lasting and temporary errors, even when their initial memory was strong and accurate...

  16. Unforgettable film music: the role of emotion in episodic long-term memory for music

    National Research Council Canada - National Science Library

    Eschrich, Susann; Münte, Thomas F; Altenmüller, Eckart O

    2008-01-01

    .... Also, we examined the influence of musical structure on memory performance. Recognition of 40 musical excerpts was investigated as a function of arousal, valence, and emotional intensity ratings of the music...

  17. Consolidation power of extrinsic rewards: reward cues enhance long-term memory for irrelevant past events.

    Science.gov (United States)

    Murayama, Kou; Kitagami, Shinji

    2014-02-01

    Recent research suggests that extrinsic rewards promote memory consolidation through dopaminergic modulation processes. However, no conclusive behavioral evidence exists given that the influence of extrinsic reward on attention and motivation during encoding and consolidation processes are inherently confounded. The present study provides behavioral evidence that extrinsic rewards (i.e., monetary incentives) enhance human memory consolidation independently of attention and motivation. Participants saw neutral pictures, followed by a reward or control cue in an unrelated context. Our results (and a direct replication study) demonstrated that the reward cue predicted a retrograde enhancement of memory for the preceding neutral pictures. This retrograde effect was observed only after a delay, not immediately upon testing. An additional experiment showed that emotional arousal or unconscious resource mobilization cannot explain the retrograde enhancement effect. These results provide support for the notion that the dopaminergic memory consolidation effect can result from extrinsic reward.

  18. The short- and long-term fates of memory items retained outside the focus of attention

    OpenAIRE

    LaRocque, Joshua J.; Eichenbaum, Adam S.; Starrett, Michael J.; Rose, Nathan S.; Emrich, Stephen M.; Postle, Bradley R.

    2015-01-01

    When a test of working memory (WM) requires the retention of multiple items, a subset of them can be prioritized. Recent studies have shown that, although prioritized (i.e., attended) items are associated with active neural representations, unprioritized (i.e., unattended) memory items can be retained in WM despite the absence of such active representations, and with no decrement in their recognition if they are cued later in the trial. These findings raise two intriguing questions about the ...

  19. Unforgettable film music: The role of emotion in episodic long-term memory for music

    OpenAIRE

    Altenmüller Eckart O; Münte Thomas F; Eschrich Susann

    2008-01-01

    Abstract Background Specific pieces of music can elicit strong emotions in listeners and, possibly in connection with these emotions, can be remembered even years later. However, episodic memory for emotional music compared with less emotional music has not yet been examined. We investigated whether emotional music is remembered better than less emotional music. Also, we examined the influence of musical structure on memory performance. Results Recognition of 40 musical excerpts was investiga...

  20. Modulation of learning and memory by cytokines: signaling mechanisms and long term consequences.

    Science.gov (United States)

    Donzis, Elissa J; Tronson, Natalie C

    2014-11-01

    This review describes the role of cytokines and their downstream signaling cascades on the modulation of learning and memory. Immune proteins are required for many key neural processes and dysregulation of these functions by systemic inflammation can result in impairments of memory that persist long after the resolution of inflammation. Recent research has demonstrated that manipulations of individual cytokines can modulate learning, memory, and synaptic plasticity. The many conflicting findings, however, have prevented a clear understanding of the precise role of cytokines in memory. Given the complexity of inflammatory signaling, understanding its modulatory role requires a shift in focus from single cytokines to a network of cytokine interactions and elucidation of the cytokine-dependent intracellular signaling cascades. Finally, we propose that whereas signal transduction and transcription may mediate short-term modulation of memory, long-lasting cellular and molecular mechanisms such as epigenetic modifications and altered neurogenesis may be required for the long lasting impact of inflammation on memory and cognition. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Anisomycin Injection in Area CA3 of the Hippocampus Impairs Both Short-Term and Long-Term Memories of Contextual Fear

    Science.gov (United States)

    Remaud, Jessica; Ceccom, Johnatan; Carponcy, Julien; Dugué, Laura; Menchon, Gregory; Pech, Stéphane; Halley, Helene; Francés, Bernard; Dahan, Lionel

    2014-01-01

    Protein synthesis is involved in the consolidation of short-term memory into long-term memory. Previous electrophysiological data concerning LTP in CA3 suggest that protein synthesis in that region might also be necessary for short-term memory. We tested this hypothesis by locally injecting the protein synthesis inhibitor anisomycin in hippocampal…

  2. Anisomycin Injection in Area CA3 of the Hippocampus Impairs Both Short-Term and Long-Term Memories of Contextual Fear

    Science.gov (United States)

    Remaud, Jessica; Ceccom, Johnatan; Carponcy, Julien; Dugué, Laura; Menchon, Gregory; Pech, Stéphane; Halley, Helene; Francés, Bernard; Dahan, Lionel

    2014-01-01

    Protein synthesis is involved in the consolidation of short-term memory into long-term memory. Previous electrophysiological data concerning LTP in CA3 suggest that protein synthesis in that region might also be necessary for short-term memory. We tested this hypothesis by locally injecting the protein synthesis inhibitor anisomycin in hippocampal…

  3. When Music and Long-Term Memory Interact: Effects of Musical Expertise on Functional and Structural Plasticity in the Hippocampus: e13225

    National Research Council Canada - National Science Library

    Mathilde Groussard; Renaud La Joie; Géraldine Rauchs; Brigitte Landeau; Gaël Chételat; Fausto Viader; Béatrice Desgranges; Francis Eustache; Hervé Platel

    2010-01-01

    .... Surprisingly, no functional magnetic resonance imaging (fMRI) study has investigated the impact of musical training on brain function during long-term memory retrieval, a faculty particularly important in music...

  4. Structure-dependent effects of amyloid-β on long-term memory in Lymnaea stagnalis.

    Science.gov (United States)

    Ford, Lenzie; Crossley, Michael; Vadukul, Devkee M; Kemenes, György; Serpell, Louise C

    2017-05-01

    Amyloid-β (Aβ) peptides are implicated in the causation of memory loss, neuronal impairment, and neurodegeneration in Alzheimer's disease. Our recent work revealed that Aβ 1-42 and Aβ 25-35 inhibit long-term memory (LTM) recall in Lymnaea stagnalis (pond snail) in the absence of cell death. Here, we report the characterization of the active species prepared under different conditions, describe which Aβ species is present in brain tissue during the behavioral recall time point and relate the sequence and structure of the oligomeric species to the resulting neuronal properties and effect on LTM. Our results suggest that oligomers are the key toxic Aβ1-42 structures, which likely affect LTM through synaptic plasticity pathways, and that Aβ 1-42 and Aβ 25-35 cannot be used as interchangeable peptides. © 2017 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  5. Long-term memory for pavlovian fear conditioning requires dopamine in the nucleus accumbens and basolateral amygdala.

    Directory of Open Access Journals (Sweden)

    Jonathan P Fadok

    Full Text Available The neurotransmitter dopamine (DA is essential for learning in a pavlovian fear conditioning paradigm known as fear-potentiated startle (FPS. Mice lacking the ability to synthesize DA fail to learn the association between the conditioned stimulus and the fear-inducing footshock. Previously, we demonstrated that restoration of DA synthesis to neurons of the ventral tegmental area (VTA was sufficient to restore FPS. Here, we used a target-selective viral restoration approach to determine which mesocorticolimbic brain regions receiving DA signaling from the VTA require DA for FPS. We demonstrate that restoration of DA synthesis to both the basolateral amygdala (BLA and nucleus accumbens (NAc is required for long-term memory of FPS. These data provide crucial insight into the dopamine-dependent circuitry involved in the formation of fear-related memory.

  6. Long-term habituation (LTH in the crab Chasmagnathus: a model for behavioral and mechanistic studies of memory

    Directory of Open Access Journals (Sweden)

    H. Maldonado

    1997-07-01

    Full Text Available A decade of studies on long-term habituation (LTH in the crab Chasmagnathus is reviewed. Upon sudden presentation of a passing object overhead, the crab reacts with an escape response that habituates promptly and for at least five days. LTH proved to be an instance of associative memory and showed context, stimulus frequency and circadian phase specificity. A strong training protocol (STP (³15 trials, intertrial interval (ITI of 171 s invariably yielded LTH, while a weak training protocol (WTP (£10 trials, ITI = 171 s invariably failed. STP was used with a presumably amnestic agent and WTP with a presumably hypermnestic agent. Remarkably, systemic administration of low doses was effective, which is likely to be due to the lack of an endothelial blood-brain barrier. LTH was blocked by inhibitors of protein and RNA synthesis, enhanced by protein kinase A (PKA activators and reduced by PKA inhibitors, facilitated by angiotensin II and IV and disrupted by saralasin. The presence of angiotensins and related compounds in the crab brain was demonstrated. Diverse results suggest that LTH includes two components: an initial memory produced by spaced training and mainly expressed at an initial phase of testing, and a retraining memory produced by massed training and expressed at a later phase of testing (retraining. The initial memory would be associative, context specific and sensitive to cycloheximide, while the retraining memory would be nonassociative, context independent and insensitive to cycloheximide

  7. Retroactive interference of object-in-context long-term memory: role of dorsal hippocampus and medial prefrontal cortex.

    Science.gov (United States)

    Martínez, María Cecilia; Villar, María Eugenia; Ballarini, Fabricio; Viola, Haydée

    2014-12-01

    Retroactive interference (RI) is a type of amnesia in which a new learning experience can impair the expression of a previous one. It has been studied in several types of memories for over a century. Here, we aimed to study in the long-term memory (LTM) formation of an object-in-context task, defined as the recognition of a familiar object in a context different to that in which it was previously encountered. We trained rats with two sample trials, each taking place in a different context in association with different objects. Test sessions were performed 24 h later, to evaluate LTM for both object-context pairs using separate groups of trained rats. Furthermore, given the involvement of hippocampus (Hp) and medial prefrontal cortex (mPFC) in several recognition memories, we also analyzed the participation of these structures in the LTM formation of this task by the local infusion of muscimol. Our results show that object-in-context LTM formation is sensitive to RI by a different either familiar or novel object-context pair trial, experienced 1 h later. This interference occurs in a restricted temporal window and works on the LTM consolidation phase, leaving intact short-term memory expression. The second sample trial did not affect the object recognition part of the memory. Besides, muscimol treatment before the second sample trial blocks its object-in-context LTM and restores the first sample trial memory. We hypothesized that LTM-RI amnesia is probably caused by resources or cellular machinery competition in these brain regions when they are engaged in memory formation of the traces. In sum, when two different object-in-context memory traces are being processed, the second trace interferes with the consolidation of the first one requiring mPFC and CA1 dorsal Hp activation. © 2014 Wiley Periodicals, Inc.

  8. Differentially expressed genes linked to natural variation in long-term memory formation in Cotesia parasitic wasps

    Directory of Open Access Journals (Sweden)

    Joke J. F. A. Van Vugt

    2015-09-01

    Full Text Available Even though learning and memory are universal traits in the Animal Kingdom, closely related species reveal substantial variation in learning rate and memory dynamics. To determine the genetic background of this natural variation, we studied two congeneric parasitic wasp species, Cotesia glomerata and C. rubecula, which lay their eggs in caterpillars of the large and small cabbage white butterfly. A successful egg laying event serves as an unconditioned stimulus in a classical conditioning paradigm, where plant odors become associated to the encounter of a suitable host caterpillar. Depending on the host species, the number of conditioning trials and the parasitic wasp species, three different types of transcription-dependent long-term memory (LTM and one type of transcription-independent, anesthesia-resistant memory (ARM can be distinguished. To identify transcripts underlying these differences in memory formation, we isolated mRNA from parasitic wasp heads at three different time points between induction and consolidation of each of the four memory types, and for each sample three biological replicates, where after strand-specific paired-end 100 bp deep sequencing. Transcriptomes were assembled de novo and differential expression was determined for each memory type and time point after conditioning, compared to unconditioned wasps. Most differentially expressed (DE genes and antisense transcripts were only DE in one of the LTM types. Among the DE genes that were DE in two or more LTM types, were many protein kinases and phosphatases, small GTPases, receptors and ion channels. Some genes were DE in opposing directions between any of the LTM memory types and ARM, suggesting that ARM in Cotesia requires the transcription of genes inhibiting LTM or vice versa. We discuss our findings in the context of neuronal functioning, including RNA splicing and transport, epigenetic regulation, neurotransmitter/peptide synthesis and antisense transcription. In

  9. Social Isolation During Adolescence Strengthens Retention of Fear Memories and Facilitates Induction of Late-Phase Long-Term Potentiation.

    Science.gov (United States)

    Liu, Ji-Hong; You, Qiang-Long; Wei, Mei-Dan; Wang, Qian; Luo, Zheng-Yi; Lin, Song; Huang, Lang; Li, Shu-Ji; Li, Xiao-Wen; Gao, Tian-Ming

    2015-12-01

    Social isolation during the vulnerable period of adolescence produces emotional dysregulation that often manifests as abnormal behavior in adulthood. The enduring consequence of isolation might be caused by a weakened ability to forget unpleasant memories. However, it remains unclear whether isolation affects unpleasant memories. To address this, we used a model of associative learning to induce the fear memories and evaluated the influence of isolation mice during adolescence on the subsequent retention of fear memories and its underlying cellular mechanisms. Following adolescent social isolation, we found that mice decreased their social interaction time and had an increase in anxiety-related behavior. Interestingly, when we assessed memory retention, we found that isolated mice were unable to forget aversive memories when tested 4 weeks after the original event. Consistent with this, we observed that a single train of high-frequency stimulation (HFS) enabled a late-phase long-term potentiation (L-LTP) in the hippocampal CA1 region of isolated mice, whereas only an early-phase LTP was observed with the same stimulation in the control mice. Social isolation during adolescence also increased brain-derived neurotrophic factor (BDNF) expression in the hippocampus, and application of a tropomyosin-related kinase B (TrkB) receptor inhibitor ameliorated the facilitated L-LTP seen after isolation. Together, our results suggest that adolescent isolation may result in mental disorders during adulthood and that this may stem from an inability to forget the unpleasant memories via BDNF-mediated synaptic plasticity. These findings may give us a new strategy to prevent mental disorders caused by persistent unpleasant memories.

  10. Long-term effect of early-life stress from earthquake exposure on working memory in adulthood.

    Science.gov (United States)

    Li, Na; Wang, Yumei; Zhao, Xiaochuan; Gao, Yuanyuan; Song, Mei; Yu, Lulu; Wang, Lan; Li, Ning; Chen, Qianqian; Li, Yunpeng; Cai, Jiajia; Wang, Xueyi

    2015-01-01

    The present study aimed to investigate the long-term effect of 1976 Tangshan earthquake exposure in early life on performance of working memory in adulthood. A total of 907 study subjects born and raised in Tangshan were enrolled in this study. They were divided into three groups according to the dates of birth: infant exposure (3-12 months, n=274), prenatal exposure (n=269), and no exposure (born at least 1 year after the earthquake, n=364). The prenatal group was further divided into first, second, and third trimester subgroups based on the timing of exposure during pregnancy. Hopkins Verbal Learning Test-Revised and Brief Visuospatial Memory Test-Revised (BVMT-R) were used to measure the performance of working memory. Unconditional logistic regression analysis was used to analyze the influential factors for impaired working memory. The Hopkins Verbal Learning Test-Revised scores did not show significant difference across the three groups. Compared with no exposure group, the BVMT-R scores were slightly lower in the prenatal exposure group and markedly decreased in the infant exposure group. When the BVMT-R scores were analyzed in three subgroups, the results showed that the subjects whose mothers were exposed to earthquake in the second and third trimesters of pregnancy had significantly lower BVMT-R scores compared with those in the first trimester. Education level and early-life earthquake exposure were identified as independent risk factors for reduced performance of visuospatial memory indicated by lower BVMT-R scores. Infant exposure to earthquake-related stress impairs visuospatial memory in adulthood. Fetuses in the middle and late stages of development are more vulnerable to stress-induced damage that consequently results in impaired visuospatial memory. Education and early-life trauma can also influence the performance of working memory in adulthood.

  11. ADRA2B deletion variant influences time-dependent effects of pre-learning stress on long-term memory.

    Science.gov (United States)

    Zoladz, Phillip R; Dailey, Alison M; Nagle, Hannah E; Fiely, Miranda K; Mosley, Brianne E; Brown, Callie M; Duffy, Tessa J; Scharf, Amanda R; Earley, McKenna B; Rorabaugh, Boyd R

    2017-02-22

    Extensive work over the past few decades has shown that certain genetic variations interact with life events to confer increased susceptibility for the development of psychological disorders. The deletion variant of the ADRA2B gene, which has been associated with enhanced emotional memory and heightened amygdala responses to emotional stimuli, might confer increased susceptibility for the development of post-traumatic stress disorder (PTSD) or related phenotypes by increasing the likelihood of traumatic memory formation. Thus, we examined whether this genetic variant would predict stress effects on learning and memory in a non-clinical sample. Two hundred and thirty-five individuals were exposed to the socially evaluated cold pressor test or a control condition immediately or 30min prior to learning a list of words that varied in emotional valence and arousal level. Participants' memory for the words was tested immediately (recall) and 24h after learning (recall and recognition), and saliva samples were collected to genotype participants for the ADRA2B deletion variant. Results showed that stress administered immediately before learning selectively enhanced long-term recall in deletion carriers. Stress administered 30min before learning impaired recognition memory in male deletion carriers, while enhancing recognition memory in female deletion carriers. These findings provide additional evidence to support the idea that ADRA2B deletion variant carriers retain a sensitized stress response system, which results in amplified effects of stress on learning and memory. The accumulating evidence regarding this genetic variant implicates it as a susceptibility factor for traumatic memory formation and PTSD-related phenotypes.

  12. Food restriction increases long- term memory persistence in adult or aged mice

    OpenAIRE

    Talhati, Fernanda [UNIFESP; Patti, Camila de Lima [UNIFESP; Zanin, Karina Agustini [UNIFESP; Lopes-Silva, Leonardo Brito [UNIFESP; Ceccon, Liliane Minglini Barbosa [UNIFESP; Hollais, André Willian [UNIFESP; Bizerra, Carolina Souza [UNIFESP; Santos, Renan [UNIFESP; Tufik, Sergio; Frussa-Filho, Roberto

    2014-01-01

    Food restriction (FR) seems to be the unique experimental manipulation that leads to a remarkable increase in lifespan in rodents. Evidences have suggested that FR can enhance memory in distinct animal models mainly during aging. However, only few studies systemically evaluated the effects FR on memory formation in both adult (3-month-old) and aged (18-24-month-old) mice. Thus, the aim of the present study was to investigate the effects of acute (12 h) or repeated (12 h/day for 2 days) FR pro...

  13. On the scaling ranges of detrended fluctuation analysis for long-term memory correlated short series of data

    Science.gov (United States)

    Grech, Dariusz; Mazur, Zygmunt

    2013-05-01

    We examine the scaling regime for the detrended fluctuation analysis (DFA)-the most popular method used to detect the presence of long-term memory in data and the fractal structure of time series. First, the scaling range for DFA is studied for uncorrelated data as a function of time series length L and the correlation coefficient of the linear regression R2 at various confidence levels. Next, a similar analysis for artificial short series of data with long-term memory is performed. In both cases the scaling range λ is found to change linearly-both with L and R2. We show how this dependence can be generalized to a simple unified model describing the relation λ=λ(L,R2,H) where H (1/2≤H≤1) stands for the Hurst exponent of the long range autocorrelated signal. Our findings should be useful in all applications of DFA technique, particularly for instantaneous (local) DFA where a huge number of short time series has to be analyzed at the same time, without possibility of checking the scaling range in each of them separately.

  14. Short- and long-term effects of cannabinoids on the extinction of contextual fear memory in rats.

    Science.gov (United States)

    Pamplona, Fabrício A; Bitencourt, Rafael M; Takahashi, Reinaldo N

    2008-07-01

    Facilitation of memory extinction by manipulation of the endocannabinoid (eCB) system has been recently studied in several paradigms. Our previous results pointed to facilitation of contextual fear memory extinction by a low dose of a cannabinoid agonist, with a suggestion of short-term effects. The aim of the present study was to further investigate the effects of cannabinoid drugs in the short- and long-term extinction of conditioned fear using an extended extinction protocol. Male Wistar rats were placed in a conditioning chamber and after 3min received a footshock (1.5mA, 1s). On the next day, they received i.p. drug treatment (WIN55212-2 0.25mg/kg, AM404 10mg/kg, SR141716A 1mg/kg) and were re-exposed to the conditioning chamber for 30min (extinction training). No-Extinction groups received the same drug treatment, but were exposed for 3min to the conditioning chamber. A drug-free test of contextual memory (3min) was performed 7 days later. The cannabinoid agonist WI55212-2 and the inhibitor of eCB metabolism/uptake AM404 facilitated short-term extinction. In addition, long-term effects induced by treatments with WIN55212 and AM404 were completely divergent to those of SR141716A treatment. The present results confirm and extend previous findings showing that the eCB system modulates short-term fear memory extinction with long-lasting consequences.

  15. CREB binding protein is required for both short-term and long-term memory formation

    NARCIS (Netherlands)

    Chen, G.; Zou, X.; Watanabe, H.; Deursen, J.M.A. van; Shen, J.

    2010-01-01

    CREB binding protein (CBP) is a transcriptional coactivator with histone acetyltransferase activity. Our prior study suggested that CBP might be a key target of presenilins in the regulation of memory formation and neuronal survival. To elucidate the role of CBP in the adult brain, we generated cond

  16. Long-term heavy ketamine use is associated with spatial memory impairment and altered hippocampal activation

    NARCIS (Netherlands)

    Morgan, C.J.A.; Dodds, C.M.; Furby, H.; Pepper, F.; Johnson, F.; Freeman, T.P.; Hughes, E.; Doeller, C.F.; King, J.; Howes, O.; Stone, J.M.

    2014-01-01

    Ketamine, a non-competitive N-methyl-d-aspartate receptor antagonist, is rising in popularity as a drug of abuse. Preliminary evidence suggests that chronic, heavy ketamine use may have profound effects on spatial memory but the mechanism of these deficits is as yet unclear. This study aimed to

  17. Reconsolidation of a Context Long-Term Memory in the Terrestrial Snail Requires Protein Synthesis

    Science.gov (United States)

    Gainutdinova, Tatiana H.; Tagirova, Rosa R.; Ismailova, Asja I.; Muranova, Lyudmila N.; Samarova, Elena I.; Gainutdinov, Khalil L.; Balaban, Pavel M.

    2005-01-01

    We investigated the influence of the protein synthesis blocker anisomycin on contextual memory in the terrestrial snail "Helix." Prior to the training session, the behavioral responses in two contexts were similar. Two days after a session of electric shocks (5 d) in one context only, the context conditioning was observed as the significant…

  18. ROLE OF NEUROTRANSMITTERS AND PROTEIN SYNTHESIS IN SHORT- AND LONG-TERM MEMORY

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, E.L.; Rosenzweig, M.R.; Flood, J.F.

    1978-10-01

    Anisomycin is an effective inhibitor of cerebral protein synthesis in mice and is also an effective amnestic agent for both passive and active behavioral tasks. From use of anisomycin in combination with a variety of stimulant and depressant drugs, we conclude that the level of arousal following acquisition plays an important role in determining the duration and the rate of the biosynthetic phase of memory formation. While we have interpreted the experiments with anisomycin as evidence for an essential role of protein in memory storage, others have suggested that side effects of inhibitors of protein synthesis on catecholamine metabolism are the main cause of amnesia. Several experiments were therefore done to compare the effects of anisemycin and catecholamine inhibitors on memory. We conclude that anisomycin's principal amnestic mechanism does not involve inhibition of the catecholamine system. The results strengthen our conclusion that protein synthesis is an essential component for longterm memory trace formation. Also, it is suggested that proteins synthesized in the neuronal cell body are used, in conjunction with other molecules, to produce permanent and semi-permanent anatomical changes.

  19. CREB binding protein is required for both short-term and long-term memory formation

    NARCIS (Netherlands)

    Chen, G.; Zou, X.; Watanabe, H.; Deursen, J.M.A. van; Shen, J.

    2010-01-01

    CREB binding protein (CBP) is a transcriptional coactivator with histone acetyltransferase activity. Our prior study suggested that CBP might be a key target of presenilins in the regulation of memory formation and neuronal survival. To elucidate the role of CBP in the adult brain, we generated

  20. A Long-Term Memory Competitive Process Model of a Common Procedural Error

    Science.gov (United States)

    2013-08-01

    A novel computational cognitive model explains human procedural error in terms of declarative memory processes. This is an early version of a process ... model intended to predict and explain multiple classes of procedural error a priori. We begin with postcompletion error (PCE) a type of systematic