WorldWideScience

Sample records for oleifera bioactive compounds

  1. Moringa oleifera: bioactive compounds and nutritional potential

    National Research Council Canada - National Science Library

    Ferreira, Paulo Michel Pinheiro; Farias, Davi Felipe; Oliveira, José Tadeu de Abreu; Carvalho, Ana de Fátima Urano

    2008-01-01

    This work aims to review the nutritional properties of the Moringa oleifera tree, emphasizing its main constituents and nutritional applications for humans and animals. Moringa oleifera (Moringaceae...

  2. In vitro wound healing potential and identification of bioactive compounds from Moringa oleifera Lam.

    Science.gov (United States)

    Muhammad, Abubakar Amali; Pauzi, Nur Aimi Syarina; Arulselvan, Palanisamy; Abas, Faridah; Fakurazi, Sharida

    2013-01-01

    Moringa oleifera Lam. (M. oleifera) from the monogeneric family Moringaceae is found in tropical and subtropical countries. The present study was aimed at exploring the in vitro wound healing potential of M. oleifera and identification of active compounds that may be responsible for its wound healing action. The study included cell viability, proliferation, and wound scratch test assays. Different solvent crude extracts were screened, and the most active crude extract was further subjected to differential bioguided fractionation. Fractions were also screened and most active aqueous fraction was finally obtained for further investigation. HPLC and LC-MS/MS analysis were used for identification and confirmation of bioactive compounds. The results of our study demonstrated that aqueous fraction of M. oleifera significantly enhanced proliferation and viability as well as migration of human dermal fibroblast (HDF) cells compared to the untreated control and other fractions. The HPLC and LC-MS/MS studies revealed kaempferol and quercetin compounds in the crude methanolic extract and a major bioactive compound Vicenin-2 was identified in the bioactive aqueous fraction which was confirmed with standard Vicenin-2 using HPLC and UV spectroscopic methods. These findings suggest that bioactive fraction of M. oleifera containing Vicenin-2 compound may enhance faster wound healing in vitro.

  3. In Vitro Wound Healing Potential and Identification of Bioactive Compounds from Moringa oleifera Lam

    Directory of Open Access Journals (Sweden)

    Abubakar Amali Muhammad

    2013-01-01

    Full Text Available Moringa oleifera Lam. (M. oleifera from the monogeneric family Moringaceae is found in tropical and subtropical countries. The present study was aimed at exploring the in vitro wound healing potential of M. oleifera and identification of active compounds that may be responsible for its wound healing action. The study included cell viability, proliferation, and wound scratch test assays. Different solvent crude extracts were screened, and the most active crude extract was further subjected to differential bioguided fractionation. Fractions were also screened and most active aqueous fraction was finally obtained for further investigation. HPLC and LC-MS/MS analysis were used for identification and confirmation of bioactive compounds. The results of our study demonstrated that aqueous fraction of M. oleifera significantly enhanced proliferation and viability as well as migration of human dermal fibroblast (HDF cells compared to the untreated control and other fractions. The HPLC and LC-MS/MS studies revealed kaempferol and quercetin compounds in the crude methanolic extract and a major bioactive compound Vicenin-2 was identified in the bioactive aqueous fraction which was confirmed with standard Vicenin-2 using HPLC and UV spectroscopic methods. These findings suggest that bioactive fraction of M. oleifera containing Vicenin-2 compound may enhance faster wound healing in vitro.

  4. Moringa oleifera: bioactive compounds and nutritional potential Moringa oleifera: compostos bioativos e potencialidade nutricional

    Directory of Open Access Journals (Sweden)

    Paulo Michel Pinheiro Ferreira

    2008-08-01

    Full Text Available This work aims to review the nutritional properties of the Moringa oleifera tree, emphasizing its main constituents and nutritional applications for humans and animals. Moringa oleifera (Moringaceae is a cosmopolitan tree that grows in many tropical countries showing uncountable folk uses due to its various nutritional and pharmacological applications. The young leaves, flowers and pods are common vegetables in the Asian diet. All parts of this plant are renewable sources of tocopherols (γ and α, phenolic compounds, β-carotene, vitamin C and total proteins, including the essential sulfur amino acids, methionine and cysteine. The seed protein and fat contents are higher than those reported for important grain legumes and soybean varieties, respectively. Unsaturated fatty acids, especially oleic acid, carbohydrates and minerals are present in the seed in reasonable amounts. In general, there are low concentrations of antinutritional factors in the plant, although the seeds possess glucosinolates (65.5µmol/g dry matter, phytates (41g/kg and hemagglutination activity while the leaves have appreciable amounts of saponins (80g/kg, besides low quantity of phytates (21g/kg and tannins (12g/kg. Taking into consideration the excellent nutritional properties, the low toxicity of the seeds and the excellent ability of the plant to adapt to poor soils and dry climates, Moringa oleifera can be an alternative to some leguminous seeds as a source of high-quality protein, oil and antioxidant compounds and a way to treat water in rural areas where appropriate water resources are not available.O objetivo deste trabalho é fazer uma revisão sobre as propriedades nutricionais da planta Moringa oleifera, enfatizando seus principais constituintes e suas aplicações nutricionais para o homem e os animais. Moringa oleifera é uma planta que cresce em muitos países tropicais, possuindo inúmeros usos populares devido às suas aplicações nutricionais e farmacol

  5. Identification of bioactive candidate compounds responsible for oxidative challenge from hydro-ethanolic extract of Moringa oleifera leaves.

    Science.gov (United States)

    Karthivashan, Govindarajan; Tangestani Fard, Masoumeh; Arulselvan, Palanisamy; Abas, Faridah; Fakurazi, Sharida

    2013-09-01

    Free radicals trigger chain reaction and inflict damage to the cells and its components, which in turn ultimately interrupts their biological activities. To prevent free radical damage, together with an endogenous antioxidant system, an exogenous supply of antioxidant components to the body in the form of functional food or nutritional diet helps undeniably. Research conducted by the Natl. Inst. of Health claimed that Moringa oleifera Lam possess the highest antioxidant content among various natural food sources based on an oxygen radical absorbent capacity assay. In this study, a 90% (ethanol:distilled water--90:10) gradient solvent was identified as one of the best gradient solvents for the effectual extraction of bioactive components from M. oleifera leaves. This finding was confirmed by various antioxidant assays, including radical scavenging activity (that is, 1, 1-diphenyl-2-picrylhydrazyl, H(2)O(2), and NO radical scavenging assay) and total antioxidant capacity (that is, ferric reducing antioxidant power and molybdenum assay). High-performance liquid chromatography (HPLC) fingerprints of the 90% gradient extract visually showed few specific peaks, which on further analysis, using HPLC-DAD-ESI-MS, were identified as flavonoids and their derivatives. Despite commonly reported flavonoids, that is, kaempferol and quercetin, we report here for the 1st time the presence of multiflorin-B and apigenin in M. oleifera leaves. These findings might help researchers to further scrutinize this high activity exhibiting gradient extract and its bio-active candidates for fruitful clinical/translational investigations.

  6. Antileishmanial compounds from Moringa oleifera Lam.

    Science.gov (United States)

    Kaur, Amandeep; Kaur, Preet Kamal; Singh, Sushma; Singh, Inder Pal

    2014-01-01

    The antileishmanial activity of extracts and phytoconstituents of Moringa oleifera Lam. was investigated in vitro against promastigotes of Leishmania donavani. The 70% ethanolic extract of roots and the methanolic extract of leaves showed moderate inhibitory activity with IC50 values of 83.0 microg/ml and 47.5 microg/ml, respectively. Antileishmanial activity of the methanolic extract of leaves increased upon fractionation, as its ethyl acetate fraction was found to be more active with an IC50 value of 27.5 microg/ml. The most active antileishmanial compound niazinin, a thiocarbamate glycoside isolated from this fraction, showed an IC50 value of 5.25 microM. Results presented in this study indicate that extracts from M. oleifera may be developed as an adjuvant therapy for the treatment of leishmaniasis.

  7. Thiocarbamates from Moringa oleifera Seeds Bioactive against Virulent and Multidrug-Resistant Vibrio Species

    Science.gov (United States)

    de Sousa, Oscarina Viana; Hofer, Ernesto; Mafezoli, Jair; Barbosa, Francisco Geraldo

    2017-01-01

    Prospect of antibacterial agents may provide an alternative therapy for diseases caused by multidrug-resistant bacteria. This study aimed to evaluate the in vitro bioactivity of Moringa oleifera seed extracts against 100 vibrios isolated from the marine shrimp Litopenaeus vannamei. Ethanol extracts at low (MOS-E) and hot (MOS-ES) temperature are shown to be bioactive against 92% and 90% of the strains, respectively. The most efficient Minimum Inhibitory Concentration (MIC) levels of MOS-E and MOS-ES against a high percentage of strains were 32 µg mL−1. Bioguided screening of bioactive compounds showed that the ethyl acetate fraction from both extracts was the only one that showed antibacterial activity. Vibriocidal substances, niazirine and niazimicine, were isolated from the aforementioned fraction through chromatographic fractionation. PMID:28770224

  8. Bioactive Extract from Moringa oleifera Inhibits the Pro-inflammatory Mediators in Lipopolysaccharide Stimulated Macrophages

    Science.gov (United States)

    Fard, Masoumeh Tangestani; Arulselvan, Palanisamy; Karthivashan, Govindarajan; Adam, Siti Khadijah; Fakurazi, Sharida

    2015-01-01

    Introduction: Inflammation is a well-known physiological response to protect the body against infection and restore tissue injury. Nevertheless, the chronic inflammation can trigger various inflammatory associated diseases/disorder. Moringa oleifera is a widely grown plant in most tropical countries and it has been recognized traditionally for several medicinal benefits. Objectives: The objective of this study was to investigate the anti-inflammatory properties of M. oleifera extract on lipopolysaccharide (LPS) - stimulated macrophages. Materials and Methods: The anti-inflammatory effect of M. oleifera hydroethanolic bioactive leaves extracts was evaluated by assessing the inhibition of nitric oxide (NO) production during Griess reaction and the expression of pro-inflammatory mediators in macrophages. Results: Interestingly, we found that M. oleifera hydroethanolic bioactive leaves extract significantly inhibited the secretion of NO production and other inflammatory markers such as prostaglandin E2, tumor necrosis factor alpha, interleukin (IL)-6, and IL-1β. Meanwhile, the bioactive extract has induced the production of IL-10 in a dose-dependent manner. In addition, M. oleifera hydroethanolic bioactive leaves extract effectively suppressed the protein expression of inflammatory markers inducible NO synthase, cyclooxygenase-2, and nuclear factor kappa-light-chain-enhancer of activated B-cells p65 in LPS-induced RAW264.7 macrophages in a dose-dependent manner. Conclusion: These findings support the traditional use of M. oleifera plant as an effective treatment for inflammation associated diseases/disorders. SUMMARY Hydroethanolic extracts of Moringa oleifera effectively inhibit the NO production in LPS induced inflammatory model.M. oleifera crude extracts successfully modulate the production of pro-inflammatory mediators in LPS stimulated macrophages.M. oleifera extracts suppressed the expression of inflammatory mediators in LPS stimulated macrophages. PMID:27013794

  9. Bioactive Extract from Moringa oleifera Inhibits the Pro-inflammatory Mediators in Lipopolysaccharide Stimulated Macrophages.

    Science.gov (United States)

    Fard, Masoumeh Tangestani; Arulselvan, Palanisamy; Karthivashan, Govindarajan; Adam, Siti Khadijah; Fakurazi, Sharida

    2015-10-01

    Inflammation is a well-known physiological response to protect the body against infection and restore tissue injury. Nevertheless, the chronic inflammation can trigger various inflammatory associated diseases/disorder. Moringa oleifera is a widely grown plant in most tropical countries and it has been recognized traditionally for several medicinal benefits. The objective of this study was to investigate the anti-inflammatory properties of M. oleifera extract on lipopolysaccharide (LPS) - stimulated macrophages. The anti-inflammatory effect of M. oleifera hydroethanolic bioactive leaves extracts was evaluated by assessing the inhibition of nitric oxide (NO) production during Griess reaction and the expression of pro-inflammatory mediators in macrophages. Interestingly, we found that M. oleifera hydroethanolic bioactive leaves extract significantly inhibited the secretion of NO production and other inflammatory markers such as prostaglandin E2, tumor necrosis factor alpha, interleukin (IL)-6, and IL-1β. Meanwhile, the bioactive extract has induced the production of IL-10 in a dose-dependent manner. In addition, M. oleifera hydroethanolic bioactive leaves extract effectively suppressed the protein expression of inflammatory markers inducible NO synthase, cyclooxygenase-2, and nuclear factor kappa-light-chain-enhancer of activated B-cells p65 in LPS-induced RAW264.7 macrophages in a dose-dependent manner. These findings support the traditional use of M. oleifera plant as an effective treatment for inflammation associated diseases/disorders. Hydroethanolic extracts of Moringa oleifera effectively inhibit the NO production in LPS induced inflammatory model.M. oleifera crude extracts successfully modulate the production of pro-inflammatory mediators in LPS stimulated macrophages.M. oleifera extracts suppressed the expression of inflammatory mediators in LPS stimulated macrophages.

  10. Bioactive extract from moringa oleifera inhibits the pro-inflammatory mediators in lipopolysaccharide stimulated macrophages

    Directory of Open Access Journals (Sweden)

    Masoumeh Tangestani Fard

    2015-01-01

    Full Text Available Introduction: Inflammation is a well-known physiological response to protect the body against infection and restore tissue injury. Nevertheless, the chronic inflammation can trigger various inflammatory associated diseases/disorder. Moringa oleifera is a widely grown plant in most tropical countries and it has been recognized traditionally for several medicinal benefits. Objectives: The objective of this study was to investigate the anti-inflammatory properties of M. oleifera extract on lipopolysaccharide (LPS - stimulated macrophages. Materials and Methods: The anti-inflammatory effect of M. oleifera hydroethanolic bioactive leaves extracts was evaluated by assessing the inhibition of nitric oxide (NO production during Griess reaction and the expression of pro-inflammatory mediators in macrophages. Results: Interestingly, we found that M. oleifera hydroethanolic bioactive leaves extract significantly inhibited the secretion of NO production and other inflammatory markers such as prostaglandin E 2 , tumor necrosis factor alpha, interleukin (IL-6, and IL-1b. Meanwhile, the bioactive extract has induced the production of IL-10 in a dose-dependent manner. In addition, M. oleifera hydroethanolic bioactive leaves extract effectively suppressed the protein expression of inflammatory markers inducible NO synthase, cyclooxygenase-2, and nuclear factor kappa-light-chain-enhancer of activated B-cells p65 in LPS-induced RAW264.7 macrophages in a dose-dependent manner. Conclusion: These findings support the traditional use of M. oleifera plant as an effective treatment for inflammation associated diseases/disorders.

  11. Anion Gap Toxicity in Alloxan Induced Type 2 Diabetic Rats Treated with Antidiabetic Noncytotoxic Bioactive Compounds of Ethanolic Extract of Moringa oleifera

    Directory of Open Access Journals (Sweden)

    Maxwell Omabe

    2014-01-01

    Full Text Available Moringa oleifera (MO is used for a number of therapeutic purposes. This raises the question of safety and possible toxicity. The objective of the study was to ascertain the safety and possible metabolic toxicity in comparison with metformin, a known drug associated with acidosis. Animals confirmed with diabetes were grouped into 2 groups. The control group only received oral dose of PBS while the test group was treated with ethanolic extract of MO orally twice daily for 5-6 days. Data showed that the extract significantly lowered glucose level to normal values and did not cause any significant cytotoxicity compared to the control group (P=0.0698; there was no gain in weight between the MO treated and the control groups (P>0.8115. However, data showed that treatment with an ethanolic extract of MO caused a decrease in bicarbonate (P<0.0001, and more than twofold increase in anion gap (P<0.0001; metformin treatment also decreased bicarbonate (P<0.0001 and resulted in a threefold increase in anion gap (P<0.0001. Conclusively, these data show that while MO appears to have antidiabetic and noncytotoxic properties, it is associated with statistically significant anion gap acidosis in alloxan induced type 2 diabetic rats.

  12. Optimization of process conditions for removal of cadmium using bioactive constituents of Moringa oleifera seeds.

    Science.gov (United States)

    Jamal, P; Muyibi, S A; Syarif, W M

    2008-07-01

    Pollutants, especially heavy metals like cadmium, Chromium, lead and mercury, play a significant role in causing various water-borne diseases to humans. This study evaluates the sorption properties of bioactive constituents of Moringa oleifera seeds for decontamination of cadmium at laboratory scale. The performance of the bioactive constituent extracted by salt extraction method was enhanced by process optimization with various concentration of bioactive dosages, agitation speed, contact time, pH and heavy metal concentrations. Statistical optimization was carried out for evaluating the polynomial regression model through effect of linear, quadratic and interaction of the factors. The maximum removal of cadmium was 72% by using 0.2 g/l of bioactive dosage.

  13. Simultaneous HPLC quantitative analysis of active compounds in leaves of Moringa oleifera Lam.

    Science.gov (United States)

    Vongsak, Boonyadist; Sithisarn, Pongtip; Gritsanapan, Wandee

    2014-08-01

    Moringa oleifera Lam. has been used as a traditional medicine for the treatment of numerous diseases. A simultaneous high-performance liquid chromatography (HPLC) analysis was developed and validated for the determination of the contents of crypto-chlorogenic acid, isoquercetin and astragalin, the primary antioxidative compounds, in M. oleifera leaves. HPLC analysis was successfully conducted by using a Hypersil BDS C18 column, eluted with a gradient of methanol-1% acetic acid with a flow rate of 1 mL/min, and detected at 334 nm. Parameters for the validation included linearity, precision, accuracy and limits of detection and quantitation. The developed HPLC method was precise, with relative standard deviation oleifera leaf extracts were 98.50, 98.47 and 98.59%, respectively. The average contents of these compounds in the dried ethanolic extracts of the leaves of M. oleifera collected from different regions of Thailand were 0.081, 0.120 and 0.153% (w/w), respectively. The developed HPLC method was appropriate and practical for the simultaneous analysis of crypto-chlorogenic acid, isoquercetin and astragalin in the leaf extract of M. oleifera. This work is valuable as guidance for the standardization of the leaf extracts and pharmaceutical products of M. oleifera. © The Author [2013]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Five new bioactive compounds from Chenopodium ambrosioides.

    Science.gov (United States)

    Song, Kun; Zhang, Jian; Zhang, Peng; Wang, Hong-Qing; Liu, Chao; Li, Bao-Ming; Kang, Jie; Chen, Ruo-Yun

    2015-05-01

    Five new bioactive compounds, chenopodiumamines A-D (1-4) and chenopodiumoside A (5), were isolated from the ethanol extract of Chenopodium ambrosioides. The structures of these compounds were elucidated by various spectroscopic means (UV, IR, HR-ESI-MS, 1D and 2D NMR). Compounds 1-3 had moderate antioxidant and anti-inflammatory activities.

  15. GC/GCMS analysis of the petroleum ether and dichloromethane extracts of M oringa oleifera roots

    Directory of Open Access Journals (Sweden)

    Shaheen Faizi

    2014-08-01

    Conclusions: This study helps to predict the formula and structure of active molecules which can be used as drugs. This result also enhances the traditional usage of M. oleifera which possesses a number of bioactive compounds.

  16. Bioactivity guided fractionation of Moringa oleifera Lam. flower targeting Leishmania donovani.

    Science.gov (United States)

    Singh, Manoj Kumar; Paul, Joydeep; De, Tripti; Chakraborti, Tapati

    2015-11-01

    Leishmaniases is a group of diseases caused by the protozoan parasite belonging to the genus Leishmania. At least 20 species of Leishmania are known to infect humans transmitted by female sandflies, Phlebotomus spp. Leishmania donovani causes visceral leishmaniasis, considered most lethal among the common three forms of leishmaniasis. Lack of appropriate vaccines, emergence of drug resistance and side effects of currently used drugs stress the need for better alternative drugs, particularly from natural sources. Here, we conducted in vitro and in vivo experiments to study the efficacy of different parts of Moringa oleifera Lam. against Leishmania donovani promastigotes. The flower extract of M. oliefera (MoF) was found to be the most potent antileishmanial agent when compared to other parts of the plant like leaf, root, bark and stem. It imparted significant reduction in parasite number in infected macrophages. The bioactivity guided fractionation of MoF showed ethyl acetate fraction (MoE) as the most active and gave significant parasite reduction in the infected macrophages. Further, growth kinetics studies revealed loss of L. donovani promastigotes viability in the presence of MoE in both time and dose dependent manner. In vivo experiment in Balb/c mouse model of leishmaniasis supported the in vitro findings with a remarkable reduction of the parasite burden in both liver and spleen.

  17. Bioactive compounds in whole grain wheat

    NARCIS (Netherlands)

    Mateo Anson, N.

    2010-01-01

    Bread can be healthier! Consuming whole-grain foods can prevent cardiovascular diseases, type-2 diabetes and metabolic syndrome. This is due to bioactive compounds in whole grain, such as antioxidants and anti-inflammatory compounds. We found that the different fractions of a wheat grain vary much

  18. Bioactive compounds in whole grain wheat

    NARCIS (Netherlands)

    Mateo Anson, N.

    2010-01-01

    Bread can be healthier! Consuming whole-grain foods can prevent cardiovascular diseases, type-2 diabetes and metabolic syndrome. This is due to bioactive compounds in whole grain, such as antioxidants and anti-inflammatory compounds. We found that the different fractions of a wheat grain vary much i

  19. Bioactive compounds in whole grain wheat

    NARCIS (Netherlands)

    Mateo Anson, N.

    2010-01-01

    Bread can be healthier! Consuming whole-grain foods can prevent cardiovascular diseases, type-2 diabetes and metabolic syndrome. This is due to bioactive compounds in whole grain, such as antioxidants and anti-inflammatory compounds. We found that the different fractions of a wheat grain vary much i

  20. Promiscuity progression of bioactive compounds over time.

    Science.gov (United States)

    Hu, Ye; Jasial, Swarit; Bajorath, Jürgen

    2015-01-01

    In the context of polypharmacology, compound promiscuity is rationalized as the ability of small molecules to specifically interact with multiple targets. To study promiscuity progression of bioactive compounds in detail, nearly 1 million compounds and more than 5.2 million activity records were analyzed. Compound sets were assembled by applying different data confidence criteria and selecting compounds with activity histories over many years. On the basis of release dates, compounds and activity records were organized on a time course, which ultimately enabled monitoring data growth and promiscuity progression over nearly 40 years, beginning in 1976. Surprisingly low degrees of promiscuity were consistently detected for all compound sets and there were only small increases in promiscuity over time. In fact, most compounds had a constant degree of promiscuity, including compounds with an activity history of 10 or 20 years. Moreover, during periods of massive data growth, beginning in 2007, promiscuity degrees also remained constant or displayed only minor increases, depending on the activity data confidence levels. Considering high-confidence data, bioactive compounds currently interact with 1.5 targets on average, regardless of their origins, and display essentially constant degrees of promiscuity over time. Taken together, our findings provide expectation values for promiscuity progression and magnitudes among bioactive compounds as activity data further grow.

  1. Perturbation of pharmacologically relevant polyphenolic compounds in Moringa oleifera against photo-oxidative damages imposed by gamma radiation

    CSIR Research Space (South Africa)

    Ramabulana, T

    2016-03-01

    Full Text Available compounds as a first line of constitutive/preformed protection against oxidative stress. Furthermore, the obtained data supports M. oleifera as a source of versatile and pharmacologically relevant metabolites that may be exploited for ameliorating...

  2. Bioactive compounds in whole grain wheat

    OpenAIRE

    Mateo Anson, N.

    2010-01-01

    Bread can be healthier! Consuming whole-grain foods can prevent cardiovascular diseases, type-2 diabetes and metabolic syndrome. This is due to bioactive compounds in whole grain, such as antioxidants and anti-inflammatory compounds. We found that the different fractions of a wheat grain vary much in their content. The external fractions of the grain, the bran and specially the aleurone, are the richest. We observed that processing the bran in whole-grain breads increased three times the leve...

  3. Bioactive secondary metabolites from Nigrospora sp. LLGLM003, an endophytic fungus of the medicinal plant Moringa oleifera Lam.

    Science.gov (United States)

    Zhao, J H; Zhang, Y L; Wang, L W; Wang, J Y; Zhang, C L

    2012-05-01

    An endophytic fungus was isolated from the root of the medicinal plant Moringa oleifera Lam. Based on analyzing the rDNA sequence, the fungus was identified as Nigrospora sp. This is the first report of the isolation of endophytic Nigrospora from M. oleifera. By bioassay-guided fractionation, four antifungal secondary metabolites were isolated from liquid cultures of the fungus Nigrospora sp. LLGLM003, and their chemical structures were determined to be griseofulvin (1), dechlorogriseofulvin (2), 8-dihydroramulosin (3) and mellein (4) on the basis of spectroscopic analyses. Compound 2, 3 and 4 were isolated from Nigrospora sp. for the first time. In vitro antifungal assay showed that griseofulvin displayed clear inhibition of the growth of 8 plant pathogenic fungi. Dechlorogriseofulvin and mellein exhibited only weak antifungal activities, whereas 8-dihydroramulosin displayed no antifungal activities.

  4. Exploring marine resources for bioactive compounds.

    Science.gov (United States)

    Kiuru, Paula; DʼAuria, M Valeria; Muller, Christian D; Tammela, Päivi; Vuorela, Heikki; Yli-Kauhaluoma, Jari

    2014-09-01

    Biodiversity in the seas is only partly explored, although marine organisms are excellent sources for many industrial products. Through close co-operation between industrial and academic partners, it is possible to successfully collect, isolate and classify marine organisms, such as bacteria, fungi, micro- and macroalgae, cyanobacteria, and marine invertebrates from the oceans and seas globally. Extracts and purified compounds of these organisms can be studied for several therapeutically and industrially significant biological activities, including anticancer, anti-inflammatory, antiviral, antibacterial, and anticoagulant activities by applying a wide variety of screening tools, as well as for ion channel/receptor modulation and plant growth regulation. Chromatographic isolation of bioactive compounds will be followed by structural determination. Sustainable cultivation methods for promising organisms and biotechnological processes for selected compounds can be developed, as well as biosensors for monitoring the target compounds. The (semi)synthetic modification of marine-based bioactive compounds produces their new derivatives, structural analogs and mimetics that could serve as hit or lead compounds and be used to expand compound libraries based on marine natural products. The research innovations can be targeted for industrial product development in order to improve the growth and productivity of marine biotechnology. Marine research aims at a better understanding of environmentally conscious sourcing of marine biotechnology products and increased public awareness of marine biodiversity. Marine research is expected to offer novel marine-based lead compounds for industries and strengthen their product portfolios related to pharmaceutical, nutraceutical, cosmetic, agrochemical, food processing, material and biosensor applications.

  5. Bioactive Compounds Found in Brazilian Cerrado Fruits

    Directory of Open Access Journals (Sweden)

    Elisa Flávia Luiz Cardoso Bailão

    2015-10-01

    Full Text Available Functional foods include any natural product that presents health-promoting effects, thereby reducing the risk of chronic diseases. Cerrado fruits are considered a source of bioactive substances, mainly phenolic compounds, making them important functional foods. Despite this, the losses of natural vegetation in the Cerrado are progressive. Hence, the knowledge propagation about the importance of the species found in Cerrado could contribute to the preservation of this biome. This review provides information about Cerrado fruits and highlights the structures and pharmacologic potential of functional compounds found in these fruits. Compounds detected in Caryocar brasiliense Camb. (pequi, Dipteryx alata Vog. (baru, Eugenia dysenterica DC. (cagaita, Eugenia uniflora L. (pitanga, Genipa americana L. (jenipapo, Hancornia speciosa Gomes (mangaba, Mauritia flexuosa L.f. (buriti, Myrciaria cauliflora (DC Berg (jabuticaba, Psidium guajava L. (goiaba, Psidium spp. (araçá, Solanum lycocarpum St. Hill (lobeira, Spondias mombin L. (cajá, Annona crassiflora Mart. (araticum, among others are reported here.

  6. Bioactive Compounds Found in Brazilian Cerrado Fruits.

    Science.gov (United States)

    Bailão, Elisa Flávia Luiz Cardoso; Devilla, Ivano Alessandro; da Conceição, Edemilson Cardoso; Borges, Leonardo Luiz

    2015-10-09

    Functional foods include any natural product that presents health-promoting effects, thereby reducing the risk of chronic diseases. Cerrado fruits are considered a source of bioactive substances, mainly phenolic compounds, making them important functional foods. Despite this, the losses of natural vegetation in the Cerrado are progressive. Hence, the knowledge propagation about the importance of the species found in Cerrado could contribute to the preservation of this biome. This review provides information about Cerrado fruits and highlights the structures and pharmacologic potential of functional compounds found in these fruits. Compounds detected in Caryocar brasiliense Camb. (pequi), Dipteryx alata Vog. (baru), Eugenia dysenterica DC. (cagaita), Eugenia uniflora L. (pitanga), Genipa americana L. (jenipapo), Hancornia speciosa Gomes (mangaba), Mauritia flexuosa L.f. (buriti), Myrciaria cauliflora (DC) Berg (jabuticaba), Psidium guajava L. (goiaba), Psidium spp. (araçá), Solanum lycocarpum St. Hill (lobeira), Spondias mombin L. (cajá), Annona crassiflora Mart. (araticum), among others are reported here.

  7. Evaluation of wound healing properties of bioactive aqueous fraction from Moringa oleifera Lam on experimentally induced diabetic animal model.

    Science.gov (United States)

    Muhammad, Abubakar Amali; Arulselvan, Palanisamy; Cheah, Pike See; Abas, Farida; Fakurazi, Sharida

    2016-01-01

    Diabetic foot ulcer is a serious complication of diabetes, which affects a significant percentage (15%) of diabetics and up to 15%-24% of those affected may require amputation. Therefore, the economic burden of diabetic foot ulcers is enormous and is associated with high cost of treatment and prolongs hospitalization. The present study was conducted to evaluate antibacterial and in vivo wound healing activities of an aqueous fraction of Moringa oleifera on a diabetic condition. Antibacterial activity testing was carried out using agar well and tube dilution techniques. The in vivo study was conducted using six groups of animals that comprise of one normal and diabetic control group each, three treatment groups of 0.5%, 1%, and 2% w/w aqueous fraction, and a positive control group (1% w/w silver sulfadiazine). Rats were induced with diabetes using a combination of streptozotocin 65 and 150 mg/kg nicotinamide daily for 2 days, and excision wounds were created and treated with various doses (0.5%, 1%, and 2% w/w aqueous fraction) daily for 21 days. Biophysical, histological, and biochemical parameters were investigated. The results of the study revealed that aqueous fraction possessed antibacterial activity through inhibition of growth of Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli organisms. The topical application of aqueous fraction revealed enhancement of wound healing under sustained hyperglycemic condition for the duration of the experiment. This enhancement was achieved through decreased wound size, improved wound contraction, and tissue regeneration, as well as downregulation of inflammatory mediators, such as tumor necrosis factor-α, interleukin-1β, interleukin-6, inducible nitric oxide synthase, and cyclooxygenase-2, and upregulation of an angiogenic marker vascular endothelial growth factor in wound tissue treated with various doses of aqueous fraction of M. oleifera. The findings suggest that aqueous fraction of M. oleifera

  8. Evaluation of wound healing properties of bioactive aqueous fraction from Moringa oleifera Lam on experimentally induced diabetic animal model

    Science.gov (United States)

    Muhammad, Abubakar Amali; Arulselvan, Palanisamy; Cheah, Pike See; Abas, Farida; Fakurazi, Sharida

    2016-01-01

    Diabetic foot ulcer is a serious complication of diabetes, which affects a significant percentage (15%) of diabetics and up to 15%–24% of those affected may require amputation. Therefore, the economic burden of diabetic foot ulcers is enormous and is associated with high cost of treatment and prolongs hospitalization. The present study was conducted to evaluate antibacterial and in vivo wound healing activities of an aqueous fraction of Moringa oleifera on a diabetic condition. Antibacterial activity testing was carried out using agar well and tube dilution techniques. The in vivo study was conducted using six groups of animals that comprise of one normal and diabetic control group each, three treatment groups of 0.5%, 1%, and 2% w/w aqueous fraction, and a positive control group (1% w/w silver sulfadiazine). Rats were induced with diabetes using a combination of streptozotocin 65 and 150 mg/kg nicotinamide daily for 2 days, and excision wounds were created and treated with various doses (0.5%, 1%, and 2% w/w aqueous fraction) daily for 21 days. Biophysical, histological, and biochemical parameters were investigated. The results of the study revealed that aqueous fraction possessed antibacterial activity through inhibition of growth of Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli organisms. The topical application of aqueous fraction revealed enhancement of wound healing under sustained hyperglycemic condition for the duration of the experiment. This enhancement was achieved through decreased wound size, improved wound contraction, and tissue regeneration, as well as downregulation of inflammatory mediators, such as tumor necrosis factor-α, interleukin-1β, interleukin-6, inducible nitric oxide synthase, and cyclooxygenase-2, and upregulation of an angiogenic marker vascular endothelial growth factor in wound tissue treated with various doses of aqueous fraction of M. oleifera. The findings suggest that aqueous fraction of M. oleifera

  9. NOVEL BIOACTIVE COMPOUNDS FROM MANGROVE DERIVED ACTINOMYCETES

    Directory of Open Access Journals (Sweden)

    Kumari Amrita

    2012-09-01

    Full Text Available Mangrove is most productive and unexplored ecosystem that approximately covers one fourth of world coastline with high diversity of thriving organism. Recently the rate of isolation of novel bioactive compounds from microorganism living in mangrove forest has tremendously increased which is reflected in significant hasten for exploration of mangrove actinomycetes. Actinomycetes are group of bacteria which are extremely interesting as active producers of many primary and secondary metabolites. Many survey reports has depicted that the biologically active compounds which have been obtained so far from microbes, 45 percent are produced by actinomycetes, 38 percent by fungi and 17 percent by unicellular bacteria. Actinomycetes from mangrove environment provide diverse and are potential rich source of antibiotics, anticancer, antifungal and antiviral agent, enzyme and enzyme inhibitor. Mangrove actinomycetes are a prolific but underexploited source for the discovery of novel secondary metabolites.

  10. Screening for bioactive compounds from algae.

    Science.gov (United States)

    Plaza, M; Santoyo, S; Jaime, L; García-Blairsy Reina, G; Herrero, M; Señoráns, F J; Ibáñez, E

    2010-01-20

    In the present work, a comprehensive methodology to carry out the screening for novel natural functional compounds is presented. To do that, a new strategy has been developed including the use of unexplored natural sources (i.e., algae and microalgae) together with environmentally clean extraction techniques and advanced analytical tools. The developed procedure allows also estimating the functional activities of the different extracts obtained and even more important, to correlate these activities with their particular chemical composition. By applying this methodology it has been possible to carry out the screening for bioactive compounds in the algae Himanthalia elongata and the microalgae Synechocystis sp. Both algae produced active extracts in terms of both antioxidant and antimicrobial activity. The obtained pressurized liquid extracts were chemically characterized by GC-MS and HPLC-DAD. Different fatty acids and volatile compounds with antimicrobial activity were identified, such as phytol, fucosterol, neophytadiene or palmitic, palmitoleic and oleic acids. Based on the results obtained, ethanol was selected as the most appropriate solvent to extract this kind of compounds from the natural sources studied.

  11. Characterisation of electrospun gelatine nanofibres encapsulated with Moringa oleifera bioactive extract.

    Science.gov (United States)

    Hani, Norziah M; Torkamani, Amir E; Azarian, Mohammad H; Mahmood, Kamil Wa; Ngalim, Siti Hawa

    2017-08-01

    Drumstick (Moringa oleifera) leaves have been used as a folk herbal medicine across many cultures since ancient times. This is most probably due to presence of phytochemicals possessing antioxidant properties, which could retard oxidative stress, and their degenerative effect. The current study deals with nanoencapsulation of Moringa oleifera (MO) leaf ethanolic extract within fish sourced gelatine matrix using electrospinning technique. The total phenolic and flavonoid content, radical scavenging (IC50 ) and metal reducing properties were 67.0 ± 2.5 mg GAE g(-1) sample 32.0 ± 0.5 mg QE g(-1) extract, 0.08 ± 0.01 mg mL(-1) and 510 ± 10 µmol eq Fe(II) g(-1) extract, respectively. Morphological and spectroscopic analysis of the fibre mats confirmed successful nanoencapsulation of MO extract within defect free nanofibres via electrospinning process. The percentage encapsulation efficiency (EE) was between 80% and 85%. Furthermore, thermal stability of encapsulated fibres, especially at 3% and 5% of core loading content, was significantly improved. Toxicological analysis revealed that the extract in its original and encapsulated form was safe for oral consumption. Overall, the present study showed the potential of ambient temperature electrospinning process as a safe nanoencapsulation method, where MO extract retained its antioxidative capacities. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. New bioactive compounds from korean native mushrooms.

    Science.gov (United States)

    Kim, Seong-Eun; Hwang, Byung Soon; Song, Ja-Gyeong; Lee, Seung Woong; Lee, In-Kyoung; Yun, Bong-Sik

    2013-12-01

    Mushrooms are ubiquitous in nature and have high nutritional attributes. They have demonstrated diverse biological effects and therefore have been used in treatments of various diseases, including cancer, diabetes, bacterial and viral infections, and ulcer. In particular, polysaccharides, including β-glucan, are considered as the major constituents responsible for the biological activity of mushrooms. Although an overwhelming number of reports have been published on the importance of polysaccharides as immunomodulating agents, not all of the healing properties found in these mushrooms could be fully accounted for. Recently, many research groups have begun investigations on biologically active small-molecular weight compounds in wild mushrooms. In this mini-review, both structural diversity and biological activities of novel bioactive substances from Korean native mushrooms are described.

  13. Bioactive compounds: Safety and efficacy (Consensus Meeting - Part II)

    NARCIS (Netherlands)

    Biesalski, H.K.; Dragsted, L.O.; Elmadfa, I.; Grossklaus, R.; Müller, M.R.; Schrenk, D.; Walter, P.; Weber, P.

    2009-01-01

    The efficacy and safety of bioactive compounds depend on a few known and unknown parameters. What is a physiologic dose and how can that dose be defined in cases of bioactive compounds with a poor knowledge of supply and distribution? What safety sets are needed? How can individual aspects such as p

  14. Bioactive compounds in berries relevant to human health

    NARCIS (Netherlands)

    Battino, M.; Beekwilder, M.J.; Denoyes-Rothan, B.; Laimer, M.

    2009-01-01

    Berries contain powerful antioxidants, potential allergens, and other bioactive compounds. Genetic and environmental factors affect production and storage of such compounds. For this reason breeding and biotechnological approaches are currently used to control or to increase the content of specific

  15. Evaluation of wound healing properties of bioactive aqueous fraction from Moringa oleifera Lam on experimentally induced diabetic animal model

    Directory of Open Access Journals (Sweden)

    Muhammad AA

    2016-05-01

    regeneration, as well as downregulation of inflammatory mediators, such as tumor necrosis factor-α, interleukin-1β, interleukin-6, inducible nitric oxide synthase, and cyclooxygenase-2, and upregulation of an angiogenic marker vascular endothelial growth factor in wound tissue treated with various doses of aqueous fraction of M. oleifera. The findings suggest that aqueous fraction of M. oleifera containing Vicenin-2 active compound may accelerate wound healing in hyperglycemic condition. Keywords: aqueous fraction, Vicenin-2, wound healing, inflammatory mediators 

  16. Microencapsulation for the improved delivery of bioactive compounds into foods.

    Science.gov (United States)

    Champagne, Claude P; Fustier, Patrick

    2007-04-01

    The development of functional foods through the addition of bioactive compounds holds many technological challenges. Microencapsulation is a useful tool to improve the delivery of bioactive compounds into foods, particularly probiotics, minerals, vitamins, phytosterols, lutein, fatty acids, lycopene and antioxidants. Several microencapsulation technologies have been developed for use in the food industry and show promise for the production of functional foods. Moreover, these technologies could promote the successful delivery of bioactive ingredients to the gastrointestinal tract. Future research is likely to focus on aspects of delivery and the potential use of co-encapsulation methodologies, where two or more bioactive ingredients can be combined to have a synergistic effect.

  17. Edible coatings as encapsulating matrices for bioactive compounds: a review.

    Science.gov (United States)

    Quirós-Sauceda, Ana Elena; Ayala-Zavala, Jesús Fernando; Olivas, Guadalupe I; González-Aguilar, Gustavo A

    2014-09-01

    Edible coatings can extend the shelf-life of many foods, controlling moisture and solute migration, gas exchange and oxidative reaction rates. Besides, edible coatings can be used as carriers of bioactive compounds to improve the quality of food products such as antioxidants, antimicrobials, flavors and probiotics. These approaches can be useful to extend shelf-life as well as provide a functional product. When edible coatings are used as a matrix holding bioactive compounds remarkable benefits arise; off odors and flavors can be masked, bioactive compounds are protected from the environment, and controlled release is allowed. In this sense, the present review will be focused on analyzing the potential use of encapsulation with edible coatings to incorporate bioactive compounds, solving the disadvantages of direct application.

  18. Bioavailability of bioactive food compounds: a challenging journey to bioefficacy.

    Science.gov (United States)

    Rein, Maarit J; Renouf, Mathieu; Cruz-Hernandez, Cristina; Actis-Goretta, Lucas; Thakkar, Sagar K; da Silva Pinto, Marcia

    2013-03-01

    Bioavailability is a key step in ensuring bioefficacy of bioactive food compounds or oral drugs. Bioavailability is a complex process involving several different stages: liberation, absorption, distribution, metabolism and elimination phases (LADME). Bioactive food compounds, whether derived from various plant or animal sources, need to be bioavailable in order to exert any beneficial effects. Through a better understanding of the digestive fate of bioactive food compounds we can impact the promotion of health and improvement of performance. Many varying factors affect bioavailability, such as bioaccessibility, food matrix effect, transporters, molecular structures and metabolizing enzymes. Bioefficacy may be improved through enhanced bioavailability. Therefore, several technologies have been developed to improve the bioavailability of xenobiotics, including structural modifications, nanotechnology and colloidal systems. Due to the complex nature of food bioactive compounds and also to the different mechanisms of absorption of hydrophilic and lipophilic bioactive compounds, unravelling the bioavailability of food constituents is challenging. Among the food sources discussed during this review, coffee, tea, citrus fruit and fish oil were included as sources of food bioactive compounds (e.g. (poly)phenols and polyunsaturated fatty acids (PUFAs)) since they are examples of important ingredients for the food industry. Although there are many studies reporting on bioavailability and bioefficacy of these bioactive food components, understanding their interactions, metabolism and mechanism of action still requires extensive work. This review focuses on some of the major factors affecting the bioavailability of the aforementioned bioactive food compounds. © 2012 Nestec S. A.. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.

  19. Competing Role of Bioactive Constituents in Moringa oleifera Extract and Conventional Nutrition Feed on the Performance of Cobb 500 Broilers

    Directory of Open Access Journals (Sweden)

    Govindarajan Karthivashan

    2015-01-01

    Full Text Available The influence of Moringa oleifera (MO leaf extract as a dietary supplement on the growth performance and antioxidant parameters was evaluated on broiler meat and the compounds responsible for the corresponding antioxidant activity were identified. 0.5%, 1.0%, and 1.5% w/v of MO leaf aqueous extracts (MOLE were prepared, and nutritional feed supplemented with 0%, 0.5%, 1.0%, and 1.5% w/w of MO leaf meal (MOLM extracts were also prepared and analysed for their in vitro antioxidant potential. Furthermore, the treated broiler groups (control (T1 and treatment (T2, T3, and T4 were evaluated for performance, meat quality, and antioxidant status. The results of this study revealed that, among the broilers fed MOLM, the broilers fed 0.5% w/w MOLM (T2 exhibited enhanced meat quality and antioxidant status (P<0.05. However, the antioxidant activity of the MOLE is greater than that of the MOLM. The LC-MS/MS analysis of MOLM showed high expression of isoflavones and fatty acids from soy and corn source, which antagonistically inhibit the expression of the flavonoids/phenols in the MO leaves thereby masking its antioxidant effects. Thus, altering the soy and corn gradients in conventional nutrition feed with 0.5% w/w MO leaves supplement would provide an efficient and cost-effective feed supplement.

  20. Competing role of bioactive constituents in Moringa oleifera extract and conventional nutrition feed on the performance of Cobb 500 broilers.

    Science.gov (United States)

    Karthivashan, Govindarajan; Arulselvan, Palanisamy; Alimon, Abd Razak; Safinar Ismail, Intan; Fakurazi, Sharida

    2015-01-01

    The influence of Moringa oleifera (MO) leaf extract as a dietary supplement on the growth performance and antioxidant parameters was evaluated on broiler meat and the compounds responsible for the corresponding antioxidant activity were identified. 0.5%, 1.0%, and 1.5% w/v of MO leaf aqueous extracts (MOLE) were prepared, and nutritional feed supplemented with 0%, 0.5%, 1.0%, and 1.5% w/w of MO leaf meal (MOLM) extracts were also prepared and analysed for their in vitro antioxidant potential. Furthermore, the treated broiler groups (control (T1) and treatment (T2, T3, and T4)) were evaluated for performance, meat quality, and antioxidant status. The results of this study revealed that, among the broilers fed MOLM, the broilers fed 0.5% w/w MOLM (T2) exhibited enhanced meat quality and antioxidant status (P < 0.05). However, the antioxidant activity of the MOLE is greater than that of the MOLM. The LC-MS/MS analysis of MOLM showed high expression of isoflavones and fatty acids from soy and corn source, which antagonistically inhibit the expression of the flavonoids/phenols in the MO leaves thereby masking its antioxidant effects. Thus, altering the soy and corn gradients in conventional nutrition feed with 0.5% w/w MO leaves supplement would provide an efficient and cost-effective feed supplement.

  1. Bioactive Compounds and Antioxidant Activity in Different Types of Berries.

    Science.gov (United States)

    Skrovankova, Sona; Sumczynski, Daniela; Mlcek, Jiri; Jurikova, Tunde; Sochor, Jiri

    2015-10-16

    Berries, especially members of several families, such as Rosaceae (strawberry, raspberry, blackberry), and Ericaceae (blueberry, cranberry), belong to the best dietary sources of bioactive compounds (BAC). They have delicious taste and flavor, have economic importance, and because of the antioxidant properties of BAC, they are of great interest also for nutritionists and food technologists due to the opportunity to use BAC as functional foods ingredients. The bioactive compounds in berries contain mainly phenolic compounds (phenolic acids, flavonoids, such as anthocyanins and flavonols, and tannins) and ascorbic acid. These compounds, either individually or combined, are responsible for various health benefits of berries, such as prevention of inflammation disorders, cardiovascular diseases, or protective effects to lower the risk of various cancers. In this review bioactive compounds of commonly consumed berries are described, as well as the factors influencing their antioxidant capacity and their health benefits.

  2. Bioactive Compounds and Antioxidant Activity in Different Types of Berries

    Directory of Open Access Journals (Sweden)

    Sona Skrovankova

    2015-10-01

    Full Text Available Berries, especially members of several families, such as Rosaceae (strawberry, raspberry, blackberry, and Ericaceae (blueberry, cranberry, belong to the best dietary sources of bioactive compounds (BAC. They have delicious taste and flavor, have economic importance, and because of the antioxidant properties of BAC, they are of great interest also for nutritionists and food technologists due to the opportunity to use BAC as functional foods ingredients. The bioactive compounds in berries contain mainly phenolic compounds (phenolic acids, flavonoids, such as anthocyanins and flavonols, and tannins and ascorbic acid. These compounds, either individually or combined, are responsible for various health benefits of berries, such as prevention of inflammation disorders, cardiovascular diseases, or protective effects to lower the risk of various cancers. In this review bioactive compounds of commonly consumed berries are described, as well as the factors influencing their antioxidant capacity and their health benefits.

  3. Plant-derived bioactive compounds produced by endophytic fungi.

    Science.gov (United States)

    Zhao, J; Shan, T; Mou, Y; Zhou, L

    2011-02-01

    Plant endophytic fungi are an important and novel resource of natural bioactive compounds with their potential applications in agriculture, medicine and food industry. In the past two decades, many valuable bioactive compounds with antimicrobial, insecticidal, cytotoxic, and anticancer activities have been successfully discovered from endophytic fungi. During the long period of co-evolution, a friendly relationship was formed between each endophyte and its host plant. Some endophytes have the ability to produce the same or similar bioactive compounds as those originated from their host plants. This review mainly deals with the research progress on endophytic fungi for producing plant-derived bioactive compounds such as paclitaxel, podophyllotoxin, camptothecine, vinblastine, hypericin, and diosgenin. The relations between endophytic fungi and their host plants, biological activities and action mechanisms of these compounds from endophytic fungi, some available strategies for efficiently promoting production of these bioactive compounds, as well as their potential applications in the future will also be discussed. It is beneficial for us to better understand and take advantage of plant endophytic fungi.

  4. Bioactive compounds from Holothuria atra of Indian ocean.

    Science.gov (United States)

    Dhinakaran, Devaraj Isaac; Lipton, Aaron Premnath

    2014-01-01

    The sea cucumber (Holothuria atra) extracts have been evaluated for the presence of bioactive compounds and various biological activities. The methanol extracts showed anti proliferative activities against the Hela and MCF-7 cell lines. Similarly the inhibitory effects of Herpes simplex virus 1 and 2 cells were detected using the plaque reduction assay. The extracts of H. atra were purified using the silica gel column chromatography. The active fractions collected were observed for antimicrobial activity. The GC-MS analysis showed the availability of 59 compounds. The active bioactive compounds found in the H. atra were analyzed and their structure was identified using the (1)HNMR and (13)C NMR experiments.

  5. Cyclodextrins as encapsulation agents for plant bioactive compounds.

    Science.gov (United States)

    Pinho, Eva; Grootveld, Martin; Soares, Graça; Henriques, Mariana

    2014-01-30

    Plants possess a wide range of molecules capable of improve healing: fibre, vitamins, phytosterols, and further sulphur-containing compounds, carotenoids, organic acid anions and polyphenolics. However, they require an adequate level of protection from the environmental conditions to prevent losing their structural integrity and bioactivity. Cyclodextrins are cyclic oligosaccharides arising from the degradation of starch, which can be a viable option as encapsulation technique. Cyclodextrins are inexpensive, friendly to humans, and also capable of improving the biological, chemical and physical properties of bioactive molecules. Therefore, the aim of this review is to highlight the use of cyclodextrins as encapsulating agents for bioactive plant molecules in the pharmaceutical field.

  6. Bioactivity of phenolic acids: Metabolites versus parent compounds: A review

    OpenAIRE

    2015-01-01

    Phenolic acids are present in our diet in different foods. In particular, mushrooms are a good source of these molecules. Due to their bioactive properties, phenolic acids are extensively studied and there is evidence of their role in disease prevention. Nevertheless, in vivo, these compounds are metabolized and circulate in the organism as glucuronated, sulfated and methylated metabolites, displaying higher or lower bioactivity. To clarify the importance of the metabolism of phenolic acids, ...

  7. Bioactive Compounds and Their Neuroprotective Effects in Diabetic Complications.

    Science.gov (United States)

    Oh, Yoon Sin

    2016-07-30

    Hyperglycemia, hyperlipidemia and impaired insulin signaling during the development of diabetes can cause diabetic complications, such as diabetic neuropathy, resulting in significant morbidity and mortality. Although various therapeutics are available for the treatment of diabetic neuropathy, no absolute cure exists, and additional research is necessary to comprehensively understand the underlying pathophysiological pathways. A number of studies have demonstrated the potential health benefits of bioactive compounds, i.e., flavonoids and vitamins, which may be effective as supplementary treatments for diabetes and its complications. In this review, we highlight the most recent reports about the mechanisms of action of bioactive compounds (flavonoids and vitamins) possessing potential neuroprotective properties in diabetic conditions. Additional clinical studies are required to determine the appropriate dose and duration of bioactive compound supplementation for neuroprotection in diabetic patients.

  8. Potential of fruit wastes as natural resources of bioactive compounds.

    Science.gov (United States)

    Deng, Gui-Fang; Shen, Chen; Xu, Xiang-Rong; Kuang, Ru-Dan; Guo, Ya-Jun; Zeng, Li-Shan; Gao, Li-Li; Lin, Xi; Xie, Jie-Feng; Xia, En-Qin; Li, Sha; Wu, Shan; Chen, Feng; Ling, Wen-Hua; Li, Hua-Bin

    2012-01-01

    Fruit wastes are one of the main sources of municipal waste. In order to explore the potential of fruit wastes as natural resources of bioactive compounds, the antioxidant potency and total phenolic contents (TPC) of lipophilic and hydrophilic components in wastes (peel and seed) of 50 fruits were systematically evaluated. The results showed that different fruit residues had diverse antioxidant potency and the variation was very large. Furthermore, the main bioactive compounds were identified and quantified, and catechin, cyanidin 3-glucoside, epicatechin, galangin, gallic acid, homogentisic acid, kaempferol, and chlorogenic acid were widely found in these residues. Especially, the values of ferric-reducing antioxidant power (FRAP), trolox equivalent antioxidant capacity (TEAC) and TPC in the residues were higher than in pulps. The results showed that fruit residues could be inexpensive and readily available resources of bioactive compounds for use in the food and pharmaceutical industries.

  9. Perturbation of pharmacologically relevant polyphenolic compounds in Moringa oleifera against photo-oxidative damages imposed by gamma radiation.

    Science.gov (United States)

    Ramabulana, T; Mavunda, R D; Steenkamp, P A; Piater, L A; Dubery, I A; Madala, N E

    2016-03-01

    Oxidative stress is a physiological state associated with almost all biotic and abiotic stresses in plants. This phenomenon occurs due to imbalances which result from the overproduction of reactive oxygen species (ROS). Plants, however, have developed sophisticated mechanisms to mitigate the effect of ROS. In this regard, plant polyphenolic metabolites such as flavonoids are known to possess high antioxidant activities. In the current study, changes in the levels of phenolic compounds from Moringa oleifera after gamma radiation treatment were investigated with reverse phase liquid chromatography and mass spectrometric techniques in combination with multivariate data models such as principal component analysis and orthogonal projection to latent structures discriminant analysis. Our results revealed several polyphenolic compounds such as hydroxycinnamoyl derivatives and flavonoid molecules to be down-regulated post-radiation treatment. Interestingly, other flavonoid molecules were found to be up-regulated post-radiation treatment, thereby suggesting a possible compensatory phenomenon. The existence and involvement of structurally similar metabolites (such as regio-isomers of chlorogenic acids) in M. oleifera towards mitigating photo-oxidative damages are in support of the proposed evolutionary existence of a large pool of polyphenolics which contribute to the state of readiness, aptly described as a "better safe than sorry" phenomenon. Our study thus reaffirms the involvement of phenolic compounds as a first line of constitutive/preformed protection against oxidative stress. Furthermore, the obtained data supports M. oleifera as a source of versatile and pharmacologically relevant metabolites that may be exploited for ameliorating the oxidative damages imposed by several metabolic disorders in humans.

  10. Immense Essence of Excellence: Marine Microbial Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Ira Bhatnagar

    2010-10-01

    Full Text Available Oceans have borne most of the biological activities on our planet. A number of biologically active compounds with varying degrees of action, such as anti-tumor, anti-cancer, anti-microtubule, anti-proliferative, cytotoxic, photo protective, as well as antibiotic and antifouling properties, have been isolated to date from marine sources. The marine environment also represents a largely unexplored source for isolation of new microbes (bacteria, fungi, actinomycetes, microalgae-cyanobacteria and diatoms that are potent producers of bioactive secondary metabolites. Extensive research has been done to unveil the bioactive potential of marine microbes (free living and symbiotic and the results are amazingly diverse and productive. Some of these bioactive secondary metabolites of microbial origin with strong antibacterial and antifungal activities are being intensely used as antibiotics and may be effective against infectious diseases such as HIV, conditions of multiple bacterial infections (penicillin, cephalosporines, streptomycin, and vancomycin or neuropsychiatric sequelae. Research is also being conducted on the general aspects of biophysical and biochemical properties, chemical structures and biotechnological applications of the bioactive substances derived from marine microorganisms, and their potential use as cosmeceuticals and nutraceuticals. This review is an attempt to consolidate the latest studies and critical research in this field, and to showcase the immense competence of marine microbial flora as bioactive metabolite producers. In addition, the present review addresses some effective and novel approaches of procuring marine microbial compounds utilizing the latest screening strategies of drug discovery.

  11. Immense Essence of Excellence: Marine Microbial Bioactive Compounds

    Science.gov (United States)

    Bhatnagar, Ira; Kim, Se-Kwon

    2010-01-01

    Oceans have borne most of the biological activities on our planet. A number of biologically active compounds with varying degrees of action, such as anti-tumor, anti-cancer, anti-microtubule, anti-proliferative, cytotoxic, photo protective, as well as antibiotic and antifouling properties, have been isolated to date from marine sources. The marine environment also represents a largely unexplored source for isolation of new microbes (bacteria, fungi, actinomycetes, microalgae-cyanobacteria and diatoms) that are potent producers of bioactive secondary metabolites. Extensive research has been done to unveil the bioactive potential of marine microbes (free living and symbiotic) and the results are amazingly diverse and productive. Some of these bioactive secondary metabolites of microbial origin with strong antibacterial and antifungal activities are being intensely used as antibiotics and may be effective against infectious diseases such as HIV, conditions of multiple bacterial infections (penicillin, cephalosporines, streptomycin, and vancomycin) or neuropsychiatric sequelae. Research is also being conducted on the general aspects of biophysical and biochemical properties, chemical structures and biotechnological applications of the bioactive substances derived from marine microorganisms, and their potential use as cosmeceuticals and nutraceuticals. This review is an attempt to consolidate the latest studies and critical research in this field, and to showcase the immense competence of marine microbial flora as bioactive metabolite producers. In addition, the present review addresses some effective and novel approaches of procuring marine microbial compounds utilizing the latest screening strategies of drug discovery. PMID:21116414

  12. Chemistry and Functionality of Bioactive Compounds Present in Persimmon

    OpenAIRE

    Shazia Yaqub; Umar Farooq; Afshan Shafi; Kashif Akram; Mian Anjum Murtaza; Tusneem Kausar; Farzana Siddique

    2016-01-01

    Extensive research has related the consumption of persimmon with the reduced risk of various diseases and particularly highlighted the presence of bioactive phenolic compounds for their therapeutic properties. Major phenolic compounds present in persimmon are ferulic acid, p-coumaric acid, and gallic acid. β-Cryptoxanthin, lycopene, β-carotene, zeaxanthin, and lutein are important carotenoids having antioxidant potential. They are important to prevent oxidation of low-density lipoproteins, sa...

  13. Bioactive compounds from Iostephane heterophylla (Asteraceae).

    Science.gov (United States)

    Aguilar, M I; Delgado, G; Hernández, M L; Villarreal, M L

    2001-01-01

    The novel bisabolene sesquiterpenes 3-6, were isolated from Iostephane heterophylla, using bioguided fractionation. The new compounds were determined to be (12R/12S)-12,13-epoxy-xanthorrhizols (3,4) and (12R/12S)-12,13-dihydro-12,13-dihydroxy-xanthorrizols (5,6) and their structures were characterized by analysis of spectroscopic data and by chemical correlation from xanthorrhizol (2). The stereochemistry at C-12 of 5 was deduced using the modified Mosher experiment. Some of the isolated compounds elicited activity against gram positive and gram negative bacteria, levadura and dermatophytes.

  14. Nocardiopsis species: a potential source of bioactive compounds.

    Science.gov (United States)

    Bennur, T; Ravi Kumar, A; Zinjarde, S S; Javdekar, V

    2016-01-01

    Members of the genus Nocardiopsis are an ecologically versatile and biotechnologically important group of Actinomycetes. Most of the isolates are halotolerant or halophilic and they prevail in soils, marine environments or hypersaline locations. To aid their survival under these conditions, they mainly produce extremozymes, compatible solutes, surfactants and bioactive compounds. The current review details the bioactive compounds obtained for this genus. Important antimicrobial agents obtained from this genus include polyketides, phenzines, quinoline alkaloids, terphenyls, proteins, thiopeptides and amines. Polyketides and peptides displaying potent anticancer activities are also significant. Tumour promoting agents, P-glycoprotein (P-gp) inhibitors, immunomodulators and protein kinase inhibitors are other relevant products obtained from Nocardiopsis species. Structurally, polyketides (synthesized by polyketide synthases) and peptides (made by nonribosomal peptide synthetases or cyclodipeptide synthases) are important compounds. Considered here are also toxins, anti photoaging and adipogenic agents produced by this genus. The gene clusters mediating the synthesis of bioactive compounds have been described. Commercially available products (Apoptolidins and K-252a) derived from this genus have also been described. This review highlights the significance of a single genus in producing an assortment of compounds with varied biological activities. On account of these features, the members of this genus have established a place for themselves and are of considerable value in producing compounds with profound bio-medical applications.

  15. The Stability of Bioactive Compounds in Spaceflight Foods

    Science.gov (United States)

    Cooper, M. R.; Douglas, G. L.

    2017-01-01

    The status and stability of bioactive compounds in the processed and shelf-stable spaceflight food system have not previously been investigated though the presence of such compounds in aged space foods could have health significance for crews on long duration exploration missions. Over forty foods - either existing International Space Station (ISS) food provisioning items, newly developed foods for spaceflight, or commercially-available ready-to-eat foods - that were predicted to have a relatively high concentrations of one or more bioactive compounds (lycopene, lutein, omega-3 fatty acids, phenolics, sterols, and/or flavonoids) were selected for the study. Food samples were sent overnight to the Food Composition Laboratory of the Linus Pauling Institute at Oregon State University (Corvallis, OR) for bioactive compound analysis. Three packages of each product were blended together for the analysis to reduce package-to-package variability. All ISS food items and commercial foods were analyzed initially and after 12 and 24 months of 21degC storage. Food development occurred in a staggered fashion, so data collection for the newly developed foods continues. Lastly, sensory evaluation and additional temperature storage data (4degC, 35degC) for select foods were collected to establish additional stability parameters. Efficacious concentrations of lycopene, lutein, and omega-3 fatty acids were measured in limited spaceflight foods; two grams of sterols a day may be difficult to achieve with the current space diet. Total polyphenol delivery appears stable and adequate, but individual phenolic compounds vary in stability and were not specifically evaluated in this study. The data suggests that some bioactive compounds, like lycopene and lutein, degrade and then plateau at some equilibrium concentration. The anthocyanin stability appears to be related to storage temperature and food matrix, and lutein stability in leafy vegetables may be impacted by storage temperature

  16. Chemistry and Functionality of Bioactive Compounds Present in Persimmon

    Directory of Open Access Journals (Sweden)

    Shazia Yaqub

    2016-01-01

    Full Text Available Extensive research has related the consumption of persimmon with the reduced risk of various diseases and particularly highlighted the presence of bioactive phenolic compounds for their therapeutic properties. Major phenolic compounds present in persimmon are ferulic acid, p-coumaric acid, and gallic acid. β-Cryptoxanthin, lycopene, β-carotene, zeaxanthin, and lutein are important carotenoids having antioxidant potential. They are important to prevent oxidation of low-density lipoproteins, safeguard beta cells of the pancreas, and reduce cardiovascular diseases, cancer, diabetes mellitus, and damage caused by chronic alcohol consumption. In this paper, the chemistry and health benefits of bioactive compounds present in persimmon are reviewed to encourage impending applications and to facilitate further research activities.

  17. Anaerobes as Sources of Bioactive Compounds and Health Promoting Tools.

    Science.gov (United States)

    Mamo, Gashaw

    Aerobic microorganisms have been sources of medicinal agents for several decades and an impressive variety of drugs have been isolated from their cultures, studied and formulated to treat or prevent diseases. On the other hand, anaerobes, which are believed to be the oldest life forms on earth and evolved remarkably diverse physiological functions, have largely been neglected as sources of bioactive compounds. However, results obtained from the limited research done so far show that anaerobes are capable of producing a range of interesting bioactive compounds that can promote human health. In fact, some of these bioactive compounds are found to be novel in their structure and/or mode of action.Anaerobes play health-promoting roles through their bioactive products as well as application of whole cells. The bioactive compounds produced by these microorganisms include antimicrobial agents and substances such as immunomodulators and vitamins. Bacteriocins produced by anaerobes have been in use as preservatives for about 40 years. Because these substances are effective at low concentrations, encounter relatively less resistance from bacteria and are safe to use, there is a growing interest in these antimicrobial agents. Moreover, several antibiotics have been reported from the cultures of anaerobes. Closthioamide and andrimid produced by Clostridium cellulolyticum and Pantoea agglomerans, respectively, are examples of novel antibiotics of anaerobe origin. The discovery of such novel bioactive compounds is expected to encourage further studies which can potentially lead to tapping of the antibiotic production potential of this fascinating group of microorganisms.Anaerobes are widely used in preparation of fermented foods and beverages. During the fermentation processes, these organisms produce a number of bioactive compounds including anticancer, antihypertensive and antioxidant substances. The well-known health promoting effect of fermented food is mostly due to these

  18. Echinoderms: their culture and bioactive compounds.

    Science.gov (United States)

    Kelly, M S

    2005-01-01

    biologically active compounds with biomedical applications. Sea cucumber has been valued in Chinese medicine for hundreds of years as a cure for a wide variety of ailments. Some more recently isolated compounds, mainly from sea cucumbers and starfish, and including those with antitumour, antiviral, anticoagulant and antimicrobial activity are summarised below. When wild stocks decline, the demand created in the market place raises to the price of the product and, consequently, culturing is more likely to become viable economically. As this review shows, there have been dramatic advances in the culture methods of sea urchins and sea cucumbers in the last 10-15 years, to the extent that one can conclude that currently the major obstacles to successful cultivation are indeed economic rather than biological. Hence the future of the echinoculture industry is closely linked to that of the fisheries, whose fate will ultimately determine the market forces that will shape this growing industry.

  19. Monoclonal antibodies against naturally occurring bioactive compounds.

    Science.gov (United States)

    Shoyama, Y; Tanaka, H; Fukuda, N

    1999-09-01

    The ratio of hapten to bovine serum albumin (BSA) in an antigen conjugate was determined by matrix-assisted laser desorption/ionization (MALDI) tof mass spectrometry. A hybridoma secreting monoclonal antibody (MAb) was produced by fusing splenocytes immunized with an antigen-BSA conjugate with HAT-sensitive mouse myeloma cells. The cross-reaction of anti-forskolin antibodies with 7-deacetyl forskolin was 5.6%. A very small cross-reaction appeared with other derivatives. The full measuring range of the assay extends from 5 ng to 5 mug/ml of forskolin. Immunoaffinity column chromatography using anti-forskolin MAbs appears to be far superior to previously published separation methods. The capacity of the immunoaffinity column as determined by ELISA is 9 mug/ml. Forskolin has been isolated directly from the crude extracts of tuberous roots and the callus culture of Coleus forskohlii. A MAb against tetrahydrocannabinolic acid (THCA) was produced. The cross-reaction of anti-THCA antibody against other cannabinoids was very wide. Many cannabinoids and a spiro-compound were reactive, but did not react with other phenolics. It became evident that this ELISA was able to be applied to the biotransformation experiments of cannabinoids in plant tissue culture system. Anti-ginsenoside Rb1 MAbs were produced. New western blotting method of determination for ginsenosides was established. Ginsenosides separated by silica gel TLC were transferred to a polyvinylidene difluoride (PVDF) membrane. The membrane was treated with NaIO(4) solution followed by BSA, resulting in a ginsenoside-BSA conjugate. Immunostaining of ginsenosides was more sensitive compared to other staining. Immunostaining of ginsenosides in the fresh ginseng root was succeeded using anti-ginsenoside Rb1 (GRb1) MAb after blotting to PVDF membrane.

  20. Analysis of Phytochemicals, Antibacterial and Antioxidant activities of Moringa oleifera Lam. Leaf extract- an in vitro study

    Directory of Open Access Journals (Sweden)

    Malliga Elangovan

    2014-12-01

    Full Text Available The leading important things about utilizing plant-derived medication are relatively less dangerous than artificial drugs and provide deep restorative benefits. In this regard, Moringa oleifera plant was evaluated for its nutritional effects. The phytochemical study, antibacterial activity and the in vitro antioxidant activity of aqueous, chloroform and petroleum ether extracts of Moringa oleifera leaves were investigated. Phytochemical analysis revealed the presence of alkaloids, flavonoids, steroids, tannins, saponins and glycosides as major components. The Petroleum ether extracts of Moringa oleifera contains the high content of bioactive compounds such as phenol and flavonoids. The extracts were screened for in vitro antibacterial potential against enteric pathogenic bacteria such as Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella typhi, E. coli and Vibrio cholera by disc diffusion method. Moringa oleifera showed potent antibacterial activity against several gram negative and gram positive bacteria. Antioxidants are shown to play an important position in your body immune system next to Reactive oxygen species (ROS. The enzymatic and non-enzymatic activities of SOD, Catalase, Peroxidase, Vitamin C, Carotenoids, and reduced Glutathione were high in petroleum ether extracts of Moringa oleifera. It shows high scavenging activity against DPPH, Nitrous Oxide and Hydroxyl Radical scavenging assays. As a result, Moringa oleifera possesses a good antioxidant, it has a scavenging property against ROS and also it has good antibacterial properties. Thus, Moringa oleifera can be used to synthesize a new drug preparation against various diseases responsible for severe illness.

  1. Enrichment of bioactive compounds in microalgae for aquaculture

    OpenAIRE

    Fernandes, Tomásia Micaela Gomez

    2015-01-01

    Microalgae are promising microorganisms for the production of food and fine chemicals. Several species of microalgae are used in aquaculture with the purpose of transfer bioactive compounds up to the aquatic food chain. The main objective of this project was to develop a stress–inducement strategy in order to enhance the biochemical productivity of Nannochloropsis gaditana, Rhodomonas marina and Isochrysis sp. for aquaculture purposes having in account their growth and organizational differen...

  2. Cyclodextrins as encapsulation agents for plant bioactive compounds

    OpenAIRE

    Pinho, Eva Patrícia Paiva Santos; Grootveld, Martin; Soares, Graça M. B.; Henriques, Mariana

    2014-01-01

    Abstract Plants possess a wide range of molecules capable of improve healing: fibre, vitamins, phytosterols, and further sulphur-containing compounds, carotenoids, organic acid anions and polyphenolics. However, they require an adequate level of protection from the environmental conditions to prevent losing their structural integrity and bioactivity. Cyclodextrins are cyclic oligosaccharides arising from the degradation of starch, which can be a viable option as encapsulation technique. Cy...

  3. Molecular Approaches to Screen Bioactive Compounds from Endophytic Fungi

    OpenAIRE

    Vasundhara, M.; Anil Kumar; M. Sudhakara Reddy

    2016-01-01

    Endophytic fungi are capable of producing plant associated metabolites and their analogs with therapeutic value. In order to identify the potential endophytic isolates producing bioactive compounds, one need to screen all isolated endophytes, which may run into hundreds. Isolation of endophytic fungi is relatively a simple process; but screening of the isolated fungi for required metabolite production is a cumbersome process. Endophytic fungi producing plant associated metabolites may contain...

  4. BIOACTIVE COMPOUNDS AND ANTIOXIDANT CAPACITY FROM FIVE TYPES OF SEEDLINGS

    Directory of Open Access Journals (Sweden)

    Florina Maria Copaciu

    2016-10-01

    Full Text Available After germination process, the green seedlings accumulate important quantities of bioactive compounds such as: enzymes, vitamins, minerals, chlorophylls and nutrients. The current study presents a comparison between different bioactive compounds and their antioxidant capacity, after the seedling germination and growth of five seeds (arugula, lentil, wheat, beans and mustard both on soil, in a pot (natural system, and directly on cotton wool soaked, in water (artificial system. In this study the carotenoids content and the antioxidant capacity were analysed. The data of the present study showed that the highest amount of zeaxanthin and β - carotene was found in cultivars of wheat grown in natural system, while the highest antioxidant activity was found in cultivars of wheat, lentils and beans, though in this case with no statistical differences between the systems. The results show statistical differences between the values of bioactive compounds in the five types of seedlings but also in the values obtained for the same seedlings in different systems. The best cultivars for improving the nutritional quality for human consumption are wheat seedlings followed by lentil ones.

  5. Bioactive compounds and antioxidant activity analysis of Malaysian pineapple cultivars

    Science.gov (United States)

    Chiet, Chong Hang; Zulkifli, Razauden Mohamed; Hidayat, Topik; Yaakob, Harisun

    2014-03-01

    Pineapple industry is one of the important agricultural sectors in Malaysia with 76 cultivars planted throughout the country. This study aims to generate useful nutritional information as well as evaluating antioxidant properties of different pineapple commercial cultivars in Malaysia. The bioactive compound content and antioxidant capacity of `Josapine', `Morris' and `Sarawak' pineapple (Ananas comosus) were studied. The pineapple varieties were collected at commercial maturity stage (20-40% yellowish of fruit peel) and the edible portion of the fruit was used as sample for evaluation. The bioactive compound of the fruit extracts were evaluated by total phenolic and tannin content assay while the antioxidant capacity was determined by ferric reducing antioxidant power (FRAP). From the results obtained, total phenolic and tannin content was highest for `Josapine' followed by `Morris' and `Sarawak'. With respect to FRAP, `Josapine' showed highest reducing capacity, followed by `Morris' and then `Sarawak' having the least value. The bioactive compounds content are positively correlated with the antioxidant capacities of the pineapple extracts. This result indicates that the total phenolics and tannin content present in the pineapples may contribute to the antioxidant capacity of the pineapples.

  6. [Functional analysis of bioactive natural compounds using monoclonal antibodies against natural compounds].

    Science.gov (United States)

    Uto, Takuhiro

    2014-01-01

    Herbal medicines have recently attracted much importance owing to the rising interest in their health benefits. Hence, further elucidation of the functions and mechanisms of these natural compounds is necessary. Our laboratory has established more than 30 kinds of monoclonal antibodies (MAbs) against bioactive natural compounds. Moreover, we have developed highly sensitive measurement systems for natural compounds, such as enzyme-linked immunosorbent assay (ELISA) and eastern blotting using MAbs. To expand the application of these MAbs to the functional analysis of natural compounds, we established a new approach for the isolation of the target compound from plant extracts using an immunoaffinity column conjugated with an anti-natural compound MAb. Through one-step purification using a MAb-conjugated immunoaffinity column, we have succeeded in preparing a knockout (KO) extract containing all components except the target compound, used as a hapten. Furthermore, we examined the pharmacological effects of the KO extract to identify the precise roles of the bioactive compound in the plant extract. To confirm another beneficial use of MAbs, we investigated the cellular localization and target molecules of natural compounds by immunocytochemistry (ICC) and Western blotting using MAbs. Our results demonstrated that MAbs clearly determined the cellular localization and target molecules of the natural compounds. These approaches may make it possible to determine the potential functions and target molecules of bioactive natural compounds in herbal medicines.

  7. Bioactive compounds and antioxidant activity of wolfberry infusion

    Science.gov (United States)

    Sun, Yujing; Rukeya, Japaer; Tao, Wenyang; Sun, Peilong; Ye, Xingqian

    2017-01-01

    An infusion of the wolfberry (Lycium barbarum L.) is a traditional Asian herbal tea. This is the most commonly consumed form of dried wolfberry worldwide, yet little scientific information on wolfberry infusions is available. We investigated the effects of making infusions with hot water on the color, the content of bioactive compounds (polysaccharides, polyphenols, flavonoids and carotenoids) and the antioxidant ability of wolfberry infusions. The contents of bioactive compounds and the antioxidant activity of a wolfberry infusion increased with increased infusion temperature and time. Total polysaccharides content (TPOC), total polyphenols (TPC), total flavonoids (TFC) and total carotenoids contents (TCC) were important for determining the antioxidant capacity of wolfberry infusions with the contribution to antioxidant activity in the order TPC > TFC > TCC > TPOC. Hierarchical cluster analysis indicated preparation conditions of 100 °C for 1~3 h, 90 °C for 2~3 h and 80 °C for 2.5~3 h were equivalent as regards the value of TPC, TPOC, TFC, TCC, FRAP, DPPH and ABTS. The results of this study suggest the length of time of making a wolfberry infusion in actual real life practice is too short and different dietary habits associated with the intake of wolfberry infusion might provide the same bioactive nutrients. PMID:28102295

  8. Bioactive compounds of sea cucumbers and their therapeutic effects

    Science.gov (United States)

    Shi, Shujuan; Feng, Wenjing; Hu, Song; Liang, Shixiu; An, Nina; Mao, Yongjun

    2016-05-01

    Sea cucumbers belong to the Class Holothuroidea of marine invertebrates. They are commercially valuable and prized as a food and folk medicine in Asia. Nutritionally, sea cucumbers have an impressive profile of valuable nutrients such as vitamins, minerals and amino acids. A number of unique biological and pharmacological activities/properties, including anticancer, anticoagulant/antithrombotic, antimicrobial, antioxidant, antihyperlipidemic, antihyperglycemic, anti-inflammatory, antihypertension and radioprotective, have been ascribed to various compounds isolated from sea cucumbers. The therapeutic properties and medicinal benefits of sea cucumbers can be linked to the presence of a wide array of bioactives, especially triterpene glycosides, acid mucopolysaccharide, sphingoid bases, glycolipids, fucosylated chondroitin sulfate, polysaccharides, phospholipids, cerebrosides, phosphatidylcholines, and other extracts and hydrolysates. This review highlights the valuable bioactive components as well as the multiple therapeutic properties of sea cucumbers with a view to exploring their potential uses as functional foods and a natural source of new multifunctional drugs.

  9. Cell-based screening assay for anti-inflammatory activity of bioactive compounds

    NARCIS (Netherlands)

    Meijer, Kees; Vonk, Roel J.; Priebe, Marion G.; Roelofsen, Han

    2015-01-01

    Excess dietary intake may induce metabolic inflammation which is associated with insulin resistance and cardiovascular disease. Recent evidence indicates that dietary bioactive compounds may diminish metabolic inflammation. To identify anti-inflammatory bioactives, we developed a screening assay

  10. BIOACTIVE COMPOUNDS AND ANTIOXIDANT POTENTIAL OF SOY PRODUCTS

    Directory of Open Access Journals (Sweden)

    Beatriz Cervejeira BOLANHO

    2011-12-01

    Full Text Available The aim of this work was to evaluated the amounts of bioactive compounds in soybean and derived products and the antioxidant activity (AA assessed by the methods of ABTS·+ , DPPH· , FRAP and peroxidation of linoleic acid (PLA. The micronized soy protein (MSP, defatted soy flour (DSF and textured soy protein (TSP had a higher content of phenolic compounds and higher antioxidant activity (AA, than the other products. MSP and tofus had the highest content of flavonoids and phytic acid (PA, respectively. The AA correlated with total phenolics and flavonoids, but the PA can act synergistically chelating the pro oxidants ions iron and copper. The highest concentration of copper was in soy protein isolate, and of iron in an ingredient of soy fiber and soy germ. Many compounds present in soy products contribute for the AA, but the concentration and potential will depend on final preparation of the grain or ingredients before consumption.

  11. Rosmarinus officinalis leaves as a natural source of bioactive compounds.

    Science.gov (United States)

    Borrás-Linares, Isabel; Stojanović, Zorica; Quirantes-Piné, Rosa; Arráez-Román, David; Švarc-Gajić, Jaroslava; Fernández-Gutiérrez, Alberto; Segura-Carretero, Antonio

    2014-11-10

    In an extensive search for bioactive compounds from plant sources, the composition of different extracts of rosemary leaves collected from different geographical zones of Serbia was studied. The qualitative and quantitative characterization of 20 rosemary (Rosmarinus officinalis) samples, obtained by microwave-assisted extraction (MAE), was determined by high performance liquid chromatography coupled to electrospray quadrupole-time of flight mass spectrometry (HPLC-ESI-QTOF-MS). The high mass accuracy and true isotopic pattern in both MS and MS/MS spectra provided by the QTOF-MS analyzer enabled the characterization of a wide range of phenolic compounds in the extracts, including flavonoids, phenolic diterpenes and abietan-type triterpenoids, among others. According to the data compiled, rosemary samples from Sokobanja presented the highest levels in flavonoids and other compounds such as carnosol, rosmaridiphenol, rosmadial, rosmarinic acid, and carnosic acid. On the other hand, higher contents in triterpenes were found in the extracts of rosemary from Gložan (Vojvodina).

  12. Molecular approaches to screen bioactive compounds from endophytic fungi

    Directory of Open Access Journals (Sweden)

    M Vasundhara

    2016-11-01

    Full Text Available Endophytic fungi are capable of producing plant associated metabolites and their analogs with therapeutic value. In order to identify the potential endophytic isolates producing bioactive compounds, one need to screen all isolated endophytes, which may run into hundreds. Isolation of endophytic fungi is relatively a simple process; but screening of the isolated fungi for required metabolite production is a cumbersome process. Endophytic fungi producing plant associated metabolites may contain genes involved in the entire biosynthetic pathway(s. Therefore, ascertaining the presence of key enzymes of a particular biosynthetic pathway could serve as a molecular marker for screening of these endophytes to produce that metabolite. In absence of entire biosynthetic pathways in endophytic fungi, plant genes associated with that metabolic pathway could serve as markers. This review focuses on the impact of molecular approaches to screen the endophytic fungi for the production of bioactive compounds. An attempt has been made on screening of anticancer compounds like taxol (paclitaxel, podophyllotoxin and camptothecin using molecular markers. The advantages of molecular approaches over conventional methods to screen endophytic fungi and also identification of endophytic fungi are also discussed.

  13. Molecular Approaches to Screen Bioactive Compounds from Endophytic Fungi.

    Science.gov (United States)

    Vasundhara, M; Kumar, Anil; Reddy, M Sudhakara

    2016-01-01

    Endophytic fungi are capable of producing plant associated metabolites and their analogs with therapeutic value. In order to identify the potential endophytic isolates producing bioactive compounds, one need to screen all isolated endophytes, which may run into hundreds. Isolation of endophytic fungi is relatively a simple process; but screening of the isolated fungi for required metabolite production is a cumbersome process. Endophytic fungi producing plant associated metabolites may contain genes involved in the entire biosynthetic pathway(s). Therefore, ascertaining the presence of key enzymes of a particular biosynthetic pathway could serve as a molecular marker for screening of these endophytes to produce that metabolite. In absence of entire biosynthetic pathways in endophytic fungi, plant genes associated with that metabolic pathway could serve as markers. This review focuses on the impact of molecular approaches to screen the endophytic fungi for the production of bioactive compounds. An attempt has been made on screening of anticancer compounds like taxol (paclitaxel), podophyllotoxin, and camptothecin using molecular markers. The advantages of molecular approaches over conventional methods to screen endophytic fungi and also identification of endophytic fungi are discussed.

  14. Effect of Dietary Bioactive Compounds on Mitochondrial and Metabolic Flexibility

    Directory of Open Access Journals (Sweden)

    Jose C. E. Serrano

    2016-03-01

    Full Text Available Metabolic flexibility is the capacity of an organism to adequately respond to changes in the environment, such as nutritional input, energetic demand, etc. An important player in the capacity of adaptation through different stages of metabolic demands is the mitochondrion. In this context, mitochondrial dysfunction has been attributed to be the onset and center of many chronic diseases, which are denoted by an inability to adapt fuel preferences and induce mitochondrial morphological changes to respond to metabolic demands, such as mitochondrial number, structure and function. Several nutritional interventions have shown the capacity to induce changes in mitochondrial biogenesis/degradation, oxidative phosphorylation efficiency, mitochondrial membrane composition, electron transfer chain capacity, etc., in metabolic inflexibility states that may open new target options and mechanisms of action of bioactive compounds for the treatment of metabolic diseases. This review is focused in three well-recognized food bioactive compounds that modulate insulin sensitivity, polyphenols, ω-3 fatty acids and dietary fiber, by several mechanism of action, like caloric restriction properties and inflammatory environment modulation, both closely related to mitochondrial function and dynamics.

  15. Bioactive berry compounds-novel tools against human pathogens.

    Science.gov (United States)

    Puupponen-Pimiä, Riitta; Nohynek, Liisa; Alakomi, Hanna-Leena; Oksman-Caldentey, Kirsi-Marja

    2005-04-01

    Berry fruits are rich sources of bioactive compounds, such as phenolics and organic acids, which have antimicrobial activities against human pathogens. Among different berries and berry phenolics, cranberry, cloudberry, raspberry, strawberry and bilberry especially possess clear antimicrobial effects against, e.g. Salmonella and Staphylococcus. Complex phenolic polymers, like ellagitannins, are strong antibacterial agents present in cloudberry and raspberry. Several mechanisms of action in the growth inhibition of bacteria are involved, such as destabilisation of cytoplasmic membrane, permeabilisation of plasma membrane, inhibition of extracellular microbial enzymes, direct actions on microbial metabolism and deprivation of the substrates required for microbial growth. Antimicrobial activity of berries may also be related to antiadherence of bacteria to epithelial cells, which is a prerequisite for colonisation and infection of many pathogens. Antimicrobial berry compounds may have important applications in the future as natural antimicrobial agents for food industry as well as for medicine. Some of the novel approaches are discussed.

  16. Development of pressurised hot water extraction (PHWE) for essential compounds from Moringa oleifera leaf extracts.

    Science.gov (United States)

    Matshediso, Phatsimo G; Cukrowska, Ewa; Chimuka, Luke

    2015-04-01

    Pressurised hot water extraction (PHWE) is a "green" technology which can be used for the extraction of essential components in Moringa oleifera leaf extracts. The behaviour of three flavonols (myricetin, quercetin and kaempferol) and total phenolic content (TPC) in Moringa leaf powder were investigated at various temperatures using PHWE. The TPC of extracts from PHWE were investigated using two indicators. These are reducing activity and the radical scavenging activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH). Flavonols content in the PHWE extracts were analysed on high performance liquid chromatography with ultra violet (HPLC-UV) detection. The concentration of kaempferol and myricetin started decreasing at 150 °C while that of quercetin remained steady with extraction temperature. Optimum extraction temperature for flavonols and DPPH radical scavenging activity was found to be 100 °C. The TPC increased with temperature until 150 °C and then decreased while the reducing activity increased.

  17. 'Moringa oleifera: study of phenolics and glucosinolates by mass spectrometry'.

    Science.gov (United States)

    Maldini, Mariateresa; Maksoud, Salwa A; Natella, Fausta; Montoro, Paola; Petretto, Giacomo Luigi; Foddai, Marzia; De Nicola, Gina Rosalinda; Chessa, Mario; Pintore, Giorgio

    2014-09-01

    Moringa oleifera is a medicinal plant and an excellent dietary source of micronutrients (vitamins and minerals) and health-promoting phytochemicals (phenolic compounds, glucosinolates and isothiocyanates). Glucosinolates and isothiocyanates are known to possess anti-carcinogenic and antioxidant effects and have attracted great interest from both toxicological and pharmacological points of view, as they are able to induce phase 2 detoxification enzymes and to inhibit phase 1 activation enzymes. Phenolic compounds possess antioxidant properties and may exert a preventative effect in regards to the development of chronic degenerative diseases. The aim of this work was to assess the profile and the level of bioactive compounds in all parts of M. oleifera seedlings, by using different MS approaches. First, flow injection electrospray ionization mass spectrometry (FI-ESI-MS) fingerprinting techniques and chemometrics (PCA) were used to achieve the characterization of the different plant's organs in terms of profile of phenolic compounds and glucosinolates. Second, LC-MS and LC-MS/MS qualitative and quantitative methods were used for the identification and/or determination of phenolics and glucosinolates in M. oleifera.

  18. Encapsulating fatty acid esters of bioactive compounds in starch

    Science.gov (United States)

    Lay Ma, Ursula Vanesa

    Interest in the use of many bioactive compounds in foods is growing in large part because of the apparent health benefits of these molecules. However, many of these compounds can be easily degraded during processing, storage, or their passage through the gastrointestinal tract before reaching the target site. In addition, they can be bitter, acrid, or astringent, which may negatively affect the sensory properties of the product. Encapsulation of these molecules may increase their stability during processing, storage, and in the gastrointestinal tract, while providing controlled release properties. The ability of amylose to form inclusion complexes and spherulites while entrapping certain compounds has been suggested as a potential method for encapsulation of certain molecules. However, complex formation and spherulitic crystallization are greatly affected by the type of inclusion molecules, type of starch, and processing conditions. The objectives of the present investigation were to: (a) study the effect of amylose, amylopectin, and intermediate material on spherulite formation and its microstructure; (b) investigate the formation of amylose and high amylose starch inclusion complexes with ascorbyl palmitate, retinyl palmitate, and phytosterol esters; (c) evaluate the ability of spherulites to form in the presence of fatty acid esters and to entrap ascorbyl palmitate, retinyl palmitate, and phytosterol esters; and (d) evaluate the effect of processing conditions on spherulite formation and fatty acid ester entrapment. Higher ratios of linear to branched molecules resulted in the formation of more and rounder spherulites with higher heat stability. In addition to the presence of branches, it appears that spherulitic crystallization is also affected by other factors, such as degree of branching, chain length, and chain length distribution. Amylose and Hylon VII starch formed inclusion complexes with fatty acid esters of ascorbic acid, retinol, or phytosterols

  19. Moringa oleifera Lam: Targeting Chemoprevention.

    Science.gov (United States)

    Karim, Nurul Ashikin Abd; Ibrahim, Muhammad Din; Kntayya, Saie Brindha; Rukayadi, Yaya; Hamid, Hazrulizawati Abd; Razis, Ahmad Faizal Abdull

    2016-01-01

    Moringa oleifera Lam, family Moringaceae, is a perennial plant which is called various names, but is locally known in Malaysia as "murungai" or "kelor". Glucomoringin, a glucosinolate with from M. oleifera is a major secondary metabolite compound. The seeds and leaves of the plant are reported to have the highest amount of glucosinolates. M. oleifera is well known for its many uses health and benefits. It is claimed to have nutritional, medicinal and chemopreventive potentials. Chemopreventive effects of M. oleifera are expected due to the existence of glucosinolate which it is reported to have the ability to induce apoptosis in anticancer studies. Furthermore, chemopreventive value of M. oleifera has been demonstrated in studies utilizing its leaf extract to inhibit the growth of human cancer cell lines. This review highlights the advantages of M. oleifera targeting chemoprevention where glucosinolates could help to slow the process of carcinogenesis through several molecular targets. It is also includes inhibition of carcinogen activation and induction of carcinogen detoxification, anti-inflammatory, anti-tumor cell proliferation, induction of apoptosis and inhibition of tumor angiogenesis. Finally, for synergistic effects of M. oleifera with other drugs and safety, essential for chemoprevention, it is important that it safe to be consumed by human body and works well. Although there is promising evidence about M. oleifera in chemoprevention, extensive research needs to be done due to the expected rise of cancer in coming years and to gain more information about the mechanisms involved in M. oleifera influence, which could be a good source to inhibit several major mechanisms involved in cancer development.

  20. Chemical Composition and Bioactive Compounds of Some Wild Edible Mushrooms

    Directory of Open Access Journals (Sweden)

    Melinda NAGY

    2017-05-01

    Full Text Available Over the last decades, the consumption of mushrooms has significantly increased due to the scientific evidence of their ability to help the organism in the combat and prevention of several diseases (Kalac, 2009. Fruiting bodies of mushrooms are consumed as a delicacy for their texture and flavour, but also for their nutritional properties that makes them even more attractable (Heleno S. 2015. In this paper data were collected from several scientific studies with the aim to characterize the chemical composition and content of bioactive compounds of various mushrooms species: Agaricus bisporus, Boletus edulis, Cantharellus cibarius, Pleurotus ostreatus, Lactarius piperatus. The chemical composition of 5 wild edible studied mushrooms, including moisture, ash, total carbohydrates, total sugars, crude fat, crude protein and energy were determined according to AOAC procedures.

  1. Amazonian Native Palm Fruits as Sources of Antioxidant Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Mary de Fátima Guedes dos Santos

    2015-09-01

    Full Text Available The Amazon region has many sources of fruits, especially native ones not yet explored, but which have some potential for use, as is the case with certain palms. The objective of this study was to evaluate the content of bioactive compounds and total antioxidant capacities of fruits from native palms from the Brazilian Amazon. The fruits of five palm species (bacaba, buriti, inajá, pupunha, and tucumã were evaluated for levels of ascorbic acid, anthocyanins, yellow flavonoids, total carotenoids, and total extractable polyphenols, as well as the total antioxidant capacities. The fruits had high contents of extractable total polyphenols, especially bacaba and tucumã (941.56 and 158.98 mg of galic acid·100g−1, total carotenoids in the case of tucumã and buriti (7.24 and 4.67 mg·100g−1, and anthocyanins in bacaba (80.76 mg·100g−1. As for the antioxidant capacity, bacaba had the highest total antioxidant activity by the Oxygen Radical Antioxidant Capacity (ORAC (194.67 µM·Trolox·g−1, 2,2-diphenyl-1-picrylhydrazyl (DPPH (47.46 g·pulp·g−1 DPPH, and β-carotene/linoleic acid (92.17% Oxidation Inhibition (O.I methods. Bacaba phenolic profile revealed the presence of cyanidin-3-O-rutinoside and other flavonoids. The palm fruits studied can be considered good sources of bioactive compounds, some containing higher amounts than that of commonly consumed fruits. Total extractable polyphenols and anthocyanins were directly correlated to antioxidant activity in these fruits.

  2. Carbohydrate-based bioactive compounds for medicinal chemistry applications.

    Science.gov (United States)

    Cipolla, L; Peri, F

    2011-01-01

    In this article we review our work over the years on carbohydrates and carbohydrate mimetics and their applications in medicinal chemistry. In the first part of the review innovative synthetic methods, such as the chemoselective glycosylation method originally developed by our group and its applications to the synthesis of neoglycoconjugates (neoglycopeptides, oligosaccharide mimetics, neoglycolipids, etc…) will be presented. The high density of functional groups (hydroxyls) on the monosaccharides and the structural role of sugars forming the core of complex glycans in scaffolding and orienting the external sugar units for the interaction with receptors, inspired us and others to use sugars as scaffolds for the construction of pharmacologically active compounds. In the second part of this review, we will present some examples of bioactive and pharmacologically active compounds obtained by decorating monosaccharide scaffolds with pharmacophore groups. Sugar-derived protein ligands were also used as chemical probes to study the interaction of their target with other proteins in the cell. In this context, sugar mimetics and sugar-derived compounds have been employed as tools for exploring biology according to the "chemical genetic" approach.

  3. Rosmarinus Officinalis Leaves as a Natural Source of Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Isabel Borrás-Linares

    2014-11-01

    Full Text Available In an extensive search for bioactive compounds from plant sources, the composition of different extracts of rosemary leaves collected from different geographical zones of Serbia was studied. The qualitative and quantitative characterization of 20 rosemary (Rosmarinus officinalis samples, obtained by microwave-assisted extraction (MAE, was determined by high performance liquid chromatography coupled to electrospray quadrupole-time of flight mass spectrometry (HPLC–ESI-QTOF-MS. The high mass accuracy and true isotopic pattern in both MS and MS/MS spectra provided by the QTOF-MS analyzer enabled the characterization of a wide range of phenolic compounds in the extracts, including flavonoids, phenolic diterpenes and abietan-type triterpenoids, among others. According to the data compiled, rosemary samples from Sokobanja presented the highest levels in flavonoids and other compounds such as carnosol, rosmaridiphenol, rosmadial, rosmarinic acid, and carnosic acid. On the other hand, higher contents in triterpenes were found in the extracts of rosemary from Gložan (Vojvodina.

  4. Production of Bioactive Compounds by Bacillus subtilis against Sclerotium rolfsii

    Directory of Open Access Journals (Sweden)

    Nalisha, I.

    2006-01-01

    Full Text Available This study aims to investigate the characteristic of bioactive compound produced by Bacillus subtilis against Sclerotium rolfsii and the influence of additive supplements on the antagonistic activity of B. subtilis. The fact that B. subtilis produced an antifungal substance which has inhibitory effect on wide range of fungi, including S. rolfsii, is well known. To learn the effect of pH, temperature and light condition on the production of antifungal compound, B. subtilis was inoculated in Potato Dextrose Broth at various initial pH, temperatures and light conditions, respectively. This antagonist was found to produce antifungal compound that stable at 80C with 58.3 % inhibition on S. rolfsii. The activity was constant within a wide range of pH (3–11. However, treatment with pH11 lead to higher antifungal activity (31.57 % inhibition and it was also found to produce substance that can endure dark condition (46.24 % inhibition with fungicidal effect on S. rolfsii. A series of experiments also been carried out to enhance the antifungal production by supplementing different carbon source preparation into bacterial liquid culture. B. subtilis were grown in minimal medium containing 1 % of oil palm root, Ganoderma lucidum or chitin, respectively prior to bioassay. Crude culture from oil palm root supplemented culture shown significantly reduction in S. rolfsii growth compared to other carbon source crude culture or the antagonism alone, suggesting that this approach may provide improved biocontrol efficiency.

  5. Nutritional Characterization and Phenolic Profiling of Moringa oleifera Leaves Grown in Chad, Sahrawi Refugee Camps, and Haiti.

    Science.gov (United States)

    Leone, Alessandro; Fiorillo, Giovanni; Criscuoli, Franca; Ravasenghi, Stefano; Santagostini, Laura; Fico, Gelsomina; Spadafranca, Angela; Battezzati, Alberto; Schiraldi, Alberto; Pozzi, Federica; di Lello, Sara; Filippini, Sandro; Bertoli, Simona

    2015-08-12

    Moringa oleifera is a plant that grows in tropical and subtropical areas of the world. Its leaves are rich of nutrients and bioactive compounds. However, several differences are reported in the literature. In this article we performed a nutritional characterization and a phenolic profiling of M. oleifera leaves grown in Chad, Sahrawi refugee camps, and Haiti. In addition, we investigated the presence of salicylic and ferulic acids, two phenolic acids with pharmacological activity, whose presence in M. oleifera leaves has been scarcely investigated so far. Several differences were observed among the samples. Nevertheless, the leaves were rich in protein, minerals, and β-carotene. Quercetin and kaempferol glycosides were the main phenolic compounds identified in the methanolic extracts. Finally, salicylic and ferulic acids were found in a concentration range of 0.14-0.33 and 6.61-9.69 mg/100 g, respectively. In conclusion, we observed some differences in terms of nutrients and phenolic compounds in M. oleifera leaves grown in different countries. Nevertheless, these leaves are a good and economical source of nutrients for tropical and sub-tropical countries. Furthermore, M. oleifera leaves are a source of flavonoids and phenolic acids, among which salicylic and ferulic acids, and therefore they could be used as nutraceutical and functional ingredients.

  6. Carrier system for a plant extract or bioactive compound from a plant

    DEFF Research Database (Denmark)

    2016-01-01

    This invention relates to a carrier system for use in producing a beverage with a metered amount of plant extract or bioactive compound.......This invention relates to a carrier system for use in producing a beverage with a metered amount of plant extract or bioactive compound....

  7. Antioxidant capacity and bioactive compounds of four Brazilian native fruits

    Directory of Open Access Journals (Sweden)

    Cristiane C. Denardin

    2015-09-01

    Full Text Available The purpose of this study was to evaluate the bioactive compounds and antioxidant activity of extracts from araçá (Psidium cattleianum, butiá (Butia eriospatha, and pitanga (Eugenia uniflora fruits with different flesh colors (i.e., purple, red, and orange, and blackberries (Rubus sp.; cv. Xavante and Cherokee collected in the southern region of Brazil. The content of ascorbic acid, total carotenoids, and phenolics were determined. The profile of the phenolic compounds was assessed by high-performance liquid chromatography combined with diode array detection (HPLC-DAD. The antioxidant activity was determined using the ferric-reducing antioxidant power (FRAP assay, 2,2-diphenyl-2-picrylhydrazyl hydrate (DPPH assay, total reactive antioxidant potential (TRAP assay, and total antioxidant reactivity (TAR assay. The Xavante blackberry and purple-fleshed pitanga showed the highest total phenolic content [816.50 mg gallic acid equivalents (GAE/100g and 799.80 mg GAE/100g, respectively]. The araçá and red-fleshed pitanga showed the highest carotenoid content (6.27 ug β-carotene/g and 5.86 ug β-carotene/g, respectively. The fruits contained several phenolic compounds such as quercetin derivatives, quercitrin, isoquercitrin, and cyanidin derivatives, which may contribute differentially to the antioxidant capacity. The highest scavenging activity in the DPPH assay was found for purple-fleshed pitanga (IC50 36.78 mg/L, blackberries [IC50 44.70 (Xavante and IC50 78.25 mg/L (Cherokee], and araçá (IC50 48.05 mg/L, which also showed the highest FRAP, followed by orange- and red-fleshed pitanga. Our results revealed that some fruits grown in southern Brazil such as purple-fleshed pitanga, blackberries, and araçá are rich sources of phenolic compounds and have great antioxidant activity.

  8. Extraction and identification of bioactive compounds from agarwood leaves

    Science.gov (United States)

    Lee, N. Y.; Yunus, M. A. C.; Idham, Z.; Ruslan, M. S. H.; Aziz, A. H. A.; Irwansyah, N.

    2016-11-01

    Agarwood commonly known as gaharu, aloeswood or eaglewood have been used as traditional medicine for centuries and its essential oil also being used as perfumery ingredients and aroma enhancers in food products. However, there is least study on the agarwood leaves though it contains large number of biomolecules component that show diverse pharmacological activity. Previous study showed that the extracted compounds from the leaves possess activities like anti-mutagenic, anti-tumor and anti-helminthic. The main objectives of this research were to determine bioactive compounds in agarwood leaves; leaves extract and oil yield obtained from maceration and soxhlet extraction methods respectively. The maceration process was performed at different operating temperature of 25°C, 50°C and 75°C and different retention time at 30, 60, 90 and 120 minutes. Meanwhile, various solvents were used to extract the oil from agarwood leaves using soxhlet method which are hexane, water, isopropanol and ethanol. The extracted oil from agarwood leaves by soxhlet extraction was analyzed using gas chromatography mass spectrometry. The results showed that the highest extract of 1.53% was obtained when increase the temperature to 75 °C and longest retention time of 120 minutes gave the highest oil yield of 2.10 % by using maceration. This is because at higher temperature enhances the solubility solute and diffusivity coefficient, thus increase the extract yield while longer retention time allow the reaction between solvent and solute occurred more rapidly giving higher extract. Furthermore, the soxhlet extraction using n-hexane as the solvent gave the highest oil yield as compared to other solvent due to the non-polar properties of n-hexane increase the efficiency of oil which is also non-polar to soluble in the solvent. In addition, the results also reported that the oil extracted from agarwood leaves contains bioactive compounds which are phytol, squalene, n-hexadecanoic acid and

  9. GC/GCMS analysis of the petroleum ether and dichloromethane extracts of Moringa oleifera roots

    Institute of Scientific and Technical Information of China (English)

    Shaheen Faizi; Saima Sumbul; Muhammed Ali Versiani; Rubeena Saleem; Aisha Sana; Hira Siddiqui

    2014-01-01

    Objective:To explore the phytochemical constituents from petroleum ether and dichloromethane extracts of Moringa oleifera (M. oleifera) roots using GC/GC-MS. Methods: A total of 5.11 kg fresh and undried crushed root of M. oleifera were cut into small pieces and extracted with petroleum ether and dichloromethane (20 L each) at room temperature for 2 d. The concentrated extracts were subjected to their GC-MS analysis. Results:The GC-MS analysis of the petroleum ether and dichloromethane extracts of M. oleifera roots, which showed promising biological activities, has resulted in the identification 102 compounds. These constituents belong to 15 classes of compounds including hydrocarbons, fatty acids, esters, alcohols, isothiocyanate, thiocyanate, pyrazine, aromatics, alkamides, cyanides, steroids, halocompounds, urea and N-hydroxyimine derivatives, unsaturated alkenamides, alkyne and indole. GC/GC-MS studies on petroleum ether extract of the roots revealed that it contained 39 compounds, belonging to nine classes. Cyclooctasulfur S8 has been isolated as a pure compound from the extract. The major compounds identified from petroleum ether extract were trans-13-docosene (37.9%), nonacosane (32.6%), cycloartenol (28.6%) nonadecanoic acid (13.9%) and cyclooctasulfur S8 (13.9%). Dichloromethane extract of the roots was composed of 63 compounds of which nasimizinol (58.8%) along with oleic acid (46.5%), N-benzyl-N-(7-cyanato heptanamide (38.3%), N-benzyl-N-(1-chlorononyl) amide (30.3%), bis [3-benzyl prop-2-ene]-1-one (19.5%) and N, N-dibenzyl-2-ene pent 1, 5-diamide (11.6%) were the main constituents. Conclusions:This study helps to predict the formula and structure of active molecules which can be used as drugs. This result also enhances the traditional usage of M. oleifera which possesses a number of bioactive compounds.

  10. Potential Bioactive Compounds from Seaweed for Diabetes Management

    Directory of Open Access Journals (Sweden)

    Yusrizam Sharifuddin

    2015-08-01

    Full Text Available Diabetes mellitus is a group of metabolic disorders of the endocrine system characterised by hyperglycaemia. Type II diabetes mellitus (T2DM constitutes the majority of diabetes cases around the world and are due to unhealthy diet, sedentary lifestyle, as well as rise of obesity in the population, which warrants the search for new preventive and treatment strategies. Improved comprehension of T2DM pathophysiology provided various new agents and approaches against T2DM including via nutritional and lifestyle interventions. Seaweeds are rich in dietary fibres, unsaturated fatty acids, and polyphenolic compounds. Many of these seaweed compositions have been reported to be beneficial to human health including in managing diabetes. In this review, we discussed the diversity of seaweed composition and bioactive compounds which are potentially useful in preventing or managing T2DM by targeting various pharmacologically relevant routes including inhibition of enzymes such as α-glucosidase, α-amylase, lipase, aldose reductase, protein tyrosine phosphatase 1B (PTP1B and dipeptidyl-peptidase-4 (DPP-4. Other mechanisms of action identified, such as anti-inflammatory, induction of hepatic antioxidant enzymes’ activities, stimulation of glucose transport and incretin hormones release, as well as β-cell cytoprotection, were also discussed by taking into consideration numerous in vitro, in vivo, and human studies involving seaweed and seaweed-derived agents.

  11. Potential Bioactive Compounds from Seaweed for Diabetes Management.

    Science.gov (United States)

    Sharifuddin, Yusrizam; Chin, Yao-Xian; Lim, Phaik-Eem; Phang, Siew-Moi

    2015-08-21

    Diabetes mellitus is a group of metabolic disorders of the endocrine system characterised by hyperglycaemia. Type II diabetes mellitus (T2DM) constitutes the majority of diabetes cases around the world and are due to unhealthy diet, sedentary lifestyle, as well as rise of obesity in the population, which warrants the search for new preventive and treatment strategies. Improved comprehension of T2DM pathophysiology provided various new agents and approaches against T2DM including via nutritional and lifestyle interventions. Seaweeds are rich in dietary fibres, unsaturated fatty acids, and polyphenolic compounds. Many of these seaweed compositions have been reported to be beneficial to human health including in managing diabetes. In this review, we discussed the diversity of seaweed composition and bioactive compounds which are potentially useful in preventing or managing T2DM by targeting various pharmacologically relevant routes including inhibition of enzymes such as α-glucosidase, α-amylase, lipase, aldose reductase, protein tyrosine phosphatase 1B (PTP1B) and dipeptidyl-peptidase-4 (DPP-4). Other mechanisms of action identified, such as anti-inflammatory, induction of hepatic antioxidant enzymes' activities, stimulation of glucose transport and incretin hormones release, as well as β-cell cytoprotection, were also discussed by taking into consideration numerous in vitro, in vivo, and human studies involving seaweed and seaweed-derived agents.

  12. Evaluating the potential bioactivity of a novel compound ER1626.

    Directory of Open Access Journals (Sweden)

    Lijun Wang

    Full Text Available BACKGROUND: ER1626, a novel compound, is a derivate of indeno-isoquinoline ketone. This study was designed to evaluate the biological activity and potential anti-tumor mechanism of ER1626. METHOD: MTT assay, scratch assay and flow cytometry were used to determine cell proliferation, cell migration and cell cycle distribution as well as cell apoptosis on human breast cancer MCF-7 cells and endometrial cancer Ishikawa cells. We also explored the antiangiogenic effect of ER1626 on HUVEC cells and chicken embryos. The expression of estrogen receptor protein was investigated with western-blot analysis. RESULTS: ER1626 down-regulated the expression of estrogen receptor α protein and up-regulated β protein in MCF-7 and Ishikawa cells. The value of IC50 of ER1626 on MCF-7 and Ishikawa cells were respectively 8.52 and 3.08 µmol/L. Meanwhile, ER1626 decreased VEGF secretion of MCF-7 and Ishikawa cells, disturbed the formation of VEGF-stimulated tubular structure in HUVEC cells, and inhibited the angiogenesis on the chicken chorioallantoic membrane. Scratch assay revealed that ER1626 suppressed the migration of MCF-7, Ishikawa and HUVEC cells. In addition to induction tumor cell apoptosis, ER1626 arrested cell cycle in G1/G0 phase in MCF-7 cells and G2/M phase in Ishikawa cells. CONCLUSION: In conclusion, our results demonstrated that ER1626 has favorable bioactivities to be a potential candidate against breast cancer and angiogenesis.

  13. Jellyfish Bioactive Compounds: Methods for Wet-Lab Work.

    Science.gov (United States)

    Frazão, Bárbara; Antunes, Agostinho

    2016-04-12

    The study of bioactive compounds from marine animals has provided, over time, an endless source of interesting molecules. Jellyfish are commonly targets of study due to their toxic proteins. However, there is a gap in reviewing successful wet-lab methods employed in these animals, which compromises the fast progress in the detection of related biomolecules. Here, we provide a compilation of the most effective wet-lab methodologies for jellyfish venom extraction prior to proteomic analysis-separation, identification and toxicity assays. This includes SDS-PAGE, 2DE, gel chromatography, HPLC, DEAE, LC-MS, MALDI, Western blot, hemolytic assay, antimicrobial assay and protease activity assay. For a more comprehensive approach, jellyfish toxicity studies should further consider transcriptome sequencing. We reviewed such methodologies and other genomic techniques used prior to the deep sequencing of transcripts, including RNA extraction, construction of cDNA libraries and RACE. Overall, we provide an overview of the most promising methods and their successful implementation for optimizing time and effort when studying jellyfish.

  14. The effects of bioactive compounds on biomarkers of obesity

    Directory of Open Access Journals (Sweden)

    Rebecca Coats

    2015-11-01

    Full Text Available Background: The world is presently facing a prolonged struggle without a predictable cure. Obesity causes hundreds of thousands of fatalities each year, along with holding a position as a primary contributor to several other virulent chronic diseases. This review of scientific literature will examine the current state of obesity along with the mechanisms and biomarkers that lay the foundation for the development of the disease. Furthermore, this article will assess several functional foods and the bioactive compounds they contain that play an influential role in the prevention and treatment of obesity as a chronic disease. By presenting many relevant functional food research studies, this review aims to offer auxiliary support to traditional obesity treatments. The topic of functional foods and their relation to obesity is an extremely important topic to explore due to the severe expansion of obesity in the past few decades. Overall, the purpose of this review is to supply a comprehensive description of obesity and examine results of functional foods in clinical trials that may offer innovative benefits.

  15. New Bioactive Oleanane Type Compounds from Coriandrum sativum Linn.

    Directory of Open Access Journals (Sweden)

    Muhammad Iqbal

    2014-01-01

    Full Text Available Five (1–5 new bioactive oleanane type triterpenoids have been isolated from ethyl acetate soluble fraction of ethanolic extract of Coriandrum sativum Linn. of Umbelliferae family. Ethanolic extract of the whole plant was fractionated in organic solvents. Ethyl acetate fraction was subjected to column chromatography on HPLC RP-18 to get 1-oxo-11β,21β-dihydroxy-oleanane (1, 1-oxo-11β-hydroxy-21β-O-acetyloleanane (2, 1-oxo-11β-hydroxy-21β-O-angeloyloleanane (3, 1-oxo-11β-O-angeloyl-21β-O-acetyloleanane (4, and 1-oxo-11β,21β-O-dibenzoyloleanane (5. The structures were elucidated after analysis of spectroscopic data, UV, IR, NMR (1H, 13C, 1D, and 2D, and mass measurements. Suspension in water of crude ethyl acetate extract was employed to treat sheep with ringworm disease. All isolated compounds (1–5 displayed excellent activity in terms of inhibition zones, MICs, MBCs, and MFCs against both bacteria and fungi. Ethyl acetate extract showed excellent antiringworm activity in sheep.

  16. Jellyfish Bioactive Compounds: Methods for Wet-Lab Work

    Directory of Open Access Journals (Sweden)

    Bárbara Frazão

    2016-04-01

    Full Text Available The study of bioactive compounds from marine animals has provided, over time, an endless source of interesting molecules. Jellyfish are commonly targets of study due to their toxic proteins. However, there is a gap in reviewing successful wet-lab methods employed in these animals, which compromises the fast progress in the detection of related biomolecules. Here, we provide a compilation of the most effective wet-lab methodologies for jellyfish venom extraction prior to proteomic analysis—separation, identification and toxicity assays. This includes SDS-PAGE, 2DE, gel chromatography, HPLC, DEAE, LC-MS, MALDI, Western blot, hemolytic assay, antimicrobial assay and protease activity assay. For a more comprehensive approach, jellyfish toxicity studies should further consider transcriptome sequencing. We reviewed such methodologies and other genomic techniques used prior to the deep sequencing of transcripts, including RNA extraction, construction of cDNA libraries and RACE. Overall, we provide an overview of the most promising methods and their successful implementation for optimizing time and effort when studying jellyfish.

  17. Bioactive compounds in potatoes: Accumulation under drought stress conditions

    Directory of Open Access Journals (Sweden)

    Christina B. Wegener

    2015-03-01

    Full Text Available Background: Potato (Solanum tuberosum is a valuable source of bioactive compounds. Besides starch, crude fibre, amino acids (AAS, vitamins and minerals, the tubers contain diverse phenolic compounds. These phenolics and AAS confer anti-oxidant protection against reactiveoxygen species, tissue damage, and diseases like atherosclerosis, renal failure, diabetes mellitus,and cancer. Climate change and drought stress may become a major risk for crop production worldwide, resulting in reduced access for those who depend on the nutritional value of this staple crop. Objective: The aim of this study is to determine the effect of drought stress on water, lipid soluble antioxidants, anthocyanins (Ac, soluble phenols, proteins, free AAS, peroxidase (POD and lipid acyl hydrolase activity (LAH in tuber tissue. Methods: The study was carried out on three potato genotypes comprising one yellow-fleshed cultivar and two purple breeding clones. The plants were grown in pots (from April to September in a glasshouse with sufficient water supply and under drought stress conditions. After harvest, the tubers of both variants were analysed for antioxidants measured as ascorbic acid (ACE and Trolox equivalent (TXE using a photo-chemiluminescent method. Amounts of anthocyanins (Ac, soluble phenols, proteins, as well as POD and LAH activities were analysed using a UV photometer. Finally, free AAS were measured by HPLC. Results: The results revealed that drought stress significantly reduces tuber yield, but has no significant effect on antioxidants, Ac, soluble phenols and POD. Drought stress significantly increased the levels of soluble protein (P < 0.0001 and LAH (P < 0.001. Also, total amounts of free AAS were higher in the drought stressed tubers (+34.2%, on average than in the tubers grown with a sufficient water supply. Above all, proline was elevated due to drought stress.

  18. Bioactive Compounds of Aristotelia chilensis Stuntz and their Pharmacological Effects.

    Science.gov (United States)

    Romanucci, Valeria; D'Alonzo, Daniele; Guaragna, Annalisa; Di Marino, Cinzia; Davinelli, Sergio; Scapagnini, Giovanni; Di Fabio, Giovanni; Zarrelli, Armando

    2016-01-01

    Aristotelia chilensis ([Molina], Stuntz) a member of the family Eleocarpaceae, is a plant native to Chile that is distributed in tropical and temperate Asia, Australia, the Pacific Area, and South America. The juice of its berries has important medicinal properties, as an astringent, tonic, and antidiarrhoeal. Its many qualities make the maqui berry the undisputed sovereign of the family of so-called "superfruits", as well as a valuable tool to combat cellular inflammation of bones and joints. Recently, it is discovered that the leaves of the maqui berry have important antibacterial and antitumour activities. This review provides a comprehensive overview of the traditional use, phytochemistry, and biological activity of A. chilensis using information collected from scientific journals, books, and electronic searches. Anthocyanins, other flavonoids, alkaloids, cinnamic acid derivatives, benzoic acid derivatives, other bioactive molecules, and mineral elements are summarized. A broad range of activities of plant extracts and fractions are presented, including antioxidant activity, inhibition of visible light-induced damage of photoreceptor cells, inhibition of α-glucosidase, inhibition of pancreatic lipase, anti-diabetic effects, anti-inflammatory effects, analgesic effects, anti-diabetes, effective prevention of atherosclerosis, promotion of hair growth, anti-photo ageing of the skin, and inhibition of lipid peroxidation. Although some ethnobotanical uses have been supported in in vitro experiments, further studies of the individual compounds or chemical classes of compounds responsible for the pharmacological effects and the mechanisms of action are necessary. In addition, the toxicity and the side effects from the use of A. chilensis, as well as clinical trials, require attention.

  19. Prediction of bioactive compound pathways using chemical interaction and structural information.

    Science.gov (United States)

    Cheng, Shiwen; Zhu, Changming; Chu, Chen; Huang, Tao; Kong, Xiangyin; Zhu, Liu Cun

    2016-01-01

    The functional screening of compounds is an important topic in chemistry and biomedicine that can uncover the essential properties of compounds and provide information concerning their correct use. In this study, we investigated the bioactive compounds reported in Selleckchem, which were assigned to 22 pathways. A computational method was proposed to identify the pathways of the bioactive compounds. Unlike most existing methods that only consider compound structural information, the proposed method adopted both the structural and interaction information from the compounds. The total accuracy achieved by our method was 61.79% based on jackknife analysis of a dataset of 1,832 bioactive compounds. Its performance was quite good compared with that of other machine learning algorithms (with total accuracies less than 46%). Finally, some of the false positives obtained by the method were analyzed to investigate the likelihood of compounds being annotated to new pathways.

  20. [Bioactive compounds from marine sponges and cell culture of marine sponges].

    Science.gov (United States)

    Zhang, Xiao-Ying; Zhao, Quan-Yu; Xue, Song; Zhang, Wei

    2002-01-01

    Presented a survey of bioactive compounds discovered from marine sponges in the recent five years, including the classes, distribution and their potential pharmaceutical uses. In particular, the compounds with antitumor, antivirus and antibacteria activity were discussed with their originating marine sponge species. Whereas the "Supply Problems" were identified to hinder the clinical tests and commercial applications of most of the sponge bioactive compounds. In vitro cell culture of marine sponges is one of the most promising approaches to solve this problem. The state-of-the art of marine sponge cell culture and the challenging areas were discussed. A brief summary of the R&D status was also given on the bioactive compounds from marine sponges in Chinese oceans. It is crucial to invest more efforts on studying marine sponges and their bioactive compounds in our country in order to develop new marine drugs of independent intellectual property.

  1. Evaluation of bioactive compounds and bioactivities of soybean dried by different methods and conditions.

    Science.gov (United States)

    Niamnuy, Chalida; Nachaisin, Mali; Laohavanich, Juckamas; Devahastin, Sakamon

    2011-12-01

    Soybean has attracted significant research and commercial interests due to its many health-promoting bioactive compounds, especially isoflavones (β-glucosides, malonyl-β-glucosides, acetyl-β-glucosides and aglycones). Isoflavones possess antioxidant activity and α-glucosidase inhibitory activity, which has proved effective in the treatment of type 2 diabetes mellitus. Prior to its use, however, soybean needs to be dried to extend its storage life and to prepare the material for subsequent food or pharmaceutical processing. The present study investigated the effects of drying methods and conditions on the drying characteristics, isoflavones, antioxidant activity and α -glucosidase inhibitory activity of dried soybean. Hot-air fluidized bed drying (HAFBD), superheated-steam fluidized bed drying (SSFBD) and gas-fired infrared combined with hot air vibrating drying (GFIR-HAVD) were carried out at various drying temperatures (50, 70, 130 and150°C). The results showed that higher drying temperatures led to higher drying rates and higher levels of β-glucosides and antioxidant activity, but to lower levels of malonyl-β-glucosides, acetyl-β-glucosides and total isoflavones. At the same drying temperature GFIR-HAVD resulted in the highest drying rates and the highest levels of β-glucosides, aglycones and total isoflavones, antioxidant activity as well as α-glucosidase inhibitory activity of dried soybean. A drying temperature of 130°C gave the highest levels of aglycones and α-glucosidase inhibitory activity in all cases. The relationships between all the studied parameters were monitored and simple correlations between them were determined. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Production of hydroxy marilone C as a bioactive compound from

    Directory of Open Access Journals (Sweden)

    Osama H. El Sayed

    2016-06-01

    Full Text Available Hydroxy marilone C is a bioactive metabolite produced from the culture broth of Streptomyces badius isolated from Egyptian soil. Hydroxy marilone C was purified and fractionated by a silica gel column with a gradient mobile phase dichloromethane (DCM:methanol then Sephadex LH-20 column using methanol as a mobile phase. It was subjected to many procedures such as infrared (IR, nuclear magnetic resonance (NMR, Mass spectroscopy (MS and UV spectroscopy for elucidation of its structure. It was evaluated for antioxidant, cytotoxicity against human alveolar basal epithelial cell line (A-549 and human breast adenocarcinoma cell line (MCF-7 and antiviral activities; showed that the maximum antioxidant activity was 78.8% at 3 mg/ml after 90 min. and the IC50 value against DPPH radical found about 1.5 mg/ml after 60 min. Using MTT assay the effect of the pure compound on the proliferation of A-549 cells and MCF-7 cells was 443 μg/ml and 147.9 μg/ml, respectively, while for detection of antiviral activity using Madin–Darby canine kidney (MDCK cells the maximum cytotoxicity was at 27.9% and IC50 was 128.1 μg/ml. The maximum concentration required for protecting 50% of the virus-infected cells against H1N1 viral cytopathogenicity (EC50 was 33.25% for 80 μg/ml. These results indicated that the hydroxy marilone C has potential antitumor and antiviral activities.

  3. Systematic mining of generally recognized as safe (GRAS) flavor chemicals for bioactive compounds.

    Science.gov (United States)

    Martinez-Mayorga, Karina; Peppard, Terry L; López-Vallejo, Fabian; Yongye, Austin B; Medina-Franco, José L

    2013-08-07

    Bioactive food compounds can be both therapeutically and nutritionally relevant. Screening strategies are widely employed to identify bioactive compounds from edible plants. Flavor additives contained in the so-called FEMA GRAS (generally recognized as safe) list of approved flavoring ingredients is an additional source of potentially bioactive compounds. This work used the principles of molecular similarity to identify compounds with potential mood-modulating properties. The ability of certain GRAS molecules to inhibit histone deacetylase-1 (HDAC1), proposed as an important player in mood modulation, was assayed. Two GRAS chemicals were identified as HDAC1 inhibitors in the micromolar range, results similar to what was observed for the structurally related mood prescription drug valproic acid. Additional studies on bioavailability, toxicity at higher concentrations, and off-target effects are warranted. The methodology described in this work could be employed to identify potentially bioactive flavor chemicals present in the FEMA GRAS list.

  4. Variation of bioactive compounds in dried seaweed Himanthalia elongata subjected to different culinary processes

    National Research Council Canada - National Science Library

    Amorim-Carrilho, Kamila; Lage-Yusty, Maria Asunción; López-Hernández, Julia

    2014-01-01

    .... These results contribute to a better understanding of the bioactive compounds' behavior when subjected to different culinary methods and reaffirms the potential of H. elongata as interesting food in our diet.

  5. Computational Analysis of Gynura bicolor Bioactive Compounds as Dipeptidyl Peptidase-IV Inhibitor

    National Research Council Canada - National Science Library

    Lina Rozano; Muhammad Redha Abdullah Zawawi; Muhamad Aizuddin Ahmad; Indu Bala Jaganath

    2017-01-01

    .... However, an understanding of the inhibitory actions of G. bicolor bioactive compounds on DPPIV is still lacking and this may provide crucial information for the development of more potent and natural sources of DPPIV inhibitors. Evaluation of G...

  6. An in silico study on antidiabetic activity of bioactive compounds in Euphorbia thymifolia Linn.

    Science.gov (United States)

    Nguyen Vo, T Hoang; Tran, Ngan; Nguyen, Dat; Le, Ly

    2016-01-01

    Herbal medicines have become strongly preferred treatment to reduce the negative impacts of diabetes mellitus (DM) and its severe complications due to lesser side effects and low cost. Recently, strong anti-hyperglycemic effect of Euphorbia thymifolia Linn. (E. thymifolia) on mice models has reported but the action mechanism of its bioactive compounds has remained unknown. This study aimed to evaluate molecular interactions existing between various bioactive compounds in E. thymifolia and targeted proteins related to Type 2 DM. This process involved the molecular docking of 3D structures of those substances into 4 targeted proteins: 11-β hydroxysteroid dehydrogenase type 1, glutamine: fructose-6-phosphate amidotransferase, protein-tyrosine phosphatase 1B and mono-ADP-ribosyltransferase sirtuin-6. In the next step, LigandScout was applied to evaluate the bonds formed between 20 ligands and the binding sites of each targeted proteins. The results identified seven bioactive compounds with high binding affinity (bioactive compounds, in silico approach is performed.

  7. Could gestational diabetes mellitus be managed through dietary bioactive compounds? Current knowledge and future perspectives

    National Research Council Canada - National Science Library

    Santangelo, Carmela; Zicari, Alessandra; Mandosi, Elisabetta; Scazzocchio, Beatrice; Mari, Emanuela; Morano, Susanna; Masella, Roberta

    2016-01-01

    ... and metabolic disorders. In this review, we discuss the latest data concerning the effects of dietary bioactive compounds such as polyphenols and PUFA on the molecular mechanisms regulating glucose homoeostasis...

  8. Target identification of natural products and bioactive compounds using affinity-based probes.

    Science.gov (United States)

    Pan, Sijun; Zhang, Hailong; Wang, Chenyu; Yao, Samantha C L; Yao, Shao Q

    2016-05-04

    Covering: 2010 to 2014.Advances in isolation, synthesis and screening strategies have made many bioactive substances available. However, in most cases their putative biological targets remain unknown. Herein, we highlight recent advances in target identification of natural products and bioactive compounds by using affinity-based probes. Aided by photoaffinity labelling, this strategy can capture potential cellular targets (on and off) of a natural product or bioactive compound in live cells directly, even when the compound-target interaction is reversible with moderate affinity. The knowledge of these targets may help uncover molecular pathways and new therapeutics for currently untreatable diseases. In this highlight, we will introduce the development of various photoactivatable groups, their synthesis and applications in target identification of natural products and bioactive compounds, with a focus on work done in recent years and from our laboratory. We will further discuss the strengths and weaknesses of each group and the outlooks for this novel proteome-wide profiling strategy.

  9. Bioactive and volatile organic compounds in Southern Brazilian blackberry (Rubus Fruticosus) fruit cv. Tupy

    OpenAIRE

    Andressa Carolina Jacques; Fábio Clasen Chaves; Rui Carlos Zambiazi; Márcia Campos Brasil; Elina Bastos Caramão

    2014-01-01

    Blackberry (Rubus fruticosus, cultivar Tupy), an expanding fruit crop in southern Brazil, is greatly appreciated for its flavor and bioactive potential with limited characterization of its metabolite content. The purpose of this study was to characterize the bioactive and volatile organic compound (VOC) content of mature blackberry fruit of cultivar Tupy. Gallic acid, (-)-epicatechin, ferulic acid, and quercetin were the main phenolic compounds found in mature fruit. Among the VOCs identified...

  10. OrgTrace – No difference found in bioactive compounds of organic and conventional crops

    DEFF Research Database (Denmark)

    Knuthsen, Pia; Søltoft, Malene; Laursen, Kristian Holst;

    The objective of the present study was to compare the content of selected bioactive compounds in organically and conventionally grown crops, and to evaluate if the ability of the crops to synthesize selected secondary metabolites was systematically affected by growth systems across different growth...... contents of bioactive compounds than the conventionally grown. This indicates that giving preference to organic products because they contain more bioactive components is doubtfull. However, there are many other reasons for the consumer to choose organic food products, including: no pesticide residues...

  11. Isolation of a novel compound (MIMO2) from the methanolic extract of Moringa oleifera leaves: protective effects against vanadium-induced cytotoxity.

    Science.gov (United States)

    Igado, Olumayowa O; Glaser, Jan; Ramos-Tirado, Mario; Bankoğlu, Ezgi Eylül; Atiba, Foluso A; Holzgrabe, Ulrike; Stopper, Helga; Olopade, James O

    2017-09-19

    Moringa oleifera is reported to be a miracle plant, with positive effects on practically every system in the animal body. The methanolic extract of Moringa oleifera leaves was fractionated using liquid-liquid fractionation, column chromatography and preparative high-performance liquid chromatography (HPLC). Bioassay guided fractionation using Ferric Reducing Antioxidant Power (FRAP) was used to determine the fraction with the highest antioxidative power. Chemical structure was elucidated with nuclear magnetic resonance (NMR) spectroscopy. FRAP showed that the pure compound, butyl p-hydroxyphenyl-acetate (MIMO2) exhibited an antioxidant activity higher than TEMPOL (positive control). Vanadium is a metal, which as a salt has been shown to be a neurotoxicant; and was therefore used to assess the efficacy of MIMO2 in this experiment. HT22 (immortalized mouse hippocampal) cells were used for cell culture. The Comet assay showed a statistically significant reduction (p Moringa oleifera leaves (MO) were used in combination with 200 μM vanadium (sodium metavanadate). Analogously, a reduced formation of superoxide was observed using dihydroethidium (2,7-Diamino-10-ethyl-9-phenyl-9,10-dihydrophenanthridine-DHE) stain after 0.5 μM MIMO2 and 0.063 mg MO were used in combination with vanadium 100 μM. MIMO2 and MO gave a statistically significant (p < .05) protective effect against vanadium toxicity on neuronal cells. Further assays may need to be performed to assess the extent of protection that MIMO2 may offer, and also to better understand its mechanisms of action.

  12. Sorghum (Sorghum bicolor L.): Nutrients, bioactive compounds, and potential impact on human health.

    Science.gov (United States)

    de Morais Cardoso, Leandro; Pinheiro, Soraia Silva; Martino, Hércia Stampini Duarte; Pinheiro-Sant'Ana, Helena Maria

    2017-01-22

    Sorghum is the fifth most produced cereal in the world and is a source of nutrients and bioactive compounds for the human diet. We summarize the recent findings concerning the nutrients and bioactive compounds of sorghum and its potential impact on human health, analyzing the limitations and positive points of the studies and proposing directions for future research. Sorghum is basically composed of starch, which is more slowly digested than that of other cereals, has low digestibility proteins and unsaturated lipids, and is a source of some minerals and vitamins. Furthermore, most sorghum varieties are rich in phenolic compounds, especially 3-deoxyanthocyanidins and tannins. The results obtained in vitro and in animals have shown that phenolics compounds and fat soluble compounds (polycosanols) isolated from sorghum benefit the gut microbiota and parameters related to obesity, oxidative stress, inflammation, diabetes, dyslipidemia, cancer, and hypertension. The effects of whole sorghum and its fractions on human health need to be evaluated. In conclusion, sorghum is a source of nutrients and bioactive compounds, especially 3-deoxyanthocyanidins, tannins, and polycosanols, which beneficially modulate, in vitro and in animals, parameters related to noncommunicable diseases. Studies should be conducted to evaluate the effects of different processing on protein and starch digestibility of sorghum as well as on the profile and bioavailability of its bioactive compounds, especially 3-deoxyanthocyanidins and tannins. Furthermore, the benefits resulting from the interaction of bioactive compounds in sorghum and human microbiota should be studied.

  13. Ultrahigh pressure extraction of bioactive compounds from plants-A review.

    Science.gov (United States)

    Xi, Jun

    2017-04-13

    Extraction of bioactive compounds from plants is one of the most important research areas for pharmaceutical and food industries. Conventional extraction techniques are usually associated with longer extraction times, lower yields, more organic solvent consumption, and poor extraction efficiency. A novel extraction technique, ultrahigh pressure extraction, has been developed for the extraction of bioactive compounds from plants, in order to shorten the extraction time, decrease the solvent consumption, increase the extraction yields, and enhance the quality of extracts. The mild processing temperature of ultrahigh pressure extraction may lead to an enhanced extraction of thermolabile bioactive ingredients. A critical review is conducted to introduce the different aspects of ultrahigh pressure extraction of plants bioactive compounds, including principles and mechanisms, the important parameters influencing its performance, comparison of ultrahigh pressure extraction with other extraction techniques, advantages, and disadvantages. The future opportunities of ultrahigh pressure extraction are also discussed.

  14. Systematic Assessment of Molecular Selectivity at the Level of Targets, Bioactive Compounds, and Structural Analogues.

    Science.gov (United States)

    Hu, Ye; Bajorath, Jürgen

    2016-06-20

    Through systematic mining of compound activity data, the target selectivity of bioactive compounds was systematically explored. The analysis was facilitated by applying, extending, and combining the concepts of target cliffs, selectivity cliffs, and matched molecular pairs. Selectivity relationships were explored at different levels including targets, individual bioactive compounds, and pairs of structural analogues. A variety of targets were identified for which active compounds were consistently nonselective or, by contrast, exclusively selective, making it possible to prioritize, or de-prioritize, targets for compound development. Furthermore, many chemical modifications were detected that altered compound selectivity in a well-defined manner including small structural changes that converted nonselective into target-selective compounds or inverted the target selectivity of active compounds. A large knowledge base of selectivity relationships across pharmaceutical targets and chemical modifications that alter selectivity was generated; this has been made freely available to the scientific community as a part of this investigation.

  15. Diversity selection of compounds based on 'protein affinity fingerprints' improves sampling of bioactive chemical space.

    Science.gov (United States)

    Nguyen, Ha P; Koutsoukas, Alexios; Mohd Fauzi, Fazlin; Drakakis, Georgios; Maciejewski, Mateusz; Glen, Robert C; Bender, Andreas

    2013-09-01

    Diversity selection is a frequently applied strategy for assembling high-throughput screening libraries, making the assumption that a diverse compound set increases chances of finding bioactive molecules. Based on previous work on experimental 'affinity fingerprints', in this study, a novel diversity selection method is benchmarked that utilizes predicted bioactivity profiles as descriptors. Compounds were selected based on their predicted activity against half of the targets (training set), and diversity was assessed based on coverage of the remaining (test set) targets. Simultaneously, fingerprint-based diversity selection was performed. An original version of the method exhibited on average 5% and an improved version on average 10% increase in target space coverage compared with the fingerprint-based methods. As a typical case, bioactivity-based selection of 231 compounds (2%) from a particular data set ('Cutoff-40') resulted in 47.0% and 50.1% coverage, while fingerprint-based selection only achieved 38.4% target coverage for the same subset size. In conclusion, the novel bioactivity-based selection method outperformed the fingerprint-based method in sampling bioactive chemical space on the data sets considered. The structures retrieved were structurally more acceptable to medicinal chemists while at the same time being more lipophilic, hence bioactivity-based diversity selection of compounds would best be combined with physicochemical property filters in practice.

  16. Analytical determination of bioactive compounds as an indication of fruit quality.

    Science.gov (United States)

    Park, Yong Seo; Heo, Buk-Gu; Ham, Kyung-Sik; Kang, Seong-Gook; Park, Yang-Kyun; Nemirovski, Alina; Tashma, Zeev; Gorinstein, Shela; Leontowicz, Hanna; Leontowicz, Maria

    2012-01-01

    The aim of this investigation was to determine the bioactive compounds in kiwifruit as an indication of quality after extraction using methanol and ethyl acetate. Using FTIR and three-dimensional fluorescence spectroscopy and electrospray ionization/MS, the contents of polyphenols, flavonoids, flavanols, and tannins, and the level of the antioxidant activity by 2, 2-azino-bis (3-ethyl-benzothiazoline-6-sulfonic acid) diammonium salt, 1, 1-diphenyl-2-picrylhydrazyl, ferric-reducing/ antioxidant power, and cupric reducing antioxidant capacity assays were determined and compared. It was found that the methanol extracts of kiwifruit showed significantly higher amounts of bioactive acetate extracts. The cultivar Bidan, in comparison compounds and antioxidant activities than the ethyl with the classic Hayward, showed significantly higher bioactivity. For the first time, Bidan organic kiwifruit was analyzed for its antioxidant activities and compared with the widely consumed Hayward organic based on its bioactive compounds and fluorescence properties. Relatively high content of bioactive compounds and positive antioxidant and antiproliferative properties of kiwifruit determined by the advanced analytical methods justify its use as a source of valuable antioxidants. The methods used are applicable for bioactivity determination, in general, for any food products.

  17. Ultrasound-assisted extraction of bioactive compounds from lemon balm and peppermint leaves

    Science.gov (United States)

    Šic Žlabur, Jana; Voća, Sandra; Dobričević, Nadica; Pliestić, Stjepan; Galić, Ante; Boričević, Ana; Borić, Nataša

    2016-01-01

    The aim of this study was to investigate the influence of conventional and ultrasound-assisted extraction (frequency, time, temperature) on the content of bioactive compounds as well as on the antioxidant activity of aqueous extracts from fresh lemon balm and peppermint leaves. Total phenols, flavonoids, non-flavonoids, total chlorophylls, total carotenoids, and radical scavenging capacity were determined. Moreover, the relationship between bioactive compounds and antioxidant capacity was studied by linear regression. A significant increase in all studied bioactive compounds during ultrasonic extraction for 5 to 20 min was found. With the classical extraction method, the highest amounts of total phenols, flavonoids, and antioxidant activity were determined, and the maximum amounts of total chlorophylls and carotenoids were determined during 20 min ultrasonic extraction. The correlation analysis revealed a strong, positive relationship between antioxidant activity and total phenolic compounds.

  18. Marine Rare Actinobacteria: Isolation, Characterization, and Strategies for Harnessing Bioactive Compounds

    OpenAIRE

    Dhakal, Dipesh; Pokhrel, Anaya Raj; Shrestha, Biplav; Sohng, Jae Kyung

    2017-01-01

    Actinobacteria are prolific producers of thousands of biologically active natural compounds with diverse activities. More than half of these bioactive compounds have been isolated from members belonging to actinobacteria. Recently, rare actinobacteria existing at different environmental settings such as high altitudes, volcanic areas, and marine environment have attracted attention. It has been speculated that physiological or biochemical pressures under such harsh environmental conditions ca...

  19. The Content in Bioactive Compounds of Different Brewers' Spent Grain Aqueous Extracts

    OpenAIRE

    Anca FARCAS; Sonia SOCACI; Maria TOFANA; Elena MUDURA; Salanta, Liana

    2016-01-01

    In the last decade by-products of food and beverage processing have attracted much attention due to their functionality and potential as food ingredients. Brewers’ spent grain is the major by-product of the brewing industry representing a valuable source of bioactive ingredients. The aim of this study was to assess the effect of extraction time and temperature on the efficiency of water as solvent for the extraction of bioactive compounds from brewers’ spent grain (BSG). In terms of extractio...

  20. HPLC ANALYSIS OF BIOACTIVE COMPOUNDS IN TEN DIFFERENT WILD TYPE UNDER-UTILIZED LEGUME GRAINS

    OpenAIRE

    Vellingiri Vadivel and Hans Konrad Biesalski

    2010-01-01

    In recent years, many food industries have been initiated the formulation of nutraceutical/functional foods by incorporating the bioactive ingredients for the prevention/treatment of certain chronic diseases. In this connection, certain promising wild type under-utilized legume grains received more attention, since they are naturally a rich source of L-Dopa (precursor of dopamine) and certain bioactive compounds including phenolics, tannins and phytic acid. In the present study, seed material...

  1. Computational Analysis of Gynura bicolor Bioactive Compounds as Dipeptidyl Peptidase-IV Inhibitor.

    Science.gov (United States)

    Rozano, Lina; Abdullah Zawawi, Muhammad Redha; Ahmad, Muhamad Aizuddin; Jaganath, Indu Bala

    2017-01-01

    The inhibition of dipeptidyl peptidase-IV (DPPIV) is a popular route for the treatment of type-2 diabetes. Commercially available gliptin-based drugs such as sitagliptin, anagliptin, linagliptin, saxagliptin, and alogliptin were specifically developed as DPPIV inhibitors for diabetic patients. The use of Gynura bicolor in treating diabetes had been reported in various in vitro experiments. However, an understanding of the inhibitory actions of G. bicolor bioactive compounds on DPPIV is still lacking and this may provide crucial information for the development of more potent and natural sources of DPPIV inhibitors. Evaluation of G. bicolor bioactive compounds for potent DPPIV inhibitors was computationally conducted using Lead IT and iGEMDOCK software, and the best free-binding energy scores for G. bicolor bioactive compounds were evaluated in comparison with the commercial DPPIV inhibitors, sitagliptin, anagliptin, linagliptin, saxagliptin, and alogliptin. Drug-likeness and absorption, distribution, metabolism, and excretion (ADME) analysis were also performed. Based on molecular docking analysis, four of the identified bioactive compounds in G. bicolor, 3-caffeoylquinic acid, 5-O-caffeoylquinic acid, 3,4-dicaffeoylquinic acid, and trans-5-p-coumaroylquinic acid, resulted in lower free-binding energy scores when compared with two of the commercially available gliptin inhibitors. The results revealed that bioactive compounds in G. bicolor are potential natural inhibitors of DPPIV.

  2. Computational Analysis of Gynura bicolor Bioactive Compounds as Dipeptidyl Peptidase-IV Inhibitor

    Directory of Open Access Journals (Sweden)

    Lina Rozano

    2017-01-01

    Full Text Available The inhibition of dipeptidyl peptidase-IV (DPPIV is a popular route for the treatment of type-2 diabetes. Commercially available gliptin-based drugs such as sitagliptin, anagliptin, linagliptin, saxagliptin, and alogliptin were specifically developed as DPPIV inhibitors for diabetic patients. The use of Gynura bicolor in treating diabetes had been reported in various in vitro experiments. However, an understanding of the inhibitory actions of G. bicolor bioactive compounds on DPPIV is still lacking and this may provide crucial information for the development of more potent and natural sources of DPPIV inhibitors. Evaluation of G. bicolor bioactive compounds for potent DPPIV inhibitors was computationally conducted using Lead IT and iGEMDOCK software, and the best free-binding energy scores for G. bicolor bioactive compounds were evaluated in comparison with the commercial DPPIV inhibitors, sitagliptin, anagliptin, linagliptin, saxagliptin, and alogliptin. Drug-likeness and absorption, distribution, metabolism, and excretion (ADME analysis were also performed. Based on molecular docking analysis, four of the identified bioactive compounds in G. bicolor, 3-caffeoylquinic acid, 5-O-caffeoylquinic acid, 3,4-dicaffeoylquinic acid, and trans-5-p-coumaroylquinic acid, resulted in lower free-binding energy scores when compared with two of the commercially available gliptin inhibitors. The results revealed that bioactive compounds in G. bicolor are potential natural inhibitors of DPPIV.

  3. Effect of different germination conditions on antioxidative properties and bioactive compounds of germinated brown rice.

    Science.gov (United States)

    Lin, You-Tung; Pao, Cheng-Cheng; Wu, Shwu-Tzy; Chang, Chi-Yue

    2015-01-01

    This study investigates antioxidative activity and bioactive compounds of ungerminated brown rice (UBR) and germinated brown rice (GBR). We used two rice cultivars (Oryza sativa L.), Taiwan Japonica 9 (TJ-9) and Taichung Indica 10 (TCI-10), as the materials in our experiments. The conditions for inducing germination are soaking time in water 24, 48, or 72 h; temperature 26 or 36°C; incubation in light or darkness; and open or closed vessels, in which the antioxidative activities and bioactive compounds of GBR were determined. We found that, in order to maximize antioxidative activity and bioactive compounds, germination should be under higher temperature (36°C), long soaking time (72 h), darkness, and closed vessel. GBR contains much higher levels of antioxidative activity and bioactive compounds than ungerminated brown rice (UBR). We found a strong correlation between antioxidative activities (DPPH radical scavenging ability, reducing power, and Trolox equivalent antioxidant capacity) and bioactive compounds (γ-oryzanols, tocopherol, and tocotrienol). Higher temperature (36°C) is also conducive to the production of GABA in GBR. These results are considered very useful research references for the development of future functional foods and additives.

  4. Emerging strategies and integrated systems microbiology technologies for biodiscovery of marine bioactive compounds.

    Science.gov (United States)

    Rocha-Martin, Javier; Harrington, Catriona; Dobson, Alan D W; O'Gara, Fergal

    2014-06-10

    Marine microorganisms continue to be a source of structurally and biologically novel compounds with potential use in the biotechnology industry. The unique physiochemical properties of the marine environment (such as pH, pressure, temperature, osmolarity) and uncommon functional groups (such as isonitrile, dichloroimine, isocyanate, and halogenated functional groups) are frequently found in marine metabolites. These facts have resulted in the production of bioactive substances with different properties than those found in terrestrial habitats. In fact, the marine environment contains a relatively untapped reservoir of bioactivity. Recent advances in genomics, metagenomics, proteomics, combinatorial biosynthesis, synthetic biology, screening methods, expression systems, bioinformatics, and the ever increasing availability of sequenced genomes provides us with more opportunities than ever in the discovery of novel bioactive compounds and biocatalysts. The combination of these advanced techniques with traditional techniques, together with the use of dereplication strategies to eliminate known compounds, provides a powerful tool in the discovery of novel marine bioactive compounds. This review outlines and discusses the emerging strategies for the biodiscovery of these bioactive compounds.

  5. Emerging Strategies and Integrated Systems Microbiology Technologies for Biodiscovery of Marine Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Javier Rocha-Martin

    2014-06-01

    Full Text Available Marine microorganisms continue to be a source of structurally and biologically novel compounds with potential use in the biotechnology industry. The unique physiochemical properties of the marine environment (such as pH, pressure, temperature, osmolarity and uncommon functional groups (such as isonitrile, dichloroimine, isocyanate, and halogenated functional groups are frequently found in marine metabolites. These facts have resulted in the production of bioactive substances with different properties than those found in terrestrial habitats. In fact, the marine environment contains a relatively untapped reservoir of bioactivity. Recent advances in genomics, metagenomics, proteomics, combinatorial biosynthesis, synthetic biology, screening methods, expression systems, bioinformatics, and the ever increasing availability of sequenced genomes provides us with more opportunities than ever in the discovery of novel bioactive compounds and biocatalysts. The combination of these advanced techniques with traditional techniques, together with the use of dereplication strategies to eliminate known compounds, provides a powerful tool in the discovery of novel marine bioactive compounds. This review outlines and discusses the emerging strategies for the biodiscovery of these bioactive compounds.

  6. Phytochemical analysis and estimation of major bioactive compounds from Triticum aestivum L. grass with antimicrobial potential.

    Science.gov (United States)

    Rajoria, Anand; Mehta, Archana; Mehta, Pradeep; Ahirwal, Laxmi; Shukla, Shruti

    2015-11-01

    The aim of the present study was to investigate phytochemical analysis, and qualitative and quantitative determination of major bioactive compound present in various organic extracts of T. aestivum L. grass. Soxhlet apparatus was used for the extraction purpose using hexane, chloroform, methanol and distilled water as a solvent system. All the extracts derived from T. aestivum showed qualitative presence of major phytochemicals including alkaloids, steroids and cardiac glycosides tannins, flavonoids carbohydrates. Further, HPLC analysis revealed the presence of major bioactive compounds such as rutin, chlorogenic acid, tocopherol, chlorogenic acid, and gallic acid in various organic extracts responsible for the reported maximum antimicrobial activity of T. aestivum grass against pathogenic bacteria including Salmonella typhi, Staphylococcus aureus and Vibrio cholerae. These findings confirm that T. aestivum grass containing medicinally important bioactive compounds may have significant potential to be used in traditional medicine system for the treatment of various diseases caused by pathogenic microorganisms.

  7. Bioactive compounds of inhibiting xanthine oxidase from Selaginella labordei.

    Science.gov (United States)

    Tan, Wen-Jie; Xu, Jia-Cheng; Li, Li; Chen, Ke-Li

    2009-01-01

    Four flavone compounds were isolated from the effective fractions inhibiting xanthine oxidase (XOD) of the medicinal plant Selaginella labordei with anti-virus activity, and the structures were elucidated as 4'-methylether robustaflavone (1), robustaflavone (2), eriodictyol (3) and amentoflavone (4). The 50% inhibitory concentration (IC(50)) of the three compounds of inhibiting XOD were 61.0, 0.199, 16.0 and 32.0 mg L(-1), respectively. All of these compounds were isolated from the species for the first time, and eriodictyol was found from Selaginellaceae for the first time. Among these compounds, robustaflavone has been reported as an effective compound against the hepatitis B virus.

  8. Optimization of microwave-assisted extraction and pressurized liquid extraction of phenolic compounds from Moringa oleifera leaves by multiresponse surface methodology.

    Science.gov (United States)

    Rodríguez-Pérez, Celia; Gilbert-López, Bienvenida; Mendiola, Jose Antonio; Quirantes-Piné, Rosa; Segura-Carretero, Antonio; Ibáñez, Elena

    2016-07-01

    This work aims at studying the optimization of microwave-assisted extraction (MAE) and pressurized liquid extraction (PLE) by multi-response surface methodology (RSM) to test their efficiency towards the extraction of phenolic compounds from Moringa oleifera (M. oleifera) leaves. The extraction yield, total phenolic content (TPC), total flavonoid content (TF), DPPH scavenging method and trolox equivalent antioxidant capacity (TEAC) assay were considered as response variables while effects of extraction time, percentage of ethanol, and temperature were studied. Extraction time of 20 min, 42% ethanol and 158°C were the MAE optimum conditions for achieving extraction yield of 26 ± 2%, EC50 15 ± 2 μg/mL, 16 ± 1 Eq Trolox/100 g dry leaf, 5.2 ± 0.5 mg Eq quercetin/g dry leaf, and 86 ± 4 mg GAE/g dry leaf. Regarding PLE, the optimum conditions that allowed extraction yield of 56 ± 2%, EC50 21 ± 3 μg/mL, 12 ± 2 mmol Eq Trolox/100 g dry leaf, 6.5 ± 0.2 mg Eq quercetin/g dry leaf, and 59 ± 6 mg GAE/g dry leaf were 128°C, 35% of ethanol, and 20 min. PLE enabled the extraction of phenolic compounds with a higher number of hydroxyl-type substituents such as kaempferol diglycoside and its acetyl derivatives and those that are sensitive to high temperatures (glucosinolates or amino acids) while MAE allowed better recoveries of kaempferol, quercetin, and their glucosides derivatives.

  9. Moringa oleifera Flower Extract Suppresses the Activation of Inflammatory Mediators in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages via NF-κB Pathway.

    Science.gov (United States)

    Tan, Woan Sean; Arulselvan, Palanisamy; Karthivashan, Govindarajan; Fakurazi, Sharida

    2015-01-01

    Aim of Study. Moringa oleifera Lam. (M. oleifera) possess highest concentration of antioxidant bioactive compounds and is anticipated to be used as an alternative medicine for inflammation. In the present study, we investigated the anti-inflammatory activity of 80% hydroethanolic extract of M. oleifera flower on proinflammatory mediators and cytokines produced in lipopolysaccharide- (LPS-) induced RAW 264.7 macrophages. Materials and Methods. Cell cytotoxicity was conducted by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Nitric oxide (NO) production was quantified through Griess reaction while proinflammatory cytokines and other key inflammatory markers were assessed through enzyme-linked immunosorbent assay (ELISA) and immunoblotting. Results. Hydroethanolic extract of M. oleifera flower significantly suppressed the secretion and expression of NO, prostaglandin E2 (PGE2), interleukin- (IL-) 6, IL-1β, tumor necrosis factor-alpha (TNF-α), nuclear factor-kappa B (NF-κB), inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2). However, it significantly increased the production of IL-10 and IκB-α (inhibitor of κB) in a concentration dependent manner (100 μg/mL and 200 μg/mL). Conclusion. These results suggest that 80% hydroethanolic extract of M. oleifera flower has anti-inflammatory action related to its inhibition of NO, PGE2, proinflammatory cytokines, and inflammatory mediator's production in LPS-stimulated macrophages through preventing degradation of IκB-α in NF-κB signaling pathway.

  10. EPlantLIBRA: A composition and biological activity database for bioactive compounds in plant food supplements

    DEFF Research Database (Denmark)

    Plumb, J.; Lyons, J.; Nørby, Karin Kristiane

    2015-01-01

    The newly developed ePlantLIBRA database is a comprehensive and searchable database, with up-to-date coherent and validated scientific information on plant food supplement (PFS) bioactive compounds, with putative health benefits as well as adverse effects, and contaminants and residues. It is the......The newly developed ePlantLIBRA database is a comprehensive and searchable database, with up-to-date coherent and validated scientific information on plant food supplement (PFS) bioactive compounds, with putative health benefits as well as adverse effects, and contaminants and residues...

  11. Bioactive and volatile organic compounds in Southern Brazilian blackberry (Rubus Fruticosus fruit cv. Tupy

    Directory of Open Access Journals (Sweden)

    Andressa Carolina Jacques

    2014-09-01

    Full Text Available Blackberry (Rubus fruticosus, cultivar Tupy, an expanding fruit crop in southern Brazil, is greatly appreciated for its flavor and bioactive potential with limited characterization of its metabolite content. The purpose of this study was to characterize the bioactive and volatile organic compound (VOC content of mature blackberry fruit of cultivar Tupy. Gallic acid, (--epicatechin, ferulic acid, and quercetin were the main phenolic compounds found in mature fruit. Among the VOCs identified in 'Tupy' blackberry were important flavor components characteristic of fruit berries, including hydrocarbons, alcohols, aldehydes, ketones, esters, and terpenoids. Some of the VOCs had not been previously found in blackberry, while others have been associated with typical blackberry flavor.

  12. Phenolic compounds among the bioactive molecules in Ginkgo biloba L.

    OpenAIRE

    Pereira, Eliana; Barros, Lillian; Santos-Buelga, Celestino; Isabel C. F. R. Ferreira

    2015-01-01

    The interest for natural antioxidants has been increasing over the years. Phenolic compounds comprise a very large group of biologically active molecules, being appreciated for their beneficial effects on health (physiologically active compounds with anti-allergic, antiatherogenic, antimicrobial, antithrombotic, anti-inflammatory, antioxidant, cardioprotective and vasodilatory effects) [1-3]. The aim of the present study was to evaluate the phenolic compounds of Ginkgo biloba L...

  13. Proteomic Profiles Reveal the Function of Different Vegetative Tissues of Moringa oleifera.

    Science.gov (United States)

    Wang, Lei; Zou, Qiong; Wang, Jinxing; Zhang, Junjie; Liu, Zeping; Chen, Xiaoyang

    2016-12-01

    Moringa oleifera is a rich source of bioactive compounds and is widely used in traditional medicine and food for its nutritional value; however, the protein and peptide components of different tissues are rarely discussed. Here, we describe the first investigation of M. oleifera proteomes using mass spectrometry and bioinformatics methods. We aimed to elucidate the protein profiles of M. oleifera leaves, stem, bark, and root. Totally 202 proteins were identified from four vegetative organs. We identified 101 proteins from leaves, 51 from stem, 94 from bark and 67 from root, finding that only five proteins existed in both four vegetative parts. The calculated pI of most of the proteins is distributed in 5-10 and the molecular weight distributed below 100 kDa. Functional classification analysis revealed that proteins which are involved in catalytic activities are the most abundant both in leaves, stem, bark and root. Identification of several heat shock proteins in four vegetative tissues might be adaptive for resistance to high temperature environmental stresses of tropical or subtropical areas. Some enzymes involved in antioxidant processes were also identified in M. oleifera leaves, stem, bark and root. Among the four tissues studies here, leaves protein content and molecular diversity were the highest. The identification of the flocculating protein MO2.1 and MO2.2 in the bark and root provides clue to clarify the antimicrobial molecular mechanisms of root and bark. This study provides information on the protein compositions of M. oleifera vegetative tissues that will be beneficial for potential drug and food supplement development and plant physiology research.

  14. Two bioactive compounds from the Chinese scorpion Buthusmartensii Karsch.

    Science.gov (United States)

    Gao, Jiayu; Yin, Weiping; Gao, Ting; Deng, Ruixue; Li, Xin

    2014-01-01

    Two compounds, 3β-acetoxyl,2,14,22-trihydroxy,19-hydroxymethyl,9α,5β,14β-card-20(22)enolide (1) and 1,2,3,4-tetrahydro-6-hydroxy1-5-pyrimidinecarbox-aldehyde (2), were isolated from arthropods in scorpion, Buthus martensii Karsch, by medium pressure liquid chromatography with silica gel as stationary phase and RP-HPLC analysis technology. The structures were elucidated on the basis of NMR spectroscopic analysis and HR-ESI-MS determination. It was found that (1) is a novel compound and both compounds showed inhibitory activities against the Gram-positive bacteria Bacillus subtilis (minimum inhibitory concentrations = 15 μg/mL), with diameter of inhibition zone at ϕ = 6.0 mm (compound 1) and ϕ = 9.0 mm (compound 2), respectively.

  15. Application of ionic liquid for extraction and separation of bioactive compounds from plants.

    Science.gov (United States)

    Tang, Baokun; Bi, Wentao; Tian, Minglei; Row, Kyung Ho

    2012-09-01

    In recent years, ionic liquids (ILs), as green and designer solvents, have accelerated research in analytical chemistry. This review highlights some of the unique properties of ILs and provides an overview of the preparation and application of IL or IL-based materials to extract bioactive compounds in plants. IL or IL-based materials in conjunction with liquid-liquid extraction (LLE), ultrasonic-assisted extraction (UAE), microwave-assisted extraction (MAE), high performance liquid chromatography (HPLC) and solid-phase extraction (SPE) analytical technologies etc., have been applied successfully to the extraction or separation of bioactive compounds from plants. This paper reviews the available data and references to examine the advantages of IL and IL-based materials in these applications. In addition, the main target compounds reviewed in this paper are bioactive compounds with multiple therapeutic effects and pharmacological activities. Based on the importance of the targets, this paper reviews the applications of ILs, IL-based materials or co-working with analytical technologies. The exploitation of new applications of ILs on the extraction of bioactive compounds from plant samples is expected to increase.

  16. Screening and target identification of bioactive compounds that modulate cell migration and autophagy.

    Science.gov (United States)

    Tashiro, Etsu; Imoto, Masaya

    2016-08-01

    Cell migration is a fundamental step for embryonic development, wound repair, immune responses, and tumor cell invasion and metastasis. It is well known that protrusive structures, namely filopodia and lamellipodia, can be observed at the leading edge of migrating cells. The formation of these structures is necessary for cell migration; however, the molecular mechanisms behind the formation of these structures remain largely unclear. Therefore, bioactive compounds that modulate protrusive structures are extremely powerful tools for studying the mechanisms behind the formation of these structures and subsequent cell migration. Therefore, we have screened for bioactive compounds that inhibit the formation of filopodia, lamellipodia, or cell migration from natural products, and attempted to identify the target molecules of our isolated compounds. Additionally, autophagy is a bulk, non-specific protein degradation system that is involved in the pathogenesis of cancer and neurodegenerative disorders. Recent extensive studies have revealed the molecular mechanisms of autophagy, however, they also remain largely unclear. Thus, we also have screened for bioactive compounds that modulate autophagy, and identified the target molecules. In the present article, we introduce the phenotypic screening system and target identification of four bioactive compounds.

  17. A Systematic Review of the Efficacy of Bioactive Compounds in Cardiovascular Disease: Phenolic Compounds

    Directory of Open Access Journals (Sweden)

    Oscar D. Rangel-Huerta

    2015-06-01

    Full Text Available The prevalence of cardiovascular diseases (CVD is rising and is the prime cause of death in all developed countries. Bioactive compounds (BAC can have a role in CVD prevention and treatment. The aim of this work was to examine the scientific evidence supporting phenolic BAC efficacy in CVD prevention and treatment by a systematic review. Databases utilized were Medline, LILACS and EMBASE, and all randomized controlled trials (RCTs with prospective, parallel or crossover designs in humans in which the effects of BAC were compared with that of placebo/control were included. Vascular homeostasis, blood pressure, endothelial function, oxidative stress and inflammatory biomarkers were considered as primary outcomes. Cohort, ecological or case-control studies were not included. We selected 72 articles and verified their quality based on the Scottish Intercollegiate Guidelines Network, establishing diverse quality levels of scientific evidence according to two features: the design and bias risk of a study. Moreover, a grade of recommendation was included, depending on evidence strength of antecedents. Evidence shows that certain polyphenols, such as flavonols can be helpful in decreasing CVD risk factors. However, further rigorous evidence is necessary to support the BAC effect on CVD prevention and treatment.

  18. Endophytes: a treasure house of bioactive compounds of medicinal importance

    Directory of Open Access Journals (Sweden)

    Sushanto Gouda

    2016-09-01

    Full Text Available Endophytes are an endosymbiotic group of microorganisms that colonize in plants and microbes that can be readily isolated from any microbial or plant growth medium. They act as reservoirs of novel bioactive secondary metabolites, such as alkaloids, phenolic acids, quinones, steroids, saponins, tannins, and terpenoids that serve as a potential candidate for antimicrobial, anti-insect, anticancer and many more properties. While plant sources are being extensively explored for new chemical entities for therapeutic purposes, endophytic microbes also constitute an important source for drug discovery. This review aims to comprehend the contribution and uses of endophytes as an impending source of drugs against various forms of diseases and other possible medicinal use.

  19. Endophytes: A Treasure House of Bioactive Compounds of Medicinal Importance

    Science.gov (United States)

    Gouda, Sushanto; Das, Gitishree; Sen, Sandeep K.; Shin, Han-Seung; Patra, Jayanta Kumar

    2016-01-01

    Endophytes are an endosymbiotic group of microorganisms that colonize in plants and microbes that can be readily isolated from any microbial or plant growth medium. They act as reservoirs of novel bioactive secondary metabolites, such as alkaloids, phenolic acids, quinones, steroids, saponins, tannins, and terpenoids that serve as a potential candidate for antimicrobial, anti-insect, anticancer and many more properties. While plant sources are being extensively explored for new chemical entities for therapeutic purposes, endophytic microbes also constitute an important source for drug discovery. This review aims to comprehend the contribution and uses of endophytes as an impending source of drugs against various forms of diseases and other possible medicinal use. PMID:27746767

  20. In vitro antifungal potentials of bioactive compound oleic acid, 3-(octadecyloxy) propyl ester isolated from Lepidagathis cristata Willd. (Acanthaceae) inflorescence

    Institute of Scientific and Technical Information of China (English)

    Maghdu Nainamohamed Abubacker; Palaniyappan Kamala Devi

    2014-01-01

    Objective: To identify bioactive compound oleic acid, 3-(octadecyloxy) propyl ester from Lepidagathis cristata Willd. (L. cristata) and to assess antifungal potentials of the isolated compound. Methods: Aqueous extracts of L. cristata inflorescence were used for this study. The major bioactive compound isolated was tested for antifungal activities. Results: The major bioactive compound oleic acid, 3-(octadecyloxy) propyl ester was isolated from the inflorescence of L. cristata. The bioactive compound was tested for antifungal potentials and found to be highly effective to plant pathogenic fungi Colletotrichum fulcatum NCBT 146, Fusarium oxysporum NCBT 156 and Rhizoctonia solani NCBT 196 as well as for the human pathogenic fungi Curvularia lunata MTCC 2030 and Microsporum canis MTCC 2820. Conclusions: The results justify the antifungal potentials of both plant and human pathogenic fungi. The plant bioactive compound will be helpful in herbal antifungal formulations.

  1. Biodiversity in production of antibiotics and other bioactive compounds.

    Science.gov (United States)

    Mahajan, Girish; Balachandran, Lakshmi

    2015-01-01

    Microbes continue to play a highly considerable role in the drug discovery and development process. Nevertheless, the number of new chemical entities (NCEs) of microbial origin that has been approved by the Food and Drug Administration (FDA) has been reduced in the past decade. This scarcity can be partly attributed to the redundancy in the discovered molecules from microbial isolates, which are isolated from common terrestrial ecological units. However, this situation can be partly overcome by exploring rarely exploited ecological niches as the source of microbes, which reduces the chances of isolating compounds similar to existing ones. The use of modern and advanced isolation techniques, modification of the existing fermentation methods, genetic modifications to induce expression of silent genes, analytical tools for the detection and identification of new chemical entities, use of polymers in fermentation to enhance yield of fermented compounds, and so on, have all aided in enhancing the frequency of acquiring novel compounds. These compounds are representative of numerous classes of diverse compounds. Thus, compounds of microbial origin and their analogues undergoing clinical trials continue to demonstrate the importance of compounds from microbial sources in modern drug discovery.

  2. Phytochemicals of Moringa oleifera: a review of their nutritional, therapeutic and industrial significance.

    Science.gov (United States)

    Saini, Ramesh Kumar; Sivanesan, Iyyakkannu; Keum, Young-Soo

    2016-12-01

    Moringa oleifera Lam., also known as the 'drumstick tree,' is recognized as a vibrant and affordable source of phytochemicals, having potential applications in medicines, functional food preparations, water purification, and biodiesel production. The multiple biological activities including antiproliferation, hepatoprotective, anti-inflammatory, antinociceptive, antiatherosclerotic, oxidative DNA damage protective, antiperoxidative, cardioprotective, as well as folk medicinal uses of M. oleifera (MO) are attributed to the presence of functional bioactive compounds, such as phenolic acids, flavonoids, alkaloids, phytosterols, natural sugars, vitamins, minerals, and organic acids. The low molecular weight of M. oleifera cationic proteins (MOCP) extracted from the seeds is very useful and is used in water purification, because of its potent antimicrobial and coagulant properties. Also, the M. oleifera methyl esters (MOME) produced from the oil of the seeds meet the major specifications of the biodiesel standard of Germany, Europe, and United States (US). Thus, MO is emerging as one of the prominent industrial crops for sustainable biodiesel production in tropical and subtropical countries. In view of the high nutritional, nutraceutical, and industrial values, it is important to compile an updated comprehensive review on the related aspects of this multipurpose and miracle tree. Hence, the present study is focused on the nutritionally significant bioactives and medicinal and biological properties, to explore the potential applications of MO in nutritionally rich food preparations. Furthermore, water coagulation, proteins, and fatty acid methyl esters from the MO seeds are reviewed, to explore their possible industrial applications in biodiesel production and water purification. In addition, the future perspectives in these areas are suggested.

  3. GC–MS analysis of bioactive compounds present in different extracts of an endemic plant Broussonetia luzonica (Blanco (Moraceae leaves

    Directory of Open Access Journals (Sweden)

    Franelyne Pataueg Casuga

    2016-11-01

    Conclusions: The three extracts possess major bioactive compounds that were identified and characterized spectroscopically. Thus, identification of different biologically active compounds in the extracts of B. luzonica leaves warrants further biological and pharmacological studies.

  4. Antialgal and antilarval activities of bioactive compounds extracted from the marine dinoflagellate Amphidinium carterae

    Science.gov (United States)

    Kong, Xianyu; Han, Xiurong; Gao, Min; Su, Rongguo; Wang, Ke; Li, Xuzhao; Lu, Wei

    2016-09-01

    With the global ban on the application of organotin-based marine coatings by the International Maritime Organization, the development of environmentally friendly, low-toxic and nontoxic antifouling compounds for marine industries has become an urgent need. Marine microorganisms have been considered as a potential source of natural antifoulants. In this study, the antifouling potential of marine dinoflagellate Amphidinium carterae, the toxic and red-tide microalgae, was investigated. We performed a series of operations to extract the bioactive substances from Amphidinium carterae and tested their antialgal and antilarval activities. The crude extract of Amphidinium carterae showed significant antialgal activity and the EC50 value against Skeletonema costatum was 55.4 μg mL-1. After purification, the isolated bioactive substances (the organic extract C) exhibited much higher antialgal and antilarval activities with EC50 of 12.9 μg mL-1 against Skeletonema costatum and LC50 of 15.1 μg mL-1 against Amphibalanus Amphitrite larvae. Subsequently, IR, Q-TOFMS, and GC-MS were utilized for the structural elucidation of the bioactive compounds, and a series of unsaturated and saturated 16- to 22-carbon fatty acids were detected. The data suggested the bioactive compounds isolated from Amphidinium carterae exhibited a significant inhibiting effect against the diatom Skeletonema costatum and Amphibalanus Amphitrite larvae, and could be substitutes for persistent, toxic antifouling compounds.

  5. Nutritional value, bioactive compounds, and health benefits of lettuce (Lactuca sativa L.)

    Science.gov (United States)

    Lettuce is one of the most popularly consumed vegetables worldwide but its nutritional value has been underestimated. Lettuce is low in calories and fat but high in fiber. Moreover, lettuce is high in potassium but low in sodium. Lettuce is also a good source of health-beneficial bioactive compounds...

  6. Bioactive compounds in dairy products and their relation to neurodegenerative disease

    Science.gov (United States)

    Enhancement of nervous system function and cognitive ability may be aided by bioactive compounds found in dairy products, including calcium-binding phosphopeptides and peptides derived from casein and beta-lactoglobulin. These peptides inhibit angiotensin converting enzyme I, scavenge radicals, red...

  7. Quantification of six bioactive compounds in Zhenqi Fuzheng preparation by high-performance liquid chromatography couple

    Institute of Scientific and Technical Information of China (English)

    Yi-Kai Shi; Fang Cui; Fang-Di Hu; Ying-Yan Bi; Yu-Feng Ma; Shi-Lan Feng

    2011-01-01

    A simple and accurate high-performance liquid chromatography(HPLC)coupled with diode array detector(DAD)and evaporative light scattering detector(ELSD)was established for the determination of six bioactive compounds in Zhenqi Fuzheng preparation(ZFP).The

  8. Draft Genome Sequence of Hoeflea sp. Strain BAL378, a Potential Producer of Bioactive Compounds

    DEFF Research Database (Denmark)

    Bentzon-Tilia, Mikkel; Riemann, Lasse; Gram, Lone

    2014-01-01

    Some phytoplankton-associated marine bacteria produce bioactive compounds. Members of the genus Hoeflea may be examples of such bacteria; however, data describing their metabolisms are scarce. Here, we report the draft genome sequence of Hoeflea sp. strain BAL378, a putative producer of bacterioc...... of bacteriocins, polyketides, and auxins, as demonstrated by genome mining....

  9. Antialgal and Antilarval Activities of Bioactive Compounds Extracted from the Marine Dinoflagellate Amphidinium carterae

    Institute of Scientific and Technical Information of China (English)

    KONGXianyu; HAN Xiurong; GAO Min; SU Rongguo; WANG Ke; LI Xuzhao; LU Wei

    2016-01-01

    With the global ban on the application of organotin-based marine coatings by the International Maritime Organization, the development of environmentally friendly, low-toxic and nontoxic antifouling compounds for marine industries has become an urgent need. Marine microorganisms have been considered as a potential source of natural antifoulants. In this study, the antifouling potential of marine dinoflagellateAmphidinium carterae, the toxic and red-tide microalgae, was investigated. We performed a series of operations to extract the bioactive substances fromAmphidinium carterae and tested their antialgal and antilarval activities. The crude extract ofAmphidinium carterae showed significant antialgal activity and the EC50 value againstSkeletonema costatum was 55.4μgmL−1. After purification, the isolated bioactive substances (the organic extract C) exhibited much higher antialgal and antilar-val activities with EC50 of 12.9μgmL−1 againstSkeletonema costatum and LC50 of 15.1μgmL−1 againstAmphibalanus amphitrite larvae. Subsequently, IR, Q-TOFMS, and GC-MS were utilized for the structural elucidation of the bioactive compounds, and a series of unsaturated and saturated 16- to 22-carbon fatty acids were detected. The data suggested the bioactive compounds isolated from Amphidinium carterae exhibited a significant inhibiting effect against the diatomSkeletonema costatum andAmphibalanus amphi-trite larvae, and could be substitutes for persistent, toxic antifouling compounds.

  10. Changes in endogenous bioactive compounds of Korean native chicken meat at different ages and during cooking.

    Science.gov (United States)

    Jayasena, Dinesh D; Jung, Samooel; Bae, Young Sik; Kim, Sun Hyo; Lee, Soo Kee; Lee, Jun Heon; Jo, Cheorun

    2014-07-01

    This study aimed to examine the effect of bird age on the contents of endogenous bioactive compounds, including carnosine, anserine, creatine, betaine, and carnitine, in meat from a certified meat-type commercial Korean native chicken strain (KNC; Woorimatdag). Additionally, the effects of the meat type (breast or leg meat) and the state of the meat (raw or cooked) were examined. Cocks of KNC were raised under similar standard commercial conditions at a commercial chicken farm. At various ages (10, 11, 12, 13, and 14 wk), breast and leg meats from a total of 10 birds from each age group were obtained. Raw and cooked meat samples were then prepared separately and analyzed for bioactive compounds. The age of the KNC had a significant effect only on the betaine content. The breast meat of KNC had higher amounts of carnosine and anserine but had lower amounts of betaine and carnitine than the leg meat (P bioactive compounds during cooking (P bioactive compounds in KNC meat, which can be useful for selection and breeding programs, and also for popularizing indigenous chicken meat.

  11. Draft Genome Sequence of Hoeflea sp. Strain BAL378, a Potential Producer of Bioactive Compounds

    DEFF Research Database (Denmark)

    Bentzon-Tilia, Mikkel; Riemann, Lasse; Gram, Lone

    2014-01-01

    Some phytoplankton-associated marine bacteria produce bioactive compounds. Members of the genus Hoeflea may be examples of such bacteria; however, data describing their metabolisms are scarce. Here, we report the draft genome sequence of Hoeflea sp. strain BAL378, a putative producer...

  12. Natural bioactive compounds from winery by-products as health promoters: a review.

    Science.gov (United States)

    Teixeira, Ana; Baenas, Nieves; Dominguez-Perles, Raul; Barros, Ana; Rosa, Eduardo; Moreno, Diego A; Garcia-Viguera, Cristina

    2014-09-04

    The relevance of food composition for human health has increased consumers' interest in the consumption of fruits and vegetables, as well as foods enriched in bioactive compounds and nutraceuticals. This fact has led to a growing attention of suppliers on reuse of agro-industrial wastes rich in healthy plant ingredients. On this matter, grape has been pointed out as a rich source of bioactive compounds. Currently, up to 210 million tons of grapes (Vitis vinifera L.) are produced annually, being the 15% of the produced grapes addressed to the wine-making industry. This socio-economic activity generates a large amount of solid waste (up to 30%, w/w of the material used). Winery wastes include biodegradable solids namely stems, skins, and seeds. Bioactive compounds from winery by-products have disclosed interesting health promoting activities both in vitro and in vivo. This is a comprehensive review on the phytochemicals present in winery by-products, extraction techniques, industrial uses, and biological activities demonstrated by their bioactive compounds concerning potential for human health.

  13. Functional food productions: release the potential of bioactive compounds through food processing

    Science.gov (United States)

    Epidemiological studies of bioactive compounds from plant-based foods have consistently pointed to undisputed benefits of consumption of plant-based foods on human health particularly regarding cardiovascular diseases and cancers. However, in order to attain the dosage required from these studies, p...

  14. Antialgal and antilarval activities of bioactive compounds extracted from the marine dinoflagellate Amphidinium carterae

    Science.gov (United States)

    Kong, Xianyu; Han, Xiurong; Gao, Min; Su, Rongguo; Wang, Ke; Li, Xuzhao; Lu, Wei

    2016-12-01

    With the global ban on the application of organotin-based marine coatings by the International Maritime Organization, the development of environmentally friendly, low-toxic and nontoxic antifouling compounds for marine industries has become an urgent need. Marine microorganisms have been considered as a potential source of natural antifoulants. In this study, the antifouling potential of marine dinoflagellate Amphidinium carterae, the toxic and red-tide microalgae, was investigated. We performed a series of operations to extract the bioactive substances from Amphidinium carterae and tested their antialgal and antilarval activities. The crude extract of Amphidinium carterae showed significant antialgal activity and the EC50 value against Skeletonema costatum was 55.4 μg mL-1. After purification, the isolated bioactive substances (the organic extract C) exhibited much higher antialgal and antilarval activities with EC50 of 12.9 μg mL-1 against Skeletonema costatum and LC50 of 15.1 μg mL-1 against Amphibalanus amphitrite larvae. Subsequently, IR, Q-TOFMS, and GC-MS were utilized for the structural elucidation of the bioactive compounds, and a series of unsaturated and saturated 16- to 22-carbon fatty acids were detected. The data suggested the bioactive compounds isolated from Amphidinium carterae exhibited a significant inhibiting effect against the diatom Skeletonema costatum and Amphibalanus amphitrite larvae, and could be substitutes for persistent, toxic antifouling compounds.

  15. Natural Bioactive Compounds from Winery By-Products as Health Promoters: A Review

    Directory of Open Access Journals (Sweden)

    Ana Teixeira

    2014-09-01

    Full Text Available The relevance of food composition for human health has increased consumers’ interest in the consumption of fruits and vegetables, as well as foods enriched in bioactive compounds and nutraceuticals. This fact has led to a growing attention of suppliers on reuse of agro-industrial wastes rich in healthy plant ingredients. On this matter, grape has been pointed out as a rich source of bioactive compounds. Currently, up to 210 million tons of grapes (Vitis vinifera L. are produced annually, being the 15% of the produced grapes addressed to the wine-making industry. This socio-economic activity generates a large amount of solid waste (up to 30%, w/w of the material used. Winery wastes include biodegradable solids namely stems, skins, and seeds. Bioactive compounds from winery by-products have disclosed interesting health promoting activities both in vitro and in vivo. This is a comprehensive review on the phytochemicals present in winery by-products, extraction techniques, industrial uses, and biological activities demonstrated by their bioactive compounds concerning potential for human health.

  16. Natural Bioactive Compounds from Winery By-Products as Health Promoters: A Review

    Science.gov (United States)

    Teixeira, Ana; Baenas, Nieves; Dominguez-Perles, Raul; Barros, Ana; Rosa, Eduardo; Moreno, Diego A.; Garcia-Viguera, Cristina

    2014-01-01

    The relevance of food composition for human health has increased consumers’ interest in the consumption of fruits and vegetables, as well as foods enriched in bioactive compounds and nutraceuticals. This fact has led to a growing attention of suppliers on reuse of agro-industrial wastes rich in healthy plant ingredients. On this matter, grape has been pointed out as a rich source of bioactive compounds. Currently, up to 210 million tons of grapes (Vitis vinifera L.) are produced annually, being the 15% of the produced grapes addressed to the wine-making industry. This socio-economic activity generates a large amount of solid waste (up to 30%, w/w of the material used). Winery wastes include biodegradable solids namely stems, skins, and seeds. Bioactive compounds from winery by-products have disclosed interesting health promoting activities both in vitro and in vivo. This is a comprehensive review on the phytochemicals present in winery by-products, extraction techniques, industrial uses, and biological activities demonstrated by their bioactive compounds concerning potential for human health. PMID:25192288

  17. Use of Moringa oleifera Flower Pod Extract as Natural Preservative and Development of SCAR Marker for Its DNA Based Identification

    Science.gov (United States)

    Gull, Iram; Javed, Attia; Aslam, Muhammad Shahbaz; Mushtaq, Roohi; Athar, Muhammad Amin

    2016-01-01

    The use of Moringa oleifera as natural food preservative has been evaluated in the present study. In addition, for quality assurance, the study has also been focused on the shelf life of product to authenticate the identification of plant by development of DNA based marker. Among the different extracts prepared from flower pods of Moringa oleifera, methanol and aqueous extract exhibited high antibacterial and antioxidant activity, respectively. The high phenolic contents (53.5 ± 0.169 mg GAE/g) and flavonoid contents (10.9 ± 0.094 mg QE/g) were also recorded in methanol and aqueous extract, respectively. Due to instability of bioactive compounds in aqueous extract, methanol extract is considered as potent natural preservative. The shelf life of methanol extract was observed for two months at 4°C under dark conditions. The developed SCAR primers (MOF217/317/MOR317) specifically amplified a fragment of 317 bp from DNA of Moringa oleifera samples collected from different regions of Punjab province of Pakistan. The methanol extract of Moringa oleifera flower pods has great potential to be used as natural preservative and nutraceutical in food industry. PMID:27471732

  18. Use of Moringa oleifera Flower Pod Extract as Natural Preservative and Development of SCAR Marker for Its DNA Based Identification.

    Science.gov (United States)

    Gull, Iram; Javed, Attia; Aslam, Muhammad Shahbaz; Mushtaq, Roohi; Athar, Muhammad Amin

    2016-01-01

    The use of Moringa oleifera as natural food preservative has been evaluated in the present study. In addition, for quality assurance, the study has also been focused on the shelf life of product to authenticate the identification of plant by development of DNA based marker. Among the different extracts prepared from flower pods of Moringa oleifera, methanol and aqueous extract exhibited high antibacterial and antioxidant activity, respectively. The high phenolic contents (53.5 ± 0.169 mg GAE/g) and flavonoid contents (10.9 ± 0.094 mg QE/g) were also recorded in methanol and aqueous extract, respectively. Due to instability of bioactive compounds in aqueous extract, methanol extract is considered as potent natural preservative. The shelf life of methanol extract was observed for two months at 4°C under dark conditions. The developed SCAR primers (MOF217/317/MOR317) specifically amplified a fragment of 317 bp from DNA of Moringa oleifera samples collected from different regions of Punjab province of Pakistan. The methanol extract of Moringa oleifera flower pods has great potential to be used as natural preservative and nutraceutical in food industry.

  19. Potential Pharmacological Resources: Natural Bioactive Compounds from Marine-Derived Fungi

    OpenAIRE

    Liming Jin; Chunshan Quan; Xiyan Hou; Shengdi Fan

    2016-01-01

    In recent years, a considerable number of structurally unique metabolites with biological and pharmacological activities have been isolated from the marine-derived fungi, such as polyketides, alkaloids, peptides, lactones, terpenoids and steroids. Some of these compounds have anticancer, antibacterial, antifungal, antiviral, anti-inflammatory, antioxidant, antibiotic and cytotoxic properties. This review partially summarizes the new bioactive compounds from marine-derived fungi with classific...

  20. Large-scale assessment of activity landscape feature probabilities of bioactive compounds.

    Science.gov (United States)

    Kayastha, Shilva; Dimova, Dilyana; Iyer, Preeti; Vogt, Martin; Bajorath, Jürgen

    2014-02-24

    Activity landscape representations integrate pairwise compound similarity and potency relationships and provide direct access to characteristic structure-activity relationship features in compound data sets. Because pairwise compound comparisons provide the foundation of activity landscape design, the assessment of specific landscape features such as activity cliffs has generally been confined to the level of compound pairs. A conditional probability-based approach has been applied herein to assign most probable activity landscape features to individual compounds. For example, for a given data set compound, it was determined if it would preferentially engage in the formation of activity cliffs or other landscape features. In a large-scale effort, we have determined conditional activity landscape feature probabilities for more than 160,000 compounds with well-defined activity annotations contained in 427 different target-based data sets. These landscape feature probabilities provide a detailed view of how different activity landscape features are distributed over currently available bioactive compounds.

  1. Bioactive Compounds and Antioxidant Capacity of Camarosa and Selva Strawberries (Fragaria x ananassa Duch.)

    Science.gov (United States)

    Van De Velde, Franco; Tarola, Anna M.; Güemes, Daniel; Pirovani, María E.

    2013-01-01

    Strawberries represent an important source of bioactive compounds due to their vitamin C and phenolic compound levels, which present high antioxidant effects, beneficial for the maintenance of consumer’s health. Argentina is the second largest strawberry producer in The Common Market of the Southern Cone (MERCOSUR), covering the main export destinations of Argentinian strawberries, i.e., Canada, United States, and European Union. Information about the bioactive compound occurrence and antioxidant capacity of these fruits is scarce or not available. Health related compounds of strawberry cultivars (Camarosa and Selva) from different zones of Argentina were investigated. Vitamin C content was in the same range for both studied cultivars. However, Camarosa strawberries, which are the most cultivated, consumed, and exported berries in Argentina, presented higher total phenolic and anthocyanins content, and consequently better in vitro antioxidant capacity. Moreover, there were differences in the occurrence and concentration in the phenolic compound profiles for both cultivars. Camarosa cultivar presented higher content of anthocyanidins, and Selva showed higher total ellagic acid content. The research shows that Argentina’s strawberries are an interesting source of bioactive compounds comparable to those in other parts of the world.

  2. Bioactive Compounds and Antioxidant Capacity of Camarosa and Selva Strawberries (Fragaria x ananassa Duch.

    Directory of Open Access Journals (Sweden)

    Franco Van De Velde

    2013-03-01

    Full Text Available Strawberries represent an important source of bioactive compounds due to their vitamin C and phenolic compound levels, which present high antioxidant effects, beneficial for the maintenance of consumer’s health. Argentina is the second largest strawberry producer in The Common Market of the Southern Cone (MERCOSUR, covering the main export destinations of Argentinian strawberries, i.e., Canada, United States, and European Union. Information about the bioactive compound occurrence and antioxidant capacity of these fruits is scarce or not available. Health related compounds of strawberry cultivars (Camarosa and Selva from different zones of Argentina were investigated. Vitamin C content was in the same range for both studied cultivars. However, Camarosa strawberries, which are the most cultivated, consumed, and exported berries in Argentina, presented higher total phenolic and anthocyanins content, and consequently better in vitro antioxidant capacity. Moreover, there were differences in the occurrence and concentration in the phenolic compound profiles for both cultivars. Camarosa cultivar presented higher content of anthocyanidins, and Selva showed higher total ellagic acid content. The research shows that Argentina’s strawberries are an interesting source of bioactive compounds comparable to those in other parts of the world.

  3. Bioactive Compounds and Antioxidant Capacity of Camarosa and Selva Strawberries (Fragaria x ananassa Duch.).

    Science.gov (United States)

    Van De Velde, Franco; Tarola, Anna M; Güemes, Daniel; Pirovani, María E

    2013-03-25

    Strawberries represent an important source of bioactive compounds due to their vitamin C and phenolic compound levels, which present high antioxidant effects, beneficial for the maintenance of consumer's health. Argentina is the second largest strawberry producer in The Common Market of the Southern Cone (MERCOSUR), covering the main export destinations of Argentinian strawberries, i.e., Canada, United States, and European Union. Information about the bioactive compound occurrence and antioxidant capacity of these fruits is scarce or not available. Health related compounds of strawberry cultivars (Camarosa and Selva) from different zones of Argentina were investigated. Vitamin C content was in the same range for both studied cultivars. However, Camarosa strawberries, which are the most cultivated, consumed, and exported berries in Argentina, presented higher total phenolic and anthocyanins content, and consequently better in vitro antioxidant capacity. Moreover, there were differences in the occurrence and concentration in the phenolic compound profiles for both cultivars. Camarosa cultivar presented higher content of anthocyanidins, and Selva showed higher total ellagic acid content. The research shows that Argentina's strawberries are an interesting source of bioactive compounds comparable to those in other parts of the world.

  4. Potential anticancer properties of bioactive compounds of Gymnema sylvestre and its biofunctionalized silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Arunachalam KD

    2014-12-01

    Full Text Available Kantha Deivi Arunachalam,1 Lilly Baptista Arun,1 Sathesh Kumar Annamalai,1 Aarrthy M Arunachalam2 1Center for Environmental Nuclear Research, SRM University, Potheri, Tamil Nadu, India; 2Division of Educational Services, Kaplan University (Medical, Washington DC, USA Background: Gymnema sylvestre is an ethno-pharmacologically important medicinal plant used in many polyherbal formulations for its potential health benefits. Silver nanoparticles (SNPs were biofunctionalized using aqueous leaf extracts of G. sylvestre. The anticancer properties of the bioactive compounds and the biofunctionalized SNPs were compared using the HT29 human adenoma colon cancer cell line.Methods: The preliminary phytochemical screening for bioactive compounds from aqueous extracts revealed the presence of alkaloids, triterpenes, flavonoids, steroids, and saponins. Biofunctionalized SNPs were synthesized using silver nitrate and characterized by ultraviolet–visible spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis, Fourier transform infrared spectroscopy, and X-ray diffraction for size and shape. The characterized biofunctionalized G. sylvestre were tested for its in vitro anticancer activity against HT29 human colon adenocarcinoma cells.Results: The biofunctionlized G. sylvestre SNPs showed the surface plasmon resonance band at 430 nm. The scanning electron microscopy images showed the presence of spherical nanoparticles of various sizes, which were further determined using the Scherrer equation. In vitro cytotoxic activity of the biofunctionalized green-synthesized SNPs (GSNPs indicated that the sensitivity of HT29 human colon adenocarcinoma cells for cytotoxic drugs is higher than that of Vero cell line for the same cytotoxic agents and also higher than the bioactive compound of the aqueous extract.Conclusion: Our results show that the anticancer properties of the bioactive compounds of G. sylvestre can be enhanced through

  5. Bio-solid-phase extraction/tandem mass spectrometry for identification of bioactive compounds in mixtures.

    Science.gov (United States)

    Forsberg, Erica M; Brennan, John D

    2014-08-19

    We describe a two-step column-based bioassay method with tandem mass spectrometric detection for rapid identification of bioactive species in mixtures. The first step uses an immobilized enzyme reactor (IMER) column interfaced to an electrospray ionization mass spectrometer (ESI-MS) to identify mixtures containing bioactive compounds (i.e., enzyme inhibitors), while the second step uses bioselective solid-phase extraction (bioSPE) columns to isolate compounds from "hit" mixtures, which are then identified online by data-dependent ESI-MS. IMER columns were prepared by entrapment of adenosine deaminase (ADA) into sol-gel derived monolithic silica columns, and used to perform a primary IMER screen of mixtures prepared from a bioactive library, which resulted in four apparent hit compounds. Such columns did not provide sufficient binding site density to allow bioSPE, and thus a new column format was developed using ADA that was covalently immobilized to monolithic silica capillary columns, providing ∼500-fold more protein binding sites than were present in columns containing entrapped proteins. Using the covalently linked ADA columns, bioactive mixtures identified by IMER were infused until a maximum total ion current was achieved, followed by washing with a buffer to remove unbound compounds. A harsh wash with 3% acetic acid eluted the strongly bound ligands and the resulting peak triggered data dependent MS/MS to identify the ligand, showing that two of the apparent hits were true ADA inhibitors and demonstrating the ability of this method to rapidly identify bioactive compounds in mixtures.

  6. Nanoencapsulation of pomegranate bioactive compounds for breast cancer chemoprevention.

    Science.gov (United States)

    Shirode, Amit B; Bharali, Dhruba J; Nallanthighal, Sameera; Coon, Justin K; Mousa, Shaker A; Reliene, Ramune

    2015-01-01

    Pomegranate polyphenols are potent antioxidants and chemopreventive agents but have low bioavailability and a short half-life. For example, punicalagin (PU), the major polyphenol in pomegranates, is not absorbed in its intact form but is hydrolyzed to ellagic acid (EA) moieties and rapidly metabolized into short-lived metabolites of EA. We hypothesized that encapsulation of pomegranate polyphenols into biodegradable sustained release nanoparticles (NPs) may circumvent these limitations. We describe here the development, characterization, and bioactivity assessment of novel formulations of poly(D,L-lactic-co-glycolic acid)-poly(ethylene glycol) (PLGA-PEG) NPs loaded with pomegranate extract (PE) or individual polyphenols such as PU or EA. Monodispersed, spherical 150-200 nm average diameter NPs were prepared by the double emulsion-solvent evaporation method. Uptake of Alexa Fluor-488-labeled NPs was evaluated in MCF-7 breast cancer cells over a 24-hour time course. Confocal fluorescent microscopy revealed that PLGA-PEG NPs were efficiently taken up, and the uptake reached the maximum at 24 hours. In addition, we examined the antiproliferative effects of PE-, PU-, and/or EA-loaded NPs in MCF-7 and Hs578T breast cancer cells. We found that PE, PU, and EA nanoprototypes had a 2- to 12-fold enhanced effect on cell growth inhibition compared to their free counterparts, while void NPs did not affect cell growth. PU-NPs were the most potent nanoprototype of pomegranates. Thus, PU may be the polyphenol of choice for further chemoprevention studies with pomegranate nanoprototypes. These data demonstrate that nanotechnology-enabled delivery of pomegranate polyphenols enhances their anticancer effects in breast cancer cells. Thus, pomegranate polyphenols are promising agents for nanochemoprevention of breast cancer.

  7. Bioactive compounds, antioxidant and binding activities and spear yield of Asparagus officinalis L.

    Science.gov (United States)

    Lee, Jong Won; Lee, Jeong Hyun; Yu, In Ho; Gorinstein, Shela; Bae, Jong Hyang; Ku, Yang Gyu

    2014-06-01

    The aim of this investigation was to find a proper harvesting period and establishing fern number, which effects the spear yield, bioactive compounds and antioxidant activities of Asparagus officinalis L. Spears were harvested at 2, 4, and 6 weeks after sprouting. Control for comparison was used without harvest. Spears and total yield increased with prolonged spear harvest period. In harvest of 6 weeks long optimum spear yield was the highest and fern numbers were 5 ~ 8. Bioactive compounds (polyphenols, flavonoids, flavanols, tannins and ascorbic acid) and the levels of antioxidant activities by ferric-reducing/antioxidant power (FRAP) and cupric reducing antioxidant capacity (CUPRAC) assays in asparagus ethanol extracts significantly differed in the investigated samples and were the highest at 6 weeks harvest period (P asparagus were studied by the interaction of polyphenol ethanol extracts with HSA, using 3D- FL. In conclusion, antioxidant status (bioactive compounds, binding and antioxidant activities) improved with the harvesting period and the first segment from spear tip. Appropriate harvesting is effective for higher asparagus yield and its bioactivity.

  8. Extraction and characterization of candidate bioactive compounds in different tissues from salmon (Salmo salar

    Directory of Open Access Journals (Sweden)

    Susan Skanderup Falkenberg

    2014-07-01

    Full Text Available Summary. There is an interest in bioprospecting organisms from the aquatic environment to find novel bioactive compounds with health promoting or other functional properties. The aim of this study was to evaluate extracts from  untreated and heat-treated salmon tissues for their radical scavenging activities and for their ability to inhibit activity of the proteases angiotensin I-converting enzyme (ACE and dipeptidyl peptidase 4 (DPP-4. In vitro assays were used to detect these activities and the corresponding candidate bioactive compounds were characterized by LC-MS/MS.Radical scavenging activity was detected in <10kDa extracts of gills, belly flap muscle and skin with EC50 values of 39, 82 and 100 µg/mL, respectively. No ACE or DPP-4 inhibiting activity could be detected. LC-MS/MS analysis of dominating compounds in active fractions from size exclusion chromatography showed that families of related compounds were found in several fractions from different tissues but most pronounced in gills. One family was defined according to content of a specific amino acid sequence (PW. Three families were defined by the m/z value of the smallest compound reported in each family (219, 434 and 403. The three latter families did not contain standard unmodified amino acids, indicating peptides with modified amino acids or other kinds of molecules.Industrial relevance. Bioprospecting in fish tissue traditionally regarded as waste can lead to detection of novel natural bioactive compounds including peptides, which could have nutritional, pharmaceutical or other functional value and be used in health and functional foods, thus increasing the value adding of secondary marine products. A number of  naturally occurring antimicrobial  peptides have been characterized from fish skin and gills, such as piscidins, but these and other fish tissues may contain numerous other compounds with bioactive properties. Such compounds could be extracted by the subsection of

  9. Extraction and characterization of candidate bioactive compounds in different tissues from salmon (Salmo salar)

    DEFF Research Database (Denmark)

    Falkenberg, Susan Skanderup; Mikalsen, S. O.; Joensen, H.

    2014-01-01

    There is an interest in bioprospecting organisms from the aquatic environment to find novel bioactive compounds with health promoting or other functional properties. The aim of this study was to evaluate extracts from untreated and heat-treated salmon tissues for their radical scavenging activities...... in several fractions from different tissues but most pronounced in gills. One family was defined according to content of a specific amino acid sequence (PW). Three families were defined by the m/z value of the smallest compound reported in each family (219, 434 and 403). The three latter families did...... not contain standard unmodified amino acids, indicating peptides with modified amino acids or other kinds of molecules.Industrial relevance. Bioprospecting in fish tissue traditionally regarded as waste can lead to detection of novel natural bioactive compounds including peptides, which could have nutritional...

  10. Experimental protocol for the recovery and evaluation of bioactive compounds of tarbush against postharvest fruit fungi.

    Science.gov (United States)

    De León-Zapata, Miguel A; Pastrana-Castro, Lorenzo; Rua-Rodríguez, María Luisa; Alvarez-Pérez, Olga Berenice; Rodríguez-Herrera, Raul; Aguilar, Cristóbal N

    2016-05-01

    The aim of this study was to recover and evaluate in vitro the antifungal activity of bioactive compounds of tarbush Flourensia cernua against fruit postharvest fungi and their antioxidant capacity. A yield of 15% of bioactive compounds of tarbush was obtained by infusion method and heating using water as solvent. A concentration of 4000 mg/L showed a higher antioxidant activity against the ABTS radical (3.21 μMol/g) in comparison with the DPPH radical (7.62 μMol/g); however the DPPH radical showed a better correlation with the content of tannins. The BCT showed values of IC50 between 1519 and 3310 mg/L against Rhizopus stolonifer, Botrytis cinerea, Fusarium oxysporum and Colletotrichum gloeosporioides. Antifungal activity is attributable mainly to gallic acid and flavonoids identified by infrared and HPLC analysis. In this study, the BCT have shown to be a possible natural alternative of antioxidant and antifungal compounds for use against postharvest fruit fungi.

  11. Effect of physiological harvest stages on the composition of bioactive compounds in Cavendish bananas

    Institute of Scientific and Technical Information of China (English)

    Christelle BRUNO BONNET; Olivier HUBERT; Didier MBEGUIE-A-MBEGUIE; Dominique PALLET; Abel HIOL; Max REYNES; Patrick POUCHERET

    2013-01-01

    The combined influence of maturation,ripening,and climate on the profile of bioactive compounds was studied in banana (Musa acuminata,AAA,Cavendish,cv.Grande Naine).Their bioactive compounds were determined by the Folin-Ciocalteu assay and high-performance thin layer chromatographic (HPTLC) method.The polyphenol content of bananas harvested after 400 degree days remained unchanged during ripening,while bananas harvested after 600 and 900 degree days exhibited a significant polyphenol increase.Although dopamine was the polyphenol with the highest concentration in banana peels during the green developmental stage and ripening,its kinetics differed from the total polyphenol profile.Our results showed that this matrix of choice (maturation,ripening,and climate) may allow selection of the banana (M.acuminata,AAA,Cavendish,cv.Grande Naine) status that will produce optimal concentrations of identified compounds with human health relevance.

  12. Effect of physiological harvest stages on the composition of bioactive compounds in Cavendish bananas.

    Science.gov (United States)

    Bruno Bonnet, Christelle; Hubert, Olivier; Mbeguie-A-Mbeguie, Didier; Pallet, Dominique; Hiol, Abel; Reynes, Max; Poucheret, Patrick

    2013-04-01

    The combined influence of maturation, ripening, and climate on the profile of bioactive compounds was studied in banana (Musa acuminata, AAA, Cavendish, cv. Grande Naine). Their bioactive compounds were determined by the Folin-Ciocalteu assay and high-performance thin layer chromatographic (HPTLC) method. The polyphenol content of bananas harvested after 400 degree days remained unchanged during ripening, while bananas harvested after 600 and 900 degree days exhibited a significant polyphenol increase. Although dopamine was the polyphenol with the highest concentration in banana peels during the green developmental stage and ripening, its kinetics differed from the total polyphenol profile. Our results showed that this matrix of choice (maturation, ripening, and climate) may allow selection of the banana (M. acuminata, AAA, Cavendish, cv. Grande Naine) status that will produce optimal concentrations of identified compounds with human health relevance.

  13. HPLC ANALYSIS OF BIOACTIVE COMPOUNDS IN TEN DIFFERENT WILD TYPE UNDER-UTILIZED LEGUME GRAINS

    Directory of Open Access Journals (Sweden)

    Vellingiri Vadivel and Hans Konrad Biesalski

    2010-05-01

    Full Text Available In recent years, many food industries have been initiated the formulation of nutraceutical/functional foods by incorporating the bioactive ingredients for the prevention/treatment of certain chronic diseases. In this connection, certain promising wild type under-utilized legume grains received more attention, since they are naturally a rich source of L-Dopa (precursor of dopamine and certain bioactive compounds including phenolics, tannins and phytic acid. In the present study, seed materials of certain promising wild type under-utilized food legume grains such as Abrus precatorius L., Acacia leucopholea Willd, Bauhinia varigata L., Canavalia gladiata (Jacq. DC., Cassia floribunda Cav., Entada scandens Benth., Indigofera linifolia (L.f. Retz., Mucuna monosperma DC. Ex Wight., Sesbania bispinosa (Jacq. Wight. and Tamarindus indica L., collected from Eastern and Western Ghats of South India, were investigated for certain bioactive compounds through HPLC technique. All the analysed samples were found to constitute a viable source of total free phenolics (4.23 – 8.75 g/100 g DM, tannins (1.04 – 5.41 g /100 g DM, L-Dopa (1.17 – 5.34 g/100 g DM and phytic acid (0.96 – 2.74 g/100 g DM and also the newly developed HPLC procedures were proven to be sensitive enough to detect these bioactive compounds even at tracer level. Further, such wild type legume grains could be recommended as a natural source of bioactive compounds in the dietary management of certain chronic diseases such as Parkinsonism, diabetes, obesity, cardiovascular diseases, cancer etc.

  14. Lipoic Acid Gold Nanoparticles Functionalized with Organic Compounds as Bioactive Materials

    Science.gov (United States)

    Turcu, Ioana; Zarafu, Irina; Popa, Marcela; Chifiriuc, Mariana Carmen; Bleotu, Coralia; Culita, Daniela; Ghica, Corneliu; Ionita, Petre

    2017-01-01

    Water soluble gold nanoparticles protected by lipoic acid were obtained and further functionalized by standard coupling reaction with 1-naphtylamine, 4-aminoantipyrine, and 4′-aminobenzo-15-crown-5 ether. Derivatives of lipoic acid with 1-naphtylamine, 4-aminoantipyrine, and 4′-aminobenzo-15-crown-5 ether were also obtained and characterized. All these were tested for their antimicrobial activity, as well as for their influence on mammalian cell viability and cellular cycle. In all cases a decreased antimicrobial activity of the obtained bioactive nanoparticles was observed as compared with the organic compounds, proving that a possible inactivation of the bioactive groups could occur during functionalization. However, both the gold nanoparticles as well as the functionalized bioactive nanosystems proved to be biocompatible at concentrations lower than 50 µg/mL, as revealed by the cellular viability and cell cycle assay, demonstrating their potential for the development of novel antimicrobial agents.

  15. [Physical, chemical and bioactive compounds of tree tomato (Cyphomandra betacea)].

    Science.gov (United States)

    Torres, Alexia

    2012-12-01

    Tree tomato (Cyphomandra betacea) is appreciated for its excellent nutritional qualities, being considered a good source of antioxidants compounds, calcium, phosphorus, potassium and iron, sugars, organic acids, pectins and flavonoids. In this study, were evaluated physical parameters (weight, size, compression strength and humidity) and chemical (degrees Brix, titratable acidity, pH, protein, dietary fiber, ash, minerals and their bioaccesibility, pectin, antioxidants compounds) of the fruit from the Aragua State, Venezuela, as a contribution to stimulate and diversify the consumption of the tree tomato. The characterization showed that the fruits were at the ripening stage for consumption (degrees Brix 10.51, pH 3.5, acidity 0.02 g/100ml and 4.32 Kgf/cm2 compression strength) gave a yield of 74% pulp. The analytical results of the ripped pulp showed a content of 30 Kcal/100 g, dietary fiber (4.10 g/100 g), and minerals such as phosphorous, calcium, magnesium, potassium and iron (331.32, 21.25, 21.18, 17.03 and 7.44 mg/100 g, respectively). Bioaccesibility values of 6.71 and 1.86% were reported for calcium and iron. The extracted pectin (1.00 g/100 g) was classified as high methoxyl with high degree of esterification. The antioxidant capacity of the ripped pulp (EC50 of 165.00 g/g DPPH and reducing power of 0.07 mmol Fe +2/100 g), could be attributed to the presence of ascorbic acid (23.32 mg/100 g), lycopene (1.22 mg/100 g), and phenolic compounds (1.39 mg GAE/g), anthocyanins (0.29 mg cyanidin/g) and tannins (0.40 mg catechin/100 g).The results obtained encourage the nutritional benefits and suggest applications as a functional ingredient in food product development.

  16. Promising features of Moringa oleifera oil: recent updates and perspectives.

    Science.gov (United States)

    Nadeem, Muhammad; Imran, Muhammad

    2016-12-08

    Lipids are the concentrated source of energy, fat soluble vitamins, essential fatty acids, carriers of flavours and many bio-active compounds with important role in maintaining physiological functions of biological body. Moringa oleifera is native to Himalaya and widely grown in many Asian and African countries with seed oil content range from 35-40%. Moringa oleifera oil (MOO) has light yellow colour with mild nutty flavour and fatty acids composition suggests that MOO is highly suitable for both edible and non-edible applications. MOO is extremely resistant to autoxidation which can be used as an antioxidant for the long term stabilization of commercial edible oils. Thermal stability of MOO is greater than soybean, sunflower, canola and cottonseed oils. High oleic contents of MOO are believed to have the capability of increasing beneficial HDL cholesterol and decreased the serum cholesterol and triglycerides. MOO applications have also been explored in cosmetics, folk medicines and skin care formulations. Overall, this review focuses on commercial production status, food applications, antioxidant characteristics, health benefits, thermal stability, fractionation, cholesterol contents, medicinal, nutraceutical action, toxicological evaluation, biodiesel production, personal care formulations and future perspectives of the MOO for the stake holders to process and utilize MOO as a new source of edible oil for industrial purpose.

  17. Health promoting effects of bioactive compounds in plants: Targeting Type 2 diabetes

    DEFF Research Database (Denmark)

    Bhattacharya, Sumangala

    While type 2 diabetes is an increasing problem worldwide, there is still no cure and therefore search for the new insulin sensitizer continues. Plants are a natural source of bioactive compounds and have been used to improve human health and wellbeing for centuries. Today, several studies...... concentrate on screening plant extracts commonly used in folk medicine for pure compounds, exploiting promising results in treatment of, among others, type 2 diabetes. Another area of diabetes research, focused on the complex biology of adipose tissue and its influence on the development of insulin resistance...... compounds and their influence on adipocyte differentiation, lipid storage, glucose uptake and gut microbiota....

  18. Effect of Mobile Phase Additives on the Resolution of Four Bioactive Compounds by RP-HPLC

    Directory of Open Access Journals (Sweden)

    Shengnan Li

    2010-05-01

    Full Text Available The use of mobile phase additives enhances the separation and resolution of the bioactive compounds on the C18 column. Chlorogenic acid, caffeic acid, rutin, and scoparone from Herba Artemisiae Scopariae were investigated as the target compounds. Acetic acid, triethylamine, inorganic salts, and several ionic liquids were added as mobile phase additives into methanol/water (40:60, v/v. The result revealed that a mobile phase with 0.01 mol/L of ionic liquid [BMIM][BF4] enabled the optimum separation of the four target compounds.

  19. Aromatic Plants as a Source of Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Panagiota Florou-Paneri

    2012-09-01

    Full Text Available Aromatic plants, also known as herbs and spices, have been used since antiquity as folk medicine and as preservatives in foods. The best known aromatic plants, such as oregano, rosemary, sage, anise, basil, etc., originate from the Mediterranean area. They contain many biologically active compounds, mainly polyphenolics, which have been found to possess antimicrobial, antioxidant, antiparasitic, antiprotozoal, antifungal, and anti-inflammatory properties. Currently, the demand for these plants and their derivatives has increased because they are natural, eco-friendly and generally recognized as safe products. Therefore, aromatic plants and their extracts have the potential to become new generation substances for human and animal nutrition and health. The purpose of this review is to provide an overview of the literature surrounding the in vivo and in vitro use of aromatic plants.

  20. Controlled release properties of zein-fatty acid blend films for multiple bioactive compounds.

    Science.gov (United States)

    Arcan, Iskender; Yemenicioğlu, Ahmet

    2014-08-13

    To develop edible films having controlled release properties for multiple bioactive compounds, hydrophobicity and morphology of zein films were modified by blending zein with oleic (C18:1)Δ⁹, linoleic (C18:2)Δ(9,12), or lauric (C₁₂) acids in the presence of lecithin. The blend zein films showed 2-8.5- and 1.6-2.9-fold lower initial release rates for the model active compounds, lysozyme (LYS) and (+)-catechin (CAT), than the zein control films, respectively. The change of fatty acid chain length affected both CAT and LYS release rates while the change of fatty acid double bond number affected only the CAT release rate. The film morphologies suggested that the blend films owe their controlled release properties mainly to the microspheres formed within their matrix and encapsulation of active compounds. The blend films showed antilisterial activity and antioxidant activity up to 81 μmol Trolox/cm². The controlled release of multiple bioactive compounds from a single film showed the possibility of combining application of active and bioactive packaging technologies and improving not only safety and quality but also health benefits of packed food.

  1. Bovine and soybean milk bioactive compounds: Effects on inflammatory response of human intestinal Caco-2 cells.

    Science.gov (United States)

    Calvello, Rosa; Aresta, Antonella; Trapani, Adriana; Zambonin, Carlo; Cianciulli, Antonia; Salvatore, Rosaria; Clodoveo, Maria Lisa; Corbo, Filomena; Franchini, Carlo; Panaro, Maria Antonietta

    2016-11-01

    In this study the effects of commercial bovine and soybean milks and their bioactive compounds, namely genistein, daidzein and equol, on the inflammatory responses induced by lipopolysaccharide (LPS) treatment of human intestinal Caco-2 cells were examined, in terms of nitric oxide (NO) release and inducible nitric oxide synthetase (iNOS) expression. Both milks and their bioactive compounds significantly inhibited, dose-dependently, the expression of iNOS mRNA and protein, resulting in a decreased NO production. The NF-κB activation in LPS-stimulated intestinal cells was also examined. In all cases we observed that cell pre-treatment before LPS activation inhibited the IkB phosphorylation. Accordingly, quantification of bioactive compounds by solid phase microextraction coupled with liquid chromatography has shown that they were absorbed, metabolized and released by Caco-2 cells in culture media. In conclusion, we demonstrated that milks and compounds tested are able to reduce LPS-induced inflammatory responses from intestinal cells, interfering with NF-kB dependent molecular mechanisms.

  2. Nanoencapsulation of the Bioactive Compounds of Spirulina with a Microalgal Biopolymer Coating.

    Science.gov (United States)

    Greque de Morais, Michele; Greque de Morais, Etiele; Vaz, Bruna da Silva; Gonçalves, Carolina Ferrer; Lisboa, Cristiane; Costa, Jorge Alberto Vieira

    2016-01-01

    Microalgae have been studied in biotechnological processes due to the various biocompounds that can be obtained from their biomasses, including pigments, proteins, antioxidants, biopeptides, fatty acids and biopolymers. Microalgae biopolymers are biodegradable materials that present similar characteristics to traditional polymers, with the advantage of being rapidly degraded when discarded. In addition, nanoencapsulation is capable of increasing the availability of bioactive compounds by allowing the release of these biocompounds to occur slowly over time. The use of polymers in the nanoencapsulation of active ingredients can mask the undesired physicochemical properties of the compounds to be encapsulated, thereby enhancing consumer acceptability. This covering also acts as a barrier against several foreign substances that can react with bioactive compounds and reduce their activity. Studies of the development of poly-3-hydroxybutyrate (PHB) nanocapsules from microbial sources are little explored; this review addresses the use of nanotechnology to obtain bioactive compounds coated with biopolymer nanocapsules, both obtained from Spirulina biomasses. These microalgae are Generally Recognized as Safe (GRAS) certified, which guarantees that the biomass can be used to obtain high added value biocompounds, which can be used in human and animal supplementation.

  3. Germination Time Dependence of Bioactive Compounds and Antioxidant Activity in Germinated Rough Rice (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Anuchita Moongngarm

    2011-01-01

    Full Text Available Problem statement: Germinated rice has been recognized as a functional food and its health benefits. However, most related studies were on germinated brown rice but our previous study indicated that germination of rough rice was an effective method to obtain high concentrations of bioactive compounds. Germination time is one of the most important factors affecting the level of biochemical compositions and antioxidant activity. Approach: Rough rice seeds were soaked in water for 2 days and germinated for four different days (1- 4 days. Total phenolic compounds, phytic acid, á-tocopherol, á- tocopherol, á-tocotrienol and á-oryzanol were investigated compared with those of ungerminated brown rice. The antioxidant activity of germinated rice was evaluated through four different methods, the 1, 1- Diphenyl-2-Picrylhydrazyl (DPPH free radical scavenging assay, hydroxyl radical scavenging activity, lipid peroxidation assay and linoleic acid emulsion system-thiocyanate method. Results: The results showed that the germination for 2 days or longer, after soaking, yielded significantly higher level of total phenolic, á-tocopherol, á-tocopherol, á-tocotrienol and á-oryzanol than those of ungerminated brown rice and soaked rice, whilst the concentration of phytic acid was reduced significantly when germination time was increased. The samples germinated for one day or longer also revealed greater antioxidant activity than those of ungerminated rice. Conclusion: The level of bioactive compounds and antioxidant activity of germinated rough rice were affected by germination time. Germination for 2 and 3 days was the optimum time for germination rough rice to obtain high concentration of bioactive compounds and high antioxidant activity. The germination process of rough rice could be a potential method to obtain functional germinated rice flour with high bioactive compounds and health beneficial properties and could be applied to produce

  4. Evaluation of Antibacterial Activity and Preliminary Phytochemical Screening of Moringa oleifera on Pathogenic Bacteria

    Directory of Open Access Journals (Sweden)

    Ogah James Ode

    2015-11-01

    Full Text Available The use of higher plants and their extracts to treat infections is an old practice in traditional African medicine. However, scientific research has shown that bioactive compounds in plants are valuable medically in the treatment of infections caused by pathogenic microorganisms. This research work is aimed to evaluate the antibacterial potential of Moringa oleifera extracts on standard microorganisms strains as well as multi-drug resistant strains of medical importance. Acetone, aqueous, ethanol and chloroform extracts of bark, leaves and seeds of Moringa oleifera were investigated for antibacterial activity against Bacillus cereus, Escherichia coli, Klebsiella pneumoniae, Methicillin resistant Staphylococcus aureus (MRSA, Pseudomonas aeruginosa and Proteus mirabilis. The preliminary phytochemical screening and antibacterial assay were carried out using chemicals and agar well diffusion method respectively. The results of phytochemicals analysis revealed differences in the presence of alkaloids, reducing sugars, saponins and volatile oil in all the extracts. Tannins were present in the extract of leaves while terpenes were present in the extract of bark and leaves. Phlobatannins and flavonoids were absent in all the extracts. The antibacterial assay results showed that M. oleifera extracts exhibited broad spectrum activity against four to six bacteria isolates as indicated by the zone of inhibition ranging from 10 to 36mm with variation in the percentage sensitivity of < 100%, = 100% and >100% depending on the plant part and solvent used. The minimum inhibitory concentration (MIC and bactericidal concentration (MBC ranged from 100mg/ml to 450mg/ml and 250mg/ml to 500mg/ml respectively against the isolates used. Standard antibiotic disc (Ofloxacin- 5μg inhibited the growth of all the tested bacteria isolates except P. mirabilis. The results of this research work showed that M. oleifera has great potential as antibacterial compounds against Gram

  5. Bioactive Compounds Isolated from Microalgae in Chronic Inflammation and Cancer

    Directory of Open Access Journals (Sweden)

    Elena Talero

    2015-09-01

    Full Text Available The risk of onset of cancer is influenced by poorly controlled chronic inflammatory processes. Inflammatory diseases related to cancer development include inflammatory bowel disease, which can lead to colon cancer, or actinic keratosis, associated with chronic exposure to ultraviolet light, which can progress to squamous cell carcinoma. Chronic inflammatory states expose these patients to a number of signals with tumorigenic effects, including nuclear factor kappa B (NF-κB and mitogen-activated protein kinases (MAPK activation, pro-inflammatory cytokines and prostaglandins release and ROS production. In addition, the participation of inflammasomes, autophagy and sirtuins has been demonstrated in pathological processes such as inflammation and cancer. Chemoprevention consists in the use of drugs, vitamins, or nutritional supplements to reduce the risk of developing or having a recurrence of cancer. Numerous in vitro and animal studies have established the potential colon and skin cancer chemopreventive properties of substances from marine environment, including microalgae species and their products (carotenoids, fatty acids, glycolipids, polysaccharides and proteins. This review summarizes the main mechanisms of actions of these compounds in the chemoprevention of these cancers. These actions include suppression of cell proliferation, induction of apoptosis, stimulation of antimetastatic and antiangiogenic responses and increased antioxidant and anti-inflammatory activity.

  6. Isolation and characterization of bioactive compounds from Lepisorus thunbergianus (Kaulf.

    Directory of Open Access Journals (Sweden)

    Jinfeng Yang

    2015-05-01

    Full Text Available Lepisorus thunbergianus (Kaulf. (LET is an evergreen fern found on rocks and tree trunks that is distributed in East and Southeast Asia. Our previous study showed that the methanol extract from LET had significant anti-oxidant activity, but the active components of LET are still unclear. In the present study, isovitexin, orientin, isoorientin and chlorogenic acid were isolated from LET under the guidance of antioxidant activity. In addition, the structure of isovitexin, orientin, isoorientin and chlorogenic acid was characterized using matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS and nuclear magnetic resonance spectroscopy (NMR. Orientin and isoorientin presented similar activities toward the DPPH, with half maximal inhibitory concentrations (IC50 of 15–17 μmol, and inhibition of reactive oxygen species (ROS production by 50% at 100 μmol. Chlorogenic acid significantly inhibited intracellular ROS and nitric oxide (NO production and had a strong effect toward DPPH. Furthermore, chlorogenic acid demonstrated decreased iNOS, COX-2, IFN-β and TNF-α gene expression. These findings demonstrate the potential anti-inflammatory effects of chlorogenic acid. Isoorientin, at a concentration of 100 μmol, showed 50% inhibition of human liver cancer cells (Huh7 and HepG2. These results suggest that compounds isolated from LET have potential to prevent liver cancer cell lines.

  7. Bioactivity of volatile organic compounds produced by Pseudomonas tolaasii

    Directory of Open Access Journals (Sweden)

    Pietro eLo Cantore

    2015-10-01

    Full Text Available Pseudomonas tolaasii is the main bacterial pathogen of several mushroom species. In this paper we report that strains of P. tolaasii produce volatile substances inducing in vitro mycelia growth inhibition of Pleurotus ostreatus and P. eryngii, and Agaricus bisporus and P. ostreatus basidiome tissue blocks brown discoloration. P. tolaasii strains produced the volatile ammonia but not hydrogen cyanide. Among the volatiles detected by GC-MS, methanethiol, dimethyl disulfide, and 1-undecene were identified. The latter, when assayed individually as pure compounds, led to similar effects noticed when P. tolaasii volatiles natural blend was used on mushrooms mycelia and basidiome tissue blocks. Furthermore, the natural volatile mixture, resulted toxic toward lettuce and broccoli seedling growth. In contrast, pure volatiles showed different activity according to their nature and/or doses applied. Indeed, methanethiol resulted toxic at all the doses used, while dimethyl disulfide toxicity was assessed till a quantity of 1.25 µg, below which it caused, together with 1-undecene ( 10 µg, broccoli growth increase.

  8. Purification and Characterization of Bioactive Compounds from Styela clava

    Directory of Open Access Journals (Sweden)

    Bao Ju

    2014-01-01

    Full Text Available The immunomodulatory activity of extract from Styela clava was studied systematically based on activity tracking in vitro in order to find out novel-structured secondary metabolite. The proliferation rates of mouse splenic lymphocytes and peritoneal macrophages were used as screening index, as well as NO release promoting activities. The crude extract (CE and its different polar fractions from S. clava all exhibited proliferative activity of splenolymphocytes and mouse macrophages, as well as NO release promoting activities, among which petroleum ether fraction (PE showed the strongest effect. The antioxidant experiment in vitro showed that CE demonstrated antioxidant ability in 1,1-diphenyl-2-picrylhydrazyl (DPPH system and the beta carotene-linoleic acid system; the activity of ethyl acetate fraction (ET was much stronger than that of the others. Further isolated by silica gel column chromatography, ET was classified into seven sub-components (E1~E7 listed in the order of activity as E5>E6>E4>E3>E7>E2>E1. Five compounds were separated as (1 cholesteric-7-en-3β-ol, (2 cholesteric-4-en-3β,6β-diol, (3 cholesterol, (4 batilol, and (5 ceramide, among which (1, (2, and (4 were isolated for the first time from S. clava.

  9. Bioactive Compounds Isolated from Microalgae in Chronic Inflammation and Cancer

    Science.gov (United States)

    Talero, Elena; García-Mauriño, Sofía; Ávila-Román, Javier; Rodríguez-Luna, Azahara; Alcaide, Antonio; Motilva, Virginia

    2015-01-01

    The risk of onset of cancer is influenced by poorly controlled chronic inflammatory processes. Inflammatory diseases related to cancer development include inflammatory bowel disease, which can lead to colon cancer, or actinic keratosis, associated with chronic exposure to ultraviolet light, which can progress to squamous cell carcinoma. Chronic inflammatory states expose these patients to a number of signals with tumorigenic effects, including nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPK) activation, pro-inflammatory cytokines and prostaglandins release and ROS production. In addition, the participation of inflammasomes, autophagy and sirtuins has been demonstrated in pathological processes such as inflammation and cancer. Chemoprevention consists in the use of drugs, vitamins, or nutritional supplements to reduce the risk of developing or having a recurrence of cancer. Numerous in vitro and animal studies have established the potential colon and skin cancer chemopreventive properties of substances from marine environment, including microalgae species and their products (carotenoids, fatty acids, glycolipids, polysaccharides and proteins). This review summarizes the main mechanisms of actions of these compounds in the chemoprevention of these cancers. These actions include suppression of cell proliferation, induction of apoptosis, stimulation of antimetastatic and antiangiogenic responses and increased antioxidant and anti-inflammatory activity. PMID:26437418

  10. Production of Nanofibers Containing the Bioactive Compound C-Phycocyanin.

    Science.gov (United States)

    Figueira, Felipe da Silva; Gettens, Juliana Garcia; Costa, Jorge Alberto Vieira; de Morais, Michele Greque; Moraes, Caroline Costa; Kalil, Susana Juliano

    2016-01-01

    C-phycocyanin (C-PC) is a water-soluble phycobiliprotein present in light-harvesting antenna system of cyanobacteria. The nanostructures have not been widely evaluated, precluding improvements in stability and application of the C-PC. Electrospun nanofibers have an extremely high specific surface area due to their small diameter, they can be produced from a wide variety of polymers, and they are successfully evaluated to increase the efficacy of antitumor drugs. The incorporation of C-PC into nanofibers would allow investigations of potential uses in alternative cancer treatments and tissue engineering scaffolds. In this paper, C-phycocyanin were incorporated into the polymer polyethylene oxide (PEO) in various concentrations for nanofiber production via an electrospinning process. Nanofibers structures were analyzed using digital optical microscopy and scanning electron microscopy (SEM). Thermogravimetric analysis was performed on the pure starting compounds and the produced nanofibers. At a concentration of 2% (w/w) of PEO, nanofibers were not produced, and concentrations of 4% (w/w) of PEO failed to produce nanofibers of good quality. Solutions with 6% (w/w) PEO, 6% (w/w) PEO plus 1% (w/w) NaCI, and 8% (w/w) PEO promote the formation of bluish, homogeneous and bead-free nanofibers with average diameters varying between 542.1 and 759.9 nm, as evaluated by optical microscopy. SEM analysis showed that nanofibers produced from polymer solutions containing 6% (w/w) PEO, 1% (w/w) NaCl and 3% (w/w) C-PC have an average diameter of 295 nm. Thermogravimetric analysis detected an increase in thermal resistance with the incorporation of C-phycocyanin into nanofibers.

  11. Non-clinical toxicity studies on bioactive compounds within the framework of nutritional and health claims.

    Science.gov (United States)

    Gil, Ana Gloria; Arbillaga, Leire; López de Cerain, Adela

    2015-07-01

    The growing presence of products on the market with added value in terms of health makes essential their regulation and harmonization in critical aspects such as safety. The toxicology applied to the bioactive compounds should demonstrate the absence of toxic effects at doses advised for consumption, as well as evaluate the potential toxic effects in the assumption that the products are used in quantities superior to those recommended. The specific strategy should be defined case by case; therefore, prior to any toxicological development, it is essential to study all the information regarding the bioactive compounds (BACs) characterization, nutridynamics and nutrikinetics, that is available. In this guideline, a general strategy to be applied in the development of BACs is proposed. It includes a first in vitro phase to discard genotoxicity and endocrine effects and a second in vivo phase with different possibilities regarding the duration and the extension of the studies.

  12. Bioactive compounds and the antioxidant capacity in new kiwi fruit cultivars.

    Science.gov (United States)

    Park, Yong-Seo; Namiesnik, Jacek; Vearasilp, Kann; Leontowicz, Hanna; Leontowicz, Maria; Barasch, Dinorah; Nemirovski, Alina; Trakhtenberg, Simon; Gorinstein, Shela

    2014-12-15

    The aim of this investigation was to find the best among seven different kiwi fruit cultivars ('Hayward', 'Daheung', 'Haenam', 'Bidan', 'Hort16A', 'Hwamei' and 'SKK12') for human consumption and to classify them as groups. Therefore, the contents of bioactive compounds and the level of antioxidant capacities of these cultivars were determined in four different extracts and compared. It was found that the contents of the bioactive compounds and the level of antioxidant capacities in different extracts differ significantly (Pkiwi fruit cultivars can be classified for three groups: 'Hayward' (including 'Daheung', 'Haenam', Hwamei' and 'SKK12'), 'Bidan' and 'Hort 16A'. In MS - profiles some differences in the peaks were found between the cultivar groups. All studied fruits could be a valuable addition to known disease preventing diets.

  13. Extraction and evaluation of bioactive compounds with antioxidant potential from green arabica coffee extract

    Directory of Open Access Journals (Sweden)

    Simona PATRICHE

    2015-12-01

    Full Text Available During the last decade researches concerning the essential role of coffee in health and disease prevention showed an increased development. In the present study we obtained extracts from three green Arabica coffee varieties which demonstrated a significant antioxidant potential due to the presence in their composition of two bioactive compounds, caffeine and chlorogenic acids. The content and antioxidant activity of bioactive compounds were evaluated by qualitative and quantitative analyses using spectrophotometric and chromatography methods. The chlorogenic acid was found in high concentrations, being followed by gallic, p-coumaric and ferulic acids. The highest caffeine contents were found in the green coffee extracts of the Supremo–Columbia and Top Quality–Kenya products.

  14. Rapeseed and its products--sources of bioactive compounds: a review of their characteristics and analysis.

    Science.gov (United States)

    Szydłowska-Czerniak, Aleksandra

    2013-01-01

    Extensive studies of rapeseed varieties, meals and rapeseed oils revealed that they are rich sources of natural components having antioxidant properties. In this review the characteristic of bioactive compounds in rapeseed cultivars, meals and oils will be presented. The analytical methods of antioxidants identification and determination are described. The effects of innovations in rapeseed modification and technology improvements on antioxidant capacity of rapeseed oil and products will be discussed.

  15. The Investigation of Some Bioactive Compounds and Antioxidant Properties of Hawthorn (Crataegus monogyna subsp. monogyna jacq.)

    OpenAIRE

    KESER, Serhat; Celik, Sait; Turkoglu, Semra; YILMAZ, Okkes; Turkoglu, Ismail

    2014-01-01

    Aim: The antioxidant and pharmacological effects of hawthorn have mainly been attributed to the polyphenolic contents. The aim of this research is to determine some bioactive compounds and antioxidant properties of hawthorn aqueous and ethanol extracts of leaves, flowers, and ripened fruits. Materials and Methods: For this purpose, antioxidant activities of extracts were assessed on DPPH•, ABTS•+, superoxide scavenging, reducing power and ferrous metal chelating activity assays and phenolic c...

  16. Bioactive compounds in soluble cocoa products; polyphenols, dietary fibre and methylxanthines

    OpenAIRE

    Gómez Juaristi, Miren; Martínez López, Sara; Sarriá, Beatriz; Permanyer, Jon; Mateos, Raquel; Bravo, Laura

    2013-01-01

    Cocoa powder is a highly consumed food product that may confer health benefits such as cardiovascular protection [1], antitumor and antioxidant effects [2]. These health benefits have been widely attributed to its phenolic composition and dietary fibre content [3]. Other bioactive compounds naturally present in cocoa are methylxanthines, alkaloids that induce modulation of the central nervous system. In response to cocoa consumers' demands, the food industry produces new cocoa products aimed ...

  17. Prediction of bioactive compounds activity against wood contaminant fungi using artificial neural networks

    OpenAIRE

    Vicente, Henrique; Roseiro, José C.; Arteiro, José M.; Neves, José; Caldeira, A. Teresa

    2013-01-01

    Biopesticides based on natural endophytic bacteria to control plant diseases are an ecological alternative to the chemical treatments. Bacillus species produce a wide variety of metabolites with biological activity like iturinic lipopeptides. This work addresses the production of biopesticides based on natural endophytic bacteria, isolated from Quercus suber. Artificial Neural Networks were used to maximize the percentage of inhibition triggered by antifungal activity of bioactive compounds p...

  18. Fermentation of Plant Material - Effect on Sugar Content and Stability of Bioactive Compounds

    OpenAIRE

    Reis Bruno A. dos; Kosińska-Cagnazzo Agnieszka; Schmitt Rudolf; Andlauer Wilfried

    2014-01-01

    Extraction is a method often used to obtain products rich in bioactive compounds from plant material. Most of the solvents used for the poly-phenols extraction simultaneously extract also sugars, undesirable as a component of health-promoting food. Fermentation might be a simple, cheap and efficient way of sugar elimination. In our study, black tea and goji berries, both known for their health benefits, were used and alcoholic fermentation by Saccharomyces cerevisiae was carried out to elimin...

  19. Bioactive Compounds and Antioxidant Activity in Different Grafted Varieties of Bell Pepper

    Directory of Open Access Journals (Sweden)

    Celia Chávez-Mendoza

    2015-06-01

    Full Text Available Grafting favors the presence of bioactive compounds in the bell pepper, but many species and varieties have not yet been analyzed in this sense, including commonly grafted varieties. The aim of the present study is to characterize the content in β-carotenes, vitamin C, lycopene, total phenols, and the antioxidant activity of bell pepper (Capsicum annum L. using the cultivar/rootstock combinations: Jeanette/Terrano (yellow, Sweet/Robusto (green, Fascinato/Robusto (red, Orangela/Terrano (orange, and Fascinato/Terrano (red. The plants were grown in a net-shading system and harvested on three sampling dates of the same crop cycle. The results show statistical differences (p ≤ 0.05 between cultivar/rootstock combinations and sampling dates for the content in bioactive compounds and antioxidant activity. Fascinato/Robusto presented the highest concentration of lycopene and total phenols as well as the greatest antioxidant activity of all cultivar/rootstock combinations evaluated. In addition, it was found that the best sampling time for the peppers to have the highest concentrations of bioactive compounds and antioxidant activity was September.

  20. Influence of culinary processing time on saffron's bioactive compounds (Crocus sativus L.).

    Science.gov (United States)

    Rodríguez-Neira, Lidia; Lage-Yusty, María Asunción; López-Hernández, Julia

    2014-12-01

    Saffron, the dried stigmas of Crocus sativus L., is used as a condiment spice. The major bioactive compounds are crocins, picrocrocin and safranal, which are responsible for the sensory profile of saffron (color, flavor and aroma, respectively), and also health-promoting properties. In this paper, the effect on the bioactive compounds of different cooking times in boiling water at 100 °C in samples of Saffron from La Mancha (safranal, picrocrocin, trans-crocin 4, cis-crocin 4 and trans-crocin 3) was investigated. Performance characteristics of High Performance Liquid Chromatography with Variable Wavelength Detector method, parameters of linearity, limits of detection and quantification are reported. High Performance Liquid Chromatography-Photo Diode Array-Mass Spectrometry was used as a confirmatory technique in crocins identification. When the samples are subjected to different cooking times, they present different behaviors, depending on the bioactive compound. In this way, no changes were observed in the concentration of picrocrocin, while heat culinary treatment adversely affects the concentrations of crocins and safranal.

  1. Effects of orange winemaking variables on antioxidant activity and bioactive compounds

    Directory of Open Access Journals (Sweden)

    María del Carmen Schvab

    2015-09-01

    Full Text Available AbstractAscorbic acid, carotenoids and polyphenols stand out among the orange juice natural antioxidants. The winemaking process affects their bioavailability and bioactivity. Antioxidant activities (AA were estimated in different process conditions to asses those properties. The AA and their correlation with ascorbic acid, total phenolics and carotenoids content were calculated. The variables and levels analyzed were: pasteurized and natural must (PJ and NJ, pH 3.5 and 4.0 and fermentation temperatures at 10°C and 20°C. Statistically significant differences (α=0.05 were found among bioactive compounds concentrations. Antioxidant compounds concentration was higher in raw material than in orange wine. Juice pasteurization caused the major losses while subsequent vinification affects them to a lesser extent. Highest antioxidants retention was measured in wines from JN fermented at pH 3.5 and 10 °C (JN-3.5-10 followed by wines from JP and fermented at the same conditions (JP-3.5-10. AA determined by DPPH showed a positive and close correlation with FRAP, while ABTS showed a low correlation with former assays. Juice pasteurization process and fermentation temperature influenced bioactive compound reduction which correlates with the AA variation.

  2. Effects of Processing Treatments on the Bioactive Compounds of Campbell Grape Juice

    Directory of Open Access Journals (Sweden)

    Shirley G. Cabrera

    2015-11-01

    Full Text Available It is well known that phenolic compounds and flavonoids have a lot of health benefits. Most current heat treatments especially those that are using too high temperature and longer period of processing produce juice with unacceptable analytical and sensory properties. Thus, microwave heating, ultrasonication and blanching before grape juice processing were employed in this study. Each juice sample was subjected to total phenolics, total flavonoid, total anthocyanin and % radical scavenging activity analysis. Analysis of Variance and Duncan’s multiple range tests were performed using the SAS program. The concentration of total phenolics, total flavonoids, total anthocyanin and % radical scavenging activity of the grape juices treated with microwave heating and ultrasonication increased significantly with increasing treatment time notably at 5 min treatment. It can be noted that all the bioactive contents and % radical scavenging activity were higher in noncold stabilized grape juice than in cold stabilized juices. However, blanching whole grapes for longer period of time before processing resulted in the decrease of all bioactive compounds and % radical scavenging activity both in non-cold stabilized and cold stabilized juice especially at 5 min blanching period. It was also showed that 1 min blanching is more effective in increasing the bioactive compounds of the grape juice as compared to other treatment time.

  3. Bioactive Compounds and Antioxidant Activity in Different Grafted Varieties of Bell Pepper.

    Science.gov (United States)

    Chávez-Mendoza, Celia; Sanchez, Esteban; Muñoz-Marquez, Ezequiel; Sida-Arreola, Juan Pedro; Flores-Cordova, Maria Antonia

    2015-06-23

    Grafting favors the presence of bioactive compounds in the bell pepper, but many species and varieties have not yet been analyzed in this sense, including commonly grafted varieties. The aim of the present study is to characterize the content in β-carotenes, vitamin C, lycopene, total phenols, and the antioxidant activity of bell pepper (Capsicum annum L.) using the cultivar/rootstock combinations: Jeanette/Terrano (yellow), Sweet/Robusto (green), Fascinato/Robusto (red), Orangela/Terrano (orange), and Fascinato/Terrano (red). The plants were grown in a net-shading system and harvested on three sampling dates of the same crop cycle. The results show statistical differences (p ≤ 0.05) between cultivar/rootstock combinations and sampling dates for the content in bioactive compounds and antioxidant activity. Fascinato/Robusto presented the highest concentration of lycopene and total phenols as well as the greatest antioxidant activity of all cultivar/rootstock combinations evaluated. In addition, it was found that the best sampling time for the peppers to have the highest concentrations of bioactive compounds and antioxidant activity was September.

  4. Effect of edible coatings on bioactive compounds and antioxidant capacity of tomatoes at different maturity stages.

    Science.gov (United States)

    Dávila-Aviña, Jorge E; Villa-Rodríguez, José A; Villegas-Ochoa, Mónica A; Tortoledo-Ortiz, Orlando; Olivas, Guadalupe I; Ayala-Zavala, J Fernando; González-Aguilar, Gustavo A

    2014-10-01

    This work evaluated the effect of carnauba and mineral oil coatings on the bioactive compounds and antioxidant capacity of tomato fruits (cv. "Grandela"). Carnauba and mineral oil coatings were applied on fresh tomatoes at two maturity stages (breaker and pink) over 28 day of storage at 10 °C was evaluated. Bioactive compound and antioxidant activity assays included total phenols, total flavonoids, ascorbic acid (ASA), lycopene, DPPH radical scavenging activity (%RSA), trolox equivalent antioxidant capacity (TEAC) and oxygen radical absorbance capacity assay (ORAC). The total phenolic, flavonoid and lycopene contents were significantly lower for coated fruit than control fruits. However, ascorbic acid content was highest in fruits treated with carnauba, followed by mineral oil coating and control fruits. The ORAC values were highest in breaker tomatoes coated with carnauba wax, followed by mineral oil-coated fruits and controls. No significant differences in ORAC values were observed in pink tomatoes. % RSA and TEAC values were higher for controls than for coated fruit. Edible coatings preserve the overall quality of tomatoes during storage without affecting the nutritional quality of fruit. We found that the physiological response to the coatings is in function of the maturity stage of tomatoes. The information obtained in this study support to use of edible coating as a safe and good alternative to preserve tomato quality, and that the changes of bioactive compounds and antioxidant activity of tomato fruits, was not negatively affected. This approach can be used by producers to preserve tomato quality.

  5. Elicitor Mixtures Significantly Increase Bioactive Compounds, Antioxidant Activity, and Quality Parameters in Sweet Bell Pepper

    Directory of Open Access Journals (Sweden)

    Lina Garcia-Mier

    2015-01-01

    Full Text Available Sweet bell peppers are greatly appreciated for their taste, color, pungency, and aroma. Additionally, they are good sources of bioactive compounds with antioxidant activity, which can be improved by the use of elicitors. Elicitors act as metabolite-inducing factors (MIF by mimic stress conditions. Since plants rarely experience a single stress condition one by one but are more likely to be exposed to simultaneous stresses, it is important to evaluate the effect of elicitors on plant secondary metabolism as mixtures. Jasmonic acid (JA, hydrogen peroxide (HP, and chitosan (CH were applied to fruits and plants of bell pepper as mixtures. Bioactive compounds, antioxidant activity, and quality parameters were evaluated. The assessed elicitor cocktail leads to an increase in the variables evaluated (P ≤ 0.05 when applied to mature fruits after harvest, whereas the lowest values were observed in the treatment applied to immature fruits. Therefore, the application of the elicitor cocktail to harvested mature fruits is recommended in order to improve bioactive compounds and the antioxidant activity of sweet bell peppers.

  6. Preparation of a thermoresponsive polymer grafted polystyrene monolithic capillary for the separation of bioactive compounds.

    Science.gov (United States)

    Koriyama, Takuya; Asoh, Taka-Aki; Kikuchi, Akihiko

    2016-11-01

    To develop aqueous microseparation columns for bioactive compounds, a thermoresponsive polymer grafted polymer monolith was prepared inside silica capillaries having an I.D. of 100μm by polymerization of styrene (St) with m/p-divinylbenzene (DVB) in the presence of polydimethylsiloxane as porogen, followed by surface-initiated atom transfer radical polymerization (SI-ATRP) of N-isopropylacrylamide (NIPAAm). SEM analysis indicated that the resulting poly(N-isopropylacrylamide) (PNIPAAm) grafted polystyrene monolith had a consecutive three-dimensionally interconnected structure and through-pores, similar to the base polystyrene (PSt) monolith. The elution behavior of steroids with different hydrophobicity was evaluated using micro-high-performance liquid chromatography in sole aqueous mobile phase. Temperature dependent interaction changes were observed between steroids and the PNIPAAm modified surfaces. Furthermore, the interaction between bioactive compounds and the PNIPAAm grafted PSt surfaces was controlled and eventually separate these molecules with different hydrophobicities by simple temperature modulation in aqueous environment. The PNIPAAm grafted PSt monolithic capillary showed improved separation properties of bioactive compounds, compared with a PNIPAAm grafted hollow capillary in aqueous environment.

  7. Bioactive Compound Evaluation of Ethanol Extract from Geodorum densiflorum (Lam. Schltr. by GC-MS analysis

    Directory of Open Access Journals (Sweden)

    Keerthiga Manohar

    2015-06-01

    Full Text Available The phytochemical constituents are responsible for medicinal value of the plant species. The present investigation was carried out to analyze the bioactive components from the whole plant of Geodorum densiflorum (Lam. Schltr using GC-MS technique. The chemical compositions of the ethanolic extract of G. densiflorum were investigated using Perkin - Elmer Gas Chromatography – Mass Spectrometry and about twenty one bioactive phytochemical compounds were identified. The prevailing compounds where Hexadecanoic acid, Ethyl ester (38.884 %, Ionone (7.125 %, 3-Deoxy-d-mannoic lactone (7.4441 %, 2,3-Butanediol (4.725 % and 2-Piperidinone, N-[4-bromo-n-butyl]- (4.004 %, (E-9-Octadeconoic acid ethyl ester (3.891 %, 1H-Pyrrole-2-Carbonitrile (3.778 %, Pyridinium, 1-amino-, chloride (3.305 %, 4H- Pyran-4-one, 3,5-dihydroxy-2-methyl- (3.274 and having various biological activities. This was the first report on the identification of bioactive compounds from ethanol extract of G. densiflorum.

  8. Cultivation, Genetic, Ethnopharmacology, Phytochemistry and Pharmacology of Moringa oleifera Leaves: An Overview.

    Science.gov (United States)

    Leone, Alessandro; Spada, Alberto; Battezzati, Alberto; Schiraldi, Alberto; Aristil, Junior; Bertoli, Simona

    2015-06-05

    Moringa oleifera is an interesting plant for its use in bioactive compounds. In this manuscript, we review studies concerning the cultivation and production of moringa along with genetic diversity among different accessions and populations. Different methods of propagation, establishment and cultivation are discussed. Moringa oleifera shows diversity in many characters and extensive morphological variability, which may provide a resource for its improvement. Great genetic variability is present in the natural and cultivated accessions, but no collection of cultivated and wild accessions currently exists. A germplasm bank encompassing the genetic variability present in Moringa is needed to perform breeding programmes and develop elite varieties adapted to local conditions. Alimentary and medicinal uses of moringa are reviewed, alongside the production of biodiesel. Finally, being that the leaves are the most used part of the plant, their contents in terms of bioactive compounds and their pharmacological properties are discussed. Many studies conducted on cell lines and animals seem concordant in their support for these properties. However, there are still too few studies on humans to recommend Moringa leaves as medication in the prevention or treatment of diseases. Therefore, further studies on humans are recommended.

  9. Synthesis and evaluation of some bioactive compounds having oxygen and nitrogen heteroatom

    Indian Academy of Sciences (India)

    Poonam Yadav; Nalini V Purohit

    2013-01-01

    Some new 3,4-disubstituted isocoumarins were synthesized having bioactive pyrazole molecule at 3rd position of isocoumarin moiety (5a,b), from isocoumarin -3- carboxylic acid hydrazide (4a,b) followed by cyclization with acetyl acetone. A series of isocoumarin derivative having Schiff base as lateral side chain at 3rd position of isocoumarin moiety were also synthesized (7a,b), by condensing isocoumarin acid hydrazide and benzaldehyde derivative followed by dehydration. The chemical structures of all the compounds were determined by analytical and spectral method. The lead compounds were screened for antimicrobial and analgesic activities.

  10. Potential Pharmacological Resources: Natural Bioactive Compounds from Marine-Derived Fungi.

    Science.gov (United States)

    Jin, Liming; Quan, Chunshan; Hou, Xiyan; Fan, Shengdi

    2016-04-22

    In recent years, a considerable number of structurally unique metabolites with biological and pharmacological activities have been isolated from the marine-derived fungi, such as polyketides, alkaloids, peptides, lactones, terpenoids and steroids. Some of these compounds have anticancer, antibacterial, antifungal, antiviral, anti-inflammatory, antioxidant, antibiotic and cytotoxic properties. This review partially summarizes the new bioactive compounds from marine-derived fungi with classification according to the sources of fungi and their biological activities. Those fungi found from 2014 to the present are discussed.

  11. Potential Pharmacological Resources: Natural Bioactive Compounds from Marine-Derived Fungi

    Directory of Open Access Journals (Sweden)

    Liming Jin

    2016-04-01

    Full Text Available In recent years, a considerable number of structurally unique metabolites with biological and pharmacological activities have been isolated from the marine-derived fungi, such as polyketides, alkaloids, peptides, lactones, terpenoids and steroids. Some of these compounds have anticancer, antibacterial, antifungal, antiviral, anti-inflammatory, antioxidant, antibiotic and cytotoxic properties. This review partially summarizes the new bioactive compounds from marine-derived fungi with classification according to the sources of fungi and their biological activities. Those fungi found from 2014 to the present are discussed.

  12. Bioactive compounds from culinary herbs inhibit a molecular target for type 2 diabetes management, dipeptidyl peptidase IV

    Science.gov (United States)

    Greek oregano (Origanum vulgare), marjoram (Origanum majorana), rosemary (Rosmarinus officinalis) and Mexican oregano (Lippia graveolens) are concentrated sources of bioactive compounds. The aims of this study were to characterize extracts from greenhouse grown or commercially purchased herbs for th...

  13. Extraction Techniques for Bioactive Compounds and Antioxidant Capacity Determination of Chilean Papaya (Vasconcellea pubescens Fruit

    Directory of Open Access Journals (Sweden)

    Elsa Uribe

    2015-01-01

    Full Text Available The aim of this work was to assess and compare different extraction methods by using high hydrostatic pressure (HHPE, ultrasound (UE, agitation (AE, and their combinations for the extraction of bioactive compounds of Chilean papaya. Extract antioxidant capacity was evaluated by three methods (i.e., DPPH, FRAP, and Voltammetry and phenolic compounds and vitamin C were determined by HPLC. Papaya sample extraction was performed by HHPE at 500 MPa for 10 min and UE and AE for 30 min, respectively. The combined-extractions: HHPE-UE and HHPE-AE, were carried out for 5 min and 15 min, respectively. The highest values found were total phenolic 129.1 mg GAE/100 g FW, antioxidant capacity by DPPH 20.6 mM TE/100 g FW, and voltammetry 141.0 mM TE/100 g FW for HHPE-UE method in free compound extraction. Regarding vitamin C content, its highest value was found by HHPE-UE (74 mg/100 g FW a combined extraction method. The phenolic compounds rutin and p-coumaric acid were found in all the extracts, both in free and bound forms, respectively. Besides, the combined techniques improved the extraction of bioactive compounds.

  14. Marine Rare Actinobacteria: Isolation, Characterization, and Strategies for Harnessing Bioactive Compounds.

    Science.gov (United States)

    Dhakal, Dipesh; Pokhrel, Anaya Raj; Shrestha, Biplav; Sohng, Jae Kyung

    2017-01-01

    Actinobacteria are prolific producers of thousands of biologically active natural compounds with diverse activities. More than half of these bioactive compounds have been isolated from members belonging to actinobacteria. Recently, rare actinobacteria existing at different environmental settings such as high altitudes, volcanic areas, and marine environment have attracted attention. It has been speculated that physiological or biochemical pressures under such harsh environmental conditions can lead to the production of diversified natural compounds. Hence, marine environment has been focused for the discovery of novel natural products with biological potency. Many novel and promising bioactive compounds with versatile medicinal, industrial, or agricultural uses have been isolated and characterized. The natural compounds cannot be directly used as drug or other purposes, so they are structurally modified and diversified to ameliorate their biological or chemical properties. Versatile synthetic biological tools, metabolic engineering techniques, and chemical synthesis platform can be used to assist such structural modification. This review summarizes the latest studies on marine rare actinobacteria and their natural products with focus on recent approaches for structural and functional diversification of such microbial chemicals for attaining better applications.

  15. Marine Rare Actinobacteria: Isolation, Characterization, and Strategies for Harnessing Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Dipesh Dhakal

    2017-06-01

    Full Text Available Actinobacteria are prolific producers of thousands of biologically active natural compounds with diverse activities. More than half of these bioactive compounds have been isolated from members belonging to actinobacteria. Recently, rare actinobacteria existing at different environmental settings such as high altitudes, volcanic areas, and marine environment have attracted attention. It has been speculated that physiological or biochemical pressures under such harsh environmental conditions can lead to the production of diversified natural compounds. Hence, marine environment has been focused for the discovery of novel natural products with biological potency. Many novel and promising bioactive compounds with versatile medicinal, industrial, or agricultural uses have been isolated and characterized. The natural compounds cannot be directly used as drug or other purposes, so they are structurally modified and diversified to ameliorate their biological or chemical properties. Versatile synthetic biological tools, metabolic engineering techniques, and chemical synthesis platform can be used to assist such structural modification. This review summarizes the latest studies on marine rare actinobacteria and their natural products with focus on recent approaches for structural and functional diversification of such microbial chemicals for attaining better applications.

  16. Feasibility in multispectral imaging for predicting the content of bioactive compounds in intact tomato fruit.

    Science.gov (United States)

    Liu, Changhong; Liu, Wei; Chen, Wei; Yang, Jianbo; Zheng, Lei

    2015-04-15

    Tomato is an important health-stimulating fruit because of the antioxidant properties of its main bioactive compounds, dominantly lycopene and phenolic compounds. Nowadays, product differentiation in the fruit market requires an accurate evaluation of these value-added compounds. An experiment was conducted to simultaneously and non-destructively measure lycopene and phenolic compounds content in intact tomatoes using multispectral imaging combined with chemometric methods. Partial least squares (PLS), least squares-support vector machines (LS-SVM) and back propagation neural network (BPNN) were applied to develop quantitative models. Compared with PLS and LS-SVM, BPNN model considerably improved the performance with coefficient of determination in prediction (RP(2))=0.938 and 0.965, residual predictive deviation (RPD)=4.590 and 9.335 for lycopene and total phenolics content prediction, respectively. It is concluded that multispectral imaging is an attractive alternative to the standard methods for determination of bioactive compounds content in intact tomatoes, providing a useful platform for infield fruit sorting/grading.

  17. Review of Pharmacological Effects of Antrodia camphorata and Its Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Madamanchi Geethangili

    2011-01-01

    Full Text Available Antrodia camphorata is a unique mushroom of Taiwan, which has been used as a traditional medicine for protection of diverse health-related conditions. In an effort to translate this Eastern medicine into Western-accepted therapy, a great deal of work has been carried out on A. camphorata. This review discusses the biological activities of the crude extracts and the main bioactive compounds of A. camphorata. The list of bioactivities of crude extracts is huge, ranging from anti-cancer to vasorelaxation and others. Over 78 compounds consisting of terpenoids, benzenoids, lignans, benzoquinone derivatives, succinic and maleic derivatives, in addition to polysaccharides have been identified. Many of these compounds were evaluated for biological activity. Many activities of crude extracts and pure compounds of A. camphorata against some major diseases of our time, and thus, a current review is of great importance. It is concluded that A. camphorata can be considered as an efficient alternative phytotherapeutic agent or a synergizer in the treatment of cancer and other immune-related diseases. However, clinical trails of human on A. camphorata extracts are limited and those of pure compounds are absent. The next step is to produce some medicines from A. camphorata, however, the production may be hampered by problems related to mass production.

  18. Bioactive compounds isolated from apple, tea, and ginger protect against dicarbonyl induced stress in cultured human retinal epithelial cells

    OpenAIRE

    Sampath, Chethan; Zhu, Yingdong; Sang, Shengmin; Ahmedna, Mohamed

    2016-01-01

    Abstract BackgroundMethylglyoxal (MGO) is known to be a major precursor of advanced glycation end products (AGEs) which are linked to diabetes and its related complications. Naturally occurring bioactive compounds could play an important role in countering AGEs thereby minimizing the risk associated with their formation. MethodsIn this study, eight specific bioactive compounds isolated from apple, tea and ginger were evaluated for their AGEs scavenging activity using Human Retinal Pigment Epi...

  19. Interindividual Variability in Biomarkers of Cardiometabolic Health after Consumption of Major Plant-Food Bioactive Compounds and the Determinants Involved

    OpenAIRE

    Milenkovic, Dragan; Morand, Christine; Cassidy, Aedin; Konic-Ristic, Aleksandra; Tomás-Barberán, Francisco; Ordovas, José M.; Kroon, Paul; De Caterina, Raffaele; Rodriguez-Mateos, Ana

    2017-01-01

    Cardiometabolic disease, comprising cardiovascular diseases, type 2 diabetes, and their associated risk factors including metabolic syndrome and obesity, is the leading cause of death worldwide. Plant foods are rich sources of different groups of bioactive compounds, which might not be essential throughout life but promote health and well-being by reducing the risk of age-related chronic diseases. However, heterogeneity in the responsiveness to bioactive compounds can obscure associations bet...

  20. Thioredoxin 1 modulates apoptosis induced by bioactive compounds in prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Aida Rodriguez-Garcia

    2017-08-01

    Full Text Available Accumulating evidence suggests that natural bioactive compounds, alone or in combination with traditional chemotherapeutic agents, could be used as potential therapies to fight cancer. In this study, we employed four natural bioactive compounds (curcumin, resveratrol, melatonin, and silibinin and studied their role in redox control and ability to promote apoptosis in androgen sensitive and insensitive prostate cancer cells. Here is shown that curcumin and resveratrol promote ROS production and induce apoptosis in LNCaP and PC-3. An increase in reactive species is a trigger event in curcumin-induced apoptosis and a consequence of resveratrol effects on other pathways within these cells. Moreover, here we demonstrated that these four compounds affect differently one of the main intracellular redox regulator, the thioredoxin system. Exposure to curcumin and resveratrol promoted TRX1 oxidation and altered its subcellular location. Furthermore, resveratrol diminished TRX1 levels in PC-3 cells and increased the expression of its inhibitor TXNIP. Conversly, melatonin and silibinin only worked as cytostatic agents, reducing ROS levels and showing preventive effects against TRX oxidation. All together, this work explores the effect of compounds currently tested as chemo-preventive agents in prostate cancer therapy, on the TRX1 redox state and function. Our work shows the importance that the TRX system might have within the differences found in their mechanisms of action. These bioactive compounds trigger different responses and affect ROS production and redox systems in prostate cancer cells, suggesting the key role that redox-related pathways might play in processes like differentiation or survival in prostate cancer.

  1. BIOACTIVE COMPOUNDS AND ANTIOXIDANT ACTIVITY OF PINEAPPLE FRUIT OF DIFFERENT CULTIVARS

    Directory of Open Access Journals (Sweden)

    ESTER ALICE FERREIRA

    Full Text Available ABSTRACT Pineapple is widely consumed and appreciated not only due to its taste and aroma, and also to its nutritional, functional and antioxidant properties, including its vitamin C and carotenoid contents. Brazil is one of the largest world’ pineapple producer, and Pérola and Smooth Cayenne cultivars are the most commonly grown and marketed, but their susceptibility to fusariosis can compromise cultivation. New cultivars resistant to this pathogen are available to meet the demands of pineapple producers and consumers. The aim of this study was to evaluate the content of bioactive compounds and antioxidant activity of pineapple fruits of Imperial, Victoria, IAC Fantástico and Gomo de Mel cultivars, as well as traditional Pérola and Smooth Cayenne cultivars. Fruits grown in the Triângulo Mineiro region were evaluated by colorimetry, determination of ascorbic acid and phenolic compounds by spectrometry, antioxidant activity by ABTS and carotenoid profile by HPLC. Regarding color, Gomo de Mel cultivar showed lower brightness and higher value of parameter b*, indicating a more intense yellow color in this fruit. This result is consistent with the highest carotenoid concentration in this cultivar. Another cultivar that stood out was Imperial, which, while maintaining high carotenoid levels, also showed high concentrations of vitamin C and phenolic compounds, and higher antioxidant activity. Victoria cultivar showed low levels of bioactive compounds and antioxidant activity, even lower than IAC Fantástico cultivar, which showed levels of bioactive compounds similar to traditional Pérola and Smooth Cayenne cultivars.

  2. Fermentation of Plant Material - Effect on Sugar Content and Stability of Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Reis Bruno A. dos

    2014-12-01

    Full Text Available Extraction is a method often used to obtain products rich in bioactive compounds from plant material. Most of the solvents used for the poly-phenols extraction simultaneously extract also sugars, undesirable as a component of health-promoting food. Fermentation might be a simple, cheap and efficient way of sugar elimination. In our study, black tea and goji berries, both known for their health benefits, were used and alcoholic fermentation by Saccharomyces cerevisiae was carried out to eliminate sugars. In the course of fermentation the concentration of polyphenols, L-theanine and carotenoids was evaluated in order to verify the preservation of selected bioactive compounds. Decreases in sugar content, formation of ethanol and yeasts growth were monitored during fermentation. The fermentation of black tea decreased the sugar concentration by 84% within 6 h without decreasing total polyphenols and L-theanine contents. Goji berry fermentation yielded a sugars decrease of 87% within 24 h, without decrease in poly-phenol content. However, carotenoid content was reduced by 17%. The study showed that fermentation was an effective way to decrease sugar content in plant extracts, and therefore it might be a pertinent step to concentrate bioactives.

  3. Antioxidant Bioactive Compounds Changes in Fruit of Quince Genotypes Over Cold Storage.

    Science.gov (United States)

    Moradi, Samira; Koushesh Saba, Mahmoud; Mozafari, Ali Akbar; Abdollahi, Hamid

    2016-07-01

    Quince fruit has many benefits to human health and is excellent source of bioactive compounds. The fruit of 15 quince genotypes stored at 2 °C for 5 mo to study fruit quality changes during cold storage. Fruit were sampled monthly and stored at 20 °C for 24 h. Fruit ascorbic acid (AA), total phenol (TP), and total flavonoid (TF) concentrations, total antioxidant activity (TAA), flesh browning (FB) incidence, polyphenol oxidase (PPO), peroxidase (POX), and superoxide dismutase (SOD) activities were measured during storage. A high variation in bioactive compounds was observed across genotypes. The range of 26.8 to 44.4 mg/100 g FW for AA, 86.7% to 98.2% for TAA, 157.7 to 380.7 mg GAE 100(-1) g FW for TP, and 5.3 to 10.7 mg/100 g FW for TF were observed across genotypes at harvest time. The overall AA, TAA, TP, TF, and SOD decreased while PPO and POX increased during storage. FB was first observed after 4 mo and increased thereafter while the FB index was different across genotypes. Higher bioactive content may prevent or reduce FB index so that a negative correlation was found between FB and AA, TAA, TP, TF, and SOD.

  4. Effect of antioxidant properties of lecithin emulsifier on oxidative stability of encapsulated bioactive compounds.

    Science.gov (United States)

    Pan, Yuanjie; Tikekar, Rohan V; Nitin, N

    2013-06-25

    Oxidation of encapsulated bioactive compounds in emulsions is one of the key challenges that limit shelf life of emulsion containing products. Oxidation in these emulsions is triggered by permeation of free radicals generated at the emulsion interface. The objective of this study was to evaluate the role of antioxidant properties of common emulsifiers (lecithin and Tween 20) in reducing permeation of free radicals across the emulsion interface. Radical permeation rates were correlated with oxidative stability of a model bioactive compound (curcumin) encapsulated in these emulsions. Rate of permeation of peroxyl radicals from the aqueous phase to the oil phase of emulsion was inversely proportional to the antioxidant properties of emulsifiers. The rate of radical permeation was significantly higher (plecithin compared to native lecithin that showed higher antioxidant activity. Free radical permeation rate correlated with stability of curcumin in emulsions and was significantly higher (plecithin stabilized emulsions as compared to Tween 20 emulsions. Overall, this study demonstrates that antioxidant activity of emulsifiers significantly influences permeation of free radicals across the emulsion interface and the rate of oxidation of bioactive encapsulant. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. The Content in Bioactive Compounds of Different Brewers' Spent Grain Aqueous Extracts

    Directory of Open Access Journals (Sweden)

    Anca FARCAS

    2016-11-01

    Full Text Available In the last decade by-products of food and beverage processing have attracted much attention due to their functionality and potential as food ingredients. Brewers’ spent grain is the major by-product of the brewing industry representing a valuable source of bioactive ingredients. The aim of this study was to assess the effect of extraction time and temperature on the efficiency of water as solvent for the extraction of bioactive compounds from brewers’ spent grain (BSG. In terms of extraction efficiency, the results from polyphenols, flavonoids and antioxidant activity, showed that the best extraction parameters for aqueous extracts are 90⁰C and 60 minutes. In comparison with the control, the best extraction method generated 87% of the phenolics and 43.46% of the flavonoids obtained by a methanol extraction. The preliminary results for the aqueous extracts showed that water can be used as extraction solvent, but a higher extraction time and temperature are needed in order to have a content in bioactive compounds similar to that of methanolic extracts. The obtained values for polyphenols, flavonoids and antioxidant activity, emphasize the importance and the opportunities of the reuse of this agro-industrial waste.

  6. Green algae Chlorococcum humicola- a new source of bioactive compounds with antimicrobial activity

    Institute of Scientific and Technical Information of China (English)

    Bhagavathy S; Sumathi P; Jancy Sherene Bell I

    2011-01-01

    Objective: To analyse the existence of bioactive phytochemicals and their antimicrobial role of green algae Chlorococcum humicola (C. humicola). Methods: The various organic solvents such as acetone, benzene, chloroform, diethyl ether, ethyl acetate, ethanol, hexane and methanol were used for the preparation of the algal extracts then subjected to chemical analysis and further used for the screening of antimicrobial assay. The purified carotenoid pigments and chlorophylls were used for the antimicrobial studies against the harmful pathogens Escherichia coli, Pseudomonasaeruginosa, Salmonella typhimurium, Klebsiella pneumoniae, Vibreo cholerae, Staphylococcus aureus, Bacillus subtilis, Candida albicans, Aspergillus niger and Aspergillus flavus. Results: The chemical analysis showed the existence of bioactive compounds such as carotenoids, alkaloids, favanoids, fattyacids, saponins, aminoacids and carbohydrates. In vitro screening of organic solvent extracts of green algae C. humicola shows activity in inhibiting the growth of virulent strains of bacteria and fungi pathogenic to human. Eight different extracts showed effective inhibitory action against the selected pathogens. Depends upon their existence of the bioactive compounds the different organic algal extracts shows difference in their inhibitory zone against the microbes. Out of all the organic extracts benzene and ethyl acetate extracts showed excellent effect nearly 80% microbial growth inhibition. The separated carotenoid and chlorophyll fractions of C. humicola, also results in the microbial growth inhibition. Conclusions: The present study concludes that green algae C. humicola are a rich and varied source of pharmacologically active natural products and nutraceuticals. While nutraceutical and pharmaceutical content in the baseline algae strain is very small, they showed excellent effect against the microbial pathogens.

  7. Interindividual Variability in Biomarkers of Cardiometabolic Health after Consumption of Major Plant-Food Bioactive Compounds and the Determinants Involved.

    Science.gov (United States)

    Milenkovic, Dragan; Morand, Christine; Cassidy, Aedin; Konic-Ristic, Aleksandra; Tomás-Barberán, Francisco; Ordovas, José M; Kroon, Paul; De Caterina, Raffaele; Rodriguez-Mateos, Ana

    2017-07-01

    Cardiometabolic disease, comprising cardiovascular diseases, type 2 diabetes, and their associated risk factors including metabolic syndrome and obesity, is the leading cause of death worldwide. Plant foods are rich sources of different groups of bioactive compounds, which might not be essential throughout life but promote health and well-being by reducing the risk of age-related chronic diseases. However, heterogeneity in the responsiveness to bioactive compounds can obscure associations between their intakes and health outcomes, resulting in the hiding of health benefits for specific population groups and thereby limiting our knowledge of the exact role of the different bioactive compounds for health. The heterogeneity in response suggests that some individuals may benefit more than others from the health effects of these bioactive compounds. However, to date, this interindividual variation after habitual intake of plant bioactive compounds has been little explored. The aim of this review is to provide an overview of the existing research that has revealed interindividual variability in the responsiveness to plant-food bioactive compound consumption regarding cardiometabolic outcomes, focusing on polyphenols, caffeine and plant sterols, and the identified potential determinants involved. © 2017 American Society for Nutrition.

  8. The effect of bioactive compounds in tea on lipid metabolism and obesity through regulation of peroxisome proliferator-activated receptors.

    Science.gov (United States)

    Lee, Sung-Joon; Jia, Yaoyao

    2015-02-01

    The hypolipidemic and antiobesogenic effects of tea intake have been associated with bioactive compounds that regulate peroxisome proliferator-activated receptors (PPARs). This review describes the recent research on two of these compounds, (-)-epigallocatechin gallate (EGCG) and linalool. Catechins (specifically EGCG) are key bioactive compounds found in tea, and a recent study has shown that linalool may also be an active tea compound. These compounds act on lipid metabolism by regulating PPAR subtypes. EGCG inhibits the key adipogenic transcription factor PPARγ while activating PPARα, whereas linalool is a PPARα agonist activating hepatic fatty acid uptake and subsequent oxidation to reduce plasma triglyceride levels. The collective activities of EGCG and linalool in tea may exert hypolipidemic and antiobesogenic effects by regulating PPARs. The research summarized in this review expands our understanding of the biological and physiological mechanisms of the bioactive compounds found in tea.

  9. Natural Phyto-Bioactive Compounds for the Treatment of Type 2 Diabetes: Inflammation as a Target.

    Science.gov (United States)

    Gothai, Sivapragasam; Ganesan, Palanivel; Park, Shin-Young; Fakurazi, Sharida; Choi, Dong-Kug; Arulselvan, Palanisamy

    2016-08-04

    Diabetes is a metabolic, endocrine disorder which is characterized by hyperglycemia and glucose intolerance due to insulin resistance. Extensive research has confirmed that inflammation is closely involved in the pathogenesis of diabetes and its complications. Patients with diabetes display typical features of an inflammatory process characterized by the presence of cytokines, immune cell infiltration, impaired function and tissue destruction. Numerous anti-diabetic drugs are often prescribed to diabetic patients, to reduce the risk of diabetes through modulation of inflammation. However, those anti-diabetic drugs are often not successful as a result of side effects; therefore, researchers are searching for efficient natural therapeutic targets with less or no side effects. Natural products' derived bioactive molecules have been proven to improve insulin resistance and associated complications through suppression of inflammatory signaling pathways. In this review article, we described the extraction, isolation and identification of bioactive compounds and its molecular mechanisms in the prevention of diabetes associated complications.

  10. Chemical characterization of bioactive compounds from the endophytic fungus Diaporthe helianthi isolated from Luehea divaricata

    Directory of Open Access Journals (Sweden)

    Vânia Specian

    2012-09-01

    Full Text Available Endophytic microorganisms, defined as fungi or bacteria that colonize the interior of plants without causing any immediate negative effects or damages, have reciprocal relationships with host plants. In some cases their presence is beneficial to the host due to the synthesis of bioactive compounds, among which several alcohols, esters, ketones and others that may react with other compounds and may be lethal to pathogenic microorganisms. Diaporthe helianthi (Phomopsis helianthi in its anamorphic phase is available worldwide, especially in Europe, Asia and America. Isolated in Europe as an agent of the sunflower stem cancer, it has also been endophytically isolated from tropical and temperate plants. A D. helianthi strain isolated from Luehea divaricata has been employed in current research. An investigation of the secondary metabolite from D. helianthi by CC and NMR of ¹H and 13C yielded the separation of 10 fractions and the identification of the phenolic compound 2(-4 hydroxyphenyl-ethanol (Tyrosol. Its antimicrobial reaction was tested and the ensuing antagonistic effects on the human pathogenic bacteria Enterococcus hirae, Escherichia coli, Micrococcus luteus, Salmonella typhi, Staphylococcus aureus, phytopathogenic Xanthomonas asc. phaseoli and phytopathogenic fungi were demonstrated. Results show that bioactive compounds and Tyrosol produced by D. helianthi have a biotechnological potential.

  11. The role dietary of bioactive compounds on the regulation of histone acetylases and deacetylases: a review.

    Science.gov (United States)

    Vahid, F; Zand, H; Nosrat-Mirshekarlou, E; Najafi, R; Hekmatdoost, A

    2015-05-10

    Nutrigenomics is an area of epigenomics that explores and defines the rapidly evolving field of diet-genome interactions. Lifestyle and diet can significantly influence epigenetic mechanisms, which cause heritable changes in gene expression without changes in DNA sequence. Nutrient-dependent epigenetic variations can significantly affect genome stability, mRNA and protein expression, and metabolic changes, which in turn influence food absorption and the activity of its constituents. Dietary bioactive compounds can affect epigenetic alterations, which are accumulated over time and are shown to be involved in the pathogenesis of age-related diseases such as diabetes, cancer, and cardiovascular disease. Histone acetylation is an epigenetic modification mediated by histone acetyl transferases (HATs) and histone deacetylases (HDACs) critically involved in regulating affinity binding between the histones and DNA backbone. The HDAC-mediated increase in histone affinity to DNA causes DNA condensation, preventing transcription, whereas HAT-acetylated chromatin is transcriptionally active. HDAC and HAT activities are reported to be associated with signal transduction, cell growth and death, as well as with the pathogenesis of various diseases. The aim of this review was to evaluate the role of diet and dietary bioactive compounds on the regulation of HATs and HDACs in epigenetic diseases. Dietary bioactive compounds such as genistein, phenylisothiocyanate, curcumin, resveratrol, indole-3-carbinol, and epigallocatechin-3-gallate can regulate HDAC and HAT activities and acetylation of histones and non-histone chromatin proteins, and their health benefits are thought to be attributed to these epigenetic mechanisms. The intake of dietary compounds that regulate epigenetic modifications can provide significant health effects and may prevent various pathological processes involved in the development of cancer and other life-threatening diseases. Copyright © 2015 Elsevier B.V. All

  12. Minimally processed mixed salad submitted to gamma radiation: effects on bioactive compounds

    Energy Technology Data Exchange (ETDEWEB)

    Hirashima, Fabiana K.; Sabato, Susy F., E-mail: fmayumi@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Lanfer-Marquez, Ursula M., E-mail: lanferum@usp.br [Universidade de Sao Paulo (FCF/USP), Sao Paulo, SP (Brazil). Faculdade de Ciencias Farmaceuticas. Dept. de Alimentos e Nutricao Experimental

    2015-07-01

    High consumption of fruits and vegetables has been associated with a lowered incidence of oxidative stress-related diseases due to the presence of bioactive structures. Minimally processed products are a growing segment in food retail establishments because it is associated with practicality and convenience without significantly altering fresh-like characteristics. Low-dose of gamma radiation in combination with minimal processes has shown to be a promising strategy for extending shelf life and maintaining the organoleptic quality of fruits and vegetables. The objective of this study was to evaluate the levels of phenolic compounds, flavonoids, proanthocyanidins and antioxidant activity by 1,1-diphenyl-2-picrylhydrazyl (DPPH•) free radical scavenging and Oxygen Radical Absorbance Capacity (ORAC) method in minimally processed mixed salad before and after different radiation doses. Samples of minimally processed mixed salad (with green and red cabbage and carrot) were purchased at local supermarket and irradiated with doses of 0.5, 1.0, 2.0 and 3.0 kGy. Phenolic compounds, flavonoids, proanthocyanidins and antioxidant activity by DPPH• and ORAC were analyzed on the same extract prepared with MeOH. The results showed that bioactive compounds levels and antioxidant activity decreased significantly (p<0.05) with an increasing on radiation dose. Gamma-rays may affect these compounds and can cause degradation or oxidation, which can explain the drop on levels. Although the radiation has affected the bioactive contents, the process seems to be interesting to maintaining organoleptic characteristics and provide microbiological security at doses up to 2.0 kGy, according to studies conducted by our research group. (author)

  13. eBASIS (Bioactive Substances in Food Information Systems) and Bioactive Intakes: Major Updates of the Bioactive Compound Composition and Beneficial Bioeffects Database and the Development of a Probabilistic Model to Assess Intakes in Europe.

    Science.gov (United States)

    Plumb, Jenny; Pigat, Sandrine; Bompola, Foteini; Cushen, Maeve; Pinchen, Hannah; Nørby, Eric; Astley, Siân; Lyons, Jacqueline; Kiely, Mairead; Finglas, Paul

    2017-03-23

    eBASIS (Bioactive Substances in Food Information Systems), a web-based database that contains compositional and biological effects data for bioactive compounds of plant origin, has been updated with new data on fruits and vegetables, wheat and, due to some evidence of potential beneficial effects, extended to include meat bioactives. eBASIS remains one of only a handful of comprehensive and searchable databases, with up-to-date coherent and validated scientific information on the composition of food bioactives and their putative health benefits. The database has a user-friendly, efficient, and flexible interface facilitating use by both the scientific community and food industry. Overall, eBASIS contains data for 267 foods, covering the composition of 794 bioactive compounds, from 1147 quality-evaluated peer-reviewed publications, together with information from 567 publications describing beneficial bioeffect studies carried out in humans. This paper highlights recent updates and expansion of eBASIS and the newly-developed link to a probabilistic intake model, allowing exposure assessment of dietary bioactive compounds to be estimated and modelled in human populations when used in conjunction with national food consumption data. This new tool could assist small- and medium-sized enterprises (SMEs) in the development of food product health claim dossiers for submission to the European Food Safety Authority (EFSA).

  14. Nutrients and bioactive compounds content of Baillonella toxisperma, Trichoscypha abut and Pentaclethra macrophylla from Cameroon.

    Science.gov (United States)

    Fungo, Robert; Muyonga, John; Kaaya, Archileo; Okia, Clement; Tieguhong, Juius C; Baidu-Forson, Jojo J

    2015-07-01

    Baillonella toxisperma, Pentaclethra macrophylla and Trichoscypha abut are important foods for communities living around forests in Cameroon. Information on the nutritional value and bioactive content of these foods is required to establish their contribution to the nutrition and health of the communities. Samples of the three foods were obtained from four villages in east and three villages in south Cameroon. The foods were analyzed for proximate composition, minerals and bioactive content using standard chemical analysis methods. T. abut was found to be an excellent source of bioactive compounds; flavonoids (306 mg/100 g), polyphenols (947 mg/100 g), proanthocyanins (61.2 mg/100 g), vitamin C (80.05 mg/100 g), and total oxalates (0.6 mg/100 g). P. macrophylla was found to be a rich source of total fat (38.71%), protein (15.82%) and total fiber (17.10%) and some bioactive compounds; vitamin E (19.4 mg/100 g) and proanthocyanins (65.0 mg/100 g). B. toxisperma, was found to have high content of carbohydrates (89.6%), potassium (27.5 mg/100 g) and calcium (37.5 mg/100 g). Flavonoids, polyphenols, vitamins C and E are the main bioactive compounds in these forest foods. The daily consumption of some of these fruits may coffer protection against some ailments and oxidative stress. Approximately 200 g of either B. toxisperma or P. macrophylla, can supply 100% iron and zinc RDAs for children aged 1-3 years, while 300 g of the two forest foods can supply about 85% iron and zinc RDAs for non-pregnant non-lactating women. The three foods provide 100% daily vitamins C and E requirements for both adults and children. The results of this study show that Baillonella toxisperma, Pentaclethra macrophylla and Trichoscypha abut can considerably contribute towards the human nutrient requirements. These forest foods also contain substantial levels of health promoting phytochemicals notably flavonoids, polyphenols, vitamins C and E. These foods therefore have

  15. Bioactive compounds derived from the yeast metabolism of aromatic amino acids during alcoholic fermentation.

    Science.gov (United States)

    Mas, Albert; Guillamon, Jose Manuel; Torija, Maria Jesus; Beltran, Gemma; Cerezo, Ana B; Troncoso, Ana M; Garcia-Parrilla, M Carmen

    2014-01-01

    Metabolites resulting from nitrogen metabolism in yeast are currently found in some fermented beverages such as wine and beer. Their study has recently attracted the attention of researchers. Some metabolites derived from aromatic amino acids are bioactive compounds that can behave as hormones or even mimic their role in humans and may also act as regulators in yeast. Although the metabolic pathways for their formation are well known, the physiological significance is still far from being understood. The understanding of this relevance will be a key element in managing the production of these compounds under controlled conditions, to offer fermented food with specific enrichment in these compounds or even to use the yeast as nutritional complements.

  16. Decoction, infusion and hydroalcoholic extract of Origanum vulgare L.: different performances regarding bioactivity and phenolic compounds.

    Science.gov (United States)

    Martins, Natália; Barros, Lillian; Santos-Buelga, Celestino; Henriques, Mariana; Silva, Sónia; Ferreira, Isabel C F R

    2014-09-01

    Bioactivity of oregano methanolic extracts and essential oils is well known. Nonetheless, reports using aqueous extracts are scarce, mainly decoction or infusion preparations used for therapeutic applications. Herein, the antioxidant and antibacterial activities, and phenolic compounds of the infusion, decoction and hydroalcoholic extract of oregano were evaluated and compared. The antioxidant activity is related with phenolic compounds, mostly flavonoids, since decoction presented the highest concentration of flavonoids and total phenolic compounds, followed by infusion and hydroalcoholic extract. The samples were effective against gram-negative and gram-positive bacteria. It is important to address that the hydroalcoholic extract showed the highest efficacy against Escherichia coli. This study demonstrates that the decoction could be used for antioxidant purposes, while the hydroalcoholic extract could be incorporated in formulations for antimicrobial features. Moreover, the use of infusion/decoction can avoid the toxic effects showed by oregano essential oil, widely reported for its antioxidant and antimicrobial properties.

  17. Marine bioactive agents: a short review on new marine antidiabetic compounds

    Directory of Open Access Journals (Sweden)

    Sonal Ramrao Barde

    2015-06-01

    Full Text Available From medicinal point of view, marine environment is a diversified source of several biologically active compounds that are relatively untapped. Exploitation of marine resources may provide valuable leads which carry economic and scientific potential. Diabetes is a metabolic disorder and a major cause of mortality and morbidity in both developed and developing countries. Several antidiabetics are available but the major limitations of these synthetic drugs are cost, effectiveness and adverse effects. The relative safety of drugs from natural source is the main reason behind exploring marine resources as a source of therapeutic, food and nutritional compounds. Marine resources provide many compounds including polyphenols, peptides, pigments, phlorotannins and sterols that could be used for the treatment of diabetes and associated complications. The present review focuses on potential marine resources that provide bioactive agents for diabetes treatment.

  18. Bioactive and nutritive compounds in Sorghum bicolor (Guinea corn) red leaves and their health implication.

    Science.gov (United States)

    Abugri, D A; Tiimob, B J; Apalangya, V A; Pritchett, G; McElhenney, W H

    2013-05-01

    Sorghum bicolor L. Moench (Naga Red) red leaves is an ingredient used in rice and beans that is known as "waakye" in the Hausa language in some African countries. Little is known about its benefits aside from its colourant properties. We studied its bioactive, nutritive compounds and the effectiveness of four organic solvents (methanol, ethanol, acetone and diethyl ether) in isolation of these compounds to gain information regarding its health benefits to consumers. Of the compounds evaluated, the leaves consisted primarily of carotenoids, flavonoids and phenolic acids with small amounts of chlorophyll (a and b), lycopene and β-carotene. The fatty acid profiles of the leaves revealed palmitic, stearic, oleic and linoleic acid as predominant with each having greater than 5% of the total fatty acid identified. The nutritional implication of these findings is that the consumption of diets prepared with the leaves provides natural antioxidant and essential fatty acids that could fight cardiovascular related diseases.

  19. Bioactive Compounds Derived from the Yeast Metabolism of Aromatic Amino Acids during Alcoholic Fermentation

    Science.gov (United States)

    Guillamon, Jose Manuel; Torija, Maria Jesus; Beltran, Gemma; Troncoso, Ana M.; Garcia-Parrilla, M. Carmen

    2014-01-01

    Metabolites resulting from nitrogen metabolism in yeast are currently found in some fermented beverages such as wine and beer. Their study has recently attracted the attention of researchers. Some metabolites derived from aromatic amino acids are bioactive compounds that can behave as hormones or even mimic their role in humans and may also act as regulators in yeast. Although the metabolic pathways for their formation are well known, the physiological significance is still far from being understood. The understanding of this relevance will be a key element in managing the production of these compounds under controlled conditions, to offer fermented food with specific enrichment in these compounds or even to use the yeast as nutritional complements. PMID:24895623

  20. Bioactive Compounds Derived from the Yeast Metabolism of Aromatic Amino Acids during Alcoholic Fermentation

    Directory of Open Access Journals (Sweden)

    Albert Mas

    2014-01-01

    Full Text Available Metabolites resulting from nitrogen metabolism in yeast are currently found in some fermented beverages such as wine and beer. Their study has recently attracted the attention of researchers. Some metabolites derived from aromatic amino acids are bioactive compounds that can behave as hormones or even mimic their role in humans and may also act as regulators in yeast. Although the metabolic pathways for their formation are well known, the physiological significance is still far from being understood. The understanding of this relevance will be a key element in managing the production of these compounds under controlled conditions, to offer fermented food with specific enrichment in these compounds or even to use the yeast as nutritional complements.

  1. Characterization of bioactive compounds from raw and ripe Mangifera indica L. peel extracts.

    Science.gov (United States)

    Ajila, C M; Rao, L Jaganmohan; Rao, U J S Prasada

    2010-12-01

    Mango is one of the important tropical fruits in the world. As it is a seasonal fruit, it is processed for various products. During its processing, peel is one of the major byproducts, which is being wasted. Bioactive conserves were extracted using 80% acetone from peels of raw and ripe mango fruits and subjected to acid hydrolysis. The prominent phenolic compounds identified by HPLC were protocatechuic acid, gentisic acid and gallic acid. The phenolic acid derivatives present in acetone extracts of raw and ripe peels were tentatively identified by LC-MS. Gallic acid, syringic acid, mangiferin, ellagic acid, gentisyl-protocatechuic acid, quercetin were the phenolic compounds identified in both raw and ripe peels, while raw peel showed the presence of glycosylated iriflophenone and maclurin derivatives also. β-Carotene was the major carotenoid followed by violaxanthin and lutein. Thus, both raw and ripe mango peel extracts have different phenolic compounds and carotenoids, which will have various pharmaceutical applications.

  2. Bioprospecting of Novel and Bioactive Compounds from Marine Actinomycetes Isolated from South China Sea Sediments.

    Science.gov (United States)

    Yang, Na; Song, Fuhang

    2017-09-16

    Marine actinomycetes are less investigated compared to terrestrial strains as potential sources of natural products. To date, few investigations have been performed on culturable actinomycetes associated with South China Sea sediments. In the present study, twenty-eight actinomycetes were recovered from South China Sea sediments after dereplication by traditional culture-dependent method. The 16S rRNA gene sequences analyses revealed that these strains related to five families and seven genera. Twelve representative strains possessed at least one of the biosynthetic genes coding for polyketide synthase I, II, and nonribosomal peptide synthetase. Four strains had anti-Mycobacterium phlei activities and five strains had activities against methicillin-resistant Staphylococcus aureus. 10 L-scale fermentation of strains Salinispora sp. NHF45, Nocardiopsis sp. NHF48, and Streptomyces sp. NHF86 were carried out for novel and bioactive compounds discovery. Finally, we obtained a novel α-pyrone compound from marine Nocardiopsis sp. NHF48, an analogue of paulomenol from marine Streptomyces sp. NHF86 and a new source of rifamycin B, produced by Salinispora sp. NHF45. The present study concluded that marine actinomycetes, which we isolated from South China Sea sediments, will be a suitable source for the development of novel and bioactive compounds.

  3. GC-MS analysis of bioactive compounds in the methanol extract of Clerodendrum viscosum leaves

    Directory of Open Access Journals (Sweden)

    Pritipadma Panda

    2015-01-01

    Full Text Available Background: Clerodendrum viscosum is commonly found in India and Bangladesh. Previously, various parts of this plant were reported for treatment of different types of diseases and there was no report on GC-Ms analysis. Objective: To analyze and characterize the phytochemical compounds of methanol extract of Clerodendrum viscosum using GC-MS. Materials and Methods: The preliminary phytochemical screening of methanol extract was carried out according to standard procedures described in WHO guidelines. Various bioactive compounds of the extract were determined by GC-MS technique. Results: The presence of steroids, triterpenoids, alkaloids, saponins, flavonoids, tannins and carbohydrate was found on phytochemical screening of methanol extract of the leaves. The GC-MS analysis showed 16 peaks of different phytoconstituents namely acetamide,N,N-carbonylbis-, 4-Pyranone,2,3-dihydro-, alpha-D-Galactofuranoside, methyl 2,3,5,6-tetra-O-methyl-, Glycerin, Xylitol, N,N-Dimethylglycine, 4H-Pyran-4-one,2,3-dihydro-3, 5-dihydroxy-6-methyl-, Benzofuran,2,3-dihydro-, 5-Hydroxymethylfurfural, 2(1HPyrimidinone,1-methyl-, 2,4-Dihydroxy-5,6-dimethylpyrimidine, 3-Deoxy-d-mannoic lactone, 1,3-Methylene-d-arabitol, Orcinol, n-Hexadecanoic acid and Phenol,4,4′-(1-methyl ethylidene bis etc. Conclusion: The bioactive compounds present in the methanol extract of Clerodendrum viscosum suggest the application of this extract for the treatment of various diseases by the aborigine tribes.

  4. Eco-taxonomic insights into actinomycete symbionts of termites for discovery of novel bioactive compounds.

    Science.gov (United States)

    Kurtböke, D Ipek; French, John R J; Hayes, R Andrew; Quinn, Ronald J

    2015-01-01

    Termites play a major role in foraging and degradation of plant biomass as well as cultivating bioactive microorganisms for their defense. Current advances in "omics" sciences are revealing insights into function-related presence of these symbionts, and their related biosynthetic activities and genes identified in gut symbiotic bacteria might offer a significant potential for biotechnology and biodiscovery. Actinomycetes have been the major producers of bioactive compounds with an extraordinary range of biological activities. These metabolites have been in use as anticancer agents, immune suppressants, and most notably, as antibiotics. Insect-associated actinomycetes have also been reported to produce a range of antibiotics such as dentigerumycin and mycangimycin. Advances in genomics targeting a single species of the unculturable microbial members are currently aiding an improved understanding of the symbiotic interrelationships among the gut microorganisms as well as revealing the taxonomical identity and functions of the complex multilayered symbiotic actinofloral layers. If combined with target-directed approaches, these molecular advances can provide guidance towards the design of highly selective culturing methods to generate further information related to the physiology and growth requirements of these bioactive actinomycetes associated with the termite guts. This chapter provides an overview on the termite gut symbiotic actinoflora in the light of current advances in the "omics" science, with examples of their detection and selective isolation from the guts of the Sunshine Coast regional termite Coptotermes lacteus in Queensland, Australia.

  5. Quantification of bioactive compounds in pulps and by-products of tropical fruits from Brazil.

    Science.gov (United States)

    Ribeiro da Silva, Larissa Morais; Teixeira de Figueiredo, Evania Altina; Silva Ricardo, Nagila Maria Pontes; Pinto Vieira, Icaro Gusmao; Wilane de Figueiredo, Raimundo; Brasil, Isabella Montenegro; Gomes, Carmen L

    2014-01-15

    This study aimed to quantify the levels of resveratrol, coumarin, and other bioactives in pulps and by-products of twelve tropical fruits from Brazil obtained during pulp production process. Pineapple, acerola, monbin, cashew apple, guava, soursop, papaya, mango, passion fruit, surinam cherry, sapodilla, and tamarind pulps were evaluated as well as their by-products (peel, pulp's leftovers, and seed). Total phenolic, anthocyanins, yellow flavonoids, β-carotene and lycopene levels were also determined. Resveratrol was identified in guava and surinam cherry by-products and coumarin in passion fruit, guava and surinam cherry by-products and mango pulp. These fruit pulp and by-products could be considered a new natural source of both compounds. Overall, fruit by-products presented higher (P<0.05) bioactive content than their respective fruit pulps. This study provides novel information about tropical fruits and their by-products bioactive composition, which is essential for the understanding of their nutraceutical potential and future application in the food industry.

  6. Marine metagenomics, a valuable tool for enzymes and bioactive compounds discovery

    Directory of Open Access Journals (Sweden)

    Rosalba eBarone

    2014-09-01

    Full Text Available The enormous potential in diversity of the marine life is still not fully exploited due to the difficulty in culturing many of the microorganisms under laboratory conditions. In this mini-review we underlined the importance of using an omic technique, such as metagenomics, to access the uncultured majority of microbial communities. We report examples of several hydrolytic enzymes and natural products isolated by functional sequenced-based and function- screening strategies assisted by new high-throughput DNA sequencing technology and recent bioinformatics tools. This article ends with an overview of the potential future perspectives of the metagenomics in bioprospecting novel biocatalysts and bioactive compounds from marine sources.

  7. Sea buckthorn as a source of important bioactive compounds in cardiovascular diseases.

    Science.gov (United States)

    Olas, Beata

    2016-11-01

    Hippophae rhamnoides (sea buckthorn) offers many health benefits. It has significant cardioprotective activity and exerts many positive healing effects on the cardiovascular system, including inhibiting blood platelet activation (especially platelet aggregation), lowering cholesterol concentration and blood pressure, and providing antioxidant activity. In addition, sea buckthorn has antibacterial and antiviral properties. The leaves and fruits of the plant, and its oils, are sources of many bioactive substances including vitamins (A, C and E), unsaturated fatty acids, phenolic compounds, especially flavonoids, and phytosterols, which bestow positive effects on the cardiovascular system. This review article summarizes the current knowledge of the biological roles of sea buckthorn in cardiovascular diseases.

  8. Evaluation of cytotoxicity of Moringa oleifera Lam. callus and leaf extracts on Hela cells

    OpenAIRE

    Abbas Jafarain; Gholamreza Asghari; Erfaneh Ghassami

    2014-01-01

    Background: There are considerable attempts worldwide on herbal and traditional compounds to validate their use as anti-cancer drugs. Plants from Moringaceae family including Moringa oleifera possess several activities such as antitumor effect on tumor cell lines. In this study we sought to determine if callus and leaf extracts of M. oleifera possess any cytotoxicity. Materials and Methods: Ethanol-water (70-30) extracts of callus and leaf of M. oleifera were prepared by maceration method...

  9. Bioactive compounds in different cocoa (Theobroma cacao, L cultivars during fermentation

    Directory of Open Access Journals (Sweden)

    Jaqueline Fontes Moreau Cruz

    2015-06-01

    Full Text Available One component that contribute to the flavor and aroma of chocolate are the polyphenols, which have received much attention due to their beneficial implications to human health. Besides bioactive action, polyphenols and methylxantines are responsible for astringency and bitterness in cocoa beans. Another important point is its drastic reduction during cocoa processing for chocolate production and the difference between cultivars. Thus, the present study aimed to evaluate the modifications in monomeric phenolic compounds and methylxanthines during fermentation of three cocoa cultivars grown in southern Bahia. Cocoa beans from three cultivars were fermented and sun dried and monomeric phenolic compounds and methylxantines were determinated. The results showed that each cultivar have different amounts of phenolic compounds and the behaviour of them is different during fermentation. The amount of methylxantines varied but there was not a pattern for methylxantines behavior during process. In addition a huge reduction in phenolic compounds could be observed after drying. Differently of phenolic compounds, methylxantines did not have great modification after sun drying. So, the differences observed in this study between cultivars, take to the conclusion that the compounds studied in those cocoa cultivars have different behavior during fermentation and drying, which consequently, give to these cultivars differences in sensory characteristics.

  10. EuroFIR-BASIS - a combined composition and biological activity database for bioactive compounds in plant-based foods

    DEFF Research Database (Denmark)

    Gry, Jørn; Black, Lucinda; Eriksen, Folmer Damsted

    2007-01-01

    Mounting evidence suggests that certain non-nutrient bioactive compounds promote optimal human health and reduce the risk of chronic disease. An Internet-deployed database, EuroFIR-BASIS, which uniquely combines food composition and biological effects data for plant-based bioactive compounds......, is being developed. The database covers multiple compound classes and 330 major food plants and their edible parts with data sourced from quality-assessed, peer-reviewed literature. The database will be a valuable resource for food regulatory and advisory bodies, risk authorities, epidemiologists...... and researchers interested in diet and health relationships, and product developers within the food industry....

  11. Rapid in situ identification of bioactive compounds in plants by in vivo nanospray high-resolution mass spectrometry.

    Science.gov (United States)

    Chang, Qing; Peng, Yue'e; Dan, Conghui; Shuai, Qin; Hu, Shenghong

    2015-03-25

    A method for the rapid in situ identification of bioactive compounds in fresh plants has been developed using in vivo nanospray coupled to high-resolution mass spectrometry (HR-MS). Using a homemade in vivo nanospray ion source, the plant liquid was drawn out from a target region and ionized in situ. The ionized bioactive compounds were then identified using Q-Orbitrap HR-MS. The accurate mass measurements of these bioactive compounds were performed by full-scan or selected ion monitoring (SIM), and tandem mass spectrometry (MS/MS) was used in the structural elucidation. Without sample pretreatment, 12 bioactive compounds in 7 different plant species were identified, namely, isoalliin in onion; butylphthalide in celery; N-methylpelletierine, pelletierine, and pseudopelletierine in pomegranate; chlorogenic acid in crabapple; solamargine, solasonine, and solasodine in nightshade; aloin and aloe-emodin in aloe; and menthone in mint. This work demonstrates that in vivo nanospray HR-MS is a good method for rapid in situ identification of bioactive compounds in plants.

  12. Grain and sweet sorghum (Sorghum bicolor L. Moench) serves as a novel source of bioactive compounds for human health.

    Science.gov (United States)

    Vanamala, Jairam K P; Massey, Aaron R; Pinnamaneni, Srinivas Rao; Reddivari, Lavanya; Reardon, Kenneth F

    2017-06-29

    Grain sorghum is an important staple food crop grown globally while sweet sorghum is increasingly considered as a promising biofuel feedstock. Biofuels are the major economic products from the processing of large quantities of biomass, which is currently being utilized to make value-added products in the biorefinery approach. To date, these value-added products are typically commodity chemicals and waste materials used in agriculture. However, there are opportunities to generate high value bioactive compounds from sorghum grain and biomass. Chronic diseases, such as cancers, are the top causes for morbidity and mortality in developed nations and are promoted by inflammation and oxidative stress. Globally, colorectal cancer results in approximately one-half million deaths annually. It is estimated that as much as 80% of colorectal cancer cases can be attributed to environmental and dietary factors. The sorghum grain and ligno-cellulosic biomass generated for biofuel production has been reported to be high in bioactive compounds, including phenolic acids and flavonoids, with antioxidant and anti-inflammatory properties. This review focuses on the bioactive compounds of grain and sweet sorghum (Sorghum bicolor L. Moench), for their anti-inflammatory, antioxidant, anti-colon cancer and immune modulator functions. The review summarizes previous efforts to identify and quantify bioactive compounds in sorghum and documents their anti-cancer biological activities. Finally, this review discusses bioactive compound extraction methodologies and technologies as well as considerations for incorporating these technologies into current biorefining practices.

  13. Degreening and postharvest storage influences 'Star Ruby' grapefruit (Citrus paradisi Macf.) bioactive compounds.

    Science.gov (United States)

    Chaudhary, Priyanka; Jayaprakasha, G K; Porat, Ron; Patil, Bhimanagouda S

    2012-12-01

    Ethylene is commercially used for artificial degreening of early season grapefruits. The present study investigated the effect of degreening and storage period on Star Ruby grapefruit (Citrus paradisi Macf.) bioactive compounds. Freshly harvested grapefruits were degreened in commercial packing shed for 60h using 2ppm of ethylene at a constant temperature of 20°C. Both degreened and non-degreened (control) fruits were stored at 10°C for 21days and later transferred to 20°C for a period of 14days to simulate shipment and retail store market conditions. Bioactive compounds including carotenoids, limonoids, flavonoids and furocoumarins were analyzed using high performance liquid chromatography. Nomilin was significantly higher (Peffect on total soluble solids, decay, fruit softening, taste, odour, ascorbic acid, β-carotene, lycopene, limonin, neohesperidin, didymin, 6,7-dihydroxybergamottin, 5-geranyloxy-7-methoxycoumarin and radical scavenging activity. Therefore, degreening could be utilized to enhance the grapefruit aesthetic quality, with minimal effect on nutritional quality.

  14. Empirical modeling of drying kinetics and microwave assisted extraction of bioactive compounds from Adathoda vasica

    Directory of Open Access Journals (Sweden)

    Prithvi Simha

    2016-03-01

    Full Text Available To highlight the shortcomings in conventional methods of extraction, this study investigates the efficacy of Microwave Assisted Extraction (MAE toward bioactive compound recovery from pharmaceutically-significant medicinal plants, Adathoda vasica and Cymbopogon citratus. Initially, the microwave (MW drying behavior of the plant leaves was investigated at different sample loadings, MW power and drying time. Kinetics was analyzed through empirical modeling of drying data against 10 conventional thin-layer drying equations that were further improvised through the incorporation of Arrhenius, exponential and linear-type expressions. 81 semi-empirical Midilli equations were derived and subjected to non-linear regression to arrive at the characteristic drying equations. Bioactive compounds recovery from the leaves was examined under various parameters through a comparative approach that studied MAE against Soxhlet extraction. MAE of A. vasica reported similar yields although drastic reduction in extraction time (210 s as against the average time of 10 h in the Soxhlet apparatus. Extract yield for MAE of C. citratus was higher than the conventional process with optimal parameters determined to be 20 g sample load, 1:20 sample/solvent ratio, extraction time of 150 s and 300 W output power. Scanning Electron Microscopy and Fourier Transform Infrared Spectroscopy were performed to depict changes in internal leaf morphology.

  15. Bioactive Compound Content and Cytotoxic Effect on Human Cancer Cells of Fresh and Processed Yellow Tomatoes

    Directory of Open Access Journals (Sweden)

    Assunta Raiola

    2015-12-01

    Full Text Available Tomato, as a fresh or processed product, has a high nutritional value due to its content of bioactive components such as phenolic compounds. Few studies describe the effect of processing on antioxidant content and the cancer cell growth inhibition activity. In this study we determined the phenolic and ascorbic acid content of three yellow tomato varieties, before and after thermal processing. Moreover, we determined the antioxidative power and tested the effects of tomato extracts on three human cancer cell lines. We found that the amount of phenolic acids (chlorogenic acid and caffeic acid decreased in all the samples after processing, whereas the flavonoid content increased after the heat treatment in two samples. A cytotoxic effect of tomato extracts was observed only after processing. This result well correlates with the flavonoid content after processing and clearly indicates that processed yellow tomatoes have a high content of bioactive compounds endowed with cytotoxicity towards cancer cells, thus opening the way to obtain tomato-based functional foods.

  16. State of the Art on Functional Virgin Olive Oils Enriched with Bioactive Compounds and Their Properties

    Directory of Open Access Journals (Sweden)

    Patricia Reboredo-Rodríguez

    2017-03-01

    Full Text Available Virgin olive oil, the main fat of the Mediterranean diet, is per se considered as a functional food—as stated by the European Food Safety Authority (EFSA—due to its content in healthy compounds. The daily intake of endogenous bioactive phenolics from virgin olive oil is variable due to the influence of multiple agronomic and technological factors. Thus, a good strategy to ensure an optimal intake of polyphenols through habitual diet would be to produce enriched virgin olive oil with well-known bioactive polyphenols. Different sources of natural biological active substances can be potentially used to enrich virgin olive oil (e.g., raw materials derived from the same olive tree, mainly olive leaves and pomaces, and/or other compounds from plants and vegetables, mainly herbs and spices. The development of these functional olive oils may help in prevention of chronic diseases (such as cardiovascular diseases, immune frailty, ageing disorders and degenerative diseases and improving the quality of life for many consumers reducing health care costs. In the present review, the most relevant scientific information related to the development of enriched virgin olive oil and their positive human health effects has been collected and discussed.

  17. Metabolomic and Functional Genomic Analyses Reveal Varietal Differences in Bioactive Compounds of Cooked Rice

    Science.gov (United States)

    Heuberger, Adam L.; Lewis, Matthew R.; Chen, Ming-Hsuan; Brick, Mark A.; Leach, Jan E.; Ryan, Elizabeth P.

    2010-01-01

    Emerging evidence supports that cooked rice (Oryza sativa L.) contains metabolites with biomedical activities, yet little is known about the genetic diversity that is responsible for metabolite variation and differences in health traits. Metabolites from ten diverse varieties of cooked rice were detected using ultra performance liquid chromatography coupled to mass spectrometry. A total of 3,097 compounds were detected, of which 25% differed among the ten varieties. Multivariate analyses of the metabolite profiles showed that the chemical diversity among the varieties cluster according to their defined subspecies classifications: indica, japonica, and aus. Metabolite-specific genetic diversity in rice was investigated by analyzing a collection of single nucleotide polymorphisms (SNPs) in genes from biochemical pathways of nutritional importance. Two classes of bioactive compounds, phenolics and vitamin E, contained nonsynonymous SNPs and SNPs in the 5′ and 3′ untranslated regions for genes in their biosynthesis pathways. Total phenolics and tocopherol concentrations were determined to examine the effect of the genetic diversity among the ten varieties. Per gram of cooked rice, total phenolics ranged from 113.7 to 392.6 µg (gallic acid equivalents), and total tocopherols ranged between 7.2 and 20.9 µg. The variation in the cooked rice metabolome and quantities of bioactive components supports that the SNP-based genetic diversity influenced nutritional components in rice, and that this approach may guide rice improvement strategies for plant and human health. PMID:20886119

  18. Determination of some physicochemical characteristics, bioactive compounds and antioxidant activity of tropical fruits from Yucatan, Mexico.

    Science.gov (United States)

    Moo-Huchin, Víctor M; Estrada-Mota, Iván; Estrada-León, Raciel; Cuevas-Glory, Luis; Ortiz-Vázquez, Elizabeth; Vargas y Vargas, María de Lourdes; Betancur-Ancona, David; Sauri-Duch, Enrique

    2014-01-01

    The aim to the study was to determine the physicochemical composition, bioactive compounds and antioxidant activity of fruits from Yucatan, Mexico such as star apple, cashew, mombin, mamey sapote, white sapote, sugar apple, sapodilla, dragon fruit, nance, ilama, custard apple, mamoncillo and black sapote. The physicochemical characteristics were different between fruits and were good sources of bioactive compounds. The edible part with the highest values of antioxidant activity were mamoncillo, star apple, mombin, cashew, white sapote, ilama, custard apple, sugar apple, and nance. Total soluble phenols content showed a correlation with antioxidant activity by ABTS (R=0.52, P⩽0.05) and DPPH (R=0.43, P⩽0.05). A high correlation was obtained between the two assays (ABTS and DPPH) used to measure antioxidant activity in the tropical fruit species under study (R=0.82, P⩽0.05). The results show promising perspectives for the exploitation and use of tropical fruits studied with significant levels of nutrients and antioxidant activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Salidroside, a Bioactive Compound of Rhodiola Rosea, Ameliorates Memory and Emotional Behavior in Adult Mice.

    Science.gov (United States)

    Palmeri, Agostino; Mammana, Leonardo; Tropea, Maria Rosaria; Gulisano, Walter; Puzzo, Daniela

    2016-02-26

    Rhodiola Rosea (R. Rosea) is a plant used in traditional popular medicine to enhance cognition and physical performance. R. Rosea medicinal properties have been related to its capability to act as an adaptogen, i.e., a substance able to increase the organism's resistance to a variety of chemical, biological, and physical stressors in a non-specific way. These adaptogen properties have been mainly attributed to the glycoside salidroside, one of the bioactive compounds present in the standardized extracts of R. Rosea. Here, we aimed to investigate whether a single dose of salidroside is able to affect memory and emotional behavior in wild type adult mice. We performed fear conditioning to assess cued and contextual memory, elevated plus maze and open field to evaluate anxiety, and tail suspension test to evaluate depression. Our results showed that a single i.p. administration of salidroside was able to enhance fear memory and exerted an anxiolytic and antidepressant effect. These data confirmed the adaptogenic effect of R. Rosea bioactive compounds in animal models and suggest that salidroside might represent an interesting pharmacological tool to ameliorate cognition and counteract mood disorders.

  20. Hard cap espresso extraction and liquid chromatography determination of bioactive compounds in vegetables and spices.

    Science.gov (United States)

    Martinez-Sena, María Teresa; de la Guardia, Miguel; Esteve-Turrillas, Francesc A; Armenta, Sergio

    2017-12-15

    A new analytical procedure, based on liquid chromatography with diode array and fluorescence detection, has been proposed for the determination of bioactive compounds in vegetables and spices after hard cap espresso extraction. This novel extraction system has been tested for the determination of capsaicin and dihydrocapsaicin from fresh chilli and sweet pepper, piperine from ground pepper, curcumin from turmeric and curry, and myristicin from nutmeg. Extraction efficiency was evaluated by using acetonitrile:water and ethanol:water mixtures. The proposed method allows the extraction of samples with 100mL of 60% (v/v) ethanol in water. The obtained limits of quantification for the proposed procedure ranged from 0.07 to 0.30mgg(-1) and results were statistically comparable with those obtained by ultrasound assisted extraction. Hard cap espresso machines offer a fast, effective and quantitative tool for the extraction of bioactive compounds from food samples with an extraction time lower than 30s, using a global available and low cost equipment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Cyanobacteria and microalgae: a renewable source of bioactive compounds and other chemicals.

    Science.gov (United States)

    Encarnação, Telma; Pais, Alberto A C C; Campos, Maria G; Burrows, Hugh D

    2015-01-01

    Microalgae and cyanobacteria are rich sources of many valuable compounds, including important bioactive and biotechnologically relevant chemicals. Their enormous biodiversity, and the consequent variability in the respective biochemical composition, make microalgae cultivations a promising resource for many novel chemically and biologically active molecules and compounds of high commercial value such as lipids and dyes. The nature of the chemicals produced can be manipulated by changing the cultivation media and conditions. Algae are extremely versatile because they can be adapted to a variety of cell culture conditions. They do not require arable land, can be cultivated on saline water and wastewaters, and require much less water than plants. They possess an extremely high growth rate making these microorganisms very attractive for use in biofuel production--some species of algae can achieve around 100 times more oil than oil seeds. In addition, microalgae and cyanobacteria can accumulate various biotoxins and can contribute to mitigate greenhouse gases since they produce biomass through carbon dioxide fixation. In this review, we provide an overview of the application of microalgae in the production of bioactive and other chemicals.

  2. Bioactive Compounds of Palm Fatty Acid Distillate (PFAD from Several Palm Oil Refineries

    Directory of Open Access Journals (Sweden)

    Teti Estiasih

    2013-09-01

    Full Text Available This research studied the characteristics of Palm Fatty Acids Distillates (PFADs from several palm oil refineries. It was aimed to know the potency of PFAD as bioactive compounds source, including vitamin E (mainly tocotrienols, phytosterols, squalene and possibly co-enzyme Q10 and polycosanol. Sampling was conducted at 6 palm oil refineries. The results showed that PFAD was dominated by free fatty acids of 85-95% with low oxidation level indicated by peroxide value of 1-10 meq/kg and anisidin value of 6-31. Bioactive compounds found were vitamin E 60-200 ppm, phytosterols 400-7500 ppm and squalene 400-2800 ppm, meanwhile polycosanol and co-enzyme Q10 were not found. Vitamin E was dominated by tocotrienols and γ tocotrienol was the major vitamin E, followed by α and δ tocotrienols. Phytosterols in PFADs from several palm oil refineries had variety in quantity and composition. Generally it was dominated by &beta sitosterol, followed by stigmasterol and campesterol

  3. Recovering bioactive compounds from olive oil filter cake by advanced extraction techniques.

    Science.gov (United States)

    Lozano-Sánchez, Jesús; Castro-Puyana, María; Mendiola, Jose A; Segura-Carretero, Antonio; Cifuentes, Alejandro; Ibáñez, Elena

    2014-09-15

    The potential of by-products generated during extra-virgin olive oil (EVOO) filtration as a natural source of phenolic compounds (with demonstrated bioactivity) has been evaluated using pressurized liquid extraction (PLE) and considering mixtures of two GRAS (generally recognized as safe) solvents (ethanol and water) at temperatures ranging from 40 to 175 °C. The extracts were characterized by high-performance liquid chromatography (HPLC) coupled to diode array detection (DAD) and electrospray time-of-flight mass spectrometry (HPLC-DAD-ESI-TOF/MS) to determine the phenolic-composition of the filter cake. The best isolation procedure to extract the phenolic fraction from the filter cake was accomplished using ethanol and water (50:50, v/v) at 120 °C. The main phenolic compounds identified in the samples were characterized as phenolic alcohols or derivatives (hydroxytyrosol and its oxidation product), secoiridoids (decarboxymethylated and hydroxylated forms of oleuropein and ligstroside aglycones), flavones (luteolin and apigenin) and elenolic acid derivatives. The PLE extraction process can be applied to produce enriched extracts with applications as bioactive food ingredients, as well as nutraceuticals.

  4. Recovering Bioactive Compounds from Olive Oil Filter Cake by Advanced Extraction Techniques

    Directory of Open Access Journals (Sweden)

    Jesús Lozano-Sánchez

    2014-09-01

    Full Text Available The potential of by-products generated during extra-virgin olive oil (EVOO filtration as a natural source of phenolic compounds (with demonstrated bioactivity has been evaluated using pressurized liquid extraction (PLE and considering mixtures of two GRAS (generally recognized as safe solvents (ethanol and water at temperatures ranging from 40 to 175 °C. The extracts were characterized by high-performance liquid chromatography (HPLC coupled to diode array detection (DAD and electrospray time-of-flight mass spectrometry (HPLC-DAD-ESI-TOF/MS to determine the phenolic-composition of the filter cake. The best isolation procedure to extract the phenolic fraction from the filter cake was accomplished using ethanol and water (50:50, v/v at 120 °C. The main phenolic compounds identified in the samples were characterized as phenolic alcohols or derivatives (hydroxytyrosol and its oxidation product, secoiridoids (decarboxymethylated and hydroxylated forms of oleuropein and ligstroside aglycones, flavones (luteolin and apigenin and elenolic acid derivatives. The PLE extraction process can be applied to produce enriched extracts with applications as bioactive food ingredients, as well as nutraceuticals.

  5. Extraction of Bioactive Compounds from Two Grape Varieties Using Pulsed Electric Field

    Directory of Open Access Journals (Sweden)

    Simona Ioana VICAS

    2016-11-01

    Full Text Available In this paper, our objective was to investigate extraction efficiency of polyphenols with antioxidant capacity from two varieties of grapes (white-Muscat Ottonel (MO and red-Pinot Noir (PN using pulsed electric field (PEF. Grapes were harvested in the Crisana Santimreu vineyard in 2015. The grapes were declustered and crushed, and have been divided into three parts. A part was treated in PEF, the second one was homogenized, and then was treated in PEF and the last part remained untreated, representing the control samples. The bioactive compounds, like total polyphenol content and total flavonoid content, were determined by the spectrophotometric method. The antioxidant capacity of the samples was determined by three methods (DPPH, FRAPand TEAC. Our results show that the application of PEF to the crushed grapes increases the total polyphenol content 2.28 and 3.15 times and the total flavonoid content 7.17 and 5.29 times for MO and PN, respectively. Also, the antioxidant capacity was significantly increased when it was compared with the control sample. When the treatment in PEF was applied on homogenized grapes both bioactive compounds and antioxidant capacity were significantly increased compared to the samples treated in PEF for crushed grapes. In the present research work, we demonstrated that the application of PEF to two different grape varieties significantly increased the level of total polyphenols and flavonoids and also the antioxidant capacity. The application of PEF to homogenized grapes was more efficient.

  6. Effects of selected bioactive food compounds on human white adipocyte function

    DEFF Research Database (Denmark)

    Björk, Christel; Wilhelm, Uta; Mandrup, Susanne

    2016-01-01

    BACKGROUND: Previous studies suggest that intake of specific bioactive compounds may have beneficial clinical effects on adipose tissue partly due to their anti-inflammatory and insulin-sensitizing properties. With the overall aim to contribute to better understanding of the mechanisms of selecte...... uptake albeit only with the combination of DHA and AC. Taken together, our results may link the reported health benefits of the selected bioactives on metabolic disorders such as insulin resistance, hypertension and dyslipidemia to effects on white adipocytes....... (PI) on adipokine secretion, fatty acid metabolism (lipolysis/lipogenesis) and adipocyte differentiation (lipid accumulation) was studied in human fat cells differentiated in vitro. To investigate possible synergistic, additive or antagonistic effects, DHA was also combined with AC or PI. RESULTS......: Each compound, alone or together with DHA, suppressed basal adipocyte lipolysis compared to control treated cells. DHA alone attenuated the secretion of pro-inflammatory adipokines such as chemerin, interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1/CCL2), whereas AC suppressed only...

  7. Chemical composition, fatty acid profile and bioactive compounds of guava seeds (Psidium guajava L.

    Directory of Open Access Journals (Sweden)

    Ana Maria Athayde Uchôa-thomaz

    2014-09-01

    Full Text Available This study aimed to characterize the chemical composition, determine the fatty acid profile, and quantify the bioactive compounds present in guava seed powder (Psidium guajava L.. The powder resulted from seeds obtained from guava pulp processing. The agro-industrial seeds from red guava cv. paluma were used, and they were donated by a frozen pulp fruit manufacturer. They contain varying amounts of macronutrients and micronutrients, with a high content of total dietary fiber (63.94 g/100g, protein (11.19 g/100g, iron (13.8 mg/100g, zinc (3.31 mg/100g, and reduced calorie content (182 kcal/100g. Their lipid profile showed a predominance of unsaturated fatty acids (87.06%, especially linoleic acid (n6 and oleic acid (n9. The powder obtained contained significant amounts of bioactive compounds such as ascorbic acid (87.44 mg/100g, total carotenoids (1.25 mg/100 g and insoluble dietary fiber (63.55 g/100g. With regard to their microbiological quality, the samples were found suitable for consumption. Based on these results, it can be concluded that the powder produced has favorable attributes for industrial use, and that use of these seeds would be a viable alternative to prevent various diseases and malnutrition in our country and to reduce the environmental impact of agricultural waste.

  8. UV light induced surface modification of HDPE films with bioactive compounds

    Energy Technology Data Exchange (ETDEWEB)

    Daniloska, Vesna; Blazevska-Gilev, Jadranka; Dimova, Vesna [Faculty of Technology and Metallurgy, University St. Cyril and Methodius, Ruger Boskovic 16, 1000 Skopje (Macedonia, The Former Yugoslav Republic of); Fajgar, Radek [Institute of Chemical Process Fundamentals, ASCR, Rozvojova 135, Prague 6-Suchdol (Czech Republic); Tomovska, Radmila, E-mail: radmila_tomovska@ehu.es [Institute for Polymer Materials, POLYMAT, Centro Joxe Mari Korta, University of the Basque Country, P.O. Box 1072, 20080 Donostia-San Sebastian (Spain); IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain)

    2010-01-15

    The development of different techniques for surface modification of polymers becomes popular in a last decade. These techniques preserve useful bulk polymer properties unchanged, while the activation of the polymer surface offers more possibilities for polymer applications. In this work, a new, one-step method for bio-activation of HDPE (high density polyethylene) surface by UV irradiation is presented. HDPE films coupled with selected active compound and a photoinitiator was treated by UV lamp, emitting light at 254 nm. For surface functionalization of HDPE films, the following compounds were employed: 2-aminopyridine (AP), N{sup 1}-(2-pyridylaminomethyl)-1,2,4-triazole (TA) and benzocaine (BC). The influence of irradiation time on the extent of surface changes was investigated. The modified polymer surfaces were investigated by Fourier transformed infrared (FTIR) and Raman spectroscopy, scanning electron microscopy (SEM) and contact angle measurements, demonstrating successful functionalization of HDPE surface.

  9. Bioactive compounds in banana and their associated health benefits - A review.

    Science.gov (United States)

    Singh, Balwinder; Singh, Jatinder Pal; Kaur, Amritpal; Singh, Narpinder

    2016-09-01

    Banana is a very popular fruit in the world market and is consumed as staple food in many countries. It is grown worldwide and constitutes the fifth most important agricultural food crop in terms of world trade. It has been classified into the dessert or sweet bananas and the cooking bananas or plantains. It is either eaten raw or processed, and also as a functional ingredient in various food products. Banana contains several bioactive compounds, such as phenolics, carotenoids, biogenic amines and phytosterols, which are highly desirable in the diet as they exert many positive effects on human health and well-being. Many of these compounds have antioxidant activities and are effective in protecting the body against various oxidative stresses. In the past, bananas were effectively used in the treatment of various diseases, including reducing the risk of many chronic degenerative disorders. In the present review, historical background, cultivar classification, beneficial phytochemicals, antioxidant activity and health benefits of bananas are discussed.

  10. Cooking techniques improve the levels of bioactive compounds and antioxidant activity in kale and red cabbage.

    Science.gov (United States)

    Murador, Daniella Carisa; Mercadante, Adriana Zerlotti; de Rosso, Veridiana Vera

    2016-04-01

    The aim of this study is to investigate the effects of different home cooking techniques (boiling, steaming, and stir-frying) in kale and red cabbage, on the levels of bioactive compounds (carotenoids, anthocyanins and phenolic compounds) determined by high-performance liquid chromatography coupled with photodiode array and mass spectrometry detectors (HPLC-DAD-MS(n)), and on the antioxidant activity evaluated by ABTS, ORAC and cellular antioxidant activity (CAA) assays. The steaming technique resulted in a significant increase in phenolic content in kale (86.1%; pkale, steaming resulted in significant increases in antioxidant activity levels in all of the evaluation methods. In the red cabbage, boiling resulted in a significant increase in antioxidant activity using the ABTS assay but resulted in a significant decrease using the ORAC assay. According to the CAA assay, the stir-fried sample displayed the highest levels of antioxidant activity.

  11. Isolation of Bioactive Compounds from Sunflower Leaves (Helianthus annuus L.) Extracted with Supercritical Carbon Dioxide.

    Science.gov (United States)

    El Marsni, Zouhir; Torres, Ascension; Varela, Rosa M; Molinillo, José M G; Casas, Lourdes; Mantell, Casimiro; Martinez de la Ossa, Enrique J; Macias, Francisco A

    2015-07-22

    The work described herein is a continuation of our initial studies on the supercritical fluid extraction (SFE) with CO2 of bioactive substances from Helianthus annuus L. var. Arianna. The selected SFE extract showed high activity in the wheat coleoptile bioassay, in Petri dish phytotoxicity bioassays, and in the hydroponic culture of tomato seeds. Chromatographic fractionations of the extracts and a spectroscopic analysis of the isolated compounds showed 52 substances belonging to 10 different chemical classes, which were mainly sesquiterpene lactones, diterpenes, and flavonoids. Heliannuol M (31), helivypolides K and L (36, 37), and helieudesmanolide B (38) are described for the first time in the literature. Metabolites have been tested in the etiolated wheat coleoptile bioassay with good results in a noteworthy effect on germination. The most active compounds were also tested on tomato seeds, heliannuol A (30) and leptocarpin (45) being the most active, with values similar to those of the commercial herbicide.

  12. Metabolic profile of the bioactive compounds of burdock (Arctium lappa) seeds, roots and leaves.

    Science.gov (United States)

    Ferracane, Rosalia; Graziani, Giulia; Gallo, Monica; Fogliano, Vincenzo; Ritieni, Alberto

    2010-01-20

    In this work the bioactive metabolic profile, the antioxidant activity and total phenolic content of burdock (Arctium lappa) seeds, leaves and roots were obtained. TEAC values and total phenolic content for hydro-alcoholic extracts of burdock ranged from 67.39 to 1.63 micromol Trolox equivalent/100g dry weight (DW), and from 2.87 to 45 g of gallic acid equivalent/100g DW, respectively. Phytochemical compounds were analyzed by liquid chromatography coupled to electrospray tandem mass spectrometry (LC/MS/MS) in negative mode. The main compounds of burdock extracts were caffeoylquinic acid derivatives, lignans (mainly arctiin) and various flavonoids. The occurrence of some phenolic acids (caffeic acid, chlorogenic acid and cynarin) in burdock seeds; arctiin, luteolin and quercetin rhamnoside in burdock roots; phenolic acids, quercetin, quercitrin and luteolin in burdock leaves was reported for the first time.

  13. Effects of elevated CO2 and temperature on Gynostemma pentaphyllum physiology and bioactive compounds.

    Science.gov (United States)

    Chang, Jia-Dong; Mantri, Nitin; Sun, Bin; Jiang, Li; Chen, Ping; Jiang, Bo; Jiang, Zhengdong; Zhang, Jialei; Shen, Jiahao; Lu, Hongfei; Liang, Zongsuo

    2016-06-01

    Recently, an important topic of research has been how climate change is seriously threatening the sustainability of agricultural production. However, there is surprisingly little experimental data regarding how elevated temperature and CO2 will affect the growth of medicinal plants and production of bioactive compounds. Here, we comprehensively analyzed the effects of elevated CO2 and temperature on the photosynthetic process, biomass, total sugars, antioxidant compounds, antioxidant capacity, and bioactive compounds of Gynostemma pentaphyllum. Two different CO2 concentrations [360 and 720μmolmol(-1)] were imposed on plants grown at two different temperature regimes of 23/18 and 28/23°C (day/night) for 60days. Results show that elevated CO2 and temperature significantly increase the biomass, particularly in proportion to inflorescence total dry weight. The chlorophyll content in leaves increased under the elevated temperature and CO2. Further, electron transport rate (ETR), photochemical quenching (qP), actual photochemical quantum yield (Yield), instantaneous photosynthetic rate (Photo), transpiration rate (Trmmol) and stomatal conductance (Cond) also increased to different degrees under elevated CO2 and temperature. Moreover, elevated CO2 increased the level of total sugars and gypenoside A, but decreased the total antioxidant capacity and main antioxidant compounds in different organs of G. pentaphyllum. Accumulation of total phenolics and flavonoids also decreased in leaves, stems, and inflorescences under elevated CO2 and temperature. Overall, our data indicate that the predicted increase in atmospheric temperature and CO2 could improve the biomass of G. pentaphyllum, but they would reduce its health-promoting properties. Copyright © 2016 Elsevier GmbH. All rights reserved.

  14. Approach to improve the productivity of bioactive compounds of the cyanobacterium Anabaena oryzae using factorial design

    Directory of Open Access Journals (Sweden)

    Ragaa A. Hamouda

    2017-09-01

    Full Text Available Cyanobacteria are one of the richest sources of biomedical relevant compounds with extensive therapeutic pharmaceutical applications and are also known as producer of intracellular and extracellular metabolites with diverse biological activities. The genus Anabaena sp. is known to produce antimicrobial compounds, like phycocyanin and others. The goal of this study was to optimize the production of these bioactive compounds. The Plackett–Burman experimental design was used to screen and evaluate the important medium components that influence the production of bioactive compounds. In this present study, eight independent factors including NaNO3, K2HPO4, MgSO4·7H2O, CaCl2, citric acid, ammonium ferric citrate, ethylene diamine tetraacetic acid disodium magnesium salt (EDTA-Na2Mg and Na2CO3 were surveyed and the effective variables for algal components production of Anabaena oryzae were determined using two-levels Plackett–Burman design. Results analysis showed that the best medium components were NaNO3 (2.25 g l−1; K2HPO4 (0.02 g l−1; MgSO4 (0.0375 g l−1; CaCl2 (0.018 g l−1; citric acid (0.009 g l−1; ammonium ferric citrate (0.009 g l−1 and EDTA-Na2 (0.0015 g l−1 respectively. The total chlorophyll-a, carotenoids, phenol, tannic acid and flavonoid contents in crude extract of Anabaena oryzae were determined. They were 47.7, 4.11, 0.256, 1.046 and 1.83 μg/ml, respectively. The antioxidant capacity was 62.81%.

  15. Active Compounds and Functions of Moringa oleifera Lam. Leaves%辣木叶功效及相关成分研究进展

    Institute of Scientific and Technical Information of China (English)

    陈逸鹏; 梁建芬

    2016-01-01

    Moringa oleifera Lam. is a kind of perennial tropical deciduous plant with rich nutrients and different functional activities. Ministry of health, China also approved moringa leaves as a new resource food in 2012. Presence of flavonoids, polyphenols and other active compounds makes moringa leaves has gorgeous antioxidant function. Functions of anti-diabetes, anti-hyperlipidemia, hypotensity may contributed by glycosides and sitos-terols in leaves. Moreover, presence of alkaloids, glucosinolates gluconates and polyphenols in moringa leaves supported the activities of anti-cancer, anti-microbial, anti-inflammatory, etc. The summary of research progress of active compounds and functions of moringa leaves will givea references and guidance of moringa leaves for the further research and application of food resources.%辣木是多年生热带落叶乔木,营养丰富而全面,大量研究也表明辣木具有很好的功能活性,因而引起了全世界的广泛关注。我国卫生部也于2012年批准辣木叶为新资源食品。辣木叶含的类黄酮、多酚等物质使其有很好的抗氧化活性;其降血糖、降血脂、降血压等功能则与其含有的糖苷、谷甾醇有关;此外,辣木叶中的生物碱、硫代葡萄糖酸盐、多酚等物质使其具有消炎、抗癌、抗菌等方面的功效。对辣木叶功效及相关成分的研究进展的总结,将为辣木叶作为食品资源的深入研究与开发提供参考和指导。

  16. Atmospheric-Pressure Cold Plasmas Used to Embed Bioactive Compounds in Matrix Material for Active Packaging of Fruits and Vegetables

    Science.gov (United States)

    Fernandez, Sulmer; Pedrow, Patrick; Powers, Joseph; Pitts, Marvin

    2009-10-01

    Active thin film packaging is a technology with the potential to provide consumers with new fruit and vegetable products-if the film can be applied without deactivating bioactive compounds.Atmospheric pressure cold plasma (APCP) processing can be used to activate monomer with concomitant deposition of an organic plasma polymerized matrix material and to immobilize a bioactive compound all at or below room temperature.Aims of this work include: 1) immobilize an antimicrobial in the matrix; 2) determine if the antimicrobial retains its functionality and 3) optimize the reactor design.The plasma zone will be obtained by increasing the voltage on an electrode structure until the electric field in the feed material (argon + monomer) yields electron avalanches. Results will be described using Red Delicious apples.Prospective matrix precursors are vanillin and cinnamic acid.A prospective bioactive compound is benzoic acid.

  17. Moringa oleifera Flower Extract Suppresses the Activation of Inflammatory Mediators in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages via NF-κB Pathway

    Directory of Open Access Journals (Sweden)

    Woan Sean Tan

    2015-01-01

    Full Text Available Aim of Study. Moringa oleifera Lam. (M. oleifera possess highest concentration of antioxidant bioactive compounds and is anticipated to be used as an alternative medicine for inflammation. In the present study, we investigated the anti-inflammatory activity of 80% hydroethanolic extract of M. oleifera flower on proinflammatory mediators and cytokines produced in lipopolysaccharide- (LPS- induced RAW 264.7 macrophages. Materials and Methods. Cell cytotoxicity was conducted by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay. Nitric oxide (NO production was quantified through Griess reaction while proinflammatory cytokines and other key inflammatory markers were assessed through enzyme-linked immunosorbent assay (ELISA and immunoblotting. Results. Hydroethanolic extract of M. oleifera flower significantly suppressed the secretion and expression of NO, prostaglandin E2 (PGE2, interleukin- (IL- 6, IL-1β, tumor necrosis factor-alpha (TNF-α, nuclear factor-kappa B (NF-κB, inducible NO synthase (iNOS, and cyclooxygenase-2 (COX-2. However, it significantly increased the production of IL-10 and IκB-α (inhibitor of κB in a concentration dependent manner (100 μg/mL and 200 μg/mL. Conclusion. These results suggest that 80% hydroethanolic extract of M. oleifera flower has anti-inflammatory action related to its inhibition of NO, PGE2, proinflammatory cytokines, and inflammatory mediator’s production in LPS-stimulated macrophages through preventing degradation of IκB-α in NF-κB signaling pathway.

  18. Moringa oleifera Flower Extract Suppresses the Activation of Inflammatory Mediators in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages via NF-κB Pathway

    Science.gov (United States)

    Tan, Woan Sean; Arulselvan, Palanisamy; Karthivashan, Govindarajan; Fakurazi, Sharida

    2015-01-01

    Aim of Study. Moringa oleifera Lam. (M. oleifera) possess highest concentration of antioxidant bioactive compounds and is anticipated to be used as an alternative medicine for inflammation. In the present study, we investigated the anti-inflammatory activity of 80% hydroethanolic extract of M. oleifera flower on proinflammatory mediators and cytokines produced in lipopolysaccharide- (LPS-) induced RAW 264.7 macrophages. Materials and Methods. Cell cytotoxicity was conducted by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Nitric oxide (NO) production was quantified through Griess reaction while proinflammatory cytokines and other key inflammatory markers were assessed through enzyme-linked immunosorbent assay (ELISA) and immunoblotting. Results. Hydroethanolic extract of M. oleifera flower significantly suppressed the secretion and expression of NO, prostaglandin E2 (PGE2), interleukin- (IL-) 6, IL-1β, tumor necrosis factor-alpha (TNF-α), nuclear factor-kappa B (NF-κB), inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2). However, it significantly increased the production of IL-10 and IκB-α (inhibitor of κB) in a concentration dependent manner (100 μg/mL and 200 μg/mL). Conclusion. These results suggest that 80% hydroethanolic extract of M. oleifera flower has anti-inflammatory action related to its inhibition of NO, PGE2, proinflammatory cytokines, and inflammatory mediator's production in LPS-stimulated macrophages through preventing degradation of IκB-α in NF-κB signaling pathway. PMID:26609199

  19. Nutrients and bioactive compounds in popular and indigenous durian (Durio zibethinus murr.).

    Science.gov (United States)

    Charoenkiatkul, Somsri; Thiyajai, Parunya; Judprasong, Kunchit

    2016-02-15

    This study identified nutrients, fatty acids, bioactive compounds and antioxidant activities of two popular varieties (Mon-thong, Cha-ni) and two indigenous varieties (Kra-dum and Kob-ta-kam) of durian. Each of variety was collected from 3 gardens in Nonthaburi province, Thailand. At optimal ripeness, the edible part was separated, homogenised or freeze dried, as fresh or dry samples for further analysis using standard methods. All durian varieties contained a considerable amount of dietary fibre (7.5-9.1g/100g dry matter, DM) and high amounts of carbohydrate and sugar (62.9-70.7g and 47.9-56.4g/100g DM respectively). Cha-ni, Kra-dum and Kob-ta-kam varieties had monounsaturated (MUFA) (6.1-7.8g/100g DM)>saturated (SFA) (4.2-5.7g/100g DM)>polyunsaturated fatty acid (PUFA) (0.8-1.5g/100g DM), whereas the Mon-thong variety had SFA>MUFA>PUFA (5.1, 4.0, 1.1g/100g DM, respectively). The Kob-ta-kam variety showed greater potential for health benefits in terms of carotenoids and β-carotene (2248μg and 1202μg/100g DM respectively). Phenolic compounds and antioxidant capacity were not significantly different among each variety, though the Cha-ni variety had the lowest. This study provides data on nutrients, bioactive compounds and antioxidant activities of indigenous and popular durian varieties that could be used for consumer education as well as for incorporation into the food composition databases.

  20. Hollow fiber cell fishing with high performance liquid chromatography for screening bioactive compounds from traditional Chinese medicines.

    Science.gov (United States)

    Xue, Xue; Li, Lihua; Chen, Xuan; Hu, Shuang; Bai, Xiaohong

    2013-03-08

    A novel hollow fiber cell fishing method with high performance liquid chromatography was proposed and used to screen, isolate, and analyze bioactive compounds from Traditional Chinese Medicines (TCMs). The active compounds that interact with the living cells acceptor inside the hollow fiber lumen were screened and isolated from the TCM extracts in phosphate buffer solution (pH 7.4). Subsequently, the active compounds bound to the cells were desorbed with methanol, and were analyzed using HPLC. HFCF with HPLC was introduced for the screening and analysis of lignans in Schisandra chinensis (Turcz) Baill and coumarins in Fructus Cnidii and Fructus Psoraleae. The surface properties of the hollow fibers filled with living cells were characterized. The nonspecific binding between the active centers of the hollow fibers and the bioactive compounds were investigated. The cell survival rates were determined before and after the screening. The repeatability of the method was tested. Some structures of the lignans and coumarins screened from TCMs were identified by the comparison to the retention times of the reference substances. HFCF-HPLC is a simple, fast, effective, and reliable method for the screening and analysis of bioactive compounds, and it can be extended to screen other bioactive compounds from TCMs.

  1. Bioactive Compounds of Blueberries: Post-Harvest Factors Influencing the Nutritional Value of Products

    Directory of Open Access Journals (Sweden)

    Anna Michalska

    2015-08-01

    Full Text Available Blueberries, besides having commonly-recognized taste properties, are also a valuable source of health-promoting bioactive compounds. For several decades, blueberries have gained in popularity all over the world, and recent years have seen not only an increase in fresh consumption, but also in the importance of blueberries for the processing industry. Blueberry processing mostly consists of freezing and juicing. Recently, more attention has been drawn to dewatering and drying, which are promising areas for developing novel blueberry products. Processing affects each biologically-active compound in a different way, and it is still unknown what changes those compounds undergo at the molecular level after the application of different processing technologies. This work presents the most recent state of knowledge about the pre-treatment and processing methods applied to blueberries and their influence on the content of biologically-active compounds. The presentation of methods is preceded by a brief overview of the characteristics of the blueberry species, a description of the chemical composition of the fruit and a short note about the main growing areas, production volumes and the management of fruit crops.

  2. Bioactive Compounds of Blueberries: Post-Harvest Factors Influencing the Nutritional Value of Products.

    Science.gov (United States)

    Michalska, Anna; Łysiak, Grzegorz

    2015-08-10

    Blueberries, besides having commonly-recognized taste properties, are also a valuable source of health-promoting bioactive compounds. For several decades, blueberries have gained in popularity all over the world, and recent years have seen not only an increase in fresh consumption, but also in the importance of blueberries for the processing industry. Blueberry processing mostly consists of freezing and juicing. Recently, more attention has been drawn to dewatering and drying, which are promising areas for developing novel blueberry products. Processing affects each biologically-active compound in a different way, and it is still unknown what changes those compounds undergo at the molecular level after the application of different processing technologies. This work presents the most recent state of knowledge about the pre-treatment and processing methods applied to blueberries and their influence on the content of biologically-active compounds. The presentation of methods is preceded by a brief overview of the characteristics of the blueberry species, a description of the chemical composition of the fruit and a short note about the main growing areas, production volumes and the management of fruit crops.

  3. Are the Traditional Medical Uses of Muricidae Molluscs Substantiated by Their Pharmacological Properties and Bioactive Compounds?

    Directory of Open Access Journals (Sweden)

    Kirsten Benkendorff

    2015-08-01

    Full Text Available Marine molluscs from the family Muricidae hold great potential for development as a source of therapeutically useful compounds. Traditionally known for the production of the ancient dye Tyrian purple, these molluscs also form the basis of some rare traditional medicines that have been used for thousands of years. Whilst these traditional and alternative medicines have not been chemically analysed or tested for efficacy in controlled clinical trials, a significant amount of independent research has documented the biological activity of extracts and compounds from these snails. In particular, Muricidae produce a suite of brominated indoles with anti-inflammatory, anti-cancer and steroidogenic activity, as well as choline esters with muscle-relaxing and pain relieving properties. These compounds could explain some of the traditional uses in wound healing, stomach pain and menstrual problems. However, the principle source of bioactive compounds is from the hypobranchial gland, whilst the shell and operculum are the main source used in most traditional remedies. Thus further research is required to understand this discrepancy and to optimise a quality controlled natural medicine from Muricidae.

  4. Microbial degradation of chitin waste for production of chitosanase and food related bioactive compounds.

    Science.gov (United States)

    Sinha, S; Chand, S; Tripathi, P

    2014-01-01

    Ecological samples rich in microbial diversity like cow dung, legume rhizosphere, fish waste and garden soil were used for isolation of chitosan-degrading microorganisms. Selected isolates were used for production of chitosanase and food related bioactive compounds by conversion of biowaste. Production of glucosamine (Gln), N-acetylglucosamine (NAG), chitooligosaccharides (COS), antioxidants, antibacterial compounds and prebiotics was carried out by microbial fermentation of biowaste. The highest chitosanase activity (8 U/mL) was observed in Aspergillus sp. isolated from fish market waste and it could produce Gln and NAG while Streptomyces sp. isolated from garden soil was able to produce COS along with Gln and NAG. Radical scavenging activity was observed in culture supernatants of 35% of studied isolates, and 20% isolates secreted compounds which showed positive effect on growth of Bifidobacterium. Antibacterial compounds were produced by 40% of selected isolates and culture supernatants of two microbial isolates, Streptomyces zaomyceticus C6 and one of garden soil isolates, were effective against both gram positive and negative bacteria.

  5. Comparison of Bioactive Compounds and Quality Traits of Breast Meat from Korean Native Ducks and Commercial Ducks

    OpenAIRE

    Lee, Hyun Jung; Jayasena, Dinesh D.; Kim, Sun Hyo; Kim, Hyun Joo; Heo, Kang Nyung; Song, Ji Eun; Jo, Cheorun

    2015-01-01

    The aim of this research was to compare the bioactive compound content and quality traits of breast meat from male and female Korean native ducks (KND) and commercial ducks (CD, Cherry Valley). Meat from three 6-wk old birds of each sex from KND and CD were evaluated for carcass and breast weights, pH, color, cooking loss, shear force, and bioactive compound (creatine, carnosine, anserine, betaine, and L-carnitine) content. KND showed significantly higher carcass weights than CD whereas no su...

  6. Agrobacterium rhizogenes mediated transformation of Rhodiola sp. – an approach to enhance the level of bioactive compounds

    DEFF Research Database (Denmark)

    Møller Hansen, Martin; Lauridsen, Uffe Bjerre; Hegelund, Josefine Nymark;

    Agrobacterium rhizogenes mediated transformation of Rhodiola sp. – an approach to enhance the level of bioactive compounds. Martin Møller Hansen1, Uffe Bjerre Lauridsen2, Josefine Nymark Hegelund3, Renate Müller4, Jihong Liu Clarke5, Henrik Lütken6 University of Copenhagen, Faculty of Science.......liu-clarke@bioforsk.no Keywords: Natural transformation - rol-genes – roseroot – rosavin - salidroside Abstract Introduction Rhodiola rosea commonly known as roseroot has since ancient times been used against depression and for improving mental abilities mainly due to its two bioactive compounds salidroside and rosavin. Due...

  7. ZnO nanoparticles via Moringa oleifera green synthesis: Physical properties & mechanism of formation

    Science.gov (United States)

    Matinise, N.; Fuku, X. G.; Kaviyarasu, K.; Mayedwa, N.; Maaza, M.

    2017-06-01

    The research work involves the development of better and reliable method for the bio-fabrication of Zinc oxide nanoparticles through green method using Moringa Oleifera extract as an effective chelating agent. The electrochemical activity, crystalline structure, morphology, isothermal behavior, chemical composition and optical properties of ZnO nanoparticles were studied using various characterization techniques i.e. Cyclic voltammetry (CV), X-ray powder diffraction (XRD), High resolution transmission electron microscopy (HRTEM), Selected area electron diffraction (SEAD), Differential scanning calorimetry/thermogravimetric analysis (DSC/TGA), Fourier Transform Infrared analysis (FTIR) and Ultraviolet spectroscopy studies (UV-vis). The electrochemical analysis proved that the ZnO nano has high electrochemical activity without any modifications and therefore are considered as a potential candidate in electrochemical applications. The XRD pattern confirmed the crystallinity and pure phase of the sample. DSC/TGA analysis of ZnO sample (before anneal) revealed three endothermic peaks around 140.8 °C, 223.7 °C and 389.5 °C. These endothermic peaks are attributed to the loss of volatile surfactant, conversion of zinc hydroxide to zinc oxide nanoparticles and transformation of zinc oxide into zinc nanoparticles. Mechanisms of formation of the ZnO nanoparticles via the chemical reaction of the Zinc nitrate precursor with the bioactive compounds of the Moringa oleifera are proposed for each of the major family compounds: Vitamins, Flavonoids, and Phenolic acids.

  8. Bread enriched in lycopene and other bioactive compounds by addition of dry tomato waste.

    Science.gov (United States)

    Nour, Violeta; Ionica, Mira Elena; Trandafir, Ion

    2015-12-01

    The tomato processing industry generates high amounts of waste, mainly tomato skins and seeds, which create environmental problems. These residues are attractive sources of valuable bioactive components and pigments. A relatively simple recovery technology could consist of production of powders to be directly incorporated into foods. Tomato waste coming from a Romanian tomato processing unit were analyzed for the content of several bioactive compounds like ascorbic acid, β-carotene, lycopene, total phenolics, mineral and trace elements. In addition, its antioxidant capacity was assayed. Results revealed that tomato waste (skins and seeds) could be successfully utilized as functional ingredient for the formulation of antioxidant rich functional foods. Dry tomato processing waste were used to supplement wheat flour at 6 and 10 % levels (w/w flour basis) and the effects on the bread's physicochemical, baking and sensorial characteristics were studied. The following changes were observed: increase in moisture content, titratable acidity and bread crumb elasticity, reduction in specific volume and bread crumb porosity. The addition of dry tomato waste at 6 % resulted in bread with good sensory characteristics and overall acceptability but as the amount of dry tomato waste increased to 10 %, bread was less acceptable.

  9. Induction of bioactive compound composition from marine microalgae (Lyngbya sp.) by using different stress condition

    Institute of Scientific and Technical Information of China (English)

    Nurul Farhana Rosly; Rabeah Adawiyah Abdul Razak; Palaniselvam Kuppusamy; Mashitah M. Yusoff; Natanamurugaraj Govindan

    2013-01-01

    Objective: To the effect of salinity stress on the production of microalgae (Lyngbya sp.) and chlorophyll pigments in the growth medium.Methods:Stress was investigated by using green algae strains Lyngbya sp. in response to change bioactive compounds without any modification of cell growth and biomass production rate. The different stress conditions like 10%-40% were analyzed.Results:During the stress condition, various biochemical and microbiological assays were monitored. The photochemical composition was evaluated by GC-MS studies. The studies expressed that 30% higher salinity stress was suitable for high phytochemical production rate including chlorophyll content.Conclusions:Our study indicates the wide range of salinity stress to enhance the growth on microalgae culture and enhance the production of major secondary metabolites.

  10. The Investigation of Some Bioactive Compounds and Antioxidant Properties of Hawthorn (Crataegus monogyna subsp. monogyna jacq.

    Directory of Open Access Journals (Sweden)

    Serhat KESER

    2014-04-01

    Full Text Available The antioxidant and pharmacological effects of hawthorn have mainly been attributed to the polyphenolic contents. The aim of this research is to determine some bioactive compounds and antioxidant properties of hawthorn aqueous and ethanol extracts of leaves, flowers and ripened fruits. For this purpose, antioxidant activities of extracts were assessed on DPPH and #8226;, ABTS and #8226;+, superoxide scavenging, reducing power and ferrous metal chelating activity assays and phenolic content of extracts was determined by Folin-Cioacalteu and #8217;s reagent. The flavonoids including rutin, apigenin, myricetin, quercetin, naringenin and kaempferol, were identified by HPLC in the hawthorn extract. It was observed the aqueous and ethanol extracts of Crataegus monogyna subsp. monogyna fruits showed highest activity in reducing power and metal chelating activity assays. Additionally, it was determined that the aqueous flower extract showed higher flavonoid content than aqueous leaves extract. [J Intercult Ethnopharmacol 2014; 3(2.000: 51-55

  11. The investigation of some bioactive compounds and antioxidant properties of hawthorn (Crataegus monogyna subsp. monogyna Jacq).

    Science.gov (United States)

    Keser, Serhat; Celik, Sait; Turkoglu, Semra; Yilmaz, Ökkes; Turkoglu, Ismail

    2014-01-01

    The antioxidant and pharmacological effects of hawthorn have mainly been attributed to the polyphenolic contents. The aim of this research is to determine some bioactive compounds and antioxidant properties of hawthorn aqueous and ethanol extracts of leaves, flowers, and ripened fruits. For this purpose, antioxidant activities of extracts were assessed on DPPH•, ABTS•+, superoxide scavenging, reducing power and ferrous metal chelating activity assays and phenolic content of extracts was determined by Folin-Cioacalteu's reagent. The flavonoids including rutin, apigenin, myricetin, quercetin, naringenin and kaempferol, were identified by high-performance liquid chromatography in the hawthorn extract. It was observed the aqueous and ethanol extracts of Crataegus monogyna subsp. monogyna fruits showed the highest activity in reducing power and metal chelating activity assays. In addition, it was determined that the aqueous flower extract showed higher flavonoid content than aqueous leaves extract. The antioxidant and pharmacological effects of hawthorn have mainly been attributed to the polyphenolic contents.

  12. Centesimal composition and bioactive compounds in fruits of buriti collected in Pará

    Directory of Open Access Journals (Sweden)

    Luciana Ribeiro Trajano Manhães

    2011-12-01

    Full Text Available The link between diet and the incidence of chronic and degenerative diseases has already been established. The foods that play a role in preventing and/or treating these diseases are called functional foods. Buriti can be highlighted amongst these foods since it is an excellent source of vegetable oil, which is rich in β-carotene and oleic acid. This research evaluated the potential of the pulp of this fruit as a functional food focusing on its incorporation to the diet. Buriti pulp presented 62.93% moisture, 8.25% total carbohydrates, and 2.10% protein. The lipid fraction corresponded to 13.85%, and oleic acid was the main fatty acid. It also contained 0.94% total mineral content. Based on the results obtained, it can be said that the pulp of buriti may contain bioactive compounds with functional activities, but further research is needed to assess such potential.

  13. Cocoa Bioactive Compounds: Significance and Potential for the Maintenance of Skin Health

    Directory of Open Access Journals (Sweden)

    Giovanni Scapagnini

    2014-08-01

    Full Text Available Cocoa has a rich history in human use. Skin is prone to the development of several diseases, and the mechanisms in the pathogenesis of aged skin are still poorly understood. However, a growing body of evidence from clinical and bench research has begun to provide scientific validation for the use of cocoa-derived phytochemicals as an effective approach for skin protection. Although the specific molecular and cellular mechanisms of the beneficial actions of cocoa phytochemicals remain to be elucidated, this review will provide an overview of the current literature emphasizing potential cytoprotective pathways modulated by cocoa and its polyphenolic components. Moreover, we will summarize in vivo studies showing that bioactive compounds of cocoa may have a positive impact on skin health.

  14. Intensification of bioactive compounds extraction from medicinal plants using ultrasonic irradiation.

    Science.gov (United States)

    Vardanega, Renata; Santos, Diego T; Meireles, M Angela A

    2014-07-01

    Extraction processes are largely used in many chemical, biotechnological and pharmaceutical industries for recovery of bioactive compounds from medicinal plants. To replace the conventional extraction techniques, new techniques as high-pressure extraction processes that use environment friendly solvents have been developed. However, these techniques, sometimes, are associated with low extraction rate. The ultrasound can be effectively used to improve the extraction rate by the increasing the mass transfer and possible rupture of cell wall due the formation of microcavities leading to higher product yields with reduced processing time and solvent consumption. This review presents a brief survey about the mechanism and aspects that affecting the ultrasound assisted extraction focusing on the use of ultrasound irradiation for high-pressure extraction processes intensification.

  15. HPLC Fingerprint of Bioactive Compounds and Antioxidant Activities of Viscum album from Different Host Trees

    Directory of Open Access Journals (Sweden)

    Simona Ioana VICAŞ

    2011-05-01

    Full Text Available Viscum album L. is a medicinal plants used for many years as a remedy in the traditional medicine and in complementary cancer therapies. We investigated the influence of some host trees: Acer campestre (VAA, Fraxinus excelsior (VAF, Populus nigra (VAP, Malus domestica (VAM, and Robinia pseudoacacia (VAR, on the chemical composition and antioxidant activity of leaves and stems from V. album, as well the influence of the solvent (water and ethanol used for extraction on biological activity. HPLC with photodiode array detector analysis of bioactive compounds from leaves and stems of mistletoes (V. album hosted by five differents trees was performed. Antioxidant activities, determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH, Oxygen Radical Absorbance Capacity (ORAC, (Trolox-equivalent antioxidant capacity (TEAC methods were compared with the quantification of total phenolics using the Folin -Ciocalteu reagent. V. album hosted by Fraxinus excelsior (VAF, recorded the highest level of total phenolic acids (108.64 μg/g dry matter while the mistletoe hosted by Malus domestica (VAM had the lowest level of total polyphenols (39.37 μg/g dry matter. In general, higher antioxidant activity was detected in the alcoholic than in the aqueous extracts. The values obtained for total phenolics in both, aqueous and ethanol extracts, decreased in the order: VAR > VAF > VAP > VAA > VAM. The mistletoe stem extracts contained lower levels of phenolics, as compared to leaves, in both solvents. Our results suggest that mistletoe extracts possess significant antioxidant activities that may be due to their bioactive compounds content, suggesting that this plant may be an important source of natural products with chemopreventive and chemotherapeutic activities.

  16. Strawberry Achenes Are an Important Source of Bioactive Compounds for Human Health

    Science.gov (United States)

    Ariza, María Teresa; Reboredo-Rodríguez, Patricia; Mazzoni, Luca; Forbes-Hernández, Tamara Yuliett; Giampieri, Francesca; Afrin, Sadia; Gasparrini, Massimiliano; Soria, Carmen; Martínez-Ferri, Elsa; Battino, Maurizio; Mezzetti, Bruno

    2016-01-01

    Strawberries are highly appreciated for their taste, nutritional value and antioxidant compounds, mainly phenolics. Fruit antioxidants derive from achenes and flesh, but achene contribution to the total fruit antioxidant capacity and to the bioaccessibility after intake is still unknown. In this work, the content of total phenolic compounds, flavonoids, anthocyanins and antioxidant capacity (TEAC, FRAP and DPPH) of achenes and flesh were compared in non-digested as well as in gastric and intestinal extracts after in vitro digestion. Results showed that, despite strawberry achenes represent a small fraction of the fruit, their contribution to total fruit antioxidant content was more than 41% and accounted for 81% of antioxidant capacity (TEAC). Achenes have higher quantity and different quality of antioxidants in non-digested and digested extracts. Antioxidant release was higher in the in vitro gastric digested extracts, but digestion conditions did not only affect quantity but quality, resulting in differences in antioxidant capacity and highlighting the importance of simulating physiological-like extraction conditions for assessing fruit antioxidant properties on human health. These results give new insights into the use of strawberry achenes as a source of bioactive compounds to be considered in strawberry breeding programs for improving human health. PMID:27409612

  17. Strawberry Achenes Are an Important Source of Bioactive Compounds for Human Health

    Directory of Open Access Journals (Sweden)

    María Teresa Ariza

    2016-07-01

    Full Text Available Strawberries are highly appreciated for their taste, nutritional value and antioxidant compounds, mainly phenolics. Fruit antioxidants derive from achenes and flesh, but achene contribution to the total fruit antioxidant capacity and to the bioaccessibility after intake is still unknown. In this work, the content of total phenolic compounds, flavonoids, anthocyanins and antioxidant capacity (TEAC, FRAP and DPPH of achenes and flesh were compared in non-digested as well as in gastric and intestinal extracts after in vitro digestion. Results showed that, despite strawberry achenes represent a small fraction of the fruit, their contribution to total fruit antioxidant content was more than 41% and accounted for 81% of antioxidant capacity (TEAC. Achenes have higher quantity and different quality of antioxidants in non-digested and digested extracts. Antioxidant release was higher in the in vitro gastric digested extracts, but digestion conditions did not only affect quantity but quality, resulting in differences in antioxidant capacity and highlighting the importance of simulating physiological-like extraction conditions for assessing fruit antioxidant properties on human health. These results give new insights into the use of strawberry achenes as a source of bioactive compounds to be considered in strawberry breeding programs for improving human health.

  18. Lipids and Fatty Acids of Nudibranch Mollusks: Potential Sources of Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Natalia V. Zhukova

    2014-08-01

    Full Text Available The molecular diversity of chemical compounds found in marine animals offers a good chance for the discovery of novel bioactive compounds of unique structures and diverse biological activities. Nudibranch mollusks, which are not protected by a shell and produce chemicals for various ecological uses, including defense against predators, have attracted great interest for their lipid composition. Lipid analysis of eight nudibranch species revealed dominant phospholipids, sterols and monoalkyldiacylglycerols. Among polar lipids, 1-alkenyl-2-acyl glycerophospholipids (plasmalogens and ceramide-aminoethyl phosphonates were found in the mollusks. The fatty acid compositions of the nudibranchs differed greatly from those of other marine gastropods and exhibited a wide diversity: very long chain fatty acids known as demospongic acids, a series of non-methylene-interrupted fatty acids, including unusual 21:2∆7,13, and an abundance of various odd and branched fatty acids typical of bacteria. Symbiotic bacteria revealed in some species of nudibranchs participate presumably in the production of some compounds serving as a chemical defense for the mollusks. The unique fatty acid composition of the nudibranchs is determined by food supply, inherent biosynthetic activities and intracellular symbiotic microorganisms. The potential of nudibranchs as a source of biologically active lipids and fatty acids is also discussed.

  19. Use of Time-Resolved Fluorescence to Monitor Bioactive Compounds in Plant Based Foodstuffs

    Directory of Open Access Journals (Sweden)

    M. Adília Lemos

    2015-06-01

    Full Text Available The study of compounds that exhibit antioxidant activity has recently received much interest in the food industry because of their potential health benefits. Most of these compounds are plant based, such as polyphenolics and carotenoids, and there is a need to monitor them from the field through processing and into the body. Ideally, a monitoring technique should be non-invasive with the potential for remote capabilities. The application of the phenomenon of fluorescence has proved to be well suited, as many plant associated compounds exhibit fluorescence. The photophysical behaviour of fluorescent molecules is also highly dependent on their microenvironment, making them suitable probes to monitor changes in pH, viscosity and polarity, for example. Time-resolved fluorescence techniques have recently come to the fore, as they offer the ability to obtain more information, coupled with the fact that the fluorescence lifetime is an absolute measure, while steady state just provides relative and average information. In this work, we will present illustrative time-resolved measurements, rather than a comprehensive review, to show the potential of time-resolved fluorescence applied to the study of bioactive substances. The aim is to help assess if any changes occur in their form, going from extraction via storage and cooking to the interaction with serum albumin, a principal blood transport protein.

  20. Bioactive Organocopper Compound from Pseudomonas aeruginosa Inhibits the Growth of Xanthomonas citri subsp. citri

    Science.gov (United States)

    de Oliveira, Admilton G.; Spago, Flavia R.; Simionato, Ane S.; Navarro, Miguel O. P.; da Silva, Caroline S.; Barazetti, André R.; Cely, Martha V. T.; Tischer, Cesar A.; San Martin, Juca A. B.; de Jesus Andrade, Célia G. T.; Novello, Cláudio R.; Mello, João C. P.; Andrade, Galdino

    2016-01-01

    Citrus canker is a very destructive disease of citrus species. The challenge is to find new compounds that show strong antibiotic activity and low toxicity to plants and the environment. The objectives of the present study were (1) to extract, purify and evaluate the secondary metabolites with antibiotic activity produced by Pseudomonas aeruginosa LV strain in vitro against Xanthomonas citri subsp. citri (strain 306), (2) to determine the potential of semi-purified secondary metabolites in foliar application to control citrus canker under greenhouse conditions, and (3) to identify antibiotic activity in orange leaf mesophyll infected with strain 306, by electron microscopy. Two pure bioactive compounds were isolated, an organocopper antibiotic compound (OAC) and phenazine-1-carboxamide. Phenazine-1-carboxamide did not show any antibiotic activity under the experimental conditions used in this study. The OAC showed a high level of antibiotic activity with a minimum inhibitory concentration of 0.12 μg mL-1. In greenhouse tests for control of citrus canker in orange trees, the semi-purified fraction F3d reduced lesion formation by about 97%. The concentration used was 500 times lower than that for the recommended commercial copper-based product. Electron microscopy showed that F3d altered the exopolysaccharide matrix and caused cell lysis of the pathogen inside the citrus canker lesions. These results suggest that secondary metabolites produced by inducing P. aeruginosa LV strain have a high potential to be used as a bioproduct to control citrus canker. PMID:26903992

  1. Recent progress in the development of synthetic hybrids of natural or unnatural bioactive compounds for medicinal chemistry.

    Science.gov (United States)

    Tsogoeva, Svetlana B

    2010-08-01

    The present mini-review highlights the recent developments on different classes of synthetic hybrids of natural and/or unnatural bioactive compounds, the utilization of which is very promising, as distinct features of each component can be hybridized and their properties leveraged. Particular stress is put on the respective mode of action and the corresponding rationale behind covalent combinations of various bioactive agents to increase their therapeutic potential, facilitate their administration, to reduce harmful side effects and/or to overcome the problem of multi-drug resistance. This rather recent approach has already found applications in the development of new anti-cancer, anti-Alzheimer, anti-malaria, anti-microbial therapeutics and other novel compounds with unprecedented bioactivity.

  2. Variation of Bioactive Compounds in Hypericum perforatum Growing in Turkey During Its Phenological Cycle

    Institute of Scientific and Technical Information of China (English)

    Cüneyt Cirak; Jolita Radusiěnё; Birsen (Sa(g)lam) Karabük; Valdimaras Janulis; Liudas Ivanauskas

    2007-01-01

    The present study was conducted to determine phenologic and morphogenetic variation of hypericin, chlorogenic acid and flavonoids, as rutin, hyperoside, apigenin-7-O-glucoside, quercltrin, quercetin content of Hypericum perforatum L. growing in Turkey. Wild growing plants were harvested at vegetative, floral budding, full flowering,fresh fruiting and mature fruiting stages and dissected into stem, leaf and reproductive tissues and assayed for bioactive compounds by the High performance liquid chromatography (HPLC) method. Hyperlcin concentration ranged between 0 and 2.73 mg/g DW, chlorogenic acid 0.00-3.64 mg/g DW, rutin 0.00-3.36 mg/g DW, hyperoside 0.04-22.42 mg/g DW, quercitrin 0.03-3.45 mg/g DW and quercetin 0.04-1.02 mg/g DW depending on ontogenetic and morphogenetic sampling. Leaves were found to be superior to stems and reproductive parts with regard to phenolic accumulation for all compounds tested while flowers accumulated the highest levels of hypericin. Quercitrin,quercetin and hypericin content in all tissues increased with advancing of developmental stages and reached their highest level during flower ontogenesis. Similarly, chlorogenic acid, hyperoside and apigenin-7-O-glucoside content in different plant parts increased during plant development, however, the highest level was observed at different stages of plant phenology for each tissue. Chlorogenic acid was not detected in stems, leaves and reproductive parts in several stages of plant phenology and its variation during plant growth showed inconsistent manner. In contrast to the other compounds examined, rutin content of stems and leaves decreased with advancing of plant development and the highest level for both tissues was observed at the vegetative stage. However,content of the same compound in reproductive parts was the highest at mature fruiting. The present findings might be useful to obtain increased concentration of these natural compounds.

  3. Traditional Small-Size Citrus from Taiwan: Essential Oils, Bioactive Compounds and Antioxidant Capacity

    Directory of Open Access Journals (Sweden)

    Min-Hung Chen

    2017-05-01

    Full Text Available Background: The calamondin (Citrus microcarpa Bunge and the kumquat (Fortunella crassifolia Swingle are two small-size citrus fruits that have traditionally been consumed in Taiwan; however, there has been a lack of scientific research regarding the active compounds and functionalities of these fruits. Methods: Analysis of volatile composition of essential oil and phytosterol was carried out using Gas Chromatography–Mass Spectrometry (GC-MS. Flavonoid and limonoid were analyzed by High Performance Liquid Chromatography (HPLC. Moreover, antioxidant capacity from their essential oils and extracts were assessed in vitro. Results: The compositions of the essential oils of both fruits were identified, with the results showing that the calamondin and kumquat contain identified 43 and 44 volatile compounds, respectively. In addition, oxygenated compounds of volatiles accounted for 4.25% and 2.04%, respectively, consistent with the fact that oxygenated compounds are generally found in high content in citrus fruits. In terms of flavonoids, the calamondin exhibited higher content than the kumquat, with disomin-based flavonoids being predominant; on the other hand, phytosterol content of kumquat was higher than that of calamondin, with amyrin being the dominant phytosterol. Both of them contain high amounts of limonoids. The ethanol extracts and essential oils of small-sized citrus fruits have been shown to have antioxidant effects, with those effects being closely related to the flavonoid content of the fruit in question. Conclusions: The present study also reviewed antioxidant activity in terms of specific bioactive compounds in order to find the underlying biological activity of both fruits. The calamondin and kumquat have antioxidant effects, which are in turn very important for the prevention of chronic diseases.

  4. Biomolecules and Natural Medicine Preparations: Analysis of New Sources of Bioactive Compounds from Ribes and Rubus spp. Buds.

    Science.gov (United States)

    Donno, Dario; Mellano, Maria Gabriella; Cerutti, Alessandro Kim; Beccaro, Gabriele Loris

    2016-02-05

    It is well known that plants are important sources for the preparation of natural remedies as they contain many biologically active compounds. In particular, polyphenols, terpenic compounds, organic acids, and vitamins are the most widely occurring groups of phytochemicals. Some endemic species may be used for the production of herbal preparations containing phytochemicals with significant bioactivity, as antioxidant activity and anti-inflammatory capacities, and health benefits. Blackberry sprouts and blackcurrant buds are known to contain appreciable levels of bioactive compounds, including flavonols, phenolic acids, monoterpenes, vitamin C, and catechins, with several clinical effects. The aim of this research was to perform an analytical study of blackcurrant and blackberry bud-preparations, in order to identify and quantify the main biomarkers, obtaining a specific phytochemical fingerprint to evaluate the single botanical class contribution to total phytocomplex and relative bioactivity, using a High Performance Liquid Chromatograph-Diode Array Detector; the same analyses were performed both on the University laboratory and commercial preparations. Different chromatographic methods were used to determine concentrations of biomolecules in the preparations, allowing for quantification of statistically significant differences in their bioactive compound content both in the case of Ribes nigrum and Rubus cultivated varieties at different harvest stages. In blackcurrant bud-extracts the most important class was organic acids (50.98%) followed by monoterpenes (14.05%), while in blackberry preparations the main bioactive classes were catechins (50.06%) and organic acids (27.34%). Chemical, pharmaceutical and agronomic-environmental knowledge could be important for obtaining label certifications for the valorization of specific genotypes, with high clinical and pharmaceutical value: this study allowed to develop an effective tool for the natural preparation quality

  5. Targeted metabolite profile of food bioactive compounds by Orbitrap high resolution mass spectrometry: The 'FancyTiles' approach

    NARCIS (Netherlands)

    Troise, A.D.; Ferracane, R.; Palermo, M.; Fogliano, V.

    2014-01-01

    In this paper a new targeted metabolic profile approach using Orbitrap high resolution mass spectrometry was described. For each foodmatrix various classes of bioactive compounds and some specificmetabolites of interest were selected on the basis of the existing knowledge creating an easy-to-read fi

  6. Compounds and structure identiifcation in extracts from Camellia oleifera leaves by HPLC preparation%液相制备油茶叶提取物组分及其结构鉴定

    Institute of Scientific and Technical Information of China (English)

    曹清明; 钟海雁; 邬靖宇; 包莉圆; 孙亚娟

    2015-01-01

    In order to comprehensively develop and utilize Camellia oleifera resources, compounds in extracts from C. oleifera leaves were separated and identified. Three extracted parts of II, III and VIII from C. oleifera leaves were separated, purified and collected by using macroporous resin and column chromatography, and eight high-purity compounds were achieved by HPLC preparation. Four compounds were identified by methods of TLC colouring, high resolution LC-MS, and NMR, including dihydroresveratrol (1), quercetin (3), quercetin 3-O-β-D-rhamnoside (6) and 1-(3′, 5′-dimethoxy) phenyl-2-[4″-O-β-D-glucopyranosyl (6→1)-O-α-L-rhamnopyranosyl] phenylethane (8). Among the four compounds, the compounds 3 and 6 were very popular flavonoids in C. oleifera, and this was the second time that the compounds 8 was reported, but the extraction rate was higher than that in the first report. This was the first time that dihydroresveratrol was reported in Camellia.%为了综合开发利用油茶资源,对油茶叶提取物的组分进行了制备和鉴定。将经过大孔树脂和柱分离纯化收集的组分II、III和VIII等油茶叶提取物3个组分进行了HPLC制备,得到了8个纯度较高的化合物,通过薄层显色、高清晰质谱和NMR,鉴定了其中4个化合物为:二氢白藜芦醇(1)、槲皮素(3)、槲皮素-3-鼠李糖苷(6)、1-(3′,5′-二甲氧基)苯基2-[4″-O-β-D-吡喃葡萄糖基(6→1)-O-α-L-吡喃鼠李糖基]苯乙烷(8),其中槲皮素和槲皮素-3-鼠李糖苷是油茶中最常见的2个黄酮类物质,1-(3′,5′-二甲氧基)苯基2-[4′-O-β-D-吡喃葡萄糖基(6→1)-O-α-L-吡喃鼠李糖基]苯乙烷为第2次报道,但提取率远高于首次报道,二氢白藜芦醇在山茶属植物中属首次报道。

  7. Assessing the Growth of Bioactive Compounds and Scaffolds over Time: Implications for Lead Discovery and Scaffold Hopping.

    Science.gov (United States)

    Jasial, Swarit; Hu, Ye; Bajorath, Jürgen

    2016-02-22

    The increase in compounds with activity against five major therapeutic target families has been quantified on a time scale and investigated employing a compound-scaffold-cyclic skeleton (CSK) hierarchy. The analysis was designed to better understand possible reasons for target-dependent growth of bioactive compounds. There was strong correlation between compound and scaffold growth across all target families. Active compounds becoming available over time were mostly represented by new scaffolds. On the basis of scaffold-to-compound ratios, new active compounds were structurally diverse and, on the basis of CSK-to-scaffold ratios, often had previously unobserved topologies. In addition, novel targets emerged that complemented major families. The analysis revealed that compound growth is associated with increasing chemical diversity and that current pharmaceutical targets are capable of recognizing many structurally different compounds, which provides a rationale for the rapid increase in the number of bioactive compounds over the past decade. In light of these findings, it is likely that new chemical entities will be discovered for many small molecule targets including relatively unexplored ones as well as for popular and well-studied therapeutic targets. Moreover, given the wealth of new "active scaffolds" that have been increasingly identified for many targets over time, computational scaffold-hopping exercises should generally have a high likelihood of success.

  8. Bioactive compounds and sensory quality of black and white mulberries grown in Spain.

    Science.gov (United States)

    Calín-Sánchez, Angel; Martínez-Nicolás, Juan José; Munera-Picazo, Sandra; Carbonell-Barrachina, Angel A; Legua, Pilar; Hernández, Francisca

    2013-12-01

    The objective of this study was to evaluate and compare, for the first time, white and black mulberry species in terms of main phytochemical, volatile composition and sensory profile characteristics in eight Spanish clones. The results showed that black and white mulberry species displayed significant different characteristics. PLS analysis has allowed grouping of the clones into four groups (i) MA1, MA2 and MN2, (ii) MN3 and MN4, (iii) MA3 and MA4, and (iv) MN1. Experimental results proved that Spanish mulberries have potential for fresh consumption due to their high antioxidant capacity (10.7-86.1 mg Trolox 100 g(-1)), polyphenol (76.7-180 mg gallic acid 100 g(-1)) and ellagic acid content (8.7-15.5 mg 100 g(-1)) as well as considerable amount of volatile compounds (35) with desirable attributes, which were scored high by a trained panel. Cultivars from the Morus nigra species seem to provide fruits with higher content of bioactive compounds and better aptitude for fresh consumption than Morus alba. Differences among the species should be attributed to genetics because they were cultivated under same conditions.

  9. Effects of Light Quality on Morphology, Enzyme Activities, and Bioactive Compound Contents in Anoectochilus roxburghii

    Directory of Open Access Journals (Sweden)

    Shenyi Ye

    2017-05-01

    Full Text Available The aim of this study was to investigate the effects of light quality on the morphological traits, leaf anatomical characteristics, antioxidant enzyme (superoxide dismutase, catalase, and peroxidase activities, photosynthetic pigments content, and bioactive compounds (phenols, flavonoids, and polysaccharides content in Anoectochilus roxburghii. Plants of A. roxburghii were grown under light filtered through four differently colored films for 8 months. The four treatments were red film (RF, blue film (BF, yellow film (YF, and colorless plastic film (control, CK. Compared with the A. roxburghii plants in CK, those in the BF treatment showed significantly greater stem diameter, fresh weight, leaf area, stomatal frequency, chlorophyll content (Chl a, Chl b, Chl a+b, antioxidant enzyme activities, and active compound (polysaccharides, flavones content. The plants in the RF treatment showed the greatest plant height and phenolics contents. These results show that growing A. roxburghii plants under blue film is a useful technique to improve quality. This technique is conducive to achieving large-scale sustainable production of high-quality plant materials.

  10. Exploring the mode of action of bioactive compounds by microfluidic transcriptional profiling in mycobacteria.

    Directory of Open Access Journals (Sweden)

    Paul Murima

    Full Text Available Most candidate anti-bacterials are identified on the basis of their whole cell anti-bacterial activity. A critical bottleneck in the early discovery of novel anti-bacterials is tracking the structure activity relationship (SAR of the novel compounds synthesized during the hit to lead and lead optimization stage. It is often very difficult for medicinal chemists to visualize if the novel compounds synthesized for understanding SAR of a particular scaffold have similar molecular mechanism of action (MoA as that of the initial hit. The elucidation of the molecular MoA of bioactive inhibitors is critical. Here, a new strategy and routine assay for MoA de-convolution, using a microfluidic platform for transcriptional profiling of bacterial response to inhibitors with whole cell activity has been presented. First a reference transcriptome compendium of Mycobacterial response to various clinical and investigational drugs was built. Using feature reduction, it was demonstrated that subsets of biomarker genes representative of the whole genome are sufficient for MoA classification and deconvolution in a medium-throughput microfluidic format ultimately leading to a cost effective and rapid tool for routine antibacterial drug-discovery programs.

  11. Could gestational diabetes mellitus be managed through dietary bioactive compounds? Current knowledge and future perspectives.

    Science.gov (United States)

    Santangelo, Carmela; Zicari, Alessandra; Mandosi, Elisabetta; Scazzocchio, Beatrice; Mari, Emanuela; Morano, Susanna; Masella, Roberta

    2016-04-14

    Gestational diabetes mellitus (GDM) is a serious problem growing worldwide that needs to be addressed with urgency in consideration of the resulting severe complications for both mother and fetus. Growing evidence indicates that a healthy diet rich in fruit, vegetables, nuts, extra-virgin olive oil and fish has beneficial effects in both the prevention and management of several human diseases and metabolic disorders. In this review, we discuss the latest data concerning the effects of dietary bioactive compounds such as polyphenols and PUFA on the molecular mechanisms regulating glucose homoeostasis. Several studies, mostly based on in vitro and animal models, indicate that dietary polyphenols, mainly flavonoids, positively modulate the insulin signalling pathway by attenuating hyperglycaemia and insulin resistance, reducing inflammatory adipokines, and modifying microRNA (miRNA) profiles. Very few data about the influence of dietary exposure on GDM outcomes are available, although this approach deserves careful consideration. Further investigation, which includes exploring the 'omics' world, is needed to better understand the complex interaction between dietary compounds and GDM.

  12. Salinity effect on nutritional value, chemical composition and bioactive compounds content of Cichorium spinosum L.

    Science.gov (United States)

    Petropoulos, Spyridon A; Levizou, Efi; Ntatsi, Georgia; Fernandes, Ângela; Petrotos, Konstantinos; Akoumianakis, Konstantinos; Barros, Lillian; Ferreira, Isabel C F R

    2017-01-01

    Soil salinization is an increasing problem for many areas throughout the world that renders prohibitive vegetables and crop production in general. In the present study, Cichorium spinosum L. plants were grown under saline conditions in order to evaluate chemical composition and bioactive compounds content of their leaves. Salinity increase resulted in significant changes of macro and micro-nutrients content (nutritional value, sugars, fatty acids, minerals, ascorbic acid and tocopherols), whereas the concentration of phenolic compounds was not significantly affected. Chicoric and 5-O-caffeoylquinic acid were the most abundant phenolic acids. In contrast, antioxidant activity and mineral composition were beneficially affected by mid-to-high and high salinity levels. In conclusion, C. spinosum can be cultivated under saline conditions without compromising the quality of the final product, especially in semi-arid areas where irrigation water is scarce and/or of low quality due to high content of NaCl (coastal areas or areas where underground water is saline).

  13. Antioxidant and anti-inflammatory assays confirm bioactive compounds in Ajwa date fruit.

    Science.gov (United States)

    Zhang, Chuan-Rui; Aldosari, Saleh A; Vidyasagar, Polana S P V; Nair, Karun M; Nair, Muraleedharan G

    2013-06-19

    Ajwa, a variety of date palm Phoenix dactylifera L., produces the most expensive date fruits. Percentages of seed, moisture, fructose, glucose, soluble protein, and fiber in Ajwa dates were 13.24, 6.21, 39.06, 26.35, 1.33, and 11.01, respectively. The ethyl acetate, methanolic, and water extracts of Ajwa dates, active at 250 μg/mL in the MTT assay, inhibited lipid peroxidation (LPO) by 88, 70, and 91% at 250 μg/mL and cyclooxygenase enzymes COX-1 by 30, 31, and 32% and COX-2 by 59, 48, and 45% at 100 μg/mL, respectively. Bioactivity-guided purifications afforded compounds 1-7, in addition to phthalates and fatty acids. Compounds 1-3 showed activity at 100 μg/mL in the MTT assay; inhibited COX-1 enzyme by 59, 48, amd 50% and COX-2 enzyme by 60, 40, amd 39% at 50 μg/mL; and inhibited LPO by 95, 58, amd 66% at 100 μg/mL, respectively. The soluble protein fraction was also very active in both antioxidant and anti-inflammatory assays.

  14. Extraction of Bioactive Compounds as Natural Antioxidants from Fresh Spirulina platensis using Different Solvents

    Directory of Open Access Journals (Sweden)

    Fiya Firdiyani

    2015-06-01

    Full Text Available Spirulina platensis is a bioactive-rich microalga of great potential as a source of natural antioxidant. Natural antioxidants are increasing in demand, because it is considered as more safe than synthetic antioxidants. The objective of this study was to determine the effect of solvent on the potential of natural antioxidant from fresh S. platensis. The antioxidant compound was extracted using either acetone or ethyl acetate by reflux method. The yield of extractions were 1.86% and 3.07% for aceton and ethyl acetate, respectively. Fresh S. platensis extracts were considered as potential antioxidant source with IC50 values 65.89 ppm, and 76.36 ppm when using acetone and ethyl acetate, respectivetly, even though it were still lower compare to the IC50 of positive control quercetin i.e 21.64 ppm. Phytochemical test showed positive results of phenolic compound, triterpenoids, steroid, flavanoid, and saponin. aw value of Spirulina platensis was 0.61 and 0.81 for aceton and ethyl acetate, respectively. It was concluded that different solvent affected the antioxidant activity of S. platensis extract. Keywords: Antioxidants, aceton, ethyl acetate, fresh Spirulina platensis

  15. Extraction of Bioactive Compounds as Natural Antioxidants from Fresh Spirulina platensis using Different Solvents

    Directory of Open Access Journals (Sweden)

    Fiya Firdayani

    2015-06-01

    Full Text Available Spirulina platensis is a bioactive-rich microalga of great potential as a source of natural antioxidant. Natural antioxidants are increasing in demand, because it is considered as more safe than synthetic antioxidants. The objective of this study was to determine the effect of solvent on the potential of natural antioxidant from fresh S. platensis. The antioxidant compound was extracted using either acetone or ethyl acetate by reflux method. The yield of extractions were 1.86% and 3.07% for aceton and ethyl acetate, respectively. Fresh S. platensis extracts were considered as potential antioxidant source with IC50 values 65.89 ppm, and 76.36 ppm when using acetone and ethyl acetate, respectivetly, even though it were still lower compare to the IC50 of positive control quercetin i.e 21.64 ppm. Phytochemical test showed positive results of phenolic compound, triterpenoids, steroid, flavanoid, and saponin. aw value of Spirulina platensis was 0.61 and 0.81 for aceton and ethyl acetate, respectively. It was concluded that different solvent affected the antioxidant activity of S. platensis extract.

  16. Bioactive compounds in Bidens pilosa L. populations: a key step in the standardization of phytopharmaceutical preparations

    Directory of Open Access Journals (Sweden)

    Diego F. Cortés-Rojas

    2013-02-01

    Full Text Available The total flavonoid content (TFC, total polyphenols content (TPC, and in vitro antioxidant activity (AA of six Bidens pilosa L., Asteraceae, populations harvested from different localities were evaluated in this work. The plants were separated in roots, stems, and leaves/flowers, and the influence of extraction methods was investigated.Areversed-phase high-performance liquid chromatography method (HPLC was developed and employed to obtain characteristic HPLC fingerprints of the bioactive compounds present in the extractive solutions, which were correlated with the TFC, TPC, and AA. Extractive solutions of leaves/flowers presented a higher AA when compared with those obtained from other parts of the plant (IC50 of 35.35±0.10 µg/mL. The stem extracts presented the lowest AA (IC50 117.2±1.96 µg/mL. A direct correlation of AA with TFC and TPC was evidenced. The highest AA was obtained by dynamic maceration and was statistically different from the AA presented by the extractive solutions obtained by other extraction methods. The results of this work evidenced differences that can be found at different stages of development of phytopharmaceutical preparations from B. pilosa and highlighted the importance of using the concentration of marker compounds as well as HPLC fingerprints as quality control parameters.

  17. Bioactive compounds in Bidens pilosa L. populations: a key step in the standardization of phytopharmaceutical preparations

    Directory of Open Access Journals (Sweden)

    Diego F. Cortés-Rojas

    2012-01-01

    Full Text Available The total flavonoid content (TFC, total polyphenols content (TPC, and in vitro antioxidant activity (AA of six Bidens pilosa L., Asteraceae, populations harvested from different localities were evaluated in this work. The plants were separated in roots, stems, and leaves/flowers, and the influence of extraction methods was investigated.Areversed-phase high-performance liquid chromatography method (HPLC was developed and employed to obtain characteristic HPLC fingerprints of the bioactive compounds present in the extractive solutions, which were correlated with the TFC, TPC, and AA. Extractive solutions of leaves/flowers presented a higher AA when compared with those obtained from other parts of the plant (IC50 of 35.35±0.10 µg/mL. The stem extracts presented the lowest AA (IC50 117.2±1.96 µg/mL. A direct correlation of AA with TFC and TPC was evidenced. The highest AA was obtained by dynamic maceration and was statistically different from the AA presented by the extractive solutions obtained by other extraction methods. The results of this work evidenced differences that can be found at different stages of development of phytopharmaceutical preparations from B. pilosa and highlighted the importance of using the concentration of marker compounds as well as HPLC fingerprints as quality control parameters.

  18. Enzymatic hybridization of α-lipoic acid with bioactive compounds in ionic solvents.

    Science.gov (United States)

    Papadopoulou, Athena A; Katsoura, Maria H; Chatzikonstantinou, Alexandra; Kyriakou, Eleni; Polydera, Angeliki C; Tzakos, Andreas G; Stamatis, Haralambos

    2013-05-01

    The lipase-catalyzed molecular hybridization of α-lipoic acid (LA) with bioactive compounds pyridoxine, tyrosol and tyramine was performed in ionic solvents and deep eutectic solvents. The biocatalytic reactions were catalyzed by Candida antarctica lipase B immobilized onto various functionalized multi-walled carbon nanotubes (f-CNTs-CaLB), as well as by commercial Novozym 435. The use of f-CNTs-CaLB leads, in most cases, to higher conversion yields as compared to Novozym 435. The nature and ion composition of ionic solvents affect the performance of the biocatalytic process. The highest conversion yield was observed in (mtoa)NTf2. The high enzyme stability and the relatively low solubility of substrates in specific media account for the improved biocatalytic synthesis of molecular hybrids of LA. Principal component analysis was used to screen for potential lipoxygenase inhibitors. In vitro studies showed that the synthesized compounds exhibit up to 10-fold increased inhibitory activity on lipoxygenase mediated lipid peroxidation as compared to parent molecules.

  19. Chemical characteristics and fractionation of proteins from Moringa oleifera Lam. leaves.

    Science.gov (United States)

    Teixeira, Estelamar Maria Borges; Carvalho, Maria Regina Barbieri; Neves, Valdir Augusto; Silva, Maraíza Apareci; Arantes-Pereira, Lucas

    2014-03-15

    Moringa oleifera Lam. is a leguminous plant, originally from Asia, which is cultivated in Brazil because of its low production cost. Although some people have used this plant as food, there is little information about its chemical and nutritional characteristics. The objective of this study was to characterise the leaves of M. oleifera in terms of their chemical composition, protein fractions obtained by solubility in different systems and also to assess their nutritional quality and presence of bioactive substances. The whole leaf flour contained 28.7% crude protein, 7.1% fat, 10.9% ashes, 44.4% carbohydrate and 3.0mg 100g(-1) calcium and 103.1mg 100g(-1) iron. The protein profile revealed levels of 3.1% albumin, 0.3% globulins, 2.2% prolamin, 3.5% glutelin and 70.1% insoluble proteins. The hydrolysis of the protein from leaf flour employing sodium dodecyl sulfate (SDS) and 2-mercaptoethanol (ME) resulted in 39.5% and 29.5%, respectively. The total protein showed low in vitro digestibility (31.8%). The antinutritional substances tested were tannins (20.7 mg g(-1)), trypsin inhibitor (1.45TIU mg g(-1)), nitrate (17 mg g(-1)) and oxalic acid (10.5 mg g(-1)), besides the absence of cyanogenic compounds. β-Carotene and lutein stood out as major carotenoids, with concentrations of 161.0 and 47.0 μg g(-1) leaf, respectively. Although M. oleifera leaves contain considerable amount of crude protein, this is mostly insoluble and has low in vitro digestibility, even after heat treatment and chemical attack. In vivo studies are needed to better assess the use of this leaf as a protein source in human feed.

  20. Bioactive Compound Rich Indian Spices Suppresses the Growth of β-lactamase Produced Multidrug Resistant Bacteria

    Directory of Open Access Journals (Sweden)

    Eadlapalli Siddhartha

    2017-01-01

    Full Text Available Background: Multidrug Resistance (MDR among bacteria become a global concern due to failure of antibiotics, is drawn attention for best antimicrobials from the spices which have been using ancient days in Indian culinary and traditional medicine. Aim and Objectives: The present study was undertaken to evaluate the bioactive compounds and their antibacterial activity in routinely used culinary Indian spices against β-lactamase produced MDR bacteria. Material and Methods: Ethanolic extracts prepared from twenty spices and were evaluated for total phenolics, flavonoids, alkaloids, terpenoids, antioxidant properties, and also assayed their antibacterial activities against β-lactamase producing MDR bacteria (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Staphylococcus aureus. β-Lactamase and cell viability assays were performed in MDR bacteria. Results: Among twenty spices, cinnamon and clove exhibited highest levels of phenolics and terpenoids with elevated antioxidant potential and also showing greater reducing potential at lower concentrations of extract (2.3 and 4.06 µg GAE/gm, respectively. Further, the spices extracts were assessed for antimicrobial activity against β-lactamase produced tested MDR bacteria and observed higher antimicrobial activity with cinnamon, garlic, tamarind and clove at lowest concentrations of MIC and MBC at 16 - 32 µg GAE/ml, as compared to standard drug, amoxiclav (16/8 µg/ml. Spices significantly inhibited the β-lactamase activity (80–94% and also cell viability in tested MDR bacteria. Conclusion: Indian spices consist of rich bioactive profile and antioxidant activity inhibited the bacterial growth effectively by suppressing β-lactamase production in MDR bacteria. Results indicating the spices as functional foods and could be used in prevention of antibiotic resistance.

  1. Bioactive compounds isolated from apple, tea, and ginger protect against dicarbonyl induced stress in cultured human retinal epithelial cells.

    Science.gov (United States)

    Sampath, Chethan; Zhu, Yingdong; Sang, Shengmin; Ahmedna, Mohamed

    2016-02-15

    Methylglyoxal (MGO) is known to be a major precursor of advanced glycation end products (AGEs) which are linked to diabetes and its related complications. Naturally occurring bioactive compounds could play an important role in countering AGEs thereby minimizing the risk associated with their formation. In this study, eight specific bioactive compounds isolated from apple, tea and ginger were evaluated for their AGEs scavenging activity using Human Retinal Pigment Epithelial (H-RPE) cells treated with MGO. Among the eight specific compounds evaluated, (-)-epigallocatechin 3-gallate (EGCG) from tea, phloretin in apple, and [6]-shogaol and [6]-gingerol from ginger were found to be most effective in preventing MGO-induced cytotoxicity in the epithelial cells. Investigation of possible underlying mechanisms suggests that that these compounds could act by modulating key regulative detoxifying enzymes via modifying nuclear factor-erythroid 2-related factor 2 (Nrf2) function. MGO-induced cytotoxicity led to increased levels of AGEs causing increase in Nε-(Carboxymethyl) lysine (CML) and glutathione (GSH) levels and over expression of receptor for advanced glycation end products (RAGE). Data also showed that translocation of Nrf2 from cytosol to nucleus was inhibited, which decreased the expression of detoxifying enzyme like heme oxygenase-1 (HO-1). The most potent bioactive compounds scavenged dicarbonyl compounds, inhibited AGEs formation and significantly reduced carbonyl stress by Nrf2 related pathway and restoration of HO-1 expression. These findings demonstrated the protective effect of bioactive compounds derived from food sources against MGO-induced carbonyl stress through activation of the Nrf2 related defense pathway, which is of significant importance for therapeutic interventions in complementary treatment/management of diabetes-related complications. Copyright © 2016. Published by Elsevier GmbH.

  2. A direct pre-screen for marine bacteria producing compounds inhibiting quorum sensing reveals diverse planktonic bacteria that are bioactive.

    Science.gov (United States)

    Linthorne, Jamie S; Chang, Barbara J; Flematti, Gavin R; Ghisalberti, Emilio L; Sutton, David C

    2015-02-01

    A promising new strategy in antibacterial research is inhibition of the bacterial communication system termed quorum sensing. In this study, a novel and rapid pre-screening method was developed to detect the production of chemical inhibitors of this system (quorum-quenching compounds) by bacteria isolated from marine and estuarine waters. This method involves direct screening of mixed populations on an agar plate, facilitating specific isolation of bioactive colonies. The assay showed that between 4 and 46 % of culturable bacteria from various samples were bioactive, and of the 95 selectively isolated bacteria, 93.7 % inhibited Vibrio harveyi bioluminescence without inhibiting growth, indicating potential production of quorum-quenching compounds. Of the active isolates, 21 % showed further activity against quorum-sensing-regulated pigment production by Serratia marcescens. The majority of bioactive isolates were identified by 16S ribosomal DNA (rDNA) amplification and sequencing as belonging to the genera Vibrio and Pseudoalteromonas. Extracts of two strongly bioactive Pseudoalteromonas isolates (K1 and B2) were quantitatively assessed for inhibition of growth and quorum-sensing-regulated processes in V. harveyi, S. marcescens and Chromobacterium violaceum. Extracts of the isolates reduced V. harveyi bioluminescence by as much as 98 % and C. violaceum pigment production by 36 % at concentrations which had no adverse effect on growth. The activity found in the extracts indicated that the isolates may produce quorum-quenching compounds. This study further supports the suggestion that quorum quenching may be a common attribute among culturable planktonic marine and estuarine bacteria.

  3. Proximate compositions and bioactive compounds of edible wild and cultivated mushrooms from Northeast Thailand

    Directory of Open Access Journals (Sweden)

    Amporn Srikram

    2016-11-01

    Full Text Available Mushrooms are known as an excellent source of nutrients including macronutrients and bioactive compounds. Nutritional values were investigated involving proximate analysis, total antioxidant capacity (TAC, total phenol content (TPC and total flavonoid content (TFC of 10 edible wild mushroom species—Amanita calyptroderma Ark. et al., Amanita princeps Corner et Bas, A., Astraeus odoratus, Heimiella retispora (Pat. et. Bak. Boedijn., Mycoamaranthus cambodgensis (Pat. Trappe, Russula alboareolata Hongo, Russula cyanoxantha Schaeff.ex.Fr., Russula emetic (Schaeff. ex Fr. S.F.Gray., Russula virescens (Schaeff. fr., Termitomyces clypeatus Heim—and five cultivated mushroom species—Auricularia auricula-judae, Lentinus polychrous Lev., Lentinus squarrosulus Mont., Pleurotus sajor-caju (Fr. Sing, Volvariella vovacea (Bull. Ex.Fr. Sing. From the proximate analysis, the moisture contents of both wild and cultivated mushrooms ranged from 84.15% fresh weight (FW to 90.21% FW. The ash, crude protein, fat, crude fiber and carbohydrate contents of both wild and cultivated mushrooms were in the dry weight ranges 2.56–13.96%, 11.16–50.29%, 1.43–21.94%, 2.11–38.11% and 9.56–59.73%, respectively, and the contents of macronutrients in the mushrooms varied by variety. Wild mushrooms had a high fiber content compared to cultivated mushrooms. The contents of biologically active compounds of both wild and cultivated mushrooms also varied depending on the variety. Values for the TAC, TPC and TFC of wild mushrooms were higher than those of cultivated mushrooms. In conclusion, the proximate analysis for both wild and cultivated mushrooms was variety dependent and wild mushrooms contained a higher fiber content and more biologically active compounds than cultivated mushrooms.

  4. Evaluation of antioxidant activities of bioactive compounds and various extracts obtained from saffron (Crocus sativus L.): a review.

    Science.gov (United States)

    Rahaiee, Somayeh; Moini, Sohrab; Hashemi, Maryam; Shojaosadati, Seyed Abbas

    2015-04-01

    Saffron (Crocus sativus L. stigma), the most valuable medicinal food product, belongs to the Iridaceae family which has been widely used as a coloring and flavoring agent. These properties are basically related to its crocins, picrocrocin and safranal contents which have all demonstrated health promoting properties. The present review article highlights the phytochemical constituents (phenolic and flavonoid compounds, degraded carotenoid compounds crocins and crocetin) that are important in antioxidant activity of saffron extracts. However, the synergistic effect of all the bioactive components presence in saffron gave a significant antioxidant activity similar to vegetables rich in carotenoids. Our study provides an updated overview focused on the antioxidant activity of saffron related to its bioactive compounds to design the different functional products in food, medicine and cosmetic industries.

  5. Microbial Transformation of Bioactive Compounds and Production of ortho-Dihydroxyisoflavones and Glycitein from Natural Fermented Soybean Paste

    Directory of Open Access Journals (Sweden)

    Changhyun Roh

    2014-12-01

    Full Text Available Recently, there has been a great deal of remarkable interest in finding bioactive compounds from nutritional foods to replace synthetic compounds. In particular, ortho-dihydroxyisoflavones and glycitein are of growing scientific interest owing to their attractive biological properties. In this study, 7,8-ortho-dihydroxyisoflavone, 6,7-ortho-dihydroxyisoflavone, 3',4'-ortho-dihydroxyisoflavone and 7,4'-dihydroxy-6-methoxyisoflavone were characterized using microorganism screened from soybean Doenjang. Three ortho-dihydroxyisoflavones and glycitein were structurally elucidated by 1H-NMR and GC-MS analysis. Furthermore, bacterial strains from soybean Doenjang with the capacity of biotransformation were screened. The bacterial strain, identified as Bacillus subtilis Roh-1, was shown to convert daidzein into ortho-dihydroxyisoflavones and glycitein. Thus, this study has, for the first time, demonstrated that a bacterial strain had a substrate specificity for multiple modifications of the bioactive compounds.

  6. Impact of high-intensity pulsed electric fields on bioactive compounds in Mediterranean plant-based foods.

    Science.gov (United States)

    Elez-Martínez, Pedro; Soliva-Fortuny, Robert; Martín-Belloso, Olga

    2009-05-01

    Novel non-thermal processing technologies such as high-intensity pulsed electric field (HIPEF) treatments may be applied to pasteurize plant-based liquid foods as an alternative to conventional heat treatments. In recent years, there has been an increasing interest in HIPEF as a way of preserving and extending the shelf-life of liquid products without the quality damage caused by heat treatments. However, less attention has been paid to the effects of HIPEF on minor constituents of these products, namely bioactive compounds. This review is a state-of-the-art update on the effects of HIPEF treatments on health-related compounds in plants of the Mediterranean diet such as fruit juices, and Spanish gazpacho. The relevance of HIPEF-processing parameters on retaining plant-based bioactive compounds will be discussed.

  7. Selective enrichment in bioactive compound from Kniphofia uvaria by super/subcritical fluid extraction and centrifugal partition chromatography.

    Science.gov (United States)

    Duval, Johanna; Destandau, Emilie; Pecher, Virginie; Poujol, Marion; Tranchant, Jean-François; Lesellier, Eric

    2016-05-20

    Nowadays, a large portion of synthetic products (active cosmetic and therapeutic ingredients) have their origin in natural products. Kniphofia uvaria is a plant from Africa which has proved in the past by in-vivo tests an antioxidant activity due to compounds present in roots. Recently, we have observed anthraquinones in K. uvaria seeds extracts. These derivatives are natural colorants which could have interesting bioactive potential. The aim of this study was to obtain an extract enriched in anthraquinones from K. uvaria seeds which mainly contains glycerides. First, the separation of the seed compounds was studied by using supercritical fluid chromatography (SFC) in the goal to provide a rapid quantification method of these bioactive compounds. A screening of numerous polar stationary phases was achieved for selecting the most suited phase to the separation of the four anthraquinones founded in the seeds. A gradient elution was optimized for improving the separation of the bioactive compounds from the numerous other families of major compounds of the extracts (fatty acids, di- and triglycerides). Besides, a non-selective and green Supercritical Fluid Extraction (SFE) with pure CO2 was applied to seeds followed by a Centrifugal Partition Chromatography (CPC). The CPC system was optimized by using the Arizona phase system, to enrich the extract in anthraquinones. Two systems were selected to isolate the bioactive compounds from the oily extract with varied purity target. The effect of the injection mode for these very viscous samples was also studied. Finally, in order to directly apply a selective process of extraction to the seeds, the super/subcritical fluid extraction was optimized to increase the anthraquinone yield in the final extract, by studying varied modifier compositions and nature, as well as different temperatures and backpressures. Conditions suited to favour an enrichment factor bases on the ratio of anthraquinone and trilycerides extracted are

  8. GC/GCMS analysis of the petroleum ether and dichloromethane extracts of Moringa oleifera roots

    Institute of Scientific and Technical Information of China (English)

    Shaheen; Faizi; saima; sumbul; Muhammed; Ali; Versiani; Rubeena; Saleem; Aisha; Sana; Hira; Siddiqui

    2014-01-01

    Objective:To explore the phytochemical constituents from petroleum ether and diehloromethane extracts of Moringa oleifera(M.oleufera)roots using GC/GC—MS.Methods:A total of 5.11 kg fresh and undried crashed root of M.oleifera were cut into small pieces and extracted with petroleum ether and diehloromethane(20 L.each) at room temperature for 2 d.The concentrated extracts were subjected to their GC—MS analysis.Results:The GC-MS analysis of the petroleum ether and diehloromethane extracts of M.oleifern roots,which showed promising biological activities,has resulted in the identification 102 compounds.These constituents belong to 15 classes of compounds including hydrocarbons,fatty acids,esters,alcohols,isolhioeyanate.thiocyanale,pyrazine,aromalics.alkamides.cyanides,steroids,halocompounds.urea and N-hydroxyimine derivatives,unsaturated alkenamides.alkyne and indole.GC/GC-MS studies on petroleum ether extraet of the roots revealed that it contained 39 compounds,belonging to nine classes.Cyclooctasulfur S8 has been isolated as a pure compound from the extract.The major compounds identified from petroleum ether extract were trans-13-clocosene(37.9%).nonacosane(32.6%).cycloartenol(28.6%) nonadecanoic acid(13.9%) and cyclooctasulfur S8(13.9%).Dichloromethane extract of the roots was composed of 63 compounds of which nasimizinol(58.8%) along with oleic acid(46.5%),N—benzyl-N-(7—cyanato heptanamide(38.3%),N—benzyl-N—(1—chlorononyl) amide(30.3%),bis[3—benzyl prop-2-ene]-1-one(19.5%) and N.N-dibeuzyl—2-ene pent 1.5—diamide(11.6%) were the main constituents.Conclusions:This study helps to predict the formula and structure of active molecules which can be used as drugs.This result also enhances the traditional usage of M.oleifera which possesses a number of bioactive compounds.

  9. Cnidarians as a source of new marine bioactive compounds--an overview of the last decade and future steps for bioprospecting.

    Science.gov (United States)

    Rocha, Joana; Peixe, Luisa; Gomes, Newton C M; Calado, Ricardo

    2011-01-01

    Marine invertebrates are rich sources of bioactive compounds and their biotechnological potential attracts scientific and economic interest worldwide. Although sponges are the foremost providers of marine bioactive compounds, cnidarians are also being studied with promising results. This diverse group of marine invertebrates includes over 11,000 species, 7500 of them belonging to the class Anthozoa. We present an overview of some of the most promising marine bioactive compounds from a therapeutic point of view isolated from cnidarians in the first decade of the 21st century. Anthozoan orders Alcyonacea and Gorgonacea exhibit by far the highest number of species yielding promising compounds. Antitumor activity has been the major area of interest in the screening of cnidarian compounds, the most promising ones being terpenoids (monoterpenoids, diterpenoids, sesquiterpenoids). We also discuss the future of bioprospecting for new marine bioactive compounds produced by cnidarians.

  10. Bioactive and volatile organic compounds in Southern Brazilian blackberry (Rubus Fruticosus) fruit cv. Tupy

    National Research Council Canada - National Science Library

    Jacques, Andressa Carolina; Chaves, Fábio Clasen; Zambiazi, Rui Carlos; Brasil, Márcia Campos; Caramão, Elina Bastos

    2014-01-01

    Blackberry (Rubus fruticosus, cultivar Tupy), an expanding fruit crop in southern Brazil, is greatly appreciated for its flavor and bioactive potential with limited characterization of its metabolite content...

  11. PRELIMINARY PHYTOCHEMICAL INVESTIGATION AND ANTHELMINTIC ACTIVITY OF MORINGA OLEIFERA LEAVES

    Directory of Open Access Journals (Sweden)

    Srinivasa U

    2011-08-01

    Full Text Available Petroleum ether, chloroform, methanol and aqueous extracts of leaves of Moringa oleifera were screened for various bioactive constituents like glycosides, carbohydrates, tannins, flavonoids, triterpenoids and alkaloids. The chloroform and methanol extracts were evaluated for anthelmintic activity on adult Indian earthworms Pheritima postuma using Piperazine citrate and Rajah Pravartani Vati (Ayurvedic preparation as a reference standards. The results obtained indicated that the chloroform extract was more potent compared to other extracts.

  12. Fractionation and Purification of Bioactive Compounds Obtained from a Brewery Waste Stream

    Directory of Open Access Journals (Sweden)

    Letricia Barbosa-Pereira

    2013-01-01

    Full Text Available The brewery industry generates waste that could be used to yield a natural extract containing bioactive phenolic compounds. We compared two methods of purifying the crude extract—solid-phase extraction (SPE and supercritical fluid extraction (SFE—with the aim of improving the quality of the final extract for potential use as safe food additive, functional food ingredient, or nutraceutical. The predominant fractions yielded by SPE were the most active, and the fraction eluted with 30% (v/v of methanol displayed the highest antioxidant activity (0.20 g L−1, similar to that of BHA. The most active fraction yielded by SFE (EC50 of 0.23 g L−1 was obtained under the following conditions: temperature 40°C, pressure 140 bar, extraction time 30 minutes, ethanol (6% as a modifier, and modifier flow 0.2 mL min−1. Finally, we found that SFE is the most suitable procedure for purifying the crude extracts and improves the organoleptic characteristics of the product: the final extract was odourless, did not contain solvent residues, and was not strongly coloured. Therefore, natural extracts obtained from the residual stream and purified by SFE can be used as natural antioxidants with potential applications in the food, cosmetic, and pharmaceutical industries.

  13. Bioactive Compounds in Potato Tubers: Effects of Farming System, Cooking Method, and Flesh Color.

    Directory of Open Access Journals (Sweden)

    Magdalena Grudzińska

    Full Text Available We investigated the effect of cultivation system (conventional or organic, cooking method, and flesh color on the contents of ascorbic acid (AA and total phenolics (TPs, and on total antioxidant activity (Trolox equivalents, TE in Solanum tuberosum (potato tubers. The research material, consisting of 4 potato cultivars, was grown in experimental fields, using organic and conventional systems, at the experimental station in 2012 and 2013. The analysis showed that organically grown potatoes with creamy, light yellow, and yellow flesh had significantly higher TPs than did potatoes grown conventionally. Flesh color and cooking method also affected AA. The greatest losses of AA occurred in yellow-fleshed potatoes grown conventionally and cooked in the microwave; such losses were not observed in potatoes grown organically. A dry cooking method (baking in a microwave increased the TP contents in potatoes by about 30%, regardless of the flesh color and the production system. TE was significantly higher in organically grown potatoes (raw and cooked in a steamer than in conventionally grown potatoes. TE and AA contents showed a significant positive correlation, but only in potatoes from the organic system [R2 = 0.686]. By contrast, the positive correlation between TE and TPs was observed regardless of the production system. Therefore, we have identified the effects of farming system, cooking method, and flesh color on the contents of bioactive compounds in potato tubers.

  14. Modulation of Banana Polyphenol Oxidase (Ppo Activity by Naturally Occurring Bioactive Compounds From Plant Extracts

    Directory of Open Access Journals (Sweden)

    Alamelumangai. M

    2015-01-01

    Full Text Available Polyphenol Oxidase (PPO (E.C number 1.14.18.1 was extracted from banana (Musa paradisiaca and partially purified by acetone precipitation. The enzyme was found to have high affinity towards its substrate, catechol. In this study, various plant extracts like Glycyrrhiza glabra, Rubia cordifolia, Hesperethusa crenulata and oil from the seeds of Hydnocarpus laurifolia were observed to modulate the activity of banana PPO. Method In this study, various plant extracts were observed to modulate the activity of banana PPO at two different concentrations (0.4 and 40 μg/ml concentrations Result Among these 4 plant extracts, Glycyrrhiza glabra and Rubia cordifolia were found to increase the activity of PPO up to 1.35- 2.7 fold at two different concentrations (4 and 40 μg/ml. Few other two samples like Chaulmogra oil (2 and 4 μl/ml and the Hesperethusa crenulata plant extract (0.4 and 40 μg/ml concentrations, when used at low concentrations decreased the enzyme activity (38 %. Conclusion The novelty of this study is to screen their naturally occurring bioactive compounds from the plant extracts and their inhibitory activity against PPO.

  15. Bioactive compounds and antioxidative activity of colored rice bran

    Directory of Open Access Journals (Sweden)

    Yu-Ping Huang

    2016-07-01

    Full Text Available The profiles of bioactive compounds (including phenolics and flavonoids in free and bound fractions, anthocyanins, proanthocyanidins, vitamin E, and γ-oryzanol of outer and inner rice bran from six colored rice samples collected from local markets were investigated. Proanthocyanidins could only be detected in red rice bran but not in black rice bran. The free fraction of the extracts dominated the total phenolics (72–92% and the total flavonoids (72–96% of colored rice bran. Most of the phenolic acids (83–97% in colored rice bran were present in the bound form. Protocatechualdehyde was identified for the first time in the bound fraction of red rice bran by high performance liquid chromatography-photodiode array/electrospray ionization tandem mass spectrometry. The antioxidative activities of the free fraction of the colored rice bran were attributed to the proanthocyanidins in red colored rice and anthocyanins in black rice, while that of the bound fraction was mainly due to the phenolic acids.

  16. Optimization of the bioactive compounds content in raspberry during freeze-drying using response surface method

    Directory of Open Access Journals (Sweden)

    Tumbas-Šaponjac Vesna T.

    2015-01-01

    Full Text Available The production of high-quality freeze-dried raspberry was studied by response surface method. Two independent variables, temperature (X1 and time (X2 were determined as the most important factors affecting the final product quality estimated by the responses: total phenol (Y1, total anthocyanin (Y2, vitamin C (Y3 and total bioactive compounds (Y4 content. A two-factor central composite design was used for freeze-drying experiments. The second order polynomial models obtained were found to be significant (p<0.05 for all responses. The statistical analysis of experimental data indicated that only quadratic time variable (X22 had significant (p<0.05 effect on all responses. The optimal conditions for all responses combined were found to be: -31 ºC and 35 h. The experimental values of all responses obtained under optimal conditions were in good agreement with predicted values which enables the use of the proposed mathematical models for optimization of investigated process. [Projekat Ministarstav nauke Republike Srbije, br. TR31044

  17. BIOACTIVE COMPOUNDS IN CONVENTIONAL AND NO ADDED SUGARS RED STRAWBERRY GUAVA (Psidium cattleianum Sabine JELLIES

    Directory of Open Access Journals (Sweden)

    GABRIELA NIEMEYER REISSIG

    Full Text Available ABSTRACT This study aimed to prepare jellies of conventional type of red strawberry guava (with added sucrose and no added sugar and evaluate the physical and chemical composition and content of bioactive compounds in them. Four jellies formulations were prepared: conventional with addition of sucrose (F1, aspartame (F2, saccharin and cyclamate (F3, acesulfame and sucralose (F4. Physicochemical analysis of pH were carried out, as well as analysis of titratable acidity, total soluble solids, ashes, proteins, lipids, moisture, carbohydrates, calories, lightness, color tone, total phenols, anthocyanins, carotenoids, ascorbic acid and antioxidant activity, by the capture of DPPH and ABTS radicals. Conventional and no added sugars jellies did not differ for total phenols, total anthocyanins and ascorbic acid. However, processing exerted significant influence (p=0.05 on total carotenoids and antioxidant activity. It is feasible to use red strawberry guava for the preparation of conventional and no added sugar jellies. The products, however, show a significant difference in carotenoids content, with the highest content of these and higher antioxidant activity in processed jellies without sugars addition.

  18. Petit suisse from black soybean: bioactive compounds and antioxidant properties during development process.

    Science.gov (United States)

    de Moraes Filho, Marsilvio Lima; Hirozawa, Sabrina Satie; Prudencio, Sandra Helena; Ida, Elza Iouko; Garcia, Sandra

    2014-06-01

    This study aimed to evaluate the antioxidant properties, bioactive compounds and other physico-chemical parameters from black soybean and its derivatives over 30 days under refrigeration at 4 °C and develop a probiotic petit suisse produced from black soybean. The soymilk showed the highest levels of isoflavones (109 mg/100 g), total phenolics (600 mg/100 g) and total anthocyanins (388 mg/100 g) with the highest response in the tests with DPPH• and ABTS+• on a dry basis. There was a significant increase (p ≤ 0.05) in antioxidant activity during storage due to the hydrolysis of isoflavone glycosides to aglycones in soymilk sample, having a strong linear correlation between the concentration of isoflavone aglycones and the antioxidant activity for ABTS+• (R = 0.9437, 0.9624 and 0.9992) and DPPH• (R = 0.9865, 0.9978 and 0.9911), respectively, for soymilk, quark and petit suisse. The conversion of isoflavone was influenced directly by the characteristics of each sample, inhibiting or promoting the action of the enzyme. The petit suisse developed is an alternative for consumers, providing isoflavones and anthocyanins, possessing probiotic average counts (10⁸ CFU g⁻¹) during storage.

  19. Optimization of ultrasound-assisted extraction of bioactive compounds from wild garlic (Allium ursinum L.).

    Science.gov (United States)

    Tomšik, Alena; Pavlić, Branimir; Vladić, Jelena; Ramić, Milica; Brindza, Ján; Vidović, Senka

    2016-03-01

    Ultrasound-assisted extraction was used for extraction of bioactive compounds and for production of Allium ursinum liquid extract. The experiments were carried out according to tree level, four variables, face-centered cubic experimental design (FDC) combined with response surface methodology (RSM). Temperature (from 40 to 80 °C), ethanol concentration (from 30% to 70%), extraction time (from 40 to 80 min) and ultrasonic power (from 19.2 to 38.4 W/L) were investigated as independent variables in order to obtain the optimal conditions for extraction and to maximize the yield of total phenols (TP), flavonoids (TF) and antioxidant activity of obtained extracts. Experimental results were fitted to the second order polynomial model where multiple regression and analysis of variance were used to determine the fitness of the model and optimal condition for investigated responses. The predicted values of the TP (1.60 g GAE/100 g DW), TF (0.35 g CE/100 g DW), antioxidant activity, IC50 (0.71 mg/ml) and EY (38.1%) were determined at the optimal conditions for ultrasound assisted extraction: 80 °C temperature, 70% ethanol, 79.8 min and 20.06 W/L ultrasonic power. The predicted results matched well with the experimental results obtained using optimal extraction conditions which validated the RSM model with a good correlation.

  20. Stress-induced changes of growth, yield and bioactive compounds in lemon balm cultivars.

    Science.gov (United States)

    Szabó, Krisztina; Radácsi, Péter; Rajhárt, Péter; Ladányi, Márta; Németh, Éva

    2017-07-22

    The aim of the present study was to investigate the impact of water deficiency on five Melissa officinalis genotypes. For three months water supply of 70% (control) and 40% (stress) of soil water capacity treatments have been adjusted in a pot experiment. Considering the morphological data, the different genetic potentials of cultivars were manifested only under optimum water regimes while under drought they merged into one homogeneous basic population representing the species. The biomass data decreased for all cultivars under drought stress, but the degree of loss was genotype specific. Genotype dependence of the change in essential oil accumulation was clearly proved by the data. Three of the cultivars ('Gold Leaf', 'Lorelei' and 'Quedlinburger Niederliegende') showed the same essential oil content both in control and stress treatments. Under drought stress the cultivar 'Lemona' produced only 35% of its essential oil content, however cv. 'Soroksár' reacted with 58% increase of essential oil accumulation to drought treatment. Considering the non-volatile bioactive compounds a unique response of the investigated accessions to drought stress was demonstrated. Cultivar 'Lorelei' showed an increased accumulation of total hydroxicinnamic acid derivatives content while cv. 'Gold Leaf' and 'Soroksár' clearly reacted with higher accumulation of total flavonoid fraction. In the case of cv. 'Quedlinburger Niederliegende' the remarkable decline in total flavonoid content is the most obvious stress reaction. The rosmarinic acid content of all genotypes showed lower accumulation level in consequence of lower water supply. Copyright © 2017. Published by Elsevier Masson SAS.

  1. Impacts on Sirtuin Function and Bioavailability of the Dietary Bioactive Compound Dihydrocoumarin.

    Directory of Open Access Journals (Sweden)

    Jennifer L Jacobi

    Full Text Available The plant secondary metabolite and common food additive dihydrocoumarin (DHC is an inhibitor of the Sirtuin family of NAD+-dependent deacetylases. Sirtuins are key regulators of epigenetic processes that maintain silent chromatin in yeast and have been linked to gene expression, metabolism, apoptosis, tumorogenesis and age-related processes in multiple organisms, including humans. Here we report that exposure to the polyphenol DHC led to defects in several Sirtuin-regulated processes in budding yeast including the establishment and maintenance of Sir2p-dependent silencing by causing disassembly of silent chromatin, Hst1p-dependent repression of meiotic-specific genes during the mitotic cell cycle. As both transient and prolonged exposure to environmental and dietary factors have the potential to lead to heritable alterations in epigenetic states and to modulate additional Sirtuin-dependent phenotypes, we examined the bioavailability and digestive stability of DHC using an in vivo rat model and in vitro digestive simulator. Our analyses revealed that DHC was unstable during digestion and could be converted to melilotic acid (MA, which also caused epigenetic defects, albeit less efficiently. Upon ingestion, DHC was observed primarily in intestinal tissues, but did not accumulate over time and was readily cleared from the animals. MA displayed a wider tissue distribution and, in contrast to DHC, was also detected in the blood plasma, interstitial fluid, and urine, implying that the conversion of DHC to the less bioactive compound, MA, occurred efficiently in vivo.

  2. Molecular Docking Study of Bioactive Compound of Andrographolide against Ebola Virus

    Directory of Open Access Journals (Sweden)

    R.Sharmila

    2016-05-01

    Full Text Available Ebola virus is a single-stranded, negative-sense RNA virus that causes severe hemorrhagic fever in humans and nonhuman primates. This virus is resistance to many antibiotics also there is no proper treatment for EBOLA viral infection. In worldwide,thus many people affected by this virus and there is no drug available for treatment of Ebola virus infection. Therefore new drugs are need for therapy and prevention for this life threatening infection. Hence the current study deals with the evaluation of the potent bioactive compound Andrographolide against the three receptors of Ebola virus receptor proteins. The protein receptors VP40, VP35 and VP24 were docked with the Andrographolide and evaluated on the basis of total energy and binding affinity scores byAutoDock. Andrographolide showed a high docking score against the VP40, VP35 and VP24. Theestimated binding free energy of VP40 is −3.57 kcal/mol, the VP35 binding free energy is −7.18 kcal/mol. The VP24 binding free energy is −8.5 kcal/mol. This study showed that Andrographolide have high binding affinity and exhibit better interactions with all the Ebola Virus Protein receptors. This study will help to identify the new drug development for the EBOLA virus.

  3. An Overview of LEDs' Effects on the Production of Bioactive Compounds and Crop Quality.

    Science.gov (United States)

    Hasan, Md Mohidul; Bashir, Tufail; Ghosh, Ritesh; Lee, Sun Keun; Bae, Hanhong

    2017-08-27

    Light-emitting diodes (LEDs) are characterized by their narrow-spectrum, non-thermal photon emission, greater longevity, and energy-saving characteristics, which are better than traditional light sources. LEDs thus hold the potential to revolutionize horticulture lighting technology for crop production, protection, and preservation. Exposure to different LED wavelengths can induce the synthesis of bioactive compounds and antioxidants, which in turn can improve the nutritional quality of horticultural crops. Similarly, LEDs increase the nutrient contents, reduce microbial contamination, and alter the ripening of postharvest fruits and vegetables. LED-treated agronomic products can be beneficial for human health due to their good nutrient value and high antioxidant properties. Besides that, the non-thermal properties of LEDs make them easy to use in closed-canopy or within-canopy lighting systems. Such configurations minimize electricity consumption by maintaining optimal incident photon fluxes. Interestingly, red, blue, and green LEDs can induce systemic acquired resistance in various plant species against fungal pathogens. Hence, when seasonal clouds restrict sunlight, LEDs can provide a controllable, alternative source of selected single or mixed wavelength photon source in greenhouse conditions.

  4. Improvement of Bioactive Compound Classification through Integration of Orthogonal Cell-Based Biosensing Methods

    Directory of Open Access Journals (Sweden)

    Goran N. Jovanovic

    2007-01-01

    Full Text Available Lack of specificity for different classes of chemical and biological agents, and false positives and negatives, can limit the range of applications for cell-based biosensors. This study suggests that the integration of results from algal cells (Mesotaenium caldariorum and fish chromatophores (Betta splendens improves classification efficiency and detection reliability. Cells were challenged with paraquat, mercuric chloride, sodium arsenite and clonidine. The two detection systems were independently investigated for classification of the toxin set by performing discriminant analysis. The algal system correctly classified 72% of the bioactive compounds, whereas the fish chromatophore system correctly classified 68%. The combined classification efficiency was 95%. The algal sensor readout is based on fluorescence measurements of changes in the energy producing pathways of photosynthetic cells, whereas the response from fish chromatophores was quantified using optical density. Change in optical density reflects interference with the functioning of cellular signal transduction networks. Thus, algal cells and fish chromatophores respond to the challenge agents through sufficiently different mechanisms of action to be considered orthogonal.

  5. Supercritical Carbon Dioxide Extraction of Bioactive Compounds from Ampelopsis grossedentata Stems: Process Optimization and Antioxidant Activity

    Directory of Open Access Journals (Sweden)

    Da Sun

    2011-10-01

    Full Text Available Supercritical carbon dioxide (SC-CO2 extraction of bioactive compounds including flavonoids and phenolics from Ampelopsis grossedentata stems was carried out. Extraction parameters such as pressure, temperature, dynamic time and modifier, were optimized using an orthogonal array design of L9 (34, and antioxidant activities of the extracts were evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH free radical scavenging assay and ferrous ion chelating (FIC assay. The best conditions obtained for SC-CO2 extraction of flavonoids was 250 bar, 40 °C, 50 min, and with a modifier of methanol/ethanol (1:3, v/v, and that for phenolics extraction was 250 bar, 40 °C, 50 min, and with a modifier of methanol/ethanol (1:1, v/v. Meantime, flavonoids and phenolics were found to be mainly responsible for the DPPH scavenging activity of the extracts, but not for the chelating activity on ferrous ion according to Pearson correlation analysis. Furthermore, several unreported flavonoids such as apigenin, vitexin, luteolin, etc., have been detected in the extracts from A. grossedentata stems.

  6. Effects on Animal Models of Depression of Bioactive Compounds from Entomogenous Fungi, A Novel Antioxidant

    Institute of Scientific and Technical Information of China (English)

    周兰兰; 明亮; 马传庚; 樊美珍; 程燕; 江勤

    2004-01-01

    Objective: To study the antidepressant effects and its mechanism of bioactive compounds (metabolite extract) from entomogenous fungi (BCEF) on experimental animal models of depression. Methods: The antidepressant effect of BCEF was examined on the acquired models of depression (rats and mice in forced swimming test) and unpredictable chronic stress mouse models. The behavior alterations were assayed by detecting the duration of immobility in forced swimming test. UV spectrophotometer analysis technique was used to detect the activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-PX) and catalase (CAT) in mice brain mitochondria; and colorimetric method was used to detect the content of malondealdehyde (MDA), nitrogen oxide (NO) in rat brain cytoplasm and mitochondria. Results: BCEF (25, 50,100 mg/kg) could obviously shorten the immobility time in forced swimming mice and BCEF (50,100 mg/kg)could obviously shorten the immobility time in forced swimming rats. Both of them showed some extent of dose-effect relationship. BCEF (50, 100 mg/kg) could significantly inhibit the increase of MDA and NO content in brain mitochondria and cytoplasm in chronic unpredictable stress models. BCEF (25,50,100 mg/kg)could obviously enhance the activities of SOD and GSH-PX. BCEF (50 mg/kg) also enhances the activities of CAT. Conclusion: BCEF has antidepressant effects in depressed animal models. The anti-oxidation may be one of the important mechanisms.

  7. Microbial Communities and Bioactive Compounds in Marine Sponges of the Family Irciniidae—A Review

    Directory of Open Access Journals (Sweden)

    Cristiane C. P. Hardoim

    2014-09-01

    Full Text Available Marine sponges harbour complex microbial communities of ecological and biotechnological importance. Here, we propose the application of the widespread sponge family Irciniidae as an appropriate model in microbiology and biochemistry research. Half a gram of one Irciniidae specimen hosts hundreds of bacterial species—the vast majority of which are difficult to cultivate—and dozens of fungal and archaeal species. The structure of these symbiont assemblages is shaped by the sponge host and is highly stable over space and time. Two types of quorum-sensing molecules have been detected in these animals, hinting at microbe-microbe and host-microbe signalling being important processes governing the dynamics of the Irciniidae holobiont. Irciniids are vulnerable to disease outbreaks, and concerns have emerged about their conservation in a changing climate. They are nevertheless amenable to mariculture and laboratory maintenance, being attractive targets for metabolite harvesting and experimental biology endeavours. Several bioactive terpenoids and polyketides have been retrieved from Irciniidae sponges, but the actual producer (host or symbiont of these compounds has rarely been clarified. To tackle this, and further pertinent questions concerning the functioning, resilience and physiology of these organisms, truly multi-layered approaches integrating cutting-edge microbiology, biochemistry, genetics and zoology research are needed.

  8. Characterization and evaluation of stability of bioactive compounds in fruit smoothies

    Directory of Open Access Journals (Sweden)

    Sílvia Cristina Sobottka Rolim de MOURA

    Full Text Available Abstract Smoothies are drinks composed of a mixture of vegetables (fruits, vegetables, which can be added or not by milk or yogurt, being a high creamy, healthy beverage and a good source of energy, vitamins, and minerals. Samples of three commercial smoothies: Yellow Fruits (YF, Red Fruits (RF, and Green Vegetables (GV stored in a glass packaging (260 mL were characterized for pH, soluble solids (°Brix, water activity (aw, density, rheology and thermal properties, and stored at controlled temperatures of 10 °C and 25 °C in the absence of light. During the period of 180 days, the samples were evaluated for color, polyphenol and anthocyanin contents, and sensorially monitored by odor, taste, overall quality and color characteristics. The smoothies showed similar physicochemical and thermophysical properties to pulp fruit and juice concentrates. The rheological behavior of the samples followed the power law model and was adjusted to the Arrhenius model. All the samples showed a reduction in bioactive compounds, change in color, taste and odor, with these being more significant at the room temperature.

  9. Ultraviolet Irradiation Effect on Apple Juice Bioactive Compounds during Shelf Storage

    Directory of Open Access Journals (Sweden)

    Edmundo Juarez-Enriquez

    2016-02-01

    Full Text Available Clarified and standardized apple juice was ultraviolet-irradiated to inactivate polyphenol oxidase enzyme and microbiota, and its effect on bioactive compounds and stability during storage was also evaluated. Apple juice was irradiated with 345.6 J/cm2 and treatment effect was evaluated in terms of color, antioxidant capacity, polyphenol content, pH, titratable acidity and total soluble solids. Using a linear regression design, inactivation kinetic of polyphenol oxidase enzyme was also described. In addition, a repeated measures design was carried out to evaluate apple juice during 24 days of storage at 4 °C and 20 °C. After irradiation, reduction of antioxidant capacity was observed while during storage, ascorbic acid content decreased up to 40% and total polyphenol content remain stable. Ultraviolet irradiation achieved a complete inactivation of polyphenol oxidase enzyme and microbiota, keeping apple juice antioxidants during ultraviolet treatment and storage available until juice consumption. UV-treated apple juice can be used as a regular beverage, ensuring antioxidant intake.

  10. Ultraviolet Irradiation Effect on Apple Juice Bioactive Compounds during Shelf Storage

    Science.gov (United States)

    Juarez-Enriquez, Edmundo; Salmerón, Ivan; Gutierrez-Mendez, Nestor; Ortega-Rivas, Enrique

    2016-01-01

    Clarified and standardized apple juice was ultraviolet-irradiated to inactivate polyphenol oxidase enzyme and microbiota, and its effect on bioactive compounds and stability during storage was also evaluated. Apple juice was irradiated with 345.6 J/cm2 and treatment effect was evaluated in terms of color, antioxidant capacity, polyphenol content, pH, titratable acidity and total soluble solids. Using a linear regression design, inactivation kinetic of polyphenol oxidase enzyme was also described. In addition, a repeated measures design was carried out to evaluate apple juice during 24 days of storage at 4 °C and 20 °C. After irradiation, reduction of antioxidant capacity was observed while during storage, ascorbic acid content decreased up to 40% and total polyphenol content remain stable. Ultraviolet irradiation achieved a complete inactivation of polyphenol oxidase enzyme and microbiota, keeping apple juice antioxidants during ultraviolet treatment and storage available until juice consumption. UV-treated apple juice can be used as a regular beverage, ensuring antioxidant intake. PMID:28231106

  11. Antidepressant effect of bioactive compounds from Paecilomyces tenuipes in mice and rats

    Institute of Scientific and Technical Information of China (English)

    Hongwei Kan; Liang Ming; Chunru Li; Hongxing Kan; Bei Sun; Yan Liang

    2010-01-01

    A bioactive compound from Paecilomyces tenuipes(BCPT)has an inhibitory effect on monoamine oxidase A(MAO-A)in vitro.Researchers have thought that BCPT may be a potential antidepressant.The MAO-A suppressor moclobemide served as a control,and this study investigated the mechanisms of BCPT as an antidepressant.Results demonstrated that BCPT induced significantly increased sucrose intake in chronic unpredictable stressed rats,shortened immobility time in forced swimming mice,improved the scores of blepharoptosis and akinesia in reserpine-treated mice,increased the number of 5-hydroxy tryptophan-induced head-twitches,remarkably enhanced the expression of hippocampus mineralcorticoid receptor and glucocorticoid receptor mRNA,decreased the ratio of mineralcorticoid receptor to glucocorticoid receptor and raised the levels of dopamine,norepinephrine and 5-hydroxytryptamine,while decreasing hydroxyindole acetic acid levels or dihydroxy-phenyl acetic acid in chronic unpredictable stressed rats.Behavioral test results suggested that BCPT potentially had antidepressant-like activity.Meanwhile,BCPT increased the levels of neurotransmitters,and mineralcorticoid receptor and glucocorticoid receptor mRNA in the hippocampus,which may be an important mechanism of its antidepressant effect.

  12. Intake of selected bioactive compounds from plant food supplements containing fennel (Foeniculum vulgare) among Finnish consumers.

    Science.gov (United States)

    Uusitalo, Liisa; Salmenhaara, Maija; Isoniemi, Merja; Garcia-Alvarez, Alicia; Serra-Majem, Lluís; Ribas-Barba, Lourdes; Finglas, Paul; Plumb, Jenny; Tuominen, Pirkko; Savela, Kirsti

    2016-03-01

    The purpose of this study was to estimate the intake of selected bioactive compounds from fennel-containing plant food supplements (PFS) among Finnish consumers. The estimated average intake of estragole was 0.20mg/d, of trans-anethole 1.15mg/d, of rosmarinic acid 0.09mg/d, of p-coumaric acid 0.0068mg/d, of kaempferol 0.0034mg/d, of luteolin 0.0525μg/d, of quercetin 0.0246mg/d, of matairesinol 0.0066μg/d and of lignans 0.0412μg/d. The intakes of kaempferol, quercetin, luteolin, matairesinol and lignans from PFS were low in comparison with their dietary supply. The intake of estragole was usually moderate, but a heavy consumption of PFS may lead to a high intake of estragole. The intake of trans-anethole did not exceed the acceptable daily intake, but PFS should be taken into account when assessing the total exposure. To our knowledge, this study provided the first intake estimates of trans-anethole, p-coumaric acid and rosmarinic acid in human populations.

  13. Effect of Extrusion Cooking on Bioactive Compounds in Encapsulated Red Cactus Pear Powder

    Directory of Open Access Journals (Sweden)

    Martha G. Ruiz-Gutiérrez

    2015-05-01

    Full Text Available Red cactus pear has significant antioxidant activity and potential as a colorant in food, due to the presence of betalains. However, the betalains are highly thermolabile, and their application in thermal process, as extrusion cooking, should be evaluated. The aim of this study was to evaluate the effect of extrusion conditions on the chemical components of red cactus pear encapsulated powder. Cornstarch and encapsulated powder (2.5% w/w were mixed and processed by extrusion at different barrel temperatures (80, 100, 120, 140 °C and screw speeds (225, 275, 325 rpm using a twin-screw extruder. Mean residence time (trm, color (L*, a*, b*, antioxidant activity, total polyphenol, betacyanin, and betaxanthin contents were determined on extrudates, and pigment degradation reaction rate constants (k and activation energies (Ea were calculated. Increases in barrel temperature and screw speed decreased the trm, and this was associated with better retentions of antioxidant activity, total polyphenol, betalain contents. The betacyanins k values ranged the −0.0188 to −0.0206/s and for betaxanthins ranged of −0.0122 to −0.0167/s, while Ea values were 1.5888 to 6.1815 kJ/mol, respectively. The bioactive compounds retention suggests that encapsulated powder can be used as pigments and to provide antioxidant properties to extruded products.

  14. Effect of extrusion cooking on bioactive compounds in encapsulated red cactus pear powder.

    Science.gov (United States)

    Ruiz-Gutiérrez, Martha G; Amaya-Guerra, Carlos A; Quintero-Ramos, Armando; Pérez-Carrillo, Esther; Ruiz-Anchondo, Teresita de J; Báez-González, Juan G; Meléndez-Pizarro, Carmen O

    2015-05-18

    Red cactus pear has significant antioxidant activity and potential as a colorant in food, due to the presence of betalains. However, the betalains are highly thermolabile, and their application in thermal process, as extrusion cooking, should be evaluated. The aim of this study was to evaluate the effect of extrusion conditions on the chemical components of red cactus pear encapsulated powder. Cornstarch and encapsulated powder (2.5% w/w) were mixed and processed by extrusion at different barrel temperatures (80, 100, 120, 140 °C) and screw speeds (225, 275, 325 rpm) using a twin-screw extruder. Mean residence time (trm), color (L*, a*, b*), antioxidant activity, total polyphenol, betacyanin, and betaxanthin contents were determined on extrudates, and pigment degradation reaction rate constants (k) and activation energies (Ea) were calculated. Increases in barrel temperature and screw speed decreased the trm, and this was associated with better retentions of antioxidant activity, total polyphenol, betalain contents. The betacyanins k values ranged the -0.0188 to -0.0206/s and for betaxanthins ranged of -0.0122 to -0.0167/s, while Ea values were 1.5888 to 6.1815 kJ/mol, respectively. The bioactive compounds retention suggests that encapsulated powder can be used as pigments and to provide antioxidant properties to extruded products.

  15. Effect of ultra high pressure homogenization treatment on the bioactive compounds of soya milk.

    Science.gov (United States)

    Toro-Funes, N; Bosch-Fusté, J; Veciana-Nogués, M T; Vidal-Carou, M C

    2014-01-01

    Ultra high pressure homogenization (UHPH) is a useful novel technology to obtain safe and high-quality liquid foods. The effect of UHPH at 200 and 300 MPa in combination with different inlet temperatures (Tin) (55, 65 and 75 °C) on the bioactive compounds of soya milk was studied. Total phytosterols increased with the higher combination of pressure and temperature. The main phytosterol was β-sitosterol, followed by stigmasterol and campesterol. Total tocopherols in UHPH-treated soya milks decreased as the temperature and pressure increased. UHPH treatment also affected the different chemical forms of tocopherols. No biogenic amines were detected in any of the analyzed soya milks. Meanwhile, the polyamines SPD and SPM were found in all soya milks, being stable to the UHPH treatment. Total isoflavones increased with the higher combination of pressure and temperature. No differences in the isoflavone profile were found, with β-glucoside conjugates being the predominant form. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Physicochemical Parameters and Bioactive Compounds of Strawberry Tree (Arbutus unedo L. Honey

    Directory of Open Access Journals (Sweden)

    Pablo A. Ulloa

    2015-01-01

    Full Text Available Botanical origin, physicochemical properties (ash, colour, diastase activity, electrical conductivity (EC, hydroxymethylfurfural (HMF, moisture, optical rotation (OP, pH, reducing sugars, total acidity, total soluble solids, and water activity, bioactive compounds (BC, and antioxidant activity obtained from strawberry tree honey from South Portugal were investigated. Results showed that the pollen analysis and physicochemical parameters were found within to meet international honey specifications. Significant differences (P<0.05 in results of ash content, EC, HMF, OP and colour when were compared with analogous famous Italian honey (Sardinia island. For BC, total phenolic and total flavonoid content were 94.47 mg gallic acid/100 g and 5.33 mg quercetin/100 g, respectively. Concerning Portuguese honey, it was also found that radical scavenging activity (DPPH assay was 43.46% and antioxidant activity was 18.85 mg ascorbic acid equivalent/100 g and 9.92 mg quercetin equivalent/100 g. These results confirmed that Portuguese strawberry tree honey has the highest antioxidant activity, when compared with other kinds of honey. This complete report demonstrates advantages and can help to promote consumption and shown their benefical properties (e.g., antioxidant; which will may increase the commercial value.

  17. Bioactivity Screening of the Selected Turkish Marine Sponges and Three Compounds from Agelas oroides

    Directory of Open Access Journals (Sweden)

    Ilkay Erdogan Orhan

    2012-07-01

    Full Text Available The extracts of various marine sponges (Agelas oroides and Axinella damicornis, Axinella cannabina, Ircinia spinulosa, I. fasciculata, and I. variabilis, Dysidea avara, and Sarcotragus spinulosus collected from different spots of the Turkish cost of the Mediterranean Sea have been evaluated for their antibacterial, antifungal, 2,2-diphenyl-1-picrylhydrazyl (DPPH radical scavenging, and acetylcholinesterase (AChE inhibitory activities. Three compounds (oroidin, 4,5-dibromopyrrol-2-carboxylic acid, and 25-hydroxy-24-methylcholesterol were isolated from A. oroides and tested in the same manner. The sponge extracts showed notable antimicrobial and anti-AChE activity and low DPPH scavenging activity. Oroidin was found to have moderate anti-AChE and strong radical scavenging activities. The results demonstrated that the sponge extracts exerted a variable degree of antibacterial, anti-radical, and anti-AChE activity, whereas they seemed to have similar antifungal effect. Our findings point out to the fact that the collection site has an important influence on bioactivity of the sponges.

  18. Rapid screening and quantitative determination of bioactive compounds from fruit extracts of Myristica species and their in vitro antiproliferative activity.

    Science.gov (United States)

    Pandey, Renu; Mahar, Rohit; Hasanain, Mohammad; Shukla, Sanjeev K; Sarkar, Jayanta; Rameshkumar, K B; Kumar, Brijesh

    2016-11-15

    Efficient and sensitive LC-MS/MS methods have been developed for the rapid screening and determination of bioactive compounds in different fruit parts of four Myristica species, viz., Myristica beddomeii, Myristica fragrans, Myristica fatua and Myristica malabarica. Twenty-one compounds were identified and characterized on the basis of their accurate mass and MS/MS fragmentation pattern using HPLC-QTOF-MS/MS and NMR analysis. Quantitative determination of five major bioactive compounds was performed using multiple-reaction monitoring mode with continuous polarity switching by UHPLC-QqQLIT-MS/MS. Moreover, in vitro antiproliferative activity of these Myristica species was evaluated against five human cancer cell lines A549, DLD-1, DU145, FaDu and MCF-7 using SRB assay. Seventeen phytoconstituents were identified and reported for the first time from M. beddomeii and sixteen from M. fatua. Quantification result showed highest total content of five major bioactive compounds in mace of M. fragrans. Evaluation of in vitro antiproliferative activity revealed potent activity in all investigated species except M. fragrans.

  19. Electrostatic extrusion as a dispersion technique for encapsulation of cells and bioactive compounds

    Directory of Open Access Journals (Sweden)

    Kostić Ivana T.

    2012-01-01

    Full Text Available Significant development of cells and bioactive compound encapsulation technologies is taking place due to an exceptional possibility of their application in various scientific disciplines, including biomedicine, pharmacy, cosmetology, food and agricultural sciences, beverage production, industrial waste treatment. Despite the broad application of microencapsulation, the literature reviews on dispersion techniques for microcapsule/microbead production, their advantages, restrictions and drawbacks are scarce. The purpose of this paper is to assess the possibilities of electrostatic extrusion for encapsulation of biological material, including living cells in hydrogel microbeads. The paper presents an overview of the mechanisms of droplet formation and controlling experimental parameters for producing microbeads by means of electrostatic extrusion. Electrostatic droplet formation utilizes a special type of physical process taking advantage of electrostatic effects occurring in flowing conductive liquids after introduction of an electric field.When an electrostatic field is applied to the metal needle and an electric charge is induced in the liquid flowing out of the needle, the size of droplet detaching from the needle tip decreases as a funcion of applied electrostatic field. It has been shown that few parameters affect microbead size: applied voltage, electrode geometry, needle size, polarity arrangement and polymer concentration. The electrostatic droplet formation is one of the most precise methods, which enables one to produce spherical and uniform particles ranging from 100 μm up to 1000 μm. Most of the authors report that the encapsulated compounds (drugs, enzymes and living cells remain unaltered after electrostatic extrusion. This technique seems to be particularly promising in biotechnology, pharmaceutical and cosmetics industries, where a low-temperature process, preserving heat-sensitive material is a prerequisite. Future efforts in

  20. Role of Spectral Studies in Detection of Antibacterial Phytoelements and Phytchemicals of Moringa Oleifera

    NARCIS (Netherlands)

    Mehta, S.; Rai, P.K.; Rai, A.K.; Bicanic, D.D.; Watal, G.

    2011-01-01

    This paper reports, the Laser Induced Breakdown Spectroscopy (LIBS) studies and structure elucidation of compounds isolated from the fruit extract of Moringa oleifera and also deals with their possible effects on some bacterial strains viz. Staphylococcus aureus, Klebsiella pneumonia, Escherichia

  1. Traceability of Functional Bioactive Compounds in Fresh and Pasteurized Milk Obtained from Goats Fed with Orange Pulp

    Directory of Open Access Journals (Sweden)

    Maria Simona Chiş

    2015-11-01

    Full Text Available Traceability is the ability to identify and trace the history, distribution, location, and application of products, parts, and materials. A traceability system records and follows the trail as products, parts, and materials come from suppliers and are processed and ultimately distributed as end products (Prache et al, 2002. In this work, were studied the bioactive compounds (total vitamin C, ascorbic acid, total phenols, flavonoids, carotenoids, vitamin A and vitamin E and antioxidant activity of goat fresh milk and pasteurized one. The goats were fed with a standard diet (control diet and then with a diet that incorporates orange pulp. The control diet (CD corresponded with a standard ration (a ration wich provide the energetic and proteic values, daily food for milking animals. From that ration, the Department of Animal Science, from Politechnic University of Valencia replaced the different proportions of the ingredients for incorporating orange pulp diet (OPD. The results of the present study show that the citrus pulp silage mixture used can be fed to goats without any negative effects on the performance of the animals. Results of this study indicate that citrus pulp silage can replace part of the conventional ration of goats, thus lowering the cost of production. The first aim of this study was to compare the two types of goat diets: a standard diet and a diet with orange pulp, by analyzing the bioactive compounds in fresh and pasteurized milk. The results demonstrate that all the bioactive compounds are bigger in the orange pulp diet than in the control diet. The second objective of this study was to analyze the bioavailability and traceability of bioactive compounds in fresh milk. 

  2. Evaluation of Agro-Industrial Co-Products as Source of Bioactive Compounds: Fiber, Antioxidants and Prebiotic

    OpenAIRE

    Hernández-Alcántara Annel M; Totosaus Alfonso; Pérez-Chabela M. Lourdes

    2016-01-01

    Agro-industrial co-products derived of fruit processing represents an important source of bioactive compounds as fiber, antioxidants and prebiotics. The objective of this work was to determine the content of fiber, antioxidant capacity and prebiotic activity of three flours obtained from commonly co-products (banana peel, apple peel, and carrot bagasse). The results showed a higher total fiber content in carrot bagasse, and lower in apple peel. Significantly differences were found in antioxid...

  3. Highly selective screening of the bioactive compounds in Huoxue capsule using immobilized β(2)-adrenoceptor affinity chromatography.

    Science.gov (United States)

    Wang, Shixiang; Zhao, Kun; Zang, Weijin; Zhang, Qian; Zhao, Xinfeng; Zhao, Ming; He, Xi; Liu, Qinshe; Feng, Weiyi; Zheng, Xiaohui

    2014-07-15

    A highly selective assay was developed for screening compounds that bind to the porcine recombinant β2-adrenoceptor (β2-AR) with affinity chromatography coupled to quadrupole time-of-flight mass spectrometry (Q-TOF-MS). The methodology involved selective screening with immobilized β2-AR, a highly accurate identification via Q-TOF-MS, and a functional evaluation of the screened compounds with a sensitive myograph system. Ferulic acid, hydroxysafflor yellow A (HSYA), and naringin were confirmed to be the bioactive compounds in Huoxue capsule that specifically bound to the β2-AR. These compounds produced a concentration-dependent relaxation of arteries that were contracted by treatment with phenylephrine, and the relaxation caused by these compounds was attenuated in the presence of ICI 118551, a type of β2-AR antagonist. Our data indicate that the use of an immobilized receptor is potentially an alternative method for the rapid screening of bioactive compounds in a complex matrix because of its high specificity. β2-AR affinity chromatography was valuable in focusing attention on the further investigation of ferulic acid, HSYA, and naringin as β2-AR agonists.

  4. Effect of different coatings on post-harvest quality and bioactive compounds of pomegranate (Punica granatum L.) fruits.

    Science.gov (United States)

    Meighani, Hossein; Ghasemnezhad, Mahmood; Bakhshi, Davood

    2015-07-01

    The effect of three different coatings; resin wax (Britex Ti), carnauba wax (Xedasol M14), and chitosan (1 and 2 % w/v) on postharvest quality of pomegranate fruits were investigated. Fruits quality characteristics and bioactive compounds were evaluated during 40, 80 and 120 days storage at 4.5 °C and 3 additional days at 20 °C. The results showed that uncoated fruits showed higher respiration rate, weight loss, L* and b* values of arils, total soluble solids (TSS)/titratable acidity (TA), and pH than coated fruits during storage. Coating treatments could delay declining TSS and TA percent, a* value of arils, as well as bioactive compounds such as total phenolics, flavonoids and anthocyanins content and antioxidant activity. The coated fruits with commercial resin and carnauba waxes showed significantly lower respiration rate and weight loss than other treatments, however carnauba wax could maintain considerably higher fruits quality and bioactive compounds than other coating treatments. The results suggested that postharvest application of carnauba wax have a potential to extend storage life of pomegranate fruits by reducing respiration rate, water loss and maintaining fruit quality.

  5. Screening of microorganisms from deep-sea mud for Antarctic krill (Euphausia superba) fermentation and evaluation of the bioactive compounds.

    Science.gov (United States)

    Sun, Jianan; Kan, Feifei; Liu, Pei; He, Shuai; Mou, Haijin; Xue, Changhu; Mao, Xiangzhao

    2015-02-01

    Twelve kinds of strains were isolated from deep-sea mud which can use Antarctic krill powder as the sole carbon/nitrogen source. These strains were identified by 16s rDNA sequence analysis and grouped into eight different genera, including Bacillus, Shewanella, Psychrobacter, Klebsiella, Macrococcus, Aeromonas, Acinetobacter, and Saccharomyces. After fermentation of Antarctic krill powder using these strains, bioactive compounds including total phenolics, free amino acids, and enzyme activities were investigated. Meanwhile, antioxidant activities of the fermentation liquors were also detected. Results showed that bioactive compounds could be effectively produced through fermentation process by these strains, of which three strains (Bacillus subtilis OKF04, Macrococcus caseolyticus OKF09, and Aeromonas veronii OKF10) could produce more than 650 mg/L total phenolics or 2000 mg/L total free amino acids. In terms of enzyme activities, almost all of the strains showed protease activity and amylase activity, but only Bacillus cereus OKF01 and Bacillus megaterium OKF05 performed lipase activity and chitinase activity, respectively. All of the fermentation liquors showed antioxidant activity, within which Bacillus megaterium OKF05, Macrococcus caseolyticus OKF09, and Aeromonas veronii OKF10 displayed it more prominently. These results demonstrate that the Antarctic krill powder could be effectively converted by microorganisms isolated from deep-sea mud for production of bioactive compounds mixture.

  6. Comparison of Bioactive Compounds and Quality Traits of Breast Meat from Korean Native Ducks and Commercial Ducks.

    Science.gov (United States)

    Lee, Hyun Jung; Jayasena, Dinesh D; Kim, Sun Hyo; Kim, Hyun Joo; Heo, Kang Nyung; Song, Ji Eun; Jo, Cheorun

    2015-01-01

    The aim of this research was to compare the bioactive compound content and quality traits of breast meat from male and female Korean native ducks (KND) and commercial ducks (CD, Cherry Valley). Meat from three 6-wk old birds of each sex from KND and CD were evaluated for carcass and breast weights, pH, color, cooking loss, shear force, and bioactive compound (creatine, carnosine, anserine, betaine, and L-carnitine) content. KND showed significantly higher carcass weights than CD whereas no such difference (p>0.05) was found between male and female ducks. The breed and sex had no significant effects on the breast weight, pH value, and shear force. However, KND had significantly lower cooking loss values than did CD. Creatine, anserine, and L-carnitine contents were significantly higher in KND than in CD and were predominant in female ducks compared to males. The results of this study provide rare information regarding the amounts and the determinants of several bioactive compounds in duck meat, which can be useful for selection and breeding programs, and for popularizing indigenous duck meat.

  7. Isolation and Characterization of Potential Bioactive Compounds from Landolphia owariensis P. Beauv Stringy Seed Pulp

    Directory of Open Access Journals (Sweden)

    T JN Okonkwo

    2013-06-01

    Full Text Available Summary. Landolphia owariensis P. Beauv, a tropical climber, is economically important for latex/rubber and folklore medicine. Among other uses, it is utilized in the management of malaria and inflammatory related diseases in ethno medicine. Thus its stringy seed pulp (LOSSP was subjected to isolation and characterization of bioactive compounds. A fresh portion of LOSSP was air-dried, pulverized, defatted with petroleum ether and subsequently extracted with acetone and distilled water successively. The acetone extract was fractionated serially into chloroform, ethylacetate and acetone to obtain the respective solvent fractions. LOSSP/CF-1 was obtained by re-crystallization of the chloroform fraction. Phytochemical analysis of the extracts and fractions was performed using standard methods. The chemical structure of LOSSP/CF-1 was elucidated by ultraviolet/visible light, infrared, H-NMR, C-NMR and mass spectroscopic techniques. While the flavonoid concentrate (FC and LOSSP/CF-1 tested positive to 2, 2-diphenylpicryl hydrazyl radical and KMnO4 assays, indicating strong antioxidant properties. In addition, LOSSP/CF-1 expressed a 50% radical inhibition concentration (IC50 of 238.24 ± 3.12 µg/ml against gallic acid (37.63 ± 0.47 µg/ml. Ultraviolet/visible light, infrared, H-NMR, C-NMR spectroscopy and gas chromatography-mass spectrometry of LOSSP/CF-1 indicated it to be ascorbic acid. This is novel for the herb, and the first ever compound isolated and characterized from L. owariensis. Flavonoids and LOSSP/CF-1 (ascorbic acid are potent bioactive principles of L. owariensis, acting via antioxidant mechanism. Thus the herb is recommended for use as an adjuvant in the management of diseases involving pro-oxidative state.   Industrial relevance. Pro-oxidative state-induced disorders like hepatitis, cardiovascular disorders, arthritis, cancer, et c., have been identified as major course of morbidity and mortality throughout the world, especially in

  8. Regeneration of insulin-producing pancreatic cells using a volatile bioactive compound and human teeth.

    Science.gov (United States)

    Okada, Mio; Imai, Toshio; Yaegaki, Ken; Ishkitiev, Nikolay; Tanaka, Tomoko

    2014-10-30

    Transplantation of insulin (INS)-secreting cells differentiated in vitro from stem cells promises a safer and easier treatment of severe diabetes mellitus. A volatile bioactive compound, hydrogen sulfide (H2S), promotes cell differentiation; human tooth-pulp stem cells undergo hepatic differentiation. The aim of this study is to develop a novel protocol using H2S to enhance pancreatic differentiation from the CD117(+) cell fraction of human tooth pulp. During the differentiation, the cells were exposed to 0.1 ng ml(-1) H2S. Immunocytochemistry, RT-PCR, determination of INS c-peptide content and flow cytometry of pancreatically related markers were carried out. Expression of WNT and the PI3K/AKT signaling pathway were also determined by PCR array. After differentiation, INS, glucagon (GCG), somatostatin (SST) and pancreatic polypeptide (PPY) were positive when examined by immunofluorescence. INS and GCG were also determined flow-cytometrically. Only the cells expressing INS increased after H2S exposure. The number of cells expressing GCG was significantly decreased. Genes involved in canonical WNT and the WNT/calcium pathways were highly expressed after H2S exposure. H2S accelerated INS synthesis and secretion by regenerated INS-producing cells from human teeth. All signaling pathway functions of the PI3K-AKT pathway were extremely activated by H2S exposure. The matured INS-producing cells originating in human teeth were increased by H2S in order to control blood-glucose level.

  9. Effects of Hypobaric Treatments on the Quality, Bioactive Compounds, and Antioxidant Activity of Tomato.

    Science.gov (United States)

    Kou, Xiaohong; Wu, Ji Yun; Wang, Yong; Chen, Qiong; Xue, Zhaohui; Bai, Yang; Zhou, Fengjuan

    2016-07-01

    Hypobaric treatment is becoming a potential technology to protect fruits from postharvest decay. The objective of this study was to investigate the effects of hypobaric treatments on storage quality, bioactive compounds, and antioxidant activity of tomato fruit. In this study, green tomatoes (cv. "Fen guan") were treated with hypobaric pressures (0.04 and 0.07 MPa) at ambient temperature (20 ℃) for 28 d. The results showed that under hypobaric storage, the respiration rates significantly declined and the respiratory peaks postponed 12 and 8 d by 0.04 and 0.07 MPa treatments, respectively, compared to control. Total soluble solid, titratable acidity, ascorbic acid, and lycopene were retained by hypobaric treatment. Moreover, ascorbic acid contents treated with 0.04 and 0.07 MPa were, respectively, 37% and 26% higher than control at day 24 and the contents of total polyphenols were, respectively, 1.28 and 1.11 times higher than control. Production and accumulation of toxic substances were significantly restrained. The ethanol content decreased, respectively, by 53% and 84% than control. At later storage period, the superoxide dismutase activity in treated fruits was about 0.58 U/(g·FW·min), whereas only 0.29 U/(g·FW·min) in control. Hypobaric treatment not only maintained a high activity of superoxide dismutase and peroxidase (POD), but also improved antioxidant capacity. All the results indicated that hypobaric treatment was a potential helpful method to protect the quality and nutrition of tomato and prolong ripening of tomato. Furthermore, the effect of 0.04 MPa hypobaric treatment was found better than 0.07 MPa.

  10. The polyphasic description of a Desmodesmus spp. isolate with the potential of bioactive compounds production

    Directory of Open Access Journals (Sweden)

    El Semary, NA.

    2011-01-01

    Full Text Available A polyphasic approach was applied to describe a colony-forming Desmodesmus species collected from the Nile River, Maadi area, Helwan district, Egypt. The isolate grows best at moderate temperature and relatively high light intensity. The phenotypic features revealed the presence of both unicellular and colonial forms of the isolate and the latter form was either 2-4 celled. Cells were 4-6 mm ± 0.5 at their widest point and 11-15 mm ± 0.48 in their length with spiny projections that encircled the cells. Cells were heavily-granulated and enclosed within common mucilaginous sheath. Colonial forms were developed through production of daughter cells within mother cell. Molecular analysis using 18S rRNA gene showed some similarity to its nearest relative (Desmodesmus communis whereas the phylogenetic analyses clustered it together with other Desmodesmus spp. and away from Scenedesmus spp. from the database. However, the use of ITS-2 as a phylotaxonomic marker proved to be more resolving and confirmed the generic identity of the isolate as Desmodesmus spp. The fatty acid composition revealed the presence of saturated palmitic fatty acid as the most abundant component followed by monounsaturated palmitoleic acid whereas the polyunsaturated fatty acids were in relatively low abundance. The palmitoleic acid in particular is suggested to be involved in active defense mechanism. The phytochemical screening revealed the presence of alkaloids and saponins and absence of tannins. Fractions of methanolic extracts showed antimicrobial activities against pathogenic bacterial strains including multi-drug resistant ones. This study documents the presence of this strain in the River Nile and highlights its biotechnological potential as a source of bioactive compounds.

  11. Application of accelerated solvent extraction in the analysis of organic contaminants, bioactive and nutritional compounds in food and feed.

    Science.gov (United States)

    Sun, Hanwen; Ge, Xusheng; Lv, Yunkai; Wang, Anbang

    2012-05-11

    Accelerated solvent extraction (ASE) has become a popular green extraction technology for different classes of organic contaminants present in numerous kinds of food and feed for food safety. The parameters affecting ASE efficiency and application advancement of ASE in the analysis of organic contaminants, natural toxins compounds as well as bioactive and nutritional compounds in animal origin food, plant origin food and animal feed are reviewed in detail. ASE is a fully automated and reliable extraction technique with many advantages over traditional extraction techniques, so it could be especially useful for routine analyses of pollutants in food and feed.

  12. Biochemometrics for Natural Products Research: Comparison of Data Analysis Approaches and Application to Identification of Bioactive Compounds.

    Science.gov (United States)

    Kellogg, Joshua J; Todd, Daniel A; Egan, Joseph M; Raja, Huzefa A; Oberlies, Nicholas H; Kvalheim, Olav M; Cech, Nadja B

    2016-02-26

    A central challenge of natural products research is assigning bioactive compounds from complex mixtures. The gold standard approach to address this challenge, bioassay-guided fractionation, is often biased toward abundant, rather than bioactive, mixture components. This study evaluated the combination of bioassay-guided fractionation with untargeted metabolite profiling to improve active component identification early in the fractionation process. Key to this methodology was statistical modeling of the integrated biological and chemical data sets (biochemometric analysis). Three data analysis approaches for biochemometric analysis were compared, namely, partial least-squares loading vectors, S-plots, and the selectivity ratio. Extracts from the endophytic fungi Alternaria sp. and Pyrenochaeta sp. with antimicrobial activity against Staphylococcus aureus served as test cases. Biochemometric analysis incorporating the selectivity ratio performed best in identifying bioactive ions from these extracts early in the fractionation process, yielding altersetin (3, MIC 0.23 μg/mL) and macrosphelide A (4, MIC 75 μg/mL) as antibacterial constituents from Alternaria sp. and Pyrenochaeta sp., respectively. This study demonstrates the potential of biochemometrics coupled with bioassay-guided fractionation to identify bioactive mixture components. A benefit of this approach is the ability to integrate multiple stages of fractionation and bioassay data into a single analysis.

  13. Profile of bioactive compounds from grape pomace (Vitis vinifera and Vitis labrusca) by spectrophotometric, chromatographic and spectral analyses.

    Science.gov (United States)

    Ribeiro, L F; Ribani, R H; Francisco, T M G; Soares, A A; Pontarolo, R; Haminiuk, C W I

    2015-12-15

    The aim of this study was to characterize grape pomace (GP) from winemaking byproducts of different grape samples (Cabernet Sauvignon-CS; Merlot-ME; Mix composed of 65% Bordeaux, 25% Isabel and 10% BRS Violet-MI and Terci-TE) with a view to exploiting its potential as a source of bioactive compounds and an alternative to the reuse of waste. Bioactive compounds such as individual phenolic compounds and polyunsaturated fatty acids (PUFA) were identified and quantified by spectrophotometric, chromatographic and spectral analyses. The sample of MI had the highest concentrations for total phenolic compounds and total flavonoids, while TE had the highest content for total monomeric anthocyanins. For all samples it was possible to identify 13 different anthocyanins by high performance liquid chromatography (HPLC) and mass spectrometry (MS). Moreover, the GP samples showed phenolic acids; flavan-3-ols such as catechin; flavonols such as quercetin, rutin and kaempferol; and stilbenes such as trans-resveratrol. Therefore, grape pomace can be considered a source for the recovery of phenolic compounds having antioxidant activity as well as a rich source of PUFA. Thus it can be used as an ingredient in the development of new food products, since it is suitable for human consumption, and a viable alternative both to adding nutritional value to food and to reduce environmental contamination.

  14. Solanum diploconos fruits: profile of bioactive compounds and in vitro antioxidant capacity of different parts of the fruit.

    Science.gov (United States)

    Ribeiro, Alessandra Braga; Chisté, Renan Campos; Lima, José L F C; Fernandes, Eduarda

    2016-05-18

    Solanum diploconos is an unexploited Brazilian native fruit that belongs to the same genus of important food crops, such as tomato (Solanum lycorpersicum) and potato (Solanum tuberosum). In this study, we determined, for the first time, the profile of bioactive compounds (phenolic compounds, carotenoids, ascorbic acid and tocopherols) of the freeze-dried pulp and peel of Solanum diploconos fruits, as well as of an extract obtained from the whole fruit. Additionally, the antioxidant potential of the whole fruit extract was evaluated in vitro, against reactive oxygen species (ROS) and reactive nitrogen species (RNS). Eighteen phenolic compounds were identified in the peel and pulp and 6 compounds were found in the whole fruit extract. Coumaric, ferulic and caffeic acid derivatives were revealed to be the major phenolic constituents. All-trans-β-carotene was the major carotenoid (17-38 μg g(-1), dry basis), but all-trans-lutein and 9-cis-β-carotene were also identified. The peel and pulp presented bioactive compounds with high antioxidant potential against the most physiologically relevant ROS and RNS.

  15. The Use of Plant Bioactive Compounds to Mitigate Enteric Methane in Ruminants and its Application in Indonesia

    Directory of Open Access Journals (Sweden)

    Elizabeth Wina

    2012-03-01

    Full Text Available Worldwide, increasing greenhouse gas (GHG emissions have become a major concern as they are now considered to be the cause of global warming. Several strategies have been planned and taken by different countries including Indonesia to mitigate this situation. Agriculture is considered to be one of major contributors to GHG, especially methane coming from ruminant digestive processes. More than 85% of the methane produced by ruminants comes from enteric fermentation. Several options have been proposed to lower this enteric methane production. This paper describes a review on diet manipulation using feed additives, especially plant bioactive compounds, to mitigate the GHG emission from ruminant livestock. Plant bioactive compounds have been found with various chemical structures. Some of them such as saponin, tannin, essential oils, organosulphur compounds, have been reported to have ability to reduce enteric methane production. Indonesia has many plant resources that have potential as methane reducing agents. Sapindus rarak fruit especially its methanol extract contain saponins which reduce the activity of methanogens in the rumen in vitro, hence reduce methane production (11%. Feeding S. rarak to sheep increased daily weight gain but not that of local cattle. Shrub legumes such as Calliandra calothyrsus and Leucaena leucocephala contain tannins which can reduce methanogenesis (3 – 21% methane reduction. Besides tannin, these shrub legumes are a good source of protein. Feeding shrub legumes can be beneficial as a protein source and a methane reducer. Other sources of methane reducing agents have been tested in other countries and some can be applied for Indonesian situation. The strategy to reduce methane by plant bioactive compounds should be developed to be simple and relatively cheap so it will benefit the local farmers. Extraction of these compounds may be expensive, therefore, costs should be considered carefully when proposing to use the

  16. Extraction of bioactive compounds from sesame (Sesamum indicum L.) defatted seeds using water and ethanol under sub-critical conditions.

    Science.gov (United States)

    Bodoira, Romina; Velez, Alexis; Andreatta, Alfonsina E; Martínez, Marcela; Maestri, Damián

    2017-12-15

    Sesame seeds contain a vast array of lignans and phenolic compounds having important biological properties. An optimized method to obtain these seed components was designed by using water and ethanol at high pressure and temperature conditions. The maximum concentrations of lignans, total phenolics, flavonoids and flavonols compounds were achieved at 220°C extraction temperature and 8MPa pressure, using 63.5% ethanol as co-solvent. Under these conditions, the obtained sesame extracts gave the best radical scavenging capacity. Kinetic studies showed a high extraction rate of phenolic compounds until the first 50min of extraction, and it was in parallel with the highest scavenging capacity. The comparison of our results with those obtained under conventional extraction conditions (normal pressure, ambient temperature) suggests that recovery of sesame bioactive compounds may be markedly enhanced using water/ethanol mixtures at sub-critical conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. BIODIVERSITY OF THE ENDOPHYTIC FUNGI ISOLATED FROM MORINGA OLEIFERA OF YERCAUD HILLS

    Directory of Open Access Journals (Sweden)

    R. Dhanalakshmi, S. Umamaheswari, P. Sugandhi and D. Arvind Prasanth*

    2013-03-01

    Full Text Available ABSTRACT: Endophytic fungi residing inside the medicinal plants are of gaining importance for their bioactive compounds. This present study is undertaken to isolate and identify the potential endophytic fungi from Moringa oleifera, a traditional medicinal plant. A total of 24 segments each 12 from leaf and stem were collected, surface sterilized and was inoculated on to Sabouraud Dextrose Agar (SDA plates. Based on the macroscopic & microscopic features the fungal isolates were identified as Alternaria spp., Aspergillus spp. Bipolaris spp., Exosphiala spp., Nigrospora spp., and Penicillium spp. Many unidentified sterile mycelia forms were also found which were grouped under the class mycelia sterilia. The Colonization Frequency (CF and Endophytic Infection Rate (EIR were observed as 91.66% and 45.83% respectively. The results of this study suggest that traditional medicinal plants are a rich and reliable source of novel endophytic fungi. Further studies are required with regard to the screening of these endophytic fungi for the production of novel bioactive compounds which are medically important in the treatment of diseases.

  18. Impact of molecular weight on the formation of electrosprayed chitosan microcapsules as delivery vehicles for bioactive compounds.

    Science.gov (United States)

    Gómez-Mascaraque, Laura G; Sanchez, Gloria; López-Rubio, Amparo

    2016-10-01

    The molecular weight of chitosan is one of its most determinant characteristics, which affects its processability and its performance as a biomaterial. However, information about the effect of this parameter on the formation of electrosprayed chitosan microcapsules is scarce. In this work, the impact of chitosan molecular weight on its electrosprayability was studied and correlated with its effect on the viscosity, surface tension and electrical conductivity of solutions. A Discriminant Function Analysis revealed that the morphology of the electrosprayed chitosan materials could be correctly predicted using these three parameters for almost 85% of the samples. The suitability of using electrosprayed chitosan capsules as carriers for bioactive agents was also assessed by loading them with a model active compound, (-)-epigallocatechin gallate (EGCG). This encapsulation, with an estimated efficiency of around 80% in terms of preserved antioxidant activity, showed the potential to prolong the antiviral activity of EGCG against murine norovirus via gradual bioactive release combined with its protection against degradation in simulated physiological conditions.

  19. Characterization of bioactive compounds, antioxidant activity and minerals in landraces of pumpkin (Cucurbita moschata cultivated in Southern Brazil

    Directory of Open Access Journals (Sweden)

    Daniela PRIORI

    2016-01-01

    Full Text Available Abstract The objective of this work was to evaluate the genetic variability for the synthesis of bioactive compounds and minerals in pumpkin (Cucurbita moschata landraces. Total phenolic compounds, carotenoids, antioxidant activity and minerals were evaluated in 10 accessions of Cucurbita moschata landraces from the Genebank of Embrapa Temperate Agriculture (Pelotas - RS, Brazil. Twenty plants of each accession were cultivated in the field during the spring/summer of 2013/2014. After harvesting of mature fruits, the seeds were discarded and opposite longitudinal portions of the pulp were manually prepared for analysis of the bioactive compounds. For the determination of minerals, pumpkin samples were frozen in plastic bags, and after freeze-dried and milled. All analysis were performed in triplicate. The data obtained showed high genetic variability for the synthesis of phenolic compounds, carotenoids, antioxidant activity and minerals. The accessions C52, C81, C267 e C389 showed high levels of antioxidants and minerals, being recommended for use in pumpkin breeding programs. The accessions C52 and C389 are promising, especially because they present the highest levels of total carotenoids.

  20. Penicillium verruculosum SG: a source of polyketide and bioactive compounds with varying cytotoxic activities against normal and cancer lines.

    Science.gov (United States)

    Shah, Salma Gul; Shier, W Thomas; Jamaluddin; Tahir, Nawaz; Hameed, Abdul; Ahmad, Safia; Ali, Naeem

    2014-04-01

    A newly isolated fungus Penicillium verruculosum SG was evaluated for the production and characterization of bioactive colored secondary metabolites using solid-state fermentation along with their cytotoxic activities against normal and cancer cell lines. Logical fragmentation pattern following column chromatography, thin layer chromatography and liquid chromatography and mass spectrometry of crude culture filtrate of fungus revealed the presence of different polyketide pigments and other bioactive compounds. Cytotoxicity of the selected colored fractions of fungal filtrate containing different compounds revealed IC50 (μg/ml) values ranging from 5 to 100. It was significantly higher in case of orevactaene (5 + 0.44) and monascorubrine followed by pyripyropene (8 + 0.63) against cancer cell line KA3IT. Overall, these compounds considerably showed less toxicity toward normal cell lines NIH3T3, HSCT6, HEK293 and MDCK. XRD of a yellow crystalline compound (224.21 m/z) confirmed its 3-dimensional structure as phenazine 1 carboxylic acid (C13H8N2O2) (broad spectrum antibiotic), and it is first time reported in fungi.

  1. Prediction of solubilities for ginger bioactive compounds in hot water by the COSMO-RS method

    Science.gov (United States)

    Zaimah Syed Jaapar, Syaripah; Azian Morad, Noor; Iwai, Yoshio

    2013-04-01

    The solubilities in water of four main ginger bioactives, 6-gingerol, 6-shogaol, 8-gingerol and 10-gingerol, were predicted using a conductor-like screening model for real solvent (COSMO-RS) calculations. This study was conducted since no experimental data are available for ginger bioactive solubilities in hot water. The σ-profiles of these selected molecules were calculated using Gaussian software and the solubilities were calculated using the COSMO-RS method. The solubilities of these ginger bioactives were calculated at 50 to 200 °C. In order to validate the accuracy of the COSMO-RS method, the solubilities of five hydrocarbon molecules were calculated using the COSMO-RS method and compared with the experimental data in the literature. The selected hydrocarbon molecules were 3-pentanone, 1-hexanol, benzene, 3-methylphenol and 2-hydroxy-5-methylbenzaldehyde. The calculated results of the hydrocarbon molecules are in good agreement with the data in the literature. These results confirm that the solubilities of ginger bioactives can be predicted using the COSMO-RS method. The solubilities of the ginger bioactives are lower than 0.0001 at temperatures lower than 130 °C. At 130 to 200 °C, the solubilities increase dramatically with the highest being 6-shogaol, which is 0.00037 mole fraction, and the lowest is 10-gingerol, which is 0.000039 mole fraction at 200 °C.

  2. Multiparametric Phenotypic Screening System for Profiling Bioactive Compounds Using Human Fetal Hippocampal Neural Stem/Progenitor Cells.

    Science.gov (United States)

    Tabata, Yoshikuni; Murai, Norio; Sasaki, Takeo; Taniguchi, Sachie; Suzuki, Shuichi; Yamazaki, Kazuto; Ito, Masashi

    2015-10-01

    Stem cell research has been progressing rapidly, contributing to regenerative biology and regenerative medicine. In this field, small-molecule compounds affecting stem cell proliferation/differentiation have been explored to understand stem cell biology and support regenerative medicine. In this study, we established a multiparametric screening system to detect bioactive compounds affecting the cell fate of human neural stem/progenitor cells (NSCs/NPCs), using human fetal hippocampal NSCs/NPCs, HIP-009 cells. We examined effects of 410 compounds, which were collected based on mechanisms of action (MOAs) and chemotypes, on HIP-009's cell fate (self-renewal, neuronal and astrocytic differentiation) and morphology by automated multiparametric assays and profiled induced cellular phenotypes. We found that this screening classified compounds with the same MOAs into subgroups according to additional pharmacological effects (e.g., mammalian target of rapamycin complex 1 [mTORC1] inhibitors and mTORC1/mTORC2 dual inhibitors among mTOR inhibitors). Moreover, it identified compounds that have off-target effects under matrix analyses of MOAs and structure similarities (e.g., neurotropic effects of amitriptyline among tri- and tetracyclic compounds). Therefore, this automated, medium-throughput and multiparametric screening system is useful for finding compounds that affect the cell fate of human NSCs/NPCs for supporting regenerative medicine and to fingerprint compounds based on human stem cells' multipotency, leading to understanding of stem cell biology.

  3. Bioactive Compounds of Cold-pressed Thyme (Thymus vulgaris) Oil with Antioxidant and Antimicrobial Properties.

    Science.gov (United States)

    Assiri, Adel M A; Elbanna, Khaled; Abulreesh, Hussein H; Ramadan, Mohamed Fawzy

    2016-01-01

    Herbs rich in bioactive phytochemicals were recognized to have biological activities and possess many health-promoting effects. In this work, cold-pressed thyme (Thymus vulgaris L.) oil (TO) was studied for its lipid classes, fatty acid profile, tocols and phenolics contents. Antioxidant activity and radical scavenging potential of TO against free radicals (DPPH(・) and galvinoxyl) was determined. Antimicrobial activity (AA) of TO against food borne bacteria, food spoilage fungi and dermatophyte fungi were also evaluated. Neutral lipids accounted for the main lipid fraction in TO, followed by glycolipids and phospholipids. The major fatty acids in TO were linoleic, oleic, stearic, and palmitic. γ-Tocopherol (60.2% of total tocols) followed by α-tocotrienol (26.9%) and α-tocopherol (9.01% of total tocols) were the main tocols. TO contained high amounts of phenolic compounds (7.3 mg/g as GAE). TO had strong antiradical action wherein 65% of DPPH(・) radicals and 55% of galvinoxyl radical were quenched after 60 min of incubation. Rancimat assay showed that induction time (IT) for TO: sunflower oil blend (1:9, w/w) was 6.5 h, while TO: sunflower oil blend (2:8, w/w) recorded higher IT (9 h). TO inhibited the growth of all tested microorganisms. TO exhibited various degrees of AA against different food borne bacteria, food spoilage fungi and dermatophyte fungi, wherein the highest AA was recorded against dermatophyte fungi and yeasts including T. mentagrophytes (62 mm), T. rubrum (40 mm), and C. albicans (20 mm) followed by food spoilage fungi including A. flavus (32 mm) with minimal lethal concentrations (MLC) ranging between 80 to 320 μg/mL. Furthermore, TO exhibited broad-spectra activity against food borne bacteria including S. aureus (30 mm), E. coli (25 mm) and L. Monocytogenes (20 mm) with MLC ranging between 160 to 320 μg/mL. The results suggest that TO could be used economically as a valuable natural product with novel functional properties in food

  4. Evaluation of Bioactive Compounds, Pharmaceutical Quality, and Anticancer Activity of Curry Leaf (Murraya koenigii L.

    Directory of Open Access Journals (Sweden)

    Ali Ghasemzadeh

    2014-01-01

    Full Text Available In this study, we investigated some bioactive compounds and pharmaceutical qualities of curry leaf (Murraya koenigii L. extracts from three different locations in Malaysia. The highest TF and total phenolic (TP contents were observed in the extracts from Kelantan (3.771 and 14.371 mg/g DW, followed by Selangor (3.146 and 12.272 mg/g DW and Johor (2.801 and 12.02 mg/g DW, respectively. High quercetin (0.350 mg/g DW, catechin (0.325 mg/g DW, epicatechin (0.678 mg/g DW, naringin (0.203 mg/g DW, and myricetin (0.703 mg/g DW levels were observed in the extracts from Kelantan, while the highest rutin content (0.082 mg/g DW was detected in the leaves from Selangor. The curry leaf extract from Kelantan exhibited higher concentration of gallic acid (0.933 mg/g DW than that from Selangor (0.904 mg/g DW and Johor (0.813 mg/g DW. Among the studied samples, the ones from Kelantan exhibited the highest radical scavenging activity (DPPH, 66.41% and ferric reduction activity potential (FRAP, 644.25 μm of Fe(II/g followed by those from Selangor (60.237% and 598.37 μm of Fe(II/g and Johor (50.76% and 563.42 μm of Fe(II/g, respectively. A preliminary screening showed that the curry leaf extracts from all the locations exhibited significant anticarcinogenic effects inhibiting the growth of breast cancer cell line (MDA-MB-231 and maximum inhibition of MDA-MB-231 cell was observed with the curry leaf extract from Kelantan. Based on these results, it is concluded that Malaysian curry leaf collected from the North (Kelantan might be potential source of potent natural antioxidant and beneficial chemopreventive agents.

  5. Screening of antimicrobial, antioxidant properties and bioactive compounds of some edible mushrooms cultivated in Bangladesh.

    Science.gov (United States)

    Chowdhury, Mohammed; Kubra, Khadizatul; Ahmed, Sheikh

    2015-02-07

    For a long time mushrooms have been playing an important role in several aspects of the human activity. Recently edible mushrooms are used extensively in cooking and make part of new food in Bangladesh for their beneficial properties. The aim of this study is to screen some values of mushrooms used in Bangladesh. Methanolic extracts of 3 edible mushrooms (Pleurotus ostreatus, Lentinula edodes, Hypsizigus tessulatus) isolated from Chittagong, Bangladesh were used in this study. Phenolic compounds in the mushroom methanolic extracts were estimated by a colorimetric assay. The antioxidant activity was determined by radical 1, 1-diphenyl;-2-picrylhydrazyl (DPPH) radical scavenging assay. Eight microbial isolates were used for antimicrobial activity of methanolic extract of mushrooms by the agar well diffusion method with slight modification. Determination of antimicrobial activity indicated considerable activity against all bacteria and fungi reveling zone of inhibition ranged from 7 ± 0.2 to 20 ± 0.1 mm. Minimum inhibitory concentration values of the extracts showed that they are also active even in least concentrations ranged from 1 mg/ml to 9 mg/ml. Lentinula edodes showed the best antimicrobial activity than others. Pseudomonas aeruginosa was quite resistant and Saccharomyces cerevisiae was more sensitive than others microbial isolates. Antioxidant efficiency by inhibitory concentration on 1,1-Diphenly-2-picrylhydrazyl (DPPH) was found significant when compared to standard antioxidant like ascorbic Acid . The concentration (IC50) ranged from 100 ± 1.20 to 110 ± 1.24 μg/ml. Total phenols are the major bioactive component found in extracts of isolates expressed as mg of GAE per gram of fruit body, which ranged from 3.20 ± 0.05 to 10.66 ± 0.52 mg/ml. Average concentration of flavonoid ranged from 2.50 ± 0.008 mg/ml to 4.76 ± 0.11 mg/ml; followed by very small concentration of ascorbic acid (range, 0.06 ± 0.00 mg/ml to 0

  6. Effects of high hydrostatic pressure and thermal processing on bioactive compounds, antioxidant activity, and volatile profile of mulberry juice.

    Science.gov (United States)

    Wang, Fan; Du, Bao-Lei; Cui, Zheng-Wei; Xu, Li-Ping; Li, Chun-Yang

    2017-03-01

    The aim of this study was to investigate the effects of high hydrostatic pressure and thermal processing on microbiological quality, bioactive compounds, antioxidant activity, and volatile profile of mulberry juice. High hydrostatic pressure processing at 500 MPa for 10 min reduced the total viable count from 4.38 log cfu/ml to nondetectable level and completely inactivated yeasts and molds in raw mulberry juice, ensuring the microbiological safety as thermal processing at 85 ℃ for 15 min. High hydrostatic pressure processing maintained significantly (p juice than thermal processing. The main volatile compounds of mulberry juice were aldehydes, alcohols, and ketones. High hydrostatic pressure processing enhanced the volatile compound concentrations of mulberry juice while thermal processing reduced them in comparison with the control. These results suggested that high hydrostatic pressure processing could be an alternative to conventional thermal processing for production of high-quality mulberry juice.

  7. Atropisomerism: the effect of the axial chirality in bioactive compounds; Atropoisomerismo: o efeito da quiralidade axial em substancias bioativas

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Anderson Rouge dos; Pinheiro, Alessandra Campbell; Sodero, Ana Carolina Renno; Cunha, Andrea Sousa da; Padilha, Monica Costa; Sousa, Priscila Mesquita de; Fontes, Silvia Paredes [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Quimica. Dept. de Quimica Organica; Veloso, Marcia Paranho [Universidade Federal de Alfenas, MG (Brazil); Fraga, Carlos Alberto Manssour [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Faculdade de Farmacia. Lab. de Avaliacao e Sintese de Substancias Bioativas (LASSBio)]. E-mail: cmfraga@pharma.ufrj.br

    2007-01-15

    Atropisomerism is a special kind of stereoisomeric relationship that arises from the freezing of a certain conformation of an organic molecule, associated with a high rotational barrier about a single covalent bond. Atropisomerism has been originally described in orto-functionalized biphenyl derivatives, but a lot of other organic functionalities can present this structural phenomenon, characterized by the presence of chiral properties in compounds that do not present classical stereogenic centers. Atropisomeric compounds, intermediates and catalysts have well-know importance in organic synthesis, but the influence of the axial chirality in substances able to modulate biological systems is still not very exploited in drug design and development. In this context, the present account describes the importance of this structural property in the medicinal chemistry of different classes of bioactive compounds or therapeutic agents, emphasizing how atropisomerism could affect the molecular recognition of a ligand or a prototype by the target bioreceptor. (author)

  8. Inoculation of the nonlegume Capsicum annuum (L.) with Rhizobium strains. 1. Effect on bioactive compounds, antioxidant activity, and fruit ripeness.

    Science.gov (United States)

    Silva, Luís R; Azevedo, Jessica; Pereira, Maria J; Carro, Lorena; Velazquez, Encarna; Peix, Alvaro; Valentão, Patrícia; Andrade, Paula B

    2014-01-22

    Pepper (Capsicum annuum L.) is an economically important agricultural crop and an excellent dietary source of natural colors and antioxidant compounds. The levels of these compounds can vary according to agricultural practices, like inoculation with plant growth-promoting rhizobacteria. In this work we evaluated for the first time the effect of the inoculation of two Rhizobium strains on C. annuum metabolites and bioactivity. The results revealed a decrease of organic acids and no effect on phenolics and capsaicinoids of leaves from inoculated plants. In the fruits from inoculated plants organic acids and phenolic compounds decreased, showing that fruits from inoculated plants present a higher ripeness stage than those from uninoculated ones. In general, the inoculation with Rhizobium did not improve the antioxidant activity of pepper fruits and leaves. Considering the positive effect on fruit ripening, the inoculation of C. annuum with Rhizobium is a beneficious agricultural practice for this nonlegume.

  9. Bioactive compounds and scavenging capacity of extracts from different parts of Vismia cauliflora against reactive oxygen and nitrogen species.

    Science.gov (United States)

    Ribeiro, Alessandra Braga; Berto, Alessandra; Chisté, Renan Campos; Freitas, Marisa; Visentainer, Jesuí V; Fernandes, Eduarda

    2015-01-01

    Vismia cauliflora A.C.Sm. [Hypericaceae (Clusiaceae)] is a plant from Amazonian forest. It is used by Amerindians to treat dermatosis and inflammatory processes in the skin and has been considered an interesting source of bioactive compounds. We evaluated the scavenging capacity of extracts from V. cauliflora (leaf, branch, stem bark, flower, and whole fruit) against reactive oxygen (ROS) and nitrogen species (RNS), namely, superoxide radical ([Formula: see text]), hydrogen peroxide (H2O2), hypochlorous acid (HOCl), singlet oxygen ((1)O2), nitric oxide ((•)NO), and peroxynitrite (ONOO(-)). In addition, for the first time, the profile of phenolic compounds and carotenoids was determined. The scavenging capacities of each extract were determined using specific probes (fluorescent, colorimetric, and chemiluminescent) to detect different reactive species ((1)O2, HOCl, H2O2, [Formula: see text], (•)NO, and ONOO(-)). The identification and the quantification of phenolic compounds and carotenoids were carried out by HPLC-DAD-ESI-MS/MS and HPLC-DAD, respectively. (-)-Epicatechin and proanthocyanidin dimers and trimer were the major phenolic compounds tentatively identified in leaf, branch, stem bark, and flower extracts, while dihydroxybenzoic acids were the major compounds in whole fruit extracts. All-trans-zeinoxanthin and all-trans-β-carotene were the major carotenoids tentatively identified in leaf extracts. All extracts of V. cauliflora showed high efficiency against all tested ROS and RNS, although flower and stem bark extracts exhibited the most remarkable scavenging capacity, especially for (•)NO and ONOO(-). Vismia cauliflora has great potential to be used in the development of phytopharmaceutical products due to its characteristic of being a promising source of bioactive compounds with high antioxidant properties.

  10. Evaluation of cytotoxicity of Moringa oleifera Lam. callus and leaf extracts on Hela cells

    Directory of Open Access Journals (Sweden)

    Abbas Jafarain

    2014-01-01

    Full Text Available Background: There are considerable attempts worldwide on herbal and traditional compounds to validate their use as anti-cancer drugs. Plants from Moringaceae family including Moringa oleifera possess several activities such as antitumor effect on tumor cell lines. In this study we sought to determine if callus and leaf extracts of M. oleifera possess any cytotoxicity. Materials and Methods: Ethanol-water (70-30 extracts of callus and leaf of M. oleifera were prepared by maceration method. The amount of phenolic compounds of the extracts was determined by Folin Ciocalteu method. The cytotoxicity of the extracts against Hela tumor cells was carried out using MTT assay. Briefly, cells were seeded in microplates and different concentrations of the extract were added. Cells were incubated for 48 h and their viability was evaluated by addition of tetrazolium salt solution. After 3 h medium was aspirated, dimethyl sulfoxide was added and absorbance was determined at 540 nm with an ELISA plate reader. Cytotoxicity was considered when more than 50% reduction on cell survival was observed. Results: Callus and leaf extracts of M. oleifera significantly decreased the viability of Hela cells in a concentration-dependent manner. However, leaf extract of M. oleifera were more potent than that of callus extract. Conclusion: As the content of phenolic compounds of leaf extract was higher than that of callus extract, it can be concluded that phenolic compounds are involved in the cytotoxicity of M. oleifera.

  11. Discovery Strategies of Bioactive Compounds Synthesized by Nonribosomal Peptide Synthetases and Type-I Polyketide Synthases Derived from Marine Microbiomes

    Directory of Open Access Journals (Sweden)

    Grigoris D. Amoutzias

    2016-04-01

    Full Text Available Considering that 70% of our planet’s surface is covered by oceans, it is likely that undiscovered biodiversity is still enormous. A large portion of marine biodiversity consists of microbiomes. They are very attractive targets of bioprospecting because they are able to produce a vast repertoire of secondary metabolites in order to adapt in diverse environments. In many cases secondary metabolites of pharmaceutical and biotechnological interest such as nonribosomal peptides (NRPs and polyketides (PKs are synthesized by multimodular enzymes named nonribosomal peptide synthetases (NRPSes and type-I polyketide synthases (PKSes-I, respectively. Novel findings regarding the mechanisms underlying NRPS and PKS evolution demonstrate how microorganisms could leverage their metabolic potential. Moreover, these findings could facilitate synthetic biology approaches leading to novel bioactive compounds. Ongoing advances in bioinformatics and next-generation sequencing (NGS technologies are driving the discovery of NRPs and PKs derived from marine microbiomes mainly through two strategies: genome-mining and metagenomics. Microbial genomes are now sequenced at an unprecedented rate and this vast quantity of biological information can be analyzed through genome mining in order to identify gene clusters encoding NRPSes and PKSes of interest. On the other hand, metagenomics is a fast-growing research field which directly studies microbial genomes and their products present in marine environments using culture-independent approaches. The aim of this review is to examine recent developments regarding discovery strategies of bioactive compounds synthesized by NRPS and type-I PKS derived from marine microbiomes and to highlight the vast diversity of NRPSes and PKSes present in marine environments by giving examples of recently discovered bioactive compounds.

  12. Discovery Strategies of Bioactive Compounds Synthesized by Nonribosomal Peptide Synthetases and Type-I Polyketide Synthases Derived from Marine Microbiomes.

    Science.gov (United States)

    Amoutzias, Grigoris D; Chaliotis, Anargyros; Mossialos, Dimitris

    2016-04-16

    Considering that 70% of our planet's surface is covered by oceans, it is likely that undiscovered biodiversity is still enormous. A large portion of marine biodiversity consists of microbiomes. They are very attractive targets of bioprospecting because they are able to produce a vast repertoire of secondary metabolites in order to adapt in diverse environments. In many cases secondary metabolites of pharmaceutical and biotechnological interest such as nonribosomal peptides (NRPs) and polyketides (PKs) are synthesized by multimodular enzymes named nonribosomal peptide synthetases (NRPSes) and type-I polyketide synthases (PKSes-I), respectively. Novel findings regarding the mechanisms underlying NRPS and PKS evolution demonstrate how microorganisms could leverage their metabolic potential. Moreover, these findings could facilitate synthetic biology approaches leading to novel bioactive compounds. Ongoing advances in bioinformatics and next-generation sequencing (NGS) technologies are driving the discovery of NRPs and PKs derived from marine microbiomes mainly through two strategies: genome-mining and metagenomics. Microbial genomes are now sequenced at an unprecedented rate and this vast quantity of biological information can be analyzed through genome mining in order to identify gene clusters encoding NRPSes and PKSes of interest. On the other hand, metagenomics is a fast-growing research field which directly studies microbial genomes and their products present in marine environments using culture-independent approaches. The aim of this review is to examine recent developments regarding discovery strategies of bioactive compounds synthesized by NRPS and type-I PKS derived from marine microbiomes and to highlight the vast diversity of NRPSes and PKSes present in marine environments by giving examples of recently discovered bioactive compounds.

  13. Physico-chemical parameters, bioactive compounds and microbial quality of thermo-sonicated carrot juice during storage.

    Science.gov (United States)

    Martínez-Flores, Héctor E; Garnica-Romo, Ma Guadalupe; Bermúdez-Aguirre, Daniela; Pokhrel, Prashant Raj; Barbosa-Cánovas, Gustavo V

    2015-04-01

    Thermosonication has been successfully tested in food for microbial inactivation; however, changes in bioactive compounds and shelf-life of treated products have not been thoroughly investigated. Carrot juice was thermo-sonicated (24 kHz, 120 μm amplitude) at 50 °C, 54 °C and 58 °C for 10 min (acoustic power 2204.40, 2155.72, 2181.68 mW/mL, respectively). Quality parameters and microbial growth were evaluated after processing and during storage at 4 °C. Control and sonicated treatments at 50 °C and 54 °C had 10, 12 and 14 d of shelf-life, respectively. Samples sonicated at 58 °C had the best quality; microbial growth remained low at around 3-log for mesophiles, 4.5-log for yeasts and molds and 2-log for enterobacteria after 20 d of storage. Furthermore, thermo-sonicated juice at 58 °C retained >98% of carotenoids and 100% of ascorbic acid. Phenolic compounds increased in all stored, treated juices. Thermo-sonication is therefore a promising technology for preserving the quality of carrot juice by minimising the physicochemical changes during storage, retarding microbial growth and retaining the bioactive compounds.

  14. Effect of thermal processing on the profile of bioactive compounds and antioxidant capacity of fermented orange juice.

    Science.gov (United States)

    Escudero-López, Blanca; Cerrillo, Isabel; Gil-Izquierdo, Ángel; Hornero-Méndez, Dámaso; Herrero-Martín, Griselda; Berná, Genoveva; Medina, Sonia; Ferreres, Federico; Martín, Franz; Fernández-Pachón, María-Soledad

    2016-11-01

    Previously, we reported that alcoholic fermentation enhanced flavanones and carotenoids content of orange juice. The aim of this work was to evaluate the influence of pasteurization on the qualitative and quantitative profile of bioactive compounds and the antioxidant capacity of fermented orange juice. Ascorbic acid (203 mg/L), total flavanones (647 mg/L), total carotenoids (7.07 mg/L) and provitamin A (90.06 RAEs/L) values of pasteurized orange beverage were lower than those of fermented juice. Total phenolic remained unchanged (585 mg/L) and was similar to that of original juice. The flavanones naringenin-7-O-glucoside, naringenin-7-O-rutinoside, hesperetin-7-O-rutinoside, hesperetin-7-O-glucoside and isosakuranetin-7-O-rutinoside, and the carotenoids karpoxanthin and isomer, neochrome, lutein, ζ-carotene, zeaxanthin, mutatoxanthin epimers, β-cryptoxanthin and auroxanthin epimers were the major compounds. Pasteurization produced a decrease in antioxidant capacity of fermented juice. However, TEAC (5.45 mM) and ORAC (6353 μM) values of orange beverage were similar to those of original orange juice. The novel orange beverage could be a valuable source of bioactive compounds with antioxidant capacity and exert potential beneficial effects.

  15. Laser alloying of Ti–Si compound coating on Ti–6Al–4V alloy for the improvement of bioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y. [State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, Wuhan 430079 (China); Wang, A.H., E-mail: ahwang@mail.hust.edu.cn [State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhang, Z.; Zheng, R.R. [State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Xia, H.B.; Wang, Y.N. [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, Wuhan 430079 (China)

    2014-06-01

    Laser alloying of Ti–Si compound coating on Ti–6Al–4V alloy is carried out by a pulsed Nd:YAG laser. The corresponding microstructure, phase structure, microhardness profiles, corrosion properties and bioactivity of the laser-alloyed coatings are investigated to optimize the atomic ratio of Ti–Si. The laser alloyed Ti–Si compound coatings are free of cracks, and primarily present block-like crystals, lath-like crystals and dendrite crystals. The phase structures of both laser-alloyed Ti + Si and 5Ti + 3Si coatings are mainly consisted of α-Ti and Ti{sub 5}Si{sub 3}, while the laser-alloyed Si coating is mainly consisted of TiSi{sub 2} and Ti{sub 5}Si{sub 3}. Microhardness test indicates that the laser-alloyed Si coating has the highest microhardness. Also, corrosion resistance measurement reveals that the corrosion resistance of the laser-alloyed Si coating is much better than that of the Ti–6Al–4V alloy. Evaluation of bioactivity shows that cell growth on the laser-alloyed Si coating with high volume fraction of Ti–Si compounds is faster than that of the Ti–6Al–4V alloy.

  16. Screening of minor bioactive compounds from herbal medicines by in silico docking and the trace peak exposure methods.

    Science.gov (United States)

    Wu, Bin; Song, Hui-Peng; Zhou, Xu; Liu, Xin-Guang; Gao, Wen; Dong, Xin; Li, Hui-Jun; Li, Ping; Yang, Hua

    2016-03-04

    Screening of high potent enzyme inhibitors from herbal medicines is always lacking of efficiency due to the complexity of chemicals. The constituents responsible for the holistic effect may be trace-level chemicals, but these chemicals were covered by highly abundant compositions. To challenge this bottleneck, a strategy for screening minor bioactive compounds was proposed. It generally included four steps, (1) preliminarily find the enzyme binders by ultrafiltration; (2) optimise and predict the potential inhibitors by docking analysis; (3) selectively identify and prepare trace compounds by segment and exposure approach; (4) validate the activity and summarize the structure-activity relationship. As a case study, α-glucosidase (AGH) and Ginkgo biloba extract were used as the experimental materials. By comprehensive screening, 11 trace flavones were screened out and identified as strong AGH inhibitors. Among them, AGH inhibitory activities of syringetin and sciadopitysin were reported for the first time. Their IC50 values were 36.80 and 8.29μM, respectively, which were lower than that of a positive control acarbose. In addition, the AGH inhibitory activities of the flavonoids could be ranked, based on a decreased order, as biflavone, flavone, flavone glycoside, flavone biglycoside. The strategy is expected to be practical and useful for screening bioactive molecules from herbal medicines, especially for the minor compounds, which will definitely accelerate the discovery of new drug candidates.

  17. Rescuing compound bioactivity in a secondary cell-based screening by using γ-cyclodextrin as a molecular carrier

    Science.gov (United States)

    Claveria-Gimeno, Rafael; Vega, Sonia; Grazu, Valeria; de la Fuente, Jesús M; Lanas, Angel; Velazquez-Campoy, Adrian; Abian, Olga

    2015-01-01

    In vitro primary screening for identifying bioactive compounds (inhibitors, activators or pharmacological chaperones) against a protein target results in the discovery of lead compounds that must be tested in cell-based efficacy secondary screenings. Very often lead compounds do not succeed because of an apparent low potency in cell assays, despite an excellent performance in primary screening. Primary and secondary screenings differ significantly according to the conditions and challenges the compounds must overcome in order to interact with their intended target. Cellular internalization and intracellular metabolism are some of the difficulties the compounds must confront and different strategies can be envisaged for minimizing that problem. Using a novel screening procedure we have identified 15 compounds inhibiting the hepatitis C NS3 protease in an allosteric fashion. After characterizing biophysically the interaction with the target, some of the compounds were not able to inhibit viral replication in cell assays. In order to overcome this obstacle and potentially improve cellular internalization three of these compounds were complexed with γ-cyclodextrin. Two of them showed a five- and 16-fold activity increase, compared to their activity when delivered as free compounds in solution (while γ-cyclodextrin did not show antiviral activity by itself). The most remarkable result came from a third compound that showed no antiviral activity in cell assays when delivered free in solution, but its γ-cyclodextrin complex exhibited a 50% effective concentration of 5 μM. Thus, the antiviral activity of these compounds can be significantly improved, even completely rescued, using γ-cyclodextrin as carrier molecule. PMID:25834436

  18. A comparison of bioactive compounds of strawberry fruit from Europe affected by genotype and latitude

    DEFF Research Database (Denmark)

    Josuttis, M.; Carlen, C.; Nestby, R.

    2012-01-01

    The effect of four different growing locations from Stjørdal, Norway (63°36'N) to Conthey, Switzerland (46°12'N) on the composition of bioactives in strawberry (Fragaria × ananassa Duch.) of three genotypes (cvs Clery, Elsanta and Korona) was evaluated. Principal component analysis (PCA) was used...

  19. Optimized Solid Phase-Assisted Synthesis of Dendrons Applicable as Scaffolds for Radiolabeled Bioactive Multivalent Compounds Intended for Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Gabriel Fischer

    2014-05-01

    Full Text Available Dendritic structures, being highly homogeneous and symmetric, represent ideal scaffolds for the multimerization of bioactive molecules and thus enable the synthesis of compounds of high valency which are e.g., applicable in radiolabeled form as multivalent radiotracers for in vivo imaging. As the commonly applied solution phase synthesis of dendritic scaffolds is cumbersome and time-consuming, a synthesis strategy was developed that allows for the efficient assembly of acid amide bond-based highly modular dendrons on solid support via standard Fmoc solid phase peptide synthesis protocols. The obtained dendritic structures comprised up to 16 maleimide functionalities and were derivatized on solid support with the chelating agent DOTA. The functionalized dendrons furthermore could be efficiently reacted with structurally variable model thiol-bearing bioactive molecules via click chemistry and finally radiolabeled with 68Ga. Thus, this solid phase-assisted dendron synthesis approach enables the fast and straightforward assembly of bioactive multivalent constructs for example applicable as radiotracers for in vivo imaging with Positron Emission Tomography (PET.

  20. ePlantLIBRA: A composition and biological activity database for bioactive compounds in plant food supplements.

    Science.gov (United States)

    Plumb, J; Lyons, J; Nørby, K; Thomas, M; Nørby, E; Poms, R; Bucchini, L; Restani, P; Kiely, M; Finglas, P

    2016-02-15

    The newly developed ePlantLIBRA database is a comprehensive and searchable database, with up-to-date coherent and validated scientific information on plant food supplement (PFS) bioactive compounds, with putative health benefits as well as adverse effects, and contaminants and residues. It is the only web-based database available compiling peer reviewed publications and case studies on PFS. A user-friendly, efficient and flexible interface has been developed for searching, extracting, and exporting the data, including links to the original references. Data from over 570 publications have been quality evaluated and entered covering 70 PFS or their botanical ingredients.

  1. Prebiotic activity score and bioactive compounds in longan (Dimocarpus longan Lour.): influence of pectinase in enzyme-assisted extraction.

    Science.gov (United States)

    Thitiratsakul, Boossara; Anprung, Pranee

    2014-09-01

    The optimal extraction of bioactive compounds from longan fruit pulp using Pectinex® Ultra SP-L pectinase hydrolysis of the fruit homogenate was evaluated. The highest degree of hydrolysis (DH), as determined by the amount of reducing sugars released from the longan pulp, was obtained at a pectinase concentration of 2.5 % (v/w) (257 polygalacturonase units/g fruit) for 4 h. The level of bioactive compounds obtained from the pectinase-treated longan pulp increased with increasing DH to a maximum at the highest DH (21 %) obtained, with an antioxidant activity of 0.083 EC50 μg fresh mass (FM)/μg diphenyl-(2,4,6-trinitrophenyl)iminoazanium and 92.7 μM Trolox equivalent/g FM, respectively. The total phenolic and flavonoid contents in the 21 % DH extract were 196.0 mg gallic acid equivalents/g FM and 19.6 mg catechin equivalents/g FM, respectively. The 21 % DH longan extract showed an enhanced (3.6- to 4.0-fold) inhibition of lipid peroxidation of oil compared to the untreated (0 % DH) extract. In addition, the 21 % DH longan extract had the highest soluble dietary fiber content, which was related to the decreased particle size of 345 μM, and displayed enhanced prebiotic activity scores of 1.69 and 1.44 for Lactobacillus acidophilus La5 and Bifidabacterium lactis Bb12, respectively. Most of the 33 detected volatile compounds differed in their relative proportions after enzymic extraction (15 increased, 15 decreased with three showing no significant change) with the 0 % and 21 % DH hydrolysates exhibiting 25 and 22 different volatile compounds, respectively, with 11 and eight unique compounds between them, respectively.

  2. Brazilian savanna fruits contain higher bioactive compounds content and higher antioxidant activity relative to the conventional red delicious apple.

    Directory of Open Access Journals (Sweden)

    Egle Machado de Almeida Siqueira

    Full Text Available The bioactive compounds content and the antioxidant activity (AA of twelve fruits native to the Cerrado were compared with the Red Delicious apple by means of the antiradical efficiency (using the 2,2-diphenyl-1-picrylhydrazil assay/DPPH, ferric reducing antioxidant power (FRAP and the β-carotene/linoleic system. The antiradical efficiency (AE and the kinetic parameters (Efficient concentration/EC50 and time needed to reach the steady state to EC50 concentration/TEC50 of the DPPH curve were also evaluated for comparison with the Trolox equivalent (TE values. A strong, significant and positive correlation was observed between the TE and AE values, whereas a weak and negative correlation was observed between TE and EC50, suggesting that the values of AE and TE are more useful for the determination of antiradical activity in fruits than the widely used EC50. The total phenolic content found in the fruits corresponded positively to their antioxidant activity. The high content of bioactive compounds (flavanols, anthocyanins or vitamin C relative to the apple values found in araticum, cagaita, cajuzinho, jurubeba, lobeira, magaba and tucum corresponded to the high antioxidant activity of these fruits. Flavanols and anthocyanins may be the main bioactive components in these Cerrado fruits. The daily consumption of at least seven of the twelve Cerrado fruits studied, particularly, araticum, cagaita, lobeira and tucum, may confer protection against oxidative stress, and thus, they may prevent chronic diseases and premature aging. The findings of this study should stimulate demand, consumption and cultivation of Cerrado fruits and result in sustainable development of the region where this biome dominates.

  3. Anti-inflammatory activity of aqueous extract and bioactive compounds identified from the fruits of Hancornia speciosa Gomes (Apocynaceae).

    Science.gov (United States)

    Torres-Rêgo, Manoela; Furtado, Allanny Alves; Bitencourt, Mariana Angélica Oliveira; Lima, Maira Conceição Jerônimo de Souza; Andrade, Rafael Caetano Lisbôa Castro de; Azevedo, Eduardo Pereira de; Soares, Thaciane da Cunha; Tomaz, José Carlos; Lopes, Norberto Peporine; da Silva-Júnior, Arnóbio Antônio; Zucolotto, Silvana Maria; Fernandes-Pedrosa, Matheus de Freitas

    2016-08-05

    Hancornia speciosa Gomes (Apocynaceae), popularly known as "mangabeira," has been used in folk medicine to treat inflammatory disorders, hypertension, dermatitis, diabetes, liver diseases and gastric disorders. Although the ethnobotany indicates that its fruits can be used for the treatment of ulcers and inflammatory disorders, only few studies have been conducted to prove such biological activities. This study investigated the anti-inflammatory properties of the aqueous extract of the fruits of H. speciosa Gomes as well as its bioactive compounds using in vivo experimental models. The bioactive compounds were identified by High Performance Liquid Chromatography coupled with diode array detector (HPLC-DAD) and Liquid Chromatography coupled with Mass Spectrometry (LC-MS). The anti-inflammatory properties were investigated through in vivo tests, which comprised xylene-induced ear edema, carrageenan-induced peritonitis and zymosan-induced air pouch. The levels of IL-1β, IL-6, IL-12 and TNF-α were determined using ELISA. Rutin and chlorogenic acid were identified in the extract as the main secondary metabolites. In addition, the extract as well as rutin and chlorogenic acid significantly inhibited the xilol-induced ear edema and also reduced the cell migration in both carrageenan-induced peritonitis and zymosan-induced air pouch models. Reduced levels of cytokines were also observed. This is the first study that demonstrated the anti-inflammatory activity of the extract of H. speciosa fruits against different inflammatory agents in animal models, suggesting that its bioactive molecules, especially rutin and chlorogenic acid are, at least in part, responsible for such activity. These findings support the widespread use of Hancornia speciosa in popular medicine and demonstrate that its aqueous extract has therapeutical potential for the development of herbal drugs with anti-inflammatory properties.

  4. Brazilian savanna fruits contain higher bioactive compounds content and higher antioxidant activity relative to the conventional red delicious apple.

    Science.gov (United States)

    Siqueira, Egle Machado de Almeida; Rosa, Fernanda Ribeiro; Fustinoni, Adriana Medeiros; de Sant'Ana, Lívia Pimentel; Arruda, Sandra Fernandes

    2013-01-01

    The bioactive compounds content and the antioxidant activity (AA) of twelve fruits native to the Cerrado were compared with the Red Delicious apple by means of the antiradical efficiency (using the 2,2-diphenyl-1-picrylhydrazil assay/DPPH), ferric reducing antioxidant power (FRAP) and the β-carotene/linoleic system. The antiradical efficiency (AE) and the kinetic parameters (Efficient concentration/EC50 and time needed to reach the steady state to EC50 concentration/TEC50) of the DPPH curve were also evaluated for comparison with the Trolox equivalent (TE) values. A strong, significant and positive correlation was observed between the TE and AE values, whereas a weak and negative correlation was observed between TE and EC50, suggesting that the values of AE and TE are more useful for the determination of antiradical activity in fruits than the widely used EC50. The total phenolic content found in the fruits corresponded positively to their antioxidant activity. The high content of bioactive compounds (flavanols, anthocyanins or vitamin C) relative to the apple values found in araticum, cagaita, cajuzinho, jurubeba, lobeira, magaba and tucum corresponded to the high antioxidant activity of these fruits. Flavanols and anthocyanins may be the main bioactive components in these Cerrado fruits. The daily consumption of at least seven of the twelve Cerrado fruits studied, particularly, araticum, cagaita, lobeira and tucum, may confer protection against oxidative stress, and thus, they may prevent chronic diseases and premature aging. The findings of this study should stimulate demand, consumption and cultivation of Cerrado fruits and result in sustainable development of the region where this biome dominates.

  5. Effects of bioactive compounds from carrots (Daucus carota L.), polyacetylenes, beta-carotene and lutein on human lymphoid leukaemia cells.

    Science.gov (United States)

    Zaini, Rana G; Brandt, Kirsten; Clench, Malcolm R; Le Maitre, Christine L

    2012-07-01

    New therapies for leukaemia are urgently needed. Carrots have been suggested as a potential treatment for leukaemia in traditional medicine and have previously been studied in other contexts as potential sources of anticancer agents. Indicating that carrots may contain bioactive compounds, which may show potential in leukaemia therapies. This study investigated the effects of five fractions from carrot juice extract (CJE) on human lymphoid leukaemia cell lines, together with five purified bioactive compounds found in Daucus carota L, including: three polyacetylenes (falcarinol, falcarindiol and falcarindiol-3-acetate) and two carotenoids (beta-carotene and lutein). Their effects on induction of apoptosis using Annexin V/PI and Caspase 3 activity assays analysed via flow cytometry and inhibition of cellular proliferation using Cell Titer Glo assay and cell cycle analysis were investigated. Treatment of all three lymphoid leukaemia cell lines with the fraction from carrot extracts which contained polyacetylenes and carotenoids was significantly more cytotoxic than the 4 other fractions. Treatments with purified polyacetylenes also induced apoptosis in a dose and time responsive manner. Moreover, falcarinol and falcarindiol-3-acetate isolated from Daucus carota L were more cytotoxic than falcarindiol. In contrast, the carotenoids showed no significant effect on either apoptosis or cell proliferation in any of the cells investigated. This suggests that polyacetylenes rather than beta-carotene or lutein are the bioactive components found in Daucus carota L and could be useful in the development of new leukemic therapies. Here, for the first time, the cytotoxic effects of polyacetylenes have been shown to be exerted via induction of apoptosis and arrest of cell cycle.

  6. ANALYSIS OF BIOACTIVE COMPOUNDS AND ANTIMICROBIAL ACTIVITY OF MARINE ALGAE KAPPAPHYCUS ALVAREZII USING THREE SOLVENT EXTRACTS

    Directory of Open Access Journals (Sweden)

    V. Prabha*, D.J. Prakash and P.N. Sudha

    2013-01-01

    Full Text Available The seaweeds are economically valuable resources, used as food, fodder, fertilizer and medicine and thus useful to mankind in many ways. In the present study, Kappaphycus alvarezii, a marine alga, has been analysed for the presence of bioactive products using three solvent extracts. Antimicrobial activity was also done using the same extracts of seaweed. The results revealed that the selected seaweed has active secondary metabolites and also exhibited antimicrobial activity, mainly in the methanolic extract of Kappaphycus alvarezii.

  7. ALTERNATIVES FOR PRESERVATION OF BIOACTIVE COMPOUNDS IN BLUEBERRY PULP: HEAT TREATMENT ASSOCIATED WITH THE ADDITION OF XANTHAN PRUNI

    Directory of Open Access Journals (Sweden)

    JÚLIA BORIN FIORAVANTE

    Full Text Available ABSTRACT In this study, to increase the preservation of phenolic bioactive compounds and antioxidant activity in blueberry pulp, heat treatment associated with addition of xanthan gum was used. A commercial mixture of blueberries (Powerblue, Climax and Bluegen cultivars was added with 0.08% (w/w citric acid and subjected to heat treatment by direct heating until 90 °C in conventional open pan (OP and by direct application of steam (AS; both with and without the addition of xanthan pruni (OPX and ASX, followed by pulping. Samples of only frozed fruits were considered as control. The five treatments remained under freezing and were evaluated until 90 days of storage for antioxidant activity, phenols, flavonoids and total monomeric anthocyanins. The results show that, with the exception of phenolics, heat treatment with direct steam application and xanthan addition favored bioactive compounds preservation during storage. These factors influenced positively on the anthocyanins stability during frozen storage for 90 days. The xanthan addition favored antioxidant activity preservation; preservation for antioxidant activity by ABTS and DPPH, in all heat treatments, was observed.

  8. Walnut Phenolic Extract and Its Bioactive Compounds Suppress Colon Cancer Cell Growth by Regulating Colon Cancer Stemness

    Directory of Open Access Journals (Sweden)

    Jisoo Lee

    2016-07-01

    Full Text Available Walnut has been known for its health benefits, including anti-cardiovascular disease and anti-oxidative properties. However, there is limited evidence elucidating its effects on cancer stem cells (CSCs which represent a small subset of cancer cells that provide resistance against chemotherapy. This study aimed to evaluate the anti-CSCs potential of walnut phenolic extract (WPE and its bioactive compounds, including (+-catechin, chlorogenic acid, ellagic acid, and gallic acid. In the present study, CD133+CD44+ cells were isolated from HCT116 cells using fluorescence-activated cell sorting (FACS and then treated with WPE. As a result, survival of the CD133+CD44+ HCT116 cells was inhibited and cell differentiation was induced by WPE. In addition, WPE down-regulated the CSC markers, CD133, CD44, DLK1, and Notch1, as well as the β-catenin/p-GSK3β signaling pathway. WPE suppressed the self-renewal capacity of CSCs. Furthermore, the WPE exhibited stronger anti-CSC effects than its individual bioactive compounds. Finally, the WPE inhibited specific CSC markers in primary colon cancer cells isolated from primary colon tumor. These results suggest that WPE can suppress colon cancer by regulating the characteristics of colon CSCs.

  9. Walnut Phenolic Extract and Its Bioactive Compounds Suppress Colon Cancer Cell Growth by Regulating Colon Cancer Stemness.

    Science.gov (United States)

    Lee, Jisoo; Kim, Yoo-Sun; Lee, JaeHwan; Heo, Seung Chul; Lee, Kook Lae; Choi, Sang-Woon; Kim, Yuri

    2016-07-21

    Walnut has been known for its health benefits, including anti-cardiovascular disease and anti-oxidative properties. However, there is limited evidence elucidating its effects on cancer stem cells (CSCs) which represent a small subset of cancer cells that provide resistance against chemotherapy. This study aimed to evaluate the anti-CSCs potential of walnut phenolic extract (WPE) and its bioactive compounds, including (+)-catechin, chlorogenic acid, ellagic acid, and gallic acid. In the present study, CD133⁺CD44⁺ cells were isolated from HCT116 cells using fluorescence-activated cell sorting (FACS) and then treated with WPE. As a result, survival of the CD133⁺CD44⁺ HCT116 cells was inhibited and cell differentiation was induced by WPE. In addition, WPE down-regulated the CSC markers, CD133, CD44, DLK1, and Notch1, as well as the β-catenin/p-GSK3β signaling pathway. WPE suppressed the self-renewal capacity of CSCs. Furthermore, the WPE exhibited stronger anti-CSC effects than its individual bioactive compounds. Finally, the WPE inhibited specific CSC markers in primary colon cancer cells isolated from primary colon tumor. These results suggest that WPE can suppress colon cancer by regulating the characteristics of colon CSCs.

  10. Evaluation of Agro-Industrial Co-Products as Source of Bioactive Compounds: Fiber, Antioxidants and Prebiotic

    Directory of Open Access Journals (Sweden)

    Hernández-Alcántara Annel M

    2016-12-01

    Full Text Available Agro-industrial co-products derived of fruit processing represents an important source of bioactive compounds as fiber, antioxidants and prebiotics. The objective of this work was to determine the content of fiber, antioxidant capacity and prebiotic activity of three flours obtained from commonly co-products (banana peel, apple peel, and carrot bagasse. The results showed a higher total fiber content in carrot bagasse, and lower in apple peel. Significantly differences were found in antioxidant activity. Fruit co-products flours were a suitable carbon source increasing specific growth rate with a reduction in duplication time as compared to glucose. The prebiotic activity was positive in the three co-products, all flours survived at pH 1.0 and showed resistance to simulated gastric acid for about 60 min. Banana peel, apple peel and carrot bagasse showed to be a good source of bioactive compounds as fiber and antioxidants and can be used as prebiotics for lactic acid bacteria.

  11. Effect of microwave heating time on some bioactive compounds of parsley (Petroselinum crispum and dill (Anethum graveolens leaves

    Directory of Open Access Journals (Sweden)

    Sahar Mostafa Kamel

    2013-05-01

    Full Text Available The aim of this study was to assess the effect of microwave heating time on some bioactive compounds of parsley (Petroselinum crispum and dill (Anethum graveolens leaves. Water blended parsley and dill were heated for one, two and three min. Total phenols, chlorophyll, carotenoids, antioxidant activity and color indices were determined before and after treatment. Dill leaves had higher total phenols, chlorophyll, carotenoid and antioxidant activity (1287.00 mg / 100g, 33.97 mg/kg, 45.98 mg/kg and 48.14%, respectively than parsley leaves (1031.39 mg / 100g, 32.47 mg/kg, 40.00mg/kg and 40.10%, respectively. Total phenols and antioxidants activity of water blended parsley leaves were decreased after 2 min by 32.4 and 8%, as well as after 3 min by 80.2 and 38.27% respectively compared to the unheated sample. Meanwhile, total phenols and antioxidants activity of dill sample recorded 23.7and 30.3% decrease after 2 min reached to 33.0 and 54.8% after 3 min. This work indicated that most of the bioactive compounds of parsley and dill were stable only after one min of microwave heating, however, after 3 min of heating a marked decrease was observed in the tested parameters.

  12. The Effectiveness of a Bioactive Food Compound in the Lipid Control of Individuals with HIV/AIDS

    Science.gov (United States)

    dos Santos Ferreira, Rosângela; de Cássia Avellaneda Guimarães, Rita; Jardim Cury Pontes, Elenir Rose; Aragão do Nascimento, Valter; Aiko Hiane, Priscila

    2016-01-01

    Cardiovascular events due to decompensated lipid metabolism are commonly found in Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome (HIV/AIDS) patients using anti-retroviral therapy (HAART). Thus, the aim of this study was to identify the effect of a bioactive food compound (BFC) containing functional foods on individuals with HIV undergoing HAART. Particularly, this study aims to verify the clinical outcome in the change of the lipid profile due to the use of this compound. This study includes 115 individuals with HIV on HAART. All patients received dietary guidelines; however, sixty-one consumed BFC while fifty-one did not (NO BFC). Biochemical examinations and socio-demographic and clinical profiles were evaluated. As result, in patients using hypolipidemic and/or hypoglycemic drugs, there was 28.6% decrease in triglyceride levels (p HIV/AIDS patients using HAART are more vulnerable to lipid disorders. PMID:27740592

  13. The effect of bioactive compounds on in vitro and in vivo antioxidant activity of different berry juices.

    Directory of Open Access Journals (Sweden)

    Ana Slatnar

    Full Text Available BACKGROUND: Berry fruit is known for its high contents of various bioactive compounds. The latter constitute of anthocyanins, flavonols and flavanols and posses high antioxidative activity. The highly dynamic antioxidant system can be evaluated in vitro and in vivo in several model organisms. These measurements represent a good approximation of the real potential of bioactive compounds in the cells of higher eucarions. The aim of the study was thus to determine in vitro and in vivo antioxidant activity of different berry juices, which reportedly contain high amounts of phenolics. METHODOLOGY/PRINCIPAL FINDINGS: Five different berry species were collected from several locations in central Slovenia and juice was extracted from each species separately. Juice was assessed for their in vitro and in vivo antioxidant activity. Phenolic profiles of berries were determined with the use of a HPLC/MS system, in vitro antioxidant activity with the DPPH radical scavenging method and in vivo antioxidative activity using Saccharomyces cerevisiae. The highest diversity of individual phenols was detected for bilberry juice. The highest in vitro antioxidant capacity was determined for blackcurrant juice. A decrease in intracellular oxidation compared to control was observed in the following order: blackcurrant < chokeberry = blueberry < bilberry. The results indicate important differences in antioxidant activity of berry juices between in vitro and in vivo studies. CONCLUSION/SIGNIFICANCE: In addition to the total content of phenolic compounds entering the cells, a key factor determining antioxidative activity of berry juices is also the ratio between the compounds. Where high content levels of anthocyanins and very low content levels of flavonols and hydroxycinnamic acids were measured a lower intracellular oxidation has been detected. Specifically, intracellular oxidation increased with higher consumption of hydroxycinnamic acids and lower consumption of

  14. Redirecting photosynthetic electron flow into light-driven synthesis of alternative products including high-value bioactive natural compounds.

    Science.gov (United States)

    Lassen, Lærke Münter; Nielsen, Agnieszka Zygadlo; Ziersen, Bibi; Gnanasekaran, Thiyagarajan; Møller, Birger Lindberg; Jensen, Poul Erik

    2014-01-17

    Photosynthesis in plants, green algae, and cyanobacteria converts solar energy into chemical energy in the form of ATP and NADPH, both of which are used in primary metabolism. However, often more reducing power is generated by the photosystems than what is needed for primary metabolism. In this review, we discuss the development in the research field, focusing on how the photosystems can be used as synthetic biology building blocks to channel excess reducing power into light-driven production of alternative products. Plants synthesize a large number of high-value bioactive natural compounds. Some of the key enzymes catalyzing their biosynthesis are the cytochrome P450s situated in the endoplasmic reticulum. However, bioactive compounds are often synthesized in low quantities in the plants and are difficult to produce by chemical synthesis due to their often complex structures. Through a synthetic biology approach, enzymes with a requirement for reducing equivalents as cofactors, such as the cytochrome P450s, can be coupled directly to the photosynthetic energy output to obtain environmentally friendly production of complex chemical compounds. By relocating cytochrome P450s to the chloroplasts, reducing power can be diverted toward the reactions catalyzed by the cytochrome P450s. This provides a sustainable production method for high-value compounds that potentially can solve the problem of NADPH regeneration, which currently limits the biotechnological uses of cytochrome P450s. We describe the approaches that have been taken to couple enzymes to photosynthesis in vivo and to photosystem I in vitro and the challenges associated with this approach to develop new green production platforms.

  15. GC-MS analysis of bioactive compounds present in different extracts of an endemic plant Broussonetia luzonica (Blanco) (Moraceae) leaves

    Institute of Scientific and Technical Information of China (English)

    Franelyne Pataueg Casuga; Agnes Llamasares Castillo; Mary Jho-Anne Tolentino Corpuz

    2016-01-01

    Objective: To investigate and characterize the chemical composition of the different crude extracts from the leaves of Broussonetia luzonica (Blanco) (Moraceae) (B. luzonica), an endemic plant in the Philippines. Methods: The air dried leaves were powdered and subjected to selective sequential extraction using solvents of increasing polarity through percolation, namely, n-hexane, ethyl acetate and methanol to obtain three different extracts. Then, each of the extracts was further subjected to gas chromatography–mass spectrometry. Results: Qualitative determination of the different biologically active compounds from crude extracts of B. luzonica using gas chromatography–mass spectrometry revealed different types of high and low molecular weight chemical entities with varying quantities present in each of the extracts. These chemical compounds are considered biologically and pharmacologically important. Furthermore, the three different extracts possess unique physicochemical characteristics which may be attributed to the compounds naturally present in significant quantities in the leaves of B. luzonica. Conclusions: The three extracts possess major bioactive compounds that were identified and characterized spectroscopically. Thus, identification of different biologically active compounds in the extracts of B. luzonica leaves warrants further biological and phar-macological studies.

  16. Solid-state fermentation as a strategy to improve the bioactive compounds recovery from Larrea tridentata leaves.

    Science.gov (United States)

    Martins, Sílvia; Teixeira, José A; Mussatto, Solange I

    2013-11-01

    Chemical composition of Larrea tridentata leaves was determined and elevated content of lignin (35.96 % w/w) was found. The present study was proposed in order to evaluate the extraction of bioactive compounds, particularly phenolic compounds, by solid-state fermentation (SSF) of L. tridentata leaves. The basidiomycete Phanerochaete chrysosporium was used in the experiments due to its ability to degrade lignin. The concentration of total phenolic compounds in the extracts produced by SSF was determined. Additionally, the extracts were characterized regarding the concentration of flavonoids, quercetin, kaempferol, and nordihydroguaiaretic acid and antioxidant activity. SSF was not an efficient process to recover phenolic compounds from L. tridentata leaves. However, this process was very efficient when used as a pretreatment before the plant extraction with organic solvent (methanol). By submitting the plant to SSF and subsequently to extraction with 90 % (v/v) methanol, the recovery of phenolic compounds was improved by 33 % when compared to the results obtained by methanolic extraction of the non-fermented plant. Scanning electron microscopy micrographs revealed a major disorganization and porosity of the plant structure after fermentation, and Fourier transform infrared spectroscopy spectra indicated a possible solubilization of some constituents of lignocellulose fraction after this process, which may have favored the solvent action in the later stage.

  17. Synthesis and bioactive evaluations of novel benzotriazole compounds as potential antimicrobial agents and the interaction with calf thymus DNA

    Indian Academy of Sciences (India)

    Yu Ren; Hui Zhen Zhang; Shao Lin Zhang; Yun Lei Luo; Ling Zhang; Cheng He Zhou; Rong Xia Geng

    2015-12-01

    A novel series of benzotriazole derivatives were synthesized and characterized by NMR, IR and MS spectra. The bioactive assay manifested that most of the new compounds exhibited moderate to good antibacterial and antifungal activities against the tested strains in comparison to reference drugs chloromycin, norfloxacin and fluconazole. Especially, 2,4-dichlorophenyl substituted benzotriazole derivative 6f displayed good antibacterial activity against MRSA with MIC value of 4 g/mL, which was 2-fold more potent than Chloromycin, and it also displayed 3-fold stronger antifungal activity (MIC = 4 g/mL) than fluconazole (MIC = 16 g/mL) against Beer yeast. The preliminary interactive investigations of compound 6f with calf thymus DNA revealed that compound 6f could effectively intercalate into DNA to form compound 6f–DNA complex which might block DNA replication to exert antimicrobial activities. Molecular docking experiments suggested that compound 6f projected into base-pairs of DNA hexamer duplex forming two hydrogen bonds with guanine of DNA. The theoretical calculations were in accordance with the experimental results.

  18. Preliminary phytochemical investigation and thin layer chromatography profiling of sequential extracts of Moringa oleifera pods

    Directory of Open Access Journals (Sweden)

    Veena Sharma

    2013-01-01

    Full Text Available Context: Moringa oleifera Lam (Moringaceae is a highly valued plant, distributed in many countries of the tropics and subtropics. It has an impressive range of medicinal uses with high nutritional value. Aim: The present study, primarily aims to carry out a preliminary phytochemical screening so as to detect the major class of compounds present in M. oleifera and to perform thin layer chromatography (TLC profiling of all sequential extracts. Materials and Methods: Phytochemical analysis was performed by various qualitative methods and TLC profiling was carried out using various solvent system of varying polarity. Results and Conclusions: Qualitative phytochemical analysis reflects the presence of phenolics, triterpenoids, cardiac glycosides, steroid, alkaloids and saponin in the plant extract. TLC profiling of the M. oleifera pods was carried out using sequential extracts of petroleum ether, benzene, petroleum ether, benzene, chloroform, ethyl acetate, ethanol and water respectively. The results obtained in the present investigation indicated M. oleifera pods as a rich source of natural antioxidants.

  19. Chemical composition and bioactive compounds of garlic (Allium sativum L.) as affected by pre- and post-harvest conditions: A review.

    Science.gov (United States)

    Martins, Natália; Petropoulos, Spyridon; Ferreira, Isabel C F R

    2016-11-15

    Garlic (Allium sativum L.) is considered one of the twenty most important vegetables, with various uses throughout the world, either as a raw vegetable for culinary purposes, or as an ingredient of traditional and modern medicine. Furthermore, it has also been proposed as one of the richest sources of total phenolic compounds, among the usually consumed vegetables, and has been highly ranked regarding its contribution of phenolic compounds to human diet. This review aims to examine all the aspects related with garlic chemical composition and quality, focusing on its bioactive properties. A particular emphasis is given on the organosulfur compounds content, since they highly contribute to the effective bioactive properties of garlic, including its derived products. The important effects of pre-harvest (genotype and various cultivation practices) and post-harvest conditions (storage conditions and processing treatments) on chemical composition and, consequently, bioactive potency of garlic are also discussed.

  20. Affinity crystallography reveals the bioactive compounds of industrial juicing byproducts of Punica granatum for glycogen phosphorylase.

    Science.gov (United States)

    Stravodimos, George A; Kantsadi, Anastassia L; Apostolou, Anna; Kyriakis, Efthimios; Kafaski-Kanelli, Vassiliki-Nafsika; Solovou, Theodora G A; Gatzona, Pagona; Liggri, Panagiota Cv; Theofanous, Stavroula; Gorgogietas, Vyron A; Kissa, Apostolia; Psachoula, Chariklia; Chatzileontiadou, Demetra S M; Lemonakis, Angelos; Psarra, Anna-Maria G; Skamnaki, Vassiliki T; Haroutounian, Serkos; Leonidas, Demetres D

    2017-06-18

    Glycogen phosphorylase (GP) is a pharmaceutical target for the discovery of new antihyperglycaemic agents. Punica granatum is a well-known plant for its potent antioxidant and antimicrobial activities but so far has not been examined for antihyperglycaemic activity. To examine the inhibitory potency of eighteen polyphenolic extracts obtained from Punica granatum fruits and industrial juicing byproducts against GP and discover their most bioactive ingredients. Kinetic experiments were conducted to measure the IC50 values of the extracts while affinity crystallography was used to identify the most bioactive ingredient. The inhibitory effect of one of the polyphenolic extracts was also verified ex vivo, in HepG2 cells. All extracts exhibit significant in vitro inhibitory potency (IC50 values in the range of low μg/mL). Affinity crystallography revealed that the most bioactive ingredients of the extracts were chlorogenic and ellagic acids, found bound in the active and the inhibitor site of GP, respectively. While ellagic acid is an established GP inhibitor, the inhibition of chlorogenic acid is reported for the first time. Kinetic analysis indicated that chlorogenic acid is an inhibitor with Ki=2.5 x 10-3 M that acts synergistically with ellagic acid. Our study provides the first evidence for a potential antidiabetic usage of Punica granatum extracts as antidiabetic food supplements. Although, more in vivo studies have to be performed before these extracts reach the stage of antidiabetic food supplements our study provides a first positive step towards this process. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Communic Acids: Occurrence, Properties and Use as Chirons for the Synthesis of Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Alejandro F. Arteaga

    2012-02-01

    Full Text Available Communic acids are diterpenes with labdane skeletons found in many plant species, mainly conifers, predominating in the genus Juniperus (fam. Cupresaceae. In this review we briefly describe their distribution and different biological activities (anti- bacterial, antitumoral, hypolipidemic, relaxing smooth muscle, etc.. This paper also includes a detailed explanation of their use as chiral building blocks for the synthesis of bioactive natural products. Among other uses, communic acids have proven useful as chirons for the synthesis of quassinoids (formal, abietane antioxidants, ambrox and other perfume fixatives, podolactone herbicides, etc., featuring shorter and more efficient processes.

  2. Bioactive Compounds of Endemic Species Sideritis raeseri subsp. raeseri Grown in National Park Galičica

    Directory of Open Access Journals (Sweden)

    Nebojša Menković

    2013-05-01

    Full Text Available Collection of Sideritis raeseri subsp. raeseri has a long tradition in local communities in the Ohrid-Prespa region. The aim of the present study was the analysis of bioactive compounds especially those with anti-inflammatory activity. Combination of the UV and MS data allowed the characterization of 17 compounds, which could be classified into flavonoid glycosides or hydroxycynnamic acid derivatives. Six of them were isolated using preparative HPLC: isoscutellarein 7-O-[6′″-O-acetyl- β -D-allopyranosyl-(1→2]- β -D-glucopyranoside, 4′-O-methylhypolaetin 7-O-[6′″-O-acetyl- β -D-allopyranosyl-(1→2]- β -D-glucopyranoside, hypolaetin 7-O-[6′″-O-acetyl- β -D-allopyranosyl-(1→2]-6″-O-acetyl- β -D-glucopyranoside, 4′-O-methylisoscutellarein 7-O-[6′″-O-acetyl- β -D-allopyranosyl-(1→2]- β -D-glucopyranoside, isoscutellarein 7-O-[6′″-O-acetyl- β -D-allopyranosyl-(1→2]-6″-O-acetyl- β -D-glucopyranoside and 4′-O-methylhypolaetin 7-O-[6′″-O-acetyl- β -D-allopyranosyl-(1→2]-6″-O-acetyl- β -D-glucopyranoside. The presence of phenylpropanoid glycoside martynoside was reported for the first time in the wild growing S. raeseri subsp. raeseri. Hypolaetin derivatives, known for their antiinflammatory activity, dominated and were more abundant in S. raeseri subsp. raeseri grown in NPG in comparison with S. scardica grown nearby the NPG. The type of solvent affected distribution and the amount of bioactive compounds and the advantage was given to less polar extracts which were richer in hypolaetin derivatives.

  3. Bioactive compounds, RP-HPLC analysis of phenolics, and antioxidant activity of some Portuguese shrub species extracts.

    Science.gov (United States)

    Luís, Angelo; Domingues, Fernanda; Duarte, Ana Paula

    2011-12-01

    In the ecosystem of Serra Da Estrela, some plant species have the potential to be used as raw material for extraction of bioactive products. The goal of this work was to determine the phenolic, flavonoid, tannin and alkaloid contents of the methanolic extracts of some shrubs (Echinospartum ibericum, Pterospartum tridentatum, Juniperus communis, Ruscus aculeatus, Rubus ulmifolius, Hakea sericea, Cytisus multiflorus, Crataegus monogyna, Erica arborea and Ipomoea acuminata), and then to correlate the phenolic compounds and flavonoids with the antioxidant activity of each extract. The Folin-Ciocalteu's method was used for the determination of total phenols, and tannins were then precipitated with polyvinylpolypyrrolidone (PVPP); a colorimetric method with aluminum chloride was used for the determination of flavonoids, and a Dragendorff's reagent method was used for total alkaloid estimation. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) and beta-carotene bleaching tests were used to assess the antioxidant activity of extracts. The identification of phenolic compounds present in extracts was performed using RP-HPLC. A positive linear correlation between antioxidant activity index and total phenolic content of methanolic extracts was observed. The RP-HPLC procedure showed that the most common compounds were ferulic and ellagic acids and quercetin. Most of the studied shrubs have significant antioxidant properties that are probably due to the existence of phenolic compounds in the extracts. It is noteworthy to emphasize that for Echinospartum ibericum, Hakea sericea and Ipomoea acuminata, to the best of our knowledge, no phytochemical studies have been undertaken nor their use in traditional medicine been described.

  4. The Compositional HJ-Biplot-A New Approach to Identifying the Links among Bioactive Compounds of Tomatoes.

    Science.gov (United States)

    Hernández Suárez, Marcos; Molina Pérez, Daniel; Rodríguez-Rodríguez, Elena M; Díaz Romero, Carlos; Espinosa Borreguero, Francisco; Galindo-Villardón, Purificación

    2016-11-02

    Tomatoes have been described as a functional food because of their particular composition of different bioactive compounds. In this study, the proximate composition, minerals and trace elements, and antioxidant compounds were determined in two tomato cultivars (Mariana and Dunkan) that were grown in Gran Canaria (Spain) either conventionally or hydroponically. Although compositional data of this type require being subjected to the specific statistical techniques of compositional analysis, this approach has not usually been considered in this context. In the present case, a compositional Mann-Whitney U test of the data showed significant differences for each factor (cultivar and cultivation system) in several of the compositional variables studied. For the differences between cultivars, these parameters were the protein, Mg, lycopene, ascorbic acid, citric acid, and fumaric acid contents. For the differences between cultivation systems, they were mainly those of the mineral and trace elements group. Although one-year data are insufficient to make clear relationship among compounds because more repetitions in several localities and years are necessary, the compositional HJ-biplot (in which the links provide estimates of the linear relationship among variables) results agreed with other scientific results about linear relationship among some compounds analyzed.

  5. The Compositional HJ-Biplot—A New Approach to Identifying the Links among Bioactive Compounds of Tomatoes

    Science.gov (United States)

    Hernández Suárez, Marcos; Molina Pérez, Daniel; Rodríguez-Rodríguez, Elena M.; Díaz Romero, Carlos; Espinosa Borreguero, Francisco; Galindo-Villardón, Purificación

    2016-01-01

    Tomatoes have been described as a functional food because of their particular composition of different bioactive compounds. In this study, the proximate composition, minerals and trace elements, and antioxidant compounds were determined in two tomato cultivars (Mariana and Dunkan) that were grown in Gran Canaria (Spain) either conventionally or hydroponically. Although compositional data of this type require being subjected to the specific statistical techniques of compositional analysis, this approach has not usually been considered in this context. In the present case, a compositional Mann–Whitney U test of the data showed significant differences for each factor (cultivar and cultivation system) in several of the compositional variables studied. For the differences between cultivars, these parameters were the protein, Mg, lycopene, ascorbic acid, citric acid, and fumaric acid contents. For the differences between cultivation systems, they were mainly those of the mineral and trace elements group. Although one-year data are insufficient to make clear relationship among compounds because more repetitions in several localities and years are necessary, the compositional HJ-biplot (in which the links provide estimates of the linear relationship among variables) results agreed with other scientific results about linear relationship among some compounds analyzed. PMID:27827839

  6. Fruit quality and bioactive compounds relevant to human health of sweet cherry (Prunus avium L.) cultivars grown in Italy.

    Science.gov (United States)

    Ballistreri, Gabriele; Continella, Alberto; Gentile, Alessandra; Amenta, Margherita; Fabroni, Simona; Rapisarda, Paolo

    2013-10-15

    The fruit quality characteristics, phenolic compounds and antioxidant capacities of 24 sweet cherry (Prunus avium L.) cultivars grown on the mountainsides of the Etna volcano (Sicily, Italy) were evaluated. High-performance liquid chromatographic methods were used to identify and quantify sugars, organic acids and phenolics. A total of seven phenolic compounds were characterised as hydroxycinnamic acid derivatives (neochlorogenic acid, p-coumaroylquinic acid and chlorogenic acid) and anthocyanins (cyanidin 3-glucoside, cyanidin 3-rutinoside, pelargonidin 3-rutinoside and peonidin 3-rutinoside). The total anthocyanin content ranged from 6.21 to 94.20mg cyanidin 3-glucoside equivalents/100g fresh weight (FW), while the total phenol content ranged from 84.96 to 162.21mg gallic acid equivalents/100g FW. The oxygen radical absorbance capacity (ORAC) assay indicated that fruit of all genotypes possessed considerable antioxidant activity. The high level of phenolic compounds and antioxidant capacity of some sweet cherry fruits implied that they might be sources of bioactive compounds that are relevant to human health.

  7. The Compositional HJ-Biplot—A New Approach to Identifying the Links among Bioactive Compounds of Tomatoes

    Directory of Open Access Journals (Sweden)

    Marcos Hernández Suárez

    2016-11-01

    Full Text Available Tomatoes have been described as a functional food because of their particular composition of different bioactive compounds. In this study, the proximate composition, minerals and trace elements, and antioxidant compounds were determined in two tomato cultivars (Mariana and Dunkan that were grown in Gran Canaria (Spain either conventionally or hydroponically. Although compositional data of this type require being subjected to the specific statistical techniques of compositional analysis, this approach has not usually been considered in this context. In the present case, a compositional Mann–Whitney U test of the data showed significant differences for each factor (cultivar and cultivation system in several of the compositional variables studied. For the differences between cultivars, these parameters were the protein, Mg, lycopene, ascorbic acid, citric acid, and fumaric acid contents. For the differences between cultivation systems, they were mainly those of the mineral and trace elements group. Although one-year data are insufficient to make clear relationship among compounds because more repetitions in several localities and years are necessary, the compositional HJ-biplot (in which the links provide estimates of the linear relationship among variables results agreed with other scientific results about linear relationship among some compounds analyzed.

  8. Enzyme-assisted extraction of bioactive compounds from ginger (Zingiber officinale Roscoe).

    Science.gov (United States)

    Nagendra chari, K L; Manasa, D; Srinivas, P; Sowbhagya, H B

    2013-08-15

    Ginger (Zingiber officinale R.) is a popular spice used in various foods and beverages. 6-Gingerol is the major bioactive constituent responsible for the antiinflammatory, antitumour and antioxidant activities of ginger. The effect of application of α-amylase, viscozyme, cellulase, protease and pectinase enzymes to ginger on the oleoresin yield and 6-gingerol content has been investigated. Pre-treatment of ginger with α-amylase or viscozyme followed by extraction with acetone afforded higher yield of oleoresin (20%±0.5) and gingerol (12.2%±0.4) compared to control (15%±0.6 oleoresin, 6.4%±0.4 gingerol). Extraction of ginger pre-treated with enzymes followed by extraction with ethanol provided higher yield of gingerol (6.2-6.3%) than the control (5.5%) with comparable yields of the oleoresin (31-32%). Also, ethanol extract of cellulase pre-treated ginger had the maximum polyphenol content (37.5 mg/g). Apart from 6-gingerol, 6-paradol along with 6- and 8-methyl shogaols were the other important bio-active constituents in the oleoresin from cellulase-treated ginger.

  9. In Vitro evaluation of antifungal activity of Bioactive Compound 2H-FURO [2,3-H]-1-Benzopyran-2-one against seed borne fungi of maize

    Directory of Open Access Journals (Sweden)

    B. Kiran

    2012-03-01

    Full Text Available Antifungal activity of bioactive compound 2HFuro[ 2,3-H]-1-benzopyran-2-one recorded a significant activity at 100-1000 ppm concentration against all the ten Aspergillus species tested. A. flavus recorded complete inhibition at 100 ppm concentration, A. niger at 500 ppm, A. fumigates at 600 ppm, A. flavus oryzae and A. flavus columnaris at 700 ppm respectively. A. ochraceous and A. flavipes recorded complete inhibition at 900 ppm concentration. Compared to synthetic fungicide Captan and Thiram at 2000ppm concentration. Minimum Inhibitory Concentration (MIC of bioactive compound was in the range of 100- 900ppm concentration against all the test fungi.

  10. Effect of certain indigenous processing methods on the bioactive compounds of ten different wild type legume grains.

    Science.gov (United States)

    Vadivel, Vellingiri; Biesalski, Hans K

    2012-12-01

    In recent years, research efforts are under-way on the possibilities of utilization of natural source of bioactive compounds for the dietary management of certain chronic diseases such as diabetes, obesity, cardiovascular diseases, cancer etc. In this connection, seed materials of promising wild type under-utilized food legume grains such as Acacia nilotica (L.) Willd. Ex Delile, Bauhinia purpurea L., Canavalia ensiformis (L.) DC., Cassia hirsuta L., Caesalpinia bonducella F., Erythrina indica L., Mucuna gigantea (Willd.) DC., Pongamia pinnata (L.) Pierre, Sebania sesban (L.) Merr. and Xylia xylocarpa Roxb. Taub., collected from South India, were investigated for certain bioactive compounds. All the samples were found to constitute a viable source of total free phenolics (3.12-6.69 g/100 g DM), tannins (1.10-4.41 g/100 g DM), L-Dopa (1.34-5.45 g/100 g DM) and phytic acid (0.98-3.14 g/100 g DM). In general, the seed materials of X. xylocarpa recorded high levels of total free phenolics and tannins, whereas the maximum levels of L-Dopa and phytic acid were noticed in M. gigantea and S. sesban, respectively. Further, presently investigated all the bioactive compounds were drastically reduced during soaking in tamarind solution + cooking as well as soaking in alkaline solution + cooking, and thus these treatments were considered to be more aggressive practices. Open-pan roasting also demonstrated a significant reduction of total free phenolics, tannins and moderate loss of L-Dopa and phytic acid. Alternatively, sprouting + oil-frying showed significant level of increase of total free phenolics (9-27%) and tannins (12-28%), but diminishing effect on phytic acid and L-Dopa. Hence, among the presently employed treatments, sprouting + oil-frying could be recommended as a suitable treatment for the versatile utilization of these wild under-utilized legume grains for the dietary management of certain chronic diseases.

  11. Effect of gamma irradiation on some physicochemical properties and bioactive compounds of jujube (Ziziphus jujuba var vulgaris) fruit

    Science.gov (United States)

    Najafabadi, Najmeh Shams; Sahari, Mohammad Ali; Barzegar, Mohsen; Esfahani, Zohreh Hamidi

    2017-01-01

    Interest in the protection of bioactive compounds and a safe alternative method for preservation of processed fruits and fruit juices has recently increased significantly throughout the world. There is a distinct lack of information on the profile of bioactive compounds in jujube fruit (e.g. organic acids, anthocyanins, and water-soluble vitamins) and their changes during processing (e.g. gamma irradiation). Therefore, in this study, the effect of gamma irradiation at different doses (0.0, 0.5, 1.0, 2.5 and 5.0 kGy) on some physicochemical properties and the bioactive compounds of jujube fruit was investigated. The total soluble solids (TSSs) values remained unaffected at various doses, while the level of total acidity (TA) showed a slight increase at doses ≥ 2.5 kGy (p ≤ 0.05). Irradiation up to 2.5 kGy caused a significant increase in the total monomeric anthocyanin and the total phenolic content (about 12% and 6%, respectively), but a significant decrease was observed in both parameters immediately after irradiation at 5 kGy. Moreover, irradiation treatment caused a significant decrease in L* value and a significant increase in a* and b* values (P ≤ 0.05); however, changes of color were slight until the dose of 5 kGy. Gamma irradiation up to 2.5 kGy had no significant effect on the concentration of malic, citric and succinic acids, while the level of ascorbic acid decreased significantly at all irradiation doses (0-5 kGy). Cyanidin-3, 5-diglucoside was determined as the major anthocyanin in the jujube fruit studied (about 68%), which was reduced significantly when 5 kGy of irradiation was applied (degradation percentage: 27%). The results demonstrated that vitamins C, B2 and B1 are the most water-soluble vitamins in jujube fruit, respectively. Vitamins C and B1 content significantly decreased at all applied doses (0-5 kGy), whereas B2 content at doses ≤ 2.5 kGy was not significantly affected. The results of this study indicate that gamma irradiation at

  12. 辣木叶挥发性成分GC-MS的分析及生物活性%GC-MS Analysis and Bioactivity of Volatile Constituents from the Leaf of Moringa oleifera Lam.

    Institute of Scientific and Technical Information of China (English)

    蔡彩虹; 梅文莉; 董文化; 盖翠娟; 戴好富

    2016-01-01

    为研究辣木(Moringa oleifera Lam.)叶的挥发性成分及生物活性,笔者采用水蒸气蒸馏法提取辣木叶的挥发性成分,气相色谱-质谱联用技术(GC-MS)对其化学成分进行分析;分别利用2倍稀释法、Ellman 比色法及MTT法对所得挥发性成分进行了抗菌活性、抗乙酰胆碱酯酶活性和细胞毒活性测试.从辣木叶子的挥发性成分中共检测到34个化学成分,鉴定了其中33个化学成分,在挥发油总量中相对含量为85.94%,主要为棕榈酸(38.63%)、叶绿醇(6.09%)、棕榈酸乙酯(4.87%)和二十七烷(4.31%).生物活性测试结果表明,该挥发性成分对金黄色葡萄球菌和乙酰胆碱酯酶均具有抑制作用.

  13. Release of bioactive volatiles from supramolecular hydrogels: influence of reversible acylhydrazone formation on gel stability and volatile compound evaporation.

    Science.gov (United States)

    Buchs, Barbara; Fieber, Wolfgang; Vigouroux-Elie, Florence; Sreenivasachary, Nampally; Lehn, Jean-Marie; Herrmann, Andreas

    2011-04-21

    In the presence of alkali metal cations, guanosine-5'-hydrazide (1) forms stable supramolecular hydrogels by selective self-assembly into a G-quartet structure. Besides being physically trapped inside the gel structure, biologically active aldehydes or ketones can also reversibly react with the free hydrazide functions at the periphery of the G-quartet to form acylhydrazones. This particularity makes the hydrogels interesting as delivery systems for the slow release of bioactive carbonyl derivatives. Hydrogels formed from 1 were found to be significantly more stable than those obtained from guanosine. Both physical inclusion of bioactive volatiles and reversible hydrazone formation could be demonstrated by indirect methods. Gel stabilities were measured by oscillating disk rheology measurements, which showed that thermodynamic equilibration of the gel is slow and requires several cooling and heating cycles. Furthermore, combining the rheology data with dynamic headspace analysis of fragrance evaporation suggested that reversible hydrazone formation of some carbonyl compounds influences the release of volatiles, whereas the absolute stability of the gel seemed to have no influence on the evaporation rates.

  14. An Investigation into Spent Coffee Waste as a Renewable Source of Bioactive Compounds and Industrially Important Sugars

    Directory of Open Access Journals (Sweden)

    Damhan S. Scully

    2016-11-01

    Full Text Available Conventional coffee brewing techniques generate vast quantities of spent espresso grounds (SEGs rich in lignocellulose and valuable bioactives. These bioactive compounds can be exploited as a nutraceutical or used in a range of food products, while breakdown of lignocellulose generates metabolizable sugars that can be used for the production of various high-value products such as biofuels, amino acids and enzymes. Response surface methodology (RSM was used to optimize the enzymatic saccharification of lignocellulose in SEGs following a hydrothermal pretreatment. A maximum reducing sugar yield was obtained at the following optimized hydrolysis conditions: 4.97 g of pretreated SEGs, 120 h reaction time, and 1246 and 250 µL of cellulase and hemicellulase, respectively. Industrially important sugars (glucose, galactose and mannose were identified as the principal hydrolysis products under the studied conditions. Total flavonoids (p = 0.0002, total polyphenols (p = 0.03 and DPPH free-radical scavenging activity (p = 0.004 increased significantly after processing. A 14-fold increase in caffeine levels was also observed. This study provides insight into SEGs as a promising source of industrially important sugars and polyphenols.

  15. Screening of marine seaweeds for bioactive compound against fish pathogenic bacteria and active fraction analysed by gas chromatography– mass spectrometry

    Directory of Open Access Journals (Sweden)

    Rajasekar Thirunavukkarasu

    2014-05-01

    Full Text Available Objective: To isolate bioactive molecules from marine seaweeds and check the antimicrobial activity against the fish pathogenic bacteria. Methods: Fresh marine seaweeds Gracilaria edulis, Kappaphycus spicifera, Sargassum wightii (S. wightii were collected. Each seaweed was extracted with different solvents. In the study, test pathogens were collected from microbial type culture collection. Antibacterial activity was carried out by using disc diffusion method and minimum inhibition concentration (MIC was calculated. Best seaweed was analysed by fourier transform infrared spectroscopy. The cured extract was separated by thin layer chromatography (TLC. Fraction was collected from TLC to check the antimicrobial activity. Best fraction was analysed by gas chromatography mass spectrometer (GCMS. Results: Based on the disc diffusion method, S. wightii showed a better antimicrobial activity than other seaweed extracts. Based on the MIC, methanol extract of S. wightii showed lower MIC than other solvents. S. wightii were separated by TLC. In this TLC, plate showed a two fraction. These two fractions were separated in preparative TLC and checked for their antimicrobial activity. Fraction 2 showed best MIC value against the tested pathogen. Fraction 2 was analysed by GCMS. Based on the GCMS, fraction 2 contains n-hexadecanoic acid (59.44%. Conclusions: From this present study, it can be concluded that S. wightii was potential sources of bioactive compounds.

  16. An Investigation into Spent Coffee Waste as a Renewable Source of Bioactive Compounds and Industrially Important Sugars

    Science.gov (United States)

    Scully, Damhan S.; Jaiswal, Amit K.; Abu-Ghannam, Nissreen

    2016-01-01

    Conventional coffee brewing techniques generate vast quantities of spent espresso grounds (SEGs) rich in lignocellulose and valuable bioactives. These bioactive compounds can be exploited as a nutraceutical or used in a range of food products, while breakdown of lignocellulose generates metabolizable sugars that can be used for the production of various high-value products such as biofuels, amino acids and enzymes. Response surface methodology (RSM) was used to optimize the enzymatic saccharification of lignocellulose in SEGs following a hydrothermal pretreatment. A maximum reducing sugar yield was obtained at the following optimized hydrolysis conditions: 4.97 g of pretreated SEGs, 120 h reaction time, and 1246 and 250 µL of cellulase and hemicellulase, respectively. Industrially important sugars (glucose, galactose and mannose) were identified as the principal hydrolysis products under the studied conditions. Total flavonoids (p = 0.0002), total polyphenols (p = 0.03) and DPPH free-radical scavenging activity (p = 0.004) increased significantly after processing. A 14-fold increase in caffeine levels was also observed. This study provides insight into SEGs as a promising source of industrially important sugars and polyphenols.

  17. A New Acetylenic Compound and Other Bioactive Metabolites from a Shark Gill-derived Penicillium Strain

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    2017-01-01

    Full Text Available Nine chiral compounds (1−9 were isolated from the static fermentation culture of a shark gill-derived fungus Penicillium polonicum AP2T1. These compounds include a new acetylenic aromatic ether (1 , (--WA , four alkaloids ( a urantiomide C ( 2 , fructigenine A (3, cyclopenin (4 and cyclopenol (5 and four oxygenated compounds ((R-penipratynolene (6, (3S,4S-3,4-dihydro-3,4,8-trihydroxyl-naphthalenone (7, verrucosidin (8 and norverrucosidin (9. Their structures were elucidated by MS, NMR , optical rotation and circular dichroism (CD . In antimicrobial tests , compounds 1–4, 6 and 8–9 showed weak antibacterial activity against Staphylococcus aureus, Bacillus subtilis, and/or Escherichia coli.Compounds 3, 8 and 9 also exhibited moderate toxicity against Artemia salina larva , and showed cytotoxicity against human colon cancer cell line HCT116.

  18. Marine invertebrate xenobiotic-activated nuclear receptors: their application as sensor elements in high-throughput bioassays for marine bioactive compounds.

    Science.gov (United States)

    Richter, Ingrid; Fidler, Andrew E

    2014-11-24

    Developing high-throughput assays to screen marine extracts for bioactive compounds presents both conceptual and technical challenges. One major challenge is to develop assays that have well-grounded ecological and evolutionary rationales. In this review we propose that a specific group of ligand-activated transcription factors are particularly well-suited to act as sensors in such bioassays. More specifically, xenobiotic-activated nuclear receptors (XANRs) regulate transcription of genes involved in xenobiotic detoxification. XANR ligand-binding domains (LBDs) may adaptively evolve to bind those bioactive, and potentially toxic, compounds to which organisms are normally exposed to through their specific diets. A brief overview of the function and taxonomic distribution of both vertebrate and invertebrate XANRs is first provided. Proof-of-concept experiments are then described which confirm that a filter-feeding marine invertebrate XANR LBD is activated by marine bioactive compounds. We speculate that increasing access to marine invertebrate genome sequence data, in combination with the expression of functional recombinant marine invertebrate XANR LBDs, will facilitate the generation of high-throughput bioassays/biosensors of widely differing specificities, but all based on activation of XANR LBDs. Such assays may find application in screening marine extracts for bioactive compounds that could act as drug lead compounds.

  19. Mechanical hulling and thermal pre-treatment effects on rapeseed oil antioxidant capacity and related lipophilic and hydrophilic bioactive compounds.

    Science.gov (United States)

    Rękas, Agnieszka; Wroniak, Małgorzata; Siger, Aleksander; Ścibisz, Iwona; Derewiaka, Dorota; Anders, Andrzej

    2017-02-20

    In this study, the effect of rapeseed mechanical hulling and thermal pre-treatment by microwaves (from 2 to 10 min with 2-min intervals, 800 W) and roasting (from 20 to 100 min with 20-min intervals, 165 °C) on the content of phytochemicals in the oil was investigated. Results showed that both pre-treatments applied differentiated the oils in terms of the content of bioactive compounds. In general, oils pressed from hulled and thermally pre-treated seeds contained higher content of tocopherols, PC-8 and phytosterols, while oils pressed from non-hulled and pre-processed seeds had significantly higher concentration of polyphenols. Both microwaving and roasting contributed to an increase of antioxidant capacity of studied oils. The increase of radical scavenging activity of oils was seen mainly in hydrophilic fraction of oil, which was highly positively correlated with the amount of canolol formed during seeds heating.

  20. Evaluation of antibacterial activity of bioactive compounds obtained from the seaweed Chondrococcus hornemanni on ichthyopathogenic bacteria affecting marine ornamental fish

    Institute of Scientific and Technical Information of China (English)

    Raghunathan Ganeshamurthy; Kapila Tissera

    2013-01-01

    Objective: To investigate antibacterial effects of extracts from the seaweed Chondrococcushornemanni (C. hornemanni) on bacterial pathogens of marine ornamental fish. Method: Methanol extract obtained from C. hornemanni showed a broad and high antibacterial activity against four fish pathogens including Providencia rettgeri, Aeromonas hydrophila, Vibrioalginoticus and Vibrio parahaemolyticus. The crude extract obtained from the dried seaweeds was fractionated and purified using column chromatography. Purified extracts were analyzed with Fourier transform infrared spectroscopy (FTIR) for identifying the functional groups. Phytoconstituents of the active fraction were further identified by means of gas chromatography and mass spectrometric (GC-MS) analysis. Result: The first fraction of the extracts showed effective inhibitory activity against Aeromonashydrophila and Vibrio parahaemolyticus at a concentration of 100 µL. However, Vibrio alginolyticus and Providencia rettgeri had shown a moderately lesser inhibitory response to the extract.Conclusion:Hence, it is concluded that extracts of seaweed C. hornemanni, contain potential bioactive compounds with a considerable antibiotic activity.

  1. Amber ale beer enriched with goji berries - The effect on bioactive compound content and sensorial properties.

    Science.gov (United States)

    Ducruet, Julien; Rébénaque, Pierrick; Diserens, Serge; Kosińska-Cagnazzo, Agnieszka; Héritier, Isabelle; Andlauer, Wilfried

    2017-07-01

    Goji berries, traditionally used in Chinese medicine, are nowadays gaining popularity in the Western world. Efforts are made to enlarge the offer of goji containing foods. In this study, goji berries were added to ale type beer at different stages of the production process in order to develop a beverage with desirable sensory characteristic and high antioxidant capacity. The obtained beers differed significantly in terms of appearance, taste and antioxidant activity. Consumers preferred beers to which goji berries were added at the beginning of the brewing process. These beers were also characterized by lower turbidity, high color intensity, caramel- and coffee-like taste, high antioxidant activity and high content of bioactives such as rutin and 2-O-β-d-glucopyranosyl-l-ascorbic acid. To conclude, an addition of goji berries to traditional brewing process creates a perspective to enlarge the range of goji containing foods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Emerging Anti-Mitotic Activities and Other Bioactivities of Sesquiterpene Compounds upon Human Cells

    Directory of Open Access Journals (Sweden)

    Alessandra Bosco

    2017-03-01

    Full Text Available We review the bio-activities of natural product sesquiterpenes and present the first description of their effects upon mitosis. This type of biological effect upon cells is unexpected because sesquiterpenes are believed to inactivate proteins through Michael-type additions that cause non-specific cytotoxicity. Yet, certain types of sesquiterpenes can arrest cells in mitosis as measured by cell biology, biochemical and imaging techniques. We have listed the sesquiterpenes that arrest cells in mitosis and analyzed the biological data that support those observations. In view of the biochemical complexity of mitosis, we propose that a subset of sesquiterpenes have a unique chemical structure that can target a precise protein(s required for mitosis. Since the process of mitotic arrest precedes that of cell death, it is possible that some sesquiterpenes that are currently classified as cytotoxic might also induce a mitotic arrest. Our analysis provides a new perspective of sesquiterpene chemical biology

  3. Bioactive Foamed Emulsion Reactor: A New Technology for Biotreatment of Airborne Volatile Organic Compound

    Directory of Open Access Journals (Sweden)

    F. Ghorbani Shahna

    2010-04-01

    Full Text Available Introduction & Objective: Biological treatment is a new established technology for the air pollutants. This technology can be an alternative for physical and chemical treatment methods. Among bioreators, the Bioactive Foamed Emulsion Reactor (BFER is a new alternative that has not the problems of the conventional ones. In this reactor bed clogging in the conventional bioreactor was resolved by bioactive foam as a substitute of packing bed. The pollutant absorption has been increased using biocompatible organic phase in liquid .This reactor can be used for higher inlet toluene concentration. The objective of this study was designing and optimizing the operational parameters of BFER for toluene treatment.Materials & Methods: In the first step of this experimental-analytic study, the toluene degradation microorganisms were identified, extracted and concentrated for injection to bioreactor. Then the effect of several parameters such as Kind and concentration of organic phase,and residence time oxygen content on bioreactor performance were studied and the optimum conditions were selected for continuous operation. The continuous operation of bioreactor was monitored at the optimum conditions.Results: Experimental results showed that the residence time of 15s, oxygen content of 40%, and the 4 % (v/v n-hexadecane as organic phase were the optimum conditions. The average elimination capacity (EC and removal efficiency of bioreactor were 231.68 g/m3h and 88.44% respectively for the inlet concentration about of 1 g/m3. The statistical developed model predicted that the maximum EC of this reactor could reach to 426.21 g/m3h.Conclusion: Since the elimination capacity of this reactor is several times more than the other bioreactors, it has the potential to be applied instead of biofilters and biotrickling filters.

  4. Bioactive compounds of Aspergillus terreus-F7, an endophytic fungus from Hyptis suaveolens (L.) Poit.

    Science.gov (United States)

    da Silva, Igor Pereira; Brissow, Elson; Kellner Filho, Luis Claudio; Senabio, Jaqueline; de Siqueira, Kátia Aparecida; Vandresen Filho, Samuel; Damasceno, Jaqueline Lopes; Mendes, Suzana Amorim; Tavares, Denise Crispim; Magalhães, Lizandra Guidi; Junior, Policarpo Ademar Sales; Januário, Ana Helena; Soares, Marcos Antônio

    2017-03-01

    The compounds terrein (1), butyrolactone I (2), and butyrolactone V (3) were isolated from the ethyl acetate extract (EtOAc) of the endophytic fungus Aspergillus terreus-F7 obtained from Hyptis suaveolens (L.) Poit. The extract and the compounds presented schistosomicidal activity against Schistosoma mansoni; at 100 µg/mL for EtOAc extract, 1297.3 µM for compound 1, 235.6 µM for compound 2, and 454.1 µM for compound 3, they killed 100% of the parasites after 72 h of treatment. Compounds 1, 2, and 3 exerted moderate leishmanicidal activity against Leishmania amazonensis (IC50 ranged from 23.7 to 78.6 µM). At 235.6 and 227.0 µM, compounds 2 and 3, respectively, scavenged 95.92 and 95.12% of the DPPH radical (2,2-diphenyl-1-picryl-hydrazyl), respectively. Regarding the cytotoxicity against the breast tumor cell lines MDA-MB-231 and MCF-7, compound 2 gave IC50 of 34.4 and 17.4 µM, respectively, while compound 3 afforded IC50 of 22.2 and 31.9 µM, respectively. At 117.6 µM, compound 2 inhibited the growth of and killed the pathogen Escherichia coli (ATCC 25922). Compounds 1, 2, and 3 displayed low toxicity against the normal line of human lung fibroblasts (GM07492A cells), with IC50 of 15.3 × 10(3), 3.4 × 10(3), and 5.8 × 10(3) µM, respectively. This is the first report on (i) the in vitro schistosomicidal and leishmanicidal activities of the EtOAc extract of A. terreus-F7 and compounds 1, 2, and 3; and (ii) the antitumor activity of compounds 2 and 3 against MDA-MB-231 and MCF-7 cells.

  5. Effect of germination time on proximate analysis, bioactive compounds and antioxidant activity of lentil (Lens culinaris Medik. sprouts

    Directory of Open Access Journals (Sweden)

    A. Ahmed Fouad

    2015-09-01

    Full Text Available Background. The lentil plant, Lens culinaris L., is a member of the Leguminoceae family and constitutes one of the most important traditional dietary components. The purpose of the current study was to investigate the effects of sprouting for 3, 4, 5 and 6 days on proximate, bioactive compounds and antioxidative characteristics of lentil (Lens culinaris sprouts. Material and methods. Lentil seeds were soaked in distilled water (1:10, w/v for 12 h at room temperature (~25°C, then kept between thick layers of cotton cloth and allowed to germinate in the dark for 3, 4, 5 and 6 days. The nutritional composition, protein solubility, free amino acids, antinutritional factors, bioactive compounds and antioxidant activity of raw and germinated samples were determined using standard official procedures. Results. Sprouting process caused significant (P ≤ 0.05 increases in moisture, protein, ash, crude fiber, protein solubility, free amino acids, total, reducing and nonreducing sugars. However, oil content, antinutritional factors (tannins and phytic acid significantly (P ≤ 0.05 decreased. Results indicated that total essential amino acids of lentil seeds protein formed 38.10% of the total amino acid content. Sulfur-containing amino acids were the first limiting amino acid, while threonine was the second limiting amino acid in raw and germinated lentil seeds. Sprouting process has a positive effect on the essential amino acid contents and protein efficiency ratio (PER of lentil sprouts. Phenolics content increased from 1341.13 mg/100 g DW in raw lentil seeds to 1411.50, 1463.00, 1630.20 and 1510.10 in those samples germinated for 3, 4, 5 and 6 days, respectively. Sprouted seeds had higher DPPH radical scavenging and reducing power activities. Conclusions. Based on these results, sprouting process is recommended to increase nutritive value, and antioxidant activity of lentil seeds.

  6. Antioxidant and biological properties of bioactive phenolic compounds from Quercus suber L.

    Science.gov (United States)

    Fernandes, Ana; Fernandes, Iva; Cruz, Luís; Mateus, Nuno; Cabral, Miguel; de Freitas, Victor

    2009-12-09

    Phenolic compounds, namely, hydrolyzable tannins and low molecular weight phenolic compounds, were isolated and purified from Portuguese cork from Quercus suber L. Some of these compounds were studied to evaluate their antioxidant activity, including free-radical scavenging capacity (DPPH method) and reducing capacity (FRAP method). All compounds tested showed significant antioxidant activity, namely, antiradical and reducing properties. The antiradical capacity seemed to increase with the presence of galloyl groups. Regarding the reducing capacity, this structure-activity relationship was not so clear. These compounds were also studied to evaluate the growth inhibitory effect on the estrogen responsive human breast cancer cell line (ER+) MCF-7 and two other colon cancer cell lines (Caco-2 and HT-29). Generally, all the compounds tested exhibited, after a continuous exposure during a 48 h period, a dose-dependent growth inhibitory effect. Relative inhibitory activity was primarily related to the number of phenolic hydroxyl groups (galloyl and HHDP moieties) found in the active structures, with more groups generally conferring increased effects, except for HHDP-di-galloyl-glucose. Mongolicain B showed a greater potential to inhibit the growth of the three cell lines tested, identical to the effect observed with castalagin. Since these compounds are structurally related with each other, this activity might be based within the C-glycosidic ellagitannin moiety.

  7. Bioactive compounds of red grapes from D?o region(Portugal):Evaluation of phenolic and organic profile

    Institute of Scientific and Technical Information of China (English)

    Luís Rodrigues Silva; Mafalda Queiroz

    2016-01-01

    Objective:To improve the knowledge on the metabolite profile of five red grapes from D?o region(Portugal),concerning to the phenolic characteristics(coloured and non-coloured phenolics) and organic acid composition.Methods:Five red grapes collected from D?o region were studied.The profiles of phenolic compounds and organic acids were estimated by high-performance liquid chromatography with diode-array detection and high-performance liquid chromatography with UV detector,respectively.Results:Totally 24 phenolic compounds were identified,and distributed by several classes:8 anthocyanins,1 hydroxybenzoic acid,4 hydroxycinnamic acids,1 stilbene,4flavan-3-ols,6 flavonols.Additionally,10 organic acids were detected in all samples.Total contents of each phenolic class and organic acids amounts varied significantly among the different grape cultivars investigated.The principal components analysis differentiates the Touriga Nacional from the other varieties due to their high contents in anthocyanins,non-coloured phenolics and organic acids.Touriga Nacional is an important red grape cultivar,highly esteemed in D?o region for its ability to produce high quality wines.Conclusions:The results suggest that the red grapes from D?o region present a good composition in bioactive compounds,being important for the production of wines with superior quality.

  8. Bioaccessibility of bioactive compounds after non-thermal processing of an exotic fruit juice blend sweetened with Stevia rebaudiana.

    Science.gov (United States)

    Buniowska, Magdalena; Carbonell-Capella, Juana M; Frigola, Ana; Esteve, Maria J

    2017-04-15

    A comparative study of the bioaccessibility of bioactive compounds and antioxidant capacity in a fruit juice-Stevia rebaudiana mixture processed by pulsed electric fields (PEF), high voltage electrical discharges (HVED) and ultrasound (USN) technology at two equivalent energy inputs (32-256kJ/kg) was made using an in vitro model. Ascorbic acid was not detected following intestinal digestion, while HVED, PEF and USN treatments increased total carotenoid bioaccessibility. HVED at an energy input of 32kJ/kg improved bioaccessibility of phenolic compounds (34.2%), anthocyanins (31.0%) and antioxidant capacity (35.8%, 29.1%, 31.9%, for TEAC, ORAC and DPPH assay, respectively) compared to untreated sample. This was also observed for PEF treated samples at an energy input of 256kJ/kg (37.0%, 15.6%, 29.4%, 26.5%, 23.5% for phenolics, anthocyanins, and antioxidant capacity using TEAC, ORAC and DPPH method, respectively). Consequently, pulsed electric technologies (HVED and PEF) show good prospects for enhanced bioaccessibility of compounds with putative health benefit.

  9. Evaluation of spent coffee obtained from the most common coffeemakers as a source of hydrophilic bioactive compounds.

    Science.gov (United States)

    Bravo, Jimena; Juániz, Isabel; Monente, Carmen; Caemmerer, Bettina; Kroh, Lothar W; De Peña, M Paz; Cid, Concepción

    2012-12-26

    The main hydrophilic antioxidant compounds (3-, 4-, and 5-monocaffeoylquinic and 3,4-, 3,5-, and 4,5-dicaffeoylquinic acids, caffeine, and browned compounds, including melanoidins) and the antioxidant capacity (Folin-Ciocalteu, ABTS, DPPH, Fremy's salt, and TEMPO) were evaluated in Arabica and Robusta spent coffee obtained from the preparation of coffee brews with the most common coffeemakers (filter, espresso, plunger, and mocha). All spent coffee grounds, with the exception of those from the mocha coffeemaker, had relevant amounts of total caffeoylquinic acids (6.22-13.24 mg/g of spent coffee), mainly dicaffeoylquinic acids (3.31-5.79 mg/g of spent coffee), which were 4-7-fold higher than in their respective coffee brews. Caffeine ranged from 3.59 to 8.09 mg/g of spent coffee. The antioxidant capacities of the aqueous spent coffee extracts were 46.0-102.3% (filter), 59.2-85.6% (espresso), and coffee brews. This study obtained spent coffee extracts with antioxidant properties that can be used as a good source of hydrophilic bioactive compounds.

  10. Femtosecond Laser Microfabrication of an Integrated Device for Optical Release and Sensing of Bioactive Compounds

    Science.gov (United States)

    Ghezzi, Diego; Vazquez, Rebeca Martinez; Osellame, Roberto; Valtorta, Flavia; Pedrocchi, Alessandra; Valle, Giuseppe Della; Ramponi, Roberta; Ferrigno, Giancarlo; Cerullo, Giulio

    2008-01-01

    Flash photolysis of caged compounds is one of the most powerful approaches to investigate the dynamic response of living cells. Monolithically integrated devices suitable for optical uncaging are in great demand since they greatly simplify the experiments and allow their automation. Here we demonstrate the fabrication of an integrated bio-photonic device for the optical release of caged compounds. Such a device is fabricated using femtosecond laser micromachining of a glass substrate. More in detail, femtosecond lasers are used both to cut the substrate in order to create a pit for cell growth and to inscribe optical waveguides for spatially selective uncaging of the compounds present in the culture medium. The operation of this monolithic bio-photonic device is tested using both free and caged fluorescent compounds to probe its capability of multipoint release and optical sensing. Application of this device to the study of neuronal network activity can be envisaged.

  11. Green chemistry approach to the synthesis of potentially bioactive aminobenzylated Mannich bases through active hydrogen compounds

    Directory of Open Access Journals (Sweden)

    S. L. VASOYA

    2005-10-01

    Full Text Available An efficient and high yield method for the synthesis of aminobenzylated Mannich bases is described. The synthesis occurs in aqueous medium at 0 ºC. The compounds show moderate antitubercular and antimicrobial activities.

  12. Health benefits of Moringa oleifera.

    Science.gov (United States)

    Abdull Razis, Ahmad Faizal; Ibrahim, Muhammad Din; Kntayya, Saie Brindha

    2014-01-01

    Phytomedicines are believed to have benefits over conventional drugs and are regaining interest in current research. Moringa oleifera is a multi-purpose herbal plant used as human food and an alternative for medicinal purposes worldwide. It has been identified by researchers as a plant with numerous health benefits including nutritional and medicinal advantages. Moringa oleifera contains essential amino acids, carotenoids in leaves, and components with nutraceutical properties, supporting the idea of using this plant as a nutritional supplement or constituent in food preparation. Some nutritional evaluation has been carried out in leaves and stem. An important factor that accounts for the medicinal uses of Moringa oleifera is its very wide range of vital antioxidants, antibiotics and nutrients including vitamins and minerals. Almost all parts from Moringa can be used as a source for nutrition with other useful values. This mini-review elaborate on details its health benefits.

  13. PHYTOCHEMICAL INVESTIGATION OF THE STEM BARK OF MORINGA OLEIFERA LAM.

    Directory of Open Access Journals (Sweden)

    Khan Maria

    2011-05-01

    Full Text Available Phytochemical investigation of the stem bark of Moringa oleifera Lam. (Moringaceae furnished two new phytoconstituents identified as n-heptacosanyl n-octadec-9,12,15 trieneoate (moringyl linoleneate and n- docas- 4-en-11-one-1-yl n-decanoate (oleiferyl capriate along with the known compounds β-sitosterol, epilupeol, glyceropalmityl phosphate and glycerol-oleiostearyl phosphate. The structures of all the phytoconstituents have been elucidated on the basis of spectral data analyses and chemical reactions.

  14. Distribution, diversity and bioprospecting of bioactive compounds from cryptic fungal communities associated with endemic and cold-adapted macroalgae in Antarctica

    Science.gov (United States)

    We surveyed the distribution and diversity of fungi associated with eight macroalgae from Antarctica and their capability to produce bioactive compounds. The collections yielded 148 fungal isolates identified using molecular methods into 21 genera and 43 species. The most frequent taxa were Geomyces...

  15. African eggplant (Solanum anguivi Lam. fruit with bioactive polyphenolic compounds exerts in vitro antioxidant properties and inhibits Ca2+-induced mitochondrial swelling

    Directory of Open Access Journals (Sweden)

    Olusola Olalekan Elekofehinti

    2013-10-01

    Conclusions: These effects could be attributed to the bioactive polyphenolic compounds present in the extract. Our results suggest that SAG extract is a potential source of natural antioxidants that may be used not only in pharmaceutical and food industry but also in the treatment of diseases associated with oxidative stress.

  16. Influence of inoculum density and aeration volume on biomass and bioactive compound production in bulb-type bubble bioreactor cultures of Eleutherococcus koreanum Nakai.

    Science.gov (United States)

    Lee, Eun-Jung; Moh, Sang-Hyun; Paek, Kee-Yoeup

    2011-07-01

    This study deals with the effects of initial inoculum density and aeration volume on biomass and bioactive compound production in adventitious roots of Eleutherococcus koreanum Nakai in bulb-type bubble bioreactors (3-L capacity). While the fresh and dry weights of the roots increased with increasing inoculum density, the highest percentage dry weight and accumulation of total target compounds (eleutheroside B and E, chlorogenic acid, total phenolics, and flavonoids) were noted at an inoculum density of 5.0 g L(-1). Poor aeration volume (0.05 vvm) stunted root growth, and high aeration volume (0.4 vvm) caused physiological disorders. Moreover, an inoculum density of 5.0 g L(-1) and an aeration volume of 0.1 vvm resulted in the highest concentration of total target compounds and least root death. Such optimization of culture conditions will be beneficial for the large-scale production of E. koreanum biomass and bioactive compounds.

  17. Mining for bioactive scaffolds with scaffold networks: improved compound set enrichment from primary screening data.

    Science.gov (United States)

    Varin, Thibault; Schuffenhauer, Ansgar; Ertl, Peter; Renner, Steffen

    2011-07-25

    Identification of meaningful chemical patterns in the increasing amounts of high-throughput-generated bioactivity data available today is an increasingly important challenge for successful drug discovery. Herein, we present the scaffold network as a novel approach for mapping and navigation of chemical and biological space. A scaffold network represents the chemical space of a library of molecules consisting of all molecular scaffolds and smaller "parent" scaffolds generated therefrom by the pruning of rings, effectively leading to a network of common scaffold substructure relationships. This algorithm provides an extension of the scaffold tree algorithm that, instead of a network, generates a tree relationship between a heuristically rule-based selected subset of parent scaffolds. The approach was evaluated for the identification of statistically significantly active scaffolds from primary screening data for which the scaffold tree approach has already been shown to be successful. Because of the exhaustive enumeration of smaller scaffolds and the full enumeration of relationships between them, about twice as many statistically significantly active scaffolds were identified compared to the scaffold-tree-based approach. We suggest visualizing scaffold networks as islands of active scaffolds.

  18. Variation in Essential Oil and Bioactive Compounds of Curcuma kwangsiensis Collected from Natural Habitats.

    Science.gov (United States)

    Zhang, Lanyue; Yang, Zhiwen; Huang, Zebin; Zhao, Mincong; Li, Penghui; Zhou, Wei; Zhang, Kun; Zheng, Xi; Lin, Li; Tang, Jian; Fang, Yanxiong; Du, Zhiyun

    2017-07-01

    The chemical compositions of essential oils (EOs) extracted from Curcuma kwangsiensis rhizomes collected from six natural habitats in P. R. China were evaluated using gas chromatography/mass spectrometry (GC/MS). Fifty-seven components were identified from the six EOs, and their main constituents were 8,9-dehydro-9-formyl-cycloisolongifolene (2.37 - 42.59%), germacrone (6.53 - 22.20%), and l-camphor (0.19 - 6.12%). The six EOs exhibited different DPPH radical-scavenging activities (IC50 , 2.24 - 31.03 μg/ml), with the activity of most of EOs being much higher than that of Trolox C (IC50 , 10.49 μg/ml) and BHT (IC50 , 54.13 μg/ml). Most EOs had potent antimicrobial effects against the tested bacteria and fungus. They also exhibited cytotoxicity against B16 (IC50 , 4.44 - 147.4 μg/ml) and LNCaP cells (IC50 , 73.94 - 429.25 μg/ml). The EOs showed excellent anti-inflammatory action by significantly downregulating expression of pro-inflammatory cytokines, cyclooxygenase-2, and tumor necrosis factor-α. This study provides insight into the interrelation among growth location, phytoconstituents, and bioactivities, and the results indicate the potential of C. kwangsiensis as natural nutrients, medicines, and others additives. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  19. Anticancer bioactivity of compounds from medicinal plants used in European medieval traditions.

    Science.gov (United States)

    Teiten, Marie-Hélène; Gaascht, François; Dicato, Mario; Diederich, Marc

    2013-11-01

    Since centuries, natural compounds from plants, animals and microorganisms were used in medicinal traditions to treat various diseases without a solid scientific basis. Recent studies have shown that plants that were used or are still used in the medieval European medicine are able to provide relieve for many diseases including cancer. Here we summarize impact and effect of selected purified active natural compounds from plants used in European medieval medicinal traditions on cancer hallmarks and enabling characteristics identified by Hanahan and Weinberg. The aim of this commentary is to discuss the pharmacological effect of pure compounds originally discovered in plants with therapeutic medieval use. Whereas many reviews deal with Ayurvedic traditions and traditional Chinese medicine, to our knowledge, the molecular basis of European medieval medicinal approaches are much less documented.

  20. Discovery of structurally diverse and bioactive compounds from plant resources in China

    Institute of Scientific and Technical Information of China (English)

    Sheng-ping YANG; Jian-min YUE

    2012-01-01

    This review describes the major discoveries of structurally diverse and/or biologically significant compounds from plant resources in China,mainly from the traditional Chinese medicines (TCMs) since the establishment of our research group in 1999.In the past decade,a large array of biologically significant and novel structures has been identified from plant resources (or TCM) in our laboratory.The structural modification of several biologically important compounds led to more than 400 derivatives,some of which exhibited significantly improved activities and provided opportunities to elucidate the structure-activity relationship of the related compound class.These findings are important for drug discovery and help us understand the biological basis for the traditional applications of these plants in TCM.

  1. Hydroquinone; A novel bioactive compound from plant-derived smoke can cue seed germination of lettuce

    Science.gov (United States)

    Kamran, Muhammad; Khan, Abdul L.; Ali, Liaqat; Hussain, Javid; Waqas, Muhammad; Al-Harrasi, Ahmed; Imran, Qari M.; Kim, Yoon-Ha; Kang, Sang-Mo; Yun, Byung-Wook; Lee, In-Jung

    2017-05-01

    Plant-derived smoke has been known to play an important role in distribution and growth of vegetation. Using a proficiently designed furnace, we extracted smoke from the leaves of four plant viz. Helianthus annuus, Aloe vera, Ginkgo biloba, and Cymbopogon jwarancusa. Smoke dilutions obtained from these plants were obtained in different concentrations to identify potential lettuce growth promoting smoke solution. Results revealed that smoke obtained from Ginkgo biloba significantly enhanced the lettuce seed germination. This solution was then partitioned into ethyl acetate, dichloromethane, n-hexane, chloroform and ether fractions. Ethyl acetate fraction was found to be potent to enhance seed germination. This fraction was subjected to column chromatography and spectroscopic techniques to obtain compound 1. This compound was identified as hydroquinone using 1D and 2D NMR techniques. At low concentrations (5, 10 and 20 ppm), compound 1 enhanced the lettuce seed germination; however, higher concentrations inhibited its growth as compared to control.

  2. Sapwood of Carob Tree (Ceratonia siliqua L. as a Potential Source of Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Luísa Custódio

    2013-05-01

    Full Text Available Methanol (ME and hot water extracts (WE of carob tree sapwood (Ceratonia siliqua L. exhibited high antioxidant activity and were rich in phenolic compounds, with the main compounds identified by HPLC/DAD as gentisic acid and (--epicatechin. The ME displayed a high in vitro antitumor activity against human tumoural cell lines and reduced intracellular ROS production by HeLa cells after treatment with H 2O 2. (--Epicatechin was shown to contribute to the cytotoxic activity of the ME. This is the first report on the biological activity of carob tree sapwood.

  3. Hop (Humulus lupulus)-derived bitter acids as multipotent bioactive compounds.

    Science.gov (United States)

    Van Cleemput, Marjan; Cattoor, Ko; De Bosscher, Karolien; Haegeman, Guy; De Keukeleire, Denis; Heyerick, Arne

    2009-06-01

    Hop acids, a family of bitter compounds derived from the hop plant (Humulus lupulus), have been reported to exert a wide range of effects, both in vitro and in vivo. They exhibit potential anticancer activity by inhibiting cell proliferation and angiogenesis, by inducing apoptosis, and by increasing the expression of cytochrome P450 detoxification enzymes. Furthermore, hop bitter acids are effective against inflammatory and metabolic disorders, which makes them challenging candidates for the treatment of diabetes mellitus, cardiovascular diseases, and metabolic syndrome. This review summarizes the current knowledge on hop bitter acids, including both phytochemical aspects, as well as the biological and pharmacological properties of these compounds.

  4. Chemical characterisation of bioactive compounds in Medicago sativa growing in the desert of Oman.

    Science.gov (United States)

    Hanif, Muhammad Asif; Al-Maskari, Ahmed Yahya; Al-Sabahi, Jamal Nasser; Al-Hdhrami, Ibtisam; Khan, Muhammad Mumtaz; Al-Azkawi, Ahlam; Hussain, Abdullah Ijaz

    2015-01-01

    Medicago sativa Linn growing in Omani desert were chemically characterised using flame photometry, inductively coupled plasma, gas chromatography-mass spectrometry and high performance liquid chromatographic (HPLC) analysis. HPLC analyses were performed to determine the phenolics and flavonoids present in M. sativa. The major compounds detected in M. sativa leaves were protchaechenic acid (3.22%), hydroxyl benzoic acid (1.05%), β-Phenyl caffate (0.97%) and kaempherol (0.89%). Pterostilbene, a cholesterol-lowering compound, was detected in M. sativa.

  5. An Alternative Use of Horticultural Crops: Stressed Plants as Biofactories of Bioactive Phenolic Compounds

    Directory of Open Access Journals (Sweden)

    Luis Cisneros-Zevallos

    2012-09-01

    Full Text Available Plants subjected to abiotic stresses synthesize secondary metabolites with potential application in the functional foods, dietary supplements, pharmaceutical, cosmetics and agrochemical markets. This approach can be extended to horticultural crops. This review describes previous reports regarding the effect of different postharvest abiotic stresses on the accumulation of phenolic compounds. Likewise, the physiological basis for the biosynthesis of phenolic compounds as an abiotic stress response is described. The information presented herein would be useful for growers and the fresh produce market which are interested in finding alternative uses for their crops, especially for those not meeting quality standards and thus are considered as waste.

  6. CORRELATION OF THE STRUCTURAL PECULIARITIES OF BIOACTIVE COMPOUNDS OF HERBAL REMEDY AND ITS PHARMACOLOGICAL VALUE

    Directory of Open Access Journals (Sweden)

    Shulga L.I.

    2012-06-01

    Full Text Available Fatty acids in lipophilic fractions of the herbal composition as well as of the tincture obtained from it were detected and identified by the method of gas chromatography. The presence of this group of biologically active compounds supplements the biological value of the herbal medicine since fatty acids are responsible for the manifestation of antimicrobial properties along with flavonoids and volatile compounds. An antimicrobial activity of extraction agents was experimentally determined in regard to gram-positive and gram-negative microorganisms.

  7. Banana (Musa spp) from peel to pulp: ethnopharmacology, source of bioactive compounds and its relevance for human health.

    Science.gov (United States)

    Pereira, Aline; Maraschin, Marcelo

    2015-02-03

    Banana is a fruit with nutritional properties and also with acclaimed therapeutic uses, cultivated widely throughout the tropics as source of food and income for people. Banana peel is known by its local and traditional use to promote wound healing mainly from burns and to help overcome or prevent a substantial number of illnesses, as depression. This review critically assessed the phytochemical properties and biological activities of Musa spp fruit pulp and peel. A survey on the literature on banana (Musa spp, Musaceae) covering its botanical classification and nomenclature, as well as the local and traditional use of its pulp and peel was performed. Besides, the current state of art on banana fruit pulp and peel as interesting complex matrices sources of high-value compounds from secondary metabolism was also approached. Dessert bananas and plantains are systematic classified into four sections, Eumusa, Rhodochlamys, Australimusa, and Callimusa, according to the number of chromosomes. The fruits differ only in their ploidy arrangement and a single scientific name can be given to all the edible bananas, i.e., Musa spp. The chemical composition of banana's peel and pulp comprise mostly carotenoids, phenolic compounds, and biogenic amines. The biological potential of those biomasses is directly related to their chemical composition, particularly as pro-vitamin A supplementation, as potential antioxidants attributed to their phenolic constituents, as well as in the treatment of Parkinson's disease considering their contents in l-dopa and dopamine. Banana's pulp and peel can be used as natural sources of antioxidants and pro-vitamin A due to their contents in carotenoids, phenolics, and amine compounds, for instance. For the development of a phytomedicine or even an allopathic medicine, e.g., banana fruit pulp and peel could be of interest as raw materials riches in beneficial bioactive compounds. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Isolation of bioactive antioxidant compounds from the aerial parts ofAllium roseum var.grandiflorum subvar.typicum Regel

    Institute of Scientific and Technical Information of China (English)

    Lamia Sakka Rouis-Soussi; Asma El Ayeb; Saoussen Ben Salem; Hichem Ben Jannet; Fethia Harzallah-Skhiri

    2016-01-01

    Objective:To assess the antioxidant activity of aerial parts ofAllium roseum var.grandiflorum subvar. typicum Regel. (A. roseumvar.grandiflorum subvar. typicum Regel.) for the first time, as well as to isolate the main bioactive compounds. Methods: The chloroformic extract ofAllium roseum(A. roseum) and their fractions obtained by subjection to a chromatographic study were tested for their antioxidant activities by using 2, 2-diphenyl-2-picrylhydrazyl and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) assays. An activity-guided purification was conducted to isolate five compounds in pure form where their structures were identified by means of nuclear magnetic resonance analyses, including 1D and 2D nuclear magnetic resonance experiments. Results:The evaluation of the antioxidant activity of chloroformic extract and their fractions fromA. roseum var.grandiflorum subvar. typicum Regel. showed interesting results. The active chloroformic extract afforded five isolated compounds where their structures were identified asβ-sitosterol (1), chrysoeriol (2), luteolin (3), apigenin (4), andβ-sitosterol 3-O-β-D-glucoside (5). All the compounds were isolated for the first time from theA. roseum var.grandiflorum subvar. typicum Regel. The three flavonoids (2–4) exhibited the highest antioxidant activity with IC50 values of 62.28, 21.26 and 513.42μg/mL, respectively (2, 2-diphenyl-2-picrylhydrazyl assay) and 218.00, 73.50 and 877.66μg/mL, respectively [2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) assay]. An important value of trolox equivalent antioxidant capacity (2.10 mmol/L) was reported for luteolin (3). Conclusions:These results may suggest that theA. roseum var.grandiflorum subvar. typicum Regel. have great potential as a source of a natural preservative ingredient in beneficial for natural health products.

  9. Hyphenated GC-FTIR and GC-MS techniques applied in the analysis of bioactive compounds

    Science.gov (United States)

    Gosav, Steluta; Paduraru, Nicoleta; Praisler, Mirela

    2014-08-01

    The drugs of abuse, which affect human nature and cause numerous crimes, have become a serious problem throughout the world. There are hundreds of amphetamine analogues on the black market. They consist of various alterations of the basic amphetamine molecular structure, which are yet not yet included in the lists of forbidden compounds although they retain or slightly modify the hallucinogenic effects of their parent compound. It is their important variety that makes their identification quite a challenge. A number of analytical procedures for the identification of amphetamines and their analogues have recently been reported. We are presenting the profile of the main hallucinogenic amphetamines obtained with the hyphenated techniques that are recommended for the identification of illicit amphetamines, i. e. gas chromatography combined with mass spectrometry (GC-MS) and gas chromatography coupled with Fourier transform infrared spectrometry (GC-FTIR). The infrared spectra of the analyzed hallucinogenic amphetamines present some absorption bands (1490 cm-1, 1440 cm-1, 1245 cm-1, 1050 cm-1 and 940 cm-1) that are very stable as position and shape, while their intensity depends of the side-chain substitution. The specific ionic fragment of the studied hallucinogenic compounds is the 3,4-methylenedioxybenzyl cation (m/e = 135) which has a small relative abundance (lesser than 20%). The complementarity of the above mentioned techniques for the identification of hallucinogenic compounds is discussed.

  10. Screening SIRT1 Activators from Medicinal Plants as Bioactive Compounds against Oxidative Damage in Mitochondrial Function

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2016-01-01

    Full Text Available Sirtuin type 1 (SIRT1 belongs to the family of NAD+ dependent histone deacetylases and plays a critical role in cellular metabolism and response to oxidative stress. Traditional Chinese medicines (TCMs, as an important part of natural products, have been reported to exert protective effect against oxidative stress in mitochondria. In this study, we screened SIRT1 activators from TCMs and investigated their activities against mitochondrial damage. 19 activators were found in total by in vitro SIRT1 activity assay. Among those active compounds, four compounds, ginsenoside Rb2, ginsenoside F1, ginsenoside Rc, and schisandrin A, were further studied to validate the SIRT1-activation effects by liquid chromatography-mass spectrometry and confirm their activities against oxidative damage in H9c2 cardiomyocytes exposed to tert-butyl hydroperoxide (t-BHP. The results showed that those compounds enhanced the deacetylated activity of SIRT1, increased ATP content, and inhibited intracellular ROS formation as well as regulating the activity of Mn-SOD. These SIRT1 activators also showed moderate protective effects on mitochondrial function in t-BHP cells by recovering oxygen consumption and increasing mitochondrial DNA content. Our results suggested that those compounds from TCMs attenuated oxidative stress-induced mitochondrial damage in cardiomyocytes through activation of SIRT1.

  11. Screening SIRT1 Activators from Medicinal Plants as Bioactive Compounds against Oxidative Damage in Mitochondrial Function

    Science.gov (United States)

    Wang, Yi; Liang, Xinying; Chen, Yaqi; Zhao, Xiaoping

    2016-01-01

    Sirtuin type 1 (SIRT1) belongs to the family of NAD+ dependent histone deacetylases and plays a critical role in cellular metabolism and response to oxidative stress. Traditional Chinese medicines (TCMs), as an important part of natural products, have been reported to exert protective effect against oxidative stress in mitochondria. In this study, we screened SIRT1 activators from TCMs and investigated their activities against mitochondrial damage. 19 activators were found in total by in vitro SIRT1 activity assay. Among those active compounds, four compounds, ginsenoside Rb2, ginsenoside F1, ginsenoside Rc, and schisandrin A, were further studied to validate the SIRT1-activation effects by liquid chromatography-mass spectrometry and confirm their activities against oxidative damage in H9c2 cardiomyocytes exposed to tert-butyl hydroperoxide (t-BHP). The results showed that those compounds enhanced the deacetylated activity of SIRT1, increased ATP content, and inhibited intracellular ROS formation as well as regulating the activity of Mn-SOD. These SIRT1 activators also showed moderate protective effects on mitochondrial function in t-BHP cells by recovering oxygen consumption and increasing mitochondrial DNA content. Our results suggested that those compounds from TCMs attenuated oxidative stress-induced mitochondrial damage in cardiomyocytes through activation of SIRT1. PMID:26981165

  12. Physico-Chemical Characterization, Bioactive Compounds and Antioxidant Activity of Malay Apple [Syzygium malaccense (L. Merr. & L.M. Perry].

    Directory of Open Access Journals (Sweden)

    Polyana Campos Nunes

    Full Text Available The purpose of this study was to evaluate the physico-chemical characteristics, bioactive compounds and antioxidant activity of Malay apple fruit (Syzygium malaccense grown in Brazil with regard to the geographical origin and its peel fractions and edible portion analyzed independently. Fruit diameter, weight, yield, and centesimal composition, ascorbic acid, reductive sugars, total soluble solids, pH and fiber content were determined. Total phenolics (1293 mg gallic acid equivalent/100 g and total anthocyanins (1045 mg/100 g contents were higher in the peel, with the major anthocyanin identified using HPLC-DAD-MS/MS as cyanidin 3-glucoside. Higher values for DPPH antiradical scavenging activity (47.52 μMol trolox equivalent antioxidant capacity/g and Ferric Reducing Antioxidant Potential (FRAP, 0.19 mM ferreous sulfate/g were also observed in the peel fraction. All extracts tested showed the ability to inhibit oxidation in the β-carotene/linoleic acid system. This study highlights the potential of Malay apple fruit as a good source of antioxidant compounds with potential benefits to human health.

  13. Influence of extraction techniques on antioxidant properties and bioactive compounds of loquat fruit (Eriobotrya japonica Lindl.) skin and pulp extracts.

    Science.gov (United States)

    Delfanian, Mojtaba; Esmaeilzadeh Kenari, Reza; Sahari, Mohammad Ali

    2015-05-01

    In this study, the bioactive compounds of loquat fruit (Eriobotrya japonica Lindl.) skin and pulp extracted by two extraction methods (solvent and ultrasound-assisted) with three solvents (ethanol, water and ethanol-water) were compared to supercritical fluid extraction. The antioxidant activities of skin and pulp extracts were evaluated and compared to tertiary butylhydroquinone (TBHQ) using 2, 2-diphenyl-1-picrylhydrazyl (DPPH˙) radical scavenging, β-carotene bleaching, and the Rancimat assays. In DPPH assay solvent extracts of skin by ethanol (SSE) and ethanol-water (SSEW) showed strong inhibitory activity. The SSEW also showed the highest inhibition percentage of 85.58% by the β-carotene bleaching assay and longest induction time of 4.78 h by the Rancimat method. The large amount of tocopherols and phenolics contained in the skin extract may cause its strong antioxidant ability. The results indicated that the solvent extraction with ethanol-water produced the maximum extraction yield of phenolic and tocopherol compounds from loquat fruit skin and pulp. Furthermore, solvent extraction was the most effective in antioxidant activity of the extracts compared to other extraction techniques.

  14. Impact of Species and Variety on Concentrations of Minor Lipophilic Bioactive Compounds in Oils Recovered from Plum Kernels.

    Science.gov (United States)

    Górnaś, Paweł; Rudzińska, Magdalena; Raczyk, Marianna; Mišina, Inga; Soliven, Arianne; Lācis, Gunārs; Segliņa, Dalija

    2016-02-01

    The profile of bioactive compounds (carotenoids, tocopherols, tocotrienols, phytosterols, and squalene) in oils recovered from the kernels of 28 plum varieties of hexaploid species Prunus domestica L. and diploid plums Prunus cerasifera Ehrh. and their crossbreeds were studied. Oil yields in plum kernels of both P. cerasifera and P. domestica was in wide ranges of 22.6-53.1 and 24.2-46.9% (w/w) dw, respectively. The contents of total tocochromanols, carotenoids, phytosterols, and squalene was significantly affected by the variety and ranged between 70.7 and 208.7 mg/100 g of oil, between 0.41 and 3.07 mg/100 g of oil, between 297.2 and 1569.6 mg/100 g of oil, and between 25.7 and 80.4 mg/100 g of oil, respectively. Regardless of the cultivar, β-sitosterol and γ-tocopherol were the main minor lipophilic compounds in plum kernel oils and constituted between 208.5 and 1258.7 mg/100 g of oil and between 60.5 and 182.0 mg/100 g of oil, respectively. Between the studied plum species, significant differences were recorded for δ-tocopherol (p = 0.007), 24-methylenecycloartanol (p = 0.038), and citrostadienol (p = 0.003), but they were insufficient for discrimination by PCA.

  15. Bioactive compounds and nutritional significance of virgin argan oil--an edible oil with potential as a functional food.

    Science.gov (United States)

    Cabrera-Vique, Carmen; Marfil, Rocío; Giménez, Rafael; Martínez-Augustin, Olga

    2012-05-01

    This review compiles recently published scientific reports on the bioactive compounds present in virgin argan oil along with their possible beneficial effects on human health, which could justify consideration of this oil as a new functional food. Virgin argan oil is characterized by high levels of linoleic and oleic acids, tocopherols (especially γ-tocopherol), and minor compounds such as sterols, carotenoids, and squalene. The total antioxidant capacity of virgin argan oil is higher than that of other vegetable oils. Recent studies suggest that this edible oil, as a functional food, may play a role in disease prevention. For example, some authors have found it to have hypolipidemic, hypocholesterolemic, hypoglycemic, and antihypertensive effects as well as a possible role in cancer prevention. This review demonstrates the need for further studies in order to fully characterize argan oil from bromatological, nutritional, culinary, and technological perspectives. In particular, the scarcity of clinical data hampers relevant conclusions from being drawn regarding the therapeutic effects of virgin argan oil. © 2012 International Life Sciences Institute.

  16. Bioactive compounds and antioxidant activity exhibit high intraspecific variability in Pleurotus ostreatus mushrooms and correlate well with cultivation performance parameters.

    Science.gov (United States)

    Koutrotsios, Georgios; Kalogeropoulos, Nick; Stathopoulos, Pantelis; Kaliora, Andriana C; Zervakis, Georgios I

    2017-05-01

    Experimental data related with oyster mushroom production and nutritional properties usually derive from the examination of only one strain, and hence their representativeness/usefulness is questionable. This work aims at assessing intraspecific variability in Pleurotus ostreatus by studying 16 strains, under the same conditions, in respect to essential cultivation and mushroom quality aspects, and by defining the impact of intrinsic/genetic factors on such parameters. Hence, mushroom yield, earliness, crop length, biological efficiency, productivity, and their content in selected macro and microconstituents (e.g. fatty acids, sterols, individual phenolic compounds, terpenic acids, glucans) as well as their antioxidant properties (i.e., antiradical activity, ferric reducing potential, inhibition of serum oxidation) were assayed. The effect of intrinsic/genetic factors was evident, especially as regards earliness, yield of each production flush and mushroom weight, whereas biological efficiency was not particularly influenced by the cultivated strain. Moreover, phenolics, ergosterol and antiradical activity demonstrated significant variability among strains in contrast to what was observed for fatty acids, β-glucans and ferric reducing potential. The observed heterogeneity reveals the limitations of using a low number of strains for evaluating mushroom production and/or their content in bioactive compounds, and as evidenced, it is valuable for breeding and commercial purposes.

  17. The effect of high-pressure processing on colour, bioactive compounds, and antioxidant activity in smoothies during refrigerated storage.

    Science.gov (United States)

    Andrés, Víctor; Villanueva, María J; Tenorio, María D

    2016-02-01

    The effects of high-pressure processing--HPP--(450 and 600 MPa/3 min/20 °C) on the colour, carotenoids, ascorbic acid, polyphenols and antioxidant activity (FRAP and DPPH) of a smoothie were compared to thermal processing (80 °C/3 min). Stability during 45 days at 4 °C was also evaluated. HPP samples showed slight differences (p colour compared to untreated smoothies. Both HPP significantly increased the extractability of lycopene, β-carotene and polyphenols compared to untreated samples. After HPP, ascorbic acid was retained by more than 92% of the initial content. The best results for antioxidant activity were obtained when HPP was applied at 600 MPa. FRAP and DPPH showed a high correlation with ascorbic acid (R(2) = 0.7135 and 0.8107, respectively) and polyphenolic compounds (R(2) = 0.6819 and 0.6935, respectively), but not with total carotenoids. Changes in bioactive compounds during the storage period were lower in the HPP smoothie than in the thermal-treated sample.

  18. Simultaneous determination of bioactive compounds in Piper nigrum L. and a species comparison study using HPLC-PDA.

    Science.gov (United States)

    Rao, Vidadala Rama Subba; Raju, Sagi Satyanarayana; Sarma, Vanka Umamaheswara; Sabine, Fouriner; Babu, Kothapalli Hari; Babu, Katragadda Suresh; Rao, Janaswamy Madhusudana

    2011-08-01

    Piper nigrum L. is a traditional medicine widely used in India for illnesses such as constipation, diarrhoea, earache, gangrene, heart disease, hernia, hoarseness, indigestion, insect bites, insomnia, joint pain, liver problems, lung disease, oral abscesses, sunburn, tooth decay and toothaches. In this study, six bioactive compounds, namely piperine (1), pellitorine (2), guineensine (3), pipnoohine (4), trichostachine (5) and piperonal (6) were quantified in different extracts of P. nigrum L. and compared with those of P. longum L. and P. chaba Hunter. To evaluate the quality of P. nigrum, a simple, accurate and precise HPLC-PDA method was developed for the simultaneous determination of the above-mentioned six compounds. The separation was achieved by Phenomenex Luna RP C(18) column (150 × 4.6 mm, 5 µm, Phenomenex Inc, CA, USA) with a binary gradient solvent system of water-acetonitrile, at a flow rate of 1.0 mL min(-1) and detected at 210, 232, 262 and 343 nm. All six calibration curves showed good linearity (R (2) > 0.9966). The method was reproducible with intra- and inter-day variations of less than 2% and 5%, respectively. The results demonstrated that this method is simple, reliable and suitable for the quality control of these plants.

  19. Bioactive compounds in edible flowers processed by radiation; Compostos bioativos em flores comestiveis processadas por radiacao

    Energy Technology Data Exchange (ETDEWEB)

    Koike, Amanda Cristina Ramos

    2015-07-01

    Edible flowers are increasingly being used in culinary preparations, being also recognized for their potential valuable effects in human health, which require new approaches to improve their conservation and safety. These highly perishable products should be grown without using any pesticide. Irradiation treatment might be the answer to these problems, ensuring food quality, increasing shelf-life and disinfestation of foods. Irradiation treatment might be the answer to these problems, to ensure food quality, to increase shelf-life and disinfestation of foods. Tropaeolum majus L. (nasturtium) and Viola tricolor L. (johnny-jump-up) flowers are widely used in culinary preparations, being also acknowledged for their antioxidant properties and high content of phenolics. The purpose of this study was to evaluate the dose-dependent effects of gamma and electron beam irradiation (doses of 0, 0.5, 0.8 and 1 kGy) on the antioxidant activity, phenolic compounds, physical aspects and antiproliferative potential of edible flowers. Kaempferol-O-hexoside-O-hexoside was the most abundant compound in all samples of Tropaeolum majus flower while pelargonidin-3-O-sophoroside was the major anthocyanin. In general, irradiated samples gave higher antioxidant activity, probably due to their higher amounts of phenolic compounds, which were also favored by the 1.0 kGy dose, regardless of the source . The Viola tricolor samples displayed flavonols as the most abundant phenolic compounds, particularly those derived from quercetin. In general, gamma-irradiated samples, independently of the applied dose, showed higher amounts in phenolic compounds, which were also favored by the 1.0 kGy dose, regardless of the source. The antioxidant activity was also higher among irradiated samples. The two species of edible flowers have not provided the samples did not show potential antiproliferative and cytotoxicity. Accordingly, the applied irradiation treatments seemed to represent a feasible technology

  20. Phytochemical screening and in-vitro antioxidant activity isolated bioactive compounds from Tridax procumbens Linn.

    Science.gov (United States)

    Saxena, Manjusha; Mir, Abrar Hussain; Sharma, Manik; Malla, Mohd Yousu; Qureshi, Sumeerah; Mir, Mohd Iqbal; Chaturvedi, Yogesh

    2013-12-15

    Tridax procumbens L., Asteraceae, has been extensively used for various ailments in the Ayurvedic system of medicine. Previous studies have revealed remarkable phytoconstituents from Tridax procumbens L. with significant antioxidant activity. The aim of the present study is to measure the anti-DPPH activity of the purified isolated compounds from n butanol soluble part and ethyl acetate soluble part of successive methanolic extract of Tridax procumbens L. We thus quantified the total phenolic and total flavonoids in different purified isolated compounds, the whole of the tests were evaluated with a sample cone. of 100 microg mL(-1) and were determined spectrophotometrically using Folin-ciocaltue and AlCl3 reagents, respectively. DPPH (1,1-diphenyl, 2-picryl hydrazyl) assay was used to determine the in vitro antioxidant activity of different isolated compounds. Isolated compounds, one from ethyl acetate soluble part (EF-I) and one from n butanol soluble part (BF-II) were reported to possess a significant anti DPPH activity with lowest IC50 values 67.26 and 80.90 microg mL(-1), respectively while comparable to standard ascorbic acid with IC50 value of 59.62 microg mL(-1), due to the high concentration of phenols 146.4 microg mL(-1) from EF-I and 142.2 microg mL(-1) from BF-II and flavonoids 48 and 42.5 microg mL(-1) found in EF-I and BF-II isolated compounds, respectively.

  1. Olive oil bioactive compounds increase body weight, and improve gut health and integrity in gilthead sea bream (Sparus aurata).

    Science.gov (United States)

    Gisbert, Enric; Andree, Karl B; Quintela, José C; Calduch-Giner, Josep A; Ipharraguerre, Ignacio R; Pérez-Sánchez, Jaume

    2017-02-01

    An olive oil bioactive extract (OBE) rich in bioactive compounds like polyphenols, triterpenic acids, long-chain fatty alcohols, unsaturated hydrocarbons, tocopherols and sterols was tested (0, 0·08, 0·17, 0·42 and 0·73 % OBE) in diets fed to sea bream (Sparus aurata) (initial weight: 5·4 (sd 1·2) g) during a 90-d trial (four replicates). Fish fed diets containing 0·17 and 0·42 % OBE were 5 % heavier (61·1 (sd 1·6) and 60·3 (sd 1·1) g, respectively) than those of the control group (57·0 (sd 0·7) g), although feed conversion ratio and specific feed intake did not vary. There were no differences in lipid peroxidation (LPO) levels, catalase, glutathione reductase and glutathione S-transferase activities in the intestine and liver, although there was a tendency of lower intestinal and hepatic LPO levels in fish fed OBE diets. No differences in villus size were found among treatments, whereas goblet cell density in the control group was on average14·3 % lower than in fish fed OBE diets. The transcriptomic profiling of intestinal markers, covering different biological functions like (i) cell differentiation and proliferation, (ii) intestinal permeability, (iii) enterocyte mass and epithelial damage, (iv) IL and cytokines, (v) pathogen recognition receptors and (vi) mitochondria function, indicated that among the eighty-eight evaluated genes, twenty-nine were differentially expressed (0·17 % OBE diet), suggesting that the additive has the potential of improving the condition and defensive role of the intestine by enhancing the maturation of enterocytes, reducing oxidative stress, improving the integrity of the intestinal epithelium and enhancing the intestinal innate immune function, as gene expression data indicated.

  2. Evaluation of bioactive properties and phenolic compounds in different extracts prepared from Salvia officinalis L.

    Science.gov (United States)

    Martins, Natália; Barros, Lillian; Santos-Buelga, Celestino; Henriques, Mariana; Silva, Sónia; Ferreira, Isabel C F R

    2015-03-01

    The therapeutic benefits of medicinal plants are well known. Nevertheless, essential oils have been the main focus of antioxidant and antimicrobial studies, remaining scarce the reports with hydrophilic extracts. Thus, the antioxidant and antifungal activities of aqueous (prepared by infusion and decoction) and methanol/water (80:20, v/v) extracts of sage (Salvia officinalis L.) were evaluated and characterised in terms of phenolic compounds. Decoction and methanol/water extract gave the most pronounced antioxidant and antifungal properties, being positively related with their phenolic composition. The highest concentration of phenolic compounds was observed in the decoction, followed by methanol/water extract and infusion. Fungicidal and/or fungi static effects proved to be dependent on the extracts concentration. Overall, the incorporation of sage decoction in the daily diet or its use as a complement for antifungal therapies, could provide considerable benefits, also being an alternative to sage essential oils that can display some toxic effects.

  3. Bioactivity-guided isolation of new antiproliferative compounds from Juniperus foetidissima Willd.

    Science.gov (United States)

    Rafieian-Kopaei, Mahmood; Suleimani Dehkordi, Ibrahim; Ghanadian, Mustafa; Shokrollahi, Ardeshir; Aghaei, Mahmoud; Syed Majid, Ayatollahi; Choudhary, M Iqbal

    2016-09-01

    Based on a literature survey on cytotoxic medicinal plants, Juniper species were identified as interesting source of antitumor compounds. Using bioassay-guided fractionation against Caov-4 cancer cells on acetone extract of leaves and branchlets of Juniperus foetidissima led to the isolation of a new 3H-benzofuaran-2-one: 4-methyl-3-methoxy-3H-benzofuaran-2-one (1), a new sesquiterpene: 4,9(α)-dihydroxy-nardosin-6-en (2) and an already known labdane-type diterpene: 15-hydroxy-8(17),13(E)-labdadiene-19-carboxilic acid (3). Compounds 1-3 exhibited cytotoxic effects, with moderate cytotoxicity against the EJ-138 bladder and CAOV-4 ovary cancer cell lines.

  4. The Role of Bioactive Compounds on the Promotion of Neurite Outgrowth

    Directory of Open Access Journals (Sweden)

    Dong-Kug Choi

    2012-06-01

    Full Text Available Neurite loss is one of the cardinal features of neuronal injury. Apart from neuroprotection, reorganization of the lost neuronal network in the injured brain is necessary for the restoration of normal physiological functions. Neuritogenic activity of endogenous molecules in the brain such as nerve growth factor is well documented and supported by scientific studies which show innumerable compounds having neurite outgrowth activity from natural sources. Since the damaged brain lacks the reconstructive capacity, more efforts in research are focused on the identification of compounds that promote the reformation of neuronal networks. An abundancy of natural resources along with the corresponding activity profiles have shown promising results in the field of neuroscience. Recently, importance has also been placed on understanding neurite formation by natural products in relation to neuronal injury. Arrays of natural herbal products having plentiful active constituents have been found to enhance neurite outgrowth. They act synergistically with neurotrophic factors to promote neuritogenesis in the diseased brain. Therefore use of natural products for neuroregeneration provides new insights in drug development for treating neuronal injury. In this study, various compounds from natural sources with potential neurite outgrowth activity are reviewed in experimental models.

  5. Bioactive Compound Synthetic Capacity and Ecological Significance of Marine Bacterial Genus Pseudoalteromonas

    Directory of Open Access Journals (Sweden)

    John P. Bowman

    2007-12-01

    Full Text Available The genus Pseudoalteromonas is a marine group of bacteria belonging to theclass Gammaproteobacteria that has come to attention in the natural product andmicrobial ecology science fields in the last decade. Pigmented species of the genus havebeen shown to produce an array of low and high mole